

Springer Optimization and Its Applications

VOLUME 58

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393

My T. Thai • Panos M. Pardalos
Editors

Handbook of Optimization
in Complex Networks

Communication and Social Networks

123

Editors
My T. Thai
Department of Computer and Information
Science and Engineering
University of Florida
Gainesville, FL 32611
USA
mythai@cise.ufl.edu

Panos M. Pardalos
Department of Industrial and Systems
Engineering
University of Florida
303 Weil Hall
Gainesville, FL 32611
USA
pardalos@ufl.edu

Laboratory of Algorithms
and Technologies for
Networks Analysis (LATNA)
National Research University
Higher School of Economics 20
Myasnitskaya st. Moscow
101000
Russia

ISSN 1931-6828
ISBN 978-1-4614-0856-7 e-ISBN 978-1-4614-0857-4
DOI 10.1007/978-1-4614-0857-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011938465

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mythai@cise.ufl.edu
pardalos@ufl.edu
www.springer.com

To our families!

Preface

The oldest, shortest words – “yes” and “no” – are those which
require the most thought.

Pythagoras (Greek Philosopher 582 BC – 497 BC)

One common problem that spans several diverse applications is the management
and derivation of knowledge from huge amounts of data, especially in scenarios
involving human and social activities. In many practical situations, a real-life dataset
can be represented as a large network (graph) – a structure that can be easily
understood and visualized. Furthermore, special structures of graphs, when viewed
in the context of a given application, provide insights into the internal structure and
patterns of the data. Among the many examples of datasets that can be represented as
graphs are the Web graph derived from the World Wide Web, the Call graph arising
in telecommunications traffic data, and metabolic networks arising in biology. Of
particular interest are social networks, in which vertices represent people or groups
of people.

Although the concept of a network roots back to the ancient Greek philosopher
Pythagoras in his theory of cosmos (κ óσμoς), the mathematical principles of
networks were first developed in the last century. The first book in networks
appeared in 1936 (D. König: Theory of Finite and Infinite Graphs). Since then, there
has been a huge explosion of research regarding theoretical tools and algorithms in
the analysis of networks.

One of the most exciting moments came at the dawn of the new Millennium in
1999 with the discovery of new types of graphs, called complex networks. Examples
of such well-known classes of complex networks are scale-free networks and small-
world networks. These classes of networks are characterized by specific structural
features such as the power-law vertex degree distribution (scale-free networks)
and for the short path lengths, small diameter and high clustering (small-world
networks). Moreover, several other measures and features have been discovered,
and are recently the focus of active research that related to the structural properties
of complex networks. A new area of complex networks has been rapidly developing,

vii

viii Preface

spanning several disciplines such as mathematics, physics, computer science, social
science, biology, and telecommunications.

In our two volume handbook, an attempt was made to present a wide spec-
trum of recent developments with emphasis in both theory and applications on
complex networks. The first volume focuses on basic theory and properties of
complex networks, on their structure and dynamics, and optimization algorithmic
approaches. The last part of the volume concentrates on some feature applications.
The second volume, this volume, deals with the emerging issues on communication
networks and social networks. It covers material on vulnerability and robustness
of complex networks. The second part is dedicated to complex communication
networks, discussing several critical problems such as traffic activity graph analysis,
throughput optimization, and traffic optimization. The last part of this volume
focuses on recent research topics on online social networks such as security and
privacy, social aware solutions, and people rank.

We would like to take this opportunity to thank all authors, the anonymous
referees, and Springer for helping us to finalize this handbook. Our thanks also go to
our students for their help during the processing of all contributions. We hope that
this handbook will encourage research on the many intriguing open questions and
applications on complex networks that still remain.

Gainesville, FL My T. Thai
Panos M. Pardalos

Acknowledgements

M. T. Thai is partially supported by National Science Foundation (NSF) and
Department of Defense grants.

P. M. Pardalos is partially supported by LATNA Laboratory, National Research
University Higher School of Economics, RF government grant, ag. 11.G34.31.0057.

ix

Contents

Part I Vulnerability and Robustness

1 Structural Vulnerability and Robustness in Complex
Networks: Different Approaches and Relationships
Between them . 3
Regino Criado and Miguel Romance

2 Optimizing Network Topology for Cascade Resilience 37
Alexander Gutfraind

3 Optimizing Synchronization, Flow, and Robustness
in Weighted Complex Networks . 61
G. Korniss, R. Huang, S. Sreenivasan, and B.K. Szymanski

4 Joint Optimization of Resources and Routes for Minimum
Resistance: From Communication Networks to Power Grids 97
Ali Tizghadam, Alireza Bigdeli, Alberto Leon-Garcia,
and Hassan Naser

5 Clique Relaxation Models in Social Network Analysis 143
Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko

Part II Complex Communication Networks

6 Application Traffic Activity Graph Analysis . 165
Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang

7 Localized Bridging Centrality . 197
Soumendra Nanda and David Kotz

8 On Throughput Maximization Problem for UWB-Based
Sensor Networks via Reformulation–Linearization Technique 219
Yi Shi, Y. Thomas Hou, and Hanif D. Sherali

xi

xii Contents

9 A Parallel Routing Algorithm for Traffic Optimization 241
M.L. Wang, K.H. Yeung, and F. Yan

10 Internet Based Service Networks . 263
LiYing Cui, Soundar Kumara, and Réka Albert

Part III Online Social Networks and Security

11 On Detection of Community Structure in Dynamic Social
Networks . 307
Nam P. Nguyen, Ying Xuan, and My T. Thai

12 Path Formation in Human Contact Networks . 349
Nishanth Sastry and Pan Hui

13 Social Forwarding in Mobile Opportunistic Networks:
A Case of PeopleRank . 387
Abderrahmen Mtibaa, Martin May, and Mostafa Ammar

14 Discount Targeting in Online Social Networks Using
Backpressure-Based Learning . 427
Srinivas Shakkottai and Lei Ying

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 457
Yang Zhang, Wei Gao, Guohong Cao, Tom La Porta,
Bhaskar Krishnamachari, and Arun Iyengar

16 Security and Privacy in Online Social Networks:
Optimization Perspectives . 483
Ling Ding, Hongjie Du, and Weili Wu

17 A Social Network Based Patching Scheme for Worm
Containment in Cellular Networks . 505
Zhichao Zhu, Guohong Cao, Sencun Zhu, Supranamaya
Ranjan, and Antonio Nucci

Index . 535

Part I
Vulnerability and Robustness

Chapter 1
Structural Vulnerability and Robustness
in Complex Networks: Different Approaches
and Relationships Between them

Regino Criado and Miguel Romance

Abstract The concept of vulnerability in the context of complex networks
quantifies the capacity of a network to maintain its functional performance under
random damages, malicious attacks, or malfunctions of any kind. Different types
of networks and different applications suggest different approaches to the concept
of networks structural vulnerability depending on the aspect we focus upon. In
this introductory chapter, we discuss some different approaches and relationships
amongst them.

1.1 Introduction

The study of complex networks has been found to be very productive in science
and technology. Why? Because complex networks represent a natural alternative for
representing, characterizing, and modeling the structure and non-linear dynamics of
all discrete complex systems. In fact, many complex systems of the real world can be
modeled using complex networks where nodes represent the different constituents
of the system and edges depict the interactions between them. Different systems
such as transport networks (underground, airline networks, road networks), commu-
nication networks (computer servers, internet), biochemical networks (metabolic,
protein and genomic networks), social networks, infrastructure networks (electric
power grids, water supply networks), and some others (including the World Wide
Web) are known to have common characteristics in their behavior and structure
[4,7,12,17,48,55,68,91,93,94,103,113]. Because of this reason they can be studied
using non-linear mathematical models and computer modeling approaches.

R. Criado (�) • M. Romance
Universidad Rey Juan Carlos, C/Tulipan s/n, 28933-Madrid, Spain
e-mail: regino.criado@urjc.es; miguel.romance@urjc.es

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 1, © Springer Science+Business Media, LLC 2012

3

regino.criado@urjc.es
miguel.romance@urjc.es

4 R. Criado and M. Romance

The study of structural properties of the underlying network may be very
important in the understanding of the functions of a complex system as well as
to quantify the strategic importance of a node (or set of nodes) in order to preserve
the best functioning of the network as a whole. The improvements in computers
performance in the last decades granted us the ability to analyze huge complex
networks.

The concept of vulnerability in a network aims at quantifying the network’s
security and stability under the effects of all that kind of disfunctions. A series
of different approaches from several branches of knowledge have been introduced
to quantify the vulnerability of a complex network [1,6,11,13,15,17,18,27,35,41,
67, 112].

Thus, for instance, in structural engineering the term “vulnerability” is often
used to capture the susceptibility of a component or a system to some external
action [2, 67]. In this way, a structure is vulnerable if any small damage produces
disproportionately large consequences [2].

Several studies of critical infrastructure networks have focused on understanding
the security of these networks and their susceptibility to damage, failures, attacks,
disruptions, degradations or disfunctions of any type [3, 9, 28, 34, 40–42, 63, 64, 66,
74, 76–78, 89, 90, 106].

Another perspective is provided by the study of transportation systems. In this
context, the vulnerability of a transportation system can be understood as the sus-
ceptibility to disruptions giving a considerable reduction in network serviceability
as a result [13, 68]. Taylor and D’Este [68, 105] relate vulnerability to the degree of
accessibility of a given node in the network, where accessibility is expressed as the
travel cost needed to access the particular node, comparing optimal and alternative
routes or detors.

A related concept which emerges in this context is the concept of reliability. It is
important to remark, in any case, that vulnerability and reliability are two different
concepts, not exactly opposite or complementary, since a measure of reliability is
related to the concept of risk, which implies the use of a measure of the probability
that guarantees the network will function under certain circumstances [13, 68, 104,
105]. So, reliability may thus be viewed as the degree of stability that a system offers
certainly related to a measure of probability. Vulnerability means, in this sense, non-
reliability or exhibiting a low degree of operability under certain circumstances.

In classic graph theory, the term “vulnerability” is related to a lack of resistance
of the graph to the deletion of vertices and edges [11]. This point of view
matches up with the structural vulnerability’s approach, i.e., how the topology of
a network is affected by the removal of a finite number of links and/or nodes. In
the context of classic graph theory, the analysis of vulnerability is carried out by
studying different versions of the connectivity of the graph [11, 65, 94]. The node-
connectivity (edge-connectivity) is the smallest number of nodes (edges) whose
removal disconnects the network (or in case of disconnected networks it increases
the number of connected components). An alternative way to analyze connectivity
is by considering the number of node-independent paths between two vertices or, in

1 Structural Vulnerability and Robustness in Complex Networks... 5

the same way, to the minimum number of other vertices in the network that must fail
in order for those two vertices to become disconnected from one another [65,81,94].

On the other hand, complex networks analysis focuses on statistical graph
measures, and numerical models (simulation), using a statistical approach to asses
network vulnerability by measuring the fraction of the vertices or links to be
removed before a complete disconnection happens in the network in order to
study complex (large) networks. Specifically, many authors (see, for instance,
[6, 13, 15–17, 27, 28, 33, 35, 41, 42, 66, 74, 76, 78]) have studied the structural vulner-
ability (so-called error and attack tolerance) of theoretical network models and
empirical networks. So, structural vulnerability is related to the study of complex
systems structure, represented as networks of multiple interconnected interacting
parts and their susceptibility to damage by errors and attacks. This is how the term
vulnerability is mainly used throughout this chapter.

Two measurements derived from the spectral analysis of the network connectivity
may also be used to quantify the robustness and optimal connectivity of networks,
independent from the network size. These measurements are algebraic connectivity
and spectral gap. Algebraic connectivity was introduced in [53]. This measure,
which depends on both the number of nodes and their respective configurations,
indicates the level of connectivity in the graph [70, 85, 111]. So, the larger the
algebraic connectivity is, the more difficult it is to cut the network into disconnected
parts. Spectral gap is related to the so called “good expansion” properties [50].
The existence of good expansion properties (given by a sufficiently large value of
spectral gap) together with uniform degree distribution result in higher structural
sturdiness and robustness against node and link failures. On the contrary, low values
of spectral gap indicate a lack of good expansion properties usually represented by
bridges, cut vertices and network bottlenecks [50]. Both measurements, algebraic
connectivity, and spectral gap, let us give alternative ways to quantify the network’s
well-connectedness.

The concept of vulnerability is also used to characterize a lack of robustness
and resilience of a system. In everyday language, the word robustness is related to
strength and sturdiness, but it is necessary to clarify, also in this case, that these con-
cepts are not exactly the complement concepts of vulnerability. A system is robust if
it will retain its system structure (function) intact (unchanged or nearly unchanged)
when exposed to perturbations. The concept of resilience [17,18,55,91,94,100,102]
is related to the capability of the system to regain a new stable position (close to it’s
original state) after perturbations.

In practice, real and different networks are vulnerable to many (external and
internal) circumstances and events, so the task of finding a generally applicable
measure of vulnerability is not an easy task. Nevertheless, in [39] the authors
establish a new general framework, the family of (Ψ , p,q) -vulnerabilities, which
comprises most of the (structural) vulnerability definitions appeared in complex
network’s literature and allows one to calculate relationships between different
vulnerabilities. In any case, the purpose of this work is not to argue because
of particular definitions of vulnerability or robustness, but rather to review the
concept of structural vulnerability, that is, the concept of vulnerability based on
the network’s structure and topology [1, 2, 11, 76, 78, 79].

6 R. Criado and M. Romance

In general, under the perspective of structural vulnerability, two kinds of
damages can be considered on error and attack tolerance in complex networks
[6, 18, 27, 100, 102]: the removal of randomly chosen vertices (error tolerance) and
the removal of deliberately chosen vertices (attack tolerance). Attacks are realized
by removing vertices or edges in the order of decreasing importance, which can
be quantified by properties such as degree (i.e. number of connected edges) of a
node, connectivity, betweenness, etc. Depending on the concept of “importance” we
consider, we will get different definitions of vulnerability. For example, to determine
how important is a person within a social network, which is the appropriate criterion:
to have many contacts or to have less but more important contacts? A specific way to
measure the relative importance of a node within the network is by using the main
measures of centrality: degree centrality, betweenness, closeness, and eigenvector
centrality. A survey to review centrality measures as well as generalizations can be
found in [73].

For instance, Latora and Marchiori in [76] studied the consequence and preven-
tion of terrorism attacks in a given network, and suggested a method to detect critical
vertices (i.e. the most important vertices for efficient network functioning). These
authors show in [42] how the topology of a communication/transportation network
may have important roles on error and attack tolerance of the system. In both cases,
the importance of a particular vertex is given in terms of the change in network
efficiency when this vertex is removed.

Under a general point of view, different types of networks and different ap-
plications suggest different approaches to the concept of networks (structural)
vulnerability. In fact, by considering different ways of measuring the drop of perfor-
mance of a network under malicious attacks or random damages, and depending on
the nature of the problem, the pursued objective and the aspect we focus on, we can
get different approaches. Some of these approaches, which depend on the concept
of “importance” for vertices and edges we consider, are the following:

• Structural vulnerability related to the loss of connectivity (see, e.g., [46, 96]).
This approach compares the vulnerability of networks of about the same size and
structures by relating the concept of vulnerability to the loss of connectivity when
we remove some nodes and edges to potentially disconnect the network. Under
this point of view, the more homogeneous a network is (i.e., with all the nodes
and links playing a similar role) the more robust that network is. An alternative
approach, under this point of view, is given in [34–36].

• Structural vulnerability related to the variation of the network performance (see,
e.g., [41, 66, 74, 76]). This approach relates the measure of vulnerability of a
network to the fall of its efficiency when a damage occurs.

• Structural vulnerability related to betweenness [15, 16, 31, 33, 38, 96], another
centrality measures and another concepts [17, 51, 84, 91, 97, 98, 106]. This
approach attend to the strategic importance of specific links and nodes in order
to preserve the functioning and performance of the network as a whole.

• Structural vulnerability based on spectral analysis [20, 21, 25, 32, 53, 82, 83, 85].

1 Structural Vulnerability and Robustness in Complex Networks... 7

It’s not worth to say that each one of these approaches has its advantages and
disadvantages, and the most suitable approach for a specific problem may depend
on the problem under investigation and the size of the network. As it is showed in
[39] all of these approaches can be submerged in a general framework which give
us a new perspective and formalism to the concept of network’s vulnerability.

In short, this chapter is devoted to analyze different approaches to structural
vulnerability, i.e., how different classes of network topologies are affected by the
removal of a finite number of links and/or nodes.

The chapter is organized as follows: Sect. 16.2 introduces the basic concepts
and notation to comprehensively analyze different approaches to the concept of
vulnerability. Section 9.3 is devoted to establish an axiomatic support to the concept
of vulnerability. In Sect. 9.4, some approaches to the concept of vulnerability are
analyzed. Section 9.5 is devoted to introduce a common framework to several
structural vulnerabilities. Finally, in Sect. 1.6, we collect some results about the
numerical comparison between different types of network’s structural vulnerability
performed over random models and real life networks.

1.2 Basic Concepts and Notation

From a schematic point of view, a complex network is a mathematical object G =
(X ,E) composed by a set of nodes or vertices X = {1, . . . ,n} that are pairwise joined
by links or edges belonging to the set E = {�1, . . . , �m}. We consider the adjacency
matrix A(G) = (ai j) of G = (X ,E) determined by the conditions

ai j =

{
1 i f {i, j} ∈ E
0 i f {i, j} /∈ E.

Two vertices are called adjacent (or neighbors) if they are connected by an edge.
The number of neighbors of a node i, denoted by di, is its node degree. Obviously,
the degree of a node i can be easily calculated by the expression ∑n

j=1 ai j. In the
sequel, we will denote by δ (G) the minimum node degree of the nodes of G, and by
Δ(G) the maximum node degree of the nodes of G. If all the nodes of G are pairwise
adjacent, then G is called complete and a complete network of n nodes is denoted
by Kn. K3 is called a triangle. A network G = (X ,E) is called q-partite if X admits
a partition into q classes such that every edge has its ends in different classes: nodes
in the same partition class must not be adjacent. If q = 2, one usually says bipartite.
A q-partite network in which every two nodes from different partition classes are
adjacent is called complete. A star is a complete bipartite network such that one of
the classes has exactly one element. A star of n nodes is denoted by Sn.

One we have introduced the concept of complex networks as the main object
of the complex network analysis, we should give the basic parameters used in
the literature in order to analyze these objects. There are plenty of mathematical

8 R. Criado and M. Romance

functions that help to study and classify the behavior of complex network structure
(see, e.g. [17] and [54]), including metric parameters, clustering, spectral functions
and dynamical parameters among many others. In the rest of this chapter we will put
mainly the stress in some metric and spectral functions that will help to analyze the
structural vulnerability and robustness of a complex network. In this section, we will
start by introducing the basic metric properties and parameters of networks while in
Sect. 1.4.5 we will give the spectral functions used in the structural vulnerability
analysis.

The metric structure of a complex network is related to the topological distance
between nodes of the network, written in terms if walks and paths in the graph.
A walk (of length k) in G is a non-empty alternating sequence

{i1, �1, i2, �2, ..., �k−1, ik}

of nodes and edges such that �r = ir, ir + 1 for all r < k. If i1 = ik, the walk is
closed. A path between two nodes is a walk through the network nodes in which
each node is visited only once. A cycle is a closed walk that starts and ends at the
same node, in which no edge is repeated. A cycle of n nodes is denoted by Cn. C3

is a triangle. If it is possible to find a path between any pair of nodes the network
is referred to as connected; otherwise, it is called disconnected. The length of a
path is the number of edges of that path. If i, j ∈ X a geodesic between i and j
is a path of the shortest length that connects i and j. The distance di j between i
and j is the length of a geodesic between i and j. The maximum distance D(G)
between any two vertices in G is called the diameter of G. By ni j we will denote
the number of different geodesics that join i and j. If v ∈ X is a node and � ∈ E
is a link, then ni j(v) and ni j(�) will denote the number of geodesics that join i and
j passing through v and � respectively. A network H = (Y,F) is a subnetwork of
G = (X ,E) if Y � X , F � Y and the edges in F connect nodes in X . A connected
component is a maximal connected subgraph of G. Two paths connecting the same
pair of vertices in a network are said to be vertex-independent if they share none of
the same vertices other than their starting and ending vertices. A k-component is a
maximal subset of the vertices of a network such that every vertex in the subset is
connected to every other by k independent paths. For the special cases k = 2, k = 3,
the k-components are called bi-components and three-components of the network.
For any given network, the k-components are nested: every three-component is a
subset of a bi-component, and so forth.

The characteristic path length, defined as

L(G) =
1

n(n− 1)

n

∑
j=1

n

∑
k=1
k �= j

d j,k =
1

n(n− 1) ∑j �=k∈X

d j,k,

is a way of measuring the performance of a network, but because of errors and
attacks, networks can become disconnected. In fact, if the distance between two
nodes is infinite, L(G) becomes infinite. The concept of efficiency, introduced by

1 Structural Vulnerability and Robustness in Complex Networks... 9

Latora and Marchiori in [74] is a well defined quantity also for non-connected
networks. The efficiency of a network G is defined as

E(G) =
1

n(n− 1) ∑
i, j∈X ,i�= j

1
di j

.

The fall of the network’s efficiency when a node fails is one of the main approaches
to network’s structural vulnerability as we will see in Sect. 9.4.

In [54], a panoramic view of the main existing measurements of complex
networks can be found.

1.3 A Preliminary Axiomatic Approach to Structural
Vulnerability

A first attempt to establish a mathematical axiomatic support to the somehow
“intuitive” notion of vulnerability of a graph was given in [35]. The goal of the
authors was to extract some intuitive properties which should be taken into account
in every reasonable definition of vulnerability.

The invariance under isomorphisms is the first property which a vulnerability
measure must fulfil. Otherwise, it would not make any sense the fact that the
resulting value can depend on where the nodes are located, it must depend only on
the edges that are present between them. Normalization (i.e., taking values within
the unit interval [0,1]) may be another requirement: It seems reasonable that a
measure of vulnerability can take values between 0 and 1. To do so in a reasonable
way, we look at the most vulnerable graphs having values close to one while robust
graphs have values close to zero. In fact, we would like the bounds to be attained
at least asymptotically. In any case, note that we can always normalize any finite
vulnerability measure in order to get a parameter contained in the [0,1] interval.

Another requirement is the condition that vulnerability must be computable in
polynomial time (necessary for practical reasons).

Once these basic conditions are established, the key property of a vulnerability
measure is that it should never increase by adding edges. The rationale behind this
assertion is that such an addition can only reinforce the structure of the network,
because the worst situation we can face is the loss of that edge, either alone (in
which case we are left with the original network) or in combination with other edges
or nodes (which is as bad as losing those edges or nodes and having no extra edge
anyway). Moreover, a new edge should generally strictly increase the robustness
of a network although it is conceivable that, under special circumstances, adding a
particular edge can have no impact on the vulnerability of the graph (a redundant
edge, for instance).

Going into greater detail, it is natural to think that the complete graph must be the
least vulnerable network for a given network size, since it cannot be strengthened

10 R. Criado and M. Romance

in any way. Of course, this follows from the requirement that vulnerability must
not increase as edges are added, but it deserves mentioning on its own. On the
other hand, trees are relatively vulnerable, while a specific tree, the “star” network
(which has a central node to which the rest is connected), should have the greatest
vulnerability under attacks for a given size, since it exposes a clear weak spot whose
failure makes the graph totally disconnected. Now, we can establish the following
definition summarizing the above properties:

Definition 1.1. [35] Let N be the set of all possible networks with a finite number
of vertices. A vulnerability function v is a function v : N → [0,+∞) verifying the
following properties:

(i) (Coherence) v is invariant under isomorphisms of graphs.
(ii) (Soundness) v(G′)� v(G) if G is obtained from G′ by adding edges.

(iii) (Effective computation) v(G) is computable in polynomial time respect to the
number of vertices of G.

The previous list of properties may be extended depending on the specific appli-
cation, the aspect we focus on and the way of measuring the drop of performance of
a network under malicious attacks or random damages we are studying.

1.4 Some Different Approaches to the Concept of Structural
Vulnerability

As we have said in the introduction, depending on the kind of metrics and
measurements which are considered to identify the importance of different vertices
and edges inside the network we can get different approaches and definitions of
structural vulnerability.

Some of these definitions are consistent with the underlying intuitive idea of
vulnerability has been used in different contexts, but it is easy to check that in some
cases they cannot distinguish networks that should have different vulnerabilities.
For example, if we consider the cycle C4 and the complete graph K4, it is easy to
check that both graphs have vulnerability zero in the sense considered in [76], but
our intuition suggests that K4 is more robust than C4 (see Fig. 1.1).

In this section, we analyze several metrics and measurements usually employed
in network’s literature. Above all we consider the measures related to connectivity,
variation of network’s performance, variation of centrality measures such us
betweenness and spectral measurements.

Fig. 1.1 The cycle C4 and
the complete graph K4. The
intuition suggests that K4 is
more robust than C4, but some
vulnerability measures do not
distinguish between them

1 Structural Vulnerability and Robustness in Complex Networks... 11

The measures related to connectivity are based on the analysis of network
cohesion and adhesion and its responsiveness and tolerance to the removal of
nodes and links. The measures related to betweenness and other centrality measures
are based on the idea that the most important (in fact, critical) nodes and links
for efficient network functioning are those which have the highest values of the
network’s centrality measure considered. Finally, the spectral measurements relates
the topology of the network to the graph cohesion and connectivity strength through
the study of the spectrum of the network’s adjacency matrix.

1.4.1 Fall of Network Cohesion and Connectivity Type
Vulnerabilities

In this approach, it is considered the impact of nodes and edges destruction in terms
of potentially disconnecting the network.

There are two primary concepts of structural vulnerability based on connectivity
in networks [46, 53]: The node connectivity and the edge connectivity, denoted,
respectively, by κ(G) and λ (G). These two metrics are, respectively the minimal
number of nodes (vertices together with adjacent edges) and the minimal number of
edges whose removal disconnects the network. Both metrics are among basic most
important indicators of network cohesion and robustness as they represent resistance
to damage through quantifying the minimum number of failures/targeted attacks
required to make the network disconnected.

The following well known theorem [46, 59, 81], due to Menger, give us an
alternative formulation of node and edge connectivity:

Theorem 1.1. For any network G we have

(i) The node connectivity κ(G) is the smallest number of node-distinct paths
between any two nodes.

(ii) The edge connectivity λ (G) is the smallest number of edge-distinct paths
between any two nodes.

Another well known and useful theorem related to this metrics is the following
[47] (recall that δ (G) is the minimum node degree of the nodes of G):

Theorem 1.2. For any non-trivial network G the following inequalities between the
node connectivity κ(G), the edge connectivity λ (G) and the minimum node degree
δ (G) hold:

κ(G)≤ λ (G)≤ δ (G).

Dekker and Colbert in [46] define the concepts of node similarity and opti-
mal connectivity in order to consider several strategies for designing optimally
connected networks. They look at the degree of symmetry of the network as a
way to analyze the network “robustness,” in the sense that if a network has no

12 R. Criado and M. Romance

distinguished nodes, an intentional attack may not cause important damages. This
type of robustness is particularly interesting for military purposes and military
networks of for civilian networks facing possibly terroristic activity. A network G is
optimally connected if κ(G) = λ (G) = δ (G). The underlying idea is that a network
is optimally connected if it is as robust as it could be, given the value of δ (G).

An alternative approach to this kind of robustness based on this idea of symmetry
and regularity was given in [35], where the authors define two vulnerability
functions V1 and Vσ in order to quantify these features as follows:

V1(G) = exp

(
Δ(G)− δ (G)

n
+ n−m− 2+

2
n

)
,

Vσ (G) = exp

(
σ
n
+ n−m− 2+

2
n

)
, (1.1)

where σ is the standard deviation of the degree distribution, i.e.

σ =

(
1
n ∑i∈V

(
di − 2m

n

)2
)1/2

. (1.2)

Both definitions take into account the dispersion of the degree distribution and the
number of nodes and links and satisfy the properties established in Definition 1.1.
Moreover, a simple computation shows that the values of V1(G) for the complete
graph Kn, the star Sn and the cycle Cn are, respectively,

V1(Kn) = exp

{−n3 + 3n2 − 4n+ 4
2n

}
,

V1(Sn) = exp{0}= 1,

V1(Cn) = exp

{
− 2+

2
n

}
.

Note that V1(Kn) tends to zero and V1(Cn) tends to exp{−2} as n tends to infinity.
Nevertheless, V1(G) can be computed easily and gives a good estimation of the

robustness of a complex network but it only cares about the nodes having extreme
degrees, which makes the results not sharp enough. An example of this situation is
shown in Fig. 1.2, where networks G and G′ satisfies V1(G) = V1(G′) although our
intuition suggests that G looks more robust than G′.

Hence, we will use the second vulnerability function, which gives better esti-
mates for the security of a network.

It is easy to check that the values of Vσ (G) for the complete graph Kn, the star Sn

and the cycle Cn are, respectively,

1 Structural Vulnerability and Robustness in Complex Networks... 13

Fig. 1.2 G and G′ have
the same the same degree
sequence (and therefore
V1(G) =V1(G′)), but the
intuition suggests that G
looks more robust than G′

Vσ (Kn) = exp

{
0+ n−|E|− 2+

2
n

}

Vσ (Sn) = exp

⎧⎪⎨
⎪⎩

(
(n−1)(n−2)2

n

)1/2

n
+ n− (n− 1)− 2+

2
n

⎫⎪⎬
⎪⎭

Vσ (Cn) = exp

{
− 2+

2
n

}
.

Note that Vσ (Kn) tends to zero and Vσ (Cn) tends to exp{−2} as n tends to infinity.
Both measures V1(G) and Vσ (G) provide values close to one for the most

vulnerable graphs decreasing to values closer to zero for more robust graphs.
Nevertheless, it seems that this type of vulnerability reasonably compare the
vulnerability of networks possessing more or less the same size and structures, but
it fails to properly rank vulnerability when networks of different sizes and structures
are compared [114]. In any case, in [36], an extension of Vσ (G) is given for directed
networks and this measure is used to perform a comparative analysis of those
performance measures over a significant sample of subway networks worldwide.

1.4.2 Fall of Efficiency Type Vulnerabilities

The concept of efficiency in a network plays the role of measuring its ability for
the exchange of information and its response for the spread of perturbations in
diverse applications [74, 75, 77, 78]. In fact, the efficiency is an indicator of the
network performance, i.e., of its capability to have a short-path connection among
nodes. The study of efficiency of a network is not only interesting in computer and
communication networks but also in many other examples of complex networks,
since it measures how optimally the dynamics of the network takes place and how
its behavior can change due to some variations in the topology of the network. For
example, it is crucial to quantify the stability of a cellular network when it is subject
to random errors as a result of mutations, harsh extremal conditions that eliminate
metabolites or protein misfolding [71], as in trophic networks it is important to
analyze the response of the network to the removal, inclusion or mutation of species

14 R. Criado and M. Romance

in an ecosystem. In [41, 76], by using as mathematical measures the global and the
local efficiency, the authors study the effects of errors and attacks both on the global
and the local properties of the network, showing that global efficiency is a better
measure than the characteristic path length to describe the response of complex
networks to external factors.

One of the main approaches to the vulnerability of networks relates this concept
to the fall of networks efficiency when the failure of node happens [74, 77, 78].
Latora and Marchiori measure the vulnerability of a node as relative drop in
performance (efficiency) after removal of the i-th node together with all the edges
connected to it. Following this idea, the vulnerability of a network G = (X ,E) to a
failure of a single node can be defined by several aggregation techniques (see [78]),
mainly as it is shown in the following expressions:

Vmax(G) = max{E(G)−E(G\ {v}); v ∈ X} , (1.3)

or

V (G) =
1
n ∑v∈X

(
E(G)−E(G\ {v})), (1.4)

where E(G) denotes the efficiency of G [74] defined by

E(G) =
1

n(n− 1) ∑i�= j∈X

1
di j

(1.5)

and G\ {v} is the network G without node v and its incident links.
Obviously, the first one is suitable for intentional attacks and the second one for

random failures or breakdowns. To normalize these expressions, i.e., to take values
within the interval [0,1], it is enough to divide by the total efficiency E(G). So, we
can get the normalized Vmaxn(G) and the normalized Vn(G) through the expressions:

Vmaxn(G) =
Vmax(G)

E(G)
, (1.6)

and

Vn(G) =
V (G)

E(G)
. (1.7)

If D is now a class of damages (for e.g., the deactivation of a node, the disfunction
of a link, or a cascade failure of two or more nodes), and we consider a specific
damage d ∈ D, the fall of efficiency of a network G = (X ,E) due to the presence of
the damage d is given by

V (G,d) = E(G)−E(d(G)), (1.8)

where E(·) is the efficiency and d(G) is the graph obtained from G when the damage
d is applied.

1 Structural Vulnerability and Robustness in Complex Networks... 15

For example, if we consider the class of damages D of all possible single-node
failures, we can identify each damage d ∈ D with a node i ∈ X , and therefore we
denote

V (G, i) = E(G)−E(G\ {i}). (1.9)

Note that we will use a similar notation for the classes of damages of multiple-
node failures, which can be identified with a certain family of subsets of X in such a
way that, if the damage is the failure of the subset of nodes Ik = {1, . . . ,k}, then the
fall of efficiency E(G)−E(G\ Ik) will be denoted by V (G, Ik).

For a class of damages D, the vulnerability of a network G= (V,E) to the class D
can be defined by several aggregation techniques as

Vmax(G,D) = max{V (G,d); d ∈ D} (1.10)

or

V (G,D) =
1
|D| ∑d∈D

V (G,d), (1.11)

where |D| is the number of damages of the class D. Note that Vmax(G,D) measures
the maximal damage that can occur to the network G while V (G,D) is the average
fall of efficiency of G under a damage of the class D. While its meaning is evident,
such a definition of vulnerability as the fall of efficiency has several inconveniences,
as it was stated in [16].

If we now consider the damage d that eliminates a single node i0 ∈ V , the
definition of vulnerability as the fall of efficiency presents several difficulties
(a similar situation also occurs when we are dealing with multiple-node failures)
as we will see now.

The fall of efficiency E(G)−E(G\ {i0}) can be expressed as

1
N(N−1) ∑i�= j∈V

1
di j

− 1
(N−1)(N−2) ∑i, j∈V

i, j �=i0

1
d′

i j
,

where d′
i j is the distance in G \ {i0}. If we take i, j ∈ V , i, j �= i0, such that the

distance between i and j does not change when i0 fails, we have that

1
N(N−1)

1
di j

− 1
(N−1)(N−2)

1
d′

i j
=− 2

N(N−1)(N−2)
1

di j
< 0.

Hence, the failure of i0 produces a collateral effect in the fall of the efficiency even
if this damage does not affect the distance between i and j. This problem comes
from the fact that this difference of efficiency is size-dependent, and it has other
inconveniences that should be avoided to give a smart parameter that measures
the intuitive idea of vulnerability. To overcome this difficulty, a new measure of
vulnerability is proposed in [16] that is not size-dependent and does not produce

16 R. Criado and M. Romance

collateral effects. If we take the class of damages D of all possible single-node
failures, and consider the damage of deactivating the node i0 ∈V . We then consider
the square matrix E of size N − 1 whose (i, j) entry (i, j �= i0) is

Ei j =

⎧⎪⎨
⎪⎩

1
di j

− 1
d′

i j
, if i �= j

0, if i = j,

where d′
i j is the distance in G\ {i0}.

This idea leads to the definition

W (G, i0) = ∑
i�= j∈V
i, j �=i0

(
1

di j
− 1

d′
i j

)
. (1.12)

So, by using this idea the following definition to the vulnerability of the network
G = (X ,E) under a class of damages D is given in [16] as

Wmax(G,D) = max{W (G, i0); i0 ∈ D} , (1.13)

or

W (G,D) =
1
|D| ∑i0∈D

W (G, i0), (1.14)

inspired by (1.10) and (1.11), respectively.
The following result is also obtained in [16]:

Theorem 1.3. If G = (X ,E) is a complex network with n ≥ 3 nodes, then

∑
i0∈X

V (G, i0) =
1

(n−1)(n−2) ∑i0∈X

W (G, i0), (1.15)

where the damage i0 is the failure of node i0.

To finish this sub-section devoted to fall of efficiency type vulnerabilities, it is
important to remark that Goldshtein et al. [63] introduce an additional parameter
called the relative variance h. This parameter is a measure of the fluctuation level
and it is used to describe the hierarchical properties of the network, and thus its
vulnerability. In other words, they suggest that the ordered distribution of vertices
with respect to their vulnerability is related to the network hierarchy; thus, the most
vulnerable (critical) vertex occupies the highest position in the network hierarchy.

1 Structural Vulnerability and Robustness in Complex Networks... 17

1.4.3 Betweenness Centrality (Node and Link) Based
Vulnerabilities

Another approach to network’s vulnerability is based on the idea that critical nodes
and links stand between others, playing the role of an intermediary in the interac-
tions. So, the greater the number of paths in which a node or edge participates, the
higher the importance of this node or edge for the network. Thus, assuming that the
interactions follow the shortest paths between two vertices, it is possible to quantify
the importance of a node or an edge in terms of its betweenness centrality.

Node betweenness was first proposed by Freeman [56] in 1977 in the context of
social networks. This concept has been considered more recently as an important
parameter in the study of networks associated to complex systems [91]. Girvan and
Newman [60] generalize this definition to edges and introduce the edge betweenness
of an edge as the fraction of shortest paths between pairs of vertices that run along it.

Specifically, the betweenness approach to network’s vulnerability is based on the
concentration of the geodesic structure throughout the network.

The node betweenness centrality B(G) of a network G [56] is

B(G) =

(
1
n ∑v∈X

bv

)
,

where bv is the betweenness of the node v ∈ X (see, e.g., [95, 109]) given by

bv =
1

n(n− 1) ∑
i, j∈Xi�= j

ni j(v)

ni j
.

(Recall that ni j is the number of different geodesics that join i and j, and ni j(v) is
the number of geodesics that join i and j passing through v).

The maximum betweenness of the network G is

Bmax(G) = max{bv : v ∈ X}

The same parameters can be defined for edges exactly in the same way as before,
obtaining the edge-betweenness BE(G)

BE(G) =

(
1
m ∑�∈E

b�

)

where, in the same way as before, b� is the betweenness of the link � ∈ E given by

b� =
1

n(n− 1) ∑
i, j∈Xi�= j

ni j(�)

ni j

18 R. Criado and M. Romance

and the maximum edge betweenness centrality

BEmax(G) = max{b� : � ∈ E}.

In Sect. 1.4.5, some relationships between this measures and the eigenvalues of
the Laplacian matrix of G will be shown.

In [15], it was introduced the link-based multi-scale vulnerability of a complex
network G = (X ,E) as

VE,q(G) =

(
1
m ∑�∈E

bq
�

)1/q

,

for any q ∈ [1,+∞), where b� is the betweenness of the link �∈ E (see, e.g. [95,109])
given by

b� =
1

n(n− 1) ∑
li, j∈Xi�= j

ni j(�)

ni j
.

A remarkable relationship between the characteristic path length L(G) and
BE(G) = VE,1(G) (in fact, the edge betweeness of G = (X ,E)), as it is shown in
[15] is the following:

VE,1(G) =
1
|E| ∑�∈E

b� =
1
|E| ∑�∈E

(
∑

j,k∈X

n jk(�)

n jk

)

=
1
|E| ∑j,k∈X

1
n jk

(
∑
�∈E

n jk(�)

)
.

Notice that if P jk is the set of all geodesics joining j and k then one has

n jk(�) = ∑
g∈P jk

χg(�),

where χg(�) is 1 if � belongs to the geodesic g and 0 otherwise. Hence if d j,k denotes
the distance between j and k in the network then

VE,1(G) =
1
|E| ∑j,k∈X

1
n jk

(
∑
�∈E

n jk(�)

)

=
1
|E| ∑j,k∈X

1
n jk

⎛
⎝ ∑

g∈P jk

∑
�∈E

χg(�)

⎞
⎠

=
1
|E| ∑j,k∈X

1
n jk

⎛
⎝ ∑

g∈P jk

d j,k

⎞
⎠=

n(n− 1)
|E| L(G)

and therefore BE(G) =VE,1(G) measures essentially the same global properties than
the characteristic path length L(G).

1 Structural Vulnerability and Robustness in Complex Networks... 19

It is possible to overcome such a limitation by introducing (see [15]) the
coefficient

VE,p(G) =

(
1
|E| ∑�∈E

bp
�

)1/|p|
, (1.16)

for each value of p > 0. Such a coefficient gives a multi-scale measure of the
vulnerability of a graph in the following sense: if one wants to distinguish between
two networks G and G′, one first compute VE,1(G). If VE,1(G) <VE,1(G′) then G is
more robust that G′. On the other hand, if VE,1(G) =VE,1(G′), then one takes p > 1
and compute VE,p(G) until VE,p(G) �=VE,p(G′).

If, in the previous reasoning, we replace edges by nodes, one can obtain another
concept of vulnerability related to what is written above [38]. In this case, it was
considered the node-based multi-scale vulnerability of a complex network given for
any q ∈ [1,+∞) as,

VX ,q(G) =

(
1
n ∑v∈X

bq
v

)1/q

=

⎛
⎜⎝1

n ∑v∈X

⎡
⎢⎣ 1

n(n− 1) ∑i, j∈X
i�= j

ni j(v)

ni j

⎤
⎥⎦

q⎞
⎟⎠

1
q

.

In [38], it was proved that there an analytical connection between the node-based
and link-based approach of structural vulnerability as the following result shows:

Theorem 1.4 ([38]). Let G = (X ,E) be a network with n nodes and m links. If
1 < p < ∞, then

2
1
p −1
(m

n

)1/p
VE,p(G)≤ VX ,p(G),

VX ,p(G)≤ 2
1
p −1
(m

n

)1/p
(grmax)

1− 1
p VE,p(G)+

1
n
,

where grmax denotes the maximal degree of the network G.

This analytical result is sharp and in [38] it was illustrated this relationship in the
Erdős–Rénji model of random networks, as we will show in Sect. 1.6.

1.4.4 Bottleneck Type Vulnerabilities

This approach has been studied in [31, 33], and in [50]. In the first two cases the
problem of locating a leader node on a complex network was considered. This
problem is interesting due to its practical applications, such as the key transfer

20 R. Criado and M. Romance

protocol design for multi-party key establishment (see [22]), where it is stated that
it is not always adequate to consider all nodes in the network equally important,
for instance to distribute a message from a central server to a group of users
or key distribution for private communication. So, it is needed to require secure
communication between the leader (or the initiator) and all other members in
order to initially establish key. In any case, the keys (or a part) must be sent
through a communication network which holds up the flow of information. In
[50], the study of network robustness based on the removal of bottleneck nodes
and edges is considered in order to analyze the property of certain complex
networks that are simultaneously sparse and highly connected (established as “good
expansion” (GE)).

The criterium considered in [31] and [33] for choosing such a leader in a complex
network is related to spotting the node vo that minimizes the expected number of
disconnected nodes from vo under a random breakdown of a node other than vo. In
order to compute these values the concept of bottleneck was introduced. If we take
three nodes x,y,z ∈ X , we say that y is a bottleneck from x to z if every path from x
to z goes through y. Note that if we denote byΠ(x,z) the set of all bottlenecks from x
to z, then it was proved in [33] that the expected number of disconnected nodes from
v under a random breakdown of a node other than v is exactly

D(v) =
1

n− 1 ∑
v�=w∈X

(
|Π(v,w)|− 1

)
,

where |Π(vo,w)| is the number of bottleneck from vo to w and n is the number of
nodes of the complex network. It is clear that this function D(·) gives a criterium
for measuring the vulnerability, since the lower the average value of D(·) is the
higher robustness of the network we get. Therefore, the bottleneck vulnerability of
a complex network G = (X ,E) of n nodes is defined as

B(G) =
1
n ∑v∈X

D(v)

=
1

n(n− 1) ∑v∈X
∑

v�=w∈X

(
|Π(v,w)|− 1

)
. (1.17)

This method introduced in [31] shows that for a given tree with an invulnerable
node (leader) the D-measures on the different nodes help us to choose an optimal
location for the leader. Another related problem is the following: assume that we
have two possible tree networks for a given number of nodes and links, each with its
distinguished node. Which one is preferable from the point of view of robustness?
The following example where G and G′ are two tree-shaped graphs illustrates the
situation (Fig. 1.3).

Since G and G′ have the same number of nodes and their corresponding incidence
degrees coincide, there is no hope that any vulnerability function whose definition is
based on those two parameters might be of use when it comes to preferring G over

1 Structural Vulnerability and Robustness in Complex Networks... 21

Fig. 1.3 An example of
bottleneck-type vulnerability
of two trees G (on the left)
and G′ (on the right) with
a leader node. By using this
D(·) we can select the best
network from the point of
view of robustness

G′, or conversely. In contrast, the D-measures prove useful to our choice. In fact, G′
should be preferred over G as the next table shows:

DG(1) = 10, DG′
(1) = 12, DG(5) = 16, DG′

(5) = 14,
DG(2) = 11, DG′

(2) = 9, DG(6) = 16, DG′
(6) = 15,

DG(3) = 11, DG′
(3) = 17, DG(7) = 160, DG′

(7) = 15.
DG(4) = 16, DG′

(4) = 10,

Note that the algorithm above yields node 1 as the best possible leader for G and
node 2 as the best one for G′. Hence, selecting G′ and node 2 in G′ as the leader
would be the wisest option since node 2 has the lowest D1-vulnerability not only
among the nodes of G′ but among all nodes.

The concept of bottleneck and bottleneck vulnerability B(·) are very useful when
we are dealing with complex networks which are tree-shaped (see [31]), but is it
very restrictive when we consider general networks (see [33]) since the set Π(i, j)
is usually trivial. This is due to the fact that a node v is a bottleneck from i to j if
all the possible paths from i to j go through v, which is too strong. In order to avoid
this inconvenience in a general network, it is possible to consider a relative concept
which gives a qualitative perspective of the geodesic structure of the complex
network as follows [39]:

Definition 1.2. A node y is a geodesic bottleneck from node x to node z if every
geodesic from x to z necessarily goes through y. We denote by Πg(x,z) the set of all
geodesic bottlenecks from x to z.

If v ∈ X and we denote by Dg(v) the expected number of nodes that change their
distance (inside the graph) to node v when a failure at some other node occurs,
then we can prove that Dg(v) is related to the geodesic bottlenecks from v, as the
following result shows.

Proposition 1.1. If G = (X ,E) is a complex network with n nodes and v ∈ X, then

Dg(v) =
1

n− 1 ∑z∈X

(∣∣Πg(v,z)
∣∣− 1
)
.

22 R. Criado and M. Romance

Proof. First, note that if we fix v ∈ X , then the number of nodes that change their
distance to node v when a failure in a node y �= v occurs is the number of nodes z
such that y ∈Πg(v,z) and hence

Dg(v) =
1

n− 1 ∑y�=v

∣∣{z ∈ X ,y ∈Πg(v,z)}
∣∣

=
1

n− 1 ∑y�=v
∑
z∈X

χΠg(v,z)(y)

=
1

n− 1 ∑z∈X
∑
y�=v

χΠg(v,z)(y)

=
1

n− 1 ∑z∈X

(∣∣Πg(v,z)
∣∣− 1
)
.

By using this concept, the geodesic bottleneck vulnerability of a complex
network G = (X ,E) of n nodes is introduced in [39] as

Bg(G) =
1
n ∑v∈X

Dg(v) =
1

n(n− 1) ∑v∈X
∑

v�=w∈X

(
|Πg(v,w)|− 1

)
. (1.18)

It was proved in [33] that if G = (X ,E) is a tree then |Πg(r,z)|−1 is the distance
between the nodes r and z, since there is a unique simple path from r to z and every
node in that path is a bottleneck. Therefore, the last formula extends the results
obtained in [31], but it is straightforward to prove that this phenomenon does not
necessarily occur when G = (X ,E) is not a tree. Actually, given any node in G, it is
possible to construct an auxiliary tree in G (the bottleneck tree) such that measuring
distances in that tree gives us the same information about disconnected nodes in the
original network (see [33]). The key-point to show this is the fact that the nodes in
any bottleneck set Πg(x,y) are linearly ordered; in fact, every simple path from x
to y runs through the nodes in Πg(x,y) in the same order. Thanks to this ordering, it
is possible to define a direct bottleneck of a node for a given root [33]. If we have
two different nodes r and x ∈ X , the last node in Πg(r,x), excluding x itself, will
be called the direct bottleneck of x from r, and will be denoted by πr(x). Note that
given distinct r, x ∈ X , we always have r, x ∈ Πg(r,x), so this definition always
makes sense. The link that will help us establish a connection between the case of a
general network and that of a tree-shaped one is the so called bottleneck tree. Given
a node r ∈ X , the bottleneck tree of G rooted at r will be another network BTr with
the same set of nodes and exactly those edges of the form (πr(x),x), where x �= r.

For example, if we consider the graph N9, Fig. 1.4 shows the bottleneck tree
rooted at 1.

The main reason why this bottleneck tree is useful in helping locate the right
place for the leader is that measuring the distance from r to any other node is exactly

1 Structural Vulnerability and Robustness in Complex Networks... 23

Fig. 1.4 A bottleneck tree
for the graph N9 (on the left)
and its Bottleneck tree rooted
at 1 (on the right)

Fig. 1.5 All the bottleneck trees for the graph N9, rooted at 1 or 3 (on the left); rooted at 5, 7, 8,
or 9 (on the center); and rooted at 2,4, or 6 (on the right)

the same as counting how many bottlenecks there are inΠg(r,x). In other words, we
have that

D(r) =
1

n−1 ∑x∈X
dBTr

rx , (1.19)

where dBTr
rx is the distance from r to x in the bottleneck tree for G rooted at r. If

we consider a non tree-shaped network, different leaders yield different bottleneck
trees. For example, if we consider again the graph N9 we can obtain essentially tree
different bottleneck trees depending on which root we choose (see Fig. 1.5).

To end this subsection it is important to remark that there exist a strong relation-
ship between the concept of bottleneck in a network G and the bi-components and
k-components of G (see [96]).

1.4.5 Vulnerability and Algebraic Connectivity

The use of spectral methods in networks and graph theory have a long tradition. For
example, the eigenvector-like centralities were introduced in sociology to measure
the influence of each actor in a social group, taking into account the immediate
effects, the mediative effects and the global effects of the social interaction [20],
but they are also useful in other applications such as the web search engines like
Google [23].

Specifically, spectral graph theory studies the eigenvalues of matrices that
embody the graph structure. One of the main objectives in spectral graph theory
is to deduce structural characteristics of a graph from such eigenvalue spectra.

24 R. Criado and M. Romance

Particularly, these methods are used in the study of the measures of vulnerability
based on the fall of connectivity. In addition, spectral analysis has a lot of
applications too numerous to be collected here. For example, spectral analysis
allows characterizing models of real networks [80, 99], determine communities
[92], to find the edges which connect different communities and remove them in
a iterative form, breaking the network into disconnected groups of nodes [8,60] and
even visualizing networks [101].

To introduce the eigenvalue spectra of a network some additional concepts are
needed. The characteristic polynomial det(xI−A(G)) of the adjacency matrix A(G)
is called the characteristic polynomial of G. The eigenvalues of A(G) (i.e., the zeros
of det(xI −A(G)) are also called the eigenvalues of G. If μ is an eigenvalue of G,
then a non-zero vector −→v ∈ R

n satisfying A(G)−→v = μ−→v , is called an eigenvector
of A(G) for μ ; it is also called a μ-eigenvector. The relation A(G)−→v = μ−→v can
be interpreted in the following way: if −→v = (v1, ...,vn)

t , then for any vertex i we
have that μvi = ∑ j∼i v j, were the summation is over all neighbors j of i. If μ is an
eigenvalue of G, then the set {−→v ∈ R

n : A(G)−→v = μ−→v } is a linear subspace of Rn,
called the eigenspace of G for μ .

On the other hand, since A(G) is a real symmetric matrix, it is important to point
out that all the eigenvalues of G are real. Moreover, Rn has a basis −→v1 , . . . ,

−→vn of n
normal eigenvectors of A(G) [25]. The eigenvalues μ1(G) ≤ μ2(G) ≤ ·· · ≤ μn(G)
of A(G) are called the “spectrum” of G.

There is a large literature on algebraic aspects of spectral graph theory (see,
e.g.,[14, 25, 43–45, 58, 61, 69, 70, 87, 88, 107]). The eigenvalue spectra of a network
provide valuable information about the behavior of many dynamical processes
running within the network, but in this section we only consider the applications
of spectral analysis to static networks. For example, in [44] it is shown that diameter
D(G) of a network satisfies D(G) ≤ r − 1, where r is the number of distinct
eigenvalues.

The largest eigenvalue of the adjacency matrix μn(G) is called spectral radius of
G. This eigenvalue is usually denoted by ρ(G). It is important to remark that for
ρ(G), since A(G) is non-negative, there exists an eigenvector whose all entries are
non-negative.

This eigenvalue of A(G) has received the most attention in this context, since this
quantity refers to the speed of growth of walks in the graph (the number of walks of
length k is, approximately, ρ(G)k) [25]. A nice and useful property is given by the
following inequality [44]:

√
Δ(G)≤ μn(G) = ρ(G)≤ Δ(G),

where Δ(G) is the maximum node degree of G. It is important to highlight in this
subsection that the spectral radius of G plays an important role in modeling virus
propagation in computer networks. The smaller the largest eigenvalue, the larger the
robustness of a network against the spread of viruses. In fact, the epidemic threshold
in spreading viruses is proportional to 1

ρ(G)
[108]. Another example that remarks the

1 Structural Vulnerability and Robustness in Complex Networks... 25

importance of ρ(G) is given by the Bonacich centrality of G (measure based on the
eigenvectors associated to the spectral radius of G) [20, 21, 32].

The difference s(G) = ρ(G)−μn−1(G) between the spectral radius of G and the
second eigenvalue of the adjacency matrix A(G) is called the “spectral gap” of G
[50]. A small value of s(G) is usually observed through simultaneous sparseness
and low connectivity, and the presence of bottlenecks and bridges whose removal
cut the network into disconnected parts.

The spectral density of a network G is defined as

ρ(x) =
1
n

n

∑
j=1
δ (x− μ j)

where

δ (x) =
{

1 i f x = 0
0 i f x �= 0.

is the Kronecker or delta function.
The spectral density is one of most relevant tools used for studying the spectra of

large complex networks [26, 58].
The Laplacian matrix of G is an n × n matrix L(G) = D(G)− A(G), where

D(G) = diag(di) and di denotes the degree of the node i. The matrix L(G) is positive
semi-definite, i.e., −→v t ·L(G) ·−→v ≥ 0 for any vector −→v , and therefore its eigenvalues
are non-negative. The least eigenvalue is always equal to 0 (note that (1,1, ...,1)t

is an eigenvector corresponding to that eigenvalue); the second least eigenvalue is
also called the algebraic connectivity of G. The eigenvalues of L(G) are called the
Laplacian eigenvalues of G. The Laplacian eigenvalues λ1(G) = 0 ≤ λ2(G)≤ ·· · ≤
λn(G) are all real and nonnegative [85].

Many dynamical network processes (like synchronization) can be determined
by the study of their Laplacian eigenvalues [58]. Furthermore, these eigenvalues
are related to many basic topological invariants of networks such as diameter,
betweenness centrality or mean distance. For example, the betweenness centrality
B(G) is closely related with the characteristic path length L(G) as B(G) = (n− 1) ·
(L(G)− 1) [29, 58].

The second smallest Laplacian eigenvalue λ2(G) is one of the most broadly
extended measures of connectivity (see, for instance, [25, 44, 70, 72, 82, 83]).
Larger values of algebraic connectivity represent higher robustness against efforts to
disconnect the network, so the larger the algebraic connectivity is, the more difficult
it is to cut a graph into independent components. In fact, the algebraic connectivity is
only equal to zero if G is disconnected, and the multiplicity of zero as an eigenvalue
of L(G) is equal to the number of disconnected components of G. In [53] Fiedler
proved the following upper bound on the algebraic connectivity

0 ≤ λ2(G)≤ n
(n− 1)

δ (G).

26 R. Criado and M. Romance

Also, the following inequality can be found in [53]:

λ2(G)≤ κ(G).

Hence, from Theorem 1.2 we can get that δ (G) and λ (G) are also upper bounds
of λ2(G).

However, these upper bounds in terms of the node and the link connectivity
provides worst case robustness to node and link failures [53] so, as mentioned in
[19], there are infinitely many graphs for which the algebraic connectivity is not a
sharp lower bound.

In [69], the behavior of algebraic connectivity λ2(G) in the Erdös–Rénji random
graph model is studied, obtaining that the algebraic connectivity increases with the
increasing node and link connectivity in this model, showing that the larger the
value of the algebraic connectivity λ2(G), the better the graph’s robustness to node
and link failures. Extensive simulations presented in this work show that the node
and the link connectivity converge to a distribution identical to that of the minimal
nodal degree, making δ (G) a valuable estimate of the number of nodes or links
whose deflection results into disconnected random graph.

Mohar in [86] gave a bound that relates the algebraic connectivity λ2(G) to the
diameter D(G):

D(G)≥ 4
nλ2(G)

.

Some other relationships between the inverse of algebraic connectivity λ2(G) and

the ratio λn(G)
λ2(G)

with other topological parameters like the diameter D(G), the

maximum and minimum degrees Δ(G) and δ (G), the characteristic path length
L(G), the number of cycles and the betweenness centrality can be found in
[29, 30, 52, 62]. Specifically, some spectral bounds for either the node betweenness
and edge betweenness, as the following, are presented in [29]:

n√
λ2(G)(2Δ −λ2(G))

≤ BEmax ≤ Bmax + 2

and

D(G)≤ 2

(
ln(n/2)

ln BEmaxΔ+n
BEmaxΔ−n

)
.

To finish this subsection, it is important to remark, as it can be seen in [50], that
a sufficiently large value of spectral gap s(G) is considered as a necessary condition
for the so-called “good expansion” properties. Furthermore, if s(G) is low then G
has no good expansion properties that are usually related to the number and quality
of cut edges, bridges, and the existence of bottlenecks in the network [50, 70, 114].

1 Structural Vulnerability and Robustness in Complex Networks... 27

1.5 A Common Framework to Several Structural
Vulnerabilities

As we have seen in the previous section, many of the vulnerability functions
introduced in complex network’s literature are actually some kind of aggregation
of local parameters such as the variation of performance, connectivity properties
or betweenness; in [39], a general framework is introduced in order to give a new
family of vulnerability functions that extends those known functions. Depending
on the size of the network, the nature of the problem, the type of applications we
are analyzing or even the target we are pursuing, we will have to decide which
vulnerability function is best suited for that analysis. Many of these approaches
are particular cases for specific values of the parameters p and q and for a specific
function ψ of the general framework given by the concept of (ψ , p,q)-vulnerability
[39]. So, inside this general framework, we have more information to decide which
vulnerability function (the particular values of p and q, and the specific function ψ)
is best suited to analyze a specific problem. Inside this general framework, we can
obtain some bounds and relationships amongst these vulnerability functions and we
show their sharpness through some relevant simulations (see [39]). This general
framework gives us a relevant and useful tool to be applied to real-world complex
networks.

To fix ideas, if G is a complex network, Y is a subset of ordered pairs of nodes or
links, Z is a subset of nodes or links, and ψ : Y ×Z −→ [0,+∞) is a function, then
the (ψ , p,q)-vulnerability of G is defined for any p,q ∈ [0,∞], as the value

Vψ,p,q(G) =

⎡
⎣ 1
|Z| ∑z∈Z

(
1
|Y | ∑

(i, j)∈Y

ψ(i, j,z)p

)q/p
⎤
⎦

1/q

.

As we can see, Vψ,p,q(G) is an aggregation of the function ψ(i, j,z) through all
the possible values of (i, j) ∈ Y and z ∈ Z. Let us notice that many of the different
definitions for the vulnerability of a complex network are particular cases for the
(ψ , p,q) -vulnerability.

For example, if we consider the vulnerabilities of a network based on the fall of
efficiency due to a failure of a single node Vmax(G) and V (G) as it was introduced in
Sect. 1.4.2. These two definitions of vulnerabilities are particular cases of (ψ , p,q)-
vulnerabilities simply by considering

Y = {(i, j); i �= j ∈ X} ,

Z = X and taking ψ1 : Y −→ [0,1] defined for every i, j,v ∈ X (i �= j) by

ψ1(i, j,v) =

{ 1
n(n−1)

1
di j

− 1
(n−1)(n−2)

1
d′

i j
, if i �= v �= j,

1
n(n−1)

1
di j
, otherwise,

28 R. Criado and M. Romance

where d′
i j is the geodesic distance in G \ {v}. By using these settings it is easy to

check that V (G) is the (ψ1,1,1) -vulnerability of G and Vmax(G) is the (ψ1,1,∞) -
vulnerability of G. Then Vψ1,1,q(G) interpolates between V (G) and Vmax(G) in the
range q ∈ [1,∞] (see [39]).

Following similar techniques, it can be checked that if we take the functions
ψ2,ψ3 : Y −→ [0,1] given by

ψ2(i, j, �) =
ni j(�)

ni j
,

ψ3(i, j,v) =
ni j(v)

ni j
,

then VE,q(G) = Vψ2,1,q(G) and VX ,q(G) = Vψ3,1,q(G) for every q ∈ [1,+∞) (see
[39]), where VE,q(G) and VX ,q(G) are the multi-scale node-based and link-based
vulnerabilities presented in Sect. 1.4.3. Furthermore, this general framework can be
also applied to the bottleneck-type vulnerability, since if we take ψ5 : Y −→ [0,1]
defined for every i, j,v ∈ X (i �= j) as

ψ5(i, j,v) = χΠg(i, j)(v) =

{
1, if v ∈Πg(i, j),
0, otherwise,

then it was proved in [39] that Vψ5,1,1(G) = 1
n (Bg(G) + 1), where Bg(G) is the

bottleneck-type vulnerability presented in Sect. 1.4.4.
The main advantages of these unified approach to vulnerability functions are

that it allows to prove new analytical results that connects different vulnerability
measures and also it helps to introduce new vulnerability functions easily (see
[39]). By using some tools from the geometric functional analysis it can be proved
sharp analytical relationships between the different vulnerability measures, as the
following:

Theorem 1.5 ([39]). Let G be a complex network with n nodes and let 1 ≤ p,q ≤∞,
then

Vψ1,p,q(G)≤ Cn Vψ5,p,q(G),

and therefore Ṽ (G)≤CnBg(G)+Cn, where Cn is a positive constant only depending
on n.

By using similar techniques, many other sharp analytical relationships can be
stated between Vψ j ,1,1(G) for j = 1, . . . ,5 and p,q ∈ [1,+∞] that were illustrated
for the Erdös–Rénji and the Barabasi–Albert random models of complex networks
in [39].

1 Structural Vulnerability and Robustness in Complex Networks... 29

1.6 Structural Vulnerability: Some Results in Different Models

In the last years, several models of complex networks have been proposed after the
pioneering random graph of Erdös–Rénji [49] as the small-world model of Watts
and Strogatz [110] or the scale-free networks of Barabási and Albert [10]. The main
reason for this was the discovery that real networks like the Internet graph have
characteristics which are not explained by uniformly random connectivity. Instead,
networks derived from real data may involve power law degree distributions and
hubs among other structural features. Watts and Strogatz [110] proposed the first
model that conciliated the existence of a large clustering with a small diameter or
characteristic path length. They found out that many real world networks exhibit
what is called the small-world property, i.e. most vertices can be reached from the
others through a small number of edges, like in social networks.

In 1999 [5, 10], Barabási and coworkers found that the degree distribution
of some complex systems follows “power laws” instead of being Poisson-like
distribution, showing that the structure and the dynamics of that systems are strongly
affected by nodes with a great number of connections and, additionally, many of that
systems are strongly clustered with a big number of short paths between the nodes,
i.e., they obey the small world property.

A network with degree power law distribution is called scale-free. A power-law
function can be expressed as a polynomial p(x) = ax−γ , where a and γ are constants
and γ is called the power-law exponent. A power law distribution has no peak at
its average value and is a relatively slow decreasing function, but the main property
of power laws is their scale invariance, i.e., if we substitute the argument x by the
same argument multiplied by a scaling factor c we get a proportionate scaling of the
function itself, i.e., p(cx) = a(cx)−γ = c−γ p(x) ∝ p(x), which means that they are
proportional and therefore it preserves the shape of the function itself. Moreover, by
taking logarithms the following linear relation is obtained log p(x) = loga− γ logx.

The model proposed by Barabási and Albert [10] is based on two observed facts
in real networks: networks expand continuously by the addition of new vertices, and
new vertices attach preferentially to sites that are already well connected. The model
starts with a small number of nodes at step t = 0, and at every time step a new node
is connected to a number of nodes of the existing graph. The probability of the new
node to be connected to an existing node depends on the degree of that node, in the
sense that nodes with higher degree have stronger ability to grab links added to the
network.

A typical value for the degree power-law exponent in real networks is 2 ≤
γ ≤ 3. The Barabási–Albert model produces a degree power-law distribution with
exponent γ = 3, meanwhile the Watts–Strogatz and the Erdös–Rénji follow a
Poisson distribution.

Despite the fact that, as we have said, various authors have observed that
real-world networks have power-law degree distribution, the Erdös–Rénji random
graph still has many modeling applications. The modeling of wireless ad-hoc and
sensor-networks, peer-to-peer networks like Gnutella [24] and, generally, overlay-
networks, provide some well-known examples [57].

30 R. Criado and M. Romance

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−3000

−2500

−2000

−1500

−1000

−500

0

log(efficiency)

lo
g(

vu
ln

er
ab

ili
ty

)

Fig. 1.6 Vulnerability V1(·) vs efficiency in a simulation of 1,000 Erdös–Rénji random graphs
with 100 nodes and variable p, and two different estimates

In [69], the authors study the algebraic connectivity in the Erdös–Rénji model
in relation to the graphs robustness based on node connectivity κ(G) and link
connectivity λ (G). Extensive simulations show that the node and the link con-
nectivity converge to an identical distribution to that of the with the minimum
nodal degree δ (G), already at small graph sizes. This makes δ (G) a valuable
estimate of the number of nodes or links whose deletion results into a disconnected
random graph. Simulations in [69] also show that, for large n, the distribution of
the algebraic connectivity grows linearly with δ (G). The case of V1(·) and V2(·)
was considered in [37] for the Erdös–Rénji model. In this paper, a probabilistic
analytical concentration result for there vulnerability functions was proved in the
classic Erdös–Rénji and some random test was proved for 1,000 random graphs for
different values of p that strongly connects the vulnerability with the efficiency, as
Fig. 9.2 shows

The multi-scale node and link-based vulnerabilities were studied in detail in
[38]. In this paper, the authors proved a result that uses sharp inequalities related to
finite dimensional Banach spaces and a numerical analysis of this sharp result was
also presented in [38], where the relationship between the node based vulnerability
and the link-based multi-level measure in the Erdös–Rénji model suggest a deep
connection between these parameters, as Fig. 1.7 shows.

A similar study was performed in [39] for different kinds of vulnerability
measures, but including on only the Erdös–Rénji model but also the Barabasi–Albert

1 Structural Vulnerability and Robustness in Complex Networks... 31

Fig. 1.7 Values for node-based and edge-based multi-scale vulnerabilities for p = 1.1 (on the left)
and p = 10 (on the right) in a sample of 1,000 random graphs of Erdős–Rénji type with n = 25 and
linking probabilities varying from 0.4 to 0.9 with a step of 0.1

Fig. 1.8 Two comparisons between the fall of efficiency vulnerability (Vψ2) vs. the multilevel
node-based vulnerability (Vψ6) for the Erdös–Rénji model (on the left) and the Barabasi–Albert
model (on the right)

one, obtaining that the second model present a more heterogeneous behavior when
we are dealing with vulnerability function, as Fig. 1.8 shows.

Nevertheless, different approaches to address networks structural vulnerability in
the different complex networks models have been proposed by research community
[4, 15, 63, 66, 77, 97, 106]. In general, it was concluded that the more heterogeneous
a network is in terms of, e.g., degree distribution, the more robust it is to random
failures, while, at the same time, it appears more vulnerable to deliberate attacks on
highly connected nodes.

To finish this section let us observe that recently, in [84] a measure of network
vulnerability called vulnerability index is introduced. This index was calculated
for the Erdös–Rénji model, the Barabasi–Albert model of scale-free networks,
the Watts–Strogatz model of small-world networks, and for geometric random

32 R. Criado and M. Romance

networks. The model of small-world network appears to be the most robust network
among all these models. This conclusion is due obviously to the fact that this model
shows highest structural robustness when nodes or edges are removed from the
network. Some other real-world networks were compared using this vulnerability
index: two human brain networks, three urban networks, one collaboration network,
and two power grid networks. The authors found that human brain networks were
the most robust networks among all real-world networks studied in [84].

The empirical analysis of the structural vulnerability functions for some real-
life networks (in addition to the results presented in [84]), includes the analysis
of some technological networks, such as water distribution systems [113], Public
Transportation Networks (see, e.g. [36] and [38]) and airport networks in Europe
(see [15]). As an example, in [36] the authors presented a comparative analysis
of more than 60 worlds city subways, according to several structural parameters
that includes the structural vulnerability. Following with the analysis of public
transportation systems (metro), in [38]) a detailed analysis of Madrid Underground
is presented including the node-based and link-based vulnerability and a ranking of
the more vulnerable stations according to the structural vulnerability of the system.

Acknowledgements This work has been supported by the Spanish Government Project
MTM2009-13848.

References

1. Agarwal, J., Blockley, D.I. and Woodman, N.J.: Vulnerability of systems. Civil Eng. and Env.
Syst. 18, 14165 (2001)

2. Agarwal, J., Blockley, D.I. and Woodman, N.J.: Vulnerability of structural systems. Structural
Safety 25, 263286 (2003)

3. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power
grid. Phys. Rev. E 69, 025103 (2004)

4. Albert, R. and Barabási, A.L.: Statistical mechanics of complex networks.
Rev. Mod. Phys. 74, 47–97 (2002)

5. Albert, R., Jeong, H. and Barabási, A.L.: Diameter of the world-wide web. Nature 401,
130–131 (1999)

6. Albert, R., Jeong, H. and Barabási, A.L.: Error and attack tolerance of complex networks.
Nature 406, 378 (2000)

7. Amaral, L. A. N. and Ottino, J. M.: Complex networks. European Physical Journal B, 38,
147–162 (2004)

8. Arenas, A., Danon, L., Daz-Guilera, A., Gleiser, P.M. and Guimer, R.: Community analysis
in social networks. Eur. Phys. Journal B, 38 373–380 (2004)

9. Bao, Z.J., Cao, Y.J., Ding, L.J. and Wang, G.Z.: Comparison of cascading failures in small-
world and scale-free networks subject to vertex and edge attacks. Physica A, 388, 4491–4498
(2009)

10. Barabási, A.L. and Albert, R.: Emergence of scaling in random networks, Science 286,
509–512 (1999)

11. Barefoot, C.A., Entringer, R. and Swart, H.: Vulnerability in graphs a comparative survey.
J.Comb.Math.and Comb.Comput. 1, 13–22 (1987)

12. Bar-Yam, Y.: Dynamics of ComplexSystems. Addison-Wesley, 1997.

1 Structural Vulnerability and Robustness in Complex Networks... 33

13. Berdica, K.: An introduction to road vulnerability: what has been done, is done and should be
done. Transport Policy 9(2), 117–127 (2002)

14. Biggs, N.: Algebraic Graph Theory, 2nd Edition. Cambridge University Press, 1993.
15. Boccaletti, S., Buldú, J., Criado, R., Flores, J., Latora, V., Pello, J., Romance, M.: Multi-scale

Vulnerability of Complex Networks. Chaos 17, 043110 (2007)
16. Boccaletti, S., Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: Vulnerability and fall

of efficiency in complex networks: A new approach with computational advantages. Int.
J. Bifurcat. Chaos 19(2), 727–735 (2009)

17. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex Networks:
Structure and Dynamics. Phys. Rep, 424, 175 (2006)

18. Boguña, M., Serrano, M.: Generalized percolation in random directed networks. Phys. Rev. E
72, 016106 (2005)

19. Bollobás, B.: Random graphs, 2nd edn. Cambridge University Press, Cambridge, 2001
20. Bonacich, P.: Factoring and weighing approaches to status scores and clique information.

J. Math. Soc. 2, 113 (1972)
21. Bonacich, P., Lloyd, P.: Eigenvectors-like measures of centrality for asymetric relations. Soc.

Netw. 23, 191 (2001)
22. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment (Information

Security and Cryptography). Springer (2003)
23. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.

Netw. 30, 107 (1998).
24. Castro, M., Costa, M., Rowstron, A.: Should We Build Gnutella on a Structured Overlay.

ACM SIGCOMM Computer Communications Review 34(1), 131136 (2004)
25. Chung, F.R.K.: Spectral Graph Theory. Conference Board of the Mathematical Sciences,

AMS, Providence, RI, 92 (1997)
26. Chung, F.R.K., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees.

Proc. Natl. Acad. Sci. 100 6313–6318, (2003)
27. Cohen, R., Erez, K., ben-Avraham, D., Havril, S.: Resilience of the internet to random

breakdowns. Phys. Rev. Lett. 85(21), 4626 (2000)
28. Cohen, R., Erez, K., ben-Avraham, D., Havril, S.: Breakdown of the internet under intentional

attacks. Phys. Rev. Lett. 86(16), 3682 (2001)
29. Comellas, F., Gago, S.: Spectral bounds for the betweenness of a graph. Linear Algebra Appl.

423, 74–80 (2007)
30. Comellas, F., Gago, S.: Synchronizability of complex networks, J. Phys. A: Math. Theor. 40,

4483–4492 (2007)
31. Criado, R., Flores, J., González-Vasco, M.I., Pello, J.: Locating a leader node on a complex

network. J. Comput. Appl. Math. 204, 10 (2007)
32. Criado, R., Garcı́a del Amo, A., Flores, J., Romance, M.: Analytical relationships between

metric and centrality measures of a network and its dual. J. Comput. Appl. Math. 235,
1775–1780 (2011)

33. Criado, R., Flores, J., Pello, J., Romance, M.: Optimal communication schemes in a complex
network: From trees to bottleneck networks. Eur. Phys. J.-Spec. Top. 146, 145–157 (2007)

34. Criado, R., Garcı́a del Amo, A., Hernández-Bermejo, B., Romance, M.: New results on
computable efficiency and its stability for complex networks. J. Comput. Appl. Math. 192,
59 (2006)

35. Criado, R., Flores, J., Hernández-Bermejo, B., Pello, J., Romance, M.: Effective measurement
of network vulnerability under random and intentional attacks. J. Math. Model. Alg. 4,
307–316 (2005)

36. Criado, R., Hernández-Bermejo, B., Romance, M.: Efficiency, vulnerability and cost: an
overview with applications to subway networks worldwide. Int. J. Bifurcat. Chaos 17(7), 2289
(2007)

37. Criado, R., Hernández-Bermejo, B., Marco-Blanco, J. Romance, M.: Probabilistic analysis of
efficiency and vulnerability in the Erdös-Rénji model. Int.J. Comput. Math. 85(3-4), 411–419
(2008)

34 R. Criado and M. Romance

38. Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: A node based multi-scale vulnerability of
Complex Networks. Int. J. Bifurcat. Chaos 19(2), 703–710 (2009)

39. Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: (ψ, p,q)-Vulnerabilities: An unified
approach to network robustness. Chaos 19, 013133 (2009)

40. Criado, R., Pello, J., Romance, M., Vela-Pérez, M.: Improvements in performance and
security for complex networks. Int. J. of Comp. Math., 86, 2, 209–218 (2009)

41. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of Scale-Free Networks: Error
and Attack Tolerance. Physica A, 320, 622 (2003)

42. Crucitti, P., Latora V., Marchiori, M.: Error and attack tolerance of complex networks. Physica
A 340 388–394 (2004)

43. Cvetkovic, D., Doob, M., Gutman, I., Torgasev, A.: Recent Results in the Theory of Graph
Spectra, North-Holland, Amsterdam, 1988.

44. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs, Theory and Applications, 3rd edn.
Johann Ambrosius Barth, Heidelberg, 1995

45. Cvetkovic, D., Rowlinson, P.S.K. Simic: Eigenspaces of Graphs. Cambridge University Press,
Cambridge, 1997.

46. Dekker, A.H., Colbert, B.D.: Network Robustness and Graph Topology. Proc. ACSC04,
the 27th Australasian Computer Science Conference (18-22 January 2004), Dunedin, New
Zealand (2004)

47. Diestel, R.: Graph Theory. Springer-Verlag (2005)
48. Dorogovtsev, S.N., Mendes J.F.F.: Evolution of networks. Adv. Phys. 51, 10791187 (2002)
49. Erdös, P., Rénji, A.: On Random Graphs I, Publ. Math. 6, 290–297 (1959)
50. Estrada, E.: Network robustness to targeted attacks. The interplay of expansibility and degree

distribution. Eur. Phys. J.B., 52, 563–574 (2006)
51. Estrada, E., Rodrı́guez-Velázquez, J.: Subgraph centrality in complex networks. Phys. Rev. E

71, 056103 (2005)
52. Farkas, I.J., Derenyi, I., Barabási, A.-L. and Vicsek, T.: Spectra of realworld graphs: beyond

the semicircle law. Physical Review E, 64:026704 (2001)
53. Fiedler, M.: Algebraic Connectivity of Graphs. Czech. Math. J. 23, 298 (1973)
54. Fontoura Costa, L. et al: Characterization of Complex Networks: A Survey of measurements.

Advances in Physics, 56, 167–242 (2007)
55. Fontoura Costa, L. et al: Analyzing and Modeling Real-World Phenomena with Complex

Networks: A Survey of Applications. arXiv:0711.3199v3 [physics.soc-ph] (2008)
56. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41,

1977.
57. Fuhrmann, T.: On the Topology of Overlay Networks. In Proceedings of 11th IEEE

International Conference on Networks (ICON), pp. 271–276 (2003)
58. Gago, S.: Spectral Techniques in Complex Networks. Selectec Topics on Applications of

Graph Spectra, Matematicki Institut SANU, Beograd, 14(22), 63–84, 2011.
59. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press (1985)
60. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.

Natl. Acad. Sci. USA 99, 7821–7826 (2002)
61. Godsil, C.D. and Royle, G.: Algebraic Graph Theory. Springer, 2001.
62. Goh, K.-I. Kahng, B. and Kim, D.: Spectra and eigenvectors of scale-free networks. Physical

Review E, 64:051903 (2001)
63. Goldshtein, V., Koganov, G.A and Surdutovich, G.I.: Vulnerability and hierarchy of complex

networks. cond-mat/0409298 (2004)
64. Guellner, C. and Costa, C.H.: A Framework for Vulnerability Management in Complex

Networks. IEEE Ultra Modern Telecommunications, ICUMT.09, 1–8 (2009)
65. Harary, F.: Graph Theory. Perseus, Cambridge, MA. (1995)
66. Holme, P., Beom Jun Kim, Chang No Yoon, Seung Kee Han: Attack vulnerability of complex

networks. Phys. Rev. E 65, 056109 (2002)
67. Holmgren, J.: Using graph models to analyze the vulnerability of electric power networks.

Risk Anal. 26(4), (2006)

1 Structural Vulnerability and Robustness in Complex Networks... 35

68. Husdal, J.: Reliability and vulnerability versus cost and benefits. Proc. 2nd Int. Symp.
Transportation Network Reliability (INSTR). Christchurch, New Zealand, 180–186 (2004)

69. Jamakovic, A., Van Mieghem, P.: On the robustness of complex networks by using the
algebraic connectivity. NETWORKING 2008, LCNS 4892, 183–194, 2008.

70. Jamakovic, A., Uhlig, S.: On the relationship between the algebraic connectivity and graphs
robustness to node and link failures, Proc. 3rd EURO-NGI Conf. Next Generation Internet
Network, Trondheim, Norway, 96–102 (2007)

71. Jeong, H., Mason, S., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein
networks. Nature 411, 41–42 (2001)

72. Juhãz, F.: The asymptotic behaviour of Fiedlers algebraic connectivity for random graphs.
Discrete Mathematics 96, 59–63 (1991)

73. Koschitzki,D., Lehmann, K. A., Peeters, L., Richter, S., Tenfelde-Podehl, D. and Zlotowski,
O.: Centrality indices. LNCS 3418, 2005.

74. Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87,
198701 (2001)

75. Latora, V., Marchiori, M.: Economic small-world behaviour in weighted networks. Eur. Phys.
J.B. 32, 249–263 (2003)

76. Latora, V., Marchiori, M.: How the science of complex networks can help developing
strategies against terrorism. Chaos Solitons Fract. 20, 69 (2004)

77. Latora, V., Marchiori, M.:Vulnerability and protection of critical infrastructures. Phys Rev E
71, 015103 (2004)

78. Latora, V., Marchiori, M.: A measure of centrality based on the network efficiency. New
J. Phys. 9, 188 (2007)

79. Lu, Z., Yu, Y., Woodman, N.J., Blockley, D.I.: A theory of structural vulnerability. Struct.
Eng. 77(18), 17–24 (1999)

80. Mehta, M.L.: Random Matrices. Academic Press, 1991.
81. Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115, (1927)
82. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197-198, 143–176

(1994)
83. Merris, R.: A survey of graph Laplacians. Linear and Multilinear Algebra 39, 19–31 (1995)
84. Mishkovski, I., Biey, M. and Kocarev, L.: Vulnerability of Complex Networks. Commun

Nonlinear Sci Numer Simulat 16, 341–349 (2011)
85. Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics and Applications

2, 871–898 (1991)
86. Mohar, B.: Eigenvalues, diameter and mean distance in graphs. Graphs Combin. 7, 53–64

(1991)
87. Mohar, B.: Laplace eigenvalues of graphs: a survey. Discrete Mathematics 109, 198, 171–183

(1992)
88. Mohar, B., Hahn, G., Sabidussi, G.: Some applications of Laplace eigenvalues of graphs.

Graph Symmetry: Algebraic Methods and Applications, NATO ASI Ser. C 497, 225–275
(1997)

89. Motter, A.E., Lai, Y-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66,
065102(R)(2002)

90. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701
(R)(2004)

91. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45,
167–256 (2003)

92. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of
matrices. Phys. Rev. E 74, 036104 (2006)

93. Newman, M.E.J.: Networks: An Introduction. Oxford Univ. Press, Oxford, 2010
94. Newman, M.E.J., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks.

Princeton Univ. Press, Princeton, New Jersey (2006)
95. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys.

Rev. E 69, 026113 (2004)

36 R. Criado and M. Romance

96. Newman, M.E.J., Goshal, G.: Bicomponents and the robustness of networks to failure, Phys.
Rev. Lett. 100, 138701 (2008)

97. Ouyang, M. et al.: A methodological approach to analyze vulnerability of interdependent
infrastructures, Simulation Modelling Practice and Theory 17, 817–828 (2009)

98. Rodrı́guez-Velázquez, J., Estrada, E., Gutiérrez, A.: Functional centrality in graphs. Linear
and Multilinear Algebra 55(3), 293–302 (2007)

99. Rosato, V. and Tiriticco,F.: Growth mechanisms of the AS-level internet network. Euro-
physics Letters, 66(4):471–477 (2004)

100. Schwartz, N., Cohen, R., ben Avraham, D., Barabasi, A.L., Havlin, S.: Percolation in directed
scale-free networks. Phys. Rev. E 66, 015104(R) (2002)

101. Seary, A. J. and Richards, W.D.: Spectral methods for analyzing and visualizing networks: an
introduction. In Dynamic Social Network Modeling and Analysis, pages 209–228. National
Academy Press, 2003.

102. Serrano, M., Boguña, M.: Clustering in complex networks. ii. percolation properties. Phys.
Rev. E 74, 56115 (2006)

103. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
104. Taylor, M.A.P., D’Este, G.M.D.: Network Vulnerability: An Approach to Reliability Analysis

at the Level of National Strategic Transport Networks. Proc. 1st Int.Symp. on Transportation
Network Reliability, 23–44 (2003)

105. Taylor, M.A.P., D’Este, G.M.D.: Concepts of network vulnerability and applications to the
identification of critical elements of transport infrastructure. Paper presented at the 26th
Australasian Transport Research Forum, Wellington, New Zealand,1-3 October 2003

106. Trpevski, D., Smilkov, D., Mishkovski, I. and Kocarev, L.: Vulnerability of labeled networks.
Physica A 389, 23, 5538–5549(2010)

107. Van Mieghem, P.: Performance Analysis of Communications Networks and Systems.
Cambridge University Press, Cambridge, 2006.

108. Wang,Y., Chakrabarti, D., Wang, C., Faloutsos,C.: Epidemic spreading in real networks: An
eigenvalue viewpoint. 22nd Symp. Reliable Distributed Computing, Florence, Italy, Oct. 68,
2003.

109. Wasserman, S., Faust, K.: Social Networks Analysis. Cambridge Univ. Press (1994)
110. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393,

440–442 (1998)
111. Wehmuth, K. et al: On the joint dynamics of network diameter and spectral gap under node

removal. Latin-American Workshop on Dynamic Networks, Buenos Aires (2010)
112. Wu, J., Deng, H.Z., Tan, Y.J. and Zhu, D.Z.: Vulnerability of complex networks under

intentional attack with incomplete information. Journal of Physics A: Mathematical and
Theoretical, 40, 11, 2665–2671 (2007)

113. Yazdani, A., Jeffrey, P.: Complex network analysis of water distribution systems, to appear in
Chaos (2011)

114. Yazdani, A., Jeffrey, P.: A note on measurement of network vulnerability under random and
intentional attacks. e-print: http://arxiv.org/abs/1006.2791 (2010)

http://arxiv.org/abs/1006.2791

Chapter 2
Optimizing Network Topology for Cascade
Resilience

Alexander Gutfraind

Abstract Complex networks need resilience to cascades – to prevent the failure
of a single node from causing a far-reaching domino effect. Such resilience can be
achieved actively or topologically. In active resilience schemes, sensors detect the
cascade and trigger responses that protect the network against further damage. In
topological resilience schemes, the network’s connectivity alone provides resilience
by dissipating nascent cascades. Designing topologically resilient networks is a
multi-objective discrete optimization problem, where the objectives include resist-
ing cascades and efficiently performing a mission. Remarkably, terrorist networks
and other “dark networks” have already discovered how to design such networks.
While topological resilience is more robust than active resilience, it should not
always be pursued because in some situations it requires excessive loss of network
efficiency.

2.1 Introduction

Cascades are ubiquitous in complex networks and they have inspired much research
in modeling, prediction and mitigation [11, 14, 20, 35, 53, 54, 57, 60, 62, 72]. For
example, since many infectious diseases spread over contact networks a single
carrier might infect other individuals with whom she interacts. The infection
might then propagate widely through the network, leading to an epidemic. Even
if no lives are lost, recovery may require both prolonged hospitalizations and
expensive treatments. Similar cascade phenomena are found in other domains such
as power distribution systems [22, 38, 43], computer networks such as ad-hoc

A. Gutfraind
Center for Nonlinear Studies and T-5/D-6, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
e-mail: mailto:agutfraind.research@gmail.com

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 2, © Springer Science+Business Media, LLC 2012

37

mailto:agutfraind.research@gmail.com

38 A. Gutfraind

L1

F1 F2 L2

F3 F4

a b

Fig. 2.1 The French World-War II underground network Francs-tireurs et Partisans (FTP)
reconstructed by the author based on the account in [51]. Its organizational unit was the combat
group (a). In an idealized case, nor always followed, this was divided into two “teams” of three
fighters, where leader L1 was in overall command and in command of team 1. His lieutenant,
L2, led team 2 and assumed overall command if L1 was captured. The small degree of the nodes
ensured that the capture of any one node did not risk the exposure of a significant fraction of the
organization. Each “group” is in a command hierarchy (b) where three groups (bottom-level nodes)
made a “section,” three sections made a “company,” and finally three companies made a “battalion”

wireless networks [60], financial markets [8,36], and socio-economic systems [40].
A particularly interesting class are “dark” or clandestine social networks, such as
terrorist networks, guerrilla groups [65], espionage, and crime rings [5, 52]. In such
networks, if one of the nodes (i.e. individuals) is captured by law enforcement
agencies, he may betray all the nodes connected to him leading to their likely
capture.

Dark networks are therefore designed to operate in conditions of intense cascade
pressure. As such they can serve as useful prototypes of networks that are cascade-
resilient because of their connectivity structure (topology) alone. Their nodes are
often placed in well-defined cells – closely-connected subnetworks with only sparse
connections to the outside (for an example from World War II see Fig. 2.1) [51].
The advantages of cells are thought to be that the risk from the capture of any
person is mostly limited to his or her cell mates, thereby protecting the rest of
the network [29, 48]. Modern terrorist groups retain this cellular structure, but
increasingly use networks made of components with no connections between them,
thus caging cascades within each component [67, 69, 73].

2.1.1 Active vs. Topological Cascade Resilience

Networks could be endowed with cascade resilience using two complementary
approaches: “active” and “topological.” In active resilience, the network is moni-
tored for cascades, and if a cascade is detected, attempts are made to stop it while
it progresses. For example, in case of human pathogens, health authorities may
continuously monitor hospital records for contagious diseases. If the records begin

2 Optimizing Network Topology for Cascade Resilience 39

to show anomalous increases, various responses are initiated, including distribution
of medicines and alerts to the public. Similarly, in power distribution systems,
special devices monitor the network for signs of cascades, such as high currents
or phase changes. Those may indicate failures in lines, short circuits and other
phenomena that threaten to disrupt the system or damage its components. The power
system includes a variety of automated controls tasked with stopping the nascent
cascade [53], such as “relays.” Those relays can automatically shut down faulty lines
or nodes of the network so as to isolate them from the rest of the network [63, 75].

Those two examples of active cascade resilience must be contrasted with
“topological” approach to resilience where only the topology (i.e. the pattern of
connections) is used to increase cascade resilience. For example, the network could
be structured into modules, where any two modules are connected to each other
through long paths. As a result, in certain types of cascades, a failure in one module
might dissipate before it reaches any other module. When topological cascade
resilience is possible, it offers two advantages over active resilience: simplicity and
robustness. In topological resilience, the network protects itself, requiring no real-
time automated decisions or difficult-to-achieve rapid response during the cascade.

2.2 What is a Cascade-Resilient Network?

The words Network, Cascade, and Resilience have many domains of application,
so much so that no universal definition of these terms exists. Therefore, this section
briefly surveys some of the recurrent applications and meanings of those terms.
It also introduces specific definitions that are appropriate for some applications.
Later in the paper these definitions serve as an example of optimizing networks for
cascade resilience.

2.2.1 Network as an Unweighted Graph

Complex Networks is the study of real world systems using ideas of graph theory.
Specifically, here and in most other studies the network is represented using simple
unweighted graph G: a tuple (V,E) where V is a set called “nodes” or “vertices” and
E are unordered two-element subsets of V termed “edges.” Such an approach offers
simplicity and can employ the well-developed tools of graph theory. Ultimately,
though, models of networks must consider their evolving nature, fuzzy boundaries,
and multiplicities of node classes and diverse relationships.

The simplification is often unavoidable given the lack of data on networks. For
example, in dark social networks only the connectivity is known, if that. Fortunately,
the loss of information involved in representing networks as simple rather than say,
as weighted graphs, could be evaluated. It is shown in Sect. 2.3.1 that at least in two
examples where the weights are known, the error in key metrics when using simple
graphs has no systematic bias and is usually small.

40 A. Gutfraind

2.2.2 Cascades

There is a very extensive literature on both cascades and resilience. The classic
literature on cascades includes two basic models: percolation cascades and capacity
cascades. The former originate in Physics but are often applied to Epidemiology,
where they are termed “contagions” or “epidemics” (see e.g. [58]). In percolation
phenomena, nodes are assigned states which change because of the influence
of their neighbors. For example, an infected node can pass the infection to its
contacts in the network, and the infection could then be passed to more and more
nodes. Another variant of such percolations are the case where nodes change
their state only when a certain fraction of their neighbors exert influence (see
e.g. [14, 72]). Percolation phenomena are exceptionally well-studied, and in many
variants analytic expressions exist for the final extent of the cascade as a function
of the network topology (see e.g. [26, 57]). The capacity cascades are characteristic
of capacitated networks, such as power transmission systems and supply chains.
Classically, in those systems the edges are assigned capacities and thus carry flows
from supply nodes to demand nodes. Cascades occur when due to failures the flow
can no longer be carried by the edges within their capacities or when some of the
supply nodes fail [3, 21, 43, 53]. In capacity cascades the failure can jump to nodes
that are many hops away from the initial failures possibly skipping the neighbors.

2.2.3 Resilience

A vast number of studies attempted to define resilience, often in very different
ways. Perhaps the most common meaning refers to the connectivity of the network
under disruption or failures in its components. Such definitions are motivated by
applications in telecommunications where it is desired that nodes are able to find a
path to each other even if some of the components in the networks are damaged or
destroyed [1, 6, 7, 12, 15, 16, 23, 33, 34, 41].

The idea of damaging networks has attracted a lot of research in the area of
Sociology of secret societies such as terrorist networks [4, 25, 29, 32, 48, 49, 52, 74].
In fact, many secret societies are benign, including non-governmental organizations
and dissident movements operating in hostile political environments. In those
networks, if the network is penetrated by its enemy, it must be able to minimize
the damage. Economists too have recently analyzed the problem of organizational
design when the organization is being attacked [27]. Related problems have also
been studied by epidemiologists, where the question focused on immunization
strategies (e.g. [64]) but apparently not as a question of optimal network design.

Recently, resilience has became associated with the ability to quickly recover
from damage rather than to absorb it [10]. Indeed, in many applications disruptions
and failures are not rare singular events, but rather occur regularly and even

2 Optimizing Network Topology for Cascade Resilience 41

continuously. For example, there are continuous demand spikes in communication
networks [19] and voltage fluctuations in power systems.

It is to be expected that no notion of resilience would be useful universally across
different applications. Similarly, many networks experience cascades, but the details
vary. This paper will investigate cascade resilience under a particularly important
and well-characterized class of cascades known as “susceptible-infected-recovered”
(SIR). SIR are a type of cascades where any failed node leads to the failure of
each neighboring node independently with probability τ [58]. This τ represents the
network’s propensity to experience cascades, expressing both the susceptibility of
components and the environment in which the network operates. Using the SIR
model, resilience R(G) could be defined as the average fraction of the network that
does not fail in the cascade:

R(G) = 1− 1
n− 1

E[extent of a cascade] , (2.1)

where “extent of a cascade” refers to the ultimate number of new cases created by a
single failed node (the initial node does not count) and where n = |V | is the number
of nodes. For simplicity, cascades are assumed to start at all nodes with uniform
probability.

Observe that under this definition the most cascade-resilient network (R(G) = 1)
is the network with no edges. But such a network cannot carry any information
from node to node! It is not surprising that the objective of designing cascade
resilience conflicts with other features of the network. In other cascade types, such as
cascades on capacitated networks, the most cascade-resilient network might be the
network with infinite capacities, which obviously would conflict with the objective
of minimizing cost. It follows then that optimization of networks requires specifying
a notion of value or efficiency.

2.2.4 Measuring Efficiency

Notions of network efficiency attempt to quantify the value of a network, and this
problem has a long history. For example, an influential early work on communi-

cation networks suggested that a network’s value increases as O
(

n(n−1)
2

)
, because

each node can connect to n− 1 other nodes [9]. However, this measure ignores the
difficulty of connecting to other nodes (as well as, e.g. cost). Indeed, it is often
desired that the distances between the nodes are short: when nodes are separated by
short distances they can, e.g., more easily communicate and distribute resources
to each other. Therefore, many authors invoke measures based on the distances
between pairs of nodes in the network (see e.g. [44, 49, 55]).

In the following we will consider a version of distance-based efficiency, termed
“distance-attenuated reach” metric [44]. For all pairs of nodes u,v ∈ V , weigh each

42 A. Gutfraind

pair by the inverse of its internal distance (the number of edges in the shortest path
from u to v) taken to power g:

W (G) =
1

n(n− 1) ∑u∈V
∑

v∈V�{u}

1
d(u,v)g , (2.2)

Normalization by n(n−1) ensures that 0 ≤W (G)≤ 1, and only the complete graph
achieves 1. As usual, for any node v with no path to u, set 1

d(u,v)g = 0. The parameter
g, “connectivity attenuation” represents the rate at which distance decreases the
connectivity between nodes. Unless stated otherwise g = 1. A valuable property of
W (G) is that it is well-defined and non-singular even on networks that have multiple
components with no connections to each other. As will be shown, such a separation
into components provides a very powerful mechanism for cascade resilience.

2.3 Evaluating Real Networks

Significant insight into cascade resilience can be derived from comparing the
cascade resilience of networks from different domains. We will see that dark
networks like terrorist networks are more successful in the presence of certain
cascades than other complex networks. Their success stems not from cascade
resilience alone but from balancing resilience with efficiency.

To make those comparisons, define the overall “fitness,” F(G), of a network by
aggregating resilience and efficiency through a weight parameter r:

F(G) = rR(G)+ (1− r)W(G) .

The parameter r depends on the application and represents the damage from a
cascade – from light (r → 0) to catastrophic (r → 1). Note that it is possible to
include in fitness other metrics such as construction cost.

We will compare the fitnesses of several complex networks, including communi-
cation, infrastructure and scientific networks to the fitnesses of dark networks. The
class of dark networks will be represented by three networks: the 9/11, 11M and
FTP networks. The 9/11 network links the group of individuals who were directly
involved in the September 11, 2001 attacks on New York and Washington, DC [49].
Similarly the 11M network links those responsible for the March 11, 2004 train
attacks in Madrid [67]. Both 9/11 and 11M were constructed from press reports of
the attacks. Edges in those networks connect two individuals who worked with each
other in the plots [49, 67]. The FTP network is an underground group from World
War II (Fig. 2.1), whose network was constructed by the author from a historical
account [51].

Figure 2.2 shows that the dark networks attain the highest fitness values of all
networks, except for extreme levels of cascade risk (τ > 0.6) This is to be expected:

2 Optimizing Network Topology for Cascade Resilience 43

Fig. 2.2 Fitnesses of various networks at r = 0.51 and various values of τ . 11M is the network
responsible for the March 11, 2004 attacks in Madrid (70 nodes, 240 edges). 9/11 [49] is the
network responsible for the 9/11 attacks (62 nodes, 152 edges). CollabNet [59] is a scientific co-
authorship network in the area of network science (1,589 nodes, 2,742 edges). E-Mail [28] is
a university’s e-mail contact network, showing its organizational structure (1,133 nodes, 5,452
edges). FTP is the network in Fig. 2.1 (174 nodes, 300 edges). Gnutella [37,66] is a snapshot of the
peer-to-peer network (6,301 nodes, 20,777 edges). Internet AS [47] is a snapshot of the Internet
at the autonomous system level (26,475 nodes, 53,381 edges). Except for τ > 0.6 dark networks
(11M, 9/11 and FTP) attain the highest fitness

only 11M, 9/11, and the FTP networks have been designed with cascade resilience
as a significant criterion – a property that makes them useful case studies. For high
cascade risks (τ > 0.6) the CollabNet network exceeds the fitnesses of the dark
networks. CollabNet was drawn by linking scientists who co-authored a paper in
the area of network science [59]. It achieved high fitness because it is partitioned
into research groups that have no publications with outside scientists. Like some
terrorist networks, it is separated into entirely disconnected cells.

It is interesting to compare the empirical networks to each other in their efficiency
and resilience (Fig. 2.3). Note that FTP and 9/11 networks are not the most resilient,
but they strike a good balance between resilience and efficiency. The advantages
of the two networks over other networks are not marginal, implying that their
advantages in fitness are not sensitive to the choice of r. Of course, they are
optimized for particular combinations of r and τ , and will no longer be very
successful outside that range. For instance, in the range of high r and high τ
networks with multiple connected components would have higher fitness because
they are able to isolate cascades in one component.

44 A. Gutfraind

Fig. 2.3 Resilience and efficiency of the real networks. The fittest networks are not always the
most resilient

The 9/11 and the 11M networks are very successful for low values of τ (<0.2),
but then rapidly deteriorate because of a jump in the extent of cascades – the so-
called percolation transition [24]. Past this threshold, cascades start affecting a large
fraction of the network, resilience collapses and the fitness declines rapidly. The
pattern of onset of failure can be clearly seen in most of the networks. For violent
secret societies this transition means that the network might be initially hard to
defeat, but there is a point after which efforts against it start to pay off. Because
τ is representative of the security environment, the 9/11 network is found to be
relatively ill-adapted to the more stringent security regime implemented after the
attacks. Indeed, it is likely that the 9/11 attacks would have been thwarted under the
current security regime since some of the nodes were captured before the attacks,
but not interrogated in time to discover and apprehend the rest of the network [71].
In contrast, the cellular tree hierarchy of the FTP network is more suitable for an
intermediate range of cascade risks. However, the pair-wise distances in it are too
long to provide high efficiency. Therefore, its fitness is comparatively poor under
very low and very high values of τ .

2.3.1 Resilience and Efficiency of Weighted Networks

In some networks, each edge (u,v) carries a distance weight Duv > 0. The smaller
the distance, the closer the connection between u and v. We now explain in
some detail how to compute the fitness of those networks. We will introduce
generalizations of resilience and efficiency, that reduce to the original definitions
for unweighted networks when Duv = 1, while capturing the effects of weights in
the weighted networks.

The original definition of resilience was built on a percolation model where the
failure of any node leads to the failure of its neighbor with probability τ . In the

2 Optimizing Network Topology for Cascade Resilience 45

weighted network, more distant nodes should be less likely to spread the cascade.
Thus, we make the probability of cascade through (u,v) to be min(τ/Duv,1).

The efficiency was originally defined as the sum of all-pairs inverse geodesic
distances, normalized by the efficiency of the complete graph. In the weighted
network, both the distance and the normalization must be generalized. To compute
the distance d(u,v) we consider the weights on the edges D and apply Dijkstra’s
algorithm to find the shortest path. Normalization too must consider D because a
weighted graph with sufficiently small distances could outperform the complete
graph (if all the edges of the latter have Di j = 1). Therefore, we weigh the efficiency
by the harmonic mean H of the edges (E) of the graph:

W (G) =
H(G)

n(n− 1) ∑u∈V
∑

v∈V�{u}

1
d(u,v)g , (2.3)

where

H(G) =
|E|

∑(u,v)∈E

(
1

Duv

)g .

The harmonic mean ensures that for any D, the complete graph has W (G) = 1.
Having defined generalized resilience and efficiency we can evaluate the standard

approach to dark networks, which represents them as binary graphs Duv ∈ {0,1},
rather than as weighted graphs. The former approach is often taken because the
information about dark networks is limited and insufficient to estimate edge weights.

Fortunately, in two cases, the 9/11 network and the 11M network [49, 67] the
weights could be estimated. The 9/11 data labels nodes as either facilitators or
hijackers. Hijackers must train together and thus should tend to have a closer
relationship. Thus set Duv = 2,1,0.5 if the pair u,v includes zero, one or two
hijackers, respectively. The 11M network is already weighted (Zuv = 1,2,3 . . .)
based on the number of functions each contact (u,v) serves (friendship, kin, joint
training etc.). We mapped those weights to D by Duv = 2/Zuv. In both networks,
the transformation was so that the weakest ties have weight 2, giving them greater
distance than in the binary network, while the strongest ties are shorter than in the
binary network.

Figure 2.4 compares the fitnesses, resiliences and efficiencies of the weighted and
binary representations. It shows that for both networks, the fitnesses of the binary
representation lies within 0.15 of the fitness of the weighted representation and for
some τ much closer. The efficiency measures are even more close (within 0.05). The
behavior of resilience is intriguing: for the 9/11 network the weighted representation
shows more gradual decline as a function of cascade risk when compared to the
binary representation. For the 11M network, the decline is actually slightly more
sharp in the weighted representation. Structurally, the 11M network has a center
(measured by betweenness centrality) of tightly knit-nodes (very short distances),
while the 9/11 network is more sparse at its center, increasing its cascade resilience.
This effect explains the direction of the error in the binary representation. Based
on those two examples, it appears that the binary representation does not have a
systematic bias, and may even underestimate the fitness of dark networks.

46 A. Gutfraind

Fig. 2.4 Fitness, resilience, and efficiency of two dark networks (r = 0.51), comparing binary and
weighted representations. The binary representation matches the weighted representation within
0.15, and typically closer

2.4 Designing Networks

The success of dark networks must be due to structural elements of those networks,
such as cells. If identified, those elements could be used to design more resilient
networks and to upgrade existing ones. Thus, by learning how dark networks
organize, it will be possible to make networks such as communication systems,
financial networks, and others more resilient and efficient.

Those identification and design problems are our next task: both will be solved
using an approach based on discrete optimization. Let a set of graphs G be called a

2 Optimizing Network Topology for Cascade Resilience 47

a b c

d e f

Fig. 2.5 Graphs illustrating the 6 network designs. Cliques (a), Stars (b), Cycles (c), Connected
Cliques (d), Connected Stars (e), and Erdos–Renyi “ER” (f). Each design is configured by just one
or two parameters (the number of individuals per cell and/or the random connectivity). This enables
rapid solution of the optimization problem. In computations the networks were larger (n = 180
nodes)

“network design” if all the networks in it share a structural element. Since dark
networks are often based on dense cliques, we consider a design where all the
networks consist of one or multiple cliques. We consider also designs based on
star-like cells, cycle-based cells and more complex patterns (see Fig. 2.5).

In the first step, we will find the most successful network within each design.
Namely, consider an optimization problem where the decision variable is the
topology G of a simple graph taken from a design G. The objective is the fitness
F(G):

max
G∈G

F(G) . (2.4)

In the second step, we will compare the fitnesses across designs, thus identifying
the topological feature with the highest fitness (e.g. star vs. clique).

This optimization problem introduces a method for designing cascade-resilient
networks for applications such as vital infrastructure networks. To apply this to a
given application, one must make the designG the set of all feasible networks in that
domain, to the extent possible by computational constraints. For a related approach
using game-theoretic ideas see Lindelauf et al. [48, 49].

A complementary approach is to consider the multi-objective optimization
problem in which R(G) and W (G) are maximized simultaneously:

max
G∈G

{R(G),W (G)} . (2.5)

The multi-objective approach cannot find the optimal network but instead produces
the Pareto frontier of each design – the set of network configurations that cannot be

48 A. Gutfraind

improved without sacrificing either efficiency or resilience. The decision maker can
use the frontier to make the optimal trade-off between resilience and efficiency.

The fitness and the multi-objective optimization approaches could be easily
generalized to consider additional design objectives and constraints. For example,
research on social networks indicates that resilience and efficiency might be just two
of several design criteria that also include, e.g. “information-processing require-
ments,” that impose additional constraints on network designs [5]. In the original
context, “information-processing” refers to the need to have ties between individuals
involved in a particular task, when the task has high complexity. Each individual
might have a unique set of expertise into which all the other agents must tap directly.
Generalizing from sociology, such “functional constraints” might considerably limit
the flexibility in constructing resilient and efficient networks. For example, in the
context of terrorism, this constraint significantly decreased the quality of attacks
that could be successfully carried out in the post 9/11 security environment [73].
Such functional constraints could be addressed by looking at a palette of network
designs which already incorporate such constraints. In engineering applications,
such as infrastructure or communication networks, the financial cost of building
the network is another key objective.

2.4.1 Properties of the Solution

The solution to the scalarized objective problem, (2.4) has a number of useful
properties: Its fitness is continuous in the parameter r and changes predictably with
other parameters: Notice that the claim is not about the continuity of fitness of a
single configuration as a function of r but rather about the set of optimal solutions.

Proposition 2.1. f (r) = maxG∈G F(G,r) is Lipschitz-continuous for r ∈ [0,1].

Proof. The argument constructs a bound on the change in f in terms of the change
in r. Consider an optimal configuration C1 of a design for r = r1 and let its fitness
be f1 = F(C1,r1) (there is slight abuse of notation since C is a configuration, whose
fitness is the average fitness of an ensemble of graphs).
Observation 1: Consider the fitness of C1 at r = r2. Because C1 is fixed and the
metrics are bounded (0 ≤ R ≤ 1 and 0 ≤ W ≤ 1), the fitness change is bounded by
the change in r:

| f1 −F(C1,r2)| = |r1R(C1)+ (1− r1)W (C1)

−r2R(C1)− (1− r2)W (C1)|
= |(r1 − r2)R(C1)− (r1 − r2)W (C1)|
≤ |r1 − r2| .

2 Optimizing Network Topology for Cascade Resilience 49

Observation 2: Let C2 be the optimal configuration for r = r2 and let f2 = F(C2,r2).
Since C2 is optimal for r = r2 it satisfies: f2 ≥ f (C1,r2), and so − f2 ≤ −F(C1,r2).
It follows that f1 − f2 ≤ f1 −F(C1,r2). Take the absolute value of the right hand
side and apply Observation 1 to get the bound: f1 − f2 ≤ |r1 − r2|.
Observation 3: Applying the argument of Observations 1&2 but reversing the roles
of C1 and C2 implies that f2 − f1 ≤ |r1 − r2|.

Observations 2 and 3 give | f1 − f2| ≤ |r1 − r2|, proving the result.

Proposition 2.2. Let f (τ) be the highest attainable fitness within a fixed network
design G, for cascade probability τ:

f (τ) = max
G∈G

⎡
⎢⎣rR(G,τ)+ (1− r)W(G)︸ ︷︷ ︸

F(G,τ)

⎤
⎥⎦

Then f (τ) is a non-increasing function of τ .

Proof. The proof relies on the simple claim that resilience of networks does not
increase when τ increases [31]. The claim is equivalent to the result that for a
given graph G increasing τ does not decrease the expected extent of cascades. The
remainder is almost trivial: it is the claim that when the fitness of all the points on
the space (all graphs) has been made smaller or kept the same (by increasing τ), the
new maximum value would not be greater than in the old space.

The argument is easy to generalize. One could apply this method to the parameter g
of attenuation, showing that fitness is non-increasing when attenuation is increased.

2.4.2 General Approaches to Large-Scale Networks

Our study did not involve solving the general optimization problem of finding the
optimal network on n nodes in (2.4), but in some cases solving the general problem
would be required. Clearly, the multi-objective problem and the scalarized model are
hard: both are discrete optimization problems with non-linear objective functions. In
general, solutions could be obtained using derivative-free optimization methods [18]
and approximations such as [38,68]. Promising approaches also exist for finding the
Pareto front [45,50,56]. Whether those methods are fast and accurate enough would
depend on the definitions of R(G), W (G) and the set G.

In small instances, it might also be possible to use the following approach based
on bilevel stochastic integer programming. Given a specified network size (e.g.
180 nodes), one has integer decision variables Ei j ∈ {0,1} for all i �= j where
i, j ∈ V . The objective contains a stochastic term, R(G) and a deterministic term,
W (G). The former is a linear function of the expected extent of percolation cascades.
The cascade extents could be computed by generating stochastic starting points

50 A. Gutfraind

s ∼ Uniform[V] and stochastic edge connectivity values Bi j ∼ Bin(τ) for all i, j
with Ei j = 1. Given the starting point and connectivities, the cascade extent could be
found in each stochastic realization by solving the maximum flow problem: connect
all nodes to a special target node t with edges of capacity = 1. and assign capacities
|V |Ei j to all i, j pairs. On this network, the maximal s−t flow numerically equals the
set of nodes affected by the cascade that originated in s. The latter term, efficiency,
could be computed by finding the all-pairs distances in the graph defined by Ei j = 1,
by solving a linear program for every pair. It would be advantageous to use an
efficiency function that depends linearly on distances, if possible, rather than the
non-linear definition in (2.2) above.

2.4.3 Computational Implementation

To investigate the cascade-resilience of dark networks, we used computational
methods described in this section. We considered networks on n = 180 nodes
constructed through 6 simple designs, chosen both based on empirical findings (see
e.g.[2, 13]) as well as the possibility of analytic tractability in some cases. When
more data becomes available on dark networks, it will become possible to extract
additional subgraphs with statistical validity.

Three of the designs are based on identical “cells”: each cell is either (a) a
clique (a complete graph), (b) a star (with a central node called “leader”), and
(c) a cycle (nodes connected in a ring). Each of these have a single parameter,
k – the number of nodes in the cell. Recent research suggests that under certain
assumptions constructing networks from identical cells is optimal [27]. Let us also
consider n-node graphs consisting of (d) randomly-connected cliques (sometimes
termed “cavemen”), and (e) randomly-connected stars, in both cases according to
probability p. Consider also (f) the simpler and well-studied Erdos–Renyi (ER)
random graph with probability p (see figure in main text). By considering different
structures for the cells we determine which of those structures provides the best
performance.

The solution to the optimization problem is found by setting each of the parame-
ters k (and when possible p) to various values. Each design D has “configurations”
CD

1 ,C
D
2 , . . . each specifying the values of the parameters. Each configuration CD

i is
inputted to a program that generates an ensemble of 1−10 networks, whose average
performance provides an estimate of the fitness of CD

i . The number of networks
was ten for networks with parameter p because there is higher variability between
instances. The coefficient of variation (CV) in the fitness of the sample networks was
monitored to ensure that the average is a reliable measure of performance. Typically
CV was <0.2 except near phase transitions of connectivity and percolation.

Optimization was performed using grid search. Alternative methods (e.g. Nelder–
Mead) were considered but grid search was chosen despite its computational cost
because it suffers no convergence problems even in the presence of noise (present
due to variations in topology and contagion extent), and collects data useful for

2 Optimizing Network Topology for Cascade Resilience 51

sensitivity analysis and multi-objective optimization. The sampling grid was as
follows. In designs consisting of cells of size k, cell size was set to all integer values
in [1,180]. If k did not divide 180, a cell of size < k was added to ensure that the
number of nodes in the graph is 180. The number of nodes is 180 because 180 is
a highly-composite number and so it offers many networks of equally-sized cells.
In general, normalization by n in the definitions of resilience and efficiency ensures
that even when the number of nodes is tripled the effect of network size on fitness
is very small for the above designs (around ±0.05 in numerical experiments). In
designs containing a parameter of connectivity p, it was set to all multiples of 0.05
in [0,1], with some extra points added to better sample phase transitions. The grid
search algorithm results are readily used to compute the Pareto frontier using the
ε-balls method [45] (ε = 0.01).

The resilience metric is most easily computed by simulation where a node is
selected at random to be “infected,” and the simulation is run until all nodes are in
states S or R, and none is in state I. In the simplest version of the SIR cascade model,
which we adopt, each node in the graph can be in one of three states “susceptible,”
“infected” and “removed” designated S, I, and R, respectively (these names are
borrowed from Epidemiology). Time is described in uniform discrete steps. A node
in S state at time t stays in this state, unless a neighbor “infects” the node, causing it
to move to state I at time t+1. Specifically, a node in state S at time t has probability
τ of turning to I state at time t+1 for each adjacent node in state I at time t. Finally,
a node in I state at time t always becomes R at time t + 1. Once in state R, the node
remains there for all future times. It is possible to consider an alternate model where
the rate of transition I → R takes more than one time step, but adding this effect
would mostly serve to increase the probability of transmission, which is already
parametrized by τ [57, 61].

A cascade/contagion that starts at a single node would run for up to n steps,
but usually much fewer since typically τ < 1 and/or the graph is not connected. To
achieve good estimate of the average extent, the procedure was replicated 40 times,
and then continued as long as necessary to achieve an error of under ±0.5 node with
a 95% confidence interval [46].

An analytic computation of the cascade extent metric was investigated. It is
possible in theory because the contagion is a Markov process with states in the
superset of the set of nodes, 3n. Unfortunately, such a state space is impractically
large. When G is a tree, then an analytic expression exists,1 and it might be
feasible when the treewidth is small [17, 57]. However, for many graph designs
the tree approximation is not suitable. Another possible approach is to represent
the contagion approximately as a system of differential equations which can
be integrated numerically [39] . These possibilities were not pursued since the
simulation approach could be applied to all graphs, while the errors of the analytic
approaches are possibly quite large.

1Specifically, the mean contagion size is 1 +
pG′

0(1)
1−pG′

1(1)
, where G0(x) generates the degree

distribution and G1(x) =
G′

0(x)
G′

0(1)
generates the probability of arrival to a node [57].

52 A. Gutfraind

2.5 Topological Cascade Resilience in the SIR-Reach Model

In this section and the rest of the paper, we will use the SIR-Reach model (R and
W follow (2.1), (2.2)) The two models are attractive because they have real
applications: Social Networks and Epidemiology. They have also been extensively
explored by network scientists, which make them ideal as a case study in topological
cascade resilience.

2.5.1 Optimal Network

The first set of experiments compares the designs against each other under different
cascade risks (τ), Fig. 2.6. At each setting of τ , each design is optimized to its
best configuration, i.e. the best cell size, and connectivity if applicable. The curves
indicate the fitness of the optimal network in each design. Typically, at each τ the
optimal network is different from the optimal network at another τ . Observe that
within each design, as τ increases the fitness decreases – one cannot win when
fighting cascades, only delay (see [30] for the proof). In certain applications, it

Fig. 2.6 Fitness at r = 0.51 of various network designs. The Connected Stars design is the
best design at all cascade risks, τ . Cliques and Connected Cliques are competitive only for
extreme ranges of τ . The superiority of Connected Stars over the ER (random graph) confirms
the hypothesis that cells give fitness gains against cascades. The fitness of a design at each value
of τ is defined as the fitness of the optimal configuration (network ensemble) within that design

2 Optimizing Network Topology for Cascade Resilience 53

is possible to invest in reducing the cascade propagation probability, τ . Then the
curves in Fig. 2.6 could also be viewed as expressing the gain from efforts to reduce
cascades by reducing τ and also adapting the network structure. If the slope is steep,
then the gains are large.

Comparing designs to each other reveals that Connected Stars is superior to
all others in fitness (Fig. 2.6). The design also outperforms any of the empirical
networks in Fig. 2.2 in part because for each value of τ we selected the optimal
network. The simpler Stars design is almost as fit, deteriorating only at extreme
ranges of τ . The rankings of the designs are of course dependent on the parameter
values, but not strongly (see [30] for the proof). Star-like designs are successful
because the central node in a star acts as a cascade blocker while keeping the
average distance in the star short (∼2). Only for sufficiently low r, the Cliques,
Connected Cliques and Connected Stars designs are superior to the Stars design. For
such values of r efficiency is the dominant contributor to fitness. High weighting for
efficiency benefits the former designs where efficiency can be 1 by constructing a
fully connected (complete) graph. In the star design, efficiency is lower, reaching
∼1/2 (when all nodes are placed in a single large star).

It has been long conjectured that cells provide dark networks with high resilience.
Indeed, this is probably the reason why we found that dark networks have higher
fitnesses than other networks. But cells also reduce the efficiency of a network since
they isolate nodes from each other. To rigorously determine the net effect of cells,
we compare the ER design (random graphs) to the Connected Stars design. ER is
a strict subset of Connected Stars but only Connected Stars has cells. Therefore it
is notable that Connected Stars has a higher fitness than ER, often significantly so.
Indeed, cells must be the cause of higher fitness because cells are the only feature in
Connected Stars that ER lacks.

2.5.2 Properties of Optimal Networks

Many properties of the optimal networks such as resilience, efficiency and edge
density show rapid phase transitions as r is changed. For example, in the Cliques
design when r < 0.5 the optimal network has high density that maximizes efficiency,
whereas for r > 0.5 it is sparse and maximizes resilience (Fig. 2.7).

Intuition may suggest that the networks grow more sparse as cascade risk grows.
Instead, the trend was non-monotonic (Fig. 2.7). For τ 	 0 and r < 0.5 Cliques,
Connected Cliques, and Connected Stars became denser, instead of sparser, and for
them the most sparse networks were formed in the intermediate values of τ where
the optimal networks achieve both relatively high resilience and high efficiency.
At higher τ values, when r < 0.5 it pays to sacrifice resilience because fitness is
increased when efficiency is made larger through an equal or lesser sacrifice in
resilience. The Stars design does not show a transition at r = 0.5 because it is hard
to increase efficiency with this design.

54 A. Gutfraind

Fig. 2.7 Average degree in the optimal configuration of each design. At r = 0.49 (a) the
optimization prefers networks that have high efficiency while at r = 0.51 (b) the preference is
for resilience. In (b) the average degree diminishes monotonically to compensate for increasing
cascade risk. In (a) most designs have a threshold τ at which they jump back to a completely–
connected graph because structural cascade resilience becomes too expensive in terms of efficiency

2.5.3 Multi-objective Optimization

A complementary perspective on each design is found from its Pareto frontier of
resilience and efficiency (Fig. 2.8). Typically a design is dominant in a part of the
Resilience–Efficiency plane but not all of it. The Stars and Connected Stars designs
can access most of the high resilience-low efficiency region. In contrast, the Cliques
and Connected Cliques can make networks in the medium resilience-high efficiency
regions.

The sharp phase transitions discussed earlier are seen clearly: along most of
the frontiers, if we trace a point while decreasing resilience, there is a threshold
at which a small sacrifice in resilience gives a major gain of efficiency. More
generally, consider the points where the frontier is smooth. By taking two nearby
networks on the frontier one can define a rate of change of efficiency with respect
to resilience: |ΔW/ΔR|. The ratio can be used to optimize the network without
using the parameter r. When |ΔW/ΔR| 	 1 the network optimizer should choose
to reduce to the resilience of the network in order to achieve great gains in efficiency;
when |ΔW/ΔR|
 1 efficiency should be sacrificed to improve resilience.

2.6 Discussion

The analysis above considered both empirical networks and synthetic ones. The
latter were constructed to achieve structural cascade resilience and efficiency. In
contrast, in many empirical networks the structure emerges through an unplanned
growth process or results from optimization to factors such as cost rather than block-
ing cascades. Without exception the synthetic networks showed higher fitness values

2 Optimizing Network Topology for Cascade Resilience 55

Fig. 2.8 The Pareto frontiers of various network designs (τ = 0.4). The configurations of the
Connected Stars design dominate over other designs when the network must achieve high
resilience. However, designs based on cliques are dominant when high efficiency is required.
Several designs show sharp transitions where at a small sacrifice of efficiency it is possible to
achieve large increases in cascade resilience

despite the fact that they were based on very simple designs. This suggests that
network optimization can significantly improve the fitness and cascade resilience of
networks. It follows that an optimization process can be applied to design a variety
of networks and to protect existing networks from cascades.

Many empirical networks also have power-law degree distributions [58]. Unfor-
tunately, this feature significantly diminishes their cascade resilience: the resulting
high-degree hubs make the networks extremely vulnerable to cascades once τ is
slightly larger than 0 [20, 62].

In some successful synthetic networks, the density of edges increased when
the cascade risk τ was high. This phenomenon has interesting parallels in non-
violent social movements which are often organized openly rather than as secret
underground cells even under conditions of severe state repression [70]. This
openness greatly facilitates recruitment and advocacy, justifying the additional risk
to the participants, just like the sacrifice of resilience to gain higher efficiency is
justified under r < 0.5 conditions.

There are other important applications of this work, such as the design of power
distribution systems. For power networks, the definition of resilience and efficiency
will need to be changed. It would also be necessary to use much broader designs and
optimization under design constraints such as cost. Furthermore, this work could
also be adapted to domains of increasing concern such as financial credit networks,
whose structure may make them vulnerable to bankruptcies [8, 36].

56 A. Gutfraind

Acknowledgements This work has benefited from discussions with Aaron Clauset, Michael
Genkin, Vadas Gintautas, Shane Henderson, Jason Johnson, and Roy Lindelauf, and anonymous
reviewers. This paper extends the analysis originally published in [30]. Part of this work was
funded by the Department of Energy at the Los Alamos National Laboratory (LA-UR 10-08349)
under contract DE-AC52-06NA25396 through the Laboratory Directed Research and Development
program, and by the Defense Threat Reduction Agency.

References

1. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature
(London) 406, 378–381 (2001)

2. Arquilla, J., Ronfeld, D.: Networks and Netwars: The Future of Terror, Crime, and Militancy.
RAND Corporation, Santa Monica, CA (2001)

3. Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure.
Physica A: Statistical Mechanics and its Applications 380, 673–683 (2007). DOI 10.1016/j.
physa.2006.12.058

4. Baccara, M., Bar-Isaac, H.: How to organize crime. Review of Economic Studies 75(4),
1039–1067 (2008)

5. Baker, W.E., Faulkner, R.R.: The social organization of conspiracy: Illegal networks in the
heavy electrical equipment industry. American Sociological Review 58(6), 837–860 (1993)

6. Ball, M.O.: Computing Network Reliability. Operations Research 27(4), 823–838 (1979). DOI
10.1287/opre.27.4.823

7. Ball, M.O., Colbourn, C.J., Provan, J.S.: Network reliability. Tech. Rep. TR 1992-74,
University of Maryland (1992)

8. Battiston, S., Gatti, D.D., Gallegati, M., Greenwald, B., Stiglitz, J.E.: Credit chains and
bankruptcy propagation in production networks. Journal of Economic Dynamics and Control
31, 2061–2084 (2007)

9. Briscoe, B., Odlyzko, A., Tilly, B.: Metcalfe’s law is wrong. IEEE Spectrum (2006)
10. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M.,

Shinozuka, M., Tierney, K., Wallace, W.A., von Winterfeldt, D.: A framework to quantitatively
assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4), 733–752
(2003). DOI 10.1193/1.1623497

11. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures
in interdependent networks. Nature 464(7291), 1025–1028 (2010). DOI 10.1038/nature08932

12. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility:
Percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000). DOI 10.1103/
PhysRevLett.85.5468

13. Carley, K.M.: Destabilization of covert networks. Comput Math Organiz Theor 12, 51–66
(2006)

14. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. American J.
Sociology 113(3), 702–734 (2007)

15. Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the internet to random
breakdowns. Phys. Rev. Lett. 85(21), 4626–4628 (2000). DOI 10.1103/PhysRevLett.85.4626

16. Colbourn, C.J.: Network resilience. SIAM Journal on Algebraic and Discrete Methods 8(3),
404–409 (1987). DOI 10.1137/0608033

17. Colcombet, T.: On families of graphs having a decidable first order theory with reachability. In:
P. Widmayer, S. Eidenbenz, F. Triguero, R. Morales, R. Conejo, M. Hennessy (eds.) Automata,
Languages and Programming, Lecture Notes in Computer Science, vol. 2380, pp. 787–787.
Springer Berlin / Heidelberg (2002)

18. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009)

2 Optimizing Network Topology for Cascade Resilience 57

19. Cowie, J.H., Ogielski, A.T., Premore, B., Smith, E.A., Underwood, T.: Impact of the 2003
blackouts on internet communications: Preliminary report. Tech. rep., Renesys Corporation
(2004). Www.renesys.com

20. Crepey, P., Alvarez, F.P., Barthelemy, M.: Epidemic variability in complex networks. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics) 73(4), 046131 (2006). DOI 10.1103/
PhysRevE.73.046131

21. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys.
Rev. E 69(4), 045,104 (2004). DOI 10.1103/PhysRevE.69.045104

22. Dobson, I., Carreras, B.A., Lynch, V.E., Newman, D.E.: Complex systems analysis of series of
blackouts: Cascading failure, critical points, and self-organization. Chaos: An Interdisciplinary
Journal of Nonlinear Science 17(2), 026103 (2007). DOI 10.1063/1.2737822

23. Doyle, J.C., Alderson, D.L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., Willinger,
W.: The ”robust yet fragile” nature of the Internet. Proceedings of the National Academy of
Sciences 102(41), 14,497–14,502 (2005). DOI 10.1073/pnas.0501426102

24. Draief, M., Ganesh, A., Massoulié, L.: Thresholds for virus spread on networks. Annals of
Applied Probability 18(2), 359–378 (2008). DOI 10.1214/07-AAP470

25. Finbow, A.S., Hartnell, B.L.: On designing a network to defend against random attacks of
radius two. Networks 19(7), 771–792 (1989). DOI 10.1002/net.3230190704

26. Gleeson, J.P., Cahalane, D.J.: Seed size strongly affects cascades on random networks. Phys.
Rev. E 75(5), 056,103 (2007). DOI 10.1103/PhysRevE.75.056103

27. Goyal, S., Vigier, A.: Robust networks (2010). Working paper http://sticerd.lse.ac.uk/
seminarpapers/et11032010.pdf

28. Guimerà, R., Danon, L., Dı́az-Guilera, A., Giralt, F., Arenas, A.: Self-similar community
structure in a network of human interactions. Phys. Rev. E 68(6), 065,103 (2003). DOI
10.1103/PhysRevE.68.065103

29. Gunther, G., Hartnell, B.L.: On minimizing the effects of betrayals in resistance movements. In:
Proceedings of the Eighth Manitoba conference on Numerical Mathematics and Computing,
pp. 285–306 (1978)

30. Gutfraind, A.: Optimizing topological cascade resilience based on the structure of terrorist
networks. PLoS ONE 5(11), e13,448 (2010). DOI 10.1371/journal.pone.0013448

31. Gutfraind, A.: Monotonic and Non-Monotonic Epidemiological Models on Networks. http://
arxiv.org/abs/1005.3470

32. Hartnell, B.L.: The optimum defense against random subversions in a network. In: Proceed-
ings of the Tenth Southeast conference on Combinatorics Graph Theory and Computing,
pp. 494–499 (1979)

33. Holme, P.: Efficient local strategies for vaccination and network attack. Europhys. Lett. 68(6),
908–914 (2004)

34. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys.
Rev. E 65(5), 056,109 (2002). DOI 10.1103/PhysRevE.65.056109

35. Huang, W., Li, C.: Epidemic spreading in scale-free networks with community structure. J Stat
Mech P01014 (2007)

36. Iori, G., Masi, G.D., Precup, O.V., Gabbi, G., Caldarelli, G.: A network analysis of the italian
overnight money market. Journal of Economic Dynamics and Control 32, 259–278 (2008)

37. J. Leskovec, J.K., Faloutsos, C.: Graph Evolution: Densification and Shrinking Diameters.
ACM Transactions on Knowledge Discovery from Data (ACM TKDD) 1(1) (2007)

38. Johnson, J.K., Chertkov, M.: A majorization-minimization approach to design of power
transmission networks. In: Proceedings of the 49th IEEE Conference on Decision and Control
(CDC ’10) (2010)

39. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc R Soc
Lond B 266, 859–867 (1999)

40. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social
network. In: KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 137–146. ACM, New York, NY, USA (2003)

41. Klau, G.W., Weiskircher, R.: Robustness and resilience. In: Network Analysis, Lecture Notes
in Computer Science 3418, pp. 417–437. Springer-Verlag (2005)

Www.renesys.com
http://sticerd.lse.ac.uk/seminarpapers/et11032010.pdf
http://sticerd.lse.ac.uk/seminarpapers/et11032010.pdf
http://arxiv.org/abs/1005.3470
http://arxiv.org/abs/1005.3470

58 A. Gutfraind

42. Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)
43. Lai, Y.C., Motter, A., Nishikawa, T.: Attacks and cascades in complex networks. In: Complex

Networks: Lecture Notes in Physics 650, pp. 299–310. Springer-Verlag (2004)
44. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19),

198,701 (2001). DOI 10.1103/PhysRevLett.87.198701
45. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in

evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002).
DOI 10.1162/106365602760234108. PMID: 12227996

46. Law, A., Kelton, W.D.: Simulation Modeling and Analysis, 3 edn. McGraw-Hill Higher
Education, New York (1999)

47. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking
diameters and possible explanations. In: KDD, pp. 177–187 (2005)

48. Lindelauf, R.H., Borm, P.E., Hamers, H.: On Heterogeneous Covert Networks. SSRN eLibrary
(2008)

49. Lindelauf, R.H., Borm, P.E., Hamers, H.: The Influence of Secrecy on the Communication
Structure of Covert Networks. Social Networks 31(2) (2009)

50. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struc-
tural and Multidisciplinary Optimization 26, 369–395(27) (April 2004). DOI doi:10.1007/
s00158-003-0368-6

51. Miksche, F.O.: Secret Forces, 1st edn. Faber and Faber, London, UK (1950)
52. Morselli, C., Petit, K., Giguere, C.: The Efficiency/Security Trade-off in Criminal Networks.

Social Networks 29(1), 143–153 (2007)
53. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9),

098,701 (2004). DOI 10.1103/PhysRevLett.93.098701
54. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6),

065,102 (2002). DOI 10.1103/PhysRevE.66.065102
55. Motter, A.E., Nishikawa, T., Lai, Y.C.: Range-based attack on links in scale-free networks: Are

long-range links responsible for the small-world phenomenon? Phys. Rev. E 66(6), 065,103
(2002). DOI 10.1103/PhysRevE.66.065103

56. Mueller-Gritschneder, D., Graeb, H., Schlichtmann, U.: A successive approach to compute
the bounded pareto front of practical multiobjective optimization problems. SIAM Journal on
Optimization 20(2), 915–934 (2009). DOI 10.1137/080729013

57. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016,128 (2002).
DOI 10.1103/PhysRevE.66.016128

58. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2),
167–256 (2003). DOI 10.1137/S003614450342480

59. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices.
Phys. Rev. E 74(3), 036,104 (2006). DOI 10.1103/PhysRevE.74.036104

60. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses.
Phys. Rev. E 66(3), 035,101 (2002). DOI 10.1103/PhysRevE.66.035101

61. Noël, P.A., Davoudi, B., Brunham, R.C., Dubé, L.J., Pourbohloul, B.: Time evolution of
epidemic disease on finite and infinite networks. Phys. Rev. E 79(2), 026,101 (2009).
DOI 10.1103/PhysRevE.79.026101

62. Pastor-Sarorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys Rev Lett
86(14), 3200–3203 (2001)

63. Phadke, A., Thorp, J.: Expose hidden failures to prevent cascading outages [in power systems].
Computer Applications in Power, IEEE 9(3), 20 –23 (1996). DOI 10.1109/67.526849

64. Pourbohloul, B., Meyers, L., Skowronski, D., Krajden, M., Patrick, D., Brunham, R.: Modeling
control strategies of respiratory pathogens. Emerg. Infect. Dis. 11(8), 1246–56 (2005)

65. Raab, J., Milward, H.B.: Dark Networks as Problems. J Public Adm Res Theory 13(4),
413–439 (2003). DOI 10.1093/jopart/mug029

66. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems and Implications for System Design. IEEE Internet Com-
puting Journal 6(1) (2002)

2 Optimizing Network Topology for Cascade Resilience 59

67. Rodriguez, J.: The march 11th terrorist network: In its weakness lies its strength (2004).
Working Papers EPP-LEA, University of Barcelona

68. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph organization.
SIAM Multiscale Modeling and Simulations (under revision) (2010). Preprint ANL/MCS-
P1696-1009

69. Sageman, M.: Leaderless Jihad - Terror Networks in the Twenty-First Century. University of
Pennsylvania Press, Philadelphia, PA (2008)

70. Sharp, G.: From dictatorship to democracy: A conceptual framework for liberation. The Albert
Einstein Institution, East Boston, Massachusetts (2003)

71. U.S. Government: The 9/11 Commission Report. US Government Printing Office, Washington,
DC (2007)

72. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of the
National Academy of Sciences of the United States of America 99(9), 5766–5771 (2002).
DOI 10.1073/pnas.082090499

73. Woo, G.: Mathematical Methods in Counterterrorism, chap. Intelligence Constraints on
Terrorist Network Plots, pp. 205–214. Springer-Verlag (2009). Nasrullah Memon and Jonathan
D. Farley and David L. Hicks and Torben Rosenorn, Eds.

74. Zawodny, J.: Internal organization problems and the sources of tensions of terrorist movements
as catalysts of violence. Terrorism: An International Journal (continued as Studies in Conflict
and Terrorism) 1(3/4), 277–285 (1978)

75. Zhang, Y., Prica, M., Ilic, M., Tonguz, O.: Toward smarter current relays for power grids.
In: Power Engineering Society General Meeting, 2006. IEEE, p. 8 (2006). DOI 10.1109/PES.
2006.1709580

Chapter 3
Optimizing Synchronization, Flow,
and Robustness in Weighted Complex
Networks

G. Korniss, R. Huang, S. Sreenivasan, and B.K. Szymanski

Abstract Complex biological, social, and technological systems can be often
modeled by weighted networks. The network topology, together with the distribu-
tion of available link or node capacity (represented by weights) and subject to cost
constraints, strongly affect the dynamics or performance of the networks. Here, we
investigate optimization in fundamental synchronization and flow problems where
the weights are proportional to (kik j)

β with ki and k j being the degrees of the nodes
connected by the edge. In the context of synchronization, these weights represent
the allocation of limited resources (coupling strength), while in the associated
random walk and current flow problems, they control the extent of hub avoidance,
relevant in routing and search. In this chapter, we review fundamental connections
between stochastic synchronization, random walks, and current flow, and we discuss
optimization problems for these processes in the above weighted networks.

3.1 Introduction

Synchronization [1–6] and transport [7–11] phenomena are pervasive in natural
and engineered complex interconnected systems with applications ranging from
neurobiology and population dynamics to social, communication, and informa-
tion networks. In the recent wave of research on complex networks [12–18],
the focus has shifted from structure to various dynamical and stochastic pro-
cesses on networks [19, 20], synchronization and transport are being one of them.

G. Korniss (�) • R. Huang • S. Sreenivasan
Department of Physics and Social and Cognitive Networks Academic Research Center,
Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180–3590, USA
e-mail: korniss@rpi.edu; huangr3@gmail.com

S. Sreenivasan • B.K. Szymanski
Department of Computer Science and Social and Cognitive Networks Academic Research Center,
Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180–3590, USA
e-mail: sreens@rpi.edu; szymansk@cs.rpi.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 3, © Springer Science+Business Media, LLC 2012

61

korniss@rpi.edu
huangr3@gmail.com
sreens@rpi.edu
szymansk@cs.rpi.edu

62 G. Korniss et al.

The common question addressed by most studies within their specific context is how
the collective response of locally-coupled entities is influenced by the underlying
network topology.

Here, by network synchronization, we refer to the generic problem where
individuals or agents attempt to locally coordinate their actions with their network
neighbors or within some spatial neighborhood, in an attempt to improve global
performance or reach global agreement [6, 21]. In the broader context, these
problems are also referred to as consensus problems [6, 22, 23]. In this chapter,
we will use the terms synchronization and coordination synonymously. Classic
examples for coordination phenomena are animal flocking [24–26] and cooperative
control of vehicle formation [27], where individual animals or units are adjusting
their position, speed, and headings (the relevant local state variables) based on
the state of their neighborhood, potentially leading to tight formations. Funda-
mental synchronization problems have also numerous applications to neurobiology
[28–32], population dynamics [33, 34], and load balancing and task allocation
problems in distributed computing [21, 35–39].

Research on flow optimization in networks has been around since at least the first
data sets on transportation networks became available (for a brief historical review,
see [11, 40]). Perhaps, among the first ones was a study on transportation planning
on the Soviet railway network, as early as in 1930 [41], followed by others in the
1940s [42–44]. Flow optimization and network interdiction problems also attracted
significant interest during the Cold War years [45, 46] and have been a main thrust
in operations research since [7, 47, 48].

The increasing availability of data on real-life complex biological, information,
social, and infrastructure networks, and the emerging novel type of network
structures have triggered a recent wave on fundamental research on transport and
flow in networks [49–83]. Connections between random walks and resistor networks
have been discussed in detail in several works [84–86]. Furthermore, we have
recently explored fundamental connections and relations (governed by the same
underlying network Laplacian) between stochastic synchronization problems and
resistor networks, current flow, and random walks [10, 87]. In this Chapter, in
parallel with reviewing synchronization phenomena in noisy environments, we will
discuss some natural and fundamental connections with idealized transport and flow
problems on complex networks, in particular, connections with some simplified
local and global routing and search schemes [67, 68, 72].

The ultimate challenge in network optimization (of synchronization and flow)
is when both the network structure and the link qualities (represented by weighted
links) can change or evolve [8, 67], subject to cost constraints. Here, we review and
discuss a simpler set of problems, where the network structure is fixed but the link
weights (or coupling strengths) can be allocated. In particular, we consider a specific
and symmetric form of the weights on uncorrelated scale-free (SF) networks, being
proportional to (kik j)

β where ki and k j are the degrees of the nodes connected by the
link [10, 88–91]. The above general form has been suggested by empirical studies
of metabolic [50] and airline transportation networks [51]. We discuss the effects of

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 63

such a weighting scheme in our synchronization and flow problems. Then the task
becomes maximizing the synchronization efficiency, throughput, or robustness as a
function of β .

The setup of this chapter is as follows. In Sect. 3.2 we review optimization of
synchronization in a noisy environment [10]. In Sects. 3.3 and 3.4, we present results
for optimization of resistor networks and random walks, respectively, together with
reviewing fundamental connections between the relevant observables in synchro-
nization, resistor networks, and random walks. In Sect. 3.5 we discuss current-flow
betweenness and optimization of throughput in weighted complex networks [92]. In
Sect. 3.6 we present results on shortest-path betweenness, cascading failures, and
cascade control in weighted complex networks.

3.2 Synchronization in a Noisy Environment in Weighted
Networks

A large number of studies investigated the Kuramoto model of coupled oscillators
[4,93], naturally generalized to complex networks [94–96]. The common feature of
the findings is the spontaneous emergence of order (synchronous phase) on complex
networks, qualitatively similar to that observed on fully-connected networks (also
referred to as complete graphs), in contrast to regular networks in low dimensions.
Another large group of studies addressed synchronization in coupled nonlinear
dynamical systems (e.g., chaotic oscillators) [3] on small-world (SW) [97] and
scale-free (SF) [88, 98–101] networks. The analysis of synchronization in the
latter models can be carried out by linearization about the synchronous state and
using the framework of the master stability function [102]. In turn, the technical
challenge of the problem is reduced to the diagonalization of the Laplacian on
the respective network, and calculating or estimating the eigenratio [97] (the ratio
of the largest and the smallest non-zero eigenvalue of the network Laplacian),
a characteristic measure of synchronizability (smaller eigenratios imply better
synchronizability). Along these lines, a number of recent studies considered not
only complex, possibly heterogeneous, interaction topologies between the nodes,
but also weighted (heterogeneities in the strength of the couplings)[49, 88, 99, 100]
and directed networks [103–105].

In a more general setting of synchronization problems, the collective behav-
ior/response of the system is obviously strongly influenced by the nonlinearities, the
coupling/interaction topology, the weights/strength of the (possibly directed) links,
and the presence and the type of noise [3, 101]. Here, we study synchronization in
weighted complex networks with linear coupling in the presence of delta-correlated
white noise. Despite its simple formulation, this problem captures the essential
features of fundamental stochastic synchronization, consensus, and coordination
problems with application ranging from coordination and load balancing causally-
constrained queuing networks [106, 107] to e-commerce-based services facilitated
by interconnected servers [108], and certain distributed-computing schemes on

64 G. Korniss et al.

computer networks [21,36–39]. This simplified problem is the Edwards–Wilkinson
(EW) process [109] on the respective network [10, 87, 110–115], and is described
by the Langevin equation

∂t hi =−
N

∑
j=1

Ci j(hi − h j)+ηi(t), (3.1)

where hi(t) is the general stochastic field variable on a node (such as fluctuations in
the task-completion landscape in certain distributed parallel schemes on computer
networks [21, 111, 112]) and ηi(t) is a delta-correlated noise with zero mean and
variance 〈ηi(t)η j(t ′)〉= 2δi jδ (t − t ′). Here, Ci j =Cji > 0 is the symmetric coupling
strength between the nodes i and j (Cii ≡ 0). Note that without the noise term,
the above equation is also referred to as the consensus problem [6, 22, 23] on the
respective network (in the sense of networked agents trying to reach an agreement,
balance, or coordination regarding a certain quantity of interest). Defining the
network Laplacian,

Γi j ≡ δi jCi −Ci j, (3.2)

where Ci ≡ ∑l Cil , we can rewrite (3.1)

∂t hi =−
N

∑
j=1

Γi jh j +ηi(t). (3.3)

For the steady-state equal-time two-point correlation function one finds

Gi j ≡ 〈(hi − h̄)(h j − h̄)〉= Γ̂−1
i j =

N−1

∑
k=1

1
λk
ψkiψk j , (3.4)

where h̄ = (1/N)∑N
i=1 hi and 〈. . .〉 denotes an ensemble average over the noise in

(3.3). Here, Γ̂−1 denotes the inverse of Γ in the space orthogonal to the zero mode.
Also, {ψki}N

i=1 and λk, k = 0,1, . . . ,N − 1, denote the kth normalized eigenvectors
and the corresponding eigenvalues, respectively. The k = 0 index is reserved for the
zero mode of the Laplacian on the network: all components of this eigenvector are
identical and λ0 = 0. The last form in (3.4) (the spectral decomposition of Γ̂−1) can
be used to directly employ the results of exact numerical diagonalization.

For the EW process on any network, the natural observable is the steady-state
width or spread of the synchronization landscape [87, 111, 112, 115–117]

〈w2〉 ≡
〈

1
N

N

∑
i=1

(hi − h̄)2

〉
=

1
N

N

∑
i=1

Gii =
1
N

N−1

∑
k=1

1
λk

. (3.5)

The above observable is typically self-averaging (confirmed by numerics), i.e., the
width 〈w2〉 for a sufficiently large, single network realization approaches the width
averaged over the network ensemble. A network is said to be synchronizable if

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 65

the width has a finite steady-state value; the smaller the width, the better the
synchronization. Finite and connected (single component) networks are always
synchronizable. In the limit of infinite network size, however, network ensembles
with a vanishing (Laplacian) spectral gap may become unsynchronizable, depending
on the details of the small-λ behavior of the density of eigenvalues [5, 21].

The focus of this section is to optimize synchronization (i.e., minimize the width)
on (a) weighted uncorrelated networks with SF degree distribution, (b) subject to a
fixed cost. In the context of this work, we define the total cost Ctot simply to equal
to the sum of weights over all edges in the network

∑
i< j

Ci j =
1
2∑i, j

Ci j =Ctot. (3.6)

The elements of the coupling matrix Ci j can be expressed in terms of the network’s
adjacency matrix Ai j and the assigned weights Wi j connecting node i and j as
Ci j = Wi jAi j. Here, we consider networks where the weights are symmetric and
proportional to a power of the degrees of the two nodes connected by the link,
Wi j ∝ (kik j)

β . We choose our cost constraint to be such that it is equal to that of the
unweighted network, where each link is of unit strength.

∑
i, j

Ci j = 2Ctot =∑
i, j

Ai j = Nk, (3.7)

where k = ∑i ki/N = ∑i, j Ai j/N is the mean degree of the graph, i.e., the average
cost per edge is fixed. Thus, the question we ask, is how to allocate the strength of
the links in networks with heterogeneous degree distributions with a fixed total cost
in order to optimize synchronization. That is, the task is to determine the value of β
which minimizes the width (3.5), subject to the constraint (3.7).

Combining the form of the weights, Wi j ∝ (kik j)
β , and the constraint (3.7) one

can immediately write for the coupling strength between nodes i and j

Ci j = Nk
Ai j(kik j)

β

∑l,n Aln(klkn)β
(3.8)

From the above it is clear that the distribution of the weights is controlled by a single
parameter β , while the total cost is fixed, Ctot = Nk/2.

Before tackling the above optimization problem for the restricted set of hetero-
geneous networks and the specific form of weights, it is useful to determine the
minimum attainable value of the width of the EW synchronization problem in any
network with symmetric couplings. This value will serve as a “baseline” reference
for our problem. In Appendix 1, we show that this absolute minimum value of the
width is

〈w2〉min =
(N − 1)2

2NCtot
(3.9)

and can be realized by the fully connected network.

66 G. Korniss et al.

If one now considers the synchronization problem on any network with N nodes,
with average degree k and with total cost Ctot = Nk/2 to be optimized in some
fashion [e.g., with respect to a single parameter β , (3.8), the above result provides
an absolute lower bound for the optimal width

〈w2(β)〉min ≥ (N − 1)2

N2

1

k
� 1

k
. (3.10)

3.2.1 Mean-Field Approximation on Uncorrelated SF Networks

First, we approximate the equations of motion (3.1) by replacing the local weighted
average field (1/Ci)∑ j Ci jh j with the global average h (the mean–height)

∂t hi = −
N

∑
j=1

Ci j(hi − h j)+ηi(t) =−Ci

(
hi − ∑ j Ci jh j

Ci

)
+ηi(t)

≈ −Ci
(
hi − h

)
+ηi(t). (3.11)

Note that Ci ≡ ∑ j Ci j is the weighted degree. As can be directly seen by summing
up (3.1) over all nodes, the mean height h performs a simple random walk with
noise intensity O(1/N). Thus, in the mean-field (MF) approximation (see details in
Appendix 2), in the asymptotic large-N limit, fluctuations about the mean decouple
and reach a stationary distribution with variance

〈
(hi − h̄)2〉≈ 1/Ci, (3.12)

yielding

〈w2〉= 1
N

N

∑
i=1

〈
(hi − h̄)2〉≈ 1

N∑i
1
Ci

. (3.13)

Now we consider uncorrelated weighted SF networks, with a degree distribution

P(k) = (γ− 1)mγ−1k−γ , (3.14)

where m is the minimum degree in the network and 2 < γ ≤ 3. The average
and the minimum degree are related through 〈k〉 = m(γ − 1)/(γ − 2). Using the
approximation for the weighted degree C(k) of a node with degree k in uncorrelated
(UC) weighted SF graphs (see Appendix 3),

C(k)≈ γ− 2−β
γ− 2

kβ+1

mβ , (3.15)

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 67

and assuming self-averaging for large enough networks, one obtains for the width
of the synchronization landscape

〈w2(β)〉 ≈ 1
N∑i

1
Ci

≈
∫ ∞

m
dkP(k)

1
C(k)

=
1
〈k〉

(γ− 1)2

(γ− 2−β)(γ+β) , (3.16)

where using infinity as the upper limit is justified for γ+β > 0. Elementary analysis
yields the main features of the above expression for the average width:

1. 〈w2(β)〉 is minimum at β = β ∗ =−1, independent of the value of γ .
2. 〈w2〉min = 〈w2(β ∗)〉= 1/〈k〉
The above approximate result is consistent with using infinity as the upper limit in
all integrals, in that the optimal value β ∗ = −1 falls inside the interval −γ < β <
γ − 2 for 2 < γ ≤ 3. Interestingly, one can also observe that in this approximation,
the minimal value of the width is equal to that of the global optimum (3.10), realized
by the fully-connected network of the same cost N〈k〉/2, i.e. with identical links of
strength 〈k〉/(N − 1).

We emphasize that in obtaining the above result (3.16) we employed two
very strong and distinct assumptions/approximations: (a) for the dynamics on the
network, we neglected correlations (in a MF fashion) between the local field
variables and approximated the local height fluctuations by (3.12); (b) we assumed
that the network has no degree–degree correlations between nodes which are
connected (UC), so that the “weighted degree” of a node with degree k, C(k) can be
approximated with (3.15) for networks with m 	 1.

3.2.2 Numerical Results

For comparison with the above mean-field results, we considered Barabási–Albert
(BA) SF networks [13, 14], “grown” to N nodes,1where P(k) = 2m2/k3, i.e.,
γ = 3. While growing networks, in general, are not uncorrelated, degree–degree
correlations are anomalously (marginally) weak for the BA network [18, 118].

We have performed exact numerical diagonalization and employed (3.4) to find
the local height fluctuations and (3.5) to obtain the width for a given network
realization. We carried out the above procedure for 10–100 independent network
realizations. Finite-size effects (except for the m = 1 BA tree network) are very
weak for −2 < β < 0; the width essentially becomes independent of the system
size in this interval. Figure 3.1 displays result for the local height fluctuations as a

1For the BA scale-free model [13] (growth and preferential attachment), each new node is
connected to the network with m links, resulting in 〈k〉 � 2m in the large-N limit. Here, we
employed a fully-connected initial cluster of m+1 nodes.

68 G. Korniss et al.

0 60 120 180
k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

<
(Δ

h)
2 >

k

β=−2.00
β=−1.00
β=0.00

Fig. 3.1 Height fluctuations as a function of the degree of the nodes for N = 1,000, 〈k〉 = 20, and
for β =−2.00, β =−1.00, and β = 0.00 (from top to bottom). Data, represented by filled symbols,
are averaged over all nodes with degree k. Scatter plot (dots) for individual nodes is also shown
from ten network realizations. Solid lines correspond to the MF+UC scaling 〈(Δh)2〉k ∼ k−(β+1)

function of the degree of the node. We show both the fluctuations averaged over all
nodes with degree k and the scattered data for individual nodes. One can observe
that our approximate results for the scaling with the degree [combining (3.12) and

(3.58),
〈
(hi − h̄)2

〉≈ 1/Ci ∼ k−(β+1)
i , work very well, except for very low degrees.

The special case β = 0, is exceptionally good, since here Ci = ∑ j Ai j = ki exactly,
and the only approximation is (3.12).

In Fig. 3.2, we show our numerical results for the width and compare it with
the approximate (MF+UC) results (3.16). The divergence of the approximate result
(3.16) at β = −3 and β = 1 is the artifact of using infinity as the upper limit in
the integrals performed in our approximations. The results for the width clearly
indicate the existence of a minimum at a value of β ∗ somewhat greater than −1.
Further analysis reveals [10] that as the minimum degree m is increased, the optimal
β approaches −1 from above. This is not surprising, since in the limit of m 	 1
(large minimum degree), both the MF and the UC part of our approximations are
expected to work progressively better. For β = 0, our approximation (3.16) is within
8%, 4%, and 1% of the results extracted from exact numerical diagonalization
through (3.5), for m = 10, m = 20, and m = 100, respectively [10]. For β = −1,
it is within 15%, 7%, and 3% of the numerical results for m = 10, m = 20, and
m = 100, respectively [10]. Thus, our approximation works reasonably well for
large uncorrelated SF networks with sufficiently large minimum (and consequently,
average) degree, i.e., in the 1
 m
 N limit. Although for sparse networks with
small average degree the MF+UC approximation fails to locate the minimum and

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 69

−3 −2 −1 0 1

β

0.00

0.05

0.10

0.15

0.20

0.25

<
w

2 >

N=200 BA
N=400 BA
N=1000 BA
N=2000 BA
N=1000 SW

Fig. 3.2 Steady-state width of the EW synchronization landscape as a function of the weighting
parameter β for the BA networks with m = 10 (〈k〉 � 2m = 20) for various network sizes. The
solid curve is the approximate (MF+UC) result (3.16). For comparison, numerical results for a
SW networks with N = 1,000 and with the same degree is also shown. The horizontal dashed line
indicates the absolute lower bound (3.10), as achieved by the fully connected network with the
same cost N〈k〉/2

the value of the width precisely; nevertheless, it provides insight for an efficient
optimization of the global performance of weighted heterogeneous networks with a
single parameter β , as opposed to a computationally prohibitive exhaustive search.
For a detailed quantitative analysis of the error of the MF+UC approximation in the
context of the closely related random walks on weighted SF networks (Sect. 3.4)
see [91].

The above optimal link-strength allocation at around the value β ∗ ≈−1 seems to
be present in all random networks where the degree distribution is different from a
delta-function. For example, in SW networks,2although the degree distribution has
an exponential tail, 〈w2〉 also exhibits a minimum, but the effect is much weaker, as
shown in Fig. 3.2. Further, a point worthwhile to mention, a SW network with the
same number of nodes and the same average degree (corresponding to the same cost)
always “outperforms” its SF counterpart (in terms of minimizing the width). The
difference between their performance is smallest around the optimal value, where
both are very close to that of the lowest possible value, realized by the FC network
of the same cost.

2Here, we constructed SW networks by adding random links [111, 119, 120] on top of a regular
ring with two nearest neighbors. The density of random links per node is p, resulting in an average
degree 〈k〉 = 2+ p.

70 G. Korniss et al.

3.3 Weighted Resistor Networks

Resistor networks have been widely studied since the 1970s as models for conduc-
tivity problems and classical transport in disordered media [121, 122]. Amidst the
emerging research on complex networks, resistor networks have been employed to
study and explore community structures in social networks [123–126] and centrality
measures in information networks [127]. Also, electrical networks with directed
links (corresponding to diodes) have been used to propose novel page-ranking
methods for search engines on the World-Wide-Web [128].

Most recently, simple resistor networks were utilized to study transport efficiency
in SF [79, 80] and SW networks [87]. The work by López et al. [80] revealed that
in SF networks [13, 14] anomalous transport properties can emerge, displayed by
the power-law tail of distribution of the network conductance. Now, we consider
weighted resistor networks subject to a fixed total cost (the cost of each link is
associated with its conductance). As we have shown [10,87] the relevant observables
in the EW synchronization problem and in (Ohmic) resistor networks are inherently
related through the spectrum of the network Laplacian. Consider an arbitrary
(connected) network where Ci j is the conductance of the link between node i and j,
with a current I entering (leaving) the network at node s (t). Kirchhoff’s and Ohm’s
laws provide the relationships between the stationary currents and voltages [87,129]

∑
j

Ci j(Vi −Vj) = I(δis − δit), (3.17)

or equivalently,

∑
j
Γi jVj = I(δis − δit), (3.18)

where Γi j is the network Laplacian, as defined in the context of the EW process
(3.2). Introducing the voltages measured from the mean at each node, V̂i = Vi − V̄ ,
where V̄ = (1/N)∑N

i=1 Vi, one obtains [87]

V̂i = I(Gis −Git). (3.19)

Here, G is the same network propagator discussed in the context of the EW process,
i.e. the inverse (3.4) of the network Laplacian (3.2) in the space orthogonal to the
zero mode. Applying (3.19) to nodes s and t, where the voltage drop between these
nodes is Vst = V̂s −V̂t , one immediately obtains the effective two-point resistance of
the network between nodes s and t [87, 129],

Rst ≡ Vst

I
= Gss +Gtt − 2Gst =

N−1

∑
k=1

1
λk

(ψ2
ks +ψ

2
kt − 2ψksψkt) . (3.20)

The spectral decomposition in (3.20) is, again, useful to employ the results of
exact numerical diagonalization. Comparing (3.4) and (3.20), one can see that

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 71

the two-point resistance of a network between node s and t is the same as
the steady-state height-difference correlation function of the EW process on the
network [87],

〈(hs − ht)
2〉= 〈[(hs − h)− (ht − h)]2〉= Gss +Gtt − 2Gst = Rst . (3.21)

For example, using the above relationship and then employing the MF+UC
approximation,3one can immediately obtain the scaling of the typical value of the
effective two-point resistance in weighted resistance networks, between two nodes
with degrees ks and kt ,

Rst � Gss +Gtt ∼
[
k−(1+β)

s + k−(1+β)
t

]
=

k1+β
s + k1+β

t

(kskt)1+β . (3.22)

A global observable, measuring transport efficiency, analogous to the width of
the synchronization landscape, is the average two-point resistance [80,87] (averaged
over all pairs of nodes, for a given network realization). Using (3.21) and exploiting
the basic properties of the Green’s function, one finds

R̄ ≡ 2
N(N − 1)∑s<t

Rst =
1

N(N − 1)∑s �=t

Rst =
N

N − 1
2〈w2〉 � 2〈w2〉, (3.23)

i.e., in the asymptotic large system-size limit the average system resistance of a
given network is twice the steady-state width of the EW process on the same
network. Note that the above relationships, (3.21) and (3.23), are exact and valid
for any graph.

The corresponding optimization problem for resistor networks then reads as
follows: For a fixed total cost, Ctot =∑i< j Ci j =N〈k〉/2, where the link conductances
are weighted according to (3.8), what is the value of β which minimizes the average
system resistance R(β)? Based on the above relationship between the average
system resistance and the steady-state width of the EW process on the same graph
(3.23), the answer is the same as was discussed in Sect. 3.2 (3.16): β ∗ = −1 and
Rmin = 2N/[(N − 1)〈k〉] � 2/〈k〉 in the mean-field approximation on uncorrelated
random SF networks. Numerical results for R(β) are also provided for “free” as
R̄(β)� 2〈w2(β)〉, by virtue of the connection (3.23) [Fig. 3.2].

3In the context of resistor networks, while there are no “fields,” we carry over the terminology
“mean-field” (MF) from the associated EW synchronization problem. In terms of the network
propagator, the assumptions of the MF approximation can be summarized as Gst
 Gss for all
s �= t , and Gss � 1/Cs .

72 G. Korniss et al.

3.3.1 Transport Optimization for Heterogeneous Source/Target
Frequencies

As suggested by Lopez et al. [80], the effective (electrical) conductance provides a
powerful measure to characterize transport in complex networks. This observable,
strongly influenced by the number of disjoint (and possibly weighted) paths between
a source and a target, is also closely related to the max-flow problem in networks
[7,11,40,63,81]. The effective two-point conductance is the inverse of the effective
two point resistance (3.20), gst = 1/Rst . If each node is equally likely to be a target
or a source, a simple average over all source and target pairs provides the average
system conductance, ḡ=∑s �=t gst/N(N−1). In real systems, however, nodes are not
created equal; their relative frequency to be a source or target can greatly vary. In
the simplest phenomenological model, we assume that nodes are sources or targets
with a frequency proportional kρi (ρ ≥ 0) [65, 80]. Also, as previously, we allow
the edges (conductivities) to be weighted, controlled by the parameter β according
to (3.8), subject to a fixed total edge cost (3.7). Then, naturally, the relevant global
measure is the appropriately weighted system conductance

ḡ(β) =
∑s �=t(kskt)

ρgst(β)
∑s �=t(kskt)ρ

. (3.24)

Then, we consider optimizing the allocation limited resources in the above simpli-
fied transport problem. That is, for a given source/target distribution controlled by ρ ,
what is the value of β which minimizes the system conductance ḡ(β)?

In Fig. 3.3, we show numerical results for BA scale-free networks. When
the source/target profile is uniform (ρ = 0), the system conductance exhibits a
maximum at around β ≈ −1 (in synch with the system resistance exhibiting a
minimum around the same β , Fig. 3.2). For increasing positive values of ρ , the
optimal value of β shifts to the right; the location of the maximum of the ḡ(β)
curve for a given ρ quantifies the extent to which resources should be allocated
around hubs (or away from hubs) for optimal global performance.

Figure 3.3 also indicates that the conductance curves for all ρ intersect at
around β ≈ −1. Indeed, our previous approximation (3.22) predicts that at this
point the effective two-point conductance gst = 1/Rst becomes independent of the
degree of the source and target nodes, hence the system conductance (3.24) become
ρ-invariant.

In Fig. 3.3, we also plot the same system conductance cure for SW networks with
the same network size and average degree for two values of ρ . For ρ = 0 (uniform
source/target profile), a SW graph (with a close-to-homogeneous degree distribu-
tion) outperforms its BA SF counterpart (with heterogeneous degree distribution)
of the same cost for every β . For strongly heterogeneous source/target frequencies
(ρ = 1), the performance of a SW network is better for β < −1 and β > 2, while
the BA SF network performs better in the −1 < β < 2 interval.

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 73

−3 −2 −1 0 1 2 3 4
β

0

5

10

15

20

25

g−

ρ=0.00 BA
ρ=1.00 BA
ρ=1.25 BA
ρ=1.50 BA
ρ=0.00 SW
ρ=1.00 SW

Fig. 3.3 System conductance vs. the edge weight parameter β for different source/target distribu-
tions controlled by ρ for BA networks with m = 10 (〈k〉 � 2m = 20) and N = 400 (solid symbols).
For comparison, numerical results for a SW networks with the same network size and average
degree is also shown for two ρ values (open symbols)

3.4 Random Walks in Weighted Networks

Investigating random walks (RW) on networks and resistor networks can provide
invaluable insights into fundamental properties and characteristics of transport and
flow on networks [10, 54–56, 80, 84, 87, 91, 130, 131]. In these models, with direct
application to search, routing, and information retrieval on networks [132, 133], the
connection between network structure and function becomes explicit, so one can
address the problems of designing network structures to minimize delivery times, or
for a fixed structure, allocating resources (queuing capacity) to minimize load and
delays [10, 70, 90].

Here, we consider weights {Ci j} employed in the previous sections and define a
discrete-time random walk (RW) with the transition probabilities [84]

Pi j ≡ Ci j

Ci
(3.25)

(recall that Ci = ∑l Cil is the weighted degree). Pi j is the probability that the walker
currently at node i will hop to node j in the next step. Note that because of the
construction of the transition probabilities (being a normalized ratio), the issue of
cost constraint disappears from the problem. That is, any normalization prefactor

74 G. Korniss et al.

associated with the conserved cost [as in (3.8)] cancels out, and the only relevant
information is Ci j ∝ Ai j(kik j)

β , yielding

Pi j =
Ci j

Ci
=

Ai j(kik j)
β

∑l Ail(kikl)β
=

Ai jk
β
j

∑l Ailk
β
l

. (3.26)

Then the results are invariant for any normalization/constraint, so for convenience
one can use the normalized form of the Ci j coefficients as given in (3.8). As is clear
from the above RW transition probabilities, the parameter β controls to what extent
“hubs” should be avoided.

Having a random walker starting at an arbitrary source node s, tasked to arrive at
an arbitrary target node t, the above weighted RW model can be associated with
a simple local routing or search scheme [67] where packets are independently
forwarded to a nearest neighbor, chosen according to the transition probabilities
(3.26), until the target is reached. These probabilities contain only limited local
information, namely the degree of all neighboring nodes. By construction, the
associated local (stochastic) routing problem (Sect. III.B.3) does not concern link
strength (bandwidth) limitations but rather the processing/queuing capabilities of
the nodes, so the cost constraint, associated with the links, disappears form the
problem.

3.4.1 Node Betweenness for Weighted RWs

In network-based transport or flow problems, the appropriate betweenness measure
is defined to capture the amount of traffic or information passing through a node
or a link, i.e., the load of a node or a link [15, 18, 52–54, 126, 134, 135]. Here,
our observable interest is the node betweenness Bi for a given routing scheme
[67] (here, purely local and characterized by a single parameter β): the expected
number of visits to node i for a random walker originating at node s (the source)
before reaching node t (the target) Es,t

i , summed over all source-target pairs. For a
general RW, as was shown by Doyle and Snell [84], Es,t

i can be obtained using the
framework of the equivalent resistor-network problem (discussed in Sect. 3.3). More
specifically,

Es,t
i =Ci(Vi −Vt), (3.27)

while a unit current is injected (removed) at the source (target) node. Utilizing again
the network propagator and (3.19), one obtains

Es,t
i =Ci(Vi −Vt) =Ci(V̂i − V̂t) =Ci(Gis −Git −Gts +Gtt). (3.28)

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 75

For the node betweenness, one then obtains

Bi = ∑
s �=t

Es,t
i =

1
2∑s �=t

(Es,t
i +Et,s

i) =
1
2∑s �=t

Ci(Gss +Gtt − 2Gts)

=
Ci

2 ∑s �=t

Rst =
Ci

2
N(N − 1)R. (3.29)

Note that the above expression is valid for any graph and for an arbitrary weighted
RW defined by the transition probabilities (3.25). As can be seen from (3.29), the
node betweenness is proportional to the product of a local topological measure, the
weighted degree Ci, and a global flow measure, the average system resistance R.
As a specific case, for the unweighted RW (β = 0) Ci = ∑l Ail = ki, thus, the node
betweenness is exactly proportional to the degree of the node, Bi = kiN(N −1)R/2.

Using our earlier approximations and results for uncorrelated SF graphs (3.58)
and (3.16), and the relationship between the width and the average system resistance
(3.23), for weighted RW, controlled by the exponent β , we find

Bi(β) =
Ci

2
N(N − 1)R =CiN

2〈w2〉 ≈ N2 γ− 1
γ+β

k1+β
i

m1+β . (3.30)

First, we consider the average “load” of the network

B =
1
N∑i

Bi =
∑iCi

2
(N − 1)R. (3.31)

Similar to (3.29), the above expression establishes an exact relationship between the
average node betweenness of an arbitrary RW [given by (3.25)] and the observables
of the associated resistor network, the total edge cost and the average system
resistance. For example, for the β = 0 case, B = kN(N − 1)R/2. As noted earlier,
for calculation purposes one is free to consider the set of Ci j coefficients given by
(3.8), which also leads us to the following statement:

For a RW defined by the transition probabilities (3.25), the average RW
betweenness is minimal when the average system resistance of the associated
resistor network with fixed total edge cost (and the width of the associated noisy
synchronization network) is minimal.

Utilizing again our earlier approximations and results for uncorrelated SF graphs
and the relationship between the width and the average system resistance, we find

B(β) = ∑i Ci

2
(N − 1)R =

(
∑

i
Ci

)
N〈w2〉 ≈ N2 (γ− 1)2

(γ− 2−β)(γ+β) . (3.32)

The average node betweenness is minimal for β = β ∗ =−1, for all γ .

76 G. Korniss et al.

3.4.2 Commute Times and Hitting Times for Weighted RWs

The hitting (or first passage) time τst is the expected number of steps for the random
walker originating at node s to reach node t for the first time. Note that using
Doyle and Snell’s result [84] for the expected number of visits (3.27), expressed in
term of the network propagator (3.28), one can immediately obtain an expression
for the expected first passage time (see Appendix 4). The commute time is the
expected number of steps for a “round trip” between nodes s and t, τst + τts.
Relationships between the commute time and the effective two-point resistance
have been explored and discussed in detail in several works [85, 130, 131]. In its
most general form, applicable to weighted networks, it was shown by Chandra et al.
[130] (see also Appendix 4) that

τst + τts =

(
∑

i
Ci

)
Rst . (3.33)

For the average hitting (or first passage) time, averaged over all pairs of nodes, one
then obtains

τ ≡ 1
N(N − 1)∑s �=t

τs,t =
1

2N(N − 1)∑s �=t

(τs,t + τt,s)

=
∑iCi

2N(N − 1)∑s �=t

Rst =
∑i Ci

2
R. (3.34)

Comparing (3.31) and (3.34), the average hitting time (the average travel time for
packets to reach their destinations) then can be written as τ = B/(N − 1). Note
that this relationship is just a specific realization of Little’s law [136, 137], in the
context of general communication networks, stating that the average time needed
for a packet to reach its destination is proportional to the total load of the network.
Thus, the average hitting time and the average node betweenness (only differing by
a factor of N − 1) are minimized simultaneously for the same graph (as a function
of β , in our specific problem).

3.4.3 Network Congestion due to Queuing Limitations

Consider the simplest local “routing” or search problem [67,70,72] in which packets
are generated at identical rate φ at each node. Targets for each newly generated
packet are chosen uniformly at random from the remaining N − 1 nodes. Packets
perform independent, weighted RWs, using the transition probabilities (3.25), until
they reach their targets. Further, the queuing/processing capabilities of the nodes are
limited and are identical, e.g. (without loss of generality) each node can send out one
packet per unit time. From the above it follows that the network is congestion-free
as long as

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 77

φ
Bi

N − 1
< 1, (3.35)

for every node i [10, 66, 67, 70, 71, 73]. As the packet creation rate φ (network
throughput per node) is increased, congestion emerges at a critical value φc when
the inequality in (3.35) is first violated. Up to that point, the simple model of
independent random walkers (discussed in the previous subsections), can self-
consistently describe the average load landscape in the network. Clearly, network
throughput is limited by the most congested node (the one with the maximum
betweenness); thus,

φc =
N − 1
Bmax

, (3.36)

a standard measure to characterize the efficiency of communication networks [10,
66, 67, 70, 71, 73].

To enhance or optimize network throughput (limited by the onset of congestion at
the nodes), one may scale up the processing capabilities of the nodes [70], optimize
the underlying network topology [67], or optimize routing by finding pathways
which minimize congestion [10,71–73]. The above RW routing, with the weighting
parameter β controlling “hub avoidance,” is an example for the latter, where the task
is to maximize global network throughput by locally directing traffic. In general,
congestion can also be strongly influenced by “bandwidth” limitations (or collisions
of packets), which are related to the edge betweenness, and not considered here.

According to (3.36), the network throughput is governed and limited by the
largest betweenness in the network. Further, the RW betweenness of the nodes is
proportional to the weighted degree, which approximately scales as a power law
with the degree in SF networks (3.30). Employing the known scaling behavior of
the degree cut-off (the scaling of the largest degree) in uncorrelated SF networks
[15, 118, 138], one can show that the maximum RW betweenness and network
throughput exhibit a minimum and a maximum, respectively, at around β ∗ = −1
[10]. Here, we show numerical results for the RW betweenness and the network
throughput in BA SF networks. Figure 3.4 demonstrates that the RW betweenness
is strongly correlated with the degree in SF networks. In particular, except for
nodes with very small degrees, B(ki) ∼ kβ+1

i (3.30). For β ≈ −1, the load (RW
betweenness) becomes balanced [Fig. 3.4] and the network throughput exhibits a
maximum [Fig. 3.5]. Thus, RW weights with β ≈−1 correspond to the optimal hub
avoiding weighting scheme.

In a recent, more realistic network traffic simulation study of a congestion-aware
routing scheme, Danila et al. [72] found a qualitatively very similar behavior to
what we have observed here. In their network traffic simulation model, packets
are forwarded to a neighbor with a probability proportional to a power β of the
instantaneous queue length of the neighbor. They found that there is an optimal
value of the exponent β , close to −1.

We also show numerical results for the network throughput for SW networks with
the same degree [Fig. 3.5a]. In particular, an optimally weighted SW network always

78 G. Korniss et al.

400 20 60 80

k
0

5

10

15

20

B
(k

)/
N

*(
N

−
1)

β=0.00
β=−1.00
β=−2.00

Fig. 3.4 Normalized RW node betweenness on BA networks with m = 3 as a function of the
degree of the nodes for four system sizes [N = 200 (dotted), 400 (dashed), 1,000 (long-dashed),
2,000 (solid)] and for three different β values, β = 0.00, β = −1.00, and β = −2.00 (from top
to bottom). Data point represented by lines are averaged over all nodes with degree k. Data for
different system sizes are essentially indistinguishable. Scatter plot (dots) for the individual nodes
is also shown from ten network realizations for N = 1,000. Solid curves, corresponding to the
MF+UC scaling B(k) ∼ kβ+1 (3.30), are also shown

−3 −2 −1 0 1

β

0

0.001

0.002

0.003

φ c φ c

BA, N=200
BA, N=400
BA, N=1000
SW, N=200
SW, N=400
SW, N=1000

−3 −2 −1 0 1
β

0

0.001

0.002

0.003

0.004

BA, N=200
BA, N=400
BA, N=1000
BA, N=2000

a b

Fig. 3.5 Network throughput per node as a function of the weighting parameter β for BA networks
(solid symbols) for various system size for (a) m = 3 and for (b) m = 10 (〈k〉 � 2m). Figure (a) also
shows the same observable for SW networks with the same average degree for the same system
sizes (the same respective open symbols)

outperforms its BA scale-free counterpart with the same degree. Qualitatively
similar results have been obtained in actual traffic simulation for networks with
exponential degree distribution [72].

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 79

To summarize, the above simple weighted RW model for local routing on SF
networks indicates that the routing scheme is optimal around the value β ∗ ≈−1. At
this point, the load is balanced (3.30) and Fig. 3.4], both the average load and the
average packet delivery time are minimum, and the network throughput is maximum
[Fig. 3.5].

From a viewpoint of network vulnerability [139–143], the above results for the
weighted RW routing scheme also implies the following. Network failures are often
triggered by large load fluctuations at a specific node, then subsequently cascading
through the system [142]. Consider a “normal” operating scenario (i.e., failure is
not due to intentional/targeted attacks), where one gradually increases the packet
creation rate φ and the overloaded nodes (ones with the highest betweenness)
gradually removed from the network [143]. For β > β ∗ ≈ −1 (including the
unweighted RW with β = 0), these nodes are the ones with the highest degrees,
but uncorrelated SF networks are structurally vulnerable to removing the hubs. At
the optimal value of β , not only the network throughput is maximal, and the average
packet delivery time is minimal, but the load is balanced: overloads are essentially
equally likely to occur at any node and the underlying SF structure is rather resilient
to random node removal [139, 140]. Thus, at the optimal value of β , the local
weighted RW routing simultaneously optimizes network performance and makes
the network less vulnerable against inherent system failures due to congestions at
the processing nodes.

3.5 Current Flow in Weighted Networks

Current flow in resistor networks provides the simplest distributed flow model in
complex networks [92]. This flow is directed and distributed, as the current flows
from the highest potential node (source) to the lowest potential node (target). While
current can run along all (possibly weighted) paths between the source and target
nodes, more current is carried along shorter paths (with smaller resistance). Further,
hanging dead ends (i.e., nodes which does not lie on a path between the source and
target) will carry zero current. Thus, currents running through the nodes or the links,
averaged over all source–target pairs (referred to as the current-flow betweenness),
provide a good measure for information centrality, also referred to as current-flow
betweenness [126, 127].

Using the same resistor network model as in Sect. 3.3 where an edge between
nodes i and j has conductivity Ci j, for a given source (s) and target (t) pair, we can
write the potential difference between nodes i and j as

Vi −Vj = V̂i − V̂j = I(Gis −Git −G js +G jt). (3.37)

Here, Gi j is the propagator (or pseudo inverse, operating in the space orthogonal to
the zero mode) of the network Laplacian. If nodes i and j are connected by an edge

80 G. Korniss et al.

in the network, and assuming unit current (I = 1) entering and leaving the network,
then the current through this edge can be expressed as

Ist
i j =Ci j(Vi −Vj) =Ci j(Gis −Git −G js+G jt). (3.38)

Thus, exploiting the conservation of currents, the net current running through node
i for a given source–target pair, can be written as

Ist
i =

1
2∑j

|Ist
i j |=

1
2∑j

Ci j|Gis −Git −G js +G jt |. (3.39)

Finally, considering all source–target pairs (where all nodes can simultaneously be
sources and send one unit of current per unit time to a randomly chosen target), one
finds the current-flow betweenness or information centrality [126, 127],

li =
1

N − 1∑s,t
Ist
i =

1
2(N − 1)∑j ∑s,t

Ci j |Gis −Git −G js+G jt |. (3.40)

Despite the similarities between (3.28) and (3.38), here the summation over source
and target pairs does not yield internal cancelations and simplifications, and the
result for the current-flow betweenness is not amenable to simple analytic (mean-
field-like) approximations. Therefore, we present only numerical results for the
resulting current flow betweenness (the local load for unit input currents) li. Our
numerical scheme was based on the exact numerical diagonalization [144] of the
network Laplacian and constructing the pseudo inverse (propagator) Gi j using
straightforward spectral decomposition. In addition to the local loads at the nodes
li, and average system load

〈l〉= 1
N∑i

li =
1

2N(N − 1)∑i, j∑s,t
Ci j|Gis −Git −G js+G jt |, (3.41)

we also measured the largest current flow betweenness lmax = maxi=1,N{li} in a
given network, and then averaged over many network realizations within the same
random network ensemble.

We analyzed the above observables for weighted random networks with Ci j ∝
(k jk j)

β . Figure 3.6a shows that the loads (current-flow betweenness) at the nodes are
strongly correlated with their degree in BA scale-free networks for β = 0, while they
become much more balanced for β = −1. Also, for β = 0 (unweighted network)
the load distribution exhibits fat tails, while it decays faster than any power law
for β = −1 [Fig. 3.6b]; consequently, the largest load is significantly reduced for
β = −1. This balanced load for β = −1, however, is achieved at the expense of a
somewhat increased average load [Fig. 3.6a]. In general, we observe that reducing
β leads to an increasing average load [Fig. 3.7a]. Nevertheless, the largest load in
a network, potentially triggering cascading load-based failures, exhibits a minimum

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 81

0 5 10 15 20

l

0

0.2

0.4

0.6

P
(l

)

β=−2
β=−1
β=0

100 101
10−4

10−3

10−2

10−1

100

a b

Fig. 3.6 (a) Scatter plot for the load (current-flow betweenness) vs. the degree for BA networks
with N = 100 and 〈k〉 � 10 for three different β values. Horizontal lines indicate the average
load. (b) Load distribution of BA networks with the same parameters. The inset shows the same
distributions on log–log scales

−4 −2 0 2 4
β

2

4

6

8

10

<
l>

N=100 BA
N=200 BA
N=400 BA
N=1000 BA
N=100 ER
N=200 ER
N=400 ER

−4 −2 0 2 4
β

0

200

400

600

l m
ax

N=100 BA
N=200 BA
N=400 BA
N=1000 BA
N=100 ER
N=200 ER
N=400 ER

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2
φc

a b

Fig. 3.7 (a) Average load and (b) maximum load in BA and ER networks with 〈k〉 � 10 for various
network sizes as a function of β . The inset in (b) shows the network throughput vs. β

at around β ≈ −1 [Fig. 3.7b]. In turn, the network throughput, assuming identical
source–target rates and unit processing capabilities at each node [analogously to
(3.36)]

φc =
1

lmax
(3.42)

exhibits a maximum at around β ≈ −1 [Fig. 3.7b inset]. Thus, with the simple
weighting scheme Ci j ∝ (kik j)

β one can optimize current flow such that the network
throughput is maximum (β ∗ ≈ −1).

Finally, we note that a homogeneous random network [Erdős–Rényi (ER) ran-
dom graph [14, 145]] exhibits qualitatively similar characteristic in the throughput
and load profile as a function of the weighting parameter β [Fig. 3.7]. Further, as

82 G. Korniss et al.

−4 −2 0 2 4
β

2

4

6

8

10

12

<
l>

N=100
N=200
N=400
N=1000

−4 −2 0 2 4
β

0

100

200

300

400

500

l m
ax

N=100
N=200
N=400
N=1000

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2
φc

a b

Fig. 3.8 (a) Average load and (b) maximum load for heterogeneous source/target frequencies with
ρ = 1.00 in BA networks with 〈k〉 � 10 for various network sizes as a function of β . The inset in
(b) shows the network throughput vs. β

can be seen from Fig. 3.7b, the network throughput of an ER network outperforms
that of a heterogeneous BA network of the same average degree and network size
for any β . Interestingly, the average load is lower for BA (ER) networks for β > 0
(β < 0) [Fig. 3.7a].

3.5.1 Current Flow Optimization for Heterogeneous
Source/Target Frequencies

Analogously to the question addressed in Sec 3.3.1, one can ask what is the
optimal weighting of link conductivities to maximize throughput for heterogeneous
source/target frequencies. Note that there the task was to maximize global average
network conductance with a fixed edge cost. Here, the task is to minimize current-
flow betweenness (maximize throughput) subject to identical unit node processing
capabilities for a given heterogeneous “boundary condition” (source/target rates).
Here, we consider source/target rates proportional to (kskt)

ρ , such that the global
source/target flow rate per node is φ . Then, using (3.39), the appropriately weighted
current-flow betweenness becomes

li =
N

∑s,t(kskt)ρ
∑
s,t
(kskt)

ρ Ist
i . (3.43)

In Fig. 3.8, we show results for ρ = 1.00 on BA networks. Similar to homoge-
neous source/target profiles, the average current-flow betweenness is a monoton-
ically decreasing function of β . The maximum current-flow betweenness lmax =
maxi=1,N{li}, however, exhibit a minimum, at around β = −1.50. In turn, the
network throughput φc = 1/lmax shows a maximum at the same point.

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 83

The behavior of the ρ = 0 [Fig. 3.7] and ρ = 1.00 [Fig. 3.8] are qualitatively very
similar. The main quantitative difference is that the location of the optimal weighting
β somewhat decreases (β ∗ ≈ −1.00 for ρ = 0 and β ∗ ≈−1.50 for ρ = 1.00). Since
the traffic entering and leaving the network places extra burden on the hubs, the
negative optimal value of β with a larger magnitude necessitates a relatively stronger
hub avoidance.

3.6 Shortest Path Betweenness in Weighted Networks

In the simplest and most commonly considered models of routing, every source node
s sends packets to a given destination node t through the path of least total weight
connecting s and t. This path is called the weighted shortest path or the optimal path
between the given source–destination pair. The concept of betweenness previously
defined in Sect. 3.4 can be adapted to the present context as follows: the shortest
path betweenness of a node (edge) in a weighted network is defined as the number
of shortest paths passing through that node (edge) [134]. The characteristics of a
variant of the shortest path betweenness defined here – referred to as betweenness
centrality – have been studied extensively on unweighted networks (or equivalently,
for β = 0) [52, 53, 146]. Specifically, for scale-free networks with degree exponent
2 ≤ γ ≤ 3, the distribution of betweenness centrality is known to be heavy tailed, i.e.,
P(B) ∼ B−δ , where δ has been reported to be universal (δ ≈ 2.2) [52] or varying
slowly [146].

As pointed out in Sect. 3.4, the throughput of the network (assuming identical
unit processing capabilities for each node) is given by φ = (N − 1)/Bmax where
Bmax is the maximal betweenness of the network [10, 66, 67, 70, 71, 73]. Thus,
the throughput can be increased by reducing the maximal betweenness of the
network. While the question of a lower bound (optimum) on the scaling of the
maximal betweenness Bmax has been previously studied [71], in the present article
we focus on edge weighting schemes that can optimize throughput on the network.
We restrict our study to the case where the edge weight connecting to nodes i, j
is given by wi j = (kik j)

−β where ki,k j are the degree of nodes i, j respectively.
The edge weights considered here can be interpreted as: (1) explicit parameters like
latency (time taken to traverse an edge) or (2) virtual weights assigned to edges to
facilitate the assignment of paths with certain properties like hub avoidance. Here,
for our numerical investigations, we employed the configuration model [147] with a
structural degree cutoff ∼N1/2 to generate uncorrelated scale-free graphs [118,138],
with degree exponent γ = 2.5 and with minimum degree m = 2.

In an unweighted network (β = 0), the betweenness of a node is known to
be correlated with its degree (see Fig. 3.9). This implies that analogous to the
case of random walk routing in Sect. 3.4, hubs in a scale-free network carry
the highest load, and the distribution of betweenness over the network is highly
heterogeneous (intuitively, this is obvious since on an unweighted network the
shortest path between two nodes is the one with the smallest number of links;

84 G. Korniss et al.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6
x 10

4

degree

B

β = 0
β = −0.5
β = −1

Fig. 3.9 Scatter plot showing the correlation between degree and betweenness from ten realiza-
tions of weighted scale-free networks with N = 1,024 and degree exponent γ = 2.5 using the
configuration model [147]. For an unweighted network β = 0, betweennness is clearly correlated
with the degree. As β is decreased below zero, at β = −0.5, the betweenness appears to be
uncorrelated with the degree, while at β =−1 betweenness is biased towards lower degree nodes

since hubs by definition are well connected to the rest of the network, there is
some hub that connects the source and destination through a very short path).
This can be seen from Fig. 3.10, where the straight line fit to a logarithmic plot
of the betweenness distribution has a slope of ≈ −2.14. From the point of view
of alleviating congestion, and minimizing cascading failures (see Sect. 3.12), the
ideal situation is one where the total betweenness in the network is distributed
homogeneously, while keeping the value of the maximal betweenness as low as
possible. Homogenizing the betweenness landscape can be achieved by introducing
a small amount of hub avoidance as shown by the betweenness distribution for β =
−0.5 in Fig. 3.10. The tail of the distribution is no longer fat (more appropriately
it is exponential, not shown), and the maximal betweenness is lower than for
β = 0 (Fig. 3.11). Also, betweenness is now no longer correlated with degree
(Fig 3.9). This homogenization of the betweenness landscape comes at the expense
of increasing the average betweenness on the network (see inset, Fig. 3.10). As β is
decreased from −0.5, rather than further homogenizing the betweenness landscape,
the hub avoidance causes the shortest paths to get longer, thus increasing the
total betweenness in the network. This increase causes both the average and the
maximal betweenness to rise. Furthermore, the betweenness is now largely biased
towards nodes of lower degree (Fig. 3.9). Consequently, the optimal distribution

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 85

2.5 3 3.5 4 4.5 5 5.5
−3.5

−2.5

−1.5

−0.5

0.5

Log(B)

Log (P(B))

−2 −1 0 1 2
2000

4000

6000

8000

10000

β

β = 0
β = −0.5
β = −1

Fig. 3.10 The distribution of betweenness on weighted scale-free networks with degree exponent
γ = 2.5 and network size N = 1,024. Blue, red, and green circles correspond to β = 0,−0.5,
and −1, respectively. The black line is a straight line fit with slope −2.14. The inset shows the
average betweenness 〈B〉 as a function of β . Results are obtained from 100 network realizations
and networks are constructed using the configuration model [147]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5 x 105

β

Erdos−Renyi
Scale−free

−2 −1 0 1 2
0

0.04

0.08

0.12

0.16

β

φ

<Bmax>

Fig. 3.11 The average value of the maximal betweenness (over 100 realizations) 〈Bmax〉 on
weighted scale-free networks and weighted Erdős–Rényi networks of size N = 1,024. The scale-
free networks considered here have degree exponent γ = 2.5 and are constructed using the
configuration model [147]. Optimal values of 〈Bmax〉 are obtained at β = −0.5 for both classes
of networks

86 G. Korniss et al.

of betweenness is obtained at β = −0.5 where the throughput is highest. Note that
the same observation for the homogenization of the betweenness landscape and the
minimization of the maximum betweenness was reported recently by Yang et al.
[90] for BA scale free networks (γ = 3). Although there have been some attempts
at analytical estimations of the optimal value of β [90], no rigorous arguments are
known at present which explain this optimal value. A study of the optimal weight
distribution on weighted Erdős–Rényi graphs yields similar results. However, a
point worth mentioning is that for similar network size and average degree, the
throughput for an Erdős–Rényi network is consistently greater than that of a scale-
free network as β is varied (see Fig. 3.11).

3.6.1 Cascading Failures and Cascade Control in Weighted
Networks

Infrastructure networks with complex interdependencies are known to be vulnerable
to cascading failures. A cascading failure is a domino effect which originates
when the failure of a given node triggers subsequent failures of one or several
other nodes, which in turn trigger their own failures. Examples of cascading
failures are abundant in the real world, including the “Northeast Blackout of 2003”
(http://en.wikipedia.org/wiki/Northeast blackout of 2003) and the current global
economic crisis [148].

The first notable study of cascading failures on networks was by Motter and Lai
[149], and the model they proposed is the one we pursue here. The model assumes
that in the network under consideration each node is transmitting one unit of some
quantity (energy, information, etc.) to every other node through the shortest path
between them. As a result, there is some “load” or betweenness incurred on each
node which is equal to the number of shortest paths passing through that node. It is
assumed that each node is attributed a capacity which is the maximum load that can
be handled by the node. Since cost constraints prohibit indiscriminately increasing
a node’s capacity, a natural assumption is that the capacity assigned to a node is
proportional to the load that it is expected to handle. Thus [149, 150],

Cj = (1+α)B j (3.44)

where α ≥ 0 is a tolerance parameter which quantifies the excess load that a given
node can handle. The failure of a node is simulated by the removal of the node and
all links connected to it. The functioning of the network after a node failure requires
a recomputation of the shortest paths that originally may have passed through the
failed node. This redistribution of shortest paths can radically alter the landscape
of betweenness on the network. If the redistribution causes certain nodes to have
a load greater than their capacity, these nodes also fail. These failures can in turn
trigger more failures, thus leading to a cascade. A natural quantity that signifies the

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

f

G’/G

β = 0
β = 1
β = −0.5
β = −1

−4 −3 −2 −1 0 1
0

0.2
0.4
0.6
0.8

1

β

G
’/G

Fig. 3.12 Simulation results showing the relationship between the fraction of intentionally
removed nodes f and the fractional size of the surviving giant connected component G′/G on
weighted scale-free networks. Results are for ten network realizations of scale-free networks with
degree exponent λ = 2.5 and N = 1,000, constructed using the configuration model [147]. The
parameter α which quantifies the excess capacity (3.44) is set to 0.5 here. The inset shows the
relative size of the giant component of the surviving network vs. the weighting parameter β for the
f = 0 baseline scenario (no intentional node removal)

severity of a cascade is the ratio of the size of the giant connected component G′
remaining after the cascade, to the size of the original giant component, G. Motter
and Lai [149] showed that for scale free networks that local failures originating at
high degree or high betweenness nodes results in cascades with a high degree of
severity. In contrast, a random node failure seldom initiates a cascade, and therefore
leaves most of the giant connected component intact.

In a subsequent study [151], Motter demonstrated that cascades can be stopped
through the intentional removal of nodes after the initial failure has occurred but
before the secondary overload failures have begun. One such strategy is to remove
a certain fraction f of the nodes with the lowest betweenness. Here, we show
the results of this procedure extended to weighted networks. In our simulations,
cascades are initiated by the removal of the highest betweenness node on a scale-
free network with N = 1,000 nodes and with α = 0.5. Notice that the damage caused
on an unweighted network β = 0 by a cascade in the absence of any defense strategy
(f = 0) results in the giant component losing about 30% of its nodes (Fig. 3.12).

Intentional removals marginally improve the ratio G′/G until a certain optimal
value of f beyond which the damage to the network is primarily a result of the
intentional removals itself. Thus, beyond the optimal f for a given β ,

G′

G
≈ 1− f .

88 G. Korniss et al.

When β is decreased below zero the shortest paths avoid the hubs; thus allevi-
ating the load on the high degree nodes. For small negative values, β = −0.5,−1
since the total load on the network is balanced more homogeneously among all
the nodes in the network (see Figs. 3.9 and 3.10) than on the unweighted network,
the size of the cascade dramatically reduces even without any intentional removals
i.e. G′/G ≈ 0.99 at f = 0 for both β = −0.5,1 (Fig. 3.12, inset). Furthermore,
intentional removals (f > 0) only cause further damage . For β = 1, shortest paths
are biased towards the hubs, thereby broadening the fat tail of the load distribution
making it even more heterogeneous than for an unweighted network (not shown). As
would be expected, the severity of a cascade in this case is far greater than that in an
unweighted network, and consequently the gain arising from intentional removals
is also extremely high. At the optimal f , the size of the giant component is greater
than half the original network size as opposed to 3% without intentional removals.
Thus, in summary for any weighted network there exists an optimal fraction of
intentionally removed nodes at which the damage caused by the cascade is the
least severe. Furthermore, this optimal removed fraction is very close to zero for
a weighted network with β = −1; thus, implying that for this value of β networks
are maximally resilient to cascading failures for the network parameters used here.

In the model addressed here, the loads and therefore the capacities result from
the particular assignment of shortest paths on the network. Thus, the loads and
capacities are inherently tied to the topology of the network. An alternative model
proposed in [142] looked at similar failure triggered cascades but where the loads on
each node were drawn from an arbitrary distribution uncorrelated with the topology
of the network. Further studies of cascading failures on weighted networks subject to
empirically observed forms of the load–capacity relationship [152] can be found in
[89,90]. The closely related problem of attacking a network by iteratively damaging
the node with the highest betweenness and recalculating the betweenness after each
damage iteration has been studied in [143, 153].

3.7 Summary and Outlook

In this chapter, we considered a simple class of weighted networks in the context of
synchronization, flow, and robustness. In particular, we considered weighted edges
Ci j ∝ Ai j(kik j)

β , and investigated optimizing the relevant network observables, i.e.,
minimizing the width of the synchronization landscape, maximizing the throughput
in network flow, or maximizing the size of the surviving giant component following
cascading failures (triggered by local overloads).

Our models and methods provided some insights into the challenging problem
of optimizing the allocation of limited resources [152, 154] in weighted complex
networks. Our results for these fundamental models support that even with this
simple one-parameter (β) optimization, one can significantly improve global net-
work performance, as opposed to performing an exhaustive and computationally

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 89

prohibitive search for optimal weight allocations. It is also important to note
that in our optimization problems for RWs (Sect. 4) and flow (Sects. 5 and
6), for simplicity, we considered processing or queuing limitations at the nodes.
Within an identical framework, however, one should also consider and study edge-
limited flows (motivated by finite bandwidth) with weighted links [155, 156]. Our
preliminary results indicate that while optimization is possible, it naturally occurs at
a different value of the weighting parameter β . This implies that one cannot optimize
and balance traffic for both queueing and bandwidth limitation simultaneously,
but instead, trade-offs have to be considered with the knowledge of specific
systems.

Real-life information, communication, and infrastructure networks are not only
weighted and heterogeneous, but are also spatially embedded [65, 157, 158] and
can also exhibit degree correlations [15, 18]. The corresponding metrics (Euclidean
distance) strongly influences the cost of the edges, and in turn, the optimal distri-
bution of limited resources. We currently explore and investigate these problems on
weighted spatially-embedded complex networks.

Acknowledgements This research was supported in part by RPI’s Seed Grant, NSF Grant
No. DMR-0426488, DTRA Award No. HDTRA1-09-1-0049, and by the Army Research Labo-
ratory under Cooperative Agreement Number W911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government.

Appendix 1: Globally Optimal Network with Fixed Edge Cost

In this Appendix we determine the the minimum attainable width in the EW
synchronization problem for networks with a fixed edge cost. Further, we identify a
network which realizes this globally optimal synchronization efficiency. For the EW
synchronization problem we can express the total edge cost with the eigenvalues of
the network Laplacian,

2Ctot =∑
i, j

Ci j =∑
i

Ci =∑
i
Γii = Tr(Γ) =∑

l �=0

λl . (3.45)

Thus, the global optimization problem can be cast as

〈w2〉= 1
N

N−1

∑
l=1

1
λl

= minimum, (3.46)

with the constraint
N−1

∑
l=1

λl = 2Ctot = fixed. (3.47)

90 G. Korniss et al.

This elementary extremum problem, (3.46) and (3.47), immediately yields a
solution where all N − 1 non-zero eigenvalues are equal,

λl =
2Ctot

N − 1
, l = 1,2, . . . ,N − 1, (3.48)

and the corresponding absolute minimum of the width is

〈w2〉min =
(N − 1)2

2NCtot
. (3.49)

As one can easily see, the above set of identical eigenvalues corresponds to a
coupling matrix and network structure where each node is connected to all others
with identical strength Ci j = 2Ctot/[N(N − 1)]. That is, for fixed cost, the fully-
connected (FC) network is optimal, yielding the absolute minimum width.

Appendix 2: The Mean-Field Approximation in Stochastic
Synchronization on Networks

Summing up the exact equations of motion (3.1) over all nodes and exploiting the
symmetry Ci j =Cji yields the stochastic equation for the mean

∂t h = ξ (t), (3.50)

where ξ (t) = 1
N ∑iηi(t). From the properties of the individual noise terms in (3.1) it

follows that 〈ξ (t)〉= 0 and 〈ξ (t)ξ (t ′)〉= 2
N δ (t − t ′). Note that the above stochastic

equation is exact for the mean h(t). In the mean-field (MF) approximation one
replaces the local neighborhood averages by the global mean h (3.11) (which is
a crude approximation) yielding

∂t hi ≈ −Ci
(
hi − h

)
+ηi(t). (3.51)

Since the time evolution of the mean is now explicit (3.50), from (3.51) we can
obtain the approximate equations of motion for the fluctuations with respect to the
mean, Δi(t)≡ hi(t)− h(t),

∂tΔi(t)≈ −Ci Δi(t)+ η̃i(t), (3.52)

where η̃i(t)≡ηi(t)−ξ (t)with 〈η̃i(t)〉 and 〈η̃i(t)η̃ j(t ′)〉= 2(δi j− 1
N)δ (t−t ′). From

elementary properties of the above linear stochastic differential equations [159] for
the equal-time steady-state fluctuations one finds

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 91

〈Δi(t)Δ j(t)〉= 2
Ci +Cj

(
δi j − 1

N

)
. (3.53)

Thus, the steady-state fluctuations about the mean decouple in the asymptotic large
N limit, while 〈(hi − h)2〉= 〈Δ2

i 〉 ≈ 1/Ci.

Appendix 3: The Weighted Degree for Uncorrelated SF Graphs

Here, we establish an approximate relationship between the weighted degree Ci and
the degree ki of node i for uncorrelated (UC) weighted SF graphs. Note that Ci also
becomes the effective coupling to the mean in the mean-field approximation of the
EW synchronization problem. Using the specific form of the weights as constructed
in (3.8), we write

Ci =∑
j

Ci j = Nk
∑ j Ai j(kik j)

β

∑l,n Aln(klkn)β
= Nk

kβi ∑ j Ai jk
β
j

∑l kβl ∑n Alnkβn
. (3.54)

For large minimum (and in turn, average) degree, expressions of the form ∑ j Ai jk
β
j

can be approximated as

∑
j

Ai jk
β
j =

(
∑

j
Ai j

)
∑ j Ai jk

β
j

∑ j Ai j
= ki

∑ j Ai jk
β
j

∑ j Ai j
≈ ki

∫
dkP(k|ki)k

β , (3.55)

where P(k|k′) is the probability that an edge from node with degree k′ connects to
a node with degree k. For uncorrelated random graphs, P(k|k′) does not depend on
k′, and one has P(k|k′) = kP(k)/〈k〉 [15, 18], where P(k) is the degree distribution
and 〈k〉 is the ensemble-averaged degree. Thus, (3.54), for UC random networks,
can be approximated as

Ci ≈ N〈k〉 kβ+1
i

∫
dkP(k|ki)kβ

N
∫

dk′k′β+1P(k′)
∫

dkP(k|k′)kβ = 〈k〉 kβ+1
i∫ ∞

m dk′k′β+1P(k′)
. (3.56)

Here, we consider SF degree distributions,

P(k) = (γ− 1)mγ−1k−γ , (3.57)

where m is the minimum degree in the network and 2 < γ ≤ 3. The average and
the minimum degree are related through 〈k〉= m(γ−1)/(γ−2). No upper cutoff is
needed for the convergence of the integral in (3.56), provided that 2+β − γ < 0,
and one finds

92 G. Korniss et al.

Ci ≈ γ− 2−β
γ− 2

kβ+1
i

mβ . (3.58)

Thus, for uncorrelated random SF graphs with large minimum degree, the effective
coupling coefficient Ci only depends on the degree ki of node i, i.e., for a node with
degree k

C(k)≈ γ− 2−β
γ− 2

kβ+1

mβ . (3.59)

Appendix 4: RW Hitting Times and the Network Propagator

Employing Doyle and Snell’s result [84] for the expected number of visits (3.27),
and expressing the voltage difference of the associated resistor networks in terms of
the network propagator (or pseudo inverse of the network Laplacian) (3.19) one has

Es,t
i =Ci(Vi −Vt) =Ci(V̂i − V̂t) =Ci(Gis −Git −Gts +Gtt). (3.60)

Then the hitting (or first passage) time, which is the expected number of steps in a
RW which starts at node s and ends upon first reaching node t, can be written as

τst =∑
i

Es,t
i =∑

i
Ci(Gis −Git −Gts +Gtt). (3.61)

The expression for the symmetric commute time (expected number of steps for a
“round-trip” between nodes s and t) simplifies significantly,

τst + τts =∑
i

(Es,t
i +Et,s

i) =∑
i

Ci(Gss +Gtt − 2Gts) =

(
∑

i

Ci

)
Rst , (3.62)

where we used the expression for the two-point resistance of the associated resistor
network (3.20).

References

1. S.H. Strogatz, Nature 410, 268 (2001).
2. S.H. Strogatz, Synch: the Emerging Science of Spontaneous Order (Hyperion, New York.

2003).
3. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1

(2002).
4. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77,

137 (2005).
5. A. Arenas et al., Phys. Rep.469, 93 (2008).

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 93

6. R. Olfati-Saber, J.A. Fax, and R.M. Murray, Proc. IEEE 95, 215 (2007).
7. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and

Applications (Prentice Hall, Englewood Cliffs, NJ, 1993).
8. B. Tadic, G.J. Rodgers, and S. Thurner, Int. J. Bifurcation and Chaos, 17, 2363 (2007).
9. L.K. Gallos, C. Song, S. Havlin, and H.A. Makse, Proc. Natl. Acad. Sci. USA 104, 7746

(2007).
10. G. Korniss, Phys. Rev. E 75, 051121 (2007).
11. A. Schrijver, “Flows in railway optimization”, Nieuw Archief voor Wiskunde 5/9 126 (2008).
12. D.J. Watts and S.H. Strogatz, Nature 393, 440 (1998).
13. A.-L. Barabási and R. Albert, Science 286, 509 (1999).
14. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
15. S.N. Dorogovtsev and J.F.F. Mendes, Adv. in Phys. 51, 1079 (2002).
16. M.E.J. Newman, SIAM Review 45, 167 (2003).
17. L. Li, D. Alderson, R. Tanaka, J.C. Doyle, W. Willinger, Internet Math. 2, 431 (2005);

arXiv:cond-mat/0501169.
18. R. Pastor-Satorras and Alessandro Vespignani, Evolution and Structure of the Internet:

A Statistical Physics Approach (Cambridge University Press, 2004).
19. S. Boccaletti, V. Latora Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424 175 (2006).
20. A. Barrat, M. Barthelemy, and Alessandro Vespignani, Dynamical processes in complex

networks (Cambridge University Press, 2008).
21. G. Korniss, M.A. Novotny, H. Guclu, and Z. Toroczkai, P.A. Rikvold, Science 299, 677

(2003).
22. R. Olfati-Saber and R.M. Murray, IEEE Trans. Automat. Contr. 49, 1520 (2004).
23. R. Olfati-Saber, in Proc. American Control Conf. (IEEE, Los Alamitos, CA, 2005).

pp. 2371–2378.
24. C.W. Reynolds, Computer Graphics, 21, 25 (1987).
25. T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995).
26. F. Cucker and S. Smale, IEEE Trans. Automat. Contr. 52, 852 (2007).
27. J.A. Fax and R.M. Murray, IEEE Trans. Automat. Contr. 49, 1465 (2004).
28. T.I. Netoff, R. Clewley, S. Arno, T. Keck, and J.A. White, The Journal of Neuroscience 24,

8075 (2004).
29. G. Grinstein and R. Linsker, Proc. Natl. Acad. Sci. USA 102, 9948 (2005).
30. E. Izhikevich, SIAM Rev. 43, 315 (2001).
31. Q. Wang, Z. Duan, M. Perc, and G. Chen, Europhys. Lett. 83, 50008 (2008).
32. Q. Wang, M. Perc, Z. Duan, and G. Chen, Phys. Rev. E 80, 026206 (2009).
33. A.T. Winfree, J. Theor. Biol. 16, 15 (1967).
34. D. Lusseau, B. Wilson, P.S. Hammond, K. Grellier, J.W. Durban, K.M. Parsons, T.R. Barton,

P.M. Thompson, Journal of Animal Ecology 75, 14 (2006).
35. Y. Rabani, A. Sinclair, and R. Wanka, “Local Divergence of Markov Chains and the Analysis

of Iterative Load-Balancing Schemes”, in Proc, 39th Annual Symposium on Foundations of
Computer Science (IEEE Computer Society, Washington, DC, 1998) pp. 694–702.

36. G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, Phys. Rev. Lett. 84, 1351 (2000).
37. P.M.A. Sloot, B.J. Overeinder, and A. Schoneveld, Comput. Phys. Commun. 142, 76 (2001).
38. S. Kirkpatrick, Science 299, 668 (2003).
39. A. Kolakowska and M. A. Novotny, in Artificial Intelligence and Computer Science, edited

by S. Shannon (Nova Science Publishers, Inc., New York, 2005), pp. 151–176.
40. A. Schrijver, Mathematical Programming, 91, 437 (2002).
41. A. N. Tolstoi, in Transportation Planning, Vol. I, (TransPress of the National Commissariat

of Transportation, Moscow, 1930) pp. 23.55.
42. F.L. Hitchcock, J. of Math. and Phys. 20, 224 (1941).
43. L.V. Kantorovich and M.K. Gavurin, in Collection of Problems of Raising the Efficiency of

Transport Performance, Akademiia Nauk SSSR, Moscow-Leningrad, 1949, pp. 110–138.
44. Tj.C. Koopmans, Econometrica 17 (Supplement), 136 (1949).

94 G. Korniss et al.

45. T.E. Harris, F.S. Ross, “Fundamentals of a Method for Evaluating Rail Net Capacities”,
Research Memorandum RM-1573, The RAND Corporation, Santa Monica, California, 1955.

46. L.R. Ford and D.R. Fulkerson, “Maximal Flow through a Network”, Research Memorandum
RM-1400, The RAND Corporation, Santa Monica, CA, 1954; Canadian J. Math. 8, 399
(1956).

47. L.R. Ford and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton,
NJ, 1962).

48. D.L. Alderson, Operations Research 56, 1047 (2008).
49. L. Donetti, F. Neri, and M.A. Munoz, J. Stat. Mech. P08007 (2006).
50. P. J. Macdonald, E. Almaas, A.-L. Barabási, Europhys. Lett. 72, 308 (2005).
51. A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. USA

101, 3747 (2004).
52. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).
53. K.-I. Goh, J.D. Noh, B. Kahng, and D. Kim, Phys. Rev. E 72, 017102 (2005).
54. J.D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).
55. L.K. Gallos, Phys. Rev. E 70, 046116 (2004).
56. E. Almaas, R.V. Kulkarni, and D. Stroud, Phys. Rev E 68, 056105 (2003).
57. M. Argollo de Menezes and A.-L. Barabási, Phys. Rev. Lett. 92 028701 (2004).
58. E. Almaas, B. Kovacs, T. Vicsek, Z.N. Oltvai and A.-L. Barabási, Nature 427, 839 (2004).
59. Z. Toroczkai and K. Bassler, Nature 428, 716 (2004).
60. R. Guimerà, S. Mossa, A. Turtschi, and L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102,

7794 (2005).
61. K. Park, Y.-C. Lai, L. Zhao, and N. Ye, Phys. Rev. E 71, 065105(R) (2005).
62. D.J. Ashton, T.C. Jarrett, and N.F. Johnson, Phys. Rev. Lett. 94, 058701 (2005).
63. D.-S. Lee and H. Rieger, Europhys. Lett. 73, 471 (2006).
64. D. Brockmann, L. Hufnagel, and T. Geisel, Nature 439, 462 (2006).
65. V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani, Proc. Natl. Acad. Sci. USA 103,

2015 (2006).
66. W. Krause, I. Glauche, R. Sollacher, and M. Greiner, Physica A 338, 633 (2004).
67. R. Guimerà, A. Dı́az-Guilera, F. Vega-Redondo, A. Cabrales, and A. Arenas, Phys. Rev. Lett.

89, 248701 (2002).
68. B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69, 036102 (2004).
69. P.E. Parris and V.M. Kenkre, Phys. Rev E 72, 056119 (2005).
70. L. Zhao, Y.-C. Lai, K. Park, and Nong Ye, Phys. Rev. E 71, 026125 (2005).
71. S. Sreenivasan, R. Cohen, E. López, Z. Toroczkai, and H.E. Stanley, Phys. Rev. E. 75, 036105

(2007).
72. B. Danila, Y. Yu, S. Earl, J.A. Marsh, Z. Toroczkai, and K.E. Bassler, Phys. Rev. E 74, 046114

(2006).
73. B. Danila, Y. Yu, J.A. Marsh, and K.E. Bassler, Phys. Rev. E 74, 046106 (2006).
74. B. Danila, Y. Yu, J.A. Marsh, and K.E. Bassler, Chaos 17, 026102 (2007).
75. T. Antal and P.L. Krapivsky, Phys. Rev. E 74, 051110 (2006).
76. A. Nagurney and Q. Qiang, Europhys. Lett. 79, 38005 (2007).
77. A. Nagurney and Q. Qiang, Europhys. Lett. 80, 68001 (2007).
78. D.J. Aldous, “Cost-volume relationships for flows through a disordered network”, Math.

Oper. Res. 33, 769 (2008).
79. J.S. Andrade, Jr., H.J. Herrmann, R.F.S. Andrade, and L.R. da Silva, Phys. Rev. Lett. 94,

018702 (2005).
80. E. López, S.V. Buldyrev, S. Havlin, and H.E. Stanley, Phys. Rev. Lett. 94, 248701 (2005).
81. S. Carmi, Z. Wu, E. López, S. Havlin, and H.E. Stanley, Eur. Phys. J. B 57, 165 (2007).
82. Z. Wu, L.A. Braunstein, S. Havlin, and H.E. Stanley, Phys. Rev. Lett. 96, 148702 (2006).
83. M. Barthélemy and A. Flammini, J. Stat. Mech. L07002 (2006).
84. P.G. Doyle and J.L. Snell, Random Walks and Electric Networks, Carus Mathematical

Monograph Series Vol. 22 (The Mathematical Association of America, Washington, DC,
1984), pp. 83–149; arXiv:math.PR/0001057.

3 Optimizing Synchronization, Flow, and Robustness in Weighted Complex Networks 95

85. L. Lovász, Random Walks on Graphs: A Survey in Combinatorics, Paul Erdős is Eighty
Vol. 2, edited by D. Miklós, V.T. Sós, and T. Szőnyi (János Bolyai Mathematical Society,
Budapest, 1996), pp. 353-398; http://research.microsoft.com/users/lovasz/erdos.ps.

86. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge,
UK, 2001).

87. G. Korniss, M.B. Hastings, K.E. Bassler, M.J. Berryman, B. Kozma, and D. Abbott, Phys.
Lett. A 350, 324 (2006).

88. C. Zhou, A.E. Motter, and J. Kurths, Phys. Rev. Lett. 96, 034101 (2006).
89. W.-X. Wang and G. Chen, Phys. Rev. E 77, 026101 (2008).
90. R. Yang, W.-X. Wang, Y.-C. Lai, and G. Chen, Phys. Rev. E 79, 026112 (2009).
91. A. Baronchelli and R. Pastor-Satorras, Phys. Rev. E 82, 011111 (2010).
92. R. Huang, “Flow Optimization in Complex Networks”, M.S. Thesis, Rensselaer Polytechnic

Institute, Troy, NY (2010).
93. Y. Kuramoto, in Proceedings of the International Symposium on Mathematical Problems

in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics Vol. 39 (Springer,
New York, 1975) pp. 420–422.

94. H. Hong, M.Y. Choi, and B.J. Kim, Phys. Rev. E 65, 026139 (2002).
95. T. Ichinomiya, Phys. Rev. E 70, 026116 (2004).
96. D.-S. Lee, Phys. Rev. E 72, 026208 (2005).
97. M. Barahona and L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002).
98. T. Nishikawa, A.E. Motter, Y.-C. Lai, and F.C. Hoppensteadt, Phys. Rev. Lett. 91, 014101

(2003).
99. A.E. Motter, C. Zhou, and J. Kurths, Europhys. Lett. 69, 334 (2005).

100. A.E. Motter, C. Zhou, and J. Kurths, Phys. Rev. E. 71, 016116 (2005).
101. C. Zhou and J. Kurths, Chaos 16, 015104 (2006).
102. L.M. Pecora and T.L.Carroll, Phys. Rev. Lett 80, 2109 (1998).
103. S.M. Park and B.J. Kim, Phys. Rev E 74, 026114 (2006).
104. T. Nishikawa and A.E. Motter, Phys. Rev. E 73, 065106(R) (2006).
105. T. Nishikawa and A.E. Motter, Proc. Natl. Acad. Sci. U.S.A. 107, 10342 (2010).
106. Z. Toroczkai, G. Korniss, M. A. Novotny, and H. Guclu, in Computational Complexity

and Statistical Physics, edited by A. Percus, G. Istrate, and C. Moore, Santa Fe Institute
Studies in the Sciences of Complexity Series (Oxford University Press, 2005), pp. 249–270;
arXiv:cond-mat/0304617.

107. H. Guclu, G. Korniss, Z. Toroczkai, Chaos 17, 026104 (2007).
108. A. Nagurney, J. Cruz, J. Dong, and D. Zhang, European Journal of Operational Research 26,

120 (2005).
109. S.F. Edwards and D.R. Wilkinson, Proc. R. Soc. London, Ser A 381, 17 (1982).
110. B. Kozma and G. Korniss, in Computer Simulation Studies in Condensed Matter Physics

XVI, edited by D.P. Landau, S.P. Lewis, and H.-B. Schüttler, Springer Proceedings in Physics
Vol. 95 (Springer-Verlag, Berlin, 2004), pp. 29–33.

111. B. Kozma, M. B. Hastings, and G. Korniss, Phys. Rev. Lett. 92, 108701 (2004).
112. B. Kozma, M. B. Hastings, and G. Korniss, Phys. Rev. Lett. 95, 018701 (2005).
113. B. Kozma, M.B. Hastings, and G. Korniss, in Noise in Complex Systems and Stochastic

Dynamics III, edited by L.B. Kish, K. Lindenberg, Z. Gingl, Proceedings of SPIE Vol. 5845
(SPIE, Bellingham, WA, 2005) pp.130–138.

114. M. B. Hastings, Eur. Phys. J. B 42, 297 (2004).
115. D. Hunt, G. Korniss, and B.K. Szymanski, Phys. Rev. Lett. 105, 068701 (2010).
116. C. E. La Rocca, L. A. Braunstein, and P. A. Macri, Phys. Rev. E 77, 046120 (2008).
117. C. E. La Rocca, L. A. Braunstein, and P. A. Macri, Phys. Rev. E 80, 026111 (2009).
118. M. Catanzaro, M. Boguña, and R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005).
119. M.E.J. Newman and D.J. Watts, Phys. Lett. A 263, 341 (1999).
120. R. Monasson, Eur. Phys. J. B 12, 555 (1999).
121. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).

96 G. Korniss et al.

122. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
123. M.E.J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).
124. F. Wu and B.A. Huberman, Eur. Phys. J. B. 38, 331 (2004).
125. C. Faloutsos, K.S. McCurley, and A. Tomkins, in Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (ACM Press, New York,
2004) pp. 118–127.

126. M.E.J. Newman, Social Networks 27, 39 (2005).
127. U. Brandes and D. Fleischer, Lecture Notes in Computer Science, edited by V. Diekert and

B. Durand (Springer, NY, 2005) Vol. 3404, pp. 533–544.
128. R. Kaul, Y. Yun, and S.-G. Kim, Comm. ACM 52, 132 (2009).
129. F.Y. Wu, J. Phys. A 37, 6653 (2004).
130. A.K. Chandra, P. Raghavan, W.L. Ruzzo, and R. Smolensky, in Proceedings of the 21st

Annnual ACM Symposium on the Theory of Computing (ACM Press, New York, 1989),
pp. 574–586.

131. P. Tetali, J. Theor. Prob. 4 101 (1991).
132. L. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman, Phys. Rev. E 64 046135

(2001).
133. H.P. Thadakamalla, R. Albert, and S.R.T. Kumara, Phys. Rev. E 72 066128 (2005).
134. L.C. Freeman, Sociometry 40, 35 (1977).
135. L.C. Freeman, Social Networks 1, 215 (1979).
136. J.D.C. Little, Operations Res. 9, 383 (1961).
137. A.O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applica-

tions, 2nd ed. (Academic Press, Boston, 1990).
138. M. Boguña, R. Pastor- Satorras, and A. Vespignani, Eur. Phys. J. B 38, 205 (2004).
139. R. Albert. H. Jeong, and A.-L. Barabási, Nature 406, 378 (2000).
140. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).
141. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001).
142. Y. Moreno, R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Europhys. Lett. 62, 292

(2006).
143. L. Dall’Asta, A. Barrat, M. Barthélemy, and A. Vespignani, J. Stat. Mech. P04006 (2006).
144. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Numerical Recipes in C, 2nd ed.

(Cambridge Univ. Press, Cambridge, 1995), Secs. 11.2 and 11.3.
145. P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).
146. M. Barthélemy, Eur. Phys. J, B 38, 1434 (2004)
147. M. Molloy and B. Reed, Random. Struct. Algorithms 6, 161 (1995).
148. Jeffrey Sachs, Scientific American 300, 34 (2009).
149. A.E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R) (2002).
150. L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R) (2004).
151. A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004).
152. D.-H. Kim and A.E. Motter, New J. Phys. 10, 053022 (2008).
153. P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han, Phys. Rev. E 65, 056109 (2002).
154. D.-H. Kim and A.E. Motter, J. Phys. A 41, 224019 (2008).
155. A. Asztalos, S. Sreenivasan, G. Korniss, and B.K. Szymanski, “Distributed flow optimization

and cascading effects in weighted complex networks” (to be submitted, 2011).
156. X. Ling, M.-B. Hu, W.-B. Du, R. Jiang, Y.H. Wu, ans Q.S. Wu, Phys. Lett. A 374, 4825

(2010).
157. H.P. Thadakamalla, R. Albert, and S.R.T. Kumara, “Search in spatial scale-free networks”,

New J. Phys. 9 190 (2007).
158. M. Ángeles Serrano, D. Krioukov, and M. Boguña, “Self-Similarity of Complex Networks

and Hidden Metric Spaces”, Phys. Rev. Lett. 100, 078701 (2008)
159. C.W. Gardiner, Handbook of Stochastic Methods 2nd ed. (Springer-Verlag, New York, 1985).

Chapter 4
Joint Optimization of Resources and Routes
for Minimum Resistance: From Communication
Networks to Power Grids

Ali Tizghadam, Alireza Bigdeli, Alberto Leon-Garcia, and Hassan Naser

Abstract In this chapter, we are concerned with robustness design in complex
communication networks and power grids. We define robustness as the ability of
a network to adapt to environmental variations such as traffic fluctuations, topology
modifications, and changes in the source (sink) of external traffic. We present a
network theory approach to the joint optimization of resources and routes in a
communication network to provide robust network operation. Our main metrics are
the well-known point-to-point resistance distance and network criticality (average
resistance distance) of a graph. We show that some of the key performance metrics in
a communication network, such as average link betweenness sensitivity or average
network utilization, can be expressed as a weighted combination of point-to-point
resistance distances. A case of particular interest is when the external demand is
specified by a traffic matrix. We extend the notion of network criticality to be
a traffic-aware metric. Traffic-aware network criticality is then a weighted linear
combination of point-to-point resistance distances of the graph. For this reason, in
this chapter, we focus on a weighted linear sum of resistance distances (which is
a convex function of link weights) as the main metric and we discuss a variety of
optimization problems to jointly assign routes and flows in a network. We provide
a complete mathematical analysis of the network planning problem (optimal weight
assignment), where we assume that a routing algorithm is already in place and
governs the distribution of network flows. Then, we extend the analysis to a more
general case involving the simultaneous optimization of resources and flows (routes)
in a network. Furthermore, we briefly discuss the problems of finding the best set
of demands that can be matched to a given network topology (joint optimization
of resources, flows, and demands) subject to the condition that the weighted linear
sum of all point-to-point resistance distances of the network should remain below a

A. Tizghadam (�) • A. Bigdeli • A. Leon-Garcia • H. Naser
University of Toronto (and Lakehead University), Toronto, Canada
e-mail: ali.tizghadam@utoronto.ca; alireza.bigdeli@utoronto.ca;
alberto.leongarcia@utoronto.ca; hnaser@lakeheadu.ca

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 4, © Springer Science+Business Media, LLC 2012

97

ali.tizghadam@utoronto.ca
alireza.bigdeli@utoronto.ca
alberto.leongarcia@utoronto.ca
hnaser@lakeheadu.ca

98 A. Tizghadam et al.

certain threshold. We discuss applications of the proposed optimization methods to
the design of virtual networks. Moreover, we show how our techniques can be used
in the design of robust communication networks and robust sparse power grids.

4.1 Introduction

Robustness to the environmental changes (such as topology modification and traffic
shift) is a key factor in designing communication networks and power grids.
Robustness problem can be studied from different points of view. In some of the
robust design approaches, the goal is to find an appropriate metric to quantify the
effect of environmental changes, and then the robustness is provided by optimizing
the proposed metric. In some other robust designs, the goal is to find an optimization
problem (usually in the form of min–max or max–min) to guarantee the insensitivity
of the network to the unanticipated changes in environmental parameters.

We are interested in combining these two aspects of the robustness problem. We
use a well-known graph metric, random-walk betweenness centrality (for nodes and
links of a graph), as the main tool to capture the effect of environmental changes. In
this research, the environmental parameters of interest are topology, traffic demand,
and community of interest (i.e. the set of nodes, where the external traffic is injected
or terminated). We extend the notion of betweenness centrality to the traffic-aware
betweenness centrality in which the effect of external traffic demand is explicitly
considered. We normalize the traffic-aware betweenness of a node by its weight and
we refer to it as traffic-aware node criticality. The average of all traffic-aware node
criticalities is referred to as traffic-aware network criticality (TANC).

We show that TANC can capture the effect of our environmental parameters.
On the other hand it can be shown that TANC is a linear combination of point-
to-point resistance distances of the graph; therefore, we choose to have a linear
combination of all point-to-point resistance distances of the graph, which is referred
to as weighted network criticality (WNC), as our main robustness metric. We
study the mathematical properties of WNC and we discuss a range of optimization
problems to find a jointly optimal robust allocation of weights and flows to the links
of the network.

Our investigation aims to achieve two goals. First, we study the design of
robust networks which involves selecting appropriate topologies and assigning
suitable weights in order to provide specified degree of robustness in data networks
and power grids. Second, we consider the design of algorithms for robust joint
traffic engineering (flow assignment) and network planning (capacity allocation)
in communication networks.

The rest of the chapter is structured as follows. Section 17.2 summarizes some of
the previous works in the context of robust network design and robust routing. The
concept of centrality in graphs is reviewed in Sect. 4.3, followed by a discussion of
betweenness centrality in Sect. 4.4. In Sect. 4.5, we first provide a brief discussion
of the concepts of resistance distance and network criticality, and then we introduce

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 99

a new graph metric, TANC, and we show that TANC is a linear combination of
point-to-point resistance distances. Motivated by this, we choose to have a linear
combination of point-to-point resistance distances as the robustness metric, which
will be referred to as WNC, and in Sect. 4.6 we provide a detailed discussion on
the minimization of WNC. Section 4.7 is dedicated to the investigation a variety of
optimization problems based on WNC to achieve different goals, including resource
planning; flow assignment; joint optimization of resources, flows, and demands
(while WNC is kept below a certain known value); and k-robust network design.
Section 4.8 discusses the application of the proposed framework in designing virtual
networks; robust capacity planning for communication networks; and robust sparse
power grid design. Conclusions are provided in Sect. 4.9.

4.2 Related Works

The topological robustness of network topologies is studied in [1]. Graph-theoretic
concepts are used to investigate which network topologies are more robust. Authors
argue that “node connectivity” is the most useful metric in graph theory to study the
topological robustness of a network. They examine the relationship between node
connectivity and the degree of symmetry of the network and they suggest that it is
important for robust networks to satisfy node similarity and optimal connectivity
conditions. Two nodes are similar if there is an automorphism that can map one
to the other. A network is node similar if all of its nodes are similar. A graph is
optimally connected if its node connectivity is equal to the link connectivity metric
and both are equal to the minimum node degree of the graph. Ref. [1] investigates
the relationship between these conditions, and arrives at the result that a network
provides maximum resistance to the node destruction if it is both node-similar and
optimally connected. The paper then describes a number of ways to design robust
networks satisfying these conditions.

Ref. [2] introduces a new measure of symmetry, symmetry ratio of a network.
This metric is defined as the ratio of the number of distinct eigenvalues of the
network to the diameter. This metric is used to study the robustness of a network
topology in the face of targeted attacks.

The concept of vulnerability is closely related to the robustness. In vulnerability
analysis, one tries to find critical parts of a network, whose removal can cause a
significant adverse affect on the performance of the network. One of the early solid
works on vulnerability is reported in [3], where the authors investigate the response
of complex networks subject to attacks on links and nodes of the network. [3] defines
some attack scenarios and investigates the behavior of some graph metrics including
inverse geodesic distance, shortest-path betweenness centrality, and node degree
when attack happens. In [4] an axiomatic approach is used to define appropriate
vulnerability functions on graphs. The authors argue that a vulnerability function
should be invariant under automorphism. In addition, a vulnerability function has to
decrease when a new link is added to the graph. Moreover, a vulnerability function

100 A. Tizghadam et al.

must be computable in polynomial time. Based on these axioms, [4] suggests some
vulnerability functions, and investigates their characteristics. The main drawback of
[3,4] is that the study is valid for unweighted networks, where the effect of topology
on vulnerability is important.

Robustness is also important in traffic engineering. Network operators would like
their network to support current and future traffic matrices, even when links and
routers fail. Not surprisingly, no backbone network can do this today: It is hard to
accurately measure the current matrix, and harder still to predict future ones. Even if
the matrices are known, how do we know a network will support them, particularly
under failures? As a result, today’s networks are designed in a somewhat ad-hoc
fashion, using rules-of-thumb and crude estimates of current and future traffic. A
wealth of literature is available in tackling this problem and to provide a robust
traffic management scheme.

An approach to design backbone networks is proposed in [5] that is insensitive to
the traffic matrix (i.e., that works equally well for all valid traffic matrices), and that
continues to provide guaranteed performance under a user-defined number of link
and router failures. The authors use Valiant Load-Balancing method and argue that
it is a promising way to design robust backbone networks. The approach was first
proposed by Valiant for processor interconnection networks [6], and has received
recent interest for scalable routers with performance guarantees [7, 8]. Ref. [5]
applies Valiant method to the backbone network design problem and provides
appropriate capacity allocation for the links of a logical full mesh topology to
support load-balancing for all possible traffic matrices. In Valiant load-balancing
method, traffic destined for a sink d is forwarded to intermediate hops with equal
splits to all nodes, and then it is forwarded to the destination d. Delay propagation
is one of the shortcomings of this method.

One important category of algorithms in the area of robust traffic engineering
is oblivious routing. In oblivious routing, routes are computed to optimize the
worst-case performance over all traffic demands, therefore, the computed routes
are prepared for dynamic changes in traffic demands. In their pioneering work [9],
Applegate and Cohen propose an efficient algorithm to compute the worst case
oblivious routing for real networks. They also extend oblivious routing to compute
failure scenarios [10]. They found that the oblivious ratio is typically around a
factor of 2. A penalty as high as 100% may be acceptable when traffic demands
are completely unpredictable, but it is a high cost to pay under predictable demands.
In other words, oblivious routing takes a pessimistic point of view and may not be
appropriate in relatively stable periods or stable networks.

All of these traffic engineering methods try to maximize a variation of throughput
or to minimize a function of network utilization. However, these works are
usually oblivious about the mutual effect of topology and external traffic. In
our previous works [11, 12], we investigated the problem of traffic engineering
from a different perspective. We identified three major types of changes that may
affect the performance of the network: network topology, community of interest
(active source–destination pairs), and traffic demand. In [11], we used a modified
deterministic interpretation of “betweenness centrality” [13], a metric from graph

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 101

theory which characterizes the topological load of a node or link in a network
graph. While the results were encouraging, the analytical study of the results was not
feasible. In [12], we used a probabilistic interpretation of betweenness to investigate
the problem of designing robust traffic engineering methods. In this new direction,
we were able to investigate the problem analytically using metrics from graph-
theory. We have discovered some useful aspects of the robust network control and
traffic engineering problem in networks. In [12], we considered the effect of external
traffic in the weight of a link. We defined the link weight as the available bandwidth
of the link (difference of the link capacity and the flow passing through the link).

In the present work, we consider a general traffic matrix applied on the network,
and we extend our previous results in two directions. First, we propose a new
metric for robustness to decouple the effect of external traffic demand from the link
weight. Second, we develop optimization problems to jointly optimize the resources
(namely capacities) and routes (flows) such that the robustness is maximized. We
start our discussion by introducing the necessary concepts from graph theory.

4.3 Centrality Measures

Centrality measures in graph theory quantify the structural importance or promi-
nence of nodes and links. Numerous centrality indices have been introduced and
studied in literature, but according to [14], one can categorize these indices into
three major classes: reachability measures, vitality measures, and flow measures.
In reachability indices, a node is central if it reaches many other nodes, or can be
reached by many other nodes. All the centrality measures in this category use some
form of distance between two nodes. For instance, degree centrality which is a well-
known reachability index counts the number of nodes that can be reached within
distance 1.

Vitality measures are the second class of commonly used centrality indices.
Given a real-valued function on a graph G, a vitality measure quantifies the
difference between the value of the function on G with the presence or absence
of a node or a link. For example, in a wireless mobile network, it is desired to
keep the network connected all the time. Algebraic connectivity (the second smallest
eigenvalue of the graph Laplacian matrix) is an appropriate connectivity metric for
real-valued functions on the graph of the mobile network. Algebraic connectivity is
non-zero only if the graph is connected. In the case of algebraic connectivity, the
vitality of a node or link denotes the change of the algebraic connectivity, if that
node or link was removed from the network.

Finally, we have flow centrality measures. Let γs(d) denote the amount of flow
entering at node s destined for node d. Flow indices quantify how much of this flow
traverses a specific node or link. In this chapter, our focus is on flow centralities,
and in particular we are interested in different variations of betweenness centrality
as the most useful flow measure. We refer the reader to [14] for a complete review
of centrality measures.

102 A. Tizghadam et al.

4.4 Betweenness Centrality Measures

Our work in this chapter is based on the concept of betweenness centrality,
which can be categorized as a flow centrality measure. We first provide necessary
background and required definitions. Then, in Sect. 4.4.1, we derive a useful
relationship between a specific type of betweenness (i.e. random-walk betweenness)
and packet networks, justifying the usefulness of the betweenness measure in the
study of communication networks.

Freeman [13] introduced a very useful metric in graph theory referred to as
shortest-path betweenness centrality. For node k the shortest-path betweenness
centrality with respect to flows from source node s to destination node d is defined
as the proportion of instances of the shortest paths from node s to d that traverse
node k. This can be interpreted as the probability that node k is involved in any
communication between s and d with the assumption that all communication is
along equiprobable shortest paths. The overall shortest-path betweenness centrality
of node k is the sum of the centralities over all source–destination pairs. Link
betweenness is defined similarly. The concept of betweenness centrality is closely
related to the principle of conservation of flow in a communication network.
According to this principle for any intermediate node (or link) in a communi-
cation path, the incoming flow is equal to the outgoing flow. When we count
the proportion of instances that a node is involved in a communication along
shortest paths (or more generally a path), we implicitly assume the conservation of
flow.

A major drawback of the shortest-path betweenness is that it does not consider
the information that can be obtained from other paths of the network. In communi-
cations networks, it is frequently desirable to take a path other than the shortest path.
To overcome this issue, other betweenness centrality metrics have been proposed. In
[15] the authors introduce flow betweenness centrality. Suppose that each link of the
network is capable of transferring a unit flow of information. The flow betweenness
of a node k is defined as the proportion of flow through node k when maximum
flow is transmitted from source s to destination d averaged over all s− d pairs. The
maximum flow that can be sent between two nodes is in general more than a unit
flow since one can use multiple paths to transmit information. The flow betweenness
is in fact a vitality measure because the amount of flow passing along node k can
be found in the following way. Let fs(d) denote the maximum flow that can be
transmitted from source node s to destination d. Further, suppose we remove node
k (and its incident links) from the graph, and let f k

s (d) denote the maximum flow
that can be sent from s to d in the new graph. Then the flow traversing node k is:
fs(d)− f k

s (d). In fact, the flow betweenness measures the betweenness centrality
of network nodes when maximum possible flows are fed into the network (between
every pair of nodes). While the flow betweenness considers paths other than shortest
paths, it suffers from some of the limitations in the definition of shortest path
betweenness. In maximum flow problems, we still have one (or more) ideal path(s)

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 103

mandating the communication (just like shortest path); however, in many practical
situations flow does not take ideal paths either shortest path, max-flow path, or any
other type of ideal path.

Deterministic betweenness is a straightforward extension of shortest path
betweenness and is proposed in [11]. Deterministic betweenness of a node (or link)
k is the fraction of total paths between a source s and destination node d traversing
node (or link) k, averaged over all active traffic sources and sinks, which we refer
to as the community of interest. One can easily recognize two main differences
between deterministic betweenness and the original shortest-path betweenness.
First, in the former all the paths are involved, whereas in the latter only shortest paths
are considered. Second, in deterministic betweenness only the active path set (paths
within a community of interest) is involved in the definition of betweenness, whereas
in the original shortest path betweenness, all possible node pairs are considered.
Unfortunately, the enumeration of paths does not lend itself to tractable analytic
results.

In order to overcome these tractability problems, Newman [16] proposed random-
walk betweenness which is a probabilistic approach to define and analyze the
betweenness of a node/link. We begin with a graph model and we define necessary
notations, which will be used throughout.

An undirected graph G(V,E,W) consists of a finite node set V which contains n
nodes, together with a link set E ∈ V ×V , and each link has an associated non-
negative weight wi j. The weight of a node i is defined as Wi = ∑ j wi j. We can
define a transition probability matrix P = [pi j] of an irrecucible Markov random
walk through the undirected graph which satisfies ∑ j pi j = 1 ∀i ∈ V . Moreover, we
define weighted graph Laplacian as L = D−W , where D is a diagonal matrix whose
main diagonal entries are: D(i, i) =Wi.

We are interested in a special type of random-walks referred to as weight-based
random-walk. The weight-based random-walk is defined on a Markov chain with
transition probability matrix P according to the following rule:

psk(d) =
wsk

Ws
(1− δ (s− d)) (4.1)

where A(s) is the set of adjacent nodes of s and wsk is the weight of link (s, k)
(if there is no link between node s and k, then wsk = 0), and δ (.) is the Kronecker
delta function (i.e. δ (x) = 1 if x = 0 and δ (x) = 0 otherwise). The delta function
in (4.1) is due to the fact that the destination node d is an absorbing node, and
any random-walk coming to this state, will be absorbed or equivalently pdk(d) = 0.
Clearly, (4.1) defines a Markovian random-walk.

We are now ready to define random-walk betweenness. Consider the set of
trajectories that begin at node s and terminate when the walk first arrives at node d,
that is, destination node d is an absorbing node. The random-walk betweenness
bsk(d) of node k for the s− d trajectories is defined as the number of times node k
is visited in trajectories from s to d averaged over all possible s− d trajectories and
the total betweenness of node k is bk = ∑s,d bsk(d).

104 A. Tizghadam et al.

Let Bd = [bsk(d)] be the n×n matrix of betweenness metrics of node k for walks
that begin at node s and end at node d. Note that the dth row of the matrix is zero. It
is shown in [16] that matrix Bd can be written as

Bd = (I −Pd)
−1Θd (4.2)

Θd = [θsk(d)] =

{
1 if s = k �= d
0 otherwise

Matrix Pd is the same as P except that its dth row and dth column are zero vectors.
Finally, traffic-aware betweenness [17] is a natural extension to explicitly account

for the effect of traffic demands in the definition of betweenness centrality index.
Let Γ = [γs(d)] and γ denote the traffic matrix and the total external traffic
(i.e. γ = ∑s,d γs(d)) respectively. We define traffic-aware betweenness (TAB) of
node k as:

b′
sk(d) = bsk(d)+

γs(d)
γ

bsk(d)

b′
sk(d) =

(
1+

γs(d)
γ

)
bsk(d) (4.3)

b′
k =∑

s,d

(
1+

γs(d)
γ

)
bsk(d) (4.4)

If traffic matrix is zero, then we have the original topological betweenness as
a special case. This definition is quite general and applicable for all types of
betweenness. If we consider bsk(d) as the shortest-path betweenness of node
k for source–destination pair sd, then we will have traffic-aware shortest-path
betweenness, and so on.

4.4.1 Random-Walk Betweenness in Data Networks

Random-walk betweenness is closely related to packet network models. We con-
sider a packet switching network in which external packets arrive to packet switches
according to independent arrival processes. Each packet arrival has a specific
destination and the packet is forwarded along the network until it reaches the
destination. We assume that packet switches are interconnected by transmission
lines that can be modeled as single-server queues. Furthermore, we suppose that
packet switches use a form of routing where the proportion of packets at queue i
forwarded to the next-hop queue j is pi j.

We calculate the total arrival/departure rate of the traffic to/from each node. The
total input rate of node k (internal plus external) is denoted by xk. After receiving

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 105

service at the ith node, the proportion of customers that proceed to node k is pik. To
find xk we need to solve the following set of linear equations (see [24]):

xk = γk +
n

∑
i=1

xi pik ∀k ∈ V (4.5)

where γk is the external arrival rate to node k. Note that (4.5) is essentially the KCL
(Kirchhoff’s Current Law). If we denote −→x = [x1,x2, ...,xn] and −→γ = [γ1,γ2, ...,γn],
then (4.5) becomes:

−→x =−→γ +−→x P (4.6)

Suppose we focus on traffic destined to node d, then node d is an absorbing node,
and we suppose that the arrival rate at node d is zero (since these arrivals do not
affect other nodes) and (4.6) can be written as:

−→xd = (−→γd +−→xd Pd)×Θd (4.7)

where −→xd and −→γd are the same as −→x and −→γ except for the dth element which is 0.
Matrix Pd is also the same as P except that its dth row and dth column are zero
vectors. Equation (4.7) can be solved for −→xd

−→xd =−→γd ×Θd × (I−Pd ×Θd)
−1 (4.8)

To find the relationship of betweenness Bd and the input arrival rate xk we notice
that pdk(d) = 0 which means that Pd =Θd ×Pd. Thus,

Pd ×Θd = Θd ×Pd ×Θd

Θd −Pd ×Θd = Θd −Θd ×Pd ×Θd

(I −Pd)×Θd = Θd × (I −Pd ×Θd)

Θd × (I −Pd ×Θd)
−1 = (I −Pd)

−1 ×Θd

Using (4.2) we will have

Θd × (I −Pd ×Θd)
−1 = Bd (4.9)

We substitute (4.9) in (4.8) and obtain the relationship between the node traffic and
node betweenness,

−→xd =−→γd ×Bd (4.10)

If we denote the kth element of −→xd and −→γd by xk(d) and γk(d) respectively, we have

xk(d) =∑
s
γs(d)bsk(d) (4.11)

106 A. Tizghadam et al.

Now we can find the total load at node k by adding the effect of all destinations
in (4.11),

xk =∑
d

xk(d) =∑
s,d

γs(d)bsk(d) (4.12)

It is constructive to establish the relationship of node betweenness and node
traffic in a more intuitive way. Consider the traffic generated by packets that arrive
at s and are destined for d. Each packet in this flow generates bsk(d) arrivals on
average at node k. Let γs(d) be the number of external packets per second that arrive
at node s with destination d. Over a large number of such trials, say N, the average
number of times node k is visited will be approximately N ×bsk(d). Suppose that it
takes T seconds to have N arrivals at node s, then the average number of visits per
second to node k is

N × bsk(d)
T

= γs(d)× bsk(d),

since the average arrival rate at s for d is approximately N/T .
We only consider external arrivals with destinations other that the originating

node so γd(d) = 0. The total traffic xsk(d) generated by the s − d flow at node
k is then γs(d)× bsk(d), where s is not equal to d. Recalling that bsd(d) = 1,
we obtain:

xsk(d) =

⎧⎨
⎩
γs(d)bsk(d) if s �= d & d �= k
γs(d) if s �= d & k = d

0 if s = d

The total traffic into node k is obtained by summing over all s and d, with s not
equal to d

yk =∑
s,d

xsk(d)

= ∑
s �=k

γs(k)+∑
s �=d
∑
d �=k

γs(d)bsk(d) (4.13)

The first sum on the right hand side of (4.13) is the total network packet arrival
rate destined for k, that is, the total flow absorbed at node k. The second term is the
total traffic that flows across queue k, that is, the flow through k that originates at
nodes other than d and that are not destined for k. This second term, the transit flow
through queue k, accounts for the effect of the network topology, so we let xk denote
this flow:

xk = ∑
d �=k

γk(d)bkk(d)+∑
s �=k
∑
d �=k

γs(d)bsk(d) (4.14)

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 107

The first sum in (4.14) is the arrivals at k destined for d, including revisits. The
second sum is the total transit traffic through k that did not originate locally. xk can
be viewed as a measure of betweenness of queue k that takes the different arrival
rates into account.

Suppose that different queues have different total external arrival rates but the
fraction of external traffic destined for d does not depend on s, i.e.,

γs(d) = γsad

where

ad ≥ 0, ∑
d

ad = 1

The total traffic through queue k is then

xk = ∑
d �=k

γkadbkk(d)+∑
s �=k

γs

[
∑
d �=k

adbsk(d)

]

= γk

[
∑
d �=k

adbkk(d)

]
+∑

s �=k

γs

[
∑
d �=k

adbsk(d)

]
(4.15)

The terms inside the square brackets in (4.15) can be viewed as betweenness
measures that have been weighted by the differential preferences for destinations
according to ad . These weighted betweenness measures are in turn scaled according
to the arrival rates at different queues.

In the case where arriving packets are equally likely to be destined to any
destination (other than the arriving node), we have ad = 1

n−1 , so

xk =
γk

n− 1

[
∑
d �=k

bkk(d)

]
+∑

s �=k

γs

n− 1

[
∑
d �=k

bsk(d)

]

= γkb̄kk +∑
s �=k

γsb̄sk (4.16)

Finally suppose that the arrival rate at every node is equal, that is, γs = γ/n, where
γ is the total external packet arrival rate to the network, then

xk =
γ

n(n− 1)

(
∑
d �=k

bkk(d)

)
+

γ
n(n− 1)∑s �=k

∑
d �=k

bsk(d)

=
γ

n(n− 1)
bk (4.17)

where bk =∑s∑d �=k bsk(d) is the random walk betweenness for node k. In summary,
we have derived the following theorem.

108 A. Tizghadam et al.

Theorem 4.1. Consider a network with n nodes, and assume that the average traffic
rate on all of the nodes is γn = γ/n where γ is the total external input traffic rate
of the network. Let xk be the total arrival rate of a node k and bk be the total
betweenness of this node, then

xk =
γn

n− 1
bk =

γ
n(n− 1)

× bk

Equation (4.12) and Theorem 4.1 clearly show that the traffic of a node
in a communication network can be captured with the notion of random-walk
betweenness centrality.

4.5 Network Criticality and Resistance Distance

We now briefly explain the notion of network criticality, which is discussed in [12]
to quantify the robustness of a network. We start by defining node/link criticality.

Definition 4.1. Node criticality is defined as the random-walk betweenness of a
node normalized by its weight value. In other words, node criticality is the node
random-walk betweenness divided by the node weight. Likewise, link criticality is
defined as the betweenness of the link over its weight.

Let ηk be the criticality of node k and ηi j be the criticality of link l = (i, j). It is
shown in [12] that ηi and ηi j can be obtained by the following expressions:

ηk =
bk

Wk
=

1
2
τ (4.18)

ηi j =
bi j

wi j
= τ (4.19)

τ in the above equations is defined as follows:

τ =∑
s
∑
d

τsd (4.20)

τsd = l+ss + l+dd − 2l+sd or τsd = ut
sdL+usd (4.21)

where L+ = [l+i j] is the Moore–Penrose inverse of graph Laplacian matrix L [18],

n is the number of nodes, and ui j = [0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth
positions, respectively).

Equations (4.18)–(4.21) show that node criticality (ηk) and link criticality (ηi j)
are independent of the node/link position and only depend on τ , which is a global
quantity of the network.

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 109

Definition 4.2. We refer to τsd as point-to-point network criticality and τ as
network criticality.

For future references, we also write the explicit relationship between point-to-point
network criticality and random-walk betweenness centrality

bsk(d)
Wk

= l+dd − l+sd − l+dk + l+sk (4.22)

τsd =
bsk(d)+ bdk(s)

Wk
(4.23)

The proof of (4.22) and (4.23) can be found in [12].
One can see that τ is a global quantity on the network graph. Equations (4.18) and

(4.19) show that node (link) betweenness consists of a local parameter (weight) and
a global metric (network criticality). τ can capture the effect of topology through
the betweenness values. A higher node/link betweenness results in a higher risk
(criticality) in using the node/link. Furthermore, one can define node/link capacity
as the weight of a node/link, then increasing the weight of a node/link will decrease
the risk of using the node/link. Therefore, network criticality can quantify the risk
of using a node/link in a network which in turn indicates the degree of robustness of
the network. For comparison purposes, we may use the average network criticality,
which is defined as τ̂ = 1

n(n−1)τ .
Network criticality can be interpreted as the total resistance of a corresponding

electrical network. Consider an electrical circuit with the same graph as our original
network graph, and with link resistances equal to the reciprocal of link weights. It
can be shown that the network criticality is equal to the total resistance distance
(effective resistance) [22] seen between different pairs of nodes in the electrical
circuit. A high network criticality is an indication of high resistance in the equivalent
electrical circuit, therefore, in two networks with the same number of nodes, the
one with lower network criticality is better connected, hence better positioned to
accommodate network flows.

Network criticality can also quantify the sensitivity of a network to the environ-
mental changes. It has been shown that network criticality equals the average of link
betweenness sensitivities, where link betweenness sensitivity is defined as the partial
derivative of link betweenness with respect to the corresponding link weight [19],

τ =
1

m− 1 ∑
(i, j)∈E

∂bi j

∂wi j
(4.24)

where m denotes the number of links of the network. Equation (4.24) states that the
minimization of network criticality results in the minimization of the average sen-
sitivity of link betweennesses with respect to the changes in the corresponding link
weights (which in turn captures sensitivity to environmental changes). Therefore,
a control algorithm for minimum network criticality balances the betweennesses of
the links in such a way as to keep the average sensitivity below a desired level. From

110 A. Tizghadam et al.

another point of view, the lower the network criticality, the better distributed is the
traffic between all the links of a network, and the better balanced is the load of the
traffic among all active links. This implies better fairness in routing the traffic in the
nodes of the network. More detailed information on properties and interpretations
of the network criticality can be found in [20, 21].

Another advantage of having low network criticality is the robustness enhance-
ment of the network. Suppose that a node is failing or becoming inaccessible so that
it cannot route the traffic passing through it. If we adapt the routing to minimize
the criticality, the result is to adjust the betweenness in such a way that traffic is
re-routed to other nodes instead of the impaired one and that the resulting flows
provide higher robustness against additional unpredictable deleterious situations.

It has been shown that τsd is a convex function of link weights and τ is a strictly
convex function of link weights [23].

Definition 4.3. In analogy to (4.18), we define traffic-aware node criticality
(TANOC) as the traffic-aware node betweenness normalized by node weight (sum
of the link weights incident to the node),

τ ′sk(d) = 2
b′

sk(d)

Wk
, where Wk =∑

j
wk j

τ ′k = 2
b′

k

Wk
(4.25)

Furthermore, we define the TANC as the average traffic-aware node criticality:

τ ′ =
1
n∑k

τ ′k (4.26)

4.5.1 Network Utilization and Network Criticality

In this section, we derive a general expression for the average network utilization
(and individual node utilization). Theorem 4.1 establishes a connection between
the load of a node and its betweenness when the average input rate to all the
nodes is uniform. In general, for a traffic matrix Γ = [γi(j)] the utilization of a
node can be expressed as a linear combination of point-to-point network criticalities
subject to considering weight-based random-walks as defined in (4.1). To see this
consider, (4.11):

xk =∑
s,d

γs(d)bsk(d)

=
1
2∑s,d

(γs(d)bsk(d)+ γd(s)bdk(s))

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 111

=
1
2∑s,d

(γs(d)bsk(d)+ γd(s)(Wkτsd − bsk(d)))

=
Wk

2 ∑s,d
γd(s)τsd +

1
2∑s,d

(γs(d)− γd(s))bsk(d) (4.27)

where we have used (4.23) to obtain (4.27). Now we write bsk(d) in terms of
different elements of matrix Ω = [τsd]. We have

τsd = l+ss + l+dd − 2l+sd

τdk = l+dd + l+kk − 2l+dk

τsk = l+ss + l+kk − 2l+sk

Considering (4.22), we have

τsd + τdk − τsk = 2(l+dd − l+sd − l+dk + l+sk)

= 2
bsk(d)

Wk

bsk(d) =
Wk

2
(τsd + τdk − τsk) (4.28)

Using (4.28) in (4.27), we have

xk =
Wk

2 ∑s,d
γd(s)τsd +

Wk

4 ∑s,d
(γs(d)− γd(s))(τsd + τdk − τsk)

xk

Wk
=

1
4∑s,d

(γs(d)+ γd(s))τsd +
1
4∑s,d

(γs(d)− γd(s))(τdk − τsk) (4.29)

Node utilization is defined as the load of a node normalized by its capacity (or in
a more general sense by its weight). We denote the utilization of node k by Vk =

xk
Wk

and the average network utility by V̄ = ∑k Vk
n . For the average network utilization V̄

we have

V̄ =
1
4∑s,d

(γs(d)+ γd(s))τsd +
1

4n∑s,d
(γs(d)− γd(s))(τd∗ − τs∗) (4.30)

where τi∗ = ∑k τik. Equation (4.30) can be simplified as

V̄ =∑
s,d

βsdτsd (4.31)

112 A. Tizghadam et al.

where

βsd =
γs(d)+ γd(s)

4
+
γ∗s − γs∗

2n
.

We can easily express the average network utilization V̄ in terms of network
criticality and TANC. Since xk = ∑sd γs(d)bsk(d), from (4.4) we conclude that

b′
k = bk +

1
γ

xk

Vk =
xk

Wk
= γ

b′
k − bk

Wk

Vk =
γ
2
(τ ′k − τ)

Finally,

V̄ =
1
n

n

∑
k=1

Vk =
γ
2
(τ ′ − τ) (4.32)

Proceeding as we did for V̄ , one can see that:

τ ′ =∑
s,d

(
1+

γs(d)+ γd(s)
2γ

+
γ∗s − γs∗

nγ

)
τsd (4.33)

It will be easily verified that the coefficients of τsd in (4.33) (i.e. 1+ γs(d)+γd(s)
2γ +

γ∗s−γs∗
nγ) are always non-negative; therefore, TANC is a convex function of link

weights since τsd is always convex. Consequently, form (4.32) one can see that
the average network utilization is in most general form the difference of two
convex functions (or equivalently the sum of a convex and a concave function).
Minimizing the difference of two convex functions can be converted to a convex
maximization problem, which can be numerically solved with methods like branch-
and-bound [25].

We can find a subset of traffic matrices, for which the average network utilization
V̄ is pure convex. In fact the average network utilization is a convex function of link
weights if and only if in (4.31) we have ∀s,dβsd +βds ≥ 0 (note that τsd = τds), or:

γs(d)+ γd(s)≥ 1
n
(γs∗ − γ∗s+ γd∗ − γ∗d) ∀ s,d ∈ V (4.34)

Inequality (4.34) defines a subset of all possible traffic matrices for which the
average network utilization is convex. We examined condition set (4.34) for real
traffic matrix traces recorded form Abilene network [26]. These traces can be fond in
TOTEM project [27] website. The condition set (4.34) was satisfied for the majority
of traffic matrices that we examined; therefore, we could assume that for these real
traffic traces, the average network utilization is a convex function of weights. In the
following, we assume that the traffic matrices are within this subset.

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 113

This motivates the rest of this chapter. In order to minimize the average network
utilization (or to minimize the maximum of node utilization), we have to effectively
solve a convex optimization problem, which is investigated in next section.

4.6 Minimizing WNC

We first consider a general weighted version of network criticality (WNC) defined
as follows:

τα =∑
i, j

αi jτi j, ∀i, j ∈ N αi j +α ji ≥ 0 (4.35)

Obviously, the average network utilization and individual node utilization are
special cases of WNC by appropriate selection of coefficients. To study the
minimization of WNC, we rewrite WNC in a matrix form as follows:

τα =∑
i, j
αi jτi j

=∑
i j
αi ju

t
i jL

+ui j

=∑
i j
αi jTr(ui ju

t
i jL

+)

= Tr(UαL+) (4.36)

where Uα = ∑i jαi jUi j, Ui j = ui jut
i j, and Tr(A) denotes the trace of matrix A.

It is easy to see that the sum of the rows in Uα is zero, and for αi j ≥ 0 it is a
symmetric and positive semidefinite matrix. One example of Uα for n = 3 (number
of nodes) is given in the following:

Uα =

⎛
⎝α

′
12 +α ′

13 −α ′
12 −α ′

13
−α ′

12 α ′
12 +α ′

23 −α ′
23

−α ′
13 −α ′

23 α ′
13 +α

′
23

⎞
⎠

where α ′
i j = αi j +α ji.

In order to continue, we need the following preposition.

Proposition 4.2 For any non-singular square (n × n) matrix X and any n × n
matrices A and B, we have

d
dX

Tr(AX) = A

d
dX

Tr(AX−1B) = −X−1BAX−1

114 A. Tizghadam et al.

where in general the derivative d
dX f (X) of a scalar-valued differentiable function

f (X) of a matrix argument X ∈ Rp×q is the q × p matrix whose (i, j)th entry is
∂ f (X)
∂X(j,i) [28].

Proof. See [28].

We now consider the minimization of WNC. First, we show that the minimization
is viable. To this end we need the following lemma.

Lemma 4.1. The partial derivative of τα with respect to link weight wi j is always
non-positive and can be obtained from the following equation.

∂τα
∂wi j

=−∥∥FαL+ui j
∥∥2

where Fα is a matrix such that Uα = Ft
αFα . This decomposition is always possible

because Uα is a positive semidefinite matrix.

Proof. Let Γ = L+ J
n where J is a square n× n matrix with all entries equal to 1,

then L+ =Γ−1− J
n [28]. Note that UαJ = 0, consequently Tr(UαL+) = Tr(UαΓ−1).

We use Proposition 4.2 to derive the result

∂τα
∂wi j

=
∂Tr(UαΓ−1)

∂wi j

= −Tr(UαΓ−1 ∂Γ
∂wi j

Γ−1)

= −Tr(UαΓ−1ui ju
t
i jΓ−1)

= −Tr(Ft
αFαΓ−1ui ju

t
i jΓ

−1)

= −Tr(FαL+ui ju
t
i jL

+Ft
α)

= −Tr((FαL+ui j)(FαL+ui j)
t)

= −Tr((FαL+ui j)
t(FαL+ui j))

= −∥∥FαL+ui j
∥∥2

Since WNC is a convex function and its derivative with respect to the weights is
always non-positive (according to Lemma 4.1), the minimization of τα subject to
some convex constraint set is possible.

In formulating the optimization problem, we add a maximum budget constraint
to the problem. We assume that there is a cost zi j to deploy each unit of weight on
link (i, j). We also assume that there is a maximum budget of C to spend across all
network links. This constraint means that ∑(i, j)∈E wi jzi j ≤ C. Now we can write our
optimization problem as follows:

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 115

Minimize τα

Subject to ∑(i, j)∈E wi jzi j ≤ C, C is f ixed (4.37)

wi j ≥ 0 ∀(i, j) ∈ E

Again, we let Γ = L+ J
n . Considering the fact that L = ∑i, j wi jui jut

i j (definition
of Laplacian), we can write the optimization problem (4.37) as:

Minimize Tr(UαL+)

Subject to Γ = ∑(i, j)∈E wi jui jut
i j +

J
n

L+ = Γ−1 − J
n

∑(i, j)∈E wi jzi j =C, C is fixed

wi j ≥ 0 ∀(i, j) ∈ E (4.38)

In order to find the condition of optimality, we need the following lemma.

Lemma 4.2. For any weight matrix W of the links of a graph: Vec(W)t∇τ+τ = 0,
where Vec(W) is a vector obtained by concatenating all the rows of matrix W to get
a vector of wi j’s.

Proof. In [23], it has been shown that if we scale all the link weights with t, the
effective resistance τi j will scale with 1/t. Since τα is a linear combination of point-
to-point effective resistances, τα will also scale with 1/t:

τα(tVec(W)) =
1
t
τα(Vec(W)) (4.39)

By taking the derivative of τ with respect to t, we have

Vec(W)t∇τα =
−1
t2 τα (W) (4.40)

It is enough to consider (4.40) at t = 1 to get Vec(W)t∇τα + τα = 0.

Now we are ready to state the condition of optimality.

Lemma 4.3. The condition of optimality for optimization problem (4.37) can be
written as

min
(i, j)∈E

C
zi j

∂τα
∂wi j

+ τα ≥ 0

Moreover,

w∗
i j

(
C
∂τα
∂wi j

+ zi jτα
)
= 0 ∀(i, j) ∈ E (4.41)

where w∗
i j denotes the optimal weight for link (i, j).

116 A. Tizghadam et al.

Proof. In general, one can apply the condition of optimality [31,32] on optimization
problem (4.37) to derive the necessary condition for a weight vector to be optimal.
Let W ∗ be the optimal weight matrix and let Wt be another weight matrix satisfying
the constraints of optimization problem (4.37), then according to the condition of
optimality,

∇τα .(Vec(Wt)−Vec(W ∗))≥ 0

Now, we choose Wt as follows:

Wt = [wuv] =

⎧⎪⎨
⎪⎩

C
2zi j

if u = i & v = j
C

2zi j
if u = j & v = i

0 otherwise

Clearly, Wt satisfies the constraints of optimization problem (4.37); therefore, using
the condition of optimality and considering Lemma 4.2 we have

∇τα .(Vec(Wt)−Vec(W ∗)) ≥ 0

∇τα .Vec(Wt)−∇τα .Vec(W ∗) ≥ 0

C
zi j

∂τα
∂wi j

+ τα ≥ 0 ∀(i, j) ∈ E

min
(i, j)∈E

C
zi j

∂τα
∂wi j

+ τα ≥ 0 (4.42)

Now, to prove the second part of the theorem we write the constraint of the
optimization problem as an inner product of costs and weights,

(Vec(Z).Vec(W ∗))τα =

(
∑

(i, j)∈E

w∗
i jzi j

)
τα =Cτα (4.43)

Combining Lemma 4.2 and (4.43) one can see that

C∇τα .Vec(W ∗)+Vec(Z).Vec(W ∗)τα = 0

Vec(W ∗).(C∇τα + ταVec(Z)) = 0

w∗
i j

(
C
∂τα
∂wi j

+ ταzi j

)
= 0

This completes the proof of Lemma 4.3.

Lemma 4.4. The dual of the optimization problem (4.38) is as follows:

maximize 1
C Tr2(UαX)

subject to 1√zi j

∥∥FαXui j
∥∥≤ 1 ∀(i, j) ∈ E

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 117

X
−→
1 = 0

X � 0

where X � 0 means that X is a positive semidefinite matrix. More precisely
X = 1√

λ
L+ where L+ is the Moore-Penrose inverse of Laplacian matrix, and

λ = max(i, j)∈E
1

zi j

∥∥FαL+ui j
∥∥2

.

Proof. The Lagrangian of optimization problem is:

L(Γ ,W,T,λ ,ρ) = Tr(UαΓ−1)+Tr(TΓ)−Cλ

+ ∑
(i, j)∈E

wi j(−ut
i jTui j +λ zi j −ρi j)− 1

n
−→
1 tT

−→
1

To find the dual formulation, it is enough to take the infimum of the Lagrangian
over Γ , W .

d(T,λ ,ρ) = infΓ ,W L(Γ ,W,T,λ ,ρ)

= infΓTr(UαΓ−1 +TΓ)

+ infW

(
− ∑

(i, j)∈E

wi j(−ut
i jTui j +λ zi j −ρi j)− 1

n
−→
1 tT

−→
1 −Cλ

)
(4.44)

The second term in (4.44) is minimized if its derivative with respect to all link
weights is zero. The minimum of the first term is −∞ unless matrix T is positive
semidefinite. Therefore,

d(T,λ ,ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

infΓTr(UαΓ−1 +TΓ)− 1
n

−→
1 tT

−→
1 −Cλ

if− ut
i jTui j +λ zi j −ρi j = 0, ρi j ≥ 0 ∀(i, j) ∈ E

and T � 0
−∞ otherwise

(4.45)

where T = [ti j], and T � 0 means that matrix T is positive semidefinite.
Using Proposition 4.2 one can find infΓ (UαTrΓ−1 +TΓ) as follows:

d
dΓ

Tr(UαΓ−1 +TΓ) =
d

dΓ
Tr(UαΓ−1)+

d
dΓ

Tr(TΓ) = 0

T = Γ−1UαΓ−1 (4.46)

Considering the fact that Uα and Γ−1 are symmetric matrices, after some calcula-
tions we have

infΓTr(UαΓ−1 +TΓ) = 2Tr(UαΓ−1) (4.47)

118 A. Tizghadam et al.

We also note that T
−→
1 = 0 (because Γ−1−→1 = (L+ + J

n)
−→
1 =

−→
1 and Uα

−→
1 = 0).

Now we consider a change of variable as X = 1√
λ

L+, clearly X
−→
1 = 0. It is easier to

write the optimization problem based on new variable X. Applying this change of
variable, we have

2Tr(UαΓ−1) = 2
√
λTr(UαX) (4.48)

On the other hand,

T = Γ−1UαΓ−1

= λXUαX (4.49)

Finally, we observe from constraint part of (4.45) that

1
zi j

ut
i jTui j ≤ λ ∀(i, j) ∈ E

1
zi j

ut
i jλXUαXui j ≤ λ ∀(i, j) ∈ E

1√
zi j

∥∥FαXui j
∥∥ ≤ 1 (4.50)

where Fα is an m×n matrix (m and n are the number of links and nodes of the graph
respectively) such that Uα = Ft

αFα . This matrix decomposition always exists, since
Uα is a positive semidefinite matrix.

Now it is enough to simplify the dual objective function of (4.45) (i.e. d(X ,λ) =
2
√
λTr(UαX)−Cλ) using (4.48). In order to maximize the dual function with

respect to the dual variable λ , one should have d
dλ d(X ,λ) = 0. By applying this,

and after some calculations, the dual objective will be equal to 1
C Tr2(UαX), which

is now only a function of dual variable X .
Therefore, considering (4.50), one can write the dual optimization problem as

maximize 1
C Tr2(UαX)

subject to 1√
zi j

∥∥FαXui j
∥∥≤ 1 ∀(i, j) ∈ E

X
−→
1 = 0

X � 0

Finally, we observe that

λ = max
(i, j)∈E

1
zi j

ut
i jTui j

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 119

= max
(i, j)∈E

1
zi j

ut
i jL

+UαL+ui j

= max
(i, j)∈E

1
zi j

∥∥FαL+ui j
∥∥2

(4.51)

This completes the proof of Lemma 4.4.

We are ready to give an upper bound for the optimality gap in the optimization
problem. The following theorem summarizes the result.

Theorem 4.3. Consider the following optimization problem:

Minimize τα

Subject to ∑(i, j)∈E zi jwi j =C ,C is fixed

wi j ≥ 0 ∀(i, j) ∈ E

For any sub-optimal solution of the convex optimization problem, the deviation from
optimal solution (optimality gap) has the upper bound of

τα
C min(i, j)∈E

1
zi j

∂τα
∂wi j

(
C min

(i, j)∈E

1
zi j

∂τα
∂wi j

+ τα
)

Proof. We denote the duality gap (the difference between the objective function of
the dual and primal optimization problem) by dgap. Using Lemma (4.4), we have

dgap = Tr(UαL+)− 1
C

Tr2(UαX)

= Tr(UαL+)− 1
C

1

max(i, j)∈E
1

zi j

∥∥FαL+ui j
∥∥2 Tr2(UαL+)

= Tr(UαL+)

⎛
⎝1+

1
C

Tr(UαL+)

min(i, j)∈E − 1
zi j

∥∥FαL+ui j
∥∥2

⎞
⎠ (4.52)

Now it is enough to simplify (4.52) using Lemma 4.1,

dgap = τα

⎛
⎝1+

1
C

τα
min(i, j)∈E

1
zi j

∂τα
∂wi j

⎞
⎠

=
τα

C min(i, j)∈E
1

zi j

∂τα
∂wi j

(
C min

(i, j)∈E

1
zi j

∂τα
∂wi j

+ τα
)

(4.53)

According to the duality theorem, this completes the proof of Theorem 4.3.

120 A. Tizghadam et al.

Theorem 4.3 is in fact an extension for the results of [23] in which the total
resistance distance is considered as the main metric of interest. Those results can be
derived as special cases of Lemma 4.4 and Theorem 4.3.

4.6.1 Network Planning Using an Interior Point Algorithm

Optimization problem (4.37) can be solved using a wide range of methods devel-
oped for convex optimization problems. We use a modified version of interior-point
method which is developed in [23] based on the duality gap obtained in Theorem
4.3. In this method we use logarithmic barrier for the non-negativity constraints
wi j ≥ 0 ∀(i, j) ∈ E:

Φ =− ∑
(i, j)∈E

logwi j

In the interior-point method we minimize tτα +Φ , using Newton’s method (t is a
parameter), subject to ∑(i, j)∈E zi jwi j =C. The sub-optimality in this case would be
at most m

t , where m is the number of links. On the other hand, Theorem 4.3 provides
an upper bound for sub-optimality:

t̂ =
τα

C min(i, j)∈E
1

zi j

∂τα
∂wi j

(
C min

(i, j)∈E

1
zi j

∂τα
∂wi j

+ τα
)

We can use this bound to update parameter t in each step of our interior-point
method, by taking t = m

t̂ . In each step, for a relative precision ε , the Newton’s
method finds change of Δ−→w for the vector of all weights (denoted by −→w) by solving

(t∇2τα +∇2Φ)Δ−→w =−t∇τα +∇Φ (4.54)

The next task is to find the Newton step length s by backtracking line search [32],
and then updating the weight vector by −→w = −→w + sΔ−→w . The algorithm exits when
we have τα − τopt

α ≤ t̂ ≤ ετα . We can choose ε small enough to have a desired
precision.

We note that, in order to use this recursive method, we need to have the gradient
vector∇τα and Hessian matrix∇2τα . Lemma 4.1 provides the entries of the gradient
vector and using the lemma, it is easy to see that the entries of Hessian matrix can
be found from the following equation:

∂ 2τα
∂wpq∂wi j

= 2ut
i jL

+upqut
pqL+UαL+ui j ∀(i, j),(p,q) ∈ E

In matrix form this can be shown as

∇2τα = (BtL+B) o (BtL+UαL+B) (4.55)

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 121

Algorithm
(∗ Summary of the interior point algorithm ∗)
1. for (i, j) ∈ E
2. do wi j ← C

mzi j
(initialization)

3. repeat
4. t̂ ← τα

C min(i, j)∈E
1

zi j
∂τα
∂wi j

(C min(i, j)∈E
1

zi j

∂τα
∂wi j

+ τα)

5. t ← m
t̂

6. Calculate Δ−→w from (4.54) and (4.55).
7. Update the value of Newton step s using backtracking line search.
8. Update weight: −→w =−→w + sΔ−→w
9. until t̂ ≤ ετα
10. return −→w

where B is the incidence matrix of the graph, and o denotes Hadamard (componen-
twise) product. Assuming that we know the value of ε , the interior point algorithm
can be summarized in the following chart:

4.7 Applications

This section considers applications of WNC. First, we develop a semidefinite
programming formulation for general weight planning to minimize τα . We then
develop optimization problems to jointly optimize the resources (weights) and
routes (link flows) in a communication network. We will also discuss a joint
optimization of demands, flows, and resources in order to maximize a concave utility
function of demands, while keeping network criticality below a certain threshold.
Finally, we discuss robust optimization of network weights in order to protect the
network against k link failures.

4.7.1 Network Planning Using Semidefinite Programming

Optimization problem (4.38) (and problem (4.37)) provides an approach for robust
network design via optimal allocation of network link weights to minimize the
WNC. Optimization problem (4.38) can be converted to a semidefinite program
(SDP) as stated in the following.

Minimize Tr(Y)

Subject to ∑(i, j)∈E wi jzi j ≤ C, C is fixed (4.56)

122 A. Tizghadam et al.

wi j ≥ 0 ∀(i, j) ∈ E
(

L+ J
n U

1
2
α

U
1
2
α Y

)
� 0

where � means positive semidefinite.
Capacity allocation is an important case in which we define the weight of a link

to represent its capacity. In this case, optimization of network criticality results in
capacity planning. A quite general case of capacity planning problem is when a
routing mechanism is already designed for the network and it is known that each link
of the network is supposed to carry a known amount of traffic demands. Suppose we
know that our routing scheme is the shortest path and traffic matrix [γi(j)] is given
for the network. Assume that we have found the values of flows for each link to meet
the given traffic matrix via shortest-path routing and the result is flow λi j for link
(i, j). Then by applying the change of variable wi j = ci j + λi j to the optimization
problem (4.56), we will have the following convex optimization problem for the
optimal capacity allocation.

Minimize Tr(Y)

Subject to ∑(i, j)∈E ci jzi j =C′, C′ is fixed (4.57)

ci j ≥ 0 ∀(i, j) ∈ E
(

L+ J
n U

1
2
α

U
1
2
α Y

)
� 0

where C′ = C −∑(i, j)∈E zi jλi j. This has the same form of optimization problem
(4.56), and both are SDP representations of optimization problem (4.37) (with
wi j → ci j and C →C′); therefore, all the results developed for optimization problem
(4.37) are applicable for the capacity assignment problem.

Solving this SDP problem is much faster and can be done with a variety of
existing packages (e.g. see [29, 30]) to solve SDP problems.

4.7.2 Joint Optimization of Routes and Resources

Optimization problem (4.37) can be extended to a more general case where the
weights of the network links (resources) and the link flows (routes) are unknown. In
this section, we focus on capacity as the resource and assume that the link weight
equals the capacity (or available capacity depending on the context) of the link. In
order to account for flows, it is enough to add the equations for the conservation of
flow at each node (and for each entry of the traffic matrix) to the constraints of the

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 123

problem. For a specific node k and entry γs(d) of the traffic matrix, the conservation
of flow can be stated as:

∑
i∈A(k)

f (sd)
ik − ∑

j∈A(k)

f (sd)
k j = γs(d)δ (k− s)− γs(d)δ (k− d)

where A(k) denotes the set of neighbor nodes of node k, f (sd)
ik denotes the flow of

link (i,k) for traffic entry between source s and destination d, and δ (x) is Kronecker
delta function. Furthermore, the flow of each link should not exceed the capacity
of the link; therefore, we will need the following constraints for each link of the
network:

fi j =∑
sd

f (sd)
i j ∀(i, j) ∈ E

fi j ≤ wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E

Now we can write the optimization for robust joint flow assignment and resource
allocation as follows:

Minimize τα

Subject to ∑(i, j)∈E wi jzi j ≤ C, C is fixed

wi j ≥ 0 ∀(i, j) ∈ E

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d) ∀k ∈ N, ∀γs(d)

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j ≤ wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E (4.58)

One efficient method to solve optimization problem (4.58) is the dual decomposition
[32, 33] which can separate the network flow problem from resource allocation.
We form a dual problem for (4.58) by introducing Lagrangian multiplier matrix
Λ for constraint set fi j ≤ wi j ∀(i, j) ∈ E . The resulting partial Lagrangian is
L = τα − Tr(Λ(F −W)), where F = [fi j] and W = [wi j] are the matrices of link
flows and link weights, respectively. The dual objective function is then

d(Λ) = inf
W

(τα +Tr(ΛW))

∥∥∥∥∥ ∑
(i, j)∈E

wi jzi j =C, wi j ≥ 0 ∀(i, j) ∈ E

+ inf
F
(−Tr(ΛF))

∥∥∥∥∥∥∥
∑i∈A(k) f (sd)

ik −∑ j∈A(k) f (sd)
k j =γs(d)δ (k− s)−γs(d)δ (k− d)

∀k ∈ N,

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

124 A. Tizghadam et al.

where a‖ b means a subject to condition set b. Note that two infimum functions in
the dual objective are working on separate variables (the first infimum on weights,
and the second one on flows). The dual function can be seen as the sum of the
following two functions:

dW (Λ) = inf
W

(τα +Tr(ΛW))

∥∥∥∥∑(i, j)∈E wi jzi j =C, C is fixed
wi j ≥ 0 ∀(i, j) ∈ E

(4.59)

dF (Λ) = −sup
F

Tr(ΛF)

∥∥∥∥∥∥∥
∑i∈A(k) f (sd)

ik −∑ j∈A(k) f (sd)
k j = γs(d)δ (k− s)− γs(d)δ (k−d)

∀k ∈ N,

fi j = ∑sd f (sd)
i j ∀(i, j)∈ E

(4.60)

The dual problem associated with the primal optimization problem (4.58) is

Maximize d(Λ) = dW (Λ)+ dF(Λ) (4.61)

Subject to Λ ≥ 0

where ≥ is a component-wise operator (i.e. Λ = [λi j] ≥ 0 means λi j ≥ 0 ∀i, j).
Optimization problem (4.61) is convex because the dual function is always convex
[32]. We assume that the Slater’s condition [32] is satisfied in optimization problem
(4.58) in order to guarantee that the strong duality holds, i.e. the solution of
optimization problem (4.58) and its dual (4.61) are equal. Note that in general
this is not true when the primal objective function is not strictly convex. By
assuming Slater’s condition we can solve optimization problem (4.61) instead of
the primal one.

To find the solution of dual optimization problem (4.61) we study dual functions
dW (Λ) and dF(Λ) separately, and then we add them together. Considering (4.59),
dW (Λ) is the solution of the following optimization problem:

Minimize τα +Tr(ΛW)

Subject to ∑(i, j)∈E wi jzi j ≤ C, C is fixed (4.62)

wi j ≥ 0 ∀(i, j) ∈ E

Optimization problem (4.62) can be viewed as the network planning subproblem
which will assign the optimal values of weights. We refer to this as the resource
(weight) allocation subproblem associated with problems (4.58) and (4.61). Simi-
larly, (4.60) implies that dF(Λ) can be found by solving optimization problem (4.63)
as follows:

Maximize Tr(ΛF)

Subject to fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E (4.63)

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 125

Fig. 4.1 Layered view of resource allocation and flow assignment subproblems

fi j ≥ 0 ∀(i, j) ∈ E

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d) ∀k ∈ N, ∀γs(d)

Problem (4.63) determines the optimum routing given the optimal values of weights
and we refer to it as flow assignment subproblem associated with problems (4.58)
and (4.61).

Entry λi j of matrix Λ can be interpreted as the price of allocating unit weight to
link (i, j) in the weight matrix. Therefore, the resource allocation subproblem (4.62)
tries to minimize WNC incremented by total price of deploying a complete weight
matrix, and the flow assignment subproblem (4.63) will try to maximally utilize the
allocated weights to run the network flows.

A detailed discussion of numerical methods to solve optimization problem (4.61)
is beyond the scope of our work in this chapter; however, we indicate how we
can iteratively solve optimization problem (4.61) in the following manner. We start
with an initial value for Λ , and we find the optimal weight and flow matrices using
resource allocation and flow assignment subproblems. Then we find an update for
price matrix Λ through subgradient method. Using the updated value of Λ we
reoptimize the weight and flow matrices by solving optimization problems (4.62)
and (4.63). This process continues until we arrive at a stable price matrix. This
procedure allows us to view the resource allocation subproblem as an optimization
process working on physical layer, while the flow assignment subproblem operates
independently on a network layer and that provides optimal routing scheme for the
problem. The connection between these two layers is through price matrix Λ as
illustrated in Fig. 4.1.

Solution of optimization problem (4.58) is a symmetric set of link weights
representing total capacity of links and associated symmetric link flows, but in
general capacities and flows are asymmetric. We can modify the optimization
problem to provide an asymmetric capacity and flow assignment (i.e. we change the

126 A. Tizghadam et al.

undirected graph model to a directed one). We interpret link weights as the available
capacities and reformulate the optimization problem accordingly. Let ci j and wi j

denote the capacity and weight (available capacity) of link (i, j), respectively.
Optimization problem (4.58) can be converted to the following problem:

Minimize τα
Subject to ∑(i, j)∈E ci jzi j ≤ C, C is fixed

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d)

∀k ∈ N, ∀γs(d)

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j = ci j −wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E

wi j ≥ 0 ∀(i, j) ∈ E (4.64)

Note that optimization problem (4.64) provides optimal solutions of weights
(available capacities), capacities, and flows for all the links. The weights will be
symmetric; however, the link capacities (ci j’s) need not be symmetric. This means
that the optimization problem allocates capacities and flows in such a way that the
final residual bandwidth or available capacities of link (i, j) and link (j, i) are equal
(i.e. wi j =wji), while the total capacity of link (i, j) is not necessarily equal to that of
link (j, i) (i.e. ci j �= c ji). The main difference between the solutions of optimization
problems (4.58) and (4.64) is in the way they minimize τα . In the former, the link
capacity is designed such that τα is minimized before applying any flow to the
network, while the latter determines flows and capacities in such a way that τα
for the residual network is minimized.

4.7.3 Joint Optimization of Demands, Flows, and Resources

We consider one more extension for the optimization problem which tries to find
the joint optimal assignment of external demands (traffic matrix) and link flows
when the link weights (link weights are set to the link capacities in this example)
are known. In this problem, we optimize a concave utility function of traffic matrix
Γ = [γs(d)] (denoted by Ψ(Γ)) subject to the condition that the average network
utilization V̄ (see (4.32)) is less than a given maximum value (V̄ ≤ a where a is fixed
and assumed to be known). A well-known example of concave utility functions is the
logarithmic function. In this work we are interested in a subset of all possible traffic
matrices for which the constraint for network utilization V̄ is convex; therefore, we
add the set of inequalities (4.34) as constraints to the optimization problem. Clearly,

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 127

the flow conservation and capacity constrains are also necessary. Summarizing all
above, we can write the following optimization problem to find the optimal joint
assignment of traffic demands and link flows.

Maximize Ψ(Γ)

Subject to ∑(i, j)∈E wi jzi j ≤C, C is fixed

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j ≤ wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E

wi j ≥ 0 ∀(i, j) ∈ E

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d) ∀k ∈ N, ∀γsd

∑sd

(
γs(d)+γd(s)

4 + γ∗s−γs∗
2n

)
τsd ≤ a, a is fixed

γs(d)+ γd(s)≥ 1
n (γs∗ − γ∗s + γd∗− γ∗d)

γi(j) ≥ 0 ∀i, j ∈ N (4.65)

where a is a known maximum acceptable value for average network utilization.
Finally, we can jointly optimize resources, traffic demands, and routes. In this

example, we let the link weight be the available capacity of the link. We assume
that the goal is to maximize a concave function of traffic demands subject to a
known worst case upper bound for network criticality. Moreover, we assume a
maximum budget for the total weights (given a cost for deploying a unit of weight).
Thus, considering the flow conservation and capacity constraints we will have the
following convex optimization problem for joint optimization of weights, acceptable
demands, and routes (flows):

Maximize Ψ(Γ)

Subject to ∑i j zi jci j ≤ C

τ ≤ b, b is fixed

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d) ∀k ∈ N, ∀γs(d)

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j = ci j −wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E

wi j ≥ 0 ∀(i, j) ∈ E

γi(j) ≥ 0 ∀i, j ∈ N (4.66)

128 A. Tizghadam et al.

The solution of optimization problem (4.66) plans network weights, gives the
optimal set of demands Γ = [γi(j)] (maximizing concave utility functionΨ) which
can be accommodated by the network, and provides link flows subject to the
condition that the network criticality does not exceed a known value b.

It is possible to find a layered approach for optimization problem (4.66). The
steps are similar to what we did for joint optimization of flows and resources
(see (4.61)–(4.63)). Here, we construct a dual problem for (4.66) by introducing
Lagrangian multiplier matrix Λ for constraint set fi j = ci j − wi j ∀(i, j) ∈ E . The
resulting partial Lagrangian is L =Ψ(Γ)− Tr(Λ(F −C +W)) where F = [fi j],
C = [ci j] and W = [wi j] denote the matrices of link flows, link capacities, and
link weights, respectively. The dual objective function is then d(Λ) = dF,Γ (Λ) +
dW (Λ)+ dC(Λ), where

dW (Λ) = sup
W

−Tr(ΛW)

∥∥∥∥wi j ≥ 0 ∀(i, j) ∈ E
τ ≤ b

dC(Λ) = sup
C

Tr(ΛC)

∥∥∥∥∑(i, j)∈E ci jzi j =C, C is fixed
ci j ≥ 0 ∀(i, j) ∈ E

dF,Γ (Λ) = sup
F,Γ

(Ψ (Γ)−Tr(ΛF))

∥∥∥∥∥∥∥∥∥∥∥

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)

−γs(d)δ (k− d) ∀k ∈ N,

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E
γi(j)≥ 0 ∀i, j ∈ N

The dual problem associated with the primal optimization problem (4.66) is

Minimize d(Λ) = dW (Λ)+ dC(Λ)+ dF,Γ (Λ)

Subject to Λ ≥ 0 (4.67)

Since, in general, the primal objective function is not strictly concave, we
assume that Slater’s condition is satisfied in the optimization problem (4.66). This
guarantees that the strong duality holds for this problem and that the solution of dual
optimization problem (4.67) is equal to the solution of primal problem (4.66).

As we discussed before, in order to solve dual problem (4.67) we can evaluate
dW (Λ), dC(Λ), and dF,Γ (Λ). We note that dF,Γ (Λ) is the solution of the following
optimization problem:

Maximize Ψ(Γ)−Tr(ΛF)

Subject to fi j ≥ 0 ∀(i, j) ∈ E

γi(j) ≥ 0 ∀i, j ∈ N

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j =γs(d)δ (k− s)− γs(d)δ (k− d) ∀k ∈ N, ∀γs(d) (4.68)

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 129

Optimization problem (4.68) can be further divided into two optimization problems
separating the effect of demands and flows by introducing another set of Lagrange
multipliers. Similarly, dW (Λ) is the solution of optimization problem, (4.69).

Minimize Tr(ΛW)

Subject to τ ≤ b, b is fixed

wi j ≥ 0 ∀(i, j) ∈ E (4.69)

The solution of optimization problem (4.70) provides us with dc(Λ),

Maximize Tr(ΛC)

Subject to ∑(i, j)∈E ci jzi j =C, C is fixed

ci j ≥ 0 ∀(i, j) ∈ E (4.70)

If we interpret Λ as the price matrix, then optimization problem (4.68) tries to
maximize a utility function discounted by total price of assigning link flows. Opti-
mization problem (4.69) finds the minimum required weights (available capacities)
in order to guarantee that the network criticality of the residual network is not more
than a pre-specified value b. Optimization problem (4.70) finds the best capacity
assignment under price model mandated by matrix Λ .

In order to find the optimum solution of dual optimization problem (4.67), we
start from an initial guess for matrix Λ . Solution of optimization problems (4.69)
and (4.70) provide optimum values of weights and capacities at this stage, then the
difference between capacity and weight of each link is equal to the flow of the link.
Using optimization problem (4.68) we can then find best possible demand set. Then
a new approximation for Lagrangian matrix Λ can be obtained using subgradient
method and the iteration continues until we arrive at the stable matrix Λ .

4.7.4 Robust Network Design: Protecting Against Multiple Link
Failures

The solution of optimization problem (4.37) provides a robust network design
method via optimal weight assignment; however, it does not necessarily protect
the network against multiple link failures. Link (node) failures can be the result
of unplanned random failures or due to targeted attacks. In this section we extend
optimization problem (4.37) to account for multiple link failures,

Let D ∈ {0,1}m be a binary matrix representing the location of link failures (m is
the total number of links in the network), i.e. di j = 0 for failed link (i, j) and di j = 1
for operational ones. We replace the weight matrix W with DoW (o is the Hadamard
operator) and redo the optimization of WNC. Now if we want that the network to be

130 A. Tizghadam et al.

robust to up to k link failures (we refer to such a network as k-robust network), we
need to minimize the following objective function:

max
∑i, j di j=m−k

Tr(UαL+(DoW))

Note that the above function is convex because it is a point-wise maximum of a set
of convex functions. By minimizing this function we find a k-robust topology (along
with its optimal link weights). Therefore, a general optimization problem to provide
a k-robust network can be written as

Minimize max∑i, j di j=m−k Tr(UαL+(DoW))

Subject to ∑(i, j)∈E wi jzi j ≤ C, C is fixed (4.71)

wi j ≥ 0 ∀(i, j) ∈ E

Interpreting weight as capacity, (4.71) can be extended to provide simultaneous
solution for k-robust flow assignment and weight allocation, just by adding the flow
conservation equations and link capacity constraints

Minimize max∑i, j di j=m−k Tr(UαL+(DoW))

Subject to ∑(i, j)∈E ci jzi j ≤ C, C is fixed (4.72)

∑i∈A(k) f (sd)
ik −∑ j∈A(k) f (sd)

k j = γs(d)δ (k− s)− γs(d)δ (k− d)

∀k ∈ N, ∀γs(d)

fi j = ∑sd f (sd)
i j ∀(i, j) ∈ E

fi j = ci j −wi j ∀(i, j) ∈ E

fi j ≥ 0 ∀(i, j) ∈ E

wi j ≥ 0 ∀(i, j) ∈ E (4.73)

4.7.5 Case of Directed Networks

Most of the discussion in this section was based on the assumption that our network
is modeled with an undirected graph. We considered the case of having asymmetric
capacities and link flows by interpreting the link weight as available capacity;
however, even in this case the residual network has symmetric link weights. The
main reason for this assumption is that the concept of resistance distance is only
available on reversible Markov chains. However, there is another nice interpretation
for network criticality which provides guidlines to extend the notion of network
criticality to directed graphs.

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 131

Suppose that there are costs associated with traversing links along a path and
consider the effect of network criticality on average cost incurred by a message
during its walk from source s to destination d. It is shown in [20] that the average
incurred cost is the product of network criticality and the total cost of all the link
weights. Therefore, if we set a fixed maximum budget for the cost of assigning
weights to links, then the average travel cost is minimized when network criticality
is minimized.

While the analogy between resistance distance and random-walks does not hold
in directed graphs, we can still find the hitting times and commute times for a
directed graph, and the interpretation of average travel cost (or equivalently average
commute time) still holds. In fact, we have shown that the average travel time in
a directed graph can be found using the exact same analytical machinery [34], i.e.
the trace of generalized inverse of the combinatorial Laplacian matrix of a directed
graph (L) which is defined as L =Φ(I−P), whereΦ is a diagonal matrix with main
diagonal entry i equal to the ith entry of stationary probability vector corresponding
to transition probability matrix P. We propose to use the average travel time as
the objective of our optimization problem in the case of directed graphs. In this
case the optimization problem is not necessarily convex (with regards to the link
weights).

4.8 Case Study

In this section, we consider some simple applications of the optimization problems
discussed in Sect. 4.7. In particular, we are interested in virtual network design
to assign robust resources and flows to different customers of the network. We
will also apply our optimization problems to find the optimal joint resource/flow
assignment for a real (Abilene) with existing traffic matrix traces. Furthermore,
we will apply the proposed optimization problems in robust capacity allocation for
communication networks (Rocketfuel topologies) and power grids.

4.8.1 Virtual Network Assignment

In our first case study, we investigate the problem of assigning virtual networks to
different customers of a communication network in order to meet their contracted
service levels. In this study, we are interested in end-to-end bandwidth requirements
as the main service.

For illustrative purposes we consider a simple topology which is shown in
Fig. 4.2. This network is referred to as trap topology in networking literature. The
trap topology is well-known in the context of survivable routing. Suppose there is a
demand from node 1 for node 6. The min-hop path from node 1 to 6 is the straight

132 A. Tizghadam et al.

Fig. 4.2 Trap network with given traffic matrix

line 1 → 3 → 4 → 6. It appears that this path is the best choice to run the demand, but
in survivable routing we need to assign backup paths to each primary route. In trap
network, there is no link-disjoint backup path for 1→ 3 → 4 → 6. Therefore it would
be desirable to choose path 1 → 2 → 4 → 6 (1 → 3 → 5 → 6) as the primary route
for demands from 1 to 6. Then the link-disjoint backup path will be 1 → 3 → 5 → 6
(1 → 2 → 4 → 6).

We assume each customer in the network is defined by a set of demands identified
by their source, destination and required bandwidth, i.e. each demand σi is defined
by a triple (si,di,bi), where si, di, bi denote source, destination and required
bandwidth of demand σi. In this study, we assume two customers (CS1 and CS2)
exist on trap network with the following demands:

σ1 = (1,6,2)

σ2 = (2,5,2)

σ3 = (5,4,3)

CS1 = {σ1,σ2}
CS2 = {σ3}

From the above description, the requirements of customers can be summarized
in separate virtual networks assigned to each customer as shown in Fig. 4.3.

Our goal is to determine the optimal robust allocation of capacities and flows
for each customer so as to meet the requirements of all the customers. We will use
optimization problem (4.64) to find optimal capacity allocation and flow assignment
simultaneously. Optimization problem (4.64) permits us to find asymmetric capacity
assignment for the links; however, due to the nature of network criticality, the
residual capacity of links after flow assignment is symmetric.

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 133

Fig. 4.3 Desired virtual
networks for CS1 and CS2

Fig. 4.4 Optimal capacity assignment for trap network

We suppose that the cost of deploying all the links (zi j’s) are equal (and assumed
to be 1) and the total budget for capacity is 26 (it means that ∑i j zi jci j = ∑i j ci j =
26). Solution of optimization problem (4.64) will result in the capacity allocation
of Fig. 4.4.

Now we need to find the exact graph embedding for virtual networks of CS1 and
CS2. For CS1, based on the solution of optimization problem (4.64), the optimal
flow assignment for the physical substrate (trap network) is shown in Fig. 4.5. From
Fig. 4.5 we see that all the nodes of the substrate network involve in providing
connection (service) for CS1, however, four links ((3,1), (4,2), (5,3), (6,4)) do not
contribute in building the virtual network. As a matter of fact the virtual network
can be viewed as a subset of link/node resources dedicated to a customer.

The optimal flow assignment for CS2 is shown in Fig. 4.6. It can be seen that for
CS2 nodes 1 and 2 do not contribute in providing service and among all the links
only four links involve in guaranteeing service for CS2.

Adding the flows of two customers, we can have the total flow of each link in
trap network as depicted in Fig. 4.7.

134 A. Tizghadam et al.

Fig. 4.5 Optimal resource assignment for virtual Network 1 (Customer 1) on trap physical
topology

Fig. 4.6 Optimal resource
assignment for virtual
Network 2 (Customer 2) on
trap physical topology

4.8.2 Optimal Joint Capacity Allocation/Routing for Abilene

As the next case study, we consider Abilene network [26]. Real traffic matrix
traces for Abilene are publicly available. For example, these traffic matrices can be
obtained from the website of TOTEM project [27], which is an open source platform
including a number of well-known traffic engineering methods. We used one of
the available traffic matrices for Abilene, and solved joint optimization problem
(4.64) to find optimal link capacities and link flows simultaneously. We measured
the utilization of all the link of the Abilene and compared it with the link utilization
of two other traffic engineering methods, i.e. SPF (shortest path first) and OW, where
OW is a weight optimization tool for Intra-domain internet routing protocols such as
OSPF and IS-IS. It determines the weight of the links in order to utilize the network
more efficiently by using tabu search meta-heuristic method [36]. In SPF and OW

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 135

Fig. 4.7 Total link flow assignment on trap network

Fig. 4.8 Link utilization for three different traffic engineering methods: SPF, OW, and network
criticality minimization

methods, we used the existing capacity allocation for Abilene network and obtained
the flow assignment per link. We used TOTEM package [27] to solve SPF and OW
problems.

Figure 4.8(a) shows the distribution of link utilization in each one of the
three methods, i.e. it shows what percentage of links have a specific utilization.
Figure 4.8(b) is the cumulative link utilization representation, which says what
percentage of links have utilization higher than a specific value. Figure 4.8(b)
clearly shows that in our method (criticality), there is no link with utilization

136 A. Tizghadam et al.

Table 4.1 RocketFuel
dataset ISPs

Reduced Reduced Weight Total
ISP Routers Links cities links per link weight

1,755 87 322 18 33 0.7822 51.628
3,967 79 294 21 36 0.6743 48.551
1,239 315 1,944 30 69 0.7231 99.784

more than 50%, while in the other two methods (SPF, and OW) we have links
with high utilization, which makes the network vulnerable to the future demands
(if any).

4.8.3 Robust Capacity Assignment

We study the application of optimization problem (4.71) in robust capacity allo-
cation for RocketFuel topologies [35] as the most trustable existing dataset for
Internet service provider (ISP) networks. In this experiment, we assumed that
αi j =

1
n(n−1) ∀(i, j) ∈ E , which means that the objective function of optimization

problem (4.71) in this experiment equals average network criticality, i.e. τ̂ .
In order to use the dataset, we followed the method described in [9] and

collapsed the RocketFuel ISP topologies into PoP to PoP connectivity networks.
In other words, we consolidated all the nodes within a city into a single node,
and aggregated all the links from one city to another one in a single link, where
the capacity of the link equals the sum of the capacities of all the original links
connecting different sub-nodes between two cities. There are six ISP topologies in
RocketFuel dataset, whose topological information are given in [9]. The topologies
in RocketFuel dataset do not include the capacities of the links, but we can use OSPF
weight information which is provided in RocketFuel dataset to associate compatible
capacities using Cisco recommendation as described in [9]. Cisco recommends that
the link capacities are proportional to the reciprocal of the weights.

We do our experiments on three network topologies from RocketFuel dataset.
Table 4.1 shows the specification of the RocketFuel networks we used in our
experiments. We would like to study possible gains we may achieve by replacing
present capacity allocation for RocketFuel topologies with the optimal weight
(capacity) set obtained as the solution of the proposed k-robust method. In the
following experiments, we consider four different weight sets. First of all, since
the networks are real, we already have an initial weight (IW) set. In IW, the weights
are proportional to the capacity of the real network. In the second weight set, the
total weight (total capacity) of the network is uniformly distributed among all the
link weights; therefore, we have equal weight allocation (EW). The third weight set
which is denoted by OT is the solution of optimization problem (4.56). Again for
this optimization problem we assume αi j =

1
n(n−1) ∀(i, j) ∈ E . The solution of OT is

robust in the sense that the average network criticality is minimized; however, it is

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 137

Fig. 4.9 Comparison of IW and EW with optimized weight sets for RocketFuel topologies 1,755,
3,967, and 1,239

not optimized for vulnerability (i.e. failures). Finally, the fourth weight set is the
result of optimizing the network for link failure. We consider the case of 1-robust
topology weight design using optimization problem (4.71), and the optimal weight
set is denoted by MMTL. In these experiments all the link costs (zi j’s) are assumed
to be 1.

Figure 4.9(a)–(c) show the value of the average network criticality (objective
function of optimization problem (4.56)), and the value of max∑i, j di j=n−k Tr(UαL+

(DoW)) (objective function of optimization problem (4.71)) for RocketFuel. In
the figures, these values are denoted by τ̂ and max τ̂(i j) (the superscript (i j)
shows that τ̂(i j) is the value of network criticality when link (i,j) is removed),
respectively. It can be easily seen that there is a huge gap between IW and
optimized weight assignment for RocketFuel networks. This verifies that our op-
timizations can significantly improve the vulnerability of the network. For example,
according to Fig. 4.10, the optimal vulnerability parameters of network 1,755
show 42% and 61.4% improvement, respectively, comparing with initial weight
(IW) case.

138 A. Tizghadam et al.

Fig. 4.10 Parameters of
different optimized weight
sets for 1,755 Network

4.8.4 Design of Robust Power Grids

The concept of TANC has a nice application in smart power grids. Nowadays the
idea of using renewable energy sources has gained considerable attention. Many
places with renewable energy (such as places with high wind) are not within the
reach of existing power grid network and it is required to extend the existing power
grid to the places with renewable energy. Thus, we need to know how to design
a robust power network as an extension to the existing one. In addition to the
robustness, a power grid should be sparse enough, to avoid unnecessary power
lines. This problem is recently investigated and a method of sparsification is also
developed [37]. Here, we follow the method of [37] to formulate the optimization
problem for our power network. We will see that the optimization problem has
exactly the form of our k-robust problem. We will solve the problem and then and
we use an sparsification method based on the concept of resistance distance to prune
the network.

It can be shown that in a DC-model approximation of a power grid, the average
power dissipation of the grid is proportional to Tr(AL+), where A =< −→a −→a t >
and −→a is the vector of link electrical currents (< . > denotes time average) [37].
Clearly, the power dissipation has the general form of WNC (or equivalently TANC
if we interpret the power as network flow, and weights as line conductances);
therefore, minimization of power dissipation in power grids results in minimization
of WNC. We address the optimization of a power grid network with multiple
random independent loads supplied by a generator. For consumer nodes, we specify
mean load āi < 0 and the variance σ2

i . At transmission (relay) nodes, the average
and variance of the load are zero. At the generator we must have a0 = −∑i�=0 ai.
Therefore, matrix A =<−→a −→a t > can be written as

(
(∑i�=0 āi)

2 +∑i�=0σ2
i −−→

1 t(−→a −→a t +Σ)
−(−→a −→a t +Σ)

−→
1 −→a −→a t +Σ

)

We let āi = −1 and σ2
i = 1

4 for consumer nodes in our tests in this section. We
consider an n− by− n grid (n is an odd number) and we let the generator node be
the middle node of the grid and consumer nodes on the border nodes (Fig. 4.11(a)),
or a middle node in one of the border lines of the grid and consumers on the parallel
border (Fig. 4.11(b)).

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 139

Fig. 4.11 Power grids with one generator node

Fig. 4.12 Optimal grid topologies – thickness of the lines represent the conductances

First, we optimize the grid for power dissipation (i.e. we minimize WNC
Tr(AL+). The optimization problem is essentially the same as problem (4.56) with
appropriate values of αi j , so that Uα = A. We solved problem (4.56) for the given
values of Uα = A. The optimal networks are shown in Fig. 4.12(a), (b), where
the thickness of the lines represent the link weights or line conductances (thicker
line has higher conductance). We discuss Fig. 4.12(b), since it is more vulnerable
and needs attention. Figure 4.12(b) shows that by optimizing WNC, we prune the
original grid; however, this network does not provide protection against possible
link/node failures. We can use optimization problem (4.71) to find a k-robust grid
power topology. Figure 4.13a shows an example of a 1-robust topology.

We provide one more extension that is particularly useful for the case of power
grids in which the network should be sparse enough while preserving robustness.
We would like to sparsify the robust topology of Fig. 4.13a. Fortunately, there is
an elegant study on the context of sparsification using resistance distance. In [38],
the problem of finding an sparse version of a large network is addressed with the
goal of keeping the total resistance distance of the original graph and its sparse
version as close as possible. The authors have proposed an algorithm to find such
sparse networks. The algorithm works as follows. Suppose H is the sparse version
of graph G. Choose a random line (i, j) of the network G with probability pi j

proportional to wi jτi j , where τi j is the point-to-point network criticality or the

140 A. Tizghadam et al.

Fig. 4.13 (a) Optimal robust grid topology (link failure), (b) optimal robust sparse grid topology

resistance distance seen between nodes i and j. Add (i, j) to H with weight
wi j
qpi j

,
where q is the number of independent samples (we should sum up weights if a
line is chosen more than once). We used this algorithm to simplify the optimal
robust network of Fig. 4.13a (note that we have chosen a large grid so that the
conditions for applying the sparsifying algorithm are met), and the result is shown
in Fig. 4.13b.

The network criticality of the sparse topology in Fig. 4.13b is close to that of the
original topology (Fig. 4.13a) and it is still 1-robust, but the number of active links
(power lines) in the topology of Fig. 4.13b is much less than the original one.

4.9 Conclusion

In this chapter, we developed a number of optimization problems for simultaneous
optimization of resources and flows for communication networks and power
grids. Our goal in the optimization problems was to minimize a weighted linear
combination of resistance distances (point-to-point network criticalities) which is a
convex function of link weights.

In another development, we discussed the problem of finding the best matched
traffic matrix to a given network topology, along with optimal routing strategy
(flow assignment) associated with optimal demand. We extended this idea and pro-
posed an optimization problem to jointly optimize demands, routes and resources.
Moreover, we discussed the application of network criticality in planning k-robust
networks, where the topology is potentially protected against up to k link failures.

We used the proposed optimization problems to design virtual networks for dif-
ferent customers of a communication network. We also applied the k-robust strategy
to design robust communication networks, and robust sparse power networks.

There are different avenues for further development of the proposed ideas in
this chapter. We can extend the optimization problems to the case where other QoS
constraints, such as delay partitioning constraints, are also requested. Our discussion

4 Joint Optimization of Resources and Routes for Minimum Resistance:... 141

in this work was mostly on undirected networks (also we explained how we can
have asymmetric capacities within the proposed framework). One more extension is
to develop similar optimization problems for the general case of a directed graph.

References

1. A. H. Dekker, B. D. Colbert. Network Robustness and Graph Topology. Australasian
Computer Science Conference, vol. 26, page 359–368, January 2004.

2. A. H. Dekker, B. D. Colbert. The Symmetry Ratio of a Network. Australasian symposium on
Theory of computing, ACM International Conference Proceeding Series, vol. 41, page 13–20,
Newcastle, Australia, 2005.

3. P. Holme, B. Kimand, C. Yoon, S. K. Han. Attack vulnerability of complex networks.
Physical Review, E65, 056109, 2002.

4. R. Criado, J. Flores, B. Hernandez-Bermejo, J. Pello, M. Romance. Effective Measurement
of Network Vulnerability Under Random and Intentional Attacks. Journal of Mathematical
Modelling and Algorithms, vol. 4, pp. 307–316, 2005.

5. R. Zhang-Shen, N. McKeown. Designing a Predictable Internet Backbone with Valiant
Load-Balancing. Thirteenth International Workshop on Quality of Service (IWQoS), Passau,
Germany, June 2005.

6. L. Valiant, G. Brebner. Universal Schemes for Parallel Communication. Thirteenth Annual
Symposium on Theory of Computing, May 1981.

7. C. S. Chang, D. S. Lee, Y. S. Jou. Load Balanced Birkhoff-von Neumann Switches, Part I:
One-Stage Buffering. IEEE HPSR ’01, Dallas, May 2001.

8. I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, N. McKeown.
Scaling Internet Routers Using Optics. ACM SIGCOMM, Karlsruhe, Germany, 2003.

9. D. Applegate, E. Cohen. Making routing robust to changing traffic demands: algorithms and
evaluation. IEEE/ACM Transactions on Networking (TON), vol. 14, no. 6, pp. 1193–1206,
December 2006.

10. D. Applegate, L. Breslau, E. Cohen. Coping with Network Failures: Routing Strategies for
Optimal Demand Oblivious Restoration. ACM SIGMETRICS, New York, USA, 2004.

11. A. Tizghadam and A. Leon-Garcia. A Robust Routing Plan to Optimize Throughput in Core
Networks. Managing Traffic Performance in Converged Networks, Lorne Mason, Tadeusz
Drwiega and James Yan (Eds.), Springer, pages 117–128, 2007.

12. A. Tizghadam and A. Leon-Garcia. A Graph Theoretical Approach to Traffic Engineering and
Network Control Problem. In 21th International Teletraffic Congress (ITC21), Paris, France,
September 2009.

13. L. C. Freeman. Centrality in Networks: I. Conceptual Clarification. Social Networks, (1):
215–239, 1978/79.

14. D. Koschtzki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski.
Centrality Indices. Network Analysis: Methodological Foundations, U. Brandes, T. Erlebach
(Editors), Lecture Notes in Computer Science, Springer-Verlag, vol. 3418, 2005.

15. L.C. Freeman, S.P. Borgatti, and D.R. White. Centrality in valued graphs: a measure of
betweenness based on network flow. Social Networks, 13:141–154, 1991.

16. M. Newman. A Measure of Betweenness Centrality Based on Random Walks. Social
Networks, 27:39–54, 2005.

17. A. Tizghadam, A. Leon-Garcia. Robust Network Planning in Nonuniform Traffic Scenarios.
Computer Communications, vol. 34, no. 12, pp. 1436–1449, 2011.

18. C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its Applications. John Weily
and Sons Inc., 1971.

142 A. Tizghadam et al.

19. A. Tizghadam and A. Leon-Garcia. Autonomic Traffic Engineering for Network Robustness.
IEEE Journal of Selected Areas in Communications (J-SAC), 28(1):39–50, January 2010.

20. A. Tizghadam and A Leon-Garcia. Survival Value of Communication Networks. In INFO-
COM Workshop on Network Science for Communications (NetSciCom), pages 1–6, Rio de
Janeiro, Brazil, April 2009.

21. A. Tizghadam and A Leon-Garcia. Betweenness Centrality and Resistance Distance in
Communication Networks. In IEEE Network, vol. 24, no. 6, pages 10–16, November-
December 2010.

22. D. J. Klein and M. Randic. Resistance Distance. Journal of Mathematical Chemistry,
12(1):81–95, December 1993.

23. A. Ghosh, S. Boyd, and A. Saberi. Minimizing Effective Resistance of a Graph. SIAM Review,
problems and techniques section, 50(1):37–66, February 2008.

24. L. Kleinrock. Queueing Systems, volume II. John Wiley & Sons, 1975.
25. A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.

Econometrica, vol. 28, no. 3, pages 497–520, July 1960.
26. A. Preston, S. Cotter, C. Todorov. US Optical Networking Developments in Support of US

Research and Education: FiberCo, a Case Study and a Bit on Optical International Exchange
Points. CESNET, Prague Czech Republic, March 2006.

27. G. Leduca, H. Abrahamssone, S. Balona, S. Besslerb, M. D’Arienzoh, O. Delcourta,
J. Domingo-Pascuald, S. Cerav-Erbasg, I. Gojmeracb, X. Masipd, A. Pescaph, B. Quoitinf, S.
P. Romanoh, E. Salvadoric, F. Skivea, H. T. Tranb, S. Uhligf, and H. Umitg. An Open Source
Traffic Engineering Toolbox. Computer Communications, 29(5):593–610, March 2006.

28. Dennis S. Bernstein. Matrix Mathematics. Princeton University Press, 2th edition, 2009.
29. M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming (Web

Page and Software). http : //stanford.edu/ boyd/cvx. September 2008.
30. M. Grant and S. Boyd. Graph Implementations for Nonsmooth Convex Programs, Recent

Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and
H. Kimura, editors, http : //stanford.edu/ boyd/graphd cp.html. Lecture Notes in Control
and Information Sciences, Springer, 2008.

31. D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Athena
Scientific, April 2003.

32. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
33. L. Xiao and M. Johansson, and S. Boyd. Simultaneous Routing and Resource Allocation

via Dual Decomposition. IEEE Transactions on Communications, vol. 52, no. 7, pages
1136–1144, July 2004.

34. A. Tizghadam and A. Leon-Garcia. On Random Walks in Direction-Aware Network Problems.
ACM SIGMETRICS Performance Evaluation Review (PER), vol. 38, no. 2, pages 9–11,
September 2010.

35. N. Spring, R. Mahajan, D. Wetherall, T. Anderson. Measuring ISP Topologies with
Rocketfuel. IEEE/ACM Transactions on Networking (TON), vol. 12, no. 1, pp. 2–16, February
2004.

36. B. Fortz, M. Thorup. Increasing Internet Capacity Using Local Search. , Computational
Optimization and Applications, vol. 29, pp. 13–48, 2004.

37. J. K. Johnson, M. Chertkov. A Majorization-Minimization Approach to Design of Power
Transmission Networks. arXiv:1004.2285, September 2010.

38. D. A. Spielman, N. Srivastava. Graph Sparsication by Effective Resistances. Proceedings of
the 40th annual ACM Symposium on Theory of Computing STOC’08, pages 563–568, 2008.

Chapter 5
Clique Relaxation Models in Social Network
Analysis

Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko

Abstract Clique relaxation models that were originally introduced in the literature
on social network analysis are not only gaining increasing popularity in a wide
spectrum of complex network applications, but also keep garnering attention of
mathematicians, computer scientists, and operations researchers as a promising
avenue for fruitful theoretical investigations. This chapter describes the origins
of clique relaxation concepts and provides a brief overview of mathematical pro-
gramming formulations for the corresponding optimization problems, algorithms
proposed to solve these problems, and selected real-life applications of the models
of interest.

5.1 Introduction

Social networks represent certain types of social interaction, such as acquaintance,
friendship, or collaboration between people or groups of people that are referred
to as actors. In social networks, vertices (nodes, dots) usually stand for actors, and
edges (arcs, links, lines) represent the pairwise relations or interactions between the
actors. As an illustration of a social network, an example of a terrorist network is
given in Fig. 5.1, which describes the connections between terrorists associated with
the September 11, 2001 attack on the World Trade Center. The links were identified
by Krebs [49] after the terrorist attack; however, the network is reconstructed

J. Pattillo (�)
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
e-mail: jptlo@math.tamu.edu

N. Youssef • S. Butenko
Department of Industrial and Systems Engineering, Texas A&M University,
College Station, TX 77843-3131, USA
e-mail: nyoussef@tamu.edu; butenko@tamu.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 5, © Springer Science+Business Media, LLC 2012

143

jptlo@math.tamu.edu
nyoussef@tamu.edu
butenko@tamu.edu

144 J. Pattillo et al.

1 Wail Alshehri
2 Satam Suqami
3 Nabil al-Marabh
4 Raed Hijazi
5 Waleed Alshehri
6 Ahmed Alghamdi
7 Mohand Alshehri
8 Saeed Alghamdi
9 Fayez Ahmed
10 Mustafa Ahmed Al-Hisawi
11 Abdul Aziz Al-Omari
12 Hamza Alghamdi
13 Ahmed Alnami
14 Ahmed Al Haznawi
15 Mamoun Darkazanli
16 Mohamed Abdi
17 Marwan Al-Shehhi
18 Zakariya Essabar
19 Salem Alhazmi

1 2

5

34

1011

6

8

12

13

14

20
17

23

7

9

22
30

2426

31

21
18

19

25

28

29

32

27

33

15

16

35

34 36

37

20 Nawaf Alhazmi
21 Said Bahaji
22 Ziad Jarrah
23 Mohamed Atta
24 Abdussattar Shaikh
25 Mounir El Motassadeq
26 Khalid Al-Mihdhar
27 Zacarias Moussaoui
28 Ramzi Bin al-Shibh
29 Lofti Raissi
30 Hani Hanjour
31 Osama Awadallah
32 Agus Budiman
33 Ahmed Khalil Ibrahim

Samir Al-Ani
34 Majed Moqed
35 Rayed Mohammed Abdullah
36 Faisal Al Salmi
37 Bandar Alhazmi

Fig. 5.1 The network representation of the data describing connections between terrorists associ-
ated with September 11 events

based on the information that was publicly available before September 11. Analysis
of such networks, even though performed post-factum, may still be useful for
understanding the structure of terrorist organizations and detecting similar structures
to prevent potential terrorist attacks in the future.

One of the central concepts in social network analysis is the notion of a
cohesive subgroup, which is a “tightly knit” subgroup of actors in a social network.
During the last several decades, social network analysis methods in general, and
social cohesion concepts in particular, have been employed in various branches
of sociology in the contexts of crime detection/prevention and terrorist network
analysis [12, 27, 31, 56, 68, 69], studies on the sociology of political systems and
historical revolutionary movements [41, 65], epidemiology of sexually transmit-
ted diseases [67], organizational management [32], and the sociology of worker
solidarity [42].

Study of social cohesion can be traced back to one of the founding fathers of
sociology, Emile Durkheim (1858–1917), who wrote [35]:

The totality of beliefs and sentiments common to the average members of a society forms
a determinate system with a life of its own. It can be termed the collective or common
consciousness.

Durkheim found the notion of cohesiveness difficult to define rigorously,

...social solidarity is a wholly moral phenomenon which by itself is not amenable to exact
observation and especially not to measurement.

However, a rigorous mathematical definition became possible with the introduction
of sociometric analysis and graph theoretic methods into sociology that have led
to the association of the notion of social cohesion with certain graph theoretic
concepts. In particular, Luce and Perry [53] used complete subgraphs to model
social cliques, which are defined as “an exclusive circle of people with a common

5 Clique Relaxation Models in Social Network Analysis 145

purpose” [58]. It should be noted that the term “clique” was used in Hawthorne and
Warner studies in the 1930s (see, e.g., [66, 70]), however, it referred to “socially
perceived subgroups” and was not strictly defined [70].

While the notion of a clique embodies a “perfect” cohesive group, in which every
two entities are connected to each other, this definition is overly conservative in
many practical scenarios. Indeed,

1. One may not need to require every possible link to exist between elements of a
cohesive subgroup.

2. The social network of interest may be built based on empirical data, which are
prone to errors, so, even if a completely connected cohesive subgroup is sought
for, it may be impossible to detect due to erroneous data.

To overcome this impracticality of the clique model, other graph-theoretic
formalizations of the cohesive subgroup concept have been proposed in the lit-
erature. Not surprisingly, all these alternative definitions can be viewed as clique
generalizations, each of which relaxes one of the elementary clique properties, such
as familiarity, reachability, or robustness [4, 52, 59, 72]. Hence, we use the term
“clique relaxations” in reference to such models. Since their introduction in the
social network literature in the 1970s, the clique relaxation models received very
little attention from researchers in graph theory, computer science, and operations
research during the decades that followed. At the same time, methodology-wise, the
social network literature dealing with these concepts was largely limited to giving
their formal definition within a given context and providing illustrative examples on
graphs with several vertices [83].

Recent progress in Internet and telecommunication technologies makes it pos-
sible to collect tremendous amounts of social interaction data dynamically and at
virtually any level of detail, providing unprecedented opportunities to researchers
interested in areas related to social network analysis. The availability of massive
amounts of data that needs to be analyzed spurred the interest in developing effective
algorithms capable of handling problems of practical scale. The need for advanced
computational tools urged the recent progress in developing theoretical founda-
tions for the models of interest and effective algorithms utilizing the theoretical
achievements. The objective of this chapter is to provide a brief survey of results
concerning optimization problems seeking to find maximum size clique relaxation
structures in networks. More specifically, in this chapter we are primarily interested
in mathematical programming formulations of the corresponding optimization
problems and algorithms proposed for solving these problems. While in social
network applications one may also be interested in detecting cohesive subgroups
of sizes smaller than maximum, computing the largest cohesive subgroup is
of special interest, since its size provides a global measure of cohesiveness of
the corresponding network. We will also discuss selected applications of clique
relaxation models outside of social network analysis and highlight some of the
promising directions for future research in this active area.

The remainder of this chapter is organized as follows. Section 5.2 provides
formal definitions of the clique relaxation concepts introduced in the context of

146 J. Pattillo et al.

social network analysis and discusses some of their basic properties. Mathematical
programming formulations of the corresponding optimization problems, that aim
to find clique relaxation structures of largest possible size in the given network,
are outlined in Sect. 5.3. Section 5.4 surveys existing algorithms for solving the
optimization problems of interest either exactly or approximately and discusses suc-
cessful examples of application of some of these algorithms in practice. Extensions
of the discussed methodologies to applications outside of the sociological realm are
the focus of Sect. 5.5. Finally, Sect. 5.6 concludes the chapter.

5.2 Definitions and Properties of Clique Relaxation Models

Throughout this chapter, we consider a simple undirected graph G = (V,E), where
V = {1, ...,n} and E ⊆ V ×V , respectively, denote the sets of vertices and edges in
G, with |V |= n and |E|= m. G is said to be complete if for every u,v ∈ V such that
u �= v, (u,v) ∈ E; in other words, G = (V,E) is complete if E = V ×V with |E| =(n

2

)
. Given a subset of vertices S ⊆ V , G[S] = (S,E ∩ (S× S)) denotes the subgraph

induced by S, obtained by deleting all vertices in V \ S and their corresponding
incident edges from G.

A clique C is a subset of V such that the subgraph G[C] induced by C on G is
complete. A clique is called maximal if it is not contained in a larger clique, and it
is called maximum if there is no larger clique in G. The size of the maximum clique
in G is referred to as the clique number and is denoted by ω(G).

The notion of clique defined above embodies ideal properties of reachability,
familiarity, density, and robustness discussed below in this chapter. Such structural
properties are indeed very useful in modeling group cohesiveness within social
networks. The idealized properties of cliques are, however, overly restrictive in
practical applications. This observation has called for the development of clique
relaxations, aiming at relaxing particular properties of cliques. We next introduce
the definitions of the major graph properties that are needed in order to characterize
the clique relaxations of interest. A path between two vertices u,v ∈V of length k is
a sequence of distinct vertices u = v0,v1, ...,vk = v, such that (vi,vi+1) ∈ E,0 ≤ i ≤
k − 1. Two paths are called independent if they only intersect at their ends. The
length of the shortest path between two vertices u,v ∈ V in G is represented by
dG(u,v), referred to as the distance between u and v. The largest of the pairwise
distances between vertices define the diameter of the graph, i.e., diam(G) =
maxu,v∈V dG(u,v). G is said to be connected if every two vertices in G are linked by a
path in G. For any vertex v ∈V , the open neighborhood N(v) = {u ∈V |(u,v) ∈ E)}
defines the set of vertices adjacent to v in G, whereas N[v] = {v}∪N(v) denotes the
closed neighborhood of v. The degree of a vertex v ∈V , given by degG(v) = |N(v)|,
represents the number of edges emanating from v. Considering a subgraph G[S]
induced by S ⊆ V , the degree of a vertex s ∈ S is given by degG[S](s) = |N(s)∩ S|.
The minimum degree in a graph is denoted by δ (G). A subset of vertices D is called
a dominating set if every vertex in the graph is either in D or has at least one neighbor

5 Clique Relaxation Models in Social Network Analysis 147

Fig. 5.2 A graph illustrating
the difference between
2-cliques and 2-clubs,
originally used in [4]

1 2

3

45

6

in D. The size of a smallest dominating set, also known as the domination number
of G, is denoted by γ(G). The edge density of G is the ratio of the number of edges
to the total number of possible edges, i.e., m/

(n
2

)
.

The concepts of k-cliques and k-clubs were among the first clique relaxations to
be studied in the literature and were first introduced in [72] and [71]. They both
relax the property of reachability desirable for a cohesive subgroup, that is, each
member of a cohesive subgroup should be able to easily reach any other member
of the subgroup. In graph-theoretic terms, this property can be expressed using the
notions of distance and diameter. While pairwise distances between members of the
clique is equal to one, k-cliques ensure that any two vertices within the subgraph are
at most distance k from each other in the original graph. On the other hand, k-clubs
require the diameter of the induced subgraph to be at most k. Next, we formally
define these concepts.

Definition 5.1. A k-clique S is a subset of V such that, for all vertices u,v ∈ S,
dG(u,v) ≤ k. The size of the largest k-clique is called the k-clique number and is
denoted by ω̃k(G).

Definition 5.2. A k-club S is a subset of V such that the induced subgraph G[C] has
a diameter of at most k. The size of the largest k-club is called the k-club number
and is denoted by ωk(G).

Note that any k-club is a k-clique but the converse is not true. For example,
the graph in Fig. 5.2 contains a 2-clique C = {1,2,3,4,5}, which is not a 2-club,
since the distance between vertices 1 and 5 in the subgraph induced by C is 3.
Based on this observation, Alba [4] concluded that the concept of k-clique lacks
the “tightness” essential to applications in social networks, which motivated him
to introduce the concept of a “sociometric clique”, later renamed to “k-clan” by
Mokken [59]. According to their definition, a k-clique C is called an k-clan if the
diameter of the induced subgraph G(C) is no more than k. A considerable drawback
in the k-clan definition is that for some graphs a k-clan may not exist [10]. Indeed,
Fig. 5.3 shows a graph with two 2-cliques {1,2,3,4,5,6,7} and {1,2,3,5,6,7,8},
neither of which is a 2-clan.

Familiarity is another important property one wants to have in a cohesive
subgroup; ideally, every member of the group should be familiar with every
other member of the group, which is the case for cliques. Known familiarity-
based models either relax the minimum number of neighbors or the maximum
number of non-neighbors within the group. The k-core concept, first introduced in

148 J. Pattillo et al.

1 2 3

48

7 6 5

Fig. 5.3 A graph with no 2-clans proposed in [10]

[71], imposes a lower bound on the minimum degree within the subgraph, ensuring
that each vertex in the group is connected to at least k other vertices in the group.
The k-plex model introduced in [72], on the other hand, requires any subset of k
vertices to dominate to entire group, hence restricting the number of non-neighbors
per vertex to be at most k − 1. The formal definitions of these familiarity-based
relaxations are given next.

Definition 5.3. A k-core S is a subset of V such that, for all vertices u,v ∈ S,
degG[S](v) = |N(v) ∩ S| ≥ k. The size of the k-core in the graph G is denoted
by ω ′

k(G).

Definition 5.4. A k-plex S is the maximum subset of V such that any set of k
vertices in S dominates the group. Alternatively, a k-plex S is a subset of V such
that, for all vertices u,v ∈ S, degG[S](v) = |N(v)∩S| ≥ |S|−k. The size of the largest
k-plex is denoted by ωk(G).

High density of connections is yet another defining characteristic of a cohesive
subgroup that is perfectly reflected in the notion of clique, which can be alternatively
defined as a subset of vertices inducing a subgraph with edge density of 1. This
rather strict requirement on edge density could also be relaxed. Namely, instead of
opting for cliques with density one, γ-quasi-cliques ensure a subgraph with a density
at least γ , where 0 ≤ γ ≤ 1.

Definition 5.5. A γ-quasi-clique or, simply, a γ-clique is a subset S of V such that
the induced subgraph G[S] has the edge density |E ∩ (S×S)|/(|S|2

)
of at least γ . The

size of the largest γ-quasi-clique is denoted by ωγ (G).

Finally, robustness of a group may be measured in terms of the number of vertices
that need to be deleted to completely disconnect the group. Since any vertex within
a clique is directly linked to any other vertex of the clique, disconnecting a clique
would require removing all its vertices. A model known as the k-vertex connected
subgraph relaxes the connectivity property, whereby removal of at least k vertices
destroys connectivity. By Menger’s theorem [33], a k-vertex connected group can
be also defined as a subgraph such that any two of its vertices can be joined by k
independent paths.

5 Clique Relaxation Models in Social Network Analysis 149

Definition 5.6. A k-vertex connected subgraph G[S] is defined by a subset S of V
such that the induced subgraph G[S \ R] is connected for all subsets R ⊂ S, with
|R|< k. The size of the largest k-connected subgraph is denoted by ωkc(G).

The corresponding concept in social networks literature is the so-called structural
cohesion, which is defined as the minimum number of members whose removal
from a group would disconnect the group [60].

While, by definition, the above mentioned clique relaxations emphasize a
single clique structural aspect, other models have been created ensuring different
combinations of properties. Examples include the (λ ,γ)-quasi-clique relaxing both
density and degree requirements and the r-robust k-club additionally requiring
r-connectivity in a k-club. For further readings, consult [23, 81]. Surveys [18]
and [63] provide further information and references on the maximum clique and
related problems.

5.3 Mathematical Programming Formulations

All the optimization problems of interest to this chapter can be formulated as
(mixed) integer programs (MIP). Below in this section we provide some of the
known formulations for all problems except for the maximum k-core and maximum
k-vertex connected subgraph. No k-core formulation is given due to the fact that,
as we will discuss in Sect. 5.4, the maximum k-core problem can be solved to
optimality by a simple greedy algorithm that runs in polynomial time, whereas
all other problems considered in this chapter are NP-hard. Thus, even though the
maximum k-core problem can be easily formulated as an integer program, this is not
the way this problem is typically approached. On the other hand, we are not aware
of any publications proposing mathematical programming formulations or effective
algorithms for the maximum k-vertex connected subgraph problem. Developing
such formulations and algorithms is an interesting and important direction for
future research, especially since the corresponding notion of structural cohesion is
enjoying rapidly increasing popularity in the literature on social network analysis.

5.3.1 Maximum k-Clique

The maximum k-clique problem consists of finding the k-clique in the graph with
largest cardinality ωk(G). This problem can be formulated as a binary integer linear
problem:

ω̃k(G) = max∑
i∈V

xi (5.1)

subject to xi + x j ≤ 1, ∀i, j ∈ V dG(i, j) > k, (5.2)

xi ∈ {0,1}, i ∈V. (5.3)

150 J. Pattillo et al.

Each binary variable corresponds to a vertex in the graph and assumes unity if the
corresponding vertex is included in the k-clique. Constraint (5.2) ensures that two
vertices whose pairwise distance in the original graph G exceeds k are not both
considered in the k-clique.

It should be noted that the maximum k-clique problem in graph G can be
equivalently formulated as the maximum clique problem in graph Gk representing
the k-th power of graph G, which is defined as follows. Gk has the same set of
vertices as G, with edges connecting all pairs of vertices that are distance at most k
from each other in G. Thus, the numerous mathematical programming formulations
for the maximum clique problem available in the literature [18] can be adopted to
obtain analogous formulations for the maximum k-clique problem.

5.3.2 Maximum k-Club

The maximum k-club problem looks for the largest k-club in the graph. This problem
can be formulated as a binary integer linear problem:

ωk(G) = max∑
i∈V

xi (5.4)

subject to xi + x j ≤ 1+ ∑
l:Pl

i, j∈Pi, j

yl
i j, ∀(i, j) /∈ E, (5.5)

xp ≥ yl
i j, ∀p ∈ V (Pl

i j),P
l
i j ∈ Pi j,(i, j) /∈ E, (5.6)

xi ∈ {0,1}, i ∈ V, (5.7)

yl
i j ∈ {0,1}, ∀Pl

i j ∈ Pi j,(i, j) /∈ E. (5.8)

Pi j represents an index set of all paths of length at most k, whereas Pl
i j denotes the

path between i and j indexed at position l ∈ Pi j. V (Pl
i j) denotes the set of vertices

included inn path Pl
i j. Constraint (5.5) allows both vertices i and j into the solution

if no edge but a path of length at most k exists between them, and only if yl
i j is equal

to 1 for at least one path between i and j. Hence, this formulation makes sure to
include in the k-club all vertices along any one path of length at most k between any
two vertices in the k-club.

More recently, Veremyev and Boginski [81] have developed a more compact
formulation for the maximum k-club problem with O(kn2) constraints. We first
present the special case with k = 2 and then generalize to any k ≥ 2. Let A =
[ai j]

n
i, j=1, where ai j = 1 if there exists an edge between vertices i and j, and

0 otherwise, denote the adjacency matrix of G. Vertices in a 2-club are either
connected directly or through at most one other vertex l, which can be expressed

5 Clique Relaxation Models in Social Network Analysis 151

using the following non-linear constraint:

ai j +
n

∑
l=1

ailal jxl ≥ xix j. (5.9)

Simplifying the aforementioned constraint results in the following formulation:

ωk(G) = max
n

∑
i∈1

xi (5.10)

subject to ai j +
n

∑
l=1

ailal jxl ≥ xi + x j − 1,∀i = 1, ...,n; j = i+ 1, ...,n, (5.11)

xi ∈ {0,1}, i = 1, ...,n. (5.12)

The above formulation can be generalized for any k ≥ 2, by allowing any two
vertices in the k-club to be either directly linked or connected through at most k−1
vertices within the subgraph:

ωk(G) = max
n

∑
i∈1

xi (5.13)

subject to ai j +
n

∑
l=1

ailal jxl +
n

∑
l=1

n

∑
m=1

ailalmam jxlxm + · · ·+ (5.14)

n

∑
i1=1

n

∑
i2=1

. . .
n

∑
ik−2=1

n

∑
ik−1=1

aii1ai1i2 . . .aik−2ik−1aik−1 jxi1 . . .xik−1 (5.15)

≥ xi + x j − 1,∀i = 1, ...,n; j = i+ 1, ...,n, (5.16)

xi ∈ {0,1}, i = 1, ...,n. (5.17)

5.3.3 Maximum k-Plex

The maximum k-plex problem finds the k-plex in the graph with maximum
cardinality. This problem can be formulated as a binary integer linear problem,
where degG(i) = |V\N[i]| denotes the degree of vertex i in the complement graph
G = (V,E) [9]:

ωk(G) = max∑
i∈V

xi (5.18)

subject to ∑
j∈V\N[i]

x j ≤ (k− 1)xi + degG(i)(1− xi), ∀i ∈ V, (5.19)

xi ∈ {0,1}, i ∈ V. (5.20)

152 J. Pattillo et al.

Binary variables indicate whether or not a vertex is included in the maximum k-plex.
Constraint (5.19) expresses the fact that if vertex i is included in the k-plex, then it
has at most k− 1 non-neighbors, otherwise the constraint becomes redundant.

5.3.4 Maximum Quasi-clique

The maximum γ-quasi-clique problem can be formulated as the following mixed-
integer problem with linear objective and a single quadratic constraint [64]:

ωγ(G) = max
n

∑
i=1

xi (5.21)

subject to
n

∑
i=1

n

∑
j=i+1

ai jxix j ≥ γ
n

∑
i=1

n

∑
j=i+1

xix j, (5.22)

xi ∈ {0,1}, i = 1, . . . ,n. (5.23)

Two linearizations of this formulation are proposed in [64]. The first, standard,
linearization is based on defining a new variable xi j = xix j and using an equivalent
(for binary variables) representation of this quadratic equation in terms of three
linear inequalities. This results in the following mixed integer linear programming
formulation with n(n− 1)/2 variables and 3

2 n(n− 1)+ 1 constraints:

ωγ(G) = max
n

∑
i=1

xi, (5.24)

s.t.
n

∑
i=1

n

∑
j=i+1

(γ− ai j)xi j ≤ 0, (5.25)

xi j ≤ xi, xi j ≤ x j, xi j ≥ xi + x j − 1, j > i = 1, . . . ,n (5.26)

xi j ≥ 0, xi ∈ {0,1}, j > i = 1, . . . ,n. (5.27)

The second linearization is based on rewriting the single constraint of formulation
(5.21)–(5.23) in the form

n

∑
i=1

xi

(
γxi +

n

∑
j=1

(ai j − γ)x j

)
≥ 0. (5.28)

and introducing a new variable yi for i = 1, . . . ,n as follows:

yi = xi

(
γxi +

n

∑
j=1

(ai j − γ)x j

)
. (5.29)

5 Clique Relaxation Models in Social Network Analysis 153

Again, replacing this quadratic equality constraint with several linear inequality
constraints, we obtain the following MIP with 2n variables, n of which are binary
and n continuous, and 4n+ 1 constraints:

ωγ (G) = max
n

∑
i=1

xi (5.30)

s.t.
n

∑
i=1

yi ≥ 0, (5.31)

yi ≤ uixi, yi ≥ lixi, i = 1, . . . ,n, (5.32)

yi ≥ γxi +
n

∑
j=1

(ai j − γ)x j − ui(1− xi), i = 1, . . . ,n, (5.33)

yi ≤ γxi +
n

∑
j=1

(ai j − γ)x j − li(1− xi), i = 1, . . . ,n, (5.34)

xi ∈ {0,1}; yi ∈ R, i = 1, . . . ,n. (5.35)

5.4 Algorithms for Detection of Clique Relaxation Structures

5.4.1 k-Clique

Balasundram et al. [10] have shown that the maximum k-clique problem is NP-
hard for any positive integer k. A natural way of attacking this problem is by
reducing it to the maximum clique problem in the k-th power of the graph, Gk.
The maximum clique problem has been well studied in the literature [18], and
all the methods available for this problem can be easily adopted for solving the
maximum k-clique problem. Therefore, below we mention some of the numerous
algorithms proposed for solving the clique problem. It should be noted that Gk may
have a much higher edge density than G, and most of the known algorithms for the
maximum clique problem tend to perform better on sparse graphs. Thus, the max-
imum k-clique problem appears to be more challenging than the maximum clique
problem.

Some of the most notable exact combinatorial algorithms for the maximum
clique problem have been proposed by Bron and Kerbosch [22], Balas and Yu [8],
Applegate and Johnson [5], Carraghan and Pardalos [25], Babel [6], Balas and
Xue [7], Wood [84], Sewell [73], Östergård [62], and Tomita and Kameda [78]. Due
to its simplicity and effectiveness, especially on sparse graphs, implementation of
Carraghan–Pardalos algorithm developed by Applegate and Johnson [5] was used
as a benchmark exact algorithm for the maximum clique problem in the Second
DIMACS Implementation Challenge [44]. Östergård [62] proposed an enhanced
version of the Carraghan–Pardalos algorithm, which uses approximate coloring for

154 J. Pattillo et al.

the upper bound. The resulting algorithm implemented in software called cliquer
is considered one of the fastest exact approaches for solving the maximum clique
problem. More recently, Tomita and Kameda [78] claim that for randomly generated
test instances and DIMACS benchmark instances [34] the algorithm they propose
outperforms all other competitive algorithms published literature at the time of this
writing, with Östergård’s algorithm being the close second.

For a broad overview of heuristics used for the maximum clique problem,
see [63]. Greedy heuristics have been developed based on either a sequential
addition of vertices until the clique is built or a removal of vertices from a larger
graph. They typically use local information, such as vertex degree, to order the
vertices in the greedy scheme [45, 48, 79]. Simulated annealing [1, 43] and tabu
search [11, 40, 74, 75] have proven very successful, as have hybrid implementations
combining simulated annealing and greedy heuristics [26], [46]. These hybrid
methods outperform most greedy heuristics on random graphs with up to 1,000
vertices both in time and quality of solution.

Several algorithms for enumerating all maximal cliques in a graph are also
available in the literature [22, 29, 47, 51, 55]. For a comprehensive survey of the
maximum clique problem formulations, exact and heuristic algorithms as of 1999,
the reader is referred to [18].

5.4.2 k-Club

The maximum k-club problem defined on an undirected graph has been proven NP-
hard as a result of a polynomial reduction from the clique problem [20]. Moreover,
it has been shown in [10] that the problem remains NP-hard even when restricted
to graphs of diameter k + 1. This has motivated several attempts at constructing
efficient heuristics. For instance, Bourjolly et al. [19] have proposed three greedy
heuristics, DROP, k-CLIQUE & DROP and CONSTELLATION. The main idea
behind DROP consists of sequentially deleting nodes from the original graph until
obtaining a k-club. At each iteration, the heuristic computes the shortest path lengths
between all pairs of nodes. A single node is then ruled out of the graph which has
the largest number of vertices with distance from it is larger than k. This process
is repeated until all pairwise shortest path lengths in the remaining graph are k
or less, hence, defining a k-club. With an overall time complexity of O(|V |3|E|),
DROP yields near-optimal solutions for high-density graphs. A better performance
for lower density graphs for k = 3 or 4 is obtained by applying DROP to the largest
k-clique in the original graph. The obtained algorithm is referred to as k-CLIQUE &
DROP and has exponential complexity due to the initial step of finding the largest
k-clique in G. CONSTELLATION, on the other hand, stems from the main idea that
a star graph forms a 2-club. The heuristic first finds the largest star subgraph in G
centered around the vertex with maximum degree in the graph, resulting in a t + 1-
club, where t = 1. Then, at iteration t, it identifies an external vertex with the largest

5 Clique Relaxation Models in Social Network Analysis 155

number of neighbors not yet included in the previously obtained t-club. Appending
these vertices to the subgraph results in a t + 1-club. The algorithm is then repeated
until a k-club is reached. CONSTELLATION performs well for low density graphs
when k = 2, with an overall complexity of O(k(|V |+ |E|)).

While these heuristics find good solutions efficiently for relatively large graphs,
exact algorithms have also been developed within the framework of Branch-and-
Bound (B&B), attempting to solve the maximum k-club problem on rather smaller
graphs. Bourjolly et al. [20] proposed using a single iteration of the DROP heuristic
to guide the branching step with upper bounds relying on solutions to the maximum
stable set problem for an auxiliary graph. The auxiliary graph in this procedure
consists of all vertices in G with edges between vertices if their distance in G
exceeds k. While DROP can be performed efficiently, the bounding step at each
node of the B&B tree may be expensive, since the maximum stable set problem
is known to be NP-complete [39, 44]. This algorithm solved instances with no
more than 200 vertices to optimality and reported more computationally efficient
solutions for denser graphs. A more recent approach has been developed by
Mahdavi and Balasundaram [54] based on a dual coloring problem. Their algorithm
employs DROP and CONSTELLATION to initialize the incumbent solution. Vertex
dichotomy is proposed as a branching strategy whereby the vertex with minimum
number of k-neighbors is branched upon at each node of the B&B tree. Upper
bounding, on the other hand, employs a distance k-coloring approach. Proper
coloring is achieved by two heuristics, the first of which is DSATUR (refer to [21]),
applied at top levels of the B&B tree. For lower levels, a simple greedy heuristic is
used, coloring the highest degree vertex in the power of the graph with the color not
yet assigned to its neighbors. Computations were reported for the same test-bed of
instances as [20] suggesting a better performance for k = 3 than for k = 2.

5.4.3 k-Core

The maximum k-core problem has been proven solvable in polynomial time. In fact,
a simple greedy algorithm is capable of generating optimal solutions as follows:
First, a vertex v of minimum degree δ (G) is picked, and if δ (G)≥ k, then the whole
graph is a k-core. If δ (G) < k, then that vertex cannot be in a k-core. Hence, this
vertex is deleted updating the graph G := G−{v} and continuing recursively until
a maximum k-core or the empty set is found.

Detecting the maximum k-core is often used as a pre-processing step for solving
optimization problems seeking cliques or other clique relaxation structures. This
is due to the fact that some of these structures are guaranteed to be a part of the
largest k-core for a certain value of k. For example, since a k-plex of size s cannot
contain a vertex of degree less than s− k, when searching for such a k-plex, we can
recursively remove all vertices of degree less than s− k. Hence, any k-plex of size s
is a part of the largest (s − k)-core. The process of computing the largest k-core

156 J. Pattillo et al.

as a preprocessing or scale-reduction step for solving another problem is known as
peeling in the literature and has been successfully applied for solving the maximum
clique problem [2] and the maximum k-plex problem [9].

5.4.4 k-Plex

The maximum k-plex problem was proven NP-hard for any fixed positive integer k
in [9]. Because of the intractability of the problem, heuristics have been developed
both to find “good” solutions and to assist branch and bound for finding exact
solutions. McClosky [57] employed a simple heuristic to find cliques, which were
then extended to maximal k-plexes, for use as a lower bound for branch and bound.
In [80], a heuristic was used to help prune a branch and bound tree for k-plex. When
the size of the maximum k-plex exceeds 2k− 2, it will have diameter 2. Assuming
this to be true greatly reduced the candidate set as they built a k-plex one vertex at a
time in branch and bound.

Most currently available exact approaches for solving the maximum k-plex prob-
lem are adaptations of either branch and bound or branch and cut. Balasundaram
et al. [9] formulate the maximum k-plex problem as an integer linear program and
use valid inequalities based on independent sets of size at least k. These inequalities
were generated by a simple greedy algorithm both for the whole problem and at
local branches in the search tree. They successfully ran a branch and cut algorithm
on large-scale instances of real life social networks known as the Erdös graphs and
successfully solved the maximum 2-plex problem on graphs with 80% density and
350 vertices in less than 8 h.

The focus of [61] is on the minimum d-bounded-degree deletion problem, which
yields a k-plex in the compliment graph. It generalizes the relationship between
clique and vertex cover. They use an algorithm that finds a kernel of the minimum
d-bounded degree deletion problem to guide their branching in branch and bound.
A kernel is a subgraph of vertices that must contain the optimal solution and finding
it can significantly reduce the size of the branch and bound tree. They report results
superior to [9] with guided branching on the Erdös graphs and comparable results
for DIMACS graphs as those reported in [9].

In [57], some of the most successful techniques for solving the maximum clique
problem were adapted as part of a branch and bound algorithm for k-plex. They
develop a co-k-plex coloring problem that bounds the size of the k-plex in the
same way the coloring problem serves to bound the clique number of a graph. They
use this to help provide upper bounds in adaptations of the basic clique algorithm
[25] and Östergard’s algorithm [62] for solving the maximum k-plex problem. They
successfully solved instances of the maximum k-plex problem on DIMACS graphs
for k = 2,3,4 but in general the results were not as successful as the branch and cut
algorithm of [9] for larger graphs.

The Carraghan–Pardalos and Östergard algorithms for the maximum clique
problem were also the inspiration of a more general algorithm for solving any

5 Clique Relaxation Models in Social Network Analysis 157

problem that displays heredity in [80]. The key difference from [57] is including a
pruning technique based on bounds for the size of a k-plex within subgraphs induced
by subsets of vertices of the form {vi, . . . ,vn}. These are developed naturally as the
algorithm runs. If i is the lowest index on any member of the candidate set, we
calculate the size of the largest k-plex in {vi, . . . ,vn} as part of the algorithm, and
while it may not be achieved for a given candidate set within {vi, . . . ,vn}, it is often
significantly lower than the weight of the entire candidate set. In [57], they prune
branches of the search tree where the weight of the current solution and the entire
candidate set was less than the current optimal solution. Trukhanov et al. [80] use
both this pruning technique and pruning where the weight of the candidate set is
replaced with the known size of the optimal solution using the vertex with lowest
index. The algorithm significantly outperformed the techniques of [9] and [57] in
nearly every instance of DIMACS graphs on which they were run. Graphs of up to
500 vertices were solved optimally for k = 2,3,4 and even larger graphs were solved
optimally for k = 2.

Recently, Wu and Pei [85] developed a parallel algorithm for enumeration of all
the maximal k-plexes in the graph. Their work emphasizes the parallelization of
the algorithm and comparison between serial and parallel algorithms performance.
Unfortunately, they do not provide any numerical results for the well-known
benchmark instances.

5.4.5 Quasi-clique

The maximum γ-quasi-clique problem was shown to be NP-hard for any γ ∈ (0,1)
in [64]. Due to the lack of structural properties in quasi-cliques that are utilized
in exact algorithms for other problems of interest, the maximum quasi-clique
problem is extremely challenging to solve to optimality. In fact, to the best of
our knowledge, the only published exact approaches for this problem are based on
using the MIP formulations presented in Sect. 5.3.4 in conjunction with an off-the-
shelf solver [64]. This allows to solve medium-scale problem instances with several
hundreds of vertices and low edge density to optimality.

To solve large-scale instances, heuristics are commonly used in practice. Since
quasi-clique possesses the weak heredity property, greedy randomized adaptive
search procedures (GRASP) [36, 37] appear to be a natural method of choice.
In short, GRASP is a heuristic framework based on the following idea: at each
iteration it constructs a greedy randomized solution and searches the neighborhood
of each constructed solution in order to find the corresponding local optimum.
The effectiveness of this method for solving the maximum quasi-clique problem
is confirmed by the results of experiments with very large networks reported in the
literature. One remarkable example is due to Abello et al. [2,3], who analyzed the so-
called call network. This network represents phone call data; it has phone numbers
as its vertices, and two vertices are connected by an edge if there was a phone call
between the corresponding numbers within a specified period of time. Abello et al.

158 J. Pattillo et al.

analyzed a call network representing the data from AT&T telephone billing records.
This one-day call network had 53,767,087 vertices and over 170 millions of edges.
The network had 3,667,448 connected components, 302,468 of which had more
than three vertices. The largest connected component had 44,989,297 vertices.
First, Abello et al. attempted to solve the maximum clique problem in this giant
connected component. For this purpose, they ran 100,000 GRASP iterations on
ten parallel processors, which took about one and a half days. Only 14,141 of the
100,000 cliques they generated were distinct, with the largest clique detected being
of size 32. They also used GRASP to solve the maximum γ-clique problem for
γ = 0.9,0.8,0.7, and 0.5 in the giant connected component. The largest γ-cliques
they detected had the sizes of 44, 57, 65, and 98, respectively.

5.5 Extensions

While this chapter is motivated by developments in social network analysis, clique-
like structures naturally arise in many other important applications of complex
networks, in which one is looking for large, “tightly knit” groups of elements.
Depending on the particular application, such groups are often referred to as
clusters, modules, complexes, communities, etc. If the elements in the considered
complex system are represented as vertices (nodes) and the relationships between
the elements are represented as edges (links, arcs), then, depending on the structure
of interest for the particular application, clusters can be naturally described using
some of the clique relaxation concepts described above.

Recent work exploiting some of the clique relaxation models in this emerging
area of network-based data mining [14, 30] has been abundant. In particular, these
concepts have been used in studying structural properties of stock markets [16, 17],
unraveling molecular structures to facilitate drug discovery and compound synthe-
sis [24, 38], and for identifying frequently occurring patterns in data sets (modeled
as graphs) [15, 82]. In biology, quasi-cliques have been used to detect large clusters
in protein interaction networks [13]. A survey of applications of clique detection
models in biochemistry and genomics is given in [24]. In internet research, cohesive
subgroups correspond to collections of densely connected web sites [77]. This
helps to organize topically related web sites and thus facilitate faster search and
retrieval of information from the web. In wireless communication, clustering the
connectivity graph of a wireless network is used to introduce a hierarchy, which
facilitates routing of information through the network [76]. Clique and other low
diameter models have been used to define a cluster in a wireless network [28, 50].
These are just a few examples of recent publications in the rapidly growing body of
literature dealing with applications of cliques and clique relaxations in a wide range
of settings.

5 Clique Relaxation Models in Social Network Analysis 159

5.6 Conclusion

Social network analysis is emerging as an important tool in network-based data
mining, which is applied to a wide variety of settings ranging from biological
systems to finance, and studying clique relaxation models is one of the cornerstones
of this methodology. The aim of this chapter is to open the door to this rich and,
at the same time, largely unexplored research avenue for an interested reader.
Even though most of the discussed clique relaxation models have been around for
several decades in the social network literature, many of the theoretical, algorithmic,
computational, and applied aspects of these models are only beginning to be
addressed.

To illustrate the potential impact the research on clique relaxations may have on
areas beyond social network analysis, we turn to history. While complete subgraphs
had been studied by mathematicians earlier, introduction of the term “clique” to
graph theory was triggered by the developments in social sciences mentioned in
the beginning of this chapter. Since then, the concept of a clique has been widely
used in a variety of applied settings and is central to some major theoretical
and algorithmic developments in graph theory, computer science and operations
research. We believe that clique relaxation models provide an excellent opportunity
for even more important developments.

References

1. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons
Incorporated, Chichester, UK, 1989.

2. J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large
graphs. In J. Abello and J. Vitter, editors, External memory algorithms and visualization,
volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 119–130. American Mathematical Society, 1999.

3. J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection. In S. Rajsbaum,
editor, LATIN 2002: Theoretical Informatics, pages 598–612, London, 2002. Springer-Verlag.

4. R.D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical
Sociology, 3:113–126, 1973.

5. D. Applegate and D.S. Johnson. Maximum clique solver implementation, dfmax.c. ftp://
dimacs.rutgers.edu/pub/challenge/graph/solvers/.

6. L. Babel. Finding maximum cliques in arbitrary and in special graphs. Computing, 46(4):
321–341, 1991.

7. E. Balas and J. Xue. Weighted and unweighted maximum clique algorithms with upper bounds
from fractional coloring. Algorithmica, 15:397–412, 1996.

8. E. Balas and C. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal of
Computing, 15:1054–1068, 1986.

9. B. Balasundram, S. Butenko, and I.V. Hicks. Clique relaxations in social network analysis: The
maximum k-plex problem. Operations Research, 59:133–142, 2011.

10. B. Balasundram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing biological
networks. Journal of Combinatorial Optimization, 10:23–29, 2005.

ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/
ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/

160 J. Pattillo et al.

11. R. Battiti and M. Protasi. Reactive local search for the maximum clique problem. Technical
report, Algorithmica, 2001.

12. N. Berry, T. Ko, T. Moy, J. Smrcka, J. Turnley, and B. Wu. Emergent clique formation in ter-
rorist recruitment. The AAAI-04 Workshop on Agent Organizations: Theory and Practice, July
25, 2004, San Jose, California, 2004. Online: http://www.cs.uu.nl/ virginia/aotp/papers.htm.

13. M. Bhattacharyya and S. Bandyopadhyay. Mining the largest quasi-clique in human protein
interactome. In IEEE International Conference on Artificial Intelligence Systems, pages
194–199, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

14. V. Boginski. Network-based data mining: Operations research techniques and applications.
In J. Cochran, editor, Encyclopedia of Operations Research and Management Science. Wiley,
2011.

15. V. Boginski, S. Butenko, and P. Pardalos. Network models of massive datasets. Computer
Science and Information Systems, 1:79–93, 2004.

16. V. Boginski, S. Butenko, and P. Pardalos. Statistical analysis of financial networks. Computa-
tional Statistics & Data Analysis, 48:431–443, 2005.

17. V. Boginski, S. Butenko, and P. Pardalos. Mining market data: a network approach. Computers
& Operations Research, 33:3171–3184, 2006.

18. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem.
In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1–74, Dordrecht, The Netherlands, 1999. Kluwer Academic Publishers.

19. J.M. Bourjolly, G. Laporte, and G. Pesant. Heuristics for “nding k-clubs in an undirected graph.
Computers and Operations Research, 27:559–569, 2000.

20. J.M. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the maximum k-club problem
in an undirected graph. European Journal of Operational Research, 138:21–28, 2002.

21. D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM, 22:
251–256, 1979.

22. C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques on an undirected graph.
Communications of ACM, 16:575–577, 1973.

23. M. Brunato, H. Hoos, and R. Battiti. On effectively finding maximal quasi-cliques in graphs.
In V. Maniezzo, R. Battiti, and J.P. Watson, editors, Proc. 2nd Learning and Intelligent
Optimization Workshop, LION 2, volume 5313 of LNCS. Springer Verlag, 2008.

24. S. Butenko and W. Wilhelm. Clique-detection models in computational biochemistry and
genomics. European Journal of Operational Research, 173:1–17, 2006.

25. R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique problem. Operations
Research Letters, 9:375–382, 1990.

26. M. Chams, A. Hertz, and A. de Werra. Some experiments with simulated annealing for coloring
graphs. European Journal of Operational Research, 32:260–266, 1987.

27. H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, and M. Chau. Crime data mining: A general
framework and some examples. Computer, 37(4):50–56, 2004.

28. Y. P. Chen, A. L. Liestman, and J. Liu. Clustering algorithms for ad hoc wireless networks.
In Y. Pan and Y. Xiao, editors, Ad Hoc and Sensor Networks, Wireless Networks and Mobile
Computing, pages 145–164. Nova Science Publishers, New York, 2005.

29. N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,
14:210–223, 1985.

30. D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):32–41,
2000.

31. R. H. Davis. Social network analysis: An aid in conspiracy investigations. FBI Law Enforce-
ment Bulletin, 50(12):11–19, 1981.

32. A. H. Dekker. Social network analysis in military headquarters using CAVALIER. In Proceed-
ings of Fifth International Command and Control Research and Technology Symposium, pages
24–26, Canberra, Australia, 2000.

33. R. Diestel. Graph Theory. Springer-Verlag, Berlin, 3 edition, 2006.
34. DIMACS. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge.

http://dimacs.rutgers.edu/Challenges/, 1995.

5 Clique Relaxation Models in Social Network Analysis 161

35. E. Durkheim. The Division of Labor in Society. Free Press, New York, [1893] 1984. Translated
by W. D. Halls.

36. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109–133, 1995.

37. T. A. Feo, M. G. C. Resende, and S. H. Smith. A greedy randomized adaptive search procedure
for maximum independent set. Operations Research, 42:860–878, 1994.

38. I. Fischer and T. Meinl. Graph based molecular data mining - an overview. In W. Thissen,
P. Wieringa, M. Pantic, and M. Ludema, editors, Proceedings of the 2004 IEEE International
Conference on Systems, Man and Cybernetics, pages 4578–4582, Piscataway, NJ, 2004. IEEE.

39. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

40. M. Gendreau, P. Soriano, and L. Salvail. Solving the maximum clique problem using a tabu
search approach. Ann. Oper. Res., 41:385–403, May 1993.

41. R. V. Gould. Multiple networks and mobilization in the paris commune, 1871. American
Sociological Review, 56:716–729, 1991.

42. R. Hodson. Dignity at Work. Cambridge University Press, Cambridge, England, 2001.
43. S. Homer and M. Pinedo. Cliques, coloring, and satisfiability: Second DIMACS implementa-

tion challenge, chapter Experiments with polynomial-time clique approximation algorithms on
very large graphs, pages 147–167. American Mathematical Society, 1996.

44. D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society,
Boston, MA, USA, 1996.

45. D.S. Johnson and C.R. Aragon. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256–278, 1974.

46. D.S. Johnson, C.R. Aragon, L.A. McGoech, and C. Shevon. Optimization by simulated
annealing: An experimental evaluation; part ii, graph coloring and number partitioning.
Operations Research, 39:378–406, 1991.

47. H.C. Johnston. Cliques of a graph – variations of Bron-Kerbosch algorithm. Int. J. Comput.
Inf. Sci., 5:209–238, 1976.

48. R. Kopf and G. Ruhe. A computational study of the weighted independent set problem for
general graphs. Foundations of Control Engineering, 12:167–180, 1987.

49. V. Krebs. Mapping networks of terrorist cells. Connections, 24:45–52, 2002.
50. P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach for

routing in dynamic networks. ACM SIGCOMM Computer Communication Review, 27(2):
49–64, 1997.

51. E. Loukakis and C. Tsouros. A depth first search algorithm to generate the family of maximal
independent sets of a graph lexicographically. Computing, 27:249–266, 1981.

52. R.D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychome-
trika, 15:169–190, 1950.

53. R.D. Luce and A.D. Perry. A method of matrix analysis of group structure. Psychometrika,
14:95–116, 1949.

54. F. Mahdavi and B. Balasundaram. On inclusionwise maximal and maximum cardinality
k-clubs in graphs. Preprint, 2010.

55. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Proc. Ninth
Scandinavian Workshop Algorithm Theory (SWAT ’04), pages 260–272, 2004.

56. D. McAndrew. The structural analysis of criminal networks. In D. Canter and L. Alison,
editors, The Social Psychology of Crime: Groups, Teams, and Networks, Offender Profiling
Series, III, Aldershot, UK, 1999. Dartmouth.

57. B. McClosky and I. Hicks. Combinatorial algorithms for the maximum k-plex problem.
Journal of Combinatorial Optimization, to appear.

58. G. A. Miller. WordNet, Princeton University. http://wordnet.princeton.edu, 2009.
59. R.J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161–173, 1979.
60. J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of

social groups. American Sociological Review, 68:103–127, 2003.

162 J. Pattillo et al.

61. H. Moser, R. Niedermeier, and M. Sorge. Algorithms and experiments for clique relaxations -
finding maximum s-plexes. In Proceedings of the 8th International Symposium on Experimen-
tal Algorithms, pages 233–244, 2009.

62. P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120:197–207, 2002.

63. J. Pattillo and S. Butenko. Clique, independent set, and graph coloring. In J. Cochran, editor,
Encyclopedia of Operations Research and Management Science, pages 3150–3163. Wiley,
2011.

64. J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum quasi-clique problem.
Working paper.

65. P. Paxton. Is social capital declining in the united states? a multiple indicator assessment.
American Journal of Sociology, 105:88–127, 1999.

66. F. J. Roethlisberger and W. J. Dickson. Management and the Worker. Harvard University Press,
Cambridge, MA, 1939.

67. R. B. Rothenberg, J. J. Potterat, and D. E. Woodhouse. Personal risk taking and the spread of
disease: Beyond core groups. Journal of Infectious Diseases, 174 (Supp. 2):S144–S149, 1996.

68. M. Sageman. Understanding Terrorist Networks. University of Pennsylvania Press, Philadel-
phia, PA, 2004.

69. R. J. Sampson and B. W. Groves. Community structure and crime: Testing social-
disorganization theory. American Journal of Sociology, 94:774–802, 1989.

70. J. Scott. Social Network Analysis: A Handbook. Sage Publications, London, 2 edition, 2000.
71. S. B. Seidman. Network structure and minimum degree. Social Networks, 5:269–287, 1983.
72. S. B. Seidman and B. L. Foster. A graph theoretic generalization of the clique concept. Journal

of Mathematical Sociology, 6:139–154, 1978.
73. E. C. Sewell. A branch and bound algorithm for the stability number of a sparse graph.

INFORMS Journal on Computing, 10(4):438–447, 1998.
74. P. Soriano and M. Gendreau. Cliques, coloring, and satisfiability: Second DIMACS imple-

mentation challenge, chapter Tabu search algorithms for the maximum clique problem, pages
221–242. American Mathematical Society, 1996.

75. P. Soriano and M. Gendreau. Diversification strategies in tabu search algorithms for the
maximum clique problem. Annals of Operations Research, 63:189–207, 1996.

76. I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Computing. Wiley Inter-
Science, 2002.

77. L. Terveen, W. Hill, and B. Amento. Constructing, organizing, and visualizing collections of
topically related, web resources. ACM Transactions on Computer-Human Interaction, 6:67–94,
1999.

78. E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum
clique with computational experiments. Journal of Global Optimization, 37(1):95–111, 2007.

79. E. Tomita, S. Mitsuma, and H. Takahashi. Two algorithms for finding a near-maximum clique.
Technical report, UEC-TR-C1, 1988.

80. S. Trukhanov, B. Balasundaram, and S. Butenko. Exact algorithms for hard node deletion
problems in graphs. Working paper, 2011.

81. A. Veremyev and V. Boginski. Identifying large robust network clusters via new compact
formulations of maximum k-club problems. European Journal of Operational Research, in
revision, 2010.

82. T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explor. Newsl.,
5(1):59–68, 2003.

83. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, New York,
1994.

84. D. R. Wood. An algorithm for finding a maximum clique in a graph. Operations Research
Letters, 21(5):211–217, 1997.

85. B. Wu and X. Pei. A parallel algorithm for enumerating all the maximal k-plexes.
In J. G. Carbonell and J. Siekmann, editors, Emerging Technologies in Knowledge Discovery
and Data Mining, Lecture Notes in Computer Science, chapter 47, pages 476–483. Springer,
Berlin, Germany, 2007.

Part II
Complex Communication Networks

Chapter 6
Application Traffic Activity Graph Analysis

Yu Jin, Esam Sharafuddin, and Zhi-Li Zhang

6.1 Introduction

Understanding and analyzing traffic characteristics are fundamental to the design,
development and implementation of networks. The traditional emphasis of network
traffic analysis has been on the statistical properties of traffic, leading to the
important discoveries such as heavy-tails and long range dependence. As network-
ing technologies continue to mature and evolve, and more sophisticated network
applications are invented and deployed, operating, managing and securing networks
have become increasingly challenging tasks, and require us to understand, analyze
and model the behavioral characteristics of network traffic, such as communication
patterns, interaction structures and trends of applications, users and other entities in
the networks.

While traffic analysis for network security and management has been an active
area of research, the majority of earlier work has focused on specific problems or
aspects such as detecting heavy-hitters, identifying peer-to-peer (P2P) applications,
and generating packet-level malware signatures (see, e.g., [9, 21, 29]) that are
driven primarily by certain security application needs. There are relatively few
studies which consider the traffic as a whole to extract general behavioral char-
acteristics. Examples include individual (5-tuple) flow-level traffic clustering [19],
aggregate PoP-level origin–destination (O-D) flow characterization and anomaly de-
tection [11,12], and host-level traffic behavior profiling using graph-theoretical [24]
or information-theoretical [8] approaches.

In this chapter, we study network-wide communication patterns among hosts
that are engaging in certain types of communications or applications using traffic
activity graphs (TAGs). In a TAG, nodes are IP addresses (hosts) and edges are

Y. Jin, • E. Sharafuddin • Z. Zhang (�)
Department of Computer Science and Engineering, University of Minnesota, Twin Cities
e-mail: yjin@cs.umn.edu; shara@cs.umn.edu; zhzhang@cs.umn.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 6, © Springer Science+Business Media, LLC 2012

165

yjin@cs.umn.edu
shara@cs.umn.edu
zhzhang@cs.umn.edu

166 Y. Jin et al.

observed flows that represent certain communications or interactions of interest
among the IP addresses (hosts). Depending on the purpose of study, various criteria
may be used to select flows of interest, and construct different TAGs that capture
the relevant traffic activities among hosts under study. For example, using the
NetFlow records collected at our campus border router, in this chapter we model the
communication patterns and interactions between hosts within our campus network
and those outside hosts in the observed traffic using bipartite TAGs, where one set of
nodes represent the inside hosts and another set of nodes represent the outside hosts,
and edges between these two sets of hosts represent certain flows selected based on
ports that are associated with an application of interest. We refer to these (bipartite)
graphs as application TAGs. Examples of such TAGs include HTTP, Email, DNS,
peer-to-peer (P2P), online chat and gaming applications.

In general, TAGs derived from real network data are large, sparse, seemingly
complex and richly connected. For instance, when the number of nodes is large,
nearly all of them contain so-called giant connected components (GCCs), which link
together a majority of hosts (IP addresses) observed in the traffic, a phenomenon that
has been observed in many social network studies. What is particularly interesting
is the observation that TAGs associated with different applications exhibit distinct
patterns and structures. These properties of application TAGs1 are first observed
and studied in [7], where the authors propose several graph-theoretical (average or
distributional) metrics to help characterize and distinguish such graphs. While these
metrics are useful in summarizing the overall statistical properties of the graphs,
in general, they shed little light on how TAGs are formed and how they can be
meaningfully interpreted.

In this chapter, we propose a novel (statistical) graph decomposition method
based on orthogonal nonnegative matrix tri-factorization (tNMF) to analyze and
extract the “core” host interaction patterns and other key structural properties
of application TAGs. This technique is motivated by the observation that the
matrix representations of application TAGs exhibit clear block structures, which
suggest that they are composed of a number of dense sub-graphs representing
“dominant” host groups (or “communities”) with more intense interactions. In a
sense, these dense subgraphs collectively form the “core” of the TAGs, capturing
the most significant interactions among the dominant host groups. We formalize
these observations and intuitions in the context of the proposed tNMF graph
decomposition framework. More specifically, the tNMF method produces a co-
clustering of the inside and outside hosts as well as a low-rank “core” matrix that
represents the overall interaction structure among these groups and their interaction
intensities. Each pair of inside and outside host groups with strong interactions
corresponds to a dense (bipartite) subgraph in the original TAG and the bipartite
(hyper)graph induced by the low-rank “core” matrix is referred to as the (core) latent

1In [7] where packet traces of relative short durations are used, these TAGs are referred to as traffic
dispersion graphs.

6 Application Traffic Activity Graph Analysis 167

hypergraph of the original TAG. In other words, the tNMF method approximately
decomposes a TAG into a series of dense subgraph components and a (core) latent
hypergraph representing inter-connection structures among the graph components.

Applying the tNMF method to various application TAGs (derived from our
campus network datasets) such as HTTP, Email, DNS, P2P, online chat, and gaming
applications, we characterize and classify the typical structures of the resulting
graph components and (core) latent hypergraphs. Through extensive experimental
analyses, we demonstrate that the decomposition results not only capture the
dominant structures in the original TAG, but also are amenable to meaningful inter-
pretations. For instance, HTTP TAGs are largely formed by a series of star-like or
mesh-structured dense graph components that are inter-connected primarily due to
hosts appearing in multiple inside/outside host groups, but sometimes also through
one inside/outside host group interacting with multiple outside/inside groups. The
chat traffic graphs are formed by a series of much less dense subgraphs inter-
connected by an overall star-like structure. In contrast, the P2P traffic graphs show
more diverse structures, reflecting the diversity and complexity of P2P applications.
Using these components and their structural properties, we also study the evolution
of TAGs over time. Moreover, we also provide two examples to illustrate the
potential utility of our tNMF method in practical network management tasks such
as unknown application identification and suspicious/anomalous traffic activity (or
application) detection. In summary, our tNMF-based framework provides an easy-
to-understand, interpretable and quantifiable means to analyze and characterize key
structural properties of large, sparse, complex and richly connected TAGs that are
otherwise hard to visualize and comprehend.

6.2 Traffic Activity Graphs

In this section, we introduce the (bipartite) traffic activity graphs (TAGs) defined
in the context of the NetFlow data collected in our campus network and present
some visual and graph-theoretical characteristics of such graphs. Further, using
their matrix representations, we highlight the block structures inherent in the
traffic activity graphs which motivate the statistical graph decomposition framework
proposed in this chapter.
Datasets. The primary datasets used in our study are non-sampled, Cisco NetFlow
records from/to our campus network (with three class-B or /16 address blocks)
to/from the rest of the Internet, collected at our campus border router over a month
period. We also have access to several (tier-1) ISP datasets which contain sampled
NetFlow records collected at various routers inside the ISP networks (One of the
ISP datasets is used in Sect. 6.6 in our study of the Storm worm activities, as an
example to illustrate the utility of our proposed tNMF decomposition method). For
ease of exposition, we will introduce the notion of traffic activity graphs and present
the proposed tNMF decomposition method in the context of our campus network
datasets. Nonetheless, we remark that the proposed methodology and associated

168 Y. Jin et al.

concepts are equally applicable to ISP datasets. Further, the overall observations
and insights gained from our campus network datasets also hold for ISP datasets,
although the specific results and their interpretations may vary.

6.2.1 Traffic Activity Graphs and their Overall Characteristics

Using the campus network datasets, we introduce and define application(-specific)
(or rather, port-specific) traffic activity graphs (TAGs) as follows. Given a set of
service ports P associated with an application of interest (e.g., TCP ports 80 or 443
for Web applications2), let F be a collection of flows (observed during some time
window) that use a port p ∈ P either in the source or destination port header field.
The set of inside IP addresses (representing hosts inside our campus network, or
inside hosts) and the set of outside IP addresses (outside hosts), which appear in F

are denoted as IH and OH, respectively (For the ISP datasets, we may refer to the
set of subscribers as IH and the set of other Internet hosts as OH. In addition, other
application specific definition of IH and OH is also applicable, see Sect. 6.6). The
(P-specific) TAG G := {V,E} is a bipartite graph3 with the vertex set V and edge
set E, where V = IH∪OH, and ei j ∈ E if at least one flow from ihi to oh j exists
in F (Depending on the purpose of analysis, a weighted version of such a graph
can also be defined where the weight wi j associated with the ei j ∈ E represents,
say, the number of flows from ihi to oh j in F). We remark here that in addition
to application/port-specific TAGs defined above, other types of TAGs can also be
defined, e.g., using other criteria for filtering and selecting flows from the (original)
NetFlow datasets. Clearly what types of TAGs should be defined and used will
depend on the purpose of study. For instance, as an application of the tNMF method
to anomaly detection, in Sect. 6.6 we introduce two different types of TAGs to study
the “anomalous” Storm worm activities.

Traffic activity graphs capture the network-wide communication and interaction
patterns between inside and outside hosts of a network. They are primarily driven
by the user activities or behaviors, moderated in part by the inherent “application

2Depending on the applications and/or focus of the study, P may contain one or multiple ports.
For instance, by considering TCP port 80 only, we focus on HTTP-only Web traffic, while
including TCP port 443, we also include HTTPs traffic in the study. In some cases, ports in a
given service port set P may be used by some “non-standard” applications other than the “well-
known” application; e.g., port 80 may be used by some P2P applications to penetrate firewalls.
Since the majority of flows using port 80 are generated by Web applications/HTTP protocols, for
convenience we refer to the TAGs derived from flows with ports 80 and 443 as “HTTP” TAGs. The
same remark applies to other similarly named TAGs such as “Email” TAGs. Note also that unless
otherwise stated in this chapter, all ports refer to TCP ports.
3We note that, since the data used in our work is collected at the border router of a large campus
network, we only observe traffic between the inside hosts and the outside hosts. Therefore, the
corresponding TAGs are bipartite. However, our method can be readily extended to regular network
activity graphs.

6 Application Traffic Activity Graph Analysis 169

HTTP Email AOLMessenger

BitTorrent DNS

a b c

d e

Fig. 6.1 Application TAGs with 1,000 flows: blue and red points denote inside and outside hosts,
respectively

structures” which determine how users or clients interact with other users or
servers. Hence, we would intuitively expect that different applications (e.g., client–
server-based Web applications vs. P2P applications) may exhibit distinct graph
structures or shapes. As first reported in [7], this is indeed the case. Using the
Graphviz tool (node radius = 0.1, edge weight = 2.0), in Fig. 6.1 we present five
representative application TAGs (derived from our campus network dataset that
begins at 10:00 am on 02/17/2006): HTTP (port 80 or 443), Email (port 25 or 993),
AOL messenger (port 5190), BitTorrent (port 6881) and DNS (port 53, UDP). For
clarity of graphing, here we only consider outgoing flows where the inside hosts
are service requesters (accessing the specific service ports) and outside hosts are
service providers (opening the service ports for access). The inside hosts (service
requesters) are represented by blue dots, while the outside hosts are represented by
red dots – hence, the graphs are best viewed on a computer screen or a colored print-
out. Figure 6.1 shows the five example application TAGs using the first 1,000 flows,
while Fig. 6.2 using the first 3,000 flows.

Clearly, these application TAGs display distinct shapes or structures. For exam-
ple, HTTP and Email traffic graphs contain a number of more richly connected
star-structures (centered either at an outside or inside host), while BitTorrent traffic
graph contains a few (apparently isolated) dense star-structures centered at inside
hosts only. In contrast, such structures disappear in the AOL messenger traffic graph,
where all nodes are characterized with low degrees. Comparing the corresponding

170 Y. Jin et al.

HTTP Email AOL Messenger

BitTorrent DNS

a b c

d e

Fig. 6.2 Application TAGs with 3,000 flows: blue and red points denote inside and outside hosts,
respectively

application tags in Figs. 6.1 and 6.2, we see that with more flows added to the
graphs, the basic characteristics of these graphs appear to persist, with the core
star-structures in the HTTP, Email, BitTorrent and DNS traffic graphs becoming
denser. In all cases, some originally disconnected parts of the graphs start to connect
and merge together – this phenomenon leads to the so-called giant connected
components that we will discuss shortly.

Table 6.1 lists some key statistics4 for a few selected application TAGs, each
generated from a flowset of |F|=10,000. More specifically, using the port(s) listed
in the 2nd column of the table, we extract 10,000 unique flows containing the
port(s) from the NetFlow dataset beginning at 10:00 am on 02/17/2006 to generate
the corresponding flowset F for each application TAG. The approximate duration
spanned by the flows in each flowset is listed in the 3rd column.5 The 4th
(|IH| × |OH|) column shows the number of nodes of the resulting bipartite traffic

4Several other graph-theoretical metrics such as node degree distribution, joint degree distribution,
depth, rich club connectivity, and so forth are used in [7] to characterize and distinguish various
TAGs.
5Note that since flows with ports 80 and 443 comprise the majority of the traffic, we have 10,000
flows within a time period of roughly 2.7 min. Likewise, for the Email we have 10,000 flows
within a time period of roughly 58 min, whereas for other applications, up to 2 h are needed to
obtain 10,000 flows.

6 Application Traffic Activity Graph Analysis 171

Table 6.1 Characteristics of different application TAGs using 10,000 unique flows

Type Port(s) Duration |IH|× |OH| Density(10−3) d̄(ih) d̄(oh)

HTTP 80,443 2.7 min 1,193×3,054 2.73 8.38 3.27
Email 25,993 58 min 289×5,262 6.58 34.60 1.9
AOL Msgr 5190 2.1 h 2,047×1,221 4.00 4.89 8.19
BitTorrent 6881 57 min 84×8,610 13.83 103.76 1.01
DNS 53 (UDP) 2 min 57×5,634 31.14 175.44 1.77
eMule 4662 81 min 33×9,987 30.34 303.03 1
Gnutella 6346,6348 73 min 136×9,760 7.53 73.53 1.02
MSN Msgr 1863 2.3 h 1,603×712 8.76 6.24 14.04

Table 6.2 GCC properties of different application TAGs using 10,000 unique flows

Type Port(s) Duration GCC(%) GCC(inside×outside) GCC(edges)

HTTP 80,443 2.7 min 87.5 961×2,756 9,660
Email 25,993 58 min 94.1 111×5,114 9,790
AOL Msgr 5190 2.1 h 99.4 2,039×1,209 9,988
BitTorrent 6881 57 min 89.6 35×7,751 9,013
DNS 53 (UDP) 2 min 99.7 50×5,626 9,992
eMule 4662 81 min 96.7 12×9,690 9,702
Gnutella 6346,6348 73 min 94.5 55×9,299 9,538
MSN Msgr 1863 2.3 h 92.2 1,562×572 9,856

graphs derived from the flowsets. The density values of the graphs, defined as
|E|/(|IH| × |OH|), are listed in the 5th column. We see that all of these graphs
are extremely sparse. The next two columns list the average node degrees, d̄(ih)
and d̄(oh), of the inside and outside hosts (IP addresses), respectively. A large
d̄(ih) in general indicates the existence of popular (high-degree) inside hosts; P2P
applications, such as BitTorrent, eMule and Gnutella, e.g., have higher d̄(ih) values.
In contrast, online chat applications, such as MSN Messenger and AOL Messenger,
show no dominance of any host.

The most interesting characteristic is perhaps the existence of the so-called giant
connected component (GCC) (i.e., the largest connected component in the TAG)
that connects a majority of nodes in a TAG, when the number of flows (or the
observation time interval) becomes sufficiently large. As illustrated in Figs. 6.1
and 6.2, when the number of flows is increased from 1,000 to 3,000, the (core)
connected region in the HTTP, Email and AOL Messenger TAGs expands to connect
more nodes and generally grows denser. From the 4th column in Table 6.2, for
each application TAG with 10,000 flows (i.e., edges), the GCC connects 87.5%
of all the nodes in the HTTP TAG, 94.1% in the Email TAG, 99.4% in the AOL
Messenger TAG, etc. Even for the BitTorrent TAG which appears to be comprised
of a few disconnected star structures (see Fig. 6.2), the largest connected component
eventually connects 89.6% of all the nodes. The last two columns in Table 6.2 list
the size (numbers of inside/outside hosts and edges) of the GCC for each application
TAG.

172 Y. Jin et al.

0 1000 2000 3000

0

200

400

600

800

1000

Outside hosts after rotation

In
si

de
 h

os
ts

 a
fte

r
ro

ta
tio

n

HTTP

0 2000 4000

0

50

100

150

200

250

Outside hosts after rotation

In
si

de
 h

os
ts

 a
fte

r
ro

ta
tio

n

Email

0 500 1000

0

500

1000

1500

2000

Outside hosts after rotation

In
si

de
 h

os
ts

 a
fte

r
ro

ta
tio

n

AOL Messenger

0 2000 4000 6000 8000

0

20

40

60

80

Outside hosts after rotation

In
si

de
 h

os
ts

 a
fte

r
ro

ta
tio

n

BitTorrent

0 2000 4000

0

10

20

30

40

50

Outside hosts after rotation

In
si

de
 h

os
ts

 a
fte

r
ro

ta
tio

n

DNS

a b c

d e

Fig. 6.3 Block structures after rotating rows and columns of adjacency matrices using 10,000
flows

6.2.2 Block Structures in TAGs

It is well known in random graph theory that for a fixed number of nodes, as the
probability of (uniform) edge generation increases, a giant connected component
emerges almost surely in such (uniformly generated) random graphs [2]. On the
other hand, the application TAGs (and their resulting GCCs) show high diversity
and variability (e.g., as manifested by their degree distributions), suggesting that
their formation is not purely random. In fact, these graphs show a strong cluster
effect, or contain “latent structures” underlying the applications TAGs. We show the
existence of such structures by using the matrix representation of the TAGs.

Given a bipartite TAG G, we construct its adjacency matrix A = [ai j], where
the rows and columns of A correspond to the hosts in IH and OH, and ai j := 1 if
ei j ∈ E. While we know that A is a very sparse matrix (see Table 6.1), we permute
the rows and columns of A to show that there exist “dense” blocks or sub-matrices
in A. Figure 6.3 presents the results for five example traffic graphs, where their
corresponding adjacency matrices are displayed after we have selectively rotated
their rows and columns. The block structures in the matrices are clearly visible,
with certain areas far denser than others. The existence of dense vs. sparse blocks
suggests that some groups of inside hosts tend to communicate or interact with
certain groups of outside hosts, while rarely with other outside hosts. The block
structures of A for different applications also show distinct patterns.

The existence of such latent structures is not surprising. Intuitively, they represent
the underlying communication patterns or “social interactions” of users and services

6 Application Traffic Activity Graph Analysis 173

inside and outside our campus network. Such interactions lead to the formation
of various “communities of interest” with distinct communication patterns or
behaviors. For example, HTTP applications may provide different utilities, e.g.,
search engines, news services, blogs, photo or video sharing service, etc. Requesters
who are looking for a specific utility will connect to the providers of such a utility,
and due to the role of search engines and “social influence,” they are also more likely
to connect to a few other popular providers. The service requesters and providers
thus together form a distinct community in the HTTP traffic graph. The dense
block structures shown in Fig. 6.3 also provide hints as to why and how the GCCs
are formed. We see that for some inside groups, sometimes a subset of the group
members communicate with more than one outside group (or a sub-group therein)
and vice versa, resulting in various dense components to be connected with varying
degrees of connectivity.

The block structures suggest that despite their sparsity, the application TAGs are
composed largely of connected, dense sub-graphs that are not formed randomly, but
represent certain latent host interaction patterns, or shared interests of various user
communities. These observations and insights motivate us to identify and extract
these “dense subgraphs” and the inside/outside host groups associated with them,
so as to better understand and characterize network traffic graphs. In the remainder
of the chapter, we present a statistical graph decomposition technique based on
orthogonal nonnegative matrix tri-factorization, referred to as tNMF, and discuss
the experimental results.

6.3 Graph Decomposition Using tNMF

In this section, we present a statistical graph decomposition technique based on
orthogonal nonnegative matrix tri-factorization (tNMF), and apply it to extract
dominant “graph structure components” in an application TAG. Each such com-
ponent is a dense bi-partite subgraph consisting of a pair of inside host group and
outside host group that are more strongly connected than any host not part of the
inside/outside group. The collection of these subgraph components (together with
their inter-connection) constitutes, in a sense, the “core” of the application TAG,
capturing the dominant communication patterns or interaction structures between
the inside and outside hosts.

6.3.1 The tNMF Method

Given an application TAG G representing the interaction patterns of m inside and n
outside hosts, let Am×n be the corresponding (binary) adjacency matrix A defined
earlier. The problem of extracting the strongly connected subgraphs from G, or
equivalently the “dense” sub-matrices in A, can be formulated as a co-clustering

174 Y. Jin et al.

problem where inside hosts and outside hosts are jointly clustered into k groups and l
groups, respectively (in general k, l
min(m,n)). Each subgraph is now defined as a
sub-matrix covered by a pair of inside/outside host groups, and the dense subgraphs
can be identified from these k× l sub-matrices.

As illustrated in [5], this co-clustering problem can be formulated as an orthog-
onal nonnegative matrix tri-factorization (tNMF) problem: Given a nonnegative
matrix Am×n, we factorize it (or more precisely, approximately decompose it) into
three low-rank nonnegative matrices, Rm×k, Hk×l , and Cn×l so as to minimize
the following objective function J subject to the orthogonality constraints on
R and C:

min
R≥0,C≥0,H≥0

J(R,H,C) = ||A−RHCT ||2F

s.t.RT R = I and CTC = I, (6.1)

where || · ||F is the Frobenius norm, and k, l
 min(m,n). The NMF problem and its
solution were first introduced in [13,14] as an alternative approach to singular value
decomposition (SVD) and other matrix decomposition methods (see Sect. 6.7 for
a brief discussion on these and other related methods), and has been successfully
applied in various machine learning applications [10, 13, 27]. The orthogonal
constraints for R and C distinguish tNMF from other NMF algorithms and enable it
to simultaneously cluster the rows and columns of a matrix[17].

The solution to the tNMF problem employs an iterative optimization procedure.
We first initialize R, C and H to contain only positive random entries, and we then
keep updating R, C and H using the following updating rules until the change in the
relative square error (RSE), RSE := ||A−RHCT ||2F/||A||2F, falls below a predefined
threshold θ , say, θ = 10−7,

Rip ← Rip
(ACHT)ip

(RRT ACHT)ip
,

Cjq ← Cjq
(AT RH) jq

(CCT AT RH) jq
,

Hpq ← Hpq
(RT AC)pq

(RT RHCTC)pq
. (6.2)

It has been shown [5] that using the above updating rules, the RSE will
monotonically decrease and converge to a local minimum. In general, it takes
O(t(k + l)mn) for the optimization procedure to converge, where t is the number
of iterations. Therefore, in practice, sampling approaches can be used to reduce
the size of the TAG before the decomposition method is applied. In Sect. 6.3.3,
we will discuss several important practical issues in applying this tNMF method to
decompose application TAGs and in improving the convergence rate of the proposed
algorithm.

6 Application Traffic Activity Graph Analysis 175

6.3.2 Interpretation of tNMF Results

In the context of decomposing TAGs, we propose a novel interpretation of the tNMF
decomposition results as follows. The orthogonal low-rank, nonnegative matrices
R and C divide the rows and columns into k inside and l outside host groups,
where R·p, p= 1, . . . ,k, and C·q, q= 1, . . . , l, serve, respectively, as the “membership
indicator” functions of the row groups and column groups. Since entries in R and
C are nonnegative real numbers, this naturally gives rise to a soft co-clustering
of the inside and outside hosts: Rip (after row normalization) can be viewed as
the “likelihood” of inside host i belonging to inside host group p, and Cjq the
“likelihood” of outside host j belonging to outside host group q. R and C can
also be used to construct a hard co-clustering where each inside/outside host is
assigned to at most one inside/outside host group. For simplicity of exposition, this
is the interpretation we will adopt in the remainder of this chapter (although a soft
clustering interpretation can also be used, which we leave as future work). In the
following, we show how the hard clustering is constructed.

Using R and C we define the inside/outside host group membership indicator
matrices R̂ and Ĉ as follows: R̂ip = 1 if p= argmax j{Ri j : Ri j > 0}, and 0 otherwise.
In other words, we assign an inside host i to the inside host group p associated with
the largest (nonzero) Rip value. In particular, if all Rip’s are zero, then host i is not
assigned to any inside host group. In addition, when multiple groups are associated
with the largest value, we randomly assign the host to one of these groups to resolve
ties. The indicator matrix Ĉ is defined similarly. With R̂ and Ĉ thus defined, we
use IGp to denote the pth inside host group, and OGq the qth outside host group.
Further, let IG := {IG1, . . . , IGk} and OG := {OG1, . . . ,OGl} denote the collection
of these inside and outside host groups.

We now introduce the group density matrix Ĥ = {Ĥpq} where

Ĥpq :=
(R̂T AĈ)pq

||R̂·p||1 · ||Ĉ·q||1
,1 ≤ p ≤ k, 1 ≤ q ≤ l, (6.3)

and || · ||1 is the L1-norm. For a given bipartite subgraph corresponding to host
groups IGp and OGq, the denominator in (6.3) represents the maximum number
of possible edges between IGp and OGq assuming the subgraph is complete; while
the numerator stands for the actual number of edges within this subgraph. In this
way, we see that Ĥpq is the density of the (bi-partite) subgraph representing the
interaction patterns between the members in IGp and OGq, where 0 ≤ Ĥpq ≤ 1.
A large Ĥpq value (e.g., close to 1) indicates a strongly connected bipartite subgraph
(i.e., the subgraph is nearly a complete graph), while a small or zero Ĥpq value
suggests that only a few edges exist between some members of these two groups, or
no edge at all. Using Ĥ we can identify and extract “dense” bi-partite subgraphs in
the TAG G. Formally, we say a bipartite subgraph Spq in G, where Spq = {[ai j]|ai j ∈
A, R̂ip = 1,Ĉjq = 1,1≤ i≤ m,1 ≤ j ≤ n}, is dense if Ĥpq ≥ δ , for some appropriately
chosen density threshold δ ∈ (0,1], say, δ = 0.5. These dense subgraphs in G thus

176 Y. Jin et al.

represent dominant communication patterns among the inside/outside hosts with
strong interaction structures. We refer to these dense subgraphs, Spq’s, of G as the
significant graph components, or simply graph components of G. We will analyze
their structures and interpret their meanings in the context of various application
TAGs in Sect. 6.4.

Furthermore, the group density matrix Ĥ induces a (weighted) bi-partite
(hyper)graphH := {IG∪OG,EĤ}, where the nodes represent the inside and outside
groups, IGp and OGq, 1 ≤ p ≤ k and 1 ≤ q ≤ l, and an edge epq ∈ EĤ if Ĥpq > 0,
and the weight associated with edge epq is exactly Ĥpq. More generally, we can
also define an unweighted (hyper)graph Hδ where an edge epq ∈ EĤ if and only if
Ĥpq > δ , i.e., if the density of the corresponding subgraph Spq is at least δ . Hence,
the induced hypergraph H represents the interaction patterns and their intensities
between the various inside/outside host groups, and Hδ captures the dominant
interactions among the core host groups (or communities) of the inside/outside
hosts. It is in this sense that we refer to the hypergraph H (Hδ) as the (core) latent
hypergraph underlying (or generating) the original TAG G. In particular, using Hδ
and the corresponding dense graph components Spq’s, we obtain an approximate
“core” Ĝ of the original G that captures the dominant interaction patterns among
significant inside/outside host groups.

6.3.3 Practical Issues

We briefly discuss several key practical issues in applying the tNMF method to
the (statistical) decomposition of application TAGs, and highlight the solutions we
employ to: i) select the rank k and l and the density threshold δ , and ii) improve the
convergence rate and avoid local minima.

6.3.3.1 Selection of Rank and Density

Without loss of generality, we set k = l, which is an input parameter for the tNMF
algorithm, and specifies an upper bound on the desired or expected groups formed
by inside and outside hosts.6 As discussed earlier, the density threshold δ is a
parameter for identifying dense subgraphs. Since the selection of appropriate k
and δ depends on specific applications, in the context of TAG decomposition, our
criteria for choosing k and δ are twofold: to obtain stable graph components which
contain sufficient number of edges in the original TAG, i.e., with a good edge
coverage.

6In this section, we assume k = l for ease of exposition. In our experiment, k can be different from
l depending on the types of TAGs under study. We always search for the best k and l values using
the KS test introduced in this section.

6 Application Traffic Activity Graph Analysis 177

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ (density)

P
er

ce
nt

ag
e

of
 e

dg
es

 c
ov

er
ed k=60

k=50
k=40
k=30
k=20

HTTP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ (density)

P
er

ce
nt

ag
e

of
 e

dg
es

 c
ov

er
ed k=60

k=50
k=40
k=30
k=20

DNS

a b

Fig. 6.4 Edge coverage for various k and δ

We first study the edge coverage of extracted graph components by varying k
and δ . Figure 6.4a, b show the edge coverage for HTTP and DNS graphs with
different k and δ , respectively. In general, either increasing k or reducing δ will
result in an increase of the edge coverage. However, we observe the number of
covered edges converging when δ > 0.5 and k exceeds 40 for HTTP and above
50 for DNS. This implies that when k exceeds a certain threshold, the “dense”
subgraphs (with δ > 0.5) become stable (similar observations are made in terms
of other TAGs), hence we choose δ = 0.5 in all the experiments for identifying
significant subgraphs. We then apply a linear search of k’s starting at 20 and with
a small increment at a time. We note that different increments often lead to similar
results since the dense subgraphs become persistent with a sufficiently large k (In
case of k �= l, we may search for the appropriate parameters by increasing k and l
iteratively). To balance the accuracy and efficiency, we choose an increment of five
in our experiments. We then use the two-way Kolmogorov–Smirnov goodness-of-fit
test to compare edge coverage curves between consecutive k’s. The null hypothesis
is that two edge coverage curves are identical. We choose rank k if the KS test fails
to reject the null hypothesis (i.e., the P-value is above 0.05). For example, we choose
k = 40 for the HTTP TAG as in Fig. 6.4a, since the P-value equals 0.0215 between
k = 35 and k = 40, but the P-value becomes 0.3499 between k = 40 and k = 45. As
another example, we choose k = 45 for the DNS graph (Fig. 6.4b) due to the P-value
of 0.0001 between k = 40 and k = 45, and P-value of 0.0715 between k = 45 and
k = 50.

So far, we have shown how to select k and δ to produce a good edge coverage
of the original TAG. Now we investigate whether these edges lead to stable graph
components. Let Ei and Ei−1 be the extracted edge sets corresponding to ki and
ki−1, respectively. We define the edge similarity as (Ei ∩Ei−1)/(Ei ∪Ei−1). Fixing
δ = 0.5, we increase k by 5 at a time (ki = ki−1 + 5). Figure 6.5a shows the
edge similarities (y-axis) associated with different k’s (x-axis) for the HTTP and

178 Y. Jin et al.

30 40 50 60
0

0.2

0.4

0.6

0.8

1

Rank k

E
dg

e
si

m
ila

rit
y

HTTP (δ=0.5)
DNS (δ=0.5)

Edge similarity

30 40 50 60
0.9

0.92

0.94

0.96

0.98

1

Rank k

R
an

d
in

de
x

HTTP (δ=0.5)
DNS (δ=0.5)

Rand index

a b

Fig. 6.5 Similarity of graph components

DNS graphs, respectively. We observe that the edge sets become more similar as
k increases. For the chosen k (k = 40 for HTTP and k = 45 for DNS), the edge
similarity is close to 85%. This again implies that as the k is sufficiently large, the
extracted dense subgraphs become stable.

To evaluate the similarity of graph components formed by these extracted edge
sets, we use Rand index as a measurement. Due to the high similarity of the edge
sets, we compute the Rand index using the edges in Ei ∩Ei−1. Let Ci and Ci−1 be
the sets of components associated with edge set Ei and Ei−1. The Rand index is
defined as:

Rand(Ci,Ci−1) := (a+ b)/(n
2)

where a and b represent the number of edge pairs that are in the same or different
cluster in Ci that are also in the same or different cluster in Ci−1. The denominator
is the total number of edge pairs and n = |Ei ∩Ei−1|. The Rand index ranges from
0 to 1, with higher value indicating more similar clustering results. Figure 6.5b
displays the Rand index corresponding to different k’s for the HTTP and DNS
graphs. The Rand index values are always close to 1, implying persistent dense
clusters or subgraphs formed by these extracted edges for various k’s.

6.3.3.2 Low Convergence Rate and Local Minima

Though the optimal solution of tNMF is unique, the random initialization of R,
C and H in the basic tNMF optimization algorithm usually lead to both a low
convergence rate and an unsatisfactory local minima solution. In addition, since
the complexity of tNMF algorithm is O(mnr), where m-by-n is the matrix size and
r is the total number of iterations until convergence. Hence, a low convergence rate
results in a higher complexity of the algorithm. In this chapter, we address this
problem by employing a singular value decomposition (SVD) based initialization
approach. The basic idea is to first apply the rank-k singular value decomposition

6 Application Traffic Activity Graph Analysis 179

(SVD) on A for spectral co-clustering [3]. We then project the rows onto the
resulting k-dimensional subspace spanned by the top k (rows or columns) principal
components, and perform k-mean clustering to obtain an initial clustering of
inside/outside host clusters. We initialize R by perturbing the inside host cluster
membership vectors to obtain an all-positive matrix, namely, setting R := R+ ε ,
where ε is a small positive constant to avoid zero entries. The initialization of C is
done similarly. H is initialized with R−1AC−1T

, where R−1 and C−1 stand for the
pseudo-inverse of R and C.

Through extensive experiment analysis, we find that our SVD-based initialization
method not only improves the convergence rate significantly, but also enables our
algorithm to find the “best” optimization solution. Using Email TAG as an example
(with 100 experiments), the RSE using the SVD-based initialization is 0.34±0.009,
in comparison to 0.39±0.027 using random matrix initialization. In addition, using
the SVD-based initialization, the number of iterations to reach convergence is only
170.10 ± 71.09, while for the random matrix initialization is 323.57 ± 134.16.
Hence, our SVD-based initialization method not only increases the approximation
accuracy, but also enhances the speed of convergence.

6.4 Results and Interpretations

We apply the tNMF method to various application TAGs derived from our NetFlow
datasets to extract their core latent hypergraphs and associated significant graph
components. In this section, we analyze the structures of these graph components
and interpret their meanings. We also investigate how these graph components are
connected to form the core latent hypergraphs. These decomposition results provide
a meaningful and quantifiable way to understand, analyze and distinguish the struc-
tures of large traffic graphs that are otherwise hard to visualize and comprehend.
In particular, it also sheds light on how the giant connected components (GCCs) of
these graphs may be formed.

6.4.1 Graph Component Structures

Applying the tNMF method to the application TAGs listed in Table 6.1, the sizes
of the resulting (significant) graph components of each TAG are shown in Fig. 6.6.
In the figures, each point (x,y) represents a single graph component, where x is the
number of inside hosts in each inside host group, and y is the number of outside hosts
in each outside host group. The locations of points lead us to define three basic types
of graph component structures. We refer to the graph components corresponding to
the points on the line x = 1 (i.e., the inside host group containing only one inside
host) as having an in-star structure, i.e., a star structure centered at an inside host.

180 Y. Jin et al.

0 20 40 60
0

50

100

150

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

HTTP

0 20 40 60
0

50

100

150

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

Email

0 20 40 60
0

2

4

6

8

10

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

AOLMessenger

0 5 10
0

500

1000

1500

2000

2500

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

BitTorrent

0 20 40 60
0

200

400

600

800

1000

1200

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

DNS

a b

d e

c

Fig. 6.6 Sizes of significant graph components for five example application TAGs (δ = 0.5)

Fig. 6.7 A bi-mesh structure from the HTTP TAG

Similarly, we refer to the graph components corresponding to the points on the line
y = 1 (i.e., the outside group containing only one outside host) as having an out-star
structure, i.e., a star structure centered at an outside host.

The remaining points correspond to graph components which have at least two
members in both its inside and outside host groups. We refer to them as having
a bi-mesh structure, which represents fairly complex interactions or connectivity
between the inside and outside hosts. An example of a bi-mesh structure is shown
in Fig. 6.7. This bi-mesh structure consists of 24 inside hosts and 11 outside
hosts, where inside hosts are represented by circles and outside hosts are denoted
by squares. It contains more than 140 edges and most of the inside and outside
hosts in their respective groups also have relatively high degrees, suggesting strong
interactions between the members of these two inside/outside groups.

Table 6.3 summarizes the number of these three graph component structures for
each of the TAGs. We see that different application TAGs exhibit great diversity
in their graph component structures. For example, HTTP TAG contains a large
number of bi-mesh structures and a few star structures. These bi-mesh structures
may consist of hundreds of hosts as shown in the decomposition results of the
HTTP TAG (Fig. 6.6a). In comparison, instant messaging application TAGs such
as AOL messenger contain many out-star structures as well as a large number of

6 Application Traffic Activity Graph Analysis 181

Table 6.3 Graph
components of various TAGs.

Type |instar| |outstar| |bimesh| Edge coverage

HTTP 10 9 15 19.2%
Email 23 2 2 23.5%
AOL Msgr. 0 27 17 17.7%
BitTorrent 12 0 0 77.9%
DNS 11 0 3 56.3%

relatively small bi-mesh structures, which usually consist of two outside hosts and
20–40 inside hosts. On the other hand, P2P application TAGs contain mostly in-star
structures; the richness in connectivity of these TAGs seem to manifest in the “inter-
connections” among the graph components, not within, unlike HTTP TAGs (see
Sect. 6.4.3). The last column in Table 6.3 shows the percentage of edges covered by
these extracted graph components in each TAG.

It is interesting to note that while TAGs are associated with vastly different
applications (e.g., HTTP vs. P2P), most TAGs associated with the same or similar
applications (e.g., various on-line chat applications) show very similar patterns. This
observation suggests that the graph component structures capture the distinct char-
acteristics of underlying application structures that determine how inside/outside
hosts interact with each other.

6.4.2 Graph Component Interpretations

Using the IP addresses, their DNS names (if known) and other exogenous infor-
mation sources (e.g., information on server Web sites), we have done extensive
investigation to interpret and validate various graph components, namely, the
inside/outside groups and their interactions. Recall that the TAGs in question are
derived from outgoing flows originating from inside hosts of our campus network
to outside hosts, where the inside hosts are “service requesters” while the outside
hosts are “service providers.” In other words, the port(s) used in identifying an
“application” appear as destination ports in the flow records only.

6.4.2.1 HTTP

Due to the dominant volume of HTTP traffic and many activities associated with
it, we observe a great variety of HTTP graph components representing different
types of HTTP interactions. In HTTP TAGs, the in-stars and out-stars together
account for 60% of all the components. The majority of the out-star structures
are rooted at popular servers belonging to Google, Yahoo, etc., and the remaining
are rooted at IP addresses belonging to CDN servers like Akamai or advertising
sites like DoubleClick. Different from the out-star structures, the in-star structures
tend to be rooted at IP addresses of NAT boxes, proxy servers and wireless access
points.

182 Y. Jin et al.

In comparison to the star structures, the bi-mesh structures depict more sophis-
ticated interactions between groups of service requesters and service providers.
We are particularly interested in understanding the correlation of service providers
that attract clients to access them simultaneously. Based on DNS names and other
auxiliary information, we categorize various bi-mesh structures of HTTP TAGs
derived from flow datasets at different times, and present their interpretations in
Table 6.4. Because we rely heavily on external information such as DNS names,
providing interpretation for all bi-mesh structures is not always achievable. In fact,
we are able to explain 86.6% bi-mesh structures observed in an entire day. From
Table 6.4, we conclude that the majority of bi-mesh structures in HTTP TAGs are
formed due to three major reasons.

The first reason is the server farm effect (row 1), where servers belonging to
a large Web site balance the workload by serving requests in turn or by only
responding to requests for specific content. In this way, a client may establish
connections with multiple server machines to complete one access to the Web site,
and bi-mesh structures are formed by clients incidentally sharing several servers.
The second reason is correlated service providers. For example, Web sites often
collaborate with CDN providers for fast content delivery (row 2), e.g., Yahoo
with Akamai, and Facebook with Limelight Networks. As another example, Web
sites correlate with advertisement delivery networks (row 3) like DoubleClick and
Advertising.com. In both cases, when clients connect to a particular Web site, they
will be redirected to hosts in CDN network for further service or they will retrieve ad
contents from advertisement delivery networks automatically. Such server sharing
behavior also leads to bi-mesh structures.

In both of the above cases, the formation of bi-mesh structures is determined
by HTTP servers. However, the shared interest of clients is the third major cause
of bi-mesh structures. For example, in Table 6.4 row 4 to row 10, we observe
interest groups related to news, media and photo sharing, shopping and online social
networks. This suggests that clients tend to access Web sites delivering similar types
of content.

6.4.2.2 Email and DNS

We find that the Email TAG is decomposed mostly into in-stars corresponding to
Email servers of the university or several “big” departments (e.g., CS, IT, Math,
Medical School within our campus). The out-stars are mainly rooted at popular
Email servers such as Gmail. In Fig. 6.3b, one bi-mesh structure is caused by
server relays for load balancing as in the HTTP case. The other interesting bi-
mesh structure consists of inside Email servers belonging to some research labs and
smaller departments, which talk to Email servers of a few academic institutions, and
mail relays (some in Asia). We check them against DNS based blacklists, and find
that two of the addresses are blacklisted and quite a few others belong to domains
that no longer exist. Hence, we suspect that this bi-mesh may be formed due to
Email spams. The DNS TAG looks similar to the Email graph, with a large number

6 Application Traffic Activity Graph Analysis 183

Table 6.4 HTTP bi-mesh
structure categorization

Category description Examples Pct.

Server farms Lycos, Yahoo, Google 13.0
Content delivery LLNW, Akamai, 24.5

networks SAVVIS, Level3
Advertising providers DoubleClick, Advertising.com 14.8

TribalFusion
News related WashingtonPost, New York 1.6

Times, Cnet
Media and photo sharing ImageShack, tl4s2.com, 4.9

casalmedia.com
Broadcasters of news MusicMatch, Napster, BBC 3.3

and music
Job-search related monster.com, careersite.com 1.6
Online shopping related Ebay, CostCo, Walmart 3.3
Social network related FaceBook, MySpace 18.0
Blogs and review sharing LiveJournal, xpc-mii.net 1.6
Unknown - 13.4

of in-stars and out-stars rooted at DNS servers. There are three bi-meshes, where
the inside hosts consist of at least one DNS server along with a few Email servers
(including our CS mail servers). These Email servers appear to be configured either
to serve also as DNS servers, or perhaps more plausibly, to perform queries to
outside DNS servers for reverse DNS look-ups to filter non-registered spam Email
servers (as in the case of our CS Email servers).

6.4.2.3 Instant Messaging and P2P Applications

The TAGs associated with Microsoft, Yahoo and AOL messengers have similar
structures which are distinct from those of HTTP and Email. They are decomposed
into mostly small-size bi-meshes with many cross-connections between them,
indicating that members of inside groups communicate with members of multiple
outside groups. All hosts in the outside groups are associated with the same (top
two-level) domain name, meaning that these small-size bi-meshes are indeed the
effect of server relays. In contrast, P2P applications such as BitTorrent, eMule
and Gnutella contain a majority of in-star structures. A few of them are somewhat
loosely connected, indicating that the inside hosts at which the in-stars are centered
also happen to share a number of destination hosts.

6.4.3 Latent Hypergraphs and GCC Formation

The group density matrix Ĥ and the induced core latent hypergraph H capture
the (dominant) interactions among various inside/outside host groups, and shed

184 Y. Jin et al.

Random connected star Tree

AS1

Pool

Correlated pool

a b c

d

Fig. 6.8 Schematic depiction of typical latent hypergraph formation

light on the formation of giant connected components of various application TAGs.
Through detailed analysis of the latent hypergraphs (and the reconstructed core
graphs) of various application TAGs using our campus flow datasets (as well as
the ISP flow datasets), we find four (inter-connection) structures that are most
prevalent in the latent hypergraph structures. Most latent hypergraphs (and the
resulting reconstructed core graphs) are formed predominantly using one or two
of such structures. In Fig. 6.8a–d, we provide a schematic depiction of these
four typical structures that inter-connect two graph components. In the figure, we
use circles and boxes to represent respectively inside hosts (service requesters or
clients) and outside hosts (service providers or servers). An edge between two hosts
indicates interactions between them (i.e., with observed flows between them). In the
following, we provide some plausible interpretations of these four structures.

• Randomly Connected Star Structure, where a hypergraph is formed by various
high degree in-stars rooted at inside hosts/clients randomly sharing leaf nodes
(outside hosts/servers). P2P TAGs usually fall into this category.

• Tree Structure, where some star roots behave like clients to connect to other
stars. This structure shows up typically in IRC, Email, and DNS TAGs. We note
that this structure does not appear in the hypergraphs of the application TAGs
derived from our campus flow datasets, due to limited visibility (namely, we
cannot observe the interactions among outside hosts); however, they do appear
in application TAGs such as IRC, Email, and DNS TAGs obtained from the ISP
flow datasets. For sake of completeness, we include this structure here.

• Pool Structure, where bi-meshs and out-stars are connected by a large number
of low degree inside hosts/clients randomly communicating with the outside
hosts/servers within these components. In addition, all the outside hosts/servers
within these components share either the same (top two-level) domain name,
or if their addresses are not DNS-resolvable, are associated with the same
organization (based on the autonomous system number (ASN) using BGP routing

6 Application Traffic Activity Graph Analysis 185

data look-up). This seems to suggest that the pool structure is likely caused by
server relays. Many application TAGs such as messengers and online games
contain this type of structure.

• Correlated Pool Structure, where multiple pool structures are connected by mul-
tiple inside host/clients communicating with a number of outside hosts/servers in
different pools. HTTP TAGs are a typical example of this category. For example,
CDNs or on-line ad service networks form multiple pool structures, as they
provide service to a large number of (sometimes unrelated) Web sites. Inside
hosts/clients belonging to different groups that are accessing these Web sites will
also access the corresponding CDNs or ad service networks, thus interconnecting
multiple graph components.

6.4.3.1 Overall Summary

By decomposing various applications TAGs into significant graph components and
core latent hypergraphs that are more amenable to analysis and interpretation, our
tNMF-based TAG decomposition method provides a powerful and valuable tool to
characterize, classify and understand the structural properties of large, sparse, yet
richly connected TAGs that otherwise seem too complex to comprehend. Further,
it reveals the underlying application structures that determine how users access
services or interact with each other, and sheds light on the formation of such
large and complex graphs. Based on our analysis of “canonical” graph components
and latent hypergraph structures, we summarize that: (1) For certain application
TAGs such as Email, DNS and certain P2P applications, their main structures
and rich connectivity can be decomposed into and captured by graph component
structures with a diversity of “local” structures, some are simple (e.g., in-/out-star
structures), others are complex (e.g., bi-mesh structures), which are inter-connected
with relatively simple “global” structure, e.g., random star or tree structures; (2)
However, for other applications such as online chat and game applications, the main
structures and rich connectivity may be decomposed into and represented by the
significant interactions (e.g., pool structures) of relatively simple graph component
structures (e.g., mostly star-structures). For yet other applications (such as HTTP or
Web), it is a combination of both components that contribute to their main structures
and rich connectivity, for example, bi-mesh star structured graph components are
inter-connected via correlated pool structures to form larger and more complex
clusters, which may be then interconnected through random star structures. The
structural complexity of HTTP or Web TAGs may not be too surprising in light
that Web applications have evolved from the early simple client/server structure to
today’s “Web 2.0” driven by CDNs, search engines, on-line ad services, and Web
services based on data centers and service-oriented architecture, forming a truly
complex, dynamic, and inter-weaving Web.

186 Y. Jin et al.

6.5 Evolution of TAGs

In the previous sections, we have studied the structural properties of various
application TAGs as static objects: they are constructed by considering flows
associated with an application of interest accumulated during a certain time window.
Clearly, traffic activities are dynamic; hence the resulting TAGs evolve over time. In
this section we investigate the temporal properties of TAGs. Due to their prevalence
and the rich structures, we use HTTP TAGs as an example to study the evolution of
TAGs over time.

6.5.1 Metrics for Similarity Comparison

We take a one-day NetFlow dataset of our campus network and partition it into
20-min intervals (72 in total). We construct a sequence of HTTP TAGs, Gt , 1 ≤
t ≤ 72, using the first 10,000 unique (outgoing) HTTP flows (with destination
ports 80 or 443) observed during each time interval, and study their evolution over
time. Intuitively, we would expect that for inside/outside host groups that represent
dominant and frequent interaction patterns, while their individual members (in
particular, inside hosts or clients) are likely to fluctuate and vary over time, the
corresponding graph components as well as the core latent graph structures should
stay fairly stable most of time. To compare the decomposition results (thereby
the inside/outside host groups and their interaction structures) derived from HTTP
TAGs over time, we first introduce a few metrics.

Let Cs = {Cs
i } and Ct = {Ct

j} be the sets of significant graph components
extracted from TAGs Gs and Gt , s < t. Due to the dynamics of traffic activities
and evolution of inherent “host community” structures (e.g., new members joining
and old members leaving) as well as the artifact of the decomposition results,
there is not necessarily a one-to-one correspondence between graph components
in Cs and Ct . For example, a graph component in Cs may be split or merged
with other components in Ct . In order to track the change of a particular graph
component Cs

i ∈ Cs from time s to time t, we need to identify its (most likely)
counterpart Ct

j ∈Ct . We adopt a simple “best-effort” matching algorithm as follows.
Let sim(Cs

i ,C
t
j) denote an appropriately defined similarity metric for comparing

components Cs
i and Ct

j at time intervals s and t. For each Cs
p, we say Ct

q is its
counterpart (i.e., its “best match”) if q = argmax j sim(Cs

p,C
t
j) and sim(Cs

p,C
t
q)≥ η ,

where η > 0 is a pre-defined similarity threshold. If no such Ct
q is found, then Cs

p
has no best match or counterpart at time interval t.

We introduce three similarity metrics to capture various relationships between
two graph components (or their corresponding inside/outside host groups) over time.
The host-level similarity (simh) is defined as the percentage of (inside or outside)
hosts that Cs

i and Ct
j share in common, i.e., simh(Cs

i ,C
t
j) := |Cs

i ∩Ct
j |/|Cs

i ∪Ct
j|. The

domain similarity (simd) is defined as the percentage of hosts in two components

6 Application Traffic Activity Graph Analysis 187

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Time intervals (20 minutes)

C
ou

nt

Latent graph components
Outside host groups
Inside host groups

Number of latent components at
different time intervals

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

Component index

S
im

ila
rit

y

Remote AS

Remote DNS

Remote IP

Local IP

Similarity of latent components
at 6:40 pm and 7:00 pm

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Lifetime (20−minute intervals)

C
D

F

η = 1
η > 0.9
η > 0.8
η > 0.7

Lifetime of latent components

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Time intervals (0 − 70)

S
im

ila
rit

y

Average domain similarities at
different times

a b

c d

Fig. 6.9 Evolution of HTTP TAGs

that share the same domain name suffix (the top 3-level domain names for an address
ending with country code and top 2-level domain names otherwise). Likewise,
the AS similarity (simas) is defined as the percentage of hosts in two components
that belong to the same AS. All three similarity metrics range between 0 and 1,
with 1 indicating exactly identical components at the corresponding similarity level.
Obviously, all inside hosts (local IPs) have the same domain name suffix and
belong to the same AS owned by the university. Hence, the last two similarity
metrics are only useful in quantifying the similarity of outside host (remote IP)
groups. However, the host-level similarity metric can be applied to both the inside
and outside host groups associated with various graph components, yielding two
similarity measures, one for the inside host (local IP) groups and one for the outside
host (remote IP) groups.

Applying the tNMF decomposition to the HTTP TAGs Gt , 1 ≤ t ≤ 72, we obtain
the graph components of each TAG. Figure 6.9a displays the number of resulting

188 Y. Jin et al.

graph components as well as the number of associated inside/outside host groups as
a function of time, where t = 0 corresponds to the first 20 min in the 0th hour of the
day. The figure shows that the number of graph components fluctuates and evolves
over time. In particular, compared to business hours, the number of components
during the wee hours of the morning tends to fluctuate more widely and are thus less
stable. Using the similarity metrics defined above, we apply the best-effort matching
algorithm to the graph components of two consecutive HTTP TAGs at 6:40 pm
and at 7:00 pm, and find their best matches (for the purpose of exposition, we set
η = 0). Figure 6.9b shows the similarity scores of the graph components and their
best matches, where the curves labeled “local IP” and “remote IP” are the host-level
similarity scores of inside and outside host groups, respectively, while those labeled
“remote DNS” and “remote AS” are the domain and AS similarity scores of outside
host groups.

From Fig. 6.9b we see that the membership (generally clients) of inside host
groups typically change frequently over time (all host similarities are equal to 0),
which is not surprising. Outside hosts exhibit similar variability as that of inside
hosts. However, because some of these outside hosts represent gateways (such as
Facebook and Myspace), their similarity values are not as low as that of the inside
hosts. Further, we notice that for most outside host groups, the new outside hosts
tend to belong to the same domain or AS, indicating they provide the same/similar
services or function in similar roles as before. Hence, for the HTTP TAGs derived
from our campus network flow datasets, the outside host groups are good indicators
for tracking the evolution of graph components over time. In addition, the two curves
for the domain and AS similarity metrics are quite similar. We notice that for one of
the domain name groups, the similarity values are close to zero while AS similarity
is quite high (simas = 0.65). By investigating these domain names, we find that they
indeed belong to the same AS, but are associated with different domain names, such
as questionmarket.com and Advertising.com.

In the following we will use the domain similarity metric to study the temporal
stability of graph components over time.

6.5.2 Temporal Stability of Graph Components

Given a graph component Ct
p observed during the time interval t, we say that it also

appears at time s, s �= t and 1 ≤ s ≤ 72, if its best match is Cs
q at time interval s such

that simd(Ct
p,C

s
q)≥ η . (Note that the domain similarity of two graph components is

determined solely by the domain similarity of their associated outside host groups.)
We define the lifetime of a graph component C as the number of time intervals that
C appears in. With η ranging from 0.7 to 1, Fig. 6.9c plots the corresponding CDF
of the lifetimes of various graph components observed during a one-day period. We
see that even with η = 1, a few graph components appear in more than 65 time
intervals, and with η = 0.9, about 10% of graph components appear in all 72 time

6 Application Traffic Activity Graph Analysis 189

intervals (whole day). Using η = 0.9, we say a graph component is persistent if it
has a lifetime more than 6 h (i.e., if it appears in at least 18 time intervals), otherwise
it is referred to as transient.

Using the domain names of the outside host groups, we examine what constitutes
the majority of persistent graph components. We find that a majority of them are
associated with popular Web sites/services such as Google, Yahoo, Facebook as
well as CDNs such as LimeLight Network (LLNW) and Akamai, where the outside
host groups represent part of the server farms. Some of these persistent components
contain also “correlated” servers/services, e.g., Yahoo, DoubleClick and LLNW.
A few persistent components also represent groups of related Web sites such as
dictionary.com, thesaurus.com, and lexico.com, or govideocodes.com (video site)
and photobucket.com, which appear to represent user interests. In other words,
inside hosts that access one site are also likely to access the other sites in the (outside
host) group. In contrast, most transient components seem to represent correlated
Web sites, services and outside hosts that reflect user interests, some of which appear
in multiple time intervals during the day, while others only appear in a short period
of the day. In addition to some examples listed in Table 6.4, other examples include
cnet (software news voice broadcast), onvoy (voice services) and apple.com; music
services including musicmatch, napster, moontaxi, and live365; or travel-related
services grandex.com and weather.com.

Furthermore, there is an implicit correlation between the “cohesiveness” of graph
components and user interests and activities during different time periods of the day.
In Fig. 6.9d, we plot the average of the (domain) similarities between the graph
components observed at time interval t with their “best matches” at t + 1 (η = 0 is
used for this purpose) as a function t. We see that between midnight and 2 am or so
(t = 0 to t = 8), the average similarities of the graph components are generally
higher than other times. We find that an overwhelming majority of the graph
components that appear during these periods, are associated with popular media
sharing sites and other common Web services such as Google, Yahoo, Microsoft,
and AOL. Examining the inside hosts associated with these graph components reveal
that most of them come from the residential hall subnets. Thus, graph components
during these time periods reflect activities and interests of residential hall students.
During the business hours and evening (t = 30− 60), many graph components are
associated with common Web services, e.g., news, weather, etc., which appear to
reflect dominant interests of users during those periods. On the other hand, during
the wee hours of the morning, the traffic activities are much lower, and graph
components appear to be more mixed: more (outside) service groups show up,
each attracting roughly similar number of users (inside hosts), without any type of
services dominating. The inside hosts associated with these graph components are
also more diverse, including hosts in residential subnets, departmental machines,
mail servers and other servers that appear to be running automated and scheduled
processes, and the corresponding outside hosts vary from academic institutions to
news sites and government agencies. Because traffic activities are less intense and
more diverse, the graph components extracted by the tNMF method tend to be less

190 Y. Jin et al.

cohesive, resulting in lower similarities among the graph components during two
consecutive time periods. This also helps explain why we see a large number of
graph components appearing during some of these time periods and they also tend
to be less stable (see Fig. 6.9a).

6.6 Applications

In previous sections, we have analyzed the typical structures of (significant) graph
components and (core) latent hypergraphs produced by our tNMF-based TAG
decomposition method, as well as how they evolve over time. In this section, we
demonstrate how these analyses of graph components and hypergraph structures
can be employed to identify, classify and understand “unknown” applications and
their structures by using two examples.

The tNMF-based graph decomposition method not only helps us understand
the structural properties of application TAGs associated with known applications
(or service ports), but these structural properties can also be applied to facilitate
“unknown” application identification as well as to analyze “anomalous” behaviors
in known/unknown application TAGs. We briefly illustrate these two applications of
the tNMF method via two examples.

6.6.1 Analysis of UDP Port 4000 Traffic

As an example of “unknown” application identification, we apply the tNMF method
to the TAG formed by outgoing flows towards UDP port 4000 (i.e., as the destination
port in the flows) within a certain time window in our campus flow datasets.
Given limited information of application(s) running on port 4000, we decompose
the TAG and analyze the structures of the resulting graph components and latent
hypergraphs. Figure 14.1a shows the size of extracted graph components, which
contains 13 bi-meshs, 2 in-stars and 15 out-stars (some are overlapping in the
figure). These components are connected to form an approximate pool structure.
Further investigation shows these destination IP addresses belong to the same AS
in China, indicating this TAG is likely associated with a messenger or game type
of application. Googling these destination addresses reveals that they are associated
with a messenger software (OICQ) that mainly uses UDP 4000 as the service port.

6.6.2 Analysis of Storm Worm Traffic

Storm worm is now a notorious and well-studied giant botnet in which bots
communicate with each other through a P2P network (Overnet). It first appeared

6 Application Traffic Activity Graph Analysis 191

0 5 10 15 20
0

5

10

15

20

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

Port 4000

0 5 10 15
0

5

10

15

Number of inside hosts

N
um

be
r

of
 o

ut
si

de
 h

os
ts

worm traffic
other traffic

Storm worm

a b

Fig. 6.10 Example applications using tNMF

in late 2006 or early 2007. The ISP flow datasets were collected in early summer of
2007, during which the Storm worm is known to be highly active. As an example
to illustrate the utility of the tNMF method, we apply it to analyze the structural
properties of Storm worm TAGs and investigate how they may deviate from those
of “normal” P2P applications. For this purpose, we have obtained a list of “known”
bot addresses culled from the P2P queries to/from a Storm worm bot captured
in a honeynet, and used this list to extract all flows in the ISP flow datasets that
contain the IP addresses (either as source or destination) on the list. Note that unlike
application TAGs discussed earlier, here, we ignore the port information when
extracting the flowset. We construct two TAGs7 from the resulting flow set: one
TAG is constructed using flows containing both source and destination IP addresses
on the list, thus it represents the communications among bots themselves (referred to
as “worm traffic” in Fig. 14.1b); the other TAG is constructed using flows between
bots (i.e., those IP addresses on the list) and “non-bot” hosts (IP addresses not on
the list), thus it represents the communications between bots and non-bots (referred
to as “other traffic” in Fig. 14.1b).

Applying the tNMF method to these two TAGs associated with the Storm
worm, we obtain the graph components which are shown in Fig. 14.1b. The “bot
communication” TAG contains 8 bi-meshs out of 22 components (“o” points in the
figure). The more common appearance of bi-mesh structures distinguishes it from
other “normal” P2P networks where only randomly connected in-star structures

7In the first (Storm worm communication) TAG, we construct a bipartite graph by putting source
IP addresses on one side (rows in the adjaceny matrix) and destination IP addresses on the other
side (columns in the adjaceny matrix). The resulting graph is not strictly bipartite, but nearly so,
as there are only 10 (0.1%) IP addresses that appear as both source and destination in the flows. In
the second (bots communicating with non-bots) TAG, a bipartite graph is constructed with bot IP
addresses on one side and non-bot IP addresses on the other side.

192 Y. Jin et al.

are observed8. This indicates that the Storm worm bots tend to communicate more
frequently with each other than peers in other “normal” P2P applications. We pro-
vide one plausible explanation for this structural difference or anomaly: the Storm
worm botnet has a hierarchical structure (see [23]), where bots acquire commands
from the botmaster through a set of supernodes. The role of the P2P communications
between Storm worm bots is to query for the addresses of the supernodes. Hence,
the bi-meshes are likely due to the bots periodically sending queries to a few bots
that store the addresses of the supernodes. In other words, the P2P communications
in the Storm worm botnet are of certain mutual interest. This is in contrast to the
host behaviors in most “normal” P2P applications, where users search for and share
content in a “random” fashion. The “bots communicating with non-bots” TAG (“+”
points in Fig. 14.1b) also contains a significant percentage of bi-mesh structures
(7/20). Examining the DNS names and other relevant information (e.g., via Google)
associated with non-bot IP addresses and ports used in the communication, we find
many of the non-bots are (or function as) mail or http servers (perhaps functioning as
distributed supernodes to provide proxies for communication between bots and the
botmaster). The large number of bi-mesh structures reveals that Storm worm bots
tend to exhibit somewhat correlated behaviors, either “collaborating” in accessing
mail relays or http servers, or engaging in other “coordinated” malicious activities.
Most of the communications with non-bot hosts seem to be Email spam activities.

6.7 Related Work

Analysis of complex network graphs has recently received considerable attention
in the literature, mostly due to the success of online social network applications.
Many approaches have been proposed to help directly visualize complex graphs,
e.g., [28] and [26]. These methods enable us to directly visualize and understand
complex graphs, however, they do not provide us a way to characterize and quantify
different graphs.

Among various properties of complex network graphs, the community structures
attract the majority of interests. Newman [20] surveyed widely applied methods in
physics and social sciences to extract community structures from complex graphs.
Recently, a lot of work in computer science focuses on analyzing community
structures from Web data [6] and social network data [15]. Nonnegative matrix
factorization algorithms are closely related to these algorithms [5, 16]. In recent
years, NMF algorithms have been applied for identifying communities in large
complex graphs and demonstrate superior results over other well-known community
detection algorithms [22, 25].

8That bi-mesh structures are generally rare in “normal” P2P TAGs is likely due to the random peer
selection method used by many P2P applications. Hence, the probability of two P2P hosts sharing
many peers repeatedly is typically very small in a short time window.

6 Application Traffic Activity Graph Analysis 193

One related work on host-level communities is in [18], where historical com-
munication patterns are used as “normal” profiles for preventing propagation
of malwares/worms. In contrast, we are not only interested in characterizing
application specific communication patterns, but also explain the formation of these
communities.

Our work is also related to other matrix factorization algorithms which can
potentially provide graph partitioning or co-clustering results. For example, the
SVD-based spectral graph partitioning algorithm, introduced in [3], has been proved
to provide optimal bi-partitioning. However, the assumption of diagonal Σ matrix
forces each inside host group to only communicate with one outside group, which
does not describe the rich interactions among host groups. In addition, information-
theoretic co-clustering methods perform simultaneous clustering over rows and
columns of a specific matrix. For example, [4] obtains such co-clustering by
minimizing the loss of mutual information between a low-rank approximation and
the original matrix, while [1] achieves this goal by minimizing the codelength for the
original matrix after rotating its rows and columns. In the scenario of traffic activity
graphs in this chapter, we are interested in identifying and interpreting the “core”
community structures or densely connected subgraphs. The edges not belonging to
these core communities are considered as noise and are expected to be filtered by
the decomposition algorithm. The tNMF algorithm fulfills this task by enforcing
that each host only belongs to one particular community through the orthogonality
constraint, and relax this rigorous orthogonality constraint slightly during the
optimization process (see [5] for details). In this way, the noise (i.e., the hosts
across multiple communities) after factorization are associated with lower weights
and hence can be easily filtered by the group membership assignment process.

6.8 Conclusions

In this chapter, we have studied the network traffic behaviors using traffic activity
graphs (TAGs) associated with various types of communications. These TAGs
are large, sparse, seemingly complex and richly connected, making them hard to
visualize and comprehend as a whole. Based on the observation of prevalent block
structures in such TAGs, we proposed the tNMF method for decomposing TAGs,
and devised a systematic method for extracting the dominant substructures and
characterizing their structural properties. We applied our method to various applica-
tion TAGs derived from our campus NetFlow datasets such as HTTP, Email, DNS,
various chat, P2P, and online gaming applications. Through extensive experimental
analyses, we demonstrated that the tNMF graph decomposition method provides
an easy-to-understand, interpretable and quantifiable means to characterize and
quantify the key structural properties of various TAGs as well as to study their
formation and evolution. As examples to illustrate the utility of the proposed tNMF
method, we also briefly touched on how they can be used for unknown application
identification and anomalous traffic activity detection.

194 Y. Jin et al.

References

1. Chakrabarti, D., Papadimitriou, S., Modha, D., Faloutsos, C.: Fully automatic cross-
associations. In: Proc. of ACM KDD (2004)

2. Chung, F., Lu, L.: Connected components in random graphs with given expected degree
sequences. Annals of Combinatorics 6, 125–145 (2002)

3. Dhillon, I.: Co-clustering documents and words using bipartite spectral graph partitioning.
In: Proc. of KDD (2001)

4. Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Proc. of ACM
KDD (2003)

5. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for
clustering. In: Proc. of ACM KDD (2006)

6. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities
in the web. In: Proc. of WWW (2007)

7. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network
monitoring using traffic dispersion graphs (tdgs). In: Proc. of ACM IMC (2007)

8. K. Xu, Z.-L. Zhang and S. Bhattacharyya: Profiling Internet backbone traffic: behavior models
and applications. In: Proc. of ACM SIGCOMM (2005)

9. Karagiannis, T., Broido, A., Faloutsos, M., claffy, K.: Transport layer identification of p2p
traffic. In: Proc. of ACM IMC (2004)

10. Kim, H., Park, H.: Extracting unrecognized gene relationships from the biomedical literature
via matrix factorizations using a priori knowledge of gene relationships. In: Proc. of ACM
TMBIO (2006)

11. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in traffic
flows. In: Proc. of ACM IMC (2004)

12. Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C., Kolaczyk, E., Taft, N.: Structural
analysis of network traffic flows. In: Proc. of ACM SIGMETRICS (2004)

13. Lee, D., Seung, H.: Learning the parts of objects. by non-negative matrix factorization.
In: Nature (1999)

14. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In: Proc. of NIPS (2000)
15. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Statistical properties of community

structure in large social and information networks. In: Proc. of WWW (2008)
16. Li, T.: Clustering based on matrix approximation: a unifying view. Knowl. Inf. Syst. 17, 1–15

(2008)
17. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization methods for

clustering. In: Proc. of IEEE ICDM (2006)
18. McDaniel, P., Sen, S., Spatscheck, O., der Merwe, J.V., Aiello, B., Kalmanek, C.: Enterprise

security: a community of interest based approach. In: Proc. of NDSS (2006)
19. Moore, A., Zuev, D.: Internet traffic classification using bayesian analysis techniques. In: Proc.

of ACM SIGMETRICS (2005)
20. Newman, M.E.J.: Detecting community structure in networks. In: Eur. Phys. J. B 38, 321-330

(2004)
21. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures for polymor-

phic worms. Proc. of Security and Privacy, IEEE Symposium (2005)
22. Psorakis, I., Roberts, S., Sheldon, B.: Efficient bayesian community detection using non-

negative matrix factorisation (2010)
23. Stewart, J.: Inside the storm: Protocols and encryption of the storm botnet. http://www.

blackhat.com/presentations/bh-usa-08/Stewart/BH US 08 Stewart Protocols of the Storm.
pdf

24. T. Karagiannis, K. Papagiannaki and M. Faloutsos: BLINC: Multilevel traffic classification in
the dark. In: Proc. of ACM SIGCOMM (2005)

25. Wang, F., Li, T., Wang, X., Zhu, S., Ding, C.: Community discovery using nonnegative matrix
factorization. Data Mining and Knowledge Discovery (2010)

http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf
http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf
http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH_US_08_Stewart_Protocols_of_the_Storm.pdf

6 Application Traffic Activity Graph Analysis 195

26. X. Yang and S. Asur and S. Parthasarathy and S. Mehta: A visual-analytic toolkit for dynamic
interaction graphs. In: Proc. of ACM SIGKDD (2008)

27. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization.
In: Proc. of SIGIR (2003)

28. Y. Jia and J. Hoberock and M. Garland and J. Hart: On the visualization of social and other
scale-free networks. In: Proc. of IEEE InfoVis (2008)

29. Zhang, Y., Singh, S., Sen, S., Duffield, N., Lund, C.: Online identification of hierarchical heavy
hitters: algorithms, evaluation, and applications. In: Proc. of ACM IMC (2004)

Chapter 7
Localized Bridging Centrality

Soumendra Nanda and David Kotz

Abstract Centrality is a concept often used in social network analysis (SNA) to
study different properties of networks that are modeled as graphs. Bridging nodes
are strategically important nodes in a network graph that are located in between
highly-connected regions. We developed a new centrality metric called Localized
Bridging Centrality (LBC) to allow a user to identify and rank bridging nodes. LBC
is a distributed variant of the Bridging Centrality (BC) metric and both these metrics
are used to identify and rank bridging nodes. LBC is capable of identifying bridging
nodes with an accuracy comparable to that of the BC metric for most networks,
but is an order of magnitude less computationally expensive. As the name suggests,
we use only local information from surrounding nodes to compute the LBC metric.
Thus, our LBC metric is more suitable for distributed or parallel computation than
the BC metric. We applied our LBC metric on several examples, including a real
wireless mesh network. Our results indicate that the LBC metric is as powerful
as the BC metric at identifying bridging nodes. We recently designed a new SNA
metric that is also suitable for use in wireless mesh networks: the Localized Load-
aware Bridging Centrality (LLBC) metric. The LLBC metric improves upon LBC
by detecting critical bridging nodes while taking into account the actual traffic flows
present in a communications network. We developed the SNA Plugin (SNAP) for
the Optimized Link State Routing (OLSR) protocol to study the potential use of
LBC and LLBC in improving multicast communications and our initial results are
promising. In this chapter, we present an introduction to SNA centrality metrics with
a focus on our contributed metrics: LBC and LLBC. We also present some initial
results from applying our metrics in real and emulated wireless mesh networks.

S. Nanda (�)
BAE Systems, 6 New England Executive Park, Burlington, MA 01821, USA
e-mail: soumendra.nanda@baesystems.com

D. Kotz
Dartmouth College, 6211 Hinman, Hanover, NH 03755, USA
e-mail: kotz@cs.dartmouth.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 7, © Springer Science+Business Media, LLC 2012

197

soumendra.nanda@baesystems.com
kotz@cs.dartmouth.edu

198 S. Nanda and D. Kotz

7.1 Introduction

Wireless mesh networks are an emerging type of wireless network technology
that are related to mobile ad hoc networks (MANETs). They are used to provide
network access to wireless clients (such as laptops for e.g.), but unlike cellular
wireless networks (where cell towers communicate with each other through a wired
backbone), the mesh nodes communicate with each other through wireless channels
and in a distributed and decentralized manner with the help of a MANET routing
protocol. Optimized Link State Routing (OLSR) [16] is one such MANET routing
protocol, but there are hundreds of others in the literature that could be used for mesh
networks. Most wireless networks are represented as graphs with the mesh nodes as
vertices and with the links between neighboring nodes as edges. Link quality values
are often used as weights on these edges.

During the course of a PhD dissertation at Dartmouth College in Hanover, NH,
we developed a new distributed management system for wireless mesh networks,
called Mesh-Mon, that can help a team of system administrators (sysadmins)
manage a stationary or mobile wireless mesh network [18, 20]. Mesh-Mon is
designed to provide scalable monitoring of large unplanned wireless mesh networks,
by allowing mesh nodes to cooperate locally to monitor each other and detect faults
and anomalies in a decentralized manner. Most traditional network analysis tools
for computer networks are centralized in nature. To complement the distributed
nature of mesh networks and of our management platform, we sought to develop
new distributed metrics and tools that may assist in network analysis and could
enhance the design of future network routing protocols.

We provide below a list of questions asked from a sysadmin’s point of view, that
we initially set out to answer and consider relevant to mesh networks:

1. Which nodes should the system administrator be most concerned about from
a robustness point of view? That is, the loss of which nodes would have a
significant impact on the connectivity of the network?

2. How many nodes can fail before the network is partitioned into multiple parts?
3. Which nodes are the most “important” in the network?
4. If the sysadmin could or should add or move a node to enhance the network,

which one should it be?
5. Similarly, if the sysadmin had to update a subset of nodes and reboot them, in

which order should the update be performed in?

A sysadmin is generally concerned about which nodes are more “critical” and
require more scrutiny in the network. One technique to identify the nodes that
are critical from a network topology management perspective is to identify all
“articulation points” and “bridges” in the network, since, upon failure, these nodes
will partition a network [10, 24]. When applied to wireless mesh networks, in our
experience, we found that articulation points are rare in practice in mesh topologies
(unless the network is sparse and weakly connected). Thus, this technique is less
helpful when applied in the analysis of mesh networks. Furthermore, Depth First

7 Localized Bridging Centrality 199

Search (DFS) of the entire network is an essential computational step and it can
only be implemented efficiently in a centralized manner.

While most network management issues are absolute in nature (such as dealing
with faulty hardware or incorrectly configured devices), there are many situations
when relative management decisions must be made. For example, consider the
following questions: If the system administrator had to update a subset of nodes
sequentially, then in which order should he or she perform the update? or Which
nodes are the most and least “important” in my network?

Centrality is a concept often used in social network analysis (SNA) to study
relative properties of social networks. These social networks are typically modeled
as graphs. Our approach is to apply techniques adapted from SNA to answer
relativistic questions. In a wireless mesh network context, a system administrator
should pay attention to “bridging nodes” since they are important from a robustness
perspective (as they help bridge connected components together) and their failure
will increase the risk of network partitions.

This chapter provides an introduction to centrality metrics used in social network
analysis and describes some of our own recently published contributions: the
development and evaluation of two new SNA-based centrality metrics: the Local-
ized Load-aware Bridging Centrality (LLBC) metric, and the Localized Bridging
Centrality (LBC) metric [18–21]. Our second contribution is the development of an
OLSR plugin to study the applicability of LBC, LLBC and EigenVector Centrality
(EVC) in mobile networks and evaluation via simulations in an emulated 802.11
environment using the Extendable Mobile Ad-hoc Emulator (EMANE) by CenGen
Inc [8]. Both LLBC and LBC provide functionality that is comparable to or better
than the Bridging Centrality (BC) metric [15] at identifying bridging nodes, yet can
be calculated quickly and in a distributed manner. BC is calculated in a centralized
manner using the entire network graph and has an order of magnitude higher
computational complexity. To calculate its own LBC value, each node only needs to
know its 1-hop neighbor set and the degree of each of its neighbors. Additionally,
for LLBC calculations, each node only requires the aggregate traffic summary of its
direct neighbors.

7.2 Social-Network Analysis

Our initial motivation for this work was to discover metrics and develop tools
that can help a system administrator manage a wireless mesh network or would
allow an automated management system understand the state of a network. We use
“centrality” metrics from social-network analysis to study the roles of individual
nodes in the network and the relationship of these nodes to their neighbors. Social-
network analysis is normally applied to the study of social networks of people
and organizations. In our domain, we are interested in the positions and roles
of individual mesh nodes and the relationships between them, which like social
networks are often represented as graphs.

200 S. Nanda and D. Kotz

Many social-network analysis techniques and metrics are based on graph theory.
Humans tend to form clusters of communities within social networks. Similarly,
mesh networks may have a complex network structure with groups of nodes that
share a common relationship or structure that is worth identifying. Although we
refer to wireless mesh networks as our primary domain for the application of our
techniques, they are general enough to apply to other domains that use graphs to
represent complex networks.

The connectivity relationship between different mesh nodes can be characterized
in many different ways, such as direct or indirect, and weak or strong. The position
a node occupies in a network can play a role in the node’s ability to control or
impact the flow of information in the network. Centrality indices help characterize
the position of a node in different ways.

The most common centrality metrics used in social network analysis are degree
centrality, closeness centrality, eigenvector centrality (EVC) [2] and sociocentric
betweenness centrality [13]. Several other definitions of centrality measures exist.
A popular software package for experimenting with Social Network Analysis
metrics is provided by Analytic Tech [5], but there are many other tools available.
We focus on sociocentric betweenness centrality and use it to develop our own
centrality measures later in this text.

We believe that techniques borrowed and enhanced from the domain of social
network analysis can help in providing answers to some of the questions we
pose. We aim to use “centrality” metrics from social-network analysis to study
the roles of individual nodes in the network and the relationship of these nodes to
their neighbors. Social-network analysis is normally applied to the study of social
networks of actors, usually people and their relationships with other people. In our
domain, we are interested in the positions and roles of individual mesh nodes and
the relationships between them.

7.2.1 Degree Centrality

One simple way to characterize an individual node in a topological graph is by
its degree. The degree of a node in a graph in the mesh context is the number
of links the node shares with its neighbors and which are available for routing
purposes. A well-connected mesh network is a healthy network. If a node has many
neighbors then the failure of a single neighbor should not affect the routing health
of the regional network adversely. A node with a high degree can be considered as
being well connected and a node with a relatively low degree can be considered
weakly connected. The degree of an individual node and the minimum, maximum
and average degree over all the nodes are standard characterization metrics in graph
theory.

If the global topology is available at a central location, then all the nodes can
be quickly ranked according to their degree. However, this degree-based ranking
does not convey a good picture of the nature of connectivity in the network since

7 Localized Bridging Centrality 201

Fig. 7.1 Limitations of
degree centrality. Note that
nodes A and B each have
degree 5 but are likely to have
different impact on a
network. (Adapted from [1])

all links are rarely identical. For instance, different links may have varying capacity
levels and different latencies. In addition, the existence of neighbor links and their
respective qualities fluctuate over time. In a wireless network, a link with a poor-
quality connection has lower effective capacity and a link using a lower bit-rate
may have a higher latency (Fig. 7.1).

Furthermore, two nodes may have the same degree, but they may have very
different characteristics due to their relative positions [1]. There are other centrality
metrics, such as eigenvector centrality, that can help distinguish between nodes
A and B that have the same degree centrality.

7.2.2 Eigenvector Centrality

Eigenvector Centrality (EVC) is a concept often used in social-network analysis and
was first proposed by Bonacich [2,3]. Eigenvector Centrality is defined in a circular
manner. The centrality of a node is proportional to the sum of the centrality values
of all its neighboring nodes. In the social-network context, an important node (or
person) is characterized by its connectivity to other important nodes (or people).
A node with a high centrality value is a well-connected node and has a dominant
influence on the surrounding network. Similarly, nodes with low centrality values
are less similar to the majority of nodes in the topology and may exhibit similar
characteristics and behavior and share common weaknesses. Google uses a similar
centrality ranking technique (called Pagerank) to rank the relevance of hyper-linked
pages in search results [7].

Eigenvector centrality is calculated using the adjacency matrix to find central
nodes in the network. Let vi be the ith element of the vector v, representing the
centrality measure of node i, where N(i) is the set of neighbors of node i and let A be
the n× n adjacency matrix of the undirected network graph. Eigenvector centrality
is defined using the following formulas:

vi ∝ ∑
j∈N(i)

v j (7.1)

202 S. Nanda and D. Kotz

which can be rewritten as

vi ∝
n

∑
j=1

Ai jv j (7.2)

which can be rewritten in the form

Av = λv (7.3)

Since A is an n x n matrix, it has n eigenvectors (one for each node in the
network) and n corresponding eigenvalues. One way to compute the eigenvalues
of a square matrix is to find the roots of the characteristic polynomial of the
matrix. It is important to use symmetric positive real values in the matrix used for
calculations [4].

The principle eigenvector is the eigenvector with the highest eigenvalue. The
principle eigenvector is recommended for use in rank calculations [2]. After the
principle eigenvector is found, its entries are sorted from highest to lowest values to
determine a ranking of nodes. The most central node has the highest rank and most
peripheral node has the lowest rank.

This metric is often used in the study of the spread of epidemics in human
networks. In the mesh context, a node with a high eigenvector centrality represents
a strongly connected node. A worm or virus propagated from the most central node
could spread to all reachable nodes in the most efficient manner as opposed to one
that was spreading from a node on the extreme periphery. Thus, the central node is
a prime target for preventive inoculation or for prioritized software update.

In any network, and especially in an ad hoc or mesh network where nodes must
cooperate with each other to route packets, the connectivity of a node depends on
the connectivity of its neighbors and EVC can help capture this property. The main
drawback of eigenvector centrality is that it can only be calculated in a centralized
manner.

7.2.3 Sociocentric Betweenness Centrality

The betweenness centrality of a node is calculated as the fraction of shortest
paths between all node pairs that pass through a node of interest. A node with
a high betweenness centrality value is more likely to be located on the shortest
paths between multiple node pairs in the network, and thus more information flow
must travel through that node (assuming a uniform distribution of information
across node pairs). Since all pairs of shortest paths must be computed, the time
complexity is θ (n3), where n is the number of nodes in the entire network. Brandes
presents a fast technique to compute betweenness centrality that runs in O(VE) time
and uses O(V +E) space for undirected unweighted graphs with V nodes and E
edges [6].

7 Localized Bridging Centrality 203

7.2.4 Egocentric Betweenness Centrality

A more computationally efficient approach is to calculate betweenness on the
“egocentric” (or ego) network, rather than the global network topology. In social
networks, an egocentric network is defined as network of a single actor (or node)
together with the actors (also referred to as alter-egos) that this actor are directly
connected to, that is, the node’s neighbors in the graph and all the corresponding
links between these nodes. For application in wireless networks, the ego network is
exactly the same as the 1-hop adjacency matrix representation of the connectivity
graph centred around any given node of interest.

Thus, for wireless mesh networks we calculate egocentric betweenness on the
one-hop adjacency matrix of a node and not the entire network (as would be the
case for calculating betweenness in the sociocentric betweenness metric). This
egocentric betweenness metric can be calculated in a fully distributed manner and
the computational complexity is θ (k2) where k is size of the 1-hop neighborhood
and thus this computation is one order of magnitude faster than computing the global
betweenness centrality score.

Sociocentric betweenness centrality is a key component of the bridging centrality
metric, while our metrics LBC and LLBC are based on egocentric betweenness
centrality.

The simple structure of an ego network allows for fast computation of the
egocentric betweenness centrality (also referred to as ego betweenness). Everett
and Borgatti developed the following fast technique (and illustrative example)
to calculate ego betweenness [12]. If the ego network is represented as a n × n
symmetric matrix A where 1 represents a link between node ii and node j and 0
represents the absence of a link, then the betweenness of the ego node is the some
of the reciprocals of the entries of A2[1−A]i, j. This value has to be divided by two
if the graph is symmetric.

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 0 0
1 1 0 1 0
1 0 1 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(7.4)

For a faster implementation, first note which entries in A2[1−A]i, j will be non-
zero (for a symmetric matrix, we only need to consider the zero entries above the
leading diagonal) and calculate A2[1−A]i, j only for those entries.

A2[1−A]i, j =

⎡
⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 2 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦

(7.5)

204 S. Nanda and D. Kotz

The ego betweenness is the sum of the reciprocals of the entries of interest and
in this example it is 1

2 + 1+ 1+ 1= 3.5.

7.2.5 Bridging Centrality

Bridging Centrality (BC) is a centrality metric introduced by Hwang et al. [15].
Bridging centrality can help discriminate bridging nodes, that is, nodes with higher
information flow through them, and locations between highly connected regions
(assuming a uniform distribution of flows).

The Bridging Centrality of a node is the product of its sociocentric betweenness
centrality CSoc and its bridging coefficient β (v). The Bridging Centrality BC(v) for
a node v of interest is defined as:

BC(v) =CSoc(v)×β (v) (7.6)

The bridging coefficient of a node describes how well the node is located between
high-degree nodes. The bridging coefficient of a node v is defined as:

β (v) =
1

d(v)

∑i∈N(v)
1

d(i)

(7.7)

where d(v) is the degree of node v, and N(v) is the set of neighbors of node v.
According to the authors, betweenness centrality indicates the importance of

a given node from an information-flow standpoint, but it does not consider the
topological position of the node. On the other hand, the bridging coefficient
measures only how well a node is located between highly-connected regions,
but does not consider information flow. “Bridging nodes” should be positioned
between clusters and also located on important positions from an information-flow
standpoint. Thus, their BC metric is an attempt to combine these two distinct metrics
by giving equal weight to both factors. Based on their empirical studies, the authors
recommend labeling the top 25th percentile of nodes as ranked by BC as “bridging
nodes,” that is, nodes that are more bridge-like and lie between different connected
modules [15].

We note that these bridging nodes are different from the articulation points
of a graph that one can discover during topological analysis (via DFS), though
some bridging nodes are articulation points. These bridging nodes provide the
system administrator with a prioritized set of critical nodes to monitor from a
robustness perspective (as they help bridge connected components together) and
their failure may increase the risk of network partitions. BC can only be calculated
in a centralized manner with global information.

7 Localized Bridging Centrality 205

Fig. 7.2 Top bridging nodes
as identified and ranked by
Localized Bridging
Centralityn with higher
ranked nodes shaded darker.
(Adapted from [15])

7.2.6 Localized Bridging Centrality

In previous work, we introduced our distributed equivalent of Bridging Centrality
that we call Localized Bridging Centrality (LBC) [19]. As the name suggests, we
define LBC(v) of a node v using only local information, as the product of egocentric
betweenness centrality CEgo(v) and its bridging coefficient β (v). The definition of
β (v) is unchanged from (7.7). LBC is thus defined as (Fig. 7.2):

LBC(v) =CEgo(v)×β (v) (7.8)

Marsden [17] and Everett and Borgatti [12] showed empirically that ego-
centric betweenness values have a strong positive correlation to sociocentric
betweenness values (calculated on the complete network graph) for many different
network examples. While these networks were derived from social networks,
in many cases they are similar to wireless mesh networks. Our LBC results
also benefit from similar correlations and are thus nearly as accurate as BC
results, while being easier to compute with only local information. As you can
see in Sect. 7.2.5, LBC is able to identify key bridge nodes and articulation
points.

206 S. Nanda and D. Kotz

Prior to us, Daly and Haahr applied egocentric betweenness centrality to
develop SimBet, a distributed routing protocol in a mobile delay-tolerant network
(DTN) [11]. Their approach too benefits from the strong correlation between
egocentric and sociocentric betweenness, but is designed for a DTN routing
protocol. Our work focuses on real-time network routing protocols like OLSR and
for distributed network management for a MANET.

The LBC metric can help the system administrator identify the bridging nodes in
the mesh network, as well as clusters and their boundaries, but its distributed nature
makes it suitable for use in routing protocol design as well. While individual nodes
can calculate their own LBC metric in a fully distributed manner, to determine the
global rank of each node, a central node must aggregate all LBC values or all nodes
must use a distributed consensus-based ranking algorithm.

7.2.7 Localized Load-Aware Bridging Centrality

Betweenness centrality implicitly assumes that all paths between all node-pairs
are equally utilized. Thus, both the BC and LBC metrics assume that a uniform
distribution of traffic flows will exist between all node-pairs in the network. In
a real mesh network used to provide last-mile Internet access, the distribution of
traffic flows will almost certainly be non-uniform and gateway nodes will experience
relatively higher traffic loads.

Taking the traffic load into consideration, we developed our new Localized
Load-aware Bridging Centrality (LLBC) metric designed for distributed analysis
of bridging nodes in wireless mesh networks [21]. We compute the traffic load
(measured in bytes) in each node locally as the sum of all bytes originating at the
node (Out), destined for the node (In), and twice the number of bytes forwarded
(Fwd) by that node. We count the forwarded bytes twice in the summation since
they are both received and sent by the node. In effect, this metric represents the load
on the node’s network interface.

Load(v) = In(v)+Out(v)+ 2×Fwd(v) (7.9)

We use the measured traffic load to calculate the Load Coefficient (βt) as the
ratio of the traffic load of a given node to the sum of the traffic loads of its one-hop
neighbors. As the load of a node increases (relative to that of its neighbors’ loads),
so do the chances of the node becoming a traffic bottleneck.

βt(v) =
Load(v)

∑i∈N(v) Load(i)
(7.10)

We define LLBC as the product of Ego-Betweenness and the Load Coefficient.

LLBC(v) =CEgo(v)×βt(v) (7.11)

7 Localized Bridging Centrality 207

Fig. 7.3 A small synthetic
network example with its top
six high bridging score (via
LBC) nodes shaded (Adapted
from [15])

AB

D

E

F

G

H

I

C

JK

Thus, the LLBC metric takes into account both the current traffic load and the
relative position of nodes, and (like the LBC metric) can be calculated in a fully
distributed manner. Over time, the measured traffic load at different nodes will
change and nodes that reboot will have their counters reset to zero. Thus, it makes
sense to periodically sample LLBC values and to consider the traffic load during the
sampling period instead of cumulative values.

It is important to remember that centrality measures can only provide relative
measures that can be used to compare nodes against each other at that instant of
time for that specific network topology. This ranking allows a system administrator
to prioritize management tasks on several nodes or to identify which nodes are
most likely to cause partitions through failure or mobility. Both of our metrics
(LBC and LLBC) are easier to compute than the BC metric. A similar load-based
bridging centrality can be applied to the study of road networks and airline paths.
For wireless networks with multiple interfaces the load should be weighted relative
to the available capacity of that link.

7.3 Evaluation

We now present our results from the application of the BC, LBC and LLBC metrics
on the topology of a wireless mesh network we deployed in our department. We
verified all calculations using UCINET, a popular SNA tool [5]. Two or more nodes
with the same centrality value were assigned the same rank.

7.3.1 Synthetic Network Example

We first tested our LBC metric using a synthetic network, presented in Fig. 7.3 (this
network was also used by Hwang et al. [15]). The rankings produced by Bridging
Centrality and Localized Bridging Centrality shown in Table 7.1 are nearly identical,
although we note that the BC and LBC values are clearly not identical, nor are
the betweenness measures used. Since both BC and LBC are used as a “relative”
measure of how nodes differ from each other, the induced ranking is more important
than the magnitude of the BC or LBC value and thus in this example our LBC metric
is exactly equivalent to the BC metric.

208 S. Nanda and D. Kotz

Table 7.1 Top six centrality values for the network shown in Fig. 7.3, including sociocentric
betweenness (CSoc), egocentric betweenness (CEgo), bridging coefficient (β), bridging centrality
(BC) and localized bridging centrality (LBC)

Node Degree CSoc CEgo β BC LBC Rank of BC Rank of LBC

E 2 0.533 1 0.857 0.457 0.857 1 1
B 2 0.155 1 0.857 0.133 0.857 2 1
D 2 0.155 1 0.857 0.133 0.857 2 1
F 3 0.477 3 0.222 0.106 0.666 4 4
A 4 0.655 6 0.100 0.065 0.600 5 5
J 3 0.211 3 0.166 0.035 0.499 6 6

Fig. 7.4 Bank wiring room games example (Adapted from [17])

7.3.2 Social Network Example: Bank Wiring Room

This example (presented in Fig. 7.4) represents game-playing relationships in a bank
wiring room and is popular in social-network studies. Marsden [17] presented this
example to show how sociocentric and egocentric betweenness measures correlate.
Again, the relative ranking of nodes calculated by BC and LBC as shown in
Table 7.2 are identical. Visible inspection of Fig. 7.4 shows that nodes W5 and
W7 are bridging nodes, and the tie between them is a bridge between two connected
components.

7.3.3 Wireless Mesh Network Examples

We present actual topologies from a mesh network test bed (called Dart-Mesh) that
we deployed on all three floors of our department building [20].The mesh nodes use
the Optimized Link State Routing (OLSR) [9] mesh routing protocol implemented
on Linux by Tønnesen [25]. In Fig. 7.5, the rectangles represent mesh nodes and

7 Localized Bridging Centrality 209

Table 7.2 Centrality values for the network shown in Fig. 7.4 sorted by BC values

Node Degree CSoc CEgo β BC LBC Rank of BC Rank of LBC

W5 5 30.00 4.00 0.222 6.667 0.889 1 1
W7 5 28.33 4.33 0.179 5.074 0.775 2 2
W1 6 3.75 0.83 0.140 0.528 0.117 3 3
W3 6 3.75 0.83 0.140 0.528 0.117 3 3
W4 6 3.75 0.83 0.140 0.528 0.117 3 3
S1 5 1.50 0.25 0.222 0.333 0.055 6 6
W8 4 0.33 0.33 0.223 0.073 0.073 7 7
W9 4 0.33 0.33 0.223 0.073 0.073 7 7
W2 5 0.25 0.25 0.210 0.052 0.052 9 9
W6 3 0 0 0.476 0 0 10 10
S4 3 0 0 0.476 0 0 10 10
I1 4 0 0 0.357 0 0 10 10
I3 0 0 0 0 0 0 10 10
S2 0 0 0 0 0 0 10 10

Fig. 7.5 A small OLSR
mesh network that was
deployed at Dartmouth
College

50
o

1

20
2

80

60

30

110

130

Table 7.3 Ranked centrality values for Fig. 7.5 sorted by BC values

Node Degree CSoc CEgo β BC LBC Rank of BC Rank of LBC

110 7 6.367 5.75 0.078 0.496 0.448 1 1
50 7 4.733 3.40 0.096 0.454 0.326 2 3
30 6 3.367 2.75 0.132 0.444 0.363 3 2
2 7 4.067 3.4 0 0.096 0.391 0.326 4 3
20 6 2.867 2.25 0.126 0.361 0.283 5 5
80 6 0.400 0.40 0.173 0.069 0.069 6 6
1 5 0.200 0.25 0.262 0.052 0.065 7 7
60 2 0 0 1.615 0 0 8 8
130 2 0 0 1.650 0 0 8 8
0 2 0 0 1.615 0 0 8 8

are identified by the last octet of their individual IP addresses. The diamond-shaped
box numbered zero is a virtual node representing the Internet. Nodes connected to
the Internet are the Internet Gateways.

In the example in Fig. 7.5, while the two rankings produced (shown in Table 7.3)
by the two metrics are not identical, they are quite similar. The top-five ranked nodes

210 S. Nanda and D. Kotz

Fig. 7.6 A small real-world
mesh network with one
gateway at Node 50. Both
Node 30 and node 50 are
articulation points

20

250

801

30

90160

o

are common to both metrics. If we remove any of these bridging nodes, then at least
one of the other bridging nodes will become an articulation point. If that node is
now removed, the network will be partitioned. For example, if node 110 (the top-
ranked-node) fails, then both nodes 30 and 2 become articulation points. However,
if you examine the original network graph in Fig. 7.5, you will find that it is bi-
connected and has no articulation points. Thus, LBC can help detect nodes that
may not be articulation points, but with certain perturbations in the network are the
most likely candidates to become articulation points. Our LBC metric allows the
system administrator to gather this information in a distributed manner using fewer
computational resources than the BC metric.

7.3.4 LLBC vs. LBC vs. BC

7.3.4.1 Real-World Mesh Network with One Gateway

We now present examples where we considered how the volume and direction of
traffic flowing in the network affected our metrics. We applied our Localized Load-
aware Bridging Centrality (LLBC) metric on the network shown in Fig. 7.6. Node 50
was the sole Internet Gateway providing Internet connectivity to the whole mesh.
The topology of the network did not change during this experiment, which was
10 min long. The BC, LBC, and LLBC results are presented in Table 7.4 and the
nodes are sorted in decreasing order of LLBC values. The Load metric is given here
in bytes.

During this experiment, node 80 had a high traffic load since we connected one
of our mobile clients to that node, then proceeded to download large video files to
that client from the Internet using node 50 as our Internet gateway. According to the
LBC results, which only consider the topology of the network, node 30 was a more
important “bridging node” than node 50. Node 30 is an articulation point in this

7 Localized Bridging Centrality 211

Table 7.4 Ranked centrality values for the network shown in Fig. 7.6, sorted by LLBC values

Node Degree Load CEgo β βt BC LBC LLBC

50 6 30871080 2 0.176 1.232 0.353 0.352 1.949
30 7 274027 10 0.0726 0.0043 0.8712 0.726 0.0438
80 5 30679118 0 0.219 0.962 0 0 0
1 5 262501 0 0.219 0.0042 0 0 0
2 5 238071 0 0.219 0.0038 0 0 0
20 5 218143 0 0.219 0.0035 0 0 0
160 2 94005 0 0.777 0.2571 0 0 0
90 2 91602 0 0.777 0.2488 0 0 0

Fig. 7.7 A small mesh
network with two gateways.
Node 50 and node 20 are the
two Internet gateways but
Node 30 is an articulation
point in the network

o

20

250

801

30

90160

example. However, our LLBC results accurately show that node 50 was the most
important bridging node by taking into consideration the traffic load on the network
during our experiment.

7.3.4.2 Real-World Mesh Network Example with Two Gateways

We next applied our LLBC metric on a similar network topology similar to the one
used in the last experiment by converting node 20 into an Internet gateway. The
topology of this network is shown in Fig. 7.7, and now nodes 50 and 20 are the two
Internet gateways. The BC, LBC and LLBC results are presented in Table 7.5 and
the results are sorted in decreasing order of LLBC values.

Since there were two Internet gateways, traffic flowing to and from the Internet
could go through either gateway, depending on the route selected by the routing
protocol. LBC picked node 30 as its top bridging node. While this node was
indeed a critical node, there was little traffic flowing through this node, so it
had little influence on the traffic flowing in the network or on the majority of
the nodes, most of which were forwarding Internet-bound traffic through the two
gateways.

212 S. Nanda and D. Kotz

Table 7.5 Ranked centrality values for the network shown in Fig. 7.7, sorted by LLBC values

Node Degree Load CEgo β βt BC LBC LLBC

50 6 32989000 2 0.118 1.123 0.354 0.236 2.246
30 7 305327 10 0.0739 0.0049 0.8868 0.738 0.0489
20 6 1125000 2 0.118 0.0183 0.354 0.236 0.0367
80 5 16208854 0 0.219 0.3512 0 0 0
1 5 11011448 0 0.219 0.2144 0 0 0
2 5 722022 0 0.2282 0.01171 0 0 0
90 2 145226 0 0.7778 0.3358 0 0 0
160 2 127098 0 0.7778 0.2820 0 0 0

LLBC picked node 50, in fact the most-heavily-used gateway node, as the most
important bridging node and indicated that node 30 (a non-gateway node) was a
more important bridging node than the gateway node 20, even though node 30
had only one fourth the traffic load of node 20 in absolute terms. The importance
ranking generated by LLBC is insightful. In this scenario, if node 30 failed, then
nodes 90 and 160 would be partitioned from the rest of the network. Whereas,
if node 20 failed, there was still a potential backup path to the Internet through
50; the LBC rankings were unable to capture this subtle complexity present in this
network. The BC ranking was identical to the LBC ranking, and thus not as helpful
as the LLBC metric in this scenario. The distributed manner in which LLBC is
calculated also complements a distributed analysis engine, such as the one used in
Mesh-Mon.

7.4 SNA Plugin (SNAP) for OLSR

To study the practical utility of LBC, LLBC, and EVC in an OLSR MANET for
analysis and performance improvement, we developed a Social Network Analysis
Plugin (SNAP) as shown in Fig. 7.8 [21]. While we use OLSR for our example, the
same design can potentially benefit other MANET routing protocols.

OLSR is a unicast protocol but floods all multicast traffic via Multi-Point Relays
(MPRs) in the Basic Multicast Forwarding (BMF) plugin extension. We developed
a simple distributed algorithm that ranks 1-hop neighbors according to calculated
LBC or LLBC scores and then each node locally adjusts its own advertised MPR-
Willingess parameter slightly up or down as per its relative ranking.

The MPR-Willingness parameter is used by OLSR running on each node to
decide if it should become an MPR and can range from 0 (never become an MPR)
to 7 (always be an MPR). Having too many MPRs leads to excessive flooding and
waste of spatial resources while having too few will lead to insufficient coverage
and poor distribution of topological information in the network. We did not modify
any of OLSR’s internals. We only modify one parameter that can influence how

7 Localized Bridging Centrality 213

OLSR
Routing
Protocol

SNAP
Analysis
Engine

SNAP
OLSR
PUGIN

Calculates LBC Metric

topology / link quality

Next hop, OLSR parameters
(e.g., MPR willingness)

Interface to external OLSR

Data & Control Traffic

Flows & traffic load
on node

SNAP

SNAP Traffic Sensors
and Control Unit

Network Management and
Awareness Application

User-defined
configuration

Interface to standard
networking info & control

Traffic
shaping

Fig. 7.8 SNA Plugin (SNAP) architecture

OLSR chooses the MPRs that it prefers to use for routing, topology distribution and
multicast of packets.

Our SNA Plugin (SNAP) architecture uses a simple design and executes the
following series of five sequential operations in a continuous loop every 10 s:

1. Acquire local network topology state from OLSR Routing Protocol
2. Calculate LBC metric (within the SNAP Analysis Engine)
3. Distribute local LBC metric to all 1-hop neighbors (single broadcast)
4. Compare local LBC metric value with that of all received LBC values from ego

network
5. Adjust MPR Willingness locally based on relative differences in LBC scores in

the ego network

Our initial hypothesis was that strong bridging nodes would serve as good MPRs
for multicast communications. Our second hypothesis that we have not yet explored
in depth is that LLBC can be used to enable better selection of load balanced paths
in a mesh network (since LLBC can detect bottlenecks). Eigenvector Centrality
(EVC) is also computed and reported for use in offline analysis in our plugin,
but is not used to modify OLSR. Recently, Gao et al. [14] explored the use of
a new centrality measure for Delay Tolerant Networks (DTNs) based on Poisson
modelling of contacts using the egocentric network model to enhance multicast
communications. Both approaches use a similar idea of selecting better and fewer
relays to improve multicast delivery of data and the use of egocentric network
models.

214 S. Nanda and D. Kotz

1 2 3 4 5 6

Fig. 7.9 Six node linear string topology. Any node can communicate only with its linked
neighbors, but not with other nodes

SNAP-LBC and SNAP-LLBC results below show how our metrics compare
against the default OLSR-BMF setup. SNAP-Degree results demonstrate the impact
of substituting LBC (or LLBC) metric in our original SNAP algorithm described
above with degree centrality. Degree centrality is a much simpler SNA metric
(conceptually and computationally) than LBC or LLBC, since it is just the number
of neighbors that a given node is connected to directly.

7.4.1 Initial SNAP Results

We tested our SNAP plugin on a few emulated 802.11b topologies while running a
video multicast traffic application generated by the open-source Multi-Generator
(MGEN) [22] software tool (developed by Naval Research Laboratory) and by
using the Basic Multicast Forwarding (BMF) plugin version 1.7 for OLSR version
0.6.1 (available for download at www.olsr.org). Our SNAP plugin recomputed LBC
and LLBC values and made changes to the local MPR Willingness parameter
every 10 seconds. Each source uses the MGEN tool to generate video traffic by
sending packets of 1,024 bytes at 24 packets/second. For all video traffic, we
added additional reliability using NACK-Oriented Reliable Multicast (NORM)
protocols with Forward Error Correction with 2x redundancy (block 4, parity 4
settings) [23].

We compared performance on the basis of a custom video utility metric that was
developed by an external third party. This metric takes into account a combination of
the latency of packets received and number of frames that have been dropped. The
maximum possible score is one indicating perfect video reception and minimum is
zero. The video metric captures the notion that a video receiver is satisfied with a
10 seconds chunk of transmitted video if it receives 90% of the packets in that chunk
within 4 seconds of end-to-end delay. The entire scenario is broken into 10 seconds
of time slices and a time slice video utility score is computed for each slice for all
intended destination receivers. All these time slice utilities are combined into an
average scenario score for the whole experiment.

7.4.1.1 Six Node Static Linear Topology

Our first test for SNAP-enhanced version of OLSR was with a six node linear string
topology with two sources for video traffic at opposite ends (node 1 and node 6
in Fig. 7.9) and with each source also acting as destination for the other source.

7 Localized Bridging Centrality 215

Fig. 7.10 Snapshot from the 23 node mobile test with four multicast video sources and 19 video
destinations

In this example, we found no difference in performance between the default BMF
multicast and the LBC or LLBC influenced multicast. We repeated each experiment
three times and reported the average. The results match our expectations, since
every node in the string must forward all multicast traffic that it receives and
there is no alternate path for the multicast traffic and no room for optimization or
improvement.

7.4.1.2 Twenty Three Node Real World Topology

We then tested our plugin on emulated scenarios with upto 23 mobile nodes (See
Fig. 7.10) with upto four multicast video sources and upto 19 destinations for 300 s.
The scenarios use GPS logs and pathloss recordings from an outdoor experiment
with OLSR nodes and our emulation test range provides performance similar to that
recorded in those real experiments. Most of the nodes moved at a slow walking
speed and two nodes moved in two vehicles at 10 MPH (along the thicker curved
shaded paths in Fig. 7.10). Traffic was sent to local clusters as well as clusters of
nodes far away to ensure that we had multi-hop communications. We repeated each
experiment three times and reported the average.

The average performance of our LBC and LLBC enhanced multicast strategy
showed some significant improvements (See Table 7.6) over the default behavior of
BMF and in particular, the performance of SNAP-LLBC was the best overall. We
tested the performance of SNAP-LBC, SNAP-LLBC, and SNAP-degree at higher

216 S. Nanda and D. Kotz

Table 7.6 Video metric utility scores for SNAP

OLSR-BMF SNAP-LBC SNAP-LLBC SNAP-Degree

6 node linear static (1x load) 0.91 0.91 0.91 0.91

23 node mobile test (0.1x load) 1.0 1.0 1.0 1.0
23 node mobile test (0.5x load) 1.0 1.0 1.0 1.0
23 node mobile test (0.75x load) 0.27 0.81 0.92 0.36
23 node mobile test (1x load) 0.21 0.23 0.28 0.22
23 node mobile test (1.2x load) 0 0 0 0

and lower traffic loads, and found that when the load (1x = 24 packets per second)
was reduced to 0.75x we found very large gains for SNAP-LBC and SNAP-LLBC,
while SNAP-Degree and the defaults did relatively worse. When we increased the
load to 1.2x, all protocols tested gave zero utility results.At the lowest loads, all
protocols did equally well.

Our analysis of the individual experiment logs indicated that SNAP and BMF
were initially selecting the same MPRs for forwarding multicast traffic. Upon
further analysis and at higher loads, we found SNAP-LBC and SNAP-LLBC did
better because they were more selective in their choice of MPRs and thus flooded
less traffic than the other strategies that used more MPRs and sent traffic more often.
In a busy saturated network, sending too much traffic leads to more collisions and
that is where SNAP showed the most gains. We are uncertain if the heuristic used
by SNAP-LBC or SNAP-LLBC was leading to an optimal MPR coverage (in our
tested scenarios) but the results do provide ample evidence for our first hypothesis
that bridging nodes have the right characteristics to be useful as MPRs for multicast
traffic.

These results collectively helps better understand the benefits of choosing LBC
and LLBC over other potential SNA centrality metrics for this application. We did
not do studies with eigenvector centrality or sociocentric betweenness centrality
measures because these two metrics can only be centrally calculated at a much
higher computational expense and require complete topology information, whereas
we require localized computations in a distributed environment for better efficiency.

We need to explore more topologies (real and simulated) and other alternative
MPR selection strategies, before we can conclude whether the use of LBC or LLBC
is always preferable to the default multicast strategy used by OLSR and to identify
any potential drawbacks, but our initial results with SNAP using the LBC and LLBC
metrics look very promising.

7.5 Conclusion

In this chapter, we demonstrated the use of novel social network metrics to solve
the problem of identifying important nodes in wireless mesh networks for system
administrators. The same tools can be used for other applications in any complex

7 Localized Bridging Centrality 217

network represented as a graph. We introduced a new centrality metric called the
Localized Load-aware Bridging Centrality (LLBC). Our evaluation of the LLBC
and LBC metrics on a real mesh testbed running OLSR indicated their potential for
use in routing and network analysis tools.

We demonstrated the usefulness of LLBC in identifying critical bridging nodes in
a wireless mesh network from a network management perspective. Our initial results
from our OLSR plugin shows that our SNA-based approach to selecting MPRs for
multicast in OLSR when using the LLBC metric is beneficial in certain topologies
and levels of traffic load. We are in the process of testing the properties of our new
metrics on larger mesh data sets (both simulated and from real deployments) and
exploring its utility in other scenarios and application domains.

We acknowledge that further evaluations are needed to validate our results. We
are also exploring other variants of LLBC and LBC that take into account link-
quality measures, link capacities, and other real-world effects. While we focus on
the distributed analysis of a wireless mesh network topology in this chapter, our
LBC and LLBC metrics have potential applications in other disciplines as well,
such as for analysis of social networks, online collaboration tools, and identifying
clusters and key components in complex biological structures or bottlenecks in
transportation systems such as inter-state highways and flight plans.

Acknowledgements We thank Charles Tao at BAE Systems for his help in developing our OLSR
plugin. We thank our families for their love, support, and patience. This research program was
supported by a gift from Intel Corporation, by Award number 2000-DT-CX-K001 from the U.S.
Department of Homeland Security, by Grant number 2005-DD-BX-1091 from the Bureau of
Justice Assistance, and by Contract number N00014-10-C-098 from the Office of Naval Research
(ONR). Points of view in this document are those of the authors, and do not necessarily represent
or reflect the views of any of the sponsors, the US Government or any of its agencies.

References

1. Begnum, K., Burgess, M.: Principle Components and Importance Ranking of Distributed
Anomalies. Machine Learning 58(2), 217–230 (2005)

2. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification.
Journal of Mathematical Sociology 2(1), 113–120 (1972)

3. Bonacich, P.: Power and Centrality: A Family of Measures. The American Journal of Sociology
92(5), 1170–1182 (1987)

4. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Social
Networks 23(3), 191–201 (2001)

5. Borgatti, S., Everett, M., Freeman, L.: UCINET for Windows: Software for Social Network
Analysis. Harvard: Analytic Technologies (2002)

6. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology
25(2), 163–177 (2001)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems 30(1-7), 107–117 (1998)

8. CenGen Inc.: Extendable MobileAd-hoc Network Emulator. http://labs.cengen.com/emane/

218 S. Nanda and D. Kotz

9. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). RFC 3626 (Experi-
mental) (2003). URL http://www.ietf.org/rfc/rfc3626.txt

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, second edn.
Cambridge, Mass.: MIT Press (2001)

11. Daly, E.M., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant
MANETs. In: Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pp. 32–40. ACM Press, Montreal, Quebec, Canada
(2007). DOI 10.1145/1288107.1288113

12. Everett, M., Borgatti, S.: Ego network betweenness. Social Networks 27(1), 31–38 (2005)
13. Freeman, L.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40(1), 35–41

(1977)
14. Gao, W., Li, Q., Zhao, B., Cao, G.: Multicasting in delay tolerant networks: a social network

perspective. In: Proceedings of the 10th ACM International Symposium on Mobile Ad Hoc
Networking and Computing(MobiHoc), pp. 299–308 (2009)

15. Hwang, W., Cho, Y., Zhang, A., Ramanathan, M.: Bridging Centrality: Identifying Bridging
Nodes in Scale-free Networks. Tech. Rep. 2006-05, Department of Computer Science and
Engineering, University at Buffalo (2006)

16. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.: Optimized link
state routing protocol for ad hoc networks. In: Proceedings of the IEEE International Multi
Topic Conference on Technology for the 21st Century (INMIC), pp. 62–68 (2001). DOI 10.
1109/INMIC.2001.995315

17. Marsden, P.: Egocentric and sociocentric measures of network centrality. Social Networks
24(4), 407–422 (2002)

18. Nanda, S.: Mesh-mon: A monitoring and management system for wireless mesh networks.
Ph.D. thesis, Dartmouth College, Hanover, NH (2008)

19. Nanda, S., Kotz, D.: Localized bridging centrality for distributed network analysis. In:
Proceedings of the 17th International Conference on Computer Communications and Networks
(ICCCN), pp. 1–6 (2008)

20. Nanda, S., Kotz, D.: Mesh-Mon: A multi-radio mesh monitoring and management system.
Computer Communications 31(8), 1588–1601 (2008)

21. Nanda, S., Kotz, D.: Social Network Analysis Plugin (SNAP) for Wireless Mesh Networks. In:
Proceedings of the 11th IEEE Wireless Communications and Networking Conference (WCNC)
(2011)

22. Naval Research Laboratory: Multi-Generator (MGEN). http://cs.itd.nrl.navy.mil/work/mgen/
23. Naval Research Laboratory: NACK-Oriented Reliable Multicast (NORM).

http://cs.itd.nrl.navy.mil/work/norm/
24. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing 1,

146 (1972)
25. Tønnesen, A.: Implementing and extending the Optimized Link State Routing protocol.

Master’s thesis, Master’s thesis, University of Oslo, Norway (2004)

http://www.ietf.org/rfc/rfc3626.txt

Chapter 8
On Throughput Maximization Problem
for UWB-Based Sensor Networks via
Reformulation–Linearization Technique

Yi Shi, Y. Thomas Hou, and Hanif D. Sherali

Abstract Nonlinear optimization problems (if not convex) are NP-hard in general.
One effective approach to develop efficient solutions for these problems is to apply
the branch-and-bound (BB) framework. A key step in BB is to obtain a tight linear
relaxation for each nonlinear term. In this chapter, we show how to apply a powerful
technique, called Reformulation–Linearization Technique (RLT), for this purpose.
We consider a throughput maximization problem for an ultra-wideband (UWB)-
based sensor network. Given a set of source sensor nodes in the network with
each node generating a certain data rate, we want to determine whether or not it
is possible to relay all these rates successfully to the base station. We formulate an
optimization problem, with joint consideration of physical layer power control, link
layer scheduling, and network layer routing. We show how to solve this nonlinear
optimization problem by applying RLT and BB. We also use numerical results to
demonstrate the efficacy of the proposed solution.

8.1 Introduction

In the first decade of the twenty-first century, there was a flourish of research and
development efforts on UWB [17] for military and commercial applications. These
applications include tactical handheld and network LPI/D radios, non-LOS LPI/D
groundwave communications, precision geolocation systems, high-speed wireless

Y. Shi • Y.T. Hou (�)
The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA
e-mail: yshi@vt.edu; thou@vt.edu

H.D. Sherali
The Grado Department of Industrial and Systems Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA
e-mail: hanifs@vt.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 8, © Springer Science+Business Media, LLC 2012

219

yshi@vt.edu
thou@vt.edu
hanifs@vt.edu

220 Y. Shi et al.

LANs, collision avoidance sensors, and intelligent tags, among others. There are
some significant benefits of UWB for wireless communications, such as extremely
simple design (and thus cost) of radio, large processing gain in the presence of
interference, extremely low power spectral density for covert operations, and fine
time resolution for accurate position sensing [14, 17].

In this chapter, we consider a UWB-based sensor network for surveillance and
monitoring applications. For these network applications, upon an event detection,
all sensing data must be relayed to a central data collection point, which we call
a base-station. The multi-hop nature of a sensor network introduces some unique
challenges. Specifically, due to interference from neighboring links, a change of
power level on one link will produce a change in achievable rate in all neighboring
links. As a result, the capacity-based routing problem at the network layer is deeply
coupled with link layer and physical layer problems such as scheduling and power
control. An optimal solution to a network level problem thus must be pursued via a
cross-layer approach for such networks.

In this chapter, we study the data collection problem associated with a UWB-
based sensor network. For such a network, although the bit rate for each UWB-based
sensor node could be high, the total rate that can be collected by the single base-
station is limited due to the network resource bottleneck near the base-station as well
as interference among the incoming data traffic. Therefore, a fundamental question
is the following: Given a set of source sensor nodes in the network with each node
generating a certain data rate, is it possible to relay all these rates successfully to
the base-station?

A naive approach to this problem is to calculate the maximum bit rate that the
base station can receive and then perform a simple comparison between this limit
with the sum of bit rates produced by the set of source sensor nodes. Indeed, if
this limit is exceeded, it is impossible to relay all these rates successfully to the
base station. But even if the sum of bit rates generated by source sensor nodes is
less than this limit, it may still be infeasible to relay all these rates successfully to
the base station. Due to interference and the fact that a node cannot transmit and
receive at the same time and in the same band, the actual sum of bit rates that can
be relayed to the base station can be substantially smaller than the raw bit rate limit
that a base station can receive. Further, such limit is highly dependent upon the
network topology, locations of source sensor nodes, bit rates produced by source
sensor nodes, and other network parameters. As a result, testing for this feasibility is
not trivial and it is important to devise a solution procedure to address this problem.

In this chapter, we study this feasibility problem through a cross-layer optimiza-
tion approach, with joint consideration of physical layer power control, link layer
scheduling, and network layer routing. The link layer scheduling problem deals with
how to allocate resources for access among the nodes. Motivated by the work in
[10], we consider how to allocate frequency sub-bands, although this approach can
also be applied to a time-slot based system. For a total available UWB spectrum of
W , we divide it into M sub-bands. For a given M, the scheduling problem considers
how to allocate bandwidth to each sub-band and in which sub-bands a node should
transmit or receive data. Note that a node cannot transmit and receive within the

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 221

same sub-band. The physical layer power control problem considers how much
power a node should use to transmit data in a particular sub-band. Finally, the
routing problem at the network layer considers which set of paths a flow should
take from the source sensor node toward the base-station. For optimality, we allow
a flow from a source node to be split into sub-flows that take different paths to the
base-station.

We formulate this feasibility problem as an optimization problem, which turns
out to be a mixed-integer non-polynomial program. To reduce the problem complex-
ity, we modify the integrality and the non-polynomial components in the constraints
by exploiting a reformulation technique and the linear property between the rate
and SNR, which is unique to UWB. The resulting new optimization problem is
then cast into a form of a non-linear program (NLP). Since an NLP is NP-hard
in general, our specific NLP is likely to be NP-hard, although its formal proof is
not given in this chapter. The contribution of this chapter is the development of an
approximation solution procedure to this feasibility problem based on a branch-
and-bound framework and the powerful Reformulation–Linearization Technique
(RLT) [19].

The remainder of the chapter is organized as follows. In Sect. 8.2, we give
details of the network model for our problem and discuss its inherent cross-
layer nature. Section 8.3 presents a mathematical formulation of the cross-layer
optimization problem and a solution procedure based on the branch-and-bound
and RLT procedures. In Sect. 8.4, we present numerical results to demonstrate the
efficacy of our proposed solution procedure and give insights on the impact of the
different optimization components. Section 8.5 reviews related work and Sect. 8.6
concludes this chapter.

8.2 Network Model

We consider a UWB-based sensor network. Although the size of the network
(in terms of the number of sensor nodes N) is potentially large, we expect the
number of simultaneous source sensor nodes that produce sensing data to be limited.
That is, we assume the number of simultaneous events that need to be reported in
different part of the network is not large. Nevertheless, the number of nodes involved
in relaying (routing) may still be significant due to the limited transmission range of
a UWB-based sensor node and the coverage of the network.

Within such a sensor network, there is a base-station (or sink node) to which all
collected data from source sensor nodes must be sent. For simplicity, we denote the
base-station as node 0 in the network.

Under this network setting, we are interested in answering the following
questions:

• Suppose we have a small group of nodes S that have detected certain events and
each of these nodes is generating data. Can we determine if the bit rates from

222 Y. Shi et al.

these source sensor nodes can be successfully sent to the base station (under the
capacity limit)?

• If the answer “yes,” how should we relay data from each source sensor node to
the base station?

Before we further explore this problem, we give the following definition for the
feasibility of a rate vector r, where each element, ri, of the vector corresponds to the
rate of a continuous data flow produced by node i ∈ S .

Definition 8.1. For a given rate vector r having ri > 0 for i ∈ S , we say that this
rate vector is feasible if and only if there exists a solution such that all ri, i ∈ S , can
be relayed to the base-station.

To determine whether or not a given rate vector r is feasible, there are several
issues at different layers that must be considered. At the network layer, we need to
find a multi-hop route (likely multi-paths) from a source node to the sink node. At
the link and physical layers, we need to find a scheduling policy and power control
for each node such that certain constraints are met satisfactorily. Clearly, this is a
cross-layer problem that couples routing, scheduling, and power control. In the rest
of this section, we will take a closer look at each problem. Table 8.1 lists notation
used in this chapter.

8.2.1 Scheduling

At the link layer, our scheduling problem deals with how to allocate link media
for access among the nodes. Motivated by Negi and Rajeswaran’s work in [10],
we consider how to allocate frequency sub-bands, although this approach can also
be applied to time-slot based systems. For the total available UWB spectrum of
W = 7.5 GHz (from 3.1 GHz to 10.6 GHz), we divide it into M sub-bands. Since
the minimum bandwidth of a UWB sub-band is 500 MHz, we have 1 ≤ M ≤ 15.
For a given number of total sub-bands M, the scheduling problem considers how to
allocate the total spectrum of W into M sub-bands and in which sub-bands a node
should transmit or receive data. More formally, for a sub-band m with normalized
bandwidth λ (m), we have

M

∑
m=1

λ (m) = 1

and

λmin ≤ λ (m) ≤ λmax for 1 ≤ m ≤ M,

where λmin = 1/15 and λmax = 1− (M− 1) ·λmin.

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 223

Table 8.1 Notation

Symbol Definition

bm
ij Achievable rate from node i to node j in sub-band m under transmission power pm

ij

b The vector of bm
ij , 1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M

bij Total achievable rate from node i to node j in all sub-bands
fij Flow rate from node i to node j
gij Propagation gain from node i to node j
gjj Self-interference parameter at node j
gnom Propagation gain at a nominal distance
Ii The set of nodes that can produce interference on node i
K The feasible scaling factor used in optimization problem formulation
L The problem list in the branch-and-bound procedure
LBz The lower bound of problem z in the branch-and-bound procedure
LB The global lower bound among all problems in the branch-and-bound procedure
M Total number of sub-bands for scheduling
N Total number of sensor nodes in the network
Ni The set of one-hop neighboring nodes of node i
pmax =Wπmax/gnom, the power limit
pm

ij Transmission power used by node i in sub-band m for transmitting data to node j
p The vector of pm

ij , 1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M
qm

j Total power (signal and noise) received by node j in sub-band m

q The vector for qm
j , 1 ≤ j ≤ N, 1 ≤ m ≤ M

ri Bit rate generated at source sensor node i ∈ S

S The set of source sensor nodes in the network
UBz The upper bound of problem z in the branch-and-bound procedure
UB The global upper bound among all problems in the branch-and-bound procedure
W = 7.5 GHz, the entire spectrum for UWB networks
λ (m) Normalized length of sub-band m, ∑M

m=1λ (m) = 1.
Λ The vector of λ (m), 1 ≤ m ≤ M
λmin The minimum value of λ (m)

λmax The maximum value of λ (m)

η Power spectral density of ambient Gaussian noise
πmax Limit of power spectral density at a node

8.2.2 Power Control

The power control problem considers how much power a node should use in a
particular sub-band to transmit data. Denote pm

ij as the transmission power that node
i uses in sub-band m for transmitting data to node j. Since a node cannot transmit
and receive data within the same sub-band, we have the following constraint: if
pm

ik > 0 for any node k, then pm
ji must be 0 for each node j.

The power density limit for each node i must satisfy

gnom ·∑ j∈Ni
pm

ij

W ·λ (m)
≤ πmax,

224 Y. Shi et al.

where πmax is the maximum allowed power spatial density, gnom is the gain at some
fixed nominal distance dnom ≥ 1, and Ni is the set of one-hop neighboring nodes
of node i (under the maximum allowed transmission power). A popular model for
gain is

gij = min{d−n
ij ,1}, (8.1)

where dij is the distance between nodes i and j and n is the path loss index. Note that
the nominal gain should also follow the same propagation gain model (8.1). Thus,
we have gij = (dnom

dij
)ngnom, when dij ≥ 1. Denote

pmax =
W ·πmax

gnom
. (8.2)

Then the total power that a node i can use at sub-band m must satisfy the following
power limit,

∑
j∈Ni

pm
ij ≤ pmaxλ (m). (8.3)

Denote Ii as the set of nodes that can make interference at node i when they use the
maximum allowed transmission power. The achievable rate from node i to node j
within sub-band m is then

bm
ij =Wλ (m) · log2

⎛
⎝1+

gij · pm
ij

ηWλ (m) +∑(k,l) �=(i, j)
k∈I j ,l∈Nk

gkj pm
kl

⎞
⎠ , (8.4)

where η is the ambient Gaussian noise density. Denote bij as the total achievable
rate from node i to node j among all M sub-bands. We have

bij =
M

∑
m=1

bm
i j. (8.5)

8.2.3 Routing

The routing problem at the network layer considers the set of paths that a flow takes
from the source node toward the base station. For optimality, we allow a flow from
a source node to be split into sub-flows and take different paths to the base station.
Denote the flow rate from node i to node j as fij. We have

fij ≤ bij,

∑
j∈Ni

fij − ∑
j∈Ni

fji = ri.

The constraint fij ≤ bij says that a flow’s bit rate is upper bounded by the achievable
rate on this link and the second constraint is for flow balance at node i.

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 225

8.3 Feasibility and Solution Procedure

We can develop an upper bound on the maximum rate (denoted as C0) that the
base-station can receive [21]. For a given source rate vector r, where ri > 0 denotes
that node i is a source sensor node that produces sensing data at rate ri, if ∑N

i=1 ri >
C0, then the rate vector must be infeasible. But ∑N

i=1 ri ≤ C0 does not guarantee the
feasibility of the rate vector r and further determination is needed. Moreover, if we
indeed find that a given rate vector r is feasible, we also would like to obtain a
complete solution that implements r over the network, i.e., a solution showing the
power control, scheduling, and routing for each node.

8.3.1 Rate Feasibility Problem Formulation

Our approach to this feasibility determination problem is to solve an optimization
(maximization) problem, which aims to find the optimal power control, scheduling,
and routing such that K, called feasible scaling factor, is maximized while K · r
is feasible. If the optimal solution yields K ≥ 1, then the rate vector r is feasible;
otherwise (i.e., K < 1), the rate vector r is infeasible.

Since a node is not allowed to transmit and receive within the same sub-band, we
have that if pm

jl > 0 for any l ∈N j then pm
ij should be 0 for all i∈N j. Mathematically,

this property can be formulated as follows. Denote xm
j (1 ≤ j ≤ N and 1 ≤ m ≤ M)

as a binary variable with the following definition: if sub-band m is used for receiving
data at node j then xm

j = 1; otherwise, xm
j = 0. Since ∑i∈N j

pm
ij ≤ |N j|pmaxλ (m) and

∑l∈N j
pm

jl ≤ pmaxλ (m), we have the following constraints, which capture both the
constraint that a node j cannot transmit and receive within the same sub-band m and
the constraint on the power level.

∑
i∈N j

pm
ij ≤ |N j| · pmax ·λ (m) · xm

j ,

∑
l∈N j

pm
jl ≤ pmax ·λ (m) · (1− xm

j).

The rate feasibility problem (RFP) can now be formulated as follows:

8.3.1.1 Rate Feasibility Problem

Maximize K

subject to
M

∑
m=1

λ (m) = 1

226 Y. Shi et al.

∑
j∈Ni

pm
ij − pmaxλ (m) ≤ 0 (1 ≤ i ≤ N,1 ≤ m ≤ M)

bm
ij =Wλ (m) log2

⎛
⎝1+

gijpm
ij

ηWλ (m) +∑(k,l) �=(i, j)
k∈I j ,l∈Nk

gkj pm
kl

⎞
⎠

(1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M)

∑
i∈N j

pm
ij ≤ |N j|pmaxλ (m)xm

j (1 ≤ j ≤ N,1 ≤ m ≤ M) (8.6)

∑
l∈N j

pm
jl ≤ pmaxλ (m)(1− xm

j) (1 ≤ j ≤ N,1 ≤ m ≤ M) (8.7)

M

∑
m=1

bm
ij − fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni)

∑
j∈Ni

fij − ∑
j∈Ni

fji − riK = 0 (1 ≤ i ≤ N)

λmin ≤ λ (m) ≤ λmax (1 ≤ m ≤ M)

xm
j = 0 or 1 (1 ≤ j ≤ N,1 ≤ m ≤ M)

K, pm
ij ,b

m
ij , fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M).

The formulation for problem RFP is a mixed-integer non-polynomial program,
which is NP-hard in general [5]. We conjecture that the RFP problem is also NP-
hard, although its formal proof is not given in this chapter. Our approach to this
problem is as follows. As a first step, we show how to remove the integer (binary)
variables and the non-polynomial terms in the RFP problem formulation and
reformulate the RFP problem as a non-linear program (NLP). Since an NLP problem
remains NP-hard in general, in Sect. 8.3.3, we devise a solution by exploring
a branch-and-bound framework and the so-called Reformulation–Linearization
Technique (RLT) [19].

8.3.2 Reformulation of Integer and Non-Polynomial Constraints

The purpose of integer (binary) variables xm
j is to capture the fact that a node cannot

transmit and receive within the same sub-band, i.e., if a node j transmits data to any
node l in a sub-band m, then the data rate that can be received by node j within this
sub-band must be 0. Instead of using integer (binary) variables, we use the following
approach to achieve the same purpose. We introduce a notion called self-interference
parameter gjj, with the following property:

gjj · pm
jl 	 ηWλ (m).

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 227

We incorporate this into the bit rate calculation in (8.4), i.e.,

bm
ij = Wλ (m) · log2

⎛
⎝1+

gij pm
ij

ηWλ (m) +∑(k,l) �=(i, j)
k∈I j ,l∈Nk

gkj pm
kl +∑l∈N j

gjj pm
jl

⎞
⎠ . (8.8)

Thus, when pm
jl > 0, i.e., node j is transmitting to some node l, then in (8.8), we have

bm
ij ≈ 0 even if pm

ij > 0. In other words, when node j is transmitting to any node l,
the achievable rate from node i to node j is effectively shut down to 0.

With this new notion of gjj, we can capture the same tramission/receiving
behavior of a node without the need of using integer (binary) variables xm

j as in
the RFP formulation. As a result, we can remove constraints (8.6) and (8.7).

To write (8.8) in a more compact form, we re-define I j to include node j as long
as j is not the base-station node (i.e., node 0). Thus, (8.8) is now in the same form
as (8.4). Denote

qm
j = ∑

k∈I j ,l∈Nk

gkj p
m
kl. (8.9)

Then we have

bm
ij = Wλ (m) log2

⎛
⎝1+

gij pm
ij

ηWλ (m) +∑(k,l) �=(i, j)
k∈I j ,l∈Nk

gkj pm
kl

⎞
⎠

= Wλ (m) log2

(
1+

gij pm
ij

ηWλ (m) + qm
j − gijpm

ij

)
.

To remove the non-polynomial terms, we apply the low SNR property that
is unique to UWB [16] and the linearity approximation of the log function, i.e.,
ln(1+x)≈ x for x > 0 and x
 1. We have

bm
ij ≈ Wλ (m)

ln2
· gij pm

ij

ηWλ (m) + qm
j − gijpm

ij

,

which is equivalent to

ηWλ (m)bm
ij + qm

j bm
ij − gijp

m
ij bm

ij −
W
ln2

gijλ (m)pm
ij = 0.

Finally, without loss of generality, we let λ (m) conform the following property.

λ (1) ≤ λ (2) ≤ ·· · ≤ λ (M).

Although this additional constraint does not affect the optimal result, it will help
speed up the computational time in our algorithm.

With the above re-formulations, we can now re-write the RFP problem as follows:

228 Y. Shi et al.

8.3.2.1 RFP-2

Maximize K

subject to
M

∑
m=1

λ (m) = 1

λ (m)−λ (m−1) ≥ 0 (2 ≤ m ≤ M)

∑
j∈Ni

pm
ij − pmaxλ (m) ≤ 0 (1 ≤ i ≤ N,1 ≤ m ≤ M)

∑
k∈I j ,l∈Nk

gkj p
m
kl − qm

j = 0 (0 ≤ j ≤ N,1 ≤ m ≤ M)

ηWλ (m)bm
ij + qm

j bm
ij − gijp

m
ij bm

ij −
W
ln2

gijλ (m)pm
ij = 0

(1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M) (8.10)

M

∑
m=1

bm
ij − fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni)

∑
j∈Ni

fij − ∑
j∈Ni

fji − riK = 0 (1 ≤ i ≤ N)

K, pm
ij ,b

m
ij ,q

m
j , fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M)

λ (1) ≥ λmin, λ (M) ≤ λmax.

Although problem RFP-2 is simpler than the original RFP problem, it is still
a non-linear program (NLP), which remains NP-hard in general [5]. For certain
NLP problems, it is possible to find a solution via its Lagrange dual problem.
Specifically, if the objective function and constraint functions in the primal problem
satisfy suitable convexity requirements, then the primal and dual problem have the
same optimal objective value [2]. Unfortunately, such a duality-based approach,
although attractive, is not applicable to our problem. This is because RFP-2 is a non-
convex optimization problem (see (8.10)). There is likely a duality gap between the
objective values of the optimal primal and dual solutions. As a result, a solution
approach for the Lagrange dual problem cannot be used to solve our problem.
Although there are efforts on solving non-convex optimization problem via a duality
(see, e.g., [18] by Rubinov and Yang, where Lagrange-type dual problems are
formulated with zero duality gap), we find that the complexity of such an approach
is prohibitively high (much higher than the branch-and-bound solution approach
proposed in this chapter).

In the next section, we develop a solution procedure based on the branch-and-
bound framework [11] and the so-called Reformulation–Linearization Technique
(RLT) [19, 20] to solve this NLP optimization problem.

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 229

8.3.3 A Solution Procedure

8.3.3.1 Branch-and-Bound

Using the branch-and-bound framework, we aim to provide a (1 − ε)-optimal
solution, where ε is a small pre-defined constant reflecting our tolerance for
approximation in the final solution. Initially, we determine suitable intervals for each
variable that appears in nonlinear terms. By using a relaxation technique, we then
obtain an upper bound UB on the objective function value. Although the solution
to such a relaxation usually yields infeasibility to the original NLP, we can apply a
local search algorithm starting from this solution to find a feasible solution to the
original NLP. This feasible solution now provides a lower bound LB on the objective
function value.

If the distance between the above two bounds is small enough, i.e., LB ≥
(1 − ε)UB, then we are done with the (1 − ε)-optimal solution obtained by the
local search. Otherwise, we will use the branch-and-bound framework to find a
(1− ε)-optimal solution. The branch-and-bound framework is based on the divide-
and-conquer idea. That is, although the original problem is hard to solve, it may be
easier to solve a problem with a smaller solution search space, e.g., if we can further
limit λ (1) ≤ 0.1. So, we divide the original problem into sub-problems, each with
a smaller solution search space. We solve the original problem by solving all these
sub-problems. The branch-and-bound framework can remove certain sub-problems
before solving them entirely and thus, can provide a solution much faster than a
general divide-and-conquer approach.

During the branch-and-bound framework, we put all these sub-problems into
a problem list L . Initially, there is only Problem 1 in L , which is the original
problem. For each problem in the list, we can obtain an upper bound and a lower
bound with a feasible solution, just as we did initially. Then, the global upper bound
for all the problems in the list is UB=maxz∈L {UBz} and the global lower bound for
all the problems in the list is LB = maxz∈L {LBz}. We choose Problem z having the
current worst (maximum) upper bound UBz = UB and then partition this problem
into two new Problems z1 and z2 that replace Problem z. This partitioning is done
by choosing a variable and partitioning the interval of this variable into two new
intervals, e.g., 0 ≤ λ (1) ≤ 0.2 to 0 ≤ λ (1) ≤ 0.1 and 0.1 ≤ λ (1) ≤ 0.2. For each
new problem created, we obtain an upper bound and a lower bound with a feasible
solution. Then we can update both UB and LB.

Once LB ≥ (1 − ε)UB, the current feasible solution is (1 − ε)-optimal and we
are done. This is the termination criterion. Otherwise, for any Problem z′, if we
have (1−ε)UBz′ < LB, where UB′

z is the upper bound obtained for Problem z′, then
we can remove Problem z′ from the problem list L for future consideration. The
method then proceeds to the next iteration.

Note that since we are interested in determining whether or not K is greater
than or equal to 1 (to check feasibility), we can terminate the branch-and-bound

230 Y. Shi et al.

framework if any of the following two cases holds: (1) if the upper bound of K is
smaller than 1, then RFP-2 is infeasible or (2) if we find any feasible solution with
K ≥ 1, then RFP-2 is feasible.

8.3.3.2 Relaxation with RLT Technique

Throughout the branch-and-bound framework (both initially and during each
iteration), we need a relaxation technique to obtain an upper bound of the ob-
jective function. For this purpose, we apply a method based on Reformulation–
Linearization Technique (RLT) [19, 20], which can provide a linear relaxation for
a polynomial NLP problem. Specifically, in (8.10), RLT introduces new variables
to replace the inherent polynomial terms and adds linear constraints for these new
variables. These new RLT constraints are derived from the intervals of the original
variables.

In particular, for nonlinear term λ (m)bm
ij in (8.10), we introduce a new variable

ym
ij to replace λ (m)bm

ij . Since λ (m) and bm
ij are each bounded by (λ (m))L ≤ λ (m) ≤

(λ (m))U and (bm
ij)L ≤ bm

ij ≤ (bm
ij)U , respectively, we have [λ (m) − (λ (m))L] · [bm

ij −
(bm

ij)L]≥ 0, [λ (m)− (λ (m))L] · [(bm
ij)U − bm

ij]≥ 0, [(λ (m))U −λ (m)] · [bm
ij − (bm

ij)L]≥0,

and [(λ (m))U −λ (m)] · [(bm
ij)U −bm

ij]≥ 0. From the above relationships and substitut-

ing ym
ij = λ (m)bm

ij , we have the following RLT constraints for ym
ij .

(λ (m))L ·bm
ij +(bm

ij)L ·λ (m)− ym
ij ≤ (λ (m))L · (bm

ij)L

(λ (m))U ·bm
ij +(bm

ij)L ·λ (m)− ym
ij ≥ (λ (m))U · (bm

ij)L

(λ (m))L ·bm
ij +(bm

ij)U ·λ (m)− ym
ij ≥ (λ (m))L · (bm

ij)U

(λ (m))U ·bm
ij +(bm

ij)U ·λ (m)− ym
ij ≤ (λ (m))U · (bm

ij)U .

We, therefore, replace λ (m)bm
ij with ym

ij in (8.10) and add the above RLT constraints
for ym

ij into the RFP-2 problem formulation. Similarly, we let um
ij = qm

j bm
ij , vm

ij =

pm
ij bm

ij , and wm
ij = λ (m)pm

ij . From (pm
ij)L ≤ pm

ij ≤ (pm
ij)U and (qm

j)L ≤ qm
j ≤ (qm

j)U , we
can obtain the RLT constraints for um

ij , vm
ij , and wm

ij as well.

Denote Λ , p, b, and q as vectors for λ (m), pm
ij , bm

ij , and qm
j , respectively. After

we replace all non-linear terms as above and add the corresponding RLT constraints
into the RFP-2 problem formulation, we obtain the following LP.

Maximize K

subject to ∑M
m=1λ (m) = 1

λ (m)−λ (m−1) ≥ 0 (2 ≤ m ≤ M)

∑ j∈Ni
pm

ij − pmaxλ (m) ≤ 0 (1 ≤ i ≤ N,1 ≤ m ≤ M)

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 231

∑k∈I j ,l∈Nk
gkj pm

kl − qm
j = 0 (0 ≤ j ≤ N,1 ≤ m ≤ M)

ηWym
ij + um

ij − gijvm
ij − W

ln2 gijwm
ij = 0 (1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M)

RLT constraints for ym
ij ,u

m
ij ,v

m
ij , and wm

ij (1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M)

∑M
m=1 bm

ij − fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni)

∑ j∈Ni
fij −∑ j∈Ni

fji − riK = 0 (1 ≤ i ≤ N)

K, fij,ym
ij ,u

m
ij ,v

m
ij ,w

m
ij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni,1 ≤ m ≤ M)

(Λ ,p,b,q) ∈Ω ,

whereΩ = {(Λ ,p,b,q) : (λ (m))L ≤ λ (m) ≤ (λ (m))U , (pm
ij)L ≤ pm

ij ≤ (pm
ij)U ,(b

m
ij)L ≤

bm
ij ≤ (bm

ij)U ,(q
m
j)L ≤ qm

j ≤ (qm
j)U}.

The details of the proposed branch-and-bound solution procedure with RLT are
given in Fig. 8.1. Note that in Step 14 of the Feasibility Check Algorithm, the
method chooses a partitioning variable based on the maximum relaxation error.
Clearly, λ (m) is a key variable in the problem formulation. As a result, the algorithm
will run much more efficiently if we give the highest priority to λ (m) when it comes
to choosing a partitioning variable.1

8.3.3.3 Local Search Algorithm

In the branch-and-bound framework, we need to find a solution to the original
problem from the solution to the relaxation problem (see Step 9 in Fig. 8.1). In
particular, we need to obtain a feasible solution from Λ̂ and p̂. We now show how
to obtain such a feasible solution.

We can let Λ = Λ̂ . Note that in RFP-2, we introduced the notion of a self-
interference parameter to remove the binary variables in RFP. Then in p̂, it is
possible that pm

il > 0 and pm
ji > 0 for a certain node i within some sub-band m.

Therefore, it is necessary to find a new p from p̂ such that no node is allowed
to transmit and receive within the same sub-band. An algorithm that achieves this
purpose is shown in Fig. 8.2. The basic idea is to split the total bandwidth used at
node i into two groups of equal bandwidth: one group for transmission and the other
group for receiving.

After we obtain Λ and p by the algorithm in Fig. 8.2, constraints on sub-band
division, scheduling, and power control are all satisfied. Now we can compute bij

from (8.4) and (8.5). Then, we solve the following simple LP for K.

1In our implementation of the algorithm, we give the highest priority to λ (m), the second highest
priority to pm

ij , and consider qm
j last when we choose a partitioning variable. This does not hamper

the convergence property of the algorithm [19].

232 Y. Shi et al.

Fig. 8.1 A solution procedure to the RFP-2 problem based on branch-and-bound and RLT

Maximize K

subject to fij ≤ bij (1 ≤ i ≤ N, j ∈ Ni)

∑ j∈Ni
fij −∑ j∈Ni

fji − riK = 0 (1 ≤ i ≤ N)

K, fij ≥ 0 (1 ≤ i ≤ N, j ∈ Ni).

If an LP solution provides a K ≥ 1, then this rate vector r is feasible.

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 233

Fig. 8.2 An algorithm to obtain p from p̂

8.4 Numerical Results

8.4.1 Simulation Setting

In this section, we present numerical results for our solution procedure and compare
it to other possible approaches. Given that the total UWB spectrum is W = 7.5 GHz
and that each sub-band is at least 500 MHz, we have that the maximum number of
sub-bands is M = 15. The gain model for a link (i, j) is gij = min(d−2

ij ,1) and the
nominal gain is chosen as gnom = 0.02. The power density limit πmax is assumed to
be 1% of the white noise η [16].

We consider a randomly generated network of 100 nodes (see Fig. 8.3) over a
50× 50 area, where the distance is based on normalized length in (8.1). The base-
station is located at the origin. The details for this network will be elaborated shortly
when we present the results.

We investigate the impact of scheduling and routing. We are interested in
comparing a cross-layer approach to a decoupled approach to our problem.

8.4.2 Impact of Scheduling

For the 100-node network shown in Fig. 8.3, there are eight source sensor nodes
(marked as stars) in the network. The randomly generated data rate are r1 = 5,

234 Y. Shi et al.

0 10 20 30 40 50
0

10

20

30

40

50

X

Y

Base Station Source Sensor Other Sensor

r1
r2

r3

r5

r4

r6
r7

r8

Fig. 8.3 Network topology for a 100-node network

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

Total Number of Sub−bands (M)

F
ea

si
bi

lit
y

F
ac

to
r

(K
) Cross-layer Optimization

Equal Sub-band and Minimum Energy Routing

Fig. 8.4 The maximum achievable K as a function of M for the 100-node network

r2 = 2, r3 = 2, r4 = 4, r5 = 5, r6 = 3, r7 = 3, and r8 = 1, with units defined
in an appropriate manner. To show performance limits, we consider whether the
network can transmit K · ri from source sensor node i to the base station and
investigate the maximum K (feasible scaling factor) under different approaches.
Figure 8.4 (upper curve) shows the maximum achievable K for different M under
our solution procedure. Clearly, K is a non-decreasing function of M, which states

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 235

Table 8.2 Performance of feasible scaling factor K under different
spectrum allocations with M = 5 for the 100-node network

Spectrum allocation K Rate

Optimal: (0.4256, 0.2339, 0.1660 0.1066 0.0679) 8.0 200
Equal: (0.20, 0.20, 0.20, 0.20, 0.20) 4.2 105
Random 1: (0.36, 0.23, 0.20, 0.11, 0.10) 2.8 70
Random 2: (0.27, 0.24, 0.21, 0.17, 0.11) 4.2 105

that the more sub-bands available, the larger traffic volume that the network can
support. The physical explanation for this is that the more sub-bands available, the
more opportunity for each node to avoid interference from other nodes within the
same sub-band, and thus more throughput in the network. Also, note that there is
a noticeable increase in K when M is small. But when M ≥ 4, the increase in K is
no longer significant. This suggests that for simplicity, we could just choose a small
value (e.g., M = 5) for the number of sub-bands instead of the maximum M = 15.

To show the importance of joint optimization of physical layer power control,
link layer scheduling, and network layer routing, in Fig. 8.4, we also plot K as
a function of M for a pre-defined routing strategy, namely, the minimum-energy
routing with equal sub-band scheduling. Here, the energy cost is defined as g−1

ij for
link (i, j). Under this approach, we find a minimum-energy path for each source
sensor node and determine which sub-band to use for each link and with how much
power. When a node cannot find a feasible solution to transmit data to the next
hop, it declares that the given rate vector is infeasible. In Fig. 8.4, we find that the
minimum-energy routing with equal sub-band scheduling approach is significantly
inferior than the proposed cross-layer optimization approach.

Table 8.2 shows the results for K under different spectrum allocations for
M = 5. The routes are the same as those obtained under optimal routing from our
cross-layer optimal solution (see Fig. 8.5 (a)) and are fixed in this study. The first
optimal spectrum allocation is obtained from the cross-layer optimal solution. The
second is an equal spectrum allocation and the following two are random spectrum
allocations. Clearly, the cross-layer optimal spectrum allocation provides the best
performance among all these spectrum allocations. It is important to realize that in
addition to the number of sub-bands M, the way how the spectrum is allocated for a
given M also has a profound impact on the performance. In Table 8.3, we perform
the same study for M = 10 and obtain the same conclusion.

8.4.3 Impact of Routing

We study the impact of routing on our cross-layer optimization problem under a
given optimal schedule (obtained through our solution procedure). Table 8.4 shows
the results in this study. In addition to our cross-layer optimal routing, we also

236 Y. Shi et al.

0 10 20 30 40 50
0

10

20

30

40

50

X

Y

 r1 r2

 r3

 r4

 r5

 r6
 r7

 r8

0 10 20 30 40 50
0

10

20

30

40

50

X

Y

r1 r2

r3

r4
r5

r6
r7

r8

a

b

Fig. 8.5 Optimal routing for the 100-node network. (a) M = 5, (b) M = 10

consider the following two routing approaches, namely, minimum-energy routing
and minimum-hop routing. The minimum-hop routing is similar to the minimum-
energy routing, except the cost here is measured in the number of hops.

In Table 8.4, the spectrum allocation is chosen as the optimal spectrum allocation
from our cross-layer optimal solution (see Tables 8.2 and 8.3) and is fixed. Clearly,
the cross-layer optimal routing outperforms both minimum-energy and minimum-
hop routing approaches. Both minimum-energy routing and minimum-hop routing
are minimum-cost routing (with different link cost). Minimum-cost routing only
uses a single-path, i.e., multi-path routing is not allowed, which is not likely to
provide an optimal solution. Moreover, it is very likely that multiple source sensors
share a “good” path. Thus, the rates for these sensors are bounded by the achievable

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 237

Table 8.3 Performance of feasible scaling factor K under different
spectrum allocations with M = 10 for the 100-node network

Spectrum allocation K Rate

Optimal: (0.1551, 0.1365, 0.1283, 0.0962, 0.0952, 8.8 220
0.0916, 0.0901, 0.0702, 0.0689, 0.0679)

Equal: (0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 3.6 90
0.10, 0.10, 0.10)

Random 1: (0.14, 0.13, 0.12, 0.11, 0.09, 0.09, 0.09, 4.0 100
0.08, 0.08, 0.07)

Random 2: (0.17, 0.13, 0.11, 0.10, 0.10, 0.09, 0.08, 3.8 95
0.08, 0.07, 0.07)

Table 8.4 Performance of feasible scaling factor K under
different routing strategies for the 100-node network

M = 5 M = 10
Routing Strategy K Rate K Rate

Optimal Routing 8.0 200 8.8 220
Minimum-Energy Routing 2.2 55 2.4 60
Minimum-Hop Routing 1.4 35 2.0 50

rate of this path. Further, minimum-hop routing has its own problem. Minimum-hop
routing prefers small number of hops (with a long distance on each hop) toward the
destination node. Clearly, a long-distance hop will reduce its corresponding link’s
achievable rate, due to the distance gain factor.

8.5 Related Work

A good overview paper on UWB is given in [14]. Physical layer issues associated
with UWB-based multiple access communications can be found in [3, 7, 8, 12, 22]
and references therein. In this section, we focus on related work addressing
networking problems with UWB.

In [9], Negi and Rajeswaran first showed that, in contrast to previously published
results, the throughput for UWB-based ad hoc networks increases with node density.
This important result is mainly due to the large bandwidth and the ability of
power and rate adaptation of UWB-based nodes, which alleviate interference. More
importantly, this result demonstrates the significance of physical layer properties
on network layer metrics such as network capacity. In [1], Baldi et al. considered
the admission control problem based on a flexible cost function in UWB-based
networks. Under their approach, a communication cost is attached to each path
and the cost of a path is the sum of costs associated with the links it comprises.
An admissibility test is then made based on the cost of a path. However, there is no
explicit consideration of joint cross-layer optimization of power control, scheduling,

238 Y. Shi et al.

and routing in this admissibility test. In [4], Cuomo et al. studied a multiple access
scheme for UWB. Power control and rate allocation problems were formulated for
both elastic bandwidth data traffic and guaranteed-service traffic. The impact of
routing, however, was not addressed.

The most closely related research to our work are [10] and [15]. In [10], Negi
and Rajeswaran studied how to maximize proportional rate allocation in a single-
hop UWB network (each node can communicate to any other node in a single hop).
The problem was formulated as a cross-layer optimization problem with similar
scheduling and power control constraints as in this chapter. In contrast, our focus
in this chapter is on a feasibility test for a rate vector in a sensor network and we
consider a multi-hop network environment where routing is also part of the cross-
layer optimization problem. As a result, the problem in this chapter is more difficult.
In [15], Radunovic and Le Boudec studied how to maximize the total log-utility of
flow rates in multi-hop ad hoc networks. The cross-layer optimization space consists
of scheduling, power control, and routing. As the optimization problem is NP-hard,
the authors then studied a simple ring network as well as a small-sized network with
pre-defined scheduling and routing policies. On the other hand, in this chapter, we
have developed a novel solution procedure to our cross-layer optimization problem.

8.6 Conclusion

In this chapter, we studied the important problem of routing data traffic in a UWB-
based sensor network. We followed a cross-layer optimization approach with joint
consideration of physical layer power control, link layer scheduling, and network
layer routing. We developed a solution procedure based on the branch-and-bound
framework and the RLT technique. Our numerical results demonstrated the efficacy
of our proposed solution procedure and substantiated the importance of cross-layer
optimization for UWB-based sensor networks.

References

1. P. Baldi, L. De Nardis, and M.-G. Di Benedetto, “Modeling and optimization of UWB
communication networks through a flexible cost function,” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 9, pp. 1733–1744, December 2002.

2. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Algo-
rithms, second edition, John Wiley & Sons, Inc., New York, NY, 1993.

3. L.X. Cai, L. Cai, X. Shen, J.W. Mark, and Q. Zhang, “MAC protocol design and optimization
for multi-hop ultra-wideband networks,” IEEE Transactions on Wireless Communications,
vol. 8, no. 8, pp. 4056–4065, August 2009.

4. F. Cuomo, C. Martello, A. Baiocchi, and F. Capriotti, “Radio resource sharing for ad hoc
networking with UWB,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 9,
pp. 1722–1732, December 2002.

8 Throughput Maximization for UWB-Based Sensor Networks via RLT 239

5. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Company, pp. 245–248, New York, NY, 1979.

6. A. Goldsmith and S.B Wicker, “Design challenges for energy-constrained ad hoc wireless
networks,” IEEE Wireless Communications, vol. 9, pp. 8–27, August 2002.

7. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a, http://www.ieee802.org/15/
pub/TG3a.html.

8. IEEE Journal on Selected Areas in Communications – Special Issue on Ultra-Wideband
Radio in Multiaccess Wireless Communications, Guest Editors: N. Blefari-Melazzi,
M.G. Di Benedettio, M. Geria, H. Luediger, M.Z. Win, and P. Withington, vol. 20, no. 9,
December 2002.

9. A. Rajeswaran and R. Negi, “Capacity of ultra wide band wireless ad hoc networks,” IEEE
Transactions on Wireless Communications, vol. 6, no. 10, pp. 3816–3824, October 2007.

10. A. Rajeswaran, G. Kim, and R. Negi, “Joint power adaptation, scheduling and routing for
ultra wide band networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 5,
pp. 1964–1972, May 2007.

11. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley &
Sons, pp. 354–367, New York, NY, 1999.

12. R. Pilakkat and L. Jacob, “Scheduling and power control for MAC layer design in multihop
IR-UWB networks,” International Journal of Network Management, vol. 20, issue 1, pp. 1–19,
January 2010.

13. D. Porcino, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Com-
munications Magazine, pp. 66–74, July 2003.

14. R.C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE
Communications Magazine, pp. 80–87, February 2005.

15. B. Radunovic and J.-Y. Le Boudec, “Optimal power control, scheduling, and routing in UWB
networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 7, pp. 1252–1270,
September 2004.

16. A. Rajeswaran, G. Kim, and R. Negi, “A scheduling framework for UWB & cellular
networks,” Springer Mobile Networks and Applications (MONET), vol. 11, no. 1, pp. 9–20,
2006.

17. J.H. Reed, An Introduction to Ultra Wideband Communication Systems, Prentice Hall, 2005.
18. A. Rubinov and X. Yang, Lagrange-type Functions in Constrained Non-convex Optimization,

Kluwer Academic Publishers, Norwell, MA, 2003.
19. H.D. Sherali and W.P. Adams, A Reformulation-Linearization Technique for Solv-

ing Discrete and Continuous Nonconvex Problems, Kluwer Academic Publishers, Dor-
drecht/Boston/London, Chapter 8, 1999.

20. H.D. Sherali, “Tight relaxations for nonconvex optimization problems using the
reformulation-linearization/convexification technique (RLT),” Handbook of Global
Optimization, Volume 2: Heuristic Approaches, eds. P.M. Pardalos and H.E. Romeijn,
Kluwer Academic Publishers, Dordrecht/London/Boston, pp. 1–63, 2002.

21. Y. Shi and Y.T. Hou, “On the capacity of UWB-based wireless sensor network,” Elsevier
Computer Networks Journal, vol. 52, issue 14, pp. 2797–2804, October 2008.

22. M. Win and R. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse
radio for wireless multiple-access communications,” IEEE Transactions on Communications,
vol. 48, pp. 679–691, April 2000.

http://www.ieee802.org/15/pub/TG3a.html
http://www.ieee802.org/15/pub/TG3a.html

Chapter 9
A Parallel Routing Algorithm for Traffic
Optimization

M.L. Wang, K.H. Yeung, and F. Yan

Abstract This chapter applies the general complex network theory to study
a parallel routing algorithm called Classified Traffic Routing (CTR) for traffic
optimization. The parallel routing algorithm involves two routing tables when
forwarding packets. For CTR, performance analysis is performed which focuses on
loss, delay, and energy in a scale-free network. Its performance is also compared
to those of single routing algorithms. For existing two main kinds of single routing
algorithms - shortest path first and congestion avoidance first algorithms, we select
one representative algorithm from each kind for comparison. The result shows
that good loss or delay performance (but not both) can be obtained for each
representative routing algorithm, namely Shortest Path First (SPF) algorithm and
Optimal Routing (OR) algorithm. The chapter then discusses a study on energy
performance of these two algorithms. The results show that the two algorithms have
very different performance on average energy consumption and on distribution of
energy consumption among all nodes. This chapter then argues that single routing
algorithm could not meet the requirements of different types of traffic while could
not balance the energy consumption. In order to provide good loss performance
for loss-sensitive traffic and good delay performance for delay-sensitive traffic,
and in consideration of energy consumption, forwarding packets with CTR is a
good choice. Simulation results show that CTR can give a much more balanced
performance on loss, delay, and energy than those of SPF and OR.

9.1 Introduction

Many researchers have focused on exploring how the structure features play a role in
the dynamic behaviors of networks [1]. These theoretical modeling of networks has

M.L. Wang • K.H. Yeung (�) • F. Yan
Department of Electrical Engineering, City University of Hong Kong, Tat Chee Ave, Hong Kong
e-mail: mablewml@gmail.com; eeayeung@cityu.edu.hk; yanfan84@gmail.com

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 9, © Springer Science+Business Media, LLC 2012

241

mablewml@gmail.com
eeayeung@cityu.edu.hk
yanfan84@gmail.com

242 M.L. Wang et al.

been applied to various fields, such as the social groups [2], the Internet [3–5] and
the world wide web [6], metabolism [7, 8], and ecosystems [9, 10]. In all of these
models, how a network handles and delivers information is one of the important
issues to study. As all the mentioned networks are complex networks with scale-
free property, the scale-free network model is usually used for studies.

In the studies of transport optimization, two main different kinds of approaches
have been considered. One of them takes the shortest paths [11, 12], and for the
other one, researchers consider the congestion problem on nodes (or links) and try
to avoid congestion by not using the shortest paths. In the shortest path approach,
the length of a path is the total weights of the links in the path [11–14]. This kind
of approaches has the minimum packet delay but they cause many of the shortest
paths going through a set of nodes, which lead to node congestion. Especially in a
network with high traffic density, congestion on these nodes is easily found. The
design is therefore not suitable for traffic which requires high throughput, such
as TCP. In the second kind of approaches, the algorithms work on avoiding or
weakening the congestion in the network, so the transportation capacity of the
network will be improved [15–17]. When forwarding packets, paths with idle or
not busy nodes are preferred rather than shortest paths with serious congestion. In
these algorithms, queuing time will be saved and meanwhile, the number of packets
dropped due to limited buffer sizes (of nodes) is decreased. However, this kind of
algorithms has the disadvantage that too many routing paths are not the shortest
paths and so, the average packet delay is longer. For traffic in which delay is a
major concern of communication quality, this approach cannot give satisfactory
performance. Therefore, routing algorithms discussed above will not give good
performance when coexistence of VoIP and TCP is found [18].

Besides delay and loss performance, there is another important (but less studied)
performance: the energy performance in transport optimization. The total number
of Internet users now is beyond 2.09 billions [19] and keeps increasing in a rapid
speed. Nowadays, the electricity usage for Internet is 0.5%–1% of the total world
electricity usage [20,21]. And if there are 2 billion people having broadband access
with 1 Mb/s, then this percentage will increase to 5%. Even worse, if there are 20
billion people having broadband access with 1 Mb/s, the percentage becomes 50%.
Some researchers concluded that the constraint on Internet growth will be energy
consumption in the future [22]. For a long-term thinking, we must consider energy
consumption when developing good routing algorithms.

In this chapter, traffic optimization based on traffic types on a scale-free
network is studied. We first discuss the loss, delay and energy performance of two
representative routing algorithms, namely Shortest Path First (SPF) and Optimized
Routing (OR). Each of them belongs to either routing approach as mentioned above.
We then argue that they cannot meet the requirements on the performance of loss,
delay or energy at the same time. Compared to single routing algorithm, parallel
routing algorithms therefore have their own advantages. A parallel routing algorithm
called Classified Traffic routing (CTR) is therefore proposed. Simulation results
show that CTR can give a more optimized performance on loss, delay and energy
when compared with those of SPF and OR.

9 A Parallel Routing Algorithm for Traffic Optimization 243

9.2 Shortest Path First and Optimized Routing

SPF can be implemented in two ways: either finding the shortest path dynamically or
following a fixed routing table. In the first case, when a new packet is generated, the
router searches for a shortest path among all shortest paths between its source and
destination [23]; in the second one, for any pair of nodes, the shortest paths are saved
in a fixed routing table [24]. When the delivering capability for each node, denoted
as Ci, is the same for all i, the packet generated rate in the whole network cannot go
beyond a critical point Rc. Below this critical value, the generated packets can be
processed properly and the packets queueing in buffers would not be accumulated
with time. However, when the network generates too many packets per time slot
(beyond Rc), packets queuing in buffers will be accumulated from time to time,
which means the network is overloading. This value for a heterogeneous network is
much smaller than that of a homogeneous network (using SPF and under the same
condition). The throughput of a regular network is also much larger than that of a
scale-free network [25, 26]. The explanation is as follow: all packets are routed just
with the shortest paths, so packets are more easily to be forwarded passing some
“hubs” than other nodes, and congestion occurs in these “hubs”. The congestion
will immediately spread over the whole network.

OR [16] tries to distribute traffic to every node as uniformly as possible by
uniforming the betweenness [18] of all nodes. For a given routing table, the
betweenness for a specified node i is defined as: the sum of all fractional paths
that pass through that node i, and Bmax specifies the largest betweenness for any
node in the network [27]. To distribute traffic uniformly to the whole network, the
betweenness of all nodes would be uniformed. In order to achieve it, minimizing
Bmax is necessary so that no nodes will be too popular, and it has been shown that
significant improvement in the transport capacity of a network can be achieved by
minimizing the maximum betweenness of the network [16]. For a network with
N nodes, on average, each time step the number of packets forwarded to node i
is RBi

N(N−1) where R is the average packet generated rate by one node. It identifies
that by reducing the maximum betweenness in the network, the throughput will
be improved. In OR algorithm, the maximum betweenness is reduced. In each
time step, the node with largest betweenness in the network is found, and then the
lengths of all the links connected to it are increased. After that, just recalculate the
betweennesses for all nodes and repeat the same steps for several times. Finally, we
can obtain a routing table whose maximum betweenness for the whole network is
very close to the average betweenness. The maximum betweenness is usually quite
low in this case. It means that the traffic is distributed more uniformly (compared
with SPF) to the whole network instead of a few “hubs”. To make this argument
more convincing, in Fig. 9.1, we show the utilization of nodes for a network with 400
nodes using SPF or OR. As observed, utilization of a few hub nodes are extremely
busy for SPF, while majority of nodes are having low utilization (<0.2). For OR
case, however, utilization of nodes are not so extreme as this case of SPF, meaning
that OR successfully spread the traffic around.

244 M.L. Wang et al.

Fig. 9.1 Utilization of nodes
(with index number 1–400)
for a network using SPF (red
crosses) or OR (black dots)

0 100 200 300 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodes Index

U
til

iz
at

io
n

Utilization of Nodes

SPF
OR

9.3 Loss, Delay, and Energy Performance of Shortest Path
First and Optimized Routing

The results presented above and in the following are for an undirected scale-free
network with the exponent of power-law degree distribution γ = 3. The network size
is unchanged and the total number of nodes N = 400. The whole simulation period
is divided into time slots such that in one time slot, for any individual node, at most
one packet can be generated with a probability r varying between 0.05 and 0.95.
The destinations for any packets are chosen randomly among the other N −1 nodes.
We assume all nodes having the same processing capacity and the same size of
buffer (for storing waiting packets), which are 1 packet per time slot and 10 packets
buffer size respectively. For all nodes, any packet received when buffer is full will
be dropped. That means that the packet will be lost. When evaluating the energy
performance, we consider two situations. In the first situation, energy supplied to
each node is infinite, and each time when a packet is generated or forwarded by a
node, the energy consumption of this node will be increased by 1 unit. If a packet is
dropped, the energy consumed by it will still be counted. And then we calculate the
average energy consumption to forward one packet arriving its destination. In the
second situation, energy supplied to each node is finite. When any node runs out of
energy, the simulation ends. This time we focus on the remaining energy of nodes
when the simulation ends.

In the following, we first show how the use of routing algorithms affects the loss
performance. The routing algorithms under study are SPF and OR. SPF is the basic
algorithm that all packets will be routed with shortest paths, ignoring the congestion

9 A Parallel Routing Algorithm for Traffic Optimization 245

Fig. 9.2 The average
utilization of nodes vs. r
when OR is used

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

A
ve

ra
ge

 U
til

iz
at

io
n

Average Utilization of Nodes (vs. r)

of the links and nodes. Naturally, a few nodes will be passed through by a lot of
shortest paths. These nodes are called hubs. Hubs easily suffer from heavy traffic
and congestion. Another algorithm, OR, is proposed to avoid node congestion [21].
With OR, the distribution of betweennesses for nodes is much more concentrated.
Most of them are distributed within a narrow band, but there is a very sharp peak
at the upper edge (see [21]). Although OR successfully spreads the traffic around,
its loss performance has not been studied. In the following, simulation results on
OR and SPF will be reported. When doing the comparison, we focus on the range
with r < 0.3. It is because when r = 0.3, it is already an extremely heavy loading
condition. This can be seen from the simulation results of OR on utilization of nodes
in Fig. 9.2. From the figure, we observe that the network utilization increases rapidly
in the range r < 0.1. It then tends to saturate for r > 0.2. At r = 0.3, the average
utilization is really very high (> 0.8), which means the network is extremely busy
at this point.

Figure 9.3 shows the average number of lost packets and the average number of
nodes in dropping packets for SPF and OR with different values of r. With r < 0.3,
we observe in Fig. 9.3 that OR performs much better than SPF in packet loss. We
also observe that more nodes are involved in packet dropping. For example, when
r = 0.2, with SPF, 56 packets will be dropped by only 14 nodes. But when OR is
used, the number of dropped packets is reduced to 42, and they are dropped by 30
nodes. The results have shown that OR successfully spread the traffic to more nodes.
Therefore, better throughput performance is obtained.

However, distributing traffic to more nodes means giving up the use of shortest
paths. Packet delay will be increased. This is observed in Fig. 9.4. According

246 M.L. Wang et al.

Fig. 9.3 Number of lost
packets and nodes that drop
packets as a function of r

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

r

N
um

be
r

of
 P

ac
ke

ts
/N

od
es

SPF: number of lost packets
OR: number of lost packets
OR: number of nodes in dropping packets
SPF: number of nodes in dropping packets

Fig. 9.4 Comparison of
results for the average packet
delay of two algorithms as a
function of r

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r

A
ve

ra
ge

 D
el

ay

OR
SPF

to Fig. 9.4, we can find that average packet delay of OR is much longer than that
of SPF. In r < 0.3, the delay of OR is between 4.3 and 4.6. But for SPF, the delay
varies between 2.85 and 3 in the same range of r. In other words, the average delay
is increased to more than 1.5 times when using OR. When r becomes larger than 0.3,
the overall average delays for both algorithms are decreased with the increase of r.

9 A Parallel Routing Algorithm for Traffic Optimization 247

To find out the reason, another simulation is run to show the percentage drop of
packets against the number of hops in a path. The results are shown in Fig. 9.5a,b.

Figure 9.5a,b show that no matter SPF or OR is used, packets having routing
paths of more hops are dropped at higher percentages than packets that only pass
through fewer hops. In other words, packets that can arrive to their destinations (not
being dropped) are more probably to be those following paths with fewer hops. So
the overall average delay for both algorithms is decreased with the increase of r.
Moreover, when r is large, routing with pure OR has a higher probability in packets
drops. The reason is that in OR, the routing paths are longer than those of SPF. We
can find it from the distribution of the number of passing-by hops from Fig. 9.6.
With the increasing of r, the percentage drops of packets passing-by hops increases
rapidly for OR. The growth rate of loss percentage for OR is, therefore, much higher
than that of SPF.

The above results show that the delay performance of OR is not so good. If we use
OR to route all packets including those carrying delay sensitive data (such as VoIP),
poor quality of service can be anticipated. In comparison, SPF is the better algorithm
for routing time sensitive data. But for data which is not delay sensitive (e.g. TCP
data), delay performance of the network is not so important when compared to the
loss performance. This is because for this type of data, packet loss usually triggers
retransmissions that significantly affect the overall throughput. On the other hand,
this type of data can usually tolerate longer packet delay. This is due to the fact that
an end-to-end estimation on the round trip time between both end nodes is made
periodically.

As for the energy consumption of this two algorithms, two simulations have
been run. For the first simulation on energy performance, we assume the energy
supplied to each node is infinite, and each time a packet is generated or forwarded
by a node, the energy consumption of this node will be increased by 1 unit. If a
packet is dropped, the energy it consumed will also be accumulated to the total
energy consumption. When the simulation ends, we calculate the average energy
consumption for forwarding a packet to its destination successfully.

Figure 9.7 shows the average energy consumption for each forwarded packet of
these two algorithms. When r < 0.3, OR gives a better performance than SPF. With
the increase of r, the energy performance of OR gets worse rapidly. This is just the
other side of the same observation as discussed a bit earlier: OR drops more packets
than SPF when r is large. More packet drops also mean more energy being wasted.
So when the traffic is heavy (r > 0.3), the performance of OR is not as good as that
of SPF.

In the second simulation on energy, we assume that the energy supplied to each
node is 10,000 units. Each time a packet is generated or forwarded by a node, the
remaining energy of this node will be decreased by 1. When there is any node
that runs out of energy, the simulation ends and we then find the remaining energy
distribution of all nodes.

Although the average energy consumption of packets in OR is not as good as
SPF, the energy consumption for different nodes seems to be well-distributed when
simulation ends. Figure 9.8a shows the remaining energy of the nodes at different

248 M.L. Wang et al.

1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Hops

P
ac

ke
t L

os
s

P
er

ce
nt

ag
e

r = 0.7
r = 0.5
r = 0.3
r = 0.1

SPF

0 2 4 6 8 10 12 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Hops

P
ac

ke
t L

os
s

P
er

ce
nt

ag
e

r = 0.7
r = 0.5
r = 0.3
r = 0.1

OR

a

b

Fig. 9.5 The percentage drops of packets for SPF and OR

9 A Parallel Routing Algorithm for Traffic Optimization 249

Fig. 9.6 The distribution of
the number of passing-by
hops in routing paths

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

Number of Hops

P
er

ce
nt

ag
e

of
 R

ou
tin

g
P

at
hs

SPF

SPF

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0%

5%

10%

15%

20%

25%

Number of Hops

P
er

ce
nt

ag
e

of
 R

ou
tin

g
P

at
hs

OR

OR

time for SPF. For example, at time t = 6,000, there are 123 nodes having remaining
energy of about 9,100. From the figure, we can find that for SPF, a few nodes run
out of their energy very soon while most of the nodes have a lot of energy unused.
But from Fig. 9.8b, the situation of OR seems to be much better.

250 M.L. Wang et al.

Fig. 9.7 Comparison of
results for the average energy
consumption for packets of
two algorithms as a
function of r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

r

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n

OR
SPF

The results on energy performance shows that for SPF algorithm, it has better
performance on the average energy consumption for packets. But as few nodes will
run out of its energy rapidly, the network will stop working while most other nodes
still have a lot of unused energy. As for OR, although the energy consumption speed
of different nodes is quite uniform, the average energy consumption for packets is
not so satisfying.

In conclusion, both SPF and OR cannot give satisfied performances on packet
delay, packet loss and energy consumption at the same time.

9.4 Parallel Routing Algorithms

Traditionally, all routing algorithms are single routing ones. For a single routing
algorithm, there is only one routing table in each router. That means for a specific
router, it treats all packets equally and ignores their types or potential requirements.
The situation is quite different in parallel routing. In parallel routing, each router
has more than one choice on “next-hop” of the routing path. Distinguish different
packet types and apply “differentiated treatment” to them is the core idea of parallel
routing. The concept of parallel routing algorithm is there for many years. In
computer networks, there are separate routing tables for unicast and multicast traffic.
However, this chapter introduces a new concept on using two routing tables to route
different types of unicast traffic. As can be seen below, parallel routing will give
much more balanced performance.

9 A Parallel Routing Algorithm for Traffic Optimization 251

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

200

Remaining Energy

N
um

be
r

of
 N

od
es

At t = 6000, there are 123 nodes having
remaining energy of about 9100.

t = 2000
t = 4000
t = 6000
t = 8000
t = t(end)

SPF

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

Remaining Energy

N
um

be
r

of
 N

od
es

t = 2000
t = 4000
t = 6000
t = 8000
t = t(end)

OR

a

b

Fig. 9.8 Remaining energy distributions at different time of SPF and OR (with r = 0.1)

252 M.L. Wang et al.

9.5 Optimization Based on Traffic Types: Classified
Traffic Routing

To balance loss, delay and energy performance for different types of traffic, we
propose an algorithm which keeps both SPF and OR routing tables. Based on the
type of a packet, one of the routing tables will be used to route that packet. In
the packet header of IP packets, there is a special field called Type of Service. By
reading this field a node can know whether delay sensitive data is carried in this
packet or not. Then the node can select the proper routing table to route this packet.

The proposed algorithm CTR is described below:

1. Packets are classified into two different types. Packets classified as type 1 are
delay sensitive packets, and all other packets are classified as type 2.

2. In each node, two routing tables are kept– routing table 1, which is obtained by
SPF and the other one, routing table 2, which is obtained by OR.

3. When routing a packet, a node will first determine the type of packet. If it is
a type 1 packet, the node will forward the packet according to routing table 1.
Otherwise, routing table 2 will be used to forward the packet.

To compare the performance of CTR to SPF and OR, simulation on the same
network as described above was run. Different percentage mixes of type 1 and
type 2 traffic were studied in our simulation. Since similar results were obtained
for different percentage mixed, in the following we only present the results for a
mix of 50% type 1 and 50% type 2 traffic.

Figure 9.9 shows the loss performance of CTR when compared with SPF, and
OR. We can find that when r < 0.3, packet loss percentages for both type 1 and
type 2 are less than that of SPF. It is interesting to find that the loss for type 2
traffic is even less than OR when r goes larger. To explain this, we first show the
distributions of loss in the whole network for SPF, OR and CTR in Figs. 9.10, 9.11
and 9.12, respectively.

Figure 9.11 shows a uniform “busy state” in the whole network when OR is used.
It is quite different from the case that when SPF is used (see Fig. 9.10). When SPF
is used, there are a few “hubs”, which means that too many shortest paths pass by
these nodes. These “hubs” are too busy all the time and keep on dropping packets.
Meanwhile, most of the other nodes are idle. For the case of CTR, as CTR type
1 packets are routed under SPF, there are also some “hubs”. These “hubs” mainly
drop type 1 packets (see Fig. 9.12) and a few type 2 packets which are occasionally
routed to them. At the same time, CTR type 2 packets are routed under OR, which
leads to “busy state” occurring on more nodes on the network.

Now we look back at Fig. 9.9 and explain why the loss for type 2 traffic is larger
than that of OR when r is small (i.e. <0.14). When r is very small, using OR will
lead to very few packets dropped in the whole network. However, if using CTR,
although r is small, “hubs” still exist. All the packets passing though “hubs” may be
dropped, including a lot of CTR type 1 and a few CTR type 2 packets. So, overall,
when r is small, CTR type 2 packets are more easily dropped when compared to the

9 A Parallel Routing Algorithm for Traffic Optimization 253

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

r

Lo
ss

 P
er

ce
nt

ag
e

SPF
CTR (type 1)
OR
CTR (Type 2)

Fig. 9.9 Loss performance of CTR, SPF and OR

Fig. 9.10 Nodes states of the
whole network when using
SPF

254 M.L. Wang et al.

Fig. 9.11 Nodes states of the
whole network when using
OR

OR case. Additional simulation results in Fig. 9.13 verify what we have stated. In
the figure, the influence of CTR type 1 traffic on CTR type 2 traffic is shown. When
there is no type 1 traffic (red line), there is nearly no loss in type 2 traffic for all hop
lengths. However, when type 1 traffic exists (black line), many type 2 packets are
dropped by the busy nodes (or, type 2 traffic going through shorter paths).

When traffic in the network increased (i.e. r increased), the possibility for a node
to be overloaded is increased. When using OR, as the mean length of routing paths
is increased, a packet has to pass through more nodes to reach its destination. If
anyone among these nodes is overloaded, this packet will be dropped. So, heavier
traffic means higher possibility that an arbitrary node is overloaded and higher risk
for an arbitrary packet to be dropped. However, for CTR, some packets are routed
under SPF. These packets are more likely to be routed to a small set of nodes centre
on “hubs” than to be uniformly routed to the whole network. It leads to much less
traffic in the other nodes. Although little more CTR type 2 packets will be dropped
in the “hubs”, in the remaining part of the network, much less packets need to be
routed. As a result, less CTR type 2 packets will be dropped. This tells why the loss
for type 2 traffic is even less than OR when r goes larger. Additional simulation
results in Fig. 9.14 verify what we have stated. From the figure, it can be found that
when packets need to pass by more than 3 hops, routing with OR will lead to higher
risk of being dropped compared to using CTR (type 2).

9 A Parallel Routing Algorithm for Traffic Optimization 255

Fig. 9.12 Nodes states of the
whole network when using
CTR

The above results show that for CTR type 1 packets, the loss performance is
slightly better than SPF for r < 0.3 while that of CTR type 2 packets is worse than
OR for small r. But when r is large (not beyond 0.3), the loss performance for CTR
type 2 packets is better than that of OR.

Next, we present the delay performance. Figure 9.15 shows the delay perfor-
mance of CTR when compared with SPF and OR. We observe that the delay for
type 1 packets is just as small as that of SPF. For CTR type 2 packets, their average
delay is longer than that of OR.

To see why the average delay for CTR type 2 packets is longer than that of OR,
refer to Fig. 9.15. From the figure we can find that when r is small enough so that
no dropped packets occur, the average delay for CTR type 2 packets is very close
to that of OR. When r goes larger, packets dropping occurs. As discussed before,
when r is large, routing with pure OR has a higher probability in packet drops.
Furthermore, most of the dropped packets are those having the longer routing path.
That means, with OR, when r goes larger, packets with longer delay are dropped
with a higher probability compared to other packets. So the delay performance (as
reflected only by those packets that can reach their destinations) is better. On the
contrary, in CTR, type 1 packets are routed with SPF. These type 1 packets indirectly
affect the performance of type 2 packets, as they make the nodes in the hub set busy

256 M.L. Wang et al.

Fig. 9.13 The percentage
drops for CTR type 2 packets
without or with the influence
of CTR type 1 packets when
r = 0.1

0 2 4 6 8 10 12 14
0%

5%

10%

15%

20%

25%

30%

35%

40%

Number of Hops

P
ac

ke
t L

os
s

P
er

ce
nt

ag
e

CTR type 2 traffic with CTR type 1 traffic

CTR type 2 traffic without CTR type 1 traffic

Fig. 9.14 The percentage
drops of packets for CTR
type 2 and OR when r = 0.5

0 2 4 6 8 10 12 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Hops

P
ac

ke
t L

os
s

P
er

ce
nt

ag
e

OR
CTR type 2

all the time. CTR 2 packets will be dropped easily when passing through these nodes
(i.e. nodes made busy mainly by type 1 packets). In other words, some type 2 packets
with shorter delay are easier to be dropped. Since packets with longer delay will be
more probable to be dropped in OR (therefore giving a “better” delay performance)
while the opposite is found for CTR type 2 packets, the average delay for CTR type
2 packets is longer than the average delay of OR.

9 A Parallel Routing Algorithm for Traffic Optimization 257

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r

A
ve

ra
ge

 D
el

ay

CTR (type 2)
OR

SPF
CTR (Type 2)

Fig. 9.15 Delay performance of CTR, SPF, and OR

According to the above results we can conclude that the delay performance for
CTR type 1 packets is just as good as that of SPF, while the delay performance for
CTR type 2 is slightly worse than OR.

Now we will discuss on the energy performance of CTR. Figure 9.16 shows the
average energy consumption for packets of CTR with comparisons to SPF and OR.
We can find that when r is small (e.g. r < 0.3), the average energy consumption for
CTR is less than both SPF and OR. With the increasing of r, the curve for CTR is
still lower than that of OR.

The average energy consumption has a strong relation with the loss performance.
Generally, more loss means more waste, larger average energy consumption for a
successful packet. When r is small, the overall loss performance for CTR is quite
good, so the average energy consumption for packets is low. But as r increase,
almost all packets will eventually be dropped, the situation of CTR becomes similar
to that of OR which has been mentioned before: both CTR and OR try to forward
packets by avoiding congestion and those packets may be dropped after it passing
through a few hops. The energy is therefore wasted.

As for the remaining energy distribution, from Fig. 9.17 (please refer to Fig. 9.8
for comparisons), we find that when there is a node running out of its energy, the
remaining energy of other nodes is much less than that of SPF, although it is more
than that of OR.

This result can be easily understood that some packets are forwarded under SPF,
while others are forwarded under OR. Nodes which are nearly always idle under
pure SPF may be sometimes busy with the introduction of OR, so they also consume
energy. The remaining energy of nodes is generally not as high as those of SPF.

258 M.L. Wang et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

r

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n

OR
CTR
SPF

Fig. 9.16 Comparison of results for the average energy consumption for packets of three
algorithms as a function of r

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

t = 2000
t = 4000
t = 6000
t = 8000
t = t(end)

Fig. 9.17 Remaining energy distribution at different time of CTR with r = 0.1

9 A Parallel Routing Algorithm for Traffic Optimization 259

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Nodes Index

R
em

ai
ni

ng
 E

ne
rg

y

Remaining Energy Distribution

SPF
OR
CTR

Fig. 9.18 Remaining energy distribution of SPF, OR, and CTR

Figure 9.18 shows the remaining energy distribution of SPF, OR, and CTR
against the nodes’ index (when there is a node running out of its energy). It can
be seen that the remaining energy of nodes for CTR (the blue stars) are distributed,
generally, lower than the that of SPF (the red crosses) while higher than that of OR
(the black dots). We obtain the same result as mentioned before from another view
– the remaining energy of other nodes is much less than that of SPF, although it is
more than that of OR.

According to the above results, we can conclude that the average energy
consumption of CTR is less than that of OR, and when the network is not so
congested, it is even less than that of SPF. As for the remaining energy distribution,
CTR’s is much better than that of SPF although not so good as that of OR.

9.6 Conclusion

All the above results show that when using CTR, packets which are delay sen-
sitive can reach their destinations as quickly as SPF. At the same time, the loss
performance of CTR is better than SPF. The loss for packets which are not delay
sensitive is even less than OR. CTR therefore can give a balance performance in
delay and loss. As for the energy performance, when using CTR, the overall average
energy consumption for each packet is quite good compared to OR, while the energy
invested to nodes is well-distributed.

260 M.L. Wang et al.

In conclusion, parallel routing (i.e. hold two routing tables) has its own
advantages. Though the proposed CTR may not be the best parallel routing
algorithm, we do hope to call for further research on parallel or even multiple
routing.

Acknowledgement This work was supported by Hong Kong Government General Research Fund
(grant No. CityU-123608).

References

1. R. Albert and A.L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys, 74,
2002, pp. 47-97.

2. F. Wu, B.A. Huberman, L.A. Adamic and J.R. Tyle, Information flow in social groups, Physica
A: Statistical and Theoretical Physics, 337, 2004, pp. 327-335.

3. S.N. Dorogovtsev and J.F.F Mendes, Giant strongly connected component of directed
networks, Phys. Rev. E, 64, 2001, pp. 025101

4. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet
topology, Comput. Commun. Rev. 29, 1999, pp. 251-262

5. A. Vazquez, R. Pastor-Satorras, and A. Vespignani, Large-scale topological and dynamical
properties of the Internet, Phys. Rev. E. 65, 2002, pp. 066130

6. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajaopalan, R. Stata, A. Tomkins, and
J. Wiener, Graph structure in the web, Comput. Netw. 33, 2002, pp. 309-320

7. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabasi, The large-scale organization
of metabolic networks, Nature, 407, 2000, pp. 651-654

8. A. Wagner and D. Fell, The small world inside large metabolic networks, Proc. R. Soc.
London, Ser. B., 268, 2001, pp. 1803

9. J.A. Dunne, R.J. Williams, and N.D. Martinez, Food-web structure and network theory: The
role of connectance and size, Proc. Natl. Acad. Sci. U.S.A., 99, 2002, pp. 12917

10. J. Camacho, R. Guimera, and L.A.N. Amaral, Robust Patterns in Food Web Structure, Phys.
Rev. Lett., 88, 2002, pp. 228102

11. M. Ericsson, M.G.C. Resende, and P.M. Pardalos, A Genetic Algorithm for the Weight Setting
Problem in OSPF Routing, J. Comb. Optim., 6, 2002, pp. 299

12. B. Fortz and M. Thorup, Optimizing OSPF/IS-IS weights in a changing World, IEEE J. Sel.
Areas Commun., 20, 2002, pp. 765-767

13. V. Gabrel, A. Knippel, and M. Minoux, A comparison of heuristics for the discrete cost
multicommodity network optimization problem, J. Heuristics., 9, 2003, pp. 429-445

14. D. Allen, I. Ismail, J. Kennington, and E. Olinick, An Incremental Procedure for Improving
Path Assignment in a Telecommunications Network, J. Heuristics., 9, 2003, pp. 375-339

15. E. Mulyana and U. Killat, Load Balancing in IP Networks by Optimising Link Weights,
European Transactions on Telecommunications. 16(3), 2005, pp. 253-261

16. B. Danila, Y. Yu, J.A. Marsh, and K.E. Bassler, Optimal transport on complex networks, Phys.
Rev. E., 74, 2006, pp. 046106

17. K. Kim, D. Nicklescu and S. Hong, Coexistence of VoIP and TCP in Wireless Multihop
Networksm IEEE Communications Magazine, June 2009, pp. 75-81.

18. M.E. J. Newman, Phys. Rev. E 64, 016132 (2001).
19. Miniwatts Marketing Group. World Stats. Available: http://www.internetworldstats.com/stats.

htm. Last accessed 22th Sep 2011 (2011).
20. J. Baliga et al., JLT, Vol. 27, No. 13, Jul. 2009
21. R. Tucker, “A green internet”, in Proc. IEEE LEOS Annual Meeting, Newport Beach, CA,

Nov. 9-13, 2008.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

9 A Parallel Routing Algorithm for Traffic Optimization 261

22. J. Baliga, K. Hinton, and R.S. Tucker, Energy consumption of the Internet, Optical Internet,
2007 and the 2007 32nd Australian Conference on Optical Fibre Technology. COIN-ACOFT
2007. Joint Int. Conf. 1–3, June 2007

23. L. Zhao, Y.-C. Lai, K. Park and N. Ye, Phys. Rev. E 71, 026125 (2005).
24. T. Zhou, G. Yan, B.-H. Wang, Z.-Q. Fu, B. Hu, C.-P. Zhu and W.-X. Wang, Dyn. Contin.

Discret. Impuls. Syst. Ser. B-Appl. Algorithm 13, 463 (2006).
25. A.-L. Barabasi and R. Albert, Science 286, 509 (1999).
26. A.-L. Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999).
27. S. Sreenivasan, R. Cohen, E. Lpez, Z. Toroczkai, and H.E. Stanley, e-print cs.NI/0604023

Chapter 10
Internet Based Service Networks

LiYing Cui, Soundar Kumara, and Réka Albert

Abstract This chapter focuses on services networks. We review the important
aspects of services (flow patterns, semantic issues, Quality of Service (QoS) and
user preferences), as well as service composition techniques, network metrics and
models. The Concept-Service (CS) network matrix is introduced. The CS network
dynamics and optimization based service composition are the original contributions
of this chapter based on our years of research on this topic.

10.1 Introduction

Information Technology provides rich connectivity which is an opportunity and a
challenge as this interconnectedness leads to networks of millions of nodes (e.g.
YouTube/Facebook users, mobile phone owners, and Internet service providers) and
of considerable heterogeneity (the nodes include software, devices, and people and
broadly Internet of things). Information sharing and retrieval in internet networks
drives the day-to-day business across the world. In general, the map of the Internet
is considered at two different scales. At the level of Autonomous Systems (ASs),
an AS is an organizational unit of a particular domain or service provider, and
the edges represent physical communications that connect sub-networks or devices
across these ASs. The exchange of information between devices or sub-networks is
done using routers. The map of the Internet at this scale consists of nodes as routers
and their communications within and across ASs as edges.

The proliferation of e-commerce and the fast paced development of information
technology have fueled the use of distributed Cyber business processes. Service
composition enforces the usage of automatic Internet services (also called web

L.Y. Cui • S. Kumara (�) • R. Albert
Department of Industrial Engineering, 310 Leonhard, University Park, PA 16802, USA
e-mail: luc5@psu.edu; skumara@psu.edu; rza1@psu.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 10, © Springer Science+Business Media, LLC 2012

263

luc5@psu.edu
skumara@psu.edu
rza1@psu.edu

264 L.Y. Cui et al.

services) to build different kinds of service complexes, which can meet a variety of
business applications. Web services and the parameters/concepts involved in them
can form a network if we take services and parameters (concepts) as nodes, and treat
the information flow among concepts and services as arcs.

The prospect of web service boom has inspired a number of large Information
Technology companies to work on service computing. Microsoft is developing its
next generation operating system that embeds a service publisher. IBM, HP, Sun and
others have been cooperating on a Universal Description, Discovery and Integration
(UDDI) Center. Google has set up its own registry center for web services. It must
be noted that service engineering focuses on the traditional hard services carried out
by physical entities, but ignores the soft services carried out automatically via Cyber
space.

In this chapter, we focus on the background of using optimization and semantics
in service networks. We provide preliminary analysis on how to use complex
networks in service composition.

10.2 Problem Definition

We have stated in the previous section that Information Technology provides rich
connectivity among millions of nodes and thus leads to the evolution of complex
networks. The links of these networks are the information flow shared among the
nodes. One can make the following definitions:

Definition 10.1. Service provider: Any software, machine, people, product, etc.,
that can provide useful function to others.

Definition 10.2. Customer: The party which needs a service from a service provider.

Definition 10.3. Service: A function that a service provider offers to a customer

Definition 10.4. Web service (Internet based service): A service provided via
WWW or Internet.

Definition 10.5. Concept: A concept is a cognitive unit of meaning which is used
to describe services.

Definition 10.6. Service network: A network formed where the nodes are services
and concepts and the links among nodes are the information flows among the nodes.

Definition 10.7. Service composition: Service composition is a process to select a
set of services and their flow sequence to perform a task which cannot be finished
by any individual service.

Definition 10.8. Input: A pre-condition of a service is defined as an input to the
service.

Definition 10.9. Output: A post-condition or result of a service is defined as an
output of the service.

10 Internet Based Service Networks 265

A service is a set of related activities that produce value to the customers by
fulfilling a one or several function(s). Web services belong to services. However,
only those services using data flow as inputs and outputs can be developed as Web
Services. If we only study the business processes composed by Web Services, we
call it a web service composition problem (WSC); otherwise, we call it a general
service com-position problem. A web service is described by pre-conditions (inputs)
and post-conditions (outputs).

The relationship among web service composition, broad service composition is
the following:

Web Service Composition ⊆ General Service Composition (10.1)

We will use the terms service planning and service composition interchangeably.
We illustrate service planning through the following scenario: Olivia, a consultant,
wants to travel from State College to Washington D.C. Saturday or Sunday of this
week. She would like to return from DC next Friday. She has meetings on Monday
and Tuesday. On Wednesday, she needs to present a paper at a local university. On
Thursday, if weather permits, she would like to watch a baseball game. Otherwise,
she would go to the Space Museum. After the museum or baseball game, she wants
to have dinner at a Mexican restaurant.

She may need to accomplish the following tasks in order to implement her
plan:

1. Book an airline ticket from State College to Washington D.C.
2. Book a hotel in Washington D.C.
3. Rent a car in Washington D.C.
4. Check the weather for Thursday.
5. If the weather forecast is good for Thursday, buy a ticket for the baseball game.
6. If the weather forecast is bad, check the schedule of the Space Museum.
7. Reserve a seat in a Mexican restaurant for dinner.

The task order (with antecedent and consequent states) results in a plan. The
generation of this trip planning is a web service composition problem. Figure 10.1
shows the service composition process.

10.3 Components of Service Composition

10.3.1 Flow Pattern

In service composition problems, there are four types of service flow patterns,
namely Sequential, Switch, Parallel, and Iterative. In Fig. 10.2a, Service 1 is the
predecessor of Service 2, so these two services are sequential. In Fig. 10.2b,
either Service 1 or Service 2 is adequate for the whole compound service, so the

266 L.Y. Cui et al.

Fig. 10.1 An example of a web service composition

relationship between Service 1 and Service 2 is a switch (we call it “Or” Parallel
in this context), with a probability for using Service 1, and probability for using
Service 2. In Fig. 10.2c, both Service 1 and Service 2 are needed to provide input
information for the successors, so the two services are parallel (we call it “And”
Parallel in this context). In Fig. 10.2d, Services 1, 2, and 3 are in a loop, so we call
this iterative flow pattern. In the example shown in Sect. 10.1, the task of booking
an air ticket and the task of booking a hotel in Washington D.C. are sequential,
since the number of nights needed in a hotel depends on the departure date from
State College. The tasks of booking a hotel and renting a car can be executed in
parallel. Buying a ticket for a baseball game and checking the schedule of the Space
Museum are conditional tasks, and the flow pattern is a switch. There is no iterative
flow pattern in this plan.

The data structure of web services is shown in Fig. 10.3. Web services are stored
in a hierarchical form and are classified into different port types; one service may
have multiple operations. Each web service operation includes a set of inputs and
a set of outputs. Two web service operations can communicate with each other if

10 Internet Based Service Networks 267

Fig. 10.2 Four basic service flow patterns

Fig. 10.3 Data structure of web service database

268 L.Y. Cui et al.

Fig. 10.4 The inner structure of web services (In this chart, parameter is concept)

one’s output(s) matches the others’ input(s). In order to accomplish the service
composition, each web service must specify the properties of the service, such as
where it is located (URL), how it is invoked (inputs), and what it does (outputs).
To guarantee the successful information exchange among web services, the service
providers must describe and publish the web services in a specified standard(s), such
as WSDL [1], BPEL4WS [2], WS-Choreography [3], OWL-S(DAML-S) [2].

The communication between two web services is via sharing inputs or outputs
between them; e.g., an output of one service can be used as an input of another.
Figures 10.2, 10.3 and 10.4 show the sharing scheme.

10.3.2 Semantic Aspects

It is expected that all the input and output attributes of web services are described
using standard semantic concepts. So, the web services are semantically interpreted
in an ontology [36] and registered in service registries such as, for instance, UDDI
[3]. A Semantic Service Matching Algorithm is used to compare the concepts
derived from processing the ontology and the requirements from the users with the
concepts presented in the format of published services. Next, we describe the most
popular semantic matching algorithm in service composition.

Each concept has its sub-classes and super-classes. The service matching
algorithm searches the Web Service Description file and the ontology file to check
the semantic relationship between every pair of concepts. The algorithm derives
the explicit and implicit relations between concepts are derived through reasoning.
Table 10.1 illustrates four basic types of relationships between two concepts: (a)
Concept 1 is the same as Concept 2; (b) Concept 1 is an ancestor of Concept 2; (c)
Concept 1 is an offspring (subclass) of Concept 2; (d) Concept 1 has no relationship
with Concept 2.

10 Internet Based Service Networks 269

Table 10.1 Types of
similarity match between
two concepts (C1 ,C2)

Description in words Semantic description

C1 exactly matches C2 C1 =C2

C1 partially matches C2 C1 ⊂C2

C1 over matches C2 C1 ⊃C2

C1 fails to match C2 No relation

A score based on the match is assigned based on these relations:

match(C1,C2) =

⎧⎪⎪⎨
⎪⎪⎩

Score1 if C1 =C2

Score2 if C1 ⊂ C2

Score3 if C1 ⊃ C2

0 otherwise

Here Score1 > Score2 > Score3 (10.2)

Definition 10.10. Concept domination: Concept C1 dominates concept C2 if con-
cept C1 has more information than concept C2 does.

As we know, if concept C1 is a subclass of concept C2, concept C1 has more
information than concept C2 does.

Lemma 10.1. If concept C1 is a subclass of concept C2, e.g. C1 ⊂ C2, then C1

dominates C2.

When we need to check whether a service S1 can be used instead of another
service S2, we need to compare the input and output concepts. It is preferred that
service S1 needs no more input information than service S2 does, and generates no
less output information than service S2 does.

Definition 10.11. Service domination: Service S1 dominates service S2, if service
S1 needs no more input information than service S2 does, and generates no less
output information than service S2 does.

Let the symbol input represent the total input concept set of service S1 and service
S2, and the symbol output represent the total output concept set of service S1 and
service S2. The following lemma holds.

Lemma 10.2. Service S1 dominates service S2, if CS1
i ⊇ CS2

i , i ∈ input, and CS1
i ⊆

CS2
i , i ∈ output.

When a query R is posed, service S can be used as a candidate to fit the request R
if service S dominates the request R. The usability score of an existing web service
S to query R can be defined as:

Definition 10.12. Usability score:

Usability score(R,S) = ∑
i∈input

match(CR
i ,C

S
i)+ ∑

i∈out put
match(CS

i ,C
R
i) (10.3)

270 L.Y. Cui et al.

The above formula shows us how to calculate the usability score of a service
for a query. The usability score of a service for a request consists of the match
scores of all the input concepts and output concepts of the request. All the input
and output matching scores between the request and the service are summed up into
the usability score of a service to the requested service. All candidate services can
be sorted according to their usability scores. The service with the highest usability
score wins. The candidate services can also be further evaluated according to the
Quality of Service (QoS). The disadvantage of the Semantic Matching Algorithm is
that it is only used to match a query with existing services, instead of doing service
composition. However, we can use semantic matching to identify the topologically
significant concepts.

10.3.3 Quality of Services

Recently, user preferences have drawn more attention in the service oriented
research field [4]. However, some traditional automated service composition ap-
proaches cannot meet the personalized user requirements due to the following
reasons:

1. Common knowledge cannot characterize personalized requirements. For exam-
ple, if the user wants to go to Washington D.C. from State College, taking a
flight minimizes time but driving is also a viable option. In case the user is afraid
of flying, or annoyed with the frequent delays airlines have or finds the cost of
flying too high, flying is not the best option. In fact, the users’ requirements are
variable and unpredictable in different environments. Therefore, it is impossible
to forecast all personalized requirements in advance.

2. Users’ requirements include both hard and soft constraints. In the traditional
approaches, only a user’s initial state is considered as a constraint to implement
planning, e.g., the user may have 5,000 dollars budgeted for the trip. In addition,
if the user wants to travel in a modality that both minimizes travel time and offers
the least cost, there may be no way to satisfy both of her preferences at the same
time. Thus, she has to make a compromise to select a feasible conveyance. This
kind of soft-constraint is usually fuzzy and negotiable. It is important to realize
that the user-centered service composition should pay much more attentions
to flexible user preferences for improving users’ satisfaction. In addition, the
soft-constraints will also improve the success rate of service composition if a
compromise feature is considered.

We consider five general QoS criteria in service selection: (1) execution price, (2)
execution duration, (3) reputation, (4) reliability, and (5) availability.

A web service can contain more than one operation. The operations can be
different in terms of functionality and QoS. As the service selection technique can
also be applied in operation selection, we can treat each operation as an individual
service. Based on Zeng et al. [6], we define the components of the QoS of services.

10 Internet Based Service Networks 271

Table 10.2 Computing the
QoS of a compound service
s(s1, s2, ..., sn) (derived
from [6])

Criteria Equation

Price C(s) = ∑n
i=1C(si)

Duration D(s) =Cmax(s)
Reliability Q(s) =∏n

i=1 eR(si)

Availability A(s) =∏n
i=1 eA(si)

Reputation R(s) = ∑n
i=1

1
n R(si)

Definition 10.13. Price: Given a service s, the price C(s) is the fee that a service
requester has to pay for invoking service s.

Definition 10.14. Execution duration: Given a service s, the execution duration
D(s) measures the expected delay between the moment when a request is sent and
the moment when the results are delivered. The execution duration is computed
using the expression D(s) = Tprocess(s) + Ttrans(s), is the sum of the processing
time and the transmission time. The transmission time is estimated based on past

executions of the service, i.e., Ttrans(s) =
∑n

i=1 Ti(s)
n , where Ti(s) is one of the past

transmission times, and n is the number of executions of this service observed in the
past.

Definition 10.15. Reliability: The reliability Q(s) of a service s is the probability
that a request is successfully executed within the maximum expected time indicated
in the web service description. Reliability is computed from the data of the past
invocations using the expression Q(s) = Nsuccessful(s)

N(s) , where Nsuccessful(s) is the
number of times that the service s has been successfully delivered within the
maximum expected time frame, and N(s) is the total number of invocations of the
service.

Definition 10.16. Availability: The availability A(s) of a service is the probability

that the service is accessible which is computed as: A(s) = Ta(s)
T (s) , where Ta(s) is the

total amount of time when service S is available during the total T (s) amount of
operation period.

Definition 10.17. Reputation: The reputation R(s) of a service s is a measure of
its trustworthiness. It mainly depends on the comments from users’ experiences of
using this service. Different users may have different opinions on the same service.
The value of the reputation is defined as the average rank given to the service by

n users: ∑n
i=1 Ri

n , where Ri is the users’ ranking on a service’s reputation, n is the
number of times the service has been graded (derived from [6]).

Definition 10.18. Quality of a service: The quality a service s is defined by the
following expression: q(s) = (C(s),D(s),Q(s),A(s),R(s))

Methods to compute the QoS criteria vary depending upon the application and
we show our schema in Table 10.2.

272 L.Y. Cui et al.

In Table 10.2, C(si) is the price of service si, i = 1,2, ...,n. Cmax(s) is the makes
pan of the service complex. Q(si) is the reliability of service si, i = 1,2, ...,n. A(si)
is the availability of service si, i = 1,2, ...,n. R(si) is the reputation of service si,
i = 1,2, ...,n.

We assume that preferences upon a parameter form a totally ordered set in the
domain of the parameter. In most of the cases, it is difficult to find a plan which
can satisfy all the requirements. In [5], a global utility function is either implicitly
or explicitly assumed to implement the trade-off between different preferences.
The utility-based approaches may not be convenient for users. For example, it
can be difficult for a user to weights to cost and performance. The theory of
Pareto dominance can be used to select relatively better plans from feasible plans.
Interested readers are referred to [7] for details.

Definition 10.19. Pareto dominance: Let A and B be the two candidate plans for
a planning problem, and (p1, p2, ..., pn) consists of a set of preference criteria. Let
pi(A) and pi(B) be the preference value of plan A and plan B for the preference
criterion pi. If pi(A)≥ pi(B) for any i, we call plan A Pareto-dominates plan B.

10.3.4 User Preferences and Performance Metrics

User preferences play an important role in business activities, and are gaining
attention in the web service research field, especially in personalized e-services.
Given the explosion of web services several plans can be generated with differences
in functionality, culture, QoS, and data:

1. Functional differences: Similar services may differ in the detail of their functions.
For example, two travel services – book an air ticket, reserve a hotel room, rent
a car – and – book an air ticket, reserve a hotel room – both provide the function
of trip planning; however, the first service has one more sub-functionality (rent a
car) compared to the second one.

2. Cultural differences: Similar services may refer to different cultural actions. For
example, one service requires users to pay before delivery while another service
charges after delivery. These two services need different preconditions, thus they
should be applied to different users.

3. QoS differences: Similar services may deliver different QoS features. For exam-
ple, a service using one algorithm may be more efficient than a service using
another algorithm; however, the former may have less privacy than the latter.

4. Data differences: Similar services’ preconditions may be different in terms of
some data constraints. For example, a specific travel service can only serve those
users with certain destinations and transportation options.

Definition 10.20. Satisfaction Density: DP = Nv
Nt

, where Nv represents the total
number of user preference vectors that are satisfied, and Nt represents the total
number of preference vectors.

10 Internet Based Service Networks 273

Definition 10.21. Satisfaction degree:

SD = 1− ∑n
i=1 rd(vAi)−∑n

i=1 rdmin(vAi)

∑n
i=1 rdmax(vAi)

(10.4)

where∑n
i=1 rdmax(vAi) and∑n

i=1 rdmin(vAi), respectively, represent the maximum and
minimum of relaxation degree of the candidate plans, and ∑n

i=1 rd(vAi) represents
the relaxation degree of the selected plan.

10.4 Overview of Service Composition Techniques

The two main categories of service composition methods are (1) heuristic methods
and (2) mathematical programming methods. Chan et al. [7] discussed AI planning
methods under classical planning, neoclassical planning, heuristic control, and
AI planning under uncertainty categories. Among the mathematical programming
methods, integer programming and dynamic programming are the most popular.
Within each sub-category of these composition methods, there are smaller classes
of methods for service composition planning (see Table 10.3).

As for mathematical programming approaches, in 1999, Vossen et al. [8, 9]
and Kautz [10] initiated the ILP (Integer Linear Programming)-based approach to
AI (Artificial Intelligence)-planning problems. Zeng et al. [6] reported a multiple
criteria ILP model that can be used for a general case of web service composition.
Gao et al. [11] model service composition by using integer programming. In 2008,
Rao et al. [12] applied linear logic theorem proving to the web service composition
problem. This approach considered not only functional attributes but also non-
functional ones in composing web services, which is the same objective as our
integer linear programming based methodology. This approach assumes that core
services are already selected by the user; however, their functionality does not
completely match the user’s requirement. Therefore, the approach allows partial
involvement of the decision maker in the solution generation procedure.

Heuristic methods are popular in the current planners, as they can find an
acceptable solution in a large decision domain in a timely manner. In this chapter,
the semantic matching algorithm and semantic casual link matrices will be described
in detail since they consider the semantic issue in planning, which is important in
web service composition. The mathematical programming methods find the optimal
plans for customers’ queries. Some of the mathematical programming methods
only consider the QoS issue in the domain consisting of the services with the
same functions; others consider both functional and QoS issues for heterogeneous
services.

In addition, miscellaneous service planning works were reported in the past
decade. In 2003, Sirin et al. [13] proposed a prototype version of a semi-automatic
method for web service composition. Their method provides possible web services
to users at each step of the composition through matching web services based on

274 L.Y. Cui et al.

Table 10.3 The classification of web service composition techniques

Class Sub-class Detailed sub-class

Heuristic
methods

Deterministic
planning
methods

1. State-space based planning [10, 24]
2. Plan-space based planning [17, 18]
3. Graph based planning [17]
4. Propositional satisfiability planning [7]
5. Constraint satisfaction planning [7]
6. Domain-independent heuristic control

planning [7]
7. Rule based control planning [7]
8. Hierarchical task network planning [7]
9. Situation/event calculus planning [7]

10. Logic based planning [12]
11. Temporal planning [7]
12. Planning with resources [7]
13. Model checking based planning [7]
14. Case-based planning [7]
15. Agent-based planning [7]
16. Plan merging and rewriting [7]
17. Abstraction hierarchies [7]
18. Semantic matching algorithm [29]
19. Semantic casual link matrices [13]

Planning under
uncertainty

1. Case-based planning with uncertainty [16]
2. Domain analysis in time [20]
3. Planning based on Markov decision processes

(Also see dynamic mathematical
programming) [42]

4. Multi-agent based planning [15]

Mathematical
programming

Integer
programming

1. Single objective [8–11]
2. Multi objective programming [6]
3. Multi objective goal programming [28, 33]

Markov Dynamic
programming

1. Classical dynamic programming [42]
2. Nested dynamic programming [41]
3. Discounted dynamic programming [41]

functional properties as well as filtering out based on non-functional attributes. In
this method, users are involved in the composition process. In 2004, Xiao et al.
[14] proposed an automatic mapping framework based on XML document type
definition structure. In 2005, Huang et al. [15] proposed a progressive auction
based market mechanism for resource allocation that allows users to differentiate
service value and ensure resource acquisition latency. Allocation rule, pricing rule,
bidding strategy, etc. were explored in this work. Hwang et al. [16] proposed a
dynamic web service selection model to determine a subset of web services to
be invoked at runtime so as to successfully compose the required web service.
Pacific et al. [17] presented an architecture and prototype implementation of
performance management of cluster-based web services which can allocate server

10 Internet Based Service Networks 275

resources dynamically. Oh et al. [18, 19] present AI planning-based framework
which enables automatic composition of web services, and developed a novel web
service benchmarking tool. In 2007, Zhang et al. [20] proposed an architectural
framework which enables technology for business service analyzers to compose and
adapt heterogeneous services by pattern identification. Oh et al. [21] applied large-
scale network techniques in web service analysis. Montagut et al. [22] addressed the
security features on executing distributed web services. Lufei et al. [23] proposed
an adaptive secure access mechanism as well as an adaptive function invocation
module in mobile environments. Phan et al. [24] discussed a similarity-based SOAP
multicast protocol to reduce bandwidth and latency in web services with high-
volume transactions. The secure information handling in web service platform was
studied by Wei et al. [25].

QoS filtering algorithm is to filter the services using the QoS criteria mentioned
in Sect. 10.3. Service composition merely QoS filtering has high computational
complexity when there are a large number of feasible plans, since it needs an
exhaustive search before drawing a conclusion. Moreover, when there is more than
one QoS criterion in the planning problem and there is no feasible plan dominating
all the other plans, it is difficult to determine which plan is the best for the user. In
order to alleviate this problem we develop a network mining based approach, which
is described in the next section.

Graph based methods, though used for service composition, do not link the
semantic aspects of concepts and services. This linkage, we believe is critical in
reducing the computational complexity. This in mind, we develop network based
techniques which exploit the relationship between concepts and services.

10.5 Concept-Service Network

Both services and concepts can be nodes, and the input and output information
flow between services and concepts can be edges in this network. We can thus
construct service networks. Albert et al. showed that the World Wide Web is a small
word network (i.e., its average path length depends logarithmically on its size) [26].
Engelen showed that web service network is scale free based on the online service
data he collected [27]. The motivation of the analysis in this section is to build the
network of services, and use computational tools from network science to help solve
the web service composition problem.

The characteristics of the web service network include:

1. The graph is dynamic: Sometimes a sub set of web services may be off line, and
new web services may emerge. In addition, some web services may change their
functions over time.

2. The maximum distance between two nodes may be infinity, which means that the
two nodes have no relationship with each other.

3. The minimum degree (i.e. number of edges) of a service is 2; the minimum
degree of a concept is 1.

276 L.Y. Cui et al.

4. There could be some cycles.
5. There may be some completely connected sub-graphs in the network.
6. The network is directed and asymmetric.
7. The connectivity of the graph is the most informative measure in the web service

network, since it is the basis to compose individual web services into compound
services.

10.5.1 Constructing the Concept-Service Network

The service network patterns are related with service flow patterns. Similar to the
concept of motifs in System Biology, there are four motifs of Service flow patterns.
Using the well-accepted terminologies in the web service field. We call them:
Sequential (Chain), Switch, Parallel (Feed-forward loop) and Iterative (Feed-back
loop) as described in Fig. 10.2.

The four flow patterns are formed depending on how web services share para-
meters among them. A web service has parameter definition of input flows and
output flows (see Fig. 10.4). Based on the semantic information among concepts,
the input output relation between a concept and a service, and the information flow
among services, we can build a Concept-Service (CS) network.

The steps for building the network include: (1) indexing the services and
concepts; (2) generating the relationship among concepts and services in a matrix.
We use M to denote the CS network matrix, and the following steps are how to
construct the matrix, M.

In matrix M, (a) if a concept is one of the inputs that a service needs, the
corresponding element in M, is 1; (b) if a concept is one of the output concepts
of a service, the corresponding element in M is 1.We illustrate this procedure in our
preliminary work [28].

In Algorithm 1, W is the WSDL file, and G is the OWL file. (W,G) includes
the total information of the WSDL file and OWL ontology. A is a container.
ElementScore is a temporary variable representing the utility of the relation. C is
any concept in G. ElementCtoS() is a sub-function to compute the utility score of
the link from a concept to a service. ElementStoC() is a sub-function to compute the
utility score of the link from a service to a concept. ElementCtoC() is a sub-function
to compute the utility score of the link from a concept to a concept. Score(C1,C2)
is the semantic score of the link C1 to C2.

In this work, the semantic match scores among concepts are derived based on the
work of Li and Horrocks [29]. The following definition is used to calculate the score
in ElementCtoC().

Score(C1,C2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if C1 =C2
1 if C1 ⊂ C2
0 if C1 ⊃ C2
0 Otherwise

(10.5)

10 Internet Based Service Networks 277

Algorithm 1 Network generation
Main function MatrixGen(W,G)

for any service in W do
Index it in A

end for
for any concept in G do

Index it in A
end for
Initialize ElementScore = 0
for any concept C in G and any service S in W do

ElementScore = ElementCtoS(C,S)
end for
for any service S in W and any concept C in G do

ElementScore = ElementStoC(S,C)
end for
for any two concepts C1 and C2 in G do

ElementScore = ElementCtoC(C1,C2)
end for
for any two services S1 and S2 in W do

ElementScore = 0
end for

End

Function ElementCtoS(C, S)
Parse W
if I is the input set of S and C ∈ I then

Score = 1
end if

End

Function ElementStoC(S, C)
Parse W
if O is the output set of S and C ∈ O then

Score = 1
end if

End

Function ElementCtoC(C1, C2)
Score = Score(C1,C2)

End

10.5.2 Service Composition Framework in the Concept-Service
Network

The CS network we build in the previous section will play an important role in
service network mining and service composition.

As shown in Fig. 10.5 (see our work in [28]), we build the network based on
the WSDL and OWL ontology files. We analyze the topology of the network.

278 L.Y. Cui et al.

Fig. 10.5 The composition
process [28]

The feasible searching region will be selected when a request arrives. Finally, one
of the solvers described below can be selected according to the average degree
of the feasible sub-networks. When the average degree of a component in the
network is large, exhaustive search is time-consuming, so we utilize mathematical
programming to find the optimal compound service; otherwise, regression search is
a good technique to obtain the optimal solution quickly. It is possible that the domain
searched is only one of the connected components in the large-scale network. Next,
the strategy of searching for optimal solution differs based on the connectedness of
the component. This helps to determine which searching strategy, regression search
or mathematical programming is good for the network. The average degree of a
component is: d = 1

n ∑
n
i=1 di, where n is the total number of nodes in a component

and di is the total degree of node i. (1) If the average degree d of the connected
component is small d < d0, where d0 is a threshold to be determined, we use
regression search. (2) If the average degree of the connected component is large
d > d0, the multi-criteria mathematical integer programming in service composition
is adopted. In addition, if the size of the searching sub-network is large, some
heuristic method can be further adopted.

10 Internet Based Service Networks 279

10.5.3 Concept-Service Network Analysis

Once we represent the CS network using CS network matrix M, the network analysis
may include:

1. Finding the components and bridges between each pair of components in the
network. This can help the system to judge the effects of network node and link
failures for some queries.

2. Calculate the centrality of services and concepts. This can help the system to
identify the important services and popular concepts.

3. Analyze the distance between services. We can use the information for service
composition. When the distance of two services is infinity, these two services
cannot be composed together.

4. Represent the network’s dynamics and analyze the characteristics mentioned
above. This can help find the hidden information in the network. The dynamics
can include edge growth, node growth, or both. In web service composition, the
edge growth dynamics is most informative, which is our focus in the next section.

5. In Fig. 10.6 [28], nodes 7, 12, 8, and 3 belong to component 1 (marked in purple);
nodes 1, 2, 4, 5, 6, and 11 are in component 2 (marked in blue); and nodes 9, 10,
and 13 together form component 3 (marked in yellow). In this figure, arc (4, 3)
is the bridge from the component 2 to component 1. So, arc (4, 3) is important, if
we need to integrate component 1 and component 2 in order to form compound
services that satisfy some customers’ requests.

As the specific concepts and techniques used in network analysis may not be
familiar to all the readers, we review them next.

10.5.3.1 Review of Network Science

This section is organized as follows: First, we briefly review network metrics,
network models and network clustering. We then introduce the service network
mining techniques that we developed.

Characterization of networks

The structure of networks conveys rich information useful for inference. The last
decade has seen a proliferation of topological metrics. We review some of the
important ones here. The order of a network is the total number of nodes (also
called vertices), and its size is the total number of links (also called edges) in a
network. The degree of a node is the number of links connecting the node to its
neighbors. The incoming (in) degree and outgoing (out) degree sum up to the degree
of a node. The degree distribution is a 2-dimensional graph showing the frequency
of nodes with different degrees in the network. The network density is the ratio
between network size and the maximum possible number of links. One of the most

280 L.Y. Cui et al.

Fig. 10.6 A small network of web services [28]

important measures is the distance. The distance between two nodes is the length
of the shortest path between them, i.e. the minimum number of links that one needs
to follow when going from one node to the other. The shortest path can be found
through Dijkstra’s algorithm. The average path length of a network is the average
value of distance between any pair of nodes in the network.

The diameter of the network is the longest distance between any pair of nodes in
a network. The clustering coefficient of a node is the number of triangles centered
at the node divided by the number of triples centered at the node. The clustering
coefficient of a network is the arithmetic mean of the clustering coefficients of all
the nodes. The betweenness centrality quantifies how much a node is between other
pairs of nodes. Let us define the ratio between the clustering coefficient and the
average path length as the CP ratio. The proximity ratio of a network is the CP
ratio between this network and a random network. This property captures the extent
of a network’s small-worldness. The efficiency of a network is the communication
effectiveness of a networked system (global) or of a single node (local). The mixing
coefficient is the Pearson correlation between the degrees of neighboring nodes.
The modularity index measures the topological similarity in the local patterns of
linking. Table 10.4 summarizes the most commonly used metrics and their equations
[30, 31].

10 Internet Based Service Networks 281

Table 10.4 Metrics for networks [33]

Metric Math equation (in undirected graph)

Order The number of nodes n

Size m = ∑i∑ j ai j , where ai j =

{
1 node i and j are linked
0 otherwise

Node degree d = ∑i ai j , where ai j =

{
1 node i and j are linked
0 otherwise

Density δ = 2m
n(n−1) , where m is the number of arcs in the network and n

is the number of nodes in the network
Average path length l = 1

n(n−1) ∑i �= j di j , where di j is the distance between node i and
node j, and n is the number of nodes in the network

Diameter D = max{di j}, where di j is the distance between node i and
node j, and n is the number of nodes in the network

Clustering coefficient of
a node

Ci =
2ti

ki(ki−1) , where ti is the number of triangles centered at
node i, and ki is the degree of node i

Clustering coefficient of
a network

C = 1
n ∑i Ci, where Ci is the clustering coefficient of node i

Betweeness centrality Bk = ∑k∈p(i, j)
1

ni j
, where ni j is the number of path from node i

to node j

Proximity ratio μ =
C
l

Crand
lrand

, where C is the clustering coefficient of the network,

and l is the average path length of the network; Crand is the
clustering coefficient of a random network and lrand is the
average path length of a random graph

Efficiency Eglobal =
1

n(n−1)∑i �= j
1

di j

, where di j is the distance between node i

and node j

Mixing coefficient r = ∑i(dgi−d̄g)(dni−d̄n)√
∑i(dgi−d̄g)2(dni−d̄n)2

, where dgi is the degree of node i,

and dni is the first order mean degree of the neighbors of
node i. The mixing coefficient is the standard devotion

Modularity index Q = ∑i(eii −ai)
2, where eii is the fraction of edges in subgraph

i; ai is the fraction of edges between this subgroup and all
other subgraph

Network models

There are three popular network models: (1) random networks, (2) small world
networks, and (3) scale free networks. The mathematicians Erdös and Rényi
analyzed Random networks based on a set of nodes (ER model [38]). In this
network, the links are added into a network consisting of n nodes and with no links
among them. The link between any pair of nodes is placed with a probability of p.
The degree distribution of the network follows Poisson distribution with the average
node degree of < k >= np. Regular networks include rings, lattices, trees, stars, and
complete graphs. A ring is a connected graph in which a node is linked exactly with
two other nodes. A lattice is a graph in which the nodes are placed on a grid and
the neighbors are connected by an edge. A tree is a connected graph containing
no cycle. A star graph is a tree in which every node is connected to the root.

282 L.Y. Cui et al.

Fig. 10.7 Comparison of random network, small-world, and scale-free networks [32]

In a full (complete) graph, there is an edge between all pairs of nodes. One of the
most important network models is the small-world network. The small-world [39]
concept describes the fact in a network that regardless of size there is a relatively
short path between any two nodes. The small world networks are the networks with
low average shortest path length and a high clustering coefficient, which therefore
are in a sense situated between regular and random networks. The average path
length of this network scales in log<k> n. Here, < k > is the average out-degree and
n is the number of nodes. When pairs are selected uniformly at random, they are
connected by a short path with high probability. Many real world networks exhibit
this property. Random networks also have small average distances, however they
are not clustered. Small-world networks usually appear in social sciences. Many
systems in real world are dynamic and the order of the networks (number of nodes)
grows over time. The concept of a scale-free network was introduced by Barabási
and Albert (BA model [37]) in 1999. In a scale-free network, the number of nodes
n is expected to change over time. In BA model, the network dynamics is described
by introducing new nodes into an existing network. When a vertex is linked in, it
tends to link with higher probability to a vertex that already has a large number
of edges, which is the so called preferential attachment. A comparison of random,
small-world and scale free networks is shown in Fig. 10.7. For detailed comparison
of the three types of networks, please refer to [32].

10 Internet Based Service Networks 283

Clustering

Clustering [40] is the process of organizing objects into groups whose members are
similar within a group and dissimilar to the objects in other groups based on some
metric. There are four categories of clustering techniques: (1) Exclusive Clustering.
(2) Overlapping Clustering. (3) Hierarchical Clustering. (4) Probabilistic Clustering.
In an exclusive clustering process, a datum belongs to a definite cluster and could
not be included in any other cluster. In an overlapping clustering process, a datum
may belong to two or more clusters with different degrees of membership. In a
hierarchical clustering process, we begin with the condition that every datum is a
cluster, and keep merging the two nearest clusters at a time, until we reach the final
number of clusters needed. In a probabilistic clustering process, we cluster data
based on a mixture of probability distributions.

We give a typical clustering method as an example in each category: K-means
(Exclusive), Fuzzy C-means (Overlapping), Hierarchical clustering (Hierarchical),
and Mixture of Gaussian (Probabilistic).

1. K-means method
The steps of K-means clustering are: (1) Place K points into the space represented
by the objects that are being clustered. These points represent initial group
centroids. (2) Assign each object to the group that has the closest centroid. (3)
When all objects have been assigned, recalculate the positions of the K centroids.
(4) Repeat Steps (2) and (3) until the centroids no longer move. This produces a
separation of the objects into groups from which the metric to be minimized can
be calculated.

2. Fuzzy C-means method
Fuzzy C-means method is derived from K-means algorithm by allowing a datum
to belong to multiple clusters with a membership degree.

3. Hierarchical clustering method
The steps of hierarchical clustering are: (1) Begin with the disjoint clustering
having level L(0) = 0 and sequence number m = 0. (2) Find the least dissim-
ilar pair of clusters in the current clustering, say pair (r), (s), according to
d[(r),(s)] = mind[(i),(j)], where the minimum is over all pairs of clusters in
the current clustering. (3) Increment the sequence number: m = m+ 1. Merge
clusters (r) and (s) into a single cluster to form the next clustering m. Set the level
of this clustering to L(m) = d[(r),(s)]. (4) Update the proximity matrix, D, by
deleting the rows and columns corresponding to clusters (r) and (s) and adding
a row and column corresponding to the newly formed cluster. The proximity
between the new cluster, denoted (r,s) and old cluster (k) is defined in this way:
d[(k),(r,s)] = mind[(k),(r)],d[(k),(s)]. (5) If all objects are in one cluster, stop.
Else, go to step (2).

4. Mixture of Gaussian method
Mixture of Gaussian method chooses the component at random with proba-
bility P(ωi). It samples a point N(μi,δ 2I). Suppose we have x1, ...,xN and

284 L.Y. Cui et al.

Table 10.5 Comparison among the typical methods

Algorithm Pros. Cons.

K-means
• Simple unsupervised learning

process
• The results produced depend on

the initial values for the
means, and it frequently
happens that suboptimal
partitions are found

• The results depend on the metric
used to measure distance

• The results depend on the value
of k

Fuzzy C-means
• Allows data to belong to more

than one clusters
• Needs to decide number of

clusters

Hierarchical
• Does not need to decide the

number of clusters at the
beginning

• Does not scale well: time
complexity of at least O(n2),
where n is the number of total
objects

• Not easy to undo the clusters in
previous steps

Gaussian
• Well-studied statistical inference

techniques
• Flexibility in choosing the

component distribution
• Obtains a density estimation for

each cluster
• Fuzzy classification is available

• Needs to decide the number of
clusters and component
distribution

P(ω1), ...,P(ωK), we can obtain the likelihood of the sample P(x|ωi,μ1, ...,μK).
Therefore, we minimize

P(X |μ1, ...,μK) =
N

∏
j=1

N

∑
i=1

P(ωi)P(x j|ωi,μ1, ...,μK) (10.6)

We summarize the properties of the four typical clustering methods in Table 10.5.

10.5.3.2 Concept-Service Network Mining

CS network representation

First, let us review the procedure of constructing CS network we described in
Sect. 10.5.1. The steps in building the CS network include: (1) Index the services

10 Internet Based Service Networks 285

and concepts. (2) Generate the relationship among concepts and services in a matrix.
Let this matrix be M. We can generate the elements in matrix using the following
criteria: (a) If a concept is one of the input concepts that a service needs, use value
1 as the corresponding element in. (b) If a concept is one of the output concepts of
a service, use value 1 as the corresponding element in. (c) All other elements are
Zero. Cui et al. describe the computer program to generate CS network matrix [28].

M(n+m)×(n+m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 . . . M1n M1(n+1) . . . M1(n+m)
...

. . .
...

...
. . .

...
Mn1 . . . Mnn Mn(n+1) . . . Mn(n+m)

M(n+1)1 . . . M(n+1)n M(n+1)(n+1) . . . M(n+1)(n+m)
...

. . .
...

...
. . .

...
M(n+m)1 . . . M(n+m)n M(n+m)(n+1) . . . M(n+m)(n+m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.7)

In M, Mii = 1, i = 1, ...,n+m which means any service or concept can reach
themselves; Mi j = 0, i = n+ 1, ...,n+m, j = n+ 1, ...,n+m which means there is
no direct relation between service and concept in the initial matrix.

Let Cn×n be the incidence matrix of concepts derived from semantics; let In×m be
the incidence matrix of concepts to services by Web Service Description Language
(WSDL); let Om×n be the incidence matrix of services to concepts from WSDL; and
let Sm×m be the incidence matrix of services. We initialize Mi j = 0, i=m+1, ...,m+
n, j = m+ 1, ...,m+ n, that is Sn×n = (0)n×n in M initially. Thus,

M(n+m)×(n+m) =

[
Cn×n In×m

Om×n Sm×m

]
(10.8)

The CS matrix can be normalized column-wise. M = [M1
M11

, ..., Mn+m
M(n+m)1

], where

M1, ...,Mn+m are the column vectors in M. After normalizing the columns, the rows
can also be normalized selectively: If the L1 norm of any row vector in M is greater
than 1, we divide each element of the row by the L1 norm of that row; otherwise,
the row is kept the same as before. Let us still denote this normalized CS matrix M.
Thus, M has the following property:

Theorem 10.3. Properties of M: (1) ∑m+n
i=1 Mi j ≤ 1, j = 1,2, ...,m+ n; (2) ∑m+n

j=1
Mi j ≤ 1, i = 1,2, ...,m+ n.

Theorem 10.4. If CS matrix M has properties (1) and (2), the matrices Mi, i =
1,2, ... also have properties (1) and (2).

Definition 10.22. The potential of a Concept-Service network M is defined by

G∗
(m+n)×(m+n) =

[
C∗

m×m I∗m×n

O∗
n×m S∗

n×n

]
, where G∗ = limt→∞∑i=1 Mi = (I −M)−1 − I.

286 L.Y. Cui et al.

Theorem 10.5. Convergence of CS matrix potential: If M satisfies properties (1)
and (2), Mi, i = 1,2, ... converges to zero, e.g., limi→∞Mi = 0.

CS network dynamics

In this section, a study of a Boolean dynamic network is undertaken. A Boolean
dynamic network is a network with the status of its nodes and edges changes in
time, and both nodes and edges in it can only have two states: on and off (or 1 and
0). In the CS network, the procedure of calculating the CS matrix potential is the
same as growing the edges via the following dynamics:

ei j(t) =

{
1 if li j ≤ t
0 otherwise

(10.9)

where ei j(t) is the edge from node i to node j at step t, and li j is the shortest path
length from node i to node j. This dynamics shows that whether an edge ei j(t) exists
or not depends on whether the shortest path length from node i to node j is equal to
or less than t or not. The above edge growth dynamics can be further studied by the
following boolean dynamics:

Nj(t + 1) =

{
Ni(t) if ei j(t) = 1
Nj(t) if ei j(t) = 0

(10.10)

ek j(t + 1) =

{
1 if Nj(t + 1) = 1
0 if Nj(t + 1) = 0

(10.11)

Equation (10.10) shows how to update the node status in a network. Nj(t) is the
status of node j at time t. Nj(t) = 1 means the node j is on, and Nj(t) = 0 means the
node j is off. Equation (10.11) shows how to update the edge status in a network.
ei j(t) is the status of the edge between node i and node j. ei j = 0 means the edge
between node i and node j does not exist at time t; ei j = 1 means the edge between
node i and node j is on at time t. Algorithm (2) shows how to calculate the potential
of CS network via boolean dynamic network.

The node status in (10.10) is an intermediate step for updating edge status
in (10.11). We are only interested in edge growth in CS network. An example
service network with 45 concept nodes and 35 service nodes is constructed. To
generate the initial network, we assume that the connectivity probability among
nodes is p = 0.01; the connectivity probability between concepts and web services
is p = 0.04. And there is no arc among web services. No self-loop is allowed in the
network. However, there are only a few links among concept nodes in this network
(see Fig. 10.8). In this network, there are some isolated concept nodes not used by
any service, which means that they are not important for the network in reality.

Many network metrics can be used in analyzing network properties [30]. By
applying centrality analysis we can see that node 44 is the most frequently used

10 Internet Based Service Networks 287

Algorithm 2 Calculate CS network potential by Boolean networks
Main function CS-Boolean(E,V)

for any node k, k = 1,2, ...,m+n do
Nk(1) = 1, Nj(1) = 0, j �= k, j = 1,2, ...,m+n
t=1
repeat

upgrade node status using Equation (10.10)
upgrade edge status using Equation (10.11)
t ← t +1

until any node Nj(t +1) = Nj(t), j = 1,2, ...,m+n; j �= k
end for

End

Fig. 10.8 Initial service network generation

input concept in the network and nodes 43 and 45 are the most often used output
concepts in the network (Fig. 10.9).

In Fig. 10.10, the edge growth at each step of t = 1, 2, 3, 4, 5, 6, 7 is shown. The
picture only shows the new edges added in at the current step. We notice that self-
loops occur at step t = 2. This means that there are cycles of length 2 in the initial
network. The network will not reach a steady state within a finite number of steps.
However, if there are no cycles in the original network, the web service network
will converge with finite rounds of propagations. For example, the experiment on
the network in Fig. 10.10 it converges at step t = 5.

With respect to the original network in Fig. 10.11a and its degree centrality in
Fig. 10.11b, we can see that the web services start to have links among them at

288 L.Y. Cui et al.

Fig. 10.9 Centrality analysis of the network

t = 2. We observe that more semantic links are built among the concepts after a
few steps.

At step t = 7 as shown in Fig. 10.12, more web services get connected, and the
se-mantic network is well developed. The number of edges increased from 104 to
260. The connection probability among concepts is between 0.06 and 0.23, and
the connection probability among services is between 0.03 and 0.14. The overall
connection probability of nodes is between 0.02 and 0.99. There are a few very
popular concepts and services in the network. The number of self loops is 6. The
number of components does not decrease in this case.

As we can see from Fig. 10.12, popular web services and concepts are: node
77, node 43, node 44, node 45, node 69, node 7, etc., which cannot be seen in the

10 Internet Based Service Networks 289

Fig. 10.10 Edge growth in the network within 7 steps

Fig. 10.11 A sample graph reaching steady state with 5 propagations

original network, although, nodes 43, 44, and 45 are already shown to be popular.
So, the network analysis can lead to unearthing such hidden information. This is
useful in service computing, robustness analysis and in rescuing the query from
catastrophic failures.

As we can see in Fig. 10.13 the number of nodes remains the same; however,
the network is still growing in the number of edges. The sub-graph of services is

290 L.Y. Cui et al.

Fig. 10.12 Network at step t = 7

Fig. 10.13 Centrality analysis of the entire network at step t = 7

10 Internet Based Service Networks 291

Fig. 10.14 Comparison of sub-network among services and the sub network of concepts

originally disjointed and after a few steps, the relationship is built among them. The
semantic connection among concepts is sparse in the initial network, and is well
developed in the network at step t = 7. In the meantime, new popular services and
concepts are added. These predecessors of the nodes with a high out-degree have
the potential to be popular when the network evolves. The potential of a node to be
popular can be approximately estimated by the following equation

potential of node= ∑
connected to the node

xi ·(∑
connected to node i

x j ·(∑
connected to node j

(xk · . . .)))
(10.12)

So, analyzing network evolution can help us to predict the long-run network
structure conveniently. The separate service sub-graph and concept sub-graph at
step 7 and step 1 are shown in Fig. 10.14. The accuracy of prediction depends on
the accuracy of the Boolean rules used to describe the real network.

10.5.4 Optimization in the Concept-Service Network

We need further formulate the service composition problem as mathematical
program in order to find a set of services and the relation among them, denoted

292 L.Y. Cui et al.

as H(F), so that the cost of the solution can be minimized, the reliability of the
solution can be maximized, and the delivery time of the solution can be minimized:

minP(H(F)(X0))

maxR(H(F)(X0))

minT (H(F)(X0))

s.t. H(F)(X0)≥ X1

(10.13)

where q(X0,X1) is a given query, P(H(F)(X0)) is the cost of the service composi-
tion; R(H(F)(X0)) is the reliability of the service composition; T (H(F)(X0)) is the
delivery time of the service composition. It will be preferred if other QoS attributes
can also be optimal in the solution. This mathematical optimization problem will be
discussed in this section.

10.5.4.1 Multi-Criteria Programming with Pure Real Constraints

We define the entire list of variables and parameters in this section. The Quality of
Services (QoS) metric is used to evaluate services. In this context, cost, execution
time and reliability are used to demonstrate the model. Hence, the QoS vector for
a service can be expressed as: “quality of service(s) = f(cost(s), service execution
time(s), reliability(s)).” Cost is the expense for purchasing a service or services;
service execution time is the process time of a service or services; reliability is a
measure of successfully running a service or a set of services. The entire list of
variables used is shown in Table 10.6.

In general, the number of attributes in the input set I and the number of attributes
in the output set O are different. However, it is reasonable to let n = max{h,k} be
the total number of attributes since most of the attributes are the inputs of some
services and the outputs of other services at the same time. Generally speaking, all
the attributes can be inputs in some services and outputs in other services. Thus, it
can be proved that I = O approximately, in large scale service networks. In order to
define the reliability score for web services, we give the following definition. The
reliability of a service is a function of failure rate of the service.

If the failure rate of service Z is f , the reliability score of the service is defined
as: q(f) =− log(f), where 0 < f ≤ 1 and 0 ≤ q(f)<+∞.

Here, we introduce reliability measure q(f) in terms of the failure rate f . This
technique is useful to convert the nonlinear objective function into linear objective
function, which simplifies the problem. LP(linear programming) solvers can be used
to solve the model. Next, we need to specify a depth level of composition before
using this mathematical programming model. The decision about L, the depth level,
is important as larger or smaller L influences the computational time and whether
the optimal solution can be obtained or not.

10 Internet Based Service Networks 293

Table 10.6 Definition of variables and parameters [33]

Variable Definition

Z A set of web services
I A set of input attributes of the web services
O A set of output attributes of the web services
m The number of services in Z
n The number of attributes for the services in set Z
L The maximal number of composition levels
Zl j Web service that is currently available in the database, Zl j ∈ Z;

j = 1, ...,m, l = 1, ...,L
Ii j The ith input attribute of service Z j; i = 1, ...,n, j = 1, ...,m
Oi j The ith output attribute of service Z j; i = 1, ...,n, j = 1, ...,m
p j The fixed price for acquiring the service from Z j; j = 1, ...,m
t j The execution time of service Z j; j = 1, ...,m
f j The failure rate of service Z j; j = 1, ...,m
q j The reliability of service Z j; j = 1, ...,m
C0 The maximum total cost that the customer is willing to pay for

the services
T0 The maximal total execution time that the customer allows to

accomplish the entire process of services
Q0 The minimal reliability that the customer allows for a service in

the composition
Q1 The minimal overall reliability that the customer allows for the

entire service complex, where Q1 > Q0

Among all the variables we defined, the decision variables are Zi j , the status of
the jth web service in the lth level of composition, j = 1, ...,m, l = 1, ...,L.

Zi j =

{
1 web service Zj is selected in the lth level
0 otherwise

where j = 1,2, ...,m; l = 1,2, ...,L.
(10.14)

The objective function is defined as follows: Cost (criterion No. 1): The cost
of the service composition equals to the sum of the prices of the services in the
composition.

min
L

∑
l=1

m

∑
j=1

Zi j · p j (10.15)

Service execution time (criterion No. 2): The execution time is the total process-
ing time for executing the entire series of services. We assume that the services at
one level are executed in parallel:

The maximum execution time of the services in the 1st level is max j{t j ·Z1 j}.
The maximum execution time of the services in the 2nd level is max j{t j ·Z2 j}.
The maximum execution time of the services in the lth level is max j{t j ·Zl j}.
So, the total service execution time of this composition is: ∑L

l=1 max j{t j ·Zl j}.

294 L.Y. Cui et al.

Let ηl be the maximum service execution time of the lth level. The above total
service execution time expression can be reformulated in terms of the following
linear program:

min∑L
l=1ηl

subject to
ηl − t j ·Zl j ≥ 0

where j = 1,2, ...,m; l = 1,2, ...,L

(10.16)

Reliability (criterion No.3): The reliability of the service composition is de-
scribed by the summation of the reliability scores of all the services included in
the composition.

max
L

∑
l=1

m

∑
j=1

Zi j ·q j (10.17)

The validity of the first and the second criteria are obvious as we stated above.
However, we need to validate the third criterion according to Definition 1. It can be
proven that criterion No.3 is valid.

Let S be the set of services appearing in a composition, S ⊆ Z. Then, expression
(4) equals to

max ∑
Zj∈S

q j (10.18)

where ∑Zj∈S q j =−∑Zj∈S(log f j) =− log(∏Zj∈S f j).
Since function y =− log(x) monotonically decreases in x when x ∈ (0,+∞).
Now we have max∑Zj∈S q j equals to

min ∏
Zj∈S

f j (10.19)

where∏Zj∈S f j is the overall failure rate of the composition.
Thus, max∑Zj∈S q j equals to min∏Zj∈S f j .
So, maximizing the summation of the reliability scores of the services in the

composition equals to minimizing the product of the failure rates of the services in
the composition. Here is how the constraints are constructed:

1. Input constraints: An input attribute of the query service should be included in
the input attributes of the selected services in the composition. Thus,

L

∑
l=1

m

∑
j=1

Ii j ·Zl j ≥ Ii0 i = 1,2, ...,n (10.20)

This constraint can be neglected, if we allow some redundancy in the inputs
provided by customers.

2. Output constraints: An output attribute of the query should be included in the
output attributes of the selected services in the composition. Hence,

10 Internet Based Service Networks 295

L

∑
l=1

m

∑
j=1

Oi j ·Zl j ≥ Oi0 − Ii0 i = 1,2, ...,n. (10.21)

3. The relationship of the outputs and inputs between the levels has to satisfy the
following requirements.

All the inputs of the selected services in the first level must be a subset of the
initial input set given in the query.

m

∑
j=1

Ii j ·Z1 j ≤ Ii0 i = 1,2, ...,n. (10.22)

Also, all the input sets of selected services at the kth level must be a subset of
the union of the initial input set given in the query and the output sets of services
in previous levels. The formulation is

m

∑
j=1

Ii j ·Zk+1, j −
k

∑
l=1

m

∑
j=1

Oi j ·Zl j ≤ Ii0 k = 1,2, ...,L−1; i= 1,2, ...,n. (10.23)

The relation among the inputs of services in kth level and the outputs from the
previous levels and the attributes given in the query needs to satisfy equations
(10.4)–(10.11).

4. Goal constraint on the total cost: The customer hopes that the total cost should
not exceed C0.

L

∑
l=1

m

∑
j=1

Zl j · p j ≤ C0 (10.24)

5. Constraint on the service execution time: The customer hopes that the total
service execution time should not exceed T0. Since some services can be executed
in parallel, we take the longest execution time as the execution time of the set of
services executed in parallel. The execution time of the composition, e.g. total
service execution time is the sum of the service execution times of L levels. Thus,

ηl ≥ Zl jt j j = 1,2, ...,m; l = 1,2, ...,L. (10.25)

L

∑
l=1

ηl ≤ T0 (10.26)

6. Constraint on reliability: The reliability of each service has to be equal to or
better than a certain specified level, i.e.,

Zl j · (q j −Q0)≥ 0 j = 1,2, ...,m; l = 1,2, ...,L. (10.27)

296 L.Y. Cui et al.

7. Constraint on total reliability of service composition: The total reliability of the
service composition should be equal to or greater than a certain level Q1.

L

∑
l=1

Zl j ·q j ≥ Q1 j = 1,2, ...,m. (10.28)

8. Non negative and binary constraints:

Zl j ≥ 0 (10.29)

Zl j ∈ {0,1} where j = 1,2, ...,m; l = 1,2, ...,L. (10.30)

ηl ≥ 0 (10.31)

The input–output constraints can handle both sequential and parallel flow
patterns in service network.

We formulate three multi-criteria scenarios, wherein the customers require: (1)
Optimal solution, (2) Optimal solution under a possible compromise of the QoS,
and (3) An acceptable solution with both functional and nonfunctional attributes
considered. Based on the formulations in previous sections, the following Multi-
Criteria Programming (MCP) model with pure real constraints can be defined:

minZ1 =
L

∑
l=1

m

∑
j=1

Zl j · p j (10.32)

minZ2 =
L

∑
l=1

ηl (10.33)

minZ3 =
L

∑
l=1

m

∑
j=1

Zl j ·q j (10.34)

subject to the constraints (10.5)–(10.15), e.g. subject to

L

∑
l=1

m

∑
j=1

Zl j · p j ≤ C0 (10.35)

L

∑
l=1

ηl ≤ T0 (10.36)

L

∑
l=1

m

∑
j=1

Zl j ·q j ≥ Q1 (10.37)

L

∑
l=1

m

∑
j=1

Ii j ·Zl j ≥ Ii0 i = 1, ...,n (10.38)

10 Internet Based Service Networks 297

L

∑
l=1

m

∑
j=1

Oi j ·Zl j ≥ Oi0 − Ii0 i = 1, ...,n (10.39)

m

∑
j=1

Ii j ·Z1 j ≤ Ii0 i = 1, ...,n (10.40)

m

∑
j=1

Ii j ·Zk+1, j −
k

∑
l=1

m

∑
j=1

Oi j ·Zl j ≤ Ii0 i = 1, ...,n;k = 1, ...,L− 1 (10.41)

Zl j · (q j −Q0)≥ 0 j = 1, ...,m; l = 1, ...,L (10.42)

η j − t j ·Zl j ≥ 0 j = 1, ...,m; l = 1, ...,L (10.43)

Zl j ≥ 0 j = 1, ...,m; l = 1, ...,L (10.44)

Zl j ∈ {0,1} j = 1, ...,m; l = 1, ...,L (10.45)

ηl ≥ 0 l = 1, ...,L (10.46)

This MCP model can be solved either by the preemptive method or by the
non-preemptive method (weighted average method). If the customer of the query
gives the priority of the objectives in order. For instance, if minZ1 has the highest
priority (denote it P1), minZ2 has the second highest priority (denote it P2), and
minZ3 has the least priority (denote it P3), the model can be solved by solving three
mathematical programming model sequentially (see [34]). This is called preemptive
method. We call the preemptive model with pure real constraints as Model 1.

If the customer of the query gives the weights to the objectives. For instance, if
the weights of Z1, Z2 and Z3 are W1, W2 and W3, respectively, the above model can
be solved by solving the mathematical programming model with objective

minW1 ·Z1 +W2 ·Z2 −W3 ·Z3. (10.47)

We call the non-preemptive model with pure real constraints as Model 2.
The advantage of MCP models (Model 1 and Model 2) is that they find the

service composition of the query which satisfies both the functional requirements
(starting from the inputs given in the query, it finds the composition to give
the outputs requested in the query), and the nonfunctional requirements (also
called QoS requirements: for example cost, reliability and execution time). The
disadvantage of this model is that it won’t give a compromise solution if there is
not a composition satisfying both functional and nonfunctional requirements. In
general, the compromise solution is informative and useful to the customer, so we
revise some of the constraints into goal constraints in [33]. This distinguishes our
work from the existing literature. Interested readers are referred to [33] for other
optimization models in CS networks.

298 L.Y. Cui et al.

10.5.4.2 An Application in Manufacturing Process Integration

The standardization of XML (Extensible Markup Language), SOAP (Simple Object
Access Protocol) and UDDI (Universal Description, Discovery, and Integration)
enables information exchange across platforms in varieties of areas. Web service
integration engine provides the manufacturing industry the ability to horizontally
and vertically integrate data across a wide range-machines plants, vendors, and
enterprise domains. Manufacturing Execution System (MES) and Enterprize Re-
source Planning (ERP) are able to exchange data of distributed processes through
the Internet. This whole system comprises of a wide-area distributed systems which
are typically connected to the Internet or the Intranet.

In the case study, we considered the manufacturer user has an information
system, which has a client machine for a business domain. There are separate service
providers to collect and manipulate information via the Internet. An application
from the business domain is sent to a service broker, which is running on the
Internet, and reads list of service providers from the service registry center.
According to the information the manufacturer knows, and needs, a proper service
can be found, if it exists. Thus, the manufacturer and the service provider can
exchange data between them using SOAP communication protocol. If no single
service can meet the manufacturer’s needs alone, a series of web services need to be
composed through a service composition algorithm.

Scenario: In the near future we can envision that the online services are all
standard modules in WSDL (Web Services Description Language), and they can
communicate with each other via SOAP (Service Oriented Architecture Protocol).
In this scenario, an automobile manufacturer is designing a new car for the future
and decides to use online web services as one of the options.

We illustrate our approach through a simple example with a service set of 5
services:

Z, the set of web services, including 5 online web services, i.e., m = 5.

Service1 : “sketch designing”{
inputs : style, functions, price
out puts : 2D model, tolerance, material info

Service2 : “three dimension modeling”{
inputs : 2D model, tolerance, material info
out puts : shapes, vertices, structure

Service3 : “surface and volume meshing”{
inputs : shapes, vertices, structure
out puts : nodes, elements, assigned material

Service4 : “simulation and analysis”{
inputs : nodes, elements, assigned material
out puts : safety, mileage, speed

Service5 : “simulation and analysis”{
inputs : safety, mileage, speed
out puts : price, structure, speed

(10.48)

10 Internet Based Service Networks 299

The total set of the attributes are: [style, functions, price, 2D model, tolerance,
material info, shapes, structure, vertex, nodes, elements, assigned material, safety,
mileage, speed].

Using the MCP model discussed, we can build an optimization model. Given
that the maximum depth of the levels is 5, the preemptive goal programming model
finds a solution that carries out service composition in 4 levels, and the solution is
Z11 = Z22 = Z33 = Z44 = 1 , and the others are zero.

At the first level, service Z1 is selected to execute using the input of initial request
I0; at the second level, service Z2 is selected execute using the output from Z1; at
the third level, service Z3 is selected to execute using the output from Z1, Z2; at the
fourth level, service Z4 is selected to execute using the outputs from Z1, Z2, Z3.

10.6 Applications of Service Composition

The services currently available online are all standard modules in WSDL (Web
Services Description Language), and they can exchange information interactively
via SOAP (Service Oriented Architecture Protocol). Utilizing the online services
is usually cheaper than hiring a number of physical consultants. Web Service
Composition, among other domains, can be applied to (1) health care, (2) production
design, and (3) enterprise application integration, etc. Figure 10.15 shows the
infrastructure of the service network including users, registry, service providers and
service brokers.

Fig. 10.15 The topology of users, service providers, service brokers, and service registry center

300 L.Y. Cui et al.

10.6.1 Resource Allocation in Health Care

In recent times, we have been experiencing extreme deficiencies of medical
resources, such as medical personnel, medical devices, blood or organ donors for
organ transplantation. Such a deficiency can be reduced by collaboration among
medical institutions and national health organizations, which might be involved
in the issues related to home land security, disaster recovery, and emergency
management and thus, the efficiency is important. Efficient collaborations in
such a geographically distributed environment need a support from Information
Technology (IT) through the Internet. Web services can provide such collaborations
for health care services.

10.6.2 Product Design in Manufacturing

One of the recent trends in product design is modularization of parts. Modularization
also contributes to defining parts in a standardized, machine-readable way. Espe-
cially, modularization enables us to define the features of each part as input, output,
function and geometric information. Defining a set of inputs, outputs, and other
features makes it possible for a manufacturing company to identify the required
parts. In order to automate such production design processes, manufacturers can
utilize the Web Service Composition algorithms to match the parts from suppliers.
Moon et al. used a service based platform to facilitate global product design [35].

10.6.3 Business Integration

Globalization is a significant feature in the manufacturing industry. Services are
offered by a variety of companies depending on their expertise, such as production
design companies, manufacturing companies, marketing companies, etc. These
enterprises can collaborate with each other through web services integration and
automation. These online business processes can be executed automatically in
a scheduled order. One service could use another’s output as an input, and all
of these services can work together and compose the production solutions for a
business. For instance, automobile manufacturers are able to utilize online services
to help designing their new car models for the coming years (see Sect. 10.5.4.2
for a brief discussion). As the number of Web Services increases and varieties of
emerging service requests appear in current, competitive, and complex business
environments, automatic web service composition algorithms become an essential
feature of commercial web services.

In general web services as we have described can be modeled as networks
(CS). From the networks view it is possible that the functionalities of the nodes

10 Internet Based Service Networks 301

Table 10.7 Applications of networks

Engineered system Scale Network model

Supply chain Large, often global Not known
Service Large, often global Scale free
Mobile Large, global Not known
Crowd sourcing Large, global Not known
Internet Large scale, global Scale free

in a network can be modeled as services and service composition algorithms can
be used on them. Man-made networks are the consequences of proliferation of
information technology and globalization. Due to IT connectivity and reach, the
world is becoming a networked one. How can we use the knowledge that is gained
so far in network science in these new application areas of engineered systems? The
last decade has seen many firsts in these areas with respect to applying network
science principles. In reality, there are many man-made or engineered networks
which are worth of the readers’ interest in pursuing these lines of research. Several
man-made networks are shown in Table 10.7.

10.7 Conclusions and Future Work

In this chapter, Internet service networks and a set of current planning techniques
of Internet services are discussed. A novel service network mining technique is
explored in Sect. 10.5. This technique can be used to find clusters in service
networks and identify popular and critical services and hot concepts online. Network
mining can be used to discover hidden information before service composition
to reduce the overall composition. The real-time re-planning in relation to faulty
behaviors of web service composition needs to be fully studied in future work.
A suitable control and recovery mechanism should be included in any service
composition engine. Techniques to avoid information congestion and to guarantee
the security of service delivery will also be in high demand in the future.

References

1. W3C, Web Services Description Language (WSDL) Version 2.0, W3C Working Draft, http://
www.w3.org/TR/wsdl20, 2003.

2. IBM, http://www-128.ibm.com/developerworks/webservices.
3. UDDI, http://www.uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf.
4. Y. Li, J. P. Huai, H. Sun et al., Pass: An approach to personalized automated service

composition, pp. 283-290, 2008.
5. B. Raman, S. Agarwal, Y. Chen et al., The SAHARA model for service composition across

multiple providers, Pervasive Computing, pp. 585-597, 2002.

http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www-128.ibm.com/developerworks/webservices
http://www.uddi.org/pubs/DataStructure-V1.00-Published-20020628.pdf

302 L.Y. Cui et al.

6. L. Zeng, B. Benatallah, A. H. H. Ngu et al., QoS-aware middleware for web services
composition, IEEE Transactions on Software Engineering, pp. 311-327, 2004.

7. K. S. M. Chan, J. Bishop, and L. Baresi, Survey and comparison of planning techniques for
web services composition, University of Pretoria2007. c ISMED, vol. 209, 2007.

8. T. Vossen, M. Ball, A. Lotem et al., On the use of integer programming models in AI planning,
in Proc. IJCAI’1999, pp.304-309, 1999.

9. T. Vossen, M. Ball, A. Lotem et al., Applying integer programming to AI planning, The
Knowledge Engineering Review, vol. 15, no. 1, pp. 85-100, 2000.

10. H. Kautz, and J. P. Walser, State-space planning by integer optimization, AAAI ’99/IAAI
’99 Proceedings of the sixteenth national conference on Artificial intelligence and the
eleventh Innovative applications of artificial intelligence conference innovative applications of
artificial intelligence American Association for Artificial Intelligence Menlo Park, CA, USA,
pp. 526-533, 1999.

11. A. Gao, D. Yang, S. Tang et al., Web service composition using integer programming-based
models, IEEE International Conference on e-Business Engineering, 2005. pp. 603-609, 2005.

12. J. Rao, and P. Kngas, Application of linear logic to web service composition,In Proceedings of
ICWS’2003. pp.1 3, 2003

13. E. Sirin, J. Hendler, and B. Parsia, Semi-automatic composition of web services using semantic
descriptions, In Proceedings of WSMAI’2003, pp. 17-24, 2003.

14. L. Xiao, and L. Zhang, Automatic mapping from XML documents to ontologies, in Proc.
CIT’2004, pp. 321-325, 2004.

15. S. Huang, H. Chen, and L. J. Zhang, Progressive auction based resource allocation in service-
oriented architecture,in Proc. IEEE SCC’2005, pp.85-92, 2005.

16. S. Y. Hwang, E. P. Lim, C. H. Lee et al., Dynamic web service selection for reliable web
service composition, IEEE transactions on services computing, pp. 104-116, 2008.

17. G. Pacifici, M. Spreitzer, A. N. Tantawi et al., Performance management for cluster-based web
services, IEEE Journal on Selected Areas in Communications, vol. 23, no. 12, pp. 2333-2343,
2005.

18. S. C. Oh, H. Kil, D. Lee et al., Wsben: A web services discovery and composition benchmark,
in Proc. ICWS’2006, pp. 239-248, 2006.

19. S. C. Oh, D. Lee, and S. R. T. Kumara, WSPR: An Effective and Scalable Web Service
Composition Algorithm, International Journal of Web Services Research, Vol. 4, No. 1,
pp. 1-22, 2007.

20. L. J. Zhang, S. Cheng, Y. M. Chee et al., Pattern recognition based adaptive categorization
technique and solution for services selection, apscc, pp. 535-543, 2007.

21. S. C. Oh, D. Lee, and S. R. T. Kumara, Effective web service composition in diverse and
large-scale service networks, IEEE transactions on services computing, pp. 15-32, 2008.

22. F. Montagut, and R. Molva, Bridging security and fault management within distributed
workflow management systems, IEEE transactions on services computing, pp. 33-48, 2008.

23. H. Lufei, W. Shi, and V. Chaudhary, Adaptive Secure Access to Remote Services in Mobile
Environments, IEEE transactions on services computing, pp. 49-61, 2008.

24. K. A. Phan, Z. Tari, and P. Bertok, Similarity-Based SOAP Multicast Protocol to Reduce
Bandwith and Latency in Web Services, IEEE transactions on services computing, pp. 88-103,
2008.

25. J. Wei, L. Singaravelu, and C. Pu, A secure information flow architecture for web service
platforms, IEEE transactions on services computing, pp. 75-87, 2008.

26. R. Albert, H. Jeong, and A. L. Barabsi, The diameter of the world wide web, Arxiv preprint
cond-mat/9907038, 1999.

27. R. V. Engelen, Are web services scale free?, http://www.cs.fsu.edu/∼engelen/powerlaw.html,
2005.

28. L. Y. Cui, S. Kumara, J. J. W. Yoo et al., Large-Scale Network Decomposition and Mathe-
matical Programming Based Web Service Composition, IEEE Conference on Commerce and
Enterprise Computing’2009, pp. 511-514, 2009.

 http://www.cs.fsu.edu/~engelen/powerlaw.html

10 Internet Based Service Networks 303

29. L. Li, and I. Horrocks, A software framework for matchmaking based on semantic web
technology, International Journal of Electronic Commerce, vol. 8, no. 4, pp. 39-60, 2004.

30. L. Y. Cui, S. Kumara, and R. Albert, Complex networks: an engineering view, Circuits and
Systems Magazine, IEEE, vol. 10, no. 3, pp. 10-25, 2010.

31. R. Baggio, N. Scott, and C. cooper, Network science: A review focused on tourism, http://
cdsweb.cern.ch/record/1245639, 2010.

32. H. P. Thadakamalla, U. N. Raghavan, and S. Kumara, Survivability of multiagent-based supply
networks: A topological perspective, IEEE Intelligent Systems, pp. 24-31, 2004.

33. L. Y. Cui, S. R. T. Kumara, and D. Lee, Scenario Analysis of Web Service Composition based
on Multi-criteria Mathematical Goal Programming, Service Science, vol. 3, no. 3, 2011.

34. J. L. Arthur, and A. Ravindran, PAGP, a partitioning algorithm for (linear) goal programming
problems, ACM Transactions on Mathematical Software (TOMS), vol. 6, no. 3, pp. 378-386,
1980.

35. S. K. Moon, T. W. Simposon, L. Y. Cui et al., A Service based Platform Design Method
for Customized Products, Proceedings of CIRP Integrated Production and Service Systems
conference’2010, pp. 3-10, 2010.

36. D. L. McGuinness, F. Van Harmelen et al., OWL web ontology language overview, W3C
recommendation, http://www.w3.org/TR/owl-features/,2004.

37. A. L. Barabsi and R. Albert, Emergence of Scaling in Random Networks, Science, vol.286 no.
5439, pp. 509-512, 1999.

38. P. Erdöys and A. Rényi, Random Graphs, Publ. Math. Inst. Hung. Acad.Sci. vol. 5, No.17,
1960.

39. D. J. Watts and S. H. Strogatz1, Collective Dynamics of ”Small-world” Networks, Nature,
393, pp. 440-442, 1998

40. R. Xu and D. Wunsch, Survey of Clustering Algorithms Neural Networks, IEEE Transactions
on, vol. 16, no.3, pp. 645-678, 2005.

41. L. Y. Cui, S. Kumara and T. Yao, Service Composition using Dynamic Programming and
Concept Service (CS) Network, Proceedings of IERC 2011, May Reno, Nevada, USA., 2011.

42. A. Gao, D. Yang et al.,Web Service Composition Using Markov Decision Processes. Advances
in Web-Age Information Management, Springer Berlin, vol.3739/2005, pp. 308-319, 2005.

http://cdsweb.cern.ch/record/1245639
http://cdsweb.cern.ch/record/1245639
http://www.w3.org/TR/owl-features/, 2004.

Part III
Online Social Networks and Security

Chapter 11
On Detection of Community Structure
in Dynamic Social Networks

Nam P. Nguyen, Ying Xuan, and My T. Thai

Abstract Community structure is a very special and interesting property of social
networks. Knowledge of network community structure not only provides us key
insights into developing more social-aware strategies for social network problems,
but also promises a wide range of applications enabled by mobile networking, such
as routings in Mobile Ad Hoc Networks (MANETs) and worm containments in
cellular networks. Unfortunately, understanding this structure is very challenging,
especially in dynamic social networks where social activities and interactions tend
to come and go rapidly. Can we quickly and efficiently identify the network
community structure? Can we adaptively update this structure based on its history
instead of recomputing from scratch?

In this chapter, we present two methods for detecting community structures on
social networks. First, we introduce Quick Community Adaptation (QCA), an adap-
tive modularity-based method for identifying and tracing the discrete community
structure of dynamic social networks. This approach has not only the power of
quickly and efficiently updating the network structure by only using the identified
structures, but also the ability of tracing the evolution of its communities over time.
Next, we present DOCA, an quick method for revealing the overlapping network
communities that can be implemented in a decentralized manner. To illustrate the
effectiveness of our methods, we extensively test QCA and DOCA on not only
synthesized but also on real-world dynamic social networks including ENRON
email network, arXiv e-print citation network and Facebook network. Finally, we
demonstrate the bright applicability of our methods via two realistic applications on
routing strategies in MANETs and worm containment on online social networks.

N.P. Nguyen (�) • Y. Xuan • M.T. Thai
CISE Department, University of Florida, Gainesville, Florida, USA
e-mail: nanguyen@cise.ufl.edu; yxuan@cise.ufl.edu; mythai@cise.ufl.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 11, © Springer Science+Business Media, LLC 2012

307

nanguyen@cise.ufl.edu
yxuan@cise.ufl.edu
mythai@cise.ufl.edu

308 N.P. Nguyen et al.

11.1 Introduction

Many social networks exhibit the property of containing community structure [1,2],
i.e. they naturally divide into groups of vertices with denser connections inside
each group and fewer connections crossing groups, where vertices and connections
represent network users and their social interactions, respectively. Members in
each community of a social network usually share common interests such as
photography, movies, music or discussion topics and thus, they tend to interact
more frequently with each other than with members outside of their community.
Community detection in a network is the gathering of network vertices into groups
in such a way that nodes in each group are densely connected inside and sparser
outside.

It is noteworthy to differentiate between community detection and graph cluster-
ing. These two problems share the same objective of partitioning network nodes
into groups; however, the number of clusters is predefined or given as part of
the input in graph clustering whereas the number of communities is typically
unknown in community detection. Detecting communities in a network provides
us meaningful insights its internal structure as well as its organization principles.
Furthermore, knowing the structure of network communities could also provide us
more helpful points of view to some uncovered parts of the network, thus helps in
preventing potential networking diseases such as virus or worm propagation. Studies
on community detection on static networks can be found in an excellent survey [3]
as well as in the work of [4–7] and references therein.

Real-world social networks, however, are not always static. In fact, most of
social networks in reality (such as Facebook, Bebo, and Twitter) evolve and witness
an expand in size and space as their users increase, thus lend themselves to the
field of dynamic networks. A dynamic network is a special type of evolving
complex networks in which changes are frequently introduced over time. In the
sense of an online social network, such as Facebook, Twitter, or Flickr, changes are
usually introduced by users joining in or withdrawing from one or more groups or
communities, by friends and friends connecting together, or by new people making
friend with each other. Any of these events seems to have a little effect to a local
structure of the network on one hand; the dynamics of the network over a long period
of time, on the other hand, may lead to a significant transformation of the network
community structure, thus drives a natural need of reidentification. However, the
rapidly and unpredictably changing topology of a dynamic social network makes it
an extremely complicated yet challenging problem.

Although one can possibly run any of the static community detection methods,
which are widely available [4–6, 8], to find the new community structure whenever
the network is updated, he may encounter some disadvantages that cannot be
neglected (1) the long running time of a specific static method on large networks (2)
the trap of local optima and (3) the almost same reaction to a small change to some
local part of the network. A better, much efficient, and less time consuming way
to accomplish this expensive task is to adaptively update the network communities

11 On Detection of Community Structure in Dynamic Social Networks 309

Fig. 11.1 The network evolves from time t to t +1 under the change ΔGt . The adaptive algorithm
A quickly finds the updated structure C (Gt+1) based on the previous structure C (Gt) together
with the changes ΔGt

from the previous known structures, which helps to avoid the hassle of recomputing
from scratch. This adaptive approach is the main focus of our study in this chapter.
In Fig. 11.1, we briefly generalize the idea of dynamic network community structure
adaptation.

Detecting community structure in a dynamic social network is of considerable
usages. To give a sense of its effects, consider the routing problem in communi-
cation network where nodes and links present people and mobile communications,
respectively. Due to nodes mobility and unstable links properties of the network,
designing an efficient routing scheme is extremely challenging. However, since
people have a natural tendency to form groups of communication, there exist
groups of nodes which are densely connected inside than outside in the underlying
MANET as a reflection, and therefore, forms community structure in that MANET.
An effective routing algorithm, as soon as it discovers the network community
structure, can directly route or forward messages to nodes in the same (or to the
related) community as the destination. By doing this way, we can avoid unnecessary
messages forwarding through nodes in different communities, thus can lower the
number of duplicate messages as well as reduce the overhead information, which
are essential in MANETs.

In this context, we study the dynamics of communities in social network and
prove theoretical results regarding its various behaviors over time. We then propose
QCA, a fast and adaptive algorithm for efficiently identifying the community
structure of a dynamic social network. Our approach takes into account the
previously discovered network structure and processes on network changes only,
thus significantly reduces computational cost and processing time. In addition,
we present DOCA, a quick detection method that can nicely identify overlapping
network communities with high quality. We extensively evaluate our algorithms
on various real world dynamic social networks including Enron email network,
ArXiv citation network, and Facebook network. Experimental results show that our
method not only achieves competitive modularities but also high quality community
structures in a timely manner. As applications, we employ QCA as a community
identification core in routing strategies in MANETs and worm containment methods
in online social networks. Simulation results show that QCA outperforms the current
available methods and confirm the bright applicability of our proposed method in
not only in social networks but also in mobile computing.

310 N.P. Nguyen et al.

The rest of this chapter is organized as follow: Sect. 11.2 presents the prelim-
inaries and problem definition. Section 11.3 gives a complete description of our
algorithms and their theoretical analysis. Section 11.4 shows experimental results
of our approach on various real world datasets. In Sects. 11.5 and 11.6, we present
two practical application of our approaches in MANETs and on OSNs, respectively.
In Sect. 11.7, we present DOCA, our method for identifying overlapping network
communities. In Sect. 11.8, we discuss about the related work and finally conclude
our work in Sect. 11.9.

11.2 Problem Formulation

In this section, we present the notations, objective function as well as the dynamic
graph model representing a social network that we will use throughout the paper.

(Notation) Let G = (V,E) be an undirected unweighted graph with N nodes and
M links representing a social network. Let C = {C1,C2, ..,Ck} denote a collection of
disjoint communities, where Ci ∈ C is a community of G. For each vertex u, denote
by du, C(u) and NC(u) its degree, the community containing u and the set of its
adjacent communities. Furthermore, for any S ⊆ V , let mS, dS and eu

S be the number
of links inside S, the total degree of vertices in S and the number of connections from
u to S, respectively. The pairs of terms community and module; node and vertex as
well as edge and link and are used interchangeably.

(Dynamic social network) Let Gs = (V s,Es) be a time dependent network
snapshot recorded at time s. Denote by ΔV s and ΔEs the sets of vertices and links to
be introduced (or removed) at time s and let ΔGs = (ΔV s,ΔEs) denote the change
in term of the whole network. The next network snapshot Gs+1 is the current one
together with changes, i.e. Gs+1 = Gs ∪ΔGs. A dynamic network G is a sequence
of network snapshots evolving over time: G = (G0,G1, ..,Gs, ..).

(Objective function) In order to quantify the goodness of a network community
structure, we take into account the most widely accepted measure called modularity
Q, which is defined in [6] as

Q = ∑
C∈C

mC

M
− d2

C

4M2 .

Basically, Q is the fraction of all links within communities subtracts the expected
value of the same quantity in a graph whose nodes have the same degrees but
links are distributed randomly, and the higher modularity Q, the better network
community structure. Therefore, our objective is to find a community assignment
for each vertex in the network such that Q is maximized. Modularity, just
like other quality measurements for community identifications, has some certain
disadvantages such as its non-locality and scaling behavior [7] or resolution limit
[9]. However, it is still very well considered due to its robustness and usefulness
that closely agree with intuition on a wide range of real world networks.

11 On Detection of Community Structure in Dynamic Social Networks 311

Problem Definition: Given a dynamic social network G = (G0,G1, ..,Gs, ..)
where G0 is the original network and G1, G2,.., Gs,.. are the network snapshots
obtained through ΔG1, ΔG2,.., ΔGs,.. we need to devise an adaptive algorithm to
efficiently detect and identify the network community structure at any time point
utilizing the information from the previous snapshots as well as tracing the evolution
of the network community structure.

11.3 Method Description

Let us first discuss about how changes to the evolving network topology affect
the structure of its communities. Assume that G = (V,E) is the current network
and C = {C1,C2, ..,Ck} is its corresponding community structure. We use the term
intra-community links to denote edges whose two endpoints belong to the same
community and the term inter-community links to denote those with endpoints
connecting different communities. For each community C of G, the number of
connections linking C with other communities are much fewer than the number
of connections within C itself, i.e. nodes in C are densely connected inside
than outside. Intuitively, adding intra-community links inside or removing inter-
community links between communities of G will strengthen those communities and
make the structure of G more clear. Vice versa, removing intra-community links
and inserting inter-community links will loosen the structure of G. However, when
two communities have less distraction caused by each other, adding or removing
links makes them more attractive to each other and thus, leaves a possibility that
they will be combined to form a new community. The community updating process,
as a result, is extremely challenging since any insignificant change in the network
topology can possibly lead to an unexpected transformation of its community
structure. We will discuss in detail various possible behaviors of a dynamic network
community structure in Sect. 11.3.1.

In order to reflect changes introduced to a social network, its underlying graph
is constantly updated by either inserting or removing a node or a set of nodes, or
by either introducing or deleting an edge or a set of edges. In fact, the introduction
or removal a set of nodes (or edges) can be decomposed as a sequence of node
(or edge) insertions (or removals), in which a single node (or a single edge) is
introduced (or removed) at a time. This observation helps us to treat network
changes as a collection of simple events where a simple event can be one of
newNode, removeNode, newEdge, removeEdge whose details are as follow:

• NewNode (V +u): A new node u with its associated edges are introduced. u could
come with no or more than one new edge(s).

• RemoveNode (V − u): A node u and its adjacent edges are removed from the
network.

• NewEdge (E + e): A new edge e connecting two existing nodes is introduced.
• RemoveEdge (E − e): An existing edge e in the network is removed.

312 N.P. Nguyen et al.

11.3.1 Algorithms

Our approach first requires an initial community structure C0, which we refer to as
a basic structure, in order to process further. Since the input model is restricted as
an undirected unweighted network, this initial community structure can be obtained
by performing any of the available static community detection methods [4, 5, 8]. To
obtain a good basic structure, we choose the method proposed by Blondel et al in [5]
which produces a network community structure of high modularity in a reasonable
amount of time [3].

11.3.1.1 New Node

Let us consider the first case when a new node u and its associated connections are
introduced. Note that u may come with no adjacent edges or with many of them
connecting one or more communities. If u has no adjacent edges, we create a new
community containing only u and leave the other communities as well as the overall
modularity Q intact. The interesting case happens, as it always does, when u comes
with edges connecting one ore more existing communities. In this latter situation,
we need to determine which community u should join in in order to maximize the
gained modularity. There are several local methods introduced for this task, for
instance the algorithms of [4, 8]. Our method is inspired by a physical approach
proposed in [10], in which each node is influenced by two forces: FC

in (to keep u
stays inside community C) and FC

out (the force a community C makes in order to
bring u to C) defined as follow:

FC
in (u) = eu

C − du(dC − du)

2M
,

FS
out(u) = max

S∈NC(u)

{
eu

S −
dudoutS

2M

}
,

where doutS is of opposite meaning of dS. Taking into account the above two forces,
a node u can actively determines its best community membership by computing
those forces and either lets itself join in the community having the highest

Fout(u) (if Fout(u) > FC(u)
in (u)) or stays put in the current community otherwise.

By Theorem 11.1, we bridge the connection between those forces and the objective
function, i.e. joining the new node in the community with the highest outer force
will maximize the local gained modularity. This is the central idea for handling the
first case and the algorithm is presented in Algorithm 1.

Theorem 11.1. Suppose C is the community that gives maximum FC
out(u) when a

new node u with degree p is introduced to G, then joining u in C gives the maximal
modularity contribution.

11 On Detection of Community Structure in Dynamic Social Networks 313

Algorithm 1 New Node
Input: New node u with associated links; Current structure Ct .
Output: An updated structure Ct+1

1: Create a new community of only u;
2: for v ∈ N(u) do
3: Let v determine its best community;
4: end for
5: for C ∈ NC(u) do
6: Find FC

out(u);
7: end for
8: Let Cu ← argmaxC {FC

out(u)};
9: Update Ct+1 : Ct+1 ← (Ct\Cu

)∪ (Cu ∪u
)
;

Proof. Let D be a community of G and D �= C, we show that joining u in D
contributes less modularity than joining u in C. The overall modularity Q when
u joins in C is

Q =
mC + eu

C

M+ p
− (dC + eu

C + p)2

4(M+ p)2 +
mD

M+ p
− (dD + eu

D)
2

4(M+ p)2 ,+A

where A is the summation of other modularity contributions. Similarly, joining u to
D gives

Q′ =
mC

M+ p
− (dC + eu

C)
2

4(M+ p)2 +
mD + eu

D

M+ p
− (dD + eu

D + p)2

4(M+ p)2 +A

and

Q−Q′ =
1

M+ p

(
eu

C − eu
D +

p(dD − dC + eu
D − eu

C)

2(M+ p)

)
.

Now, since C is the community that gives the maximum FC
out(u), we obtain

eu
C − p(dC + eu

C)

2(M+ p)
> eu

D − p(dD + eu
D)

2(M+ p)
,

which implies

eu
C − eu

D +
p(dD − dC + eu

D − eu
C)

2(M+ p)
> 0.

Hence, Q−Q′ > 0 and thus the conclusion follows.

11.3.1.2 New Edge

In case that a new edge e = (u,v) connecting two existing vertices u,v is introduced,
we divide it further into two smaller cases: e is an intra-community link (totally
inside a community C) or an inter-community link (connects two communities

314 N.P. Nguyen et al.

Algorithm 2 New Edge
Input: Edge {u,v} to be added; Current structure Ct .
Output: An updated structure Ct+1.
1: if (u and v are new vertices) then
2: Ct+1 ← Ct ∪{u,v};
3: else if C(u) �=C(v) then
4: if Δqu,C(u),C(v) < 0 and Δqv,C(u),C(v) < 0 then
5: return Ct+1 ≡ Ct ;
6: else
7: w = argmax{Δqu,C(u),C(v),Δqv,C(u),C(v)};
8: Move w to the new community;
9: for t ∈ N(w) do

10: Let t determine its best community;
11: end for
12: Update Ct+1;
13: end if
14: end if

C(u) and C(v)). If e is inside a community C, its presence will strengthen the
inner structure of C according to Lemma 11.1. Furthermore, by Theorem 11.2, we
know that adding e should not split the current community C into smaller modules.
Therefore, we leave the current network structure intact in this case.

The interesting situation happens when e is a link connecting communities
C(u) and C(v) since the presence of e could possibly make u (or v) leave its
current modules and join in the new community. Additionally, if u (or v) decides
to change its membership status, it can eventually advertise its new community
to all its neighbors and some of them might want to change their memberships
as a consequence. By Lemma 11.2, we show that if u (or v) should ever change
its cluster assignment then C(v) (or C(u)) is the best new community for it. But
how can we efficiently and quickly decide whether u (or v) should change its
membership or not in order to form a better community structure when e is added?
To this end, we provide a criterion to test for membership changing of u and v in
Theorem 11.3. Here, if both Δqu,C,D and Δqv,C,D fail to satisfy the criteria, we can
safely preserve the current network community structure and keep going (Corollary
11.1). Otherwise, we move u (or v) to its new community and consequently let its
neighbors determine their best modules to join in, using local search and swapping
to maximize gained modularity. Figure 11.2a describes the procedure for this latter
case. The algorithm is described in Algorithm 2.

Lemma 11.1. For any community C ∈C , if dC ≤ M−1 then adding an edge within
C will increase its modularity contribution.

Proof. The portion QC that community C contributes to the overall modularity Q

is: QC = mC
M − d2

C
4M2 . When a new edge coming in, the new modularity Q′

C is Q′
C =

mC+1
M+1 − (dC+2)2

4(M+1)2 . Now, taking the difference between the two expressions Q′
C and

QC gives

11 On Detection of Community Structure in Dynamic Social Networks 315

Fig. 11.2 (a): When an edge (u,v) joining C(u) and C(v) is introduced. Tests on membership
are performed on sets X and Y . (b): (Left) The original community (Right) After an edge (in
dotted line) is removed, the community is broken into two smaller communities. (c): (Left) The
original network with four communities (Right) After the highest degree node is removed, the
leftover nodes join in different modules, forming a new network with three communities. (d): (Left)
The original community (Right) When the central node g is removed, a 3-clique is placed at a to
discover b,c,d and e. f assigned singleton afterwards

ΔQC = Q′
C −QC

=
4M3 − 4mCM2 − 4dCM2 − 4mCM+ 2d2

CM+ d2
C

4(M+ 1)2M2

≥ 4M3 − 6dCM2 − 2dCM+ 2d2
CM+ d2

C

4(M+ 1)2M2 (since mC ≤ dC
2)

≥ (2M2 − 2dCM − dC)(2M − dC)

4(M+ 1)2M2 ≥ 0.

The last inequality holds since dC ≤ M − 1 implies 2M2 − 2dCM − dC ≥ 0.

316 N.P. Nguyen et al.

Theorem 11.2. If C is a community in the current snapshot of G, then adding any
intra-community link to C will not split it into smaller modules.

Proof. Assume the contradiction, i.e, C should be divided into smaller modules
when an edge is added into it. Let X1,X2, ..,Xk be disjoint subsets of C representing
these modules. Denoted by di and ei j the total degree of vertices inside Xi and the
number of links going from Xi to Xj, respectedly. Assume that, W.L.O.G, when an
edge is added inside C, it is added to X1. We will show that

⌈
∑i�= j did j

2M

⌉
<∑

i�= j

ei j <

⌈
∑i�= j did j

2M

⌉
+ 1,

which can not happen since ∑i�= j ei j is an integer.

Recall that QC = mC
M − d2

C
4M2 and QXi =

mi
M − d2

i
4M2 . Prior to adding an edge to C,

we have QC > ∑k
i=1 QXi , or equivalently,

mC

M
− d2

C

4M2 >
k

∑
i=1

(
mi

M
− d2

i

4M2

)
.

Since X1,X2, ..,Xk are disjoint subsets of C, it follows that dC = ∑k
i=1 di and mC =

∑k
i=1 mi +∑i�= j ei j (where mi is the number of links inside Xi). Thus, the above

inequality equals to
mC

M
−

k

∑
i=1

mi

M
>

d2
C

4M2 −
k

∑
i=1

d2
i

4M2

or

∑
i< j

ei j >

⌈
∑i�= j did j

2M

⌉
.

Now, assume that the new edge is added to X1 and C is split into X1,X2, ..,Xk

which implies that dividing C into k smaller communities will increase the overall
modularity, i.e, Q′

C < ∑k
i=1 Q′

Xi

⇔ ∑k
i=1 mi +∑i< j ei j + 1

M+ 1
−
(
∑k

i=1 di + 2
)2

4(M+ 12)

<
m1 + 1
M+ 1

− (d1 + 2)2

4(M+ 1)2 +
k

∑
i=2

(
mi

M+ 1
− d2

i

4(M+ 1)2

)

⇔ ∑k
i=1 mi +∑i< j ei j + 1

M+ 1
−
(
∑k

i=1 di + 2
)2

4(M+ 12)

<
∑k

i=1 mi + 1
M+ 1

− (d1 + 2)2

4(M+ 1)2 −
k

∑
i=2

d2
i

4(M+ 1)2

⇔ ∑
i< j

ei j <
∑k

i=1 di − 2d1+∑i< j did j

2(M+ 1)
.

11 On Detection of Community Structure in Dynamic Social Networks 317

Moreover, since it is obvious that ∑k
i=1 di − 2d1 < 2M, we have

∑k
i=1 di − 2d1 +∑i< j did j

2(M+ 1)
<

⌈
∑i< j did j

2M

⌉
+ 1

and thus the conclusion follows.

Lemma 11.2. When a new edge (u,v) connecting communities C(u) and C(v) is
introduced, C(v) (or C(u)) is the best candidate for u (or v) if it should ever change
its membership.

Proof. Let C ≡ C(u) and D ≡ C(v). Recall the outer force that a community S
applies to vertex u is FS

out(u) = eS
u − dudoutS

2M . We will show that the presence of edge
(u,v) will strengthen FD

out(u) while weaken the other outer forces FS
out(u), i.e, we

show that FD
out(u) increases while FS

out(u) decreases for all S /∈ {C,D}.

FD
out(u)new −FD

out(u)old

=

(
eD

u + 1− (du + 1)(doutD+ 1)
2(M+ 1)

)
−
(

eD
u − dudoutD

2M

)

=
2M+ dudoutD

2M
− dudoutD + doutD + du + 1

2(M+ 1)

≥ 2M+ dudoutD

2(M+ 1)
− dudoutD + doutD + du + 1

2(M+ 1)
> 0

and thus FD
out(u) is strengthen when (u,v) is introduced. Furthermore, for any

community S ∈ C and S /∈ {C,D},

FS
out(u)new −FS

out(u)old =

(
eS

u −
(du + 1)doutS

2(M+ 1)

)
−
(

eS
u −

dudoutS

2M

)

= doutS

(
du

2M
− du + 1

2(M+ 1)

)
< 0,

which implies FS
out(u) is weaken when (u,v) is connected. Hence, the conclusion

follows.

Theorem 11.3. Assume that a new edge (u,v) is added to the network. Let C ≡C(u)
and D ≡C(v). If Δqu,C,D ≡ 4(M+1)(eu

D+1−eu
C)+eu

C(2dD−2du−eu
C)−2(du+1)

(du + 1+ dD− dC)> 0 then joining u to D will increase the overall modularity.

Proof. Node u should leave its current community C and join in D if QD+u +
QC−u > QC +QD, or equivalently,

318 N.P. Nguyen et al.

Algorithm 3 Node Removal
Input: Node u ∈C to be removed; Current structure Ct .
Output: An updated structure Ct+1.
1: i ← 1;
2: while N(u) �= /0 do
3: Si = {Nodes found by a 3-clique percolation on v ∈ N(u)};
4: if Si == /0 then
5: Si ← {v};
6: end if
7: N(u)← N(u)\Si ;
8: i ← i+1;
9: end while

10: Let each Si and singleton in N(u) consider its best communities;
11: Update Ct ;

mD + eD + 1
M+ 1

− (dD + du + 2)2

4(M+ 1)2 +
mC − eC

M+ 1
− (dC − du − eC)

2

4(M+ 1)2 >
mD

M+ 1

− (dD + 1)2

4(M+ 1)2 +
mC

M+ 1
− (dC + 1)2

4(M+ 1)2 ⇔ 4(M+ 1)(eD + 1− eC)

+ eC(2dD − 2du − eC)− 2(du+ 1)(du + 1+ dD− dC)> 0.

Corollary 11.1. If the condition in Theorem 11.3 is not satisfied, then neither u nor
its neighbors should be moved to D.

Proof. The proof follows from Theorem 11.3.

11.3.1.3 Node Removal

When an existing node u of a community C is removed at time t, all of its adjacent
edges are removed as a result. This case is challenging in the sense that the resulting
community is very complicated: it can be either unchanged or broken into smaller
pieces and could probably be merged with other communities. To give a sense of it,
let’s consider two extreme cases when a single degree node and a node with highest
degree in a community is removed. If a single degree node is removed, it leaves
the resulted community unchanged (Lemma 11.4). However, when a highest degree
vertex is removed, the current community might be disconnected and broken in to
smaller pieces which then are merged to other communities as depicted in Fig. 11.2c.
Therefore, identifying the leftover structure of C is a crucial part once a vertex in C
is removed.

To quickly and efficiently handle this task, we utilize the clique percolation
method presented in [2]. In particular, when a vertex u is removed from C, we place
a 3-clique at one of its neighbor and let the clique percolates until no vertices in
C are discovered (Fig. 11.2d). We then let the remaining communities of C choose
their best communities. The algorithm is presented in Algorithm 3.

11 On Detection of Community Structure in Dynamic Social Networks 319

Algorithm 4 Edge Removal
Input: Edge (u,v) to be removed; Current structure Ct .
Output: An updated clustering Ct+1.
1: if (u,v) is a single edge then
2: Ct+1 = (Ct\{u,v})∪{u}∪{v};
3: else if Either u (or v) is of degree one then
4: Ct+1 = (Ct\C(u))∪{u}∪{C(u)\u};
5: else if C(u) �=C(v) then
6: Ct+1 = Ct ;
7: else
8: % Now (u,v) is inside a community C %
9: L = {Maximal “quasi-cliques” in C};

10: Let the singletons in C\L consider their best communities;
11: end if
12: Update Ct+1;

11.3.1.4 Edge Removal

In the last case when an edge e = (u,v) is about to be removed, we divide further
into four subcases: (1) e is a single edge connecting only u and v where u and v
are of single degree, (2) either u or v has degree one, (3) e is an inter-community
link connecting C(u) and C(v), and (4) e is an inter-community link. If e is an single
edge, it is clear that removing e will result in the same community structure plus two
singletons of u and v themselves. The same reaction applies to the second subcase
when either u or v has single degree due to Lemma 11.4, thus results in the prior
network structure plus u (or v). When e is an inter-community link, the removal of e
will strengthen the current network communities (Lemma 11.3) and hence, we just
make no change to the community structure.

The last but most complicated case happens when an intra-community link is
deleted. As depicted in Fig. 11.2b, removing this kind of edge often leaves the
community unchanged if the community itself is densely connected; however, the
target module will be divided if it contains substructures which are less attractive or
loosely connected to each other. Therefore, the problem of identifying the structure
of the remaining modules becomes very complicated. Theorem 11.4 provides us
a convenient tool to test for community bi-division when an intra-community link
is removed from the host community C. However, it requires an intensive look for
all subsets of C, which may be time consuming. Note that prior to the removal
of (u,v), the community C hosting this link should contain dense connections
within itself and thus, the removal of (u,v) should leave some sort of “quasi-clique”
structure inside C. Therefore, we find all maximal “quasi-cliques” within the current
community and have them (as well as leftover singletons) determine their best
communities to join in. The detailed procedure is described in Algorithm 4.

Lemma 11.3. If C1 and C2 are two communities of G, then the removal of an inter-
community link connecting them will strengthen modularity contributions of both C1

and C2.

320 N.P. Nguyen et al.

Proof. Let Q1 and Q′
1 be the modularities of C1 before and after the removal of

that link. We show that Q′
1 > Q1 (and similarly, Q′

2 > Q2) and thus, C1 and C2

contribute higher modularities to the network. Now,

Q′
1 −Q1 =

(
m1

M − 1
− (d1 − 1)2

4(M− 1)2

)
−
(

m1

M
− d2

1

4M2

)

= m1

(
1

M − 1
− 1

M

)
+

1
4

(
d1

M
− d1 − 1

M − 1

)(
d1

M
+

d1 − 1
M − 1

)
.

Since all terms are all positive, Q′
1 −Q1 > 0. The same technique applies to show

that Q′
2 > Q2.

Lemma 11.4. The removal of (u,v) inside a community C where only u or v is of
degree one will not separate C.

Proof. Assume the contradiction, i.e. after the removal of (u,v) where du = 1, C is
broken into smaller communities X1, X2,..., Xk which contribute higher modularity:
QX1 + ...+QXk > QC. W.L.O.G, suppose u connected to X1 prior to its removal.
It follows that QX1+u > QX1 and thus QX1+u + ...+QXk > QC, which raises a
contradiction since C is originally a community.

Lemma 11.5. (Separation of a community) Let C1 ⊆ C and C2 = C\C1 be two
disjoint subsets of C. (C \C) ∪ {C1,C2} is a community structure with higher
modularity when an edge crossing C1 and C2 is removed, i.e, C should be separated
into C1 and C2, if and only if e12 <

d1d2−dC+1
2(M−1) + 1.

Proof. Let Q′
1, Q′

2 and Q′
C denote the modularity contribution of C1, C2, and C

after an edge crossing (X1,X2) has been removed. Now,

e12 <
d1d2 − dC + 1

2(M − 1)
+ 1 ⇔ 2d1d2 − 2dC + 2

4(M− 1)2 >
e12 − 1
M − 1

⇔ (d1 + d2 − 2)2

4(M − 1)2 − (d1 − 1)2

4(M − 1)2 − (d2 − 1)2

4(M − 1)2

>
m1 +m2 + e12 − 1

M − 1
− m1 − 1

M − 1
− m2 − 1

M − 1

⇔ m1 − 1
M − 1

− (d1 − 1)2

4(M − 1)2 +
m2 − 1

M
− (d2 − 1)2

4(M− 1)2

>
m1 +m2 + e12 − 1

M − 1
− (d1 + d2 − 2)2

4(M − 1)2

⇔ Q′
1 +Q′

2 > Q′
C.

Thus, the conclusion follows.

11 On Detection of Community Structure in Dynamic Social Networks 321

Theorem 11.4. (Testing of module separation) For any community C, let α and β
be the lowest and the second highest degree of vertices in C, respectively. Assume
that an edge e is removed from C. If there do not exist subsets C1 ⊆C and C2 ≡C\C1

such that

1. e is crossing C1 and C2

2.
min{α(dC −α),β (dC −β)}

2M
< e12 <

(dC − 2)2

8(M − 1)
+ 1,

then any bi-division of C will not benefit the overall Q.

Proof. From Lemma 11.5, it follows that in order to really benefit the overall
modularity we must have

d1d2

2M
< e12 <

d1d2 + 1
2(M − 1)

+ 1.

Since d1 + d2 = dC, it follows that

e12 <
d1d2 − d+ 1

2(M − 1)
+1 ≤

(d1+d2)
2

4 − d+ 1

2(M − 1)
+1 ≤

d2
C
4 − dC + 1

2(M− 1)
+1=

(dC − 2)2

8(M − 1)
+ 1.

For a lower bound of the LHS inequality, we rewrite d1d2 as d1d2 = d1(d − d1) =
d1d − d2

1 and find the non-zero minimum value on the range d1 ∈ [α,β]. By taking
the derivative and solving for critical point, d1d − d2

1 is minimized either at d1 = α
or d1 = β . Therefore,

min{α(d −α),β (d −β)}
2M

≤ d1d2

2M
< e12 ≤ (dC − 2)2

8(M − 1)
+ 1.

Finally, our main algorithm QCA for quickly updating community structures of
dynamic social networks is presented in Algorithm 5.

11.4 Experimental Results

In this section, we present the experimental results of our QCA algorithm on
identifying and updating the network community structures of dynamic social
networks. To illustrate the strength and effectiveness of our approach, we choose
three popular real-world social networks including ENRON email network [11],
arXiv e-print citation network (provided by the KDD cup 2003 [12]), and Facebook
online social network [13]. The static method we are comparing to is the one
proposed by Blondel et al [5], which we refer to as Blondel method or static method.
In addition to the static method, we further compare QCA to a recent dynamic

322 N.P. Nguyen et al.

Algorithm 5 Quick Community Adaptation (QCA)
Input: G ≡ G0 = (V0 ,E0), E = {E1,E2, ..,Es} a collection of simple events
Output: Community structure Ct of Gt at time t .
1: Use [5] to find an initial community clustering C0 of G0;
2: for (t ← 1 to s) do
3: Ct ← Ct−1;
4: if Et = newNode(u) then
5: New Node(Ct ,u);
6: else if Et = newEdge((u,v)) then
7: New Edge(Ct , (u,v));
8: else if Et = removeNode(u) then
9: Remove Node(Ct ,u);

10: else
11: Remove Edge(Ct , (u,v));
12: end if
13: end for

adaptive method called MIEN proposed in [14]. Basically, MIEN tries to compress
and decompress network modules into nodes in order to adapt with the changes and
uses fast modularity method [4] to keep the network structure updated. In particular,
we will show in the experiments the following quantities (1) modularity values (2)
the quality of the identified network communities through NMI scores and (3) the
processing time of our QCA in comparison with other methods. The above networks
expose to contain clear community structure due to their high modularities, which
is the main reason for them to be chosen.

In order to quantify the quality of the identified community structure, i.e. the
similarity between the identified communities and the ground truth, we adopt a
well known measure in Information Theory called Normalized Mutual Information
(NMI). NMI has been proven to be reliable and is currently used in testing
community detection algorithms [3]. Basically, NMI(U,V) equals 1 if structures
U and V are identical and equals 0 if they are totally separated. Due to space limit,
the readers are encouraged to read [3] for NMI formulas.

For each network, time information is extracted in different ways and a portion
of the network data (usually the first network snapshot) is collected to form the
basic network community structure. Our QCA algorithm takes into account that
basic community structure and runs only on the network changes whereas the static
method has to be performed on the whole network snapshot up to each time point.

11.4.1 ENRON Email Network

The Enron email network contains email messages data from about 150 users,
mostly senior management of Enron Inc., from January 1999 to July 2002 [11].
Each email address is represented by an unique identification number in the dataset
and each link corresponds to a message sent between the sender and the receiver.

11 On Detection of Community Structure in Dynamic Social Networks 323

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0 5 10 15 20
Time point

Blondel
QCA

MIEN

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20
Time point

Blondel
QCA

MIEN

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20
Time point

Blondel
QCA

MIEN

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
Time point

QCA
MIEN

a b

c d

Fig. 11.3 Simulation results on Enron Email Network dataset. (a) Modularity (b) Number of
Communities (c) Running Time(s) (d) NMI

After a data refinement process, we choose 50% of total links to form a basic
community structure of the network with 7 major communities, and simulate the
network evolution via a series of 21 growing snapshots in which roughly 103 links
are added at a time.

We first evaluate the modularity values computed by QCA, MIEN, and Blondel
method. As shown in Fig. 11.3a, our QCA algorithm archives competitively higher
modularities than the static method but a little bit less than MIEN method while
maintaining the nearly same number of communities of the other two (Fig. 11.3b).
In particular, the modularity values produced by QCA very well approximate those
found by static method with lesser variation. There are reasons for that. Recall that
our QCA algorithm takes into account the basic community structures detected by
the static method (at the first snapshot) and processes on network changes only.
Knowing the basic network community structure is a great advantage of our QCA
algorithm: it can avoid the hassle of searching and computing from scratch to update

324 N.P. Nguyen et al.

the network with changes. In fact, QCA uses the basic structure for finding and
quickly updating the local optimal communities to adapt with changes introduced
during the network evolution.

The running time of QCA and the static method in this small network are
relatively close: the static method requires 1 s to complete each of its tasks while
our QCA does not even ask for one (Fig. 11.3c). In this dataset, MIEN requires a
little more time (1.5 s in average) to complete the task. Time and computational cost
are significantly reduced in QCA since our algorithms only take into account the net-
work changes while the static method has to work on the whole network every time.

Due to the lack of the proper information about real communities in Enron Inc.
(and in other datasets), we use community structure identified by the static method
as a reference to the ground truth. The quantity NMI(QCA,Blondel) (or NMI(QCA)
in short) indicates how community labels assigned by QCA similar to those of the
ground truth computed at every timepoint. A NMI value of 1 means two assignments
are identical and 0 implies the opposite. As one can see in Fig. 11.3d, both the NMI
scores of MIEN method and ours are very high and relatively close to 1, indicating
that in this Enron email network, both our QCA and MIEN algorithm are able to
identify high quality community structure with high modularity; however, only our
method significantly reduces the processing time and computational requirement.

11.4.2 arXiv E-Print Citation Network

The arXiv e-print citation network [12], which was initialized in 1991, has
become an essential mean of assessing research results in various areas including
physics and computer sciences. At the time the dataset was collected, the network
already contained more than 225 K fulltext articles and was growing of over 40 K
submissions each year, ranging from January 1996 to May 2003.

In our experiments, citation links of the first two years 1996 and 1997 were taken
into account to form the basic community structure of our QCA method. In order to
simulate the network evolution, a total of 30 time dependent snapshots of the arXiv
citation network are created on a two-month regular basis in the duration between
January 1998 and January 2003.

We compare modularity results obtained by QCA algorithm at each network
snapshot to Blondel method as well as to MIEN method. It reveals from Fig. 11.4a
that the modularities returned by QCA are very close to those obtained by the
static method with much more stabler and are far higher than those of MIEN.
In particular, the modularity values produced by QCA algorithm cover from 94%
up to 100% that of Blondel method and from 6% to 10% higher than MIEN.
Moreover, our method reveals a much better network community structure since
it discovers many more communities than both the static method and MIEN as the
network evolves (Fig. 11.4b). This can be explained based on the resolution limit of
modularity [9]: the static method might disregard some small communities and tend
to combines them in order to maximize the overall network modularity.

11 On Detection of Community Structure in Dynamic Social Networks 325

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

0

50

100

150

200

250

300

0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Time point

Blondel
QCA

MIEN

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Time point

QCA
MIEN

a b

c d

Fig. 11.4 Simulation results on ArXiv e-Print citation network. (a) Modularity (b) Number of
Communities (c) Running Time(s) (d) NMI

Second observation on running time shows that QCA outperforms the static
method as well as its competitor MIEN: QCA takes at most 2 s to complete updating
the network structure while Blondel method requires more than triple that amount
of time (Fig. 11.4d) and MIEN asks for more than 5x time. In addition, higher
NMI scores of QCA than MIEN methods (Fig. 11.4) implies network communities
identified by our approach are not only of high similarity to the ground truth but
also more precise than that detected by MIEN, meanwhile the computational cost
and the running time are significantly reduced.

11.4.3 Facebook Social Network

This data set contains friendship information (i.e. who is friend with whom and wall
posts) among New Orleans regional network on Facebook, spanning from Sep 2006
to Jan 2009 [13]. To collect the information, the authors created several Facebook
accounts, joined each to the regional network, started crawling from a single user
and visited all friends in a breath-first-search fashion. The data set contains more

326 N.P. Nguyen et al.

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0 5 10 15 20 25

Blondel
QCA

MIEN

50

100

150

200

250

300

0 5 10 15 20 25

Blondel
QCA

MIEN

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

Blondel
QCA

MIEN

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

QCA
MIEN

a b

c d

Time-to-live Time-to-live

Time-to-live Time-to-live

Fig. 11.5 Simulation results on facebook social network. (a) Modularity (b) Number of Commu-
nities (c) Running Time(s) (d) NMI

than 60 K nodes (users) connected by more than 1.5 million friendship links with
an average node degree of 23.5. In our experiments, the nodes and links from Sep
2006 to Dec 2006 are used to form the basic community structure of the network
and each network snapshot is recored after every month during Jan 2007 to Jan 2009
for a total of 25 network snapshots.

Evaluation depicted in Fig. 11.5a reveals that QCA algorithm achieves compet-
itive modularities in comparison with the static method, and again far better than
those obtained by MIEN. In the general trend, the line representing QCA results
closely approximates that of the static method with much more stable. Moreover,
the two final modularity values at the end of the experiment are relatively the
same, which means that our adaptive method performs competitively with the static
method running on the whole network.

Figure 11.11.5c describes the running time of the three methods on the Facebook
data set. As one can see from this figure, QCA takes at least 3 s and at the most
4.5 s to successfully compute and update every network snapshot whereas the static
method, again, requires more than triple processing time. MIEN method really

11 On Detection of Community Structure in Dynamic Social Networks 327

suffers on this large scale network when requiring more than 10x amount of QCA
running time. This result confirms the effectiveness of our adaptive method when
applied to real-world social networks where a centralized algorithm may not be able
to detect a good network community structure in a timely manner.

However, there is a limitation of QCA algorithm we observe on this large network
and want to point out here: As the the duration of network evolution lasts longer over
time (i.e. the number of network snapshots increases), our method tends to divide the
network into smaller communities to maximize the local modularity, thus results in
an increasing number of communities and a decreasing of NMI scores. Figure 11.5b
and 11.5d describes this observation. For instance, at snapshot #12 (a year after Dec
2006), the NMI score is approximately 1/2 and gets decaying after this timepoint.
It implies a refreshment of network community structure is required at this time,
after a long enough duration. This is reasonable since activities on an online social
network, especially on Facebook social network, tend to come and go rapidly and
local adaptive procedures are not enough to reflect the whole network topology over
a long period of time.

11.5 Application: Social-Aware Routing in MANETs

In this section, we present an application where the detection of network community
structures plays an important role in routing strategies in MANETs. A MANET
is a dynamic wireless network with or without the underlying infrastructure, in
which each node can move freely in any direction and organize itself in an arbitrary
manner. Due to nodes mobility and unstable links nature of a MANET, designing
an efficient routing scheme has become one of the most important and challenging
problems on MANETs.

Recent researches have shown that MANETs exhibit the properties of social
networks [15–17] and social-aware algorithms for network routing are of great
potential. This is due to the fact that people have a natural tendency to form groups or
communities in communication networks, where individuals inside each community
communicate with each other more frequent than with people outside. This social
property is nicely reflected to the underlying MANETs by the existence of groups
of nodes where each group is densely connected inside than outside. This resembles
the idea of community structure in MANETs.

Multiple routing strategies [16]–[18] based on the discovery of network com-
munity structures have provided significant enhancement over traditional methods.
However, the community detection methods utilized in those strategies are not
applicable for dynamic MANETs since they have to recompute the network
structure whenever changes to the network topology are introduced, which results
in significant computational costs and processing time. Therefore, employing an
adaptive community structure detection algorithm as a core will provide speedup as
well as robustness to routing strategies in MANETs.

328 N.P. Nguyen et al.

We evaluate the following five routing strategies (1) WAIT: the source node waits
and keeps sending or forwarding the messages until it meets the destination node
(2) MCP: A node keeps forwarding the messages until they reach the maximum
number of hops, (3) LABEL: A node forwards or sends the messages to all members
in the destination community [15], (4) QCA: A Label version utilizing QCA as the
dynamic community detection method, and lastly (5) MIEN A social-aware routing
strategy on MANETs [14].

Even thought the WAIT and MCP algorithms are very simple and straightforward
to understand, they provide us helpful information about the lower and upper
bounds for message delivery ratio, time redundancy as well as message redundancy.
LABEL forwarding strategy works as follow: it first finds the community structure
of the underlying MANET, assigns each community with the same label and then
exclusively forwards messages to destinations, or to next-hop nodes having the same
labels as the destinations. MIEN forwarding method utilizes MIEN algorithm as
a subroutine. QCA routing strategy, instead of using a static community detection
method, utilizes QCA algorithm for adaptively updating the network community
structure and then uses the newly updated structure to inform the routing strategy
for forwarding messages.

We choose Reality Mining data set [19] provided by the MIT Media Lab to
test our proposed algorithm. The Reality Mining data set contains communication,
proximity, location, and activity information from 100 students at MIT over the
course of the 2004–2005 academic year. In particular, the data set includes call logs,
Bluetooth devices in proximity, cell tower IDs, application usage, and phone status
(such as charging and idle) of the participated students of over 350,000 hours. In
this chapter, we take into account the Bluetooth information to form the underlying
MANET and evaluate the performance of the above five routing strategies.

For each routing method, we evaluate the followings (1) Delivery ratio: The
portion of successfully delivered over the total number of messages (2) Average
delivery time: Average time for a message to be delivered. (3) Average number of
duplicated messages for each sent message. In particular, a total of 1,000 messages
are created and uniformly distributed during the experiment duration and each
message can not exist longer than a threshold time-to-live. The experimental results
are shown in Figs. 11.6a, 11.6b, and 11.6c.

Figure 11.6a describes the delivery ratio as a function of time-to-live. As revealed
by this figure, QCA achieves much better delivery ratio than MIEN as well as LABEL
and far better than WAIT. This means that QCA routing strategy successfully delivers
many more messages from the source nodes to the destinations than the others.
Moreover, as time-to-live increases, the delivery ratio of QCA tends to approximate
the ratio of MCP, the strategy with highest delivery ratio.

Comparison on delivery time shows that QCA requires less time and gets
messages delivered successfully faster than LABEL, as depicted in Fig. 11.6c. It
even requires less delivery time in comparison with the social-aware method MIEN.
This can be explained as the static community structures in LABEL can possibly
get message forwarded to a wrong community when the destinations eventually
change their communities during the experiment. Both QCA and MIEN, on the

11 On Detection of Community Structure in Dynamic Social Networks 329

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25 30 35 40 45
Time-to-live

MIEN
LABEL
WAIT
MCP
QCA

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45
Time-to-live

LABEL
MIEN
QCA

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 5 10 15 20 25 30 35 40 45
Time-to-live

MIEN
LABEL
WAIT
MCP
QCA

a b

c

Fig. 11.6 Experimental results on the reality mining data set. (a) Delivery Ratio (b) Average
Duplicate Message (c) Average Delivery Time

other hand, captures and updates the community structures on-the-fly as changes
occur, thus achieves better results. Since MIEN needs to compress and decompress
the network communities whenever network evolves, it may disregard the existence
of newly formed communities and thus, may requires extra time to forward the
messages.

The numbers of duplicate messages presented in Fig. 11.6b indicate that both
QCA and MIEN achieves the best results. The numbers of duplicated messages of
MCP method are weight higher than those of the others and are not plotted. In fact,
the results of QCA and MIEN are relatively close and tend to approximate each other
as time-to-live increases.

In conclusion, QCA is the best social-aware routing algorithm among five routing
strategies since its delivery ratio, delivery time and redundancy outperform those of
the other methods and are only below MCP while the number of duplicate messages
are much lower. QCA also shows a significant improvement over the naive LABEL
method which uses a static community detection method and thus, confirms the
applicability of our adaptive algorithm to routing strategies in MANETs.

330 N.P. Nguyen et al.

11.6 Application: Worm Containment on Social Networks

In this section, we brighten the applicability of QCA method via another practical
application in Worm containment on online social networks. Since their introduc-
tion, popular social network sites such as Facebook, Twitter, Bebo, and MySpace
have attracted millions of users worldwide, many of whom have integrated those
sites into their everyday lives. On the bright side, online social networks are
ideal places for people to keep in touch with friends and colleagues, to share
their common interests, to hold discussions in forums or just simply to socialize
online. However, on the other side, social networks are also fertile grounds for
the rapid propagation of malicious softwares (such as viruses or worms) and false
information.

Facebook, one of the most famous online social networks, experienced a wide
propagation of a trojan worm named “Koobface” in late 2008. Koobface made its
way not only through Facebook but also Bebo, MySpace, and Friendster social
networks [20, 21]. Once a user is infected, this worm scans through the current
user’s profile and sends out fake messages or wall posts to everyone in the user’s
friend list with titles or comments appeal to people’s curiosity. If one of the user’s
friends, attracted by the comments without a shadow of doubt, clicks on the link and
installs the fake “flash player”, he will be infected. Koobface’s life will then cycle on
this newly infected machine. Since people are able to access social network sites via
cell phones nowadays, worm’s targets are now not only computers but also mobile
devices.

The problem of worm containment becomes more and more complicated on a
dynamic social network as this kind of network evolves and changes rapidly over
time. The dynamics of social networks thus gives worms more chances to spread
out faster and wider as they could flexibly switch between new and existing users
in order to propagate. Therefore, the problem of containing worm propagation on
social networks is extremely challenging in the sense that a good solution at the
previous time step might not be sufficient or effective at the next time step. Although
one can recompute a new solution at each time the network changes, doing so would
result in heavy computational costs and time consuming as well as worms spreading
out wider during the recomputing process. A better solution should quickly and
adaptively update the current worm containing strategy based on changes in network
topology, thus could avoid the hassle of recomputing from scratch whenever the
network evolves.

There are many proposed methods dealing with worm containment on computer
networks by either using a multi-resolution approach to enhance the power of
threshold-based detection [22], or using a simplification of the Threshold Random
Walk scan detector [23], or by measuring the velocity of the number of new
connections and infected hosts [24], or using fast and efficient worm signature
generation [25, 26]. There are also several method proposed for cellular and mobile
networks [27–29]. However, all of these above approaches fail to take into account

11 On Detection of Community Structure in Dynamic Social Networks 331

the community structure as well as the dynamics of social networks, thus might
not be appropriate for our problem. A recent work [30] proposed a social-based
patching scheme for worm containment on cellular networks. However, this method
encounters the following limitations on a real social networks (1) its clustered
partitioning does not necessarily reflect the natural network community structure,
(2) it requires the number of clusters k (which is generally unknown for social
networks) must be specified beforehand, and (3) it exposes weaknesses when
dealing with dynamics of the network.

To overcome these limitations, our approach first utilizes QCA to identify the
network community structure and then adaptively keeps this structure fresh and
updated as the network evolves. Once the network communities are detected, our
patch distribution procedure will select the most influential users from different
communities in order to sending patches. These users, as soon as they receive
patches, will apply them to first disinfect the worm and then redistribute them to
all friends in their communities. These actions will contain worm propagation to
only some communities of the social network and prevent it from spreading out to a
larger population. To this end, a quick and precise community detection method will
definitely help the network administrator to select a more sufficient set of critical
users to send patches, thus lowers down the number of sent patches as well as
overhead information over the social network.

We next describe our patch distribution procedure. This procedure takes into
account the community structure identified from the previous step and selects a
set of influential users from each community of the network in order to distribute
patches. Influential users of a community are ones having the most relationships or
connections to other communities. In the point of an attacker view, these influential
users are potentially vulnerable since they not only interact actively within their
communities but also with people outside, thus, they can easily fool (or be fooled
by) people both inside and outside of their communities. On the other point of
view, these users are the best candidates for the network defender to distribute
patches since they can easily announce and forward patches to other members and
non-members.

We present here a quick greedy algorithm for selecting the set of most in-
fluential users in each community. In particular, for each community of G, the
algorithm starts with picking the user whose number of social connections to
outside communities is the highest and temporarily remove this user from the
considering community. This process repeats until there is no connection crossing
among communities of G. This set of influential users is the candidate for the
network defender for distributing patches. The distribution procedure is presented in
Algorithm 6. Note that we can directly apply the algorithm for Vertex Cover problem
to the patch distribution to get a 2-approximation algorithm; however, doing so
would result in heavy computation and much time consuming, especially on very
large social networks.

332 N.P. Nguyen et al.

Algorithm 6 Patch Distribution Procedure
Input: A community structure S = {S1,S2, ..,Sp}
Output: Set of influential users.
1: IS = /0;
2: for Si ∈ S do
3: while maxv∈Si{dSi

out(v)} > 0 do
4: Let a ← argmaxv∈Si{dSi

out(v)};
5: IS = IS∪a;
6: Temporary remove a from Si;
7: end while
8: end for
9: Send patches to users in IS;

Results

We present the experimental results of our method on the Facebook network dataset
[13] and compare the results with the social based method (Zhu’s method [30])
via a weighted version of our community update algorithms. One notable feature
of this dataset is time information (stamped at every moment the information was
recorded) represents the dynamics of the network, which nicely suits to our adaptive
method.

The worm propagation model in our experiments mimics the behavior of the
famous “Koobface” worm which once spread out widely on Facebook. In our
model, worms are able to explore their victim’s friend list and then send out fake
messages containing malicious links for propagating. The probability of a victim’s
friend activating the worm is proportional to communication frequency between the
victim and his friends. The time taken for worms to spread out from one user to
another is inversely proportional to the communication frequency between this user
and his particular friend. Finally, when a worm has successfully infected a user’s
computer, it will start propagating as soon as this computer connects to a specific
social network (Facebook in this case).

When the fraction of infected users (the number of infected users over the number
of all users) reaches a threshold α , the detection system raises an alarm and patches
will automatically be sent to most influential users selected by Algorithm 6. Once an
influential user receives a patch, he will first apply the patch to disinfect the worm
and then will have an option to forward this patch to all friends in his community.

Each experiment on this dataset is seeded with 0.02% of users to be infected by
worms and worm propagation is simulated through the duration of 2 days. In each
experiment, we compare infection rates of the social-based method of Zhu’s and
ours. The infection rate is computed as a fraction of the remaining infected users
over the overal infected ones. The number of clusters k in Zhu’s method is set to be
150 (in a static network), 200, and 250 (in dynamic networks), respectively. For each
value of k, the alarmming threshold α is set to be 2%, 10%, and 20%, respectively.
Each experiment is repeated 1,000 times for consistency.

11 On Detection of Community Structure in Dynamic Social Networks 333

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

a b

c

Fig. 11.7 Infection rates on static network with k = 150 clusters. (a) α = 2% (b) α = 10%
(c) α = 20%

Figures 11.7, 11.8 and 11.9 show the results of our experiments for three different
values of k and α . We first observe that the longer we wait (the higher the alarm
threshold is), the higher number of users we need to send patches to in order to
achieve the expected infection rate. For example, with k = 150 clusters and an
expected infection rate of 0.3, we need to send patches to less than 10% number
of users when α = 2%, to more than 15% number of users when α = 10% and to
nearly 90% of total influential users when α = 20%.

Second observation reveals that our approach achieves better infection rates than
the social-based method of Zhu in a static version of the social network as depicted
in Fig. 11.7. In particular, the infection rates obtained in our method are from 5%
to 10% better than those of Zhu’s. When the network evolves as new users join
in and new social relationships are introduced, we resize the number of cluster
k and recompute the infection rates of the social based method with the number
of cluster k = 200 and k = 250, and the alarm threshold α = 2%,10% and 20%,
respectively. As depicted in Figs. 11.8 and 11.9, our method, with the power of
quickly and adaptively update the network community structure, achieves better
infection rates than Zhu’s method meanwhile the computational costs and running
time is significantly reduced. As discussed, detecting and updating the network

334 N.P. Nguyen et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

a = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

a = 10%

a b

Fig. 11.8 Infection rates on dynamic network with k = 200 clusters. (a) α = 2% (b) α = 10%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

α = 2%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50 60 70 80 90 100

In
fe

ct
io

n
ra

te

Percentage of patched nodes

Zhu’s
Ours

α = 10%

a b

Fig. 11.9 Infection rates on dynamic network with k = 250 clusters. (a) α = 2% (b) α = 10%

community is the crucial part of a social based patching scheme: a good and up-
to-date network community structure will provide the network defender a tighter
set of vulnerable users and thus, will help to achieve lower infection rates. Our
adaptive algorithm, instead of recomputing the network structure every time changes
are introduced, quickly and adaptively updates the network communities on-the-
fly. Thanks to this frequently updated community structure, our patch distribution
procedure is able to select a better set of influential users, and thus helps in reducing
the number of infected users once patches are sent.

We further look more into the behavior of Zhu’s method when the number
of clusters k varies. We compute and compare the infection rates on Facebook
dataset for various k ranging from 1 K to 2.5 K with our approach. We first hope
that the more predefined clusters, the better infection rates clustered partitioning
method will achieve. However, the experimental results depicted in Fig. 11.10 reveal
the opposite. In particular, with a fixed alarming threshold α = 10% and 60%

11 On Detection of Community Structure in Dynamic Social Networks 335

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

10 12 14 16 18 20 22 24

In
fe

ct
io

n
ra

te

k (in hundreds)

Zhu’s
Ours

Fig. 11.10 Infection rates at α = 10% using 60% of the patches nodes

patched nodes, the infection rates achived by Zhu’s method do not decrease but
ranging near 28% while ours are far better (20%) with much less computational
time.

Finally, a comparison on running time on the two approaches shows that time
taken for Clustered Partitioning procedure is much more than our community
updating procedure and thus, may prevents this method to complete in a timely
manner. In particular, our approach takes only 3 s for obtaining the basic community
structure and at most 30 s to complete all the tasks whereas [30] requires more
than 5 minutes performing Clustered Partitioning to divide the communication
network into modules and selecting the vertex separators. In that delay, the worm
propagation may spread out to a larger population and thus, the solution may not be
effective. These above experimental results confirm the robustness and efficiency of
our approach on social networks.

11.7 Detection of Overlapping Communities

In this section, we describe DOCA, a connection-based algorithm to quickly and
efficiently discover the overlapping network community structure. In a big picture,
DOCA works toward the classification of network nodes into different groups by first
detecting all possible densely connected parts of the network, and then combining
those who share a significant substructure, i.e. those who highly overlap with each
other, hence revealing the overlapped network community structure.

There are two important points we want to stress here. Firstly, DOCA requires β ,
the overlapping threshold on how much substructure two communities can share, as
an input parameter and that is all it needs. Secondly, DOCA fundamentally differs
from the one recently suggested in [31] in the way it allows |Ci ∩Cj| ≥ 2 for any
subset Ci,Cj of V , and consequently allows network communities to overlap not
only at a single vertex but also as a substructure of the whole community.

336 N.P. Nguyen et al.

11.7.1 Density Function

In order to quantify the goodness of an identified community, we use the popular

density functionΨ defined as follow:Ψ(C) = |Cin|
(|C|

2)
[32] where C is a subset of V .

The more C approaches a clique of its size, the higher its density value Ψ (C). In
order to set up a threshold on the number of connections that suffices for a set of
nodes C to be a community, we propose a function τ(C) defined as follows:

τ(C) =
σ(C)(|C|

2

) where σ(C) =
(|C|

2

)1− 1
|C|
.

A subgraph induced by C is a local community iffΨ(C) ≥ τ(C) or equivalently,
|Cin| ≥ σ(C). Several functions with the same purpose have been introduced in
the literature, for instance, in the work of [33, 34] and it is worth noting down
the main differences between these functions and ours. First and foremost, our
function processes on the candidate group only and does not require any user-
input parameter or predefined threshold. Secondly, by Proposition 11.1, σ(C) is
an increasing function and closely approaches C’s full connections, i.e. the number
of edges in a clique of size |C|. That makes σ(C) and τ(C) relaxation versions
of the traditional density function, yet powerful ones as we shall show in the
experiments.

Proposition 11.1. f (n) = n1− 1
n is strictly increasing for n ≥ 3 and limn→∞

f (n) = n.

11.7.2 Objective Function

Our objective is to find a community assignment for the set of nodes V which
maximizes the overall internal density functionΨ (C) since the higher the internal
density of a community is, the clearer its structure would be. Unlike the case
of disjoint community structure, in which the number of connections crossing
communities should be less than those inside them, our objective does not take
into account the number of out-going links from each community. To understand
the reason, let’s consider a simple example pictured in Fig. 11.11, in which the
concept of a community is violated in both weak and strong senses. In the
overlapping community structure point of view, it is clear that every clique in this
figure should form a community of its own, and each community overlaps the
central clique at exactly one node. However, in the disjoint community structure
point of view, any vertex at the central clique has n internal and 2n external
connections, which violates the concept of a community in the strong sense.

11 On Detection of Community Structure in Dynamic Social Networks 337

Fig. 11.11 Overlapped vs. non-overlapped community structure. The central clique violates the
general concept of community in both strong and weak senses

Furthermore, the internal connectivity of the central clique is also dominated by
its external density, which implies the concept of a community in weak sense is also
violated.

11.7.3 Locating Local Communities

Local communities are connected parts of the network whose internal densities are
greater than a certain level. In our DOCA algorithm, this level is automatically
determined based on the the size of each corresponding part and the function τ(·).
In particular, a local community is defined based on a connection (u,v) when the
number of internal connections within the subgraph induced by C ≡ N(u)∩N(v) is
greater than σ(C), or in other words, when C’s internal density is greater than τ(C)
(Fig. 11.12a). However, one problem may eventually arise during the detection of
these local communities: the containment of sub-communities in an actual bigger
one. Intuitively, one would like to detect a bigger community unified by smaller ones
if the bigger community is itself densely connected. In order to filter this unfortunate
situation, we therefore impose

Ψ

(
s⋃

i=1

Ci

)
< τ

(
s⋃

i=1

Ci

)
∀s ∈ [1, |C |].

In addition, we allow this locating procedure to skip over tiny communities of size
less than four. This condition is carried out from the Proposition 11.1. It makes sense
in terms of mobile or social networks where a group of mobile devices or a social
community usually has size larger than three, and intuitively agrees with the finding
of [35, 36]. Those tiny communities will then be identified later in DOCA.

338 N.P. Nguyen et al.

u v

a b

Fig. 11.12 (a) A local community C defined by a link {u,v}. Here,Ψ(C) = 0.9 > τ(C) = 0.725
(b) Combining two local communities sharing a significant substructure. Here, β = 0.8 and OS
score is 3/5+3/7 = 1.027

Algorithm 7 Locating local communities
Input: G = (V,E)
Output: A collection of raw communities Cr .
1: for (u,v) ∈ E do
2: if Com(u)∩Com(v) = /0 then
3: Let C = N(u)∩N(v);
4: if |Cin| ≥ σ (C) and |C| ≥ 4 then
5: Define C a local community;
6: Cr = Cr ∪{C};
7: end if
8: end if
9: end for

Lemma 11.6. The time complexity of Algorithm 7 is O(M).

Proof. Each time an edge (u,v) is examined, we have to find the intersection of N(u)
and N(v), which result in time complexity of |N(u)|+ |N(v)| = du + dv. Moreover,
when u and v are in the same community, {u,v} will not be taken in consideration.
Therefore, the total time complexity is ∑u∈V du = 2M.

Lemma 11.7. Algorithm 7 detects all raw communities C’s of size |C| ≥ 4 and
Ψ(C)≥ τ(4) ≈ 0.83.

Proof. By its greedy nature, Algorithm 7 will examine every edge (u,v)∈ E (except
for those who already found to be in the same community) and will detect any local
community C having |C| ≥ 4 andΨ(C) ≥ τ(C) ≥ τ(4) ≈ 0.83. Since each edge is
visited at least once, Algorithm 7 will make sure each local community is visited at
least once, and thus, the conclusion follows.

Theorem 11.5. The local community structure Cr detected by Algorithm 7 satisfies
Ψ(Cr) ≥ 0.83 ×Ψ(OPT) where OPT is the optimal community assignment that
maximizes the overall internal density function.

Proof. This Theorem follows from Lemma 11.7 and the condition that no real local
community is a substructure of another local community. This also implies that
Algorithm 7 is an 0.83-approximation algorithm for finding local densely connected
communities.

11 On Detection of Community Structure in Dynamic Social Networks 339

Algorithm 8 Combining local communities
Input: Raw community structure Cr

Output: A refined community structure C f .
1: C f ← Cr;
2: for Ci and Cj in Cr and !Done do
3: if OS(Ci,Cj)> β then
4: C ← Combine Ci and Cj;
5: /*Update the current structure*/
6: C f = (C f \Ci\Cj)∪C;
7: Done ← False;
8: end if
9: end for

11.7.4 Combining Overlapping Communities

As soon as Algorithm 7 finishes, the raw network community structure is now
pictured as a collection of (possibly overlapped) dense parts of the network together
with outliers. As some of those dense parts can possibly share significant common
substructures, we need to combine them if they are really highly overlapped. In
order to do so, we introduce the overlapping score of two communities defined as
follows:

OS(Ci,Cj) =
|Ii j|

min{|Ci|, |Cj |} +
|Iin

i j |
min{|Cin

i |, |Cin
j |}

.

where Ii j = Ci ∩Cj . Basically, OS(Ci,Cj) values the importance of the common
nodes and connections shared between Ci and Cj to the smaller community. In
comparison with the duplicate distance metric suggested in [37], our overlapping
function not only takes into account the fraction of common nodes but also values
the fraction of common connections, which is crucial in order to combine network
communities. Furthermore, OS(·, ·) is symmetric, so it scales well with the size of
any community, and the higher the overlapping score is, the more those communities
in consideration should be merged. In this paper, we combine communitiesCi and Cj

if OS(Ci,Cj) ≥ β (Fig. 11.12b). We, again, emphasize that β is the only parameter
required for DOCA.

The time complexity of Algorithm 8 is O(N2
0) where N0 is the number of

local communities detected in Algorithm 7. Clearly, N0 ≤ M and thus, it can be
O(M2). However, when the intersection of two communities is upper bounded,
by Lemma 11.8, we know that the number of local communities is also upper
bounded by O(N), and thus, the time complexity of Algorithm 8 is O(N2). In
our experiments, we observe that the running time of this procedure is indeed
O(N2).

Lemma 11.8. The number of raw communities detected in Algorithm 7 is O(N)
when the number of nodes in the intersection of any two communities is upper
bounded by a constant α .

340 N.P. Nguyen et al.

Proof. For each Ci ∈ C , decompose it into overlapped and non-overlapped parts,
denoted by Cov

i and Cnov
i . We have Ci = Cov

i ∪Cnov
i and Cov

i ∩Cnov
i = /0. Therefore,

|Ci|= |Cov
i |+ |Cnov

i |.
Now,

∑
Ci∈C

|Ci|= ∑
Ci∈C

(|Cov
i |+ |Cnov

i |)≤ N +∑
i< j

|Cov
i ∩Cnov

j |,

where N = ∑Ci∈C |Cnov
i |+ ∣∣⋃Ci∈C |Cov

i |∣∣. For an upper bound of the second term,
rewrite

∑
i< j

|Cov
i ∩Cnov

j | ≤ N + ∑
|Ci∩Cj |≥2

|Ci ∩Cj| ≤ N(1+α),

where α = max{|Ci ∩Cj| : |Ci ∩Cj| ≥ 2}
Hence, ∑Ci∈C |Ci| ≤ N(2 +α). Let N0 be the number of raw communities, it

follows that N0 min{|Ci|} ≤ ∑Ci∈C |Ci| ≤ (2+α)N. Since min{|Ci|} ≥ 4, we have

N0 ≤ (2+α)
4 N = O(N).

11.7.5 Simulation Results

We compare the performance of DOCA against the most popular method CFinder
[38] and the most effective method COPRA [39].
Data Sets: The best approach to evaluate the performance of our proposed method
is to validate it on real-world traces with known overlapping community structures.
Unfortunately, we often do not know that structures beforehand or such structures
cannot be mined from the network topologies. Even though synthesis networks
might not reflect all the statistical properties of real networks, they can provide us
known ground truth via planted community structure and the ability to vary network
parameters such as sizes, densities, community overlapping levels and so on. We
use networks generated by the well-known LFR overlapping benchmark [3], the de
facto standard for testing overlapping community detection algorithms. Generated
networks follow power-law degree distribution and contain embedded overlapping
communities of varying sizes that capture the internal characteristics of real-world
networks.
Metrics. To measure the similarity between detected communities and the embed-
ded ground truth, we evaluate following metrics.

• The most important metric is a generalization of NMI [33] special-built for
overlapping communities. Basically, NMI(U,V) is 1 if structures U and V are
identical and 0 if they are totally separated. The metric resembles closely the
standard NMI in case the communities are disjoint.

• The number of communities, ignoring singleton communities and unassigned
nodes. A good community detection method should produce roughly the same
number of communities with the known ground truth.

• The overlapping ratio, i.e. the average number of communities to which a node
belongs to.

11 On Detection of Community Structure in Dynamic Social Networks 341

Set up. The parameters for LFR benchmark are: the number of nodes N, the
mixing parameter μ that decides the overall sharpness of the community structure
(each node shares a fraction μ of its edges with vertices in other communities),
the minimum community size cmin, the maximum community size cmax, om the
maximum number of communities to which a vertex belongs, and the overlapping
fraction γ measuring the fraction of nodes with memberships in two communities
or more.

To fairly compare with COPRA and to avoid being bias, we keep the parameters
close to the setting in [39]: the minimum community size is cmin = 10, the maximum
community size is cmax = 50, each vertex belongs to at most two communities,
om = 2. The number of vertices are N = 1,000 or N = 5,000 and the mixing rate is
selected between μ = 0.1 and μ = 0.3.

We fix the overlapping threshold in DOCA to be 60% (the most desirable results
are obtained when this threshold is between 60% and 70%). Since the output of
COPRA is undeterministic, we run COPRA ten times on each instance and select
the best result. In addition, we put no time constraint on the CFinder. All methods
are executed on an Intel(R) Xeon(R) W3540 CPU at 2.93 Ghz.

11.7.6 Overlapping Communities Quality

We show our results in groups of four. For each case we vary the overlapping
fraction γ from 0 to 0.5 and analyze the results found by DOCA, CFinder
and COPRA. We only present results when corresponding parameters give top
performance for CFinder and COPRA.
Number of communities: First we show in Fig. 11.13a the number of communities
found by DOCA, COPRA, and CFinder and compare them with the ground truth.
The more we allow communities to overlap in the network, the larger the number of
communities. It reveals from this figure that the number of communities found by
DOCA, marked with squares, is the closest and almost identical to the ground truth
in a long run when the overlapping fraction gets higher. There is an exception when
N = 1,000,μ = 0.3 that we will discuss later.
Normalized Multual Information: NMI is a more accurate metrics to assess the
similarity between communities found and the ground truth. We can infer from
Fig. 11.13b that DOCA achieves the highest performance among all methods with
much more stable. A common trend in this test is the performances of all methods
degrade (1) when the mixing rate μ increases, i.e. the community structure becomes
more ambiguous or (2) when the network’s size decreases, keeping the same mixing
rate μ . While DOCA is not very competitive only when both negative factors
happen in the bottom-right char, N = 1,000,μ = 0.3, it is the best performer in
general.
Overlapping Ratio: Since om = 2 every vertex in the overlapped regions will belong
to exactly two communities. As a consequence, the average number of communities
for a vertex is γ+ 1 that explains why the ground truth are associated with straight

342 N.P. Nguyen et al.

 35

 40

 45

 50

 55

 60

 65

 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 C

om
m

un
iti

es

Overlapping fraction

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 180

 200

 220

 240

 260

 280

 300

 320

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 M
ul

tu
al

 In
fo

rm
at

io
n

Overlapping Fraction

DOCA
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

DOCA
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5

DOCA
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

DOCA
CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

a

b

Fig. 11.13 (a): Number of communities found by DOCA, COPRA and CFinder. Top: N = 5,000,
Bottom: N = 1,000, Left: μ = 0.1, Right: μ = 0.3. The closer to the ground truth, the better. (b):
NMI of DOCA, COPRA, CFinder. Top: N = 5,000, Bottom: N = 1,000, Left: μ = 0.1, Right:
μ = 0.3. The higher NMI, the better

11 On Detection of Community Structure in Dynamic Social Networks 343

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 N
um

be
r

of
 C

om
m

un
iti

es
 p

er
 N

od
e

Overlapping fraction

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.1 0.2 0.3 0.4 0.5

Ground truth
DOCA

CFinder k = 4
CFinder k = 5
COPRA v = 3
COPRA v = 6

Fig. 11.14 Overlapping fraction, the average number of communities a node belongs to. Top:
N = 1,000, Bottom: N = 5,000, Left: μ = 0.1, Right: μ = 0.3. The closer to the ground truth, the
better

line in Fig. 11.14. When N = 5,000, DOCA shares the overlapping rate with the
ground truth, but for N = 1,000, COPRA v = 6 is much closer to the intended
overlapping rates.

The significant gap is observed when the mixing rate gets higher (μ = 0.3)
and the network size gets smaller (N = 1,000). DOCA provides less number of
communities than the ground truth’s but with much higher overlapping rate. The
reason is that with a larger mixing rate μ a node will have more edges connecting
to vertices in other communities, thus will increase the chance that DOCA merges
highly overlapped communities. Hence, DOCA creates less but with larger size
communities. We note that this “weakness” of DOCA is controversial as when
the mixing rate increases, the ground truth does not necessarily coincide with the
structure implied by the network’s topology.

Extensive experiments show DOCA to give high quality overlapping commu-
nities. Moreover, we found DOCA run substantially faster than the others when
the network contains thousands of nodes due to its small constant factor with
average running time less than 10 ms for 5,000 nodes networks while its competitors
take seconds. Thus, the method can be implemented effectively applications on
complex networks, especially on social networks. In the next section, we illustrate
the efficiency of utilizing overlapping communities concept in problem of worm
containment on Online Social Networks.

344 N.P. Nguyen et al.

11.8 Related Work

Community detection on static networks has attracted a lot of attentions and many
efficient methods have been proposed for this type of networks. The readers are
strongly encouraged to read the excellent survey [32] for an overview. Detecting
community structure on dynamic networks, however, has so far been an untrodden
area. In [40], the authors defined time graphs that captured the link creation as a
point phenomena in time of a directed evolving graph. Based on that, the authors
studied the evolution of the blogosphere in terms of changes such as in-degree,
out-degree, etc. Another work [41] studied the growth of the a wide range of real-
world evolving graphs and provided a new kind of graph generator that, based on a
forest fire spreading process, produced networks with the discovered patterns. In
another work [42], the authors suggested a method for observing the evolution
of web communities by first revealing network communities at each specific
time point and then, quantifying changes that occurred to network communities
based on different types of community changes such as emerging, growing and
shrinking.

One of the most seminal work [2] proposed an innovative method for detecting
communities on dynamic networks the based on k-clique percolation technique.
With the proposed method, they analyzed a co-authorship network and a mobile
phone network and revealed some interesting characteristics on the number of com-
munities, community sizes, ages, and their correlation as well as autocorrelation.
This approach can detect overlapping nodes in different network communities;
however, its internal k-clique percolation technique may require high computing
resources and thus, may be time consuming especially on large scale social
networks.

A work in [11] presented GraphScope, a parameter-free methodology for
detecting clusters on time-evolving graphs based on mutual information and entropy
functions of Information Theory. This method is notable due to its parameter-
free property, however, it requires a recomputation of the number of sources and
destinations each time the graph segments change (i.e. when users joining in or
withdrawing from the network, or when new social connections are introduced or
removed) without utilizing its previously computed information. Thus, it might not
lend itself effectively to the field of adaptive algorithms. [43] proposed a distributed
method for community detection in which modularity was used as a measure instead
of objective function. A part from that, [44] attempted to track the evolving of
communities over time, using a few static network snapshots.

A recent work of [45] proposed a detection method based on contradicting the
network topology and the topology-based propinquity, where propinquity is the
probability of a pair of nodes involved in a community. Another recent attempt
to analyze communities and their evolutions in dynamic social networks, which is
closely related to our work, includes [46] in which the authors proposed FacetNet,
a framework to track community evolutions in a unified process. In this framework,
the community structure at a given timestep is determined both by the observed

11 On Detection of Community Structure in Dynamic Social Networks 345

the network data and the prior distribution given by historic community structures.
A possible limit of this framework is that at each timestep, the underlying algorithm
should be executed for multiple values of m-the number of communities, which
might prevent this framework from being effective when applied to real-world social
network traces.

In [47], the authors present a framework for identifying dynamic communities
with a constant factor approximation. This is a very nice property, however, this
method also requires some predefined costs to penalize people moving in or out
of a community, which might be generally unknown in dynamic social networks.
A recent work [14] proposes a social-aware routing strategy in MANETs which
also makes uses of a modularity-based procedure name MIEN for quickly updating
the network structure. In particular, MIEN tries to compose and decompose network
modules in order to keep up with the changes and uses fast modularity algorithm [4]
to update the network modules. However, this method might be time consuming due
to the high complexity of [4].

Palla et al proposed CFinder [38], a popular seminal method based on clique-
percolation technique which iteratively searches for communities composed of
connected k-cliques, starting from an initial clique of size k. However, due to the
sparseness of real networks the communities discovered by CFinder are usually
of low quality, as we shall see in the experiments. Gregory recently proposed
COPRA [39], a label propagation method with an extended feature to allow multiple
community memberships. Recent benchmarks on community detection methods
[3][48] reveal that with appropriate parameters set up, COPRA is the best method
for detecting overlapping network communities. Other detection trends includes
methods based on nodes splitting [49] , modularity [50][51] and link-based methods
[31][52].

11.9 Conclusion

In this chapter, we presented QCA, an adaptive algorithm for detecting and tracing
community structures in dynamic social networks where changes are introduced
frequently. We also present DOCA, a quick and efficient method for detecting
overlapping communities in a complex network. We show that our adaptive
algorithms are not only effective in updating and identifying high quality network
community structure but also has the great advantage of fast running time, which
is suitable for large and rapidly changing online social networks. In addition, we
prove some theoretical results, which are the basic observations of our approach.
Finally, via two practical applications in MANETs routing strategies and worm
containment on social networks, we show that our QCA algorithm promises
enormous realistic applications not only on mobile computing but also on online
social networks as it can be combined or integrated into many community detection
modules.

346 N.P. Nguyen et al.

References

1. M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
PNAS, 99, 2002.

2. G. Palla, P. Pollner, A. Barabasi, and T. Vicsek. Social group dynamics in networks. Adaptive
Networks, 2009.

3. A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative analysis.
Physical review. E. 80, 2009.

4. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E
69, 2003.

5. V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in
large networks. J. Stat. Mech.: Theory and Experiment, 2008.

6. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phy. Rev. E 69, 2004.

7. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 2008.

8. A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large
networks. Phys. Rev. E 70, Aug 2004.

9. S. Fortunato and M. Barthelemy. Resolution limit in community detection. PNAS, 104, 2007.
10. Z. Ye, S. Hu, and J. Yu. Adaptive clustering algorithm for community detection in complex

networks. Physical Review E, 78, 2008.
11. S. Jimeng, C. Faloutsos, S. Papadimitriou, and Philip S. Yu. Graphscope: parameter-free

mining of large time-evolving graphs. In KDD, 2007.
12. ArXiv dataset. http://www.cs.cornell.edu/projects/kddcup/datasets.html. KDD Cup 2003,

Feb 2003.
13. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in

facebook. In 2nd ACM SIGCOMM Workshop on Social Networks, 2009.
14. T. N. Dinh, Y. Xuan, and M. T. Thai. Towards social-aware routing in dynamic communication

networks. IPCCC, 2009.
15. P. Hui and J. Crowcroft. How small labels create big improvements. PERCOMW, 2007.
16. E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-tolerant

manets. In MobiHoc ’07, 2007.
17. A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of human mobility

on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6, 2007.
18. P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-based forwarding in delay tolerant

networks. In MobiHoc ’08, 2008.
19. E. Nathan and A. Pentland. Reality mining: sensing complex social systems. Personal

Ubiquitous Comput., 10(4), 2006.
20. Koobface. http://www.pcworld.com/article/155017/\facebook virus turns your computer

into a zombie.html. PC World, 2008.
21. Koobface. http://news.cnet.com/koobface-virus-hits-facebook/. CNET, 2008.
22. V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang. A multi-resolution approach forworm detection

and containment. In DSN ’06, 2006.
23. N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning worms. In SSYM’04:

Proceedings of the 13th conference on USENIX Security Symposium, 2004.
24. R. Dantu, J. W. Cangussu, and S. Patwardhan. Fast worm containment using feedback control.

IEEE Trans. Dependable Secur. Comput., 4(2), 2007.
25. H. Kim and B. Karp. Autograph: toward automated, distributed worm signature detection. In

SSYM’04: Proceedings of the 13th conference on USENIX Security Symposium, 2004.
26. N. James, B. Karp, and S. Dawn. Polygraph: Automatically generating signatures for polymor-

phic worms. In IEEE Symposium on Security and Privacy, pages 226–241, 2005.
27. P. Wang, M. C. González, C. A. Hidalgo, and A. Barabasi. Understanding the spreading

patterns of mobile phone viruses. Science, 324, 2009.

http://www.cs.cornell.edu/projects/kddcup/datasets.html.
http://www.pcworld.com/article/155017/�acebook_virus_turns_your_computer_into_a_zombie.html.
http://www.pcworld.com/article/155017/�acebook_virus_turns_your_computer_into_a_zombie.html.
http://news.cnet.com/koobface-virus-hits-facebook/.

11 On Detection of Community Structure in Dynamic Social Networks 347

28. A. Bose and K. G. Shin. Proactive security for mobile messaging networks. In WiSe ’06:
Proceedings of the 5th ACM workshop on Wireless security, 2006.

29. A. Bose, X. Hu, K.G. Shin, and T. Park. Behavioral detection of malware on mobile handsets.
In MobiSys ’08, New York, NY, USA, 2008.

30. Z. Zou, G. Cao, S. Zhu, S. Ranjan, and A. Nucci. A social network based patching scheme for
worm containment in cellulat networks. In IEEE INFOCOM, 2009.

31. J. P. Bagrow Y.Y. Ahn and S. Lehmann. Link communities reveal multiscale complexity in
networks. Nature, 466:761–764, 2010.

32. S. Fortunato and C. Castellano. Community structure in graphs. eprint arXiv: 0712.2716, 2007.
33. A. Lancichinetti, S. Fortunato, and K. Jnos. Detecting the overlapping and hierarchical

community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.
34. A. Lzr, D. bel, and T. Vicsek. Modularity measure of networks with overlapping communities.

(Europhysics Letters), 90(1), 2010.
35. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 – 174, 2010.
36. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community

structure in large social and information networks. In WWW08, pages 695–704. ACM, 2008.
37. C. Lee, F. Reid, A. McDaid, and N. Hurley. Detecting highly overlapping community structure

by greedy clique expansion. KDD, 2010.
38. G. Palla, I. Derenyi, I. Farkas1, and T. Vicsek. Uncovering the overlapping community structure

of complex networks in nature and society. Nature, 435(10), 2005.
39. Steve Gregory. Finding overlapping communities in networks by label propagation. New

Journal of Physics, 12(10):103018, 2010.
40. R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the bursty evolution of blogspace.

In Proceedings of the 12th international conference on World Wide Web, WWW ’03, 2003.
41. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking

diameters and possible explanations. In KDD, 2005.
42. M. Toyoda and M. Kitsuregawa. Extracting evolution of web communities from a series of web

archives. In HYPERTEXT ’03, 2003.
43. P. Hui, E. Yoneki, S. Chan, and J. Crowcroft. Distributed community detection in delay tolerant

networks. In Proc. MobiArch, 2007.
44. J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving communities in large linked

networks. PNAS, 101, 2004.
45. Y. Zhang, J. Wang, Y. Wang, and L. Zhou. Parallel community detection on large networks

with propinquity dynamics. In KDD ’09. ACM, 2009.
46. Y-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing communities and their

evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data, 3, 2009.
47. T. Chayant and B. Tanya. Constant-factor approximation algorithms for identifying dynamic

communities. In KDD ’09, 2009.
48. L. Peel. Estimating network parameters for selecting community detection algorithms.

FUSION, 2010.
49. S. Gregory. An algorithm to find overlapping community structure in networks. In PKDD 2007,

pages 91–102. Springer, 2007.
50. V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri. Extending the definition of modularity

to directed graphs with overlapping communities. J. Stat. Mech.: Theory and Experiment,
2009(03):P03024, 2009.

51. H-W. Shen, X-Q. Cheng, and J-F. Guo. Quantifying and identifying the overlapping commu-
nity structure in networks. J. Stat. Mech. Theory and Experiment, 2009(07):P07042+, 2009.

52. T. S. Evans. and R. Lambiotte. Line graphs, link partitions, and overlapping communities.
Phys. Rev. E, 80(1):016105, 2009.

Chapter 12
Path Formation in Human Contact Networks

Nishanth Sastry and Pan Hui

Abstract The Pocket Switched Network (PSN) is a radical proposal to take
advantage of short-range connectivity afforded by human face-to-face contacts,
and create longer paths by having intermediate nodes ferry data on behalf of
the sender. The Pocket Switched Network creates paths over time using transient
social contacts. This chapter explores the achievable connectivity properties of this
dynamically changing mileu, and gives a community-based heuristic to find efficient
routes.

We first employ empirical traces to examine the effect of the human contact
process on data delivery. Contacts between a few node pairs are found to occur
too frequently, leading to inadequate mixing of data, while the majority of contacts
occur rarely, but are essential for global connectivity. We then examine all successful
paths found by flooding and show that though delivery times vary widely, randomly
sampling a small number of paths between each source and destination is sufficient
to yield a delivery time distribution close to that of flooding over all paths. Thus,
despite the apparent fragility implied by the reliance on rare edges, the rate at which
the network can deliver data is remarkably robust to path failures.

We then give a natural heuristic that finds routes by exploiting the latent social
structure. Previous methods relied on building and updating routing tables to cope
with dynamic network conditions. This has been shown to be cost ineffective due
to the partial capture of transient network behavior. A more promising approach
would be to capture the intrinsic characteristics of such networks and utilize them for

N. Sastry
Kings College London, Strand, London, WC2R 2LS
e-mail: firstname.lastname@kcl.ac.uk

P. Hui (�)
Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
e-mail: pan.hui@telekom.de

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 12, © Springer Science+Business Media, LLC 2012

349

firstname.lastname@kcl.ac.uk
pan.hui@telekom.de

350 N. Sastry and P. Hui

routing decsions. We design and evaluate BUBBLE, a novel social-based forwarding
algorithm, that utilizes the centrality and community metrics to enhance delivery
performance. We empirically show that BUBBLE can efficiently identify good paths
using several real mobility datasets.

12.1 Introduction

Consider a scenario in which Alice wants to convey some information to Carol.
If Bob happens to meet Alice first and then Carol, he could potentially serve as a
messenger for Alice’s message. Essentially, this method of communication exploits
human contacts to create a path over time between a source and destination. Of
necessity, the data paths are constructed in a store-carry-forward fashion: Various
intermediate nodes store the data on behalf of the sender and carry it to another
contact opportunity where they forward the data to the destination or another node
that can take the data closer to the destination.

As normally practised, transferring information over social contacts requires
manual intervention (e.g. Alice requesting Bob, “When you see Carol, please tell
her that. . . ”) as well as a knowledge of future contacts (The human actors need
to know that Bob will be meeting Carol in the future). Manual intervention can
easily be avoided by automatically exchanging data between mobile devices carried
by the human actors. Widely supported short-range data-transfer protocols such as
bluetooth or Wi-Fi can be used for this purpose. If we do not have knowledge of
future contacts, data can still be forwarded opportunistically from node to node, but
without a guarantee that it will reach the intended destination.

This idea, of leveraging human social contacts, and using ubiquitious mobile
devices in people’s pockets to opportunistically connect a source and destination
over time, has been termed as a Pocket Switched Network (PSN) [16]. As a store-
carry-forward network, the PSN can incur long and highly variable delays. On the
other hand, it has the advantage of not requiring infrastructure setup or maintenance.
It is therefore useful when infrastructure is damaged (e.g. after disasters), or does
not exist (e.g. in remote areas). Also, mobility increases network capacity at the
expense of delays, providing multi-user diversity gains [15]. Thus, this method can
be effective as a multi-hop “sneakernet” for high-bandwidth applications that can
tolerate delays.

The question remains as to how “well” the transient, local contacts can support
a wider connectivity across the network, if we do not have knowledge of future
contacts. The first part of the chapter explores this issue by studying two traces that
recorded human contacts over extended time periods. We measure the achievable
performance of the contact network over a given time window in terms of the
fraction of data delivered (delivery ratio), as well as the time to delivery. The
delivery ratio at the end of a time window is indicative of the fraction of node
pairs connected during the window and is therefore a measure of the connectivity
achieved by the network. The empirically observed cumulative distribution of

12 Path Formation in Human Contact Networks 351

delivery times can also be interpreted as the evolution in time of delivery ratio,
normalised by the ratio eventually achieved at the end of the time window,1 and
thus represents the rate at which connectivity is achieved.

We find that rare contacts are crucial for connectivity: when contacts between
node-pairs which meet infrequently are removed, the network breaks apart into
smaller, unconnected components. Note that in order for any path to succeed, all
the contacts in the path need to occur successfully, and in the right temporal order.
Thus, if one of the rare contacts involved in a path does not happen or succeed in
transferring data, the path will fail. Thus, this result seems to imply a fragility in the
network of social contacts.

Note that failures of individual paths does not automatically imply failure to
achieve connectivity. There can be several paths between a source and destination,
and if at least one path succeeds, connectivity is achieved. However, it might take
longer to reach the destination if some of the quicker paths fail. We study the
degradation of delivery times by examining the impact of random path failures
among paths found by flooding data. Specifically, we look at two modes of path
failures. The first, proportional flooding, assumes that a fixed fraction μ < 1 of
the paths between every source–destination pair succeeds. The second, k-copy
forwarding, allows at most k paths to succeed between each sender and destination.
In both cases, we find that the time to achieve connectivity is remarkably resilient in
that the distribution of delivery times with a large number of path failures remains
close to the delivery times achieved when there are no path failures.

In the second part of the chapter, we address the question of how to route data
from a given sender to a destination and give a social-based heuristic for finding
“good” routes. Many MANET and some DTN routing algorithms [1, 23] provide
forwarding by building and updating routing tables whenever mobility occurs. This
approach is not appropriate for a PSN, since mobility is often unpredictable, and
topology structure is highly dynamic. We need an algorithm which can cope with
dynamic, repeated disconnection and re-wiring. Rather than exchange much control
traffic to create unreliable routing structures, which may only capture the “noise” of
the network, we prefer to search for some characteristics of the network which are
less volatile than mobility. A PSN is formed by people. Hence, social metrics are
intrinsic properties to guide data forwarding in such kinds of human networks.

In this context, we introduce an social-based forwarding algorithm, BUBBLE,
which focuses on two key social metrics: community and centrality. Co-operation
binds, but also divides human society into communities. For an ecological commu-
nity, the idea of correlated interaction means that an organism of a given type is
more likely to interact with another organism of the same type than with a randomly
chosen member of the population [34]. This correlated interaction concept also
applies to humans, so we can exploit this kind of community information to select
forwarding paths. Within a community, some people are more popular, and interact

1If the empirical probability that the delivery time is less than t is r, then a fraction r of the data
that eventually get delivered have been delivered by time t .

352 N. Sastry and P. Hui

with more people than others (i.e., have high centrality); we call them hubs. In this
chapter, we will show how community and centrality help us to efficiently identify
the “good” forwarding paths.

The rest of this chapter will be presented in two parts: In Part 12.2, we will
study the feasibility of path formation in human contact networks. In Part 12.3, we
will discuss a community-based routing strategy called BUBBLE, and evaluate its
performance. Section 17.2 discusses related work and Sect. 12.5 concludes.

12.2 Feasibility of Path Formation

Our first goal is to study the extent to which the temporally changing network of
human face-to-face contacts can support N × N connectivity. Since our goal is to
explore feasibility in a future PSN, we employ traces drawn from “naturalistic”
settings, lasting at least a month long. The contacts in these traces are highly
heterogeneous, with some nodes meeting each other hundreds of times and others
meeting fewer than ten times.

Our main results are as follows: Nodes which meet each other frequently turn
out to be inefficient for data transfer. Intuitively, nodes which meet each other
too often do not have new data to exchange during their second and subsequent
contacts. In contrast, the rarely occurring contacts are more effective at “mixing”
data and are crucial for reachability. Since the rare contacts do not, by definition,
recur often, paths which rely on them are sensitive to chance events which either
prevent the contact from occurring or prevents the data from being transferred
during the contact. However, we show that connectivity of the network as a whole is
not greatly affected by individual path failures. Specifically, we study two different
modes of path failures and show that the distribution of delivery times remains close
to optimal despite a large number of paths failing.

12.2.1 Setup and Methodology

This section motivates the choice of the traces used in the first part of the chapter,
the simulation setup and the performance measures used to study feasibility of path
formation.

12.2.1.1 Traces

We imagine the participants of a PSN would be a finite group of people who are
at least loosely bound together by some context – for instance, first responders

12 Path Formation in Human Contact Networks 353

at a disaster situation, who need to send data to each other. Multiple PSNs could
co-exist for different contexts, and a single individual could conceivably participate
in several different PSNs.2

Our model that PSN participants form a cohesive group places the requirement
that an ideal PSN should be able to create paths between arbitrary source-destination
pairs. This is reflected in our simulation setup, where the destinations for each
source node are chosen randomly. Also, our traces are picked to be close to the limits
of Dunbar’s number (=147.8, 95% confidence limits: 100.2–231.1), the average
size for cohesive groups of humans [7].

The first trace comes from a four week subset of the UCSD Wireless Topology
Discovery [42] project which recorded Wi-Fi Access Points seen by subjects’ PDAs.
We treat PDAs simultaneously in range of the same Wi-Fi access point as a contact
opportunity. This dataset traces contacts between N = 202 subjects. The second
trace consists of bluetooth contacts recorded from 1 Nov. 2004 to 1 Jan. 2005
between participants of the MIT Reality Mining project [9]. We conservatively
set five minutes as the minimum allowed data transfer opportunity and discarded
contacts of durations smaller than this cutoff. This trace has contacts between
N = 91 subjects.

The subjects in the MIT trace consist of a mixture of students and faculty at the
MIT Media Lab, and incoming freshmen at the MIT Sloan Business School. The
UCSD trace is comprised of a select group of freshmen, all from UCSD’s Sixth
College. As such, we can expect subjects in both traces to have reasons for some
amount of interaction, leading to a loosely cohesive group structure. Prior work on
community mining using the same traces supports this expectation [44].

It is important to emphasize that our focus is solely on the capability and
efficiency of the human contact process in forming end-to-end paths. The precise
choice of the minimum data transfer opportunity is less important – it is entirely
possible that a new technology would allow for faster node-node transfers. Indeed,
our results are qualitatively similar for other cutoff values tested. Similarly, a
different technology for local node-node transfers could have different “reach,”
allowing more nodes to be in contact with each other simultaneously. Nevertheless,
the substantial similarities (see rest of this section) between results based on two
different technologies and traces – the Wi-Fi based UCSD trace and the bluetooth
based MIT trace – gives us some confidence that the results below may be applicable
beyond the traces and technologies we have considered.

Both our traces were chosen to be at least one month long, in order to obtain
multiple disjoint time windows over which to test the relevance of our results.

2Note that this is in contrast to a single unboundedly large network of socially unrelated individuals
as in the famous “small-world” experiment [41] that examined a network essentially comprising
all Americans and discovered an average 5.2 (≈ 6) degrees of separation.

354 N. Sastry and P. Hui

12.2.1.2 Simulation Setup and Measurement

Setup: At the beginning of simulation, data is created, marked for a randomly
chosen destination, and associated with the source node. An oracle with complete
knowledge of the future can choose to transfer data at appropriate contact oppor-
tunities and thereby form the quickest path to the destination. To simulate this, we
enumerate all possible paths found by flooding data at each contact opportunity, and
choose the quickest.

Performance measure: Consider the time-ordered sequence (with ties broken
arbitrarily) of contacts that occur globally in the network. Since there are N(N − 1)
quickest paths between different source–destination pairs, a maximum3 of N(N−1)
contacts in the the global sequence of contacts act as path completion points.
Of these, Nd become “interesting” when there are d destinations per sender.
Since the destinations are chosen randomly, we might expect that on average, if
k path completion points have occured, the fraction of these that are interesting
is independent of d: When d is greater, more data gets delivered after k path
completion points, but there is also more data to deliver.

The above discussion motivates our method of measuring the efficiency of the
PSN: At any point in the simulation, the delivery ratio, measured as the fraction
of data that has been delivered, or equivalently, the number of “interesting” path
completion points we have seen, is taken as a figure of merit. The more efficient the
PSN is, the faster the delivery ratio evolves to 1, as the number of contacts and time
increase.

Unless otherwise specified, our experiments examine delivery ratio evolution
statistically averaged over 10 independent runs, with each run starting at a random
point in the trace, and lasting for 6,000 contacts. We confirm our intuition in
Fig. 12.1, which shows that the delivery ratio evolves similarly, whether d is 1 or
a maximum of N −1 destinations per sender. We note that the graph also represents
the fastest possible evolution of the delivery ratio under the given set of contacts,
due to the use of flooding.

12.2.2 Order and Distribution of Contacts

A PSN contact trace is determined by the distribution of contact occurrences and
the time order in which these contacts occur. In this section, we examine how these
properties affect delivery ratio evolution.

Given two traces, the more efficient one will manage to achieve a given delivery
ratio with fewer number of contacts. Our approach is to create a synthetic trace from

3The actual number could be lesser because a contact with a rarely active node could complete
multiple paths that end in that node.

12 Path Formation in Human Contact Networks 355

Fig. 12.1 Fraction of data delivered as a function of the number of contacts, for the MIT and
UCSD traces (number of destinations per sender shown in brackets). The curves for each network
are clustered together, showing that the delivery ratio evolves independently of the load

the original trace by disrupting the property we wish to study. Comparing delivery
ratio evolution in the original and synthetic traces informs us about the effects of the
property.

Our main findings are that in both the traces we examine, time correlations
between contacts that occur too frequently leads to non-effective contacts in which
no new data can be exchanged, and that the progress of the delivery ratio as well as
the connectivity of the PSN itself are precariously dependent on rare contacts.

12.2.2.1 Frequent Contacts are Often Non-effective

To investigate the effect of the time order in which contacts occur, we replay the
trace, randomly shuffling the time order in which links occur. Observe in Fig. 12.2
that the curve marked “shuffled” evolves faster than “trace” implying that the
delivery ratio increases faster after random shuffling. The random shuffle has the
effect of removing any time correlations of contacts in the original trace. Thus,
the improved delivery ratio evolution implies that time correlations of the contacts
in the original data slowed down the exchange of data among the nodes, causing
them to be delivered later.

Manual examination reveals several time correlated contacts where two nodes
see each other multiple times without seeing other nodes. At their first contact,
one or both nodes could have data that the other does not, which is then shared by
flooding. After this initial flooding, both nodes contain the same data – subsequent
contacts are “non-effective,” and only increase the number of contacts happening in
the network without increasing the delivery ratio.

356 N. Sastry and P. Hui

MIT UCSD

a b

Fig. 12.2 Delivery ratio evolution for synthetically derived variants of MIT and UCSD traces.
“Trace” is the original. “Shuffled,” the same trace with time order of contacts randomly shuffled.
“Effective” replays “trace,” counting only contacts where data was exchanged. “Link distr” is an
artificial trace with the same size and contact occurrence distribution as the original

To quantify the impact, in the curve marked “effective” on Fig. 12.2, we plot
delivery ratio evolution in the original trace, counting only the contacts in which data
could be exchanged. This coincides well with the time-shuffled trace, showing that
non-effective contacts are largely responsible for the slower delivery ratio evolution
in the original trace.

Next, we construct a synthetic trace that has the same number of nodes as the
original trace, as well as the same contact occurrence distribution. By this, we mean
that the probability of contact between any pair of nodes is the same as in the original
trace. The delivery ratio evolution of this trace, depicted as “link distr” in Fig. 12.2,
is seen to evolve in a similar fashion as the time-shuffled trace. This indicates that
once time correlations are removed, the delivery properties are determined mainly
by the contact occurrence distribution.

12.2.2.2 Connectivity Depends on Rare Contacts

The fact that three different traces (shuffled, effective, and link distr), which are
based on the same contact occurrence distribution, essentially evolve in the same
manner leads us to examine this distribution further.

Figure 12.3 shows that the contact occurrence distribution has both highly rare
contacts (involving node pairs that meet fewer than ten times in the trace) as well
as frequent contacts (nodes which meet hundreds of times). A randomly chosen
contact from the trace is much more likely to be a rare contact than a frequent one.

Figure 12.4 shows that the rare contacts are extremely important for the nodes to
stay connected. When contacts that occur fewer than a minimum cutoff number of
times are removed, the number of nodes remaining in the trace falls sharply. This
implies that there are a number of nodes which are connected to the rest of the nodes
by only a few rare contacts.

12 Path Formation in Human Contact Networks 357

10−1 100 101 102 103

n

10−5

10−4

10−3

10−2

10−1

100

p
(n

)

MIT
UCSD

f

p
(f

)

Fig. 12.3 Contact occurrence distributions (log–log): A random edge appears n times with
probability p(n). To the left of the dashed line at n = 45, the distributions for both traces
coincidentally happen to be similar. The inset shows the difference when normalised by the number
of contacts in the trace. In the inset, a random edge constitutes a fraction f of the trace with
probability p(f)

Fig. 12.4 Robustness to cutoff: MIT (below), UCSD (above). Max cutoff specifies a maximum
cutoff for the frequency of contacts, thus removing the most frequently occurring ones. Min cutoff
specifies a minimum frequency of contacts – removing the rarest contacts causes the number of
nodes that are connected to drop precipitously

On the other hand, removing the frequent contacts (by removing contacts occur-
ring more than a maximum cutoff number of times) does not affect connectivity
greatly. For instance, the MIT trace remains connected even when the maximum
cutoff is as low as 10 (i.e., contacts occurring more than ten times are removed). This
suggests that nodes which contact each other very frequently are also connected by
other paths, comprising only rare edges.

358 N. Sastry and P. Hui

12.2.3 Resilience to Path Failures

In order for a path to succeed in a temporally changing network like the PSN,
all edges have to occur in the right order. Therefore, the reliance on rare edges,
as shown in the previous section, could lead to a large number of path failures.
Note that this does not automatically imply bad connectivity. Since only one path
between every source–destination pair needs to succeed for data delivery, individual
path failures do not greatly impact the delivery ratio achieved at the end of a time
window (unless all paths between a source–destination pair fail, disconnecting the
network).

However, path failures can affect the rate at which the delivery ratio evolves:
Suppose the quickest path between a pair of nodes would have arrived at t1, but
cannot be used because of a failure. If the first usable path connects the nodes at
time t2 > t1, then between t2 and t1 the fraction of data delivered is decreased on
account of the path failure. In other words, there is a delay in data delivery, which
temporarily shifts the cumulative distribution of delivery times to the right.

This section looks at the effects of path failures by studying the effects of failures
on paths found by flooding. Given a sequence of contacts, flooding achieves the best
possible delivery times by exploring every contact opportunity and thereby finding
the path with the minimum path delay.

We look at instances of the PSN over fixed time-windows and wish to study
the degradation in the delivery time distribution when not all of the paths found
by flooding can be explored. Specifically, we study two failure modes. The first,
proportional flooding, explores a fixed fraction μ of the paths found by flooding
between each source and destination. We show that a constant increase in the
fraction of paths explored brings the delivery time distribution of proportional
flooding exponentially closer to that of flooding over all paths. The second failure
mode, k-copy flooding, explores no more than a fixed number k > 1 of the paths
found by flooding between each source and destination. Again, a constant increase
in k brings the delivery time distribution exponentially close to the optimal delivery
time distribution of flooding all paths. Empirically, even small values of k (e.g. k = 2
or k = 5) closely approximate delivery times found by flooding.

The results of this section imply that the human contact network is remarkably
resilient to path failures and the delivery ratio evolves at a close-to-optimal rate
even when the majority of paths fail and only a small fraction or a small, bounded
number of paths can transport data to the destination. Note that we only admit paths
from the original flood-tree, and do not include new paths that repair failures by
joining the affected nodes to the flood tree at later contacts. Thus, our results in fact
underestimate the resilience of the network.

The success of k-copy flooding can provide a loose motivation for routing
algorithms that use multiple paths between each sender and destination pair since
this could obtain a close-to-optimal delivery time distribution. However, heuristics-
based routing algorithms may not find the same paths as found by flooding. Thus,
the correspondence is not exact.

12 Path Formation in Human Contact Networks 359

Table 12.1 Summary of notation used to characterise components of path delay and
delivery times

H Hop delay, or time to next hop. Time until a path expands by one more node.
N Number of edges per path. N ∼ Poisson(mean = λ)
L Number of paths between a random src-dest pair.

D Path delay for a random path
D∗ Delivery time (minimum path delay across all paths between a random

source–destination pair)

GX (s) Probability-generating function of X
MX (s) Moment-generating function of X . MX (s) = GX (eX)

12.2.3.1 Path Delay Distribution D

[14, 39, 45] model the performance of epidemic routing and its variants and derive
a closed form for delivery time distribution, showing it to be accurate for certain
common mobility models. However, several simplifying assumptions are made,
including an exponential inter-contact time between node pairs. Unforunately,
human contact networks are known to have power law inter-contact times with
exponential tails [4, 24]. Furthermore, [14, 39, 45] use a constant (averaged) contact
rate, whereas the contact rates in our empirical traces are highly heterogeneous (see
Sect. 12.2.2). Plugging in the mean contact rate from our empirical traces into their
expressions yields bad fits.

Thus, in order to obtain a handle on delays incurred on paths, we take a very
coarse grained and simplified approach. In particular, we only assume that path
delays (D) can be treated as being independent of each other, that the distribution
of time to next hop (H) can be described by a moment-generating function
MH(s), and that the number of hops (N) on the paths found by flooding follows
a Poisson distribution with mean λ . See Table 12.1 for a full summary of our
notation.

Our most specialized assumption is that the number of hops on a path formed
by flooding during a fixed time-window follows the Poisson distribution. This is
justified by a surprisingly good fit in our empirical traces (Fig. 12.5). We conjecture
that this is a result of several factors which work together to limit the number of
hops in a successful path. First, we only consider paths that form during a fixed time
window. Second, the small-world nature of the human contact graph makes for short
paths to a destination; and paths are frozen at the destination because the destination
does not forward data further. Third, each node can join the flood-tree at most once.
As the tree grows, the number of nodes available to grow the tree and extend a path
decreases. Thus, extremely long paths are rare.

Using the above assumptions, the path delay D can be written as

MD(s) = GN(MH(s)). (12.1)

360 N. Sastry and P. Hui

MIT, one week window UCSD, 6 hour window

a b

Fig. 12.5 Number of hops follows the Poisson Distribution. Each Q-Q plot shows fit through
correspondence between sample deviates generated according to the theoretical distribution
(predicted) and empirical (actual) values. Closeness to predicted = actual diagonal indicates better
fit. Different combinations of trace and time window sizes are used to show generality of fit

We can apply a Chernoff-type bound and write

P [D ≥ t]≤ min
s>0

e−stMD(s) = min
s>0

eλ (MH(S))−st = exp(FH(t)), (12.2)

where FH(t) = λMH(smin(t))− smin(t)t −λ and smin(t) minimises s in the Chernoff
bound.

12.2.3.2 Proportional Flooding

Consider an arbitrary source–destination pair. As described previously, we will
model the path delays between them as being chosen independently and identically
from the distribution in (12.1). Suppose copies of the data are sent along l randomly
chosen paths between them. The obtained delivery time D∗

l is the minimum of the
path delays across all l paths. Using (12.2) we can write

P [D∗
l ≤ t] = 1−

l

∏
i=1

P [D ≥ t]≥ 1− e−lFH(t). (12.3)

Note that the above assumes that the l path delays are independent. In reality,
paths found by flooding all fan out from a single source node, and the first few hops,
close to the source, are typically shared with other paths, violating the independence
assumption. Therefore, the model in this section is to be considered only as a
simple formulation designed to gain insight into proportional flooding. It is worth
mentioning however that in the empirical data sets, we frequently find that the
major component of path delay is contributed by the part of the paths closest to
the destination, which are not shared with other paths. Also, in the case when only a
few paths on the flood-tree are being randomly sampled, the number of hops shared
is limited.

12 Path Formation in Human Contact Networks 361

Fig. 12.6 K-S statistic (D) measuring the difference between the delivery time distributions of full
flooding and proportional flooding for different μ . X-axis is linear, Y-axis is log-scale.

Consider source–destination pairs with L = m paths connecting them. Full
flooding finds the quickest of all m paths and obtains a delivery time distribution
P [D∗

L ≤ t|L = m]. Proportional flooding chooses a fraction μ of them. From (12.3),
the difference Δ(t;μ) in the delivery time distributions between full and propor-
tional flooding, is upper bounded by

Δ(t;μ)≤ P [D∗
L ≤ t|L = m]− 1+ e−μmFH(t), (12.4)

Remark 1. A constant increase in μ has an exponential effect on Δ : For any t, if μ is
increased by some constant, the fraction of data delivered by proportional flooding
during [0, t] becomes exponentially closer to that delivered by full flooding. Thus,
proportional flooding quickly becomes very effective as μ is increased.

The exponential decrease in Δ with a constant increase in μ is obtained as long
as FH(t) < 0. In other words, our results hold when there are a Poisson number of
hops in paths formed over fixed time windows, for any hop delay distribution H that
has a moment generating function and satisfies FH(t)< 0.

Also, since
∂Δ
∂μ

= mFH(t)e
μmFH(t) < 0,

Δ decreases when μ is increased. Furthermore, the rate of decrease is higher for
smaller μ – increasing μ from μ = 0.1 to μ = 0.2 results in a greater decrease than
an increase from μ = 0.6 to μ = 0.7.

Fig. 12.6 empirically shows the difference between D∗(t), the delivery time
distribution obtained by flooding over all paths, and D∗

μ(t), the delivery time
distribution for proportional flooding using a randomly selected fraction μ of
paths between every source and destination. The difference is measured using the
Kolmogorov–Smirnov statistic given by D = maxt (D∗(t)−D∗

μ(t)). Note that the
Y-axis is log scale; a constant increase in μ shows an exponential decrease in D.

362 N. Sastry and P. Hui

Fig. 12.7 k-copy flooding: Nodes are connected by multiple paths with different delays (CDFs
of the quickest and slowest are shown). Yet, randomly choosing at most k of the paths to
each destination closely approximates the quickest, even for small k. (MIT trace, one week
window)

12.2.3.3 From Proportional to Bounded Number of Paths

Proportional flooding offers a mechanism to gracefully degrade from full flooding
by exploring a fraction of the paths. However, in the worst case, there can be up
to N − 1 paths to a destination in a N node PSN, and proportional flooding can
be costly. This leads us to define a bounded cost strategy that explores at most
a small, fixed number, k of the paths to a destination, and still achieves delivery
times similar to that of proportional flooding. Unlike proportional flooding, k-copy
flooding explicitly limits the number of paths explored, and therefore can tolerate a
larger number of path failures in the worst case, when there are a large number of
paths between a node-pair.

Fig. 12.7 shows empirically that in our data sets, even for small k (= 2,5),
the delivery time distribution of k-copy flooding starts to closely approximate
full flooding. To see why, consider the equivalent fraction μk of paths in pro-
protional flooding that gives the same expected number of paths as k-copy
forwarding:

k

∑
l=0

lP [L = l]+ kP [L > k] = μkE [L] . (12.5)

Suppose k is increased by a constant h, resulting in a new equivalent fraction
μk+h . (12.5) becomes

k

∑
l=0

lP [L = l]+
h

∑
j=1

(k+ j)P [L = k+ j]+ (k+ h)P [L > k+ h] = μk+hE [L] .

12 Path Formation in Human Contact Networks 363

Regrouping, we get

k

∑
l=0

lP [L = l]+ k

(
h

∑
j=1

P [L = k+ j]+P [L > k+ h]

)

+
h

∑
j=1

jP [L = k+ j]+ hP [L > k+ h] = μk+hE [L] .

Comparing with (12.5), we can write

μkE [L]+
h

∑
j=1

jP [L = k+ j]+ hP [L > k+ h] = μk+hE [L] .

Thus, the increase in the equivalent fraction of paths is

μk+h − μk ≥
h

E [L]

(
h

∑
j=1

P [L = k+ j]+P [L > k+ h]

)

= h(P [L > k]/E [L]) . (12.6)

Remark 2. A constant increase in k is equivalent to at least a (scaled) constant
increase in the fraction of paths explored by proportional flooding. Thus, as a simple
consequence of Remark 1, a constant increase in the number of paths explored in
k-copy forwarding moves its delivery time distribution exponentially closer to that
of full flooding.

This explains why exploring at most a small number k of paths has a delivery
time distribution approaching that of flooding over all paths. Fig. 12.8 empirically
shows the equivalent fractions μk for the k = 2 and k = 5 cases discussed previously.

12.3 BUBBLE: A Community Based Routing Algorithm

After establishing the feasibility of N × N connectivity, in this second part of the
chapter, we present a concrete mechanism to route data over human contacts. The
key insight is to exploit the structure inherent in human social contacts. Bubble
leverages the heterogeneity in popularity – certain individuals, such as a postman,
are likely to have contacts with many different persons and are therefore useful
in bridging disjoint nodes. In BUBBLE , messages “bubble” up and down the
social hierarchy in order to reach the destination. Messages traverse the hierarchy,
using the highly central nodes to bridge data between disjoint communities where
necessary, until they reach the destination.

364 N. Sastry and P. Hui

Fig. 12.8 Proportional flooding with μ2 = 0.15 of paths has similar delivery times as k = 2-copy
routing. Similarly, k = 5 corresponds to μ5 = 0.5. (MIT, one week window)

12.3.1 Traces

For evaluating BUBBLE, we use four experimental datasets gathered by the Haggle
Project4 over two years, referred to as Infocom05, HongKong, Cambridge, Info-
com06 and one dataset from the MIT Reality Mining Project [8], referred to as
Reality. Previously, the characteristics of these datasets such as inter-contact and
contact distribution have been explored in several studies [3, 25, 28], to which we
refer the reader for further background information.

• In Infocom05, the devices were distributed to approximately fifty students
attending the Infocom student workshop. Participants belong to different social
communities (depending on their country of origin, research topic, etc.).

• In Hong-Kong, the people carrying the wireless devices were chosen indepen-
dently in a Hong-Kong bar, to avoid any particular social relationship between
them. These people have been invited to come back to the same bar after a week.
They are unlikely to see each other during the experiment.

• In Cambridge, the iMotes were distributed mainly to two groups of students from
University of Cambridge Computer Laboratory, specifically undergraduate year1
and year2 students, and also some PhD and Masters students. This dataset covers
11 days.

• In Infocom06, the scenario was very similar to Infocom05 except that the scale is
larger, with 80 participants. Participants were selected so that 34 out of 80 form
4 subgroups by academic affiliations.

4http://www.haggleproject.org

http://www.haggleproject.org

12 Path Formation in Human Contact Networks 365

Table 12.2 Characteristics of the five experimental data sets

Experimental data set Infocom05 Hong-Kong Cambridge Infocom06 Reality

Device iMote iMote iMote iMote Phone
Network type Bluetooth Bluetooth Bluetooth Bluetooth Bluetooth
Duration (days) 3 5 11 3 246
Granularity (seconds) 120 120 600 120 300
Number of experimental devices 41 37 54 98 97
Number of internal contacts 22,459 560 10,873 191,336 54,667
Average # Contacts/pair/day 4.6 0.084 0.345 6.7 0.024

Number of external devices 264 868 11,357 14,036 NA
Number of external contacts 1,173 2,507 30,714 63,244 NA

• In Reality, 100 smart phones were deployed to students and staff at MIT over
a period of 9 months. These phones were running software that logged contacts
with other Bluetooth enabled devices by doing Bluetooth device discovery every
five minutes.

The five experiments are summarised in Table 12.2. A remark about the datasets
is that the experiments do not have the same granularity and the finest granularity
is limited to 120 s. This is because of the trade-off between the duration of the
experiments and the accuracy of the samplings.

The four Haggle datasets were chosen to allow us greater insight into the
actual (ground truth) community structure, whereas the Reality dataset is used to
demonstrate that BUBBLE is robust to inferred community structure as well.

12.3.2 Inferring Human Communities

In a PSN, the social network could map to the computer network since people
carry the computing devices. In this section, we introduce and evaluate two
centralised community detection algorithms: K-CLIQUE by Palla et al. [35] and
weighted network analysis (WNA) by Newman [31]. We use these two centralised
algorithms to uncover the community structures in the mobile traces. We believe
our evaluation of these algorithms can be useful for future traces gathered by the
research community.

Many centralised community detection methods have been proposed and ex-
amined in the literature (see the review papers by Newman [32] and Danon
et al. [6]). The criteria we use to select a centralised detection method are the
ability to uncover overlapping communities, and a high degree of automation
(low manual involvement). In real human societies, one person may belong to
multiple communities and hence it is important to be able to detect this feature. The
K-CLIQUE method satisfies this requirement, but was designed for binary graphs,
thus we must threshold the edges of the contact graphs in our mobility traces to

366 N. Sastry and P. Hui

use this method, and it is difficult to choose an optimum threshold manually [35].
On the other hand, (WNA) can work on weighted graphs directly, and does not need
thresholding, but it cannot detect overlapping communities [31]. Thus we chose to
use both K-CLIQUE and WNA; they each have useful features that complement one
another.

12.3.2.1 Contact Graphs

In order to help us to present the mobility traces and make it easier for further
processing, we introduce the notion of a contact graph. The way we convert human
mobility traces into weighted contact graphs is based on the number of contacts
and the contact duration, although we could use other metrics. The nodes of the
graphs are the physical nodes from the traces, the edges are the contacts, and the
weights of the edges are the values based on the metrics specified such as the number
of contacts during the experiment. We can measure the relationship between two
people by how many times they meet each other and how long they stay with each
other. We naturally think that if two people spend more time together or see each
other more often, they are in a closer relationship.

First, we find the distribution of contact durations and number of contacts for
the two conference scenarios are quite similar. To prevent redundancy, in the later
sections we only selectively show one example, in most cases Infocom06, since it
contains more participants.

Figure 12.9 and Figure 12.10 show the contact duration and number of contacts
distribution for each pair in four experiments. For the HongKong experiment we
include the external device because of the network sparseness, but for the other
three experiments we use only the internal devices. These contact graphs created
are used for the community detection in the following subsections.

12.3.2.2 K-CLIQUE Community Detection

Palla et al. [35] define a k-clique community as a union of all k-cliques (complete
subgraphs of size k) that can be reached from each other through a series of adjacent
k-cliques, where two k-cliques are said to be adjacent if they share k− 1 nodes. As
k is increased, the k-clique communities shrink, but on the other hand become more
cohesive since their member nodes have to be part of at least one k-clique. We have
applied this on all the datasets above. Figure 12.11 shows the 3-clique communities
in the Infocom06 dataset. More detailed descriptions about the k-clique communities
on these datasets can be found in our previous work [18, 19].

12 Path Formation in Human Contact Networks 367

Fig. 12.9 The distribution of pair-wise contact durations

12.3.2.3 Weighted Network Analysis

In this section, we implement and apply Newman’s WNA for our data analysis [31].
This is an extension of the unweighted modularity method proposed in [33] to a
weighted version. We use this as a measurement of the fitness of the communities it
detects.

For each community partitioning of a network, one can compute the correspond-
ing modularity value using the following definition of modularity (Q):

Q =∑
vw

[
Avw

2m
− kvkw

(2m)2

]
δ (cv,cw), (12.7)

where Avw is the value of the weight of the edge between vertices v and w, if such
an edge exists, and 0 otherwise; the δ -function δ (i, j) is 1 if i = j and 0 otherwise;

368 N. Sastry and P. Hui

Fig. 12.10 The distribution of pair-wise number of contacts

Fig. 12.11 3-clique communities based on contact durations with weight threshold that equals
20,000 s (Infocom06; circles, Barcelona group; squares, Paris group A; triangles, Paris group B;
diamonds, Lausanne group)

12 Path Formation in Human Contact Networks 369

Table 12.3 Communities
detected from the four
datasets

Dataset Info06 Camb Reality HK

Qmax 0.2280 0.4227 0.5682 0.6439
Max. community size 13 18 23 139
No. communities 4 2 8 19
Avg. community size 8.000 16.500 9.875 45.684
No. community nodes 32 33 73 868
Total no. of nodes 78 36 97 868

m = 1
2 ∑vw Avw; kv is the degree of vertex v defined as ∑w Avw; and ci denotes the

community vertex i belongs to. Modularity is defined as the difference between
this fraction and, the fraction of the edges that would be expected to fall within
the communities if the edges were assigned randomly, but we keep the degrees of
the vertices unchanged. The algorithm is essentially a genetic algorithm, using the
modularity as the measurement of fitness. Rather than selecting and mutating current
best solutions, we enumerate all possible merges of any two communities in the
current solution, and evaluate the relative fitness of the resulting merges, and choose
the best solution as the seed for the next iteration.

Table 12.3 summarises the communities detected by applying WNA on the four
datasets. According to Newman [31], non-zero Q values indicate deviations from
randomness; values around 0.3 or more usually indicate good divisions. For the
Infocom06 case, the Qmax value is low; this indicates that the community partition
is not very good in this case. This also agrees with the fact that in a conference the
community boundary becomes blurred. For the Reality case, the Q value is high;
this reflects the more diverse campus environment. For the Cambridge data, the two
groups spawned by WNA exactly match the two groups (1st year and 2nd year) of
students selected for the experiment.

These centralised community detection algorithms give us rich information about
the human social clustering and are useful for offline data analysis on mobility traces
collected. We can use them to explore structures in the data and hence design useful
forwarding strategies, security measures, and killer applications.

12.3.3 Heterogeneity in Centrality

In human society, people have different levels of popularity: salesmen and politi-
cians meet customers frequently, whereas computer scientists may only meet a few
of their colleagues once a year [18]. Here, we want to employ heterogeneity in
popularity to help design more efficient forwarding strategies: we prefer to choose
popular hubs as relays rather than unpopular ones.

A temporal network or time-evolving network is a kind of weighted network.
The centrality measure in traditional weighted networks may not work here since
the edges are not necessarily concurrent (i.e., the network is dynamic and edges are

370 N. Sastry and P. Hui

time-dependent). Hence, we need a different way to calculate the centrality of each
node in the system. Our approach is as follows:

1. Carry out a large number of emulations of unlimited flooding with different
uniformly distributed traffic patterns created.

2. Count the number of times a node acts as a relay for other nodes on all the
shortest delay deliveries. Here, the shortest delay delivery refers to the case when
the same message is delivered to the destination through different paths, where
we only count the delivery with the shortest delay.

We call the number calculated above the betweenness centrality of this node in
this temporal graph. Of course, it can be normalised to the highest value found.
Here we use unlimited flooding since it can explore the largest range of delivery
alternatives with the shortest delay. This definition captures the spirit of Freeman
centrality [13].

For the emulation, we developed an emulator called HaggleSim [17], which can
replay the collected mobility traces and emulate different forwarding strategies on
every contact event. This emulator is driven by contact events. The original trace
files are divided into discrete sequential contact events, and fed into the emulator
as inputs. In all the simulations for the BUBBLE algorithm (including the evaltuions
in Sect. 12.3.4), we divided the traces into discrete contact events with granularity
of 100 s Our emulator reads the file line by line, treating each line as a discrete
encounter event, and makes a forwarding decision on this encounter based on the
forwarding algorithm under study.

Figure 12.12 shows the number of times a node falls on the shortest paths
between all other node pairs. We can treat this simply as the centrality of a node
in the system. We observe very wide heterogeneity in each experiment. This clearly
shows that there is a small number of nodes which have extremely high relaying
ability, and a large number of nodes that have moderate or low centrality values,
across all experiments. One interesting point from the HK data is that the node
showing highest delivery power in the figure is actually an external node. This node
could be some popular hub for the whole city, i.e., a postman or a newspaper man
in a popular underground station, who relayed a certain amount of cross city traffic.
The 30th, 70th percentiles, and the means of normalised individual node centrality
are shown in Table 12.4. These numbers summarise the statistical property of the
centrality values for each system shown in Fig. 12.12.

12.3.4 Social-Based Routing

The contribution of this section is to combine the knowledge of both centralities of
nodes and community structure, to achieve further performance improvements in
forwarding. We show that this avoids the occurrence of the dead-ends encountered

12 Path Formation in Human Contact Networks 371

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70

N
um

be
r

of
 ti

m
es

 a
s

re
la

y
no

de
s

node ID

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 ti

m
es

 a
s

re
la

y
no

de
s

node ID

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35

N
um

be
r

of
 ti

m
es

 a
s

re
la

y
no

de
s

node ID

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 ti

m
es

 a
s

re
la

y
no

de
s

node ID

Reality Cambridge

Infocom 06 HK

Fig. 12.12 Number of times a node as relays for others on four datasets

Table 12.4 Statistics about normalised node centrality in 4 experiments

Experimental dataset 30th percentile Mean 70th percentile

Cambridge 0.052 0.220 0.194
Reality 0.005 0.070 0.050
Infocom06 0.121 0.188 0.221
Hong Kong 0.000 0.017 0.000

with pure global ranking schemes. We call the protocols here BUBBLE, to capture
our intuition about the social structure. Messages bubble up and down the social
hierarchy, based on the observed community structure and node centrality, together
with explicit label data. Bubbles represent a hybrid of social and physically
observable heterogeneity of mobility over time and over community.

372 N. Sastry and P. Hui

12.3.4.1 Overview of Forwarding Algorithms

In order to compare and evaluate the efficiency of the forwarding algorithms in
finding the good paths for the destination. Forwarding algorithms can be divided
into two broad categories: those that are aware of the social structure, and those
oblivious to social structure. BUBBLE exploits the latent social structure. We evaluate
its performance in relation to the following naı̈ve strategies which attempt to forward
data without using any social structure:

• WAIT: Hold onto a message until the sender encounters the recipient directly,
which represents the lower bound for delivery cost. WAIT is the only single-copy
algorithm in this chapter.

• FLOOD: Messages are flooded throughout the entire system, which represents the
upper bound for delivery and cost.

• Multiple-Copy-multiple-hoP (MCP): Multiple copies are sent subject to a time-
to-live hop count limit on the propagation of messages. By exhaustive emula-
tions, the 4-copy-4-hop MCP scheme was found to be the most cost-effective
scheme in terms of delivery ratio and cost for all naive schemes among most of
the datasets.

In contrast to the above, we explore four different algorithms which leverage
various different aspects of social structure:

• LABEL: Explicit labels are used to identify forwarding nodes that belong to
the same organisation. Optimisations are examined by comparing label of the
potential relay nodes and the label of the destination node.This is in the human
dimension, although an analogous version can be done by labelling a k-clique
community in the physical domain.

• RANK: The forwarding metric used in this algorithm is the node centrality.
A message is forwarded to nodes with higher centrality values than the current
node. It is based on observations in the network plane, although it also reflects
the hub popularity in the human dimension.

• DEGREE: The forwarding metric used in this algorithm is the node degree, more
specifically the observed average of the degree of a node over a certain time
interval. Either the last interval window (S-Window), or a long-term cumulative
estimate, (C-Window) is used to provide a fully decentralised approximation for
each node’s centrality, and then that is used to select forwarding nodes.

• BUBBLE: The BUBBLE family of protocols combines the observed hierarchy of
centrality of nodes and observed community structure with explicit labels, to
decide on the best forwarding nodes. BUBBLE is an example algorithm which
uses information from both human aspects and also the physically observable
aspects of mobility.

BUBBLE is a combination of LABEL and RANK. It uses RANK to spread out the
messages and uses LABEL to identify the destination community. For this algorithm,
we make two assumptions:

12 Path Formation in Human Contact Networks 373

Fig. 12.13 Design space for
forwarding algorithms

Explicit Social Structure

Structure in Degree

Structure in
Cohesive Group

Label

Rank, Degree

Clique
Label

Bubble

Network Plane

H
um

an
D

im
ension

• Each node belongs to at least one community. Here, we allow single node
communities to exist.

• Each node has a global ranking (i.e., global centrality) in the whole system and
also a local ranking within its community. It may belong to multiple communities
and hence may have multiple local rankings.

Figure 12.13 shows the design space for the social-based forwarding algorithms.
The vertical axis represents the explicit social structure. This is the social or human
dimension. The two horizontal axes represent the network structural plane, which
can be inferred purely from observed contact patterns. The Structure-in-Cohesive
Group axis indicates the use of localised cohesive structure, and the Structure-in-
Degree axis indicates the use of node ranking and degree. These are observable
physical characteristics. In our design framework, it is not necessary that physical
dimensions are orthogonal to the social dimension, but since they represent two
different design parameters, we would like to separate them. The design philosophy
here is to consider both the social and physical aspects of mobility.

12.3.4.2 Two-Community Case

In order to make the study more systematic, we start with the two-community
case. We use the Cambridge dataset for this study. By experimental design, and
as confirmed using our community detection algorithm, we can clearly divide the
Cambridge data into two communities: the undergraduate year-one and year-two
group. In order to make the experiment more fair, we limit ourselves to just the two
10-clique groups found with a number-of-contact threshold of 9; that is where each
node at least meet another 9 nodes frequently. Some students may skip lectures
and cause variations in the results, so this limitation makes our analysis yet more
plausible.

374 N. Sastry and P. Hui

 0

 0.2

 0.4

 0.6

 0.8

 1

a b

 0 2 4 6 8 10 12

C
en

tr
al

ity

Node

Group A Group B

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
en

tr
al

ity
Node

Fig. 12.14 Node centrality in 2 groups in Cambridge data, see Sect. 12.3.3 for the method of
calculating the centrality values. (a) Group A (b) Group B

First we look at the simplest case, for the centrality of nodes within each group.
In this case, the traffic is created only for members within the same community and
only members in the same community are chosen as relays for messages. We can
clearly see from Fig. 12.14a and 12.14b that inside a community, the centrality of
each node is different. In Group B, there are two nodes which are very popular,
and have relayed most of the traffic. All the other nodes have low centrality value.
Forwarding messages to the popular nodes would make delivery more cost effective
for messages within the same community.

Then we consider traffic which is created within each group and only destined
for members in another group. To eliminate other outside factors, we use only
members from these two groups as relays. Figure 12.15 shows the individual node
centrality when traffic is created from one group to another and the correlation of
node centrality within an individual group and inter-group (for data deliveries only
to other groups but not to its only group) centrality. We can see that points lie
more or less around the diagonal line. This means that the inter- and intra- group
centralities are quite well correlated. Active nodes in a group are also active nodes
for inter-group communication. There are some points on the left hand side of the
graph which have low intra-group centrality but moderate inter-group centrality.
These are nodes which move across groups. They are not important for intra-group
communication but will be useful when we need to move traffic from one group to
another.

Figure 12.16 shows the correlation of the local centrality of Group A and the
global centrality of the whole population. We can see that quite a number of nodes
from Group A lie along the diagonal line. In this case, the global ranking can help
to push the traffic toward Group A. However, the problem is that some nodes which
have very high global rankings are actually not members of Group A, e.g. node D.

12 Path Formation in Human Contact Networks 375

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
en

tr
al

ity

Node

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

B
et

w
ee

n

Within

Fig. 12.15 Inter-group centrality (left) and correlation between intra- and inter-group centrality
(right), Cambridge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
lo

ba
l

Local

A

CD

E

B

Fig. 12.16 Correlation of local centrality of group A and the global centrality (Cambridge)

Just as in real society, a politician could be very popular in the city of Cambridge,
but not a member of the Computer Laboratory, so may not be a very good relay
to deliver message to the member in the Computer Laboratory. Now we assume
there is a message at node A to deliver to another member of Group A. According
to global ranking, we would tend to push the traffic toward B, C, D, and E in the
graph. If we pushed the traffic to node C, it would be fine, and to node B it would be

376 N. Sastry and P. Hui

Ranking

Source

Destination

Global Community

Sub community

Sub community

Subsub community

Fig. 12.17 Illustration of the BUBBLE forwarding algorithm

perfect. But if it pushed the traffic to node D and E, the traffic could get stuck there
and not be routed back to Group A. If it reaches node B, that is the best relay for
traffic within the group, but node D has a higher global ranking than B, and would
tend to forward the traffic to node D, where it would probably get stuck again. Here,
we propose the BUBBLE algorithm to avoid these dead-ends.

Forwarding is carried out as follows. If a node has a message destined for
another node, this node would first bubble this message up the hierarchical ranking
tree using the global ranking until it reaches a node which has the same label
(community) as the destination of this message. Then the local ranking system
will be used instead of the global ranking and continue to bubble up the message
through the local ranking tree until the destination is reached or the message expired.
This method does not require every node to know the ranking of all other nodes
in the system, but just to be able to compare ranking with the node encountered,
and to push the message using a greedy approach. We call this algorithm BUBBLE,
since each world/community is like a bubble. Figure 12.17 illustrates the BUBBLE

algorithm and the pseudo code can be found in our previous work [19].
This fits our intuition in terms of real life. First, you try to forward the data

via people around you and are more popular than you, and then bubble it up to
well-known popular people in the society, such as a postman. When the postman
meets a member of the destination community, the message will be passed to that
community. This community member will try to identify the more popular members
within the community and bubble the message up again within the local hierarchy
until the message reaching a very popular member, or the destination itself, or the
message expires.

12 Path Formation in Human Contact Networks 377

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

D
el

iv
er

y
su

cc
es

s
ra

tio

Time TTL

MCP
BUBBLE-A
BUBBLE-B

RANK
LABEL

 0

 5

 10

 15

 20

 25

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

T
ot

al
 C

os
t

Time TTL

MCP
BUBBLE-A
BUBBLE-B

RANK
LABEL

Fig. 12.18 Comparisons of several algorithms on Cambridge dataset

A modified version of this strategy is that whenever a message is delivered to the
community, the original carrier can delete this message from its buffer to prevent
it from further dissemination. This assumes that the community member would be
able to deliver this message. We call this protocol with deletion, strategy BUBBLE-B,
and the original algorithm introduced above BUBBLE-A.

We can see from Fig. 12.18 that both BUBBLE-A and BUBBLE-B achieve almost
the same delivery success rate as the 4-copy-4-hop MCP. Although BUBBLE-B
has the message deletion mechanism, it achieves exactly the same delivery as
BUBBLE-A. BUBBLE-A only has 60% the cost of MCP and BUBBLE-B is even
better, with only 45% the cost of MCP. Both have almost the same delivery success
as MCP.

12.3.4.3 Multiple-Community Cases

To study the multiple-community cases, we use the Reality dataset. To evaluate the
forwarding algorithm, we extract a 3-week session during term time from the whole
9-month dataset. Emulations are run over this dataset with uniformly generated
traffic.

There is a total of 8 groups within the whole dataset. Figure 12.19 shows the
node centrality in 4 groups, from small-size to medium-size and large-size groups.
We can see that within each group, almost every node has different centrality.

In order to make our study easier, we first isolate the largest group in Fig. 12.19,
consisting of 16 nodes. In this case, all the nodes in the system create traffic for
members of this group. We can see from Fig. 12.20 that BUBBLE-A and BUBBLE-B
perform very similarly to MCP most of the time in the single group case, and even
outperform MCP when the time TTL is set to be larger than 1 week. BUBBLE-A only

378 N. Sastry and P. Hui

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

C
en

tr
al

ity

Node

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

C
en

tr
al

ity
Node

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
en

tr
al

ity

Node

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

C
en

tr
al

ity

Node

Fig. 12.19 Node centrality in several individual groups (Reality)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

D
el

iv
er

y
su

cc
es

s
ra

tio

Time TTL

MCP
BUBBLE-A
BUBBLE-B

RANK
LABEL

0

2

4

6

8

10

12

14

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

T
ot

al
 C

os
t

Time TTL

MCP
BUBBLE-A
BUBBLE-B

RANK
LABEL

Fig. 12.20 Comparisons of several algorithms on Reality dataset, single group

12 Path Formation in Human Contact Networks 379

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

D
el

iv
er

y
su

cc
es

s
ra

tio

Time TTL

FLOOD
MCP

BUBBLE
RANK

LABLE
WAIT

 0

 10

 20

 30

 40

 50

3 weeks1 w4 d2 d1 day6 h3 h1 hour10 min2 min

T
ot

al
 C

os
t

Time TTL

FLOOD
MCP

BUBBLE
RANK

LABLE
WAIT

Fig. 12.21 Comparisons of several algorithms on Reality dataset, all groups

has 70% and BUBBLE-B only 55% of the cost of MCP. We can say that the BUBBLE

algorithms are much more cost effective than MCP, with high delivery ratio and low
delivery cost.

After the single group case, we start looking at the case of every group creating
traffic for other groups, but not for its own members. We want to find the upper
cost bound for the BUBBLE algorithm, so we do not consider local ranking (i.e.,
only global ranking); messages can now be sent to all members in the group.
This is exactly a combination of direct LABEL and greedy RANK, using greedy
RANK to move the messages away from the source group. We do not implement
the mechanism to remove the original message after it has been delivered to the
group member, so the cost here will represent an upper bound for the BUBBLE

algorithms.
From Fig. 12.21, we can see that of course flooding achieves the best perfor-

mance for delivery ratio, but the cost is 2.5 times that of MCP, and 5 times that
of BUBBLE. BUBBLE is very close in performance to MCP in multiple groups case
as well, and even outperforms it when the time TTL of the messages is allowed to
be larger than 2 weeks.5 However, the cost is only 50% that of MCP. Figure 12.22
shows the same performance evaluations with the Infocom06 dataset. In this case,
the delivery ratio of RANK is approaching that of MCP but with less than half of
the cost. The performance of BUBBLE over RANK is not as significant as in the
Reality case because in a conference scenario the people are very mixing and hence
the community factors are less dominating. We can also see that even in this case,

5 Two weeks seems to be very long, but as we have mentioned before, the Reality network is
very sparse. We choose it mainly because it has long experimental period and hence more reliable
community structures can be inferred. The evaluations here can serve as a proof of concept of the
BUBBLE algorithm, although the delays are large in this dataset.

380 N. Sastry and P. Hui

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 d2 d1 day6 h3 h1 hour10 min2 min

D
el

iv
er

ys
uc

ce
ss

ra
tio

Time TTL

MCP
BUBBLE

RANK
LABEL

0

5

10

15

20

25

30

35

4 d2 d1 day6 h3 h1 hour10 min2 min

T
ot

al
C

os
t

Time TTL

MCP
BUBBLE

RANK
LABEL

Fig. 12.22 Comparisons of several algorithms on Infocom06 dataset, all groups

the delivery cost for BUBBLE only increases slightly, which indicates that even in a
mixing environment, BUBBLE is still very robust towards the possible misleading of
the community factors.

In BUBBLE and RANK algorithm, nodes with high centrality are more likely to
act as relay nodes than the others. Excessive traffic through a node might cause
the node to run out of battery or possibly lead to package losses. An easy fix is
to impose admission control at each node. Each node maintains a limited buffer
for storing data for other nodes and if the buffer has reached its limit, it will not
admit incoming data. This may lower the delivery efficiency but can get rid of the
excessive traffic problem. We will further study the trade-off and optimal buffer size
in future work.

12.4 Related Work

Conceptually, PSNs are Delay-Tolerant Networks [12], and generic results from that
framework apply. For instance, a forwarding algorithm that has more knowledge
about contacts is likely to be more successful [22], and the best performance is
achieved by an oracle with knowledge of future contacts.

Nevertheless, the fact that our underlying network is made up of human contacts
and is less predictable has a large impact: for instance, reasonably predictable traffic
patterns of buses allow a distributed computation of route metrics for packets in
vehicular DTNs [2,22]. Similarly, fixed bus routes allow the use of throwboxes [47]
to reliably transfer data between nodes that visit the same location, but at different
times.

The variability of PSNs has naturally led to a statistical approach: The
inter-contact time distribution of human social contacts has been used to model

12 Path Formation in Human Contact Networks 381

transmission delay between a randomly chosen source–destination pair [4, 24].
In this work, we take a more macroscopic view and look at the ability of the
PSN to simultaneously deliver data between multiple source–destination pairs. This
leads us to look at the distribution of the number of contacts between randomly
chosen source–destination pairs, and find that this distribution is not only crucial
for global data delivery performance, but also for the connectivity of the PSN
itself.

[14, 39, 45] model the performance of epidemic routing and its variants. In
particular, they derive a closed form for delivery time distribution, and show it
to be accurate for certain common mobility models. However, several simplifying
assumptions are made, including an exponential inter-contact time between node
pairs. Unforunately, human contact networks are known to have power law inter-
contact times with exponential tails [4, 24]. Furthermore, [14, 39, 45] use a constant
contact rate, whereas our studies show that human contacts are highly heteroge-
neous. [29] considers heterogeneous contact rates between mobile devices but only
in the context of establishing an epidemic threshold for virus spread.

The number of paths found by flooding is crucial to the success of proportional
and k-copy flooding. Counting differently, [10] reports a phenomenon of “path
explosion” wherein thousands of paths reach a destination shortly after the first,
many of which are duplicates, shifted in time. In contrast, duplicate paths are
prevented in our method of counting, by having nodes remember if they have already
received some data, resulting in a maximum of N − 2 paths between a source and
destination.

The power of using multiple paths has been recognised. Binary Spraying, which
forms the basis for two schemes (spray and wait, spray and focus) has been shown to
be optimal in the simple case when node movement is independent and identically
distributed [40]. [11] noted that among routing schemes evaluated, those using more
than one copy performed better. Furthermore, all algorithms employing multiple
paths showed similar average delivery times. The success of k-copy flooding
suggests a possible explanation for this result. Similarly, [21] finds that the delivery
ratio achieved by a given time is largely independent of the propensity of nodes
to carry other people’s data. They suggest the existence of multiple paths as an
explanation. At an abstract level, the refusal of a node to carry another node’s data
can be treated as a path failure. Thus, Sect. 12.2.3 corroborates [21] and provides a
direct explanation.

For distributed search for nodes and content in power-law networks, Sarshar
et al. [37] proposed using a probabilistic broadcast approach: sending out a query
message to an edge with probability just above the bond6 percolation threshold of
the network. They show that if each node caches its directory via a short random
walk, then the total number of accessible contents exhibits a first-order phase
transition, ensuring very high hit rates just above the percolation threshold.

6A percolation which considers the lattice edges as the relevant entities.

382 N. Sastry and P. Hui

For routing and forwarding in DTNs and mobile ad hoc networks, there is much
existing literature. Vahdat et al. proposed epidemic routing, which is similar to the
“oblivious” flooding scheme we evaluated in this chapter [43]. Spray and Wait is
another “oblivious” flooding scheme but with a self-limited number of copies [40].
Grossglauser et al. proposed the two-hop relay schemes to improve the capacity of
dense ad hoc networks [15]. Many approaches calculate the probability of delivery
to the destination node, where the metrics are derived from the history of node
contacts, spatial information and so forth. The pattern-based Mobyspace Routing
by Leguay et al. [27], location-based routing by Lebrun et al. [26], context-based
forwarding by Musolesi et al. [30] and PROPHET Routing [1] fall into this category.
PROPHET uses past encounters to predict the probability of future encounters.
The transitive nature of encounters is exploited, where indirectly encountering the
destination node is evaluated. Message Ferry by Zhao et al. [46] takes a different
approach by controlling the movement of each node.

Recent attempts to uncover a hidden stable network structure in DTNs such as
social networks have been emerged. For example, SimBet Routing [5] uses ego-
centric centrality and its social similarity. Messages are forwarded towards the node
with higher centrality to increase the possibility of finding the potential carrier to
the final destination. LABEL forwarding [17] uses affiliation information to help
forwarding in PSNs based on the simple intuition that people belonging to the
same community are likely to meet frequently, and thus act as suitable forwarders
for messages destined for members of the same community. We have compared
BUBBLE with LABEL and demostrate that by the exploitation of both community
and centrality information, BUBBLE provide further improvement in forwarding
efficiency. The mobility-assisted Island Hopping forwarding [36] uses network
partitions that arise due to the distribution of nodes in space. Their clustering
approach is based on the significant locations for the nodes and not for clustering
nodes themselves. Clustering nodes is a complex task to understand the network
structure for aid of forwarding.

Interested readers can obtain further details about the research presented in this
chapter from [20] and [38].

12.5 Conclusion

This chapter discussed the idea of PSNs, which proposes to use human contacts
to opportunistically transfer data over time from sender to destination. We first
examined the feasibility of using local contacts for achieving global N ×N connec-
tivity in the temporal network formed by human contacts and showed that although
the frequently occurring edges are not very effective for data transfer, the network
exhibits a remarkable resilience in the face of path failures. We also showed that
it is possible to uncover important characteristic properties of social network from
a diverse set of real world human contact traces and demonstrated that community
and centrality social metrics can be effectively used in forwarding decisions. Our

12 Path Formation in Human Contact Networks 383

BUBBLE algorithm is designed for a delay tolerant network environment, built out
of human-carried devices, and we have shown that it has similar delivery ratio
to, but much lower resource utilisation than flooding and control flooding. We
believe that this approach represents an early step in combining rich multi-level
information of social structures and interactions to drive novel and effective means
for disseminating data. A great deal of future research can follow.

References

1. A.Lindgren, A.Doria, O.Schelen: Probabilistic routing in intermittently connected networks.
In: Proc. SAPIR (2004)

2. Balasubramanian, A., Levine, B.N., Venkataramani, A.: DTN Routing as a Resource Alloca-
tion Problem. In: SIGCOMM (2007)

3. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility
on the design of opportunistic forwarding algorithms. In: Proc. INFOCOM (2006)

4. Chaintreau, A., et al.: Impact of human mobility on opportunistic forwarding algorithms. IEEE
Transactions on Mobile Computing 6(6), 606–620 (2007)

5. Daly, E., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant manets.
In: Proceedings of ACM MobiHoc (2007)

6. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identifica-
tion. J. Stat. Mech. p. P09008 (2005)

7. Dunbar, R.I.M.: Co-evolution of neocortex size, group size and language in humans. Behav-
ioral and Brain Sciences 16 (1993)

8. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and
Ubiquitous Computing V10(4), 255–268 (2006)

9. Eagle, N., Pentland, A.S.: CRAWDAD data set mit/reality (v. 2005-07-01). http://crawdad.cs.
dartmouth.edu/mit/reality

10. Erramilli, V., Chaintreau, A., Crovella, M., Diot, C.: Diversity of forwarding paths in pocket
switched networks. In: Proceedings of ACM Internet Measurement Conference (2007)

11. Erramilli, V., Crovella, M., Chaintreau, A., Diot, C.: Delegation forwarding. In: MobiHoc
(2008)

12. Fall, K.: A delay-tolerant network architecture for challenged internets. In: ”SIGCOMM”
(2003)

13. Freeman, L.C.: A set of measuring centrality based on betweenness. Sociometry 40, 35–41
(1977)

14. Groenevelt, R., Nain, P., Koole, G.: The message delay in mobile ad hoc networks. Perform.
Eval. 62(1-4), 210–228 (2005)

15. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks.
IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

16. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks
and the consequences of human mobility in conference environments. In: Proceedings of ACM
SIGCOMM first workshop on delay tolerant networking and related topics (2005)

17. Hui, P., Crowcroft, J.: How small labels create big improvements. In: Proc. IEEE ICMAN
(2007)

18. Hui, P., Crowcroft, J.: Human mobility models and opportunistic communications system
design. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366(1872), 2005–2016 (2008)

19. Hui, P., Crowcroft, J., Yoneki, E.: Bubble rap: Social-based forwarding in delay tolerant
networks. In: MobiHoc ’08: Proceedings of the 9th ACM international symposium on Mobile
ad hoc networking & computing (2008)

http://crawdad.cs.dartmouth.edu/mit/reality
http://crawdad.cs.dartmouth.edu/mit/reality

384 N. Sastry and P. Hui

20. Hui, P., Crowcroft, J., Yoneki, E.: BUBBLE rap: Social-based forwarding in delay-tolerant
networks. Mobile Computing, IEEE Transactions on 10(11), 1576–1589 (2011). doi:10.1109/
TMC.2010.246

21. Hui, P., Xu, K., Li, V., Crowcroft, J., Latora, V., Lio, P.: Selfishness, altruism and message
spreading in mobile social networks. In: Proc. of First IEEE International Workshop on
Network Science For Communication Networks (NetSciCom09) (2009)

22. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: SIGCOMM (2004)
23. Jones, E.P.C., Li, L., Ward, P.A.S.: Practical routing in delay-tolerant networks. In: Proc.

WDTN (2005)
24. Karagiannis, T., Le Boudec, J.Y., Vojnovic, M.: Power law and exponential decay of inter

contact times between mobile devices. In: MOBICOM (2007)
25. Karagiannis, T., Le Boudec, J.Y., Vojnović, M.: Power law and exponential decay of inter

contact times between mobile devices. In: ACM MobiCom ’07 (2007)
26. Lebrun, J., Chuah, C.N., Ghosal, D., Zhang, M.: Knowledge-based opportunistic forwarding

in vehicular wireless ad hoc networks. IEEE VTC 4, 2289–2293 (2005)
27. Leguay, J., Friedman, T., Conan, V.: Evaluating mobility pattern space routing for DTNs. In:

Proc. INFOCOM (2006)
28. Leguay, J., Lindgren, A., Scott, J., Friedman, T., Crowcroft, J.: Opportunistic content distribu-

tion in an urban setting. In: ACM CHANTS, pp. 205–212 (2006)
29. Mickens, J.W., Noble, B.D.: Modeling epidemic spreading in mobile environments. In: WiSe

’05: Proceedings of the 4th ACM workshop on Wireless security (2005)
30. Musolesi, M., Hailes, S., et al.: Adaptive routing for intermittently connected mobile ad hoc

networks. In: Proc. WOWMOM (2005)
31. Newman, M.E.J.: Analysis of weighted networks. Physical Review E 70, 056,131 (2004)
32. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330

(2004)
33. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.

Physical Review E 69 (2004). DOI 10.1103/PhysRevE.69.026113. URL http://arxiv.org/abs/
cond-mat/0308217

34. Okasha, S.: Altruism, group selection and correlated interaction. British Journal for the
Philosophy of Science 56(4), 703–725 (2005)

35. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435(7043), 814–818 (2005). DOI 10.1038/
nature03607. URL http://dx.doi.org/10.1038/nature03607

36. Sarafijanovic-Djukic, N., Piorkowski, M., , Grossglauser, M.: Island hopping: Efficient
mobility-assisted forwarding in partitioned networks. In: IEEE SECON (2006)

37. Sarshar, N., Boykin, P.O., Roychowdhury, V.P.: Scalable percolation search in power law
networks (2004). URL http://arxiv.org/abs/cond-mat/0406152

38. Sastry, N., Manjunath, D., Sollins, K., Crowcroft, J.: Data delivery properties of human contact
networks. Mobile Computing, IEEE Transactions on 10(6), 868–880 (2011). doi:10.1109/
TMC.2010.225

39. Small, T., Haas, Z.J.: The shared wireless infostation model: a new ad hoc networking paradigm
(or where there is a whale, there is a way). In: MobiHoc (2003)

40. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Efficient routing in intermittently connected
mobile networks: the multiple-copy case. IEEE/ACM Trans. Netw. 16(1) (2008)

41. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4),
425–443 (1969)

42. ”UCSD”: Wireless topology discovery project. http://sysnet.ucsd.edu/wtd/wtd.html (2004)
43. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Tech. Rep.

CS-200006, Duke University (2000)
44. Yoneki, E., Hui, P., Crowcroft, J.: Visualizing community detection in opportunistic networks.

In: CHANTS’07: Proc. of the second ACM workshop on Challenged Networks, pp. 93–96
(2007). DOI http://doi.acm.org/10.1145/1287791.1287810

doi:10.1109/TMC.2010.246
doi:10.1109/TMC.2010.246
http://arxiv.org/abs/cond-mat/0308217
http://arxiv.org/abs/cond-mat/0308217
http://dx.doi.org/10.1038/nature03607
http://arxiv.org/abs/cond-mat/0406152
doi:10.1109/TMC.2010.225
doi:10.1109/TMC.2010.225
http://sysnet.ucsd.edu/wtd/wtd.html
http://doi.acm.org/10.1145/1287791.1287810

12 Path Formation in Human Contact Networks 385

45. Zhang, X., Neglia, G., Kurose, J., Towsley, D.: Performance modeling of epidemic routing.
Comput. Netw. 51(10), 2867–2891 (2007)

46. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse
mobile ad hoc networks. In: Proceedings of the MobiCom 2004 (2004)

47. Zhao, W., et al.: Capacity Enhancement using Throwboxes in DTNs. In: Proc. IEEE Intl Conf
on Mobile Ad hoc and Sensor Systems (MASS) (2006)

Chapter 13
Social Forwarding in Mobile Opportunistic
Networks: A Case of PeopleRank

Abderrahmen Mtibaa, Martin May, and Mostafa Ammar

Abstract The proliferation of powerful portable devices has created a new
environment for networking. In such environment, devices are able to communicate
between “challenged” networks such as sensor networks, mobile ad-hoc networks,
or opportunistic ad-hoc networks using a set of protocols designed to accommodate
disconnection. In particular, forwarding in mobile opportunistic networks needs to
deal with such disconnections, and limited resources. As opposed to conventional
communication that relies on infrastructure, these devices can use hop-by-hop
opportunistic data forwarding between each other. In this environment, a device
should decide whether or not to transfer a message at the time it meets another
one. How to optimally select the next hop towards the destination in a way to
minimize delay and maximize success rate is so far unknown. In opportunistic
networks, a device has to decide whether or not to forward data to an intermediate
node that it encounters. In this chapter, we describe PeopleRank as systematic
approach to the use of social interaction as a means to guide forwarding decisions
in an opportunistic network. PeopleRank ranks nodes using a tunable weighted
combination of social and contact information. It gives higher weight to the social
information in cases where there is correlation between that information and
the contact trace information. More specifically, PeopleRank is an opportunistic
forwarding algorithm that ranks the “importance” of a node using a combination
of social and contact-graph information.

A. Mtibaa (�)
Carnegie Mellon University Doha, Qatar
e-mail: amtibaa@cmu.edu

M. May
Technicolor Paris, France
e-mail: martin.may@technicolor.com

M. Ammar
Georgia Institute of Technology Atlanta, Georgia, USA
e-mail: ammar@cc.gatech.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 13, © Springer Science+Business Media, LLC 2012

387

amtibaa@cmu.edu
martin.may@technicolor.com
ammar@cc.gatech.edu

388 A. Mtibaa et al.

13.1 Introduction

In the ancient times, social interaction primarily took place through physical
meeting. The telegraph and telephone networks made a first step toward remote
social interaction. More recently, the Internet added multiple social interaction
techniques not based on physical meeting: email, chat, and Online Social Network
services (OSN) such as Facebook, Orkut, MySpace, or LinkedIn, etc. These
applications create a virtual space where users can build the social network of their
acquaintances independently of where they are located, and allow these social net-
works (or communities) to interact freely using a large set of Internet applications.
However, when people, with similar interests or common acquaintances, get close
to each others in streets or conferences, they have no automated way to identify
this potential “relationship.” With geolocation applications, it is now highly likely
that OSNs will include in a near future some representation of user location, and
offer services to “link” mobile users. However, the relation between virtual social
interactions and physical meeting remains largely unexplored.

In this chapter, we present a systematic approach to the use of social interaction
as a means to guide forwarding decisions in an opportunistic ad-hoc network.
Generally, social interaction information alone is not sufficient and needs to be
augmented in some way with information about contact statistics. The approach
described in this chapter combines these two pieces of information.

This approach relies on the modeling of social relations using a social graph
and modeling contact information as a time-varying graph. Such a social graph
can be extracted from Online Social Networks or alternatively from shared interest
information obtained through surveys or other means. The main challenge in
combining social and contact information to guide forwarding decisions stems from
the significant structural differences between these two sources of information. To
approach this problem PeopleRank was designed to rank nodes using a tunable
weighted combination of social and contact information. Such technique gives
higher weight to the social information in cases where there is correlation between
that information and the contact trace information.

More specifically, we introduce in this chapter an opportunistic forwarding
algorithm that uses PeopleRank which ranks the “importance” of a node using a
combination of social and contact-graph information. PeopleRank is inspired by
the PageRank algorithm [2] used in Google’s search engine to measure the relative
importance of a Web page within a set of pages.

13.2 Web Ranking

Web ranking techniques are challenging because of the size of the Web: it is
impossible for users to browse through millions of web search results to identify
the most relevant ones. Thus, ranking techniques try to identify the most relevant
(interested) results in a small top pages list.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 389

13.2.1 Effective Web Ranking Algorithms

In most previous work, three “famous” algorithms tried to rank the web pages:

• The InDegree Algorithm [12] is considered to be the first study to rank the pages
according to their popularity. Page popularity is defined as a number of pages
that link to this page. This simple heuristic was applied by several search engines
in the early days of Web search.

• The PageRank Algorithm [2] improves the InDegree Algorithm by adding
weights to pages according to their qualities (the quality of a page measures
the “importance” of the pages’ content). Links from pages of high quality should
result in a higher weight. It is not only important to know how many pages point
to a page, but also whether the relevance of these pages is high or low.

The PageRank algorithm performs a random walk on the World Wide Web
graph, where the nodes are pages, and the edges are links among the pages.
It gives the probability distribution used to represent the likelihood that a person
randomly clicking on links will arrive at any particular page. The PageRank is
given by the following equation:

PR(pi) =
1− d

n
+ d ∑

p j∈M(i)

PR(p j)

L(j)
, (13.1)

where p1, p2, ..., pn are the pages, M(i) is the set of pages that link to pi,
L(j) is the number of outbound links on page p j, and d is a damping factor
which is defined as the probability, at any step, that the person will continue
clicking on links. Various studies have tested different damping factors, but it is
generally assumed that the damping factor should be set to around 0.85 for best
performance.

• The Hits Algorithm [11] proposed by Kleinberg is based on the observation that
not only “important” pages link to “important” pages, and special nodes could act
as hubs containing a list of links to “important” pages. He defined two weights,
authorities a and hub h to compute the importance of Web pages, and they are
given by:

ai = ∑
j∈M(i)

h j and h j = ∑
i∈L(j)

ai. (13.2)

Where ai and hi are, respectively, the authority and the hub weights of the web
page pi.

The three previous algorithms were followed by a huge number of extensions and
improvements. However, most of these contributions are limited to the case of Web
search. Only few researchers tried to exploit these link analysis concepts in other
domains. e.g., J. Morrison et al. [13] proposed a method based on the PageRank
algorithm to generate prioritized gene lists using biological information.

390 A. Mtibaa et al.

13.2.2 PageRank Description

The PageRank algorithm performs a random walk on the World Wide Web graph,
where the nodes are pages, and the edges are links between pages. It gives the
probability distribution used to represent the likelihood that a person randomly
clicking on links will arrive at any particular page. PageRank values are given
by (13.1).

Google describe the idea behind PageRank as if we consider a random web surfer
that starts from a random page, spend some time t, and chooses the next page by
clicking on one of the links in the current page. If we assume that the rank of the
page is proportional to the fraction of time that the surfer spent on that page, pages
that are linked by many other pages (or by important ones) will be visited more
often, which justifies the definition. Equation 13.1 allows the surfer to restart with
probability 1− d from another page chosen randomly, instead of following a link.

Google also describes the PageRank as a vote from page A to page B if page A
links to B. Moreover, the importance of the page is proportional to the volume of
votes this page could give. We apply the same idea in our algorithm to tag people as
“important” if they are linked (in a social sense) to many other “important” people.
We assume that only friends could vote for each others because they are more likely
to recommend each other.

In the same way, web pages are hyperlinked, one could establish a social graph
between persons linked through social relationships such as friendship, or common
interests. We denote such a social graph G = (V,E) as a finite undirected graph with
a vertex set V and an edge set E . An edge (u,v) ∈ E if, and only if, there is a social
interaction between nodes u and v (i.e., u and v are friends or they are sharing k
common interests).

13.3 Network Models

We are interested in delivering data among a set of N mobile wireless nodes.
Communication between two nodes is established when they are within radio range
of each other. Data is forwarded from source to destination over these contacts.
We model the evolution of contacts in the network by a time varying graph G(t) =
(V,E(t)) with N = |V |. We assume that the network starts at time t0 and ends at time
T (T can be infinite). We call this temporal network the contact graph. Each G(t)
describes the contacts between nodes existing at time t. Such a time-varying graph
model can be obtained from a mobility/contact trace1 or from a mobility model
along with knowledge of radio properties (e.g., radio range).

1http://www.crawdad.org, http://www.haggleproject.org

http://www.crawdad.org
http://www.haggleproject.org

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 391

Because such networks exhibit intermittent connectivity, data is typically stored
in intermediate nodes awaiting appropriate contact formation. Paths are constructed
as a concatenation of contacts that are followed as they appear in the time varying
graph. Among these paths, a path from s ∈ V to d ∈ V starting at time tk is
delay-optimal if it reaches the destination d in the earliest possible time. Delay-
optimal paths for any starting time and any source–destination pair can be computed
efficiently via dynamic programming. We assume next that nodes have infinite
buffer size, and data could be exchanged through any contact between nodes.

Traditional work on routing in intermittently-connected networks uses available
knowledge about the properties of the time-dependent contact graph to inform for-
warding decisions. In this chapter, we are interested in augmenting this knowledge
with information about social relationships among nodes. We model such social
relationships using a (non-time varying) graph representing the social relationship
between the mobile nodes, which we denote as Gs = (Vs,Es). In general, we
assume that Vs ⊇ V , that is some nodes in the social graph will not be part of our
mobile network set. Social graphs reflect the interaction or interrelation between
persons. Such information is available either in online social applications or could
be extracted from the phone history or other sources. A link in the social graph
between two nodes implies that these nodes are socially “connected” (e.g., friends
in facebook or sharing a common interest).

Our main premise in this work is that one can, in many instances, expect that
G(t) and Gs to show some correlation as shown in [14]. Such correlation is exhibited
in many ways: for example, two nodes that are socially connected may experience
more direct contacts than nodes that are not, or a node that is well-connected socially
with a large number of neighbors in the social graph may also experience a large
number of contacts with a variety of nodes in the contact graph. However, there is
no reason to believe that these two graphs are perfectly correlated.

13.3.1 Experimental Data Sets

Our analysis relies on five data sets collected in conference environments and the
virtual world of SecondLife. In addition to the contact information, we established
the social relationships between the experimentalists. Next, we describe in detail
each data set; a summary of the corresponding parameters is given in Table 13.1.

MobiClique07 was described in details in Sect. 14. MobiClique07 is the most
complete data set for an evaluation of opportunistic social forwarding, i.e., it
contains mobility information and information about the social relation between
the participants. Visitors of the CoNEXT 2007 conference were asked to carry a
Smartphone device during three consecutive days with the MobiClique application
installed. Prior to the experiment start, each participant was asked to indicate the
participants of all CoNEXT participants he knew or had a connection to. During the
experiment, the social networking application indicated when a contact, or a contact

392 A. Mtibaa et al.

Table 13.1 Data sets properties

Infocom Infocom Infocom
MobiClique07 MobiClique08 SecondLife (Int.) (FB) (Profile) Hope

Duration 3.5 3.5 10 3 3 3 3
(days)

Social Explicit Explicit Implicit Implicit Explicit Explicit Implicit

patterns
Connected 27 22 150 65 47 62 414

nodes
Edges 115 102 2,452 835 219 423 6,541
Average 9.5 9.2 32.7 25.7 9.3 13.6 31.6

degree
Diameter 4 4 5 3 4 4 6

Median 10 mn 10 mn 25 mn 15 mn 15 mn 15 mn 30 mn
inter-contact

Median 240 180 180 150 150 150 90
contact time(s)

of a contact, was in Bluetooth range/neighborhood. This connection neighborhood
was then displayed on the user’s device which in turn could add new connections
or delete existing connections based on the physical interaction consequent to the
application notification.

MobiClique08 [15] experiment was performed at CoNEXT 2008 conference
using smartphones with the MobiClique application installed. The main difference
with MobiClique07 experiment is in the parameterization: we had 22 participants
and the neighborhood discovery was randomized to be executed at intervals of 120
+/− 45 s. In addition, the social profile of MobiClique was initialized based on the
user’s Facebook profile. Prior to the experiment, each participant was asked to join
a Facebook group of the experiment. During the initialization, participants could
choose the people they considered as friends from the list of members in that group
(instead of using the list of friends in Facebook). The initial list of interests contained
user-selected Facebook groups and networks from his profile. As in MobiClique07
experiment, the social network evolved throughout the experiment as users could
make new friends and discover (and create) new groups (i.e., interest topics) and
leave others. For the analysis we consider the collected contact trace and the final
social graph of 22 devices (the rest of devices were not collecting data on each day
of the experiment).

SecondLife dataset [17] is of different nature and illustrates virtual mobility
combined with real social relations. The dataset is a collection of avatar movements
in a popular region in SecondLife.2 The trace was collected during 10 consecutive
days. It includes the avatar positions every 30 s within this region, and their group

2http://secondlife.com

http://secondlife.com

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 393

of interests (such as sport, music, jazz, etc.). We assume that contact opportunities
are available when the geo-distance between two avatars is less than or equal to ten
meters (usually the Bluetooth range used in simulations).

The social graph between avatars is constructed based on common interest
groups between two avatars; two avatars that are members of the same group are
linked in the social graph. Avatars are only tracked inside a crawled region, they may
meet outside this region, however their contact parameters (i.e., contact duration,
inter-contact time, etc.) are not logged in our trace. The crawling process used to
collect this dataset provides view of a specific region in a virtual world. We consider
only the avatars that were visiting the region at least three times during the 10 days
of the experiment. The reason for this restriction are both technical and practical.
Technical since the huge amount of data is difficult to process. But also practical;
avatars seen once can not receive messages after they left the region. That means,
the delay needed to reach these nodes is in f (we set this time to 10 days, the duration
of the measurements). The delay distribution is therefore dominated by these
values.

Infocom06 dataset also contains real user mobility as described in [3], however,
since individual social relations were unknown, we had to use information on users’
interests to determine the social network between the participants. The trace was
collected with 78 participants during the IEEE Infocom 2006 conference. People
were asked to carry an experimental device (i.e., an iMote) with them at all time.
These devices were logging all contacts between participating devices (i.e., called
here internal contacts) using a periodic scanning every 2 s. In addition, they logged
connections established with other external Bluetooth-enabled devices (e.g., cell
phones, PDAs). For this study, we are using results for internal contacts only.
Questionnaires were given to participants to fill theirs nationalities, languages,
countries, cities, academic affiliations and topic of interests. Based on theses
information, we consider three different social graphs for this experiment; based
on (1) their common topics of interest when two users are sharing k common
interest, (2) their Facebook connectivity (obtained offline), and (3) their social
profile (union of nationality, language, affiliation, and city). These three social
graphs are presented respectively in Table 13.1 by Infocom(Int), Infocom(FB), and
Infocom(Profile).

Hope dataset3 was collected during the 17th HOPE conference. This experiment
had a huge number of participants (around 770) to collect and exchange contact
information (after an explicit connection setup using send/receive pings). The
dataset contains the location of participants (30 s granularity) as well as their topics
of interest in the conference. The dataset is publicly available in the CRAWDAD4

database. The contact graph is computed based on geo-distance between two nodes

3http://www.thelasthope.org/
4http://www.crawdad.org/hope/amd

http://www.thelasthope.org/
http://www.crawdad.org/hope/amd

394 A. Mtibaa et al.

(similar to the method used for the SecondLife trace) and the social graph was
build using common interests between two users. Note that there are only 414 nodes
connected in the social graph.

13.3.2 Methodology: Paths in Temporal Networks

Each data set may be seen as a temporal network. More precisely, we represent it as
a graph where edges are all labeled with a time interval, and there may be multiple
edges between two nodes. A vertex represents a device. An edge from device u to
device v, with label [tbeg;tend], represents a contact, where u sees v during this time
interval. The set of edges of this graph therefore includes all the contacts recorded
by each device.

13.3.2.1 Paths Associated with a Sequence of Contacts

We intend to characterize and compute in an efficient way all the sequences of
contacts that are available to transport a message in the network. Note that such
paths might be using a direct connectivity (a contact period between the source and
the destination) or may be made of several hops where intermediate contacts are
used.

A sequence (ei = (vi−1,vi, [t
beg
i ;tendi]))i=1,...,n of contacts is valid if it can be

associated with a time respecting path from v0 to vn. In other words, it is valid if there
exists a non-decreasing sequence of times t1 ≤ t2 ≤ . . .≤ tn such that tbegi ≤ ti ≤ tendi
for all i. An equivalent condition is given by:

∀i = 1, . . . ,n, tendi ≥ max
j<i

{
tbegj

}
. (13.3)

The time-respecting path associated with a sequence of contacts (e1, . . . ,en) is not
unique, but we can characterize all of them as follows. Let us formally define the
last departure of this sequence as LD(e) = mini

{
tendi

}
; and the earliest arrival

as EA(e) = maxi

{
tbegi

}
.

From the definition of a time respecting path, we have:

(1) All paths associated with this sequence of contacts verify t1 ≤ LD and tn ≥ EA.

This property shows that the last departure is in fact the maximum possible
starting time of a path using this sequence of contacts. Similarly the earliest arrival
denotes the minimum possible ending time for a path using this sequence. These
two optimums are attained, as one can immediately check the following.

(2) If LD≤ EA, there is a path with t1 = LD, tn = EA.
(3) If EA≤ LD, there is a path with t1 = t2 = . . .= tn = t for all t ∈ [EA;LD].

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 395

Fig. 13.1 Two examples of concatenation

13.3.2.2 Concatenation

Note that concatenating two sequences of contacts that both verify (13.3) does
not necessarily create a compound sequence that verifies (13.3). However, we can
characterize exactly when this concatenation is possible:

(4) Two sequences (e),(e′) of contacts such that vn = v′0 and that both verify (13.3)
can be concatenated into a sequence of contactse′ ◦e satisfying (13.3) if and only
if EA(e)≤ LD(e′).

When the condition above is verified, we can deduce the values LD,EA associated
with the concatenated sequence as follows: EA(e′ ◦e) = max(EA(e),EA(e′)), and
LD(e′ ◦ e) = min(LD(e),LD(e′)) (see examples in Fig. 13.1). Note that EA =
tbeg ≤ tend = LD for a sequence made with a single contact, but sequences with
multiple contacts, like Fig. 13.1 (a), might not verify EA≤ LD.

13.3.2.3 Delay-Optimal Paths

So far we have been describing a method to characterize when a sequence of
contacts supports a time-respecting path, and when we can concatenate them.
However, computing all of them in general is very costly. We show later how we can
neglect many of the sequence of contacts to compute only those that are associated
by a delay-optimal path.

13.3.2.4 Delivery Function

As a consequence of (2) and (3), for a message created at v0 at time t, if t ≤ LD then
there exists a path associated with the sequence of contacts e, that transports this
message and delivers it to vn at time max(t,EA). Otherwise, when t > LD, no path
based on these contacts exists to transport the message. The optimal delivery time
of a message created at time t, on a path using this sequence of contacts, is given by

del(t) =

{
max(t,EA) if t ≤ LD ,
∞ else.

396 A. Mtibaa et al.

Similarly, the optimal delivery time for any paths that use one of the sequences of
contacts e1, . . . ,en is given by the minimum

del(t) = min{max(t,EAk),1 ≤ k ≤ n s.t. t ≤ LDk}, (13.4)

where, following a usual convention, the minimum of an empty set is taken
equal to ∞.

13.3.2.5 Optimal Paths

We say that a time respecting path, leaving device v0 at time tdep, arriving in device
vn at time tarr, is strictly dominated in case there exists another path from v0 to vn

with starting and ending times t ′dep, t ′arr such that (t ′dep ≥ tdep and t ′arr ≤ tarr) ,
and if at least one of these inequalities is strict. A path is said optimal if no other
path strictly dominates it. In other words, any other path from v0 to vn, departing at
t ′dep and arriving at t ′arr verifies:

(t ′dep < tdep) or (t ′arr > tarr) .

According to (2) and (3) above, among the paths associated with a sequence of
contacts with values (LD,EA) the optimal ones are the following: if LD≤ EA, this is
the path starting at time LD and arriving at time EA. Otherwise, when LD> EA, all
paths that start and arrive at the message generation time t ∈ [EA;LD] are optimal.

An example of delivery function is shown in Fig. 13.2. Note that the value of
the delivery function (y-axis) may be infinite. Pairs (LD1,EA1) to (LD3,EA3) satisfy
EA ≤ LD, they may correspond to direct source–destination contacts, or sequence
of contacts that all intersect at some time; the fourth pair verifies LD4 < EA4, hence
it does not correspond to a contemporaneous connectivity. The message needs to
leave the source before LD4, and remains for sometime in an intermediate device
before being delivered later at time EA4.

13.3.2.6 Efficient Computation of Optimal Paths

We construct the set of optimal paths, and delivery function for all source–
destination pairs, as an induction on the set of contacts in the traces. We represent
the delivery function for a given source–destination pair by a list of pairs of value
(LD,EA). The key element in the computation is that only a subset of these pairs is
needed to characterize the function del. This subset corresponds to the number of
discontinuities of the delivery function, and the number of optimal paths that can be
constructed with different contact sequences.

We use the following observation: We assume that the values (LDk,EAk)k=1,...,n,
used to compute the delivery function as in (13.4), are increasing in their first
coordinate. Then, as k = n,n − 1, . . . , we note that the kth pair can always be
removed, leaving the function del unchanged, unless this pair verifies:

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 397

Fig. 13.2 Example of a delivery function, and the corresponding pairs of values (LDi,EAi)i=1,2,3,4

EAk = min{EAl | l ≥ k} . (13.5)

In other words, a list such that all pairs verify this condition describes all optimal
paths, and the function del, using a minimum amount of information.

As a new contact is added to the graph, new sequences of contacts can be
constructed thanks to the concatenation rule (fact (4) shown above). This creates a
new set of values (LD,EA) to include in the list of different source–destination pairs.
This inclusion can be done so that only the values corresponding to an optimal path
are kept, following condition (13.5).

We show that our method can also be used to identify all paths that are optimal
inside certain classes, for instance the class of paths with at most k hops. This can
be done by computing all the optimal paths associated with sequences of at most
k contacts, starting with k = 1, and using concatenation with edges on the right to
deduce the next step.

Compared with previous generalized Dijkstra’s algorithm [10], this algorithm
computes directly representation of paths for all starting times. That is essen-
tial to have an exhaustive search for paths at any time-scale. We have intro-
duced here an original specification through a concise representation of optimal
paths which makes it feasible to analyze long traces with hundred thousands of
contacts.

Recently, we have found that another algorithm has been developed indepen-
dently to study minimum delay in DTN [18]. It works as follows: a packet is created
for any beginning and end of contacts; a discrete event simulator is used to simulate
flooding; the results are then merged using linear extrapolation.

398 A. Mtibaa et al.

13.3.3 Social Forwarding Algorithms

Let us consider a source node s which generated, at time t0, a message m for a
destination node d. We assume that each node u ∈ G(t ≥ t0) can be a forwarder of
this message m according to the store-carry-forward scheme.

We define a social forwarding algorithm as a store-carry-forward algorithm
which uses a social utility function f (Gs) in order to identify the most likely nodes to
relay m (i.e., whether send m to the encountered node or not). Such social forwarding
algorithms spread the message m among nodes (called also relays) who have specific
social properties relying on f (Gs).

All social forwarding algorithms we consider in this chapter, fit in the following
general model: depending on the source s and the destination d, a path construction
rule defines a subset of directed pairs of nodes (u → v) such that only the contacts
occurring for pairs in the subset are allowed in forwarding path. We consider the
following construction rules.

neighbor(k): (u → v) is allowed if and only if u and v are within distance k in the
social graph.

destination-neighbor(k): (u → v) is allowed if and only if v is within distance
k of d.

non-decreasing-centrality: (u → v) is allowed if and only if C(u)≤ C(v).
non-increasing-distance: (u → v) is allowed if and only if the social distance from

v to d is no more than the one from u to d.
target(k): (u → v) is allowed if and only if v and d are within distance k in the

social graph.

In addition, we assume in addition that pairs (u → d) are allowed for all u, as any
opportunity to complete the path with a single hop should not be missed. Each rule
above defines a heuristic method to select among all the opportunistic contacts the
ones that are crucial in order to connect source and destination quickly over time.
Our objective is to design a rule that reduces as much as possible the contacts used,
while allowing quasi-optimal delays.

In our evaluation, we deduce from the sequence of delay-optimal paths the delay
obtained by the optimal path at all time. We combine all the observations of a
mobility trace uniformly among all sources, destinations, and for every starting time
(in seconds).

13.4 The PeopleRank Algorithm

In general, global knowledge of network topology can make for very efficient
routing and forwarding decisions. Collecting and exchanging topology information
in opportunistic networks is cumbersome because of their intermittent connectivity

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 399

Table 13.2 Our proposed
PeopleRank algorithms

Centralized Distributed

Social input PeopleRank D-PeopleRank
Social+Contact input CA-PeopleRank DCA-PeopleRank

and unpredictable mobility. Routing schemes for such networks typically rely on
partial knowledge and on prediction of future contacts which results in degraded
routing performance.

With the emergence of Online Social Network platforms and applications such
as Facebook, Orkut, or MySpace, information about the social interaction of users
has became readily available. Moreover, while opportunistic contact information is
changing constantly, the links and nodes in a social network remain rather stable.

The idea, is to use this more stable social information to augment available
partial contact information in order to provide efficient data routing in opportunistic
networks. The intuition behind this idea is that socially well connected nodes are
better suited to forward messages towards any given destination. More specifically,
we present a ranking algorithm that is inspired by more famous web page ranking.
Thus, apply it to rank nodes based on their position in a social graph. This ranking is
used then as a guide for forwarding decisions. More specifically, a node u forwards
data to a node v that it meets if the rank of v is higher than the rank of u.

13.4.1 The Idea

We consider several approaches for computing a node’s rank. As mentioned before,
we are inspired by the PageRank algorithm used to rank web pages. By crawling
the entire web, this algorithm measures the relative importance of a page within a
graph (web). PeopleRank uses similar technique to rank the nodes in a social graph.
We note that as opposed to PageRank algorithm, PeopleRank uses opportunistic
contacts (physical proximity between two devices/users) to trigger the updates.

We consider two versions of PeopleRank : (1) a “pure” version in which only
social graph information is used to compute the ranking and (2) a contact-aware
version that augments the social ranking with some information about contact
statistics between two social neighbors. Nodes with a higher PeopleRank value will
generally be more “central” to either some combination of the social and the contact
graphs.

As illustrated in Table 13.2, we consider four opportunistic forwarding algorithms
based on assumptions using additional information (social and contact information)
available during transfer opportunities. We, first, present two centralized algorithms;
PeopleRank and Contact Aware-PeopleRank (CA-PeopleRank) using respectively
either only social relationships between two nodes or social relationships augmented
with contact frequency between these two nodes. Then, we consider two distributed
implementations: Distributed-PeopleRank (D-PeopleRank) and Distributed Contact
Aware-PeopleRank (DCA-PeopleRank).

400 A. Mtibaa et al.

13.4.2 Centralized PeopleRank

PeopleRank tags people as “important” when they are socially linked to many other
“important” people. We assume that only neighbors in the social graph have an
impact of the popularity (i.e., the ranking). In other words, we assume that friends
are more likely to recommend theirs friends.

In the same way that web pages are hyperlinked, we establish a social graph
between persons when they are socially related to each other. We denote such a
social graph Gs = (Vs,Es) as a finite undirected graph with a vertex set V and an
edge set Es. In the following, we define a social relationship between two nodes
u and v either (1) if they are declared friends or (2) if they are sharing k common
interests.

Consequently, the PeopleRank value is given by the following equation:

PeR(Ni) = (1− d)+ d ∑
Nj∈F(Ni)

PeR(Nj)

|F(Nj)| , (13.6)

where N1,N2, ...,Nn are the nodes, F(Ni) is the set of neighbors that links to Ni,
and d is the damping factor which is defined as the probability, at any encounter,
that the social relation between the nodes helps to improve the rank of these nodes.
This means that, the higher the value of d, the more the algorithm accounts for the
social relation between the nodes. As a result, the damping factor is a very useful in
controlling the weight given to the social relations for the forwarding decision. Such
a mechanisms is very important since social graphs are built on different types of
information. One could expect that a “friendship” between two individuals defines
a stronger social relation than one defined by one or multiple common interests.
When using PeopleRank for message forwarding, the damping factor should then
be set to a value close to one for strong social relations and smaller for more loosely
defined social graphs. In the next section, we address this issue in more detail and
examine the impact of the damping factor on the PeopleRank performance.

The “pure” PeopleRank algorithm described above favors socially connected
nodes. However, such social information defined by online social network appli-
cations does not always lead to a very accurate prediction of physical contact
opportunities. In fact, people interact with each other in different ways; some have
regular physically meetings, some are connected only in an online environment,
and some are connected without ever communicating with each other. Since we are
investigating how PeopleRank can be used for message forwarding, we augment
its pure form to use statistical contact information in addition to social networking
information.

To motivate the enhanced approach, we consider the contact and social graphs
shown by Fig. 13.3. In addition to the social graph connecting the N = 8 nodes
(Fig. 13.3(b)), we define the contact graph (Fig. 13.3(a)) where links are represented
on: (1) solid lines, if nodes meet once every time unit, (2) dashed line (link 1–2)

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 401

Fig. 13.3 Example of (a) contact graph, and (b) the associated social graph connecting 8 nodes

if nodes meet once every ten time units, and (3) dotted lines, if nodes meet once
every 20 time units. We consider the case where node 1 want to send a message
to node 6.

In this example, suppose node 1 has data to send to node 6, (13.6) yields that
PeR(3)< PeR(1)< PeR(2). As a result, node 1 will wait to meet node 2 to forward
the message (because node 2 is better ranked than node 1). However, node 1 meets
node 3 nine times more than it meets node 2 and the message may reach the
destination faster if it is forwarded to node 3. Consequently, we propose to use the
contact frequency between nodes as a weight of their social relationship5.

With the above motivation in mind, We propose a Contact Aware-PeopleRank
(CA- PeopleRank) which is an enhancement of the previous (“pure”) version of
PeopleRank . CA-PeopleRank uses the contact frequency between two social neigh-
bors as a weight for the social link between these two nodes. The CA-PeopleRank
value is given by:

CA−PeR(Ni) = (1− d)+ d ∑
Nj∈F(Ni)

wi, j ×CA−PeR(Nj)

|F(Nj)| , (13.7)

wi, j =
π(i, j)

∑ j∈F(i)π(i, j)
, (13.8)

where π(i, j) denotes the number of times node i and node j are in contact with each
other.

Revisiting our example in Fig. 13.3, using 13.7 yields that CA − PeR(1) <
CA−PeR(2)< CA−PeR(3), and therefore node 1 forwards the message to either
node 3 and node 2. This is the more desireable behavior since it will reduce message
delay.

5Note that this method is not an aggregation of the contact graph into a social graph as proposed
in [7, 8]) In our work, we augment social relationships with additional contact properties.

402 A. Mtibaa et al.

Algorithm 1 D-PeopleRank (i)
Require: |F(i)| ≥ 0

PeR(i)← 0
while 1 do

while i is in contact with j do
if j ∈ F(i) then

update(π(i, j))
send(PeR(i), |F(i)|)
receive(PeR(j), |F(j)|)
update(PeR(i)) (13.6 or 13.7)

end if
while ∃ m ∈ bu f f er(i) do

if PeR(j)≥ PeR(i) OR j = destination(m) then
Forward(m, j)

end if
end while

end while
end while

The techniques we described so far are suitable for centralized implementations
where the social graph and the contact statistics are known a-priori. Clearly, this may
not be feasible in the mobile wireless environment we are considering. We describe
distributed versions of our algorithms in the next section.

Centralized architectures in general are of limited scalability since all data/
information has to the transported and processed in a centralized entity which cause
additional delays and increased transmission overhead. For web page indexing, cen-
tralized solutions are well suited, in a mobile ad hoc setting however, decentralized
solutions are mandatory for efficient forwarding solutions (due to restrictions in
energy, memory, bandwidth). Therefore, instead of centrally determine the rank of
all nodes, we present in following a fully decentralized solution for calculating the
PeopleRank value of each node.

13.4.3 Distributed PeopleRank

Centralized PeopleRank is computed centrally on a static graph by running the
PeopleRank algorithm on the entire social graph (global knowledge of the social
graph). The distributed version of PeopleRank is shown in Algorithm 1.

In this version, whenever two neighbor nodes in the social graph meet, they
run separately a PeopleRank update process. They first update their contact
counters (π(i, j)). Then, they exchange two pieces of information: (1) their current
PeopleRank values and (2) the number of social graph neighbors they have. Next,
the two neighbors update their PeopleRank values using either the formula given
in (13.6) – for the D-PeopleRank – or using the one given in (13.7) – for the
DCA-PeopleRank version. Finally, they (neighbor or not) run the message exchange

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 403

process following a non-decreasing PeopleRank rule; e.g., assuming that node A has
a message to send to a destination node D and meets another node B, A forward the
message to B in two cases: (1) B is a destination D (B = D) or (2) PeopleRank(A)≤
PeopleRank(B).

Note that, while centralized version of PeopleRank computes the ranking
uniformly among all the friends, in the distributed algorithm frequently seen nodes
update their PeopleRank values more often. Implicitly, this distributed version of
the algorithm exploits the mobility and contact behavior of the nodes since the
PeopleRank value is updated every time the nodes meet. In fact, the more often
two nodes meet, the faster their rank increases. This will tend to “inflate” the
social ranking (PeopleRank) for frequently seen nodes. However, this inflation is
diminished after a certain time as PeopleRank values will converge to the centralized
PeopleRank values.

Next, we describe in more detail the damping factor. Such factor is very important
since social graphs are built on different types of information. We study the impact
of the damping factor and the social patterns on the PeopleRank performance.

13.5 The Damping Factor

“Pure” social forwarding schemes are effective only for very accurate social
information. If the social interaction is not very well captured in the social graph, it is
more convinient to use smaller values of d to compensate for the mismatch between
the social graph and the contact graph. And consequently, the more accurate the
social information is, the more we can rely on the social graph for forwarding and
hence, the closer to 1 we will chose the damping factor.

13.5.1 Optimal Damping Factor

We illustrate the dependency of the damping factor and the underlying social graph
in Fig. 13.4 and Fig. 13.5.

We plot the CDF of the delay among all sources, destinations, and for every
starting time using the MobiClique07 data set in Fig. 13.4(a), and the SecondLife
data set in Fig. 13.4(b). We notice that the “optimal” d value may be different
from one social trace to another (d around 0.9 in the MobiClique trace, and 0.8
in SecondLife). Note that, for a damping factor equal to 0.9 in the MobiClique07
data set, PeopleRank gives near to optimal success rates; the difference between the
two algorithms is less than 2% within a 10 min timescale.

Figure 13.5 plots a normalized success rate of PeopleRank for a TTL of 10 min
with different damping factors (i.e., we measure the success rate of PeopleRank
normalized by the success rate of flooding within a delay of 10 min). It can be
seen from this plot that optimal damping factor values change with the different

404 A. Mtibaa et al.

 0.01

 0.1

 1

2 min 10 min 1 hour 3 h 6 h

P
[D

el
ay

 <
 D

]

Delay D

Flooding (Optimal)
d = 0.9
d = 0.8

d = 1
d = 0.7

MobiClique

 0.001

 0.01

 0.1

 1

2 min 10 min 1 hour 6 h 1 day 7 d

P
[D

el
ay

 <
 D

]
Delay D

Flooding (Optimal)
d = 0.8
d = 0.9

d = 1
d = 0.7

SecondLife

a b

Fig. 13.4 PeopleRank performances in function of damping factors

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5 0.6 0.7 0.8 0.9 1

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

damping factor (d)

MobiClique
Infocom(Union)

Infocom(facebook)
Infocom(interest)

Second Life
Hope

Fig. 13.5 Optimal damping factors in six data sets (within 10 min timescale)

traces (and the underlying social information). In fact, three traces (MobiClique07,
Infocom(FB), and Infocom(Profile)) show the best performance with an optimal
damping factor around 0.87 while the others traces (Hope, SecondLife, and
Infocom(interest)) perform best for d ≈ 0.8. The first three traces are based on
explicitly defined connections, the three latter traces are built on implicit social

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 405

connections. We conjecture that the reason for this difference lies in the way the
social interactions are defined in each dataset. Implicit connections are defined as
contacts between persons that share some common interests; we define a connection
as explicit only when the two nodes declared a direct connection (e.g. links in
applications like Facebook). Obviously, in traces with an explicit social pattern,
the social graph information is more likely to be suitable for forwarding, and hence,
damping factors of close to 1 perform best.

Figure 13.5 also shows that the curves decrease for a damping factor close
to 1. This effect can be explained by the fact that a damping factor d equal to 1
considers exclusively socially connected nodes. Since also socially disconnected
nodes are potentially able to deliver messages, the performance decreases when
those nodes are not considered in the forwarding path. That means that even in
networks with a high correlation between the social and contact graphs, some
randomized forwarding is beneficial.

13.5.2 Determining Damping Factor

As mentioned earlier, the higher the value of d, the more differentiation there is
among the nodes’ PeopleRank values based on their position in the social graph. As
a result we would like d to be high if there is high correlation between the contact
and social graphs and low otherwise. To achieve this we define div(Gs,G(t)) as a
metric that measures the divergence between the social and contact graphs. we then
set d = 1− div(Gs,G(t))

Defining the difference between the social and contact graphs is challenging
because the contact graph is dynamic. In the following, we propose two heuristic
measures.

13.5.2.1 Edge-by-Edge Divergence

The Edge-by-Edge divergence compares the edges of both social and contact graphs.
It measure the structural difference between the two graphs. We denote it div1 and
it is defined as:

div1(Gs,G(t)) =∑
t

|E(t)\Es|
T ×|E(t)| , (13.9)

where E(t) is the edge set of the contact graph at time t, Es is the edge set of
the social graph and T denotes the network lifetime. The summation above can
be replaced by an integration if one were to consider continuous time in the edge set
variation of the contact graph.

Because div1 is comparing graphs on an edge-by-edge basis, the above metric is
most meaningful if the vertex sets of the social and contact graphs are similar. Since

406 A. Mtibaa et al.

Table 13.3 Heuristics to
determine damping factors

Edge-by-Edge
divergence
(13.9)

Distance-based
divergence
(13.10)

Optimal
damping factor
(Fig. 13.4)

MobiClique 0.86 0.91 0.87
SecondLife 0.57 0.77 0.8
Infocom(FB) 0.78 0.89 0.88

this may not be the case, we propose another divergence metric which measures the
correlation between the frequency of contacts between two nodes and their distance
in the social graph.

13.5.2.2 Distance-Based Divergence

The second considered heuristic is the distance-based divergence which compares
the contact rate between nodes and their social distance in the social graph. We
denote this heuristic by div2:

div2(Gs,G(t)) =
|{d(u,w)≤ d(v,w) and π(u,w)< π(v,w)}|

|Vs|(|Vs|− 1)
, (13.10)

where d(u,w) denotes the distance in the social graph (i.e., considering a friendship
graph, friends have distance 1, friends of friends have distance 2, etc.) between
nodes u and w (u �= v ∈ Vs,w ∈ Vs), and π(u,v) denotes the number of times node u
and node v are in contact with each other.

Table 13.3 presents a comparison of our two heuristics and the optimal damping
factor given by the three datasets MobiClique, SecondLife, and Infocom. The
heuristic based on (13.10) leads to a better approximation of the damping factor ex-
cept for the MobiClique data set. However, as can be seen in Fig. 13.4, PeopleRank
performs equally well for all damping factors between 0.91 and 0.97 (difference
less than 2% of success rate). We conclude that the heuristic based on (13.10) is
well suited to estimate an optimal value for d and consequently, use it in the rest of
our analysis.

13.6 PeopleRank Performances

The performance of a forwarding algorithm like PeopleRank is determined by two
conflicting factors: (1) the average message delivery delay and (2) the overhead
(or cost) induced by the forwarding mechanism, i.e., the number of message replicas
in the system. In the following, we assess the PeopleRank performance with regard
to these two performance indicators.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 407

We evaluate the forwarding algorithm using analysis on real traces. Specifically,
we used the following experimental datasets: MobiClique, SecondLife, Infocom06,
and Hope. Each data set includes both, a mobility or contact trace and a social
interaction graph as described in Table 13.1.

13.6.1 Comparison to Social Algorithms

We compare the PeopleRank performance to the two previously described algo-
rithms: degree-based and centrality-based forwarding algorithms. As a reminder,
theses two algorithms are based on:

• Centrality-based forwarding: u forwards a message to v if, and only if, C(u) ≤
C(v). Where C(u) denotes the betweenness centrality of node u measured as
the occurrence of this node in all shortest paths connecting all other pairs of
nodes.

• Degree-based forwarding: u forwards a message to v if, and only if, d(u)≤ d(v).
d(u) denotes the degree of node u in the social graph (in a friendship graph, the
degree is the number of friends of node u).

In the following, we plot the success rate of PeopleRank normalized by the
success rate of flooding as a function of the message delivery delay for five different
data sets. In addition, we indicate the cost of each algorithm in brackets as the
fraction of contacts used by each forwarding algorithm normalized by the the
fraction of contacts used by flooding.

Figure 13.6 plots the PeopleRank performance in the MobiClique07 dataset.
Clearly, the PeopleRank algorithms outperform all other forwarding schemes in
this dataset. D-PeopleRank and the centrality-based algorithm perform at around
90% of the optimal success rate (with a 10 min timescale) with a heavily reduced
overhead; it uses only 50% of contacts compared to those used by flooding (see
brackets in Fig. 13.6). Note that in MobiClique07, the explicit social information
(friendship) is a rather good indicator helping to identify nodes that are likely to
meet the destination. The CA-PeopleRank outperforms all the other algorithms used
in the evaluation, it achieves roughly 96% of the success rate obtained with the
Epidemic algorithm while using only 51% of the contacts.

Moreover, the distributed algorithms (D-PeopleRank and DCA-PeopleRank)
perform with a similar good performance compared to the centralized algorithm
(CA-PeopleRank). This is a surprising and unexpected to discover that the dis-
tributed version outperforms even the centralized version of PeopleRank ; indeed, in
the centralized version, we assume that nodes have a global knowledge of all social
interaction in the networks, however in the distributed version, nodes have only a
local view of social interaction. Such surprising performances could be explained by
the fact that, the distributed implementation and thanks to its opportunistic update
process, favors frequently seen friends than others. Therefor, frequently seen friends
are more involved to participate in the PeopleRank update process. However, in the

408 A. Mtibaa et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

CA-PeopleRank[51%]
DCA-PeopleRank[47%]

D-PeopleRank[48%]
Centrality[53%]

degree[49%]
Epidemic[53%]

Fig. 13.6 Comparison of PeopleRank, Centrality-based, and Degree-based algorithms in the
MobiClique07 data set– success rate (main frame) and cost (in brackets)

centralized version, all friends are involved with the same probability in the update
process (i.e., even those who never meet physically in real life. Those nodes are
unlikely to forward messages in opportunistic networks).

In the SecondLife data set (see Fig. 13.7), we observe also that PeopleRank
algorithms outperform the centrality-based and the degree-based algorithms.
D-PeopleRank achieves 8% and 14% higher success rate than the centrality and
degree-based algorithms (for 10 min message delay). Moreover, adding contact
information further improves performance of the algorithms; DCA-PeopleRank
increases the success rate by 4% compared to D-PeopleRank . We observe,
specifically in the SecondLife data set, that the degree-based forwarding algorithm
outperforms the centrality-based algorithm for longer timescales (more than six
hours). In other words, in the SecondLife data set, messages spending already a long
time in the network without reaching destinations, are more likely to be forwarded
to nodes with a high degree than others who are central in the social graph.

We get a good explanation in [17]. Indeed, Varvello et al. [17] show that nodes
with a high degree of social connections tend to stay longer connected in SecondLife
and hence, are more suitable to store and forward messages to other neighbors. They
observed that roughly 30% of regions in SecondLife do not attract any visitors,
and in few popular regions some avatars spend more than 12 h connected to a
region. These avatars join many groups of interest and meet other avatars to interact
with them. As result, these avatars become more and more connected in the social
graph (large degree) and are likely to meet additional people and discuss with them.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 409

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day 1 week

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

CA-PeopleRank[50%]
DCA-PeopleRank[49%]

D-PeopleRank[51%]
Centrality[49%]

degree[52%]
Epidemic[52%]

SecondLife

Fig. 13.7 Comparison of PeopleRank, Centrality-based, and Degree-based algorithms in the
SecondLife data set– success rate (main frame) and cost (in brackets)

However, central nodes are not necessary always connected to the region. They join
and leave the region, and socialize for a short time with others compared to well
connected nodes (i.e., avatars with higher degree).

In Fig. 13.8, we plot the performance of the PeopleRank algorithms using the
same contact trace of the Infocom participants but we establish two different social
graphs for them; one (in Fig. 13.8(a)) uses the connections published by their
Facebook profiles, the other graph (in Fig. 13.8(b)) is build based on common
interests.

Comparing the two figures, Fig. 13.8(a) and (b), illustrates the difference in
performance obtained with the two different social graphs. It emphasizes the impact
of the relevance of social inputs on forwarding performances. PeopleRank uses (1)
in Fig. 13.8(a), shared interests as an implicit social input, and (2) in Fig. 13.8(b),
the friendship graph extracted from Facebook as an explicit social input in order to
make forwarding decisions which reduce the number of message retransmissions
and achieve good success rate . One can notice that PeopleRank algorithms achieve
better performances relying on explicit social input (roughly 95% of success rate for
CA-PeopleRank compared to the success rate of flooding within 10 min timescale).

In Fig. 13.8(b), the PeopleRank algorithms perform with a success rate roughly
95% normalized by the optimal flooding delay. They improve the performance
by 45% compared to a random distribution while keeping the number of re-
transmissions small. However, for a social graph built on common interests, the
D-PeopleRank performs only with a success rate of 82%. The combined social and

410 A. Mtibaa et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

CA-PeopleRank[49%]
DCA-PeopleRank[48%]

D-PeopleRank[48%]
Centrality[50%]

degree[50%]
Epidemic[50%]

Infocom(Int): Social graph based on
shared interests

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

CA-PeopleRank[52%]
DCA-PeopleRank[51%]

D-PeopleRank[48%]
Centrality[49%]

degree[52%]
Epidemic[52%]

Infocom(FB): Facebook social graph

a b

Fig. 13.8 Comparison of PeopleRank, Centrality-based, and Degree-based algorithms in the
Infocom06 data set– success rate (main frame) and cost (in brackets)

contact based DCA-PeopleRank algorithm however further improves the success
rate. However, in Fig. 13.8(a), historical contacts are needed to improve the quality
of the social input (implicit definition) and help PeopleRank algorithms to perform
with roughly 90% of normalized success rate within the same timescale.

A similar observation can be made in Fig. 13.9: the D-PeopleRank algorithm
performs with a 83% success rate while the DCA-PeopleRank achieves more than
89% at 10 min timescale. It appears that solely relying on social information for
forwarding is not sufficient if the social graph is build on implicit social information.
In situations where the social graph is not well captured, additional information
about the node contacts are very helpful. The superior performance of DCA-
PeopleRank indicates that adding historical contacts to shared interest information
improves the estimation of the social network and improves the performance of the
forwarding.

13.6.2 Comparison to Contact-Based Algorithms

In order to compare the performance of PeopleRank algorithm to non-social
information based algorithms, we implemented additional contact-based forwarding
algorithms. Those algorithms represent the most well-known algorithms in the
literature, and as the name indicates, they use locally available contact information
to decide whether to forward a message when two nodes meet:

• Last Contact [4]: Node i forwards messages to node j if j has contacted any other
node more recently than node i.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 411

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

CA-PeopleRank[48%]
DCA-PeopleRank[52%]

D-PeopleRank[50%]
Centrality[48%]

degree[51%]
Epidemic[50%]

Fig. 13.9 Comparison of PeopleRank, Centrality-based, and Degree-based algorithms in the Hope
data set– success rate (main frame) and cost (in brackets)

• Destination Last Contact [4]: Node i forwards messages to node j if j has
contacted the message’s destination more recently than has node i.

• Frequency [5]: Node i forwards the message to node j if j has more total contacts
than node i.

• Spray&Wait [16]: the source node creates R (we use R = 8) replicas of the
message. If node i has k > 1 replicas of the message and j has no replicas,
i forwards k/2 replicas to j. Otherwise (k = 1) i wait the destination.

• Wait Destination: the message is forwarded only if the source node meets its
destination. Obviously, this algorithm results in minimum cost , however causes
higher delay and lower success rate.

Figure 13.10 plots, for the MobiClique07 data set, the shortest-delay distribution
and cost of D-PeopleRank , and the four selected forwarding schemes. Note that,
instead of normalizing the success rate of all algorithms, we show in this figure, the
original shortest-delay distribution given by these algorithms.

D-PeopleRank outperforms the Frequency, Last Contact, and Destination Last
Contact algorithms. In fact, D-PeopleRank uses almost the same number of message
transmission (roughly 50% of the contacts used by flooding to forward data) but is
more efficient (10–15% better success delivery within a 1-hour timescale) than the
others four algorithms considered in this study. The Spray&Wait algorithm leads to a
smaller number of retransmissions, however at a price of a poor success rate. Indeed,
Spray&Wait controls the number of messages (a fixed number) in the networks.

412 A. Mtibaa et al.

 0.01

 0.1

 1

2 min 10 min 1 hour 3 h 6 h

P
[D

el
ay

 <
 D

]

Delay D

D-PeopleRank[48%]
Destination_Last_contact[48%]

Last_contact[49%]
Frequency[51%]

Spray&Wait[15%]
Wait_destination[9%]

Fig. 13.10 Comparison of social, and contact-based forwarding in the MobiClique07 data
set– success rate (main frame) and cost (in brackets)

However, it does not use any utility function to select the next forwarding node, it
just sends the message to the first encounters. Spray&Wait success delivery is only
2% above the lower bound (obtained with the Wait Destination technique).

Note that also other versions of PeopleRank algorithms outperform the contact-
based forwarding schemes; for better readability we did not plot them in this figure.
Indeed, we have shown in Fig. 13.6, that CA-PeopleRank , and DCA-PeopleRank
outperforms the D-PeopleRank success rate which outperforms the contact-based
algorithms’ performances. We conclude that the PeopleRank algorithm efficiently
reduces the number of message retransmission while keeping the success rate close
to the optimal value. Key advantage of PeopleRank is that it avoids to retransmit
messages to people that are unlikely to meet the destination.

13.6.3 Comparison to Ranking-Based Forwarding Algorithms

To evaluate the PeopleRank algorithms with regard to ranking-based forwarding
algorithms, we next determine the results obtained with an “optimal” ranking
forwarding algorithm. Following the methodology described above, we compute
offline the sequence of optimal paths found between any source and destination

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 413

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Optimal Ranking[51%]
DCA-PeopleRank[47%]

D-PeopleRank[48%]

Fig. 13.11 Comparison of ranking-based forwarding algorithms in the MobiClique07 data
set– success rate (main frame) and cost (in brackets)

in the network. We analyze the sequence of intermediate nodes used in delay-
optimal paths, and we compute the “best” ranking vector. The optimal ranking
algorithm then uses the “best” ranking vector and forces the forwarding to go
through the maximum identified sequence of intermediate nodes used in delay-
optimal paths. We implement this algorithm in order to compare its performance
to those given by PeopleRank algorithms. Note that, this optimal ranking algorithm
differs from the flooding algorithm since it uses a subset of nodes to transmit
data instead of using all node (flooding). However, this algorithm gives optimal
performance in its category (i.e., ranking forwarding algorithms).

Next, we compare the normalized success rate and cost of D-PeopleRank , DCA-
PeopleRank , and the optimal ranking algorithm for three data sets; MobiClique07,
SecondLife, and Hope. In Fig. 13.11, DCA-PeopleRank and D-PeopleRank lead
to very similar performance compared to the optimal ranking scheme in the
MobiClique07 data set (less than 0.5% difference between success rates). Indeed,
thanks to the explicit social input used in MobiClique07, PeopleRank algorithms
succeeded to make near to optimal forwarding decisions. However, for data sets
where the social graph is defined by implicit social relations (Hope (Fig. 13.13)
and SecondLife (Fig. 13.12)), D-PeopleRank falls of the performance obtained with
the optimal ranking schemes. But again, the additional use of contact information
improves significantly the success rate and the DCA-PeopleRank performance is

414 A. Mtibaa et al.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 min 10 min 1 hour 6 h 1 day 1 week

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Optimal Ranking[50%]
DCA-PeopleRank[49%]

D-PeopleRank[51%]

Fig. 13.12 Comparison of ranking forwarding algorithms in the SecondLife data set– success rate
(main frame) and cost (in brackets)

close to the optimal ranking algorithm (success rate of DCA-PeopleRank is only
3% less than the optimal ranking for SecondLife (Fig. 13.12) and 5% for Hope
(Fig. 13.13)).

13.6.4 Cost Reduction

The cost of a forwarding algorithm, defined as the fraction of contacts involved
in the forwarding process, is very important in opportunistic networks. We have
shown that PeopleRank algorithm reduces the number of message transmission
(cost) by a factor of 2 compared to flooding. In this section, we study more options
in order to reduce the cost of PeopleRank algorithms by a factor greater than 2.
To reduce the cost of the D-PeopleRank algorithm, we combine the algorithm
with other existing methods such as Spray&wait, TimeToLive (TTL: defined as
the maximum number of hops allowed to reach the destination), or delegation
forwarding [6]. The main idea of delegation forwarding is to associate, in addition
to the node’s rank, a threshold value to the message (initially equal to rank of the
node). With such threshold, low ranked nodes are unlikely to receive messages since
the threshold is continuously increasing.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 415

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Optimal Ranking[48%]
DCA-PeopleRank[52%]

D-PeopleRank[50%]

Fig. 13.13 Comparison of ranking forwarding algorithms in the Hope data set– success rate (main
frame) and cost (in brackets)

Figure 13.14 plots the shortest-delay distribution and the cost of D-PeopleRank
algorithm combined with a delegation forwarding, TTL = 2, and TTL = 4. When
reducing the number of replicated messages with the D-PeopleRank algorithm,
we also reduce the number of opportunities to meet the destination. However,
D-PeopleRank combined with a TTL = 4 gives near optimal performance (i.e.,
performance without any mechanism to reduce the cost). This phenomena has
already been shown in [3]; opportunistic mobile networks are characterized by a
small diameter, a destination device is reachable using only a small number of
relays under tight delay constraint. Delegation forwarding could also be effective
to reduce the number of message replicas in the network. It achieves one of the best
cost /success rate trade-offs. It reduces the number of replicas by more than 10%
(compared to D-PeopleRank) but loses only 2% of the forwarding opportunities
within 10 min timescale.

13.6.5 Fair Load Distribution

Memory and energy consumption are important for small mobile devices. To avoid
the abuse of some few nodes for message forwarding, we assume that fair share of
ressources is an important issue. PeopleRank is designed to efficiently use socially
well connected node. Theses nodes could suffer under higher message forwarding

416 A. Mtibaa et al.

 0.01

 0.1

 1

2 min 10 min 1 hour 3 h 6 h

P
[D

el
ay

 <
 D

]

Delay D

D-PeopleRank[48%]
 PeopleRank(4hops)[41%]

PeopleRank+delegation[31%]
PeopleRank(2hops)[24%]

Fig. 13.14 Cost of the different PeopleRank algorithms in the MobiClique07 data set

requests than others (less ranked). Few nodes could be very solicited which may
causes unfair capacity and ressource allocations. To emphasize this problem we
measure the fairness metric to determine the impact of damping factors on ressource
sharing in the network. We use the Jain’s fairness metric [9], denoted by F , measure
the fairness of ressource allocation in the network:

F =

(n

∑
1

xi

)2

(
n ·

n

∑
1

x2
i

) , (13.11)

where xi is the number of messages in the node i’s buffer (1 ≤ i ≤ N). The best
case is reached when F is close to 1 (fair allocation), and the worst case is given
by 1/N.

Figure 13.15 plots Jain’s fairness values F in four data sets (MobiClique07,
SecondLife, Infocom(FB), and Infocom(Int)). As noticed before, with a smaller
damping factors, PeopleRank algorithm selects nodes uniformally to forward
packets (F values are close to 1). The fairness index decreases by roughly 20% for all
the dataset studied when the damping factor d increases. Since we are not interested
in damping factors closer to zero (it gives more randomness to PeopleRank), only
5–10% of additional nodes become unfair from d equal to 0.4 to d equal to 1, and it

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 417

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1

fa
irn

es
s

(F
I)

damping factor (d)

SecondLife
Infocom(interest)

MobiClique
Infocom(FB)

Fig. 13.15 Fairness values as a function of damping factors

is still closer to the best case (F = 1) than the worst case (given by F = 1
N = 0.03 for

MobiClique07). Similar observations are shown in the other data sets considered in
Fig. 13.15 (SecondLife, Infocom(FB), and Infocom(Int) data sets).

In reality, fairness does not necessary mean equal distribution of message replicas
among nodes in the network. In some cases, it is justifiable to use more ressources of
some nodes. However, this “unfairness” should not affect a few set of nodes. It was
shown (in using conferences data sets) that PeopleRank did not select THE best
ranked node ever to reach the destination, it just selects a “relatively” well ranked
node to reduce “efficiently” (i.e., keeping near optimal end-to-end delay and the
success ratio) the number of message replicas.

13.6.6 Summary and Limitations

The results highlight more generally the superior performance of PeopleRank
algorithm; it achieves an end-to-end delay and a success rate close to those obtained
by flooding while reducing the number of retransmission to less than 50% of the
ones induced by flooding.

These results, which are derived from three real human mobility traces and one
virtual human mobility (SecondLife) trace, are restricted to small communities
such as conferences and regions in SecondLife. However in large networks, the
transmission of messages through the most socially important people will ultimately
consume most of theirs resources.

418 A. Mtibaa et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

PeopleRank
Centrality-Based

Degree-Based

Fig. 13.16 Scalability issues of social-based algorithm in the Dartmouth data set

Moreover, it is hard to defend the assumption that a subset of socially well ranked
nodes will physically meet all other nodes in a large network. Such assumption was
verified in the previous sections of this chapter on small data sets regarding single
social communities. Next, we verify this assumption in a large network regarding a
multi-communities social graph.

We used the WiFi access network of Dartmouth campus [1] to consider a larger
experimental data set. This data set is especially useful for user mobility research
since it spans 200 acres (roughly 1300×1300 square meters) and over 160 buildings,
and about 550 802.11 b connectivity throughout. The data set contains logs of
client MAC addresses, and names of access points (as well as their positions). We
assume that two nodes are able to communicate if they are attached at the same
time to the same access point. Dartmouth college covers student residences, sport
infrastructures, administrative buildings, and academic buildings.

Since we are measuring, here, the scalability of PeopleRank as well as other
social forwarding algorithms (Degree-Based and Centrality-Based forwarding), we
considered an optimal scenario where the social interaction between nodes are well
correlated to their contact patterns (given by the Dartmouth campus data set). We
artificially created a social graph regarding the contact rates between nodes. We
have seen in previous observations that such accurate social inputs deal with a
“satisfactory” forwarding performances in single community data sets.

Figure 13.16 plots the normalized success rate of three social forwarding
algorithms (D-PeopleRank , Degree-Based, and Centrality-Based forwarding) with
respect to the Dartmouth data set described previously in this section. One could
notice that despite the fact that social inputs match with the contact properties of

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 419

nodes, there are 25–55% of losses compared to Epidemic forwarding, within these
10 min timescales. In fact, in large scale networks social forwarding algorithms
loose many opportunities to reach destinations in optimal delays.

Therefore, social forwarding suffers in large scale networks networks, where
people are divided into communities. Within a community, people are more likely
to meet and interact with each others. They may be socially linked to other nodes
from other communities, however, they are unlikely to meet each other in real life.
In the next section, we present an extention of PeopleRank to deal with this issue.
Such extention is a general framework that could be integrated to most of social
forwarding algorithms in order to operate in large scale networks.

13.7 Multi-Communities Social Forwarding

Forwarding in mobile ad hoc networks faces extreme challenges from potentially
very large number of mobile nodes, very large areas, and limited communication
resources such as bandwidth and energy. Such conditions make forwarding more
challenging in large-scale networks. In the previous section, and particularly in
Fig. 13.16, we have noticed that using social inputs in large-scale areas may present
weaknesses. Our main guess is that in large-scale networks when multi-communities
may exist, social prediction has its limitations and two people socially connected
may not meet frequently because they could be long away from each others.
Let us assume that communities represents cities in real world, people could be
good friends (e.g., in Facebook); however, distances prevent these friends to meet
physically.

13.7.1 Performances Per Community

A common property of social networks are cliques, circles of friends or acquain-
tances in which every member knows every other member. First of all, we verify
the performance of PeopleRank in a single clique which we call community. In
large-scale networks, people are by default regrouped in communities. For example,
considering the Dartmouth data set (described in detail in the previous section),
users are regrouped according to this two community classifications:

• Geographic Classification: Since the dartmouth campus area is roughly 1300×
1300 square meters, people attending the campus every day are mostly visiting
the same places. Usually, these places are selected in the way that minimizes
the walking distance. To capture this classification, we looked at splitting the
Dartmouth campus area into regions (Northwest NW, Northeast NE, Southwest

420 A. Mtibaa et al.

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Athletic
Academic

Residential

Fig. 13.17 Normalized success rate distribution PeopleRank relying on Activity-Based
Classification

SW, and Southeast SE).6 A node i belongs to a region R if it has been connected
to more access points belonging to the corresponding region compared to the
other regions.

• Activity-Based Classification: The Dartmouth College campus has over 160
buildings. Usually people visiting the campus are interested in few buildings.
People could be classified relying on their activity interests. For example, the
campus contains more than a dozen athletic facilities and fields. Most of them are
located in the southeast corner of campus. Athletic people are more likely to meet
each others and be classified in an athletic community. We consider people more
connected to athletic building’s access points as part of the athletic community.
Similarly we define academic and residential communities.

Next, we plot the normalized success rate of PeopleRank according to the two
community classifications described above: (1) Activity-Based Classification (in
Fig. 13.17), and (2) Geographic Classification (in Fig. 13.18).

Obviously, the geographic classification leads to better PeopleRank perfor-
mances. Indeed, PeopleRank achieves 92–97% of normalized success rate within
10 min timescales according to the geographic classification (in Fig. 13.18), and
90–94% within the same timescale according to the activity based classification
in Fig. 13.17. That confirms that short distances (e.g., people leaving in the same
neighborhood or region) leads to strong social ties, and relevant social classification.

6http://www.dartmouth.edu/∼maps/campus/close-ups/index.html

http://www.dartmouth.edu/~maps/campus/close-ups/index.html

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 421

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

SW
NW
SE
NE

Fig. 13.18 Normalized success rate distribution of PeopleRank relying on Geographic
Classification

Moreover, one could notice that, in Fig. 13.17, PeopleRank achieves better
success rate performances among athletic users than others according to the activity
based classification. Relying on the athletic community, PeopleRank outperforms its
own success rate performances by roughly 3% and 5% within 10 min timescale com-
pared to respectively the academic and the residential communities. Indeed, as de-
scribed above, most of athletic buildings are located in the southeast corner of cam-
pus which leads to a combination of geographic and activity based classification.

To summarize, the previous results confirmed that PeopleRank achieved satis-
factory performances within a single community. However, it was shown, in the
previous section, that it suffers in very large communities. Next, we propose a
framework extension which helps PeopleRank to deal with this issue.

13.7.2 The Framework Extension

We were motivated by satisfactory performances of social forwarding within single
community, to propose a two step framework which could be easily integrated to
most social forwarding algorithms in order to deal with large communities issues
described above. This framework extension consists of:

• Step1: Social forwarding algorithms operate normally within the same commu-
nity. Indeed, messages will be forwarded socially toward nodes which belong to
the same community.

422 A. Mtibaa et al.

• Step2: Particular nodes will operate as a bridge and circulate the message to the
other communities, and within these communities messages will be forwarded
socially (Step1). Bridge nodes are characterized by their higher mobility. To
capture mobility of nodes in the data sets, we assume that these bridge nodes
belong to multiple communities (i.e., bridge nodes are moving from one com-
munity to another). We rank bridges according to the number of communities
(BR) they belong to. For example, if we consider the geographic classification
in the Dartmouth campus data set, bridges belonging to four communities are
well ranked to bridges belonging to only two or three communities. We assume
also that bridges carrying the message forward it to other bridges according to a
non-decreasing BR (the bridge rank described above).

This two-step framework extension is easily integrated to most of social for-
warding algorithms. Next, we evaluate an extended version of PeopleRank which
integrates this framework.

13.7.3 Extended PeopleRank

We apply the previous framework extension to D-PeopleRank algorithm. Let us
consider a node S which generates a message m to a destination node D. We
assume no a priori knowledge of the destination’s community. Message m will be
forwarding to relay nodes Rii=1..k (k ≤ N − 2) if and only if:

1. Ri belongs to the same community than Ri−1, and PeopleRank(Ri)≥ PeopleRank
(Ri−1).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Combination
Geo.

Ac/Re/At
Orig. PeR

Fig. 13.19 Normalized success rate distribution of the Extended PeopleRank algorithm

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 423

2. Ri is a bridge node, and BR(Ri)≥ BR(Ri−1).

Figure 13.19 plots the normalized success rate of the extended D-PeopleRank
algorithm in Dartmouth data set. One could notice that, extended PeopleRank
outperforms the original one for all timescales (5–30% of success rate improve-
ment). Furthermore, such improvement differs from one community classification
to another. Geographic classification gives better performances than activity-based
classification; indeed, the activity-based classification in the Dartmouth campus
groups people belonging to specific buildings. However, theses buildings are not
always geographically close to each others, and then, messages send from a specific
building could take time to reach other members of the same community. Note
that, combining the two definitions of communities leads to better success rate
performance, and more than 30% improvement compared to the second definition
(see Fig. 13.19).

13.8 Concluding Remarks

In this chapter, we have introduced a social opportunistic forwarding algorithm
that uses PeopleRank metric to rank the relative “importance” of a node using a
combination of social graph and contact graph information. We have developed
centralized and distributed variants for the computation of PeopleRank . Analysis
relies on real mobility traces and the social interactions between the corresponding
participants. Evaluation and comparison to social-only and contact-only forwarding
algorithms showed that PeopleRank achieves one of the best cost /delivery success
rate trade-offs. PeopleRank algorithms achieve an end-to-end delay and a success
rate close to those obtained by flooding while reducing the number of retransmission
to less than 50% of the ones induced by flooding. Despite the fact that social
information is used as a good predictor for human mobility, social forwarding
algorithms in general, and PeopleRank in particular, suffer in large scale networks
where the social graph consists of different communities.

We believe that PeopleRank algorithm is suitable to a wide range of mobile
opportunistic networks for many reasons:

• PeopleRank is a distributed forwarding algorithm and is well suited for oppor-
tunistic networks; indeed, the lack of a central entity in such environment makes
a global forwarding decisions challenging. In practice, nodes do not have a global
view of the network, however they should rely on a local view to estimate future
transfer opportunities.

• D-PeopleRank exchanges only a small amount of information: (1) the current
PeopleRank value and (2) the number of social neighbors (as seen in Sect. 13.4).

• The damping factor used by PeopleRank is able to compensate for the mismatch
between the social graph and the contact graph. To the best of our knowledge, this
is the first work that proposes a mechanism to adjust the use of social information
for forwarding.

424 A. Mtibaa et al.

• As opposed to contact-based algorithms which have to maintain updated contact
properties between all nodes in the networks, PeopleRank is able to make
forwarding decisions autonomously with local information only; it uses contact
properties to augment the social information between neighbors. Indeed, the
number of iterations performed by contact-based forwarding algorithms is
proportional to the total size of the network. However, PeopleRank reduces this
number and keeps it proportional to the social node degree.

References

1. Everett Anderson, Kevin Eustice, Shane Markstrum, Mark Hansen, and Peter Reiher. Mobile
contagion: Simulation of infection and defense. In PADS ’05: Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simulation, pages 80–87, Washington,
DC, USA, 2005. IEEE Computer Society.

2. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

3. A. Chaintreau, A. Mtibaa, L. Massoulié, and C. Diot. The diameter of opportunistic mobile
networks. In Proceedings of ACM CoNext, 2007.

4. Henri Dubois-Ferriere, Matthias Grossglauser, and Martin Vetterli. Age matters: efficient route
discovery in mobile ad hoc networks using encounter ages. In MobiHoc ’03: Proceedings
of the 4th ACM international symposium on Mobile ad hoc networking & computing, pages
257–266, 2003.

5. Vijay Erramilli, Augustin Chaintreau, Mark Crovella, and Christophe Diot. Diversity of
forwarding paths in pocket switched networks. In IMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 161–174, New York, NY, USA, 2007.
ACM.

6. Vijay Erramilli, Mark Crovella, Augustin Chaintreau, and Christophe Diot. Delegation for-
warding. In MobiHoc ’08: Proceedings of the 9th ACM international symposium on Mobile ad
hoc networking and computing, pages 251–260, New York, NY, USA, 2008. ACM.

7. Theus Hossmann, Thrasyvoulos Spyropoulos, and Franck Legendre. Know thy neighbor:
Towards optimal mapping of contacts to social graphs for dtn routing. In Proceedings of IEEE
INFOCOM. IEEE, 2010.

8. Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based forwarding in delay
tolerant networks. In Proceedings of ACM MobiHoc ’08, New York, NY, USA, 2008. ACM.
(also appeared as Cambridge University TR: UCAM-CL-TR-684).

9. Raj Jain, Dah-Ming Chiu, and W. Hawe. A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems. CoRR, cs.NI/9809099, 1998.

10. S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In Proceedings of ACM
SIGCOMM, 2004.

11. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):
604–632, 1999.

12. Massimo Marchiori. The quest for correct information on the web: hyper search engines. In
Selected papers from the sixth international conference on World Wide Web, pages 1225–1235,
Essex, UK, 1997. Elsevier Science Publishers Ltd.

13. Julie Morrison, Rainer Breitling, Desmond Higham, and David Gilbert. Generank: Using
search engine technology for the analysis of microarray experiments. BMC Bioinformatics,
6(1):233, 2005.

13 Social Forwarding in Mobile Opportunistic Networks: A Case of PeopleRank 425

14. Abderrahmen Mtibaa, Augustin Chaintreau, Jason LeBrun, Earl Oliver, Anna-Kaisa
Pietilainen, and Christophe Diot. Are you moved by your social network application? In
WOSN’08: Proceedings of the first workshop on Online social networks, pages 67–72,
New York, NY, USA, 2008. ACM.

15. A-K Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. Mobiclique: Middleware for
mobile social networking. In WOSN’09: Proceedings of ACM SIGCOMM Workshop on Online
Social Networks, August 2009.

16. Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra. Spray and
wait: an efficient routing scheme for intermittently connected mobile networks. In WDTN
’05: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pages
252–259, New York, NY, USA, 2005. ACM.

17. Matteo Varvello, Ernst Biersack, and Christophe Diot. Is there life in second life? In
Proceedings of ACM CoNext. ACM, 2007.

18. X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang. Study of a bus-based disruption
tolerant network: Mobility modeling and impact on routing. In Proceedings of ACM MobiCom,
2007.

Chapter 14
Discount Targeting in Online Social Networks
Using Backpressure-Based Learning

Srinivas Shakkottai and Lei Ying

Abstract Online social networks are increasingly being seen as a means of
obtaining awareness of user preferences. Such awareness could be used to target
goods and services at them. We consider a general user model, wherein users could
buy different numbers of goods at a marked and at a discounted price. Our first
objective is to learn which users would be interested in a particular good. Second,
we would like to know how much to discount these users such that the entire demand
is realized, but not so much that profits are decreased. We develop algorithms for
multihop forwarding of discount coupons over an online social network, in which
users forward such coupons to each other in return for a reward. Coupling this
idea with the implicit learning associated with backpressure routing (originally
developed for multihop wireless networks), we show how to realize optimal revenue.
Using simulations, we illustrate its superior performance as compared to random
coupon forwarding on different social network topologies. We then propose a
simpler heuristic algorithm and using simulations, and show that its performance
approaches that of backpressure routing.

14.1 Introduction

The past few years have seen the rapid and global emergence of online social
networks as a medium for community interaction [14,16,32,34,35]. Their meteoric
adoption by millions of Internet users from all walks of life [7, 20], and the

S. Shakkottai (�)
Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX
e-mail: sshakkot@tamu.edu

L. Ying
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA
e-mail: leiying@iastate.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 14, © Springer Science+Business Media, LLC 2012

427

sshakkot@tamu.edu
leiying@iastate.edu

428 S. Shakkottai and L. Ying

multifarious applications that have materialized on them suggest that they are likely
to evolve into a platform for fundamental social change. Indeed, one can envision a
future society in which communication, reputation, marketing, and the very molding
of societal opinions transpire on an online social networking platform.

The continued success of the medium requires a sound economic foundation
for sustainable growth – something that is missing in today’s social networks.
The method of choice to extract commercial value from an online social network is
the advertising and sale of goods and services. However, by and large, the technique
used to propagate messages is by simply flooding the network without regard to
whether participants are actually interested in the products in question. Such spam,
apart from wasting resources (e.g., bandwidth and storage space) worth billions of
dollars every year [30], has the potential to kill the social network as a whole as it
becomes difficult to distinguish relevant from irrelevant information.

Message flooding entirely ignores the fact that online social networks offer a
unique perspective into the desires and tastes of the participants. In other words, it
ignores the basic fact that makes these networks attractive to users in the first place
– being able to interact with like-minded individuals with relatively little overhead.
Further, since users of online social networks are constrained to measurable and
regulatable interactions, there exists the opportunity to implement systematically
designed learning and targeting strategies at each individual user.

Behavior of individuals in social networks has been studied qualitatively (e.g.,
[2, 8, 12, 15, 19, 27, 28]) to draw macroscopic inferences, and by using data mining
and stochastic methods (e.g., [1, 3–5, 8, 11, 12, 17, 21, 37]) to draw microscopic
inferences. However, these approaches employ centralized learning methods that
are largely agnostic to both the evolution of individual preferences on the network,
as well as the applications that the network can support. They also ignore the fact
that individuals possess information about their neighborhood, and can promote
sustainability if only they can be motivated to participate in applications. Thus,
while there has been significant progress in learning methods, relatively little
progress has been made in the joint optimization between end-user involvement,
applications, and learning on online social networks.

In this chapter, we consider an alternate view of online social networks, one
motivated by the idea that end-user involvement, learning, and applications must
be strongly coupled to each other. We consider the issue of obtaining preference
awareness in online social networks, which thrive on user-level contributions of
both informational and computational resources. Thus, we have the social network
provider that creates and runs the network, stores and advertisers that seek to identify
the ideal individuals to target their products, and end-users who both seek informa-
tion about goods and services that reflect their tastes, and possess information and
computational resources that are valuable to the stores and advertisers. A successful
sustainability model would ensure that incentives are aligned among all participants
by appropriate remuneration. The following high-level goals seem suitable in such
a scenario.

14 Discount Targeting in Online Social Networks... 429

1. Localized Information and Distributed Computation Most learning algorithms
employ centralized computation, which results in high computational complexity
and a tremendous amount of information acquisition. A range of heuristics are
utilized to simplify computation, which then results in suboptimal performance.
The algorithms that we develop should be naturally distributed, so as to allow
each individual to perform computations relatively independently. Participants
should only require information pertaining to their immediate neighbors, which
both reduces communication overhead, and allows a measure of privacy.

2. Implicit Learning Unless the purpose of the social network is to simply learn
participant behavior, the objective of learning is to utilize perception of partici-
pants’ preferences for some application. In other words, learning is not an end in
itself, but needs to be closely coupled to the application in mind. The algorithms
that we develop embrace this idea of implicit learning that is optimally targeted
towards a specific application.

3. Explicit Targeting Learning algorithms merely obtain awareness of participants’
preferences, they do not attempt to guide them in any particular direction.
However, if the learning process is able to identify participants that are most
influential in preference formation, it could potentially be used to direct the
predilections of the majority (not just those targeted) toward some particular good
or service by explicit targeting.

14.2 Optimization Decomposition and Backpressure

We are guided by ideas of optimization decomposition that effectively breaks down
optimization problems into simple, distributed computations. Global objectives
can then be achieved by properly linking local decisions based on neighborhood
information and distributed computations. Optimization decomposition has been
used in the design of communication networks [10,18,22–26,29,36,38]. We briefly
review some of the ideas presented in the work cited above, and illustrate how it
satisfies the conditions that we are keen that our algorithms should possess.

Let us first consider a utility maximization framework for a network resource
allocation problem. Suppose we have a set of traffic flows F and a set of links L .
Each flow f is defined by a traffic source s f and a traffic destination d f . A link from
node m to node n is denoted by (m,n) and each link (m,n) ∈ L has a finite capacity
cm,n. The utility that the source obtains from transmitting data with rate x f is denoted
by Uf (x f). We assume that the utility function is continuously differentiable, non-
decreasing and strictly concave. We will see later that similar ideas apply even when
the utility function is linear. Our objective is to allocate capacity on the links such
that the sum total utility is maximized. Thus, the problem that the network faces is
the following optimization problem

max
x f
∑

f∈F

Uf (x f), (14.1)

430 S. Shakkottai and L. Ying

Fig. 14.1 A resource allocation problem. Satisfaction of constraints implies that packets are
injected at a supportable rate. Routes need not be given a priori – each packet can find an
appropriate route

subject to the constraints

∑
f :s f =n

x f + ∑
m:(m,n)∈L

y f
(m,n) ≤ ∑

i:(n,i)∈L

y f
(n,i), ∀n (14.2)

∑
f

y f
m,n ≤ cm,n∀(m,n) ∈ L , (14.3)

x f ≥ 0, ∀ f ∈ F , (14.4)

y f
m,n ≥ 0, ∀(m,n), f , (14.5)

where y f
m,n is the rate at which link (m,n) transmits packets belonging to flow

f . Constraint (14.2) is the flow conservation constraint, i.e., all packets coming
into node n should be served eventually. Constraint (14.3) indicates that the link
capacities are finite, and the overall transmission rate of link (m,n) cannot exceed
the link capacity. The constraints form a convex set, and since the utility functions
are strictly concave, the problem has a unique solution. While there exist several
different algorithms, both centralized and distributed, that are able to solve the above
problem, we are interested in a particular method called “backpressure” [40] that is
able to learn the routes to be taken, as well as the rates of packet injection into
the network so as to maximize the total system throughput. We will illustrate the
relevance of such an approach in social networks in the next section.

The resource allocation problem above has the objective of maximizing network
utility subject to the constraint that the total transmission rate on each link is no
more than the available capacity. We consider an illustration in Fig. 14.1.

There are 3 flows S0, S1, and S2, with packet injection rates x0, x1 and x2,

respectively. Assume all have a capacity of 1 packet/time slot, and let R(d)
i j be the

fraction of time that link (i, j) is dedicated to a flow destined for node d.The network
utility maximization problem is

max
x,R≥0

2

∑
i=0

Ui(xi)

14 Discount Targeting in Online Social Networks... 431

x0 ≤ R(3)
12 (constraint at node 1 for destination node 3)

x1 ≤ R(2)
12 (constraint at node 1 for destination node 2)

R(3)
12 ≤ R(3)

23 (constraint at node 2 for destination node 3)

x2 ≤ R(2)
32 (constraint at node 3 for destination node 2)

R(3)
12 +R(2)

12 ≤ 1(capacity constraint for link (1,2)).

R(3)
23 +R(2)

32 ≤ 1(node capacity constraint for link (2,3)).

The Lagrange dual for the above problem can be written down with one Lagrange
multiplier λid at each node i for each destination d (only the non-zero λid are shown
below):

max
x,R≥0

2

∑
i=1

Ui(xi) − λ13

(
x0 −R(3)

12

)
−λ12

(
x1 −R(2)

12

)

− λ23

(
R(3)

12 −R(3)
23

)
−λ32

(
x2 −R(2)

32

)
(14.6)

subject to

R(3)
12 +R(2)

12 ≤ 1

R(3)
23 +R(2)

32 ≤ 1.

Here, we see that the maximization over x and R can be divided into two distinct
maximization problems:

max
x≥0

2

∑
i=0

Ui(xi)−λ13x0 −λ12x1 −λ32x2 (14.7)

max
Rd

i j≤1
R3

12 (λ13 −λ23)+R2
12 (λ12 − 0)+R3

23 (λ23 − 0)+R2
32 (λ32 − 0) (14.8)

The above is an illustration of a concept called optimization decomposition, wherein
a global optimization naturally breaks up into different parts, each of which can be
solved more easily.

Observe that the rate allocation problem (14.8) not only decides the fraction of
time that each hop is scheduled, but also determines the fraction of time that a
hop is dedicated to flows destined for a particular destination. In a general network
topology, no pre-fixed routes are needed, routes are implicitly determined by the rate
allocated on each link for each destination. The scheduling algorithm is a “max-
weight” algorithm, with the weight for each hop for each flow as difference in the
Lagrange multiplier at the transmitter and the Lagrange multiplier at the receiver

432 S. Shakkottai and L. Ying

Fig. 14.2 Backpressure
based routing and scheduling.
Differences in queue length
determine the packets sent on
each link at each time

on that hop. This difference is called the backpressure due to the fact that a link is
not scheduled if the Lagrange multiplier at the receiver is larger than the Lagrange
multiplier at the transmitter of the hop. Hence, the rate allocation algorithm (14.8)
is also called the backpressure algorithm.

Now, suppose that we have a system in which there is one buffer at each node
devoted to each destination. Let the values of λi,d indicate the queue length at
node i for packets destined for node d. Then (14.8) above looks like a weighted
maximization, with the difference in queue lengths (associated with a destination)
between the two nodes constituting a hop acting as weights. This effect is clear
in the first term of (14.8). The other terms relate to the final hop of the flows
for which end in a sink with zero queue length, and we have explicitly indicated
this with a 0. The maximization would result in the scheduling of hops (i, j) that
have many packets backlogged at node i. In fact, there is queue lengths can be
viewed as stochastic estimates of Lagrange multipliers. A detailed explanation of
this connection can be found in [36].

We illustrate the backpressure idea in a wireless network in Fig. 14.2. Here, we
have an additional scheduling constraint in that nodes may not transmit and receive
simultaneously. Hence, the schedule at each time needs to be an independent set on
the graph representing the wireless network. Notice that the source of each type
of packet does not matter, since routes are not determined before hand. Simply
scheduling the appropriate type of packet on each hop (subject to the scheduling
constraint) results in throughput optimal routes at equilibrium, where the packets
are classified according to their destinations.

Notice that under the backpressure algorithm, congestion at a particular node
would be transferred closer and closer to the source (where ever it is), till the source
feels the congestion due to packet buildup in its buffer. At this point we notice that
from (14.7) that since the utility function is concave, the source would need to cut
down its rate of packet generation in order to maximize system utility. Thus, the
backpressure algorithm yields a natural means of regulating the rate of injection of
packets into the system. The idea is illustrated in Fig. 14.3.

In summary, the main ideas that we take away from the network utility
maximization approach that we wish to exploit in the social network context are
the following:

14 Discount Targeting in Online Social Networks... 433

Fig. 14.3 Congestion effects
are progressively transferred
towards the source

• Implicit route determination using the backpressure algorithm.
• A natural source law that responds to the queue length one at the source.

In particular, we will consider the scenario where both users’ preferences and the
topology of the social network are not available at the coupon distributor. The
coupon distributor needs to generate the coupons at proper rates and incentive the
users to forward the coupons in a proper way so that it can extract the maximum
profit from the network. Note that a user’s preference (i.e., the number of goods
a user would buy at a marked price and discounted price) can be viewed as
the link capacities (marked and discounted) between the user and the product.
Therefore, a back-pressure-type algorithm for coupon distribution can help the
coupon distributor determine the optimal rates at which different types of coupons
should be generated and the routes these coupons should be forwarded without
knowing users’ preferences and the network topology. However, as we will see in
the next section, we need to considerably modify the algorithm in the context of
social networks.

14.3 A Coupon Routing Problem in a Social Network

Consider goods and services that are consumed periodically (say on a weekly or
monthly basis) such as movie tickets, car washes, fitness club visits and so on.
Here, we could have a high displayed (marked) price that some consumers would
be willing to pay. In order to extract maximum revenue, other consumers need to
be subsidized to some extent by using discounts such as rebate coupons. In other
words, discount coupons are used to create multiple tiers of prices for the same
good or service. Two questions immediately arise, (1) which users should be given
coupons? and (2) how many coupons should they be given? Further, the questions
have to be answered in a system in which user preferences change over time.

Both questions are hard since the seller of the good is unlikely to be aware of the
preferences of users, or possibly even of their existence. Even if the seller is aware
of a user’s interest, he must not give too many or too few discounts – too many
would reduce profits and too few would mean that the entire demand would not be
realized. As we saw in the Introduction, there are two classical methods of offering

434 S. Shakkottai and L. Ying

such incentives. The first is to flood communities of users in the hope that some of
them would use the coupons. Here, the idea is to pre-identify communities that are
not likely to buy the good without discounts. If identification is incorrect, either the
users would not use the coupons, or the wrong set of users would be discounted. The
second is to rely on self-identification of interested individuals. Here, the store gets
the users to sign up for coupons, and then judiciously sends them coupons. Such
a scheme would work only on users who do identify themselves to the store, and
might not realize the entire demand.

Both the above solutions ignore the fact that users could belong to an online
social network, and hence could obtain coupons by interacting with his or her
friends. Thus, users could forward coupons from one to the next in a multihop
fashion across the online social network. If a user is interested in the good that
the coupon represents, he or she could use it. Otherwise, the user could forward
it onwards. Allowing for coupon forwarding implies that the two questions raised
have to be modified slightly: (1) given that a user has a coupon that he does not
want, which friend should he forward it to and why? and (2) what rate should
coupons be injected into the system? Hence, we need to design a signaling scheme
that incentivizes users to somehow learn the preferences of users in such a way
that the profits of the store are maximized. An example of such a system in
practice is mGinger [31] that acts as a multihop advertising and discount distribution
system using SMS messages, with rewards being paid in a pyramidal fashion. The
motivation for multihop coupon distribution is that since user preferences change
with time, and new products are continuously introduced, it is impossible for any
store to be aware of all its potential customers. Hence, a system must learn user
preferences, which then change after a while.

In this chapter, we develop implicit distributed learning schemes based on ideas
of backpressure [40] that has been used as a throughput optimal scheme for packet
routing in multihop wireless networks [9, 13, 33, 39]. We assume that the capacity
for consumption of a good i by user j can be divided naturally into two parts –
one at at the marked (“high”) price x̂ih

j , and one at the discounted (“low”) price

x̂il
j . We assume that these values are fixed for some duration of time, and so can be

learned. The number of coupons given to the user must be carefully regulated; if it is
larger than x̂il

j , the store loses profits due to excessive discounting, while if it is less

than x̂il
j , the entire demand is not realized. We combine ideas of self-identification by

users and directed flooding through backpressure to achieve an optimal solution that
realizes the entire demand by injecting the right number of coupons, and maximizes
profit by ensuring that the users receive coupons at the optimal rate.

We then use optimization decomposition techniques in Sect. 14.6 to develop a
coupon distribution scheme consisting of three entities: (1) a store at which goods
may be purchased, (2) users connected by an online social network, and (3) a coupon
source (or sources). The behavior of these entities is as follows:

• A store sells goods i at a marked price pi, which it discounts to a price qi upon
presentation of a coupon. The store assigns a “goodness value” to each user j
that makes a purchase from it. This value determines the probability with which

14 Discount Targeting in Online Social Networks... 435

neighbors of j are rewarded for forwarding a coupon to j.1 However, all the
other users (non-neighbors of j) that are involved in the forwarding path are
guaranteed a reward. This artifice enables locality of information, as we show
later. In other words, although the discount carried by each coupon is identical,
the reward for forwarding coupons to each user j is not. The store uses a simple
up-down controller to determine the reward probability for forwarding, based on
the number of goods purchased by user j.

• All users in the system maintain a count of the number of coupons of each kind
that their neighbors possess via communication over the social network. Users
also maintain a count of the number of unrewarded coupons associated with their
neighbors by polling the relevant store. We refer to the sum of these two as the
effective coupons. Coupons can be transferred among users in a multihop fashion,
and users are incentivized to forward coupons in the direction of lowest effective
pressure, i.e., to a neighbor who has the smallest number of effective coupons.
This controller is similar in nature to a backpressure controller.

• Finally, the coupon source generates coupons of different kinds (corresponding
to different goods), and sends them to users that have identified themselves as
interested in receiving particular kinds of coupons. The source chooses to send
coupons using a threshold controller, which generates new coupons when the
effective pressure is less than a certain threshold.

We prove that the system using this backpressure-based coupon distribution
evolves with time to attain the maximum profits by ensuring that each potential
consumer obtains exactly the right number of coupons. The system is distributed
and each user only requires information associated with his or her neighbors. Thus,
it succeeds in achieving light-weight learning framework, in which exploring for
user capacity and exploiting existing capacity go hand-in-hand.

We then consider a simpler heuristic algorithm in Sect. 14.7, that is based on the
delay in obtaining rewards. This delay-based algorithm does not require information
exchange between users. At any time, users simply forward coupons to that neighbor
for whom the delay experienced between forwarding a coupon and obtaining a
reward for that coupon is the smallest. This algorithm inherently captures the idea
of backpressure, although it is at a coarse level.

Our final scheme is even simpler, and consists of random coupon distribution.
Here, each user randomly forwards coupons to its neighbors in the hope of finding
correct paths. This system does not learn user preferences. We use this algorithm to
test the efficacy of our other algorithms.

We simulate the distribution schemes in Sect. 14.8 on different topologies
to compare their performance. We show that the backpressure-based scheme
achieves near-optimal revenue, while the delay-based scheme performs acceptably

1Throughout this chapter, we use the word reward to denote remuneration for forwarding coupons,
and the word discount to denote remuneration for redeeming coupons (when purchasing goods) at
a store.

436 S. Shakkottai and L. Ying

well. Further, both schemes significantly outperform the randomized scheme, thus
making a strong case for backpressure based targeted coupon delivery in online
social networks.

14.4 System Model

Network model: We consider an online social network structure as shown in
Fig. 14.4. Denote by N the set of nodes and L the set of links. There are three
different node types – a coupon distributor, users, and a store – in the network. The
links represent social connections. A link from a coupon source to a user represents
the idea that the user has registered with the source to receive its coupon periodically.
A link from a user to a product means that the user buys that product periodically.
The links between users are assumed to be bidirectional, and represent friendship
between the connected users. In this chapter, we assume that the coupon sources
and the store are managed by the same entity. We use s to denote the store and d to
denote the coupon distributor. We define S to be the set of products and Bi is the
set of users who will buy product i.

We consider a synchronized slotted-time system. We define μ j to be the coupon
transmission capacity of node j, which is the maximum number of coupons user j
can send out in one time-step. We also impose the constraint that a user can buy a
discounted product only if a coupon is presented.
Two-capacity model for user demands: We assume that users naturally have a
maximum number of goods that they would buy at the marked price, x̂ih

j , and

number of goods that users would buy at the discounted price, x̂il
j . Note that either of

these quantities could be zero. We further define bi
j = x̂ih

j + x̂il
j . These values can be

thought of as the capacities associated with a user. We consider two different time
scales in this chapter. The small time scale t is the one in which purchases are made
and coupons are delivered. The large time-scale, consisting of T small time slots, is

Fig. 14.4 A coupon distribution system. Coupons originate at the coupon source, follow a
multihop forwarding path, and are finally spent at a store

14 Discount Targeting in Online Social Networks... 437

the buying interval after which the customers start afresh. Since the users have the
incentive to buy a product with a low price, we assume that the x̂ih

j , associated with
the high price goods could be used to buy low priced goods as well. Specifically,
during each large time scale, if the user were given no more than bi

jT coupons, he
would use them all and buy bi

jT goods.

Note that if a user were given more than x̂il
j T coupons, the store would not extract

the maximum extractable revenue. If he were given less than x̂il
j T coupons, he would

not buy enough discounted goods, which reduces the profit of the store as well. A
store that is unaware of these two capacities needs to probe customers in order to
find their true potential, and neither supply too few or too many coupons. In what
follows, we present a distributed solution that automatically explores for and attains
the capacity of users, thus achieving the profit maximizing solution. The notations
used in this chapter are summerized in the following table.

N Set of nodes
L Set of links
s Store
d Coupon distributor
S Set of products
Bi Set of users buying product i
μ j Transmission capacity of node j
pi Market price of produce i
qi Discounted price of product i
x̂ih

j Number of type i goods that user j would buy at the marked price

x̂il
j Number of type I goods that user j would buy at the discounted price

bi
j x̂ih

j + x̂il
j

yi
(m,n) The average number of valid type-i coupons sent from user M to user n in a time slot

γ i
j Target coupon usage rate at the large time scale

Qi
j[t] Number of type i coupons user j has at a finer time-step t

Q̃i
j[t] Number of unrewarded type i coupons corresponding to customer j

α i Reward for a type i coupon
Θ i[t] Number of type i coupon generated at time slot t by the coupon distributor

14.5 Profit Maximization

Consider the profit made by the store. We say a coupon is valid if it is eventually
used to purchase a product. We denote by yi

(m,n) the average number of valid type-i
coupons sent from user m to user n in a time slot. The profit the store extracts from
user j is

qiyi
(j,s) + pi min

{
x̂ih

j ,b
i
j − yi

(j,s)

}
.

438 S. Shakkottai and L. Ying

Thus, the maximum profit the store can extract is defined by the following
optimization problem:

OPT 1:

max ∑
i∈S
∑

j∈Bi

(
qiyi

(j,s) + pi min
{

x̂ih
j ,b

i
j − yi

(j,s)

})
(14.9)

s.t. ∑
i∈S

∑
j:(m, j)∈L , j �=s

yi
(m, j) ≤ μm,∀m ∈ N (14.10)

∑
j:(m, j)∈L

yi
(m, j) = ∑

n:(n,m)∈L

yi
(n,m)∀m ∈ N (14.11)

yi
(m, j) = 0 if m ∈ Bi and j �= s, (14.12)

where (14.10) is the capacity constraint, which indicates node m cannot send more
than μm coupons in a time-slot, (14.11) is the flow-conservation constraint for the
coupons, and (14.12) indicates that user j will not forward type-i coupons to his/her
neighbors if he/she uses type-i coupons.

To extract the maximum revenue, we need to distribute coupons to the users.
There are two difficulties in distributing the right number of coupons to the users:

(1) The optimal
(

x̂ih
j , x̂

il
j

)
is unknown at the store, and needs to be identified.

(2) Since all users interested in a product may not be registered to directly receive
coupons, they might need to receive such coupons via the social network. The
store cannot directly control the number of coupons sent to such users.

To tackle these two difficulties we develop a two time-scale coupon distribution
scheme in the next section.

14.6 Coupon Distribution

In this section, we develop an implicit distributed learning scheme based the idea of
backpressure routing/scheduling [40]. Our algorithm consists of two control loops
that operate at the small time scale and the large time scale. The purpose of the
control loops is as follows:

1. Choice of Coupon Forwarding Reward Rate: At the large time scale, each
store must adapt the target rate γ i

j for the next buying interval using the
information gathered about the customers’ preferences over the past intervals.
In our algorithm, γ i

j is an estimate of x̂il
j . As discussed in Sect. 14.4, if γ i

j is set
too low, customer j may not purchase all the goods that he potentially could, and
if γ i

j is too high, customer j may be being discounted excessively and the store is
not extracting the maximum extractable revenue.

14 Discount Targeting in Online Social Networks... 439

2. Coupon Routing at Target Rate: At the small time scale a store assigns to a
rate of coupon delivery γ i

j to each product i and each customer j that purchases
goods from it. The purpose of this control loop is to ensure that the customer
would indeed receive discount coupons at this target rate. Mathematically,
we will guarantee that the coupon distribution algorithm solves the following
optimization problem:

OPT 2:

max ∑
i∈S

qi

(
∑

j∈Bi

yi
(j,s)

)
(14.13)

s.t. ∑
i∈S

∑
j:(m, j)∈L , j �=si

yi
(m, j) ≤ μm,∀m ∈ N (14.14)

∑
j:(m, j)∈L

yi
(m, j) = ∑

n:(n,m)∈L

yi
(n,m)∀m ∈ N (14.15)

yi
(j,s) ≤ γ i

j ∀ j, i (14.16)

yi
(m, j) = 0 if m ∈ Bi and j �= s. (14.17)

To show the correctness of the proposed algorithm, we first need the following
straightforward lemma.

Lemma 14.1. Given that γ i
j = x̂il

j for all i and j, OPT 1 is equivalent to OPT 2.

Proof. First, it is easy to verify that the optimal solution satisfies yi
(j,s) ≤ xil

j because
otherwise, the store can extract more profit by reducing the number of coupons sent
to user j. Based on that, OPT 1 can be re-written as

OPT1 : max ∑
i∈S
∑

j∈Bi

(
qiyi

(j,s) + pix̂ih
j

)

s.t. ∑
i∈S

∑
j:(m, j)∈L , j �=si

yi
(m, j) ≤ μm,∀m ∈ N

∑
j:(m, j)∈L

yi
(m, j) = ∑

n:(n,m)∈L

yi
(n,m)∀m ∈ N

yi
(j,s) ≤ xil

j

yi
(m, j) = 0 if m ∈ Bi and j �= s.

Since x̂ih
j are constants, the objective is equivalent to

max ∑
i∈S
∑

j∈Bi

(
qiyi

(j,s)

)
= max ∑

i∈S

qi

(
∑

j∈Bi

yi
(j,s)

)
.

Thus, the lemma holds.

Next, we develop a distributed coupon routing algorithm that solves OPT 2.

440 S. Shakkottai and L. Ying

14.6.1 Small Time Scale Control: Backpressure Coupon Routing

We first introduce the coupon management scheme which consists of three parts: (1)
each user maintains a per-product queue, and monitors the lengths of the queues; (2)
store rewards the neighbors that forwarded type i coupons used by each customer j
at a rate γ i

j , and monitors the number of unrewarded coupons at each customer2; (3)
coupon distributor i monitors the number of coupons she has not yet sent out, and
generates additional coupons based on this value.

A1: Coupon Management:

(1) Per-product queues are maintained at each user, and the number of type i
coupons user j has at a finer time-step t is denoted by Qi

j[t]. Thus, the dynamics
of Qi

j[t] is as follows: If j �∈ Bi, then

Qi
j[t + 1] =

(
Qi

j[t]+ ∑
m:(m, j)∈L

yi
(m, j)[t]− ∑

n:(j,n)∈L

yi
(j,n)[t]

)+

;

otherwise

Qi
j[t + 1] = Qi

j[t]+ ∑
m:(m, j)∈L

yi
(m, j)[t]− yi

(j,s)[t],

where

yi
(j,s)[t] = min

{
Qi

j[t]+ ∑
m:(m, j)∈L

yi
(m, j)[t],

(
bi

jT −
t−1

∑
τ=0

yi
(j,s)[τ]

)+}
,

i.e., user j will use up all available coupons unless she has already bought
enough (bi

jT) products.
(2) Store maintains a queue for unrewarded coupons corresponding to each of

product i and its customers j. We may think of these as virtual coupons that are
used to maintain a pressure on j’s neighbors. Note that it is only the neighbors
of j that are not rewarded for forwarding these coupons, the rest of the users
involved in forwarding coupons would be guaranteed a reward (and, of course,
j has already redeemed these coupons for a discount). The rewarding scheme
will be describe in a detail later. This measure ensures that pressure against
forwarding coupons to a particular customer is maintained adjacent to the cus-
tomer, and not at arbitrary queues in the network. Denote by Q̃i

j[t] the number

2Recall that these are coupons that have been redeemed for a discount by j, but the neighbors of j
who forwarded these coupons have not been rewarded.

14 Discount Targeting in Online Social Networks... 441

of such unrewarded coupons corresponding to customer j. This is essentially a
“virtual queue” that will be used to enforce constraint (14.16). We have

Q̃i
j[t + 1] =

(
Q̃i

j[t]+ yi
(j,s)[t]− γ i

j

)+
,

where γ i
j is the coupon forwarding reward rate for neighbors of customer j.

(3) Coupon distributor d maintains a separate queue for each type of coupons that
have not been sent out. The length of the queue is denoted by Q̃i

d [t] for each
product i. We have

Qi
d [t + 1] =

(
Qi

d [t]+Θ
i[t]− ∑

j:(di, j)∈L

yi
(d, j)[t]

)+

,

where Θ i[t] is the number of new type i coupons generated by coupon
distributor i at time t.

(4) We also assume that when user j receives a type i coupon such that j �∈ Bi,
user j will insert her identity and the coupon queue length Qi

j[t] in the coupon
before sending the coupon to her neighbor. This information allows the store to
reconstruct path and reward the coupon relays based on Qi

j[t].

In our system, the stores need to reward coupon forwarding in order to motivate
users to forward coupons to their friends. The efficiency of a coupon distribution
scheme is determined by: (1) the incentive scheme that the store use and (2) the
users’ decisions under the incentive scheme. Next, we propose a coupon rewarding
scheme, under which a rational user will distribute the coupons according to a
backpressure policy. The optimality of the coupon distribution scheme will be
proved in Theorem 14.1.

A2: Reward Scheme for Coupon Forwarding: Store rewards the users involved
in forwarding each used type i coupon with a total of α i dollars. We assume that
α i is fixed and is such that the store still makes a profit, i.e., we do not optimize
over α i. Consider a specific coupon associated with product i, and assume R is the
path (consisting of the sequence of transmissions used to distribute the coupon) over
which the coupon was transferred. Then node m gets a reward

(
Qi

m −Qi
n:(m,n)∈R

)+ α i

∑l∈R

(
Qi

s(l)−Qi
r(l)

)+ , (14.18)

where l is a link on path R, s(l) is the sender, and r(l) is the receiver. Note that this
queue length information is inserted by the users before they forward the coupons
to their neighbors. Furthermore, note that the amount of reward user m obtains is
proportional to the queue difference. The idea is to motivate user m to send her
coupon to a neighbor who has the least number of coupons and hence is most likely
the one who needs the coupon. Under this scheme, the user has the motivation to
follow the backpressure-like coupon distribution scheme.

442 S. Shakkottai and L. Ying

A3: User Behavior:

(1) First, if node j is interested in buying product i, then user j uses all available
type i coupons up to her purchasing limit bi

j. Thus, at finer time-step t, user j

purchases yi
(j,s)[t] products with coupons such that

yi
(j,s)[t] = min

{
Qi

j[t]+ ∑
m:(m, j)∈L

yi
(m, j)[t],

(
bi

jT −
t

∑
τ=0

yi
(j,s)[τ]

)+}
.

We assume that user j never forwards type-i coupons to her neighbors if user
j buys product i.

(2) If user j is not a customer buying product i, then user j needs to distribute type
i coupons to her neighbors. We assume that at the beginning of finer time-step
t, user j requests Qi

m[t] if user m is her neighbor, and also polls the store to
obtain Q̃i

m[t]. Since the amount of coupon forwarding reward is determined by
the queue difference as described in (14.18), user j selects a coupon type i∗ and
neighbor m∗ such that

(i∗,m∗) ∈
arg max

(i,m)∈L

(
Qi

j[t]+ Q̃i
j[t]−Qi

m[t]− Q̃i
m[t]
)
,

and transfers min
{
μ j,Qi∗

j [t]
}

of type i∗ coupons to node m∗.
Note that Q̃i

m[t] is the number of coupons used by user m but have not been
rewarded yet, so Q̃i

m[t] = 0 if user m is not a customer buying product i. A store
maintains this unrewarded coupon queue to prevent a customer receiving too
many coupons. When user j uses too many coupons, the unrewarded coupon
queue becomes large. After a neighbor of user j finds a large Q̃i

j[t], the neighbor
realizes that user j has received too many coupons and the store might not
reward him for forwarding coupons to user j. Then the neighbor will stop
forwarding more coupons to user j.

A4: Coupon Generation Scheme: The coupon distributor needs to decide the
number of coupons to inject into the network. We assume that coupon distributor
generates μd type-i coupons when Qi

d [t]≤ QTqi, and zero type-i coupon otherwise.
Here, QT is a constant threshold value. In other words,Θ i[t] = μd if Qi

d [t]≤ QTqi,
andΘ i[t] = 0 otherwise.

In the following theorem, we analyze the performance of the backpressure
coupon routing, and prove that

Theorem 14.1. Assume that γ i
j ≤ bi

j for all i and j. Under the coupon management,
coupon rewarding and generating scheme, and user behavior defined above, we
have

lim
QT→∞

lim
T→∞

∑T
t=1Θ i[t]

T
=

(
∑

j∈Bi

y̌i
(j,s)

)
, (14.19)

14 Discount Targeting in Online Social Networks... 443

and

lim
QT→∞

lim
T→∞

∑T
t=1 yi

(j,s)[t]

T
= y̌i

(j,s), (14.20)

where y̌ is the optimal solution of OPT 2.

Proof. The analysis follows the Lyapunov drift used in [13, 33, 39]. Define Q[t] =
{Qi

j[t], Q̃
i
j[t]} j∈N ,i∈S . It is easy to verify that Q[t] is a Markov chain. Further,

given γ i
j ≤ bi

j for all j and i, we can obtain that for any j ∈ Bi, the following
holds

Qi
j[t + 1]+ Q̃i

j[t + 1] =

(
Qi

j[t]+ Q̃i
j[t]+ ∑

m:(m, j)∈L

yi
(m, j)[t]− γ i

j

)+

.

Next, consider a Lyapunov function such that

V [t] =
1
2 ∑i∈S

∑
j∈Bi

(
Qi

j[t]+ Q̃i
j[t]
)2
.

Following the analysis in [13], it can be shown that there exists B > 0, independent
of Q[t], such that

E [V [t + 1]−V [t]|Q[t]]≤ B+ ∑
i∈S

Qi
d [t]E

[
Θ i[t]− ∑

j:(d, j)∈L

yi
(d, j)[t]

∣∣∣∣∣Q[t]

]

+ ∑
i∈S , j �=d

(
Qi

j[t]+ Q̃i
j[t]
)

E

[(
∑

m:(m, j)∈L

yi
(m, j)[t]− ∑

n:(j,n)∈L

yi
(n, j)[t]

)∣∣∣∣∣Q[t]

]
.

Letting Θ̌ i = ∑ j:(d, j)∈L y̌i
(j,d), where y̌i

(j,d) is the optimal solution to OPT 2, we
further obtain that

E [V [t + 1]−V [t]|Q[t]] = B1 + ∑
i∈S

(
Qi

d [t]−QTqi)E
[
Θ i[t]−Θ̌ i

∣∣Q[t]
]

+ ∑
i∈S

Qi
d [t]Θ̌

i −∑
j

∑
m:(j,m)∈L

∑
i∈S

yi
(j,m)[t]×

(
Qi

j[t]+ Q̃i
j[t]−Qi

m[t]− Q̃i
m[t]
)

444 S. Shakkottai and L. Ying

Next, we have that

∑
(j,m)∈L

∑
i∈S

yi
(j,m)[t]

(
Qi

j[t]+ Q̃i
j[t]−Qi

m[t]− Q̃i
m[t]
)

≥(a) ∑
(j,m)∈L

∑
i∈S

y̌i
(j,m)

(
Qi

j[t]+ Q̃i
j[t]−Qi

m[t]− Q̃i
m[t]
)≥ ∑

i∈S

Qi
d [t]Θ̌

i,

where inequality (a) holds due to backpressure routing, and

(
Qi

di
[t]−QTqi)(Θ i[t]−Θ̌ i)≤ 0

holds according to the definition of the rate controller. Thus, according to the
Foster’s criterion, we can conclude that Q[t] is positive recurrent, which implies
that limt→∞E[V [t]]< ∞.

Since Q[t] is positive recurrent, we further have

1
T
(E [V [T]]−E [V [0]])

=
1
T

T

∑
t=1

(E [E[V [t]|Q[t]]]−E [E [V [t − 1]|Q[t − 1]]])

≤ B1 +∑
i

QTqi
(
∑T

t=0Θ i[t]
T

−Θ̌ i
)
,

which implies that

∑
i

qi
(
Θ̌ i − ∑T

t=0Θ i[t]
T

)
≤ B

QT
+

E [V [T]−V [0]]
T

.

Note that

∑
i

qi
(
Θ̌ i − ∑T

t=0Θ i[t]
T

)
≥ 0,

because the network is stable and the Θ̌ i is the optimal solution to OPT 2. Thus, we
have that

0 ≤∑
i

qi
(
Θ̌ i − lim

T→∞

∑T
t=0Θ i[t]

T

)
≤ B

QT
,

which leads to equality (14.19). Furthermore, since the queues are stable, so when
T → ∞, almost all coupons are consumed, which implies that equality (14.20).

14 Discount Targeting in Online Social Networks... 445

The algorithm is similar to that proposed in [33]. Note that although the theorem
is an asymptotic result, the algorithm itself works for any value of T. A finite value
of T may result in a sub-optimal solution. In our simulations, we choose T = 300
and the final coupon allocation is very close to the optimal.

14.6.2 Large Time Scale Control: Coupon Rate Selection

We assume that the algorithm for coupon delivery at the small time scale converges
quickly to the target rate, and now consider how to choose this target rate. Recall that
our means of implementing coupon delivery at rate γ i

j is to reward the neighbors of
a customer j for forwarding coupons to j at rate γ i

j. In this section all dynamics take
place at the large time. Thus, we have the sequence of target rates γ i

j[0], · · · ,γ i
j[k−

1],γ i
j[k],γ i

j[k + 1], · · · , and the large time scale algorithm needs to guarantee that

limk→∞ γ̂ i
j[k] = x̂il

j .

Denote by zih
j [k] and zil

j [k] the number of goods i that user j buys from store in
the interval [k,k + 1] at the marked price and the discounted price, respectively.
Let the total number of goods purchased in the interval [k,k + 1] be denoted
zi

j[k] = zih
j [k] + zil

j [k]. Further, denote the difference in purchases made by user j

over intervals [k,k + 1] and [k − 1,k] by Δzi
j [k] = zi

j [k]− zi
j [k − 1] corresponding

to a difference in the coupon delivery rate Δγ i
j[k] = γ i

j[k]− γ i
j[k − 1]. We first

intuitively understand the four possibilities associated with Δγ i
j[k],Δxi

j [k] (assuming
that Δγ i

j[k] is small):

• Δγ i
j [k]< 0 and Δzi

j[k] = 0 : This implies that γ i
j[k]≥ x̂il

j and the user is receiving
more coupons than he can use. We need to ensure γ i

j[k+ 1]< γ i
j[k].

• Δγ i
j [k] < 0 and Δzi

j[k] < 0 : This implies that γ i
j[k] < x̂il

j and the user is not
receiving enough coupons to realize the maximum possible number of purchases.
We need to ensure γ i

j[k+ 1]> γ i
j[k].

• Δγ i
j [k]> 0 and Δzi

j[k] = 0 : This implies that γ i
j[k]≥ x̂il

j and the user is receiving
more coupons than he can use. We need to ensure γ i

j[k+ 1]< γ i
j[k].

• Δγ i
j [k] > 0 and Δzi

j[k] > 0 : This implies that γ i
j[k] < x̂il

j and the user is not
receiving enough coupons to realize the maximum possible number of purchases.
We need to ensure γ i

j[k+ 1]> γ i
j[k].

Note that an increase in the coupon rate cannot cause a decrease in the number
of purchases. A simple controller that takes into account all the four possible
conditions is

γ i
j[k+ 1] = (γ i

j[k]+ δ)χ{Δγ i
j[k]Δ zi

j [k]>0}+(γ i
j[k]− δ)χ{Δγ i

j[k]Δ zi
j [k]=0}. (14.21)

446 S. Shakkottai and L. Ying

Here, δ > 0 is a constant small amount by which we increase or decrease γ i
j. We can

now easily prove that the controller converges to within δ/2 of the desired value
of γ̂ i

j.

Theorem 14.2. Under the time scale separation assumption, using the controller
(14.21) we have

lim
k→∞

|γ i
j[k]− x̂il

j | ≤ δ/2 ∀ i ∈ S , j ∈ R.

Proof. We use a Lyapunov argument, with the Lyapunov function

J[k] =
(
γ i

j [k]− γ̂ i
j

)2
.

Then we have

J[k+ 1]− J[k] = (γ i
j [k+ 1])

2
+(γ̂ i

j)
2 − 2γ̂ i

jγ
i
j[k+ 1]

− (γ i
j[k])

2 − (γ̂ i
j)

2
+ 2γ̂ i

jγ
i
j[k] =

(
γ i

j[k+ 1]− γ i
j[k]
)(
γ i

j[k+ 1]

+ γ i
j[k]− 2γ̂ i

j

)

We have two cases.

Case I: If Δγ i
jΔzi

j [k]> 0, i.e., γ i
j[k]< γ̂ i

j, we have from (14.21)

J[k+ 1]− J[k] = δ (2(γ i
j[k]− γ̂)+ δ),

which is non-positive except in γ i
j[k]− γ̂ i

j ∈ [−δ/2,0].

Case II: Δγ i
jΔzi

j[k] = 0, i.e., γ i
j[k]≥ γ̂ i

j, we have from (14.21)

J[k+ 1]− J[k] =−δ (2(γ i
j[k]− γ̂)+ δ),

which is non-positive except in γ i
j[k]− γ̂ i

j ∈ [0,δ/2].
Thus, the system is globally asymptotically stable and γ i

j − γ̂ i
j will converge to

the interval [−δ/2,+δ/2].

Note that when δ is smaller enough and the algorithm starts with a small γ i
j[0],

we can guarantee that γ i
j[k] ≤ bi

j for all k. Combining Lemma 14.1, Theorem 14.1
and Theorem 14.2, we conclude that the number of coupons consumed under the
two time-scale algorithm converges to the optimal solution to OPT 1.

14 Discount Targeting in Online Social Networks... 447

14.7 Delay-Based Coupon Forwarding

Suppose that the store rewards relays only after a coupon has been used to make
a purchase. The insight that we obtain from the optimality of backpressure is the
following:

• If coupons are not used on a particular path, queues build up. This would cause
the average delay in being rewarded to all relays on the path to increase.

• If a higher rate of coupons than that set by the store are transferred along a
path, the store does not reward the relays for some fraction of coupons and
virtual coupons build up. Again, this would mean that the average delay in being
rewarded to all relays on the path would increase.

The observation immediately suggests that perhaps a simpler algorithm would be to
replace the backpressure based user control of Sect. 14.6 A3 with a much simpler
scheme. Users need only to keep track of the average delay experienced in obtaining
rewards when they forward coupons to each of their neighbors. They choose to
forward coupons to that neighbor who has the lowest such delay. The scheme is
intuitively incentive compatible, since users might want to obtain rewards as soon
as possible. Thus, we may replace the reward scheme of Sect. 14.6 A2 with an equal
reward for all users in the path.

However, a few further additions are required to construct a workable heuristic
algorithm. The first addition stems from the fact that under backpressure, if a user
finds that all her neighbors have larger effective queue lengths than herself, she does
not forward coupons to any of them. The equivalent in the delay based regime would
be to simply choose a threshold value of delay (e.g., DU), and refuse to forward
coupons to any neighbor that yields a delay larger than this threshold.

The second addition is that while keeping track of delays, even small differences
in delays could result in a particular user being ignored entirely. Hence, instead of a
hard comparison between the delays of different options, we soften the comparison.
For example, if neighbors 1 and 2 of a node yield delays d1 and d2, we consider
both as equally lucrative options if |d1 − d2| ≤ DT, where DT is a constant delay
threshold. Our expectation is that this simplified algorithm would perform almost as
well as the backpressure-scheme.

Based on the observations above, we propose the following delay-based coupon
forwarding to replace the user control of Sect. 14.6 A3 for all coupons in which user
i is not interested.

Delay-based coupon forwarding: Consider product j that user i is not interested.
Denote by Di

m(t) the average delay experienced in obtaining rewards when user j
forwards type i coupons to neighbor m. User i keeps track Di

m(t) for all neighbors.
At time step t, user j first selects type i∗ coupon such that

i∗ ∈ argmin
i

min
m:(j,m)∈L

Di
m(t)

448 S. Shakkottai and L. Ying

and a subset of neighbors associated with type i∗ coupon

K i∗
j =

{
m :

∣∣∣Di∗
m (t)−minm:(j,m)∈L Di∗

m

∣∣∣≤DT

Di∗
m (t)≤DU ,(j,m)∈L

}
.

Then user j sends

min
{

Qi∗
j (t),μ j(t)

}
|K i∗

j | ,

number of type i∗ coupons to each of the neighbors in K i∗
j .

Remark: Backpressure based user control requires a user to obtain the lengths of
coupon queues from her/his neighbors and from the store. Delay-based coupon
forwarding, on the other hand, does not require any information exchange among the
users. Each user makes decisions based on her/his own information history, which
results in a much smaller communication overhead as compared to backpressure
based user control. Further, unlike backpressure, the reward given to every user in
the path of a coupon can be identical.

14.8 Simulation Results

We simulate our coupon distribution system on different network topologies to study
the validity of our schemes. For the sake of comparison, we also create a third
coupon distribution system in which coupons are forwarded by relays randomly to
their neighbors. This would indeed be the case if multihop coupon distribution were
allowed without incentives for forwarding in any particular direction. Intuitively,
such a distribution scheme should over-distribute coupons, since the distributor
receives no feedback. Recall that each large-scale time slot consists of T small time
slots.

14.8.1 Simple Tree Topology

A simple tree topology is illustrated in Fig. 14.5. There is a single coupon source,
two relays, six leaf nodes (customers), and one store. Relays may choose one of their
neighbors to forward coupons to at each time instant. Each customer j has a different
value of x̂l

j and x̂h
j . At each time instant t, users utilize all the coupons that they

possess if the cumulative number of purchases made is less than
(

x̂l
j + x̂h

j

)
T. Once

this is done, they purchase a random number of additional goods at the marked price,
as long as it is rational to do so (i.e., either ∑t

τ=0 xl
j[t]≤ x̂l

jT and ∑t−1
τ=0 xh

j [τ]≤ x̂h
jT ,

or ∑t
τ=0 xl

j[τ]+∑
t−1
τ=0 xh

j [τ] ≤ bi
jT and ∑t−1

τ=0 xh
j [τ] ≤ x̂h

jT). Users repeat this process

14 Discount Targeting in Online Social Networks... 449

Fig. 14.5 Simple tree
topology. This topology is
used to verify that the
algorithms perform as
designed. Coupons are
forwarded from top to
bottom, from parent nodes to
child nodes, and finally arrive
at the store

1 2

3 4 86 75

Store

Coupon
Source

until the end of the small time period T = 300. At the last instant t = T − 1, if
∑T−2
τ=0 xh

j [τ]≤ x̂h
jT , user j purchases x̂h

jT −∑T−2
τ=0 xh

j [τ] goods.
We first verify that the small time scale dynamics of backpressure is able to

distribute the correct number of coupons to any user j. The capacities of all the relay
links are set to 300 coupons per unit time. We illustrate the trajectory of purchases
made by user 3 who has x̂l

3 = 50 and x̂h
3 = 60 over a time interval T = 300 units in

Fig. 14.6. For purposes of illustration, we assume that γ3 = x̂l
3 = 50. In other words,

we set the reward rate for coupon forwarding by neighbors of user 3 exactly equal
to the average rate at which the user 3 should be given coupons in order to extract
maximum revenue. The objective is to test whether the backpressure scheme would
achieve this target. We see in Fig. 14.6 that the backpressure scheme indeed gives
the right number (and rate) of coupons to the user, ensuring that xl

3[T] = 50 and
xh

3[T] = 60.
We now simulate all three schemes (small and large time scales) and the results

are as follows. Figure 14.7(a) shows the fractional error in high and low price
purchases made by user 3, as compared to x̂h

3 and x̂l
3 for the delay based-scheme.

We notice that there is a significant error, which is likely to impact the revenue
generated by this scheme negatively. We plot the same quantities when we use
the backpressure-scheme in Fig. 14.7(b). The scheme quickly converges, causing
the errors to be small. Hence, we expect the revenue generated by this scheme
to be close to optimum. Finally, we plot the same for the delay-based scheme in
Fig. 14.7(c). For this scheme, we chose the cut-off threshold to be T/8 and the
acceptable delay difference to be 15%. We observe that the error of this scheme lies
in-between that of the other two schemes, which implies that its revenue generation
potential is likely to be in-between the other two schemes.

Finally, we plot the total revenue obtained by the store for the three different
schemes, and compare them to the maximum possible revenue in Fig. 14.8. The
upper bound is the value ∑ j px̂h

j + qx̂l
j, which is the maximum extractable revenue.

We see that the randomized algorithm does significantly worse than backpressure
as well as delay-based schemes. Even accounting for the fact that a constant part

450 S. Shakkottai and L. Ying

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

TIME

N
U

M
B

E
R

 O
F

 G
O

O
D

S
 B

O
U

G
H

T

Discounted Price
Marked Price

Fig. 14.6 An example trajectory for user 3 over the small time scale. The solid line indicates
purchases made at the marked price, while the dashed line indicates discounted purchases. The
user has x̂l

j = 50 and x̂h
j = 60. In this example, we have set (for illustration) γ j = x̂l

j = 50, i.e., the
reward rate for coupon forwarding is known exactly, and we see that the user receives exactly the
right number of coupons

of the revenue would have to be used to incentivize the scheme, the performance
improvement is still significant, although the delay-based scheme performs worse
than backpressure.

14.8.2 Power Law Topology

We now consider a scale-free network where the node degree distribution follows a
power-law topology, i.e., the fraction of nodes having degree k is approximately
ck−γ for some constants c and γ, where γ is between 2 and 3 typically. Scale-
free networks bear a closer resemblance to real-world social networks such as
citation networks and collaboration networks. In this simulation, we evaluate the
performances of the proposed algorithms using a scale-free network. The graph
consists of 100 nodes, and is constructed using preferential-attachment [6] with
each entering node connecting to two others with probability proportional to the
current degrees of the target nodes, as illustrated in Fig. 14.9. Once the topology
has been generated, nodes are connected to the coupon source independently with
probability 0.2. Finally, nodes are labeled as relays or customers independently
with probabilities 0.7 and 0.1, respectively. Customers have arbitrary spending
capacities. We show the upper bound and the performance of the three schemes in

14 Discount Targeting in Online Social Networks... 451

Fig. 14.7 Example
trajectories of fractional
errors (as compared to x̂h

3 and
x̂l

3) in the number of goods
bought by user 3 at the
marked and discounted price.
(a) Random Distribution
(b) Backpressure Distribution
(c) Delay-based Distribution

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

F
R

A
C

T
IO

N
A

L
E

R
R

O
R

S

Error in xl
Error in xh

Random Distribution

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

F
R

A
C

T
IO

N
A

L
E

R
R

O
R

Error in xl
Error in xh

Backpressure Distribution

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME

F
R

A
C

T
IO

N
A

L
E

R
R

O
R

Error in xl
Error in xh

Delay-based Distribution

a

b

c

452 S. Shakkottai and L. Ying

0 5 10 15 20 25
420

440

460

480

500

520

540

560

580

600

620

TIME

R
E

V
E

N
U

E
 O

B
T

A
IN

E
D

Backpressure
Max
Random
Delay Based

Fig. 14.8 Trajectory of revenue obtained by the store using different schemes. The upper bound
is the maximum possible revenue, while the other trajectories correspond to our three schemes

Fig. 14.9 Preferential
attachment: Entering nodes
join two other nodes with
probability proportional to the
degrees of the target nodes

New
node

Old Network

Preferentially
chosen nodes

Fig. 14.10. Backpressure clearly performs the best, followed by the delay-based and
random schemes. The results indicate that using such coupon distribution schemes
could significantly increase the revenue obtained.

14.9 Conclusion

We developed distributed schemes for targeted coupon delivery using online social
networks. The objective was to create a two-tier price structure for maximum
revenue extraction by selective discounting. We designed systems that allow users to
obtain coupons from their neighbors, and incentivize these neighbors by rewarding
them for coupon forwarding. We proved how backpressure ideas could be used to
achieve a optimal solution, and also how to use it to obtain a simpler (albeit less
efficient) scheme. Future work includes dealing with potential malicious users and
a testbed implementation.

14 Discount Targeting in Online Social Networks... 453

0 5 10 15 20 25
340

360

380

400

420

440

460

480

500

520

TIME

R
E

V
E

N
U

E
 O

B
T

A
IN

E
D

Max
Backpressure
Random
Delay Based

Fig. 14.10 Trajectory of revenue obtained by the store using different schemes for the power-law
topology

Acknowledgements Research was funded in part by NSF grant CNS-0904520 and Qatar
Telecom, Doha, Qatar.

References

1. Abe, N., Biermann, A., Long, P.: Reinforcement learning with immediate rewards and linear
hypotheses. Algorithmica 37(4), 263–293 (2003)

2. Armengol, A.C., Jackson, M.O.: The effects of social networks on employment and inequality.
American Economic Review 94(3), 426–454 (2004)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing 32(1), 48–77 (2003)

4. Bala, V., Goyal, S.: Learning from neighbors. Review of Economic Studies 65, 595–621 (1998)
5. Banks, D., Carley, K.: Metric inference for social networks. Journal of Classification (Springer)

11(1), 121–149 (1994)
6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512

(1999)
7. Boyd, D.M., Ellison, N.B.: Social network sites: Definition, history, and scholarship. Journal

of Computer-Mediated Communication 13(1) (2007)
8. Bramoulle, Y., Kranton, R.: A model of public goods: Experimentation and social learning,

vol. 135 (2007)
9. Chen, L., Low, S.H., Chiang, M., Doyle, J.C.: Cross-layer congestion control, routing and

scheduling design in ad hoc wireless networks. In: IEEE Infocom. Barcelona, Spain (2006)
10. Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.: Layering as optimization decom-

position: A mathematical theory of network architectures. In: Proceedings of the IEEE,
pp. 255–312 (2007)

454 S. Shakkottai and L. Ying

11. Choi, S., Gale, D., Kariv, S.: Behavioral aspects of learning in social networks: An experimen-
tal study. Advances in Applied Microeconomics 13 (2005)

12. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing
links in networks. Nature 453, 98–101 (2008)

13. Eryilmaz, A., Srikant, R.: Joint Congestion Control, Routing and MAC for Stability and
Fairness in Wireless Networks. IEEE Journal on Selected Areas in Communications 24(8),
1514–1524 (2006)

14. Facebook. http://www.facebook.com/(2009)
15. Fiore, A., Donath, J.: Homophily in online dating: When do you like someone like your-

self? In: Proceedings of the ACM Conference on Human Factors in Computing Systems,
pp. 1371–1374. New York, NY, USA (2005)

16. Friendster. http://www.friendster.com/(2008)
17. Gale, D., Kariv, S.: Bayesian learning in social networks. Games and Economic Behavior

45(2), 329–346 (2003)
18. Georgiadis, L., Neely, M.J., Tassiulas, L.: Resource Allocation and Cross-Layer Control in

Wireless Networks. Foundations and Trends in Networking, pp. 1–149 (2006)
19. Jackson, M.O., Wolinsky: A strategic model of social and economic networks. J. Economic

Theory 71(1), 44–74 (1996)
20. Joffe, B.: New business models in online communities. In: Proceedings of Media’08. Sydney,

Australia (2008)
21. Kelly, F.P.: Multi-armed bandits with discount factor near one: The Bernoulli case. Adv. Appl.

Prob. 9, 897–1001 (1982)
22. Kelly, F.P.: Charging and rate control for elastic traffic. European Transactions on Telecommu-

nications 8, 33–37 (1997)
23. Kelly, F.P.: Models for a self-managed Internet. Philosophical Transactions of the Royal

Society A358, 2335–2348 (2000)
24. Kelly, F.P.: Mathematical modelling of the Internet. In: Mathematics Unlimited - 2001 and

Beyond (Editors B. Engquist and W. Schmid), pp. 685–702. Springer-Verlag, Berlin (2001)
25. Kelly, F.P., Maulloo, A., Tan, D.: Rate control in communication networks: Shadow prices,

proportional fairness and stability. J. Operational Research Society. 49, 237–252 (1998)
26. Lin, X., Shroff, N., Srikant, R.: A tutorial on cross-layer optimization in wireless networks.

IEEE J. Sel. Areas Commun. (2006)
27. Liu, H.: Social network profiles as taste performances. Journal of Computer-Mediated Com-

munication 13(1) (2007)
28. Liu, H., Maes, P., Davenport, G.: Unraveling the taste fabric of social networks. International

Journal on Semantic Web and Information Systems 2(1) (2006)
29. Low, S.H., Lapsley, D.E.: Optimization flow control, I: Basic algorithm and convergence.

IEEE/ACM Trans. Network. 7(6), 861–875 (1999)
30. Lu, M.: Net group wants action on spam. Taipai Times. (2008). http://www.taipeitimes.com/

News/taiwan/archives/2008/12/09/2003430651
31. mGinger. http://www.mginger.com/(2009)
32. MySpace. http://www.myspace.com/(2008)
33. Neely, M., Modiano, E., Li, C.: Fairness and optimal stochastic control for heterogeneous

networks. In: Proc. IEEE Infocom., vol. 3, pp. 1723–1734. Miami, FL (2005)
34. Orkut. http://www.orkut.com/(2009)
35. Second Life. http://www.secondlife.com/(2008)
36. Shakkottai, S., Srikant, R.: Network Optimization and Control. Foundations and Trends in

Networking. Now Publishes, Delft, The Netherlands (2008)
37. Spertus, E., Sahami, M., Büyükkökten, O.: Evaluating similarity measures: A large-scale study

in the Orkut social network. In: Proceedings of 11th International Conference on Knowledge
Discovery in Data Mining, pp. 678–684. New York, NY, USA (2005)

38. Srikant, R.: The Mathematics of Internet Congestion Control. Birkhauser, Boston, MA (2004)
39. Stolyar, A.: Maximizing queueing network utility subject to stability: Greedy primal-dual

algorithm. Queueing Systems 50(4), 401–457 (2005)

http://www.facebook.com/ (2009)
http://www.friendster.com/ (2008)
http://www.taipeitimes.com/News/taiwan/archives/2008/12/09/2003430651
http://www.taipeitimes.com/News/taiwan/archives/2008/12/09/2003430651
http://www.mginger.com/ (2009)
http://www.myspace.com/ (2008)
http://www.orkut.com/ (2009)
http://www.secondlife.com/ (2008)

14 Discount Targeting in Online Social Networks... 455

40. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control pp. 1936–1948 (1992)

Chapter 15
Social-Aware Data Diffusion in Delay
Tolerant MANETs

Yang Zhang, Wei Gao, Guohong Cao, Tom La Porta,
Bhaskar Krishnamachari, and Arun Iyengar

Abstract Most existing mobility-assisted data access techniques in delay tolerant
mobile ad hoc networks (DT-MANETs) are designed to disseminate data to one
or several particular destinations. Different from these works, we study the data
diffusion problem which diffuses data among all moving nodes so that the nodes that
are interested in this data item can get it easily either from their encountered friend
nodes or stranger nodes. To reduce the data access delay, we introduce four social-
aware data diffusion schemes based on the social relationship and data similarity
of the contacts. We also provide solutions to quantify data/interest similarity and
to determine whether two nodes are friends or strangers. Theoretical models are
developed to analyze the data diffusion process and compare the performance of
the four proposed diffusion schemes in terms of diffusion speed and query delay.
We use real traces of human contacts to emulate data diffusion under different
schemes. Both theoretical analysis and experimental results imply an interesting
fact: to achieve better diffusion performance, each node should first diffuse the data
similar to their common interests when it meets a friend, and first diffuse the data
different to their common interests when it meets a stranger.

Y. Zhang (�) • W. Gao • G. Cao • T.L. Porta
Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA
e-mail: yangzhan@cse.psu.edu; wxg139@cse.psu.edu; gcao@cse.psu.edu; tlp@cse.psu.edu

B. Krishnamachari
Department of Electrical Engineering, University of Southern California, Los Angeles, CA
e-mail: bkrishna@usc.edu

A. Iyengar
IBM T.J. Watson Research Center, Hawthorne, NY
e-mail: aruni@us.ibm.com

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 15, © Springer Science+Business Media, LLC 2012

457

yangzhan@cse.psu.edu
wxg139@cse.psu.edu
gcao@cse.psu.edu
tlp@cse.psu.edu
bkrishna@usc.edu
aruni@us.ibm.com

458 Y. Zhang et al.

15.1 Introduction

With the rapid adoption of mobile hand-held devices (e.g., PDAs, Bluetooth
enabled mobile phones, active RFID tags, etc.), more and more people use them
to diffuse, query and share interesting data among themselves without any network
infrastructure support. Such a community-wide (or even city-wide) network formed
by the mobile hand-held devices is an example of a delay tolerant mobile ad hoc
network (DT-MANET) [1].

Due to the low node density and unpredictable network topology, routing paths
in DT-MANETs may be frequently disconnected. To deal with such problems,
mobility-assisted data access techniques have been exploited, where a node physi-
cally carries data for some time until it moves within the communication range of
some other node (i.e., contact) [2–4]. Then it decides whether to propagate the data
to the new contact or not based on some algorithm. Existing algorithms such as
SimBet Routing [5], BUBBLE Rap [6], SocialCast [7], SOLAR [8], and MaxProp
[9] are designed to forward data to one given destination. Since the source and
destination may be faraway from each other, the delay for the destination to get
the data from the source may be long.

One way to reduce the query delay is through data diffusion, where data is
diffused throughout the network and replicated in advance. Subsequent queries can
be served by any node with the data instead of being sent to the source node, and
thus reducing the query delay. However, data diffusion is not free. In DT-MANETs,
nodes diffuse data when they are in contact. Because the contact time is pretty short
and the buffer size of each node is limited, the diffused data has to compete for
the limited bandwidth and buffer space. Therefore, the diffusion decisions made by
each node such as which data should be propagated first and which data should be
replaced out of the buffer, affect the diffusion speed and the data access delay.

In this chapter, we study the performance of different data diffusion schemes
in DT-MANETs. Our classification of these data diffusion schemes is based on
social networks. Social networks exhibit the “homophily” phenomenon [10] which
comes from the observation that individuals often befriend others who have similar
interests, and hence perform similar actions and have a higher possibility to meet
with each other. For example, two individuals who own the same kind of video
game console are more likely to become friends and meet at game shops due to the
common interest in games. Students from the same department are more likely to
take the same courses and appear in the same lab or building. Therefore, the contact
frequencies are probabilistically different between two friends and two strangers,
and this difference should be taken into consideration when designing data diffusion
schemes.

To study the effects of social networking on data diffusion, we are interested
in answering the following questions: How does the data diffusion scheme used
affect the diffusion speed and the data access delay? How to design better data
diffusion schemes based on social networking results? To answer these ques-
tions, we introduce four possible social-aware data diffusion schemes and develop

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 459

theoretical models to analyze their performance in terms of diffusion speed and
query delay. Based on the analysis, we discover an interesting result: to achieve
better performance, when a node meets a new contact, if the new contact is a friend,
it should first diffuse the data similar to their common interests; if the new contact
is a stranger, it should first diffuse the data different from their common interest.
We also provide solutions to determine if a new contact is a friend or stranger based
on their common interests. To verify the theoretical results, we use two real social
contact traces [11,12] to emulate the data diffusion process under different schemes,
and find that the experimental results are consistent with our theoretical analysis.

The rest of this chapter is organized as follows. Section 15.2 discusses the
related works. Section 15.3 describes the application scenario, as well as four social-
aware data diffusion schemes and their implementation techniques. In Sect. 15.4,
we presents the theoretical analysis on diffusion speed and access delay of the four
schemes. Performance evaluations are shown in Sect. 15.5. Finally, we conclude the
chapter in Sect. 15.6.

15.2 Related Work

There have been several theoretical and empirical works on how social behavior can
be used to improve the performance of data access in delay tolerant networks. Peo-
pleNet [13] is a wireless virtual social network which mimics the way people seek
information via social networking. It is simple and scalable for efficient information
search in a distributed manner. However, it uses infrastructure to propagate data and
queries, which is different from the peer-to-peer MANET scenario. SimBet Routing
[5] studies the “small-world” phenomenon of human society and uses ego-centric
centrality and its social similarity to guide data forwarding. Messages are forwarded
towards the node with higher centrality. Similarly, BUBBLE Rap [6] focuses on
community and social centrality, and nodes are structured into communities. High
popularity nodes and community members of the destination are selected as relays.
Ghosh et al. [8] have identified the orbital movement pattern of human being and
relay nodes are chosen based on the places that they frequently visit. Similarly,
Costa et al. [7] provide a routing framework using social interaction information in
publish-subscribe systems and Gao et al. [14] study the social-aware multicasting
issues in delay tolerant networks. Bai and Helmy [15] study the last encounter
based routing protocol that utilizes encounter history to create time gradients for
information diffusion in wireless networks. Furthermore, Gao and Cao [16] exploits
transient contact patterns to improve the performance of data forwarding, and
Li et al. [17] considers the selfishness property of social nodes in data forwarding.
Although [5–8, 14–18] have applied sociological knowledge to data dissemination
in DT-MANETs, these works consider the problem of disseminating data to one
pre-determined destination node. Unlike these existing works, data diffusion is not
for settings with a specific destination.

460 Y. Zhang et al.

The aforementioned works aim to find the most suitable relay node to increase
the possibility of reaching the final destination. Miklas et al. [19], Karagiannis et al.
[20], Chaintreau et al. [4] and Wang et al. [21] study the social factor of delay
tolerant networks in a different way. They analyze the distribution of inter-contact
time between mobile devices and conclude that the inter-contact time follows the
power law distribution or the exponential decay distribution. Further, Hsu et al. [22]
analyze wireless users’ behavioral patterns by extensively mining wireless network
logs and discover that the size of distinct WLAN user group follows a power-law
distribution. Besides, in the area of vehicular DT-MANETs, algorithms [23] and
[24] have been proposed for finding the right relays for data forwarding and Kapadia
et al. [25] consider the problem of optimizing the replication profile of content
to minimize the aggregate average data access delay given knowledge of content
popularity. In [26], the authors also present a cache replacement policy for finite
buffers in a vehicular DT-MANET that takes into account the differing interests of
vehicles in different geographic locations, but this work does not explicitly consider
social interactions between users. Our work differs from these works in that we
study how to use the social network results to improve data dissemination through
social aware data diffusion schemes.

To the best of our knowledge, the closest studies to our work are ContentPlace
[27] and PodNet [28]: when two nodes meet, they decide which data object to
exchange based on the information gathered about nodes’ interests. However, both
[27] and [28] are designed for publish/subscribe services, they assume each node
only fetches its interesting data (for single node in [28] or for single community in
[27]). Our work, instead, studies the problem in a more general perspective where
nodes can not only carry the data they are interested in, they can also buffer data
they are not interested in, and forward them to other interested nodes in the future.

Data dissemination can be modeled as spreading of infectious disease. Disease
spreading in fixed networks has been studied in the past [3]. [29] also analyzed the
epidemic spreading in mobile networks. Different from the analysis in [3] and [29]
where all nodes have the same moving and interest features, in our data diffusion
scenario, both the interested nodes and uninterested nodes can help diffuse data and
they have different meeting frequency and different interest preference. Therefore,
different infection and immunization rates between interested and uninterested
nodes are studied and the overall diffusion rates by both interested and uninterested
nodes are investigated in our work, which adds complexity to the analysis.

15.3 Social-Aware Data Diffusion

In this section, we first present the target application scenario that our work relies
on. After that, we introduce social-aware data diffusion as four possible schemes
based on a two-dimensional classification that combines both interest similarity and
data similarity, and then provide the necessary implementation techniques for the
similarity classification, which is based on the predefined threshold.

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 461

Fig. 15.1 Application
scenario

15.3.1 Application Scenario

The application scenario we target is similar to the one used in ContentPlace [27]
and PodNet [28] where we consider a number of mobile users whose devices
cannot be encompassed by the conventional MANETs. Instead, communication is
achieved by opportunistic pairwise contacts between users to exchange data objects.
According to the homophily phenomenon, users with similar data interests have
strong social relationships with each other. Further, people movements are governed
by their social relationships, and by the fact that people with similar interests are also
mostly bound to particular places (landmarks) that are associated with the interested
topics [30,31]. Therefore, users will spend most of their time and meet more friends
at the landmarks they are bound to, and will also visit some other places occasionally
and meet some stranger nodes at other places. This application scenario fits many
existing service environments. For example, sports fans will spend more time in the
sports related stores instead of cosmetics related stores when they are visiting an
outlet. As a result, they are easy to meet other people with the same interests at
those sports stores. In other words, two people in contact at these stores have a high
possibility to have the similar interests.

Figure 15.1 gives a possible scenario with seven landmarks. Landmark A1–A4
are associated with the similar interest topics (e.g., sports related) and B1–B3 focus
on another group of interest topics (e.g., cosmetics related). Then, people interested
in sports are more likely to visit landmarks A1–A4. It is possible that they meet
some people with different interests when they visit other landmarks sometimes.
But in general, the proposition still holds that their contact rates with the people of
similar interests are higher than that with other stranger people, and most of their
encounters at the interested landmarks have similar interests as they have.

15.3.2 Diffusion Schemes

When two nodes meet each other, they exchange two lists. One is called the interests
list which is the list of the interesting data; the other is the data list which records

462 Y. Zhang et al.

the data they are buffering. Based on these two lists, each node decides whether
the encountered node can serve its query request and make further data diffusion
decisions.

From the data perspective, all nodes can be divided into two non-overlapped
groups, depending on whether if they are interested in one particular data or not.
If one node is interested in the data, then this node is called the interested node of
the data; otherwise, its is the uninterested node. Meanwhile, from the social network
perspective, each node has two kinds of contacts: friends and strangers, where
two nodes are friends if they have more similar interests, and they are strangers
otherwise. According to homophily, friends usually share more common interests
while strangers have less common interest (more details in Sect. 15.3.3). Therefore,
we always hope that data can be diffused to interested nodes quickly so that most
nodes can access their interesting data easily. However, the contact time can be
very short in DT-MANETs and thus some data cannot be diffused between the two
contacts. Also, the memory constraint limits the number of data items that a node
can hold. Thus, we should carefully choose the most suitable data to diffuse and
buffer first.

Without considering sociological knowledge, nodes diffuse data based on their
own interests. Each node fetches and buffers interesting data from its contacts. Due
to the bandwidth and buffer limitations, this solution has slow diffusion speed since
each node only helps diffuse its own interesting data while neglects others. Another
approach is to diffuse data randomly, where all data have the same opportunity to be
diffused. However, this solution may diffuse much uninteresting data to some nodes,
thus wasting the limited bandwidth and buffer space, and increasing the query delay.

With sociological knowledge, contacts can be categorized as friends or strangers
and data can be categorized as being interesting or uninteresting. Thus, we have four
possible data diffusion schemes by combining nodes’ relationship and their interests
in the data (as shown in Fig. 15.2):

1. FsSd: When a node meets a new contact, if the new contact is a friend, it first
sends the data of their common interest. These data items will be sorted based on
their common interest (more details in Sect. 15.3.3). Each node sends the most
similar data to its friend first, and then the second most similar data until the
contact time is over. If the new contact is a stranger, it first sends the data different
from their common interest. It will send the most different data first, and then the
second most different data until the contact time is over.

To summarize, it diffuses the most Similar data between Friends, and diffuses
the most Different data between Strangers.

2. FsSs: it diffuses the most Similar data between both Friends and Strangers.
3. FdSd: it diffuses the most Different data between both Friends and Strangers.
4. FdSs: it diffuses the most Different data between Friends and diffuses the most

Simillar data between Strangers.

If friends first diffuse the data that is most close to their common interests (Fs),
their interesting data will have priority to be propagated and buffered between
themselves. However, if friends diffuse the most different data first (Fd), the

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 463

Fig. 15.2 Data diffusion
schemes

diffusion probability of their common interesting data will be low. On the other
hand, if strangers first diffuse the data most different from their common interests
as they meet (Sd), for one specific data (notice that strangers share less interest
similarity), the data still has a high probability to be diffused from its interested
node to its uninterested node, and vice versa. Therefore, with FsSd, a node should
be able to quickly diffuse data among its interested nodes, as well as between
the interested nodes and its directly encountered uninterested nodes. Based on
“homophily,” friends have higher meeting frequency than strangers. If one data item
can be buffered at more interested nodes, the query delay for this data item can
be reduced. In this sense, FsSd may have the best diffusion performance. Before
verifying this result through both theoretical analysis and experiments, we provide
techniques for quantifying the interest/data similarity.

15.3.3 Measuring Similarity

To measure similarity, the first step is to formalize the description of data and
query. Both data and query can be presented and indexed with resource repre-
sentation techniques such as RDF (i.e., Resource Description Framework [32]) or
WSDL (i.e., Web Services Description Language [33]) based on specific keyword
attributes. In this chapter, to support complex data description, we associate each
data with a sequence of keywords and define a mapping that preserves keyword
similarity. The keywords are common words to describe data attributes such as
“entertainment,” “sport,” “news,” “travel,” and etc. For example, music data may
be labeled with “entertainment” and restaurant information can be indexed with
“travel.” Meanwhile, one data can have multiple attributes, thereby the same sport
video might be labeled with both “entertainment” and “sport.” Following this
mapping method, all attributes form a multi-dimensional keyword space so that the
data is indexed by a multi-dimensional binary vector. If the data has one attribute,
its corresponding bit in the vector is marked “1”; otherwise, it is marked “0.” For

464 Y. Zhang et al.

Fig. 15.3 Data description with m-dimensional attribute vector

Fig. 15.4 A m-dimensional
keyword space

the simplicity of analysis and without loss of generality, we assume the attribute
space is m-dimensional. Then each data can be described and indexed by a m-bit
vector. Figure 15.3 demonstrates how to determine the vector of one data item, and
Fig. 15.4 shows an example of a keyword space. Similarly, query messages can be
described in a similar way.

Measuring interest similarity and data similarity for the classification of data
diffusion schemes

The classification of our data diffusion schemes is based on the two-dimensional
comparison of nodes’ interest similarity and data similarity.

First, in social-aware data diffusion, nodes make diffusion decisions based on
their relationship (i.e., friends or strangers). Two friends share more common
interests while two strangers have less interest similarity. Therefore, we need to
estimate the interest similarity of two nodes to decide their relationship. Since
node interest follows a probability distribution on different attributes, the interest
similarity between two nodes should be calculated with two distributions. The
Kullback–Leibler (K-L) divergence method [34] is used here to measure the

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 465

difference between two probability distributions. If we use P1 and P2 to denote
the discrete interest distributions of two nodes, the K-L divergence of P2 from P1

is defined to be

DKL(P1 ‖ P2) =
m

∑
i=1

P1(i) log
P1(i)
P2(i)

.

Therefore, the interest similarity of two nodes can be estimated as

SVdd =
1

DKL(P1 ‖ P2)

=
1

∑m
i=1 P1(i) log P1(i)

P2(i)

. (15.1)

Suppose FSthres is the interest threshold to estimate the interest similarity of two
nodes. If one node pair has a SVdd smaller than FSthres, they share few common
interests so that they are strangers; otherwise, they are friends.

Note that the K-L divergence is not symmetric, which means DKL(P1 ‖ P2) is
not necessarily equal to DKL(P2 ‖ P1). In this chapter, we always use the interest
distribution of the node with smaller ID as the first parameter (i.e., P1) of the K-L
divergence calculation and the node with larger ID as the second parameter (i.e., P2).

Second, during each contact, nodes need to sort the data according to the data
similarity to their common interests. Since the node’s interests are presented by
distributions and data objects are described by vectors. We need to compare the sim-
ilarity between one vector and one discrete distribution. In this case, the similarity of
one vector and one distribution can be calculated by their inner-product. Formally,

SVvd = ‖ V ·P ‖

=
m

∑
i=1

vi × pi, (15.2)

where V = 〈v1
1,v

2
1, ...v

m
1 〉 is the description vector of data V , and P = 〈p1, p2, ...pm〉

is the distribution vector of the discrete interest distribution P. With the calculation
of SVvd and an interest threshold INthres, each node can distinguish the data that is
most similar or different to nodes’ common interests and choose the most proper
ones to diffuse.

15.4 Theoretical Analysis of Data Diffusion

In this section, we develop theoretical models to analyze the performance of data
diffusion. In Sect. 15.4.1, we first study the case in which nodes have infinite
buffer. Without buffer limitation, nodes spread data to as many contacts as possible
and never remove data from their buffers. However, due to the limitation of the

466 Y. Zhang et al.

Fig. 15.5 Markov chain
model of the S-I infectious
disease with susceptible state
and infected state (with
infinite buffer)

contact time, not all data can be diffused during each contact. Different decisions
on diffusing similar or different data between friends and strangers still affect the
performance of data diffusion. In Sect. 15.4.2, we consider the finite buffer case
where some data items have to be replaced when the buffer is full.

15.4.1 The Infinite Buffer Case

The diffusion of each data item can be modeled as spreading of infectious disease.
Disease spreading in fixed networks has been studied in the past [3]. [29] also
analyzed the epidemic spreading in mobile networks. In the infectious disease
model, one node is “infected” if it has the data buffered in its memory. The node
is “susceptible” to infection if it does not have the data, but could potentially get
the data from other nodes. Different from the traditional “Susceptible–Infected–
Recovered (S-I-R)” model [3,29], in the infinite buffer data diffusion scenario, data
is never deleted as long as it is buffered at some node. Therefore, all nodes follow
a two-state compartmental S-I model. Meanwhile, both the interested nodes and the
uninterested nodes can help diffuse the data. Therefore, the different infection rates
between interested and uninterested nodes should be considered.

First, for the interested nodes, as shown in Fig. 15.5,

total infection rate of interested node

= infection rate by friends + infection rate by strangers

We use susceptible state S(t) and infected state I(t) represents the number of
nodes which are “susceptible” and “infected” in the system at time t, respectively.
Then, I(t) = Ii(t) + Iu(t) and S(t) = Si(t) + Su(t) where Ii(t) and Si(t) are the
numbers of “infected” and “susceptible” interested nodes, and Iu(t) and Su(t) are the
numbers of “infected” and “susceptible” uninterested nodes. β is the contact rate of
one node to meet any other node,1 which consists of the contact rate among friends

1The contact rate does not mean the pairwise contact times for two specific nodes. Instead, it is the
average number of contact for one node to meet any other node in the system.

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 467

(βf) and the contact rate among strangers (βs). Further more, γf and γs are used to
denote the data diffusion probability between two interested friends and from one
interested node to any other uninterested stranger. Suppose there are Ni interested
nodes in the system, then an interested node contacts βf(Ni − 1) other friends per
unit time, of which Si

Ni−1 do not yet have the data. The probability that the data will
be exchanged to the encountered friend is γf. Therefore, the infection rate by friends
can be estimated as

infection rate by friends

= (� of infected nodes)(contact rate of friends)

×(infect probability of friends)(� of susceptible nodes)

= Ii(βf × (Ni − 1))× γf × Si

Ni − 1

= IiβfSiγf.

Similarly, we can get the infection rate by strangers as IiβsSiγs. Then, for a
particular data item, the transition rate of any interested node from state S to state I
becomes

total infection rate of interested node

= infection rate by friends+ infection rate by strangers

= IiβfSiγf + IiβsSiγs

= IiSi(βfγf +βsγs).

We are interested in the transient solution to the Markov chain in Fig. 15.5.
We can get Ii(t) by solving the following first-order differential equation,

dSi

dt
= −IiSi(βfγf +βsγs)

dIi

dt
= IiSi(βfγf +βsγs)

= Ii(Ni − Ii)(βfγf +βsγs)

= (βfγf +βsγs)NiIi − (βfγf +βsγs)I
2
i .

This differential equation is separable and can be solved with the initial condi-
tional Ii(0) = 1 to get the solution

Ii(t) =
Ni

1+ e−(βfγf+βsγs)Nit(Ni − 1)
. (15.3)

468 Y. Zhang et al.

Similarly, based on the same S-I model, we can get the total infection rate of
uninterested nodes as

total infection rate of uninterested node

= infection rate by friends+ infection rate by strangers

= IuβfSuγ ′f + IuβsSuγ ′s
= IuSu(βfγ ′f +βsγ ′s),

where γ ′f and γ ′s are the diffusion probabilities between two uninterested friends and
uninterested strangers.

If we use Nu to represent the number of uninterested nodes in the system, then
the first infected uninterested node is expected to appear at time 1

βs·Nu·γs . Therefore,

Iu(t) can be approximated in the same way as Ii(t) with a time offset of 1
βs·Nu·γs , i.e.,

Iu(t)=

⎧⎨
⎩

0 t ≤ 1
βs·Nu·γs

Nu

1+e
−(βfγ

′
f+βsγ′s)Nu(t− 1

βs ·Nu·γs)(Nu−1)
else. (15.4)

We use Pi and Pu to denote the probabilities of interested nodes and uninterested
nodes to initiate the query. Then for one specific data, its expected query delay at
time t, EQ(t), can be estimated as

EQ(t) = E(query delay o f interested node) ·Pi

+E(query delay o f uninterested node) ·Pu (15.5)

In particular, if the query is initiated by one interested node, this node can get the
data either from its friends (according to “homophily,” they are also the interested
nodes) or from its strangers (they are uninterested nodes).

First, if the data is from a friend node, because there are Ni interested nodes in
the system and Ii(t) interested nodes have the data at time t, the probability that the

query node meets one friend and the friend has the data is Ii(t)
Ni−1 . Meanwhile, as the

query node can contact βf(Ni −1) interested friends per time unit, the average query
delay of this case can be estimated as Ni−1

Ii(t)
· 1
βf(Ni−1) =

1
Ii(t)·βf

. Second, if the data is

from a stranger node, the query node contacts βs(Nu) stranger per time unit and the

probability that the contact nodes has the data is Iu(t)
Nu

. Then we can get its average

query delay as Nu
Iu(t)

· 1
βs(Nu)

= 1
Iu(t)·βs

.
Therefore, the expectation of the query delay of the interested node is the

minimum query delay from either interested nodes or uninterested nodes, i.e.,

E(query delay of interested node) = min

{
1

Ii(t) ·βf
,

1
Iu(t) ·βs

}
(15.6)

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 469

Table 15.1 The setting of
(γf, γs) and (γ ′f , γ

′
s)

γf γs γ ′f γ ′s
FsSd Large Large Small Large
FdSs Small Small Large Small
FsSs Large Small Small Small
FdSd Small Large Large Large

However, if the query is initiated by one uninterested node, there are three kinds
of nodes to serve the query: the friends of the node (who are also uninterested
nodes), the uninterested strangers, and the interested strangers. Similarly, the
expectation of the query delay of the uninterested node can be estimated as

E(query delay of uninterested node)

= min

{
Ni

Ii(t)
· 1
βsNi

,
Nu − 1
Iu(t)

· Ni

Nu − 1
· 1
βfNi

,

×Nu − 1
Iu(t)

· Nu −Ni

Nu − 1
· 1
βs(Nu −Ni)

}

= min

{
1

Ii(t)βs
,

1
Iu(t)βf

,
1

Iu(t)βs

}
. (15.7)

Therefore, we can get

EQ(t) = min

{
1

Ii(t)βf
,

1
Iu(t)βs

}
·Pi

+min

{
1

Ii(t)βs
,

1
Iu(t)βf

,
1

Iu(t)βs

}
·Pu. (15.8)

Different data diffusion schemes have different combinations of (γf, γs) and (γ ′f ,
γ ′s). For example in FsSd, suppose a node carries its interesting data. When this
node meets its friend, most likely it will diffuse the data to its friend. When it meets
a stranger the probability to diffuse this data between them is still high. This is
because stranger nodes first choose the data that is most different to their common
interests to diffuse. Also, two strangers have less interest similarity. If one node is
interested in the data, its stranger might not be interested in it. Therefore, both γf

and γs are set to large values in FsSd.
Suppose a node is carrying an uninteresting data item. When it meets a friend,

its friend may also have no interest in this data, decreasing the diffusion possibility.
If this node meets a stranger that is also not interested in the data, instead, it might
diffuse this uninteresting data because the data is still different from the common
interests of these two uninterested strangers and should have high diffusion priority
according to FsSd. Consequently, γ ′f becomes small and γ ′s is still large. Similarly,
we can set the values of (γf, γs) and (γ ′f , γ

′
s) for the other three schemes as shown in

Table 15.1.

470 Y. Zhang et al.

Fig. 15.6 Numerical results
based on the S-I analysis
model (βf = 0.01, βs = 0.002,
Ni = 20, Nu = 80).
(a) Infected Nodes (b) Query
Delay

0 50 100 150 200
0

10

20

30

40

50

60

70

80

Time Steps

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

FsSd(i)
FsSd(u)
FdSs(i)
FdSs(u)
FsSs(i)
FsSs(u)
FdSd(i)
FdSd(u)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Time Steps

Q
ue

ry
 D

el
ay

 (
T

im
es

te
ps

)

FsSd
FdSs
FsSs
FdSd

a

b

Figure 15.6 shows some numerical results according to the analysis.
Figure 15.6(a) depicts the number of infected nodes as a function of time. We use
FsSd(i) and FsSd(u) to denote the number of infected interested nodes and infected
uninterested nodes, respectively, under the FsSd scheme. The infected nodes of
other three schemes are denoted similarly. As there is infinite buffer, all nodes
should be infected after some amount of time. From the figure, we can see that
at time 200, almost all nodes (20 interested nodes and 80 uninterested nodes)
are infected. However, different diffusion schemes have different data diffusing
speed. For example, at time 25, all the 20 interested nodes in FsSd(i) are infected,
but it takes 130 time units for the 20 interested nodes to be infected in FdSs(i).
Note that the diffusion speeds of FsSd and FsSs are slower than FdSs and FdSd
among uninterested nodes. This is because both FsSd and FsSs give high diffusion
priority to the interested friends while sacrificing the diffusion opportunity of their
uninteresting data.

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 471

Fig. 15.7 Markov chain
model of the S-I-S infectious
disease with susceptible state
and infected state (with finite
buffer)

Figure 15.6(b) investigates the query delay as a function of time for different
diffusion schemes. We can see that FsSd has the shortest query delay. This is
because FsSd diffuses the interesting data among its friends quickly. Homophily
suggests that friends share more common interests and have a high meeting
probability. Therefore, quickly diffusing interesting data among friends results in
lower query delay. FdSs has the lowest diffusion priority between interested friends
and strangers, and thus it has the slowest diffusion speed and longest query delay.
Notice that there is a sudden drop at about time 26. The sudden drop is due to
the piecewise function (5) that is used to estimate the appearance time of the first
infected uninterested node. After an uninterested node gets the data, many queries
might be served, and thus reducing the delay.

15.4.2 The Finite Buffer Case

With finite buffer, the analysis becomes more complicated since data may be
removed from the buffer. In this case, the S-I model should be replaced by the S-I-S
model in which infected nodes return to the susceptible state on recovery because
they are not against reinfection.

Figure 15.7 illustrates the Markov chain model of S-I-S. Similar to the infinite
buffer case, we can get the infection rate and the immunization rate and have the
mass balance equations for Ii(t) and Iu(t):

dIi

dt
= IiSi(βfγf +βsγs)− (Niβfαf +Nuβsαs)Ii,

dIu

dt
= IuSu(βfγ ′f +βsγ ′s)− (Niβfαf +Nuβsαs)Iu

With Si = Ni − Ii and Su = Nu − Iu we get:

dIi

dt
= Ii(Ni − Ii)(βfγf +βsγs)− (Niβfαf +Nuβsαs)Ii

472 Y. Zhang et al.

= ((βfγf +βsγs)Ni − (Niβfαf +Nuβsαs))Ii

−(βfγf +βsγs)I
2
i

= ((βfγf +βsγs)Ni − (Niβfαf +Nuβsαs))Ii

×
⎛
⎝1− Ii

Ni − Niβfαf+Nuβsαs
βfγf+βsγs

⎞
⎠ (15.9)

and

dIu

dt
= Iu(Nu − Iu)(βfγ ′f +βsγ ′s)− (Niβfαf +Nuβsαs)Ii

= ((βfγ ′f +βsγ ′s)Nu − (Niβfαf +Nuβsαs))Iu

×
⎛
⎝1− Iu

Nu − Niβfαf+Nuβsαs
βfγ ′s+βsγ ′f

⎞
⎠ (15.10)

where αf and αs are the purging rates of friends and strangers (i.e., the probability
that one data will be purged out from the buffer at each contact).

For the logistic differential (15.9) and (15.10), since βfγf+βsγs, Niβfαf+Nuβsαs,
βfγ ′f + βsγ ′s, and Niβfαf +Nuβsαs are larger than 0, as long as (βfγf+βsγs)Ni

Niβfαf+Nuβsαs
and

(βfγ ′f+βsγ ′s)Nu
Niβfαf+Nuβsαs

exceeds one, the endemic equilibrium of (15.9) and (15.10) can be

reached when dIi
dt = 0 and dIu

dt = 0, respectively.

Therefore, in these two cases, 1 − Ii
Ni− Niβfαf+Nuβsαs

βfγf+βsγs

is equal to 0 and 1 −
Iu

Nu− Niβfαf+Nuβsαs
βfγ

′
s+βsγ′f

is equal to 0, which means,

Ii = Ni − Niβfαf +Nuβsαs

βfγf +βsγs
(15.11)

and

Iu = Nu − Niβfαf +Nuβsαs

βfγ ′f +βsγ ′s
(15.12)

Table 15.2 shows some numerical results based on our analysis. The results
indicate that FdSs and FdSd tend to diffuse and buffer data among nodes that
are not interested. Therefore, nodes use more buffer space to hold uninteresting
data. However, in FsSd and FsSs, as data has high priority to be diffused between
interested nodes, most data copies are at the interested nodes. FsSd differs from FsSs
in that it also has high probability to diffuse one particular data item between any
two strangers, which brings in more data copies at its uninterested nodes. Since most

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 473

Table 15.2 Numerical results of data distribution based on the S-I-S analysis model (Ni = 20,
Nu = 80)

αf/αs = 0.1/0.9 αf/αs = 0.2/0.8 αf/αs = 0.3/0.7 αf/αs = 0.4/0.6 αf/αs = 0.5/0.5
Ii Iu Delay Ii Iu Delay Ii Iu Delay Ii Iu Delay Ii Iu Delay

FsSd 19 48 4.63 17 52 5.09 14 57 5.57 11 62 6.07 7 67 6.27
FdSs 0 75 5.60 0 73 5.75 0 70 6.00 0 68 6.18 7 67 6.27
FsSs 18 0 10.00 15 27 6.07 12 49 7.07 10 60 6.60 7 67 6.27
FdSd 2 79 5.32 3 77 5.46 5 74 5.68 6 71 5.92 7 67 6.27

queries are initiated by the interested nodes and friends are easier to meet with each
other, as reported in Table 15.2. Even though FsSd results in fewer data copies than
FdSs and FdSd, it can still serve queries faster. Since FsSd has more data copies
at the uninterested nodes than FsSs, it can serve the query from uninterested nodes
more quickly. We can also observe that as the purging rate becomes skewer, the
advantage of FsSd becomes more obvious. This is because when the purging rates
become unequal between interested nodes and uninterested nodes, most queries can
be served quickly by the interested nodes according to (8), (11), and (12).

15.5 Performance Evaluations

In this section, we evaluate the proposed diffusion schemes with real traces. We first
study the infinite buffer case and then study the finite buffer case.

15.5.1 Experiment Setup

To evaluate different diffusion schemes, we use two well-known traces: the Cam-
bridge Haggle Trace [11] and the MIT Reality Mining Trace [12]. In the Cambridge
trace, 41 Intel iMotes were distributed to students attending the Infocom student
workshop in Miami, 2005. They collected information such as when they meet
with each other or any other external new devices. The trace covers 3 days. The
MIT trace consists of 100 users carrying Nokia 6600 smart phones over more than
nine months. The details of the two experimental traces are briefly summarized in
Table 15.3. We extract the contact information from both traces to identify direct
contacts between nodes where data diffusion could have taken place. The trace
files are divided into discrete sequential contact events which are fed into our
experiments. Each time a contact is observed, the node makes a diffusion decision
based on the diffusion scheme.

The interest distribution of each node is generated based on its contact rate with
other nodes. We assure that each pair of nodes share more common interests if
they have higher contact frequency. Due to the randomness of node activity, in each

474 Y. Zhang et al.

Table 15.3 Characteristics of the two experimental traces

Experimental trace Cambridge Infocom’05 MIT Reality

Device iMotes Smart Phones
Network type Bluetooth Bluetooth
Duration 3/7/2005∼3/10/2005 7/10/2004∼5/5/2005

(3 days) (9 months)
Granularity 120 s 300 s
of devices 41 internal, 233 external 97 internal
of contacts 28,216 113,902

experiment we characterize the contact rate of each node pair with the first half of
the trace. We count the contact times of each node pair and adjust their interest
distributions so that two nodes can have more common interests when they meet
more often. After that we use the second half of the trace to evaluate the proposed
schemes. More specifically, in the Cambridge trace, we use the trace from time
21,703 to time 108,098 as the training dataset and run the experiments with the
trace from time 108,106. In the MIT trace, the first half of the trace (from 2004/7/10,
15:57 to 2004/11/19, 11:52) is used to predict node relationship and the remainders
are fed into the diffusion schemes. We generate 1,000 queries which are uniformly
distributed in the whole experiment period. Following Pareto’s Rule [35], 80%
queries are initiated by interested nodes and other 20% are initiated by uninterested
nodes. We also divide the whole experiment period into n (n = 15 in Cambridge
trace and n = 14 in MIT trace) statistical sessions to record the query delay results.
We use the average delay of all queries in each session to represent the query delay
of that statistical session. In order to overcome the finiteness of the traces, if the
initiated query is not served before the end of the trace, the same meeting pattern is
applied by re-feeding the trace from the beginning. Each experiment is repeated 10
times with different random seeds to eliminate randomness.

15.5.2 The Infinite Buffer Case

Figure 15.8 compares the data diffusion speed and data access delay as a function of
time for the four schemes. As shown in the figure, with infinite buffer, the number
of infected nodes increases and the query delay decreases as time goes. However,
the diffusion speed and query delay under different scheme is different. As shown
in Fig. 15.8(a), data can be diffused to its interested nodes more quickly in FsSd
and FsSs than that in FdSs and FdSd. This result is consistent with our numerical
analysis in which FsSd and FsSs have faster diffusion speed among interested
nodes. Since FsSd and FsSs assign high diffusion priority among interested nodes
and nodes sharing similar interests are more likely to meet with each other, the
data can easily spread out among its interested nodes. Instead, FdSs and FdSd
diffuse data slowly among interested nodes but they have a faster diffusion speed

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 475

108106 160000 220000 275900
0

5

10

15

20

25

30

Time Steps

N
um

be
r

of
 In

fe
ct

ed
 In

te
re

st
ed

 N
od

es

FsSd
FdSs
FsSs
FdSd

108106 160000 220000 275900
0

20

40

60

80

100

120

140

160

180

200

Time Steps

N
um

be
r

of
 In

fe
ct

ed
 U

ni
nt

er
es

te
d

N
od

es

FsSd
FdSs
FsSs
FdSd

108106 160000 220000 275900
0

5000

10000

15000

20000

25000

30000

35000

Time Steps

Q
ue

ry
 D

el
ay

 (
T

im
e

S
te

ps
)

FsSd
FdSs
FsSs
FdSd

a b

c

Fig. 15.8 Results for the Cambridge Infocom’05 trace (with infinite buffer). (a) Number of
Infected Interested Nodes (b) Number of Infected Uninterested Nodes (c) Query Delay

among uninterested nodes as shown in Fig. 15.8(b). This is because friends diffuse
different data first in FdSs and FdSd, and the data has more opportunity to be
diffused between two uninterested friends. Further, FdSd can speed up data diffusion
between two strangers who are not interested in the data because two strangers
diffuse different data first in FsSd.

As shown in Fig. 15.8(c), as the number of data copies increases, queries for these
data can be served more quickly. Since FsSd diffuses data faster among interested
nodes, it has the shortest query delay compared with other schemes. For example, at
time 160,000, the query delay of FsSd is about 26% less than FdSd, 32% less than
FsSs, and about 40% less than FdSs. At time 220,000, the performance difference is
more obvious. The query delay of FsSd is about 37% and 73% less than FdSd and
FsSs, respectively, and 68% less than FdSs. Note that FsSs has the longest delay
because more than 100 uninterested nodes are still uninfected in FsSs when the
experiment finishes.

Figure 15.9 presents comparison results based on the MIT Reality trace. Again,
FsSd achieves the best performance in terms of data diffusion speed and query delay.
It has the fastest diffusion speed among interested nodes and the shortest query

476 Y. Zhang et al.

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

2

4

6

8

10

12

14

16

18

Time

N
um

be
r

of
 In

fe
ct

ed
 In

te
re

st
ed

 N
od

es

FsSd
FdSs
FsSs
FdSd

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

10

20

30

40

50

60

70

Time

N
um

be
r

of
 In

fe
ct

ed
 U

ni
nt

er
es

te
d

N
od

es

FsSd
FdSs
FsSs
FdSd

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

200

400

600

800

1000

1200

Time

Q
ue

ry
 d

el
ay

 (
T

im
e

S
te

ps
)

FsSd
FdSs
FsSs
FdSd

Fig. 15.9 Results for the MIT Reality Mining trace (with infinite buffer). (a) Number of Infected
Interested Nodes (b) Number of Infected Uninterested Nodes (c) Query Delay

delay, which is consistent with the results of the Cambridge trace, and the analytical
results in the last section. We notice that the diffusion speed is much slower in
the Cambridge trace than that in the MIT trace. This is because most nodes in the
Cambridge trace are external nodes, which do not appear regularly in the network.

15.5.3 The Finite Buffer Case

With finite buffer, some data may be replaced if the buffer is full. As shown in
Fig. 15.10(a) and Fig. 15.10(b), the number of infected interested nodes and the
number of infected uninterested nodes fluctuate at different time. This fluctuation
comes from the fact that the data can be diffused among nodes and can be removed
from the buffer as well. When the data item is buffered, the number of infected nodes
increases. If the node’s buffer is full, some data item has to be removed. Then, the
node returns to the susceptible status and the number of infected nodes decreases.

In FsSd, each node prefers buffering its interesting data rather than uninteresting
data. As long as a data item is buffered at its interested node, it will not be removed

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 477

108106 160000 220000 275900
0

5

10

15

20

25

30

Time Steps

N
um

be
r

of
 In

fe
ct

ed
 In

te
re

st
ed

 N
od

es

FsSd
FdSs
FsSs
FdSd

108106 160000 220000 275900
0

20

40

60

80

100

120

140

160

180

200

Time Steps

N
um

be
r

of
 In

fe
ct

ed
 U

ni
nt

er
es

te
d

N
od

es

FsSd
FdSs
FsSs
FdSd

108106 16000 22000 275900
0

5000

10000

15000

20000

25000

30000

35000

Time Steps

Q
ue

ry
 D

el
ay

 (
T

im
e

S
te

ps
)

FsSd
FdSs
FsSs
FdSd

Fig. 15.10 Results for the Cambridge Infocom’05 trace (with finite buffer). (a) Number of
Infected Interested Nodes (b) Number of Infected Uninterested Nodes (c) Query Delay

most likely. Thus, there are always more infected interested nodes in FsSd. FdSs
and FdSd are different. They diffuse different data and remove similar data first
between friends. Consequently, there will not be many data copies at the interested
nodes. However, FdSs and FdSd give high priorities to diffuse and buffer data in
the uninterested nodes. Hence, they have more data copies in uninterested node
than FsSd and FsSs. Even though there are fewer infected uninterested nodes in
FsSd, FsSd still outperforms FdSs and FdSd in terms of query delay because it helps
diffuse data to the interested nodes. As shown in Fig. 15.10(c), FsSd can reduce up
to 60% query delay compared to the other three schemes.

Figure 15.11 shows comparisons based on the MIT trace. The results are similar
to that of the Cambridge trace. Because the MIT trace logs fewer nodes, but with
more activities, the prediction on the contact rate with the first half of trace data is
more accurate, and thus making FsSd perform better.

By comparing Fig. 15.8(c) to Fig. 15.10(c), we can see that the query delay in
the infinite buffer case is much shorter than that in the finite buffer case, and the
difference becomes more obvious as time goes. Similar results can be seen by
comparing Fig. 15.9(c) and Fig. 15.11. This is because data may be purged out when

478 Y. Zhang et al.

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

2

4

6

8

10

12

14

16

18

Time

N
um

be
r

of
 In

fe
ct

ed
 In

te
re

st
ed

 N
od

es

FsSd
FdSs
FsSs
FdSd

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

10

20

30

40

50

60

70

80

Time

N
um

be
r

of
 In

fe
ct

ed
 U

ni
nt

er
es

te
d

N
od

es FsSd
FdSs
FsSs
FdSd

2004/11/19 11:52 2005/2/10 19:26 2005/5/5 3:02
0

200

400

600

800

1000

1200

Time

Q
ue

ry
 D

el
ay

 (
T

im
e

S
te

ps
)

FsSd
FdSs
FsSs
FdSd

Fig. 15.11 Results for the MIT Reality Mining trace (with finite buffer). (a) Number of Infected
Interested Nodes (b) Number of Infected Uninterested Nodes (c) Query Delay

the buffer is full in the finite buffer case. As a result, the delay for the finite buffer
case is longer than that in the infinite buffer case. Similarly, the data fusion speed is
also higher in the infinite buffer case than that in the finite buffer case.

15.5.4 Discussion

It is worth noticing that although FsSd has the best performance among the four
schemes, its diffusion probability between two uninterested friends is still low,
which slows down the diffusion speed among uninterested nodes. This is because in
FsSd, friends first choose the data that is more similar to their common interests to
diffuse, which prevents the diffusion of their uninteresting data (γ ′f is set to a small
value in Table 15.1). To diffuse one data item quickly between uninterested friends,
some changes have to be made in FsSd. For example, each pair of friends have to
make different diffusion decisions on their interesting data and uninteresting data,

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 479

i.e., to diffuse similar data first for the interesting data and to diffuse different data
first for uninteresting data.

However, this modified scheme may not be practical, because it is impossible to
tell whether the interesting data or uninteresting data is more important and a node
cannot treat interesting data and uninteresting data separately. Further, according to
the modified scheme, all data items have the same diffusion priority. Then, suppose
one data item could have the diffusion privilege at all nodes, all data will have high
diffusion priority, which is also impossible in a competition system. Although FsSd
does not have the fastest diffusion speed among all nodes, it can diffuse data to the
interested nodes quickly, which helps reduce the overall query delay.

15.6 Conclusions

In this chapter, we studied the performance of different data diffusion schemes in
delay tolerant mobile ad hoc networks (DT-MANETs). We introduced four possible
social-aware data diffusion schemes and developed theoretical models to analyze
their performance in terms of data diffusion speed and query delay. Based on the
analysis, we found an interesting result: to achieve better performance, a node
should first diffuse the data most similar to their common interest when it meets
a friend, and it should first diffuse the data most different to their common interest
when it meets a stranger. To verify the theoretical result, extensive experiments have
been carried out based on real traces of human contacts, and the experimental results
are consistent with our theoretical analysis.

To the best of our knowledge, our work is the first to study data diffusion instead
of data forwarding/routing using sociological knowledge. In this initial effort, of
course, we have not addressed all relevant problems. In the future, we will look
into other techniques to measure interest similarity. We will also investigate how to
integrate data forwarding and data diffusion.

Acknowledgements This work was supported in part by Network Science CTA under Grant
W911NF-09-2-0053.

References

1. S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In SIGCOMM, pages 145–
158, 2004.

2. W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data delivery in sparse
mobile ad hoc networks. In MobiHoc, pages 187–198, 2004.

3. T. Small and Z. J. Haas. The shared wireless infostation model: a new ad hoc networking
paradigm (or where there is a whale, there is a way). In MobiHoc, pages 233–244, 2003.

4. A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of human mobility
on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6(6):
606–620, 2007.

480 Y. Zhang et al.

5. E. Daly and M. Haahr. Social network analysis for routing in disconnected delay-tolerant
manets. In MobiHoc, pages 32–40, 2007.

6. P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social based forwarding in delay tolerant
networks. In MobiHoc, 2008.

7. P. Costa, C. Mascolo, M. Musolesi, and G.P. Picco. Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks. IEEE Journal on Selected Areas in
Communications, 26(5):748–760, June 2008.

8. J. Ghosh, S. J. Philip, and C. Qiao. Sociological orbit aware location approximation and
routing (solar) in manet. Ad Hoc Netw., 5(2):189–209, 2007.

9. J. Burgess, B. Gallagher, D. Jensen, and B.N. Levine. Maxprop: Routing for vehicle-based
disruption-tolerant networks. In INFOCOM, 2006.

10. M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in social
networks. In Annual Review of Sociology, pages 15–44, 2001.

11. Cambridge Haggle Project. http://www.haggleproject.org/.
12. MIT Realisty Mining Project. http://reality.media.mit.edu/.
13. M. Motani, V. Srinivasan, and P. S. Nuggehalli. Peoplenet: engineering a wireless virtual social

network. In MobiCom, pages 243–257, 2005.
14. W. Gao, Q. Li, B. Zhao, and G.Cao. Multicasting in delay tolerant networks: A social network

perspective. In MobiHoc, 2009.
15. F. Bai and A. Helmy. Impact of mobility on last encounter routing protocols. SECON, pages

461–470, June 2007.
16. W. Gao, and G. Cao. On Exploiting Transient Contact Patterns for Data Forwarding in Delay

Tolerant Networks. In IEEE International conference on network protocols(ICNP), 2010.
17. Q. Li, S. Zhu, and G. Cao. Routing in socially selfish delay tolerant networks. In INFOCOM,

2010.
18. Y. Zhang, J. Zhao, G. Cao, and C. Das. On interest locality in content-based routing for large-

scale manets. In IEEE 6th International Conference on Mobile Adhoc and Sensor Systems
(MASS), pages 178–187, 2009.

19. A. Miklas, K. Gollu, K. Chan, S. Saroiu, K. Gummadi, and E. Lara. Exploiting social
interactions in mobile systems. In UbiComp, 2007.

20. T. Karagiannis, J. Boudec, and M. Vojnović. Power law and exponential decay of inter contact
times between mobile devices. In MobiCom, pages 183–194, 2007.

21. Y. Wang, B. Krishnarnachari, and T. Valente. Findings from an empirical study of fine-
grained human social contacts. In The Sixth International Conference on Wireless On-Demand
Network Systems and Services (WONS), pages 141–148, 2009.

22. W. Hsu, D. Dutta, and A. Helmy. Mining behavioral groups in large wireless lans. In Mobi-
Com, pages 338–341, 2007.

23. J. Zhao and G. Cao. VADD: vehicle-assisted data delivery in vehicular ad hoc networks. IEEE
Transactions on Vehicular Technology, 57(3):1910–1922, May 2008.

24. Y. Zhang, J. Zhao, and G. Cao. Roadcast: a popularity aware content sharing scheme in vanets.
In IEEE ICDCS, pages 223–230, 2009.

25. S. Kapadia, B. Krishnamachari, and S. Ghandeharizadeh. Static replication strategies for
content availability in vehicular ad-hoc networks. Journal of Mobile Network and Applications
(MONET), 14(5):590–610, 2009.

26. S. Ghandeharizadeh and S. Kapadia. An evaluation of location-demographic replacement
policies for zebroids. In IEEE Consumer Communications and Networking Conference
(CCNC), Jan 2006.

27. C. Boldrini, M. Conti, and A. Passarella. Contentplace: social-aware data dissemination in
opportunistic networks. In MSWiM, pages 203–210, 2008.

28. V. Lenders, G. Karlsson, and M. May. Wireless ad hoc podcasting. In SECON, pages 273–283,
2007.

29. X. Zhang, G. Neglia, J. Kurose, and D. Towsley. Performance modeling of epidemic routing.
Comput. Netw., 51(10):2867–2891, 2007.

http://www.haggleproject.org/.
http://reality.media.mit.edu/.

15 Social-Aware Data Diffusion in Delay Tolerant MANETs 481

30. K. Lee, M. Le, J. Haerri, and M. Gerla. Louvre: Landmark overlays for urban vehicular routing
environments. IEEE WiVeC, 2008.

31. Q. Yuan, I. Cardei, and J. Wu. Predict and relay: an efficient routing in disruption-tolerant
networks. In MobiHoc, pages 95–104, 2009.

32. RDF Core Working Group http://www.w3.org/RDF/.
33. Web Services Description Language (WSDL) Version 2.0 http://www.w3.org/TR/wsdl20.
34. S. Kullback and R. A. Leibler. On information and sufficiency. In Annals of Mathematical

Statistics 22: 79-86., 1951.
35. W. J. Reed. The pareto, zipf and other power laws. In Economics Letters, pages 15–19, 2001.

http://www.w3.org/RDF/.
http://www.w3.org/TR/wsdl20.

Chapter 16
Security and Privacy in Online Social Networks:
Optimization Perspectives

Ling Ding, Hongjie Du, and Weili Wu

Abstract Recently, Online Social Networks (OSNs) becomes one of the most
remarkable technologies in the twenty-first century since it has been extraordinarily
popular with over 200 million users. Security and privacy problems are the most
important issues in OSNs. In this chapter, we introduced the optimization of security
and privacy problems in OSNs. We characterized three existing works with different
targets to give a view of this problem.

16.1 Introduction

Online Social Networks (OSNs) is one of the most remarkable technologies in
the twenty-first century since it has been extraordinarily popular with over 200
million users. Through OSN applications (e.g. Facebook, Myspace, and Twitter),
users can share their information such as photographs, phone numbers, with their
friends. OSNs have already attracted much attention by some very popular Web
sites [19]. As the technology matures, more applications are likely to emerge.
It is also likely that social networking will play an important role in the future
personal and commercial online interaction, as well as the location and organization
of information and knowledge. Examples include browser plug-ins to discover
information viewed by friends [20, 24], and social network based, cooperative Web
search tools [18]. Even major Web search companies are deploying services that
leverage social networks, like Yahoo!s MyWeb 2.0 [26] and Google Co-op [8].

Unlike the Web [12], which is largely organized around content, OSNs are
organized around users. Participating users join a network, publish their profile
and any content, and create links to any other users with whom they associate.

L. Ding (�) • H. Du • W. Wu
Department of Computer Science, University of Texas at Dallas, USA
e-mail: ling.ding@utdallas.edu; hongjiedu@utdallas.edu; weiliwu@utdallas.edu

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 16, © Springer Science+Business Media, LLC 2012

483

ling.ding@utdallas.edu
hongjiedu@utdallas.edu
weiliwu@utdallas.edu

484 L. Ding et al.

Fig. 16.1 A typical social network architecture: third party apps. are hosted on remote servers,
and are accessed via the social network

The resulting social network provides a basis for maintaining social relationships,
for finding users with similar interests, and for locating content and knowledge that
has been contributed or endorsed by other users.

It is well known that the commercial success of OSNs relies heavily on the
number of users they attract [6]. Thus, there is pressure on OSNs providers to
encourage design and behaviour which increase the number of users and their
connections. Sociologically, the natural human desire to connect with others,
combined with the multiplying effects of Social Network (SN) technology, can make
users less discriminating in accepting “friend requests”. Users are often not aware
of the size or nature of the audience accessing their profile data and the sense of
intimacy created by being among digital “friends” often leads to disclosures which
are not appropriate to a public forum. Moreover, recent work has proposed the use
of social networks to mitigate email spam [5], to improve Internet search [18], and
to defend against Sybil attacks [11].

Figure 16.1 depicts the architecture of a typical OSN like Facebook, which
supports third-party applications run on remote servers. The social graph and user
data are stored at the OSN site in a cluster or a “cloud”. Third party applications
run on their own servers using the API provided by the OSN, store and process
application content locally, but interact with users through the OSN. Facebook
Application Platform and OpenSocial are two popular examples of platforms with
this architecture. The threats to privacy they identify in this section are common
to these centralized architectures, as well as distributed architectures used by
Tribler [22], FTN [10], and SocialSearch [18].

Recently, as more and more social network data has been made publicly
available [1,2,13,14], preserving privacy in publishing social network data becomes
an important concern.

A social network is a special graph structure made of entities and connections
between these entities. These entities, or nodes, are abstract representations of
either individuals or organizations that are connected by one or more attributes.
The connections, or edges, denote relationships or interactions between these
nodes. Connections can be used to represent financial exchange, friend relation-
ships, conflict likelihood, web links, sexual relationships, disease transmission

16 Security and Privacy in Online Social Networks: Optimization Perspectives 485

(epidemiology), etc. Although studying social networks has wide applications and
attracted more and more attentions in recent years, they still face the challenge
of achieving a reasonable tradeoff between securing the confidential information
associated with the social networks and maximizing the benefits from the social
network analysis. These threats against privacy of the social networks promote us to
develop social network privacy oriented -preserving techniques.

A fundamental feature of social networks is the relationship graph that connects
users. This graph enables two individuals to find the relationship paths that connect
them. These paths are useful to express trustworthy users: nearby people (with short
relationship paths connecting them) often deserve a higher level of trust. The path
discovery mechanism can be used as a building block for many social networking
applications: (1) Discovering a relationship path to a recruiter may boost the chances
of a job applicant to get the position; vice-versa, discovering a relationship path to
an applicant could help the recruiter get a more trusted judgment on the applicant.
(2) Relationship path discovery can provide a basis for access control mechanisms
suitable for Social Networks, where users determine the authorized users based on
their distance to themselves in the social network. (3) A path to a person submitting
an online review can boost confidence in the review. (4) Ensuring the receiver of an
email that the sender is nearby in her social network can help avoid falsely flagging
the email as spam. Although the relationship graph is at the core of the usefulness of
social networks, personal relationships represent sensitive, private information that
can also be misused. A primary concern is the unwelcome linkage among users. For
example, two professionals employed by rival companies that have a connection
may trigger suspicion. Or, connections of innovators and venture capitalists could
alert the competition by giving leads to upcoming technological developments.
Or, simply, a social relationship can correspond to a sensitive personal real-world
relationship. Of greater concern is the discovery of entire relationship paths and, in
the end, of the entire graph. A significant negative consequence of this discovery is
the large-scale targeting, tracking, and monitoring of multiple individuals in real life
based on discovered relationship paths. Other privacy concerns can arise from graph
operations; e.g., user de-anonymization through merging of relationship graphs [15].

So, when we try to optimize the security and privacy issues in OSNs, we usually
map the model to a graph, and use the graph theory to solve the problem. There are
four parts in OSNs (Sect. 16.2), and current research mainly focuses on protecting
data or profile of Data owner. In this chapter, we introduce some existing works with
good citation. Each of them focuses on different target and has different model. We
put an summary section at the front of each problem to show the pros and cons
between their works and other works.

16.2 Online Social Network Model

In [25], OSN is composed by four parts – Credential authority, Storage site, Data
Owner, and Member.

486 L. Ding et al.

16.2.1 Credential Authority

Credential authority is in charge of cryptographically initializing an OSN domain
and issuing a public/private key pair to each user in the domain. An OSN domain
consists of a credential authority and all the registered users. It is necessary for
users to possess legitimate credentials (i.e., key pairs) in order to perform security
operations in the domain. A service provider acts as the credential authority in
the OSN, e.g., the administrator in the Facebook social network. The credential
authority is generally trusted by the OSN users and is provided with the users
identity information (e.g., email address) upon registration.

16.2.2 Storage Site

Storage site is a third-party provider that offers free or priced mass storage space
to accommodate user data possibly from multiple OSN applications or domains.
The storage site is not trusted by the OSN users because it is not directly run by the
OSN. The reason that we assume the untrusted third-party storage in favor of trusted
proprietary storage (owned by the OSNs), is to take a more hostile and challenging
environment into account when carrying out our security design.

16.2.3 Data Owner

Data owner or group manager, is an OSN user who shares personal or private
data within his/her groups of contact, controls access of the group members to the
private data, and adds/removes users from his/her groups. Hereafter, we use group
to represent all contacts of a data owner who classifies these contacts (or the group)
into different subgroups, based on the contacts social relationships with the data
owner.

16.2.4 Member

Member is an OSN user and a contact of one or more data owners subgroup. The
member may take on a different role in each data owners subgroup (e.g., ones
classmate and anothers family). The member is meanwhile the data owner of his/her
own group. The trust relationship between the data owner and a member is based
on the social relationship of the two. For example, one trusts the family but may not
trust a friend made in the online chatting room.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 487

16.3 Privacy-Preserving Graph Algorithms in the Semi-honest
Model

16.3.1 Summary

In Sect. 16.3, they introduced privacy-preserving protocols that enable two honest
but curious parties to compute All Pairs Shortest Distance (APSD) and Single
Source Shortest Distance (SSSD) on their joint graph. A related problem is how
to construct privacy-preserving protocols for graph comparison. Many of these
problems (e.g., comparison of the graphs respective maximum flow values) reduce
to the problem of privacy-preserving comparison of two values, and thus have
reasonably efficient generic solutions.

Their algorithm for APSD was new when they proposed, while the SSSD
algorithm is a privacypreserving transformation of the standard Dijkstras algorithm.
They also show that minimum spanning trees can be easily computed in a privacy-
preserving manner.

They show that how the graph theory like shortest path tree and minimum
spanning tree can be used in privacy issues in OSN.

16.3.2 Definition of Privacy

They [3] use a simplified form of the standard definition of security in the static
semi-honest model due to Goldreich [7] (this is the same definition as used, for
example, by Lindell and Pinkas [15]).

Definition 16.1 (computational indistinguishability). Let S ⊆ {0,1}∗. Two en-
sembles (indexed by S), X = Xω{ω∈S} and Y = Yω{ω∈S} are computationally
indistinguishable (by circuits) if for every family of polynomial-size circuits, Dnn∈N ,
there exists a negligible (i.e., dominated by the inverse of any polynomial) function
μ : N �→ [0,1] so that

|Pr[Dn(ω ,Xω) = 1]−Pr[Dn(ω ,Yω) = 1]|< μ(|ω |)
In such a case, they write X ≡ Y .

Suppose f is a polynomial-time functionality (deterministic in all cases consid-
ered in this section), and π is the protocol. Let x and y be the parties respective
Privacy-Preserving Graph Algorithms in the Semi-honest Model 239 private inputs
to the protocol. For each party, define its view of the protocol as (x,r1,m1

1, . . . ,m
1
k)

(respectively, (y,r2,m2
1, . . . ,m

2
l)), where r1,2 are the parties internal coin tosses, and

mi
j is the jth message received by party i during the execution of the protocol. They

will denote the ith parties view as viewπi (x,y), and its output in the protocol as
outputπi (x,y).

488 L. Ding et al.

Definition 16.2. Protocol π securely computes deterministic functionality f in the
presence of static semi-honest adversaries if there exist probabilistic polynomialtime
simulators S1 and S2 such that

S1(x, f (x,y))x,y∈{0,1}∗ ≡ viewπ1 (x,y)x,y∈{0,1}∗

S2(x, f (x,y))x,y∈{0,1}∗ ≡ viewπ2 (x,y)x,y∈{0,1}∗

where |x|= |y|.
Informally, this definition says that each parties view of the protocol can be

efficiently simulated given only its private input and the output of the algorithm
that is being computed (and, therefore, the protocol leaks no information to a semi-
honest adversary beyond that revealed by the output of the algorithm).

16.3.3 Privacy-Preserving Algorithms on Joint Graphs

They now present their constructions that enable two parties to compute algorithms
on their joint graph in a privacy-preserving manner. Let G1 and G2 be the two parties
respective weighted graphs. Assume that G1 = (V1,E1,ω1) and G2 = (V2,E2,ω2)
are complete graphs on the same set of vertices, that is, V1 = V2 and E1 = E2.
Let ω1(e) and ω2(e) represent the weight of edge e in G1 and G2, respectively.
To allow incomplete graphs, the excluded edges may be assigned weight ∞.
They are interested in computing algorithms on the parties joint minimum graph
gmin(G1,G2) = (V,E,ωmin) where ωmin(e) = min(ω1(e),ω2(e)), since minimum
joint graphs seem natural for application scenarios.

16.3.3.1 Private All Pairs Shortest Distance

The APSD problem is the classic graph theory problem of finding shortest path
distances between all pairs of vertices in a graph (see, e.g., [4]). They will think
of APSD(G) as returning a complete graph G′ = (V,E ′,ω ′) in which ω ′(ei j) =
dG(i, j)and V is the original edge set of G. Here, dG(i, j) represents the shortest
path distance from i to j in G. This problem is particularly well suited to privacy-
preserving computation because the solution leaks useful information that can be
used by the simulator. To motivate the problem, consider two shipping companies
who are hoping to improve operations by merging so that they can both take
advantage of fast shipping routes offered by the other company. They want to see
how quickly the merged company would be able to ship goods between pairs of
cities, but they do not want to reveal all of their shipping times (and, in particular,
their inefficiencies) in case the merger does not happen. In other words, they

16 Security and Privacy in Online Social Networks: Optimization Perspectives 489

wish to compute APSD(G) where G = gmin(G1,G2). The basic idea behind their
construction is to build up the solution graph by adding edges in order from shortest
to longest. The following algorithm takes as input the parties complete graphs G1

and G2. The graphs may be directed or undirected, but they must have strictly
positive weight functions.

1. For notational convenience they introduce a variable k, initially set to 1, that
represents the iteration count of the algorithm. Color each edge in E “blue”
by letting B(k) denote the set of blue edges in the edge set E at iteration k,
and setting B(0) = E . Let R(k) denote the set of “red” edges, R(k) = E − B(k).
The lengths of red edges have reached their final values and will not change as
the algorithm proceeds, while the lengths of blue edges may still decrease.

2. A public graph G(0)
0 = (V,E,ω(0)

0) is created. Its edges are all initially weighted

as ω(0)
0 = ∞. When the algorithm terminates after n iterations, they will have

ω(n)
0 (ei j) = dG(i, j) and B(n) = /0.

3. The parties compute the following public value

m(k)
0 = min

e∈B(k−1)
ω(k−1)

0 (e) (16.1)

and the respective private values

m(k)
1 = min

e∈B(k−1)
ω1(e),and (16.2)

m(k)
2 = min

e∈B(k−1)
ω2(e) (16.3)

4. Now the parties privately compute the length of the smallest blue edge among

all three graphs, m(k) = min(min(m(k)
1 ,m(k)

0),min(m(k)
2 ,m(k)

0)), using a generic
protocol for private minimum. This protocol does not reveal the larger value.

5. The parties form the following public set

S(k)0 = {e|w(k−1)
0 (e) = m(k)} (16.4)

and the respective private sets

S(k)1 = {e|w1(e) = m(k)},and (16.5)

S(k)2 = {e|w2(e) = m(k)} (16.6)

By construction, S(k)0 , S(k)1 , and S(k)2 contain only blue edges.

6. First, the parties privately compute the set union S(k) = S(k)0
⋃

S(k)1
⋃

S(k)2 . This is
done using the privacy-preserving set union algorithm from section. Next, the

490 L. Ding et al.

color of each edge e ∈ S(k) is changed from blue to red by setting B(k) = B(k−1)−
S(k). Define a weight function ω

′(k)
0 by

w
′(k)
0 (e) =

{
m(k), i f e ∈ S(k),

w(k−1)
0 (e), otherwise.

(16.7)

7. Examine triangles with an edge ei j ∈ S(k), an edge e jk ∈ R(k), and an edge

eik ∈ B(k). Define the weight functionω(k)
0 by fixing these triangles if they violate

the triangle inequality under ω
′(k)
0 . More precisely, if ω

′(k)
0 (ei j) +ω

′(k)
0 (e jk) <

ω
′(k)
0 (eik), then define ω(k)

0 (eik) = ω
′(k)
0 (ei j) + ω

′(k)
0 (e jk). Do the same for

triangles with an edge ei j ∈ R(k), an edge e jk ∈ S(k), and an edge eik ∈ B(k).

8. If there are still blue edges, go to step 3. Otherwise stop; the graph G(k)
0 holds the

solution to APSD(G).

16.3.3.2 Private All Pairs Shortest Path

While there is only a single APSD solution for a given graph, there may be many all
pairs shortest path solutions, because between a pair of points there may be many
paths that achieve the shortest distance. As a side effect of engaging in the protocol
described in Sect. 16.3.3.1, the two participants learn an APSP solution. When

defining the weight function w(k) 0 by fixing violating triangles in ω
′(k)
0 during

step 7, a shortest path solution may be associated with the fixed edge. Specifically,

if ω
′(k)
0 (ei j)+ω

′(k)
0 (e jk)< ω

′(k)
0 (eik), then the shortest path from i to k is through j.

In step 6 of subsequent iterations, when adding an edge ei j ∈ S(k) to the set of
blue edges, they can conclude that the shortest path from i to j is the edge ei j itself

if ei j ∈ S(k)0 , or is the shortest path solution as computed above if ei j ∈ S(k)0 .
Note that learning this APSP solution does not imply any violation of privacy, as

it is the APSP solution implied by the APSD solution.

16.3.3.3 Private Single Source Shortest Distance

The SSSD problem is to find the shortest path distances from a source vertex s to all
other vertices [4]. An algorithm to solve APSD also provides the solution to SSSD,
but leaks additional information beyond that of the SSSD solution and cannot be
considered a private algorithm for SSSD. Therefore, this problem warrants its own
investigation. Similar to the protocol of Sect. 16.3.3.1, the SSSD protocol on the
minimum joint graph adds edges in order from smallest to largest. This protocol is
very similar to Dijkstras algorithm, but is modified to take two graphs as input.

1. Set ω(0)
1 = ω1 and ω(0)

2 = ω2. Color all edges incident on the source s blue by
putting all edges esi into the set B(0). Set the iteration count k to 1.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 491

2. Both parties privately compute the minimum length of blue edges in their graphs.

m(k)
1 = min

esi∈B(k−1)
ω(k−1)

1 (esi),

m(k)
2 = min

esi∈B(k−1)
ω(k−1)

2 (esi)

3. Using the privacy-preserving minimum protocol, compute

m(k) = min
(

m(k)
1 ,m(k)

2

)

4. Each party finds the set of blue edges in its graph with length m(k).

S(k)1 =
{

esi|ω(k−1)
1 (esi) = m(k)

}
, and

S(k)2 =
{

esi|ω(k−1)
2 (esi) = m(k)

}

5. Using the privacy-preserving set union protocol, compute

S(k) = S(k)1

⋃
S(k)2

6. Color the edges in S(k) red by setting Bk = B(k−1)−S(k). Define a weight function

ω
′(k)
1 by

w
′(k)
1 (e) =

{
m(k), i f e ∈ S(k),

w(k−1)
1 (e), otherwise.

(16.8)

and a weight function ω
′(k)
2 by

w
′(k)
2 (e) =

{
m(k), i f e ∈ S(k),

w(k−1)
2 (e), otherwise.

(16.9)

7. Similar to the APSD algorithm, form the weight function ω(k)
1 by fixing the

triangles in wω
′(k)
1 that violate the triangle inequality and contain edges in S(k).

ω(k)
2 is likewise formed from ω

′(k)
2 .

If there are still blue edges remaining, go to step 2. Otherwise stop; both parties now
have a graph with each edge incident on s colored red, and with the weight of these
edges equal to the shortest path distance from s to each vertex.

16.3.3.4 Minimum Spanning Tree

Suppose that two frugal telephone companies wish to merge. Each company has
a cost function for connecting any pair of houses, and they want to connect every
house as cheaply as possible using the resources available to the merged company.

492 L. Ding et al.

In other words, they wish to compute MST (gmin(G1,G2)). If they can perform this
computation privately, then both companies can see the final result without revealing
their entire cost functions. Both Kruskals and Prims algorithms for MST are
easily turned into private protocols using their techniques, because the algorithms
already consider edges in order from smallest to largest. At each iteration, Kruskals
algorithm adds the shortest edge such that its addition does not form a loop. It is
a simple task for each party to compute the set of edges which would not form
loops, and then to privately compute the length of the shortest edge in this set. One
problem arises when there are multiple edges that share this length. In the shortest
path algorithms, they addressed this issue by adding all edges of appropriate length
at the same time using the private set union protocol, but this will not work for
MST. Instead, they can assign a canonical ordering to the edges, and at each step
find the shortest length edges that are canonically first. This will allow a simulator
to determine, given the final MST, in what order the edges arrived.

16.3.4 Complexity Analysis

For each algorithm considered in this section, they calculate the number of
rounds, the total communication complexity, and the computational complexity,
and compare them with the generic method. Using Yaos method on a circuit with
m gates and n inputs requires O(1) rounds, O(m) communication, and O(m+ n)
computational overhead. Lindell and Pinkas note in [15] that the computational
overhead of the n oblivious transfers in each invocation of Yaos protocol typically
dominates the computational overhead for the m gates, but for correct asymptotic
analysis they must still consider the gates.

Complexity of privacy-preserving APSD. For their analysis they will assume
that the edge set E has size n, and that the maximum edge length is l. The
generic approach to this problem would be to apply Yaos Method to a circuit
that takes as input the length of every edge in G1 and G2, and returns as output
G = APSD(gmin(G1,G2)). Clearly, such a circuit will have 2n log l input bits.
To count the number of gates, note that a circuit to implement Floyd–Warshall
minimums and O(n3/2) additions. For integers represented with log l bits, both
of these functionalities require log l gates, so they conclude that Floyd–Warshall
requires O(n3/2 log l) gates. To compute gmin requires O(n log l) gates, but this
term is dominated by the gate requirement for Floyd–Warshall. They conclude
that the generic approach requires O(1) rounds, O(n3/2 log l) communication, and
O(n3/2 log l) computational overhead.

The complexity of their approach depends on the number of protocol iterations
k, which is equal to the number of different edge lengths that appear in the solution
graph. In iteration i, they take the minimum of two (lg l)-bit integers, and compute
a set union of size si. Because each edge in the graph appears in exactly one of the
set unions, they also know that Σ k

i=1si = n.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 493

First, they will determine the contribution to the total complexity made by
the integer minimum calculations. If they use Yaos protocol, then each integer
minimum requires a constant number of communication rounds, O(lg l) inputs,
and O(lg l) gates, so the k calculations together contribute O(k) rounds, O(k lg l)
communication complexity, and O(k lg l) computational complexity.

Complexity of privacy-preserving SSSD. Complexity of SSSD is similar to that
of APSD, except that the number of rounds is k = O(v) and the total number of set
union operations is v, where v is the number of vertices (O(e1/2)). They conclude
that their protocol requires O(v) rounds, O(v(logv+ log l)) oblivious transfers, and
O(v(logv + loge)) gates. A generic solution, on the other hand, would require
O(v2 log l) oblivious transfers.

16.4 Privacy Preserving in Social Networks Against Sensitive
Edge Disclosure

16.4.1 Summary

In this section, they [17] emphasize edge weight privacy instead focus on preserving
either node or edge privacy like other researchers did. Data owners may not want to
release the exact weight of each edge, but would like to keep the shortest paths of
a set of nodes and the lengths of the corresponding shortest paths as unperturbed as
possible, for the data analysis purpose.

In this section, they consider preserving weights (data privacy) of some edges,
while trying to preserve close shortest path lengths and exactly the same shortest
paths (data utility) of some pairs of nodes without adding or deleting any edge and
node.

In fact, edge weights, reflecting affinity between two nodes in many cases,
relate the expenses or frequency between two persons or similarity between two
organizations. The edge weights in the network are more realistically assigned on a
practical scale. The shortest path is important to be preserved in a social network for
the following reasons. (1) Previous work is mostly on the unweighted graph. Their
work is mostly focused on de-identification of nodes or edges. (2) The weighted
graph is quite popular. One of the things people care about in this type of graphs is
the shortest path between every pair of nodes. The shortest path is a major data utility
which has a wide application such as physical location search in GIS, min-delay
path problem in telecommunications midset, and optimal Analog circuits in VLSI
(very large scale integration). (3) In essence, a weighted graph is a generalization
of the unweighted graph. Their algorithms might be generalized and extended to
unweighted graph cases.

494 L. Ding et al.

Fig. 16.2 A simple social
network G

V1

V2

V3

V4

V5

V6

7

25

10

10

13

5
6

9

6

16.4.2 Notation

A social network in this section is defined as an undirected and weighted graph
G = (V,E,W). Figure 16.2 is a simple social network. The nodes of the graph, V ,
may denote meaningful entities from the real world such as individuals, organs,
organizations, communities, and so on (in Fig. 16.2, V = v1,v2,v3,v4,v5,v6). E
is the set of all undirected but weighted edges. The edge weight between node
i and node j is wi, j (the value beside an edge is the weight in Fig. 16.2). All
wi, j compose the set W . The cardinalities of V and E , ||V || and ||E||, are the
number of nodes and edges in this social network, respectively, (in the example,
||V ||= 6 and ||E||= 9). They assume that n = ||V ||, m = ||E||. Since the graph G is
undirected, wi, j is equal to wj,i. So the adjacency weight matrix of G is symmetric.
Although the following perturbation strategies are all based on the undirected graph
and symmetric adjacency weight matrix, they can be easily modified with respect to
directed graphs and the corresponding nonsymmetric adjacency weight matrices.

Let w∗
i, j be the perturbed weight of the edge between node i and node j, di, j

and dd∗
i, j be the shortest path lengths between node i and node j before and after a

perturbation strategy, respectively, pi, j and p∗
i, j be the shortest paths between node i

and node j before and after a perturbation strategy.

16.4.3 Greedy Perturbation Algorithm

In a static social network, they may easily collect some necessary information about
this social network for their analysis and privacy-preserving purpose.

They assume that not all shortest paths of node pairs in a social network are
considered to be significant (in the real world, it is not reasonable that all information
is considered as confidential).

Then, in a social network G = V,E,W(||V || = n), they generate a shortest path
matrix P and the corresponding length n ∗ n matrix D. In the matrix P, each entry
ps1,s2 is a linked list representing the shortest path between vs1 and vs2 . For example,
p1,6 = (1 → 2 → 5 → 6), it shows that the shortest path p1,6 successively passes
through v1,v2,v5 and v6. In the matrix D, each ds1,s2 is the length of the shortest
path connecting vs1 and vs2 . In the following contents, all node pairs (s1;s2) of ps1,s2

and ds1,s2 are in the set H unless otherwise stated explicitly.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 495

So, their goal is to generate a perturbed graph G∗ = V ∗,E∗,W ∗ which satisfies
the following conditions:

1. V ∗ =V and E∗ =V
2. maximize ∑i, j |wi, j −w∗

i, j|
3. p∗

s1,s2
= ps1,s2 , for every pair (s1,s2) in H

4. d∗
s1,s2

≈ ds1,s2 , for every pair (s1,s2) in H.

16.5 StarClique: Guaranteeing User Privacy in Social
Networks Against Intersection Attacks

16.5.1 Summary

Recently, several social graph anonymization algorithms are proposed to enable
public release of social graphs without compromising user privacy [9, 16, 27]. The
main goal here is to prevent attackers from identifying a user or a link between
users based on the graph structure. There are, however, some key differences that
set apart their work. First, in the graph anonymization problem also, similar to
the work on databases, the attacker is outside the system. In this section, they
consider a stronger attacker that is an active participant of the network (or online)
with abilities to perform multiple queries and use the results to improve the attack.
Second, the definition of privacy breach is different in the two cases. In graph
anonymization, a user privacy is breached if either a user is identified in the
anonymized graph, or a link between two users is established. Their goal, however,
is to prevent attackers from linking the data transmitted by applications with the
users. Given the abundance of the application data as well as the social graph, it is
more challenging to provide anonymity guarantees. Finally, the solutions proposed
by prior graph anonymization work [9, 27] provide global privacy properties (as in,
create k identical neighborhoods, or k identical degree nodes in the graph, etc.).
These global properties do not ensure that each node in the network has sufficient
degree to defend against the intersection attack.

In this section, they studied privacy risks involved in sharing data in todays social
content-sharing applications due to compromised user accounts. They identify
the social intersection attack, a low-cost privacy attack that can be used by two
or more compromised users to identify the source of shared data objects in all
content-sharing applications. It effectively links data objects with their owners
relying only the social graph topology and the data shared by the applications. This
attack invalidates naive solutions to mitigate privacy risks.

Social networks can provide their users with privacy guarantees in the form
of k-anonymity by adding new edges to the social graph. They identify a graph
structure we call Star-Clique, and prove that it is the minimal structure necessary
to provide each user with k-anonymity. A privacy-conscious OSN provider can
build StarCliques around each user, and utilize several optimizations to dramatically

496 L. Ding et al.

reduce the cost of new edges. This type of “graph evolution” is practical for
todays social content-sharing networks, and provides sufficient flexibility for OSN
operators to make local decisions about the privacy and overhead tradeoff.

16.5.2 Background

Naturally formed social graphs tend to exhibit power-law degree distributions and
high skew in node connectivity. Local clustering is limited, and the lack of common
friends makes users vulnerable to the social intersection attack. Their solution to this
problem is to “evolve” the graph by adding “privacy buddies” to users such that all
users have k-anonymity, for some value of k chosen by the OSN operator. Adding
these buddies creates latent edges between buddies and users.The real and latent
edges together provide k-anonymity. The evolved graph with privacy guarantees is
used by the applications to transfer data between users, but this evolved graph is
never revealed to the users directly. As a result, attackers do not know the list of
friends sending data to them and cannot identify the exact source of the data they
receive. The only change existing social networks need to do, to use their solution,
is to evolve the graph, and send the evolved graph to the application servers instead
of the real social graph.

16.5.3 Assumptions, Goals and Attacker Model

This section lists their [23] assumptions, goals, and the attackermodel for this
section.

16.5.3.1 Assumptions

They make two simple assumptions in their design. First, they assume that the OSN
operators and third-party application servers are secured by the owners and do not
compromise their users privacy. These sites have significant financial incentives to
keep their service secure: To attract and retain their users. The end users, on the
other hand, may be lax in applying security patches and hence be compromised due
to various malware attacks. Second, their privacy mechanisms are irrelevant if user
identities can be deduced directly from shared data. So they assume that all data is
scrubbed to remove identifiable user information. This scrubbing can happen before
the data leaves a trusted endpoint. Similarly, they assume that the attackers cannot
cross correlate application data with out-of-band information to identify its owner,
as was done in recent NetFlix privacy attack [21].

16 Security and Privacy in Online Social Networks: Optimization Perspectives 497

16.5.3.2 Goals

Their goal is to provide three key properties to all users in the network irrespective
of their social connectivity.

1. Provable k-Anonymity. They aim to provide k-anonymity to social application
users. k-anonymity provides source anonymity and the data receiver cannot tell
the source even with social intersection attack. Formally, k-anonymity is:

Definition 16.3. The system provides k-anonymity to the source (x) of an event
ξ , if the probability that the attackers assign for x to be the source of ξ is less or
equal to 1/k. In other words, the attackers suspect at least k different nodes to be
the likely sources of ξ , with equal probability.

2. LowOverhead. It is necessary to add minimal number of latent edges to reduce
the additional overhead on the social infrastructure due to processing and data
transfer of cover traffic along the latent edges.

3. Preserve Relevance of Cover Traffic. The latent edges added should connect
nodes that are close in social distance, so that the cover traffic is still relevant
to users. Nodes that are farther apart have fewer “similarities” in interests and
connecting them might send highly irrelevant data to users.

16.5.3.3 Attacker Model

In the social application setting they consider, they assume the following attacker
model:

1. A fraction (p) of the one-hop friends of a given user x are compromised. They can
work both independently, and in collusion to compromise honest users privacy.

2. The attackers have the entire social graph. They know their local graph, and can
crawl the rest of the graph.

3. They assume that only the attackers within one hop from a user x collude together
to break xs privacy via passive intersection attacks.

This is a stronger attack model compared to prior work on graph anonymization
[9, 16, 27] as the attackers here use both the application data and the social graph to
attack. In addition, passive attacks are harder to detect compared to active attacks.
For example, an active attacker can delete all but one of her friends, and assign
the new data received to that friend. However, such attacks will be easily detected.
Finally, note that the actual number of malicious nodes around a node x depends on
its degree (dx) and the fraction p. They use f to represent the number of malicious
neighbors of a node throughout the section, but f is node specific, and f = [dx p].

498 L. Ding et al.

Source

Clique StarClique

Social edge

Well connected nodes

Virtual edge

Sparsely connected nodes

Fig. 16.3 The graph evolution process for a node. The node first selects a subset of its neighbors.
Then it builds a clique with the members of this subset. Finally, it connects the clique members
with all the non-clique members in the neighborhood. Latent or virtual edges are added in the
process

16.5.4 Graph Evolution

This section shows the details of their social graph evolution mechanisms. First
they introduce the StarClique graph structure, and then present a simple algorithm
to evolve the graph.

16.5.4.1 StarClique Structure

Figure 16.3 depicts the StarClique structure and its formation. There are two main
parts in the structure: The portion to the right (in the central sub-figure) is the clique,
and the portion to the left is called the Star. Let the node that is evolved be x, and
let f be the number of attackers around x. A StarClique is built around x using
its neighborhood nodes. The clique for x consists of x along with its (k + f − 1)
neighbors, that together form a (k + f)-clique. The Star consists of the one-hop
friends of x that do not belong to the clique. Each member of the Star is connected
with all (k+ f − 1) members of the clique.

StarClique provides two key properties: (a) StarClique provides provable
k-anonymity to node x against f one-hop colluders, and (b) StarClique has the
minimal number of edges necessary to provide k-anonymity against f one-hop
colluders.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 499

Table 16.1 Table
(Notation used in this
paper)

G = (V,E) Graph definition

x, y, z Nodes ∈ G
N(x) Set of nodes in the neighborhood of the node x
g.neighbors(x, i) Set of all neighbors of x at most i hop away in g
dx Degree of the node x
p Fraction of malicious one-hop neighbors
f Number of malicious neighbors of x (f = dx p!)
C Subset of nodes in N(x)

16.5.4.2 Evolution Algorithm

With this background in mind, they describe the evolution algorithm. The evolution
algorithm works on one node (say x) at a time, and it works in three steps. The first
step in evolving a node x is to identify the closest neighborhood of x that has at least
(k+ f − 1) nodes in it. Evolution starts with one-hop neighborhood, and moves to
two-hop, etc. Selecting nearest neighbors first ensures that the privacy buddies are
closer in social distance. The second step is to select a subset of (k+ f − 1) nodes
from the neighborhood, and build a (k + f)-clique out of them by adding latent
edges. These clique members are selected at random in this simple algorithm. The
final step is to connect the members of xs neighborhood that do not belong to the
clique with all members of the clique by adding latent edges. This process forms
a structure as shown in Fig. 16.3. As a result, xs k-anonymity is preserved. They
analyze the security properties of this algorithm in more detail later. The Evolve
Graph algorithm is presented in Algorithm 1, and the notations used are listed in the
Table 16.1.

16.5.5 Optimizing the Evolution Algorithm

Here, we present several optimizations that significantly reduce the number of new
latent edges added to the graph during evolution. They apply their optimizations to
Evolve Graph, and present an optimized algorithm called Optimized Evolve Graph
(shown in Algorithm 1) that is annotated to show where each optimization is applied.
The intuition behind the optimization and analysis are introduced.

Optimization 1: Select Clique. While selecting the clique members from the
neighborhood, choosing the most well-connected (k + f − 1) nodes, instead
of random nodes, reduces the latent edges added significantly. Select Clique
function in the Algorithm 2 implements this optimization, where the well-
connected nodes are chosen based on the number of friends shared between
the nodes in the neighborhood and x. This selection leads to clique reuse in the
neighborhood, reducing the new edges added.

500 L. Ding et al.

Algorithm 1 Evolution Algorithm: evolves the input graph g to produce an
evolved graph g’.

Graph g′ = Evolve Graph (Graph g)
1: g′ = g
2: /* Copy the original graph g into the evolved graph g′ */
3: for x ∈V do
4: N(x) = φ ; i = 1
5: while |N(x)| < (k+ f −1) do
6: N(x) = N(x)

⋃
g.neighbors(x, i)

7: /* Neighborhood is selected in the original graph */
8: i = i+1
9: end while

10: C = select (k+ f −1) random nodes from N(x)
11: C =C

⋃{x}
12: BuildClique(g′,C)
13: /* Edges added in g′ to build the clique structure around x */
14: BuildStar(g′,N(x),C)
15: /* Edges added in g to build the star structure around x */
16: end for
17: Return g′

Algorithm 2 Optimized Evolution Algorithm: evolution algorithm annotated
with the optimizations.

Graph g′ = Evolve Graph Optimized (Graph g)
1: g′ = g
2: S(x) = {V ′nodessortedinthedecreasingordero f degree}
3: Applying Optimization 3: Ordered Evolution Above
4: for x ∈ S in decreasing order of degree do
5: N(x) = g.neighbors(x,1); i = 1
6: g (instead of g′) is used above to handle the side-effects of Edge Reuse
7: while |N(x)| < (k+ f −1) do
8: N(x) = N(x)

⋃
g′.neighbors(x, i)

9: Applying Optimization 2: Edge Reuse above
10: if |N(x)|> (k+ f −1) then
11: Applying Optimization 4: Limit to k Friends here
12: end if
13: i = i+1
14: end while
15: C = SelectClique(N(x))
16: Applying Optimization 1: Select Clique above
17: C =C

⋃{x}
18: BuildClique(g′)
19: BuildStar(g′,N(x),C)
20: end for
21: Return g′

Optimization 2: Edge Reuse. Before evolving a node x, this optimization
considers xs most recent and evolved state, instead of xs connectivity in the
original graph, which includes the latent edges of x. This reduces the new edges

16 Security and Privacy in Online Social Networks: Optimization Perspectives 501

added: as evolution progresses, more and more latent edges are added, and the
connectivity of nodes around x increase. This means that xs neighborhood is
more connected than in the original graph and hence the number of new edges
necessary to evolve x is reduced significantly. This optimization implies that
Algorithm 1 should use the evolved graph g in the loop instead of the original
graph g.
Optimization 3: Ordered Evolution. Instead of evolving the nodes in random
order, evolving nodes from highest degree to lowest degree leads to fewer latent
edges overall. The intuition here is that if a supernode is evolved first, the edges
added to provide k-anonymity to this supernode, and the clique formed, can
be potentially reused by a majority of the low-degree nodes attached to the
supernode.
Optimization 4: Limit to k Friends. If a node x has < k + f − 1 nodes, the
unoptimized algorithm considers the larger neighborhood incrementally one hop
at a time. It is quite likely that when the neighborhood increases by one hop,
the neighborhood size goes significantly beyond k + f − 1. However, all the
nodes in this y-hop are not necessary to provide k-anonymity: we need only
l = (k + f − |g.neighbors(x,1)|) additional nodes. Thus, we select only the
l most well-connected nodes from outside the one-hop neighborhood in this
optimization.
Optimized Evolve Graph. The evolution process is depicted in Fig. 16.3, and
Algorithm 1 shows the pseudo-code for Optimized Evolve Graph. In this algo-
rithm, first, the nodes are sorted by their degree, and evolved in the order of their
degree, starting from the highest. Second, evolution is applied on the evolved
graph repeatedly C this applies the edge reuse optimization. Indeed, we use the
original graph g to get the original degrees, and the evolved graph g to maximize
the number of reused edges during the neighbor selection. This is necessary to
handle the side-effects of edge reuse optimization, as described before. When
the node has less than k+ f − 1 friends, its neighborhood in the evolved graph
is selected. They apply the Limit to k Friends optimization at this step. Finally,
Select Clique optimization is applied in this optimized algorithm while choosing
the clique members out of the neighbors. StarClique is built for each evolved
node as in Evolve Graph.

16.5.6 Anonymity Analysis

This section has two main parts. First, we introduce formal notations and identify the
conditions under which k-anonymity is preserved. Second, we present the properties
of StarClique that are necessary to provide k-anonymity.

502 L. Ding et al.

16.5.6.1 Formal Notations and k-Anonymity

They represent the social network as a graph, G=(V,E), where each user is mapped
to a unique vertex ∈ V and the friend relationship between two users x and y ∈ V is
represented as an edge (x,y). V is the set of all vertices, and E is the set of all edges.
Each edge is undirected, as it represents the friendship between two user. And an
undirected edge (x,y)∈ E is equivalent to two directed edges (x,y) and (y,x), where
(x,y) represents that x is a friend of y and (y,x) represents that y is a friend of x.

16.5.6.2 Privacy via the StarClique Structure

The evolution algorithm protects privacy by building Star-Clique around nodes.
The first step to prove the k-anonymity property of evolution is to identify the
necessary conditions that the StarClique structure has to satisfy in order to provide
k-anonymity for a particular source (x). StarClique (Fig. 16.3) is constructed around
x in two steps as follows: (1) Clique: Build a clique C of k+ f − 1 nodes ∈ N(x)
around x. Note that the edges in C are bidirectional. (2) Star: The remaining nodes
∈ N(x) \C are connected to k+ f − 1 nodes in the clique. Each edge in this step
is directed from the clique nodes to the Star nodes. Directed edges are necessary
only to prove the structure minimality. They next show a theorem, that StarClique
guarantees k-anonymity, using the locally minimal connectivity between a source
and its one-hop neighbors.

Theorem 16.1. The StarClique has the minimal connectivity, in the one-hop neigh-
borhood of a node, necessary to provide k-anonymity against f one-hop colluding
neighbors.

16.6 Discussion and Future Works

There is no doubt that OSNs benefit too much to the society – no matter providers
or users. OSNs providers can get many benefits based on information they collect.
This may lead to privacy problem to OSNs’ users. As we said before, only a few
works have been done in Credential authority, Storage site and Member parts. Most
works focus on Data Owner part and barely optimization. Security and privacy are
always important in different networks. How to optimize the solution of the security
and privacy problems is still a good topic for us. We can put our eyes on other parts
instead of Data Owner part to improve the security in OSNs.

16 Security and Privacy in Online Social Networks: Optimization Perspectives 503

References

1. L. Adamic and E. Adar (2005) How to search a social network. Social Networks, vol. 27, no. 3,
pp. 187C203

2. L. Backstrom et al. (2006) Group formation in large social networks: membership, growth, and
evolution. KDD

3. J. Brickell and V. Shmatikov (2005) Privacy-preserving graph algorithms in the semi-honest
model. In ASIACRYPT, LNCS, pages 236C252

4. T. Cormen, C. Leiserson, and R. Rivest (1990) Introduction to Algorithms. MIT Press
5. S. Gariss, M. Kaminsky, M. J. Freedman, B. Karp, D. Mazieres, and H. Yu (2006) Re: Reliable

email
6. R. Gross and A. Acquisti (2005) Information revelation and privacy in online social networks.

In WPES 05: Proceedings of the 2005 ACM workshop on Privacy in the electronic society,
pages 71C80, ACM.

7. O. Goldreich: Foundations of Cryptography (2004) Volume II (Basic Applications). Cambridge
University Press

8. Google co-op. http://www.google.com/coop/.
9. M. Hay, G. Miklau, D.Jensen, D. Towsely and P. Weis (2008) Resisting structural re-

identification in anonymized social networks. Proc. of VLDB
10. Q. Huang, H.J. Wang, and N. Borisov (2005) Privacy-Preserving Friends Troubleshooting

Network. Proc. of NDSS
11. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman (2006) Sybilguard: defending against

sybil attacks via social networks. In SIGCOMM 06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer communications, pages
267C278, New York, NY, USA, ACM.

12. J. M. Kleinberg (1999) Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604C632

13. G. Kossinets and D. J. Watts (2006) Empirical analysis of an evolving social network. Science,
vol. 311, no. 5757, pp. 88C90

14. R. Kumar et al. (2006) Structure and evolution of online social networks. KDD
15. Y. Lindell and B. Pinkas: Privacy preserving data mining (2002) J. Cryptology, 15(3):177–206
16. K. Liu, and E. Terzi:Towards identity anonymization on graphs (2008) Proc. of SIGMOD
17. L. Liu, J. Wang, J. Liu, and J. Zhang: Privacy preserving in social networks against sensitive

edge disclosure (2008) Technical Report Technical Report CMIDA-HiPSCCS 006-08, Depart-
ment of Computer Science, University of Kentucky, KY

18. A. Mislove, K.P. Gummadi, and P. Druschel (2006) Exploiting social networks for internet
search. Proc. of HotNets

19. A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee (2007) Mea-
surement and analysis of online social networks. In IMC 07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 29C42, New York, NY, USA, ACM.

20. Mozillacoop. http://www.mozilla.com.
21. A. Narayanan and V. Shmatikov (2008) Robust de-anonymization of large sparse datasets.

Proc. of IEEE S&P.
22. J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Reinders,

M. Van Steen, and H. Sips (2008) Tribler: a social-based peer-to-peer system. Concurrency
And Computation

23. K. P. N. Puttaswamy, A. Sala and B.Y. Zhao (2009) Starclique: Guaranteeing user privacy in
social networks against intersection attacks. Proc. of ACM CoNEXT

24. Stumbleupon. http://www.stumbleupon.com
25. J. Sun, X. Zhu, and Y. Fang (2010) A privacy-preserving scheme for online social networks

with efficient revocation. Proc. of IEEE INFOCOM 2010, pages 1C9
26. Yahoo! myweb. http://myweb2.search.yahoo.com.
27. B. Zhou, and J. Pei (2008) Preserving privacy in social networks against neighborhood attacks.

Proc. of ICDE

http://www.google.com/coop/.
http://www.mozilla.com.
http://www.stumbleupon.com
http://myweb2.search.yahoo.com.

Chapter 17
A Social Network Based Patching Scheme
for Worm Containment in Cellular Networks

Zhichao Zhu, Guohong Cao, Sencun Zhu, Supranamaya Ranjan,
and Antonio Nucci

Abstract Recently, cellular phone networks have begun allowing third-party
applications to run over certain open-API phone operating systems such as Windows
Mobile, Iphone and Google’s Android platform. However, with this increased
openness, the fear of rogue programs written to propagate from one phone to another
becomes ever more real. This chapter proposes a counter-mechanism to contain the
propagation of a mobile worm at the earliest stage by patching an optimal set of
selected phones. The counter-mechanism continually extracts a social relationship
graph between mobile phones via an analysis of the network traffic. As people are
more likely to open and download content that they receive from friends, this social
relationship graph is representative of the most likely propagation path of a mobile
worm. The counter-mechanism partitions the social relationship graph via two
different algorithms, balanced and clustered partitioning and selects an optimal set
of phones to be patched first as those have the capability to infect the most number
of other phones. The performance of these partitioning algorithms is compared
against a benchmark random partitioning scheme. Through extensive trace-driven
experiments using real IP packet traces from one of the largest cellular networks
in the US, we demonstrate the efficacy of our proposed counter-mechanism in
containing a mobile worm.

Z. Zhu (�) • G. Cao • S. Zhu
Department of Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802, USA
e-mail: zzhu@cse.psu.edu; gcao@cse.psu.edu; szhu@cse.psu.edu

S. Ranjan • A. Nucci
Narus Inc., Mountain View, CA 94043, USA
e-mail: soups@narus.com; anucci@narus.com

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4 17, © Springer Science+Business Media, LLC 2012

505

zzhu@cse.psu.edu
gcao@cse.psu.edu
szhu@cse.psu.edu
soups@narus.com
anucci@narus.com

506 Z. Zhu et al.

17.1 Introduction

Cellular phone networks are increasingly receptive to open-API operating systems
such as Windows Mobile, Iphone and Google’s Android running over mobile
phones in the networks. While this openness would allow richer applications to run
over mobile phones, it also makes it easier for hackers to write malicious software
that can take control of a mobile device by exploiting its vulnerabilities or that of
the applications running on top of it. In this regard, cellular networks may witness a
similar evolution of worms as has been seen in the wired world. These mobile worms
could impose unwarranted bandwidth charges to customers, deterioration in quality
of service, and ultimately loss of revenue for service providers. Moreover, although
it took over a decade for wireline worms to evolve to the current stage, it might take
much less time for hackers to adapt existing techniques to mobile environments.

The usual ways for mobile worms to propagate include Bluetooth [14]
interface and Multimedia Messaging Service (MMS) [13] interface. One
Bluetooth based mobile worm is Cabir [9], which can spread through Bluetooth
connection to other Bluetooth-enabled devices it can find. As its name suggests,
MMS messages are intended to contain media content such as photos, audios
or videos, but they can also contain infected malicious codes. One noteworthy
example is Commwarrior [10], which is the first worm that can propagate via MMS.
It searches through a user’s local address book for phone numbers and sends MMS
messages containing infected files to other users in the address book.

The increasing popularity and unique property of MMS worms draws our focus
on dealing with MMS worms in this chapter. MMS worms could be sent out in
just one click and travel to any mobiles all over the world with a larger chance of
success in propagation, thus are potentially more virulent in terms of speed and
area of propagation than Bluetooth worms. Note that worms that exploit plain-text
Short Messaging Service (SMS) can not carry malicious payload, and hence usually
only carry a URL in the message, from where the victim is lured to download the
payload, e.g., the worm Symbos/Feak [8]. We consider worms that exploit SMS as
similar to MMS in the way they spread (via address books or call records) and hence
our methodology developed here would be applicable to both types of worms.

Due to characteristics of slow start and exponential propagation exhibited by
mobile worms, it is challenging to detect a worm outbreak at the early stage while
it is hard to mitigate it at a later stage. The heterogeneity of cellular networks also
makes worm propagation speed at different spots variable. Given the extremely large
scale and the distributed nature of mobile cellular networks, it is difficult to place
monitors everywhere. Regularly reporting the traffic records to a central server by
individual phones is also undesirable as users are not willing to be disturbed by any
unrelated traffic. However, even if network operators are unable to detect a worm
propagation during the earliest stage, they still have a window of opportunity to
react before the worm spreads to a larger population. This is especially true for
MMS worms in which users’ interactions are required to download and install the
malicious files on mobile devices. Therefore, unlike automatic Internet worms [25]

17 Worm Containment in Cellular Networks 507

Fig. 17.1 The architecture of
our social-based worm
containment system

which only take hours to infect millions of users, it usually takes much longer for
mobile worms to spread to a severe level. Defense techniques against Internet worms
usually include rate limiting, filtering or patching [33] [26] [29]. However, they
are not appropriate for mobile worms as they are prone to both false positives and
false negatives. Moreover, filtering allows non-blacklisted infected phones to spread
worms even faster. In this chapter, we focus on the methodology by which a mobile
network operator would distribute a patch to arrest a worm’s propagation before it
causes complete network infection.

Patch propagation techniques have been developed for delivering worm signa-
tures in the wired Internet [29]. However, such solutions are not directly applicable
to mobile networks which have a unique constraint of lower data rates. In such a
bandwidth-constrained environment, patches can not be propagated by a network
operator to all devices at the same time. Moreover, patches would have to compete
with the bandwidth already being consumed by a propagating worm. Existing work
on modeling and containment of worms in a mobile network [2,3,11,23], do not take
into account the unique capability of mobile worms which exploit social network
of users by exploiting their address book or recent call records. In lieu of above
observations, we take a hierarchical approach towards patching mobile devices such
that those devices which act as a “bridge” between social clusters within the network
are patched first. The intuition is that such devices once infected have the ability to
infect entire social clusters and hence they must be patched first.

In this chapter, we propose a new approach to contain MMS worms within a
limited range at the earliest stage. We divide the mobiles in cellular networks into
multiple partitions based on the social relationships between mobiles retrieved from
a real cellular network trace. Mobiles in each partition closely interact with each
other while mobiles across different partitions are less related. Security patches
are distributed to key nodes that separate individual partitions to block the worm
propagation from one partition to another. The architecture of our social-based
worm containment system is shown in Fig. 17.1. The trace, including both voice

508 Z. Zhu et al.

traffic and Internet data traffic, is collected through cellular networks and stored
in a database for analysis. After processing, the generated security patches are
disseminated through cellular networks to selected mobiles. More specifically, the
contributions of our work are three-fold:

• We construct a social relationship graph of mobile devices by extracting their
communication patterns based on a network trace. This graph describes the social
relationships between mobile phones which are usually exploited by mobile
worms for spreading.

• We propose a new containment strategy for MMS worms by partitioning the
mobiles appropriately based on the social relationship graph. Two partitioning
algorithms: balanced partitioning and clustered partitioning are proposed and
their performance is evaluated.

• We experimentally compare our targeted patching algorithms (balanced and
clustered) against a random patching strategy. Our experiments show the efficacy
of targeted patching: both balanced and clustered patching algorithms achieve
a lower infection rate than the random strategy while patching a significantly
smaller number of nodes.

The rest of this chapter is organized as follows. Section 17.2 reviews the
related work on mobile worms containment in cellular networks. Section 17.3
presents motivations behind the trace-driven partitioning approach. Section 17.4
describes how this social relationship graph can be built by using a network traffic
trace. Section 17.5 introduces the graph partitioning theory and two corresponding
patching schemes. Section 17.6 evaluates the performance of our worm containment
strategy. Section 17.7 gives an extensive discussion of related issues. Finally,
Sect. 17.8 concludes our work and provides future research directions.

17.2 Related Work

Defense techniques against Internet worms include rate limiting [33] or filter-
ing [26]. Vojnovic et al [29] studied the efficacy of automatic patching countermea-
sure in protecting the Internet against scanning worms. Zou et al [38] used a Kalman
filter to detect Internet worm’s propagation at its early stage in real-time. However,
these techniques are not directly applicable to the mobile network scenario.

There is limited work on mobile viruses/worms modeling and containment in
the literature. Yang et al [34] applied a software diversity approach to deal with
worm attacks in wireless sensor networks. Mickens and Noble [23] proposed a
probabilistic queuing framework to model the propagation of mobile viruses over
short-range wireless interfaces. Fleizach et al [11] evaluated the effects of malware
propagating using communication services like VOIP and MMS in mobile phone
networks. However, they did not use real traffic data in their worm propagation
model. Khouzani et al [19] developed optimal decision rules to quantify the damage
that the malware can inflict on the network as well as an intelligent defense strategy

17 Worm Containment in Cellular Networks 509

to limit the damage. Bose and Shin [2] applied two commonly used mechanisms:
rate limiting and quarantine to the dynamically generated list of vulnerable clients
in the mobile messaging network. Van Ruitenbeek et al [28] also investigate
propagation of MMS/SMS malware and various responses. Zyba et al [39] studied
the dynamics of proximity mobile phone malware that propagates by Bluetooth
interface, and evaluated potential defenses against it. Li et al [21] proposed CPMC
scheme which integrates short-term coping components and long-term evaluation
components to deal with proximity malware. Miklas et al [24] used a trace-driven
simulator to study the interactions between Bluetooth devices. They conclude
that Bluetooth based worms would spread more widely by exploiting contacts
between “strangers” instead of “friends”. While our focus here is on worms which
spread via MMS or SMS, the hypothesis driving our work is analogous – that
to contain a worm, we must first detect and patch the devices which bridge
social clusters. Meng et al [22] investigated the reliability of SMS by analyzing
traces collected from a nationwide cellular network over a period of three weeks.
Here, we exploit the social relationship graph from a real cellular network trace
that includes a variety of services and use it to develop a worm containment
mechanism.

Recently, Bose et al and Kim et al have proposed two techniques for using
behavioral signatures [1] and power signatures [20] for locally detecting malware
on mobile devices. Some other work tried to detect mobile virus at the network-
level such as SmartSiren [3]. The aforementioned work is complimentary to our
approach in that these mobile worm detection systems can detect a worm within
a reasonable latency and hence could serve as the initial trigger for our worm
containment via patch distribution mechanism. A preliminary version of this work
has been presented in [37], and an introductory version can be found in [36]. Other
security issues such as DoS attacks in the 3G network scenario have been studied
in [5, 35].

17.3 Motivation

Mobile worms that spread using MMS [10] or SMS [8] typically exploit the social
network of users to propagate from one mobile device to another. These worms
search through a user’s local address book and recent call records for phone numbers
and send messages to other users. Note that randomly scanning does not work on
mobile worm environment, as any malicious message from an untrusted stranger
would not be opened and activated. In the case of MMS, the message itself could
be the malicious payload, while in the case of SMS, the user would be lured
to download the payload from a URL. A victim mobile receiving this message
will most likely open and download the message since he believes it comes from
someone he knows and trusts. Thus, an effective worm containment approach must
take into account the social relationship graph between mobile devices in a cellular
network. By figuring out the social interactions between mobile devices, i.e. which

510 Z. Zhu et al.

devices are more likely to exchange messages with each other, we can predict the
propagation path of such mobile worms. In this way, the vulnerable mobiles or
connections could be marked and be protected.

Given that there has not been any instance of mobile worm that has propagated far
and wide across a cellular network “in the wild” as yet, there is limited knowledge of
propagation paths of mobile worms. In this regard, we assume that the propagation
path of a mobile worm can be approximated by the social network of mobile devices.
Given that a user Joe has a higher probability to open and download a message
from Jane with whom he periodically exchanges messages, this pair of users, Joe–
Jane would be considered more vulnerable. In contrast, if Joe doesn’t exchange
messages with Mary, he is unlikely to be infected by a worm sent by Mary and hence
the pair of users, Joe–Mary is considered less likely to be included in the worm’s
propagation path. In summary, we use the amount of traffic exchanged between two
mobile devices as an indicator of whether this pair of devices would be present in
a worm’s propagation path. This propagation model would be reflective of worms
that spread by exploiting the call records of infected hosts. Such a social relationship
graph can be accurately built by a mobile network operator by looking at the calling
and messaging records at which the operator stores for billing purposes. Even for
mobile worms which spread by using the address book of an infected host, the
social relationship graph built by using the calling and messaging records would
be reflective of the propagation path of the worm, which is similar for worms which
spread by randomly generating a hit list of potential devices. This is on account of
the fact that humans are much more likely to open and download a message from
someone with whom they have communicated in the past.

Our worm containment strategy would be implemented at a mobile service
provider’s messaging gateways or base-station controllers. Service providers typ-
ically store records of all traffic generated by a user per session for billing and
accounting purposes. We use an anonymized trace from one of the largest cellular
network providers over a two-week period in April 2008. The trace summarizes the
total amount of traffic generated by every user for a variety of applications such as
SMS, MMS, SIP based VoIP, Push-To-Talk and so on. We use all traffic exchanged
between a pair of devices regardless of application types, as an indicator of their
likelihood to infect each other.

We use the traffic trace to simulate the relational topology graph. In this graph,
each vertex represents a mobile in the cellular network and each edge between two
vertices represents that the two mobiles have communicated with each other in the
past. This topology graph gives us an overview of how mobiles are related with each
other and how worms might use these social relationships to propagate themselves.

With a knowledge of the social relationship graph, the next question is how
to prevent a worm from propagating once it starts to breakout. Here, we use the
social relationship graph to find an effective patch distribution strategy. A mobile
that receives a patch becomes immune to the worm and could then be used to
propagate the patch further. However, as we will discuss in Sect. 17.5, disseminating
patches to all mobiles may not be a practical method due to the time and bandwidth
limits. Thus, a faster way of patch dissemination, or an appropriate order of patch

17 Worm Containment in Cellular Networks 511

distribution is needed. Intuitively, the one with the highest risk to be infected or
the one with the highest probability to infect others should have the highest priority
for security upgrades. Under our partitioning based approach, security patches need
not reach all the mobiles if the worms could be contained in each small partition.
Therefore, only those key nodes that separate the graph into individual partitions
should be patched in the first place. We next discuss how to determine this set of
key nodes.

17.4 Trace-Driven Social Relationship Graph

In this section, we describe how a service provider can construct a social relationship
graph by using an example traffic trace collected at the network layer at one of the
largest mobile phone networks in the US. The endpoints present in the trace were
anonymized while preserving the uniqueness of the identifiers of ip-addresses and
phone numbers involved. The trace provides session-level information for traffic
(bytes and packets) exchanged between two endpoints per application over a two-
week period in April 2008. The trace contains information about 2 million users
across 65000 base station cells all over the US. According to this trace, about 35% of
users in this network exchange about 0.4 million MMS messages every day. Besides
MMS, the trace also contains traffic volume information for SIP based VoIP sessions
exchanged between users, SIP based Push-To-Talk and SMS.

Definition 17.1 (Cellular-Social Relationship Graph). An undirected weighted
graph G = (V,E) consists of a set of vertices V and a set of edges E , such that
each vertex u ∈ V denotes a mobile in the cellular network, while each edge e(u,v)
denotes that at least one traffic flow was exchanged between mobile u and v. Let du

denote the degree of vertex u, u ∈ V (the number of mobiles or vertices having a
link with u). Let m(u,v) denote the amount of traffic initiated from u to v. If there
are functions f and g that map each vertex u ∈ V and each edge (u,v) ∈ E to a real
number, then the graph is considered to be weighted with f and g determining the
vertex-weights and edge-weights, respectively. The weight-mapping functions are
as following:

f (u) = du (17.1)

g(u,v) = m(u,v)+m(v,u) (17.2)

An example of social relationship graph is shown in Table 17.1. In this example,
we pick 9 mobile phones who interact with each other more or less from the trace,
anonymize them as A to I. We use the number of sessions exchanged between
two mobiles u and v over one week as our weight m(u,v). Alternatively, the total
number of bytes or packets exchanged between two mobiles could also be used
as the weights. For the sake of generalization, we count all sessions exchanged
between two mobiles regardless of the application type, as all types contribute to
the worm propagation patterns. Each entry in the table shows how many times any

512 Z. Zhu et al.

Table 17.1 Communication
traffic records

Between mobile phones WATa Normalized WATb

A and B 4 1
A and G 12 3
A and H 12 3
B and C 8 2
B and H 4 1
B and I 4 1
C and D 40 10
C and I 4 1
D and E 6 1.5
D and I 6 1.5
E and F 20 5
F and G 4 1
F and I 20 5
G and H 8 2
G and I 4 1
a
WAT: Weekly Averaged Traffic

b
Divided by the minimum WAT over the week

Fig. 17.2 Example of
Cellular Social Relationship
Graph. Each vertex in the
graph denotes a mobile phone
and the weight of each edge
between two vertexes
represents normalized WAT
between the two mobile
phones

G

A

F

ED

C

B

H

I

0.1 0.3

0.3
0.2

0.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

two mobiles communicated with each other every week on an average. We note this
metric as WAT (weekly averaged traffic). If we abstract each mobile as a vertex and
normalize WAT between any two mobiles by dividing the minimum WAT over the
week, we get a relationship graph as Fig. 17.2.

The weights of vertices and edges together contribute to a significance
level which represents the chance of being infected by worms. As can be seen

17 Worm Containment in Cellular Networks 513

from (17.1), the weights of vertices depend on the node degrees. Intuitively, the
mobile with the highest risk to be infected or infect others is the key node that a
worm can use to spread and thus has the highest priority for containment. For MMS
worms, a mobile with a higher in-degree means that it is more likely to be infected
while a mobile with a higher out-degree is more likely to infect other mobiles.
Therefore, those high-degree mobiles, either in-degree or out-degree, should be
assigned a higher vertex weight and get higher priority for patching consideration.
The in-degree and out-degree of a mobile are not necessarily dependent, but may
be correlated. The phone number of the mobile that has large address book tends to
appear in the address books of many others.

The social interactions [24] between mobiles can be used to explain (17.2).
Whenever there is a traffic record between two mobiles, they have a chance to
be friends and therefore a larger probability to open and activate a worm message
received from each other. The more frequently they communicate with each other,
they would be closer to each other which means a higher vulnerability. This social
relationship graph gives us an overview of how mobiles are related with each other
and how worms might use these social relationships to propagate themselves.

We use weekly averaged traffic (WAT) to measure the relationship between
two mobiles. According to what we have observed from the trace, although the
number of interactions between two individuals behaves differently for weekday
and weekend, the number of interactions across the two weeks remains similar.
This result which is also confirmed by [24] shows that people’s interaction rate is
predictable on a weekly basis. Therefore, it is reasonable to use a weekly averaged
traffic information to represent the interaction rate through a long period.

17.5 Containing Worms by Graph Theory

Most security patch providers such as F-Secure [7] use push-based strategy for patch
distribution, that is, as soon as a new security patch is available, the notification
of updates is sent to all subscribed users. Upon receiving the notification, users
authenticate and verify the message, and then connect to a centralized database
to download the patch updates promptly. This can be achieved by short messages
through control channels. However, the time to disseminate patches to entire cellular
networks could be in the order of hours or days, which is much longer than
the worm propagation period. Moreover, the bandwidth bottleneck of the control
channel prevents all the mobiles from reaching the system and downloading the
patches at the same time. According to [5], the total number of messages per
second needed to saturate the cellular network capacity for a metropolitan area such
as Washington D.C. is 240 msgs/sec and for the entire United States is 525,325
msgs/sec. Therefore, any larger traffic volume would cause congestion or even crash
the network.

514 Z. Zhu et al.

17.5.1 Uniform Patching vs. Targeted Patching

Therefore, an appropriate order or scheduling of patch distribution is needed.
Intuitively, the one with the highest risk to be infected or the one with the highest
probability to infect others should have the highest priority for security patches.
Our goal is to find a small set of nodes with the highest priority for patching, while
keeping the infection rate as low as possible. We call it targeted patching. Under
the partition based scenario, security patches do not have to reach all the mobiles
if the worm could be contained in each small partition. A small set of nodes which
separate all the nodes into multiple partitions is enough for our targeted patching.

With the knowledge of the network topology, we partition the graph into as many
separate pieces as possible and contain the worm propagation within each partition.
These partitions are separated by a minimum set of key nodes called separators.
The separators are chosen and patched by the network with the highest priority.
As a result, the worm propagation can be blocked since an infected node inside its
partition has to go through a separator to reach other partitions. Then, the worm
containment problem becomes a graph problem and we can use graph-partition
techniques to solve it. Now the question is what criteria should be used to partition
the graph.

Based on the following two different partitioning strategies, there are two
kinds of targeted patching: balanced patching and clustered patching (unbalanced
patching).

17.5.2 Balanced Graph Partitioning

Intuitively, the significance level of each partition should be similar so that the worm
damage to each partition can be balanced. As mentioned before, vertex weight and
edge weight can be viewed as metrics for significance level. The vertex degree
denotes how many victims an infected mobile is able to reach while the edge weight
represents the probability that worms can propagate through this link successfully.
Due to different ways of balancing these two metrics, we define balanced graph
partitioning as follows.

Definition 17.2 (Balanced Graph Partitioning). Given an undirected weighted
graph G = (V,E), with weight f (i) for each vertex i ∈ V and g(u,v) for each edge
(u,v) ∈ E , a partition P cuts the vertices set V into k(k > 1) subsets V1,V2, . . . ,Vk

such that Vi ∩Vj = φ for i �= j, and ∪iVi = V , with the following two constraints
satisfied:

• The total weights of vertices in each subset Vi are balanced.
• The total weights of all edges crossing any two subsets are minimized.

The first constraint in the definition requires the vertex weights for each partition
to be balanced. Let LoadImbalance(P) denote the ratio of the highest partition

17 Worm Containment in Cellular Networks 515

weight over the average partition weight, i.e., maxi(f (Vi))/(f (V)/k). The first
constraint minimizes LoadImbalance(P). It tries to keep the significance level in
each partition balanced, so that the damage to each partition is balanced and limited.
The second constraint keeps the edge weights between partitions minimized so that
partitions are less related to each other. Let Edge-Cut(P) denote the total weights of
all edges crossing any two partitions. Then, the second constraint minimizes Edge-
Cut(P).

Next, we try to find an appropriate theory to solve the above problem. Existing
graph partitioning solutions [15, 27] are developed for high-performance parallel
computing, circuit placement and other disciplines. All these solutions partition the
vertices of the graph into equally weighted sets so that the weight of the edges
crossing between sets is minimized. A new class of partitioning algorithms based
on the multilevel paradigm [16, 30] has been developed and is considered to be the
state-of-the-art as they provide extremely high-quality partitions. These algorithms
are very fast, and can scale to graphs containing millions of vertices. The basic idea
behind the multilevel approach is to first coarse down the graph G to a few hundred
vertices or less. Then, some standard partitioning algorithm is used to partition
the graph. Since the size of the graph is quite small, simple algorithms such as
Kernighan-Lin (KL) [18] performs well. The final step is to project this partition
back towards the original finer graph G. Some of these algorithms have also been
incorporated into well-known software packages such as METIS [17].

These existing graph partitioning algorithms were originally designed for parallel
computing, whose goal is to evenly distribute the computations over k processors
by partitioning the vertices into k equally weighted sets while minimizing inter-
processor communication represented by edges crossing between partitions. These
two objectives exactly match the two constraints in our definition. Therefore,
balanced graph partitioning can be easily solved by existing graph partitioning
algorithms, for example, the multilevel KL algorithm.

17.5.3 Clustered Graph Partitioning

Balanced graph partitioning tries to maintain the significance level in each partition
balanced, so that the damage to each partition is balanced and limited. However, it
does not give high priority to minimize the edge-cut, therefore does not guarantee
that worms can always be successfully contained within individual partitions. For
example, if the weights of the edges across two partitions are very large, the
probability of worm propagation through this edge will be very high. Then, the
worms may have already propagated across the two partitions before patches are
distributed. Therefore, rather than partitioning the graph into balanced parts, we
want to partition the graph according to the trusted social relations. This method is
referred to as clustered partitioning where edges within each partition have higher
weights compared to the edges between the two partitions.

516 Z. Zhu et al.

4

3

3

23

3

4

3

5

0.1 0.3

0.3

0.20.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

Edge-cut: 2.5
Node weights: 10/10/10

Edge weights: 0.3/0.3/0.3

3

3

23

3

4

3

5

0.1 0.3

0.3

0.20.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

Edge-cut: 0.9
Node weights: 14/6/10

Edge weights: 1.0/1.0/1.0

Balanced Graph Partitioning Clustered Graph Partitioning

a b

Fig. 17.3 Examples of two different graph partitioning schemes

With clustered partitioning, we keep the mobiles that are socially close to each
other in the same partition, and divide nodes that are not close into different
partitions. This is because closer nodes are more likely to infect each other quickly
as soon as the worms breakout. We cannot do too much about it as the infection
may have already happened before patching, so we prefer leaving them in the
same partition. On the other hand, two nodes with a low weight link may have not
communicated with each other and there is a low probability for a worm to spread
across the link. Therefore, keeping them in two different partitions can effectively
prevent the worm in one partition from infecting the other. Note that if there is no
edge between the two nodes, they will be divided into two different partitions.

Definition 17.3 (Clustered Graph Partitioning). Given an undirected weighted
graph G = (V,E), with weight f (i) for each vertex i ∈ V and g(u,v) for each edge
(u,v)∈ E , a partition P cuts the vertice set V into k(k > 1) subsets V1,V2, . . . ,Vk such
that Vi∩Vj = φ for i �= j, and ∪iVi =V , with the following two constraints satisfied:

• The averaged edge weights (i.e., the total edge weights divided by the number of
nodes) in each subset Vi are maximized: max(∑m∈Vi,n∈Vi

g(m,n))/|Vi|.
• The total weights of all edges crossing subsets are minimized.

Figure 17.3 shows the node weights and edge weights for each partition by the
two partitioning schemes on the social relationship graph shown in Fig. 17.2. We
can see clearly from the example that balanced partitioning has an edge-cut of 2.5
while the clustered partitioning achieves an edge-cut of 0.9. As a result, it takes
longer time for worms to propagate between partitions under clustered partitioning,
which leaves itself more response time.

17 Worm Containment in Cellular Networks 517

17.5.4 Measurement of Connectivity

Unfortunately, this problem is NP-hard and these two constraints cannot be
achieved at the same time. Thus, we can only apply heuristics to generate
approximate solutions. We develop a new measurement called Connec-
tivity and propose a recursive clustered partitioning algorithm based on this
concept.

Theorem 17.1. The connectivity C in a social relationship graph is measured
recursively as follows:

Connectivity between two nodes. If i and j are two nodes and the edge between
them has a weight of w(i, j), then the connectivity between node i and j is C(i, j) =
w(i, j). If there is no edge between i and j, C(i, j) = 0.

Connectivity between a node and a set. S is a set with more than one node in
it, and i is a node outside of S. Then the connectivity between node i and set S is
C(i,S) = ∑ j∈S C(i, j).

Connectivity between two sets. S1 and S2 are two sets in the graph, the
connectivity between set S1 and S2 is C(S1,S2) = ∑i∈S1

C(i,S2).

Connectivity of a set. The connectivity of set S is defined as the expected
connectivity of any node i in the set S to the set S i, S i is the set S excluding node i.
Then, C(S) = ∑i∈S C(i,S i)

n , where n is the number of nodes in S.

The connectivity C denotes the connectivity level or closeness between two
objects as in Fig. 17.4. For example, consider the closeness between a node i
and a set S. Node i has one or more edges connected to set S, with weight
p1, p2, · · · pk respectively. As each edge weight pi denotes the probability that a
message is successfully delivered from i to S through that particular edge i, the
probability that a message is successfully delivered from i to S can be computed
by 1 − (1 − p1)(1 − p2) · · · (1 − pk). After ignoring the product items, it can
be simplified as p1 + p2 + · · · + pk, which is the connectivity C(i,S) between
i and S.

Consider the connectivity of a set S. According to the definition of C(S), each
edge weight in S would be counted twice. Therefore, the connectivity of S can also

be presented as C(S) = ∑i∈S, j∈S 2w(i, j)
n . Without losing generality, we can rewrite it

as C(S) = ∑i∈S, j∈S w(i, j)
n , which is exactly the same as our fist constraint. Therefore,

to satisfy the first constraint of clustered partitioning, we just need to maximize the
connectivityC for each partition. Based on the definition of connectivity, we propose
a heuristic algorithm to separate a graph into no more than k clustered partitions. k
is a pre-defined threshold for the number of partitions.

518 Z. Zhu et al.

Fig. 17.4 Examples of how to measure the connectivity (a): between two nodes; (b): between a
node and set; (c): between two sets

17.5.5 Clustered Graph Partitioning Algorithm

The basic idea behind clustered graph partitioning algorithm is to enlarge each
partition from individual nodes based on the metric of connectivity; i.e., a new node
which has the largest connectivity with the current partition is chosen and added
to the partition. This process stops until any node’s joining could not increase the
connectivity for the partition. Then another partition expanding process is started
from a remaining node. When there is no more partition growing, the graph has
been partitioned to clusters, which is called a round. If the number of partitions is
still larger than k, a new round is started, where each partition is contracted to a node
and the partition expanding process is performed on the updated graph. The detailed
algorithm includes following three recursive stages:

• Expanding Stage

– Sort all edges in graph G by their weights w. Pick the edge with the largest
weight and put its two end nodes into one partition P.

17 Worm Containment in Cellular Networks 519

– Partition P grows as follows: for all neighboring nodes of this partition,
choose node i which has the largest connectivity with partition P and add
node i to form a new partition P′. Update C(P′). Repeat the above step on
the new partition P′ until there is no neighboring node that can achieve
C(P′′)≥ C(P′).

– Pick the edge with the largest weight from the rest of the edges and perform
the above expanding process. The expanding stage stops when every node
has been added to a partition.

• Contracting

– Based on the resulting partitions from the expanding stage, contract G to
a condensed graph G′ such that each partition Pi in G becomes a node i
in G′ and all the interconnection edges between two partitions Pi and Pj

become an edge e(i,j) between the two corresponding nodes i and j in G′.
w(i, j) =C(Pi,Pj).

– Recursively apply the Expanding stage and the Contracting stage on graph
G′. It stops when the number of partitions falls below the specified value k.

• Restoring

– Restore the original graph G by replacing each condensed node in each
partition with its original nodes in the corresponding partition created in
the contracting stage. Then, graph G is cut into less than k partitions.

Figure 17.5 illustrates how this algorithm works on a clustered graph. The
distance between any two nodes denotes the closeness relationship between these
two nodes. Thus, two nodes that are closer to each other in the plane would have
higher connectivity and should be partitioned together.

The time complexity of this algorithm can be easily analyzed. At the beginning,
there are n nodes in the graph which can be viewed as n individual partitions. In the
end, the number of partitions is lower than k. As each partition expanding adds at
least one node or one subset to a partition, there are at most n− k times of partition
expanding. For each partition expanding, a node with the largest connectivity to the
partition is searched. This takes time O(np ∗C), where np is the number of nodes in
the current partition and C is the average degree of each node. In the worst case, the
partition is as large as the entire graph and np becomes n. Therefore the total time
for the algorithm is O(n2).

520 Z. Zhu et al.

original graph partitioned graph

contracted graph restored graph

a b

c d

Fig. 17.5 An example of the clustered partitioning algorithm. (a) to (b) shows the partition
expanding process. (b) to (c) shows contracted and partitioned graph. (d) restores to the original
graph with 10 partitions

17.5.6 Worm Containment and Patching

In this part, we propose a systematic method to contain worms within different
partitions. There are four steps to achieve it:

1. Build an undirected weighted graph G representing the mobiles’ social relation-
ship in the cellular network from a real trace.

2. Apply either balanced partitioning or clustered partitioning algorithm to graph G
to obtain a partitioning and the corresponding cut edges.

3. Use the Minimum Vertex Separator Algorithm shown in Algorithm 1 to compute
a minimum set of vertex separators from the set of cut edges.

17 Worm Containment in Cellular Networks 521

Algorithm 1 Minimum Vertex Separator Algorithm

Input: EC: the set of cut edges;
1: VS ← φ
2: while EC �= φ do
3: Select v ∈V ′ which is shared by the most number of cut edges in EC

4: Add v to VS

5: Remove from EC any cut edge whose end point is v
6: end while

Output: VS: the set of vertex separators;

4. Send the security patches to separator nodes to block the worm propagation
between partitions. These separator nodes could be responsible for forwarding
the patches to other nodes in the same partition.

To obtain a set of separator nodes from the set of cut edges has been shown
to be NP-Complete [12]. We propose Algorithm 1 to approximately solve this
problem by the Greedy paradigm, in which the next vertex selected for the Minimum
Separator Set is the vertex that covers the most uncovered elements.

To better illustrate how does our system work, a flow chart of the entire social
network based worm containment system is shown in Fig. 17.6. The left part
includes worm detection and patch dissemination while the right part involves trace
analysis and separator set generation. All these components correlate with each
other to work as a worm containment system.

17.6 Performance Evaluations

In this section, we evaluate and compare three different patching strategies, random
patching, balanced patching and clustered patching based on the worm infection rate
and the number of separator (patched) nodes.

17.6.1 Simulation Setup

Our experiments are based on the social relationship graph generated from a real
network traffic trace from one of the largest cellular networks in the US. Although
this trace data does not include all the mobile users nation-wide, it preserves similar
characteristics as the national cellular networks. It is evaluated to have enough
duration and scalability for our in-depth analysis of social interaction. Compared to
related works that are based on cellular network traces, our trace analysis includes
not only MMS and SMS messaging service, but also other popular services such as
SIP based voice services as all of these services and interactions are equally likely
to be exploited by worms.

522 Z. Zhu et al.

Fig. 17.6 The flow chart of trace-driven worm containment system

As far as we know, there does not exist any realistic model for worm propagation
using SMS/MMS services in cellular networks. Although the work by Fleizach
et al [11] models the mobile worm propagation, it is only based on US census
data and estimated address book degree distribution. We construct a MMS worm
propagation model as follows. We assume worms are able to exploit the social
relationship information for propagating. We model the probability that a mobile
will activate a worm received from another mobile as directly proportional to the
connectivity level between them and model the time taken for the worm code to
propagate from one mobile to another as inversely proportional to the connectivity
level. This time includes the latency for worm transmission as well as the delay
between the time of receiving the worm and the time of activating it. Once the worm
has infected a new mobile, it starts to propagate to its neighbors after t time units.

We use a parameter of Patching Threshold α to control when the
patching procedure starts. It is measured as the percentage of infected users in the
network. This parameter represents the time delay since the worm starts propagating
till it is detected by the network and a patch is generated. Once the percentage of

17 Worm Containment in Cellular Networks 523

infected users reaches this threshold α , the network would start to distribute patches
to the chosen separator nodes.

Another parameter β is defined as the percentage of Worm Sources in the
network. Worm Sources are a number of nodes which are randomly chosen from the
network to initiate the infection process at the very beginning. This would provide
the most pessimistic scenario as under a uniform distribution worm sources are more
likely to be distributed across different clusters. One difference between α and β is
that the infected users (determined by α) are chosen to be within the same cluster,
while worm sources (determined by β) are uniformly distributed in the network.
Each run of the simulation lasts for 2,000 time units.

17.6.2 Effects of the Patching Threshold

We assume that some kind of systematic detection system is deployed across the
network to observe the abnormal traffic and detect any worm outbreak. The time
when to start the patching procedure depends on the strength of the detection system.
Obviously, early detection can achieve better effects on worm containment but
consumes more resources on monitoring and computation, while later detection,
though less resource intensive in terms of monitoring, could significantly delay
worm containment. We use the parameter of patching threshold, α to simulate
the time delay for worm detection and patch generation. Once the infection rate
reaches this predefined threshold α , the network would start to distribute patches.
Figure 17.7 compares the performance of three patching schemes: random patching,
balanced patching, clustered patching under various α . We choose a number of
(β = 0.02%) nodes in the network by uniform distribution as the seed set of worm
sources to initiate the infection process at the very beginning. As expected, the
longer we wait to begin patching (higher patching threshold), the more number of
nodes need to be patched for balanced or clustered patching to achieve the same
infection rate. Interestingly, for random patching, the infection rate does not change
irrespective of when to start the patching. Moreover, balanced patching has similar
infection rate as random patching when patched nodes are under 2% in Fig. 17.7b
and 2.6% in Fig. 17.7c due to the lack of enough separator nodes for effective
partitioning.

As shown in Fig. 17.7, clustered patching requires much less patched nodes than
balanced patching to achieve a certain infection rate in most cases. This is because
clustered partitioning always cuts the graph from the least connected part, which
results in less separator nodes, whereas balanced partitioning sometimes has to
separate a strongly connected cluster apart and thus results in more separator nodes.
Even in Fig. 17.7a, to achieve a low infection rate such as lower than 0.2, clustered
patching requires much less patched nodes than balanced patching.

524 Z. Zhu et al.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
random patch

α = 2%

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
random patch

α = 10%

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
random patch

α = 20%

a

b c

Fig. 17.7 Effect of patching threshold α (β = 0.02%)

17.6.3 Effect of β

Worm Sources (β) are uniformly chosen from the network to initiate the infection
process at the very beginning. This would provide the most pessimistic scenario as
under a uniform distribution worm sources are more likely to be distributed across
different clusters. In contrast, other distributions are more likely to decrease the
number of clusters which have worm sources in them and thus would achieve a
better performance for our containment strategy. A large set of worm sources helps
to greatly speed up the worm propagation which makes the containment process
more difficult. Figure 17.8 compares the performance of three patching schemes
when β is equal to 0.02%, 0.1%, 0.2%, respectively. Note that both balanced
patching and clustered patching perform better than random patching on both

17 Worm Containment in Cellular Networks 525

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
random patch

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
randomly patch

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

ct
io

n
ra

te

clustered patch
balanced patch
randomly patch

b = 0:02%

b = 0:1% b = 0:2%

a

b c

Fig. 17.8 Effect of the percentage of worm sources β (α = 2%)

infection rate and number of patched nodes. Similar to Fig. 17.7, balanced patching
has similar performance as random patching when patched nodes are under 2% in
Fig. 17.8b and 2.4% in Fig. 17.8c.

17.6.4 Infection Rate Versus Time

Figure 17.9 shows how infection rate changes over time under different patching
strategies. Clustered patching achieves the best performance as it limits the infection

526 Z. Zhu et al.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

ct
io

n
ra

te

random patch
balanced patch
clustered patch

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

ct
io

n
ra

te

random patch
balanced patch
clustered patch

a = 2%; b = 0:02%

a = 10%; b = 0:02%

a

b

Fig. 17.9 Infection rate vs. time (percentage of patched nodes = 4%)

rate within a certain bound much faster than the other two. Also, the infection
rate can be bounded to a much lower value if the patching threshold is lower,
i.e. patching is started earlier. We can observe from the figure if the operator
were to begin patching the network after 2% of mobile devices had already been
infected, then clustered partitioning bounds the infection rate to 0.025 within

17 Worm Containment in Cellular Networks 527

30 time units. Balanced partitioning is only able to bound the infection rate to 0.1
with a longer 450 time units. However, both schemes perform significantly better
than random patching, which leads to 90% of nodes getting infected after 900 time
units.

17.6.5 Effect of Dynamic Graph Topology

The trace we collected for social interaction analysis may not always be up to date
unless it is frequently updated. To avoid the updating overhead, there will be a gap
between the time when the social relationship graph is generated and the time of
worm breakout. For example, a few new users may register and join the network,
and start to build their social relationships. This may result in inaccuracies in our
patching schemes. Figure 17.10 shows the effect of dynamic topology changes on
the two patching schemes under various disturbance levels, where n denotes the
percentage of new users joining the network and e denotes the number of edges
for each new user connecting to other users. Notice that we cannot differentiate the
curve of no disturbance and curve of n= 0.02%,e= 5 for clustered patching because
they behave the same. From the figure we can see that clustered patching is always
behaving robuster to network disturbance than balanced patching. This is because
new users usually join a certain cluster and only communicate with users in this
cluster. Therefore, clustered patching can tolerate this disturbance more effectively.

17.7 Discussions

Our worm containment strategy assumes the presence of a detection system to
detect a newly propagating worm. There are several works for detecting mobile
worms at the network-level such as SmartSiren [3] and at the host-level using
behavior anomaly detection [1] or energy anomaly detection [20]. These mobile
worm detection systems can detect a worm within a reasonable latency and hence
could serve as the initial trigger for our worm containment via patch distribution.
Moreover, as a game between the worm designer and the patch system designer,
patch designer should choose carefully between balanced patching and clustered
patching to cope with worm designer’s various tactics. Next, we discuss several
other related issues.

17.7.1 Patch Generation and Distribution

Service providers usually take a multi-pronged strategy towards containing a zero-
day worm – they start rate-limiting or filtering outbound traffic from hosts that

528 Z. Zhu et al.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

ct
io

n
ra

te
No disturbance
n=0.02%, e=5
n=0.02%, e=10
n=0.04%, e=5
n=0.04%, e=10

Effect on balanced patch

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

ct
io

n
ra

te

No disburbance
n=0.02%, e=5
n=0.02%, e=10
n=0.04%, e=5
n=0.04%, e=10

Effect on clustered patch

a

b

Fig. 17.10 Effect of dynamic topology under various disturbance levels (percentage of patched
nodes = 4%,α = 2%)

17 Worm Containment in Cellular Networks 529

are infected and also start extracting the signature of the worm so that uninfected
hosts can be protected. Developing a patch typically takes a substantial amount of
time and manual efforts. The time scale required to generate security patches or
signatures is up to 2 h [6]. Regardless of whether the service provider is able to
develop the patch within hours of worm outbreak, our proposed mechanism can
also be used for rate-limiting in the following way. Once the service provider has
identified the set of key nodes via our partitioning algorithms, he can generate
stricter filtering or rate-limiting rules for outbound traffic from these nodes so that
the damage due to the worm can be contained more effectively.

It is up to the network operator to decide which approach to use to distribute
the patches: push, pull or traffic controlling. In the case of pull, some mobile
users may refuse to install the patch since they may not trust the source of the
patch. An efficient way is needed for the network operator to have the patch
messages authenticated. Fortunately, many mobile operators have some “Wake
Up” mechanism to directly distribute software or patches to devices without any
intervention from the users to make patches activated.

17.7.2 Efficiently Utilize the Wireless Bandwidth

An effective patch distribution strategy needs to make sure that the patches do not
compete for the scarce bandwidth resources. The uniform patching in this regards
becomes white worm [32], which usually deploys an arbitrary payload and cannot
be practically bounded. Our patch distribution mechanisms take a hierarchical
approach and instead of flooding out the patch to all nodes, we determine an optimal
set of nodes to which the patch must be sent to obtain a bounded infection rate.
These patches involve nothing about broadcasting and only bring limited traffic into
the network, e.g. only 0.25% of devices need to be patched via clustered patching to
bound the infection rate at 0.90 (Fig. 17.8b) compared to random patching for which
a much larger 4% of devices would have to be patched to achieve an equivalent
infection rate. Even considering the case in which patches are propagated from the
separators to other mobiles within a partition, it would not cause any problem as the
propagation is only bounded in those infected partitions which often have a limited
number.

Cellular network bandwidth usually places constraints on worm propagation and
patch dissemination. However, we can skip this influence in our simulation since
once our patching strategy is deployed, the worms should have been contained and
stopped at the very early stage before saturating the network capacity. For patch
distribution, as only a limited number of mobiles are patched while no broadcasting
is introduced, the limited patching traffic is far away from saturating the cellular
network bandwidth.

530 Z. Zhu et al.

17.7.3 Social Factors Affecting the MMS Worm Propagation

MMS worms can send a copy of itself to all mobile phones whose numbers are
found in the infected phones’ address books, or numbers found from message boxes,
and cause tremendous damage to mobile phone users and even the entire network.
Other than the social relationship considered in our worm propagation model, the
following social factors may also effect the MMS worm propagation:

• User’s Confirmation: While the MMS worms can autonomously copy themselves
from one device to another, users have to actively install them for the worm to be
propagated. Statistically, 25% of MMS messages have never been opened by the
recipients. This may be because they do not trust the senders, or they are not in a
good time for checking messages.

• Message Waiting Time: Previous work assumes fixed time interval between the
time when a worm message is sent out and the time for the victim to be infected.
For example, [31] chooses 2 min as the time required for a MMS virus to
be received by another handset and to install itself. However, there is always
a message waiting time before the MMS message is actually retrieved. This
message waiting time could vary from less than 1 minute to more than 1 day,
depending on who’s the sender and the receiving time during the day.

• Time Zone: Time zones play an important and unexplored role in malware
epidemics. Dagon et al. [4] studied diurnal properties in botnet activity to
understand how time and location affect computer malware spread dynamics.
Clearly, computers that are turned off at night are not infectious. It is similar to
the case of MMS worms in that mobile phone users are not infectious at night
when they are in sleep and cannot activate the malicious message. However,
unlike computer worms where malicious codes directly reach victim computers,
malicious MMS messages are saved in the MMS server for a time period before
users retrieve them onto their mobile phones.

Therefore, future research on MMS worm propagation modeling should consider
these social factors, which may speed up or slow down the worm propagation from
spatial or temporal perspectives.

17.8 Conclusion

This chapter proposed a methodology for effectively limiting the spread of MMS
and SMS based worms via a graph partitioning approach. In our solution, mobile
devices are divided into multiple partitions based on the social relationships among
them. Two patching schemes, namely balanced and clustered patching are designed
and their performance is evaluated using simulations based on data collected from
real cellular networks. Through extensive evaluations, we demonstrate that our
partitioning strategy can effectively contain worms.

17 Worm Containment in Cellular Networks 531

This is one of the first work to use a real network traffic trace to study the
social interactions and relations between any two mobiles and the vulnerability
information exploited by worm for spreading. Further research in this area includes
dealing with hybrid worms which can make use of both cellular network interface
and Bluetooth interface to propagate, and looking into worms and users roaming
between cellular networks operated by different service providers.

References

1. A. Bose, X. Hu, K.G. Shin, and T. Park. Behavioral detection of malware on mobile handsets.
In Proceeding of the 6th international conference on Mobile systems, applications, and
services, pages 225–238. ACM, 2008.

2. A. Bose and K.G. Shin. Proactive security for mobile messaging networks. In Proceedings of
the 5th ACM workshop on Wireless security, page 104. ACM, 2006.

3. J. Cheng, S.H.Y. Wong, H. Yang, and S. Lu. SmartSiren: virus detection and alert for smart-
phones. In Proceedings of the 5th international conference on Mobile systems, applications
and services, page 271. ACM, 2007.

4. D. David, C. Zou, and W. Lee. Model Botnet Propagation Using Time Zones. In Proceeding of
the Network and Distributed System Security (NDSS) Symposium 2006.

5. W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting open functionality in SMS-
capable cellular networks. In Proceedings of the 12th ACM conference on Computer and
communications security, page 404. ACM, 2005.

6. F-SECURE. Close the zero-hour gap: Protection from emerging virus threats, http://www.f-
secure.com/f-secure/marketing/white papers.

7. F-SECURE. F-secure deepguard – a proactive response to the evolving threat scenario, http://
www.f-secure.com/f-secure/marketing/white papers.

8. F-SECURE. F-secure malware information pages: Sms-worm:symbos/feak, http://www.f-
secure.com/v-descs/sms-worm symbos feak.shtml.

9. F-SECURE. F-secure virus information pages: Cabir, http://www.f-secure.com/v-descs/cabir.
shtml.

10. F-SECURE. F-secure virus information pages: Commwarrior, http://www.f-secure.com/v-
descs/commwarrior.shtml.

11. C. Fleizach, M. Liljenstam, P. Johansson, G.M. Voelker, and A. Mehes. Can you infect me
now?: malware propagation in mobile phone networks. In Proceedings of the 2007 ACM
workshop on Recurring malcode, page 68. ACM, 2007.

12. M.R. Garey and D.S. Johnson. Computers and intractability. A guide to the theory of NP-
completeness. A Series of Books in the Mathematical Sciences. WH Freeman and Company,
San Francisco, Calif, 1979.

13. M. Ghaderi and S. Keshav. Multimedia messaging service: system description and performance
analysis. In First International Conference on Wireless Internet, 2005. Proceedings, pages
198–205, 2005.

14. J.C. Haartsen, E.R.S. BV, and N. Emmen. The Bluetooth radio system. IEEE Personal
Communications, 7(1):28–36, 2000.

15. B. Hendrickson and T.G. Kolda. Graph partitioning models for parallel computing* 1. Parallel
Computing, 26(12):1519–1534, 2000.

16. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359, 1999.

17. G. Karypis, K. Schloegel, and V. Kumar. ParMETIS: Parallel Graph Partitioning and Sparse
Matrix Ordering Library Version 3.1. University of Minnesota, Minneapolis, 2003.

http://www.f-secure.com/f-secure/marketing/white_papers
http://www.f-secure.com/f-secure/marketing/white_papers
http://www.f-secure.com/f-secure/marketing/white_papers
http://www.f-secure.com/f-secure/marketing/white_papers
http://www.f-secure.com/v-descs/sms-worm_symbos_feak.shtml
http://www.f-secure.com/v-descs/sms-worm_symbos_feak.shtml
http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/commwarrior.shtml
http://www.f-secure.com/v-descs/commwarrior.shtml

532 Z. Zhu et al.

18. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 49(2):291–307, 1970.

19. M. Khouzani, S. Sarkar, and E. Altman. Maximum Damage Malware Attack in Mobile
Wireless Networks. In IEEE Societies INFOCOM 2010. Twenty-Nine Annual Joint Conference
of the IEEE Computer and Communications.

20. H. Kim, J. Smith, and K.G. Shin. Detecting energy-greedy anomalies and mobile malware
variants. In Proceeding of the 6th international conference on Mobile systems, applications,
and services, pages 239–252. ACM, 2008.

21. F. Li, Y. Yang, and J. Wu. CPMC: An Efficient Proximity Malware Coping Scheme in
Smartphone-based Mobile Networks. In IEEE Societies INFOCOM 2010. Twenty-Nine Annual
Joint Conference of the IEEE Computer and Communications.

22. X. Meng, P. Zerfos, V. Samanta, S.H.Y. Wong, and S. Lu. Analysis of the reliability of
a nationwide short message service. In IEEE INFOCOM 2007. 26th IEEE International
Conference on Computer Communications, pages 1811–1819, 2007.

23. J.W. Mickens and B.D. Noble. Modeling epidemic spreading in mobile environments. In
Proceedings of the 4th ACM workshop on Wireless security, page 86. ACM, 2005.

24. A.G. Miklas, K.K. Gollu, K.K.W. Chan, S. Saroiu, K.P. Gummadi, and E. De Lara. Exploiting
social interactions in mobile systems. In Proceedings of the 9th international conference on
Ubiquitous computing, pages 409–428. Springer-Verlag, 2007.

25. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm, http://www.caida.org/publications/papers/2003/sapphire/ sapphire.
html, 2003.

26. D. Moore, C. Shannon, G.M. Voelker, and S. Savage. Internet quarantine: Requirements for
containing self-propagating code. In IEEE Societies INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications, pages 1901–1910.

27. K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high-performance scientific
simulations, Sourcebook of parallel computing, 2003.

28. E. Van Ruitenbeek, T. Courtney, W.H. Sanders, and F. Stevens. Quantifying the effectiveness of
mobile phone virus response mechanisms. In 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2007. DSN’07, pages 790–800, 2007.

29. M. VojnoviĆ and A. Ganesh. On the effectiveness of automatic patching. In Proceedings of the
2005 ACM workshop on Rapid malcode, page 50. ACM, 2005.

30. C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh partitioning.
Parallel Computing, 26(12):1635–1660, 2000.

31. P. Wang, M.C. Gonzalez, C.A. Hidalgo, and A.L. Barabasi. Understanding the spreading
patterns of mobile phone viruses. Science, 324(5930):1071, 2009.

32. N. Weaver and D. Ellis. White worms don’t work. Login, 31:33–38, 2006.
33. C. Wong, S. Bielski, A. Studer, and C. Wang. Empirical analysis of rate limiting mechanisms.

In Recent Advances in Intrusion Detection, pages 22–42. Springer, 2006.
34. Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity under worm attacks: a

software diversity approach. In Proceedings of the 9th ACM international symposium on
Mobile ad hoc networking and computing, pages 149–158. ACM, 2008.

35. B. Zhao, C. Chi, W. Gao, S. Zhu, and G. Cao. A chain reaction DoS attack on 3G
networks: analysis and defenses. In IEEE Societies INFOCOM 2009. Twenty-Eight Annual
Joint Conference of the IEEE Computer and Communications.

36. Z. Zhu and G. Cao. Worms in Cellular Networks. Book Chapter in Encyclopedia of cryptogra-
phy and security (2nd Ed.). Springer Verlag, 2010.

37. Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci. A Social Network Based Patching
Scheme for Worm Containment in Cellular Networks. In IEEE Societies INFOCOM 2009.
Twenty-Eight Annual Joint Conference of the IEEE Computer and Communications, pages
1476–1484.

http://www.caida.org/publications/papers/2003/sapphire/
sapphire.html
sapphire.html

17 Worm Containment in Cellular Networks 533

38. C.C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for internet worms.
In Proceedings of the 10th ACM conference on Computer and communications security, pages
190–199. ACM, 2003.

39. G. Zyba, G.M. Voelker, M. Liljenstam, A. Méhes, and P. Johansson. Defending mobile phones
from proximity malware. In IEEE Societies INFOCOM 2009. Twenty-Eight Annual Joint
Conference of the IEEE Computer and Communications, 2009.

Index

A
Abilene network, 112, 134, 135
Accessibility, 4
Ad-hoc wireless network, 29, 37–38, 198
AI planning, 273, 275
Algebraic connectivity, 5, 23–26, 30, 101
All pairs shortest distance (APSD), 483–489
Animal flocking, 62
Anomaly detection, 165, 168, 523
arXiv e-print citation network, 307, 321,

324–325

B
Backbone network, 100
Backpressure-based learning, 427–453
Backtracking line search, 120, 121
Balanced graph partitioning, 510–512
Bandit-problem, 453
Barabási–Albert (BA), 28, 30, 31, 67, 69, 72,

73, 77, 78, 80–82, 86, 282
Behavioral characteristic, 165
Behavioral signature, 505
Betweenness, 6, 10, 11, 17, 18, 25–27, 63,

74–79, 83–88, 98, 101–110, 203–208,
243, 245

centrality, 17–19, 25, 26, 45, 83, 98–104,
108, 109, 200, 202–206, 216, 280,
370, 407

Bilevel stochastic integer programming,
49

Bi-mesh structure, 180–185, 191, 192
Biochemical network, 3
Block structure, 166, 167, 172–173, 193
Blondel method, 321, 323–325
Bluetooth, 328, 350, 353, 365, 392, 393, 456,

472, 502, 505, 527

Branch-and-bound (B&B), 112, 155, 156, 221,
223, 226–232, 238

Branch & cut, 156
Bridging centrality (BC), 197–217
BUBBLE, 350–352, 363–365, 370–372,

376–380, 382, 383
BUBBLE Rap, 456, 457
Business integration, 301

C
Cache replacement, 458
Call network, 157, 158
Cambridge Haggle Trace, 471
Canonical order, 488
Carraghan–Pardalos algorithm, 153, 156
Cascade, 37–55, 86–88

control, 63, 86–88
Cascading failure, 63, 84, 86–88
Causally-constrained queuing network, 63
Cellular network, 13, 331, 501–527
Cellular-social relationship graph, 507–509
Cellular tree hierarchy, 44
Centrality, 6, 10, 11, 23, 25, 70, 79, 80, 98,

101, 102, 197–217, 279, 287, 288, 291,
351, 352, 369–370, 372–375, 377, 380,
382, 398, 407–411, 457

Centrality-based forwarding, 407, 418
CFinder, 340–342, 345
Chaotic oscillator, 63
Classified traffic routing (CTR), 242, 252–260
Clique, 47, 50, 52–55, 144–149, 155–156,

158, 159, 318, 336, 337, 345, 419,
494–498

relaxation models, 143–159
Cliquer, 154
Closeness centrality, 200

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Communication and Social Networks, Springer Optimization and Its Applications 58,
DOI 10.1007/978-1-4614-0857-4, © Springer Science+Business Media, LLC 2012

535

536 Index

Cluster, 67, 158, 172, 174, 178, 179, 185, 200,
204, 206, 215, 217, 274, 283, 284, 302,
308, 314, 331–334, 344, 480, 503, 505,
514, 519, 520, 523

Clustered graph partitioning, 511–512,
514–516

Co-clustering, 166, 173–175, 179, 193
Cohesiveness, 144–146, 189
Cohesive subgroup, 144, 145, 147, 148, 158
Co-k-plex coloring problem, 156
CollabNet, 43
Collision avoidance, 220
Communication network, 13, 20, 41, 48, 76,

77, 97–141, 309, 327, 335
Communication pattern, 165, 166, 172, 173,

176, 193, 504
Community, 24, 70, 100, 166, 308, 351, 388,

456, 490
Community structure, 70, 186, 192, 193,

307–345, 365, 370–372, 379
Commute time, 76, 92, 131
Computational indistinguishability, 483
Conductance, 70–73, 82, 138, 139
Connectivity, 4–6, 10–13, 24–27, 29, 30, 39,

40, 42, 47, 50–52, 99, 101, 136, 148,
158, 170, 173, 180, 181, 185, 198–203,
210, 263, 264, 276, 286, 301, 337,
350–352, 355–358, 363, 381, 382, 391,
393, 394, 396, 398, 418, 493, 496–498,
513–515, 518

attenuation, 42
graph, 158, 203

Contact aware, 399, 401
Contact graph, 359, 366, 388, 390, 391, 393,

399–401, 403, 405, 422, 423
ContentPlace, 458, 459
Cooperative control, 62
Coordination phenomena, 62
COPRA, 340–343, 345
Correlated pool structure, 185
Coupled oscillator, 63
Coupling matrix, 65, 90
Coupon distribution, 433–436, 438–446, 448,

452
Coupon forwarding reward rate, 438, 441
Coupon rate selection, 445–446
Coupon routing at target rate, 439
CPMC, 505
Credential authority, 481, 498
Crime ring, 38
Cross-layer optimization, 220, 221, 235, 237,

238
Current flow, 62, 79–83

betweenness, 63, 79–82

D
Damping factor, 389, 400, 403–406, 416, 417,

423
DC-model, 138
Degree centrality, 6, 101, 200–201, 214, 288
Degree distribution, 5, 12, 29, 31, 51, 55, 65,

66, 69, 72, 78, 91, 170, 172, 244, 279,
281, 340, 450, 492, 518

Degree-based forwarding, 407, 408, 418
Degree-degree correlation, 67, 89
Delay-based coupon forwarding, 447–448
Delay tolerant mobile ad hoc network

(DT-MANETs), 456–458, 460, 477
Delay-tolerant network (DTN), 206, 213, 351,

380, 382, 383, 397, 457, 458
Delivery ratio, 328, 329, 350–356, 358, 372,

379, 381, 383
Demand spike, 41
Density function, 336, 338
Deterministic betweenness, 103
Diagonalization, 63, 64, 67, 68, 70, 80
Diameter, 8, 24–26, 29, 99, 146, 147, 154, 156,

158, 280, 281, 392, 415
Dijkstra’s algorithm, 45, 280, 397, 483, 486
Directed graph, 130, 131, 141, 490
Distance, 8, 15, 16, 18, 21–23, 25, 28, 41,

42, 44, 45, 50, 53, 89, 98, 99, 101,
108–113, 120, 130, 138–140, 146, 147,
150, 154, 155, 223, 224, 229, 233, 237,
275, 279–282, 284, 339, 393, 398, 406,
419, 420, 481, 483–487, 493, 495, 515

Distance-attenuated reach, 41
DOCA, 309, 310, 335, 337, 339–343,

345
DROP algorithm, 155
DROP & CONSTELLATION algorithm, 155
DTN. See Delay-tolerant network (DTN)
Dual decomposition, 123
Duality gap, 119, 120, 228
Dunbar’s number, 353
Dynamic social networks, 307–345

E
Edge connectivity, 4, 11, 50
Edge coverage, 176, 177, 181
Edwards–Wilkinson (EW) process, 64, 70,

71
Ego-centric centrality, 203–206, 208, 382, 457
Eigenratio, 63
Eigenvector centrality (EVC), 6, 199–202, 212,

213, 216
Email spam, 182, 183, 192, 480
Empirical data, 145, 360

Index 537

ENRON email network, 309, 321–324
Equivalent fraction, 362, 363
Erdos–Renyi, 50, 52, 53

network, 47, 81, 82, 281
Espionage, 38
Evolution algorithm, 495–498
Exponential decay distribution, 458

F
Facebook network, 182, 183, 189, 263, 308,

309, 321, 325–327, 330, 332, 388, 399,
482

FacetNet, 344
Fair load distribution, 415–417
Feasible scaling factor, 223, 225, 234, 235, 237
Financial market, 38
Finite buffer, 458, 464, 469–471, 474–476
Fitness, 42–55, 367, 369, 433
Flow, 20, 40, 50, 61–92, 98, 99, 101–103, 106,

109, 110, 121–135, 138, 140, 165, 166,
168–172, 179, 181, 182, 184, 186, 188,
190, 191, 200, 202, 204, 206, 210, 211,
221–224, 238, 264–268, 274–276, 296,
429–432, 434, 438, 483, 507, 517, 518

assignment problem, 125, 131
betweenness, 102

Flow-level traffic clustering, 165
Floyd-Warshall, 488
FTP network, 42–44

G
Game-theoretic, 47
Geodesic bottleneck, 21, 22
Giant connected components (GCCs), 87, 158,

166, 170–173, 179, 184
Gnutella, 29, 43, 171, 183
Gradient vector, 120
Graph

clustering, 308
decomposition, 166, 167, 173–179, 190,

193
GraphScope, 344
Graph theory, 4, 23, 24, 39, 99, 101, 102, 145,

159, 172, 200, 481, 483, 484, 509–517
Graphviz tool, 169
Greedy perturbation algorithm, 490–491
Greedy randomized adaptive search procedures

(GRASP), 157, 158
Green’s function, 71
Grid search, 50, 51
Guerrilla group, 38

H
Harmonic mean, 45
Heavy-hitters, 165
Height fluctuation, 67, 68
Hessian matrix, 120
Heterogeneous, 31, 63, 65, 69, 72–73, 82–83,

88, 89, 243, 273, 275, 352, 359, 381
Heuristic control, 273, 274
Hits algorithm, 389
Hitting time, 76, 92, 131
Homophily phenomenon, 456, 459
HOPE dataset, 392–394, 411, 415
Host-level traffic behavior profiling, 165
Hub, 29, 55, 72, 74, 79, 83, 84, 88, 243, 245,

252, 254, 255, 352, 369, 370, 372, 389
avoidance, 77, 83, 84

Human contact network, 349–383
Human mobility, 366, 417, 423

I
InDegree algorithm, 389
Independent paths, 4, 8, 148
Infinite buffer, 391, 463–469, 471–475
Infocom06 dataset, 364–366, 371, 379, 380,

393, 407, 410
In-star, 179, 181–184, 190
Integer programming, 49, 149, 152, 273, 274,

278
Intelligent tag, 220
Interaction structure, 165, 166, 173, 176, 186
Inter-community links, 311, 313, 319
Interior-point method, 120
Internet search, 480
Intra-community links, 311, 313, 316, 319
Inverse geodesic distance, 45, 99
IS-IS, 134

J
Joint graph, 483–488
Joint optimization, 97–141, 235, 428

K
K-anonymity, 491–495, 497, 498
K-clique, 147, 149–150, 153–154, 344, 345,

365, 366, 372
K-clique (cont.)

algorithm, 153–354, 365
community detection, 365, 366, 368
percolation technique, 344

K-club, 147, 149–151, 154–155
K-component, 8, 23

538 Index

K-copy forwarding, 351, 362, 363
K-core, 147–149, 155–156
Kernighan-Lin (KL), 511
Kirchhoff’s Current Law, 70, 105
Kolmogorov-Smirnov goodness-of-fit test, 177
K-plex, 148, 151–152, 155–157
K-robust, 99, 130, 136, 138–140
Kronecker delta function, 103, 123
Kruskal, 488
Kullback-Leibler (K-L) divergence method,

462–463
Kuramoto model, 63
K-vertex connected subgraph, 148, 149

L
LABEL, 328, 329, 372, 379, 382
Lagrangian, 117, 123, 128, 129
Langevin equation, 64
Laplacian, 18, 25, 62–65, 70, 79, 80, 89, 92,

101, 103, 108, 115, 117, 131
Large-scale, 49–50, 156, 157, 275, 278, 292,

301, 327, 344, 419, 423, 448, 481, 489,
502

Latent hypergraph, 167, 176, 179, 183–185,
190

LFR overlapping benchmark, 340
Linear logic theorem, 273
Link-based vulnerabilities, 17–19, 28, 30, 32
Link failure, 5, 26, 121, 129–130, 137, 140,

279
Link layer scheduling, 220, 222, 235, 238
Lipschitz-continuous, 48
Local community, 336–339
Local search, 229, 231–233, 314
Logarithmic barrier, 120
Low convergence rate, 178–179

M
11M, 42–45
Marketing, 301, 428
Master stability function, 63
Mathematical programming formulation, 145,

146, 149–153
Maximum clique problem, 149, 150, 153–156,

158
MaxProp, 456
Mean contagion size, 51
Mean-field (MF) approximation, 66–69, 71,

80, 90, 91
Menger’s theorem, 148
Mesh-Mon, 198, 212
MIEN algorithm, 324, 328

Minimum separator set, 517
Minimum spanning tree, 483, 487–488
MIT reality mining project, 353, 364
MIT Reality Mining Trace, 471–474, 476
Mixed integer program (MIP), 149, 153, 157
MobiClique07, 391–392, 403, 404, 407, 408,

411–413, 416, 417
MobiClique08, 392
Mobile ad hoc networks (MANETs), 198, 206,

212, 309, 310, 327–329, 345, 351, 382,
419, 455–477

Mobile worm propagation, 502, 506, 518
Mobility, 209, 307, 327, 350, 359, 366,

369–373, 381, 390–393, 398, 399, 403,
407, 417, 418, 422, 423

Mobility-assisted data access, 456
Modularity, 280, 281, 309, 310, 312–314, 316,

317, 319–327, 344, 345, 367, 369
Module, 39, 158, 204, 275, 298, 299, 310,

314–316, 319, 321, 322, 335, 345
Multi-communities social forwarding, 419–422
Multi-criteria programming (MCP), 292–299
Multimedia messaging service (MMS),

502–507, 509, 517, 518, 526
Multi-objective optimization, 47, 48, 51,

54
Multiple-copy-multiple-hop (MCP), 328, 329,

372, 377, 379
Multi-scale node, 28, 30

N
Neoclassical planning, 273
Network

congestion, 76–79
criticality, 98, 108–113, 121, 122, 127–132,

135–137, 139, 140
layer routing, 125, 220, 224, 235, 238
planning problem, 120, 121, 124
traffic, 77, 165, 173, 193, 504, 517,

527
Network-based data mining, 158, 159
Neural network, 303
Neurobiology, 61, 62
9/11, 42–45, 48
Node

connectivity, 4, 6, 11, 30, 99, 492
failure, 15, 16, 86, 87, 129, 139
similarity, 11, 99, 521

Non-linear program (NLP), 221, 226, 228–230
Non-LOS LPI/D groundwave communication,

219
Normalized mutual information (NMI),

322–327, 340–342

Index 539

NP-hard, 221, 226
problem, 149, 153, 154, 156, 157, 226, 228,

236, 513

O
Ohm’s law, 70
Online social networks, 182, 192, 308, 309,

321, 327, 330, 343, 345, 388, 399, 400,
427–453, 479–498

Open/close neighbors, 146
Optimal connectivity, 5, 11, 99
Optimal routing, 125, 140, 235–237
Optimization, 41, 62, 63, 65, 69, 71–73, 82,

89, 98, 145, 174, 215, 220, 242, 264,
428, 491

decomposition, 429–434
problem, 47, 49, 50, 65, 71, 89, 98, 101,

113–134, 136–141, 145, 146, 149, 155,
221, 223, 228, 235, 238, 291, 429, 438,
439

Optimized link state routing (OLSR), 198, 199,
206, 208, 209, 212–216

Orthogonal nonnegative matrix tri-factorization
(tNMF), 166–168, 173–179, 185, 187,
189–191, 193

OSPF, 134, 136
Ostergard’s algorithm, 156
Out-star, 180–185, 190
Overlapping communities, 335–343, 345, 365,

366
Overlapping ratio, 340, 341, 343

P
Packet-level malware signature, 165
PageRank algorithm, 388–390, 399
Parallel routing, 241–260
Pareto dominance, 272
Pareto frontier, 47, 51, 54, 55
Patch distribution procedure, 331, 332,

334
Patching threshold, 518–520, 522
Path delay distribution, 359–360
Peer-to-peer (P2P) application, 165–169, 171,

181, 183, 185, 191–193
PeopleRank, 387–424
Percolation phenomena, 40
Percolation transition, 44
Physical layer power control, 220, 221, 235,

238
Pocket switched network (PSN), 350–355,

358, 362, 365, 380–382
PodNet, 458, 459

Point-to-point resistance distance, 98, 99
Poisson distribution, 29, 281, 359, 360
Pool structure, 184–185, 190
PoP-level origin-destination (O-D) flow

characterization, 165
Population dynamics, 61, 62
Power distribution system, 37, 39, 55
Power grid, 3, 32, 97–141
Power-law, 29, 77, 80, 359, 381, 450, 452, 453

distribution, 29, 55, 244, 340, 458, 492
tail, 70

Power signature, 505
Precision geolocation system, 219
Preferential-attachment., 67, 282, 450, 452
Prims, 488
Privacy-preserving graph, 483–489
Proportional flooding, 351, 358, 360–364

Q
QoS driven service selection, 270
QoS filtering algorithm, 275
Quality of service, 140, 247, 270–273, 275,

291, 292, 296, 298, 502
γ−Quasiclique, 148, 149, 152, 157
Quick community adaptation (QCA), 309,

321–331, 345

R
Randomly connected star structure, 50, 184,

191
Random walk, 62, 63, 66, 69, 73–79, 83,

102–108, 110, 131, 330, 381, 389, 390
betweenness centrality, 98, 102, 108, 109

Rate feasibility problem (RFP), 225–228,
230–232

Rate limiting and quarantine, 505
Reachability, 101, 145–147, 352
Recommendation network, 136
Reformulation-linearization technique (RLT),

219–238
Resilience, 5, 37–55, 358, 382

to path failures, 358–363
Resistor network, 62, 63, 70–75, 79, 92
Resource

allocation, 123, 125, 274, 300, 429, 430
description framework, 461

Robust capacity assignment, 136–138
Robustness, 3–32, 39, 61–92, 98–101,

108–110, 138, 139, 145, 146, 148, 198,
199, 204, 289, 310, 327, 335, 357

Rocketfuel topologies, 131, 136, 137

540 Index

Route, 4, 97–141, 202, 211, 222, 235, 247,
250, 252, 309, 351, 363, 380, 430–433,
484

Routing, 62, 73, 74, 76, 77, 79, 83, 98, 158,
184, 198, 220, 242, 309, 351, 391, 432,
456

S
Scale-free network, 29, 31, 62, 72, 80, 83–87,

242–244, 281, 282, 450
SecondLife dataset, 392–393, 403, 408, 409,

414
Self-averaging, 64, 67
Semantic causal link matrices, 273, 274
Semantic matching algorithm, 268, 270, 273,

274
Semi-automatic method, 273
Semidefinite programming, 121–122
Semi-honest model, 483–489
Service network, 185, 263–302
Service oriented architecture protocol (SOAP),

275, 298, 299
Shortest path, 17, 42, 45, 83, 84, 86, 88, 102,

103, 122, 146, 154, 202, 242–245, 252,
280, 282, 286, 370, 407, 483, 484,
486–490

betweenness, 63, 83–88, 102–104
betweenness centrality, 83, 99, 102

Shortest path first (SPF), 134–136, 242–255,
257, 259

SimBet routing, 382, 456, 457
Single source shortest distance (SSSD), 483,

486, 489
Singular value decomposition (SVD), 174,

178–179, 193
SIR-Reach model, 52–54
Slater’s condition, 124, 128
Small-world, 29, 63, 282, 353, 359, 457
Small-world network, 31, 32, 281, 282
SNA plugin (SNAP), 212–216
SOAP. See service oriented architecture

protocol (SOAP)
Social-aware data diffusion, 455–477
Social-aware routing in MANETs, 327–329,

345
Social-based forwarding, 351, 373
Social-based routing, 370–380
SocialCast, 456
Social community network, 337
Social forwarding algorithm, 398, 418, 419,

421–423
Social network, 3, 6, 17, 29, 38, 39, 48, 52,

70, 143–149, 156, 159, 166, 182, 183,

192, 199–201, 203, 205, 208, 216, 217,
307–345, 365, 382, 388, 392, 393, 399,
400, 410, 419, 427–453, 456–458, 460,
479–498, 501–527

Social network analysis (SNA), 143–159,
199–207, 214, 216, 217, 481

Sociocentric betweenness centrality (CSoc),
200, 202–204, 208, 209, 216

Socio-economic system, 38
SOLAR, 456
Spectral decomposition, 64, 70, 80
SSSD. See Single source shortest distance

(SSSD)
StarClique, 491–498
Stationary distribution, 66
Steady-state width, 64, 69, 71
Storage site, 481, 482, 498
Storm worm traffic, 190–192
Structural cohesion, 149
Structural vulnerability, 3–32
Sub-optimality, 120
Susceptible-infected-recovered (S-I-R), 41, 51,

464
Sybil attack, 480
Synchronization, 25, 61–92

T
Tactical handheld & network LPI/D radio, 219
Targeted patching, 504, 510
Temporal stability, 188–190
Terrorist network, 38, 40, 42, 43, 143, 144
Throughput, 63, 77–79, 81–83, 86, 88, 100,

219–238, 242, 243, 245, 247, 430, 432,
434

Time-to-live (TTL), 328, 329, 372, 377, 379,
403, 414, 415

Topology-based propinquity, 344
TOTEM project, 112, 134
Trace-driven social relationship graph,

507–509
Traffic activity graphs (TAGs), 165–193
Traffic-aware betweenness, 98, 104, 110
Traffic-aware network criticality (TANC), 98,

99, 110, 112, 138
Traffic-aware node criticality (TANOC),

110
Traffic matrix, 100, 101, 104, 110, 112, 122,

123, 126, 131, 132, 134, 140
Traffic optimization, 241–260
Transition probability, 73–76, 103, 131
Transport, 3, 61, 62, 70–74, 242, 243, 358,

394, 395
Transportation network, 6, 32, 62

Index 541

Trophic network, 13
Two-capacity model, 435–436

U
UCINET, 207
UCSD Wireless Topology Discovery, 353
UDDI, discovery and integration (UDDI),

Universal description
Ultra-wideband (UWB), 219–238
Uncorrelated SF network, 66–68, 77, 79
Uniform patching, 510, 525
Universal description, discovery and

integration (UDDI), 264, 268, 298

V
Vertex cover, 156, 331
Vertex separator, 335, 516, 517
Virtual network assignment, 131–134
Vitality, 101, 102
VoIP, 242, 247, 504, 506, 507
Voltage fluctuation, 41

Vulnerability, 4–28, 30–32, 79, 99, 100, 137,
502, 509, 527

W
WAIT, 328, 372
Web ranking, 388–390
Web service composition, 265, 266, 273–275,

279, 299, 301, 302
Web service ontology language (OWL), 276,

277
Web services description language (WSDL),

268, 276, 277, 285, 298, 299, 461
Weighted network analysis (WNA),

365–369
Wireless mesh network, 198–200, 203,

205–210, 216, 217
Worm containment, 309, 330–335, 343, 345,

501–527

Y
Yao’s method, 488

	Handbook of Optimization in Complex Networks
	Preface
	Acknowledgements
	Contents
	Part I Vulnerability and Robustness
	Part II Complex Communication Networks
	Part III Online Social Networks and Security
	Index

