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  Abstract 

 Weeds not only adversely affect the plant productivity but many of them 
also cause health hazards in human beings and animals. They are also 
known to seriously affect the biodiversity. Apart from this negative side, 
many weeds are known to have benefi cial properties in one way or the 
other and have immense potential as food and fodder, medicinal, aromatic, 
phytoremediation, industrial, soil and water conservation resources, etc. 
A very little information is available on the use of weeds for such benefi -
cial purposes. Therefore, this subject of research needs to be explored and 
expanded. Several of the weeds are utilized for (a) soil and water conser-
vation, (b) alternative livelihood opportunities, and (c) industrial uses. 
Survey of published literature indicates that there is great scope for appli-
cation of weeds in bioremediation. More research efforts are required for 
utilizing weeds for bioremediation of different type of pollutants from air, 
water, and soil. Ornamental plants have an added advantage of enhancing 
the environmental esthetics besides cleaning the environment. This 
approach has several advantages for environmental moderation, cleanup, 
and generation of revenue. Therefore, this approach will add a new dimen-
sion to the fi eld of bioremediation of contaminated aquatic and terrestrial 
environments.  
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    1   Introduction 

 Bioremediation is an emerging and an effective 
technology for treatment of a wide variety of con-
taminants. This technology includes plant- and 
microbe-mediated processes (phytoremediation 
and rhizoremediation, respectively). Bioremediation 
approach is currently applied to contain contami-
nants in soil, groundwater, surface water, or sedi-
ments including air. These technologies have 
become attractive alternatives to conventional 
cleanup technologies due to relatively low capital 
costs and the inherently esthetic nature (Fig.  23.1 ). 
Quite a variety of plants, natural, transgenic, and/or 
associated with rhizosphere micro-organisms are 
extraordinarily active in these biological interven-
tions for cleaning up pollutants by removing or 
immobilizing (Ma et al.  2011  ) . Climate change will 
affect the ability of ecological systems that provide 
a range of essential ecological goods and services, 
such as food and fi ber production; provision of 
clean and suffi cient water maintenance of biodiver-
sity; maintenance of human health; and storage and 
cycling of carbon, nitrogen, and phosphorus.  

 Technogenic and anthropogenic sources of 
metals is subject of importance not only to human 
health but also in general to the fi eld of 
 biogeochemistry, environment, and medicine 
(Figs.  23.2 – 23.4 ). Smelting and mining processes 
are the point source of a contamination of metals 
causing environmental contamination and pollu-
tion. Consequently, these pollutants get dispersed 
in natural resources (soil, water, and air) and ulti-
mately enter the food chain. Physical stabilization 
(covering the metalliferous waste with geotextiles/
geomembranes, etc.) and chemical stabilization 
(use of chemical binding agents) to reduce wind 
and water erosion are not a feasible proposition for 
large areas. However, phytostabilization – use of a 
specifi c type of vegetation is far more desirable 
than physical and chemical stabilization (Prasad 
 2006 ; Tordoff et al.  2000  ) . Phytostabilization is an 
effective process of phytoremediation technology.    

 In order to cleanup large areas contaminated 
with toxic metals, plants producing very high 
biomass with limited inputs and simplistic 
 management are desirable. It is a general belief 
that climate change promotes explosion of 
weeds in addition to other phenomena (Fig.  23.5 ). 

  Fig. 23.1    Bioremediation, a schematic presentation. 
Bioremediaiton is based on use of the ecosystem services 
provided by its biotic compartment. Some examples of its 
application include the reduction and control of pollution 

through wetland systems, restoration of degraded natural 
systems or establishment of Eco-industrial parks, carbon 
sinks and ameliorating the effects and impacts of climate 
change       
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Non-alien plants when they grow outside their 
niche become invasive. Invasives are widely dis-
tributed in a variety of ecosystems throughout the 
world. Many invasive alien species support farm-
ing and forestry systems positively in a big way. 
However, some of the alien species become invasive 
when they are introduced deliberately or uninten-
tionally outside their natural habitats into new areas 
where they express the capability to establish, 
invade, and outcompete native species. According 
to International Union for Conservation of Nature 

and Natural Resources (IUCN), alien invasive 
species means, an exotic species which becomes 
established in natural or seminatural ecosystems 
or habitat, an agent of undesirable change which 
threatens the native biological diversity. Invasive 
species are therefore considered to be a serious 
hindrance to conservation and profi table use of 
biodiversity, with signifi cant undesirable impacts 
on the services provided by ecosystems. Alien 
invasive species are supposed to have huge 
requirement and destructive modes of resource 
acquisition and consumption that would ulti-
mately bring change in soil structure and nutrient 
composition, its profi le, decomposition, moisture 
availability, etc.  

 Trace metal contamination and pollution in 
the environment is increasing due to technogenic 
and geogenic sources. The fl ux of trace metals 
deteriorates the quality of the environment since 
these are considered to be cytotoxic, mutagenic, 
and carcinogenic. In order to be healthy, physi-
cally and mentally, clean soil, water, and air are 

  Fig. 23.2    Biogeochemical cycling of heavy metals in a generalized ecosystem       

  Fig. 23.3    Bioremediation knowledge capital triangle       

 

 



  Fig. 23.4    Sources of heavy metals in the environment and various applications of bioremediation for treatment of natural 
resources and for miscellaneous applications       

  Fig. 23.5    Climate change induced adaptations and mitigation processes       
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prerequisites. Trace metal contamination and 
pollution would exert direct and indirect harmful 
effects that would eventually deteriorate biodi-
versity and economic wealth. In developed 
nations, trace metal contamination or pollution is 
often highly localized and the pressure to use 
such contaminated land and water for agricultural 
food production is minimal. In contrast, the tech-
nogenic/geogenic pollution and contamination is 
widespread in many Asian and eastern European 
countries and is dramatically increasing in 
Southeast Asia, India, and China (Cheng  2003 ; 
   Meharg  2004 ). In order to contain trace metal 
pollution in soil, water, and air, phytoremediation 
is being considered as a low cost solution and a 
globally recognized technology (Garbisu and 
Alkorta  2001 ; Garbisu et al.  2002 ; McCutcheon 
and Schnoor  2003 ; Prasad and Freitas  2003 ; 
Macek et al.  2004 ; Gratão et al.  2005  ) . Ornamental 
foliage plants have been suggested for the removal 
of arsenic (Alkorta et al.  2004  ) . Therefore, this 
approach of involving weeds for bioremediation 
of metalliferous substrates in the era of climate 
change would yield desirable results with limited 
efforts and investments (Lorenzini et al.  2006 ; 
Prasad and Freitas  2003  ) .  

    2   Grasses: Ideal 
for Phytostabilization 

 Grasses are tolerant to toxic metals and have 
played a convincing role in phytostabilization 
(Prasad  2006 ; Lai and Chen  2006 ; Li et al.  2009 ; 
Néel et al.  2007 ; Redondo-Gómez et al.  2011 ; 
Shu et al.  2002 ; Vernay et al.  2007 ; Wang et al. 
 2005 ; Zhang et al.  2010 ; Atabayeva et al.  2010  ) . 
Abandoned mine soils and estuarine sediments 
are phytostabilized against erosion by grass spe-
cies (Cambrollé et al.  2008 ; Comino et al.  2009 ; 
Mateos-Naranjo et al.  2008  ) . Soil amendments 
and biosolids accelerate phytostabilization pro-
cess (Santibáñez et al.  2008 ; Zhou et al.  2007  ) . 
Grasses possess thickets of adventitious roots, 
unique root morphology (Li et al.  2009  ) , high 
bioproductivity (Liu et al.  2009  ) , therefore have 
an added advantage for application in phytostabi-
lization. Further, grasses are often associated 

with mycorrhizal and  endophytic fungi (Chen 
et al.  2008 ; Deram et al.  2007,   2008 ; Kuldau and 
Bacon  2008 ; Ortega-Larrocea et al.  2010 ; 
Punamiya et al.  2010 ). Grasses together with 
legume association have helped in situ stabiliza-
tion of chemical waste (Hartley et al.  2009 ; 
Hartley and Lepp  2008 ). In climate constrained 
and carbon dioxide enriched era, grasses have 
physiological advantage (majority being C 

4
 ) of 

producing/increasing their  biomass. Hence, 
grasses perform well in phytostabilization pro-
cess (Wu et al.  2009 ). In view of their advanta-
geous metabolic processes, hydroponic grass 
system based on plate or fabric is considered for 
the treatment of aquacultural wastewater (Pan 
et al.  2007  ) . 

    2.1    Lolium perenne  (Ryegrass) 

 It is a perennial exhibits luxuriant growth and pro-
duces large amounts of aboveground biomass. It 
has been used for phytostabilization of abandoned 
uranium mine (Abrutiga, Portugal) (Fig.  23.6 ).   

    2.2  Panicum virgatum   (Switchgrass) 

 It is one of the perennial rhizomatous grasses 
being developed for the purpose of biomass pro-
duction. It is a perennial C 

4
  grass propagated by 

seed that can be established at low cost and 
requires very low inputs while giving high bio-
mass yields even on marginal soils. Attributes of 
switchgrass desirable for bioenergy cropping 
include its demonstrated high productivity across 
many environments, suitability for marginal and 
erosive land, relatively low water and nutrient 
requirements, and positive environmental bene-
fi ts. There is need to examine its (a) adaptability 
across a range of contaminated sites, (b) fresh and 
dry matter yields.  

    2.3    Prosopis julifl ora  (Velvet Mesquite) 

 It is an evergreen phreatophyte, fast growing, 
drought resistant, widely distributed not only in 
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India but also in other arid and semiarid tropical 
countries. It is the only exotic species capable of 
growing on a wide variety of soils and climatic 
conditions. It is a valued tree for shade, timber, 
and forage. It is a thorny, deciduous, large crowned 
and deep rooted bush or tree which grows up to 
10-m height or more, depending on the variety 
and climatic conditions. It is also widely distrib-
uted in the dry tropical and subtropical regions of 
Central America and Northern South America. 

  P. julifl ora  is an ideal species for stabilizing the 
pegmatitic tailings of mica mines in Nellore district 
of Andhra Pradesh, India (Nagaraju and Prasad 
 1998  ) . It is also helpful for reclamation of copper, 
tungsten, marble, dolomite mine tailings and is a 
green solution to heavy metal contaminated soils 
(Varun et al.  2011 ). It is an appropriate species for 
rehabilitation of gypsum mine spoil in arid zone 
and restoration of sodic soils. It outperformed all 
other tree species in sand dune stabilization 
(   Kailappan et al.  2000  ;     Rai et al.  2003 ;    Senthilkumar 
et al.  2005  ) . Mycorrhizae are reported to greatly 
improve the growth of  P. julifl ora  on high pH soils. 
 P. julifl ora  was able to grow satisfactorily without 
amendments up to pH 9. Arbuscular mycorrhizal 

inocula isolated from its rhizosphere (low cost agro-
technology) were found to accelerate the growth of 
other agroforestry and social forestry legumes in 
perturbed ecosystems (Gardea-Torresdey et al.  2005 ; 
Siddhu and Behl  1997 ; Singh  1995  ) .   

    3   Ornamentals for 
Environmental Moderation 
and Toxic Trace Metal Cleanup 

 Several ornamental plants have successfully 
been applied in environmental toxic cleanup. 
(Belmonth and Metcalfe  2003 ; Chintakovid et al. 
 2007 ; Davies et al.  2001 ; Madejon et al.  2003 ; 
Mazen  2004 ; McIntyre  2003 ; Mungur et al.  1995 ; 
Murillo et al.  1999 ; Negri and Hinchman  2000 ; 
Niu et al.  2007 ; Wei et al.  2009 ,  2010a, b ) 

 Lemon-scented geraniums ( Pelargonium  sp. 
“Frensham,” or scented geranium) accumulated 
large amounts of Cd, Pb, Ni, and Cu from soil in 
greenhouse experiments (Dan et al.  2000  ) . 
Biotechnological interventions through hairy root 
regenerants are useful in fl oriculture (Giri and 
Narasu  2000 ; Giovanni et al.  1997  ) . Pellegrineschi 

  Fig. 23.6     Lolium perenne  – phytostabilization of abandoned mine and soil profi le       

 



49323 Exploitation of Weeds and Ornamentals for Bioremediation of Metalliferous…

et al.  (  1994  )  improved the ornamental quality of 
scented  Pelargonium  spp. This plant has pleasant 
odor that adds scent to the toxic metal contami-
nated soil. 

  Vetiveria zizanioides  (Vetiver grass): It is 
known to have multiple uses. This plant had sev-
eral popular names such as “the miracle grass,” “a 
wonder grass,” “a magic grass,” “an unique plant,” 
“an essential grass,” “an amazing plant,” “an 
amazing grass,” “a versatile plant,” “a living bar-
rier,” “a living dam,” “a living nail,” “a living 
wall,” “an eco-friendly grass.” This extraordinary 
grass is adaptable to multiple environmental con-
ditions and it is globally recognized as an easy 
and economical alternative to control soil erosion 
and to solve a variety of environmental problems. 
It has been used for restoration, conservation, and 
protection of land disrupted by man activities like 
agriculture, mining, construction sites, oil explo-
ration and extraction, infrastructure corridors, as 
well as used for water conservation in watershed 
management, disaster mitigation, and treatment 
of contaminated water and soil. Research at the 
global level has proved the relevance of vetiver in 
multiple applications. In Australia,  V. zizanioides  
has been successfully used to stabilize mining 
overburden and highly saline, sodic, magnesic, 
and alkaline (pH 9.5) tailings of coalmines, as 
well as highly acidic (pH 2.7) arsenic tailings of 
gold mines. In China, it has been demonstrated 
that  V. zizanioides  is one of the best choices for 
revegetation of Pb/Zn mine tailings due to its high 
metal tolerance (   Chen et al.  2004a,   b ; Chiu et al.  
 2005 ,  2006 ; Chong and Chu  2007 ; Rotkittikhun 
et al.  2007 ; Makris et al.  2007 ; Pang et al.  2003 ; 
Singh et al.  2008 ; Truong  2000 ; Wilde et al. 
 2005  ) .
    (a)        Hydrocotyle umbellata  (Pennywort): It is a 

wetland/marshy plant commonly found in 
many tropical countries. The plant grows very 
rapidly and serves as an ornamental and deco-
rative purpose. It is reported to remove trace 
metals from aquatic systems.  

    (b)     Alternanthera philoxeroides  (Alligator weed): 
It is one of the most common aquatic weed in 
contaminated/polluted ecosystem. This is 
native to South America and naturalized in 
India (Naqvi and Rizvi  2000  ) . Several 

Amaranthaceae produce large biomass and are 
suitable for environmental remediation and 
toxic metal cleanup (for e.g.,  Amaranthaceae 
retrfl exus , Prasad  2001  )  (Table  23.1 ).   

    (c)     Talinum cuneifolium  (Portulacaceae): It is 
a succulent shrub of about 60-cm height 
with cuneate to obovate leaves, fl owers in 
terminal panicles and purple colored 
corolla. It fl owers and fruits throughout the 
year. It is widely distributed in India, 
Arabia, and Africa. Cuttings are a ready 
means of propagation of these plants.  T. 
cuneifolium  is and has been reported to 
accumulate high levels of copper in its 
leaves. These plants showed absorption 
barriers at high soil copper concentrations, 
indicating limits to uptake of the metal 
(Tiagi and Aery  1986;   Adeniyi  1996 ) .      

    4   Ornamental Hydrophytes 
for Phytoremediation 

 Several ecotechnological opportunities are avail-
able for aquatic plants (Lakshman  1987   ; Outridge 
and Noller  1991 ). The use of aquatic plants in 
water quality assessment has been in practice for 
centuries. The occurrence of aquatic macrophytes 
is unambiguously related to water chemistry and 
using these plant species or communities as indi-
cators or  biomonitors has been well recognized 
and established for in situ bioremediation (Deng 
et al.  2004 ). The noable examples are:  Azolla     
  fi liculoides ,  A. philoxeroides ,  Bacopa monnieri , 
 Canna fl accida ,  Carex juncell ,  Carex pedula , 
 Carex rostrata ,  Carex Sp .,  Ceratophyllum 
 demersum ,  Chara ,  Nitella ,  Cladium jamaicense , 
 Cyperus eragrostis ,  Distichlis spicata ,  Eichhornia 
 crassipes ,  Elodea canadensis ,  Elodea densa ,  E. 
crassipes ,  Eriocaulon septangulare ,  Euryale ferox , 
 Elodea nuttallia ,  E. canadensis ,  Eloea sptangu-
lare ,  Eriophorum angustifolium ,  Eriophorum 
 scheuchzeri ,  Glyceria fl uitans ,  Hydrilla verticil-
lata ,  Hygrophila onogaria ,  Isoetes lacustris , 
 Lemna minor ,  L .  trisulca ,  L. gibba ,  L. palustris , 
 H. umbellata ,  Ipomea aquatica ,  Juncus  articulatus , 
 L. minor ,  Littorella unifl ora ,  Ludwigia natans , 
 Lysimachia nummularia ,  Myriophyllum spicatum , 
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 M. alternifl orum ,  Melilotus indica ,  Mentha aquat-
ica ,  Miscanthus fl oridulus ,  Miscanthus sacchari-
fl orus ,  Mougeotia ,  Najas marina ,  Nasturtium 
offi cinale ,  Nuphar lutea ,  Nymphaea alba , 
 Nymphaea violacea ,  Nymphoides germinate , 
 Potamogeton natans ,  P. attenuatum ,  P. communis , 
 Potamogeton crispus ,  P. fi liformis ,  P. lapathifoi-
lum ,  P. orientalis ,  P. pectinatus ,  P. perfoliatus ,  P. 
richardsonii ,  P. subsessiles ,  Phragmites karka , 
 Pistia stratiotes ,  Ranunculus aquatilis ,  Ruppia 
maritima ,  Sagittaria latifolia ,  Salvinia acutes , 
 Salvinia molesta ,  Scapania uliginosa , 
 Schoenoplectus lacustris ,  Scirpus validus ,  Spartina 
alternifl ora ,  Spirodela oligorrhiza ,  Sporobolus 
virginicus ,  Typha domingensis ,  Typha latifolia , 
 Vallisneria americana ,  Vallisneria spiralis ,  Wolffi a 
globosa, and Zizania aquatica  (Prasad  2007 ; 
McCutcheon and Schnoor  2003 ; Keskinkan et al. 
 2004 ; Peles et al.  2002 ; Hattink et al.  2000 ; 
Sheppard and Motycka  1997 ). 

 Aquatic plants have been frequently used to 
remove suspended solids, nutrients, trace metals, 
toxic organics and bacteria from acid mine 
drainage (AMD), agricultural landfi ll, and urban 
storm-water runoff. In addition, considerable 
research has been focused on determining the 
usefulness of macrophytes, as biomonitors of 
polluted environments and as bioremediative 
agents in waste water treatments. The response of 
an organism to defi cient or excess levels of metal 
(i.e., bioassays) can be used to estimate metal 
impact. Such studies done under defi ned experi-
mental conditions can provide results that can be 
extrapolated to natural environment. There are 
multifold advantages in using an aquatic macro-
phyte as a study material. Macrophytes are cost-
effective, universally available with their ability 
to survive adverse conditions and high coloniza-
tion rates and are excellent tools for studies of 
phytoremediation. Rooted macrophytes especially 

   Table 23.1     Alternanthera philoxeroides  (Mart.) Griseb: Potential for environmental remediation and cleanup   

 Tolerant to cadmium stress  Ding et al.  (  2007  )  
 Responds rapidly to shoot removal     Wilson et al. ( 2007 ) 
 Accumulate Cd, Pb, and Zn from constructed wetlands     Liu et al.  (  2007a,   b  )  
 Herbivory, mowing, and herbicides differently affect production 
and nutrient allocation 

 Schooler et al.  (  2007  )  

 Distribution and bioaccumulation of microcystins in water columns: 
a systematic investigation into the environmental fate and the associated risks with 
microcystins 

 Song et al.  (  2007  )  

 Lead and zinc accumulation and tolerance in populations  Deng et al.  (  2006  )  
 Exhibit phenotypic plasticity in relation to different water availability  Geng et al.  (  2006  )  
 Differently respond to biological control     Li and Ye  (  2006  )  
 Abiotic stress and phenotypic plasticity infl uenced riparian zone population  Pan et al.  (  2006  )  
 Growth and reproduction simulated herbivory  Schooler et al.  (  2006  )  
 Removes Ni(II), Zn(II), and Cr(VI) from aqueous solution     Wang and Qin  (  2006  )  
 Genetic diversity has been established in  Alternanthera philoxeroides  in China  Wang et al.  (  2005  )  
 Suitable for phytoremediation of small-scale oil spills in fresh marsh environments: 
a mesocosm simulation 

 Dowty et al.  (  2001  )  

 Biologically controlled with fungi     Barreto et al.  (  2000  )  
 Its extract had antiviral effect on epidemic hemorrhagic fever virus in vivo  Peng et al.  (  1997  )  
 Contain phytochemicals, viz., alternanthin, A C-glycosylated fl avonoid     Zhou et al.  (  1988  )  
 Accumulate monosodium methanearsonate (MSMA)  Anderson et al.  (  1980  )  
 The economics of its biological control  Andres  (  1977  )  
 Insects as agents for biological control  Bennett  (  1977  )  
 The biological control in the USA     Spencer and Coulson  (  1976  )  
 Water hyacinths and alligator weeds for removal of lead, mercury, silver, cobalt, 
and strontium from polluted waters 

    Wolverton and McDonlad 
 (  1975a,   b  )  

  This is not an exhaustive  
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play an important role in metal bioavailability 
through rhizospheric processes. Macrophytes 
(fl oating, emergent, and submersed) readily take 
up metals in their reduced form from sediments, 
which exist in anaerobic situations due to lack of 
oxygen and oxidize them in the plant tissues 
making them immobile and bioconcentrate them 
in their tissues, thus reduced the toxic trace metal 
bioavailability in the interstitial waters   . Rooted 
and emergent macrophytes make them particu-
larly effective as bioindicator of metal pollution, 
as they represent real levels present at that site. 

 In the past research with macrophytes has centered 
mainly on determining effective eradication tech-
niques    for nuisance growth of several species such as 
 Elodea canadensis ,  Eichhornia crassipes ,  Cerato-
phyllum demersum , etc. Scientifi c literature exists for 
the use of a wide diversity of macrophytes in toxicity 
tests designed to evaluate the hazard of potential 
pollutants. Estuarine and marine plant species are 
being used considerably less than freshwater species 
in toxicity tests conducted for regulatory reasons. 
 Lemna ,  Myriophyllum ,  Potamogeton ,  Ceratophyllu , 
 Elodea ,  E. crassipes  have been exhaustively used in 
 phytotoxicity investigations. Duckweeds have re-
ceived the greatest attention for toxicity tests as they 

are relevant to many aquatic environments, including 
lakes, streams, and effl uents. 

 The most important role of plants in wetlands 
is that they increase the residence time of water, 
which means that they reduce the velocity and 
thereby increase the sedimentation of particles 
and associated pollutants. Thus, they are indi-
rectly involved in water cleaning. Plants also add 
oxygen providing a physical site of microbial 
attachment to the roots generating positive condi-
tions for microbes and bioremediation. 

 Constructed and engineered wetlands (includ-
ing naturalvwetlands) are in use for centuries for 
waste water treatment containing organic matter, 
nitrogen, phosphorus, (Kadlec and Knight  1996  )  
(Figs.  23.7  and  23.8 ).   

 Aquatic macrophytes have paramount signifi -
cance in the monitoring of metals in aquatic eco-
systems (e.g.,  L. minor ,  E. crassipes ,  Azolla 
pinnata ). Aquatic plants are important in nutrient 
cycling, control of water quality, sediment stabi-
lization, and provision of habitat for aquatic 
organisms. The use of aquatic macrophytes in 
water quality assessment has been a common 
practice employing in situ biomonitors 
(Sobolewski  1999  ) . The submerged aquatic 

  Fig. 23.7    Cascade model for removal of xenobiotics and 
treatment of waste streams. Most commonly employed 
species are  Spartina alternifl ora , Cord grass;  Sporolobus 
virginicus , Coastal dropseed;  Salicornia virginica , 
Perennial glasswort;  Cladium jamaicense , Sawgrass; 

 Salicornia alternifl ora , Vermillon cordgrass;  Scirpus 
validus , Great bulrush. A cascade model of treatment 
system was suggested for removal of    radionuclides by 
rhizofi ltration Dushenkov et al.  1995 ;  1997a, b;   2002  and 
blastofi ltration (seedlings), e.g., sunfl ower       
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macrophytes have very thin cuticle and therefore 
readily take up metals from water through the 
entire surface. Macrophytes with their ability to 
survive adverse conditions and high colonization 
rate are excellent tools for phytoremediation. 
Further they redistribute metals from sediments 
to water and fi nally take up in the plant tissues 
and hence maintain circulation. Benthic rooted 
macrophytes (both submerged and emergent) 
play an important role in metal bioavailability 
from sediments through rhizosphere exchanges 
and other carrier chelates. This naturally facili-
tates metal uptake by other fl oating and emergent 
forms of macrophytes. Macrophytes readily take 
up metals in their reduced form from sediments, 
which exist in anaerobic situations due to lack of 
oxygen and oxidize them in the plant tissues 
making them immobile and thus get bioconcen-
trated in their tissues (Okurut et al.  1999  ) . 

 A special group of plants may reduce element 
leakage from mine tailings by phytostabilization. 
Plants that are tolerant to elements of high 
concentrations have been found useful for 
reclamation of dry mine tailings containing ele-
vated levels of metals and other elements. Mine 

tailings rich in sulfi des, e.g., pyrite, can form 
AMD if it reacts with atmospheric oxygen and 
water, which may also promote the release of 
metals and As. To prevent AMD formation, mine 
tailings rich in sulfi des may be saturated with 
water to reduce the penetration of atmospheric 
oxygen. An organic layer with plants on top of 
the mine tailings would consume oxygen, as 
would plant roots through respiration. Thus, phy-
tostabilization on water-covered mine tailings 
may further reduce the oxygen penetration into 
the mine tailings and prevent the release of ele-
vated levels of elements into the surroundings. 
Metal tolerance can be evolutionarily developed 
while some plant species seem to have an inher-
ent tolerance to trace metals. Since, some wet-
land plant species have been found with the latter 
property, for example,  T. latifolia ,  G. fl uitans,  and 
 Phragmites australis , wetland communities may 
easily establish on  submerged mine tailings, 
without prior development of metal tolerance. 
Some plant  species have mechanisms that make 
it possible to cope with high external levels of 
elements. Low accumulators are plants that can 
reduce the uptake when the substrate has high 

  Fig. 23.8    Use of arsenic hyperaccumulator ferns and wetland vegetation (Carbonell-Barrachina et al.  1998 ; Rahman 
and Hasegawa  2011 ; Ma et al.  2001 ) for arsenic removal from water (Elless et al.  2005  )        
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element concentrations or have a high net effl ux 
of the element in question, thus the plant tissue 
concentration of the element is low even though 
the concentration in the substrate is high (Williams 
 2002 ; Wood and Mcatamney  1994 ; Woulds and 
Ngwenya  2004 ; Ye et al.  2001  ) .  

    5   Utilization of Water Weeds 
for Bioremediation of 
Metalliferous Substrates 

 Weeds cannot be eradicated, hence there is a need 
to fi nd appropriate and sustainable solutions. (Ji 
et al.  2011 ; Lin and Liu  2003  ) ; Liphadzi et al.  
 2003  )  Several of the wetland plants not only effec-
tively purify metal contaminated water effectively 
(Horne  2000  ) , Zhang et al.  2007  but also establish 
a dense vegetative cover (   Ye et al.  2003  ) . 

 For successful phytoremediation, plants cho-
sen should have the following attributes:

    (a)    Adaptive and tolerance mechanisms.  
    (b)    Fast growing with high bioproductivity such as 

duck weeds (Fig.  23.9 )  Typha latifolia  (Cattail) 
and  Phragmites australis  (Ye et al.  1997a,   b  ) , 
 Eichhornia crassipes  (water  hyacinth), 
 Alternanthera philoxeroides  ( alligator weed), 
 Pistia stratiotes  (water  lettuce), and 
 Potamogeton crispus . The biomass production 
of these plants often exceeds the yield of most 
productive agricultural crops.      

 Further, the dried biomass of many of these 
aquatic macrophytes is an excellent biosorbent 
for removal of Cr(III), Ni(II), Cu(II), Zn(II), 
Cd(II), and Pb(II) (Andre et al.  1999  ) . Wetland 
plants (water weeds) accelerate the sedimenta-
tion in constructed wetland and this being princi-
pal process for the removal of heavy metals from 
wastewater. Also wetland plants act as sites for 
metal precipitation (Mays and Edwards  2001  ) . 
Water weeds for treatment of waste water are 
enumerated in Table  23.2   

  Fig. 23.9    Duck weeds for waste water treatment and for phytoproducts       
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    5.1    Ipomoea aquatica  

  Ipomoea aquatica  is a fast growing aquatic 
plant and has been applied widely to purify 
eutrophic water. It is a metal accumulator and 
metal removal potential depends upon levels of 
metal contamination in the water body in which 
they were growing. Water is regarded as a lim-
ited and susceptible resource, essential for life. 
It is widely distributed throughout tropical and 
warm climate regions in the world, especially in 
China and India. It is a fast-growing herbaceous 

vine commonly found in creeping on muddy 
stream banks or fl oating in freshwater marshes 
and ponds. Moreover, its leaves have high nutri-
tive value and eaten as vegetables by human 
beings as well as fi sh and other grazing animals, 
and possess medicinal importance. In addition, 
in recent years, it is also used widely to purify 
wastewater (   Gothberg et al.  2002,   2004 ; Cao 
et al.  2006 ; Hu et al.  2007  ) .    Rai et al.  (  1995  )  
reported the toxic metals Pb, Cd, and Cr in 
 I. aquatica  accumulated highly from water 
resources of Eastern Ghats of India.   

   Table 23.2    Water weeds for treatment of waste water: Lab, fi eld, and pilot-scale experiments (not exhaustive)   

 Uptake of Zn, Cu, and Cd in metal loaded  Elodea canadensis   Nyquist and Greger  (  2007  )  
 Tolerance and phytoaccumulation of chromium by three  Azolla  species  Arora et al.  (  2006  )  
 Tolerance and accumulation of copper and chromium in two duckweed species: 
 Lemna minor  L and  Lemna gibba  L 

 Ater et al.  (  2006  )  

 Phytoremediation of chromium by model constructed wetland  Mant et al.  (  2006  )  
 Wetland grasses for phytoremediation  Czako et al.  (  2005  )  
 Accumulation of As in  Lemna gibba  (duckweed) in tailing waters of two 
abandoned uranium mining sites in Saxony, Germany 

 Mkandawire and Dudel  (  2005  )  

 Potential of  Azolla caroliniana  for the removal of Pb and Cd from wastewaters  Stepniewska et al.  (  2005  )  
 Lead accumulation in the aquatic fern  Azolla fi liculoides   Benaroya et al.  (  2004  )  
 The ability of  Azolla caroliniana  to remove heavy metals such as Hg 2+ , Cr 3+ , Cr 6+  
from municipal wastewater 

 Bennicelli et al.  (  2004  )  

 Responses induced by high concentration of cadmium in  Phragmites australis  roots  Ederli et al.  (  2004  )  
 Capacity of  Salvinia minima  to tolerate and accumulate As and Pb  Hoffmann et al.  (  2004  )  
 Phytoaccumulation of heavy metals by aquatic plants  Kamal et al.  (  2004  )  
 Bioaccumulation of copper from contaminated wastewaters by using  Lemna minor  
(aquatic green plants) 

 Kara  (  2004  )  

 Heavy metal adsorption properties of a submerged aquatic plant ( Ceratophyllum 
demersum ) 

 Keskinkan et al.  (  2004  )  

 Capacity of  Lemna gibba  (duckweed) for uranium and arsenic phytoremediation 
in mine tailing waters 

 Mkandwire et al.  (  2004  )  

 Accumulation of trace elements by  Pistia stratiotes : implications for 
phytoremediation 

 Odjegba and Fasidi  (  2004  )  

 Metal uptake transport and release by wetland plants: implications for phytoreme-
diation and restoration 

 Weis and Weis  (  2004  )  

 Lead and nickel removal using  Microspora  and  Lemna   Axtell et al.  (  2003  )  
 Removal of heavy metals from aqueous solution by water hyacinth 
( Eichhornia crassipes ) 

 Ingole and Bhole  (  2003  )  

 Removal by marsh macrophytes  Spartina alternifl ora  (cordgrass) and  Phragmites 
australis  (common reed) 

    Windham et al.  (  2003  )  

 Phytoaccumulation and phytotoxicity of Cd and Cr in  Wolffi a globosa   Boonyapookana et al.  (  2002  )  
 Chromium removal from tannery effl uents by aquatic plants  Sinha et al.  (  2002  )  
 Biosorption of cadmium and chromium in duckweed  Wolffi a globosa   Upatham et al.  (  2002  )  
 Chromium phytoaccumulation from solution by selected hydrophytes  Zurayk et al.  (  2001  )  
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    6   Biocontrol of Invasives 
Applied in Phytoremediation 

 Classical biocontrol agents or mycoherbicides 
are known for biocontrol of the following water 
weeds (Barreto et al.  2000  ) :  Azolla xliculoides , 
 Echinochloa polystachya ,  Eichhornia azurea , 
 E. crassipes ,  Egeria densa ,  Myriophyllum aquat-
icum ,  Paspalum repens ,  Pistia stratiotes , 
 Polygonum spectabile ,  Salvinia auriculata ,  S. 
molesta,  and  Typha domingensis . 

 A triad approach of lab, pilot, and fi eld studies 
are necessary for understanding the limitations 
and scope of bioremediation potential of weeds 
(Figs.  23.10  and  23.11 ).    

    7   Conclusions and Future 
Perspective 

 Screening of weeds and ornamentals capable of 
accumulating and hyperaccumulating metals for 
bioremediation of metalliferous substrates in the 
era of climate change has suffi cient scope. Weeds, 
ornamentals, and grasses possess such properties. 
Some of these are extensively adaptive in capacity. 
Compared with crop, they possess adaptive and 
antistress properties which make them exceptional 
to grow in metalliferous substrates. With these 
characteristics, it is possible that weeds exhibit 
strong tolerance and exceptional functions to heavy 
metals. Identifi cation of appropriate soil amend-
ments that can enhance biomass production need 
to be investigated. Selected examples of weeds 
that might be useful for polishing soils contami-

nated with metals are  Solanum nigrum ,  Rorippa 
globosa ,  Bidens pilosa ,  Taraxacum mongolicum , 
 Conyza canadensis,  and  Kalimeris integrifolia  
(   Wei and Zhou  2004a,   b,   2008a,   b ; Wei et al.  2005, 
  2006,   2008a,   b,   2009,   2010a,   b  ) .  Chromolaena odo-
rata  (L) King & Robinson, (Asterceae), an inva-
sive weed has the capability to phytoremediate soil 
contaminated with crude oil in the presence of 
metals (Atagana  2011 ; Tanhan et al.  2007 ). Critical 
functions of weeds for potential applications in 
cleanup of metalliferous substrates are:
    (a)    Translocation property: the contents of heavy 

metals in shoots should be higher than those 
in its roots, i.e., TF (transport factor) > 1.  

    (b)    Enrichment factor: the concentration ratio in 
plant shoots to soils should be higher than 1 
(EF > 1).  

    (c)    Use of soil amendments for enhancing the 
biomass production for removal of metals.     

 Several potential and promising options for 
this emerging technology are forging ahead for 
environmental management., yet certain bottle-
necks are to be investigated for wider applica-
tions such as (a) many tested plants have bio-
concentration factor (BCF) less than 1, (b) usage 

  Fig. 23.10    The triad approach for successful bioreme-
diation       

  Fig. 23.11    Scope and limitations of weed application for 
bioremediation of heavy metals       
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of soil amendments and chelators may be neces-
sary for achieving the hyperaccumulation and 
BCF > 10. 

 The regulatory bodies and environmental 
safety agencies are concerned about chelate and 
amendment assisted cleanup, as this approach 
would rapidly mobilize contaminant and increase 
the area of contamination including leaching of 
the toxic trace metals into ground water. Costs of 
the chelate applications need to be assessed. 
Arsenic hyperaccumulating fern,  Pteris vittata  
(an important foliage ornamental), was used in 
the pilot-scale demonstration phytofi ltration 
project to produce drinking quality water from 
arsenic contaminated ground water in New 
Mexico, a classic example of service to mankind 
(Elless et al.  2005  ) . 

 The compost generated from the plants used 
in remediation serves as a compost and can be 
reused as growing media for production of orna-
mentals (Abad et al.  2001 ; Benito et al.  2006 ; 
Hernandez-Apaolaza et al.  2005 ; Hicklenton 
et al.  2001 ; Ingelmo et al.  1998  )  (Table  23.3 ). 
These questions have been satisfactorily answered 
for fostering phytoremediation using ornamen-
tals. Phytoremediation technologies today have 
reached the site from lab to pilot-scale trials and 
fi eld applications using aquatic, terrestrial    (Prasad 
 2003,   2004a,   b,   2007 ; Prasad and Freitas  2003  )  
including space ecology (Kozyrovska et al.  2004, 
  2006  ) . The debris generated from the ornamen-
tals containing the toxic metal residues need to be 
treated as the biomass would be relatively less in 
view of high water contents and an appropriate 

   Table 23.3    Ornamentals for environmental cleanup and ecosystem service   

 Ornamental for environmental moderation and remediation  References 

  Calendula offi cinalis  and  Althaea rosea  exhibited higher tolerance to Cd 
and Pb contamination and could effectively accumulate these metals 

 Liu et al.  (  2007a,   b  )  

 Ni(II) biosorption by  Cassia fi stula  (its common names are Amaltas, 
Canafi stula, Golden Shower, and Indian Laburnum) 

 Hanif et al.  (  2007  )  

  Flindersia schottiana  is a tree species used in the ornamental horticulture 
industry. Urea formaldehyde resin foam (UFRF) product used as a soil 
amendment. It is proposed to improve the physicochemical properties (viz., 
water relations and aeration) of the plant root zone. UFRFs are a relatively 
new class of soil amendment compared with hydro gels. Under plant nursery 
conditions, incorporation of 30% (v/v) Hydrocell™ into composted pine bark 
media and also into sand and loam soils led to limited, but signifi cant 
( P   £  0.05) growth benefi ts (e.g., increased leafl et number) for potted 

 Chan and Joyce  (  2007  )  

 Biodegradable chelating agents, [ S , S ]-ethylenediaminedisuccinic acid (EDDS) 
and methylglycinediacetic acid (MGDA) assisted. Trace metals phytoextrac-
tion was demonstrated in  Mirabilis jalapa  including the growth of the 
associated bacterial population 

 Cao et al.  (  2007  )  

 Phytoextraction trace metals with  Mirabilis jalapa , combinatorial effect 
of biodegradable chelating agents and on its associated bacteria 

 Cao et al.  (  2007  )  

  Crassula portulacea  (Crassulaceae),  Hydrangea macrophylla  
( Hydrangeaceae ),  Cymbidium  Golden Elf (Orchidaceae),  Ficus microcarpa 
var. fuyuensis  (Moraceae),  Dendranthema morifolium  (Asteraceae),  Citrus 
medica var. sarcodactylis  (Rutaceae),  Dieffenbachia amoena cv. Tropic Snow  
(Araceae),  Spathiphyllum Supreme  (Araceae),  Nephrolepis exaltata cv. 
Bostoniensis  (Davalliaceae), and  Dracaena deremensis cv. Variegata  
(Dracaenaceae) had greatest capacity to remove benzene from indoor air 

 Liu et al.  (  2007a,   b  )  

 African marigold ( Tagetes erecta ), scarlet sage ( Salvia splendens ), and sweet 
hibiscus ( Abelmoschus manihot ) were investigated. According to the tolerant 
indexes, sweet hibiscus ( A. manihot ) was the most tolerance while scarlet sage 
( S. splendens ) was the least and African marigold ( Tagetes erecta ) is in 
between 

 Wang and Zhou  (  2005  )  

 Different compensatory mechanisms in two metal-accumulating aquatic 
macrophytes exposed to acute cadmium stress in outdoor artifi cial lakes 

 di Toppi et al.  (  2007  )  

(continued)
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techno-economic feasible options based on inte-
grated model systems was recently suggested for 
the appropriate use of  E. crassipes  (water hya-
cinth) (Malik  2007  ) . Similar solutions need to be 
worked out for the ornamental plants proposed 
for toxic metal cleanup, since each ornamental 
plant is a nonpolluting chemical factory produc-
ing a wide range of bioresource for the welfare of 
the mankind in addition to their ecosystem ser-
vice, viz., environmental remediation and enhanc-
ing the beauty with esthetics and fragrance    
(Table  23.3 ).       
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