
Chapter 5
Clique Relaxation Models in Social Network
Analysis

Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko

Abstract Clique relaxation models that were originally introduced in the literature
on social network analysis are not only gaining increasing popularity in a wide
spectrum of complex network applications, but also keep garnering attention of
mathematicians, computer scientists, and operations researchers as a promising
avenue for fruitful theoretical investigations. This chapter describes the origins
of clique relaxation concepts and provides a brief overview of mathematical pro-
gramming formulations for the corresponding optimization problems, algorithms
proposed to solve these problems, and selected real-life applications of the models
of interest.

5.1 Introduction

Social networks represent certain types of social interaction, such as acquaintance,
friendship, or collaboration between people or groups of people that are referred
to as actors. In social networks, vertices (nodes, dots) usually stand for actors, and
edges (arcs, links, lines) represent the pairwise relations or interactions between the
actors. As an illustration of a social network, an example of a terrorist network is
given in Fig. 5.1, which describes the connections between terrorists associated with
the September 11, 2001 attack on the World Trade Center. The links were identified
by Krebs [49] after the terrorist attack; however, the network is reconstructed
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Fig. 5.1 The network representation of the data describing connections between terrorists associ-
ated with September 11 events

based on the information that was publicly available before September 11. Analysis
of such networks, even though performed post-factum, may still be useful for
understanding the structure of terrorist organizations and detecting similar structures
to prevent potential terrorist attacks in the future.

One of the central concepts in social network analysis is the notion of a
cohesive subgroup, which is a “tightly knit” subgroup of actors in a social network.
During the last several decades, social network analysis methods in general, and
social cohesion concepts in particular, have been employed in various branches
of sociology in the contexts of crime detection/prevention and terrorist network
analysis [12, 27, 31, 56, 68, 69], studies on the sociology of political systems and
historical revolutionary movements [41, 65], epidemiology of sexually transmit-
ted diseases [67], organizational management [32], and the sociology of worker
solidarity [42].

Study of social cohesion can be traced back to one of the founding fathers of
sociology, Emile Durkheim (1858–1917), who wrote [35]:

The totality of beliefs and sentiments common to the average members of a society forms
a determinate system with a life of its own. It can be termed the collective or common
consciousness.

Durkheim found the notion of cohesiveness difficult to define rigorously,

...social solidarity is a wholly moral phenomenon which by itself is not amenable to exact
observation and especially not to measurement.

However, a rigorous mathematical definition became possible with the introduction
of sociometric analysis and graph theoretic methods into sociology that have led
to the association of the notion of social cohesion with certain graph theoretic
concepts. In particular, Luce and Perry [53] used complete subgraphs to model
social cliques, which are defined as “an exclusive circle of people with a common
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purpose” [58]. It should be noted that the term “clique” was used in Hawthorne and
Warner studies in the 1930s (see, e.g., [66, 70]), however, it referred to “socially
perceived subgroups” and was not strictly defined [70].

While the notion of a clique embodies a “perfect” cohesive group, in which every
two entities are connected to each other, this definition is overly conservative in
many practical scenarios. Indeed,

1. One may not need to require every possible link to exist between elements of a
cohesive subgroup.

2. The social network of interest may be built based on empirical data, which are
prone to errors, so, even if a completely connected cohesive subgroup is sought
for, it may be impossible to detect due to erroneous data.

To overcome this impracticality of the clique model, other graph-theoretic
formalizations of the cohesive subgroup concept have been proposed in the lit-
erature. Not surprisingly, all these alternative definitions can be viewed as clique
generalizations, each of which relaxes one of the elementary clique properties, such
as familiarity, reachability, or robustness [4, 52, 59, 72]. Hence, we use the term
“clique relaxations” in reference to such models. Since their introduction in the
social network literature in the 1970s, the clique relaxation models received very
little attention from researchers in graph theory, computer science, and operations
research during the decades that followed. At the same time, methodology-wise, the
social network literature dealing with these concepts was largely limited to giving
their formal definition within a given context and providing illustrative examples on
graphs with several vertices [83].

Recent progress in Internet and telecommunication technologies makes it pos-
sible to collect tremendous amounts of social interaction data dynamically and at
virtually any level of detail, providing unprecedented opportunities to researchers
interested in areas related to social network analysis. The availability of massive
amounts of data that needs to be analyzed spurred the interest in developing effective
algorithms capable of handling problems of practical scale. The need for advanced
computational tools urged the recent progress in developing theoretical founda-
tions for the models of interest and effective algorithms utilizing the theoretical
achievements. The objective of this chapter is to provide a brief survey of results
concerning optimization problems seeking to find maximum size clique relaxation
structures in networks. More specifically, in this chapter we are primarily interested
in mathematical programming formulations of the corresponding optimization
problems and algorithms proposed for solving these problems. While in social
network applications one may also be interested in detecting cohesive subgroups
of sizes smaller than maximum, computing the largest cohesive subgroup is
of special interest, since its size provides a global measure of cohesiveness of
the corresponding network. We will also discuss selected applications of clique
relaxation models outside of social network analysis and highlight some of the
promising directions for future research in this active area.

The remainder of this chapter is organized as follows. Section 5.2 provides
formal definitions of the clique relaxation concepts introduced in the context of
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social network analysis and discusses some of their basic properties. Mathematical
programming formulations of the corresponding optimization problems, that aim
to find clique relaxation structures of largest possible size in the given network,
are outlined in Sect. 5.3. Section 5.4 surveys existing algorithms for solving the
optimization problems of interest either exactly or approximately and discusses suc-
cessful examples of application of some of these algorithms in practice. Extensions
of the discussed methodologies to applications outside of the sociological realm are
the focus of Sect. 5.5. Finally, Sect. 5.6 concludes the chapter.

5.2 Definitions and Properties of Clique Relaxation Models

Throughout this chapter, we consider a simple undirected graph G = (V,E), where
V = {1, ...,n} and E ⊆V ×V , respectively, denote the sets of vertices and edges in
G, with |V |= n and |E|= m. G is said to be complete if for every u,v ∈V such that
u �= v, (u,v) ∈ E; in other words, G = (V,E) is complete if E = V ×V with |E| =(n

2

)
. Given a subset of vertices S ⊆ V , G[S] = (S,E ∩ (S× S)) denotes the subgraph

induced by S, obtained by deleting all vertices in V \ S and their corresponding
incident edges from G.

A clique C is a subset of V such that the subgraph G[C] induced by C on G is
complete. A clique is called maximal if it is not contained in a larger clique, and it
is called maximum if there is no larger clique in G. The size of the maximum clique
in G is referred to as the clique number and is denoted by ω(G).

The notion of clique defined above embodies ideal properties of reachability,
familiarity, density, and robustness discussed below in this chapter. Such structural
properties are indeed very useful in modeling group cohesiveness within social
networks. The idealized properties of cliques are, however, overly restrictive in
practical applications. This observation has called for the development of clique
relaxations, aiming at relaxing particular properties of cliques. We next introduce
the definitions of the major graph properties that are needed in order to characterize
the clique relaxations of interest. A path between two vertices u,v ∈V of length k is
a sequence of distinct vertices u = v0,v1, ...,vk = v, such that (vi,vi+1) ∈ E,0 ≤ i ≤
k − 1. Two paths are called independent if they only intersect at their ends. The
length of the shortest path between two vertices u,v ∈ V in G is represented by
dG(u,v), referred to as the distance between u and v. The largest of the pairwise
distances between vertices define the diameter of the graph, i.e., diam(G) =
maxu,v∈V dG(u,v). G is said to be connected if every two vertices in G are linked by a
path in G. For any vertex v ∈V , the open neighborhood N(v) = {u ∈V |(u,v) ∈ E)}
defines the set of vertices adjacent to v in G, whereas N[v] = {v}∪N(v) denotes the
closed neighborhood of v. The degree of a vertex v ∈V , given by degG(v) = |N(v)|,
represents the number of edges emanating from v. Considering a subgraph G[S]
induced by S ⊆ V , the degree of a vertex s ∈ S is given by degG[S](s) = |N(s)∩ S|.
The minimum degree in a graph is denoted by δ (G). A subset of vertices D is called
a dominating set if every vertex in the graph is either in D or has at least one neighbor
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Fig. 5.2 A graph illustrating
the difference between
2-cliques and 2-clubs,
originally used in [4]
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in D. The size of a smallest dominating set, also known as the domination number
of G, is denoted by γ(G). The edge density of G is the ratio of the number of edges
to the total number of possible edges, i.e., m/

(n
2

)
.

The concepts of k-cliques and k-clubs were among the first clique relaxations to
be studied in the literature and were first introduced in [72] and [71]. They both
relax the property of reachability desirable for a cohesive subgroup, that is, each
member of a cohesive subgroup should be able to easily reach any other member
of the subgroup. In graph-theoretic terms, this property can be expressed using the
notions of distance and diameter. While pairwise distances between members of the
clique is equal to one, k-cliques ensure that any two vertices within the subgraph are
at most distance k from each other in the original graph. On the other hand, k-clubs
require the diameter of the induced subgraph to be at most k. Next, we formally
define these concepts.

Definition 5.1. A k-clique S is a subset of V such that, for all vertices u,v ∈ S,
dG(u,v) ≤ k. The size of the largest k-clique is called the k-clique number and is
denoted by ω̃k(G).

Definition 5.2. A k-club S is a subset of V such that the induced subgraph G[C] has
a diameter of at most k. The size of the largest k-club is called the k-club number
and is denoted by ωk(G).

Note that any k-club is a k-clique but the converse is not true. For example,
the graph in Fig. 5.2 contains a 2-clique C = {1,2,3,4,5}, which is not a 2-club,
since the distance between vertices 1 and 5 in the subgraph induced by C is 3.
Based on this observation, Alba [4] concluded that the concept of k-clique lacks
the “tightness” essential to applications in social networks, which motivated him
to introduce the concept of a “sociometric clique”, later renamed to “k-clan” by
Mokken [59]. According to their definition, a k-clique C is called an k-clan if the
diameter of the induced subgraph G(C) is no more than k. A considerable drawback
in the k-clan definition is that for some graphs a k-clan may not exist [10]. Indeed,
Fig. 5.3 shows a graph with two 2-cliques {1,2,3,4,5,6,7} and {1,2,3,5,6,7,8},
neither of which is a 2-clan.

Familiarity is another important property one wants to have in a cohesive
subgroup; ideally, every member of the group should be familiar with every
other member of the group, which is the case for cliques. Known familiarity-
based models either relax the minimum number of neighbors or the maximum
number of non-neighbors within the group. The k-core concept, first introduced in
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Fig. 5.3 A graph with no 2-clans proposed in [10]

[71], imposes a lower bound on the minimum degree within the subgraph, ensuring
that each vertex in the group is connected to at least k other vertices in the group.
The k-plex model introduced in [72], on the other hand, requires any subset of k
vertices to dominate to entire group, hence restricting the number of non-neighbors
per vertex to be at most k − 1. The formal definitions of these familiarity-based
relaxations are given next.

Definition 5.3. A k-core S is a subset of V such that, for all vertices u,v ∈ S,
degG[S](v) = |N(v) ∩ S| ≥ k. The size of the k-core in the graph G is denoted
by ω ′

k(G).

Definition 5.4. A k-plex S is the maximum subset of V such that any set of k
vertices in S dominates the group. Alternatively, a k-plex S is a subset of V such
that, for all vertices u,v ∈ S, degG[S](v) = |N(v)∩S| ≥ |S|−k. The size of the largest
k-plex is denoted by ωk(G).

High density of connections is yet another defining characteristic of a cohesive
subgroup that is perfectly reflected in the notion of clique, which can be alternatively
defined as a subset of vertices inducing a subgraph with edge density of 1. This
rather strict requirement on edge density could also be relaxed. Namely, instead of
opting for cliques with density one, γ-quasi-cliques ensure a subgraph with a density
at least γ , where 0 ≤ γ ≤ 1.

Definition 5.5. A γ-quasi-clique or, simply, a γ-clique is a subset S of V such that
the induced subgraph G[S] has the edge density |E ∩ (S×S)|/(|S|2

)
of at least γ . The

size of the largest γ-quasi-clique is denoted by ωγ (G).

Finally, robustness of a group may be measured in terms of the number of vertices
that need to be deleted to completely disconnect the group. Since any vertex within
a clique is directly linked to any other vertex of the clique, disconnecting a clique
would require removing all its vertices. A model known as the k-vertex connected
subgraph relaxes the connectivity property, whereby removal of at least k vertices
destroys connectivity. By Menger’s theorem [33], a k-vertex connected group can
be also defined as a subgraph such that any two of its vertices can be joined by k
independent paths.



5 Clique Relaxation Models in Social Network Analysis 149

Definition 5.6. A k-vertex connected subgraph G[S] is defined by a subset S of V
such that the induced subgraph G[S \R] is connected for all subsets R ⊂ S, with
|R|< k. The size of the largest k-connected subgraph is denoted by ωkc(G).

The corresponding concept in social networks literature is the so-called structural
cohesion, which is defined as the minimum number of members whose removal
from a group would disconnect the group [60].

While, by definition, the above mentioned clique relaxations emphasize a
single clique structural aspect, other models have been created ensuring different
combinations of properties. Examples include the (λ ,γ)-quasi-clique relaxing both
density and degree requirements and the r-robust k-club additionally requiring
r-connectivity in a k-club. For further readings, consult [23, 81]. Surveys [18]
and [63] provide further information and references on the maximum clique and
related problems.

5.3 Mathematical Programming Formulations

All the optimization problems of interest to this chapter can be formulated as
(mixed) integer programs (MIP). Below in this section we provide some of the
known formulations for all problems except for the maximum k-core and maximum
k-vertex connected subgraph. No k-core formulation is given due to the fact that,
as we will discuss in Sect. 5.4, the maximum k-core problem can be solved to
optimality by a simple greedy algorithm that runs in polynomial time, whereas
all other problems considered in this chapter are NP-hard. Thus, even though the
maximum k-core problem can be easily formulated as an integer program, this is not
the way this problem is typically approached. On the other hand, we are not aware
of any publications proposing mathematical programming formulations or effective
algorithms for the maximum k-vertex connected subgraph problem. Developing
such formulations and algorithms is an interesting and important direction for
future research, especially since the corresponding notion of structural cohesion is
enjoying rapidly increasing popularity in the literature on social network analysis.

5.3.1 Maximum k-Clique

The maximum k-clique problem consists of finding the k-clique in the graph with
largest cardinality ωk(G). This problem can be formulated as a binary integer linear
problem:

ω̃k(G) = max ∑
i∈V

xi (5.1)

subject to xi + x j ≤ 1, ∀i, j ∈V dG(i, j) > k, (5.2)

xi ∈ {0,1}, i ∈V. (5.3)
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Each binary variable corresponds to a vertex in the graph and assumes unity if the
corresponding vertex is included in the k-clique. Constraint (5.2) ensures that two
vertices whose pairwise distance in the original graph G exceeds k are not both
considered in the k-clique.

It should be noted that the maximum k-clique problem in graph G can be
equivalently formulated as the maximum clique problem in graph Gk representing
the k-th power of graph G, which is defined as follows. Gk has the same set of
vertices as G, with edges connecting all pairs of vertices that are distance at most k
from each other in G. Thus, the numerous mathematical programming formulations
for the maximum clique problem available in the literature [18] can be adopted to
obtain analogous formulations for the maximum k-clique problem.

5.3.2 Maximum k-Club

The maximum k-club problem looks for the largest k-club in the graph. This problem
can be formulated as a binary integer linear problem:

ωk(G) = max ∑
i∈V

xi (5.4)

subject to xi + x j ≤ 1+ ∑
l:Pl

i, j∈Pi, j

yl
i j, ∀(i, j) /∈ E, (5.5)

xp ≥ yl
i j, ∀p ∈V (Pl

i j),P
l
i j ∈ Pi j,(i, j) /∈ E, (5.6)

xi ∈ {0,1}, i ∈V, (5.7)

yl
i j ∈ {0,1}, ∀Pl

i j ∈ Pi j,(i, j) /∈ E. (5.8)

Pi j represents an index set of all paths of length at most k, whereas Pl
i j denotes the

path between i and j indexed at position l ∈ Pi j. V (Pl
i j) denotes the set of vertices

included inn path Pl
i j. Constraint (5.5) allows both vertices i and j into the solution

if no edge but a path of length at most k exists between them, and only if yl
i j is equal

to 1 for at least one path between i and j. Hence, this formulation makes sure to
include in the k-club all vertices along any one path of length at most k between any
two vertices in the k-club.

More recently, Veremyev and Boginski [81] have developed a more compact
formulation for the maximum k-club problem with O(kn2) constraints. We first
present the special case with k = 2 and then generalize to any k ≥ 2. Let A =
[ai j]

n
i, j=1, where ai j = 1 if there exists an edge between vertices i and j, and

0 otherwise, denote the adjacency matrix of G. Vertices in a 2-club are either
connected directly or through at most one other vertex l, which can be expressed
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using the following non-linear constraint:

ai j +
n

∑
l=1

ailal jxl ≥ xix j. (5.9)

Simplifying the aforementioned constraint results in the following formulation:

ωk(G) = max
n

∑
i∈1

xi (5.10)

subject to ai j +
n

∑
l=1

ailal jxl ≥ xi + x j − 1,∀i = 1, ...,n; j = i+ 1, ...,n, (5.11)

xi ∈ {0,1}, i = 1, ...,n. (5.12)

The above formulation can be generalized for any k ≥ 2, by allowing any two
vertices in the k-club to be either directly linked or connected through at most k−1
vertices within the subgraph:

ωk(G) = max
n

∑
i∈1

xi (5.13)

subject to ai j +
n

∑
l=1

ailal jxl +
n

∑
l=1

n

∑
m=1

ailalmam jxlxm + · · ·+ (5.14)

n

∑
i1=1

n

∑
i2=1

. . .
n

∑
ik−2=1

n

∑
ik−1=1

aii1ai1i2 . . .aik−2ik−1aik−1 jxi1 . . .xik−1 (5.15)

≥ xi + x j − 1,∀i = 1, ...,n; j = i+ 1, ...,n, (5.16)

xi ∈ {0,1}, i = 1, ...,n. (5.17)

5.3.3 Maximum k-Plex

The maximum k-plex problem finds the k-plex in the graph with maximum
cardinality. This problem can be formulated as a binary integer linear problem,
where degG(i) = |V\N[i]| denotes the degree of vertex i in the complement graph
G = (V,E) [9]:

ωk(G) = max ∑
i∈V

xi (5.18)

subject to ∑
j∈V\N[i]

x j ≤ (k− 1)xi + degG(i)(1− xi), ∀i ∈V, (5.19)

xi ∈ {0,1}, i ∈V. (5.20)
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Binary variables indicate whether or not a vertex is included in the maximum k-plex.
Constraint (5.19) expresses the fact that if vertex i is included in the k-plex, then it
has at most k− 1 non-neighbors, otherwise the constraint becomes redundant.

5.3.4 Maximum Quasi-clique

The maximum γ-quasi-clique problem can be formulated as the following mixed-
integer problem with linear objective and a single quadratic constraint [64]:

ωγ(G) = max
n

∑
i=1

xi (5.21)

subject to
n

∑
i=1

n

∑
j=i+1

ai jxix j ≥ γ
n

∑
i=1

n

∑
j=i+1

xix j, (5.22)

xi ∈ {0,1}, i = 1, . . . ,n. (5.23)

Two linearizations of this formulation are proposed in [64]. The first, standard,
linearization is based on defining a new variable xi j = xix j and using an equivalent
(for binary variables) representation of this quadratic equation in terms of three
linear inequalities. This results in the following mixed integer linear programming
formulation with n(n− 1)/2 variables and 3

2 n(n− 1)+ 1 constraints:

ωγ(G) = max
n

∑
i=1

xi, (5.24)

s.t.
n

∑
i=1

n

∑
j=i+1

(γ − ai j)xi j ≤ 0, (5.25)

xi j ≤ xi, xi j ≤ x j, xi j ≥ xi + x j − 1, j > i = 1, . . . ,n (5.26)

xi j ≥ 0, xi ∈ {0,1}, j > i = 1, . . . ,n. (5.27)

The second linearization is based on rewriting the single constraint of formulation
(5.21)–(5.23) in the form

n

∑
i=1

xi

(

γxi +
n

∑
j=1

(ai j − γ)x j

)

≥ 0. (5.28)

and introducing a new variable yi for i = 1, . . . ,n as follows:

yi = xi

(

γxi +
n

∑
j=1

(ai j − γ)x j

)

. (5.29)
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Again, replacing this quadratic equality constraint with several linear inequality
constraints, we obtain the following MIP with 2n variables, n of which are binary
and n continuous, and 4n+ 1 constraints:

ωγ (G) = max
n

∑
i=1

xi (5.30)

s.t.
n

∑
i=1

yi ≥ 0, (5.31)

yi ≤ uixi, yi ≥ lixi, i = 1, . . . ,n, (5.32)

yi ≥ γxi +
n

∑
j=1

(ai j − γ)x j − ui(1− xi), i = 1, . . . ,n, (5.33)

yi ≤ γxi +
n

∑
j=1

(ai j − γ)x j − li(1− xi), i = 1, . . . ,n, (5.34)

xi ∈ {0,1}; yi ∈ R, i = 1, . . . ,n. (5.35)

5.4 Algorithms for Detection of Clique Relaxation Structures

5.4.1 k-Clique

Balasundram et al. [10] have shown that the maximum k-clique problem is NP-
hard for any positive integer k. A natural way of attacking this problem is by
reducing it to the maximum clique problem in the k-th power of the graph, Gk.
The maximum clique problem has been well studied in the literature [18], and
all the methods available for this problem can be easily adopted for solving the
maximum k-clique problem. Therefore, below we mention some of the numerous
algorithms proposed for solving the clique problem. It should be noted that Gk may
have a much higher edge density than G, and most of the known algorithms for the
maximum clique problem tend to perform better on sparse graphs. Thus, the max-
imum k-clique problem appears to be more challenging than the maximum clique
problem.

Some of the most notable exact combinatorial algorithms for the maximum
clique problem have been proposed by Bron and Kerbosch [22], Balas and Yu [8],
Applegate and Johnson [5], Carraghan and Pardalos [25], Babel [6], Balas and
Xue [7], Wood [84], Sewell [73], Östergård [62], and Tomita and Kameda [78]. Due
to its simplicity and effectiveness, especially on sparse graphs, implementation of
Carraghan–Pardalos algorithm developed by Applegate and Johnson [5] was used
as a benchmark exact algorithm for the maximum clique problem in the Second
DIMACS Implementation Challenge [44]. Östergård [62] proposed an enhanced
version of the Carraghan–Pardalos algorithm, which uses approximate coloring for
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the upper bound. The resulting algorithm implemented in software called cliquer
is considered one of the fastest exact approaches for solving the maximum clique
problem. More recently, Tomita and Kameda [78] claim that for randomly generated
test instances and DIMACS benchmark instances [34] the algorithm they propose
outperforms all other competitive algorithms published literature at the time of this
writing, with Östergård’s algorithm being the close second.

For a broad overview of heuristics used for the maximum clique problem,
see [63]. Greedy heuristics have been developed based on either a sequential
addition of vertices until the clique is built or a removal of vertices from a larger
graph. They typically use local information, such as vertex degree, to order the
vertices in the greedy scheme [45, 48, 79]. Simulated annealing [1, 43] and tabu
search [11, 40, 74, 75] have proven very successful, as have hybrid implementations
combining simulated annealing and greedy heuristics [26], [46]. These hybrid
methods outperform most greedy heuristics on random graphs with up to 1,000
vertices both in time and quality of solution.

Several algorithms for enumerating all maximal cliques in a graph are also
available in the literature [22, 29, 47, 51, 55]. For a comprehensive survey of the
maximum clique problem formulations, exact and heuristic algorithms as of 1999,
the reader is referred to [18].

5.4.2 k-Club

The maximum k-club problem defined on an undirected graph has been proven NP-
hard as a result of a polynomial reduction from the clique problem [20]. Moreover,
it has been shown in [10] that the problem remains NP-hard even when restricted
to graphs of diameter k + 1. This has motivated several attempts at constructing
efficient heuristics. For instance, Bourjolly et al. [19] have proposed three greedy
heuristics, DROP, k-CLIQUE & DROP and CONSTELLATION. The main idea
behind DROP consists of sequentially deleting nodes from the original graph until
obtaining a k-club. At each iteration, the heuristic computes the shortest path lengths
between all pairs of nodes. A single node is then ruled out of the graph which has
the largest number of vertices with distance from it is larger than k. This process
is repeated until all pairwise shortest path lengths in the remaining graph are k
or less, hence, defining a k-club. With an overall time complexity of O(|V |3|E|),
DROP yields near-optimal solutions for high-density graphs. A better performance
for lower density graphs for k = 3 or 4 is obtained by applying DROP to the largest
k-clique in the original graph. The obtained algorithm is referred to as k-CLIQUE &
DROP and has exponential complexity due to the initial step of finding the largest
k-clique in G. CONSTELLATION, on the other hand, stems from the main idea that
a star graph forms a 2-club. The heuristic first finds the largest star subgraph in G
centered around the vertex with maximum degree in the graph, resulting in a t + 1-
club, where t = 1. Then, at iteration t, it identifies an external vertex with the largest
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number of neighbors not yet included in the previously obtained t-club. Appending
these vertices to the subgraph results in a t + 1-club. The algorithm is then repeated
until a k-club is reached. CONSTELLATION performs well for low density graphs
when k = 2, with an overall complexity of O(k(|V |+ |E|)).

While these heuristics find good solutions efficiently for relatively large graphs,
exact algorithms have also been developed within the framework of Branch-and-
Bound (B&B), attempting to solve the maximum k-club problem on rather smaller
graphs. Bourjolly et al. [20] proposed using a single iteration of the DROP heuristic
to guide the branching step with upper bounds relying on solutions to the maximum
stable set problem for an auxiliary graph. The auxiliary graph in this procedure
consists of all vertices in G with edges between vertices if their distance in G
exceeds k. While DROP can be performed efficiently, the bounding step at each
node of the B&B tree may be expensive, since the maximum stable set problem
is known to be NP-complete [39, 44]. This algorithm solved instances with no
more than 200 vertices to optimality and reported more computationally efficient
solutions for denser graphs. A more recent approach has been developed by
Mahdavi and Balasundaram [54] based on a dual coloring problem. Their algorithm
employs DROP and CONSTELLATION to initialize the incumbent solution. Vertex
dichotomy is proposed as a branching strategy whereby the vertex with minimum
number of k-neighbors is branched upon at each node of the B&B tree. Upper
bounding, on the other hand, employs a distance k-coloring approach. Proper
coloring is achieved by two heuristics, the first of which is DSATUR (refer to [21]),
applied at top levels of the B&B tree. For lower levels, a simple greedy heuristic is
used, coloring the highest degree vertex in the power of the graph with the color not
yet assigned to its neighbors. Computations were reported for the same test-bed of
instances as [20] suggesting a better performance for k = 3 than for k = 2.

5.4.3 k-Core

The maximum k-core problem has been proven solvable in polynomial time. In fact,
a simple greedy algorithm is capable of generating optimal solutions as follows:
First, a vertex v of minimum degree δ (G) is picked, and if δ (G)≥ k, then the whole
graph is a k-core. If δ (G) < k, then that vertex cannot be in a k-core. Hence, this
vertex is deleted updating the graph G := G−{v} and continuing recursively until
a maximum k-core or the empty set is found.

Detecting the maximum k-core is often used as a pre-processing step for solving
optimization problems seeking cliques or other clique relaxation structures. This
is due to the fact that some of these structures are guaranteed to be a part of the
largest k-core for a certain value of k. For example, since a k-plex of size s cannot
contain a vertex of degree less than s− k, when searching for such a k-plex, we can
recursively remove all vertices of degree less than s− k. Hence, any k-plex of size s
is a part of the largest (s − k)-core. The process of computing the largest k-core



156 J. Pattillo et al.

as a preprocessing or scale-reduction step for solving another problem is known as
peeling in the literature and has been successfully applied for solving the maximum
clique problem [2] and the maximum k-plex problem [9].

5.4.4 k-Plex

The maximum k-plex problem was proven NP-hard for any fixed positive integer k
in [9]. Because of the intractability of the problem, heuristics have been developed
both to find “good” solutions and to assist branch and bound for finding exact
solutions. McClosky [57] employed a simple heuristic to find cliques, which were
then extended to maximal k-plexes, for use as a lower bound for branch and bound.
In [80], a heuristic was used to help prune a branch and bound tree for k-plex. When
the size of the maximum k-plex exceeds 2k− 2, it will have diameter 2. Assuming
this to be true greatly reduced the candidate set as they built a k-plex one vertex at a
time in branch and bound.

Most currently available exact approaches for solving the maximum k-plex prob-
lem are adaptations of either branch and bound or branch and cut. Balasundaram
et al. [9] formulate the maximum k-plex problem as an integer linear program and
use valid inequalities based on independent sets of size at least k. These inequalities
were generated by a simple greedy algorithm both for the whole problem and at
local branches in the search tree. They successfully ran a branch and cut algorithm
on large-scale instances of real life social networks known as the Erdös graphs and
successfully solved the maximum 2-plex problem on graphs with 80% density and
350 vertices in less than 8 h.

The focus of [61] is on the minimum d-bounded-degree deletion problem, which
yields a k-plex in the compliment graph. It generalizes the relationship between
clique and vertex cover. They use an algorithm that finds a kernel of the minimum
d-bounded degree deletion problem to guide their branching in branch and bound.
A kernel is a subgraph of vertices that must contain the optimal solution and finding
it can significantly reduce the size of the branch and bound tree. They report results
superior to [9] with guided branching on the Erdös graphs and comparable results
for DIMACS graphs as those reported in [9].

In [57], some of the most successful techniques for solving the maximum clique
problem were adapted as part of a branch and bound algorithm for k-plex. They
develop a co-k-plex coloring problem that bounds the size of the k-plex in the
same way the coloring problem serves to bound the clique number of a graph. They
use this to help provide upper bounds in adaptations of the basic clique algorithm
[25] and Östergard’s algorithm [62] for solving the maximum k-plex problem. They
successfully solved instances of the maximum k-plex problem on DIMACS graphs
for k = 2,3,4 but in general the results were not as successful as the branch and cut
algorithm of [9] for larger graphs.

The Carraghan–Pardalos and Östergard algorithms for the maximum clique
problem were also the inspiration of a more general algorithm for solving any
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problem that displays heredity in [80]. The key difference from [57] is including a
pruning technique based on bounds for the size of a k-plex within subgraphs induced
by subsets of vertices of the form {vi, . . . ,vn}. These are developed naturally as the
algorithm runs. If i is the lowest index on any member of the candidate set, we
calculate the size of the largest k-plex in {vi, . . . ,vn} as part of the algorithm, and
while it may not be achieved for a given candidate set within {vi, . . . ,vn}, it is often
significantly lower than the weight of the entire candidate set. In [57], they prune
branches of the search tree where the weight of the current solution and the entire
candidate set was less than the current optimal solution. Trukhanov et al. [80] use
both this pruning technique and pruning where the weight of the candidate set is
replaced with the known size of the optimal solution using the vertex with lowest
index. The algorithm significantly outperformed the techniques of [9] and [57] in
nearly every instance of DIMACS graphs on which they were run. Graphs of up to
500 vertices were solved optimally for k = 2,3,4 and even larger graphs were solved
optimally for k = 2.

Recently, Wu and Pei [85] developed a parallel algorithm for enumeration of all
the maximal k-plexes in the graph. Their work emphasizes the parallelization of
the algorithm and comparison between serial and parallel algorithms performance.
Unfortunately, they do not provide any numerical results for the well-known
benchmark instances.

5.4.5 Quasi-clique

The maximum γ-quasi-clique problem was shown to be NP-hard for any γ ∈ (0,1)
in [64]. Due to the lack of structural properties in quasi-cliques that are utilized
in exact algorithms for other problems of interest, the maximum quasi-clique
problem is extremely challenging to solve to optimality. In fact, to the best of
our knowledge, the only published exact approaches for this problem are based on
using the MIP formulations presented in Sect. 5.3.4 in conjunction with an off-the-
shelf solver [64]. This allows to solve medium-scale problem instances with several
hundreds of vertices and low edge density to optimality.

To solve large-scale instances, heuristics are commonly used in practice. Since
quasi-clique possesses the weak heredity property, greedy randomized adaptive
search procedures (GRASP) [36, 37] appear to be a natural method of choice.
In short, GRASP is a heuristic framework based on the following idea: at each
iteration it constructs a greedy randomized solution and searches the neighborhood
of each constructed solution in order to find the corresponding local optimum.
The effectiveness of this method for solving the maximum quasi-clique problem
is confirmed by the results of experiments with very large networks reported in the
literature. One remarkable example is due to Abello et al. [2,3], who analyzed the so-
called call network. This network represents phone call data; it has phone numbers
as its vertices, and two vertices are connected by an edge if there was a phone call
between the corresponding numbers within a specified period of time. Abello et al.
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analyzed a call network representing the data from AT&T telephone billing records.
This one-day call network had 53,767,087 vertices and over 170 millions of edges.
The network had 3,667,448 connected components, 302,468 of which had more
than three vertices. The largest connected component had 44,989,297 vertices.
First, Abello et al. attempted to solve the maximum clique problem in this giant
connected component. For this purpose, they ran 100,000 GRASP iterations on
ten parallel processors, which took about one and a half days. Only 14,141 of the
100,000 cliques they generated were distinct, with the largest clique detected being
of size 32. They also used GRASP to solve the maximum γ-clique problem for
γ = 0.9,0.8,0.7, and 0.5 in the giant connected component. The largest γ-cliques
they detected had the sizes of 44, 57, 65, and 98, respectively.

5.5 Extensions

While this chapter is motivated by developments in social network analysis, clique-
like structures naturally arise in many other important applications of complex
networks, in which one is looking for large, “tightly knit” groups of elements.
Depending on the particular application, such groups are often referred to as
clusters, modules, complexes, communities, etc. If the elements in the considered
complex system are represented as vertices (nodes) and the relationships between
the elements are represented as edges (links, arcs), then, depending on the structure
of interest for the particular application, clusters can be naturally described using
some of the clique relaxation concepts described above.

Recent work exploiting some of the clique relaxation models in this emerging
area of network-based data mining [14, 30] has been abundant. In particular, these
concepts have been used in studying structural properties of stock markets [16, 17],
unraveling molecular structures to facilitate drug discovery and compound synthe-
sis [24, 38], and for identifying frequently occurring patterns in data sets (modeled
as graphs) [15, 82]. In biology, quasi-cliques have been used to detect large clusters
in protein interaction networks [13]. A survey of applications of clique detection
models in biochemistry and genomics is given in [24]. In internet research, cohesive
subgroups correspond to collections of densely connected web sites [77]. This
helps to organize topically related web sites and thus facilitate faster search and
retrieval of information from the web. In wireless communication, clustering the
connectivity graph of a wireless network is used to introduce a hierarchy, which
facilitates routing of information through the network [76]. Clique and other low
diameter models have been used to define a cluster in a wireless network [28, 50].
These are just a few examples of recent publications in the rapidly growing body of
literature dealing with applications of cliques and clique relaxations in a wide range
of settings.
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5.6 Conclusion

Social network analysis is emerging as an important tool in network-based data
mining, which is applied to a wide variety of settings ranging from biological
systems to finance, and studying clique relaxation models is one of the cornerstones
of this methodology. The aim of this chapter is to open the door to this rich and,
at the same time, largely unexplored research avenue for an interested reader.
Even though most of the discussed clique relaxation models have been around for
several decades in the social network literature, many of the theoretical, algorithmic,
computational, and applied aspects of these models are only beginning to be
addressed.

To illustrate the potential impact the research on clique relaxations may have on
areas beyond social network analysis, we turn to history. While complete subgraphs
had been studied by mathematicians earlier, introduction of the term “clique” to
graph theory was triggered by the developments in social sciences mentioned in
the beginning of this chapter. Since then, the concept of a clique has been widely
used in a variety of applied settings and is central to some major theoretical
and algorithmic developments in graph theory, computer science and operations
research. We believe that clique relaxation models provide an excellent opportunity
for even more important developments.
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