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Preface

The oldest, shortest words — “yes” and “no” — are those which
require the most thought.

Pythagoras (Greek Philosopher 582 BC — 497 BC)

One common problem that spans several diverse applications is the management
and derivation of knowledge from huge amounts of data, especially in scenarios
involving human and social activities. In many practical situations, a real-life dataset
can be represented as a large network (graph) — a structure that can be easily
understood and visualized. Furthermore, special structures of graphs, when viewed
in the context of a given application, provide insights into the internal structure and
patterns of the data. Among the many examples of datasets that can be represented as
graphs are the Web graph derived from the World Wide Web, the Call graph arising
in telecommunications traffic data, and metabolic networks arising in biology. Of
particular interest are social networks, in which vertices represent people or groups
of people.

Although the concept of a network roots back to the ancient Greek philosopher
Pythagoras in his theory of cosmos (kdéollog), the mathematical principles of
networks were first developed in the last century. The first book in networks
appeared in 1936 (D. Konig: Theory of Finite and Infinite Graphs). Since then, there
has been a huge explosion of research regarding theoretical tools and algorithms in
the analysis of networks.

One of the most exciting moments came at the dawn of the new Millennium in
1999 with the discovery of new types of graphs, called complex networks. Examples
of such well-known classes of complex networks are scale-free networks and small-
world networks. These classes of networks are characterized by specific structural
features such as the power-law vertex degree distribution (scale-free networks)
and for the short path lengths, small diameter and high clustering (small-world
networks). Moreover, several other measures and features have been discovered,
and are recently the focus of active research that related to the structural properties
of complex networks. A new area of complex networks has been rapidly developing,

vii



viii Preface

spanning several disciplines such as mathematics, physics, computer science, social
science, biology, and telecommunications.

In our two volume handbook, an attempt was made to present a wide spec-
trum of recent developments with emphasis in both theory and applications on
complex networks. The first volume focuses on basic theory and properties of
complex networks, on their structure and dynamics, and optimization algorithmic
approaches. The last part of the volume concentrates on some feature applications.
The second volume, this volume, deals with the emerging issues on communication
networks and social networks. It covers material on vulnerability and robustness
of complex networks. The second part is dedicated to complex communication
networks, discussing several critical problems such as traffic activity graph analysis,
throughput optimization, and traffic optimization. The last part of this volume
focuses on recent research topics on online social networks such as security and
privacy, social aware solutions, and people rank.

We would like to take this opportunity to thank all authors, the anonymous
referees, and Springer for helping us to finalize this handbook. Our thanks also go to
our students for their help during the processing of all contributions. We hope that
this handbook will encourage research on the many intriguing open questions and
applications on complex networks that still remain.

Gainesville, FL My T. Thai
Panos M. Pardalos
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Chapter 1

Structural Vulnerability and Robustness

in Complex Networks: Different Approaches
and Relationships Between them

Regino Criado and Miguel Romance

Abstract The concept of vulnerability in the context of complex networks
quantifies the capacity of a network to maintain its functional performance under
random damages, malicious attacks, or malfunctions of any kind. Different types
of networks and different applications suggest different approaches to the concept
of networks structural vulnerability depending on the aspect we focus upon. In
this introductory chapter, we discuss some different approaches and relationships
amongst them.

1.1 Introduction

The study of complex networks has been found to be very productive in science
and technology. Why? Because complex networks represent a natural alternative for
representing, characterizing, and modeling the structure and non-linear dynamics of
all discrete complex systems. In fact, many complex systems of the real world can be
modeled using complex networks where nodes represent the different constituents
of the system and edges depict the interactions between them. Different systems
such as transport networks (underground, airline networks, road networks), commu-
nication networks (computer servers, internet), biochemical networks (metabolic,
protein and genomic networks), social networks, infrastructure networks (electric
power grids, water supply networks), and some others (including the World Wide
Web) are known to have common characteristics in their behavior and structure
[4,7,12,17,48,55,68,91,93,94,103,113]. Because of this reason they can be studied
using non-linear mathematical models and computer modeling approaches.

R. Criado (<) M. Romance
Universidad Rey Juan Carlos, C/Tulipan s/n, 28933-Madrid, Spain
e-mail: regino.criado@urjc.es; miguel.romance @urjc.es

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks: 3
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4_1, © Springer Science+Business Media, LLC 2012


regino.criado@urjc.es
miguel.romance@urjc.es

4 R. Criado and M. Romance

The study of structural properties of the underlying network may be very
important in the understanding of the functions of a complex system as well as
to quantify the strategic importance of a node (or set of nodes) in order to preserve
the best functioning of the network as a whole. The improvements in computers
performance in the last decades granted us the ability to analyze huge complex
networks.

The concept of vulnerability in a network aims at quantifying the network’s
security and stability under the effects of all that kind of disfunctions. A series
of different approaches from several branches of knowledge have been introduced
to quantify the vulnerability of a complex network [1,6,11,13,15,17,18,27,35,41,
67,112].

Thus, for instance, in structural engineering the term “vulnerability” is often
used to capture the susceptibility of a component or a system to some external
action [2, 67]. In this way, a structure is vulnerable if any small damage produces
disproportionately large consequences [2].

Several studies of critical infrastructure networks have focused on understanding
the security of these networks and their susceptibility to damage, failures, attacks,
disruptions, degradations or disfunctions of any type [3,9, 28, 34,40-42, 63, 64, 66,
74,7678, 89,90, 106].

Another perspective is provided by the study of transportation systems. In this
context, the vulnerability of a transportation system can be understood as the sus-
ceptibility to disruptions giving a considerable reduction in network serviceability
as a result [13,68]. Taylor and D’Este [68, 105] relate vulnerability to the degree of
accessibility of a given node in the network, where accessibility is expressed as the
travel cost needed to access the particular node, comparing optimal and alternative
routes or detors.

A related concept which emerges in this context is the concept of reliability. It is
important to remark, in any case, that vulnerability and reliability are two different
concepts, not exactly opposite or complementary, since a measure of reliability is
related to the concept of risk, which implies the use of a measure of the probability
that guarantees the network will function under certain circumstances [13, 68, 104,
105]. So, reliability may thus be viewed as the degree of stability that a system offers
certainly related to a measure of probability. Vulnerability means, in this sense, non-
reliability or exhibiting a low degree of operability under certain circumstances.

In classic graph theory, the term “vulnerability” is related to a lack of resistance
of the graph to the deletion of vertices and edges [11]. This point of view
matches up with the structural vulnerability’s approach, i.e., how the topology of
a network is affected by the removal of a finite number of links and/or nodes. In
the context of classic graph theory, the analysis of vulnerability is carried out by
studying different versions of the connectivity of the graph [11,65,94]. The node-
connectivity (edge-connectivity) is the smallest number of nodes (edges) whose
removal disconnects the network (or in case of disconnected networks it increases
the number of connected components). An alternative way to analyze connectivity
is by considering the number of node-independent paths between two vertices or, in
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the same way, to the minimum number of other vertices in the network that must fail
in order for those two vertices to become disconnected from one another [65,81,94].

On the other hand, complex networks analysis focuses on statistical graph
measures, and numerical models (simulation), using a statistical approach to asses
network vulnerability by measuring the fraction of the vertices or links to be
removed before a complete disconnection happens in the network in order to
study complex (large) networks. Specifically, many authors (see, for instance,
[6,13,15-17,27,28,33,35,41,42,66,74,76,78]) have studied the structural vulner-
ability (so-called error and attack tolerance) of theoretical network models and
empirical networks. So, structural vulnerability is related to the study of complex
systems structure, represented as networks of multiple interconnected interacting
parts and their susceptibility to damage by errors and attacks. This is how the term
vulnerability is mainly used throughout this chapter.

Two measurements derived from the spectral analysis of the network connectivity
may also be used to quantify the robustness and optimal connectivity of networks,
independent from the network size. These measurements are algebraic connectivity
and spectral gap. Algebraic connectivity was introduced in [53]. This measure,
which depends on both the number of nodes and their respective configurations,
indicates the level of connectivity in the graph [70, 85, 111]. So, the larger the
algebraic connectivity is, the more difficult it is to cut the network into disconnected
parts. Spectral gap is related to the so called “good expansion” properties [50].
The existence of good expansion properties (given by a sufficiently large value of
spectral gap) together with uniform degree distribution result in higher structural
sturdiness and robustness against node and link failures. On the contrary, low values
of spectral gap indicate a lack of good expansion properties usually represented by
bridges, cut vertices and network bottlenecks [50]. Both measurements, algebraic
connectivity, and spectral gap, let us give alternative ways to quantify the network’s
well-connectedness.

The concept of vulnerability is also used to characterize a lack of robustness
and resilience of a system. In everyday language, the word robustness is related to
strength and sturdiness, but it is necessary to clarify, also in this case, that these con-
cepts are not exactly the complement concepts of vulnerability. A system is robust if
it will retain its system structure (function) intact (unchanged or nearly unchanged)
when exposed to perturbations. The concept of resilience [17,18,55,91,94,100,102]
is related to the capability of the system to regain a new stable position (close to it’s
original state) after perturbations.

In practice, real and different networks are vulnerable to many (external and
internal) circumstances and events, so the task of finding a generally applicable
measure of vulnerability is not an easy task. Nevertheless, in [39] the authors
establish a new general framework, the family of (¥, p,¢) -vulnerabilities, which
comprises most of the (structural) vulnerability definitions appeared in complex
network’s literature and allows one to calculate relationships between different
vulnerabilities. In any case, the purpose of this work is not to argue because
of particular definitions of vulnerability or robustness, but rather to review the
concept of structural vulnerability, that is, the concept of vulnerability based on
the network’s structure and topology [1,2,11,76,78,79].
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In general, under the perspective of structural vulnerability, two kinds of
damages can be considered on error and attack tolerance in complex networks
[6,18,27,100, 102]: the removal of randomly chosen vertices (error tolerance) and
the removal of deliberately chosen vertices (attack tolerance). Attacks are realized
by removing vertices or edges in the order of decreasing importance, which can
be quantified by properties such as degree (i.e. number of connected edges) of a
node, connectivity, betweenness, etc. Depending on the concept of “importance” we
consider, we will get different definitions of vulnerability. For example, to determine
how important is a person within a social network, which is the appropriate criterion:
to have many contacts or to have less but more important contacts? A specific way to
measure the relative importance of a node within the network is by using the main
measures of centrality: degree centrality, betweenness, closeness, and eigenvector
centrality. A survey to review centrality measures as well as generalizations can be
found in [73].

For instance, Latora and Marchiori in [76] studied the consequence and preven-
tion of terrorism attacks in a given network, and suggested a method to detect critical
vertices (i.e. the most important vertices for efficient network functioning). These
authors show in [42] how the topology of a communication/transportation network
may have important roles on error and attack tolerance of the system. In both cases,
the importance of a particular vertex is given in terms of the change in network
efficiency when this vertex is removed.

Under a general point of view, different types of networks and different ap-
plications suggest different approaches to the concept of networks (structural)
vulnerability. In fact, by considering different ways of measuring the drop of perfor-
mance of a network under malicious attacks or random damages, and depending on
the nature of the problem, the pursued objective and the aspect we focus on, we can
get different approaches. Some of these approaches, which depend on the concept
of “importance” for vertices and edges we consider, are the following:

e Structural vulnerability related to the loss of connectivity (see, e.g., [46, 96]).
This approach compares the vulnerability of networks of about the same size and
structures by relating the concept of vulnerability to the loss of connectivity when
we remove some nodes and edges to potentially disconnect the network. Under
this point of view, the more homogeneous a network is (i.e., with all the nodes
and links playing a similar role) the more robust that network is. An alternative
approach, under this point of view, is given in [34-36].

* Structural vulnerability related to the variation of the network performance (see,
e.g., [41, 66,74,76]). This approach relates the measure of vulnerability of a
network to the fall of its efficiency when a damage occurs.

e Structural vulnerability related to betweenness [15, 16, 31, 33, 38, 96], another
centrality measures and another concepts [17, 51, 84, 91, 97, 98, 106]. This
approach attend to the strategic importance of specific links and nodes in order
to preserve the functioning and performance of the network as a whole.

 Structural vulnerability based on spectral analysis [20,21,25,32,53, 82, 83, 85].
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It’s not worth to say that each one of these approaches has its advantages and
disadvantages, and the most suitable approach for a specific problem may depend
on the problem under investigation and the size of the network. As it is showed in
[39] all of these approaches can be submerged in a general framework which give
us a new perspective and formalism to the concept of network’s vulnerability.

In short, this chapter is devoted to analyze different approaches to structural
vulnerability, i.e., how different classes of network topologies are affected by the
removal of a finite number of links and/or nodes.

The chapter is organized as follows: Sect. 16.2 introduces the basic concepts
and notation to comprehensively analyze different approaches to the concept of
vulnerability. Section 9.3 is devoted to establish an axiomatic support to the concept
of vulnerability. In Sect. 9.4, some approaches to the concept of vulnerability are
analyzed. Section 9.5 is devoted to introduce a common framework to several
structural vulnerabilities. Finally, in Sect. 1.6, we collect some results about the
numerical comparison between different types of network’s structural vulnerability
performed over random models and real life networks.

1.2 Basic Concepts and Notation

From a schematic point of view, a complex network is a mathematical object G =
(X,E) composed by a set of nodes or vertices X = {1,...,n} that are pairwise joined
by links or edges belonging to the set E = {/1,...,¢,}. We consider the adjacency
matrix A(G) = (a;j) of G = (X,E) determined by the conditions

'_{1 if {i,j}EE
“W=o if {ij}¢E.

Two vertices are called adjacent (or neighbors) if they are connected by an edge.
The number of neighbors of a node i, denoted by dj, is its node degree. Obviously,
the degree of a node i can be easily calculated by the expression 27:1 ajj. In the
sequel, we will denote by 6(G) the minimum node degree of the nodes of G, and by
A(G) the maximum node degree of the nodes of G. If all the nodes of G are pairwise
adjacent, then G is called complete and a complete network of n nodes is denoted
by K. K3 is called a triangle. A network G = (X, E) is called g-partite if X admits
a partition into g classes such that every edge has its ends in different classes: nodes
in the same partition class must not be adjacent. If ¢ = 2, one usually says bipartite.
A g-partite network in which every two nodes from different partition classes are
adjacent is called complete. A star is a complete bipartite network such that one of
the classes has exactly one element. A star of n nodes is denoted by S,,.

One we have introduced the concept of complex networks as the main object
of the complex network analysis, we should give the basic parameters used in
the literature in order to analyze these objects. There are plenty of mathematical
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functions that help to study and classify the behavior of complex network structure
(see, e.g. [17] and [54]), including metric parameters, clustering, spectral functions
and dynamical parameters among many others. In the rest of this chapter we will put
mainly the stress in some metric and spectral functions that will help to analyze the
structural vulnerability and robustness of a complex network. In this section, we will
start by introducing the basic metric properties and parameters of networks while in
Sect. 1.4.5 we will give the spectral functions used in the structural vulnerability
analysis.

The metric structure of a complex network is related to the topological distance
between nodes of the network, written in terms if walks and paths in the graph.
A walk (of length k) in G is a non-empty alternating sequence

{it, 01,00, 02, bp—r i }

of nodes and edges such that ¢, = i, i+ 1 for all r < k. If ij = i, the walk is
closed. A path between two nodes is a walk through the network nodes in which
each node is visited only once. A cycle is a closed walk that starts and ends at the
same node, in which no edge is repeated. A cycle of n nodes is denoted by C,. C3
is a triangle. If it is possible to find a path between any pair of nodes the network
is referred to as connected; otherwise, it is called disconnected. The length of a
path is the number of edges of that path. If i, j € X a geodesic between i and j
is a path of the shortest length that connects i and j. The distance d;; between i
and j is the length of a geodesic between i and j. The maximum distance D(G)
between any two vertices in G is called the diameter of G. By n;; we will denote
the number of different geodesics that join i and j. If v € X is a node and / € E
is a link, then n;;(v) and n;;(¢) will denote the number of geodesics that join i and
J passing through v and ¢ respectively. A network H = (Y, F) is a subnetwork of
G=(X,E)ifY S X, F CY and the edges in F connect nodes in X. A connected
component is a maximal connected subgraph of G. Two paths connecting the same
pair of vertices in a network are said to be vertex-independent if they share none of
the same vertices other than their starting and ending vertices. A k-component is a
maximal subset of the vertices of a network such that every vertex in the subset is
connected to every other by k independent paths. For the special cases k =2, k = 3,
the k-components are called bi-components and three-components of the network.
For any given network, the k-components are nested: every three-component is a
subset of a bi-component, and so forth.
The characteristic path length, defined as

n n
j=1k=1 JF#keX
k)
is a way of measuring the performance of a network, but because of errors and
attacks, networks can become disconnected. In fact, if the distance between two
nodes is infinite, L(G) becomes infinite. The concept of efficiency, introduced by
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Latora and Marchiori in [74] is a well defined quantity also for non-connected
networks. The efficiency of a network G is defined as

1 1

E(G) = nn—1) d_,,

LJEX i#]

The fall of the network’s efficiency when a node fails is one of the main approaches
to network’s structural vulnerability as we will see in Sect. 9.4.

In [54], a panoramic view of the main existing measurements of complex
networks can be found.

1.3 A Preliminary Axiomatic Approach to Structural
Vulnerability

A first attempt to establish a mathematical axiomatic support to the somehow
“intuitive” notion of vulnerability of a graph was given in [35]. The goal of the
authors was to extract some intuitive properties which should be taken into account
in every reasonable definition of vulnerability.

The invariance under isomorphisms is the first property which a vulnerability
measure must fulfil. Otherwise, it would not make any sense the fact that the
resulting value can depend on where the nodes are located, it must depend only on
the edges that are present between them. Normalization (i.e., taking values within
the unit interval [0,1]) may be another requirement: It seems reasonable that a
measure of vulnerability can take values between 0 and 1. To do so in a reasonable
way, we look at the most vulnerable graphs having values close to one while robust
graphs have values close to zero. In fact, we would like the bounds to be attained
at least asymptotically. In any case, note that we can always normalize any finite
vulnerability measure in order to get a parameter contained in the [0, 1] interval.

Another requirement is the condition that vulnerability must be computable in
polynomial time (necessary for practical reasons).

Once these basic conditions are established, the key property of a vulnerability
measure is that it should never increase by adding edges. The rationale behind this
assertion is that such an addition can only reinforce the structure of the network,
because the worst situation we can face is the loss of that edge, either alone (in
which case we are left with the original network) or in combination with other edges
or nodes (which is as bad as losing those edges or nodes and having no extra edge
anyway). Moreover, a new edge should generally strictly increase the robustness
of a network although it is conceivable that, under special circumstances, adding a
particular edge can have no impact on the vulnerability of the graph (a redundant
edge, for instance).

Going into greater detail, it is natural to think that the complete graph must be the
least vulnerable network for a given network size, since it cannot be strengthened
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in any way. Of course, this follows from the requirement that vulnerability must
not increase as edges are added, but it deserves mentioning on its own. On the
other hand, trees are relatively vulnerable, while a specific tree, the “star” network
(which has a central node to which the rest is connected), should have the greatest
vulnerability under attacks for a given size, since it exposes a clear weak spot whose
failure makes the graph totally disconnected. Now, we can establish the following
definition summarizing the above properties:

Definition 1.1. [35] Let ./ be the set of all possible networks with a finite number
of vertices. A vulnerability function v is a function v : A4~ — [0, +o0) verifying the
following properties:

(i) (Coherence) v is invariant under isomorphisms of graphs.
(ii) (Soundness)v(G') = v(G) if G is obtained from G’ by adding edges.
(iii) (Effective computation) v(G) is computable in polynomial time respect to the
number of vertices of G.

The previous list of properties may be extended depending on the specific appli-
cation, the aspect we focus on and the way of measuring the drop of performance of
a network under malicious attacks or random damages we are studying.

1.4 Some Different Approaches to the Concept of Structural
Vulnerability

As we have said in the introduction, depending on the kind of metrics and
measurements which are considered to identify the importance of different vertices
and edges inside the network we can get different approaches and definitions of
structural vulnerability.

Some of these definitions are consistent with the underlying intuitive idea of
vulnerability has been used in different contexts, but it is easy to check that in some
cases they cannot distinguish networks that should have different vulnerabilities.
For example, if we consider the cycle C4 and the complete graph Ky, it is easy to
check that both graphs have vulnerability zero in the sense considered in [76], but
our intuition suggests that K4 is more robust than C4 (see Fig. 1.1).

In this section, we analyze several metrics and measurements usually employed
in network’s literature. Above all we consider the measures related to connectivity,
variation of network’s performance, variation of centrality measures such us
betweenness and spectral measurements.

Fig. 1.1 The cycle C4 and
the complete graph K. The
intuition suggests that Ky is
more robust than Cy4, but some
vulnerability measures do not
distinguish between them
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The measures related to connectivity are based on the analysis of network
cohesion and adhesion and its responsiveness and tolerance to the removal of
nodes and links. The measures related to betweenness and other centrality measures
are based on the idea that the most important (in fact, critical) nodes and links
for efficient network functioning are those which have the highest values of the
network’s centrality measure considered. Finally, the spectral measurements relates
the topology of the network to the graph cohesion and connectivity strength through
the study of the spectrum of the network’s adjacency matrix.

1.4.1 Fall of Network Cohesion and Connectivity Type
Vulnerabilities

In this approach, it is considered the impact of nodes and edges destruction in terms
of potentially disconnecting the network.

There are two primary concepts of structural vulnerability based on connectivity
in networks [46, 53]: The node connectivity and the edge connectivity, denoted,
respectively, by x(G) and A(G). These two metrics are, respectively the minimal
number of nodes (vertices together with adjacent edges) and the minimal number of
edges whose removal disconnects the network. Both metrics are among basic most
important indicators of network cohesion and robustness as they represent resistance
to damage through quantifying the minimum number of failures/targeted attacks
required to make the network disconnected.

The following well known theorem [46, 59, 81], due to Menger, give us an
alternative formulation of node and edge connectivity:

Theorem 1.1. For any network G we have

(i) The node connectivity x(G) is the smallest number of node-distinct paths
between any two nodes.

(ii) The edge connectivity A(G) is the smallest number of edge-distinct paths
between any two nodes.

Another well known and useful theorem related to this metrics is the following
[47] (recall that 6(G) is the minimum node degree of the nodes of G):

Theorem 1.2. For any non-trivial network G the following inequalities between the
node connectivity k(G), the edge connectivity A(G) and the minimum node degree
6(G) hold:

k(G) < A(G) < 8(G).

Dekker and Colbert in [46] define the concepts of node similarity and opti-
mal connectivity in order to consider several strategies for designing optimally
connected networks. They look at the degree of symmetry of the network as a
way to analyze the network “robustness,” in the sense that if a network has no
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distinguished nodes, an intentional attack may not cause important damages. This
type of robustness is particularly interesting for military purposes and military
networks of for civilian networks facing possibly terroristic activity. A network G is
optimally connected if K(G) = A(G) = 6(G). The underlying idea is that a network
is optimally connected if it is as robust as it could be, given the value of 6(G).

An alternative approach to this kind of robustness based on this idea of symmetry
and regularity was given in [35], where the authors define two vulnerability
functions V| and Vy in order to quantify these features as follows:

A(G) - 4(G)

n

2
Vl(G):exp( +n—m—2+;),

2
VU(G)—exp<%+nm2+;), (1.1)

where o is the standard deviation of the degree distribution, i.e.

1 2m\ 2 &
o= <Zz(dl_7) ) . (1.2)
eV

Both definitions take into account the dispersion of the degree distribution and the
number of nodes and links and satisfy the properties established in Definition 1.1.
Moreover, a simple computation shows that the values of V;(G) for the complete
graph K, the star S, and the cycle C, are, respectively,

—n®+3n* —4n+4
2n ’

Vi(Ky) = exp {
Vi(Sn) = exp{0} =1,
Vi(Ch) = exp {2+%}.

Note that V; (K,) tends to zero and V;(C,) tends to exp{—2} as n tends to infinity.

Nevertheless, Vi (G) can be computed easily and gives a good estimation of the
robustness of a complex network but it only cares about the nodes having extreme
degrees, which makes the results not sharp enough. An example of this situation is
shown in Fig. 1.2, where networks G and G’ satisfies V;(G) = V;(G') although our
intuition suggests that G looks more robust than G'.

Hence, we will use the second vulnerability function, which gives better esti-
mates for the security of a network.

It is easy to check that the values of V5 (G) for the complete graph K, the star S,
and the cycle C, are, respectively,
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Fig. 1.2 G and G’ have
the same the same degree
sequence (and therefore
Vi (G) =V (Gl)), but the
intuition suggests that G
looks more robust than G’

2
Vo(Ky) = exp{0+n|E|2+;}

((nfl)’(ln72)2) 1/2

2
Vo (Sn) = exp +n7(n—1)72+;

n

Vg(Cn)—exp{ZJr%}.

Note that Vs (K, ) tends to zero and V5 (C,) tends to exp{—2} as n tends to infinity.

Both measures V;(G) and V5(G) provide values close to one for the most
vulnerable graphs decreasing to values closer to zero for more robust graphs.
Nevertheless, it seems that this type of vulnerability reasonably compare the
vulnerability of networks possessing more or less the same size and structures, but
it fails to properly rank vulnerability when networks of different sizes and structures
are compared [114]. In any case, in [36], an extension of V(G) is given for directed
networks and this measure is used to perform a comparative analysis of those
performance measures over a significant sample of subway networks worldwide.

1.4.2 Fall of Efficiency Type Vulnerabilities

The concept of efficiency in a network plays the role of measuring its ability for
the exchange of information and its response for the spread of perturbations in
diverse applications [74, 75,77, 78]. In fact, the efficiency is an indicator of the
network performance, i.e., of its capability to have a short-path connection among
nodes. The study of efficiency of a network is not only interesting in computer and
communication networks but also in many other examples of complex networks,
since it measures how optimally the dynamics of the network takes place and how
its behavior can change due to some variations in the topology of the network. For
example, it is crucial to quantify the stability of a cellular network when it is subject
to random errors as a result of mutations, harsh extremal conditions that eliminate
metabolites or protein misfolding [71], as in trophic networks it is important to
analyze the response of the network to the removal, inclusion or mutation of species
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in an ecosystem. In [41,76], by using as mathematical measures the global and the
local efficiency, the authors study the effects of errors and attacks both on the global
and the local properties of the network, showing that global efficiency is a better
measure than the characteristic path length to describe the response of complex
networks to external factors.

One of the main approaches to the vulnerability of networks relates this concept
to the fall of networks efficiency when the failure of node happens [74, 77, 78].
Latora and Marchiori measure the vulnerability of a node as relative drop in
performance (efficiency) after removal of the i-th node together with all the edges
connected to it. Following this idea, the vulnerability of a network G = (X,E) to a
failure of a single node can be defined by several aggregation techniques (see [78]),
mainly as it is shown in the following expressions:

Vs (6) = max (E(G) ~ E(G\ {#}); ve X), (13
or
V(0)=; 3 (EG)~EG\ (1)), (14

where E(G) denotes the efficiency of G [74] defined by

EG) = n(nlf 1)

di (1.5)
i#jex 4ii
and G\ {v} is the network G without node v and its incident links.

Obviously, the first one is suitable for intentional attacks and the second one for
random failures or breakdowns. To normalize these expressions, i.e., to take values
within the interval [0, 1], it is enough to divide by the total efficiency E(G). So, we
can get the normalized Viay, (G) and the normalized V,,(G) through the expressions:

Vmaxn (G) = VnEi‘%c(;?)’ (1.6)
and
0= p .

If D is now a class of damages (for e.g., the deactivation of a node, the disfunction
of a link, or a cascade failure of two or more nodes), and we consider a specific
damage d € D, the fall of efficiency of a network G = (X, E) due to the presence of
the damage d is given by

V(G,d) = E(G)— E(d(G)), (1.8)

where E(+) is the efficiency and d(G) is the graph obtained from G when the damage
d is applied.
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For example, if we consider the class of damages D of all possible single-node
failures, we can identify each damage d € D with a node i € X, and therefore we
denote

V(G,i) = E(G)—E(G\ {i}). (1.9)

Note that we will use a similar notation for the classes of damages of multiple-
node failures, which can be identified with a certain family of subsets of X in such a
way that, if the damage is the failure of the subset of nodes I, = {1,...,k}, then the
fall of efficiency E(G) — E(G \ I) will be denoted by V (G, I).

For a class of damages D, the vulnerability of a network G = (V, E) to the class D
can be defined by several aggregation techniques as

Vinax (G, D) = max{V(G,d); d € D} (1.10)
or .
V(G,D)=— ¥ V(G,d), (1.11)
1Dl jeb

where |D| is the number of damages of the class D. Note that Vi (G, D) measures
the maximal damage that can occur to the network G while V(G, D) is the average
fall of efficiency of G under a damage of the class D. While its meaning is evident,
such a definition of vulnerability as the fall of efficiency has several inconveniences,
as it was stated in [16].

If we now consider the damage d that eliminates a single node iy € V, the
definition of vulnerability as the fall of efficiency presents several difficulties
(a similar situation also occurs when we are dealing with multiple-node failures)
as we will see now.

The fall of efficiency E(G) — E(G\ {io}) can be expressed as

L e ) 1
N(N=1) Ay dy  (N-1)(N-2) 4, df}’
i.j#io

where dj; is the distance in G\ {ip}. If we take i,j € V, i,j # ip, such that the
distance between i and j does not change when i fails, we have that

L ! 2 1
N(N-1)dij (N-1)(N-2)d],  N(N-1)(N-2)d;; ~

Hence, the failure of iy produces a collateral effect in the fall of the efficiency even
if this damage does not affect the distance between i and j. This problem comes
from the fact that this difference of efficiency is size-dependent, and it has other
inconveniences that should be avoided to give a smart parameter that measures
the intuitive idea of vulnerability. To overcome this difficulty, a new measure of
vulnerability is proposed in [16] that is not size-dependent and does not produce
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collateral effects. If we take the class of damages D of all possible single-node
failures, and consider the damage of deactivating the node iy € V. We then consider
the square matrix E of size N — 1 whose (i, j) entry (i, j # ip) is

1
L ifig)

E;j = dij dz{j
0, if i =j,

where d;; is the distance in G\ {i}.
This idea leads to the definition

1 1
W(G,ip) = Y, (??)' (1.12)
i#jev \ 4 ij
i,j#io
So, by using this idea the following definition to the vulnerability of the network
G = (X, E) under a class of damages D is given in [16] as

Winax (G, D) = max {W (G, io); ip € D}, (1.13)
or
W(G,D) Y W(G,ip), (1.14)
|D| ipeD

inspired by (1.10) and (1.11), respectively.
The following result is also obtained in [16]:

Theorem 1.3. If G = (X,E) is a complex network with n > 3 nodes, then

Y V(G.ip) m Y W(G.ip), (1.15)

ineX ineX

where the damage iy is the failure of node i.

To finish this sub-section devoted to fall of efficiency type vulnerabilities, it is
important to remark that Goldshtein et al. [63] introduce an additional parameter
called the relative variance h. This parameter is a measure of the fluctuation level
and it is used to describe the hierarchical properties of the network, and thus its
vulnerability. In other words, they suggest that the ordered distribution of vertices
with respect to their vulnerability is related to the network hierarchy; thus, the most
vulnerable (critical) vertex occupies the highest position in the network hierarchy.
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1.4.3 Betweenness Centrality (Node and Link) Based
Vulnerabilities

Another approach to network’s vulnerability is based on the idea that critical nodes
and links stand between others, playing the role of an intermediary in the interac-
tions. So, the greater the number of paths in which a node or edge participates, the
higher the importance of this node or edge for the network. Thus, assuming that the
interactions follow the shortest paths between two vertices, it is possible to quantify
the importance of a node or an edge in terms of its betweenness centrality.

Node betweenness was first proposed by Freeman [56] in 1977 in the context of
social networks. This concept has been considered more recently as an important
parameter in the study of networks associated to complex systems [91]. Girvan and
Newman [60] generalize this definition to edges and introduce the edge betweenness
of an edge as the fraction of shortest paths between pairs of vertices that run along it.

Specifically, the betweenness approach to network’s vulnerability is based on the
concentration of the geodesic structure throughout the network.

The node betweenness centrality B(G) of a network G [56] is

1
B(G) = (- Y bv> :
n veX
where b, is the betweenness of the node v € X (see, e.g., [95, 109]) given by
1 nii(v
b=t 3 ()

n(n—1), ;é&xiz

(Recall that n;; is the number of different geodesics that join i and j, and n;;(v) is
the number of geodesics that join i and j passing through v).
The maximum betweenness of the network G is

Bmax(G) = max{b, : v € X}

The same parameters can be defined for edges exactly in the same way as before,
obtaining the edge-betweenness Bg(G)

1
Bg(G) = <— D be)
micg
where, in the same way as before, b, is the betweenness of the link ¢ € E given by

1
n(n—1)

by =
i,jeXi#]
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and the maximum edge betweenness centrality
Bimax (G) = max{by: £ € E}.

In Sect. 1.4.5, some relationships between this measures and the eigenvalues of
the Laplacian matrix of G will be shown.
In [15], it was introduced the link-based multi-scale vulnerability of a complex

network G = (X,E) as
1/q
Vi 4(G ( 219") ,
(eE

forany g € [1,+e), where by is the betweenness of the link £ € E (see, e.g. [95,109])
given by

njj 4
y wid

by =
=) &z M

A remarkable relationship between the characteristic path length L(G) and
Bg(G) = Vg 1(G) (in fact, the edge betweeness of G = (X, E)), as it is shown in
[15] is the following:

1 1

1 nj(£)
Ve (G) = ‘= |E|[€ZE<,%X " jk )

|E | leE
1
= Y — | Xl
|E| jkex Tk <ZEE )
Notice that if & is the set of all geodesics joining j and k then one has

np(0)= Y, x(0),

8EPjk

where y, () is 1 if £ belongs to the geodesic g and 0 otherwise. Hence if d x denotes
the distance between j and & in the network then

V0= 3 k(z )

J, kex leE

|E| Z WA

jkGX g€<@jk[€E

1 1
R L :TL(G)

E| jkex Tk 8E Pk

and therefore Bg (G) = Vg 1 (G) measures essentially the same global properties than
the characteristic path length L(G).
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It is possible to overcome such a limitation by introducing (see [15]) the
coefficient

| 1/1p|
Vep(G) = — D b) , (1.16)
|E | (eE
for each value of p > 0. Such a coefficient gives a multi-scale measure of the
vulnerability of a graph in the following sense: if one wants to distinguish between
two networks G and G', one first compute Vg 1 (G). If Vg 1 (G) < Vg,1(G') then G is
more robust that G'. On the other hand, if Vg 1 (G) = Vg 1(G’), then one takes p > 1
and compute Vg ,(G) until Vg ,(G) # Vi ,(G').

If, in the previous reasoning, we replace edges by nodes, one can obtain another
concept of vulnerability related to what is written above [38]. In this case, it was
considered the node-based multi-scale vulnerability of a complex network given for
any g € [1,+4o0) as,

| 1/q
VX-,q(G) = (; 2 bg)

veX

Q=

q

l 2 1 2 n[j(v)
ne [nn—1) ijex Tij
i#]j

In [38], it was proved that there an analytical connection between the node-based
and link-based approach of structural vulnerability as the following result shows:

Theorem 1.4 ([38]). Let G = (X,E) be a network with n nodes and m links. If
1 < p < oo, then
m

1_q 1/p
27 (%) 7 Ve (6) < Vi G),

1y rm\1/p _1 1
Vx p(G) <27 1(2) (&rmax)" "Vep(G)+
where grmax denotes the maximal degree of the network G.

This analytical result is sharp and in [38] it was illustrated this relationship in the
Erdés—Rénji model of random networks, as we will show in Sect. 1.6.

1.4.4 Bottleneck Type Vulnerabilities

This approach has been studied in [31, 33], and in [50]. In the first two cases the
problem of locating a leader node on a complex network was considered. This
problem is interesting due to its practical applications, such as the key transfer
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protocol design for multi-party key establishment (see [22]), where it is stated that
it is not always adequate to consider all nodes in the network equally important,
for instance to distribute a message from a central server to a group of users
or key distribution for private communication. So, it is needed to require secure
communication between the leader (or the initiator) and all other members in
order to initially establish key. In any case, the keys (or a part) must be sent
through a communication network which holds up the flow of information. In
[50], the study of network robustness based on the removal of bottleneck nodes
and edges is considered in order to analyze the property of certain complex
networks that are simultaneously sparse and highly connected (established as “good
expansion” (GE)).

The criterium considered in [31] and [33] for choosing such a leader in a complex
network is related to spotting the node v, that minimizes the expected number of
disconnected nodes from v, under a random breakdown of a node other than v,,. In
order to compute these values the concept of bottleneck was introduced. If we take
three nodes x,y,z € X, we say that y is a bottleneck from x to z if every path from x
to z goes through y. Note that if we denote by Il (x, z) the set of all bottlenecks from x
to z, then it was proved in [33] that the expected number of disconnected nodes from
v under a random breakdown of a node other than v is exactly

DW= 3 (Inw)-1),

n vEWEX

where |I1(v,,w)| is the number of bottleneck from v, to w and n is the number of
nodes of the complex network. It is clear that this function D(-) gives a criterium
for measuring the vulnerability, since the lower the average value of D(-) is the
higher robustness of the network we get. Therefore, the bottleneck vulnerability of
a complex network G = (X, E) of n nodes is defined as

zD

nyex

Yy Y ( vw|71) (1.17)

n - 1 VGX vAwWEX

This method introduced in [31] shows that for a given tree with an invulnerable
node (leader) the D-measures on the different nodes help us to choose an optimal
location for the leader. Another related problem is the following: assume that we
have two possible tree networks for a given number of nodes and links, each with its
distinguished node. Which one is preferable from the point of view of robustness?
The following example where G and G’ are two tree-shaped graphs illustrates the
situation (Fig. 1.3).

Since G and G’ have the same number of nodes and their corresponding incidence
degrees coincide, there is no hope that any vulnerability function whose definition is
based on those two parameters might be of use when it comes to preferring G over
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Fig. 1.3 An example of

bottleneck-type vulnerability

of two trees G (on the left)

and G’ (on the right) with 1

a leader node. By using this

D(-) we can select the best

network from the point of

view of robustness 2 3

G/, or conversely. In contrast, the D-measures prove useful to our choice. In fact, G’
should be preferred over G as the next table shows:

De(1)=10, DY(1)=12, DC6(5)=16, DY (5)=14,
DG(2) = 11 ¢ (2) = 9, Dé(6) =16, DY (6)=15,
DSB3)=11, DY(3)=17, D%(7)=160, DY (7)=15
DS(4)=16, DY (4)=10

Note that the algorithm above yields node 1 as the best possible leader for G and
node 2 as the best one for G'. Hence, selecting G’ and node 2 in G’ as the leader
would be the wisest option since node 2 has the lowest D;-vulnerability not only
among the nodes of G’ but among all nodes.

The concept of bottleneck and bottleneck vulnerability B(-) are very useful when
we are dealing with complex networks which are tree-shaped (see [31]), but is it
very restrictive when we consider general networks (see [33]) since the set IT(i, j)
is usually trivial. This is due to the fact that a node v is a bottleneck from i to j if
all the possible paths from i to j go through v, which is too strong. In order to avoid
this inconvenience in a general network, it is possible to consider a relative concept
which gives a qualitative perspective of the geodesic structure of the complex
network as follows [39]:

Definition 1.2. A node y is a geodesic bottleneck from node x to node z if every
geodesic from x to z necessarily goes through y. We denote by IT, (x, z) the set of all
geodesic bottlenecks from x to z.

If v € X and we denote by D, (v) the expected number of nodes that change their
distance (inside the graph) to node v when a failure at some other node occurs,
then we can prove that Dg(v) is related to the geodesic bottlenecks from v, as the
following result shows.

Proposition 1.1. If G = (X,E) is a complex network with n nodes and v € X, then

Dy(v) = il Z (‘Hg(v,z)’ —1).

n zeX
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Proof. First, note that if we fix v € X, then the number of nodes that change their
distance to node v when a failure in a node y # v occurs is the number of nodes z
such that y € IT,(v,z) and hence

Z HZGX y €I, (vz)}|
=t

De(v) = n—1

V Z
y7év zeX

2 2%1‘1& (v2)

z€X y#v

n—l

1

= — ¥ (IMg(v2) - 1).

n_lzGX

By using this concept, the geodesic bottleneck vulnerability of a complex
network G = (X, E) of n nodes is introduced in [39] as

Y Y (Immwi-1). (1.18)

VEX v#EweX

Be(G) =~ 3 Dy(v) =

n s n(n— 1

It was proved in [33] that if G = (X, E) is a tree then |IT,(r,z)| — 1 is the distance
between the nodes r and z, since there is a unique simple path from r to z and every
node in that path is a bottleneck. Therefore, the last formula extends the results
obtained in [31], but it is straightforward to prove that this phenomenon does not
necessarily occur when G = (X, E) is not a tree. Actually, given any node in G, it is
possible to construct an auxiliary tree in G (the bottleneck tree) such that measuring
distances in that tree gives us the same information about disconnected nodes in the
original network (see [33]). The key-point to show this is the fact that the nodes in
any bottleneck set I, (x,y) are linearly ordered; in fact, every simple path from x
to y runs through the nodes in IT,(x,y) in the same order. Thanks to this ordering, it
is possible to define a direct bottleneck of a node for a given root [33]. If we have
two different nodes r and x € X, the last node in IT,(r,x), excluding x itself, will
be called the direct bottleneck of x from r, and will be denoted by 7, (x). Note that
given distinct 7, x € X, we always have r, x € Hg(r,x), so this definition always
makes sense. The link that will help us establish a connection between the case of a
general network and that of a tree-shaped one is the so called bottleneck tree. Given
a node r € X, the bottleneck tree of G rooted at r will be another network BT, with
the same set of nodes and exactly those edges of the form (7, (x),x), where x # r.

For example, if we consider the graph No, Fig. 1.4 shows the bottleneck tree
rooted at 1.

The main reason why this bottleneck tree is useful in helping locate the right
place for the leader is that measuring the distance from r to any other node is exactly
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Fig. 1.4 A bottleneck tree
for the graph Ny (on the left)
and its Bottleneck tree rooted
at 1 (on the right)

Fig. 1.5 All the bottleneck trees for the graph Ny, rooted at 1 or 3 (on the left); rooted at 5, 7, 8,
or 9 (on the center); and rooted at 2,4, or 6 (on the right)

the same as counting how many bottlenecks there are in I, (, x). In other words, we
have that

D(r) = ﬁ e (1.19)
xeX
where dB1" is the distance from r to x in the bottleneck tree for G rooted at r. If
we consider a non tree-shaped network, different leaders yield different bottleneck
trees. For example, if we consider again the graph Ny we can obtain essentially tree
different bottleneck trees depending on which root we choose (see Fig. 1.5).
To end this subsection it is important to remark that there exist a strong relation-
ship between the concept of bottleneck in a network G and the bi-components and
k-components of G (see [96]).

1.4.5 Vulnerability and Algebraic Connectivity

The use of spectral methods in networks and graph theory have a long tradition. For
example, the eigenvector-like centralities were introduced in sociology to measure
the influence of each actor in a social group, taking into account the immediate
effects, the mediative effects and the global effects of the social interaction [20],
but they are also useful in other applications such as the web search engines like
Google [23].

Specifically, spectral graph theory studies the eigenvalues of matrices that
embody the graph structure. One of the main objectives in spectral graph theory
is to deduce structural characteristics of a graph from such eigenvalue spectra.
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Particularly, these methods are used in the study of the measures of vulnerability
based on the fall of connectivity. In addition, spectral analysis has a lot of
applications too numerous to be collected here. For example, spectral analysis
allows characterizing models of real networks [80, 99], determine communities
[92], to find the edges which connect different communities and remove them in
a iterative form, breaking the network into disconnected groups of nodes [8,60] and
even visualizing networks [101].

To introduce the eigenvalue spectra of a network some additional concepts are
needed. The characteristic polynomial det(x] — A(G)) of the adjacency matrix A(G)
is called the characteristic polynomial of G. The eigenvalues of A(G) (i.e., the zeros
of det(xI — A(G)) are also called the eigenvalues of G. If u is an eigenvalue of G,
then a non-zero vector v € R” satisfying A(G)7 = u7, is called an eigenvector
of A(G) for u; it is also called a u-eigenvector. The relation A(G)V = uV can
be interpreted in the following way: if V= (vi,...,vn)", then for any vertex i we
have that gv; = ¥;;v;, were the summation is over all neighbors j of i. If it is an
eigenvalue of G, then the set {7 eR? :A(G)7 = /.17} is a linear subspace of R”,
called the eigenspace of G for u.

On the other hand, since A(G) is a real symmetric matrix, it is important to point
out that all the eigenvalues of G are real. Moreover, R" has a basis v_f, e, v_,,> of n
normal eigenvectors of A(G) [25]. The eigenvalues 1t (G) < uz(G) < -+ < uy(G)
of A(G) are called the “spectrum” of G.

There is a large literature on algebraic aspects of spectral graph theory (see,
e.g.,[14,25,43-45,58,61,69,70,87,88, 107]). The eigenvalue spectra of a network
provide valuable information about the behavior of many dynamical processes
running within the network, but in this section we only consider the applications
of spectral analysis to static networks. For example, in [44] it is shown that diameter
D(G) of a network satisfies D(G) < r — 1, where r is the number of distinct
eigenvalues.

The largest eigenvalue of the adjacency matrix u,(G) is called spectral radius of
G. This eigenvalue is usually denoted by p(G). It is important to remark that for
p(G), since A(G) is non-negative, there exists an eigenvector whose all entries are
non-negative.

This eigenvalue of A(G) has received the most attention in this context, since this
quantity refers to the speed of growth of walks in the graph (the number of walks of
length k is, approximately, p (G)*) [25]. A nice and useful property is given by the
following inequality [44]:

A(G) < un(G) = p(G) < A(G),

where A(G) is the maximum node degree of G. It is important to highlight in this
subsection that the spectral radius of G plays an important role in modeling virus
propagation in computer networks. The smaller the largest eigenvalue, the larger the
robustness of a network against the spread of viruses. In fact, the epidemic threshold

in spreading viruses is proportional to —— [108]. Another example that remarks the

p(G)
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importance of p(G) is given by the Bonacich centrality of G (measure based on the
eigenvectors associated to the spectral radius of G) [20,21,32].

The difference s(G) = p(G) — t,—1(G) between the spectral radius of G and the
second eigenvalue of the adjacency matrix A(G) is called the “spectral gap” of G
[50]. A small value of s(G) is usually observed through simultaneous sparseness
and low connectivity, and the presence of bottlenecks and bridges whose removal
cut the network into disconnected parts.

The spectral density of a network G is defined as

plx) =

S| =

23()6—#1)

where

1 ifx=0
8(x) = {0 ifx 0.

is the Kronecker or delta function.

The spectral density is one of most relevant tools used for studying the spectra of
large complex networks [26, 58].

The Laplacian matrix of G is an n X n matrix L(G) = D(G) — A(G), where
D(G) = diag(d;) and d; denotes the degree of the node i. The matrix L(G) is positive
semi-definite, i.e., V' -L(G)- 3 >0 for any vector 7V, and therefore its eigenvalues
are non-negative. The least eigenvalue is always equal to O (note that (1,1,...,1)’
is an eigenvector corresponding to that eigenvalue); the second least eigenvalue is
also called the algebraic connectivity of G. The eigenvalues of L(G) are called the
Laplacian eigenvalues of G. The Laplacian eigenvalues 1 (G) =0 < A,(G) <--- <
An(G) are all real and nonnegative [85].

Many dynamical network processes (like synchronization) can be determined
by the study of their Laplacian eigenvalues [58]. Furthermore, these eigenvalues
are related to many basic topological invariants of networks such as diameter,
betweenness centrality or mean distance. For example, the betweenness centrality
B(G) is closely related with the characteristic path length L(G) as B(G) = (n—1) -
(L(G) —1) [29,58].

The second smallest Laplacian eigenvalue A(G) is one of the most broadly
extended measures of connectivity (see, for instance, [25, 44, 70, 72, 82, 83]).
Larger values of algebraic connectivity represent higher robustness against efforts to
disconnect the network, so the larger the algebraic connectivity is, the more difficult
itis to cut a graph into independent components. In fact, the algebraic connectivity is
only equal to zero if G is disconnected, and the multiplicity of zero as an eigenvalue
of L(G) is equal to the number of disconnected components of G. In [53] Fiedler
proved the following upper bound on the algebraic connectivity

n

(n—1)

0< 4(G) < 5(G).
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Also, the following inequality can be found in [53]:
AL (G) < k(G).

Hence, from Theorem 1.2 we can get that §(G) and A (G) are also upper bounds
of lz (G)

However, these upper bounds in terms of the node and the link connectivity
provides worst case robustness to node and link failures [53] so, as mentioned in
[19], there are infinitely many graphs for which the algebraic connectivity is not a
sharp lower bound.

In [69], the behavior of algebraic connectivity A>(G) in the Erdos—Rénji random
graph model is studied, obtaining that the algebraic connectivity increases with the
increasing node and link connectivity in this model, showing that the larger the
value of the algebraic connectivity A,(G), the better the graph’s robustness to node
and link failures. Extensive simulations presented in this work show that the node
and the link connectivity converge to a distribution identical to that of the minimal
nodal degree, making 8(G) a valuable estimate of the number of nodes or links
whose deflection results into disconnected random graph.

Mohar in [86] gave a bound that relates the algebraic connectivity A,(G) to the
diameter D(G):

4

¢z na(G)’

Some other relationships between the inverse of algebraic connectivity A,(G) and

the ratio )L;Egg with other topological parameters like the diameter D(G), the

maximum and minimum degrees A(G) and 6(G), the characteristic path length
L(G), the number of cycles and the betweenness centrality can be found in
[29,30,52,62]. Specifically, some spectral bounds for either the node betweenness
and edge betweenness, as the following, are presented in [29]:

n

SB max SBmaX+2
V(G 2A—4(G) ~ "

and

In(n/2)
BgmaxA+n :
BEmaxA—n

D(G) <2 (

In

To finish this subsection, it is important to remark, as it can be seen in [50], that

a sufficiently large value of spectral gap s(G) is considered as a necessary condition

for the so-called “good expansion” properties. Furthermore, if s(G) is low then G

has no good expansion properties that are usually related to the number and quality
of cut edges, bridges, and the existence of bottlenecks in the network [50,70, 114].
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1.5 A Common Framework to Several Structural
Vulnerabilities

As we have seen in the previous section, many of the vulnerability functions
introduced in complex network’s literature are actually some kind of aggregation
of local parameters such as the variation of performance, connectivity properties
or betweenness; in [39], a general framework is introduced in order to give a new
family of vulnerability functions that extends those known functions. Depending
on the size of the network, the nature of the problem, the type of applications we
are analyzing or even the target we are pursuing, we will have to decide which
vulnerability function is best suited for that analysis. Many of these approaches
are particular cases for specific values of the parameters p and ¢ and for a specific
function y of the general framework given by the concept of (y, p, ¢)-vulnerability
[39]. So, inside this general framework, we have more information to decide which
vulnerability function (the particular values of p and g, and the specific function y)
is best suited to analyze a specific problem. Inside this general framework, we can
obtain some bounds and relationships amongst these vulnerability functions and we
show their sharpness through some relevant simulations (see [39]). This general
framework gives us a relevant and useful tool to be applied to real-world complex
networks.

To fix ideas, if G is a complex network, Y is a subset of ordered pairs of nodes or
links, Z is a subset of nodes or links, and ¥ : Y X Z — [0,+e0) is a function, then
the (W, p,q)-vulnerability of G is defined for any p,q € [0, 0], as the value

1/q

a/p
Vy.pa(G) = |17| )y <ﬁ( > ‘V(i’j’z)p>

€Z i,j)eY

As we can see, Vi, 4(G) is an aggregation of the function y(i, j,z) through all
the possible values of (i, j) € ¥ and z € Z. Let us notice that many of the different
definitions for the vulnerability of a complex network are particular cases for the
(w, p,q) -vulnerability.

For example, if we consider the vulnerabilities of a network based on the fall of
efficiency due to a failure of a single node Vin.x (G) and V(G) as it was introduced in
Sect. 1.4.2. These two definitions of vulnerabilities are particular cases of (Y, p,q)-
vulnerabilities simply by considering

Y ={(i,j); i#jeX},

Z =X and taking y; : Y — [0, 1] defined for every i, j,v € X (i # j) by

ij
11 :
AT 4 otherwise,

&~ e 7 EEEVE )
" (i,j,v) _ { n(n—1) d; (n—1)(n-2) dj;
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where d;; is the geodesic distance in G\ {v}. By using these settings it is easy to
check that V(G) is the (y1, 1, 1) -vulnerability of G and Viax (G) is the (yq, 1,e0) -
vulnerability of G. Then Vy, 1 4(G) interpolates between V(G) and Viax (G) in the
range g € [1,o0] (see [39]).

Following similar techniques, it can be checked that if we take the functions
s,y : Y — [0, 1] given by

ij(¢

wa(ivj,0) = ",
n[j

wa(ivjyv) = ),

I’ll'j

then Vg 4(G) = Vy,,14(G) and Vx 4(G) = Vi, 14(G) for every g € [1,+00) (see
[39]), where Vg 4(G) and VX’q(G) are the multi-scale node-based and link-based
vulnerabilities presented in Sect. 1.4.3. Furthermore, this general framework can be
also applied to the bottleneck-type vulnerability, since if we take s : Y — [0,1]
defined for every i, j,v € X (i # j) as

. 1,ifv e Il (i, ),
Ws(i,),v) = Xy(i.) (V) = {O, otherwise(, )
then it was proved in [39] that Vi, 11(G) = 1(Bg(G) + 1), where B,(G) is the
bottleneck-type vulnerability presented in Sect. 1.4.4.

The main advantages of these unified approach to vulnerability functions are
that it allows to prove new analytical results that connects different vulnerability
measures and also it helps to introduce new vulnerability functions easily (see
[39]). By using some tools from the geometric functional analysis it can be proved
sharp analytical relationships between the different vulnerability measures, as the
following:

Theorem 1.5 ([39]). Let G be a complex network with n nodes and let 1 < p,q < oo,
then

VWl,p,q(G) <G VWS,P-,II(G)’

and therefore V (G) < C,Bg(G) +Cy, where C, is a positive constant only depending
onn.

By using similar techniques, many other sharp analytical relationships can be
stated between Vi, 11(G) for j=1,...,5 and p,q € [1,+o] that were illustrated
for the Erd6s—Rénji and the Barabasi—Albert random models of complex networks
in [39].
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1.6 Structural Vulnerability: Some Results in Different Models

In the last years, several models of complex networks have been proposed after the
pioneering random graph of Erdds—Rénji [49] as the small-world model of Watts
and Strogatz [110] or the scale-free networks of Barabasi and Albert [10]. The main
reason for this was the discovery that real networks like the Internet graph have
characteristics which are not explained by uniformly random connectivity. Instead,
networks derived from real data may involve power law degree distributions and
hubs among other structural features. Watts and Strogatz [110] proposed the first
model that conciliated the existence of a large clustering with a small diameter or
characteristic path length. They found out that many real world networks exhibit
what is called the small-world property, i.e. most vertices can be reached from the
others through a small number of edges, like in social networks.

In 1999 [5, 10], Barabdsi and coworkers found that the degree distribution
of some complex systems follows “power laws” instead of being Poisson-like
distribution, showing that the structure and the dynamics of that systems are strongly
affected by nodes with a great number of connections and, additionally, many of that
systems are strongly clustered with a big number of short paths between the nodes,
i.e., they obey the small world property.

A network with degree power law distribution is called scale-free. A power-law
function can be expressed as a polynomial p(x) = ax™ 7, where a and y are constants
and 7 is called the power-law exponent. A power law distribution has no peak at
its average value and is a relatively slow decreasing function, but the main property
of power laws is their scale invariance, i.e., if we substitute the argument x by the
same argument multiplied by a scaling factor ¢ we get a proportionate scaling of the
function itself, i.e., p(cx) = a(cx) "7 = ¢ p(x) o« p(x), which means that they are
proportional and therefore it preserves the shape of the function itself. Moreover, by
taking logarithms the following linear relation is obtained log p(x) = loga — ylogx.

The model proposed by Barabasi and Albert [10] is based on two observed facts
in real networks: networks expand continuously by the addition of new vertices, and
new vertices attach preferentially to sites that are already well connected. The model
starts with a small number of nodes at step # = 0, and at every time step a new node
is connected to a number of nodes of the existing graph. The probability of the new
node to be connected to an existing node depends on the degree of that node, in the
sense that nodes with higher degree have stronger ability to grab links added to the
network.

A typical value for the degree power-law exponent in real networks is 2 <
Y < 3. The Barabasi—Albert model produces a degree power-law distribution with
exponent ¥y = 3, meanwhile the Watts—Strogatz and the Erdds—Rénji follow a
Poisson distribution.

Despite the fact that, as we have said, various authors have observed that
real-world networks have power-law degree distribution, the Erdos—Rénji random
graph still has many modeling applications. The modeling of wireless ad-hoc and
sensor-networks, peer-to-peer networks like Gnutella [24] and, generally, overlay-
networks, provide some well-known examples [57].
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Fig. 1.6 Vulnerability V;(-) vs efficiency in a simulation of 1,000 Erd6s—Rénji random graphs
with 100 nodes and variable p, and two different estimates

In [69], the authors study the algebraic connectivity in the Erdos—Rénji model
in relation to the graphs robustness based on node connectivity k(G) and link
connectivity A(G). Extensive simulations show that the node and the link con-
nectivity converge to an identical distribution to that of the with the minimum
nodal degree §(G), already at small graph sizes. This makes §(G) a valuable
estimate of the number of nodes or links whose deletion results into a disconnected
random graph. Simulations in [69] also show that, for large n, the distribution of
the algebraic connectivity grows linearly with 6(G). The case of Vi(-) and Vx(+)
was considered in [37] for the Erdos—Rénji model. In this paper, a probabilistic
analytical concentration result for there vulnerability functions was proved in the
classic Erdos—Rénji and some random test was proved for 1,000 random graphs for
different values of p that strongly connects the vulnerability with the efficiency, as
Fig.9.2 shows

The multi-scale node and link-based vulnerabilities were studied in detail in
[38]. In this paper, the authors proved a result that uses sharp inequalities related to
finite dimensional Banach spaces and a numerical analysis of this sharp result was
also presented in [38], where the relationship between the node based vulnerability
and the link-based multi-level measure in the Erdos—Rénji model suggest a deep
connection between these parameters, as Fig. 1.7 shows.

A similar study was performed in [39] for different kinds of vulnerability
measures, but including on only the Erd6s—Rénji model but also the Barabasi—Albert
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Fig. 1.8 Two comparisons between the fall of efficiency vulnerability (Vy,) vs. the multilevel
node-based vulnerability (Vi) for the Erdos—Rénji model (on the left) and the Barabasi—-Albert
model (on the right)

one, obtaining that the second model present a more heterogeneous behavior when
we are dealing with vulnerability function, as Fig. 1.8 shows.

Nevertheless, different approaches to address networks structural vulnerability in
the different complex networks models have been proposed by research community
[4,15,63,66,77,97,100]. In general, it was concluded that the more heterogeneous
a network is in terms of, e.g., degree distribution, the more robust it is to random
failures, while, at the same time, it appears more vulnerable to deliberate attacks on
highly connected nodes.

To finish this section let us observe that recently, in [84] a measure of network
vulnerability called vulnerability index is introduced. This index was calculated
for the Erdos—Rénji model, the Barabasi—Albert model of scale-free networks,
the Watts—Strogatz model of small-world networks, and for geometric random
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networks. The model of small-world network appears to be the most robust network
among all these models. This conclusion is due obviously to the fact that this model
shows highest structural robustness when nodes or edges are removed from the
network. Some other real-world networks were compared using this vulnerability
index: two human brain networks, three urban networks, one collaboration network,
and two power grid networks. The authors found that human brain networks were
the most robust networks among all real-world networks studied in [84].

The empirical analysis of the structural vulnerability functions for some real-
life networks (in addition to the results presented in [84]), includes the analysis
of some technological networks, such as water distribution systems [113], Public
Transportation Networks (see, e.g. [36] and [38]) and airport networks in Europe
(see [15]). As an example, in [36] the authors presented a comparative analysis
of more than 60 worlds city subways, according to several structural parameters
that includes the structural vulnerability. Following with the analysis of public
transportation systems (metro), in [38]) a detailed analysis of Madrid Underground
is presented including the node-based and link-based vulnerability and a ranking of
the more vulnerable stations according to the structural vulnerability of the system.
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Chapter 2
Optimizing Network Topology for Cascade
Resilience

Alexander Gutfraind

Abstract Complex networks need resilience to cascades — to prevent the failure
of a single node from causing a far-reaching domino effect. Such resilience can be
achieved actively or topologically. In active resilience schemes, sensors detect the
cascade and trigger responses that protect the network against further damage. In
topological resilience schemes, the network’s connectivity alone provides resilience
by dissipating nascent cascades. Designing topologically resilient networks is a
multi-objective discrete optimization problem, where the objectives include resist-
ing cascades and efficiently performing a mission. Remarkably, terrorist networks
and other “dark networks” have already discovered how to design such networks.
While topological resilience is more robust than active resilience, it should not
always be pursued because in some situations it requires excessive loss of network
efficiency.

2.1 Introduction

Cascades are ubiquitous in complex networks and they have inspired much research
in modeling, prediction and mitigation [11, 14, 20, 35, 53, 54, 57, 60, 62, 72]. For
example, since many infectious diseases spread over contact networks a single
carrier might infect other individuals with whom she interacts. The infection
might then propagate widely through the network, leading to an epidemic. Even
if no lives are lost, recovery may require both prolonged hospitalizations and
expensive treatments. Similar cascade phenomena are found in other domains such
as power distribution systems [22, 38, 43], computer networks such as ad-hoc
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Fig. 2.1 The French World-War II underground network Francs-tireurs et Partisans (FTP)
reconstructed by the author based on the account in [51]. Its organizational unit was the combat
group (a). In an idealized case, nor always followed, this was divided into two “teams” of three
fighters, where leader L1 was in overall command and in command of team 1. His lieutenant,
L2, led team 2 and assumed overall command if L1 was captured. The small degree of the nodes
ensured that the capture of any one node did not risk the exposure of a significant fraction of the

organization. Each “group” is in a command hierarchy (b) where three groups (bottom-level nodes)
made a “section,” three sections made a “‘company,” and finally three companies made a “battalion”

wireless networks [60], financial markets [8,36], and socio-economic systems [40].
A particularly interesting class are “dark” or clandestine social networks, such as
terrorist networks, guerrilla groups [65], espionage, and crime rings [5, 52]. In such
networks, if one of the nodes (i.e. individuals) is captured by law enforcement
agencies, he may betray all the nodes connected to him leading to their likely
capture.

Dark networks are therefore designed to operate in conditions of intense cascade
pressure. As such they can serve as useful prototypes of networks that are cascade-
resilient because of their connectivity structure (topology) alone. Their nodes are
often placed in well-defined cells — closely-connected subnetworks with only sparse
connections to the outside (for an example from World War 1II see Fig.2.1) [51].
The advantages of cells are thought to be that the risk from the capture of any
person is mostly limited to his or her cell mates, thereby protecting the rest of
the network [29, 48]. Modern terrorist groups retain this cellular structure, but
increasingly use networks made of components with no connections between them,
thus caging cascades within each component [67, 69, 73].

2.1.1 Active vs. Topological Cascade Resilience

Networks could be endowed with cascade resilience using two complementary
approaches: “active” and “topological.” In active resilience, the network is moni-
tored for cascades, and if a cascade is detected, attempts are made to stop it while
it progresses. For example, in case of human pathogens, health authorities may
continuously monitor hospital records for contagious diseases. If the records begin
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to show anomalous increases, various responses are initiated, including distribution
of medicines and alerts to the public. Similarly, in power distribution systems,
special devices monitor the network for signs of cascades, such as high currents
or phase changes. Those may indicate failures in lines, short circuits and other
phenomena that threaten to disrupt the system or damage its components. The power
system includes a variety of automated controls tasked with stopping the nascent
cascade [53], such as “relays.” Those relays can automatically shut down faulty lines
or nodes of the network so as to isolate them from the rest of the network [63,75].
Those two examples of active cascade resilience must be contrasted with
“topological” approach to resilience where only the topology (i.e. the pattern of
connections) is used to increase cascade resilience. For example, the network could
be structured into modules, where any two modules are connected to each other
through long paths. As a result, in certain types of cascades, a failure in one module
might dissipate before it reaches any other module. When topological cascade
resilience is possible, it offers two advantages over active resilience: simplicity and
robustness. In topological resilience, the network protects itself, requiring no real-
time automated decisions or difficult-to-achieve rapid response during the cascade.

2.2 What is a Cascade-Resilient Network?

The words Network, Cascade, and Resilience have many domains of application,
so much so that no universal definition of these terms exists. Therefore, this section
briefly surveys some of the recurrent applications and meanings of those terms.
It also introduces specific definitions that are appropriate for some applications.
Later in the paper these definitions serve as an example of optimizing networks for
cascade resilience.

2.2.1 Network as an Unweighted Graph

Complex Networks is the study of real world systems using ideas of graph theory.
Specifically, here and in most other studies the network is represented using simple
unweighted graph G: a tuple (V, E) where V is a set called “nodes” or “vertices” and
E are unordered two-element subsets of V termed “edges.” Such an approach offers
simplicity and can employ the well-developed tools of graph theory. Ultimately,
though, models of networks must consider their evolving nature, fuzzy boundaries,
and multiplicities of node classes and diverse relationships.

The simplification is often unavoidable given the lack of data on networks. For
example, in dark social networks only the connectivity is known, if that. Fortunately,
the loss of information involved in representing networks as simple rather than say,
as weighted graphs, could be evaluated. It is shown in Sect. 2.3.1 that at least in two
examples where the weights are known, the error in key metrics when using simple
graphs has no systematic bias and is usually small.
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2.2.2 Cascades

There is a very extensive literature on both cascades and resilience. The classic
literature on cascades includes two basic models: percolation cascades and capacity
cascades. The former originate in Physics but are often applied to Epidemiology,
where they are termed “contagions” or “epidemics” (see e.g. [58]). In percolation
phenomena, nodes are assigned states which change because of the influence
of their neighbors. For example, an infected node can pass the infection to its
contacts in the network, and the infection could then be passed to more and more
nodes. Another variant of such percolations are the case where nodes change
their state only when a certain fraction of their neighbors exert influence (see
e.g. [14,72]). Percolation phenomena are exceptionally well-studied, and in many
variants analytic expressions exist for the final extent of the cascade as a function
of the network topology (see e.g. [26,57]). The capacity cascades are characteristic
of capacitated networks, such as power transmission systems and supply chains.
Classically, in those systems the edges are assigned capacities and thus carry flows
from supply nodes to demand nodes. Cascades occur when due to failures the flow
can no longer be carried by the edges within their capacities or when some of the
supply nodes fail [3,21,43,53]. In capacity cascades the failure can jump to nodes
that are many hops away from the initial failures possibly skipping the neighbors.

2.2.3 Resilience

A vast number of studies attempted to define resilience, often in very different
ways. Perhaps the most common meaning refers to the connectivity of the network
under disruption or failures in its components. Such definitions are motivated by
applications in telecommunications where it is desired that nodes are able to find a
path to each other even if some of the components in the networks are damaged or
destroyed [1,6,7,12,15,16,23,33,34,41].

The idea of damaging networks has attracted a lot of research in the area of
Sociology of secret societies such as terrorist networks [4,25,29,32,48,49,52,74].
In fact, many secret societies are benign, including non-governmental organizations
and dissident movements operating in hostile political environments. In those
networks, if the network is penetrated by its enemy, it must be able to minimize
the damage. Economists too have recently analyzed the problem of organizational
design when the organization is being attacked [27]. Related problems have also
been studied by epidemiologists, where the question focused on immunization
strategies (e.g. [64]) but apparently not as a question of optimal network design.

Recently, resilience has became associated with the ability to quickly recover
from damage rather than to absorb it [10]. Indeed, in many applications disruptions
and failures are not rare singular events, but rather occur regularly and even
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continuously. For example, there are continuous demand spikes in communication
networks [19] and voltage fluctuations in power systems.

It is to be expected that no notion of resilience would be useful universally across
different applications. Similarly, many networks experience cascades, but the details
vary. This paper will investigate cascade resilience under a particularly important
and well-characterized class of cascades known as “susceptible-infected-recovered”
(SIR). SIR are a type of cascades where any failed node leads to the failure of
each neighboring node independently with probability 7 [58]. This 7 represents the
network’s propensity to experience cascades, expressing both the susceptibility of
components and the environment in which the network operates. Using the SIR
model, resilience R(G) could be defined as the average fraction of the network that
does not fail in the cascade:

1
R(G)=1— —1E[extent of a cascade], (2.1

where “extent of a cascade” refers to the ultimate number of new cases created by a
single failed node (the initial node does not count) and where n = |V| is the number
of nodes. For simplicity, cascades are assumed to start at all nodes with uniform
probability.

Observe that under this definition the most cascade-resilient network (R(G) = 1)
is the network with no edges. But such a network cannot carry any information
from node to node! It is not surprising that the objective of designing cascade
resilience conflicts with other features of the network. In other cascade types, such as
cascades on capacitated networks, the most cascade-resilient network might be the
network with infinite capacities, which obviously would conflict with the objective
of minimizing cost. It follows then that optimization of networks requires specifying
a notion of value or efficiency.

2.2.4 Measuring Efficiency

Notions of network efficiency attempt to quantify the value of a network, and this
problem has a long history. For example, an influential early work on communi-

cation networks suggested that a network’s value increases as O (@), because

each node can connect to n — 1 other nodes [9]. However, this measure ignores the
difficulty of connecting to other nodes (as well as, e.g. cost). Indeed, it is often
desired that the distances between the nodes are short: when nodes are separated by
short distances they can, e.g., more easily communicate and distribute resources
to each other. Therefore, many authors invoke measures based on the distances
between pairs of nodes in the network (see e.g. [44,49,55]).

In the following we will consider a version of distance-based efficiency, termed
“distance-attenuated reach” metric [44]. For all pairs of nodes u,v € V, weigh each
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pair by the inverse of its internal distance (the number of edges in the shortest path
from u to v) taken to power g:

1 1

n(nfl) (u,v)g’

2.2)
ueVveV~{u} d

W(G) =

Normalization by n(n — 1) ensures that 0 < W(G) < 1, and only the complete graph
achieves 1. As usual, for any node v with no path to u, set m = 0. The parameter
g, “connectivity attenuation” represents the rate at which distance decreases the
connectivity between nodes. Unless stated otherwise g = 1. A valuable property of
W (G) is that it is well-defined and non-singular even on networks that have multiple
components with no connections to each other. As will be shown, such a separation

into components provides a very powerful mechanism for cascade resilience.

2.3 Evaluating Real Networks

Significant insight into cascade resilience can be derived from comparing the
cascade resilience of networks from different domains. We will see that dark
networks like terrorist networks are more successful in the presence of certain
cascades than other complex networks. Their success stems not from cascade
resilience alone but from balancing resilience with efficiency.

To make those comparisons, define the overall “fitness,” F(G), of a network by
aggregating resilience and efficiency through a weight parameter r:

F(G) = rR(G) + (1 — )W(G).

The parameter r depends on the application and represents the damage from a
cascade — from light (» — 0) to catastrophic (r — 1). Note that it is possible to
include in fitness other metrics such as construction cost.

We will compare the fitnesses of several complex networks, including communi-
cation, infrastructure and scientific networks to the fitnesses of dark networks. The
class of dark networks will be represented by three networks: the 9/11, 11M and
FTP networks. The 9/11 network links the group of individuals who were directly
involved in the September 11, 2001 attacks on New York and Washington, DC [49].
Similarly the 11M network links those responsible for the March 11, 2004 train
attacks in Madrid [67]. Both 9/11 and 11M were constructed from press reports of
the attacks. Edges in those networks connect two individuals who worked with each
other in the plots [49, 67]. The FTP network is an underground group from World
War II (Fig.2.1), whose network was constructed by the author from a historical
account [51].

Figure 2.2 shows that the dark networks attain the highest fitness values of all
networks, except for extreme levels of cascade risk (7 > 0.6) This is to be expected:
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Fig. 2.2 Fitnesses of various networks at » = 0.51 and various values of 7. 11M is the network
responsible for the March 11, 2004 attacks in Madrid (70 nodes, 240 edges). 9/11 [49] is the
network responsible for the 9/11 attacks (62 nodes, 152 edges). CollabNet [59] is a scientific co-
authorship network in the area of network science (1,589 nodes, 2,742 edges). E-Mail [28] is
a university’s e-mail contact network, showing its organizational structure (1,133 nodes, 5,452
edges). FTP is the network in Fig. 2.1 (174 nodes, 300 edges). Gnutella [37,66] is a snapshot of the
peer-to-peer network (6,301 nodes, 20,777 edges). Internet AS [47] is a snapshot of the Internet
at the autonomous system level (26,475 nodes, 53,381 edges). Except for T > 0.6 dark networks
(11M, 9/11 and FTP) attain the highest fitness

only 11M, 9/11, and the FTP networks have been designed with cascade resilience
as a significant criterion — a property that makes them useful case studies. For high
cascade risks (7 > 0.6) the CollabNet network exceeds the fitnesses of the dark
networks. CollabNet was drawn by linking scientists who co-authored a paper in
the area of network science [59]. It achieved high fitness because it is partitioned
into research groups that have no publications with outside scientists. Like some
terrorist networks, it is separated into entirely disconnected cells.

Itis interesting to compare the empirical networks to each other in their efficiency
and resilience (Fig. 2.3). Note that FTP and 9/11 networks are not the most resilient,
but they strike a good balance between resilience and efficiency. The advantages
of the two networks over other networks are not marginal, implying that their
advantages in fitness are not sensitive to the choice of r. Of course, they are
optimized for particular combinations of r and 7, and will no longer be very
successful outside that range. For instance, in the range of high r and high 7
networks with multiple connected components would have higher fitness because
they are able to isolate cascades in one component.
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Fig. 2.3 Resilience and efficiency of the real networks. The fittest networks are not always the
most resilient

The 9/11 and the 11M networks are very successful for low values of 7 (<0.2),
but then rapidly deteriorate because of a jump in the extent of cascades — the so-
called percolation transition [24]. Past this threshold, cascades start affecting a large
fraction of the network, resilience collapses and the fitness declines rapidly. The
pattern of onset of failure can be clearly seen in most of the networks. For violent
secret societies this transition means that the network might be initially hard to
defeat, but there is a point after which efforts against it start to pay off. Because
T is representative of the security environment, the 9/11 network is found to be
relatively ill-adapted to the more stringent security regime implemented after the
attacks. Indeed, it is likely that the 9/11 attacks would have been thwarted under the
current security regime since some of the nodes were captured before the attacks,
but not interrogated in time to discover and apprehend the rest of the network [71].
In contrast, the cellular tree hierarchy of the FTP network is more suitable for an
intermediate range of cascade risks. However, the pair-wise distances in it are too
long to provide high efficiency. Therefore, its fitness is comparatively poor under
very low and very high values of 7.

2.3.1 Resilience and Efficiency of Weighted Networks

In some networks, each edge (u,v) carries a distance weight D,,, > 0. The smaller
the distance, the closer the connection between u# and v. We now explain in
some detail how to compute the fitness of those networks. We will introduce
generalizations of resilience and efficiency, that reduce to the original definitions
for unweighted networks when D,, = 1, while capturing the effects of weights in
the weighted networks.

The original definition of resilience was built on a percolation model where the
failure of any node leads to the failure of its neighbor with probability 7. In the
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weighted network, more distant nodes should be less likely to spread the cascade.
Thus, we make the probability of cascade through (u,v) to be min(7/D,y, 1).

The efficiency was originally defined as the sum of all-pairs inverse geodesic
distances, normalized by the efficiency of the complete graph. In the weighted
network, both the distance and the normalization must be generalized. To compute
the distance d(u,v) we consider the weights on the edges D and apply Dijkstra’s
algorithm to find the shortest path. Normalization too must consider D because a
weighted graph with sufficiently small distances could outperform the complete
graph (if all the edges of the latter have D;; = 1). Therefore, we weigh the efficiency
by the harmonic mean H of the edges (E) of the graph:

H(G) 1
W(G) = ——— - 2.3)
(©) nn—1) weV veV—{u) d(u,v)4
where £|
2 (uv)eE ( Dm,)

The harmonic mean ensures that for any D, the complete graph has W (G) = 1.

Having defined generalized resilience and efficiency we can evaluate the standard
approach to dark networks, which represents them as binary graphs D, € {0,1},
rather than as weighted graphs. The former approach is often taken because the
information about dark networks is limited and insufficient to estimate edge weights.

Fortunately, in two cases, the 9/11 network and the 11M network [49, 67] the
weights could be estimated. The 9/11 data labels nodes as either facilitators or
hijackers. Hijackers must train together and thus should tend to have a closer
relationship. Thus set D,, = 2,1,0.5 if the pair u,v includes zero, one or two
hijackers, respectively. The 11M network is already weighted (Z,, = 1,2,3...)
based on the number of functions each contact (u,v) serves (friendship, kin, joint
training etc.). We mapped those weights to D by Dy, = 2/Z,,. In both networks,
the transformation was so that the weakest ties have weight 2, giving them greater
distance than in the binary network, while the strongest ties are shorter than in the
binary network.

Figure 2.4 compares the fitnesses, resiliences and efficiencies of the weighted and
binary representations. It shows that for both networks, the fitnesses of the binary
representation lies within 0.15 of the fitness of the weighted representation and for
some T much closer. The efficiency measures are even more close (within 0.05). The
behavior of resilience is intriguing: for the 9/11 network the weighted representation
shows more gradual decline as a function of cascade risk when compared to the
binary representation. For the 11M network, the decline is actually slightly more
sharp in the weighted representation. Structurally, the 11M network has a center
(measured by betweenness centrality) of tightly knit-nodes (very short distances),
while the 9/11 network is more sparse at its center, increasing its cascade resilience.
This effect explains the direction of the error in the binary representation. Based
on those two examples, it appears that the binary representation does not have a
systematic bias, and may even underestimate the fitness of dark networks.
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Fig. 2.4 Fitness, resilience, and efficiency of two dark networks (r = 0.51), comparing binary and
weighted representations. The binary representation matches the weighted representation within
0.15, and typically closer

2.4 Designing Networks

The success of dark networks must be due to structural elements of those networks,
such as cells. If identified, those elements could be used to design more resilient
networks and to upgrade existing ones. Thus, by learning how dark networks
organize, it will be possible to make networks such as communication systems,
financial networks, and others more resilient and efficient.

Those identification and design problems are our next task: both will be solved
using an approach based on discrete optimization. Let a set of graphs G be called a
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Fig. 2.5 Graphs illustrating the 6 network designs. Cligues (a), Stars (b), Cycles (c), Connected
Cliques (d), Connected Stars (e), and Erdos—Renyi “ER” (f). Each design is configured by just one
or two parameters (the number of individuals per cell and/or the random connectivity). This enables
rapid solution of the optimization problem. In computations the networks were larger (n = 180
nodes)

“network design” if all the networks in it share a structural element. Since dark
networks are often based on dense cliques, we consider a design where all the
networks consist of one or multiple cliques. We consider also designs based on
star-like cells, cycle-based cells and more complex patterns (see Fig.2.5).

In the first step, we will find the most successful network within each design.
Namely, consider an optimization problem where the decision variable is the
topology G of a simple graph taken from a design G. The objective is the fitness
F(G):

gléléF(G) . (2.4)
In the second step, we will compare the fitnesses across designs, thus identifying
the topological feature with the highest fitness (e.g. star vs. clique).

This optimization problem introduces a method for designing cascade-resilient
networks for applications such as vital infrastructure networks. To apply this to a
given application, one must make the design G the set of all feasible networks in that
domain, to the extent possible by computational constraints. For a related approach
using game-theoretic ideas see Lindelauf et al. [48, 49].

A complementary approach is to consider the multi-objective optimization
problem in which R(G) and W (G) are maximized simultaneously:

max {R(G),W(G)} . 2.5)

The multi-objective approach cannot find the optimal network but instead produces
the Pareto frontier of each design — the set of network configurations that cannot be
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improved without sacrificing either efficiency or resilience. The decision maker can
use the frontier to make the optimal trade-off between resilience and efficiency.

The fitness and the multi-objective optimization approaches could be easily
generalized to consider additional design objectives and constraints. For example,
research on social networks indicates that resilience and efficiency might be just two
of several design criteria that also include, e.g. “information-processing require-
ments,” that impose additional constraints on network designs [5]. In the original
context, “information-processing” refers to the need to have ties between individuals
involved in a particular task, when the task has high complexity. Each individual
might have a unique set of expertise into which all the other agents must tap directly.
Generalizing from sociology, such “functional constraints” might considerably limit
the flexibility in constructing resilient and efficient networks. For example, in the
context of terrorism, this constraint significantly decreased the quality of attacks
that could be successfully carried out in the post 9/11 security environment [73].
Such functional constraints could be addressed by looking at a palette of network
designs which already incorporate such constraints. In engineering applications,
such as infrastructure or communication networks, the financial cost of building
the network is another key objective.

2.4.1 Properties of the Solution

The solution to the scalarized objective problem, (2.4) has a number of useful
properties: Its fitness is continuous in the parameter r and changes predictably with
other parameters: Notice that the claim is not about the continuity of fitness of a
single configuration as a function of r but rather about the set of optimal solutions.

Proposition 2.1. f(r) = maxgeg F (G, r) is Lipschitz-continuous for r € [0, 1].

Proof. The argument constructs a bound on the change in f in terms of the change
in r. Consider an optimal configuration C; of a design for r = r; and let its fitness
be fi = F(C,r) (there is slight abuse of notation since C is a configuration, whose
fitness is the average fitness of an ensemble of graphs).

Observation 1: Consider the fitness of C; at r = r,. Because C; is fixed and the
metrics are bounded (0 < R < 1 and 0 < W < 1), the fitness change is bounded by
the change in r:

lfi =F(C1,r2)| = [nR(Cy) + (1 —r)W(Cy)
—1R(Cy) — (1 =r)W(Cy)|
= |(r1 =r)R(C1) — (r —r)W(C1)]

<|ri—r)f.
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Observation 2: Let C; be the optimal configuration for r = r, and let f, = F(Cy,r2).
Since C; is optimal for r = r, it satisfies: f> > f(Cy,r2), and so —f> < —F(Cy,r7).
It follows that f; — fo < fi — F(C1,r2). Take the absolute value of the right hand
side and apply Observation 1 to get the bound: f; — f> < |r] — r2].
Observation 3: Applying the argument of Observations 1&2 but reversing the roles
of C; and C; implies that f> — fi < |r] — ra].

Observations 2 and 3 give |f| — f2| < |r| — 2|, proving the result.

Proposition 2.2. Ler f(T) be the highest attainable fitmess within a fixed network
design G, for cascade probability t:

flr)= max rR(G,7)+ (1 —rW(G)

F(G,1)

Then f(7) is a non-increasing function of T.

Proof. The proof relies on the simple claim that resilience of networks does not
increase when 7 increases [31]. The claim is equivalent to the result that for a
given graph G increasing T does not decrease the expected extent of cascades. The
remainder is almost trivial: it is the claim that when the fitness of all the points on
the space (all graphs) has been made smaller or kept the same (by increasing 7), the
new maximum value would not be greater than in the old space.

The argument is easy to generalize. One could apply this method to the parameter g
of attenuation, showing that fitness is non-increasing when attenuation is increased.

2.4.2 General Approaches to Large-Scale Networks

Our study did not involve solving the general optimization problem of finding the
optimal network on n nodes in (2.4), but in some cases solving the general problem
would be required. Clearly, the multi-objective problem and the scalarized model are
hard: both are discrete optimization problems with non-linear objective functions. In
general, solutions could be obtained using derivative-free optimization methods [18]
and approximations such as [38,68]. Promising approaches also exist for finding the
Pareto front [45,50,56]. Whether those methods are fast and accurate enough would
depend on the definitions of R(G), W(G) and the set G.

In small instances, it might also be possible to use the following approach based
on bilevel stochastic integer programming. Given a specified network size (e.g.
180 nodes), one has integer decision variables E;; € {0,1} for all i # j where
i,j € V. The objective contains a stochastic term, R(G) and a deterministic term,
W (G). The former is a linear function of the expected extent of percolation cascades.
The cascade extents could be computed by generating stochastic starting points
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s ~ Uniform[V] and stochastic edge connectivity values B;; ~ Bin(7) for all i, j
with E;; = 1. Given the starting point and connectivities, the cascade extent could be
found in each stochastic realization by solving the maximum flow problem: connect
all nodes to a special target node ¢ with edges of capacity = 1. and assign capacities
|V|E;j to all i, j pairs. On this network, the maximal s —¢ flow numerically equals the
set of nodes affected by the cascade that originated in s. The latter term, efficiency,
could be computed by finding the all-pairs distances in the graph defined by E;; =1,
by solving a linear program for every pair. It would be advantageous to use an
efficiency function that depends linearly on distances, if possible, rather than the
non-linear definition in (2.2) above.

2.4.3 Computational Implementation

To investigate the cascade-resilience of dark networks, we used computational
methods described in this section. We considered networks on n = 180 nodes
constructed through 6 simple designs, chosen both based on empirical findings (see
e.g.[2,13]) as well as the possibility of analytic tractability in some cases. When
more data becomes available on dark networks, it will become possible to extract
additional subgraphs with statistical validity.

Three of the designs are based on identical “cells”: each cell is either (a) a
clique (a complete graph), (b) a star (with a central node called “leader”), and
(c) a cycle (nodes connected in a ring). Each of these have a single parameter,
k — the number of nodes in the cell. Recent research suggests that under certain
assumptions constructing networks from identical cells is optimal [27]. Let us also
consider n-node graphs consisting of (d) randomly-connected cliques (sometimes
termed “cavemen’), and (e) randomly-connected stars, in both cases according to
probability p. Consider also (f) the simpler and well-studied Erdos—Renyi (ER)
random graph with probability p (see figure in main text). By considering different
structures for the cells we determine which of those structures provides the best
performance.

The solution to the optimization problem is found by setting each of the parame-
ters k (and when possible p) to various values. Each design D has “configurations”
CID , Cg ,... each specifying the values of the parameters. Each configuration Cl.D is
inputted to a program that generates an ensemble of 1 — 10 networks, whose average
performance provides an estimate of the fitness of C,D . The number of networks
was ten for networks with parameter p because there is higher variability between
instances. The coefficient of variation (CV) in the fitness of the sample networks was
monitored to ensure that the average is a reliable measure of performance. Typically
CV was <0.2 except near phase transitions of connectivity and percolation.

Optimization was performed using grid search. Alternative methods (e.g. Nelder—
Mead) were considered but grid search was chosen despite its computational cost
because it suffers no convergence problems even in the presence of noise (present
due to variations in topology and contagion extent), and collects data useful for
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sensitivity analysis and multi-objective optimization. The sampling grid was as
follows. In designs consisting of cells of size k, cell size was set to all integer values
in [1,180]. If & did not divide 180, a cell of size < k was added to ensure that the
number of nodes in the graph is 180. The number of nodes is 180 because 180 is
a highly-composite number and so it offers many networks of equally-sized cells.
In general, normalization by # in the definitions of resilience and efficiency ensures
that even when the number of nodes is tripled the effect of network size on fitness
is very small for the above designs (around £0.05 in numerical experiments). In
designs containing a parameter of connectivity p, it was set to all multiples of 0.05
in [0, 1], with some extra points added to better sample phase transitions. The grid
search algorithm results are readily used to compute the Pareto frontier using the
&-balls method [45] (¢ =0.01).

The resilience metric is most easily computed by simulation where a node is
selected at random to be “infected,” and the simulation is run until all nodes are in
states S or R, and none is in state /. In the simplest version of the SIR cascade model,
which we adopt, each node in the graph can be in one of three states “susceptible,”
“infected” and “removed” designated S,/, and R, respectively (these names are
borrowed from Epidemiology). Time is described in uniform discrete steps. A node
in S state at time ¢ stays in this state, unless a neighbor “infects” the node, causing it
to move to state / at time 7 4 1. Specifically, a node in state S at time ¢ has probability
7 of turning to / state at time ¢ 4 1 for each adjacent node in state / at time ¢. Finally,
anode in / state at time # always becomes R at time 7 4 1. Once in state R, the node
remains there for all future times. It is possible to consider an alternate model where
the rate of transition / — R takes more than one time step, but adding this effect
would mostly serve to increase the probability of transmission, which is already
parametrized by 7 [57,61].

A cascade/contagion that starts at a single node would run for up to n steps,
but usually much fewer since typically 7 < 1 and/or the graph is not connected. To
achieve good estimate of the average extent, the procedure was replicated 40 times,
and then continued as long as necessary to achieve an error of under +0.5 node with
a 95% confidence interval [46].

An analytic computation of the cascade extent metric was investigated. It is
possible in theory because the contagion is a Markov process with states in the
superset of the set of nodes, 3”. Unfortunately, such a state space is impractically
large. When G is a tree, then an analytic expression exists,! and it might be
feasible when the treewidth is small [17,57]. However, for many graph designs
the tree approximation is not suitable. Another possible approach is to represent
the contagion approximately as a system of differential equations which can
be integrated numerically [39] . These possibilities were not pursued since the
simulation approach could be applied to all graphs, while the errors of the analytic
approaches are possibly quite large.

"Specifically, the mean contagion size is 1 + 15‘;;6(;(’%’ where Go(x) generates the degree
1

distribution and G (x) = g(:)g;
0

generates the probability of arrival to a node [57].
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2.5 Topological Cascade Resilience in the SIR-Reach Model

In this section and the rest of the paper, we will use the SIR-Reach model (R and
W follow (2.1), (2.2)) The two models are attractive because they have real
applications: Social Networks and Epidemiology. They have also been extensively
explored by network scientists, which make them ideal as a case study in topological
cascade resilience.

2.5.1 Optimal Network

The first set of experiments compares the designs against each other under different
cascade risks (7), Fig.2.6. At each setting of 7, each design is optimized to its
best configuration, i.e. the best cell size, and connectivity if applicable. The curves
indicate the fitness of the optimal network in each design. Typically, at each 7 the
optimal network is different from the optimal network at another 7. Observe that
within each design, as T increases the fitness decreases — one cannot win when
fighting cascades, only delay (see [30] for the proof). In certain applications, it

ConnCliques ||
ConnStars
Cliques

Cycles 1
ER

1.0

0.91

DEBEN

Stars

Fitness

T

Fig. 2.6 Fitness at r = 0.51 of various network designs. The Connected Stars design is the
best design at all cascade risks, 7. Cliques and Connected Cliques are competitive only for
extreme ranges of 7. The superiority of Connected Stars over the ER (random graph) confirms
the hypothesis that cells give fitness gains against cascades. The fitness of a design at each value
of 7 is defined as the fitness of the optimal configuration (network ensemble) within that design
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is possible to invest in reducing the cascade propagation probability, 7. Then the
curves in Fig. 2.6 could also be viewed as expressing the gain from efforts to reduce
cascades by reducing 7 and also adapting the network structure. If the slope is steep,
then the gains are large.

Comparing designs to each other reveals that Connected Stars is superior to
all others in fitness (Fig.2.6). The design also outperforms any of the empirical
networks in Fig.2.2 in part because for each value of T we selected the optimal
network. The simpler Stars design is almost as fit, deteriorating only at extreme
ranges of 7. The rankings of the designs are of course dependent on the parameter
values, but not strongly (see [30] for the proof). Star-like designs are successful
because the central node in a star acts as a cascade blocker while keeping the
average distance in the star short (~2). Only for sufficiently low r, the Cliques,
Connected Cliques and Connected Stars designs are superior to the Stars design. For
such values of r efficiency is the dominant contributor to fitness. High weighting for
efficiency benefits the former designs where efficiency can be 1 by constructing a
fully connected (complete) graph. In the star design, efficiency is lower, reaching
~1/2 (when all nodes are placed in a single large star).

It has been long conjectured that cells provide dark networks with high resilience.
Indeed, this is probably the reason why we found that dark networks have higher
fitnesses than other networks. But cells also reduce the efficiency of a network since
they isolate nodes from each other. To rigorously determine the net effect of cells,
we compare the ER design (random graphs) to the Connected Stars design. ER is
a strict subset of Connected Stars but only Connected Stars has cells. Therefore it
is notable that Connected Stars has a higher fitness than ER, often significantly so.
Indeed, cells must be the cause of higher fitness because cells are the only feature in
Connected Stars that ER lacks.

2.5.2 Properties of Optimal Networks

Many properties of the optimal networks such as resilience, efficiency and edge
density show rapid phase transitions as r is changed. For example, in the Cliques
design when r < 0.5 the optimal network has high density that maximizes efficiency,
whereas for r > 0.5 it is sparse and maximizes resilience (Fig.2.7).

Intuition may suggest that the networks grow more sparse as cascade risk grows.
Instead, the trend was non-monotonic (Fig.2.7). For 7 > 0 and r < 0.5 Cliques,
Connected Cliques, and Connected Stars became denser, instead of sparser, and for
them the most sparse networks were formed in the intermediate values of T where
the optimal networks achieve both relatively high resilience and high efficiency.
At higher 7 values, when r < 0.5 it pays to sacrifice resilience because fitness is
increased when efficiency is made larger through an equal or lesser sacrifice in
resilience. The Stars design does not show a transition at » = 0.5 because it is hard
to increase efficiency with this design.
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Fig. 2.7 Average degree in the optimal configuration of each design. At r = 0.49 (a) the
optimization prefers networks that have high efficiency while at r = 0.51 (b) the preference is
for resilience. In (b) the average degree diminishes monotonically to compensate for increasing
cascade risk. In (a) most designs have a threshold 7 at which they jump back to a completely—
connected graph because structural cascade resilience becomes too expensive in terms of efficiency

2.5.3 Multi-objective Optimization

A complementary perspective on each design is found from its Pareto frontier of
resilience and efficiency (Fig.2.8). Typically a design is dominant in a part of the
Resilience—Efficiency plane but not all of it. The Stars and Connected Stars designs
can access most of the high resilience-low efficiency region. In contrast, the Cliques
and Connected Cliques can make networks in the medium resilience-high efficiency
regions.

The sharp phase transitions discussed earlier are seen clearly: along most of
the frontiers, if we trace a point while decreasing resilience, there is a threshold
at which a small sacrifice in resilience gives a major gain of efficiency. More
generally, consider the points where the frontier is smooth. By taking two nearby
networks on the frontier one can define a rate of change of efficiency with respect
to resilience: |AW /AR|. The ratio can be used to optimize the network without
using the parameter ». When [AW /AR| > 1 the network optimizer should choose
to reduce to the resilience of the network in order to achieve great gains in efficiency;
when |[AW /AR| < 1 efficiency should be sacrificed to improve resilience.

2.6 Discussion

The analysis above considered both empirical networks and synthetic ones. The
latter were constructed to achieve structural cascade resilience and efficiency. In
contrast, in many empirical networks the structure emerges through an unplanned
growth process or results from optimization to factors such as cost rather than block-
ing cascades. Without exception the synthetic networks showed higher fitness values
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Fig. 2.8 The Pareto frontiers of various network designs (7 = 0.4). The configurations of the
Connected Stars design dominate over other designs when the network must achieve high
resilience. However, designs based on cliques are dominant when high efficiency is required.
Several designs show sharp transitions where at a small sacrifice of efficiency it is possible to
achieve large increases in cascade resilience

despite the fact that they were based on very simple designs. This suggests that
network optimization can significantly improve the fitness and cascade resilience of
networks. It follows that an optimization process can be applied to design a variety
of networks and to protect existing networks from cascades.

Many empirical networks also have power-law degree distributions [58]. Unfor-
tunately, this feature significantly diminishes their cascade resilience: the resulting
high-degree hubs make the networks extremely vulnerable to cascades once 7 is
slightly larger than O [20, 62].

In some successful synthetic networks, the density of edges increased when
the cascade risk T was high. This phenomenon has interesting parallels in non-
violent social movements which are often organized openly rather than as secret
underground cells even under conditions of severe state repression [70]. This
openness greatly facilitates recruitment and advocacy, justifying the additional risk
to the participants, just like the sacrifice of resilience to gain higher efficiency is
justified under r < 0.5 conditions.

There are other important applications of this work, such as the design of power
distribution systems. For power networks, the definition of resilience and efficiency
will need to be changed. It would also be necessary to use much broader designs and
optimization under design constraints such as cost. Furthermore, this work could
also be adapted to domains of increasing concern such as financial credit networks,
whose structure may make them vulnerable to bankruptcies [8, 36].
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Chapter 3

Optimizing Synchronization, Flow,
and Robustness in Weighted Complex
Networks

G. Korniss, R. Huang, S. Sreenivasan, and B.K. Szymanski

Abstract Complex biological, social, and technological systems can be often
modeled by weighted networks. The network topology, together with the distribu-
tion of available link or node capacity (represented by weights) and subject to cost
constraints, strongly affect the dynamics or performance of the networks. Here, we
investigate optimization in fundamental synchronization and flow problems where
the weights are proportional to (k,-kj)ﬁ with k; and k; being the degrees of the nodes
connected by the edge. In the context of synchronization, these weights represent
the allocation of limited resources (coupling strength), while in the associated
random walk and current flow problems, they control the extent of hub avoidance,
relevant in routing and search. In this chapter, we review fundamental connections
between stochastic synchronization, random walks, and current flow, and we discuss
optimization problems for these processes in the above weighted networks.

3.1 Introduction

Synchronization [1-6] and transport [7-11] phenomena are pervasive in natural
and engineered complex interconnected systems with applications ranging from
neurobiology and population dynamics to social, communication, and informa-
tion networks. In the recent wave of research on complex networks [12-18],
the focus has shifted from structure to various dynamical and stochastic pro-
cesses on networks [19,20], synchronization and transport are being one of them.

G. Korniss (P<)  R. Huang ¢ S. Sreenivasan

Department of Physics and Social and Cognitive Networks Academic Research Center,
Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA

e-mail: korniss @rpi.edu; huangr3 @gmail.com

S. Sreenivasan * B.K. Szymanski

Department of Computer Science and Social and Cognitive Networks Academic Research Center,
Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA

e-mail: sreens @rpi.edu; szymansk @cs.rpi.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks: 61
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4_3, © Springer Science+Business Media, LLC 2012


korniss@rpi.edu
huangr3@gmail.com
sreens@rpi.edu
szymansk@cs.rpi.edu

62 G. Korniss et al.

The common question addressed by most studies within their specific context is how
the collective response of locally-coupled entities is influenced by the underlying
network topology.

Here, by network synchronization, we refer to the generic problem where
individuals or agents attempt to locally coordinate their actions with their network
neighbors or within some spatial neighborhood, in an attempt to improve global
performance or reach global agreement [6, 21]. In the broader context, these
problems are also referred to as consensus problems [6, 22, 23]. In this chapter,
we will use the terms synchronization and coordination synonymously. Classic
examples for coordination phenomena are animal flocking [24-26] and cooperative
control of vehicle formation [27], where individual animals or units are adjusting
their position, speed, and headings (the relevant local state variables) based on
the state of their neighborhood, potentially leading to tight formations. Funda-
mental synchronization problems have also numerous applications to neurobiology
[28-32], population dynamics [33, 34], and load balancing and task allocation
problems in distributed computing [21,35-39].

Research on flow optimization in networks has been around since at least the first
data sets on transportation networks became available (for a brief historical review,
see [11,40]). Perhaps, among the first ones was a study on transportation planning
on the Soviet railway network, as early as in 1930 [41], followed by others in the
1940s [42—-44]. Flow optimization and network interdiction problems also attracted
significant interest during the Cold War years [45,46] and have been a main thrust
in operations research since [7,47,48].

The increasing availability of data on real-life complex biological, information,
social, and infrastructure networks, and the emerging novel type of network
structures have triggered a recent wave on fundamental research on transport and
flow in networks [49—-83]. Connections between random walks and resistor networks
have been discussed in detail in several works [84—86]. Furthermore, we have
recently explored fundamental connections and relations (governed by the same
underlying network Laplacian) between stochastic synchronization problems and
resistor networks, current flow, and random walks [10, 87]. In this Chapter, in
parallel with reviewing synchronization phenomena in noisy environments, we will
discuss some natural and fundamental connections with idealized transport and flow
problems on complex networks, in particular, connections with some simplified
local and global routing and search schemes [67, 68, 72].

The ultimate challenge in network optimization (of synchronization and flow)
is when both the network structure and the link qualities (represented by weighted
links) can change or evolve [8, 67], subject to cost constraints. Here, we review and
discuss a simpler set of problems, where the network structure is fixed but the link
weights (or coupling strengths) can be allocated. In particular, we consider a specific
and symmetric form of the weights on uncorrelated scale-free (SF) networks, being
proportional to (kik j)ﬁ where k; and k; are the degrees of the nodes connected by the
link [10, 88-91]. The above general form has been suggested by empirical studies
of metabolic [50] and airline transportation networks [51]. We discuss the effects of
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such a weighting scheme in our synchronization and flow problems. Then the task
becomes maximizing the synchronization efficiency, throughput, or robustness as a
function of 3.

The setup of this chapter is as follows. In Sect. 3.2 we review optimization of
synchronization in a noisy environment [10]. In Sects. 3.3 and 3.4, we present results
for optimization of resistor networks and random walks, respectively, together with
reviewing fundamental connections between the relevant observables in synchro-
nization, resistor networks, and random walks. In Sect. 3.5 we discuss current-flow
betweenness and optimization of throughput in weighted complex networks [92]. In
Sect. 3.6 we present results on shortest-path betweenness, cascading failures, and
cascade control in weighted complex networks.

3.2 Synchronization in a Noisy Environment in Weighted
Networks

A large number of studies investigated the Kuramoto model of coupled oscillators
[4,93], naturally generalized to complex networks [94-96]. The common feature of
the findings is the spontaneous emergence of order (synchronous phase) on complex
networks, qualitatively similar to that observed on fully-connected networks (also
referred to as complete graphs), in contrast to regular networks in low dimensions.
Another large group of studies addressed synchronization in coupled nonlinear
dynamical systems (e.g., chaotic oscillators) [3] on small-world (SW) [97] and
scale-free (SF) [88, 98—101] networks. The analysis of synchronization in the
latter models can be carried out by linearization about the synchronous state and
using the framework of the master stability function [102]. In turn, the technical
challenge of the problem is reduced to the diagonalization of the Laplacian on
the respective network, and calculating or estimating the eigenratio [97] (the ratio
of the largest and the smallest non-zero eigenvalue of the network Laplacian),
a characteristic measure of synchronizability (smaller eigenratios imply better
synchronizability). Along these lines, a number of recent studies considered not
only complex, possibly heterogeneous, interaction topologies between the nodes,
but also weighted (heterogeneities in the strength of the couplings)[49, 88,99, 100]
and directed networks [103-105].

In a more general setting of synchronization problems, the collective behav-
ior/response of the system is obviously strongly influenced by the nonlinearities, the
coupling/interaction topology, the weights/strength of the (possibly directed) links,
and the presence and the type of noise [3, 101]. Here, we study synchronization in
weighted complex networks with linear coupling in the presence of delta-correlated
white noise. Despite its simple formulation, this problem captures the essential
features of fundamental stochastic synchronization, consensus, and coordination
problems with application ranging from coordination and load balancing causally-
constrained queuing networks [106, 107] to e-commerce-based services facilitated
by interconnected servers [108], and certain distributed-computing schemes on
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computer networks [21,36-39]. This simplified problem is the Edwards—Wilkinson
(EW) process [109] on the respective network [10, 87, 110-115], and is described
by the Langevin equation

N
Ohi ==Y Cij(hi —hj)+n;(t), (3.1
=l

where h;(t) is the general stochastic field variable on a node (such as fluctuations in
the task-completion landscape in certain distributed parallel schemes on computer
networks [21, 111, 112]) and n;(¢) is a delta-correlated noise with zero mean and
variance (1;(1)n;(¢')) =26;;6(t —t'). Here, C;j = Cj; > 0 is the symmetric coupling
strength between the nodes i and j (C; = 0). Note that without the noise term,
the above equation is also referred to as the consensus problem [6,22, 23] on the
respective network (in the sense of networked agents trying to reach an agreement,
balance, or coordination regarding a certain quantity of interest). Defining the
network Laplacian,

I = §;;Ci — Cyj, (3.2)

where C; = Y, C;;, we can rewrite (3.1)

N
dhi = — Y Tijhj+mi(t). (3.3)
j=1

For the steady-state equal-time two-point correlation function one finds
Gij = ((hi—h)(hj —h)) = f: 2 7L_ Wi Vi j» (3.4

where i1 = (1/N)YN, h; and {...) denotes an ensemble average over the noise in
(3.3). Here, I' ! denotes the inverse of I in the space orthogonal to the zero mode.
Also, {y;}Y | and A, k=0,1,...,N — 1, denote the kth normalized eigenvectors
and the corresponding eigenvalues, respectively. The k = 0 index is reserved for the
zero mode of the Laplacian on the network: all components of this eigenvector are
identical and Ay = 0. The last form in (3.4) (the spectral decomposition of I' ! can
be used to directly employ the results of exact numerical diagonalization.

For the EW process on any network, the natural observable is the steady-state
width or spread of the synchronization landscape [87,111,112,115-117]

) 14 1821
= hi — h)? Gii=— —. 35
07 = ( 5 2 z =52 (35
The above observable is typically self-averaging (confirmed by numerics), i.e., the

width (w?) for a sufficiently large, single network realization approaches the width
averaged over the network ensemble. A network is said to be synchronizable if



3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 65

the width has a finite steady-state value; the smaller the width, the better the
synchronization. Finite and connected (single component) networks are always
synchronizable. In the limit of infinite network size, however, network ensembles
with a vanishing (Laplacian) spectral gap may become unsynchronizable, depending
on the details of the small-A behavior of the density of eigenvalues [5,21].

The focus of this section is to optimize synchronization (i.e., minimize the width)
on (a) weighted uncorrelated networks with SF degree distribution, (b) subject to a
fixed cost. In the context of this work, we define the total cost Cy,; simply to equal
to the sum of weights over all edges in the network

1
>.Gi= 3 Y Cij = Coot. (3.6)
i,j

i<j

The elements of the coupling matrix C;; can be expressed in terms of the network’s
adjacency matrix A;; and the assigned weights W;; connecting node i and j as
C;j = W;jA;;. Here, we consider networks where the weights are symmetric and
proportional to a power of the degrees of the two nodes connected by the link,
W;j o< (k,'kj)ﬁ. We choose our cost constraint to be such that it is equal to that of the
unweighted network, where each link is of unit strength.

Y Cij=2Cio = Y Aij = Nk, (3.7)
iJ i

where k = ¥, k;/N = Y. jAij/N is the mean degree of the graph, i.e., the average
cost per edge is fixed. Thus, the question we ask, is how to allocate the strength of
the links in networks with heterogeneous degree distributions with a fixed total cost
in order to optimize synchronization. That is, the task is to determine the value of 8
which minimizes the width (3.5), subject to the constraint (3.7).

Combining the form of the weights, W;; o< (k;k j)ﬁ, and the constraint (3.7) one
can immediately write for the coupling strength between nodes i and j

Gij :NE—A”("”W)ﬁ (3.8)
S0 Aun(kikn)P

From the above it is clear that the distribution of the weights is controlled by a single

parameter 3, while the total cost is fixed, Cioy = NE/ 2.

Before tackling the above optimization problem for the restricted set of hetero-
geneous networks and the specific form of weights, it is useful to determine the
minimum attainable value of the width of the EW synchronization problem in any
network with symmetric couplings. This value will serve as a “baseline” reference
for our problem. In Appendix 1, we show that this absolute minimum value of the
width is
(N—1)?

3.9
2NCiot G2

<W2>min =

and can be realized by the fully connected network.
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If one now considers the synchronization problem on any network with N nodes,
with average degree k and with total cost Cior = Nk/2 to be optimized in some
fashion [e.g., with respect to a single parameter 3, (3.8), the above result provides
an absolute lower bound for the optimal width

(3.10)

3.2.1 Mean-Field Approximation on Uncorrelated SF Networks

First, we approximate the equations of motion (3.1) by replacing the local weighted
average field (1/C;) ¥; C;jh; with the global average h (the mean—height)

l

N Cyih;
dhi = — Y Cij(hi—hj)+ni(t) = —C; (ht— %) +mit)
j=1
~ —C;i (hi—h) +n;(t). (3.11)

Note that C; = 3;C;; is the weighted degree. As can be directly seen by summing
up (3.1) over all nodes, the mean height 4 performs a simple random walk with
noise intensity ¢(1/N). Thus, in the mean-field (MF) approximation (see details in
Appendix 2), in the asymptotic large-N limit, fluctuations about the mean decouple
and reach a stationary distribution with variance

<(h,‘—/jl)2> ~ I/Cl', (3'12)
yielding
o1& Sy 1ol
<W>=ﬁ;<(hr—h)>“;, o (3.13)

Now we consider uncorrelated weighted SF networks, with a degree distribution
P(k)=(y— D)m" k7, (3.14)

where m is the minimum degree in the network and 2 < y < 3. The average
and the minimum degree are related through (k) = m(y—1)/(y—2). Using the
approximation for the weighted degree C(k) of a node with degree k in uncorrelated
(UC) weighted SF graphs (see Appendix 3),

L Y—2-BI

k
o~ s

(3.15)



3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 67

and assuming self-averaging for large enough networks, one obtains for the width
of the synchronization landscape

il 11 (y—1)?
wEI=FEE~ ), Ve - e pere ¢

where using infinity as the upper limit is justified for y+ 3 > 0. Elementary analysis
yields the main features of the above expression for the average width:

1. (w*(B)) is minimum at § = B* = —1, independent of the value of y.
2. (W hmin = (W?(B*)) = 1/{k)

The above approximate result is consistent with using infinity as the upper limit in
all integrals, in that the optimal value 3* = —1 falls inside the interval —y < f8 <
y—2 for 2 < y < 3. Interestingly, one can also observe that in this approximation,
the minimal value of the width is equal to that of the global optimum (3.10), realized
by the fully-connected network of the same cost N(k) /2, i.e. with identical links of
strength (k) /(N —1).

We emphasize that in obtaining the above result (3.16) we employed two
very strong and distinct assumptions/approximations: (a) for the dynamics on the
network, we neglected correlations (in a MF fashion) between the local field
variables and approximated the local height fluctuations by (3.12); (b) we assumed
that the network has no degree—degree correlations between nodes which are
connected (UC), so that the “weighted degree” of a node with degree k, C(k) can be
approximated with (3.15) for networks with m > 1.

3.2.2 Numerical Results

For comparison with the above mean-field results, we considered Barabasi—Albert
(BA) SF networks [13, 14], “grown” to N nodes,'where P(k) = 2m2/k3, ie.,
Y = 3. While growing networks, in general, are not uncorrelated, degree—degree
correlations are anomalously (marginally) weak for the BA network [18, 118].

We have performed exact numerical diagonalization and employed (3.4) to find
the local height fluctuations and (3.5) to obtain the width for a given network
realization. We carried out the above procedure for 10-100 independent network
realizations. Finite-size effects (except for the m = 1 BA tree network) are very
weak for —2 < fB < 0; the width essentially becomes independent of the system
size in this interval. Figure 3.1 displays result for the local height fluctuations as a

IFor the BA scale-free model [13] (growth and preferential attachment), each new node is
connected to the network with m links, resulting in (k) ~ 2m in the large-N limit. Here, we
employed a fully-connected initial cluster of m + 1 nodes.
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Fig. 3.1 Height fluctuations as a function of the degree of the nodes for N = 1,000, (k) = 20, and
for B = —2.00, B = —1.00, and 8 = 0.00 (from top to bottom). Data, represented by filled symbols,
are averaged over all nodes with degree k. Scatter plot (dots) for individual nodes is also shown
from ten network realizations. Solid lines correspond to the MF+UC scaling ((Ah)2); ~ k=(B+1)

function of the degree of the node. We show both the fluctuations averaged over all
nodes with degree k and the scattered data for individual nodes. One can observe
that our approximate results for the scaling with the degree [combining (3.12) and
(3.58), ((hi—h)*) = 1/Ci ~ k; P+ work very well, except for very low degrees.
The special case B = 0, is exceptionally good, since here C; = 3 ;A;; = k; exactly,
and the only approximation is (3.12).

In Fig. 3.2, we show our numerical results for the width and compare it with
the approximate (MF4-UC) results (3.16). The divergence of the approximate result
(3.16) at B = —3 and B =1 is the artifact of using infinity as the upper limit in
the integrals performed in our approximations. The results for the width clearly
indicate the existence of a minimum at a value of B* somewhat greater than —1.
Further analysis reveals [10] that as the minimum degree m is increased, the optimal
B approaches —1 from above. This is not surprising, since in the limit of m > 1
(large minimum degree), both the MF and the UC part of our approximations are
expected to work progressively better. For B = 0, our approximation (3.16) is within
8%, 4%, and 1% of the results extracted from exact numerical diagonalization
through (3.5), for m = 10, m = 20, and m = 100, respectively [10]. For f = —1,
it is within 15%, 7%, and 3% of the numerical results for m = 10, m = 20, and
m = 100, respectively [10]. Thus, our approximation works reasonably well for
large uncorrelated SF networks with sufficiently large minimum (and consequently,
average) degree, i.e., in the 1 < m < N limit. Although for sparse networks with
small average degree the MF+UC approximation fails to locate the minimum and
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Fig. 3.2 Steady-state width of the EW synchronization landscape as a function of the weighting
parameter 3 for the BA networks with m = 10 ((k) ~ 2m = 20) for various network sizes. The
solid curve is the approximate (MF+UC) result (3.16). For comparison, numerical results for a
SW networks with N = 1,000 and with the same degree is also shown. The horizontal dashed line
indicates the absolute lower bound (3.10), as achieved by the fully connected network with the
same cost N (k) /2

the value of the width precisely; nevertheless, it provides insight for an efficient
optimization of the global performance of weighted heterogeneous networks with a
single parameter 3, as opposed to a computationally prohibitive exhaustive search.
For a detailed quantitative analysis of the error of the MF+UC approximation in the
context of the closely related random walks on weighted SF networks (Sect. 3.4)
see [91].

The above optimal link-strength allocation at around the value * ~ —1 seems to
be present in all random networks where the degree distribution is different from a
delta-function. For example, in SW networks,although the degree distribution has
an exponential tail, <w2> also exhibits a minimum, but the effect is much weaker, as
shown in Fig. 3.2. Further, a point worthwhile to mention, a SW network with the
same number of nodes and the same average degree (corresponding to the same cost)
always “outperforms” its SF counterpart (in terms of minimizing the width). The
difference between their performance is smallest around the optimal value, where
both are very close to that of the lowest possible value, realized by the FC network
of the same cost.

2Here, we constructed SW networks by adding random links [111, 119, 120] on top of a regular
ring with two nearest neighbors. The density of random links per node is p, resulting in an average
degree (k) =2+ p.
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3.3 Weighted Resistor Networks

Resistor networks have been widely studied since the 1970s as models for conduc-
tivity problems and classical transport in disordered media [121, 122]. Amidst the
emerging research on complex networks, resistor networks have been employed to
study and explore community structures in social networks [123—126] and centrality
measures in information networks [127]. Also, electrical networks with directed
links (corresponding to diodes) have been used to propose novel page-ranking
methods for search engines on the World-Wide-Web [128].

Most recently, simple resistor networks were utilized to study transport efficiency
in SF [79, 80] and SW networks [87]. The work by Lépez et al. [80] revealed that
in SF networks [13, 14] anomalous transport properties can emerge, displayed by
the power-law tail of distribution of the network conductance. Now, we consider
weighted resistor networks subject to a fixed total cost (the cost of each link is
associated with its conductance). As we have shown [10,87] the relevant observables
in the EW synchronization problem and in (Ohmic) resistor networks are inherently
related through the spectrum of the network Laplacian. Consider an arbitrary
(connected) network where C;; is the conductance of the link between node i and j,
with a current / entering (leaving) the network at node s (7). Kirchhoff’s and Ohm’s
laws provide the relationships between the stationary currents and voltages [87,129]

D Gij(Vi=V)) = 1(8is — &), (3.17)
J

or equivalently,
DLV =18 — &), (3.18)
J

where I;; is the network Laplacian, as defined in the context of the EW process
(3.2). Introducing the voltages measured from the mean at each node, \7, =V,—V,
where V = (1/N) Y., Vi, one obtains [87]

V; =1(Gis — Gy). (3.19)

Here, G is the same network propagator discussed in the context of the EW process,
i.e. the inverse (3.4) of the network Laplacian (3.2) in the space orthogonal to the
zero mode. Applying (3.19) to nodes s and 7, where the voltage drop between these
nodes is Vy; =V, — V;, one immediately obtains the effective two-point resistance of
the network between nodes s and ¢ [87, 129],

|4 R
Ry = Tw = Gss + Gtt - 2Gst = 2 )L—k(llffs + W]%; - 2'~Ilksll/kt) . (320)
k=1

The spectral decomposition in (3.20) is, again, useful to employ the results of
exact numerical diagonalization. Comparing (3.4) and (3.20), one can see that
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the two-point resistance of a network between node s and ¢ is the same as
the steady-state height-difference correlation function of the EW process on the
network [87],

((hs—h;)?) = ([(hs — h) — (hy — h)]*) = Gss+ Gyt —2Gy = Ry . (3.21)

For example, using the above relationship and then employing the MF+UC
approximation,’one can immediately obtain the scaling of the typical value of the
effective two-point resistance in weighted resistance networks, between two nodes
with degrees k; and k;,

KPP

Ry ~ G5+ Gy ~ |:k:(l+ﬁ)+k;(l+ﬁ) — W (322)
st

A global observable, measuring transport efficiency, analogous to the width of
the synchronization landscape, is the average two-point resistance [80,87] (averaged
over all pairs of nodes, for a given network realization). Using (3.21) and exploiting
the basic properties of the Green’s function, one finds

R

BT S L A DL AP YNEI P YN
R i 1);"” =y =20, (3.23)

i.e., in the asymptotic large system-size limit the average system resistance of a
given network is twice the steady-state width of the EW process on the same
network. Note that the above relationships, (3.21) and (3.23), are exact and valid
for any graph.

The corresponding optimization problem for resistor networks then reads as
follows: For a fixed total cost, Ciot = Y., ; Cij = N(k) /2, where the link conductances
are weighted according to (3.8), what is the value of B which minimizes the average
system resistance R()? Based on the above relationship between the average
system resistance and the steady-state width of the EW process on the same graph
(3.23), the answer is the same as was discussed in Sect. 3.2 (3.16): f* = —1 and
Ruin = 2N/[(N — 1){k)] =~ 2/(k) in the mean-field approximation on uncorrelated
random SF networks. Numerical results for R() are also provided for “free” as
R(B) ~2(w*(B)), by virtue of the connection (3.23) [Fig. 3.2].

3In the context of resistor networks, while there are no “fields,” we carry over the terminology
“mean-field” (MF) from the associated EW synchronization problem. In terms of the network
propagator, the assumptions of the MF approximation can be summarized as Gy, < Gy for all
s#t, and Ggs ~ 1/C;.
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3.3.1 Transport Optimization for Heterogeneous Source/Target
Frequencies

As suggested by Lopez et al. [80], the effective (electrical) conductance provides a
powerful measure to characterize transport in complex networks. This observable,
strongly influenced by the number of disjoint (and possibly weighted) paths between
a source and a target, is also closely related to the max-flow problem in networks
[7,11,40,63,81]. The effective two-point conductance is the inverse of the effective
two point resistance (3.20), g¢ = 1/Ry. If each node is equally likely to be a target
or a source, a simple average over all source and target pairs provides the average
system conductance, § = Y g« /N(N —1). In real systems, however, nodes are not
created equal; their relative frequency to be a source or target can greatly vary. In
the simplest phenomenological model, we assume that nodes are sources or targets
with a frequency proportional kf (p > 0) [65, 80]. Also, as previously, we allow
the edges (conductivities) to be weighted, controlled by the parameter 3 according
to (3.8), subject to a fixed total edge cost (3.7). Then, naturally, the relevant global
measure is the appropriately weighted system conductance

2(B) = p (ksk:)P g (B) (3.24)
§ 237& (kskl )P . .
Then, we consider optimizing the allocation limited resources in the above simpli-
fied transport problem. That is, for a given source/target distribution controlled by p,
what is the value of B which minimizes the system conductance g(f8)?

In Fig. 3.3, we show numerical results for BA scale-free networks. When
the source/target profile is uniform (p = 0), the system conductance exhibits a
maximum at around 8 =~ —1 (in synch with the system resistance exhibiting a
minimum around the same 3, Fig. 3.2). For increasing positive values of p, the
optimal value of 3 shifts to the right; the location of the maximum of the g(f3)
curve for a given p quantifies the extent to which resources should be allocated
around hubs (or away from hubs) for optimal global performance.

Figure 3.3 also indicates that the conductance curves for all p intersect at
around f3 =~ —1. Indeed, our previous approximation (3.22) predicts that at this
point the effective two-point conductance gz = 1 /Ry, becomes independent of the
degree of the source and target nodes, hence the system conductance (3.24) become
p-invariant.

In Fig. 3.3, we also plot the same system conductance cure for SW networks with
the same network size and average degree for two values of p. For p = 0 (uniform
source/target profile), a SW graph (with a close-to-homogeneous degree distribu-
tion) outperforms its BA SF counterpart (with heterogeneous degree distribution)
of the same cost for every 3. For strongly heterogeneous source/target frequencies
(p = 1), the performance of a SW network is better for § < —1 and 8 > 2, while
the BA SF network performs better in the —1 < 8 < 2 interval.
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Fig. 3.3 System conductance vs. the edge weight parameter 3 for different source/target distribu-
tions controlled by p for BA networks with m = 10 ((k) ~ 2m = 20) and N = 400 (solid symbols).
For comparison, numerical results for a SW networks with the same network size and average
degree is also shown for two p values (open symbols)

3.4 Random Walks in Weighted Networks

Investigating random walks (RW) on networks and resistor networks can provide
invaluable insights into fundamental properties and characteristics of transport and
flow on networks [10, 54-56, 80, 84, 87,91, 130, 131]. In these models, with direct
application to search, routing, and information retrieval on networks [132, 133], the
connection between network structure and function becomes explicit, so one can
address the problems of designing network structures to minimize delivery times, or
for a fixed structure, allocating resources (queuing capacity) to minimize load and
delays [10,70,90].

Here, we consider weights {C;;} employed in the previous sections and define a
discrete-time random walk (RW) with the transition probabilities [84]

Pi=— 3.25
= (3.25)
(recall that C; = 3, Cy; is the weighted degree). F;; is the probability that the walker
currently at node i will hop to node j in the next step. Note that because of the
construction of the transition probabilities (being a normalized ratio), the issue of
cost constraint disappears from the problem. That is, any normalization prefactor
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associated with the conserved cost [as in (3.8)] cancels out, and the only relevant
information is C;; o< A;;(kik;)P, yielding

p,_ i _ Aullk) _ Auk; (3.26)
YOG Y Au(kik)P ZlAilk?

Then the results are invariant for any normalization/constraint, so for convenience
one can use the normalized form of the C;; coefficients as given in (3.8). As is clear
from the above RW transition probabilities, the parameter 3 controls to what extent
“hubs” should be avoided.

Having a random walker starting at an arbitrary source node s, tasked to arrive at
an arbitrary target node ¢, the above weighted RW model can be associated with
a simple local routing or search scheme [67] where packets are independently
forwarded to a nearest neighbor, chosen according to the transition probabilities
(3.26), until the target is reached. These probabilities contain only limited local
information, namely the degree of all neighboring nodes. By construction, the
associated local (stochastic) routing problem (Sect. II1.B.3) does not concern link
strength (bandwidth) limitations but rather the processing/queuing capabilities of
the nodes, so the cost constraint, associated with the links, disappears form the
problem.

3.4.1 Node Betweenness for Weighted RWs

In network-based transport or flow problems, the appropriate betweenness measure
is defined to capture the amount of traffic or information passing through a node
or a link, i.e., the load of a node or a link [15, 18, 52-54, 126, 134, 135]. Here,
our observable interest is the node betweenness B; for a given routing scheme
[67] (here, purely local and characterized by a single parameter ): the expected
number of visits to node i for a random walker originating at node s (the source)
before reaching node ¢ (the target) Ef’t, summed over all source-target pairs. For a
general RW, as was shown by Doyle and Snell [84], E,i” can be obtained using the
framework of the equivalent resistor-network problem (discussed in Sect. 3.3). More
specifically,

EM =G(Vi— V), (3.27)

while a unit current is injected (removed) at the source (target) node. Utilizing again
the network propagator and (3.19), one obtains

EY = Ci(Vi—V;) = Ci(V; = V) = Ci(Gis — Gy — Gy + Gy ). (3.28)

1
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For the node betweenness, one then obtains

1
== Zci(Gss + Gtt - 2Gts)

1
Bi=YE' =3 Y (E"+E") =5 )
SFEL

s#t 2 s#t

ZR“ = —N —1R. (3.29)
s;ét

Note that the above expression is valid for any graph and for an arbitrary weighted
RW defined by the transition probabilities (3.25). As can be seen from (3.29), the
node betweenness is proportional to the product of a local topological measure, the
weighted degree C;, and a global flow measure, the average system resistance R.
As a specific case, for the unweighted RW (f = 0) C; = Y, A;; = k;, thus, the node
betweenness is exactly proportional to the degree of the node, B; = k;N(N — 1)R/2.

Using our earlier approximations and results for uncorrelated SF graphs (3.58)
and (3.16), and the relationship between the width and the average system resistance
(3.23), for weighted RW, controlled by the exponent 3, we find

G » 2 27— 1 kHﬁ
Bi(B) = 5 N(N — )R=CiN*(w?) =N P e (3.30)
First, we consider the average “load” of the network
a1 %iCi =
B=—)B=="—(N—-1)R. 3.31
N 2Bi= (V=1 (3.31)

Similar to (3.29), the above expression establishes an exact relationship between the
average node betweenness of an arbitrary RW [given by (3.25)] and the observables
of the associated resistor network, the total edge cost and the average system
resistance. For example, for the B = 0 case, B = kN(N — 1)R/2. As noted earlier,
for calculation purposes one is free to consider the set of C;; coefficients given by
(3.8), which also leads us to the following statement:

For a RW defined by the transition probabilities (3.25), the average RW
betweenness is minimal when the average system resistance of the associated
resistor network with fixed total edge cost (and the width of the associated noisy
synchronization network) is minimal.

Utilizing again our earlier approximations and results for uncorrelated SF graphs
and the relationship between the width and the average system resistance, we find

) 21 2 (’}/_1)2
Bp)= (2C> SN hees O

The average node betweenness is minimal for § = * = —1, for all .
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3.4.2 Commute Times and Hitting Times for Weighted RWs

The hitting (or first passage) time 7y is the expected number of steps for the random
walker originating at node s to reach node ¢ for the first time. Note that using
Doyle and Snell’s result [84] for the expected number of visits (3.27), expressed in
term of the network propagator (3.28), one can immediately obtain an expression
for the expected first passage time (see Appendix 4). The commute time is the
expected number of steps for a “round trip” between nodes s and ¢, Ty + Ts.
Relationships between the commute time and the effective two-point resistance
have been explored and discussed in detail in several works [85, 130, 131]. In its
most general form, applicable to weighted networks, it was shown by Chandra et al.
[130] (see also Appendix 4) that

Tst + Tts = <ZC1> Rst- (333)
i

For the average hitting (or first passage) time, averaged over all pairs of nodes, one
then obtains

T= N=T) ZT” (1\} 1)2(1},t+fz,s)

S7él s#t
. 21 zl
=N Y Ry = = (3.34)
s;ét

Comparing (3.31) and (3.34), the average hitting time (the average travel time for
packets to reach their destinations) then can be written as T = B/(N — 1). Note
that this relationship is just a specific realization of Little’s law [136, 137], in the
context of general communication networks, stating that the average time needed
for a packet to reach its destination is proportional to the total load of the network.
Thus, the average hitting time and the average node betweenness (only differing by
a factor of N — 1) are minimized simultaneously for the same graph (as a function
of B, in our specific problem).

3.4.3 Network Congestion due to Queuing Limitations

Consider the simplest local “routing” or search problem [67,70,72] in which packets
are generated at identical rate ¢ at each node. Targets for each newly generated
packet are chosen uniformly at random from the remaining N — 1 nodes. Packets
perform independent, weighted RWs, using the transition probabilities (3.25), until
they reach their targets. Further, the queuing/processing capabilities of the nodes are
limited and are identical, e.g. (without loss of generality) each node can send out one
packet per unit time. From the above it follows that the network is congestion-free
as long as
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B;

for every node i [10, 66, 67,70, 71, 73]. As the packet creation rate ¢ (network
throughput per node) is increased, congestion emerges at a critical value ¢. when
the inequality in (3.35) is first violated. Up to that point, the simple model of
independent random walkers (discussed in the previous subsections), can self-
consistently describe the average load landscape in the network. Clearly, network
throughput is limited by the most congested node (the one with the maximum
betweenness); thus,
0 — N—-1

- 3
Bmax

(3.36)

a standard measure to characterize the efficiency of communication networks [10,
66,67,70,71,73].

To enhance or optimize network throughput (limited by the onset of congestion at
the nodes), one may scale up the processing capabilities of the nodes [70], optimize
the underlying network topology [67], or optimize routing by finding pathways
which minimize congestion [10,71-73]. The above RW routing, with the weighting
parameter 3 controlling “hub avoidance,” is an example for the latter, where the task
is to maximize global network throughput by locally directing traffic. In general,
congestion can also be strongly influenced by “bandwidth” limitations (or collisions
of packets), which are related to the edge betweenness, and not considered here.

According to (3.36), the network throughput is governed and limited by the
largest betweenness in the network. Further, the RW betweenness of the nodes is
proportional to the weighted degree, which approximately scales as a power law
with the degree in SF networks (3.30). Employing the known scaling behavior of
the degree cut-off (the scaling of the largest degree) in uncorrelated SF networks
[15, 118, 138], one can show that the maximum RW betweenness and network
throughput exhibit a minimum and a maximum, respectively, at around f* = —1
[10]. Here, we show numerical results for the RW betweenness and the network
throughput in BA SF networks. Figure 3.4 demonstrates that the RW betweenness
is strongly correlated with the degree in SF networks. In particular, except for
nodes with very small degrees, B(k;) ~ klﬁ *1(3.30). For B ~ —1, the load (RW
betweenness) becomes balanced [Fig. 3.4] and the network throughput exhibits a
maximum [Fig. 3.5]. Thus, RW weights with 8 ~ —1 correspond to the optimal hub
avoiding weighting scheme.

In a recent, more realistic network traffic simulation study of a congestion-aware
routing scheme, Danila et al. [72] found a qualitatively very similar behavior to
what we have observed here. In their network traffic simulation model, packets
are forwarded to a neighbor with a probability proportional to a power 3 of the
instantaneous queue length of the neighbor. They found that there is an optimal
value of the exponent f3, close to —1.

We also show numerical results for the network throughput for SW networks with
the same degree [Fig. 3.5a]. In particular, an optimally weighted SW network always
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Fig. 3.4 Normalized RW node betweenness on BA networks with m = 3 as a function of the
degree of the nodes for four system sizes [N = 200 (dotted), 400 (dashed), 1,000 (long-dashed),
2,000 (solid)] and for three different 3 values, § = 0.00, B = —1.00, and § = —2.00 (from top
to bottom). Data point represented by lines are averaged over all nodes with degree k. Data for
different system sizes are essentially indistinguishable. Scatter plot (dots) for the individual nodes
is also shown from ten network realizations for N = 1,000. Solid curves, corresponding to the
MF4-UC scaling B(k) ~ kB+1 (3.30), are also shown
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Fig. 3.5 Network throughput per node as a function of the weighting parameter 3 for BA networks
(solid symbols) for various system size for (a) m = 3 and for (b) m = 10 ((k) ~ 2m). Figure (a) also
shows the same observable for SW networks with the same average degree for the same system
sizes (the same respective open symbols)

outperforms its BA scale-free counterpart with the same degree. Qualitatively
similar results have been obtained in actual traffic simulation for networks with
exponential degree distribution [72].
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To summarize, the above simple weighted RW model for local routing on SF
networks indicates that the routing scheme is optimal around the value * ~ —1. At
this point, the load is balanced (3.30) and Fig. 3.4], both the average load and the
average packet delivery time are minimum, and the network throughput is maximum
[Fig. 3.5].

From a viewpoint of network vulnerability [139-143], the above results for the
weighted RW routing scheme also implies the following. Network failures are often
triggered by large load fluctuations at a specific node, then subsequently cascading
through the system [142]. Consider a “normal” operating scenario (i.e., failure is
not due to intentional/targeted attacks), where one gradually increases the packet
creation rate ¢ and the overloaded nodes (ones with the highest betweenness)
gradually removed from the network [143]. For B > B* ~ —1 (including the
unweighted RW with 8 = 0), these nodes are the ones with the highest degrees,
but uncorrelated SF networks are structurally vulnerable to removing the hubs. At
the optimal value of 8, not only the network throughput is maximal, and the average
packet delivery time is minimal, but the load is balanced: overloads are essentially
equally likely to occur at any node and the underlying SF structure is rather resilient
to random node removal [139, 140]. Thus, at the optimal value of f3, the local
weighted RW routing simultaneously optimizes network performance and makes
the network less vulnerable against inherent system failures due to congestions at
the processing nodes.

3.5 Current Flow in Weighted Networks

Current flow in resistor networks provides the simplest distributed flow model in
complex networks [92]. This flow is directed and distributed, as the current flows
from the highest potential node (source) to the lowest potential node (target). While
current can run along all (possibly weighted) paths between the source and target
nodes, more current is carried along shorter paths (with smaller resistance). Further,
hanging dead ends (i.e., nodes which does not lie on a path between the source and
target) will carry zero current. Thus, currents running through the nodes or the links,
averaged over all source—target pairs (referred to as the current-flow betweenness),
provide a good measure for information centrality, also referred to as current-flow
betweenness [126, 127].

Using the same resistor network model as in Sect. 3.3 where an edge between
nodes i and j has conductivity C;;, for a given source (s) and target (#) pair, we can
write the potential difference between nodes i and j as

A A

V,‘—VjZVZ'—VJ'ZI(GiS—Gi[—GjS—I—Gﬁ). (3.37)

Here, G;; is the propagator (or pseudo inverse, operating in the space orthogonal to
the zero mode) of the network Laplacian. If nodes i and j are connected by an edge
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in the network, and assuming unit current (/ = 1) entering and leaving the network,
then the current through this edge can be expressed as
I[; = Cij(Vi—=V}) = Cij(Gis — Gi = Gjs+ G ). (3.38)

Thus, exploiting the conservation of currents, the net current running through node
i for a given source—target pair, can be written as

Il Z I“| = ZC1]|GH ll GJY+Gjt| (339)

Finally, considering all source—target pairs (where all nodes can simultaneously be
sources and send one unit of current per unit time to a randomly chosen target), one
finds the current-flow betweenness or information centrality [126, 127],

li= _2 ' = ZZCIJ|GH Gi—Gjs+Gjl. (3.40)

j st

Despite the similarities between (3.28) and (3.38), here the summation over source
and target pairs does not yield internal cancelations and simplifications, and the
result for the current-flow betweenness is not amenable to simple analytic (mean-
field-like) approximations. Therefore, we present only numerical results for the
resulting current flow betweenness (the local load fo