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   Preface 

   The purpose of this book is to collect in a single volume the essentials of high 
throughput sequencing data analysis. These new technologies allow performing, at 
an unprecedented low cost and high speed, a panoply of experiments spanning the 
sequencing of whole genomes or transcriptomes, the profi ling of DNA methylation, 
and the detection of protein–DNA interaction sites, among others. In each experi-
ment a massive amount of sequence information is generated, making data analysis 
the major challenge in high throughput sequencing-based projects. Hundreds of 
bioinformatics applications have been developed so far, most of them focusing on 
specifi c tasks. Indeed, numerous approaches have been proposed for each analysis 
step, while integrated analysis applications and protocols are generally missing. As 
a result, even experienced bioinformaticians struggle when they have to discern 
among countless possibilities to analyze their data. This, together with a lack of 
enough qualifi ed personnel, reveals an urgent need to train bioinformaticians in 
existing approaches and to develop integrated, “from start to end” software applica-
tions to face present and future challenges in data analysis. 

 Given this scenario, our motivation was to assemble a book covering the afore-
mentioned aspects. Following three fundamental introductory chapters, the core of 
the book focuses on the bioinformatics aspects, presenting a comprehensive review 
of the methods and programs existing to analyze the raw data obtained from each 
experiment type. In addition, the book is meant to provide insight into challenges 
and opportunities faced by both, biologists and bioinformaticians, during this new 
era of sequencing data analysis. 

 Given the vast range of high throughput sequencing applications, we set out to 
edit a book suitable for readers from different research areas, academic backgrounds 
and degrees of acquaintance with this new technology. At the same time, we expect 
the book to be equally useful to researchers involved in the different steps of a high 
throughput sequencing project. 

 The “newbies” eager to learn the basics of high throughput sequencing technolo-
gies and data analysis will fi nd what they yearn for specially by reading the fi rst intro-
ductory chapters, but also by obviating the details and getting the rudiments of the 
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core chapters. On the other hand, biologists that are familiar with the fundamentals of 
the technology and analysis steps, but that have little bioinformatic training will fi nd 
in the core chapters an invaluable resource where to learn about the different existing 
approaches, fi le formats, software, parameters, etc. for data analysis. The book will 
also be useful to those scientists performing downstream analyses on the output of 
high throughput sequencing data, as a perfect understanding of how their initial data 
was generated is crucial for an accurate interpretation of further outcomes. Additionally, 
we expect the book to be appealing to computer scientists or biologists with a strong 
bioinformatics background, who will hopefully fi nd in the problematic issues and 
challenges raised in each chapter motivation and inspiration for the improvement of 
existing and the development of new tools for high throughput data analysis.

 Naiara Rodríguez-Ezpeleta
 Michael Hackenberg
     Ana M. Aransay
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  Abstract   Thirty-fi ve years have elapsed since the development of modern DNA 
sequencing till today’s apogee of high-throughput sequencing. During that time, 
starting from the sequencing of the fi rst small phage genome (5,386 bases length) 
and going towards the sequencing of 1,000 human genomes (three billion bases 
length each), massive amounts of data from thousands of species have been generated 
and are available in public repositories. This is mostly due to the development of a 
new generation of sequencing instruments a few years ago. With the advent of this 
data, new bioinformatics challenges arose and work needs to be done in order to 
teach biologist swimming in this ocean of sequences so they get safely into port.      

    1.1   History of Genome Sequencing Technologies 

    1.1.1   Sanger Sequencing and the Beginning of Bioinformatics 

 The history of modern genome sequencing technologies starts in 1977, when Sanger 
and collaborators introduced the “dideoxy method” (Sanger et al.  1977  ) , whose 
underlying concept was to use nucleotide analogs to cause base-specifi c termination 
of primed DNA synthesis. When dideoxy reactions of each of the four nucleotides 
were electrophoresed in adjacent lanes, it was possible to visually decode the 
corresponding base at each position of the read. From the beginning, this method 
allowed to read sequences of about 100 bases length, which was latter increased to 
400. By the late 1980s, the amount of sequence data obtained by a single person in 
a day went up to 30 kb (Hutchison  2007  ) . Although seemingly ridiculous compared 
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to the amount of sequence data we deal with today, already at this scale data analysis 
and processing represented an issue. Computer programs were needed in order to 
gather the small sequence chunks into a complete sequence, to allow editing of the 
assembled sequence, to search for restriction sites, or to translate sequences into all 
reading frames. It was during this “beginning of bioinformatics” that the fi rst suite 
of computer programs applied to biology was developed by Roger Staden. With the 
Staden package (Staden  1977  ) , still in use today (Staden et al.  2000 ; Bonfi eld and 
Whitwham  2010  ) , a widely used fi le formats (Dear and Staden  1992  )  and ideas, 
such as the use of base quality scores to estimate accurate consensus sequences 
(Bonfi eld and Staden  1995  ) , were already advanced. 

 As the amount of sequence data increased, the need for a data repository became 
evident. In 1982, GenBank was created by the National Institute of Health (NIH) to 
provide “timely, centralized, accessible repository for genetic sequences” (Bilofsky 
et al.  1986  ) , and 1 year later, more than 2,000 sequences were already stored in this 
database. Rapidly, tools for comparing and aligning sequences were developed. 
Some spread fast and are still in use today, such as FASTA (Pearson and Lipman 
 1988  )  and BLAST (Altschul et al.  1990  ) . Even during those early times, it became 
already clear that bioinformatics is central to the analysis of sequence data and to 
the generation of hypothesis and resolving of biological questions.  

    1.1.2   Automated Sequencing 

 In 1986, Applied Biosystems (ABI) introduced automatic DNA sequencing for 
which different fl uorescently end-labelled primers were used in each of the four 
dideoxy sequencing reactions. When combined in a single electrophoresis gel, the 
sequence could be deduced by measuring the characteristic fl uorescence spectrum 
of each of the four bases. Computer programs were developed that automatically 
converted fl uorescence data into a sequence without needing to autoradiography the 
sequencing gel and manually decode the bands (Smith et al.  1986  ) . Compared to 
manual sequencing, the automation allowed the integration of data analysis into 
the process so that problems at each step could be detected and corrected as they 
appeared (Hutchison  2007  ) . 

 Very shortly after the introduction of automatic sequencing, the fi rst sequencing 
facility with six automated sequencers was set up at the NIH by Craig Venter and 
colleagues, which was expanded to 30 sequencers in 1992 at The Institute for 
Genomic Research (TIGR). One year later, one of today’s most important sequencing 
centres, the Wellcome Trust Sanger Institute, was established. Among the earliest 
achievements of automated sequencing was the reporting of 337 new and 48 
homolog-bearing human genes via the expressed sequence tag (EST) approach 
(Adams et al.  1991  ) , which allows to selectively sequence fragments of gene tran-
scripts. Using this approach, fragments of more than 87,000 human transcripts were 
sequenced shortly after, and today over 70 million ESTs from over 2,200 different 
organisms are available in dbEST (Boguski et al.  1993  ) . In 1996, DNA sequencing 
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became truly automated with the introduction of the fi rst commercial DNA sequencer 
that used capillary electrophoresis (the ABI Prism 310), which replaced manual 
pouring and loading gels with automated reloading of the capillaries from 96-well 
plates.  

    1.1.3   From Single Genes to Complete 
Genomes: Assemblers as Critical Factors 

 It was not until 1995 that the fi rst cellular genomes, the ones of  Haemophilus infl u-
enzae  (Fleischmann et al.  1995  )  and of  Mycoplasma genitalium  (Fraser et al.  1995  ) , 
were sequenced at TIGR. This was made possible thanks to the previously intro-
duced whole genome shotgun (WGS) method, in which genomic DNA is randomly 
sheared, cloned and sequenced. In order to produce a complete genome, results 
needed to be assembled by a computer program, revealing assemblers as critical 
factors in the application of shotgun sequencing to cellular genomes. Originally, 
most large-scale DNA sequencing centres developed their own software for assem-
bling the sequences that they produced; for example, the TIGR assembler (Sutton 
et al.  1995  )  was used to assemble the aforementioned two genomes. However, this 
later changed as the software grew more complex and as the number of sequencing 
centres increased. Genome assembly is a very diffi cult computational problem, 
made even more diffi cult in most eukaryotic genomes because many of them con-
tain large numbers of identical sequences, known as repeats. These repeats can be 
thousands of nucleotides long, and some occur at thousands of different positions, 
especially in the large genomes of plants and animals. Thus, when more complex 
genomes such as the ones of the yeast  Saccharomyces cerivisiae  (Goffeau et al.  1996  ) , 
the nematode  Caenorhabditis elegans  (The  C. elegans _Sequencing_Consortium 
 1998  )  or the fruit fl y  Drosophila melanogaster  (Adams et al.  2000  )  were envisaged, 
the importance of computer programs that were able to assemble thousands of reads 
into contigs became   , if possible, even more evident. Besides repeats, these assem-
blers needed to be able to handle thousands of sequence reads and to deal with 
errors generated by the sequencing instrument.  

    1.1.4   The Human Genome: The Culmination 
of Automated Sequencing 

 The establishment of sequencing centres with hundreds of sequencing instruments 
and fully equipped with laboratory-automated procedures had as one of its ultimate 
goal the deciphering of the human genome. The Human Genome sequencing 
project formally began in 1990 when $3 billion were awarded by the United States 
Department of Energy and the NIH for this aim. The publicly funded effort became 
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an international collaboration between a number of sequencing centres in the United 
States, United Kingdom, France, Germany, China, India and Japan, and the whole 
project was expected to take 15 years. Parallel and in direct competition, Celera 
Genomics (founded by Applera Corporation and Craig Venter in May 1998) started 
its own sequencing of the human genome using WGS. Due to widespread inter-
national cooperation and advances in the fi eld of genomics (especially in sequence 
analysis) as well as major advances in computing technology, a “rough draft” of the 
genome was fi nished by 2000 and the Celera and the public human genomes were 
published the same week (Lander et al.  2001 ; Venter et al.  2001  ) . The sequencing of 
the human genome made bioinformatics stepping up a notch because of the consid-
erable investment needed in software development for assembly, annotation and 
visualization (Guigo et al.  2000 ; Huson et al.  2001 ; Kent et al.  2002  ) . And not only 
that: the complete sequence of the human genome was just the beginning of a series 
of more in-depth comparative studies that also required specifi c computing infra-
structures and software implementation.   

    1.2   Birth of a New Generation of Sequencing Technologies 

 The above-described landscape has drastically changed in the past few years with 
the advent of new high-throughput technologies, which have noticeably reduced the 
per-base sequencing cost, while at the same time signifi cantly increasing the number 
of bases sequenced (Mardis  2008 ; Schuster  2008  ) . In 2005, Roche introduced the 
454 pyrosequencer, which could easily generate more data than 50 capillary sequencers 
at about one sixth of the cost (Margulies et al.  2005  ) . This was followed by the 
release of the Solexa Genome Analyzer by Illumina in 2006, which used sequencing 
by synthesis to generate tens of millions of 32 bp reads, and of the SOLiD and 
Heliscope platforms by Applied Biosystems and Helicos, respectively, in 2007. 
Today, updated instruments with increased sequencing capacity are available from 
all platforms, and new companies have emerged that have introduced new sequenc-
ing technologies (Pennisi  2010  ) . The output read length depends on the technology 
and the specifi c biological application, but generally ranges from 36 to 400 bp. 
A detailed review of the chemistries behind each of these methods is described 
in Chap. 2. 

 These new generation of high-throughput sequencers, which combine innovations 
in sequencing chemistry and in detecting strand synthesis via microscopic imaging 
in real time, raised the amount of data obtained by a single instrument on a single 
day raise to 40 Gb (Kahn  2011  ) . This means that what was previously carried out in 
10 years by big consortiums involving several sequencing centres bearing each tens 
of sequencing instruments can now be done in a few days by a single investigator: 
a total revolution for genomic science. Together with the throughput increase, these 
new technologies have also increased the spectrum of applications of DNA sequencing 
to span a wide variety of research areas such as epidemiology, experimental evolution, 
social evolution, palaeogenetics, population genetics, phylogenetics or biodiversity 
(Rokas and Abbot  2009  ) . In some cases, sequencing has replaced traditional 
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approaches such as microarrays, furthermore offering fi ner outcomes. A review of 
each of the applications of high-throughput sequencing in the context of specifi c 
research areas is presented in Chap. 3. 

 This new hoping and visibly positive scenario does not come without drawbacks. 
Indeed, the new spectrum of applications together with the fact that this massive 
amount of data comes in the form of short reads appeals for a heavy investment in 
the development of computational methods that can analyse the resulting datasets 
to infer biological meaning and to make sense of it all. This book focuses, among 
others, on the new bioinformatic challenges that come together with the generation 
of this massive amount of sequence data.  

    1.3   High-Throughput Sequencing Brings 
New Bioinformatic Challenges 

    1.3.1   Specialized Requirements 

 Compared to previous eras in genome sequencing history in which data generation 
was the limiting factor, the challenge now is not the data generation, but the storage, 
handling and analysis of the information obtained, requiring specialized bioinfor-
matics facilities and knowledge. Indeed, as numerous experts argue, data analysis, 
not sequencing, will now be the main expense hurdle to many sequencing projects 
(Pennisi  2011  ) . The fi rst thing to worry about is the infrastructure needed. Sequencing 
datasets can range from occupying a few to hundreds of gigabytes per sample, 
implying high requirement of disk storage, memory and computing power for the 
downstream analyses, and often needing supercomputing centres or cluster facili-
ties. Another option, if one lacks proper infrastructure, is to use cloud computing 
(e.g. the Elastic Compute Cloud from Amazon), which allow scientists to virtually 
rent both, storage and processing power, by accessing servers as they need them. 
However, this requires moving data from researchers to “the cloud” back and forth, 
which, given fi le sizes, is not trivial (Baker  2010  ) . Once the data obtained and the 
appropriate infrastructure set, there is still an important gap to be fi lled: that of the 
bioinformaticists that will do the analysis. As mentioned in some recent reviews, 
there is a worry that there won’t be enough people to analyse the large amounts of 
data generated, and bioinformaticists seem to be in short supply everywhere (Pennisi 
 2011  ) . These and other related issues are presented in more detail in Chap. 4.  

    1.3.2   New Applications, New Challenges 

 The usual concern when it comes to high-throughput data analysis is that there is not 
such “Swiss army knife”-type software that covers all possible biological questions 
and combinations of experiment designs and data types. Therefore, the users have 
to carefully document themselves about the analysis steps required for a given 
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application, which often involves choosing among tens of available software for 
each step. Moreover, most programs come with a particular and often extensive set 
of parameters whose adequate application strongly depends on factors such as the 
experiment design, data types and biological problem studied. To make things even 
more complex, for some (if not for all) applications new algorithms are continuously 
emerging. The goal of this book is to guide the readers in their high-throughput 
analysis process by explaining the principles behind existing applications, methods 
and programs so that they can extract the maximum information from their data.   

    1.4   High-Throughput Data Analysis: Basic Steps 
and Specifi c Pipelines 

    1.4.1   Pre-processing 

 A common step to every high-throughput data analysis is base calling, a process in 
which the raw signal of a sequencing instrument, i.e. intensity data extracted from 
images, is decoded into sequences and quality scores. Although often neglected 
because usually performed by vendor-supplied base callers, this step is crucial since 
the characterization of errors may strongly affect downstream analysis. More accu-
rate base callers reduce the coverage required to reach a given precision, directly 
decreasing sequencing costs. Not in vain, alternative to vendors base calling strategies 
are being explored, whose benefi ts and drawbacks are described in Chap. 5. Once 
the sequences and quality scores obtained, the following elementary step of every 
analysis is either the de novo assembly of the sequences, if the reference is not known, 
or the alignment of the reads to a reference sequence. These issues are extensively 
addressed in Chaps. 6 and 7.  

    1.4.2   Detecting Modifi cations at the DNA Level 

 Apart from deciphering new genomes via de novo assembly, DNA re-sequencing 
offers the possibility to address numerous biological questions applied to a wide 
range of research areas. For example, if the DNA is previously immunoprecipitated 
or enriched for methylated regions prior to sequencing, protein binding or methylated 
sites can be detected. The specifi c methods and software required for the analysis of 
these and related datasets are discussed in Chaps. 8 and 9.  

    1.4.3   Understanding More About RNA by Sequencing DNA 

 High-throughput sequencing allows studying RNA at an unprecedented level. 
The wideliest    used and most studied application is the detection of differential 
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expression between samples for which sequencing provides more accurate and 
complete results than the traditionally used microarrays. The underlying concept of 
this method is that the number of cDNA fragments sequenced is proportional to the 
expression level; thus, by applying mathematical models to the counts for each 
sample and region of interest, differential expression can be detected. This and other 
applications of transcriptome sequencing are extensively discussed in Chap. 10. 
MicroRNAs are now the target of many studies aiming to understand gene regula-
tion. As discussed in Chap. 11, high-throughput sequencing allows not only to 
profi le the expression of known microRNAs in a given organism, but also to discover 
new ones and to compare their expression levels. Finally, Chap. 12 discusses how, 
as it was possible for DNA, protein binding sites can also be identifi ed at the RNA 
level by means of high-throughput sequencing.  

    1.4.4   Metagenomics 

 In studies where the aim is not to understand a single species, but to study the 
composition and operation of complex communities in environmental samples, 
high-throughput sequencing has also played an important part. Traditional analyses 
focussed on a single molecule such as the 16S ribosomal RNA to identify the organ-
isms present in a community, but this, in spite of potentially missing some represen-
tatives, does not give any insights into the metabolic activities of the community. 
Metagenomics based on high-throughput sequencing allows for taxonomic, func-
tional and comparative analyses, but not without posing important conceptual and 
computational challenges that require new bioinformatics tools and methods to 
address them (Mitra et al.  2011  ) . Chapter 13 focuses on MG-RAST, a high-throughput 
system built to provide high-performance computing to researchers interested in 
analysing metagenomic data.   

    1.5   What is Next? 

 The increasing range of high-throughput sequencing applications together with the 
falling cost for generating vast amounts of data suggests that these technologies will 
generate new opportunities for software and algorithm development. What will be 
next then is the    formation of multidisciplinary scientists with expertise in both, 
biological and computational sciences, and making scientists from diverse back-
grounds understand each other and work as a whole. As an example, understanding 
the disease of a patient by using whole genome sequencing would require the assembly 
of a “dream team” of specialists including biologists and computer scientists, genet-
icists, pathologists, physicians, research nurses, genetic counsellors and IT and systems 
support specialists, Elaine Mardis predicts (Mardis  2010  ) . Tackling these issues and 
many others dealing with the current and future states of high-throughput data 
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analysis, we fi nd Chap. 14 an excellent way to conclude this book and leave the 
reader with the concern that there is still a long way to walk, but with the satisfac-
tion of knowing that we are in the right track.      
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  Abstract   The high-throughput DNA sequencing technologies are based on 
 immobilization of the DNA samples onto a solid support, cyclic sequencing reac-
tions using automated fl uidics devices, and detection of molecular events by imaging. 
Featured sequencing technologies include: GS FLX by 454 Life Technologies/
Roche, Genome Analyzer by Solexa/Illumina, SOLiD by Applied Biosystems, CGA 
Platform by Complete Genomics, and PacBio RS by Pacifi c Biosciences. In addition, 
emerging technologies are discussed.      

    2.1   Introduction 

 High-throughput sequencing has begun to revolutionize science and healthcare by 
allowing users to acquire genome-wide data using massively parallel sequencing 
approaches. During its short existence, the high-throughput sequencing fi eld has 
witnessed the rise of many technologies capable of massive genomic analysis. 
Despite the technological dynamism, there are general principles employed in the 
construction of the high-throughput sequencing instruments. 

 Commercial high-throughput sequencing platforms share three critical steps: 
DNA sample preparation, immobilization, and sequencing (Fig.  2.1 ). Generally, 
preparation of a DNA sample for sequencing involves the addition of defi ned 
sequences, known as “adapters,” to the ends of randomly fragmented DNA (Fig.  2.2 ). 
This DNA preparation with common or universal nucleic acid ends is commonly 
referred to as the “sequencing library.” The addition of adapters is required to anchor 
the DNA fragments of the sequencing library to a solid surface and defi ne the site in 

    S.   Myllykangas   •     J.   Buenrostro   •     H.P.   Ji   (*) 
     Division of Oncology, Department of Medicine ,  Stanford Genome Technology Center, 
Stanford University School of Medicine ,   CCSR, 269 Campus Drive , 
 94305   Stanford ,  CA ,  USA    
e-mail:  smyllyka@stanford.edu; jdbuenrostro@gmail.com; genomics_ji@stanford.edu     

    Chapter 2   
 Overview of Sequencing Technology Platforms       

       Samuel   Myllykangas      ,    Jason   Buenrostro      , and    Hanlee P.   Ji         



12 S. Myllykangas et al.

  Fig. 2.1    High-throughput sequencing workfl ow. There are three main steps in high-throughput 
sequencing: preparation, immobilization, and sequencing. Preparation of the sample for high-
throughput sequencing involves random fragmentation of the genomic DNA and addition of 
adapter sequences to the ends of the fragments. The prepared sequencing library fragments are 
then immobilized on a solid support to form detectable sequencing features. Finally, massively 
parallel cyclic sequencing reactions are performed to interrogate the nucleotide sequence       

  Fig. 2.2    Sequencing library preparation. There are three principal approaches for addition of 
adapter sequences and preparation of the sequencing library. ( a ) Linear adapters are applied in the 
GS FLX, Genome Analyzer, and SOLiD systems. Specifi c adaptor sequences are added to both 
ends of the genomic DNA fragments. ( b ) Circular adapters are applied in the CGA platform, where 
four distinct adaptor sequences are internalized into a circular template DNA. ( c ) Bubble adapters 
are used in the PacBio RS sequencing system. Hairpin forming bubble adapters are added to 
double-strand DNA fragments to generate a circular molecule       
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which the sequencing reactions begin. These high-throughput sequencing systems, 
with the exception of PacBio RS, require amplifi cation of the sequencing library 
DNA to form spatially distinct and detectable sequencing features (Fig.  2.3 ). 
Amplifi cation can be performed in situ, in emulsion or in solution to generate clus-
ters of clonal DNA copies. Sequencing is performed using either DNA polymerase 
synthesis for fl uorescent nucleotides or the ligation of fl uorescent oligonucleotides 
(Fig.  2.4 ).     

 The high-throughput sequencing platforms integrate a variety of fl uidic and optic 
technologies to perform and monitor the molecular sequencing reactions. The fl uidics 
systems that enable the parallelization of the sequencing reaction form the core of the 
high-throughput sequencing platform. Micro-liter scale fl uidic devices support the 
DNA immobilization and sequencing using automated liquid dispensing mecha-
nisms. These instruments enable the automated fl ow of reagents onto the immobilized 

  Fig. 2.3    Generation of sequencing features. High-throughput sequencing systems have taken 
different approaches in the generation of the detectable sequencing features. ( a ) Emulsion PCR is 
applied in the GS FLX and SOLiD systems. Single enrichment bead and sequencing library fragment 
are emulsifi ed inside an aqueous reaction bubble. PCR is then applied to populate the surface of 
the bead by clonal copies of the template. Beads with immobilized clonal DNA collections are 
deposited onto a Picotiter plate (GS FLX) or on a glass slide (SOLiD). ( b ) Bridge-PCR is used 
to generate the in situ clusters of amplifi ed sequencing library fragments on a solid support. 
Immobilized amplifi cation primers are used in the process. ( c ) Rolling circle amplifi cation is used 
to generate long stretches of DNA that fold into nanoballs that are arrayed in the CGA technology. 
( d ) Biotinylated DNA polymerase binds to bubble adapted template in the PacBio RS system. 
Polymerase/template complex is immobilized on the bottom of a zero mode wave guide (ZMW)       
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DNA samples for cyclic interrogation of the nucleotide sequence. Massive parallel 
sequencing systems apply high-throughput optical systems to capture information 
about the molecular events, which defi ne the sequencing reaction and the sequence 
of the immobilized sequencing library. Each sequencing cycle consists of incorpo-
rating a detectable nucleic acid substrate to the immobilized template, washes   , and 
imaging the molecular event. Incorporation–washing–imaging cycles are repeated 
to build the DNA sequence read. PacBio RS is based on monitoring DNA polymer-
ization reactions in parallel by recording the light pulses emitted during each incorpo-
ration event in real time. 

 High-throughput DNA sequencing has been commercialized by a number of 
companies (Table  2.1 ). The GS FLX sequencing system (Margulies et al.  2005  ) , 
originally developed by 454 Life Sciences and later acquired by Roche (Basel, 
Switzerland), was the fi rst commercially available high-throughput sequencing plat-
form. The fi rst short read sequencing technology, Genome Analyzer, was developed 
by Solexa, which was later acquired by Illumina Inc. (San Diego, CA) (Bentley 
et al.  2008 ; Bentley  2006  ) . The SOLiD sequencing system by Applied Biosystems 

  Fig. 2.4    Cyclic sequencing reactions. ( a ) Pyrosequencing is based on recording light bursts during 
nucleotide incorporation events. Each nucleotide is interrogated individually. Pyrosequencing is a 
technique used in GS FLX sequencing. ( b ) Reversible terminator nucleotides are used in the 
Genome Analyzer system. Each nucleotide has a specifi c fl uorescent label and a termination 
moiety that prevents addition of other reporter nucleotides to the synthesized strand. All four 
nucleotides are analyzed in parallel and one position is sequenced at each cycle. ( c ) Nucleotides 
with cleavable fl uorophores are used n the PacBio RS system. Each nucleotide has a specifi c fl uo-
rophore, which gets cleaved during the incorporation event. ( d ) Sequencing by ligation is applied 
in the SOLiD and CGA platforms. Although they have different approaches, the general principle 
is the same. Both systems apply fl uorophore-labeled degenerate oligonucleotides that correspond 
to a specifi c base in the molecule       
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(Foster City, CA) applies fl uorophore labeled oligonucleotide panel and ligation 
chemistry for sequencing (Smith et al.  2010 ; Valouev et al.  2008  ) . Complete 
Genomics (Mountain View, CA) has developed a sequencing technology called 
CGA that is based on preparing a semiordered array of DNA nanoballs on a solid 
surface (Drmanac et al.  2010  ) . Pacifi c Biosciences (Menlo Park, CA) has developed 
PacBio RS sequencing technology, which uses the polymerase enzyme, fl uorescent 
nucleotides, and high-content imaging to detect single-molecule DNA synthesis 
events in real time (Eid et al.  2009  ) .   

    2.2   Genome Sequencer GS FLX 

 The Roche GS FLX sequencing process consists of preparing an end-modifi ed DNA 
fragment library, sample immobilization on streptavidin beads, and pyrosequencing. 

    2.2.1   Preparation of the Sequencing Library 

 Sample preparation of the GS FLX sequencing system begins with random fragmen-
tation of DNA into 300–800 base-pair (bp) fragments (Margulies et al.  2005  ) . After 
shearing, fragmented double-stranded DNA is repaired with an end-repair enzyme 
cocktail and adenine bases are added to the 3 ¢  ends of fragments. Common adapters, 
named “A” and “B,” are then nick-ligated to the fragments ends. Nicks present in the 
adapter-to-fragment junctions are fi lled in using a strand-displacing  Bst  DNA poly-
merase. Adapter “B” carries a biotin group, which facilitates the purifi cation of homo-
adapted fragments (A/A or B/B). The biotin labeled sequencing library is captured 
on streptavidin beads. Fragments containing the biotin labeled B adapter are bound 
to the streptavidin beads while homozygous, nonbiotinylated A/A adapters are 
washed away. The immobilized fragments are denatured after which both strands of 
the B/B adapted fragments remain immobilized by the streptavidin–biotin bond and 
single-strand template of the A/B fragments are freed and used in sequencing.  

    2.2.2   Emulsion PCR and Immobilization to Picotiter Plate 

 In GS FLX sequencing, the single-strand sequencing library fragment is immobilized 
onto a specifi c DNA capture bead (Fig.  2.3a ). GS FLX sequencing relies on captur-
ing one DNA fragment onto a single bead. One-to-one ratio of beads and fragments 
is achieved by limiting dilutions. The bead-bound library is then amplifi ed using a 
specifi c form of PCR. In emulsion PCR, parallel amplifi cation of bead captured 
library fragments takes place in a mixture of oil and water. Aqueous bubbles, 
immersed in oil, form microscopic reaction entities for each individual capture bead. 
Hundreds of thousands of amplifi ed DNA fragments can be immobilized on the 
surface of each bead. 
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 In the GS FLX sequencing platform, beads covered with amplifi ed DNA can be 
immobilized on a solid support (Fig.  2.3a ). The GS FLX sequencing platform uses 
a “Picotiter plate,” a solid phase support containing over a million picoliter volume 
wells (Margulies et al.  2005  ) . The dimensions of the wells are such that only one 
bead is able to enter each position on the plate. Sequencing chemistry fl ows through 
the plate and insular sequencing reactions take place inside the wells. The Picotiter 
plate can be compartmentalized up to 16 separate reaction entities using different 
gaskets.  

    2.2.3   Pyrosequencing 

 The GS FLX sequencing reaction utilizes a process called pyrosequencing (Fig.  2.4a ) 
to detect the base incorporation events during sequencing (Margulies et al.  2005  ) . 
In pyrosequencing, Picotiter plates are fl ushed with nucleotides and the activity of 
DNA polymerase and the incorporation of a nucleotide lead to the release of a pyro-
phosphate. ATP sulfurylase and luciferase enzymes convert the pyrophosphate into 
a visible burst of light, which is detected by a CCD imaging system. Each nucle-
otide species (i.e., dATP, dCTP, dGTP, and dTTP) is washed over the Picotiter plate 
and interrogated separately for each sequencing cycle. The GS FLX technology 
relies on asynchronous extension chemistry, as there is no termination moiety that 
would prevent addition of multiple bases during one sequencing cycle. As a result, 
multiple nucleotides can be incorporated to the extending DNA strand and accurate 
sequencing through homopolymer stretches (i.e., AAA) represents a challenging 
technical issue for GS FLX. However, a number of improvements have been made 
to improve the sequencing performance of homopolymers (Smith et al.  2010  ) .   

    2.3   Genome Analyzer 

 The Genome Analyzer system is based on immobilizing linear sequencing library 
fragments using solid support amplifi cation. DNA sequencing is enabled using fl uo-
rescent reversible terminator nucleotides. 

    2.3.1   Sequencing Library Preparation 

 Sample preparation for the Illumina Inc. Genome Analyzer involves adding specifi c 
adapter sequences to the ends of DNA molecules (Fig.  2.2a ) (Bentley et al.  2008 ; 
Bentley  2006  ) . The production of a sequencing library initiates with fragmentation of 
the DNA sample, which defi nes the molecular entry points for the sequencing reads. 
Then, an enzyme cocktail repairs the staggered ends, after which, adenines (A) are 
added to the 3 ¢  ends of the DNA fragments. A-tailed DNA is applied as a template 
to ligate double strand, partially complementary adapters to the DNA fragments. 
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Adapted DNA library is size selected and amplifi ed to improve the quality of 
sequence reads. Amplifi cation introduces end-specifi c PCR primers that bring in the 
portion of the adapter required for sample processing on the Illumina Inc. system.  

    2.3.2   Solid Support Amplifi cation 

 Illumina Inc. fl ow cells are planar, fl uidic devices that can be fl ushed with sequencing 
reagents. The inner surface of the fl ow cell is functionalized with two oligonucle-
otides, which creates an ultra-dense primer fi eld. The sequencing library is immobi-
lized on the surface of a fl ow cell (Fig.  2.3b ). The immobilized primers on the fl ow 
cell surface have sequences that correspond to the DNA adapters present in the 
sequencing library. DNA molecules in the sequencing library hybridize to the immo-
bilized primers and function as templates in strand extension reactions that generate 
immobilized copies of the original molecules. 

 In the Illumina Inc. Genome Analyzer system, the preparation of the fl ow cell 
requires amplifi cation of individual DNA molecules of a sequencing library and 
formation of spatially condensed, microscopically detectable clusters of molecular 
copies (Fig.  2.3b ). The primer functionalized fl ow cell surface serves as a support 
for amplifi cation of the immobilized sequencing library by a process also known as 
“Bridge-PCR.” 

 Generally, PCR is performed in solution and relies on repeated thermal cycles of 
denaturation, annealing, and extension to exponentially amplify DNA molecules. 
In the Illumina Inc. Genome Analyzer Bridge-PCR system, amplifi cation is performed 
on a solid support using immobilized primers and in isothermal conditions using 
reagent fl ush cycles of denaturation, annealing, extension, and wash. Bridge-PCR 
initiates by hybridization of the immobilized sequencing library fragment and a 
primer to form a surface-supported molecular bridge structure. Arched molecule is 
a template for a DNA polymerase-based extension reaction. The resulting bridged 
double-strand DNA is freed using a denaturing reagent. Repeated reagent fl ush 
cycles generate groups of thousands of DNA molecules, also known as “clusters,” 
on each fl ow cell lane. DNA clusters are fi nalized for sequencing by unbinding the 
complementary DNA strand to retain a single molecular species in each cluster, in a 
reaction called “linearization,” followed by blocking the free 3 ¢  ends of the clusters 
and hybridizing a sequencing primer.  

    2.3.3   Sequencing Using Fluorophore Labeled Reversible 
Terminator Nucleotides 

 The prepared fl ow cell is connected to a high-throughput imaging system, which con-
sists of microscopic imaging, excitation lasers, and fl uorescence fi lters. Molecularly, 
Illumina Inc.’s sequencing-by-synthesis method employs four distinct fl uorophores 
and reversibly terminated nucleotides (Fig.  2.4b ). The sequencing reaction initiates by 
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DNA polymerase synthesis of a fl uorescent reversible terminator nucleotide from the 
hybridized sequencing primer. The extended base contains a fl uorophore specifi c to 
the extended base and a reversible terminator moiety, which inhibits the incorpora-
tion of additional nucleotides. 

 After each incorporation reaction, the immobilized nucleotide fl uorophores, 
corresponding to each cluster, are imaged in parallel.  X – Y  position of imaged nucle-
otide fl uorophore defi nes the fi rst base of a sequence read. Before proceeding to 
next cycle, reversible-terminator moieties and fl uorophores are detached using a 
cleavage reagent, enabling subsequent addition of nucleotides. The synchronous 
extension of the sequencing strand by one nucleotide per cycle ensures that homopo-
lymer stretches (consecutive nucleotides of the same kind, i.e., AAAA) can be accu-
rately sequenced. However, failure to incorporate a nucleotide during a sequencing 
cycle results in off-phasing effect – some molecules are lagging in extension and the 
generalized signal derived from the cluster deteriorates over cycles. Therefore, 
Illumina Inc. sequencing accuracy declines as the read length increases, which 
limits this technology to short sequence reads.   

    2.4   SOLiD 

 The Applied Biosystems SOLiD sequencer, featured in Valouev et al.  (  2008  )  and 
Smith et al.  (  2010  ) , is    based on the Polonator technology (Shendure et al.  2005  ) , an 
open source sequencer that utilizes emulsion PCR to immobilize the DNA library 
onto a solid support and cyclic sequencing-by-ligation chemistry. 

    2.4.1   Sequencing Library Preparation and Immobilization 

 The in vitro sequencing library preparation for SOLiD involves fragmentation of 
the DNA sample to an appropriate size range (400–850 bp), end repair and ligation 
of “P1” and “P2” DNA adapters to the ends of the library fragments (Valouev et al. 
 2008  ) . Emulsion PCR is applied to immobilize the sequencing library DNA onto 
“P1” coated paramagnetic beads. High-density, semi-ordered polony arrays are 
generated by functionalizing the 3 ¢  ends of the templates and immobilizing the 
modifi ed beads to a glass slide. The glass slides can be segmented up to eight 
chambers to facilitate up scaling of the number of analyzed samples.  

    2.4.2   Sequencing by Ligation 

 The SOLiD sequencing chemistry is based on ligation (Fig.  2.4d ). A sequencing 
primer is hybridized to the “P1” adapter in the immobilized beads. A pool of uniquely 
labeled oligonucleotides contains all possible variations of the complementary 



20 S. Myllykangas et al.

bases for the template sequence. SOLiD technology applies partially degenerate, 
fl uorescently labeled, DNA octamers with dinucleotide complement sequence 
recognition core. These detection oligonucleotides are hybridized to the template 
and perfectly annealing sequences are ligated to the primer. After imaging, unex-
tended strands are capped and fl uorophores are cleaved. A new cycle begins 5 bases 
upstream from the priming site. After the seven sequencing cycles fi rst sequencing 
primer is peeled off and second primer, starting at n-1 site, is hybridized to the 
template. In all, 5 sequencing primers (n, n-1, n-2, n-3, and n-4) are utilized for 
the sequencing. As a result, the 35-base insert is sequenced twice to improve the 
sequencing accuracy. 

 Since the ligation-based method in the SOLiD system requires complex panel of 
labeled oligonucleotides and sequencing proceeds by off-set steps, the interpretation 
of the raw data requires a complicated algorithm (Valouev et al.  2008  ) . However, 
the SOLiD system achieves a slightly better performance in terms of sequencing 
accuracy due to the redundant sequencing of each base twice by a dinucleotide 
detection core structure of the octamer sequencing oligonucleotides.   

    2.5   CGA Platform 

 The CGA Platform (Complete Genomics) represents the fi rst high-throughput 
platform only available to the public as a service (Table  2.1 ). The CGA technology 
is based on preparation of circular DNA libraries (Fig.  2.2c ) and rolling circle 
amplifi cation (RCA) to generate DNA nanoballs that are arrayed on a solid support 
(Fig.  2.3c ) (Drmanac et al.  2010  ) . 

    2.5.1   Sequencing Library Preparation 

 DNA is randomly fragmented and 400–500 bp fragments are collected. The fragment 
ends are enzymatically end-repaired and dephosphorylated. Common adapters are 
ligated to the DNA fragments using nick translation. These adapter libraries are 
enriched and Uracils are incorporated in the products using PCR and uracil containing 
primers. Uracils are removed from the fi nal product to create overhangs. The products 
are digested and methylated with  Acu I and circularized using T4 DNA ligase in a 
presence of a splint oligonucleotide. The circularized products are purifi ed using an 
exonuclease, which degrades residual linear DNA molecules. Linearization, adapter 
ligation, PCR amplifi cation, restriction enzyme digestion, and circularization process 
are repeated until four unique adapters are incorporated into the circular sequencing 
library molecules. Prior to the fi nal circularization step, a single-strand template 
is purifi ed using strand separation by bead capture and exonuclease treatment. The 
fi nal product contains two 13 base genomic DNA inserts and two 26 base genomic 
DNA inserts adjacent to the adapter sequences.  
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    2.5.2   DNA Nanoball Array 

 To prepare the immobilized sequencing features for Complete Genomics sequencing, 
circular, single-strand DNA library is amplifi ed using RCA and a highly processive 
and strand displacing Phi29 polymerase. RCA creates long DNA strands from the 
circular DNA library templates that contain short palindrome sequences. The palin-
drome sequences within the long linear products promote intramolecular coiling of 
the molecule and formation of the DNA nanoballs (DNBs). A nanoball is a long 
strand of repetitive fragments of amplifi ed DNA, which forms a detectable, three-
dimensional, condensed, and spherical sequencing object. 

 The hexamethyldisilazane (HDMS) covered surface of the CGA Platform’s 
fl uidic chamber is spotted by aminosilane using photolitography techniques. Three-
hundred nm aminosilane spots cover over 95% of the CGA surface. While HDMS 
inhibits DNA binding, the positively charged aminosilane binds the negatively 
charged DNBs. Randomly organized but regionally ordered high-density array has 
350 million immobilized DNBs within a distance of 1.29  m m between the centers of 
the spots.  

    2.5.3   Sequencing by Ligation Using Combinatorial 
Probe Anchors 

 Complete genomics’ CGA Platform uses a novel strategy called combinatorial 
probe anchor ligation (cPAL) for sequencing. The process begins by hybridization 
between an anchor molecule and one of the unique adapters. Four degenerate 9-mer 
oligonucleotides are labeled with specifi c fl uorophores that correspond to a specifi c 
nucleotide (A, C, G, or T) in the fi rst position of the probe. Sequence determination 
occurs in a reaction where the correct matching probe is hybridized to a template 
and ligated to the anchor using T4 DNA ligase. After imaging of the ligated products, 
the ligated anchor-probe molecules are denatured. The process of hybridization, 
ligation, imaging, and denaturing is repeated fi ve times using new sets of fl uorescently 
labeled 9-mer probes that contain known bases at the n + 1, n + 2, n + 3, and n + 4 
positions. 

 After fi ve cycles, the fi delity of the ligation reaction decreases and sequencing 
continues by resetting the reaction using an anchor with degenerate region of 5 bases. 
Another fi ve cycles of sequencing by ligation are performed using the fl uorescently 
labeled, degenerate 9-mer probes. The cyclic sequencing of 10 bases can be repeated 
up to eight times, starting at each of the unique anchors, and resulting in 62–70 base 
long reads from each DNB. 

 Unlike other high-throughput sequencing platforms that involve additive detection 
chemistries, the cPAL technology is unchained as sequenced nucleotides are not 
physically linked. The anchor and probe constructs are removed after each sequenc-
ing cycle and the next cycle is initiated completely independent of the molecular 
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events of the previous cycle. A disadvantage of this system is that read lengths are 
limited by the sample preparation, even if, longer reads up to 120 bases can be 
achieved by adding more restriction enzyme sites.   

    2.6   PacBio RS 

 PacBio RS is a single-molecule real-time (SMRT) sequencing system developed 
by Pacifi c Biosciences (Eid et al.  2009  ) . 

    2.6.1   Preparation of the Sequencing Library 

 SMRTbell is the default method for preparing sequencing libraries for PacBio RS in 
order to get high accuracy variant detection (Travers et al.  2010  )  (Fig.  2.3d ). For 
genome sequencing, DNA is randomly fragmented and then end-repaired. Then, 
3 ¢  adenine is added to the fragmented genomic DNA, which facilitates ligation of an 
adapter with a T overhang. Single DNA oligonucleotide, which forms an intramo-
lecular hairpin structure, is used as the adapter. The SMRTbell DNA template is 
structurally a linear molecule but the bubble adapters create a topologically circular 
molecule.  

    2.6.2   The SMRT Cell 

 The SMRT cell houses a patterned array of zero-mode waveguides (ZMWs) 
(   Korlach et al.  2008b ; Levene et al.  2003  ) . ZMWs are nanofabricated on a glass 
surface. The volume of the nanometer-sized aluminum layer wells is in zeptoliter 
scale. The SMRT cell is prepared for polymerase immobilization by coating the 
surface with streptavidin. The preparation of the sequencing reaction requires 
incubating a biotinylated Phi29 DNA polymerase with primed SMRTbell DNA 
templates. The coupled products are then immobilized to the SMRT cell using a 
biotin–streptavidin interaction.  

    2.6.3   Processive DNA Sequencing by Synthesis 

 When the sequencing reaction begins, the tethered polymerase incorporates nucle-
otides with individually phospholinked fl uorophores, each fl uorophore corresponding 
to a specifi c base, to the growing DNA chain (Korlach et al.  2008a  ) . During the 
initiation of a base incorporation event, the fl uorescent nucleotide is brought into 
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the polymerase’s active site and into proximity of the ZMW glass surface. At the 
bottom of the ZMV, high-resolution camera records the fl uorescence of the nucle-
otide being incorporated. During the incorporation reaction a phosphate-coupled 
fl uorophore is released from the nucleotide and that dissociation diminishes the 
fl uorescent signal. While the polymerase synthesizes a copy of the template strand, 
incorporation events of successive nucleotides are recorded in a movie-like 
format. 

 The tethered Phi29 polymerase is a highly processive strand-displacing enzyme 
capable of performing RCA. Using SMRTbell libraries with small insert sizes, it 
is possible to sequence the template using a scheme called circular consensus 
sequencing. The same insert is read on the sense and antisense strands multiple times 
and the redundancy is dependent on insert size. This highly redundant sequencing 
approach improves the accuracy of the base calls overcoming the high error rates 
associated with real-time sequencing and allowing accurate variant detection. For low 
accuracy and long read lengths, larger insert sizes can be used. The unique method 
of detecting nucleotide incorporation events in real time allows the development of 
novel applications, such as the detection of methylated cytosines based on differential 
polymerase kinetics (Flusberg et al.  2010  ) .   

    2.7   Emerging Technologies 

 The phenomenal success of high-throughput DNA sequencing systems has fueled 
the development of novel instruments that are anticipated to be faster than the 
 current high-throughput technologies and will lower the cost of genome sequenc-
ing. These future generations of DNA sequencing are based on technologies that 
enable more effi cient detection of sequencing events. Instruments for detection of 
ion release during incorporation of label-free natural nucleotides and nanopore 
technologies are emerging. The pace of technological development in the fi eld of 
genome sequencing is overwhelming and new technological breakthroughs are 
probable in the near future. 

    2.7.1   Semiconductor Sequencing 

 Life Technology and Ion Torrent are developing the Ion Personal Genome Machine, 
which represents an affordable and rapid bench top system designed for small projects. 
The IPG system harbors an array of semiconductor chips capable of sensing minor 
changes in pH and detecting nucleotide incorporation events by the release of a 
hydrogen ion from natural nucleotides. The Ion Torrent system does not require any 
special enzymes or labeled nucleotides and takes advantage of the advances made 
in the semiconductor technology and component miniaturization.  
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    2.7.2   Nanopore Sequencing 

 Nanopore sequencing is based on a theory that recording the current modulation of 
nucleic acids passing through a pore could be used to discern the sequence of indi-
vidual bases within the DNA chain. Nanopore sequencing is expected to offer solu-
tions to limitations of short read sequencing technologies and enable sequencing of 
large DNA molecules in minutes without having to modify or prepare samples. 
Despite the technology’s potential many technical hurdles remain. 

 Exonuclease DNA sequencing from Oxford Nanopores represents a possible 
solution to some of the technical hurdles found in nanopore sequencing. The system 
seeks to couple an exonuclease to a biological alpha hemolysin pore and plant that 
construct onto a lipid bilayer. When the exonuclease encounters a single-strand 
DNA molecule, it cleaves a base and passes it through the pore. Each base creates a 
unique signature of current modulation as it crosses through the lipid bilayer, which 
can be detected using sensitive electrical methods.   

    2.8   Conclusions 

 Although high-throughput sequencing is in its infancy, it has already begun to 
reshape the ways in which biology is portrayed. In principle, massive parallel 
sequencing systems are powerful technology rigs that integrate basic molecular 
biology, automated fl uidics devices, high-throughput microscopic imaging, and 
information technologies. By default, to be able to use these systems requires 
comprehensive understanding of the complex underlying molecular biology and 
biochemistry. The ultra-high-throughput instruments are essentially high-tech 
machines and understanding the engineering principles gives the user the ability to 
command and troubleshoot the massive parallel sequencing systems. The complexity 
and size of the experimental results is rescaling the boundaries of biological inquiry. 
With the advent of these technologies, it is required that users acquire computational 
skills and develop systematic data analysis pipelines. High-throughput sequencing 
has presented an introduction to an exciting new era of multidisciplinary science.      
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  Abstract   Although different instruments for massively parallel sequencing exist, 
each with their own chemistry, resolution, error types, error frequencies, throughput 
and costs; the principle behind them is similar: to deduce an original sequence of 
bases by sampling many templates. The wide array of applications derives from the 
biological sources and methods used to manufacture the sequencing libraries and 
the analytic routines employed. By using DNA as source material, a whole genome 
can be sequenced or, through amplifi cation methods, a more detailed reconstruction 
of a specifi c  locus  can be obtained. Transcriptomes can also be studied by capturing 
and sequencing different types of RNA. Other capture methods such as cross-linking 
followed by immunoprecipitation can be used to study DNA–protein interactions. 
We will explore these applications and others in the following sections and explain 
the different analysis strategies that are used to analyze each data type.      
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    3.1   The Evolution of DNA Sequencing 

 For the last 30 years, DNA sequencing has been central to the study of molecular 
biology, having become a valuable tool in the efforts to understand the basic build-
ing blocks of living organisms. The availability of genome sequences provides 
researchers with the data required to map the genomic location and structure of func-
tional elements (e.g., protein coding genes) and to enable the study of the regulatory 
sequences that play roles in transcriptional regulation. Large international collabo-
rations have for some time undertaken the decoding of genome sequences for a 
diversity of organisms, including (but not limited to) the bacteria  Haemophilus 
infl uenzae Rd , with a genome of 1.8 megabases (Fleischmann et al.  1995  ) ; the yeast 
 Saccharomyces cereviseae , with a 12-megabase genome (Goffeau et al.  1996  ) ; 
the nematode  C. elegans , with a 97-megabase genome (The  C. elegans  Sequencing 
Consortium  1998  )  and more recently the human genome, with ~3 gigabases of 
genomic data (Lander et al.  2001 ; Venter et al.  2001  ) . Such projects have yielded 
data that has been used to develop molecular “parts lists” that reveal not only organ-
ismal gene content, but inform on the evolutionary relationships and pressures that 
have acted to shape genomes. The technology historically employed for such refer-
ence genome sequencing projects was based on Sanger chain termination sequencing. 
For whole genomes, the strategy included the cloning of DNA fragments, often in 
bacterial artifi cial chromosomes (BAC) or other large-insert-containing vectors for 
large (e.g., mammalian-sized) genomes, amplifi cation of the templates in bacterial 
cells, “mapping” a redundant set of large insert clones to select an overlapping tiling 
set of clones for sequencing (Marra et al.  1997  ) , preparation of sequencing libraries 
from individual large insert clones in the tiling set, and then Sanger sequencing and 
assembly of the short sequence reads into longer sequence “contigs” (Staden  1979  ) . 
Although critical in the successful completion of numerous sequencing efforts, and 
still considered a gold standard for certain applications, Sanger sequencing’s rela-
tively low throughput and high cost can become limiting factors when designing 
large experiments where massively parallel data collection is required. The high-
throughput capabilities of massive parallel sequencing have taken sequencing 
efforts in new directions not previously feasible, enabling both the analysis of new 
genomes and also facilitating genome comparisons across individuals from the same 
species, thereby identifying intraspecifi c variants in a high resolution genome-wide 
fashion. 

    3.1.1   Whole Genome Shotgun Sequencing 

 Whole genome shotgun sequencing uses genomic DNA as the source material for 
preparation of DNA sequencing “libraries.” A library is a collection of DNA frag-
ments, obtained from the source material and rendered suitable for sequence analysis 
through a process of library construction, which involves shearing of the DNA 
sample by chemical (e.g., restriction enzymes) or more random and, therefore, 
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preferable mechanical means (e.g., sonication). The aim of fragmentation is to reduce 
the physical size of the DNA template molecules to the optimal fragment length for 
the assay type and the instrument system being used, while endeavoring to maintain 
an unbiased representation of the starting DNA material. The resulting fragments 
are then subjected to gel-based electrophoretic separation, and the desired size range 
of DNA fragments is then recovered from the gel matrix. A uniform size distribution 
is especially useful when analyzing paired-end sequences, in which sequences are 
collected from both ends of linear template molecules. As will be explained later, 
paired-end information can enable certain types of bioinformatic analysis. Common 
goals of whole genome shotgun sequencing are alternatively (1) re-sequencing 
multiple individuals, for example to study intraspecifi c variation and the association 
of such variation with health and disease states, or (2) decoding a previously unse-
quenced genome to examine gene content and genome structure.  

    3.1.2   Whole Genome Re-sequencing 

 The term “re-sequencing” refers to the act of sequencing multiple individuals from 
the same species, where a reference genome has been generated and is used to assist 
in the interpretation of the data collected using next generation sequencing 
approaches. For example, re-sequencing of human genomes has been used to dis-
cover both mutations (Mardis et al.  2009 ; Shah et al.  2009b  )  and polymorphisms 
(The 1000 Genomes Project Consortium  2010  ) . The existence of reference genome 
sequences has driven this application, which was the fi rst one employed using 
Roche/454, Illumina/Genome-Analyzer, and Applied Biosystems/SOLiD technolo-
gies. Alongside the obvious scientifi c impetus for re-sequencing species of signifi -
cance in medical research, an initial reason for the emergence of re-sequencing was 
largely technical – software for whole genome assembly did not exist, and so, in the 
absence of a reference genome to aid alignment, high-throughput sequencing was 
capable of little more than producing large collections of sequence reads, as opposed 
to extensive contigs of sequence data such as those produced using assembly of 
the much longer (and less numerous) Sanger sequencing reads used to produce 
reference genome sequences for the human (Lander et al.  2001 ; Venter et al.  2001  ) , 
mouse (MGSC  2002  ) , rat (Gibbs et al.  2004  ) , and other genomes. 

 An early challenge in re-sequencing was the production of sequencing reads of 
suffi cient length to align (“map”) uniquely to the human genome. Using simulated 
data, it was estimated that reads of at least 25 nucleotides in length would be needed 
to uniquely cover 80% of the human genome, and reads of at least 43 bp would be 
required to cover 90% of the human genome (Whiteford et al.  2005  ) . With the 
exception of the Roche/454 instrument, early achievement of such read lengths 
entailed both instrumentation and chemistry challenges. The Roche instrument was 
used to illustrate the potential of next generation re-sequencing when it was used to 
analyze Dr. James D. Watson’s genome (Wheeler et al.  2008  ) . Within a time span of 
2 months, 24.5 gigabases of raw sequence data were generated for the Watson 
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genome, providing, after processing, 7.4-fold average base pair coverage of the 
genome. The sequence data provided suffi cient resolution for the detection of known 
polymorphisms, novel mutations, insertions, deletions, and even copy number 
changes. 

 Since that landmark study, whole genome re-sequencing continues to be used 
actively in various projects, including for example the 1000 Genomes Project (  http://
www.1000genomes.org/    ), which aims to discover common sequence variants in 
healthy human populations, and also in various cancer studies (e.g., Mardis et al. 
 2009 ; Shah et al.  2009b  )  including those conducted under the auspices of the large 
TCGA (  http://tcga.cancer.gov/    ) and ICGC (  http://www.icgc.org/    ,  2010  )  consortia. 
Applications for whole genome re-sequencing continue to emerge, and the steady 
decrease in cost per base and the increased throughputs associated with the latest 
technology advances will hopefully make this mode of data collection as appealing 
fi nancially as it is scientifi cally.  

    3.1.3   Capture for Targeted Re-sequencing 

 A solution to the costs associated with whole genome re-sequencing has emerged 
in the form of “capture” technologies. These technologies target a portion of the 
genome, thereby reducing the number of reads, compared to whole genome sequenc-
ing, which are required to achieve useful levels of redundancy of sequencing coverage. 
Thus, for the same cost, the reduction in sequencing costs associated with the reduc-
tion in the number of reads allows the analysis of larger sample cohorts than whole 
genome re-sequencing. 

 An early example of “capturing” specifi c regions for next generation re-sequencing 
was the work of Thomas et al.  (  2006  ) , in which 5 exons of the gene EGFR were 
targeted through PCR amplifi cation of 11 regions of 100 bp each, followed by 
sequence analysis using a 454 sequencing instrument. By applying this strategy to 
22 lung cancer samples, of which 9 were known to be EGFR mutant and 13 wild 
type, and generating between 8,000 and 12,000 reads for each one, they were able 
to correctly detect the known mutations, as well as discover mutations in two samples 
deemed to be wild type by Sanger sequencing. These mutations were found with 
low representation (e.g., a deletion in 9% of 4,488 reads) and had appeared in Sanger 
traces at a level indistinguishable from noise. The depth of sequencing coverage 
attained, along with the sensitivity of the 454 sequencing approach, resulted in one 
of the fi rst studies to demonstrate the detection of cancer mutations present in only 
a portion of the cells in heterogeneous tumor tissue. 

 Although this type of approach, and PCR more generally, can be used to target 
regions for sequencing, they become cumbersome when the number of targeted 
regions becomes large. To address this limitation, several methods have been devel-
oped. One such method uses oligonucleotide constructs, named selectors (Dahl 
et al.  2005  ) , that consist of two target-specifi c probes linked by a generic sequence. 
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In this strategy, the selectors hybridize to their targets and generate circular DNA 
complexes that are amplifi ed and subsequently sequenced. As a downside, the selector 
method depends on the presence of restriction enzyme recognition sequences for 
probe design and DNA processing, which limit the target space. Another method, 
based on DNA circularization (Porreca et al.  2007  ) , used probes created using 
microarray technology that were designed to bind directly upstream and down-
stream of the target regions without relying on enzymatic digestion. In this study, 
55,000 exons were targeted of which ~10,000 were successfully captured and ampli-
fi ed in a single reaction; the low percentage of captured exons was attributed to 
shorter target lengths and regions with extreme G + C content. A different take on 
enrichment involved the use of high-density microarrays to capture DNA fragments 
(Albert et al.  2007  )  via hybridization. In this work, a ~385,000 probe microarray 
was designed to target 6,726 regions corresponding to 660 genes; captured DNA 
was then sequenced using a Roche/454 instrument. Of the resulting reads ~90% 
could be mapped to the reference genome, with ~70% mapping to targeted regions 
and, more importantly, a high successful capture rate was obtained with ~95% of 
targets being covered by at least one read. 

 Solution-phase hybridization approaches, such as those pioneered by Gnirke 
et al.  (  2009  )  are now commonly used for targeted re-sequencing. Foremost among 
these are “exome” reagents that are commercially available from several vendors. 
These reagents, such as those available from Nimblegen and Agilent, typically con-
tain oligonucleotide probes that are designed to recover, through hybridization in 
solution, 10s of megabases representing exons and other regions of high biological 
interest. Hybridized fragments can be recovered from solution and sequenced using 
several next generation sequencing approaches. This approach is being employed 
by many including large consortia such as TCGA (  http://tcga.cancer.gov/    ) and has 
been used to discover mutations implicated in different diseases such as renal carci-
noma (Varela et al.  2011  ) , Miller syndrome (Ng et al.  2010b  ) , and Kabuki syndrome 
(Ng et al.  2010a  ) . 

 As sequencing throughput continues to rise and costs continue to fall, the oppor-
tunity for multiplexing (simultaneously sequencing more than one sample in a 
single reaction) has emerged. One approach to multiplexing is to directly pool 
 captured sequences and then sequence them simultaneously. This approach may be 
of utility in cases where the relationship between a sample and its “genotype” is not 
of interest (e.g., Van Tassell et al.  2008  ) . A different strategy based on tagging 
templates before sequencing permits the identifi cation of the source sample for each 
template. Several sequencing technologies provide a step during library construc-
tion where a sample-specifi c “barcode” or “index” sequence is appended to each 
fragment of the samples to be sequenced. In this way, each library can be indexed 
with a specifi c sequence, and libraries can be pooled and sequenced together in the 
same run. During analysis, the “barcodes” can be used to associate the individual 
reads, each identifi ed with a library-specifi c sequence tag, back to the original 
starting sample, thereby preserving the relationship between the sequences and the 
starting material.  
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    3.1.4   De Novo Sequencing 

 De novo sequencing, in contrast to “re-sequencing,” is the term frequently used to 
describe the act of sequencing an organism’s genetic material without the require-
ment for alignment of the sequence reads to a reference genome. This was typically 
accomplished using Sanger sequencing of large insert bacterial clones, but with 
the creation of appropriate assembly tools, high-throughput sequencing (HTS) 
approaches are now being used to produce reference genome sequences. 

 An early example of such work was that of Margulies et al.  (  2005  ) . In this work, 
pyrosequencing was applied to generate the 500-kb genome sequence of  Mycoplasma 
genitalium . Margulies et al. successfully assembled the short genome using 306,178 
short reads of different lengths, varying between 80 and 120 bp. They demonstrated 
that the oversampling obtained using their method effectively dealt with sequencing 
errors and could be used to generate a high quality assembly. Hybrid approaches 
combining Sanger and pyrosequencing have also been proposed (Goldberg et al. 
 2006  ) . In this work, a combined approach was deployed to sequence the genomes 
of six marine microbes. Goldberg et al. concluded that pyrosequencing can be useful 
in the completion of genome sequences that contain unclonable regions or regions 
with high secondary structure, both of which can render Sanger sequencing diffi cult 
if not impossible. Hierarchical shotgun sequencing approaches have also been pro-
posed as a solution for de novo sequencing of larger genomes; the SHort Read 
Assembly Protocol, or SHARP (Sundquist et al.  2007  ) , for example, includes a step 
where overlapping 150 kb fragments are cloned and subsequently sequenced using 
short reads. A key distinction with respect to the protocol used for the Human 
Genome Project is that the overlap between clones is deduced through analysis of 
the sequences rather than through clone-based physical mapping approaches such 
as clone fi ngerprinting (Marra et al.  1997  ) . 

 Despite the shortcomings implicit in the short read lengths typical of several next 
generation sequencing technologies, and the repeat rich structure of many large 
genomes, next generation sequencing has been used to successfully obtain de novo 
sequences from a variety of organisms ranging from bacteria (Reinhardt et al.  2009  ) , 
to plants like the wild soybean (Kim et al.  2010  ) , to mammals, including the giant 
panda (Li et al.  2010a  ) , human (Li et al.  2010b  ) , and even extinct species such as the 
Neanderthal (Green et al.  2010  )  and the mammoth (Miller et al.  2008  ) . 

 Sequencing does not need to be limited to one species at a time. The relative 
recent fi eld of Metagenomics focuses on studying the genetic content of whole 
microbial communities by analyzing environmental samples. This technique allows 
the study of microbes that resist laboratory cultivation, which greatly amplifi es the 
range of organisms available for analysis; additionally, by sampling communities as 
they exist in nature, it is possible to study how different species co-exist, as well as 
highlight features related to their adaptability to the environment. First approaches 
to explore microbial diversity in heterogeneous samples focused on the phyloge-
netic analysis of ribosomal RNA. Schmidt et al .   (  1991  )  used this methodology to 
identify 15 unique bacteria and 1 eukaryote from a sample of marine picoplankton. 
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Later studies showed that instead of rRNA, using protein-coding genes as markers 
provides a better picture of the microbial community and permits quantitative analysis 
on the abundance of each species (von Mering et al.  2007  ) . Another approach 
focuses on the discovery of new genes, or variations of known genes, which convey 
a desired phenotype. Healy et al.  (  1995  )  showed that by transforming an  E. coli  
strain with DNA containing genes obtained from a metagenomic sample, screening 
for the desired phenotype and sequencing those who presented it, novel variants of 
functional proteins could be discovered. Shotgun sequencing of DNA has been 
shown to be a useful technique for sampling the gene content of metagenomes, and 
was used to sample the Sargasso Sea (Venter et al.  2004  )  where 148 novel bacterial 
phylotypes and 1.2 million novel genes were identifi ed. The ability to recover full 
genomes from shotgun sequencing has also been demonstrated for metagenomes 
represented by few species (Tyson et al.  2004  ) . 

 HTS has increased the breadth of metagenomic projects. For example, Dinsdale 
et al.  (  2008  )  used DNA pyrosequencing to obtain gene samples from nine microbial 
communities of distinct environments. By comparing the prevalence of different 
types of genes between the environments, they showed it was possible to determine 
different metabolic requirements characteristic to each habitat. A problem when 
working with large communities is the number of diverse organisms involved in 
a metagenomic sample, as it is often diffi cult to get enough coverage on genes of 
interest; Iwai et al.  (  2009  )  proposed a protocol termed Gene-Targeted (GT)-
Metagenomics to counteract this. The method includes DNA amplifi cation of the 
gene of interest followed by pyrosequencing; by focusing sequencing capabilities to 
one gene it is then possible to analyze its genetic variation across microbes in a 
specifi c community. On a different take on metagenomic applications, Warren et al .  
 (  2009  )  proposed the use of HTS to profi le T-cell receptors in peripheral blood as a 
way of exploring an individual’s immune system state. Using simulated data they 
showed that, theoretically, short reads generated by HTS could be used to characterize 
T-cell receptors (TCRs) with a 61% sensitivity for rare (1 parts per million) and 
99% for more abundant clonotypes (6 ppm or more). The same group then applied 
this technique to profi le the T-cell repertoire in pooled blood samples from 550 
individuals (Freeman et al .   2009  ) ; through the analysis of TCR mRNA expressed by 
T lymphocytes, the group was able to identify 33,664 TCR clonotypes at different 
abundances, greatly increasing the number of known receptors from the 3,187 
known at the time. Using longer reads (100–150 bp) and exhaustive sequencing of 
two blood samples from a healthy donor, Warren et al.  (  2011  )  recently established a 
directly measured individual T cell repertoire size of at least 1 M distinct TCRs. 
Comparative studies between whole metagenomes (Tringe et al.  2005  )  have also 
been successfully applied to elucidate functional roles of microbiomes in host 
organisms. For example, Turnbaugh et al .   (  2006  )  compared the gut microbiomes of 
obese and lean mice, demonstrating that some forms of obesity can be caused by 
microbes in the gut being more effi cient at energy extraction. 

 The capabilities of metagenomic analysis coupled with HTS has prompted the 
creation of new international efforts such as The Human Microbiome Project 
(Turnbaugh et al.  2007  ) , which aims to extend the study of microbes in the human body. 
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As part of this project the genomes of 900 human microbes are being sequenced 
from different body sites (gastrointestinal tract, oral cavity, urogenital/vaginal tract, 
skin, and respiratory tract); a recent report by The Human Microbiome Jumpstart 
Reference Strains Consortium  (  2010  )  included the complete sequence and annota-
tion of 178 of such genomes. Similarly, the Metagenomics of the Human Intestinal 
Track project (MetaHit) aims to study the human gut microbiome with a focus 
on two diseases: irritable bowel syndrome (IBD) and obesity. In a recent report, 
Qin et al .   (  2010  )  presented a catalogue of 3.3 million genes belonging to approxi-
mately 1,000 species of bacteria obtained through Illumina HTS of DNA derived 
from fecal samples of 124 individuals. These catalogues aim to facilitate downstream 
metagenomic studies on human samples.  

    3.1.5   Analysis Strategies 

 Bioinformatic analysis of sequencing data can be divided into several stages. The fi rst 
step is technology dependent and deals with processing the data provided by the 
sequencing instrument. Downstream analysis is then done ad hoc to the type of exper-
iment. When sequencing new genomes, de novo assemblies are required, which 
are possibly followed up with genome annotations. Re-sequencing projects use the 
short reads for aligning (or  mapping assembly ) against a reference sequence of 
the source organism; these alignments are then analyzed to detect events relevant to 
the experiment being conducted (e.g., mutation discovery, detection of structural 
variants, copy number analysis). 

 The fi rst step of bioinformatic analysis starts during sequencing and involves 
signal analysis to transform the sequencing instruments fl uorescent measurements 
into a sequence of characters representing the nucleotide bases. As sequencers 
image surfaces densely packed with the DNA sequencing templates and sequencing 
products, image processing techniques are required for detection of the nascent 
sequences and conversion of this detected signal into nucleotide bases. Most tech-
nologies assign a base quality to each of the nucleotides, which is usually a value 
representing the confi dence of the called bases. Although each vendor has methods 
specifi c to their technology to evaluate base quality, most provide the user with a 
Phred (Ewing et al.  1998  ) -like Score value: a quality measurement based on a loga-
rithmic scale encoding the probability of error in the corresponding base call. 

 To achieve contiguous stretches of overlapping sequence (contigs) in de novo 
sequencing projects, software that can detect sequence overlaps among large num-
bers of relatively short sequence reads is required. The process of correctly ordering 
the sequence reads, called  assembly , is complicated by the short read length; the 
presence of sequencing errors; repeat structures that may reside within the genome; 
and the sheer volume of data that must be manipulated to detect the sequence 
overlaps. 

 To address such complications, hybrid methods involving complimentary tech-
nologies have been successful. For example, by mixing 200 bp 454 sequence reads 
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with Sanger sequences, Goldberg et al.  (  2006  )  successfully sequenced the genomes 
of several marine organisms. A different approach eliminated the need for Sanger 
sequencing by mixing two distinct next generation sequencing technologies 
(Reinhardt et al.  2009  ) . By taking advantage of 454’s longer reads (250 bp) with 
short Illumina reads (36 bp), Reinhardt et al. were able to de novo sequence a 6.5 Mb 
bacterial genome. These studies provided practical examples of how the strengths 
of different technologies can be used to alleviate their respective shortcomings. 

 Homology with previously sequenced organisms can help when sequencing new 
genomes. The use of this strategy was demonstrated during sequencing of the mouse 
genome (Gregory et al.  2002  ) ; by taking advantage of the conserved regions between 
mouse and human, Gregory et al. were able to build a physical map of mouse clones, 
establishing a framework for further sequencing. A similar approach can be used 
to produce better assemblies with next generation sequencing. For example, to 
sequence the genome of the fungus  Sordaria macrospora  (Nowrousian et al.  2010  )  
short reads from 454 and Illumina instruments were fi rst assembled using Velvet 
(Zerbino and Birney  2008  )  and the resulting contigs were then compared to draft 
sequences of related fungi ( Neurospora crassa ,  N. discreta,  and  N. tetrasperma ). 
This process helped produce a better assembly by reducing the number of contigs 
from 5,097 to 4,629, while increasing the N50 (the contig length N for which 50% 
of the genome is contained in contigs of length N or larger) from 117 kb to 498 kb. 

 More recently, new algorithms have been developed which can assemble genomes 
using only short reads. Most of these methods are based on  de Bruijn  graphs. Briefl y, 
the logic involves decomposing short reads into shorter fragments of length  k  
( k-mers ). The graph is built by creating a node for each  k-mer  and drawing a link, or 
“edge,” between two nodes when they overlap by  k -1 bp. These edges specify a 
graph in which overlapping sequences are linked. Sequence features can increase 
the resulting graph’s complexity. The graph can, for example, contain loops due 
to  highly similar sequences (e.g., gene family members or repetitive regions), and 
 so-called  bubbles  can be created when single base differences (e.g., due to polymor-
phisms or sequencing errors) result in the creation of nonunique edges in the graph 
which yield not one but two possible paths around the sites of the sequence differ-
ences. Graph complexity and size increase for large genomes and, given that the 
graph needs to be available in memory for effi cient analysis, not all implementations 
can handle human size genomes. Some publicly available implementations, such as 
Velvet (Zerbino and Birney  2008  )  and Euler-SR (Chaisson and Pevzner  2008  ) , have 
been successfully used to assemble bacterial genomes. Another implementation, 
ABySS (Simpson et al.  2009  ) , makes use of parallel computing through the Message 
Passing Interface (MPI) to distribute the graph between many nodes in a computing 
cluster. In this way, ABySS can effi ciently scale up for the assembly of human size 
genomes using a collection of inexpensive computers. Two newer assemblers 
SOAPdenovo (Li et al.  2010c  )  and ALLPATHS-LG (Gnerre et al.  2010  )  are able to 
assemble human-sized genomes using large memory multi-cpu servers, requiring 
150 Gb and 512 Gb RAM, respectively. 

 For re-sequencing experiments, high-throughput aligners are required to map 
reads to the reference genome. Many applications have long been available for 
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sequence alignments; however, the amount and size of the short reads created by 
next generation sequencing technologies required the development of more effi -
cient algorithms. Some methods use “hashing” approaches, such is the case of Maq 
(Li et al.  2008  )  in which the reads are reduced in complexity to unique identifi er 
keys (“hashed”). These can then be used to scan a table made from a similarly 
“hashed” representation of the reference genome to identify putative read alignments 
to the reference. Other methods, based on Burrows-Wheeler transformation, have 
become popular for read alignment. These include BWA (Li and Durbin  2009  ) , 
Bowtie (Langmead et al.  2009  ) , and Soap (Li et al.  2009b  ) . Although these algorithms 
are relatively fast compared to Maq (Li et al.  2008  ) , they are somewhat limited when 
it comes to splitting a read to achieve gapped alignments, which can occasionally be 
required due to insertion/deletion sequence differences (“indels”) between sequence 
data and the reference. The Mosaik aligner (Hillier et al.  2008  )  attempts to approach 
this by using a Smith and Waterman  (  1981  )  algorithm to align the short reads. 

    3.1.5.1   Mutation Discovery 

 Identifi cation of single nucleotide variants (SNVs), point mutations, and small 
indels are central to the study of interspecifi c variation. Such sequence variants are 
heavily studied as some have been linked to specifi c diseases (Shah et al.  2009a ; 
Morin et al.  2010 ; Ng et al.  2010b  ) . Before HTS technologies were available, the 
detection of mutations in disease states did not typically involve sequence-intensive 
analysis on a genome-wide scale. Instead, candidate gene approaches and genome 
wide association studies (GWAS) were frequently used. In contrast, HTS provides 
the means for mutation discovery at single base resolution over entire exomes, 
transcriptomes, or genomes. An additional advantage of HTS is its enhanced sensi-
tivity compared to typical Sanger approaches. For example, using Illumina sequenc-
ing, it was seen that HTS could be used to detect mutations that traditional Sanger 
sequencing could not detect due to low representation of the mutated allele (Thomas 
et al.  2006  ) . In a different study, the high resolution of HTS was used to simultane-
ously detect single nucleotide polymorphisms (SNP) and estimate minor allele 
frequency (MAF) (Van Tassell et al.  2008  ) . By sequencing three pooled samples of 
enzyme-digested DNA from 66 individuals representing three cattle populations 
(Holstein lineage, Angus bulls and a group of mixed beef breeds), Van Tassell et al. 
were able to identify 60,042 putative SNPs and estimate MAFs by analyzing the ratio 
of nonreference to reference reads across all 66 cattle. Whole genome re-sequencing 
can also be used for SNP discovery, as is exemplifi ed by projects like the 1000 
Genomes Project (  http://www.1000genomes.org/    ) which takes a HTS approach to 
detection of variants in human populations instead of the SNP microarrays previ-
ously used in the latter phases of the HapMap Project (The International HapMap 
Consortium  2003  ) . 

 As cancer is a genetic disease (Hanahan and Weinberg  2000  )  and mutations are 
known to drive cancers (Stratton et al.  2009  ) , HTS approaches towards mutation 
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discovery in human cancers have become popular. Most studies seek to identify 
somatic mutations, which are sequence changes that occur in the tumor DNA but 
are absent in the normal, or “germline-derived,” DNA from the same individual. 
Such studies are often composed of two phases: one where sequencing is done on a 
smaller set of samples to detect candidate mutations and a second phase where 
mutated genes are sequenced in a larger “extension” cohort to determine their 
frequency in a larger population. Prior to the ready availability of HTS machines, 
heroic efforts were often required to sample even a fraction of human genomes in 
the search for cancer mutations. For example, Sjöblom et al.  (  2006  )  used Sanger 
sequencing to sequence more than three million PCR products. These products 
included 13,023 genes from each of 11 breast and 11 colorectal cancer samples. The 
massive amount of work represented in the study for generation of the PCR products 
is now eliminated through the library construction procedures of HTS platforms. 

 The large number of  loci  in which candidate mutations can occur makes HTS an 
ideal platform for relatively unbiased mutation discovery. There are an increasing 
number of examples in which HTS approaches have been used to characterize cancers, 
and many more are expected over the near to medium time frame. For example, 
sequencing bone marrow and skin samples from an acute myeloid leukemia (AML) 
patient permitted the identifi cation of somatic mutations, which in turn led to the 
identifi cation of genes that were recurrently mutated in other patients (Mardis et al. 
 2009 ; Ley et al.  2010  ) . In another study, sequencing a primary and a metastatic 
breast tumor, sampled 9 years apart from the same patient, showed that mutations 
that are dominant at a later stage may be present at low representation earlier during 
tumor progression, indicating that through selective pressure imposed by treatment, 
subpopulations of cells may become more prevalent over time (Shah et al.  2009b  ) . 
These results and others like them demonstrate the utility and impact that HTS can 
have when analyzing the mutational landscape of cancer patients. 

 Bioinformatic analysis for mutation detection using HTS re-sequencing starts 
with the alignment of reads to reference genomes. False positive nucleotide mismatches 
are expected due to read mapping errors, sequencing errors, and to the existence of 
actual variants, and it is a current challenge to distinguish between these alternative 
possibilities. One conceptual approach to distinguishing technical errors from  bona 
fi de  variants takes advantage of the considerable redundancy of sequence coverage 
that HTS produces. For example, when multiple reads cover the same position in 
the reference assembly, and these consistently indicate the presence of a sequence 
variant, confi dence in the robustness of the variant call is increased. To infer whether 
a mutation is present, the ratio between the sequence coverage of the reference 
allele and the nonreference allele needs to be evaluated. This can be done with hard 
thresholds on the ratio of supporting reads or with statistical methods that allow for 
some fl exibility by assigning a score or probability of the mismatch being a mutation 
(Li et al.  2008,   2009b ; Goya et al.  2010  ) . Indel detection can be more challenging, 
especially in cases where the pairwise alignment, meaning the base-by-base matching 
between the query and the target, is unambiguous over the same mapped location. 
Methods for calling indels often include local realignment of the reads at the site of 
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the candidate mutation (Li et al.  2009a  ) . Mutations can also be called using the 
output from assemblies by analyzing coverage supporting the bubbles created in 
the  de Bruijn  graph (e.g., Simpson et al.  2009  ) , as alluded to previously. 

 Once discovered, sequence variants can be evaluated for novelty and for proposed 
effect on the gene product. This is readily achieved through comparison of variants 
to databases containing previously observed variation, such as dbSNP (Sherry et al. 
 2001  ) . Similarly, databases exist which contain genes and mutations that have been 
previously linked to diseases. Examples include the Online Mendelian Inheritance 
in Man (OMIM;   http://www.ncbi.nlm.nih.gov/omim    ) database and the COSMIC 
(  http://www.sanger.ac.uk/genetics/CGP/cosmic/    ) and Cancer Census (  http://www.
sanger.ac.uk/genetics/CGP/Census/    ) databases. If discovery of somatic mutations is 
the study aim, then comparison of sequence data from matched tumor and normal 
samples from the same individuals can be used to distinguish somatic changes from 
those resident in the germ line (Mardis et al.  2009 ; Shah et al.  2009b ; Morin et al. 
 2010 ; Ley et al.  2010  ) . 

 Additional bioinformatics approaches can be employed to assess the possible 
effect of the sequence variant on the gene product (Ng and Henikoff  2003  ) . For 
example, in the case of protein coding genes, variants and mutations may affect a 
codon such that a different amino acid is encoded ( missense mutation ) or an early 
stop codon is created ( nonsense mutation ). Both types of variant can change the 
structure or function of the resulting protein, which may in turn be a driving factor 
in disease. Of similar interest is the distinction of driver mutations (those that 
are directly involved in the disease) versus passenger mutations (those that get 
propagated by association with other mutations but do not have a functional role). 
Differentiating between these types of mutations has been used as a way of identi-
fying tumor genes. One method involves the comparison between the frequency of 
synonymous and nonsynonymous mutations over genes (Greenman et al.  2007  ) . 
Assuming that silent mutations do not confer any advantage to a tumor, these can 
be used to model a mutational profi le under the hypothesis of no-selection, any 
gene that presents nonsynonymous mutations at frequencies that deviate from this 
profi le can then be inferred to be under selective pressure and thus may be directly 
involved in the disease (Greenman et al.  2007  ) . 

 Although HTS is useful for the discovery of candidate variants including muta-
tions, other experimental methods such as Sanger sequencing still need to be used 
to validate them. An overly sensitive mutation caller may generate a large amount 
of putative mutations which, given the large number of bases covered, may be 
impossible to validate using Sanger sequencing. On the opposite side of the scale, 
an overly specifi c algorithm may miss many important variants. It is important to 
try to fi nd a balance between the False Positives (calling a mutation where there 
is none) and the False Negatives (missing a mutation). Different methods can be 
employed, such as requiring specifi c types of supporting evidence (e.g., minimum 
number of reads, coverage on both strands, SNV not near an indel) or varying 
parameters in order to maximize concordance to known databases (e.g., dbSNP) 
or  to approximate a transition/transversion ratio estimated for the organism in 
question.  
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    3.1.5.2   Genomic Rearrangements 

 The availability of paired-end sequencing on HTS platforms has improved the 
detection of genome rearrangements to single base resolution (Chen et al.  2008  ) . 
During paired-end sequencing library construction, sheared DNA fragments of 
a desired size are selected and prepared for sequencing. Paired-end sequencing 
involves sequencing both ends of the DNA fragments in the sequencing library. 
The resulting reads are thus matched in pairs, which are expected to align to the 
reference genome a certain distance apart, following the fragment size distribution 
specifi ed during library construction, and in a certain orientation with respect to 
each other. The paired end read alignments can be assessed for inconsistencies in 
the orientation or distance between the paired ends. If these are detected, the pres-
ence of a genome rearrangement is inferred. For example, if the expected insert size 
(number of nucleotides between the sequenced reads from individual fragments) is 
200 bp, but the paired reads map back to the reference genome 50,000 bp apart, one 
can infer that 50,000 bp have been lost, or deleted, in the source genome, relative to 
the reference genome. Using similar logic, if reads map to different chromosomes, 
a translocation may have been detected. Given that the library fragments are 
sequenced to yield tail to tail read orientations (in the case of Illumina paired-end 
sequences), one expects the reads to align to opposite strands in the reference. If this 
tail to tail read orientation is not preserved in the alignments, an inversion may be 
inferred. 

 There are several examples of the use of paired-end sequences to detect genome 
rearrangements. For example, Korbel et al.  (  2007  )  used paired-end sequences to 
observe that structural variants in the human genome were more widespread than 
initially thought. Campbell et al.  (  2008  )  used paired-end sequences to identify somatic 
rearrangements in cancer, and subsequently compared the pattern of re-arrangements 
in primary and metastatic tumors to infer the clonal evolution of cancer (Campbell 
et al.  2010  ) . Ding et al.  (  2010  )  analyzed related samples from a primary tumor, brain 
metastasis, and xenograft, and compared their mutational profi les; they observed 
that in both the metastasis and xenograft tumor the mutational representation was a 
subset of the primary tumor, indicating that cells from different tumor subpopulations 
gave rise to the metastasis and the xenograft. In a more recent study, Stephens et al. 
 (  2011  )  scanned ten chronic lymphocytic leukemia patients for rearrangements and 
stumbled upon one which presented 42 somatic rearrangements involving a single 
arm of chromosome 4, further studies validated similar events on additional samples. 
This massive chromosomal remodeling, involving 10s–100s rearrangements, is 
estimated to happen in 2–3% of all cancers. Stephens et al. named this phenomenon 
“chromothripsis,” denoting a process in which a single catastrophic event shatters 
one or more chromosomes. 

 Another approach to detect genome rearrangements involves the use of de novo 
assembly methods such as ABySS (Simpson et al.  2009  ) . Here, the approach 
involves assembling contigs and then aligning the contigs (as opposed to individual 
reads) back to the reference genome. The advantage to this approach over a read-based 
alignment approach is that by analyzing the reads in a de novo fashion, the assembler 
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may be able to create contigs that represent the exact breakpoint of rearrangement 
events. For large genomes with many rearrangements (e.g., a human tumor sample), 
de novo assemblies will not be able to reconstruct the original genome; however, 
a broken up assembly may contain suffi ciently large contigs which can then be 
compared to the reference genome to determine putative structural differences.    

    3.2   Transcriptomics 

 HTS can also be applied to characterize various types of RNA transcripts, including 
mRNAs, small RNAs (including micro RNAs), noncoding RNAs, and antisense 
RNAs, collectively known as the  transcriptome . Genes encoded in the genome are 
activated via transcription, depending on their nature some will be further processed 
into protein, others will remain in RNA form, and others may be degraded. Different 
species of RNA can be captured using specifi c protocols and characterized using 
HTS, thus obtaining a snapshot of the corresponding RNA content in the cells. 
Messenger RNA (mRNA), for example, can be captured by targeting its poly(A) + tail, 
in this way a representation of the expression of mostly protein coding genes can 
be obtained. Many advantages of HTS in genome sequencing also apply in transcrip-
tome sequencing: base pair resolution enables mutation discovery, pair-end reads 
enable detection of fusion genes, and coverage is proportional to concentration in 
the source material allowing for quantitative analysis. Transcriptome sequencing 
allows researchers to look at expression profi les with unprecedented detail. 

    3.2.1   RNA-Seq 

 Early efforts to explore transcriptomes used expressed sequence tags (EST). The 
EST technique involved the creation of cloned cDNA molecules from mRNA 
templates and sequencing 3 ¢  or 5 ¢  ends using Sanger sequencing. This approach 
helped catalyze gene discovery in many species, including human and mouse 
(Adams et al.  1993 ; Hillier et al.  1996 ; Marra et al.  1999  ) . Sequencing of full-length 
cDNA clones eventually became feasible, fueled by the clear advantages of under-
standing transcript isoform structure at the sequence level (Strausberg et al.  1999 ; 
Gerhard et al.  2004 ; Ota et al.  2004  ) . 

 Although ESTs provided rapid access to expressed genes, they were not optimal 
for gene expression profi ling, largely due to their signifi cant cost. The development 
of short (14–21 bp) serial analysis of gene expression (SAGE, Velculescu et al. 
 1995  )  tags and derivative technologies addressed cost issues by making it possible 
to detect expression of 30 or more transcripts in a single pass sequencing read, as 
opposed to a single transcript as in the EST technique. The increased number of 
transcripts detected using SAGE made this technology useful for gene expression 
profi ling    (Yamamoto et al.  2001 ; Polyak and Riggins  2001  ) , with tag counts refl ecting 
transcript abundance. Bias of SAGE tags to the 3 ¢  ends of transcripts was addressed 
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through the development of the CAGE (cap analysis of gene expression, Kodzius 
et al.  2006  )  technique, which allows analysis of tag sequences adjacent to 5 ¢  tran-
script cap structures. 

 Shortly after HTS approaches became available, transcript analysis technologies 
were adapted for use on ultra-high-throughput sequencers. For example, a version 
of SAGE called “DeepSAGE” was developed (Nielsen et al.  2006  )  on the 454 
instrument, allowing an approximately sixfold enhancement in tag counts, from 
50,000 to 300,000. An important advantage of certain tag sequencing approaches is 
that they allow one to determine whether the transcript originated from the forward 
or the reverse strand in the genome. Tag-Seq (Morrissy et al.  2009  ) , derived from 
SAGE, can be used to measure expression values of genes with strand specifi city. 
Recent developments have enabled the construction of strand-specifi c transcriptome 
libraries (Levin et al.  2010  )  for sampling entire cDNAs. These and other strand-
specifi c approaches are enabling studies of the relationship between sense and anti-
sense gene expression (Yassour et al.  2010  ) . 

 Expressed sequences, longer than short tags, have also been analyzed using next 
generation sequencing. By capturing poly(A) + mRNA molecules and using a shotgun 
style approach akin to that previously defi ned for the genome, the entire mRNA 
content of a sample can be sequenced. This approach is known as whole transcrip-
tome shotgun sequencing (WTSS) or RNA-Seq. In one study (Bainbridge et al. 
 2006  ) , the transcriptome of a human prostate cancer cell line was explored using 
pyrosequencing. Analysis of the 181,279 reads of 102 bp average length obtained 
revealed the expression of 10,117 genes. A subsequent study explored the transcrip-
tome of the HeLa S3 cell line (Morin et al.  2008  ) , where random priming and sonica-
tion were used to produce coverage of entire cDNAs, and gene expression data were 
collected alongside exon-level expression and information on SNVs. 

 HTS of complete mRNA species can be used to detect mutations and help fi nd 
“cancer genes.” Mutations can be discovered in expressed transcripts by analyzing 
repeated coverage of nonreference alleles. For example, through the analysis of 15 
transcriptome libraries of ovarian cancer samples, Shah et al. ( 2009a )    were able to 
detect a mutation in a transcription factor gene ( FOXL2 ) present only in a specifi c 
subtype known as granulosa-cell tumors (GCT). This mutation was then validated 
in matched DNA and was later found to be present in a larger cohort of GCT samples 
(86 out of 89) and not present in 149 epithelial ovarian tumors. In a similar setting, 
by sequencing the transcriptome of 31 diffuse large B-cell lymphomas (DLBCL), 
Morin et al.  (  2010  )  detected a recurrently mutated codon in the gene  EZH2 , encoding 
a histone methyltransferase. Through DNA sequencing of the  locus  containing 
the mutation in 251 follicular lymphoma samples (FL) and 320 DLBCL samples, it 
was determined that the codon was recurrently mutated mainly in DLBCL samples 
specifi c to the germinal-center origin subtype, and to FL samples. These two studies 
exemplify the utility of transcriptome sequencing in the study of cancer. 

 Genome rearrangements can also be detected using transcriptome sequencing. 
One of the effects seen as a result of genome translocations is the joining of two 
genes into a fusion gene, expressed at the transcriptome level as a “chimera transcript” 
(Mitelman et al.  2004  ) . As part of the genome rearrangements in cancer study carried 
out by Campbell et al.  (  2008  ) , putative fusion genes were investigated using reverse 
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transcription polymerase chain reaction (RT-PCR), two such fusion events were 
validated: one translocation between chromosomes 2 and 12 resulted in the fusion 
CACNA2D4-WDR43, and the second fusion PVT1-CHD7 formed by a rearrange-
ment t(8;8)(q12;q24). Transcriptome sequencing has been used directly to detect 
such gene fusions in cancer. One strategy (Maher et al.  2009  )  included the use of long 
reads (200–500 bp) from a 454 instrument to detect possible chimera transcripts and 
short reads from an Illumina sequencer to provide coverage across the putative 
breakpoint. Maher et al. sequenced the transcriptomes of tumor samples with known 
fusion genes and were able to successfully detect them using this approach. In a 
more recent study, Steidl et al.  (  2011  )  sequenced two lymphoma cell lines and used 
a novel fusion discovery tool called deFuse (unpublished,   http://compbio.bccrc.ca    ) 
to identify gene fusion events. Four events of interest were successfully validated 
using experimental methods. Follow-up studies were focused on a specifi c fusion 
candidate containing the gene  CIITA , which was further found to be frequently 
fused to a variety of genes. This gene was found to be rearranged in primary Hodgkin 
Lymphomas (8 out of 55) and primary mediastinal B cell lymphoma (29 out of 77) 
but very low in other lymphomas like DLBCL (4 out of 131). Additionally, the pres-
ence of  CIITA  fusions was signifi cantly correlated with shorter survival times. This 
study clearly illustrates how state-of-the-art technology and bioinformatic analysis 
can be effectively used to further understanding of cancer and can have a direct 
impact in clinical applications. 

    3.2.1.1   Noncoding RNAs 

 In addition to mRNA, which typically encodes protein, there are numerous other RNA 
types such as micro RNA (miRNA), small interfering RNA (siRNA), ribosomal RNA 
(rRNA), transfer RNA (tRNA), small nucleolar RNA (snoRNA), and small nuclear 
RNA (snRNA). These comprise the so-called noncoding RNA (ncRNA) class. 
Massively parallel signature sequencing (Brenner et al.  2000  )  was used to explore 
ncRNAs in the plant  Arabidopsis thaliana  by sequencing short 17 bp signatures and 
mapping the reads back to the genome to determine their origin (Lu et al.  2005  ) . The 
study observed that many small RNAs appeared to map back to regions of the genome 
previously considered devoid of genes, and determined that higher throughput is 
necessary to fully classify these species. The same group later updated the protocol to 
allow the sequencing of short RNAs on 454 or Illumina instruments (Lu et al.  2007  ) . 
HTS has also been used to detect small RNAs in  C. elegans  (Ruby et al.  2006  ) , a total 
of 394,926 reads were generated using a 454 instrument, and these reads confi rmed 
80 miRNAs previously seen in the library. Additionally, the high coverage provided 
by the HTS reads allowed the detection of an extra 13 annotated miRNAs not 
previously seen in the library, as well as the discovery of 18 novel miRNAs. 

 Mammalian genomes contain not only small RNAs but have also been found to 
express large noncoding RNAs located in intergenic space. An indirect method of 
determining the activity and location of these genes was employed by Guttman 
et al.  (  2009  ) , by analyzing, across four mouse cell types, the distribution of histone 
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modifi cations indicative of active transcription, they were able to identify more than 
1,600 long noncoding RNAs. Whole transcriptome shotgun sequencing was subse-
quently used (Guttman et al.  2010  )  to characterize these and other RNA species at 
the single nucleotide level. This study revealed an additional 1,140 multiexonic 
transcripts mapping in intergenic regions; 88% of which do not seem to be protein 
coding, while 12% appear to be novel genes due to high conservation and a valid 
open reading frame of more than 200 amino acids. These applications illustrate the 
high-throughput discovery capabilities of HTS.   

    3.2.2   Analysis Strategies 

 Data processing for whole transcriptome sequencing resembles that employed for 
genome sequencing, in that there are alignment-based approaches and de novo 
assembly-based approaches. A confounding factor when working with alignment-
based methods is the existence of RNA splicing, which removes introns from 
transcripts during mRNA maturation. Splicing is a common feature of eukaryotic 
transcription; it has been estimated that 95% of multiexon genes are alternatively 
spliced (Pan et al.  2008  )  in a tissue- and developmental stage-specifi c manner 
(Huang et al.  1993  ) . Thus, a signifi cant proportion of sequence reads generated 
from mature mRNA molecules will represent “junction sequences,” which span 
exon–exon junctions created during the splicing process. These junction sequences 
are not encoded as linear strings in the genome, and therefore reads that emanate 
from these sequences will not align to the genome and thus will not be detected. 
Given the large quantity of short HTS reads and the relatively large size of the 
introns, a gapped alignment strategy to detect junction read sequences is compu-
tationally expensive. New approaches have thus been developed that address 
this issue. 

 One approach to address complications arising from ineffi ciencies of read map-
ping due to mRNA splicing is to construct a database containing all the sequences 
formed by the possible combinations between exons. This database can then be 
appended to the reference genome, and aligners such as Maq (Li et al.  2008  ) , BWA 
(Li and Durbin  2009  ) , Bowtie (Langmead et al.  2009  ) , Soap (Li et al.  2009b  ) , or 
others can be used. This approach is effi cient, but is constrained to the knowledge 
of the existing transcripts. Annotation databases that may serve as the sources for 
exons include Ensembl, UCSC Genes, RefSeq, CCDS, Vega, Havana, Encode, and 
AceView. As each of these source databases has individual pipelines and quality 
metrics, any one of them may individually include or exclude some isoforms found 
in other databases. 

 Another appealing set of tools provides a means for discovery of novel exon 
junctions. These include tools such as TopHat (Trapnell et al.  2009  ) , HMMSplicer 
(Dimon et al.  2010  ) , and SpliceMap (Au et al.  2010  ) . These tools attempt to discover 
junction sequences using modifi ed versions of aligners. Tophat and HMMSplicer, 
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for example, use the Bowtie aligner at an initial stage to align the reads onto the 
reference genome. Exon reads are thus aligned, and any reads unaligned after this 
stage are used for splice junction discovery. 

 Another challenging problem related to splicing is the determination of the 
sequences of complete transcripts, in which the appropriate exons and exon junc-
tions are correctly assembled with respect to each other. Two approaches based on 
alignments have been proposed: Cuffl inks (Trapnell et al.  2010  )  and Scripture 
(Guttman et al.  2010  ) . Both rely on splice site predictions and alignments done by 
Tophat and subsequently apply different statistical and probabilistic methods to 
determine the combination of exons that most likely explain the reads observed in 
the sequencing data. Trans-ABySS (Robertson et al.  2010  )  applies the  de Bruijn  
graph method to assemble transcriptome reads de novo, thereby allowing transcript 
isoform reconstruction and also allowing the detection of gene fusions and other 
novel transcript structures. Unlike splicing, the sequences that form gene fusions 
may not be adjacent in the reference genome. For example, when chromosomal 
rearrangements, such as translocations, occur in the genome, two genes may be 
placed adjacent to each other, and a hybrid transcript, containing sequences from 
both genes, may be expressed from that  locus  (Mitelman et al.  2004 ; Maher et al. 
 2009 ; Steidl et al.  2011  ) . 

    3.2.2.1   Expression Analysis 

 Once reads have been assigned to transcripts and to genes, the number of reads 
mapping to a gene can be used to approximate transcript abundance (i.e., “gene 
expression”). One of the fi rst and most popular methods for transforming read 
counts to gene expression measurements is known as reads per kilobase of gene 
model per million mapped reads or  RPKM  (Mortazavi et al.  2008  ) . The idea behind 
RPKM is to normalize the number of reads against two factors: (1) the size of the 
gene, so as to avoid bias resulting from the increased number of reads that map to 
large genes and (2) the total number of reads in the library, so that measurements 
from libraries with deeper coverage do not get artifi cially infl ated during interlibrary 
comparisons. Other methods, such as the one implemented in Cuffl inks (Trapnell 
et al.  2010  ) , resort to probabilistic models where each read is assigned to the isoform 
most likely to have spawned it. Once gene expression values are obtained, compari-
sons of mRNA abundance between samples can be made. 

 RNA-Seq data can be used to measure RNA abundance at the level of the entire 
gene, but also at the more granular level of individual exons. In this way, it is possible 
to search for both genes and exons that are enriched or depleted in sample set compari-
sons. An open source platform called Alexa-Seq (Griffi th et al.  2010  )  is available, 
which automates the analysis of RNA-Seq libraries for alternative expression analysis. 
Although it relies on known annotations to speed up the analysis, it is able to detect 
some novel events such as exon skipping, retained introns, alternative 5 ¢  and 3 ¢  splice 
sites, alternative polyadenylation sites as well as alternative transcription start sites. 
Results can then be made available through a comprehensive web-based interface 
for visualization and downstream analysis. 
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 Although discovery of SNVs, including mutations, using transcriptome sequence 
data is limited to those genes that are expressed, such data have been a rich source 
of mutated transcripts implicated in cancer progression. As described previously, 
this has been successfully done in the analysis of HeLa S3 cell transcriptomes and 
in the identifi cation of a recurrently mutated codon in  EZH2  in DLBCL tumors of 
germinal-center origin (Morin et al.  2008,   2010  ) , as well as in ovarian cancer by 
identifying a recurrent mutation in the  FOXL2  gene specifi c to the GCT subtype 
(Shah et al.  2009a  ) . Although mutation discovery approaches in transcriptome are 
similar to those applied in genome data, care should be taken as changes in the ratio 
of reference versus nonreference reads, unlike in the genomic case, is not directly 
dependent on the number of copies of the chromosome that exist in the genome, 
but on the expression of the gene itself. Deviations from a 50/50 ratio could be 
caused by different levels of expression of each allele, whether in the same cell or 
in a heterogeneous sample. 

 The ability to detect gene expression at single base resolution offers the opportunity 
to measure expression from each allele individually. For example, human genomes 
are composed of one copy of the genome inherited from each of the parents, and 
these copies differ substantially from each other in their nucleotide sequence. Using 
RNA-Seq data, it is possible to determine which of the two alleles is expressed more 
abundantly at all the expressed  loci  where sequence differences between the parental 
alleles exist. Such measurements can be extended to disease states, where a somatic 
mutation with a potential adverse effect on a gene’s product is not expressed, making 
the mutation effectively transcriptionally silent. In cases when both alleles are being 
transcribed we can measure allele-specifi c expression by comparing the presence of 
each allele in the expressed mRNA (Yan  2002  ) . Care should be taken when analyz-
ing this type of data, as it has been shown that some mapping related bias exists that 
can alter the results (Degner et al.  2009  ) . Additional DNA genotyping may be 
needed to determine the true genotype at a specifi c  locus . Having matching infor-
mation at the genome level may also help detect events of RNA editing, in which 
organism-specifi c mechanisms may directly alter the sequence of a transcript. In 
their study, Shah et al. ( 2009b ) detected changes between the genome and transcrip-
tome sequencing of a breast cancer sample. They detected the gene coding for 
ADAR enzyme, responsible for A to G edits to be highly expressed; additionally 
they observed two genes ( COG3  and  SRP9 ) showing high frequency of RNA editing. 
Although presently this may be prohibitively expensive, this example illustrates the 
high value of using complementary approaches to better understand the machinery 
behind phenotypic traits.    

    3.3   Epigenomics 

 Cells throughout an organism share a common DNA sequence but can have substan-
tially different functions and phenotypes caused by specifi c patterns of gene expres-
sion. These patterns have to be inherited across multiple cell divisions by factors 
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other than DNA to maintain a cell’s lineage. The fi eld of epigenomics is the study of 
those factors that are involved in the establishment and maintenance of such gene 
expression patterns, which do not impinge upon the DNA sequence per se, but rather 
on its regulation between “on” and “off” states. Two of the major epigenetic mecha-
nisms by which genes can be activated or silenced are DNA methylation and histone 
modifi cations, both of which can be replicated along with DNA during mitosis. 
DNA methylation refers to the addition of a methyl group to the 5 ¢  position of the 
base cytosine, which can silence genes by interfering with promoter recognition or 
by recruiting chromatin modifying proteins. Chromatin refers to a complex of DNA 
and proteins, predominantly histones. Histones serve to package the DNA, 147 bp 
of DNA wrap around a complex of four pairs of the core histones H3, H4, H2A, and 
H2B to form the nucleosome. The histones contain large unstructured tails that can 
be subjected to a variety of posttranslational modifi cations, which in turn can infl u-
ence a variety of cellular processes, such as transcription and DNA repair (Kouzarides 
 2007  ) . Nucleosome positioning can also infl uence transcription by altering RNA 
Polymerase II transcription rates (Hodges et al.  2009  ) . Disruption of epigenetic 
mechanisms has lately become of increased interest due to linkages with cancer 
progression (Jones and Baylin  2007  ) . HTS has accelerated the pace at which the 
epigenome can be studied. 

    3.3.1   DNA Methylation 

 Treating DNA with bisulfi te causes the conversion of cytosines, but not 5 ¢  methycy-
tosines, to uracil residues (Wang et al.  1980  ) , which then pair with adenines. Thus, 
un-methylated CG base pairs are converted to AT base pairs. After treatment the 
resulting DNA is sequenced, and any cytosines detected at this point will identify 
locations where the cytosine was methylated. This approach was used with Sanger 
sequencing to map the methylation patterns of human chromosomes 6, 20, and 22 
(Eckhardt et al.  2006  )  as part of the Human Epigenome Project (Esteller  2006  ) . 
A HTS pipeline for this method was termed BS-Seq (Cokus et al.  2008  ) . By applying 
shotgun sequencing to bisulfi te-treated DNA and generating ~3.8 billion mappable 
nucleotides using an Illumina instrument, Cokus et al. were able to generate a 
detailed methylation map of  A. thaliana . The utility of BS-Seq on mammalian-sized 
genomes was also proven by obtaining and comparing the methylomes of two 
mouse embryonic stem cell samples: one wild type and one with a mutation in a 
gene involved in GC methylation maintenance; through the analysis of ~60 million 
nucleotides from each one, the mutant sample was found to have a lower (25%) 
methylation level than the wild type. In another study, a similar approach dubbed 
MethylC-Seq was proposed (Lister et al.  2008  )  and used to evaluate the methylome 
of  A. thaliana  as well as the effects of mutated methylation-related genes; by applying 
HTS to small RNA and messenger RNA, the group also explored the relationship 
between methylation and transcription. The same approach was later applied to a 
genome-wide comparison on methylation patterns between human embryonic stem 
cells and fetal fi broblasts, demonstrating the dynamic nature of epigenetic marks 
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(Lister et al.  2009  ) ; furthermore, the study suggested that stem cells possess a special 
silencing mechanism based on non-CpG context methylation. Approaches to lower 
the complexity of the sequenced data have also been proposed, such is the case of 
Reduced Representation Bisulfi te Sequencing (RRBS), in which DNA is digested 
with a methylation-insensitive restriction enzyme in order to select fragments with 
informative CpG sites (Meissner et al.  2008  ) . Although initially developed and 
applied in mouse cells, RRBS has more recently been used to analyze clinical samples, 
especially geared towards those with low genomic content, such as formalin-fi xed, 
paraffi n-embedded samples (Gu et al.  2010  ) .  

    3.3.2   ChIP-Seq 

 Histones can be subjected to several posttranslational modifi cations, such as acety-
lation and methylation, which can affect the interaction between DNA and regulatory 
factors. Histone modifi cations have been studied using chromatin immunoprecipi-
tation, in which DNA and its interacting proteins are crosslinked and an antibody 
specifi c to the protein of interest is used to recover the protein–DNA complex. The 
captured DNA is then analyzed using DNA sequencing to determine the distribution 
of the targeted protein across the genome. Other DNA-interacting proteins can also 
be studied using this method, including transcription factors. Sanger sequencing has 
previously been used to characterize sequences obtained through ChIP using an 
extension of the Serial Analysis of Gene Expression (SAGE) protocol (Roh et al. 
 2004  ) . A related protocol, named Sequence Tag Analysis of Genomic Enrichment 
(Bhinge et al.  2007  ) , was developed to use pyrosequencing to analyze binding sites 
of the transcription factor STAT1. As in the case of gene expression, the number of 
sequence tags generated from a genomic location can be used to infer the affi nity 
the protein exhibits for regions of the genome. Robertson et al.  (  2007  )  introduced 
another method called ChIP-Seq to also study STAT1 binding sites; by combining 
chromatin immunoprecipitation with Illumina sequencing it was possible to obtain 
a whole genome map of protein–DNA interaction sites. By combining the use of 
antibodies able to bind to specifi c histone tail modifi cations and the HTS by synthesis 
technologies, genome-wide maps of chromatin modifi cations have been generated 
(Barski et al.  2007  ) . Multiple cell types can also be compared to determine changes 
involved in cell differentiation. In one study, three mouse cell types (embryonic 
stem cells, neural progenitor cells, and embryonic fi broblasts) were characterized 
for several histone H3 methylation marks as well as RNA polymerase II (Mikkelsen 
et al.  2007  ) . The relationship between specifi c histone modifi cations and active 
transcription was used in another study (Guttman et al.  2009  )  to determine the loca-
tion of more than 1,600 large intervening noncoding RNAs (lincRNAs), the same 
group further explored the expression of these lincRNAs using RNA-Seq (Guttman 
et al.  2010  ) . Recent studies in cancer have highlighted the importance of histone 
modifi cations in cancer, having found links between these epigenetic marks and 
breast cancer subtypes (Elsheikh et al.  2009  ) , as well as identifying histone modifi -
cation genes as cancer related (Morin et al.  2010  ) .   
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    3.4   Summary 

 For nearly 30 years, sequencing efforts revolved around Sanger sequencing with 
slow improvements in speed and throughput. During the last 5 years there has been 
a surge of new technologies that has allowed the fi eld to advance at gigantic steps. 
With prices going steadily down and throughput increasing constantly, the bottle-
neck is quickly shifting from data generation to data analysis and interpretation. 
New computational approaches need to be developed to keep on par with emerging 
technologies and the integrated analyses required to further the study of complex 
biological systems.      
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  Abstract   Next-generation sequencing requires enormous computational infrastructure 
resources. A single sequencing run can generate up to 100 gigabases of sequence 
and requires almost 3 terabytes of data storage. In order to transfer and analyze data 
on this scale, the data infrastructure must be up to the task. There are many solutions 
to creating this infrastructure. Local servers and data storage can be purchased and 
installed by the group, which is using the sequencing instrument. Communal 
resources at the home institution can be used to create the necessary infrastructure, 
or newer external cloud-based solutions can be used to store and analyze data. Each 
sequencing platform has slightly different infrastructure requirements, and the IT 
solution must be tailored to the systems in use or generalized to cover all possible 
instruments. The majority of installed instruments are based on Illumina technology 
with a smaller portion being ABI or 454. What is presented here is a solution that 
is generalized for any instrument, including not just the IT requirements but the 
bioinformatics requirements as well.      

    4.1   Introduction 

 The computational and information technology requirements for next-generation 
sequencing are extensive. As such, you must be able to effectively react to new 
types of experimental technology. Recently faced with an unprecedented fl ood of 
data generated by the next generation of DNA sequencers, groups found it necessary 
to respond quickly and effi ciently to the informatics and infrastructure demands. 
This challenge needs to be faced in order to anticipate time and design considerations 
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of necessary components, including infrastructure upgrades, staffi ng, and tools for 
data analyses and management. 

 The evolution of the sequencing instrumentation is far from static. Sequence 
throughput from this new generation of instruments continues to increase exponen-
tially at the same time that the cost of sequencing a genome continues to fall. These 
realities make the technology accessible to greater numbers of investigators while 
leading them to a greater usage of sequencing for a variety of experimental tech-
niques, including whole genome, tagged sequence, variation discovery, whole tran-
scriptome analysis, RNA-Seq, and CHiP-Seq analysis. This places unique challenges 
upon the Bioinformatics groups, whose mission could vary from the support of a 
single department or sequencing core to a facility that supports many disparate and 
independent groups that run their own sequencers but rely on the group to host the 
informatics, research cyber-infrastructures, or both. It is worth noting that the initial 
investment in the instrument is accompanied by an almost equal investment in 
upgrading the informatics infrastructure of the institution, hiring staff to analyze the 
data produced by the instrument, and storing the data for future use. Many investi-
gators do not realize that these extensive investments are necessary prior to pur-
chasing the new technology. This is why it is advantageous to have a group capable 
of putting in place platforms that acquire, store, and analyze the very large datasets 
created by these instruments. A group already familiar with data of this type and 
complexity, dedicated to investigators, and jointly working with IT personnel, can 
span multiple domains rather effortlessly. 

 The large sequencing centers (e.g., Sanger, Broad Institute, and Washington 
University) have automated processes and architectures not generally replicable in 
medium and small sequencing groups. However, as these smaller groups obtain next-
generation technology they can nevertheless learn lessons from the larger centers. 
Through collaboration and sharing best practices, small and medium-sized groups 
can prepare for the arrival of the technology and develop methods to manage and 
analyze the data. Many smaller groups have been actively collaborating to formulate 
best practices to set up platforms for next-generation sequencing.  

    4.2   Background 

 Several new sequencing methodologies have been developed, most of which are 
loosely based on fi xing DNA sequences to glass beads or slides, amplifi cation and 
tagging of the bases with compounds for visualization, image capture, and subsequent 
image analysis to derive base calls. Some of the techniques and manufacturers 
include sequencing by synthesis as used by the Genome Analyzer II (GAIIx) and 
HiSeq 2000 from Illumina, sequencing by ligation as used by the ABI SOLiD 
sequencer and by the polony sequencing technique developed by the Church Lab at 
Harvard Medical School, sequencing by hybridization as used by Affymetrix, and 
single molecule sequencing as used by Helicos, VisiGen (Now part of Life Sciences), 
and Pacifi c Biosciences. As of the end of 2010, the preponderance of data has come 
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from the GAIIx, which currently has the largest market penetration and is clearly 
the most established next-generation sequencing technology among the majority of 
institutions. 

 The uniqueness of these data stems from the number of fi les created and the size 
of those fi les generated during a sequencing run. For the GAIIx system, approxi-
mately 115,200 Tiff formatted fi les are produced per run, each at about 8 megabytes 
(MB) in size. This is approximately 1 terabyte (TB) of data, which must be moved 
from the capture workstation to the analysis resource. Other systems have similar 
data and image yields. A decision must be made about archiving these “raw” data 
for future analysis or discarding them in favor of resequencing. A mere 10–20 
sequencing runs could overwhelm any storage and archiving system available to 
individual investigators. Analysis of the image fi les is accomplished by Illumina-
provided CASAVA software or by any number of third-party applications. Since the 
instrument is typically run for 36–100 cycles, sequences of about 36–100 bases are 
produced, resulting in what are called short read sequences. Sequence of this length 
creates major impediments to assembly of complex genomes without the use of a 
reference. Currently, de novo assemblies are restricted to prokaryotic and bacterial 
genomes. 

 Even after image processing, base calling, and assembly, there will be approxi-
mately 300 GB of uncompressed primary data that must be stored either in fl at fi les 
or in a database. Then, using public databases and tools, biological signifi cance can 
be assigned to the sequence. Many of the current algorithms and software programs 
are unable to handle the number and size of the sequence reads that must therefore 
be modifi ed for use. Currently, software to reliably visualize the sequence data and 
its assemblies is evolving. Additionally, the long-term storage of primary and derived 
data may be diffi cult for the investigator, necessitating centralized solutions. 

 Solutions to these issues can be accomplished with a small, dedicated group 
within organizations that are familiar with data of this type and complexity. Within 
each area, we will describe specifi c challenges, along with some possible solutions 
we have experienced ourselves and from the experience of other institutions. These 
may not be the only solutions or architectures, and there are certainly many and 
varied sources of information on these topics as the target requirements continue to 
move, but this perspective can serve as a starting point for a set of best practices 
derived from facilities that have already solved many of these issues.  

    4.3   Getting Started with the Next-Generation Manufacturers 

 The current instrument manufacturers, Illumina, Roche, and Applied Biosystems 
(Fig.  4.1 ), all provide a foundation workfl ow for running their systems. Instruments 
typically ship with modest compute and IT resources providing the ability to support 
a single run of the machine. A small cluster, server, or workstation directly attached 
to the instrument provides data capture along with the principal data analysis 
pipelines necessary to process the raw data acquired into base calls and sequence 
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alignments from the run itself. Lately, manufacturers are also providing additional 
analysis modules, complete with technical support, to help streamline the Primary 
Analysis pipeline. In most buying considerations, the purchase of these additional 
modules provides an immense overall cost savings to the small- and medium-sized 
group. In the case of the Illumina GAIIx, this translates into a small incremental 
investment for dedicated servers, which signifi cantly shortens the overall run time 
as well as providing diagnostics of the image analysis pipeline through bundled 
technical support.  

 As researchers and core groups obtain more sequencers and are required to 
capture and store more than a single run at a time, they will need to grow quickly 

  Fig. 4.1    Next-generation sequencing statistics. The expected output of modern sequencing devices 
in both gigabases and gigabytes. Storage statistics for each fi le type are also listed       
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into larger compute and storage infrastructures capable of supporting these additional 
needs as well as information management systems to manage not only the workfl ow 
and derived information but also the data itself. Although the next-generation instru-
ments are becoming widespread throughout academic institutions and medical centers, 
they are still an emerging technology. Illumina sequencing, for example, has been 
available to the small-to-medium-sized groups since the summer of 2007. To date, 
technologists, IT groups, and informaticians have had a relatively short period of 
time in which to develop processes, best practices, and additional, more rigorous 
quality control/quality assurance (QC/QA) and laboratory information management 
system (LIMS) environments specifi c to their environments. As these technologies 
and algorithms emerge into academic, open-source, and vendor-supported offerings, 
groups will evaluate them against existing practices using previous datasets. 

 Additionally, the manufacturers themselves are rapidly developing their platforms 
with frequent improvements to their technology and informatics solutions. This may 
require re-analysis using the technology for new insights or at minimum a QA of the 
new revisions against older software versions using previously acquired data. This 
will continue to be the case as the scientifi c community demands longer individual 
read sequences and the manufacturers respond with changes and updates to optics, 
software, and chemistry, placing larger demands on institutions’ IT requirements. 

 Because of the necessarily tight integration with IT, those Bioinformatics 
Facilities that do not already maintain their own research IT infrastructures, includ-
ing hardware and systems administration resources, will need to lean heavily out-
side themselves, either on centralized institutional services, specialized computer 
consulting groups, or both. A fi nal consideration for startup is accessibility to the 
sequencing facilities by these additional personnel. Troubleshooting technical issues 
during setup, confi guration, and operation of these instruments will be necessary to 
assist lab operations.  

    4.4   Infrastructure and Data Analysis 

    4.4.1   Computational Considerations 

 Moving beyond the initial installation, the transcendent requirement for a group’s 
cyberinfrastructure is fl exibility. Given the rapidly changing environment described, 
the manufacturer may or may not initially provide a modest computational environ-
ment, slating this environment for a subsequent release or update of the instrument. 
Consequently, the computational resources will need to fi ll technical gaps now and 
be able to scale for future demand. 

 The Illumina analysis pipeline, consisting of image analysis, base calling, and 
initial alignment against a reference sequence, initially was shipped without a 
computational platform upon which to run it. Most bioinformatics groups either 
bought a large multiprocessor server or a small cluster into which the pipeline was 
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confi gured. Illumina recommends a pipeline server, 16-cores, 48 Gb of RAM, and a 
10 TB disk array that hosts the additional components of the pipeline. 

 This confi guration provides a computational starting point. It usually becomes 
necessary either to scale up the vendor-provided system or to perform offl ine, 
primary analysis. Troubleshooting the analysis pipeline, manipulating confi guration 
or parameter fi les, QAing revisions to the pipeline, or evaluating different algorithms 
requires a separate compute environment so that resources attached to the instrument 
can be used for the continued sequencing runs. 

 Two examples of initial confi gurations that have been successful are based on 
blades or discrete servers, respectively, and, through hardware miniaturization, 
products consisting of either solution can be initially hosted in a laboratory environ-
ment. The fi rst is based on a small eight-node blade cluster (a node for each channel 
of the GAIIx) that can scale out as the number of instruments increase within the 
environment. In more modest environments, two identically confi gured generic 
16-core servers with 6 TB storage and 48 GB RAM have been utilized to host the 
computational and storage needs. Additionally, these could serve for scale out through 
clustering at a later point.  

    4.4.2   Data Dynamics 

 Storage and management of these data is arguably the largest issue with which a 
group will struggle. The principal needs are threefold: scalable, highly dense, and 
inexpensive disk systems for massive online growth; high-performance disk systems 
that place the data near to the pipeline algorithms; and archival storage for the data 
that are required to be kept by the institution. The diffi cult challenge in building such 
systems is the dichotomy between being able to handle a very large number of fi les 
that are accessed infrequently after primary analysis – with the expectation of online 
accessibility when the demand arises – and the need to provide high-performance 
access during analysis. One solution does not fi t all requirements. Tradeoffs between 
inexpensive, highly dense storage using commodity disks and higher cost, highly 
performing network attached storage (NAS) or storage area network (SAN) systems 
are dependent upon budget for many facilities. The balance between these is deter-
mined by reliability, performance, and budget. Prioritizing dollars can be diffi cult, 
but scalable systems that can grow along with storage requirements are most cost-
effective for density along with purchasing a small yet high-performance NAS or 
SAN for transient analytical workloads. Many compromises can be made in the 
architectures, but we detail all components for completeness. Finally, centralized 
cyberinfrastructures make economical sense when scaling beyond two instruments 
and the manufacturers’ initial offerings. This is especially true when a bioinformatics 
group is required to support several disparate scientifi c groups whose requirements 
are guaranteed to change as these instruments continue to evolve and new experi-
mental uses for the systems are developed. 
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 High-density storage systems allowing for  ad hoc  growth into the petabyte range 
exist. These modular yet integrated storage environments provide several hundred 
terabytes of inexpensive disk provisioned in modules or blocks, aggregated together 
through software. Based on inexpensive serial advanced technology attachment 
(SATA) or serial attached SCSI (SAS) disks, both commercial and open solutions are 
available. Both are based on defi ned storage modules that can be stacked together 
over time as storage demands increase. Commercial solutions are usually integrated 
with software that provides aggregation of disks across the modules into one or a few 
very large fi le system namespaces. The open solutions, such as Lustre or GlusterFS, 
provide the aggregation layer, with commodity storage servers providing the storage 
blocks. There are additional commodity solutions available based on independent 
storage servers integrated with open software such as Lustre or GlusterFS. This storage 
system will capture data while they are being processed through various analysis 
pipelines. Because the data may only need to exist in this environment during analysis 
phases, the data itself can be considered transient and temporary within this system. 
Initially for budget considerations, a small storage footprint could be purchased, 
enough to house three data runs per instrument (6 TB). 

 An important consideration for the online, massive storage environment is the 
length of time necessary for the facility to retain data. A group that understands the 
institutional requirements of the various sets of data (images, intensities, base pairs, 
and alignments) can develop reasonable data retention policies. Images, for example, 
may be retained long enough for primary analysis and QC to complete, then deleted – 
they may never touch a central fi le server. In some cases, the cost of the DNA 
sample and isolation is insignifi cant to the cost of DNA sequencing such that it will 
be cheaper to rerun than to store. However, in a clinical setting the DNA sample 
itself may be unique and therefore priceless, necessitating the need to store much of 
the upstream data. 

 Other facilities that serve larger and more diverse communities, operating under 
defi ned service levels, may set policies to retain images for a specifi c period of time – 
3 months, for example. In these situations, it will be necessary to initially determine 
the amount of storage required for 3 months of images and accompanying derived 
data. In an average three-instrument environment operating during research busi-
ness hours, this policy would require approximately 65 TB of usable storage, 200 TB 
if running the instruments at maximum throughput with maximum data capture, 
probably an unrealistic scenario in practical usage. Adding post-image analysis 
data, this fi gure can climb modestly to 75 TB. If images are removed immediately 
after processing, these fi gures drop to 10 TB. 

 Archival needs depend entirely upon the data-retention requirements. It is reason-
able to retain all derived data within a terabyte-scale fi le system. However, due to 
regulatory or sample cost, it might be necessary to maintain a larger petabyte-scale 
tape or high-density disk storage system for diagnostics or personalized medicine, 
for example. 

 In addition to storage, there are other signifi cant technical considerations that 
need to be resolved, primarily in networking and routine management of very large 
fi le systems. The systems and storage need to be simultaneously connected to several 
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different networks. These range from institutional LAN connections to private 
networks. The centralized high-density storage will need to accept data arriving to it 
via LAN-connected instruments. Additionally, it may need to be connected to private 
networks serving computational or general-purpose cloud computing environments 
for further analysis or dissemination of derived information, respectively. A 1 GB 
network is essential within this environment, with 10 GB networks becoming more 
prevalent as the demands increase (and cost decreases). Raw network bandwidth, 
however, can be a small determinant to overall performance. Many technical deci-
sions will be required during design and growth; and with the network interface 
typically outside the domain of a bioinformatics group, collaboration and careful 
negotiation, in balance with security, may play a role. 

 Finally, recovering a very large fi le system poses some very interesting chal-
lenges that certain IT vendors are addressing. A fi le system check on several hundred 
terabytes may require weeks to perform.  

    4.4.3   Software and Post-analysis 

 This area is by far the most rapidly evolving and most critical to providing useful 
information from these instruments as well as managing lab processes and data 
management of the raw and derived data. Software and informatics pipelines for 
principal analysis and visualization are in rapid development from both commercial 
sources and from the academic community. 

 The early adopters of these technologies, the very large sequencing centers, and 
later the medium-sized Core Facilities, understand the challenges they face with 
instruments of this type. The immediate challenge comes with a lack of adequate 
vendor-supported software and Laboratory Information Management Systems 
(LIMS). Early-stage groups rely heavily on custom-developed LIMS and informatics 
platforms. Given the tremendous cost and complexity of developing commercial-
class LIMS modules with adequate fl exibility built into the system for integration to 
internal business processes across many organizations, most instrument manufac-
turers do not provide such systems. However, some do provide an API or Web service 
interface to their software. 

 To the small- and mid-sized groups, however, this is a very large gap in support, 
but that gap is shrinking. There exists a plethora of workfl ow applications, algo-
rithms, and analysis pipelines in the public domain as well as commercial products 
coming to market. It is not reasonable to attempt to summarize all the available 
software offerings, but, through Internet resources, other blogs, and the recent fl urry 
of new publications within the scientifi c and informatics literature, more than enough 
information is available (Dooling  2008  ) . 

 For the purposes of this perspective, the critical area for a group will be in the 
integration of the principal analysis pipelines with data management and information 
delivery systems within organizations (Fig.  4.2 ). Groups are tasked with delivering 
data to research projects for additional analysis. The format of the data delivered 
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range from short sequence reads to sequence that has been aligned to a reference. 
As the data volumes increase, there will be a greater demand on groups to fundamen-
tally understand the uses of these machines in research so as to deliver the data in 
more useful ways other than raw sequence. Assignment of biological function and 
annotation of the sequence with features of interest will still be critical tasks. The 
methods to perform these tasks are still in the initial phases of development, with a 
few tools showing early promise (Galaxy:   http://main.g2.bx.psu.edu    ).  

 As the cost of sequencing continues to decline, these technologies will translate 
into clinical settings, where the integration of this information with enterprise and 
personalized medical records, sample repositories, and knowledge management 
systems within medical institutions will be an absolute requirement to healthcare 
delivery and diagnostics. Other research environments are likely to encounter similar 
challenges soon.  

    4.4.4   Staffi ng Requirements 

 There are many challenges in integrating next-generation sequencing instruments 
into the information technology infrastructure. Along with technology consider-
ations, it is additionally critical to have a well-trained cadre of bioinformatics spe-
cialists operating within the group, accessible to the entire institution in order to 
best serve the needs of those using this new technology. If the Core Facility has 
expertise in IT or can leverage other institutional resources for architecting and 
managing the IT systems described, then much of the operational work will involve 
bioinformatics analysis and systematizing the infrastructure. Specifi cally, these 
involve optimizing data analysis pipelines in the parallel computing environment, 
automating bulk transfers of large volumes of data, fi ltering data and assigning 
biological signifi cance, interacting with investigators to understand the purpose of 
sequencing projects, and the ability to suggest analysis methods to investigators. 

  Fig. 4.2    Analysis Workfl ow. Workfl ow of analysis from primary analysis to tertiary functional 
analysis       
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 The skills necessary within the Facility include the following:

    1.    An intimate knowledge of UNIX-based operating systems.  
    2.    Understanding of a scripting language such as Perl.  
    3.    An understanding of parallel computing environments for UNIX clusters.  
    4.    Knowledge of network-based data storage.  
    5.    General knowledge of biology and genome sciences.  
    6.    Ability to derive data analysis and software requirements from investigators who 

do not have a sophisticated understanding of information technology.  
    7.    Ability to develop software encapsulating new analysis methods.  
    8.    Understanding of relational databases and database architecture.  
    9.    Ability to seek out and test novel bioinformatics software and analysis routines.     

 Finding a single staff member with all these skills would be extremely diffi cult, 
but fi nding members who have a subset of these skills and overlapping them in a 
team will be a more reasonable prospect. Individuals with these skill sets are rare 
and demand for their services is high, so compensation for such individuals is above 
that of laboratory technicians and bioinformaticians who have not operated in a 
high-performance computing environment. As such, a signifi cant portion of the 
total cost of ownership for a next-generation sequencing operation will comprise 
staff member salaries.   

    4.5   Applications of the Infrastructure 

 Applications of the infrastructure described above would be limited to next-generation 
sequencing technology. While it is applicable to all sequencing and genotyping, it also 
holds for the majority of applications of next-generation sequencing technology.  

    4.6   Perspectives 

 The application of next-generation sequencing technologies have led to a rapid 
increase in the amount of base pairs per experiment. It also resulted in a similar 
increase in the amount of data generated by these experiments. This data volume 
requires a new cyberinfrastructure in the majority of institutions to handle this 
increased data load. New sequencing technologies such as single molecule sequencing 
and nanopore technologies will only increase this data volume. The need to capture, 
store, transport, and analyze these data will require an increasing commitment to the 
information technology that underpins its operation. This commitment is extensive 
and will rival the cost of the sequencing experiment as those costs are decreasing 
rapidly. It is expected that new methods and algorithms will be developed for 
analyzing these data, as the current tools are crude and much insight is lost in the 
current methods of analysis. This analysis will become increasingly automated as 
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new methods are developed. This will require a robust storage system in order to 
allow new applications to be applied to older data. Overall, the investment in infor-
mation technology infrastructure will be critical and will be the only way to effec-
tively preserve and rapidly analyze sequence data.      
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  Abstract   High-throughput platforms execute billions of simultaneous sequencing 
reactions. Base-calling is the process of decoding the output signals of these reac-
tions into sequence reads. In this chapter, we detail the facets of base-calling using 
the perspective of signal communication. We primarily focus on the Illumina high-
throughput sequencing platform and review different third-party base-calling 
implementations.      

    5.1   Introduction 

 Over the last several years, we have observed a Moore’s law-like trajectory in the 
power of high-throughput sequencing platforms. Output volumes have increased 
several-fold, effective sequencing read lengths have grown, and error rates have 
dropped signifi cantly. As a result, these platforms have become the ultimate backend 
for biological experiments. High-throughput sequencing has been harnessed in a 
variety of applications beyond conventional genomic sequencing tasks, including 
expression analysis (Wang et al.  2009  ) , profi ling of epigenetic markers (Lister et al. 
 2011  ) , and the spatial analysis of the genome in 3D (Lieberman-Aiden et al.  2009  ) . 

 In essence, a DNA sequencing platform is a communication device. It takes an 
input library of DNA molecules, a set of messages, encodes the DNA using chemical 
reactions and imaging, and conveys the results to a base-caller algorithm. The task 
of the base-caller is dual: recover the original DNA sequence from the chemical 
reactions and report a quality score that refl ects the confi dence in each called  nucleotide. 
The similarities between sequencing and communication enable the development 
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and analysis of base-calling strategies using powerful tools from signal processing 
and information theory. 

 Base-calling software is usually provided by the manufacturer of the sequencing 
platforms. However, various third party groups, mostly from academia, have also 
made efforts to develop enhanced base-calling algorithms. The most notable example 
is the enhanced ABI base-caller, Phred, which played a pivotal role in the Human 
Genome Project (Ewing and Green  1998 ; Ewing et al.  1998  ) . The sheer amount of 
data in high-throughput sequencing means that even a slight improvement in base-
calling translates to millions more correct nucleotides, benefi ting downstream 
applications such as SNP calling, methylation profi ling, and genome assembly. 
Besides enhancing the sequencing results, developing base-calling algorithms pro-
vides insight into the inner workings of sequencing platforms and the fundamental 
principles and challenges of the technology. 

 Currently, there are ten high-throughput sequencing platforms: 454 (Roche), 
Illumina, SOLiD (Life technologies), Pacifi c Biosciences, Ion Torrent (Life 
Technologies), DNA Nanoball Arrays (Complete Genomics), Polonator, Heliscope 
(Helicos), Oxford Nanopore, and Nabsys (manufacturers are in parentheses; the 
last fi ve platforms are not commercially available). Of these technologies, the 
Illumina platform has become the leading platform for high-throughput sequencing 
(see a map of installation of high-throughput sequencing platforms here:   http://
pathogenomics.bham.ac.uk/hts/    ). The HiSeq2000 platform has the highest through-
put and the lowest cost-per-nucleotide in today’s market. Furthermore, the platform 
has received maximal attention from the community developing base-calling strate-
gies. Therefore, we chose Illumina to illustrate the informatics challenges of base-
calling. The interested reader can fi nd information specifi c to 454 base-calling in 
Quinlan et al.  (  2008  )  and SOLiD base-calling in Wu et al.  (  2010  ) . 

    5.1.1   Illumina Sequencing 

 The working concepts of Illumina sequencing are reviewed in detail in Chap. 2, and 
also by Bentely et al.  (  2008  )  and    Metzker  (  2010  ) . Here, we provide a brief overview 
of Illumina sequencing, while elaborating on details critical to base-calling. 

 The Illumina platform employs cyclic reversible termination (CRT) chemistry 
for DNA sequencing. The process relies on growing nascent DNA strands comple-
mentary to template DNA strands with modifi ed nucleotides, while tracking the 
emitted signal of each newly added nucleotide. Each nucleotide has a 3 ¢  removable-
block and is attached to one of four different fl uorophores depending on its type. 
Sequencing occurs in repetitive cycles, each consisting of three steps: (a) extension 
of a nascent strand by adding a modifi ed nucleotide; (b) excitation of the fl uoro-
phores using two different lasers, one that excites the A and C labels and one that 
excites the G and T labels; (c) cleavage of the fl uorophores and removal of the 3 ¢  
block in preparation for the next synthesis cycle. Using this approach, each cycle 
interrogates a new position along the template strands. 
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 The tremendous power of the Illumina platform stems from its ability to 
simultaneously execute and sense billions of CRT reactions. The sequencing 
 process occurs in a  fl ow cell  – a small glass slide that holds the input DNA frag-
ments in fi xed and distinct positions during the sequencing process. The fl ow cell 
consists of eight chambers called  lanes . The lanes are physically separated from 
each other and may contain different sequencing libraries without sample cross-
contamination. The imaging device cannot capture an entire lane in a single 
snapshot. Instead, it takes snapshots at multiple locations along the lanes called 
 tiles . There are 100 tiles per lane in Genome Analyzer II and 68 tiles per lane in 
HiSeq2000. A tile holds hundreds of thousands to millions of  DNA clusters . Each 
of these clusters consists of approximately one thousand identical copies of a 
template  molecule. The DNA clusters are constructed prior to the sequencing run 
by bridge amplifi cation of the input library. The purpose of the amplifi cation is to 
increase the intensity level of the emitted signal since the imaging device cannot 
reliably sense a single fl uorophore. However, the physical distance of the DNA 
fragments within a cluster is below the diffraction limit, permitting the imaging 
device to perceive the fragments as a single spot. Figure  5.1  illustrates the physi-
cal hierarchy of the Illumina platform.  

 The output of a sequencing run is a series of images each depicting the emis-
sion of millions of DNA clusters for a specifi c combination of lane, tile, cycle, 

  Fig. 5.1    Physical hierarchy in Illumina sequencing. ( a ) The Illumina fl owcell contains eight 
lanes which are further broken down into tiles. Each tile contains clusters of identical DNA 
fragments. ( b ) A cropped section of an Illumina tile image.  White spots  are DNA clusters       
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and fl uorophore. These images comprise the inputs to the base-calling algorithm. 
As shown in Fig.  5.2 , by tracking the emission signal from a cluster across cycles, 
a base-caller can recover the input DNA template.    

    5.2   Analyzing the Illumina Sequencing Channel 

 The sequencing process above describes the ideal situation without any noise or 
signal distortion. In such a situation the base-caller’s task would be simple: identify 
the base according to its fl uorophore color. In reality, however, as with any com-
munication procedure, the sequencing signal is subject to noise and distortion due 
to imperfections in the chemical reactions and imaging procedure. The fi rst challenge 
in devising a robust base-calling algorithm is to determine the  channel model  that 
describes the factors that distort the sequencing signal. 

    5.2.1   General Terminology of Distortion Factors 

 Information theory provides several useful classifi cations for signal distortion (Kailath 
and Poor  1998  ) . First, a distortion factor can have a deterministic or stochastic effect 
on a signal. For instance, yield differences between the four fl uorophores can create a 
deterministic effect on the sequencing signal; the number of transmitted photons from 
a single DNA cluster is a stochastic process that follows a Poisson distribution. 

 Second, a distortion factor can be stationary or nonstationary. A stationary distor-
tion has the same characteristics during the sequencing process, whereas a nonsta-
tionary distortion will evolve from cycle to cycle. An example of a stationary distortion 
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factor is additive Gaussian noise. An example of a nonstationary distortion factor is 
the progressive loss of template DNA strands in each cycle creating variable signal 
decay. Stationary and nonstationary distortions hamper the recovery of the original 
sequence. Additionally, nonstationary distortions escalate with successive sequenc-
ing cycles and limit the useful sequence reading length. 

 Third, a distortion factor is classifi ed according to variations in its input param-
eters. At one extreme are run-independent factors that have the same characteristics 
irrespective of the sequencing run. Otherwise, a distortion factor can be run-dependent, 
lane-dependent, or tile-dependent. An example of a run-dependent distortion is vari-
ability in the manufacturing quality of the nucleotides. Distortions that vary within 
a narrow scope (lane or tile) increase the number of parameters in the channel model 
and are harder to defi nitively model. A special case of this category is sequence-
dependent distortion that creates statistical dependency between the distortions of 
different cycles. In this case, an accurate characterization of the distortion can only 
be done during the actual base-calling. 

 Fourth, a distortion factor can either have a memory or be memoryless. Memoryless 
distortion means that the degradation is only infl uenced by the interrogated nucle-
otide. A distortion with memory means that the degradation is due to residual signals 
from other nucleotides in the physical vicinity of the interrogated nucleotide.  

    5.2.2   Constructing a Sequencing Channel Model 

 In-depth knowledge about the sequencing chemistry and imaging process of a plat-
form provides an initial hypothesis for the possible distortion factors affecting it. 
The primary challenge in dissecting a sequencing channel is in fi nding the right 
setting to isolate and measure its distortion factors. This is especially hard for third-
party researchers compared to platform manufacturers, since the former do not have 
full access to the building blocks of the sequencing chemistry and are unaware of 
the fi ner details of platform operation. The best option, therefore, is to conduct con-
trolled sequencing experiments and observe intermediate products of the platform. 

 In the next two subsections, we fi rst discuss different intermediate types of data 
output from an Illumina sequencer, and then present strategies for controlled experi-
ments to analyze the sequencing channel. 

    5.2.2.1   Outputs of Illumina Sequencing 

 Illumina provides a large number of intermediate fi les that can be used to perform a 
fi ne-scale analysis of distortion factors. The most useful among them are imaging 
fi les, intensity fi les, and sequencing fi les. 

 Imaging fi les are the immediate output of the imaging device. As such, they 
represent a level of pure, raw data prior to any processing. Illumina currently uses 
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16-bit TIFF images of size 2,048 × 1,794 pixels in GAII and 2,048 × 2,816 pixels in 
HiSeq2000. A single-end (SE) run with 100 cycles on a GAII produces 3.2 million 
images. This translates into tens of terabytes of imaging information. Therefore, it 
is a challenge to collect the entire set of photos for further analysis. The platform 
currently stores photos only from the fi rst few cycles. 

 Illumina’s intensity fi les are the output of its Firecrest demultiplexing soft-
ware. The intensity fi les contain the position of each DNA cluster in a “lane–tile–X 
coordinate–Y coordinate” format, along with a matrix of the cluster’s four imaging 
channel intensities in every cycle. The intensity values show a linear correlation 
with the raw data in the imaging fi les. 

 Illumina’s sequencing fi les are the product of its base-calling algorithm, 
Bustard. The fi les are in a FASTQ format that describes the sequencing results of 
each DNA cluster in four lines. The fi rst line starts with an “@” sign and contains 
a unique tag name for the cluster in the form: sequencing instrument : fl ow-cell 
lane : tile number in lane : x-coordinate of cluster on tile : y-coordinate of cluster 
on tile : index number for multiplexed sample : member of pair. For example, @
SEQUENCERNAME : 1 : 1 : 1029 : 21234#0/1 could be a valid ID for a sequenc-
ing cluster. Since the tag name preserves the lane, tile, X, and Y positions of a 
cluster, it is possible to link an entry in the intensity fi le to an entry in the sequence 
fi le. The second line contains the sequence read. The third line starts with a “+” 
sign and contains the unique tag name again. The fourth line shows the  quality 
score  of each base, thus providing an estimate of the base caller’s confi dence in the 
called nucleotide. In newer versions of the pipeline (v.1.3 and beyond), the reported 
value uses ASCII encoding to report the Phred quality score, and is given by: 
 −10log10 p  +  64 , where  p  is the confi dence of the base caller. The allowed values 
are between 66 and 126.  

    5.2.2.2   Deriving a Channel Model from Controlled Experiments 

      Impulse Response Analysis 

 Impulse response analysis is a powerful signal processing tool for characterizing 
distortion in communication channels (Shenoi  2006  ) . A sharp pulse, called a  delta 
function , is input to the system under investigation. The output, measured as a func-
tion of time, refl ects the system’s transfer function, and thus the characteristics of 
the channel. In the case of a stationary distortion, the structure of the output pulse 
should remain the same irrespective of the time point at which the delta function is 
input. Therefore, it follows that a change in the structure of the pulse with injection 
time indicates the presence of nonstationary noise factors. The width of the pulse in 
the output signal reveals the memory of the channel. If the channel is memoryless, 
the pulse should have the same width in both the input and output. However, if the 
channel has some memory, the width of the output pulse will refl ect the memory 
window of the channel. By varying the amplitude of the impulse, we can learn 
whether the channel is linear and also fi nd its dynamic range. 
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 In sequencing, a delta function corresponds to sequences in which a single type 
of nucleotide resides within a long stretch of other nucleotide types. For instance, 
the sequence …AAAAA T AAAAA… can be thought of as a T-nucleotide delta 
function in a homogenous background. The sequence …ACGGCAA T CCGGAA… 
can be thought of as a T-delta function in a heterogeneous background. We can 
sequence such fragments where the T nucleotide occurs at different positions and 
track the output signal in the four fl uorophore channels. In an ideal channel – both 
memoryless and stationary – the energy of the T channel would only increase when 
the T nucleotide is interrogated, and the output would remain the same irrespective 
of the T’s position in the sequence or the type of nucleotides neighboring it. 

 Impulse response analysis may use more complicated inputs to examine specifi c 
distortion build-ups. For example, one can sequence alternating homopolymer repeats 
such as GGGGGGAAAAAAAGGGGGGGAAAAAAA… Such repeats expose 
residual nucleotide-specifi c signal build-up that might not be detectable with short, 
single-nucleotide impulses. Another example is a dinucleotide tandem repeat chain, 
like ACACAC.... Dinucleotide tandem repeats are relatively immune to distortions with 
memory. The output signal will always converge to one half, regardless of the size of 
the memory. Any deviation from a half indicates the presence of other noise factors. 

 Impulse response analysis necessitates the construction of accurate DNA impulse 
sequences. One solution is to sequence a rich genomic library and restrict analysis 
to DNA fragments that inherently contain delta function sequences. Another 
solution is to artifi cially synthesize and sequence a set of DNA oligonucleotides. 
Unfortunately, DNA synthesis followed by PCR-based amplifi cation has a high 
error rate for templates with homopolymer sequences or tandem repeats. As an alter-
native, bacterial cloning can be used to select and accurately amplify such diffi cult 
templates for impulse response analysis (Erlich et al.  2008  ) .  

      Genomic Library Analysis 

 Another useful strategy to reveal distortion factors is the analysis of sequencing data 
from genomic libraries with an accurate reference genome. Genomic libraries 
complement impulse response analysis because of the natural input signals they 
provide, ensuring a realistic setting for analyzing the channel model. Moreover, the 
massive amount of data from genomic libraries reduces the risk of overfi tting when 
evaluating complex models. 

 Sequencing the genome of the  F x-174 virus is particularly useful for channel 
model analysis. First, the genome length of the virus is only 5.5 kb, enabling ultra-
fast alignment to the reference genome, even for noisy sequence reads with a large 
number of mismatches. Second, the GC content of the  F x-174 genome is 44%, 
similar to the 46% GC content of the human genome (Romiguier et al.  2010  ) , creating 
a realistic situation for modeling nucleotide-dependent distortions in human libraries. 
Third, according to Illumina’s product guidelines, one lane in each fl ow cell must 
contain the DNA library of the  F x-174 virus as a control in order to keep the warranty 
valid for that sequencing run. This allows the tracking of distortion in a large number 
of  F x-174 samples across different sequencing runs.     
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    5.3   Major Signal Distortion Factors in Illumina Sequencing 

 Here we detail the major distortion factors in Illumina sequencing. We restrict our 
review to factors that appear after the image analysis step. The interested reader can 
fi nd more information about challenges in the image analysis step in Whiteford 
et al.  (  2009  )  and Kriseman et al.  (  2010  ) . 

    5.3.1   Fluorophore Crosstalk 

 In an ideal CRT reaction, the four fl uorophores would have distinct emission spectra 
and similar yields. However, the emission spectra of the fl uorophores used for 
sequencing are broad and overlap with one another (Fig.  5.3a ). Thus, when one 
fl uorophore is excited, its signal also passes through the optical fi lters of the other 
channels. Fluorophore crosstalk is not unique to Illumina sequencing, but is also 
found in other sequencing platforms (Li and Speed  1999  )  and fl ow cytometry systems 
(Sklar  2005  ) .  

  Fig. 5.3    Crosstalk creates 
a deterministic distortion. 
( a ) An illustration of the 
crosstalk phenomenon. 
The spectrum of the G 
fl uorophore ( red ) bleeds into 
the T fi lter ( pink hatched 
region ). As a result, a T 
signal will also be detected 
when a G fl uorophore is 
excited. ( b ) A two-
dimensional histogram of real 
intensity data from Illumina. 
The G fl uorophores ( right 
arrow ) strongly transmit to 
the T channel. On the other 
hand, the T fl uorophores ( left 
arrow ) do not transmit to the 
G channel       
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 Fluorophore crosstalk is a deterministic distortion factor that is represented by 
the 4 × 4 matrix  G . The  ij th element in  G  denotes the emission of the  j th fl uorophore 
in the  i th channel. An example of typical values of the matrix is (small values were 
rounded to zero for simplicity):

    

1.24 0.20 0.00 0.00

0.71 0.72 0.00 0.00

0.00 0.00 1.35 0.00

0.00 0.00 0.73 1.00

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (5.1)   

 Note that there is strong crosstalk between the “A” and the “C” channels, and the 
“G” and “T” channels (Fig.  5.3b ) –  each pair of fl uorescence channels is excited by 
the same laser.  

    5.3.2   Phasing 

 In the ideal situation, the lengths of all nascent strands within a DNA cluster would be 
the same. Imperfections in the CRT chemistry create stochastic failures that result in 
nascent strand length heterogeneity, which is referred to as phasing. Phasing reduces 
the purity of the signal from an interrogated position by contamination from signals 
from  lagging  or  leading  strands. A failure to remove the 3 ¢  block or to incorporate a 
new nucleotide creates a lagging nascent strand, shorter than its counterparts. In addi-
tion, a small fraction of input nucleotides do not have a 3 ¢  block due to manufacturing 
imperfections. Incorporation of a block-free nucleotide will cause a nascent strand to 
race ahead, become too long and lead the other strands in phase. Phasing is a nonsta-
tionary distortion. Length heterogeneity escalates with each cycle, lowering the preci-
sion of base-calling, and limiting the length of useful sequence reads (Fig.  5.4a ).  

 Phasing is essentially a random walk process given by the following equation, 
where  t  cycles have elapsed and  n  is the strand length:
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where  p  
1
  denotes the probability of removing the 3 ¢  block and  p  

2
  denotes the prob-

ability of incorporating a single blocked nucleotide. Thus, with probability 1 −  p  
1
 , 

the nascent strand does not grow in a given cycle, creating a lag; with a probability 
of  p  

1
  ×  p  

2
  ,  the nascent strand grows with exactly one nucleotide, representing a 

successful CRT reaction; with a probability of  p  
1
  ×  ( 1 −  p  

2
 ) ×  p  

2
 , the nascent strand 

grows with two nucleotides, creating a racing strand, and so on.  P  is a  T  ×  T  matrix 
corresponding to a total of  t  cycles, whose  ij th element describes the probability that 
a nascent strand is  i  nucleotides long after  j  cycles. In the ideal situation with no 
phasing imperfection ( p  

1
  = 1 and  p  

2
  = 1), P is the identity matrix (Fig.  5.4b ). 
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 We collected data on the values of  p  
1
  and  p  

2
  from hundreds of Illumina GAII 

runs. We found that the mean block removal probability ( p  
1
 ) is around 0.994 and the 

mean blocked nucleotide incorporation probability ( p  
2
 ) is around 0.996. Using these 

values,  P  forms a band-diagonal matrix, where the bulk of the energy after 90 cycles 
is within a window of fi ve nucleotides around the interrogated position – but fewer 
than half the nascent strands display the length that corresponds to the interrogated 
position.  

    5.3.3   Fading 

 The sequencing process takes several days. During that time, the DNA strands are 
washed excessively, exposed to laser emissions that create reactive species, and 
are subject to harsh environmental conditions. All of these lead to a gradual loss 
of DNA fragments in each cluster, decreasing its fl uorescent signal intensity – 
a process termed fading (Fig.  5.5a ).  

 Fading follows an exponential decay that is given by the following equation (see 
also Fig.  5.5b ):
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0 otherwise
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⎩    (5.3)  

where  D  is a T-by-T diagonal matrix that represents the exponential decay of the 
signal,  t  denotes the number of elapsed cycles, and  p  

3
  denotes the decay rate. 

A reduction in decay rate is one of Illumina’s major sequencing improvements over 
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the years. In the GAI, the decay rate was around 3–5% in each cycle, in the GAII it 
dropped to 1%, and in the HiSeq2000, a decay rate of 0.7% was measured, meaning 
that the average half-life of a DNA strand is now around 90 cycles.  

    5.3.4   Insuffi cient Fluorophore Cleavage 

 Multiple lines of evidence have shown that even after the correction for the distortion 
factors above, there is still a residual signal that looks like a change in the crosstalk 
matrix over cycles (Fig.  5.6a ). This distortion, which escalates with time, creates a 
strong bias toward a specifi c nucleotide and reduces the performance of base callers 
in later cycles (Fig.  5.6b ). The exact characteristics of this noise factor have yet to 
be fully analyzed. However, it has been suggested that the residual signal is caused 
by imperfect fl uorophore cleavage. In every cycle, a small fraction of fl uorophores 
is left behind (Fig.  5.6c ), creating sequence-dependent distortion. Different types of 
fl uorophores can have different cleavage probabilities. If one fl uorophore is more 
“sticky” than the others, it can create an overall calling bias toward this nucleotide 
that will escalate with time.  

 In our preliminary results with a single GAII run, we found fl uorophore cleavage 
rates of 99.62%, 99.62%, 99.14%, and 99.61% for the A, C, G, and T fl uorophores, 
respectively. Indeed, that run showed a base-calling bias toward the G nucleotide 
(data not shown). Kao et al.  (  2009  )  have calculated the overall residual signal that 
can be attributed to insuffi cient fl uorophore cleavage for all four channels. Their 
results show a linear increase in the residual signal, as expected, from insuffi cient 
fl uorophore cleavage. Furthermore, the increase in the residual signal matches our 
99.6% success rate in fl uorophore cleavage, providing further support for the 
characterization of this distortion factor. 
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 The probabilities of fl uorophore cleavage are described by the diagonal 4 × 4 
matrix  F . Each element along the diagonal denotes the probability of cleaving a 
different fl uorophore.  

    5.3.5   Overall Model 

 The overall intensity distorted by crosstalk, phasing, fading, and insuffi cient fl uoro-
phore cleavage for a given DNA sequence can be formulated by the following model 
(Valente et al. personal communication). The left term of ( 5.4 ) represents the distor-
tion without insuffi cient fl uorophore cleavage and the right term adds its effect.

    DPSG DQSFGI ≈ +    (5.4)  

where  I  is a  T  × 4 intensity matrix that denotes the signal received in each optical 
fi lter for a total of  T  sequencing cycles;  »  denotes equality up to a normalization 
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  Fig. 5.6    Insuffi cient fl uorophore cleavage. ( a ) The polar histogram displays the ratio between the G 
and the T channel after crosstalk correction. A strong G signal with a weak T one corresponds to bins 
that are close to 90 degrees, and the opposite occurs close to zero degrees. In the fi rst cycle ( black ), 
the two lobes are orthogonal which indicates correct crosstalk correction. In later cycles ( green  and 
 red ), the G lobe starts to migrate toward the T lobe, and creates a cycle-dependent residual signal. 
( b ) The percentage of called bases in the phi-X library is plotted as a function of cycle number using 
the Illumina base caller. The T and the G calls have strong opposite trends. ( c ) A molecular model 
for insuffi cient fl uorophore cleavage. In each cycle, the last fl uorophore is cleaved with a probability 
of  p  

F
  that depends on the fl uorophore type.  Purple ball  – 3 ¢  block,  gray shape  – DNA polymerase, 
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constant;  S  is a  T  × 4 binary matrix that denotes an input DNA sequence of length  T . 
Its columns correspond to A, C, G, T respectively from left to right. For instance, 
the DNA sequence “ATC” is given by:

    

1 0 0 0

0 0 0 1

0 1 0 0

S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦     

  Q  is a  t  ×  t  matrix given by:

    
( , ) ( , )

n m

Q m t P n t
>

= ∑
  

 (5.5)   

  Q  represents the cumulative probability that a nascent strand is above a certain 
length;  G ,  F ,  P  and  D  are defi ned previously in this chapter.   

    5.4   Decoding Algorithms 

 The overall goal of the base-caller is to infer the matrix  S  given the intensity output 
of  I  in the presence of distortion factors. This task is a classifi cation problem. 
We describe in chronological order, different successful solutions to base-calling, 
contrasting the general themes of each approach. Ledergerber and Dessimoz  (  2011  )  
provide an excellent review of different available base-calling software that includes 
performance comparisons. 

    5.4.1   Alta-Cyclic 

 The Alta-Cyclic algorithm (Erlich et al.  2008  )  relies on supervised learning and a 
combination of parametric and ad-hoc modeling. The algorithm starts the learning 
step by inferring the phasing parameters. This it does so by performing a grid search 
over possible values of  p  

1
  and  p  

2
  (notation from 5.3.2). At each ( p  

1
 ,  p  

2
 ) coordinate, 

a phasing matrix is calculated, and the intensity data are deconvolved by multiply-
ing  I  with  P +, the pseudo-inverse matrix of  P . The algorithm calls the bases of the 
last cycles and determines the total error rate. The ( p  

1
 ,  p  

2
 ) coordinate that displays 

the lowest error rate is selected. Alta-Cyclic does not infer the other parameters of 
the model. Instead, it trains a support vector machine (SVM) in each cycle to fi nd 
the margins in the intensity space that optimally discriminate between the nucle-
otides. The output of the training step is an optimized  P  matrix and a set of trained 
SVM machines. 

 In the calling step, the algorithm deconvolves the phasing distortion and uses the 
SVMs to classify the nucleotides. The output of the data is in FASTQ, and a quality 
score is assigned based on the distance of the intensity vector from the SVM margins. 

 Alta-Cyclic is available from   http://hannonlab.cshl.edu/Alta-Cyclic/main.html    .  
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    5.4.2   Rolexa 

 The Rolexa base-caller (Rougemont et al.  2008  )  relies on unsupervised learning and 
a parametric model. Rolexa forces the crosstalk matrix to be a block diagonal 
matrix, where the only nonzero entries are the crosstalk between the A and C chan-
nels and the G and T channels. In order to deal with the residual signal, Rolexa 
generates a new crosstalk matrix in each cycle. In addition, it uses a simplifi ed version 
of the phasing matrix that only allows lagging strands ( p  

2
  = 1). After learning the 

cycle-dependent crosstalk and phasing, the intensity data are deconvolved and ready 
for base-calling. 

 In the calling step, the algorithm uses the expectation-maximization (EM) algo-
rithm to classify the intensity data. It takes data from one or a few tiles, and iteratively 
fi ts four Gaussians to the intensity data, with each Gaussian corresponding to a 
different type of nucleotide. The distance between the intensity vector and the 
Gaussians gives the uncertainty about calling the base and can be used to calculate 
the quality score. 

 A useful feature of Rolexa is that it can report the output sequences in an IUPAC 
code format. For instance, if there is high uncertainty whether a base is “A” or “C,” 
the caller will report “M.” IUPAC format gives richer information than the FASTQ 
format, since data about the second most likely base are preserved. 

 Rolexa is available under the GNU Public License (GPL) from   http://www. 
bioconductor.org/packages/2.5/bioc/html/Rolexa.html    .  

    5.4.3   Swift 

 Swift (Whiteford et al.  2009  )  is a freely available base-calling pipeline that performs 
both image analysis and base-calling. It relies on unsupervised learning and a para-
metric model for base-calling and supervised learning and an ad-hoc model for 
quality score calculation. 

 The parametric model for base-calling only includes crosstalk and phasing correc-
tion. The crosstalk estimation relies on the Li and Speed  (  1999  )  method that uses 
L1 regression. The phasing model is slightly different from the random walk model 
above and it assumes that a strand cannot grow by more than two nucleotides in a 
given cycle. In order to fi nd the phasing parameters, the algorithm selects a subset 
of 400 bright and clean clusters. Then, it scans the clusters and looks for signals that 
resemble an impulse shape – a strong peak in one channel that does not appear in 
adjacent cycles. The ratio between this peak and the previous and subsequent cycles 
gives  p  

1
  and  p  

2
 . 

 Base-calling is achieved by multiplying the intensity matrix by the inverse of the 
crosstalk and phasing matrices and selecting the channel with the highest energy. 
In order to calculate the quality scores, the algorithm fi rst determines the ratio of the 
maximal intensity to the sum of intensities. Then, it aligns reads to a reference genome 
and builds a lookup table that matches the intensity ratio to the probability of error. 

 Swift is available under the LGPL3 from   http://swiftng.sourceforge.net    .  
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    5.4.4   BayesCall, NaiveBayesCall 

 BayesCall (Kao et al.  2009  )  and NaiveBayesCall (Kao and Song  2011  )  algorithms 
rely on unsupervised learning and a full parametric model. A notable advance is the 
use of Bayesian    networks for base-calling. 

 In the context of the channel model above, BayesCall takes into account cross-
talk, phasing, fading, and insuffi cient fl uorophore cleavage. It assumes that all factors 
are tile-specifi c. As in Swift’s model, phasing is restricted to a maximal growth of 
two nucleotides per cycle. BayesCall sets a more complicated fading distortion that 
depends on two parameters: (a) a tile-specifi c, cycle-specifi c parameter that models 
fl uctuation in fading due to extrinsic factors such as room temperature, and (b) a 
cluster-specifi c, cycle-specifi c term that represents the number of active fragments 
in the decoded cluster. In addition, the algorithm assumes a cycle-specifi c residual 
signal, which is reminiscent of insuffi cient fl uorophore cleavage. 

 In order to infer the parameters, BayesCall uses a combination of methods: direct 
computation for the tile-specifi c, cycle-specifi c fading, interior point method for 
phasing, and EM for the rest of the parameters, except for the cluster-specifi c fading 
term which is determined during base-calling. 

 In BayesCall, base-calling is achieved by simulated annealing, a heuristic that 
enables convergence to a (near) optimal solution when the search space is over-
whelming. The problem with this approach is that it requires at least 10,000 itera-
tions for a single call. The NaiveBayesCall algorithm is highly similar to BayesCall. 
It relaxes the fading structure and uses a faster heuristic for base-calling. First, it 
obtains an initial guess for the sequence by deconvolving the effect of phasing and 
crosstalk and fi nding the strongest intensity. This is used to reduce the search space. 
Second, it iteratively calls a base, fi nds the most likely residual signal, and propa-
gates the information to the next cycle. 

 Both algorithms report quality scores utilizing exact calculations that are derived 
from their underlying probabilistic models. 

 BayesCall is available under the GPL from   http://www.cs.berkeley.edu/yss/ 
bayescall/    . NaiveBayesCall is available under the GPL from   http://bayescall.source-
forge.net      

    5.4.5   Ibis 

 Ibis (Kircher et al.  2009  )  is a fully ad hoc, supervised learning base-calling algorithm. 
It does not attempt to evaluate any of the parameters in ( 5.4 ) but uses an array of 
SVM machines, each of which corresponds to a different cycle. The input of each 
SVM is a 12-feature vector that consists of intensity values from the previous cycle, 
current cycle, and following cycle. During the training stage, the SVMs look for the 
best decision boundaries between the bases. Since data from the previous and follow-
ing cycles are incorporated, phasing and fl uorophore cleavage are implicitly taken 
into account in the ad hoc model. 
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 The calling stage of Ibis uses the trained SVM to classify the raw intensity data. 
Quality scores are calculated according to the distance of the intensity vector from 
the decision boundaries. 

 Ibis base-calling software is available under GPL from   http://bioinf.eva.mpg.de/
Ibis/    .  

    5.4.6   TotalReCaller 

 TotalReCaller algorithm is a work in progress by Bud Mishra’s group at the Courant 
Institute. It has three unique features: fi rst, the algorithm couples together base-
calling and alignment. The iterative alignment is used to generate prior probabilities 
about subsequent nucleotides and enhance the calling. Second, the algorithm does 
not call each base individually, but evaluates several bases together. As mentioned 
above, the residual signal due to insuffi cient fl uorophore cleavage is sequence-
dependent. This creates statistical dependency between the distortions in different 
cycles. Considering several bases at once can therefore boost the accuracy of the 
decoding. Third, the algorithm has been successfully prototyped in FPGA hardware, 
which has the potential for ultra-fast performance. 

 TotalReCaller will be available from   http://bioinformatics.nyu.edu/wordpress/
projects/totalrecaller/    .   

    5.5   Conclusion 

 High-throughput DNA sequencing will soon become a standard clinical diagnostic 
tool. From cancer treatment to prenatal diagnosis, sequencing will provide critical 
datasets, but errors can lead to severe consequences. Processing time is also a limit-
ing factor; sequencing results need to be ready as quickly as possible. Medical 
sequencing, therefore, demands extremely accurate, near-online base-calling algo-
rithms. This poses the next challenge for the fi eld.      
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  Abstract   An imperative fi rst step in the characterization of a species or individual 
is the sequencing and subsequent assembly and analysis of its genome. High-
throughput sequencing technology has ushered in a new way of thinking about this 
fundamental undertaking. Next-generation sequencing machines produce reads 
through highly parallel operation and produce a much greater quantity of data per 
experiment, at drastically reduced cost per base, with the drawback of short-read 
length. A new generation of de novo assembly algorithms and applications has 
arisen to meet the challenges inherent to this new type of sequence data. Many 
de novo assembly algorithms have been implemented, each with its own set of 
assumptions, strengths, and weaknesses. While the details of each such assembler 
are unique, all of these assemblers share a common conceptual foundation and all 
must contend with the same set of complexities presented by next-generation 
sequencing data. This chapter discusses each type of de novo short-read assembly 
algorithm with emphasis on the similarities and differences between them.      
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    6.1   De Novo Short-Read Assembly 

    6.1.1   Next-Generation Sequencing 

 An imperative fi rst step in the characterization of a species or individual is the 
sequencing and subsequent assembly and analysis of its genome. High-throughput 
sequencing (HTS) technology, reviewed for example in Schadt et al.  (  2010  ) , Kircher 
and Kelso  (  2010  ) , and Zhao and Grant  (  2011  ) , has ushered in a new way of thinking 
about this fundamental undertaking. Many commercial next-generation sequencing 
(NGS) platforms exist, all of which together possess several key characteristics 
distinguishing them from fi rst-generation sequencing platforms. NGS machines 
produce data through highly parallel operation and produce a much greater quantity 
of data per experiment, at drastically reduced cost per base. Unfortunately, reads 
produced by NGS platforms are dramatically shorter than those generated by fi rst-
generation platforms, requiring much higher coverage in order to satisfy overlap 
detection criteria. Of course, high coverage leads to larger data sets and higher 
complexity. 

 With the emergence of high-throughput sequencing technology, a new genera-
tion of de novo assembly algorithms and applications has arisen to meet the challenges 
inherent to NGS data. Many de novo assembly algorithms have been implemented, 
each with its own set of assumptions, strengths, and weaknesses. While the details 
of each such assembler are unique, all of these assemblers share a common concep-
tual foundation and all must contend with the same set of complexities presented by 
NGS data.  

    6.1.2   From the Beginning 

 Assembly of a target genome starts with generation of data through a whole-genome 
shotgun sequencing experiment. In shotgun sequencing, reads are sampled from 
random positions along a target molecule (Sanger et al.  1980  ) . In whole-genome 
shotgun (WGS) sequencing the target DNA molecules are the chromosomes, result-
ing in reads taken from random positions along a genome. WGS assembly aims to 
reconstruct the original sequence, up to chromosome length, from these reads. 
Assembly of reads from a WGS sequencing experiment is possible when the genome 
is over-sampled, resulting in many overlapping reads. A computer program designed 
for this assembly task is called an assembler. 

 Meaning literally “from the beginning,” the Latin expression “de novo” has a 
specifi c denotation when applied to whole-genome shotgun assembly. De novo WGS 
assembly refers to an assembly process based entirely on reads from the target genome. 
Here, no previously resolved sequence data are considered, such as pre-existing 
sequences from genomes, transcripts, and proteins, or homology information.  
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    6.1.3   Assembly 

    6.1.3.1   Contigs, Scaffolds, and Chromosomes 

 Assemblers rely directly on the assumption that reads share common substrings, 
which implies they originate from the same genomic location. Through analysis of 
these overlapping substrings, a putative reconstruction of the target genome can be 
created. Reads are assembled into contigs, contigs into scaffolds, and scaffolds into 
chromosomes. Contigs represent a consensus sequence from reads, while scaffolds, 
also known as supercontigs and metacontigs, defi ne contig order and direction as 
well as the gaps between contigs. Once all scaffolds have been ordered, chromo-
somes can be inferred. 

 Assemblies are generally output in multi-FASTA format, in which each contig is 
listed and associated with a header. Consensus sequences are represented using the 
International Union of Pure and Applied Chemistry (IUPAC) symbols and contain 
at least the four characters A, C, G, and T, although additional characters, each 
with some special meaning, may also be present. For example, scaffold consensus 
sequences may contain Ns in the gaps between scaffolds, with the number of con-
secutive Ns representing a gap-length estimate. IUPAC notation additionally contains 
characters for ambiguous bases where, for example, the character Y denotes either 
of the pyrimidines C or T while the character R denotes either of the purines A or G.  

    6.1.3.2   Challenges 

 Several factors confound WGS sequence assembly. First, regardless of the technology 
used to generate them, WGS sequencing results in reads drastically shorter than the 
molecules from which they originate. Second, the computational complexity of 
assembly is severely enhanced by the vast amounts of data produced by NGS exper-
iments. Third, sequencing error can induce assembly error, leading to incorrect and 
drastically shortened contigs. Fourth, repeat sequences in the target can be indistin-
guishable from each other, especially true if the repeat regions are longer than the 
length of the reads. Finally, nonuniform coverage of the target can lead to the invali-
dation of statistical tests and diagnostics. Each of these factors is discussed here.  

    6.1.3.3   Short Reads 

 Reads produced by Sanger sequencing, while longer than those produced in NGS 
experiments, are even themselves each only a small fraction the length of even the 
smallest genomes. WGS attempts to overcome this limitation through signifi cantly 
over-sampling the target genome, producing reads from random positions along the 
molecule. Through this deep, random over-sampling assemblers attempt to reproduce 
the original target sequence.  
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    6.1.3.4   Dataset Size 

 NGS experiments produce a massive amount of data, increasing the computational 
complexity of assembly simply by the size of such datasets. Many NGS assemblers 
manage these large volumes of data through use of K-mers. A K-mer is simply a 
series of contiguous base calls of length  K , where  K  is any positive integer. Instead 
of searching for overlaps, assemblers search reads for shared K-mers, being generally 
easier to identify shared K-mers than overlaps. While K-mer-based algorithms are 
less sensitive than overlap-based algorithms and so may miss some true overlaps, 
the computational complexity associated with detecting shared K-mers is signifi -
cantly lower than an all-against-all overlap search. It is important to choose a  K  such 
that most false overlaps do not share a K-mer by chance and small enough that most 
true overlaps do share a K-mer.  

    6.1.3.5   Sequencing Error 

 Regardless of the NGS platform used to generate reads, each base of output has 
some probability of being incorrectly called. Base-calling errors increase assembly 
diffi culty, in particular by confounding repeat resolution. Assemblers must be robust 
against imperfect sequence alignments to avoid construction of false-positive joins.  

    6.1.3.6   Repeats 

 Regions in the target which share perfect repeats can be indistinguishable, especially 
when the repeated regions are longer than the read length. Inexact repeats can be 
separated through careful correlation of reads by patterns in their different base calls 
(Kececioglu and Ju  2001  ) . Repeat separation is made easier by high coverage and 
made harder by base-calling error. Resolving repeats shorter than reads requires 
suffi cient unique read sequence on either side of the repeated region. For resolving 
repeats longer than the read length, paired ends or “mate-pairs” are necessary.  

    6.1.3.7   Nonuniform Coverage 

 As WGS sequencing randomly samples the target genome, through chance alone 
it is unlikely that the target will be sequenced at uniform coverage. Coverage non-
uniformity is also induced by variation in cellular copy number between source 
molecules and through biases inherent in the different sequencing technologies. 
Too low coverage can result in assembly gaps, and coverage variability invalidates 
coverage-based statistical tests and diagnostics used, for example, to detect over-
collapsed repeats.  
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    6.1.3.8   Comparing Assemblies 

 Assemblies are measured by size and accuracy of their contigs and scaffolds, 
communicated in statistics such as maximum contig or scaffold length and com-
bined total length. Assemblies can also be measured by their N50, defi ned as the 
smallest contig in the set of largest contigs whose combined length accounts for at 
least 50% of the total assembly. Also important is the assembly’s degree of paired-end 
gap-length constraint satisfaction. Finally, alignments to similar previously curated 
reference sequence are valuable when such reference sequences exist.    

    6.2   Graphs 

    6.2.1   What is a Graph? 

 NGS assemblers can be organized into three broad categories, including greedy 
assemblers, overlap-layout-consensus assemblers, and de Bruijn graph assemblers. 
While details differ signifi cantly between categories, each of these techniques is 
based implicitly or explicitly on graphs. 

 A graph is an abstract representation of a set of objects, depicted as vertices, or 
nodes. Nodes may be connected, represented by an edge between two nodes. Edges 
may be directed or undirected. Directed edges may only be traversed in one direction 
between its connected vertices, while undirected edges may be traversed in either 
direction; directed edges connect a source node to a sink node. A graph may be 
conceptualized as a set of dots representing its vertices, with interconnecting lines 
representing its edges. Given a graph, a path through the graph is an ordered set of 
nodes representing a traversal of edges and nodes.  

    6.2.2   Graphs Types 

 Several different types of graphs are used by NGS assemblers, primarily distin-
guished by how a node is defi ned and implemented. Here we describe three different 
graph types, including overlap graphs, de Bruijn graphs, and K-mer graphs. 

    6.2.2.1   Overlap Graph 

 An overlap graph explicitly represents reads and the overlaps between them. Read 
overlaps are computed by a series of all-versus-all pair-wise read alignments. Here 
reads are represented by nodes, while overlaps between reads are represented 
by edges. The graph may use distinct elements to represent forward and reverse 
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complement sequences, read directionality, and overlap lengths. Potential contigs 
are derived from paths through the graph which can be converted directly to 
sequence. To preserve the semantics of DNA’s double-stranded structure, the graph 
can be constructed in one of two ways. First, the graph can have separate nodes for 
read ends in which case paths must exit the opposite end of the read than they enter. 
Second, the graph can have separate edges for the forward and reverse strands, in 
which case paths must exit a node on the same strand that they enter.  

    6.2.2.2   De Bruijn Graph 

 A De Bruijn graph (DBG) is a directed graph used to represent overlaps between 
sequences of symbols. Here nodes represent all possible fi xed-length strings pro-
ducible by a fi nite alphabet, while edges represent suffi x-to-prefi x perfect overlaps 
between these strings.  

    6.2.2.3   K-mer Graph 

 A K-mer graph is a construct similar to the DBG. In the K-mer graph, nodes repre-
sent all fi xed-length subsequences drawn from a larger sequence while edges rep-
resent all fi xed-length overlaps between these subsequences. Nodes may represent 
overlaps of  K  − 1 bases, in which case an edge would exist for the K-mer starting at 
each base. 

 Instead of representing a single sequence, a K-mer graph may represent a set of 
sequences. Here the K-mer graph may represent the set of input reads, each of which 
induces a path. One implicit advantage in this case is the discovery of perfect over-
laps without any pair-wise sequence alignment calculations as shown in Fig.  6.1 .  

 K-mer graphs are more sensitive to repeats and sequencing errors than overlap 
graphs due to the shorter length of K-mers versus the length of reads. Each single-
base sequencing error induces up to  K  false nodes, with each false node having some 
chance of matching some other node spuriously, leading to false paths convergence.   

  Fig. 6.1    A pair of aligned reads represented by a K-mer graph with a  K  of size 4. (1) Two reads 
share an overlap of fi ve bases. (2) One K-mer graph represents both reads. (3) A contig is defi ned 
through a simple path through the graph, without need for explicit pair-wise sequence alignment 
calculations       
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    6.2.3   Challenges 

 In building overlap and K-mer graphs from next-generation sequencing data, 
several key complications are commonly encountered. These complications include 
short, dead-end subpaths known as spurs, paths that converge then diverge resulting 
in a frayed-rope pattern, paths that diverge then converge known as bubbles, 
and cycles which cause paths to converge on themselves. Each of these issues is 
discussed here. 

    6.2.3.1   Spurs 

 Induced by sequencing error toward one end of a read, spurs are short, dead-end 
subpaths branching from the main path. Spurs may also be a result of gaps in coverage, 
illustrated in Fig.  6.2 (1).   

    6.2.3.2   Frayed-Rope 

 Paths that converge then diverge form a frayed-rope pattern. Frayed-rope patterns 
are induced by repeats in the target, illustrated in Fig.  6.2 (2).  

  Fig. 6.2    Several different types of graph complications are shown here. (1) Spurs are short dead-end 
subpaths, usually caused by a base-call error near the end of a read. (2) Repeat sequences induce 
the frayed-rope pattern. (3) Bubbles are usually caused by base-call error in the middle of reads       
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    6.2.3.3   Bubbles 

 Bubbles occur when a path diverges and then converges. Bubbles are induced by 
sequencing error in the interior of a read and by true polymorphism in the target. 
As exact bubble detection is intractable, heuristics are generally used when search-
ing for bubbles, illustrated in Fig.  6.2 (3).  

    6.2.3.4   Cycles 

 Paths that converge on themselves form cycles.    

    6.3   Approaches to Assembly 

    6.3.1   Greedy Assemblers 

    6.3.1.1   Introduction 

 Early NGS assembler offerings were based on naïve, greedy algorithms, extending 
contigs based only on current information available at each step. These algorithms 
worked on the simple principle of iteratively extending a read or contig by adding 
one more read or contig, based on sequence overlaps. This operation was repeated 
until the current read or contig could be extended no further, after which the next 
read or contig was extended in the same manner, until there were no more contigs 
to extend. Each extension operation chooses the current highest-scoring sequence 
overlap, scoring overlaps based on traits such as the number of matching bases. 
These types of naïve algorithms can easily become stuck at local maxima if, for 
example, the current contig is extended by reads which may have helped other 
contigs to grow even longer. While greedy assembler algorithms are implicitly 
based on graphs, no explicit graph is saved and the graph operations are drastically 
simplifi ed by considering only the highest-scoring edges during contig assembly. 

 All assemblers need mechanisms to reduce the incorporation of false-positive 
overlaps into contigs, and greedy algorithms are no exception. If an assembler 
scores overlaps based only on read depth, for example, false overlaps based on 
repetitive sequence could score higher than true overlaps. In this case, the resulting 
contigs would be the result of joining unrelated sequences on either side of a repeat. 
Implementing techniques for avoiding such situations is important.  

    6.3.1.2   SSAKE 

 As the fi rst short-read assembler, SSAKE (Warren et al.  2007  )  was designed to 
assemble unpaired reads of uniform length. SSAKE begins by indexing reads by 
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their prefi xes in a lookup table. Reads are searched iteratively for those whose 
prefi x overlaps the end of the growing contig over some minimum length. 

 During contig extension, SSAKE chooses among reads with equally long overlaps 
based on several factors. First, reads whose sequence is confi rmed by other reads 
are preferred. This helps avoid the incorporation of error-containing reads which 
should have very low sequence multiplicity. Second, SSAKE detects when the set 
of candidate reads presents multiple different extensions by identifying when candi-
date read suffi xes contain differences confi rmed in other reads, cases resulting in 
graph branching. Here, SSAKE ceases extension of the current contig. This default 
behavior may be overridden by the user. 

 If no reads satisfy the initial minimum overlap threshold SSAKE decrements the 
threshold length until a second minimum is reached, allowing the user to specify 
how aggressively SSAKE pursues extensions through possible repeat boundaries 
and low-coverage regions. Extensions to SSAKE have allowed the software to 
exploit paired-end reads and reads with mismatches.  

    6.3.1.3   SHARCGS 

 Like SSAKE, SHARCGS (Dohm et al.  2007  )  was designed to assemble high-
coverage, unpaired reads of uniform length and operates in a manner similar to 
SSAKE while adding pre- and postprocessing to SSAKE’s basic iterative extension 
algorithm. Its preprocessor fi lters potentially erroneous reads by requiring that exact 
full-length matches be present in other reads. A more stringent fi lter is available, 
one which requires that the combined quality values of matching reads exceed some 
minimum threshold. 

 SHARCGS fi lters reads three times, resulting in three different fi ltered read sets. 
Each read set is assembled separately through iterative contig extension, followed 
by a postprocess. In this postprocess SHARCGS merges the three resulting contig 
sets through sequence alignment, aiming to extend contigs from highly confi rmed 
reads through the integration of longer contigs from lower-stringency read sets.  

    6.3.1.4   VCAKE 

 Another assembler based on the iterative extension algorithm, VCAKE (Jeck et al. 
 2007  )  differentiates itself from other similar assemblers by possessing the ability to 
incorporate imperfect matches during contig extension. When extending contigs, 
VCAKE utilizes a voting mechanic. All reads whose prefi xes match the end of the 
growing contig for at least some minimum length and with at least some minimum 
coverage are aligned to the growing contig. The contig is extended by one base at 
a time, at the contig’s  n  + 1 position. Each time the contig is extended, the identity 
of the base added to the end of the contig is determined by votes cast by the aligned 
reads. Each aligned read casts a vote for its base at the  n  + 1 position, with the 
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identity of the added base determined as the base with the highest number of votes. 
In this way VCAKE favors reads containing sequences with higher multiplicity in 
an attempt to minimize the incorporation of errors, while preserving its ability to 
use error-containing reads.  

    6.3.1.5   QSRA 

 Created in an effort to lengthen contigs past low coverage regions, QSRA (Bryant 
et al.  2009  )  extends the VCAKE voting algorithm through the use of quality scores. 
Contig extension proceeds as in the VCAKE algorithm until extension would other-
wise halt due to low coverage. In this case, QSRA continues contig extension if the 
bases aligned to the contig suffi x match or exceed some minimum quality score. 
While still a greedy implementation, in some cases QSRA manages to extend contigs 
signifi cantly further than possible using the same algorithm but without this use of 
quality scores.   

    6.3.2   Overlap-Layout-Consensus 

    6.3.2.1   Introduction 

 Optimized for large genomes and for read lengths of at least one hundred base-pairs 
(bp), assemblers based on the overlap-layout-consensus (OLC) approach operate in 
three stages. First, read overlaps are catalogued. Second, an overlap graph is built. 
Finally, the consensus sequence is determined.  

    6.3.2.2   Overlap Discovery 

 In this fi rst stage, read overlaps are computed. This involves an all-against-all pair-
wise comparison of reads, accomplished through use of a seed-and-extend heuristic. 
Here, K-mer content is precomputed across all reads. Reads which share K-mers are 
selected as overlap candidates, followed by computation of alignments using K-mers 
as alignment seeds.  

    6.3.2.3   Layout and Manipulation 

 Based on discovered overlaps, in this stage the overlap graph is built and optimized 
leading to an approximate read layout. Original input reads are no longer needed at 
this point and may be purged from computer memory.  
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    6.3.2.4   Consensus 

 Finally, multiple sequence alignment (MSA) determines the layout of all the reads 
after which the consensus sequence is inferred. As there is no known effi cient 
method to compute the optimal MSA (Want and Jiang  1994  ) , progressive pair-wise 
alignments are used. Multiple contigs may be assembled in parallel during this 
stage.  

    6.3.2.5   Newbler 

 Distributed by 454 Life Sciences as a closed-source application, Newbler (Margulies 
et al.  2005  )  is a widely used OLC-based assembler. Newbler’s fi rst release targeted 
unpaired reads of approximately 100 bp but has since been revised to exploit paired-
end constraints and to operate on much longer reads. 

 Newbler uses two rounds of OLC. In the fi rst OLC round mini-assemblies, or 
unitigs, are generated from reads. Unitigs are ideally uncontested by overlaps to 
reads in other unitigs and serve as preliminary, high-confi dence contigs used to seed 
later assemblies. In the second OLC round, larger contigs are generated from these 
unitigs in a process that joins unitigs into a contig layout based on their pair-wise 
overlaps. Unitigs may be split in cases where one’s prefi x and suffi x align to different 
contigs. In these cases splits may actually represent the splitting of individual reads, 
leading to individual reads being placed in different contigs. 

 When possible Newbler exploits instrument metrics to overcome base-calling 
error. With 454 data, there is some associated uncertainty in homopolymer run 
length. Newbler uses the 454 platform-supplied signal strength associated with each 
nucleotide call to accurately determine the number of contiguous bases in these 
homopolymer repeats. Unitig and contig consensus sequences are determined in 
“fl ow space,” in which the normalized signal is proportionally correlated to the 
number of nucleotide repeats at that position in the read. Newbler calculates the 
average signal for each column in the MSA to form the consensus.  

    6.3.2.6   Celera Assembler/CABOG 

 Originally implemented for the assembly of Sanger reads, the Celera Assembler has 
been revised for 454 data (Batzoglu et al.  2002  )  in a pipeline called CABOG (Miller 
et al.  2008  ) . To overcome the homopolymer run-length uncertainty inherent to 454 
data, CABOG collapses homopolymer repeats to single bases. 

 Unitigs are initially built out of only those reads which are not substrings of larger 
reads, a concern due to the highly variable read length in 454 data. These substring-
reads are initially avoided due to their higher susceptibility to repeat-induced false 
overlaps. 

 A base-call error correction scheme is also applied by CABOG. Here, each read 
is compared to its set of overlapping reads, with errors inferred where bases are 
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contradicted by many overlaps. Instead of fi xing the read directly, CABOG modifi es 
its error rates in overlaps spanning the inferred error. A user-supplied threshold for 
error rates is then applied, fi ltering out reads whose error rates are too high. From 
the surviving overlaps a fi lter for minimum alignment length is applied, followed 
by the selection of the overlap with the most aligned bases for each read end. This 
simple overlap selection method, choosing the overlap with the most aligned 
bases, eliminates many of the same suboptimal overlaps by the more complex 
transitive edge removal algorithm (Myers  1995  ) , implemented in the original 
Celera Assembler. 

 CABOG then constructs its overlap graph from these reads and overlaps. Unitigs 
are built from this graph out of maximal simple paths which are free of branches and 
intersections, after which a graph of unitigs plus paired-end constraints is constructed. 
Within this unitig graph unitigs are joined into contigs and contigs into scaffolds, 
applying a series of graph reductions including removal of transitively inferable 
edges. CABOG fi nally derives consensus sequences through the computation of 
multiple sequence alignments from the scaffold layouts and reads.  

    6.3.2.7   Edena 

 Whereas most OLC assemblers target assembly of Sanger or 454 data, Edena 
(Hernandez et al.  2008  )  was designed to assemble homogeneous-length short reads 
from the Illumina and SOLiD platforms. In a similar algorithm to other OLC assem-
blers, Edena fi rst discards duplicate reads, after which Edena fi nds all perfect over-
laps of at least some minimum length. Individual overlaps that are redundant with 
pairs of other overlaps are removed, followed by the removal of spurs and bubbles. 
Finally, contigs are assembled by following unambiguous paths in the graph.   

    6.3.3   De Bruijn Graph 

    6.3.3.1   Introduction 

 Most widely applied to data from the Illumina and SOLiD platforms, the DBG 
approach takes its name from the ideal scenario where, given perfect, error-free 
K-mers spanning every repeat and fully covering the target genome, the graph would 
be a de Bruijn graph containing a path that traverses every edge exactly once. While 
real NGS data does not fi t this ideal scenario, this approach remains an attractive 
one for dealing with large quantities of data. As the DBG relies on K-mers, an all-
against-all overlap search is unnecessary. Further, individual reads need not be 
stored, and redundant sequence is compressed. Still, for large genomes the K-mer 
graph can require a massive amount of computer memory. 

 Graph construction occurs through an exhaustive K-mer search over the input 
reads. K-mers are generally catalogued in a hash-table, allowing for constant-time 
lookups during graph construction. While this hash-table does require some computer 
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memory, only a single copy of each K-mer is stored, leading to a smaller memory 
footprint than the input reads given that the reads share K-mers. Sequence assembly 
follows naturally from graph construction, though assembly is complicated by several 
real-world factors, including the double-stranded nature of DNA, palindromes, 
sequencing error, and genomic repeats. Each of these factors is discussed here.  

    6.3.3.2   Double Strandedness 

 When searching for read overlaps it is important to account for the double-stranded 
nature of DNA, recognizing that the forward sequence of a read may overlap either 
the forward sequence or the reverse complement sequence of other reads. Several 
different K-mer graph implementations have been developed to facilitate this type 
of search. One implementation stores the forward and the reverse complement 
strands together in a single node with two halves, forcing paths to enter and exit the 
same half (Zerbino and Birney  2008  ) . Another implementation creates nodes for 
both strands, later ensuring that the resulting sequence is not output twice (Idury 
and Waterman  1995  ) .  

    6.3.3.3   Palindromes 

 DNA sequences which are themselves their own reverse complements are known 
as palindromic sequences. Palindromic sequences induce paths that fold back into 
themselves. Some assemblers including Velvet (Zerbino and Birney  2008  )  and 
SOAPdenovo (Li et al.  2009  )  prevent this issue by requiring that K-mer lengths 
be odd.  

    6.3.3.4   Sequencing Error 

 DBG assemblers employ several techniques to mitigate issues resulting from 
sequencing error. First, many assemblers preprocess the reads and either remove 
errors through base substitution, remove the error-containing reads themselves, or 
catalogue all encountered errors for later use. Second, graph edges which represent 
a higher number of K-mers are more highly trusted than those representing low 
numbers. Third, paths through the DBG are converted to sequence, and sequence 
alignment algorithms are used to collapse highly similar paths.  

    6.3.3.5   Repeats 

 Several types of complex repeat structures are present in real genomes, including 
inverted repeats, tandem repeats, inexact repeats, and nested repeats. K-mers 
shorter than the length of a repeat lead to unresolvable sequences, inducing graph 
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complications. Perfect repeats of length at least  K  lead to frayed-rope patterns within 
the graph, where paths converge then diverge. One technique for resolving such 
repeat-induced graph complications is through the use of mate pair constraints. 

 Several DBG assemblers are discussed here, with emphasis on specifi c imple-
mentation details and differences.  

    6.3.3.6   Euler 

 Developed originally to assemble Sanger reads (Pevzner et al.  2001  ) , DBG-based 
Euler has been modifi ed to operate on 454 reads (Chaisson et al.  2004  ) , single-end 
Illumina reads (Chaisson and Pevzner  2008  ) , and paired-end Illumina reads 
(Chaisson et al.  2009  ) . 

 Prior to building its DBG, Euler fi rst applies a preprocess fi ltering step dubbed 
spectral alignment to the input reads in an attempt to detect base-call errors. 
Relying on both read redundancy and on the randomness of sequencing errors, 
this fi lter attempts to detect erroneous base calls by identifying K-mers with low 
frequency. Where most true K-mers will be repeated over many reads, K-mers 
resulting from base-call errors should occur with a much lower frequency. 

 Euler’s fi ltering step is implemented by fi rst associating each K-mer with its 
observed frequency over the input reads, after which K-mers with frequency 
below some threshold are either corrected or removed from the input set. This 
threshold is calculated after computing the distribution of K-mer frequencies 
over all input reads, a distribution which is usually bi-modal. In this bi-modal 
distribution, the fi rst peak entails low-frequency K-mers assumedly present due 
to sequencing errors, while the second peak entails true positive K-mers, present 
due both to redundant read coverage and genomic repeats. On this distribution, 
Euler bases its frequency threshold. K-mers below this threshold are presumed to 
be and labeled as false while K-mers above this threshold are presumed and 
labeled true. 

 Once all K-mers present in the input set have been labeled as either false or true, 
Euler examines each input read. For each read which contains one or more false 
K-mers, Euler attempts to substitute bases in a greedy manner such that the false 
K-mers are eliminated. After this correction step if the read is fully corrected it is 
accepted, otherwise it is rejected. Rejected reads may be used later following assembly 
to bridge low-coverage regions. 

 While correction is important for reads with both high error and high coverage, 
correction can mask true polymorphism and can destroy true K-mers whose low 
representation is due only to chance. Further, correction may create an incorrect 
read by settling on K-mers which individually occur in several reads but which 
never otherwise occur together in a single read. Assemblers based on the OLC 
approach have an analogous base-call correction step based on overlaps instead of 
on K-mers. 
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 From these fi ltered and corrected reads, Euler creates a K-mer graph which 
subsequently undergoes a series of manipulations. As the graph is based on K-mers 
rather than on reads directly some information is lost. Euler attempts to recover this 
information in a read-threading step by laying entire reads onto its K-mer graph 
following graph construction, where reads map to unique nodes and are consistent 
with some graph traversal. Reads ending within a repeat are consistent with any 
path which exits the repeat, while reads spanning a repeat are consistent only with 
a subset of these paths. Each read within this second group, those spanning repeats, 
are used to resolve one copy of the collapsed repeat, allowing for the resolution of 
repeats whose length is between  K  and the read length. 

 Paired-end reads are treated by Euler as long reads with interior unknown bases 
and are used to resolve repeats which are longer than individual reads. Paired-end 
reads which span a repeat are used to join one path which enters the repeat with one 
path which exits the repeat, and to resolve some complex repeat-induced tangles. 
Multiple paths may exist in the graph between two nodes where each of the two nodes 
corresponds to one end of a paired-end read, with each path indicating a different 
DNA sequence. In some cases, only a single such path will satisfy the paired-end 
length constraint whereby the correct DNA sequence is easily identifi ed. Otherwise, 
as exhaustive search over all paths between a mate pair may be intractable, Euler 
restricts the search space by using the paired-end length as a bound on path length. 

 In the next step, Euler applies graph simplifi cations. Assuming that spurs are due 
to sequencing errors unidentifi ed by its spectral alignment fi lter, Euler applies spur 
erosion which reduces path branching and results in the lengthening of simple paths. 
Edges that appear repetitive are then identifi ed and removed. 

 As many NGS platforms produce reads with lower quality base calls near their 3 ¢  
ends, Euler trusts read prefi xes more than it does read suffi xes. Trusted prefi xes of 
variable length are identifi ed during the spectral alignment step. Prefi xes and suffi xes 
can map to multiple paths during read threading. Euler favors mappings that are 
signifi cantly better than the second-best choice. Suffi xes are allowed to contribute 
to connectivity only. 

 In a K-mer graph, larger values for  K  work to resolve longer repeats but can 
contribute to fragmentation in regions of low coverage. Euler addresses this tradeoff 
through the construction and processing of not one but two different K-mer graphs, 
each with its own value for  K . Edges which are present in the smaller-K graph but 
missing in the larger-K graph are added as pseudo-edges to the larger-K graph. 
Paths in the larger-K graph which are extended by these pseudo edges work to 
elongate contigs during assembly. In effect this technique creates initial, reliable 
contigs through a large  K  value and then bridges gaps with shorter K-mers. This 
technique is analogous to gap-fi lling in OLC assemblers. 

 Initially implemented as a method for converting genomic sequence to a repeat 
graph, a data structure known as an A-Bruijn graph is a combination of an adjacency 
matrix and a DBG. Used by some of the Euler software, in this structure graph nodes 
represent consecutive columns in multiple sequence alignments. These nodes can be 
less sensitive to sequencing error as compared to nodes representing K-mers.  
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    6.3.3.7   Velvet 

 A very popular choice among DBG assemblers due both to its effectiveness and 
ease of use, Velvet (Zerbino and Birney,  2008  )  performs graph simplifi cations which 
collapse simple paths into single nodes. This graph simplifi cation process can yield 
much simpler graphs while avoiding information loss and is invoked during initial 
graph construction in addition to several times during its assembly process. 
Introduced as elimination of singletons for K-mer graphs (Idury and Waterman 
 1995  ) , this step is analogous to unitig formation in overlap graphs (Myers  1995  )  and 
OLC assemblers (Myers et al.  2000  ) . 

 Spurs are removed iteratively in a manner similar to Euler’s erosion procedure, 
but a procedure equivalent to Euler’s spectral alignment fi lter is not applied by 
Velvet. While Velvet does allow user specifi cation of a minimum number of occur-
rences for a K-mer to qualify as a graph node, use of this naive parameter is discour-
aged in the Velvet documentation. 

 To reduce graph complexity, Velvet performs a bounded search for bubbles in the 
graph. Velvet’s tour bus algorithm begins at nodes with multiple outgoing edges 
and, utilizing a breadth-fi rst search, seeks out bubbles within the graph. Since it is 
possible in graphs of real data for bubbles to be nested within bubbles an exhaustive 
search for all bubbles would be intractable. Candidate paths are traversed in parallel, 
stepping ahead one node on each path every iteration until the path lengths exceed 
a threshold, thereby bounding the search. Bubble candidates are narrowed to those 
which have sequence similarity on the alternate paths. Velvet removes the path 
represented by fewer reads and then re-aligns reads from the removed path to the 
remaining path. This read re-alignment step utilizes what is essentially a column-
by-column voting mechanic to call consensus bases which may end up masking 
genuine sequence differences due to polymorphism or over-collapse of near-identical 
repeats. This procedure is similar to bulge removal in Euler and analogous to bubble 
detection and bubble smoothing in OLC assemblers. 

 To further reduce graph complexity, Velvet removes paths represented by fewer 
reads than a threshold in a procedure called read threading. While this operation 
does risk removing true low-coverage sequence, it removes mostly spurious con-
nections induced by convergent sequencing errors. If long reads were provided, 
Velvet exploits these reads through an algorithm called “Rock Band.” This algorithm 
forms nodes out of paths confi rmed by two or more long reads provided that no 
other two long reads provide a consistent contradiction. 

 In its fi nal graph reduction step, Velvet addresses mate pairs. Early versions of 
Velvet used an algorithm called “breadcrumb” similar to mate pair threading in 
DBG algorithms and gap fi lling in OLC algorithms. This algorithm operated on 
pairs of long simple paths, or contigs, connected by mate pairs. These long contigs 
were used to anchor the gap between which Velvet attempted to fi ll with short contigs. 
All short contigs linked to either long contig were gathered. Over the DBG, a 
breadth-fi rst search was conducted in an attempt to fi nd a single path linking the long 
contigs by traversing these short contigs. Later versions of Velvet use an algorithm 
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called “pebble” in which unique and repeat contigs substitute for breadcrumb’s long 
and short contigs, respectively. The decision to classify a contig as unique or repeat 
is based on read coverage per contig via a statistical test similar to the A-stat in 
Celera Assembler and a given coverage expectation. The given insert length distri-
bution is exploited to build an approximate contig layout. The DBG is then searched 
for a path that is consistent with this layout. 

 Three of Velvet’s parameters are of critical importance. The fi rst such parameter 
is the length of the K-mers, constrained to be an odd integer to preclude nodes 
representing palindromic repeats. Second is the minimum expected frequency of 
K-mers in the reads, which determines those K-mers to be pruned  a-priori . Finally, 
the expected coverage of the genome in read depth controls spurious connection 
breaking.  

    6.3.3.8   ABySS 

 Designed specifi cally to address memory limitations when assembling large 
genomes, ABySS (Simpson et al.  2009  )  is a distributed DBG assembler implemen-
tation. ABySS distributes its K-mer graph and graph computations across a set of 
computers in an effort to use their combined memory. 

 When designing a task to function on a computational grid as ABySS does, several 
issues must be addressed. It must be possible to partition the problem evenly into 
subtasks, to distribute each subtask evenly across the grid, and to fi nally combine 
sub-results into an overall solution. ABySS partitions the assembly process at the 
individual node level, assigning multiple nodes to any individual CPU, and then 
processes each node separately. Graph nodes are assigned to CPUs by converting 
the node’s K-mer to an integer in a strand-neutral manner such that both a K-mer 
and its reverse complement map to the same integer. 

 Parallel implementations of the graph simplifi cations used by Euler and Velvet 
are applied by ABySS. Spurs shorter than a threshold are removed iteratively, bubbles 
are smoothed by a bounded search which prefers paths supported by more reads, 
simple nonintersecting paths are transformed into contigs, and mate threading is 
performed. 

 ABySS uses a representation of the K-mer graph in which each node represents 
a K-mer and its reverse complement. Each graph node maintains an additional 8 bits 
of information representing the existence or nonexistence of each of the four possible 
one-base extensions at either end, upon which graph edges are inferred. Graph paths 
are followed in parallel starting at arbitrary graph nodes per CPU. Successors are 
determined by converting the node’s last  K  − 1 bases plus its one-base extension 
numerically to the address of the successor node. When a path traverses a node 
located on a separate CPU the process requests the remote information, working on 
other graph nodes while waiting for a response. ABySS exploits paired-end reads to 
merge contigs in a postprocess.  
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    6.3.3.9   AllPaths/AllPaths-LG 

 Like AbySS, AllPaths (Butler et al.  2008  )  is a DBG implementation targeted at 
large genome assembly. 

 AllPaths begins by applying a read-correcting preprocessor, similar to Euler’s 
spectral alignment step, in which AllPaths trusts K-mers occurring with high fre-
quency and with overall high quality. Here, each base must be confi rmed by a mini-
mum number of base calls with a quality value above a threshold. This fi lter operates 
on K-mers for three different values of  K , retaining only those reads containing 
trusted K-mers. Rejected reads may be retained in one of two ways. First, if by 
substituting up to two low-quality base calls makes its K-mers trusted, and second, 
if a read is essential for building a path between paired-end reads. 

 In a second preprocessor step “unipaths” are created. This process begins with 
the calculation of perfect read overlaps seeded by K-mers. A numerical identifi er is 
assigned to each K-mer such that K-mers seen consecutively in reads and in overlaps 
receive consecutive identifi ers. A database is populated with identifi er intervals and 
the linking reads between them after which appropriate intervals are merged. Based 
on this database AllPaths builds its DBG. 

 To its DBG AllPaths fi rst applies spur erosion, or what it calls “unitig graph 
shaving,” followed by a partitioning of the graph designed to resolve genomic 
repeats by assembling regions that are locally nonrepetitive. Heuristics are then 
applied to choose partitions that form a tiling path across the genome. Partitions are 
seeded with nodes corresponding to long, moderately covered, widely separated 
contigs, after which partitions are populated with nodes and reads linked by align-
ments and mate pairs. Gaps between paired-end reads are fi lled by searching the 
graph for instances where the mate-pair distance constraint is satisfi ed by only a 
single path. Each partition is assembled separately and in parallel. Partitions are 
then bridged where they have overlapping structure in an operation analogous to 
joining contigs based on sequence overlaps. 

 AllPaths heuristically removes spurs, small disconnected subgraphs, and paths 
which are not spanned by paired-ends. Cycles are explicitly defi ned to match 
paired-end distance constraints. Paired-ends are used to resolve repeats displaying 
a frayed-rope pattern. 

 AllPaths-LG adds several improvements to the AllPaths algorithm. Better error-
correction capabilities preserve true SNPs while removing as many sequencing 
errors as possible, gap fi lling and scaffolding are improved, and graph simplifi cation 
has been tuned for better eukaryotic sequence assembly.  

    6.3.3.10   SOAPdenovo 

 A third DBG implementation and one targeted at large genome assembly, 
SOAPdenovo (Li et al.  2009  )  is a freely available but closed-source application that 
draws from both OLC and DBG techniques, with an emphasis on minimizing its 
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memory footprint. Like Velvet, SOAPdenovo requires an odd K-mer size to preclude 
the creation of nodes representing palindromic repeats. 

 SOAPdenovo begins by applying a read-correcting preprocessor using preset 
thresholds for K-mer frequencies, after which its DBG is built. Spur erosion and 
read threading are applied, followed by the splitting of paths displaying a sym-
metrical frayed-rope pattern. Bubbles are removed in a manner similar to Velvet’s 
tour bus where higher read coverage determines surviving paths. SOAPdenovo’s 
DBG is more space-effi cient than those generated by Euler and Velvet, electing not 
to store read-tracking information. 

 Contigs are built from reads via its DBG after which SOAPdenovo discards its 
DBG and builds scaffolds. Paired-end reads, including those not used in the DBG, 
are mapped to the contig consensus sequences. A contig graph is then built whose 
edges represent mate pair constraints between contigs. Complexity is reduced in the 
contig graph through the removal of edges transitively inferable from others and by 
isolating contigs traversed by multiple, incompatible paths which are assume to be 
collapsed repeats. In order to preclude the construction of interleaving scaffolds, 
SOAPdenovo, like AllPaths, processes contig graph edges in order from small to 
large. Mate pairs are used to assign reads to gaps between neighbor contigs within 
a scaffold in a manner similar to CABOG’s “rocks and stones” technique and to 
Velvet’s “breadcrumbs” and “pebble” techniques. DBGs are used to assemble the 
reads assigned to each gap.    

    6.4   Summary 

 De novo assembly of next-generation sequence data is imperfect due to complexi-
ties inherent in large genomes and sequence error and will remain so. While many 
different assemblers have been implemented, all successful assemblers draw from a 
common set of features. First, assemblers use implicit or explicit graphs to represent 
reads and their overlaps. Second, while accomplished in a variety of ways, assem-
blers must have error detection and correction capabilities to address sequencing 
error. Preprocesses may eliminate errors in reads, and error-induced paths may later 
be removed. Third, nonintersecting paths are collapsed into single nodes. Finally, 
assemblers convert paths to contigs, and contigs to scaffolds. 

 Until now, DBG assemblers have enjoyed the most success on NGS data. 
Optimized for reads of length 100 bp and below, these assemblers have proliferated 
in the current NGS environment. Originally designed and implemented to assemble 
longer reads, OLC assemblers may begin to overtake DBG assemblers as NGS read 
lengths continue to grow. 

 As technology improves, next-generation platforms produce longer reads, higher 
data volumes, and fl uctuating error rates. Assemblers will continue to evolve along 
with these continually shifting requirements, and will remain an exciting topic of 
investigation.      
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  Abstract   Present-day high-throughput sequencing techniques routinely produce a 
fl ood of genomic information (as high as 540-600 Gbases/machine/week for some 
technologies). The output comes under the form of short sequence reads; in a typi-
cal resequencing application (where the knowledge of a reference genome for the 
organism being studied is assumed) the sequence reads need to be aligned to the 
reference. 

 Such high yields make the use of traditional alignment programs like BLAST 
unpractical; while resequencing, on the other hand, one is usually interested in con-
sidering only matches showing a very high sequence similarity with the original 
read. This new working setup required the development of a generation of new 
high-throughput lower-sensitivity alignment programs, called short-read mappers. 

 Infl uenced by the standpoint of the algorithm designer, published literature tends 
to overemphasize speed, and standard working conditions, at the expense of accu-
racy. In this chapter we attempt to review the state-of-the-art of short-read align-
ment technology, focusing more on the user’s standpoint, and on what is necessary 
to know to be able to design a high-quality mapping analysis workfl ow, rather than 
on purely technical issues.      

    7.1   Introduction 

 Present-day high-throughput sequencing (HTS) techniques routinely produce a 
fl ood of genomic information. For instance Illumina/Solexa sequencing  ( Metzker 
 2010  ) , one of the most widespread technologies at the time of this writing, is able to 
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provide impressive yields: one single HiSeq 2000 machine produces 150–200 Gbases/
run – each run lasting about one week, and relatively minor hardware upgrades are 
expected to boost the technology to 540–600 Gbases/run/machine in a few months 
from now (late 2011). The output of HTS machines comes under the form of short 
 sequence reads , typically 75–150 nt for Illumina, and 400–1,000 nt for 454/Roche 
(Rothberg and Leamon  2008  )  (the latter at the price of a much lesser yield). 

 A typical application of short reads generated by HTS is to use them in a rese-
quencing setup: the knowledge of a  reference genome  for the organism being studied 
is assumed, and the sequence reads need to be aligned (or  mapped  in HTS parlance) 
to the reference genome. The yield of HTS technologies makes the use of traditional 
alignment programs like BLAST  ( Altschul et al.  1990  )  unpractical; while resequenc-
ing, on the other hand, one is usually interested in considering only matches having 
a very low maximum possible number of differences from the reference – that is, 
matches showing a very high sequence similarity with the original read. Such new 
working setup required the development of a generation of new high-throughput 
lower-sensitivity alignment programs, called  short-read mappers . 

 Infl uenced by the standpoint of the algorithm designer, published literature tends 
to overemphasize speed at the expense of accuracy. In particular, little or no heed is 
usually paid to the fact that mapping performance strongly depends on the parameter 
space one wishes to explore – the unpleasant truth being that in several situations 
mapping parameters are dictated by the biological problem at hand, and do not 
coincide with those chosen by the algorithm developer. 

 This leads to the wrong perception that something like an “always-ultrafast” 
mapping method can exist, while in real life, quite to the contrary, all alignment 
methods always embed complicated trade-offs between speed and accuracy. In turn, 
such erroneous statements generate in the users a nonchalant attitude, following 
which mapping programs are often selected on the basis of hearsay beliefs (“I have 
been told that this method is very fast”) rather than on their aptness to the specifi c 
task at hand. 

 In this chapter we attempt to review the state-of-the-art of short-read alignment 
technology, focusing more on the user’s standpoint, and on what is necessary to 
know to be able to design a high-quality HTS mapping analysis workfl ow, rather 
than on the point of view of the algorithm implementor.  

    7.2   The Problem of Short-Read Mapping 

 To recover the genomic location which has generated the short read at hand, in our 
resequencing setup one has to perform on it sequence alignment to the reference 
genome, selecting afterwards the best candidate(s) among the possibly many 
matches which show a high similarity to the read. 

 Although this workfl ow is in principle very clear, its practical implementation 
requires choices which are often overlooked. For instance, the criteria usually 
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adopted to select the “best” matches are key to the subsequent analysis and yet 
strictly empirical; and some important decisions about the short read can be taken 
only when the alignments for all the reads are known. In this section, we explore 
such issues. 

    7.2.1   Making Provision for Errors 

 Since we start from the assumption that the reference genome is known, in our setup 
there are only two possible sources of mismatches between the original sequence in 
the genome and the short read which originated from it.

    1.    Small local genomic variants of the individual being considered with respect to the 
genomic reference known for its species. A typical example are single-nucleotide 
polymorphisms (SNPs) – which are detected as nucleotide  substitutions  – or 
short insertions/deletions of nucleotides ( indels ). Their frequency is low (typically 
between 1/100 bases and 1/1,000 bases in the case of human).  

    2.    Sequencing errors. Usually these are relatively rare in the reads produced by 
HTS technologies – in particular Illumina/Solexa, where at length 100 nt the 
majority of the reads align with at most two to three nucleotide substitutions, and 
only about the 1% of the reads show indels due to base-calling dephasing at 
sequencing time (the  base calling  is the process after which the machine deter-
mines the nucleotide sequence of the short read). In addition, with technologies 
like Illumina/Solexa and Roche/454 sequencing errors can to some extent be 
distinguished from variants: they tend to accumulate toward the right end of 
the read, and to correlate negatively with the qualities of the base calling (see 
Sect.  7.2.4.1 ).     

 As a matter of fact, at least when analyzing sequence produced by the HTS 
technologies which are nowadays most pervasive, one will usually look for almost 
perfect matches (although the reader should be warned that the assumptions just 
examined do not hold in general, and notable exceptions, especially for technologies 
producing longer reads, do exist – see Sect.  7.4.1 ). For instance, by default Li and 
Durbin  (  2009     )  search the reference for matches having with the read sequence simi-
larity  ³ 96%; this corresponds to a maximum of four mismatches in the case of reads 
of 100 nt. 

    7.2.1.1   Substitutions and Indels Have a Different Nature 

 It should be emphasized that from a combinatorial standpoint substitutions (possible 
replacements of a base with another one) and indels (some nucleotides added to, or 
removed from, the read) are not on the same footage. In fact, usually the substitution 
of a single nucleotide does not increase signifi cantly the number of matches which 
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can be found for a relatively long read, and anyway the increase is roughly indepen-
dent on the position of the substitution; on the other hand, inserting an indel too 
close to either hand of the read can have the disastrous effect of generating an essen-
tially unbound number of spurious matches. This is due to the fact that an indel too 
close to the boundary partitions the read into two blocks, the shortest one of which 
can be arbitrarily short: thus, the latter will match more and more short sequences, 
randomly appearing in the genome close to the position of the match of the longest 
block. 

 For instance, in the special case of a sequence read mapping without errors, 
thanks to the mechanism just explained one is bound to fi nd arbitrarily many sub-
dominant alignments (having one indel more than the perfect match) obtained split-
ting the read in two parts. Hence, particular care should be exercised when choosing 
alignment parameters.   

    7.2.2   A Compromise Between Speed and Accuracy 

 As a matter of fact, the yield provided by present-day sequencing technologies rules 
out the possibility of using “traditional” sequence alignment programs like BLAST: 
neither the original BLAST nor any of its several reimplementations would be able 
to provide enough throughput when processing HTS data. A typical short-read 
aligner run with default parameters provides a performance of several tens of millions 
of reads mapped per hour per CPU, which is orders of magnitude faster than BLAST. 

 However, as previously discussed, such speed necessarily comes at the price of 
accuracy: in particular, the high sensitivity provided by BLAST and other similar 
tools (for instance, Kent  2002  )  must be sacrifi ced. When aligning proteins with 
BLAST, it is common to take into account matches having a sequence similarity as 
low as the 40%; on the other hand, fi nding such distant hits with HTS mappers 
would be completely impossible, since only candidate matches differing by a few 
mismatches from the original sequence are considered (as mentioned before, typi-
cally they must have with the read a sequence similarity of more than the 95%). 
Although the assumption of high similarity is partially justifi ed by the consider-
ations worked out in Sect.  7.2.1 , the reader should be aware that such a limitation 
cannot be lifted, since mappers are designed and optimized to work in the region of 
a small number of mismatches. 

 In addition, while traditional alignment tools usually output the full list of signifi -
cant hits, sorted by decreasing relevance, most HTS alignment programs embed 
arbitrary rules as to which results to report. Defi ning as  stratum  the set of all the 
matches in the reference having the same number of mismatches from the read, 
most mappers report only (a subset of) the best stratum, that is only (a subset of) the 
set of matches having the minimum number of differences from the read; other 
methods (for instance, Li and Durbin  2009  )  implement more complicated rules, but 
in general such rules are arbitrary and hardwired – they are decided once for all by 
the algorithm implementor, and the user is not permitted to change them. In fact, 
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another substantial difference with respect to traditional alignment tools is that map-
pers usually do not offer the user the possibility of a full fi ne-tuning of alignment 
parameters: in some cases (notably, Langmead et al.  2009 , which implements a 
seed-based search, but also many other programs) one is not even able to freely 
specify the desired number of mismatches. 

 Finding out how the accuracy of the results depends on the particular set of 
matches reported by each mapper is still an active research topic (see for instance, 
Ribeca and Valiente  2011 ; RGASP). In particular, the algorithmic defi nition of “best” 
matches to be reported has a strong impact on the defi nition of uniquely-mapping 
reads, which we will examine in the next section.  

    7.2.3   Not All Reads are Created Equal 

 Quite interestingly, the short reads obtained after a HTS experiment are not all on 
the same footage: in particular, some of them can be mapped uniquely to the refer-
ence, while for other reads several regions in the genome can be identifi ed which 
show a high sequence similarity to them. In the latter case, the reads are said to be 
 multiply mapping . 

 The problem with multiply mapping reads is that their assignment to the refer-
ence is ambiguous, thus rendering them useless for applications – like RNA-seq 
quantifi cation – which require each read to be attributed to a precise location due 
to normalization/counting purposes. In fact, in such applications the traditional 
“solution” to the problem is just to discard multiply mapping reads, although doing 
so kills a relevant part of the signal and introduces biases in the subsequent analysis 
(some locations in the genome are intrinsically multiple, since duplicated genes and 
regions are frequent in most genomes, see Sect.  7.2.4.4 ). 

 It should be emphasized that the concept of uniquely mapping reads is ill-defi ned 
if one omits to specify the parameters which have been used for the alignment: in 
fact, there is no such a thing like a “uniquely mapping read” in absolute terms, since 
the more the mismatches allowed, the more the matches that will be found (and 
eventually, if enough mismatches are tolerated, the read is bound to match at each 
position in the genome). This fact can create hidden incompatibilities between 
different analysis protocols, since typically the defi nition of what is considered 
“unique” by a mapper does not coincide with the corresponding defi nition used by 
another mapper – the reason being that very likely the algorithms employed by the 
two mappers will not be exactly the same, thus producing different sets of matches 
even if formally the alignment parameters for both methods coincide. Last but not 
least, the reader should also be aware that it is not possible to decide whether a read 
is unique or not without an exhaustive mapping algorithm (see Sect.  7.3.3.1 ). 

 Even if a fraction of the reads cannot be assigned unambiguously to the genome 
only on the basis of their sequence, it is sometimes possible to get to a better deci-
sion considering additional information, like the quality of the base calling, paired-end 
information or the correlation between the positions of all the reads in the dataset. 
We examine such possibilities in the following section.  
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    7.2.4   Additional Information Which Can Help 

 Additional information other than the read sequence can sometimes be used to 
obtain more accurate alignments. Ideally, as many of the following sources of infor-
mation as possible should be taken into account by the mapping program/pipeline, 
if we are to maximize the quality of the obtained results. 

    7.2.4.1   Qualities 

 As a result of the base-calling process, most modern sequencing machines accom-
pany in their output the read sequence with a list of  qualities , usually one per called 
base. Qualities are small numbers, typically between 0 and 40 (encoded as ASCII 
characters in FASTQ-like formats), which express the probability that the calling of 
the corresponding base went wrong. One possible encoding for the qualities is the 
so-called Phred scale (Ewing and Green  1998  ) , defi ned by  q  = −10log 

10
 e  , or  e  = 10 − q /10 , 

or: a quality of 30 corresponds to an error of 1/1,000, a quality of 40 to an error of 
1/10,000, and so on. 

 Several mappers (for instance, Ribeca  2009  )  can take advantage of the quality 
scores to obtain more precise alignments. The idea is to use the quality declared by 
the machine for each base as a guide, allowing an easier replacement of a nucleotide 
in the read when the quality is lower – or alternatively, considering as “best” align-
ment the one such that the highest possible number of mismatches coincide with 
nucleotides in the read having a low-quality base calling. Quality information is 
usually quite effective in improving the success rate of the alignment.  

    7.2.4.2   Paired-End Information 

  Paired-end  information (i.e., the ability of a HTS platform to sequence both ends of 
a long DNA molecule rather than just one, possibly leaving an unsequenced insert in 
the middle) can be useful to alleviate the problem of multiply mapping reads. When 
one of the ends of the molecule maps unambiguously, and the second one falls into 
a repetitive region, it is sometimes possible to use the statistical information derived 
from the dataset about the insert size (i.e., about the typical distance between the two 
ends) to select an unambiguous mapping for the second end of the molecule too.  

    7.2.4.3   The Pileup 

 When they can be made at all, several choices about the read (for instance, where 
to assign it in case it aligns to multiple locations in the genome) require external 
information which is not available when mapping the read separately from the rest 
of the dataset. 
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 In particular, one can successfully answer several of the most interesting high-level 
biological questions only after having performed a global analysis of the dataset. 
Some examples follow.

   The identifi cation of single-nucleotide polymorphisms (also known as  • SNP 
 calling ) at any given position in the genome is only possible after the  pileup  at 
that locus (i.e., the nucleotide/quality readings at that position as determined by 
all the reads encompassing the locus) is known. The pileup specifi es a vector of 
nucleotide frequencies/qualities for each position in the genome; out of it, an 
appropriate Bayesian model can be used to derive the genotype of the locus. 

 Very similar considerations hold for  variant calling , which consists of detect-
ing in the genome under consideration structural variations (like insertions, dele-
tions and more complicated rearrangements) with respect to the reference. 
Especially haplotype-specifi c variants (for instance, small deletions which are 
present in only one of the two copies of a chromosome of a diploid genome) can 
be called with a reasonable certainty only after a pileup-level analysis of the whole 
dataset: depending on the allele they come from, some reads might support the 
version present in the reference, with other ones highlighting the variant. The only 
way to obtain a reliable understanding of the situation, then, will be to run on the 
set of all the reads spanning the locus under consideration a program able to per-
form  local realignment  (see for instance, McKenna et al.  2010  or Li et al.  2009a  ) , 
which will take care of distinguishing and calling both haplotypes.  
  In some cases it is possible to rescue reads mapping multiple times by excluding • 
some of the possible alternatives. For instance, among the various matches 
one might prefer the ones which are surrounded by more reads, thus discarding 
isolated hits. Once again, performing this assignment is possible only after all the 
reads have been aligned.  
  When mapping RNA-seq data, some reads will be  • spliced reads , that is reads 
which span the junction between two exons. Such reads will map to the transcrip-
tome annotation but not to the genome, since the separating (and possibly very 
long) intron has been removed by the splicing mechanism operating in the cell. In 
principle, although with lower probability (and depending on the length of the 
read), even more than one junction could be present in the same read. When the 
transcriptome annotation is not known and one is interested in performing a de-
novo identifi cation of splice junctions, some programs called  splice aligners  exist 
which are able to identify the exonic blocks and map them back to the genome 
(for instance, Ribeca  2009  ) . However, one read is usually not enough to get a high 
confi dence about the effective presence of the junction, and hence in this case too 
dataset-level analysis is essential to validate the candidate splice junctions.  
  Techniques like bisulfi te sequencing, ChIP-seq, micrococcal nuclease digestion, and • 
histone methylation probes allow to perform genome-wide assays about chromatin 
status. However, for each of these signals one is usually interested in locating regions 
which exhibit intensity peaks given by the superposition of many reads: once more, 
this kind of analysis can only be performed if the whole dataset is considered.    

 The list just presented is far from being complete.  
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    7.2.4.4   The Mappability 

 As mentioned above, not all the loci in the genome show the same degree of unique-
ness: some of them are the result of a recent duplication event, and as a consequence 
bear a high sequence similarity with other regions in the genome. Interestingly, 
the degree of uniqueness at each position (or  k - mappability , defi ned as the inverse 
of the number of times the  k -mer starting at each position appears in either the 
genome or its reverse complement) is a property of the organism: it varies from 
genome to genome, and when the reference for the organism is known it can be 
determined a priori before mapping the reads (it should also be emphasized that if 
mismatches are considered, the mappability of a read is in general different from the 
mappability of the region it maps to). 

 Mappability should be taken into account in many situations, notably when 
designing the parameters of a HTS experiment (to maximize the number of uniquely 
mapping reads and the access to some specifi c regions of the genome), and when 
quantitative studies are being performed (like in ChIP-seq, where this quantity fi rst 
came into widespread use, see Rozowsky et al. ( 2009 ), and in RNA-seq). Some 
programs exist which allow to easily compute the mappability (see for instance, 
Ribeca  2009  ) ; precomputed tracks can sometimes be accessed through the UCSC 
genome browser (Karolchik et al.  2007  ) .    

    7.3   The Algorithmic Standpoint 

 In this section, we cursorily review the most important algorithmic techniques 
which have so far been used to implement fast short-read mapping. As a disclaimer, 
we point out that at the time of this writing an impressive number of mapping 
programs has been developed [about 40 are listed on the Wikipedia page (Sequence 
alignment software) on sequence alignment programs, which surely represents an 
underestimation], and hence it would be impossible to give in this limited space a 
completely comprehensive survey of all the algorithmic solutions adopted. 

 In addition, we believe that such a detailed description would be excessive in this 
context, since here, as previously explained, we are mostly interested in focusing on 
the user’s standpoint: the purpose of this section is not to turn the reader into in an 
expert in the design of alignment algorithms, but rather to enable them to better 
appreciate the strengths and limitations of each method when building optimal 
mapping pipelines. The reader interested in a more technical introduction is referred 
to Li and Homer  (  2010  ) . 

    7.3.1   Possible Indexing Strategies 

 When aligning sequence reads to a reference genome, the fi rst computational step 
usually consists of transforming part of the data into a suitable form, so that it 
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becomes easily searchable afterwards. In general, three different high-level indexing 
strategies are possible:

    1.     Indexing the reads and scanning the genome . The reads are separated into groups – 
compatibly with the limitations set by the amount of available memory – and 
indexed. Subsequently, the genome is scanned to fi nd occurrences of substrings 
of the genome in the reads. Examples of such a setup are ELAND (see Sect.  7.3.3.1 ) 
and Lin et al. ( 2008 ).  

    2.     Indexing the genome, and scanning the reads . The genome is preindexed. 
Subsequently, one or more reads at the time are scanned, to fi nd their occurrences 
in the genome. Examples of such a setup are Langmead et al.  (  2009  ) , Li et al. 
( 2009b ), Li and Durbin  (  2009  ) , and Ribeca  (  2009  ) .  

    3.     Indexing the genome and the reads . The genome and the reads are indexed 
together (either over and over again each time, or combining a precomputed 
index of the genome with some newly computed index for the reads) to fi nd 
common sequences occurring both in the reads and in the genome. Examples of 
such a setup are Malhis et al. ( 2009 ) and Hach et al. ( 2010 ).     

 No matter which high-level indexing strategy is chosen for the data, at low level 
any algorithm will ultimately rely on some more or less sophisticated string-indexing 
technique to do the job. Although in principle different choices would be possible, 
from the point of view of the mapper developer schemes 1 and 3 are usually quite 
straightforward to implement using  hash tables , while scheme 2 lends itself very 
well to be implemented as an  FM-index . We will examine both low-level string-
indexing frameworks in the following section   .  

    7.3.2   Implementation Techniques 

 Hash tables are employed since a very long time in the alignment of biological 
sequences, BLAST possibly being the program which popularized most their use. The 
FM-index came into widespread use in bioinformatics only a few years ago; however, 
it is the heart of some of the most innovative and most used HTS mappers (for instance, 
Langmead et al.  2009 ; Li and Durbin  2009 ; Li et al.  2009b ; Ribeca  2009  ) , thanks in 
particular to the small memory footprint it requires, and to the high performance it can 
deliver in the parameter region usually considered when aligning short reads. 

 One key problem which needs to be solved in all indexing/alignment schemes is 
that of effi ciently accommodating mismatches in the searches. This is a complicated 
technical problem, which is still the object of a very active research in the fi eld. 

    7.3.2.1   Hash Tables 

 Internally, computers represent character strings as numbers; however, such numbers 
are huge – much larger than the size of available memory. The basic idea behind 
hash tables is that of transforming a character string into a small(er) number, like a 
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32-bit or 64-bit integer, via a suitable  hashing function H , which ideally should be 
as clash-free as possible. In computer science, this concept is used to attribute to 
each string a reproducible offset in a table, so that it is possible to implement sets 
and dictionaries; in such a context, the choice of a good general hashing function is 
a diffi cult one, and still an active research topic. In sequence mapping, the idea of 
encoding a string as a number is interesting precisely because it offers a quick and 
effi cient way of checking whether two (sub)sequences might be the same or not: for 
them to be, the value of their hashes must be identical. In practice, in most mapping 
implementations there is no need for a sophisticated hashing function, since direct 
 binary encoding  for DNA can be used instead: each nucleotide can in principle be 
encoded using 2 bits, and hence a single 64-bit integer can accommodate 32 bases, 
offering in addition all the advantages of  bit parallelism  – using some specialized 
techniques, one can perform in parallel tasks like counting the number of mismatches, 
expressing them in terms of very few operations on 64-bit integers. 

 In a typical HTS mapping setup based on hash tables, the workfl ow would then 
be as follows:

    1.    One takes the sequence to be indexed, scans it via a sliding window of dimension 
 k  ( k  typically being the number of symbols fi tting in a word), computes the hash 
 H  for each  k -mer  K  

 i 
 , and installs the  k -mer in the table at position  H ( K  

 i 
 )mod  d , 

being  d  the size of the hash table (which is usually fi xed to the length of the text 
to be indexed). As in ordinary hash tables, some additional algorithm also needs 
to be specifi ed to resolve collisions.  

    2.    Once the table has been created, the query is scanned in a similar way, using a 
sliding window of dimension  k , and matches for the  k -mer  Q  

 j 
  under analysis are 

looked up in the table at position  H ( Q  
 j 
 )mod  d . If a suffi cient number of  k -mers of 

the query is found in the table, a match is called (in particular, matching  k -mers 
can be used as  seeds  for the search).     

 The scheme just presented does not take mismatches into account. In hash table-
based setups, one can make provision for them in different ways:

    1.    By replicating hash tables – for instance, with the technique of the  spaced seeds . 
A seed generalizes the concept of  k -mer: it is a binary pattern specifying that 
either the next character should be considered to compute the hash (case noted 
with a 1) or that it should be skipped (case noted with a 0). With this notation, for 
instance, when  k  = 6 the case of an ordinary hash table, which is fi lled with con-
tiguous  k -mers, would correspond to the seed 111111. On the other hand, the 
seed 110000110011 would mean “compute the hash by considering 2 characters, 
skipping 4, considering another 2, skipping 2 and considering another 2”: in this 
case one would use a sliding window of 12 characters, but only 6 of them would 
contribute to the hash. 

 In such a setup, one would create several hash tables, each one corresponding 
to a different seed: given a predetermined number of mismatches, one can fi nd 
relatively small sets of seeds such that, if the reference has been installed in all 
the tables, a string differing from it by less than the given number of mismatches 
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will be found in at least one of the tables. The initial versions of ELAND (see 
Sect.  7.3.3.1 ) are an example of this strategy. The reader should be aware of the 
fact that fi nding an optimal (i.e., smallest) set of seeds for any given read length 
and number of mismatches is a complicated problem.  

    2.    By looking for more than one single  k -mer in the query at the same time – for 
instance, the technique of  q -gram fi ltering introduced in Jokinen  (  1991  ) : in a 
query of length  l  and at most  m  mismatches, one is bound to fi nd at least 
( l  + 1) − ( m  + 1)  k  exact substrings of length  k  which also appear in the reference 
and a match can be excluded if not enough common  k -mers are found.     

 In general, the following properties are shared, at least up to some extent, by all 
the implementations of indexing based on hash tables.

   Pros: In a framework based on hash tables, it is relatively easy to implement • 
search algorithms which are able to accommodate a large number of mis-
matches, and at the same time scale quite well with the number of mismatches – 
that is, such that the running time when searching with more mismatches will 
not be much higher than when searching with less mismatches. Also, generat-
ing an index is usually fast.  
  Cons: Hash tables are bulky, in particular when mismatches are taken into • 
account; this usually translates to longer search times with respect to other meth-
ods. In addition, hash tables are not very fl exible when frequent changes in search 
parameters are needed: since such parameters determine the content of the tables, 
changing them usually involves the recomputation of the index.    

 Combining the two points, one can see that a typical implementation based on 
hash tables has a sweet performance spot when searches with many mismatches are 
performed (it is slower when few mismatches are considered, but scales better when 
moving to a larger number of mismatches).  

    7.3.2.2   FM Indices 

 Ferragina–Manzini indices (Ferragina and Manzini  2000  )  were invented in relatively 
recent years, in the attempt of obtaining a compressed representation of large 
amounts of text which would nonetheless provide fast searching capabilities for 
relatively small queries. In the original intentions of the authors, such a model would 
suit perfectly the needs of Internet search engines; in practice, it proved to be equally 
appropriate for mapping short sequence reads to large genomic references. 

 FM indices are the outcome of the evolution of other data structures (like  suffi x 
trees  and  suffi x arrays ) which had been proposed and used in the past to perform fast 
searches on character strings. Albeit such structures provide appealing algorithmic 
properties [in particular suffi x trees, whose multiple benefi ts in terms of the solution 
of biological problems are examined in detail in Gusfi eld  (  1997  ) ], they are usually 
too bulky to store large amounts of sequence, as one needs to do in biology: for 
instance, a typical suffi x tree implementation requires about 15 bytes/base, with the 
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result that an index for the human genome would need about 45 GB of memory to 
be effi ciently stored and queried. 

 The FM-index is based on the Burrows–Wheeler transform (Burrows et al.  1994  )  
(BWT), a reversible permutation of the original text string which lends itself very 
well to excellent compression [for instance, BWT compression is exploited by the 
popular archiving tool bzip2 (Seward  1998  ) ]. In short-read mapping, however, 
compressibility is not a major issue: one is usually happy with a simpler packed 
representation of the BWT, which allows for a compact storage of the index anyway 
(the typical amount of space required being between 0.5 and 2 bytes/base), and 
offers better performance. 

 A major technical point about the FM-index is that, due to its very defi nition, 
the BWT is intimately connected to the suffi x array. In fact, once the BWT is available 
it is also possible to emulate the suffi x array at almost no additional cost in terms 
of storage: to this end, it is enough to sample the suffi x array at regular intervals. 
Furthermore, one can locally invert the BWT to reproduce the indexed text, either 
fully or in chunks: this implies that when using an FM-index there is no need to 
separately store the original text, thus effectively turning the FM-index into a 
 self-index . 

 The combination of all these factors has an interesting consequence: thanks to 
the technique called  backward search , it is possible to perform very fast exact 
searches in the index. In fact, the backward search takes advantage of the contem-
porary presence of the BWT and the (emulated) suffi x array, allowing to express a 
range search in the suffi x array in terms of fast character-counting queries on the 
BWT. Remarkably, the number of counting queries required will be proportional to 
the length of the query, and (theoretically, if one neglects the cost of memory access) 
independent on the size of the indexed text; the search is said to be “backward” 
since the characters in the query are added right-to-left rather than left-to-right. 

 The scheme just presented does not take mismatches into account. In fact, one 
can make provision for them in different ways, as follows:

    1.    By expressing the mismatched search in terms of many exact searches. 
Conceptually, this can be done by modifying the query in all the possible ways 
compatible with the parameters of the search: for instance, one can perform a 
search with two substitutions by searching for all possible strings which can be 
obtained from the query if one operates on it at most two substitutions. In a practi-
cal implementation, one would likely express such set of exact searches as a tree. 

 This technique has evident limitations: due to the combinatorial explosion in 
the number of possibilities which should be considered, it is usually viable only 
for a small number of mismatches. Even in the latter case, suitable pruning crite-
ria should be provided, so to avoid that the huge search space needs to be explored 
in its entirety.  

    2.    By adopting a seed-and-extend strategy. According to the parameters of the search, 
some exact substrings of the query are searched for in the index, and added to a 
list of candidate matches; the candidates are then examined around their positions 
for compatibility with the complete query, and possibly discarded.     
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 The interested reader can fi nd in Navarro and Baeza-Yates  (  2000  )  a more detailed 
description about possible ways of accommodating mismatches into FM-indexes. It 
should be noted that (unlike what happens with hash tables) in such searching 
schemes one does not modify the index to incorporate mismatches: the extension is 
always done algorithmically, by performing a more complicated search. 

 In general, the following properties are common, at least up to some extent, to all 
mapping implementations based on the FM-index.

   Pros: Thanks to its design properties, the index is remarkably compact. In addi-• 
tion, since its contents do not depend on the parameters of the search, in a frame-
work based on the FM-index it is relatively easy to implement search algorithms 
such that parameters can be changed freely. Finally, and owing to the fact that the 
FM-index provides very fast exact searches, one can usually implement very fast 
searches with mismatches as long as the number of mismatches is low.  
  Cons: Generating the index is slow, since it requires the computation of the BWT, • 
and this is a global operation on the whole content of the index. Also, it is quite 
diffi cult in this framework to design search algorithms which scale well when 
moving to a large number of mismatches.    

 Combining the two points, it is easy to see that FM-indexes usually offer special 
advantages when searches with a small number of mismatches need to be performed.   

    7.3.3   Indexing/Searching Algorithms are Not All Equivalent 

 In spite of what many nontechnical people often think, it is far from being true that 
“all alignment programs essentially do the same job.” The following points are 
noteworthy.

    1.    The different basic indexing schemes are sometimes not completely equivalent. 
For instance, while it is possible for an FM-index to completely emulate the 
features of a hash table (in particular, it is possible to perform very fast exact 
searches for any  k -mer in the reference genome), the converse is not true (hash 
tables have a minimum granularity determined by the  k -mer size chosen at index-
ing time).  

    2.    Each basic indexing scheme typically lends itself very well to implement in a 
simpler way some particular feature or class of algorithms. For instance, as men-
tioned above, the use of FM-indices will have as a natural consequence the pos-
sibility of producing a well-packed representation of the genomic reference; 
similarly, it is straightforward to implement seed-based searches with hash tables, 
since hash-table indexing is based on  k -mers, and the same  k -mers can naturally 
be seen as seeds.     

 On the other hand, in many cases algorithms which appear less “natural” in a 
given setup can be implemented perfectly well in another, although at the price of a 
possibly much harder work: apart from some real differences, as those highlighted 
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under the previous point in the list, many algorithms are actually independent of the 
basic indexing scheme used, and the task of the algorithm designer is precisely that 
of abstracting from the details of the underlying indexing engine. 

 In conclusion, different HTS mappers will tend to share common features 
depending on the indexing technique they are based upon; however, such similari-
ties are expected to become less apparent as programs reach maturity, thus 
 benefi ting from more complicated and more refi ned implementations. As a general 
rule, one should be extremely suspicious when hearing statements about a mapper 
being better due to its “superior” indexing approach: what ultimately matters to the 
user are not the personal beliefs of the algorithm writer, but the technical specifi ca-
tions of the produced tool. As far as the user’s standpoint is concerned, the possi-
bility of performing searches with more mismatches, the better throughput and the 
 ability of satisfying the requirements imposed by the biological problem at hand 
should be the only motivations behind the choice of an alignment program. 

    7.3.3.1   Finding Them All: Exhaustiveness 

 Although different algorithmic techniques may offer different advantages depend-
ing on the mapping parameters one intends to employ, and no matter which low/
high level indexing scheme is used, some properties are fundamental to assess the 
acceptability of an implementation. Above them all is sensitivity: the larger the 
number of matches within the same stratum found by the mapper, the better its 
sensitivity. 

 As a matter of fact, a special class of algorithm exists:  exhaustive  short-read 
mappers are those able to fi nd all the existing matches within the specifi ed number 
of mismatches. It is worth noting that when their platform was producing reads of 
32–36 nt, Illumina/Solexa used to provide an exhaustive aligner: at that read length, 
the initial versions of ELAND (the default mapper supplied with the standard 
Illumina pipeline) were capable of fi nding all the matches up to two nucleotide 
substitutions. 

 In fact, the vast majority of mapping algorithms (notably, Langmead et al.  2009 ; 
Li and Durbin  2009  )  sacrifi ce exhaustiveness for speed, in particular when longer 
reads and more mismatches are considered; another common situation is that some 
form of exhaustiveness is provided, but at the price of not being able to freely tune 
search parameters. To the best of the author’s knowledge, as of this writing only a 
few short-read aligners (for instance, Lin et al.  2008 ; Hach et al.  2010 ; Ribeca  2009 , 
albeit with major differences in memory usage and performance) are able to report 
all the matches as far as nucleotide substitutions are concerned. 

 The consequences of the lack of exhaustiveness are often overlooked: in particu-
lar, we emphasize that running an exhaustive mapping algorithm is the only way to 
decide whether a read maps uniquely or not [it goes without saying that the 
“ alignment score” provided by some mappers like Li and Durbin  (  2009  )  cannot be 
 considered a substitute for the inability to enumerate all the matches]. In this 
respect, one should be aware that a high sensitivity is not enough to guarantee a good 
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discrimination of unique matches (see Ribeca and Valiente  2001 , where it is shown 
that in several situations even a small fraction of missed matches can be enough to 
misclassify the 20–30% of the reads).    

    7.4   The User’s Standpoint 

 What is the correct workfl ow to follow to set up an optimal mapping pipeline for a 
given biological experiment? In this section we take advantage of the facts so far 
examined, and formulate a checklist which one should follow when trying to opti-
mally set up his/her own HTS mapping pipeline. 

    7.4.1   Analyzing the Problem: What are the Requirements? 

 First of all, different HTS platforms, and/or different biological problems, may 
require radically different setups in alignment parameters. Typical examples are the 
following ones:

   The type and number of alignment errors heavily depends on the technology used. • 
For instance, while Illumina/Solexa reads, as mentioned in Sect.  7.2.1 , virtually 
show no indels and a relatively low number of single-nucleotide substitutions due 
to sequencing errors (which tend to become relatively more frequent toward the 
right end of the read), Roche/454 has a very high incidence of short indels (they 
tend to happen in correspondence of the presence of homopolymers in the original 
sequence). Reads produced by other platforms [like colorspace SOLiD  ( Metzker 
 2010  ) , Pacifi c Biosciences (Eid et al.  2009  ) , and Complete Genomics  ( Drmanac 
et al.  2010  ) ] require even more complicated, specifi cally tailored, alignment strat-
egies: to mention just one, each Complete Genomics read is made of four different 
parts, separated by three inserts of different sizes. In general, mapping methods 
and parameters should be chosen accordingly to the platform being used.  
  The type of the experiment being run – and the protocol employed – can contribute • 
as well to the determination of the alignment method to use. For instance, as 
mentioned in Sect.  7.2.4.3 , RNA-seq data usually requires specialized tools like 
splice mappers; bisulfi te sequencing demands an even more complicated align-
ment strategy, since the sequencing protocol transforms unmethylated C nucle-
otides to Ts, thus producing reads which do not belong to the original reference 
even in the absence of sequencing errors (see for instance, Li and Homer  2010  
for a more detailed explanation). The support for such extended alignment methods 
is not always provided by all mappers.  
  Last but not least, biology itself can play a major role in the choice of alignment • 
methods and parameters. For instance, an unusually large number of mismatches 
might be necessary in several scenarios (when studying RNA editing, or when 
aligning to a distant species because the reference for the organism under 
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 investigation is not known); sometimes such a number of mismatches will be 
excessive (unsupported or leading to too long alignment times) for a particular 
mapping algorithm.    

 Hence, a fi rst screening of the available tools will eliminate the ones which are 
not able to cope with the requirements imposed by the problem at hand. Depending 
on the situation, the categories of constraints we just presented might be enough to 
already rule out most mapping tools.  

    7.4.2   Separating Planes 

 An important but sometimes overlooked fact is that many mappers (in particular, 
those suitable for processing the short reads produced by RNA-seq) often embed 
into their alignment algorithms assumptions about biology. This is due to different 
and sometimes legitimate reasons – for instance, increasing the S/N ratio and/or 
optimization: imposing rules on the splice-site consensus obeyed by sequences 
fl anking exons acts as a powerful fi lter to avoid considering too many candidates 
when doing spliced alignment, and such candidate alignments should be removed 
anyway at some later point. This observation should come as no surprise: already in 
BLAST, assumptions about biology (substitution matrices, penalties for gap open-
ing and so on) get embedded in the alignment engine as parameters given to the 
linear programming stage; depending on the values of such parameters, some parts 
of the alignment space are either explored or silently discarded, with consequences 
on sensitivity and performance. When considering mappers, however, the setup can 
be much more radical than the one provided by BLAST: sometimes the additional 
biological assumptions are so deeply entangled into the algorithms that neither can 
one distinguish them as separate bits of data anymore, nor modify the relevant 
parameters at user level. 

 This situation notwithstanding, the reader should be aware that the two stages 
of fi nding alignments and selecting the best candidate match(es) on the basis of 
biological information are separate ones, at least from a logical point of view. In fact, 
there are exactly three conceptual processing stages when aligning short reads:

    1.     The algorithmic plane . Speaking from a purely combinatorial standpoint, there is 
no such a thing as a “biology-aware” alignment: given the maximum number of 
mismatches/edit distance specifi ed by the user, either a match is there (and its 
distance from the reference can be measured) or it is not. If it is, it is also by defi ni-
tion a valid alignment, and in principle it must be found and output by any mapper – 
albeit sometimes this does not happen in practice, as seen in Sect.  7.3.3.1 .  

    2.     The biological plane . After all the alignments compatible with the parameters of 
the search have been obtained, it might be worth fi ltering out some of them due 
to biological considerations (for instance, as mentioned before, one might discard 
the spliced alignments such that the sequences fl anking exons are not compatible 
with splice-site consensus).  
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    3.     Postprocessing . The reader should be warned that an optimal data analysis will 
very likely require a good deal of postprocessing. In particular, pileup-level anal-
ysis as mentioned in Sect.  7.2.4.3  might be essential to achieve the goal of a deeper 
understanding of the data.     

 Once the above logical scheme is clear, it will not be diffi cult to estimate the 
interplay between the different planes given by each of the methods, and prefer the 
ones which are fl exible and tunable enough to be adapted to the desired workfl ow.  

    7.4.3   What is Important, and What is Not 

 Obvious as it may seem, to obtain optimal results accuracy should always be 
preferred to speed. As of this writing, many mappers exist which allow the analysis 
of a whole HTS experiment on a single CPU core in a few days; hence, hard choices 
which imply a tradeoff between mapping quality and speed are likely to be relevant 
only to large sequencing centers, not to single biological laboratories. 

 In consequence, when selecting a mapping tool the user should fi rst restrict his/
her choice to the ones able to comply with the accuracy requirements dictated by the 
problem, as mentioned in Sect.  7.4.1 ; only after quality has been enforced shall the 
surviving candidates be sorted based on their speed. In particular, and whenever 
available for the specifi c problem being considered, exhaustive alignment programs 
as described in Sect.  7.3.3.1  should always be preferred.   

    7.5   Conclusions 

 In this chapter, we tried to present a fairly complete description of the state-of-the-art 
of short-read mapping, focusing more on the user’s standpoint (how to setup an 
optimal analysis pipeline) rather than on the algorithm developer’s. However, from 
time to time some knowledge of the internals and the implementation of each mapping 
method will also be needed to better understand the possibilities and the limitations 
of the available tools; and we tried to provide such information as well. 

 In general, our recommendations follow the usual guidelines which should be 
kept in mind when designing a sound setup for the quantitative analysis of any 
experiment: one should select a short-read mapper only  after  having clarifi ed what 
the technical requirements imposed by the dataset in need of analysis are (mainly 
the number and the type of mismatches as determined by variants and sequencing 
errors), discarding all the alignment methods which are unable to comply with such 
technical specifi cations. If after this evaluation it turns out that several mappers 
would still be able to do the job, one should fi rst and foremost give preference to the 
most accurate ones (and in particular, if possible, to those providing exhaustive 
mapping); only as a last criterion shall mapping speed infl uence a wise choice. 
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 In spite of the claims of some mapper developers, the problem of easily setting 
up and routinely obtaining a fast high-quality analysis of short reads is still far from 
being solved, in particular when all possible biological scenarios/protocols are 
considered. We hope that the information provided in this chapter will help the 
reader to face the intricacies and fallacies of modern HTS short-read alignment.      

   References 

    M. L. Metzker. Sequencing technologies – the next generation.  Nature Reviews Genetics , 11(1):31–46, 
January 2010.  

    J. M. Rothberg and J. H. Leamon. The development and impact of 454 sequencing.  Nature 
Biotechnologies , 26(10):1117–1124, 2008.  

    S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. 
 Journal of Molecular Biology , 215(3):403–10, October 1990.  

    H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. 
 Bioinformatics , 25(14):1754–1760, 2009.  

    W. J. Kent. BLAT: The BLAST-like alignment tool.  Genome Research , 12(4):656–664, 2002.  
   B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-effi cient alignment 

of short DNA sequences to the human genome.  Genome Biology , 10(3):R25, 2009.  
    P. Ribeca and G. Valiente. Computational challenges of sequence classifi cation in microbiomic 

data.  Briefi ngs in Bioinformatics , April 2011.  
   The RGASP: RNA-seq read alignment assessment.   http://www.gencodegenes.org/rgasp/rgasp3.html    .  
    B. Ewing and P. Green. Base-calling of automated sequencer traces using Phred. II. Error proba-

bilities.  Genome Research , 8(3):186–194, 1998.  
   P. Ribeca. GEM: GEnomic Multi-tool.   http://gemlibrary.sourceforge.net    , 2009.  
    A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,  et al.  The Genome Analysis 

ToolKit: a MapReduce framework for analyzing next-generation DNA sequencing data. 
 Genome Research , 20(9):1297–303, September 2010.  

    H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan,  et al.  The Sequence Alignment/Map format 
and SAMtools.  Bioinformatics , 25(16):2078–9, August 2009.  

    J. Rozowsky, G. Euskirchen, R. K. Auerbach, Z. D. Zhang, T. Gibson,  et al.  PeakSeq enables 
systematic scoring of ChIP-seq experiments relative to controls.  Nature Biotechnologies , 
27(1):66–75, January 2009.  

   D. Karolchik, A. S. Hinrichs, and W. J. Kent. The UCSC genome browser.  Current Protocols in 
Bioinformatics , Chapter 1:Unit 1.4, March 2007.  

   Wikipedia: Sequence alignment software.   http://en.wikipedia.org/wiki/Sequence_alignment_
software    .  

    H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation sequencing. 
 Briefi ngs in Bioinformatics , 11(5):473–483, 2010.  

    H. Lin, Z. Zhang, M. Q. Zhang, B. Ma, and M. Li. ZOOM! Zillions of oligos mapped.  Bioinformatics , 
24(21):2431–7, November 2008.  

    R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu,  et al.  SOAP2: an improved ultrafast tool for short read 
alignment.  Bioinformatics , 25(15):1966–7, August 2009.  

    N. Malhis, Y. S.-N. Butterfi eld, M. Ester, and S. J.-M. Jones. Slider – maximum use of probability 
information for alignment of short sequence reads and SNP detection.  Bioinformatics , 25(1):6–13, 
January 2009.  

    F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol,  et al . mrsFAST: a cache-oblivious 
algorithm for short-read mapping.  Nature Methods , 7(8):576–7, August 2010.  

   P. Jokinen and E. Ukkonen. Two algorithms for approxmate string matching in static texts. 
 Mathematical Foundations of Computer Science 1991 , pages 240–248, 1991.  



1257 Short-Read Mapping

   P. Ferragina and G. Manzini. Opportunistic data structures with applications. In  Proceedings of the 
41st Symposium on Foundations of Computer Science (FOCS 2000) , pages 390–398, 2000.  

   D. Gusfi eld.  Algorithms on strings, trees, and sequences . Cambridge University Press, 1997.  
   M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical 

Report 124, Digital Equipment Corporation, Palo Alto, CA, 1994.  
   J. Seward. Bzip2 and libbzip2: a program and library for data compression.   http://sources.redhat.

com/bzip2    , 1998.  
    G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string matching. 

 Journal of Discrete Algorithms , 1(1):205–239, 2000.  
    J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle,  et al.  Real-time DNA sequencing from single polymerase 

molecules.  Science , 323(5910):133–138, 2009.  
    R. Drmanac, A. B. Sparks, M. J. Callow, A. L. Halpern, N. L. Burns,  et al.  Human genome 

sequencing using unchained base reads on self-assembling dna nanoarrays.  Science , 327(5961):
78–81, January 2010.    



127N. Rodríguez-Ezpeleta et al. (eds.), Bioinformatics for High Throughput Sequencing, 
DOI 10.1007/978-1-4614-0782-9_8, © Springer Science+Business Media, LLC 2012

  Abstract   ChIP-Seq, which combines chromatin immunoprecipitation (ChIP) with 
high throughput sequencing, is a powerful technology that allows for identifi cation 
of genome-wide protein–DNA interactions. Interpretation of ChIP-Seq data has 
proven to be a complicated computational task, and multiple methods have been 
developed to address these challenges. This chapter begins by describing the protocol 
for ChIP-Seq library preparation and proper experimental design, without which 
computational tools would not be able to accurately capture in vivo interactions. 
Following a section on raw data pre-processing and data visualization, using 
Illumina Genome Analyzer output fi les as examples, general approaches taken by 
peak-calling tools are described. GLITR, a powerful peak-calling tool that utilizes a 
large set of control data to accurately identify regions that are bound in ChIP-Seq 
data, is then explained in detail. Finally, an approach for functional interpretation of 
ChIP-Seq peaks is discussed.      

    8.1   Introduction to ChIP-Seq Technology 

 The regulation of gene expression in mammals is a complex and highly orches-
trated process that is crucial for allowing cell types to achieve their specialized 
functions. The mechanisms behind this regulation, particularly the transcription 
factor (TF) proteins that bind DNA targets to regulate gene expression, have been 
intensely studied over the last several decades. Until recently, TF/DNA complexes 
were typically studied in vivo on an individual target basis using Chromatin 
Immunoprecipitation (ChIP), which was fi rst described in 1988 (Solomon et al. 
 1988  ) . ChIP is a useful technique to determine if a protein is bound to tens of 
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potential target regions, but in order to determine where the protein is bound at a 
much larger scale, other approaches must be utilized. 

 ChIP-on-chip, which combines ChIP with microarray technology, allows for the 
large-scale identifi cation of TF binding targets. The fi rst ChIP-on-chip experiment 
was described around ten years ago, and was used to identify the binding sites of 
two TFs in yeast (Ren et al.  2000  ) . This study and other early ChIP-on-chip studies 
were performed using microarrays with thousands of spotted PCR amplicons repre-
senting genomic regions, such as promoter regions, where a TF might bind (Ren 
et al.  2000 ; Simon et al.  2001 ; Wyrick et al.  2001 ; Friedman et al.  2004 ; Harbison 
et al.  2004 ; Le et al.  2005 ; Rubins et al.  2005  ) . Typically, PCR amplicons are 
between 500 and 2,000 base pairs. This technology may be used to determine if the 
TF of interest is binding within or near the PCR amplicon, but does not determine 
the precise location of the TF binding site. More precise ChIP-on-chip platforms, 
tiling arrays, emerged soon after spotted arrays, and these increased the coverage of 
the genome and allowed for higher resolution in identifying TF binding sites. Tiling 
arrays contain short oligonucleotides, which can either overlap, are end-to-end, or 
have a regularly spaced gap. One company that manufactures these arrays is Agilent, 
whose mammalian tiling arrays contain over 200,000 60-mer oligonucleotide probes 
spaced 100–300 base pairs apart (  www.agilent.com    ). While tiling arrays offer 
increased resolution compared to cDNA spotted arrays, the statistical treatment nec-
essary to identify enriched tiles, and therefore the region where the TF is bound, is 
far more complicated (Buck and Lieb  2004 ; Mockler et al.  2005 ; Royce et al.  2005  ) . 
All microarray technologies also share other drawbacks, including dye biases and 
cross-hybridization issues (Buck and Lieb  2004 ; Royce et al.  2005  ) . 

 Recently, ChIP-Seq technology has started replacing ChIP-on-chip technology. 
ChIP-Seq has become possible with the introduction of high throughput sequencing 
technologies, which can rapidly sequence all of the DNA fragments in a sample. 
Different platforms available for performing ChIP-Seq experiments include the 
Illumina Genome Analyzer, the Applied Biosystems SOLiD system, the Roche 454 
Life Sciences platform, the HeliScope instrument from Helicos, and the Illumina 
HiSeq. Because all fragments in a ChIP experiment can be sequenced using these 
platforms, TF binding targets are not limited to those oligonucleotides or PCR 
amplicons on a microarray. Additionally this technology allows more precise iden-
tifi cation of TF binding sites, and eliminates issues caused by cross-hybridization. 
Another benefi t of ChIP-Seq is that it can be used for any species with a sequenced 
genome, and it is not limited to only those species for which a microarray has been 
produced. Because most published ChIP-Seq experiments have been performed 
using the Illumina Genome Analyzer, this platform will be the focus of this chapter. 
However, the details discussed can be applied to many of the other platforms. 

 The fi rst ChIP-Seq experiments carried out on the Illumina Genome Analyzer 
were performed only 4 years ago (Johnson et al.  2007 ; Robertson et al.  2007  ) . These 
studies demonstrated that ChIP-Seq is indeed a powerful technique, and that it can be 
used to accurately identify TF bindings sites genome-wide, as well as to identify TF 
binding motifs. While the fi rst ChIP-Seq experiments using the Illumina platform pro-
vided an impressive amount of data, great improvements to the technology have been 
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implemented over the last 4 years. Sequencing a single sample originally  provided 
between three million and fi ve million sequence tags that were 25 nucleotides long. 
Today, a single sample on the Genome Analyzer provides between ten million and 
twenty million sequence tags that are between 35 and 150 nucleotides. Additionally, 
DNA fragments can be sequenced from both ends rather than just one. 

 In this chapter, I discuss aspects of ChIP-Seq library preparation and data analysis 
for the Illumina Genome Analyzer platform. Data interpretation and analysis methods 
are highly dependent on data quality. Therefore, while bioinformatics approaches 
necessary for processing raw data from the Genome Analyzer and computational 
methods for peak-calling are the focus of the chapter, it is also important to discuss 
ChIP-Seq library preparation protocols and experimental design, as these will deter-
mine the quality of data that is generated.  

    8.2   ChIP-Seq Library Preparation 

 In this section, I fi rst describe the ChIP protocol. While this method has been used 
for over 20 years, there are certain steps that should be optimized when material will 
be used for next generation sequencing library preparation. I will then describe a 
detailed protocol for library preparation for the Illumina Genome Analyzer. 

    8.2.1   Chromatin Immunoprecipitation 

 Details of the ChIP protocol have been published previously, and protocols may 
vary depending on the number of cells being used, the type of protein being assayed, 
or the number of days required to complete the protocol (Collas  2010  ) . Because 
ChIP has been previously described and reviewed extensively (Kuo and Allis  1999 ; 
Orlando  2000 ; Chaya and Zaret  2004 ; Ren and Dynlacht  2004 ; Collas  2010  ) , here 
I provide an overview of each of the steps (Fig.  8.1 ), with emphasis on those steps 
that may differ when a ChIP-Seq library will be prepared. The fi rst step in performing 
ChIP is to prepare chromatin. The DNA–protein complexes are cross-linked with 
formaldehyde and when using animal tissue, the tissue should be minced prior to 
cross-linking. Following the cross-linking step, it is important to add glycine in 
order to quench the reaction and prevent over-crosslinking, which can lead to diffi -
culties with DNA shearing. Cells are then lysed, and nuclei are released. The next 
step, shearing the DNA, is important for library preparation. For ChIP-qPCR or 
ChIP-on-chip, DNA fragment sizes are considered appropriately sheared if they are 
between 500 and 1,000 base pairs. However for ChIP-Seq performed on the Genome 
Analyzer, it is important that fragment sizes are smaller, and on average should be 
between 100 and 200 base pairs. This is to ensure that DNA fragments are abundant 
for the size selection step, described in the next part of this section. Following soni-
cation, a small amount of chromatin is uncrosslinked and purifi ed. This DNA, 
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termed input DNA, is quantifi ed and used to determine if shearing was suffi cient. 
Because DNA concentrations can be quite low and accurate visualization of sheared 
DNA on an agarose gel can be diffi cult, the Agilent Bioanalyzer can be used to 
determine the size distribution of sheared DNA. The Bioanalyzer only requires 1  m l 
of input DNA, and shows the size distribution of DNA fragments in an easy to inter-
pret trace. Examples of optimally sheared DNA and poorly sheared DNA are shown 
in Fig.  8.2 . If input DNA shows larger fragment sizes than desired, chromatin can 
be sonicated again, and input DNA can be re-purifi ed and re-evaluated. Once appro-
priately fragmented chromatin is obtained, it can be immunoprecipitated with an 
antibody of interest. Prior to library preparation, the immunoprecipitated  DNA 
should be tested for enrichment of target regions using qPCR. Enrichment can be 
calculated compared to input DNA, using the  D  D Ct method. While a fold change of 
2 is technically considered enriched, a region that has such a low fold-change by 
qPCR will likely not show enrichment when ChIP-Seq data is analyzed, because it 
will not have enough signal compared to background sequence tags. If qPCR enrich-
ments are less than tenfold, experiments should be optimized further to ensure that 
the signal is strong enough to be recovered in a ChIP-Seq experiment.    

Cross-link
and shear

IP with antibody
to POI

Genomic DNA

 POI POI

POI

POI

POI
POI

Wash DNA that is
not bound

Uncrosslink and
purify DNA

DNA fragments
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  Fig. 8.1    Outline 
of Chromatin 
Immunoprecipitation (ChIP). 
ChIP captures the in vivo 
binding of a protein of 
interest (POI) to DNA. DNA 
is cross-linked, sheared, and 
incubated with an antibody 
that recognizes the POI. 
Unbound DNA is washed 
away, and bound DNA is 
uncrosslinked, purifi ed, and 
analyzed with qPCR       
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    8.2.2   Library Preparation 

 Illumina provides a detailed protocol for library preparation that should be followed  
carefully (  http://www.illumina.com    ). Here I summarize the protocol (Fig.  8.3 ) and 
emphasize steps that are important for optimal library preparation. When preparing 
a ChIP library, it is important to prepare an input library along side to ensure that the 
steps of library preparation were performed properly. Illumina recommends 10 ng 
of starting material for library preparation. For most ChIP assays that are performed 
for a TF, a single ChIP produces far less than 10 ng of DNA, and often there is not 
enough material to be accurately quantifi ed. However, ChIP-Seq library preparation 
has been performed using material pulled down from single ChIP experiments 
(Le Lay et al.  2009 ; Tuteja et al.  2009  ) , which can be estimated to contain 1–2 ng 
of DNA.  

 The fi rst step in library preparation is to blunt the ends of fragmented DNA. The 
enzymes used in this reaction are T4 DNA polymerase, Klenow polymerase, and T4 
polynucleotide kinase. These enzymes remove the 3 ¢  overhangs of the DNA frag-
ments and fi ll in the 5 ¢  overhangs. The next step is to add an “A” base to the 3 ¢  end 
of the blunt DNA fragments, using the Klenow exo (3 ¢  to 5 ¢  minus) enzyme. The 
“A” base allows the DNA fragments to be ligated to the Illumina adapters, which have 
a single 3 ¢  “T” overhang, in the next step. The Illumina adapters prepare the DNA 
fragments for hybridization on a fl ow cell for the sequencing reaction. Once the 
adapters are ligated to the DNA fragments, the DNA must be size selected. DNA 
should be run on a 2% agarose gel, and it is recommended that size selection be 
performed using a dark reader transilluminator to avoid UV exposure, which can 

  Fig. 8.2    Bioanalyzer traces of sheared chromatin. Chromatin that will be used for ChIP-Seq 
library preparation should be between 100 and 200 bp.  Left panel  is sheared suffi ciently for ChIP-
qPCR, but not ChIP-Seq.  Right panel  is sheared suffi ciently for both ChIP-qPCR and ChIP-Seq       
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damage DNA. The slice that is excised should be a tight range of DNA, at 200 ± 25 
base pairs, and should then be gel purifi ed. This size-selected DNA is then ampli-
fi ed, using Phusion polymerase and PCR primers available through Illumina. 
Following amplifi cation and purifi cation, the quality of the ChIP-Seq library should 
be validated using the Bioanalyzer. The bioanalyzer trace should only have a peak 
around 200 ± 25 base pairs (Fig.  8.3 ). Any other peaks present in the bioanalyzer 
trace indicate improper library preparation, which could affect sequencing results. 
Bioanalyzer traces sometimes show a strong, sharp peak caused by adapter-dimers. 
If a sample with adapter-dimers is sequenced, the majority of the sequence reads 
will be adapters, and the number of reads that align to the genome will be signifi -
cantly decreased. The amount of DNA produced after amplifi cation is generally 
suffi cient for multiple ChIP-Seq runs, and must be diluted prior to submitting samples 
for sequencing.   

  Fig. 8.3    ChIP-Seq Library 
Preparation. ChIP DNA 
fragment ends are repaired, 
followed by addition of an 
“A” base to the 3 ¢  end. 
Platform-specifi c adapters are 
ligated, and DNA is size 
selected at 200 bp. Following 
PCR amplifi cation, library 
size is validated using the 
Bioanalyzer       
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    8.3   Experimental Design 

 In order to produce ChIP-Seq data that is accurately representing the biological 
system being investigated, it is important to consider certain elements of experimental 
design. Here I describe three important aspects of setting up a ChIP-Seq experiment: 
using appropriate controls, biological replicates, and using bar-coding to combine 
multiple experimental conditions or samples into one lane of sequencing. 

    8.3.1   Controls for ChIP-Seq Experiments 

 When performing a ChIP-Seq experiment, it is important to also sequence control 
DNA. Control DNA can either be sheared genomic DNA (input DNA), or a ChIP 
that was performed with a non-specifi c antibody, such as IgG. There are regions of 
the genome that are more likely to be sequenced, due to PCR amplifi cation bias, 
sonication of DNA, or incorrect mapping of sequences derived from repetitive 
regions. These regions will show a pile-up of sequence reads in the control data as 
well as in the ChIP data, and it is therefore important to include control data to 
eliminate these false-positive peaks. 

 There have been reports that show that chromatin structure can affect signal 
distribution of sequence tags (Auerbach et al.  2009  ) . It was demonstrated that chro-
matin fragmentation more often occurs around open chromatin of expressed genes, 
and if an input library is sequenced, there is a positive correlation of sequence tags 
with expressed genes (Auerbach et al.  2009  ) . These results raise important issues in 
using input DNA as a control. While input DNA from one tissue may have more 
sequence reads near genes expressed in that tissue, a true ChIP-Seq peak will gener-
ally still have more sequence reads around a target region it is binding when com-
pared to input DNA. Input DNA is used to remove non-specifi c regions that were 
sequenced, and these regions have very high signal. Additionally, if different chro-
matin tissue samples were processed under similar sonication conditions, the highly 
enriched false-positive peaks will be the same between all samples and conditions 
(Tuteja et al.  2009  ) . While smaller peaks identifi ed in input DNA may differ between 
tissues, the distribution of peak heights between inputs generated from different 
tissues is similar, and the distribution can ultimately be used to determine if a peak 
identifi ed in ChIP-Seq data is higher than what is expected based on input data. The 
similar distribution of input sample peaks was demonstrated by showing that if 
GLITR, a ChIP-Seq peak-calling algorithm described later in this chapter, is run on 
two input samples, treating one as the ChIP DNA and one as the control DNA, no 
signifi cant peaks are identifi ed (Tuteja et al.  2009  ) . 

 Sequencing lanes of control DNA can be costly, if it is done for every condition 
and replicate being assayed. To address this issue, and because a large number of 
sequence tags are necessary to estimate a background distribution, input sequence 
tag alignment data from the Genome Analyzer has been made available for MM8, 
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MM9, HG18, and HG19 (  http://web.me.com/kaestnerlab1/GLITR/    ). These sequence 
tags were pooled from different tissues, and will remove false-positive peaks that 
arise in all sequencing reactions without diluting signal for specifi c tissues and con-
ditions. Because some sequencing biases are specifi c to sonication conditions, or 
the environment the library was prepared in (sequencing adapters are sensitive and 
will stick to lingering DNA on the bench), it is recommended that at least one input 
sample is sequenced per individual preparing ChIP-Seq libraries, to fi lter additional 
false peaks. Additionally, it has been shown that certain cell lines have specifi c dele-
tions or duplications in their genomes, and if these cell lines are being assayed, the 
genomic instabilities must be accounted for using experiment-specifi c control DNA 
(Blahnik et al.  2010  ) .  

    8.3.2   Biological Replicates 

 To identify target regions in ChIP-Seq data, it is important to generate a suffi cient 
number of sequence tags. When the Genome Analyzer was fi rst released, this meant 
sequencing 3–4 lanes per experimental condition. Because one ChIP-Seq library 
preparation produces enough material for several lanes of sequencing, one way to 
produce suffi cient sequence tags is to sequence the sample in multiple fl ow-cell 
lanes (technical replicates). Another option is to perform library preparation on 
multiple immunoprecipitation experiments that were done on different chromatin 
samples (biological replicates). While technical replicates are a faster option, it was 
shown that biological replicates are a more appropriate option to identifying true 
target regions (Tuteja et al.  2009  ) . If a sample is re-sequenced in multiple fl ow cell 
lanes, it is likely that the majority of the fragments that are sequenced will be the 
same between lanes. Since all ChIP experiments contain background DNA that was 
pulled down non-specifi cally by the antibody of interest, in a technical replicate 
experiment these non-specifi c fragments pile-up and become false-positive peaks. 
Biological replicate sequencing would eliminate ChIP-specifi c background DNA 
while amplifying true peaks. Although sequencing technology has advanced since 
the fi rst release of the Genome Analyzer, and it is now possible to obtain the same 
number of sequence tags through one lane of sequencing as four lanes in the original 
technology, biological replicates should still be performed and will provide the 
same benefi ts as they did previously.  

    8.3.3   Bar Coding 

 Because one lane of sequencing often produces an excess number of sequence tags 
for yeast and other species with small genomes, a bar-coding technique has been 
introduced to combine more than one ChIP-Seq library in one lane of sequencing 
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(Lefrancois et al.  2009  ) . Combining multiple ChIP-Seq libraries into one lane is a 
cost-effective and effi cient way to obtain sequencing data. 

 In a bar-coding experiment, specifi c nucleotides, which are different for each 
ChIP-Seq library preparation that will be sequenced, are added between the 
sequencing adapter and the DNA fragment. After the sequencing reaction, the 
fi rst bases that are sequenced correspond to the nucleotides that were added, 
thus allowing the ability to distinguish one ChIP-Seq library preparation from 
another one. In experiments performed in yeast, four bar-codes that were four 
nucleotides each were used. Oligonucleotides were generated that were the 
same sequence as Illumina adapters, followed by the 4-nucleotide tag (Lefrancois 
et al.  2009  ) . It is important that all bar-codes used in an experiment end in a “T” 
base, to allow ligation with the “A” overhang that is added to fragmented DNA 
during the library preparation. Additionally, the four bar-codes were generated 
such that even if there was a one or two base pair-sequencing error within the 
bar-coded region, the sequence read would still be assigned properly (Lefrancois 
et al.  2009  ) . 

 Because sequencing technology is constantly advancing, and the number of 
sequence tags produced from a single experiment is always increasing, the bar-coding 
technique is now applicable for larger genomes. In addition, the improvements in 
technology could allow generation of longer bar-codes, and allow more experiments 
to be combined into one lane of sequencing.   

    8.4   Raw Data Processing 

 Following a sequencing reaction, hundreds of gigabytes worth of imaging data must 
be processed. Most images produced by the Genome Analyzer are processed using 
the Illumina pipeline, which fi rst uses Firecrest to extract intensities for each cluster. 
Following image analysis, base calling is performed using Bustard, assigning a 
sequence to each cluster. Finally, these sequences are aligned to the genome using 
Eland. There are multiple programs available for these processing steps, and they 
are discussed in other chapters of this book. Here I discuss processing of alignment 
fi les produced by the Illumina pipeline, however, most alignment programs will 
provide equivalent information in different formats. 

    8.4.1   Alignment Data 

 The Illumina pipeline produces multiple output fi les containing cluster intensities, 
base quality values, and sequence information. For each lane, a fi le with the extension 
“export” is produced, which contains the data necessary to produce input fi les for 
peak-calling tools. Information contained in these fi les include the tile the cluster 
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was located on, the X and Y coordinates of the cluster on the image, the sequence 
of the cluster, the quality score of each of the bases in the sequence, the chromo-
some, start coordinate, and strand of the sequence on the genome, the location and 
base of a mismatch in the sequence read, a read alignment score, if the sequence 
read has passed quality control fi ltering, and an alignment code. The alignment 
code is either “NM”, which indicates the alignment had no match to the genome, 
“QC”, which indicates there was a quality control issue with the alignment, or is of 
the form “X:Y:Z”. In this format, where three numbers are separated by colons, the 
fi rst number (X) corresponds to the number of times the sequence read aligns to the 
genome with zero mismatches. The second number (Y) corresponds to the number 
of times the sequence read aligns the genome with one mismatch, and the third 
number (Z) corresponds to the number of times the sequence read aligns the genome 
with two mismatches. The reads that align uniquely to the genome with zero, one, 
or two mismatches, are generally the only sequence tags that are used for peak-
calling. In other words, the sequence reads with alignment codes that are either 
1:Y:Z, 0:1:Z, or 0:0:1 are used for peak-calling. This method removes sequence 
reads that align to multiple locations in the genome from analysis, but has its disad-
vantages. First, a sequence read with an alignment code of 1:156:178 would pass 
the fi lter, even though it aligns to the genome multiple times when a single base in 
the read is changed. It is possible that one base in the read was not sequenced 
properly, and the true read actually has multiple alignments to the genome. On the 
other hand, a sequence read with an alignment code of 2:0:0 would not pass the fi l-
ter. It is possible that there are two copies of a gene in the genome, and the sequence 
read aligns in the promoter of both copies of the gene. This sequence tag, and 
other sequence tags near it that may also be lost, are valuable because it is impor-
tant to know that there is a peak near a gene involved in a particular function, but 
if both genes have similar functions, it is not necessarily important to know if the 
sequence tags should have been assigned to one or both genes. While these exam-
ples demonstrate weaknesses in only choosing sequence tags with alignment 
codes of the form 1:Y:Z, 0:1:Z, or 0:0:1, the cases discussed likely only represent 
a small fraction of sequence tags and thus using only reads that align uniquely to 
the genome is suffi cient.  

    8.4.2   Data Visualization 

 The most common way to visualize ChIP-Seq data is using the UCSC Genome 
Browser (  http://genome.ucsc.edu/    ). ChIP-Seq data can be uploaded to the Genome 
Browser using multiple data formats to visualize either raw sequence tags or peaks 
identifi ed by a ChIP-Seq peak-calling algorithm. Here, raw data visualization methods 
are discussed, which can be easily adapted to visualizing specifi c peaks that were 
determined to be signifi cant. 
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 The Browser Extensible Data (BED) format can be generated from sequence tag 
data available in the “export” fi le, described in the previous section. Lines in a BED 
fi le must have at least three fi elds: the chromosome of the sequence read, the start 
coordinate of the sequence read, and the end coordinate of the sequence read. For 
reads that were sequenced on the forward or reverse strand, the chromosome and 
start coordinate are provided in the “export” fi le, and the end coordinate is simply 
the start coordinate plus the number of bases that were sequenced. Other optional 
fi elds in the BED fi le include the name, which would be displayed to the left of the 
sequence read when the display mode in the browser is set to “pack”; the score, 
which can be displayed in different shades of gray depending on the strength of the 
score (this option is useful if uploading ChIP-Seq peaks with scores); the strand of 
the sequence read, written in the fi le as “+” or “−”; and the itemRgb fi eld. The 
itemRgb fi eld is an RGB value, written in the fi le as “R, G, B”, which can be used 
to color sequence reads from individual experiments differently, or to distinguish 
forward reads from reverse reads. Because sequence reads are only a small portion 
of the DNA fragment that was sequenced, it is often preferable to visualize full 
DNA fragments rather than sequence tags. BED fi les can be used in this case as 
well, and the only additional data necessary is an estimate of the fragment size of 
DNA that was excised from the gel during ChIP-Seq library preparation. If X 
corresponds to the number of bases that were sequenced, and Y corresponds to the 
fragment size of DNA that was excised from the gel (minus the length of adapters 
that were ligated), then if the sequence read is on the forward strand, the end coor-
dinate is simply the start coordinate plus Y. If the sequence read is on the reverse 
strand, then the end coordinate is the coordinate reported in the “export” fi le plus X, 
and the start coordinate is then the end coordinate minus Y. 

 Another format accepted by the UCSC Genome Browser that can be used to 
visualize ChIP-Seq data is the wiggle (Wig) format. This format can be used to plot 
the number of overlapping sequence tags (or stack height) at every point in the 
genome, and allows for continuous peak visualization. To handle the large amounts 
of data produced by ChIP-Seq analysis, bigBed and bigWig formats have also been 
introduced. These fi les are indexed in a binary format, which makes them load faster 
than their corresponding BED and Wig fi les. The UCSC Genome Browser offers 
utilities to convert BED fi les to bigBed and Wig fi les to bigWig fi les. An example of 
the visualization formats described in this section is shown in Fig.  8.4 .  

 If a custom track is uploaded to the Genome Browser, it can only be viewed on 
the machine that was used to upload it, and it is automatically deleted 48 h after the 
last time it was accessed. Users also have the option of creating a “session,” which 
will allow them to save different confi gurations of their browser with specifi c track 
combinations. Any of these confi gurations can be shared, and each is saved for four 
months after the last time it was accessed. In addition to the UCSC Genome Browser, 
other browsers are also available for ChIP-Seq data visualization, such as the 
Genome Environment Browser (GEB), and the Integrated Genome Browser (IGB) 
(Huntley et al.  2008 ; Ji et al.  2008 ; Nicol et al.  2009  ) .   
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    8.5   Peak-Calling 

 A single ChIP-Seq experiment produces millions of reads that align uniquely to the 
genome. While known targets can be visualized on the UCSC Genome Browser, 
identifying all of the enriched regions in the data is a challenging task. Many 
peak-calling tools have been developed over the last few years to address these 
challenges, and are summarized in Table  8.1  (Boyle et al.  2008 ; Fejes et al.  2008 ; 
Ji et al.  2008 ; Jothi et al.  2008 ; Kharchenko et al.  2008 ; Mortazavi et al.  2008 ; Nix 
et al.  2008 ; Valouev et al.  2008 ; Zhang et al.  2008,   2011 ; Lun et al.  2009 ; Rozowsky 
et al.  2009 ; Spyrou et al.  2009 ; Tuteja et al.  2009 ; Zang et al.  2009 ; Blahnik et al. 
 2010 ; Qin et al.  2010 ; Wu et al.  2010 ; Xu et al.  2010  ) . In this section, different 
approaches taken by peak-calling programs are generalized, and then one method 
is discussed in detail.  

  Fig. 8.4    Data visualization formats. Sequenced DNA reads can be visualized using the UCSC 
Genome Browser. Examples are shown using BED fi le format for raw sequence reads, sequence 
reads extended by the DNA fragment length, and using the Wiggle format       
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    8.5.1   Overview of Methods 

 Multiple ChIP-Seq algorithms have been reviewed previously (Pepke et al.  2009 ; 
Wilbanks and Facciotti  2010  ) . An important consideration when choosing a ChIP-
Seq program is to ensure that the program can handle background sequence tags. 
As discussed in Sect.  8.3.1 , input DNA sequence tags are not completely random. 
Therefore, an algorithm that estimates background by randomly assigning sequence 
tag coordinates to the genome will not be suffi cient, even if the tags are modeled 
with a Poisson or negative binomial distribution. Control sequence tag data has been 
used by peak-calling programs in different ways. Sole-Search, for example, uniquely 
utilizes control data to identify and account for amplifi ed and deleted regions present 
in ChIP-Seq data (Blahnik et al.  2010  ) . Control data is also used directly when 
determining peak signifi cance, discussed later in this section. 

 Following identifi cation of tags that align uniquely to the genome, clusters of 
sequence reads must be identifi ed. A fi rst step that is often used to identify these 
clusters of reads in the genome is to extend sequence tags to the expected fragment 
length. While it is possible to estimate fragment length based on the distance 
between forward and reverse strands around the same peak, it is also known based 
on the narrow size of the fragment that was excised from the gel during library 
preparation. Following fragment extension, sequence tags that overlap with each 
other can be grouped together and considered part of the same peak. Many tools use 
this approach and defi ne the maximum peak height as the maximum number of 
overlapping tags within the peak, and this information can be used to calculate 
signifi cance of the peak (Robertson et al.  2007 ; Fejes et al.  2008 ; Rozowsky et al. 
 2009 ; Tuteja et al.  2009  ) . Another common approach to grouping sequence reads is 
the sliding window method, in which a fi xed window size is scanned across the 
genome, counting the number of sequence tags that fall within each window. MACS 
( M odel-based  A nalysis of  C hIP- S eq) utilizes a sliding window approach, and given 
the DNA fragment size, scans the genome using a window size that is twice the 
fragment size. Another strategy taken by peak-calling algorithms is to utilize strand 
information when identifying potential binding regions. For example, the SISSRS 
( S ite  I dentifi cation from  S hort  S equence  R eads) algorithm assumes that truly 
enriched regions should contain roughly the same number of sequence tags from the 
forward and reverse strands of DNA, and identifi es potential binding sites based on 
transitions between a group of forward tags to a group of reverse tags (Jothi et al. 
 2008  ) . This method is generally appropriate for eliminating false positives, however, 
it may be too stringent for identifying weaker binding sites for some TFs, where 
only the strongest sites would contain suffi cient sequence tags to fi t the model. 
CisGenome uses strand information to provide a more precise binding site location, 
by separately identifying peaks in forward and reverse strands and then pinpointing 
the binding site to a location between them (Ji et al.  2008  ) . It is also important to 
note that strand information is most useful when analyzing TF ChIP-Seq data, rather 
than histone modifi cation, or RNA-polymerase ChIP-Seq data, which have much 
broader peaks composed of forward and reverse sequence reads throughout. 
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 Often times, binding sites that are closely spaced together are merged into one 
ChIP-Seq peak. One program that has the ability detect closely spaced binding sites, 
that are within 100 base pairs or less of each other, is CSDeconv (Lun et al.  2009  ) . 
CSDeconv uniquely utilizes an iterative blind deconvolution approach to estimate 
peak shapes and location of binding sites (Lun et al.  2009  ) . Because of the compu-
tational intensity of the algorithm and its current implementation, CSDeconv is 
currently more suitable for analyzing microbial ChIP-Seq data sets rather than 
mammalian ones. 

 After peaks are identifi ed in ChIP-Seq data, it is important to assess the signifi cance 
of these peaks. At this step, control data can be incorporated to determine if the peak 
identifi ed in ChIP-Seq data is also likely to occur in background control data. One 
value that can be used to determine statistical signifi cance is the fold-change of the 
total number of tags in the ChIP-Seq region compared to the total number of tags in 
the control data in the same region (Johnson et al.  2007  ) . Fold-change relative to 
control DNA can also be calculated base-by-base in a region, and the average value 
can be assigned to the region in order to eliminate the possibility of control sequence 
reads throughout the region that do not overlap with each other, which would falsely 
dilute the ChIP-Seq signal (Tuteja et al.  2009  ) . Control tags can also be used to 
choose parameters for statistical models that can then be used to determine peak sig-
nifi cance. For example, MACS fi rst calculates a background distribution modeled 
according to the Poisson distribution using a control data set (Zhang et al.  2008  ) . 
Candidate peaks that are signifi cantly enriched over the background model are then 
identifi ed, and local biases are removed (Zhang et al.  2008  ) . MACS then estimates 
a false-discovery rate by performing a sample swap between ChIP and control data 
(Zhang et al.  2008  ) . Other models that have been applied to identify signifi cant 
peaks include the binomial distribution (Nix et al.  2008 ; Rozowsky et al.  2009  ) , and 
a hidden markov model (Spyrou et al.  2009 ; Qin et al.  2010  ) . Generally these mod-
els can be used to assign a  p -value, or another statistical signifi cance value to every 
peak or cluster of sequence tags that was identifi ed in the data. Other methods, such 
as GLITR and QuEST, utilize large sets of control tags when identifying signifi cant 
peaks (Valouev et al.  2008 ; Tuteja et al.  2009  ) . This allows separation of a 
“PseudoChIP” sample to use to calculate fold-enrichment to remaining control tags. 
This allows for an accurate comparison of peak attributes in ChIP data relative to a 
control, and PseudoChIP data relative to the same control. In the next section, 
I describe details of the GLITR algorithm.  

    8.5.2    GL obal  I dentifi er of  T arget  R egions 

 The  GL obal  I dentifi er of  T arget  R egions (GLITR) software and user manual are 
available online at   http://web.me.com/kaestnerlab1/GLITR/    . The input format is 
simply a fi le that contains one line for each uniquely aligning sequence read, with 
the chromosome, start coordinate, and strand, using a “+” to represent the forward 
strand and a “−” to represent the reverse strand. As described in Sect.  8.4 , this infor-
mation is easily extractable from the “export” fi le produced by the Illumina pipeline. 
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GLITR fi rst fi lters each data set such that each start coordinate is represented once. 
This is an important step in ChIP-Seq analysis, and it reduces the effect of tags 
sequenced repeatedly in ChIP data that may not be present in input data. This step 
does not affect true peaks, as true peaks are covered by sequence tags starting at 
many different locations. 

 GLITR requires at least two times the number of ChIP tags in the control data 
set, but ideally the control set should be larger. As discussed in previous sections, 
the large control set can be used repeatedly for different experiments, and therefore 
large sets have been made available on the GLITR website for HG18, HG19, MM8, 
and MM9. The large set of input tags is necessary because GLITR creates a 
pseudoChIP set, by randomly sampling the same number of tags from the control 
set as are contained in the ChIP data set (Fig.  8.5 ). The remaining control tags 
(background tags) are used to calculate the fold-change of candidate regions that are 
identifi ed in both ChIP and pseudoChIP sets, and then to estimate the FDR.  

 As previously discussed, GLITR extends sequence tags to the expected fragment 
length and then groups overlapping sequence tags into regions. This is done for the 
ChIP data as well as the pseudoChIP data, and each region is assigned a maximum 
peak height. The fold-change of each of these regions is then calculated relative to 
random samples of background tags, each with the same number of tags as the ChIP 
data set. GLITR calculates the fold-change to 100 different samples of background 
tags by default, but this number can be reduced to decrease total computation time. 
Randomly sampling background data for fold-change calculation prevents losing 
regions where one particular background sample contains many sequence tags in a 
region that is truly bound. The large amount of background data also allows for 
model-free analysis, which is robust through changing technology and identifi ca-
tion of biological or experimental factors that affect ChIP-Seq data (Valouev et al. 
 2008 ; Tuteja et al.  2009  ) . 

 To calculate the false discovery rate, GLITR uses both the region peak height, as 
well as the median fold-change of the region, calculated from all of the samples. 
This removes artifi cial peaks that were present in the control data, because they have 
high peak heights and low fold-changes. It also removes regions with a low peak 
height and acceptable fold-change, which often occur in background data. Regions 
are classifi ed as bound using a k-nearest neighbors approach and a false discovery 
rate is calculated based on results from using the same approach on pseudoChIP 
regions (Tuteja et al.  2009  ) . 

 It was demonstrated that GLITR more accurately identifi ed binding sites in 
ChIP-Seq data for Foxa2 in adult mouse liver, when compared to MACS, SISSRS, 
PeakSeq, QuEST, and CisGenome (Tuteja et al.  2009  ) . This was probably because 
of the model-free approach which used a large pool of background tags to estimate 
the FDR. While most ChIP-Seq programs will easily provide strong peaks that are 
present in data, weaker peaks are more diffi cult to identify. Other program compari-
sons have been carried out (Wilbanks and Facciotti  2010  ) , however, to determine 
which software tool most often identifi es weaker binding sites, it is important to 
thoroughly compare ChIP-Seq programs on a variety of experimentally generated 
data sets, including TFs with different ranges in the number of targets they bind to 
in the genome.   
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    8.6   Functional Analysis of ChIP-Seq Peaks 

 Peak-calling often results in thousands of signifi cant regions that must be further 
interpreted. A recently developed tool, GREAT ( G enomic  R egions  E nrichment of 
 A nnotations  T ool), can be used to determine the functional signifi cance of the ChIP-
Seq regions (McLean et al.  2010  ) . GREAT, available as a web application at   http://
great.stanford.edu/    , is the fi rst tool that appropriately assigns functional  enrichments 

Background

Control Sequence Tags

ChIP

PseudoChIP

   Generate profiles of overlapping tags
(regions) and assign peak height

Background samples

Fold-change
calculation

Fold-change
calculation

Median
fold-change

Median
fold-change

Plot Fold-change and peak height for ChIP and
PseudoChIP data and calculate FDR using
Nearest Neighbors approach (Tuteja, et al.

2009)

  Fig. 8.5    GLITR algorithm outline. GLITR fi rst generates a pseudoChIP sample, which contains 
the same number of tags as the ChIP-Seq sample, by randomly selecting the tags from a large 
number of control tags. Control tags are obtained from multiple sequencing runs of sheared input 
chromatin, and can be utilized for any ChIP-Seq experiment. Overlapping regions of tags are iden-
tifi ed in the ChIP and pseudoChIP samples, and are assigned a maximum peak height. A median 
fold-change is then calculated for each of these regions, based on the fold-change to several random 
samplings of background tags. Signifi cant peaks are determined by calculating an FDR based on a 
nearest neighbors approach that utilizes ChIP and pseudoChIP data       
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for regions distal to transcription start sites, which are very commonly found in 
hIP- sequencing data. GREAT currently includes annotations for over 20 ontologies 
and supports g18, hg19, mm9, and danRer7. GREAT takes a list of peaks in BED 
format as input, and can also handle user-defi ned background sets. This tool can be 
used to facilitate interpretation of ChIP-Seq data by dividing peaks into categories 
of enriched biological functions.  

    8.7   Conclusions 

 ChIP-Seq was fi rst introduced only 4 years ago, but great improvements have been 
made in both the sequencing technology and data analysis approaches. ChIP-Seq 
has revolutionized the study of transcriptional regulation by allowing rapid identifi -
cation of all of the binding sites in the genome targeted by a TF. When planning a 
ChIP-Seq experiment, it is important to carefully think about experimental design, 
and the best way to perform experiments, in order to achieve results that best rep-
resent the system being assayed. Additionally it is important to contemplate the 
specifi c biological questions that will be answered with the ChIP-Seq data, in order 
to ensure the most appropriate analysis approaches are carried out.      
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  Abstract   Cytosine methylations are common mechanisms of epigenetic modifi cations 
of DNA molecules which also infl uence gene expression and cell phenotypes. Thus, 
5 methyl-cytosine is sometimes called the fi fth base of the genome. The develop-
ment of high throughput sequencing (HTS) technologies has – for the fi rst time – 
brought about tools to investigate epigenetic alterations in a genome-wide approach. 
First methylation maps have already been created and it is only a question of time 
until complete epigenetic maps of healthy and diseased human tissues are available. 
Here, we summarize the use of HTS for diverse epigenetic technologies, give an 
overview of the status quo of methylation maps, touch bioinformatics software 
applications and problems and, fi nally, outline future perspectives for the applica-
tion in oncology and basic research.      

    9.1   The Genome and the Epigenome Determine 
the Phenotype of Organisms 

 Despite identical genotypes the phenotypes between organisms can differ dramati-
cally. For humans this effect is obvious for monozygotic twins, but can also be seen 
in intra-individual changes of gene expression during disease, in response to envi-
ronmental stimuli and during the aging process. Underlying mechanisms need to 
be constant during cellular development, heritable to daughter cells and we need to 
be able to respond to outer environmental infl uences. These pre-requirements are met 
by epigenetic modifi cations, e.g. histone modifi cations and, most importantly, also 
DNA methylation alterations.  
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    9.2   Altered Epigenetic Patterns are Found in Several Diseases, 
Especially in Cancer 

 The nucleotide sequence is the primary level of genetic information and the basic 
principle of genetic inheritance. Another level of complexity in genomic informa-
tion arises from epigenetic variations of DNA segments which are also underlying 
the inheritance of phenotypes from generation to generation as well as from cell to 
cell during cell division (Laird  2010  ) . Genome-wide studies on epigenetic changes 
are now termed “epigenomics”. Epigenetic variations can be grouped into covalent 
DNA modifi cations, in particular methylation of nucleotides, or post-transcriptional 
modifi cations of histones (e.g. acetylation, ubiquitination or methylation). In humans, 
cytosine methylation was the fi rst mark discovered. In the current paradigm it is 
required for the regulation of gene expression as well as for silencing transposons 
and other repetitive sequences (Walsh et al.  1998  ) . The chemical modifi cation 
occurs predominantly via a covalent attachment of a methyl group to the C5 posi-
tion of the cytosine ring (5mC) in CpG dinucleotides. Thereby the structure of cyto-
sine is altered without changing its base-pairing properties. Altered methylation 
patterns have been reported in a diverse array of complex human diseases such 
as cancer, systemic autoimmune and psychiatric diseases as well as in monogenic 
epigenetic diseases (Feinberg  2007  ) . In this regard, the fi rst molecular epigenetic 
change, a global reduction of methylation in cancer cells, has been described by 
Feinberg and Vogelstein  (  1983  )  and in the same year by Gama-Sosa et al.  (  1983  ) . 
These changes were found in both pre-invasive and invasive cancers and implicate 
that alterations in the cytosine methylation patterns are among the earliest events in 
tumorigenesis. In addition, it has been shown that specifi c alterations in the methy-
lation patterns of CpGs in promoter regions are associated with certain tumor entities 
or stages. Consequently, the fi rst biomarkers have been developed on the basis of 
these modifi cations (Banerjee and Verma  2009  ) .  

    9.3   Technologies for High-Throughput Epigenetic Analyses 

 Over the past years several epigenetic technologies have been developed either for 
profi ling methylated genomic regions (indirect methods) or for typing the methy-
lated base (direct methods). These approaches differ concerning the obtainable 
resolution with direct methods resulting in single-nucleotide patterns of methylated 
cytosines within genomes, while indirect methods measure average methylation 
levels across many molecules (Beck and Rakyan  2008 ; Laird  2010 ; Lister and Ecker 
 2009 ; Pomraning et al.  2009  ) . 

 Using HTS technologies for the interrogation of methylation patterns, the clas-
sifi cation into indirect and direct approaches can be maintained and extended 
(Tables  9.1  and  9.2 ): Indirect methods – Methyl-Seq, MCA-Seq, HELP-Seq, MSCC, 
MeDIP-Seq, MBP-Seq and MIRA-Seq – are based on enrichments of methylated 
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regions. Methylation profi les are then inferred by subsequent sequencing, read 
alignment and counting of reads per genomic interval. Direct methods – BS-Seq, 
BC-Seq, BSPP and RRBS – in contrast rely on bisulfi te conversion of unmethylated 
cytosines and consecutive sequencing, which allows methylation profi ling with a 
resolution on single base level. Both, direct and indirect methods will be the focus 
of this review followed by a short outlook on future developments and their poten-
tial employment for medical applications.   

    9.3.1   Indirect Epigenetic Analyses 

 Indirect approaches provide information as a methylation score for regions of 
approximately 100–200 bp length. All methods are based on the enrichment of 
methylated DNA. The fragments captured by any of those methods can then be 
identifi ed by either hybridization to known sequences or by sequencing. 

 The use of HTS instead of custom-designed hybridization-arrays to identify pre-
cipitated DNA fragments provides genome-wide information about methylated 
regions. This implies that all DNA fragments can be identifi ed and not only pre-
selected regions which are immobilized on an array. The completeness of the data 
is especially advantageous in generating methylation profi les outside of CpG-
islands and promoter regions, for example in gene bodies where DNA methylation 
changes have recently been shown to occur (Ball et al.  2009 ; Rakyan et al.  2008  ) . 

 MeDIP-Seq and MBP-Seq rely on precipitations of DNA fragments containing 
methylated cytosines (5mC) using an anti-5mC antibody or methyl-binding proteins 
(MBP) and are thus termed methylation-dependent immunoprecipitation (MeDIP) 
and MBP assays (Cross et al.  1994 ; Keshet et al.  2006 ; Rauch and Pfeifer  2005 ; 
Weber et al.  2005  ) . Both methods belong to the class of affi nity-enrichment sequenc-
ing approaches (AE-Seq). 

 The MeDIP-enrichment depends upon the 5mC content in a way that a threshold 
level of methylation, approximately 2–3%, is required for a successful enrichment. 
Regions with high CpG content are therefore more likely to be enriched than regions 
with low CpG content. First MeDIP-seq experiments indicate that approximately 
30–40 million reads are required for a human genome-wide analysis (Beck and 
Rakyan  2008 ; Down et al.  2008  ) . MeDIP-seq approaches have been performed so 
far using Illumina’s Genome Analyzer technology (Down et al.  2008  ) , but we 
recently established several methylation analysis methods for SOLiD sequencers, 
because of improved throughput (Boerno et al.  2011  ) . MBPs preferentially bind 
double stranded DNA with symmetrically methylated CpG sequences and, in con-
trast to MeDIP-protocols, where the DNA is denatured and single stranded, the 
adapter ligation step is less critical and can be performed after the affi nity purifi ca-
tion. A challenge of both AE-Seq methods is that “no signal” can be explained 
either by very low methylation levels or experimental failure and hypomethylation 
patterns are therefore very diffi cult to assess. 

 Protocols that use endonucleases (Enzyme-Seq technologies) like Methyl-Seq 
(Brunner et al.  2009  ) , MCA-Seq (Toyota et al.  1999  ) , HELP-Seq (Oda et al.  2009  )  
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and MSCC (Ball et al.  2009 ; Berman et al.  2009  )  exploit the fact that restriction 
enzymes exist which target sequences that comprise CpG sites in a methylation-
sensitive manner. 

 Analysis is done by counting the reads per genomic region and combined evalu-
ation of treatment and control samples. If no control samples exist methylation-
sensitive (e.g. HpaII, SmaI) and methylation-insensitive (e.g. MspI, XMaI) 
preparations can be compared, a step which is also advisable if copy number variants 
are expected to be present (Oda et al.  2009  ) . In the same line restriction digests can 
also be compared to randomly sheared fragments as was shown in a study that used 
3–10 million sequencing reads per sample and was able to interrogate 65% of all 
annotated CpG islands (Brunner et al.  2009  ) . The commonly used size selection 
constraint to 100–200 bases limits the number of CpG sites that can be interrogated. 
This can be improved by the MSCC approach. The usage of an adapter with MmeI-
recognition sites and performance of a MmeI-digest after the ligation step results in 
genomic DNA tags of approximately 20 bp length which is an ideal length for HTS. 
With this approach a maximum of 1.4 million CpG sites can be interrogated and 
with approximately 20 million sequencing reads, 66% of the CpG sites have been 
covered with at least one read. A drawback of the Enzyme-Seq methods is that any 
region showing at least one read in the methylation-sensitive digest is currently 
called “unmethylated”. Thereby the quantitative methylation state of the individual 
region is lost, and partial methylation remains unidentifi ed (Ball et al.  2009 ; Brunner 
et al.  2009  ) . 

 For indirect epigenetic techniques the question of sequence resolution plays an 
important role since single-nucleotide methylation patterns have not yet been 
achieved. There is an ongoing discussion whether determining global changes in 
methylation – as observed by indirect assessment techniques – might be suffi cient 
for epigenetic studies due to correlations between CpG island methylation within 
short regions (1,000 bp) and coordinated gene suppression across entire chromo-
some bands (Eckhardt et al.  2006 ; Frigola et al.  2006  ) .  

    9.3.2   Direct Epigenetic Analyses 

 Direct assessment techniques like BS-Seq (Carr et al.  2007 ; Korshunova et al.  2008 ; 
Wang et al.  1980  ) , BC-Seq (Hodges et al.  2009  ) , BSPP (Ball et al.  2009 ; Berman et al. 
 2009 ; Deng et al.  2009 ; Li et al.  2009  ) , or RRBS (Meissner et al.  2005,   2008  )  deter-
mine methylation profi les directly from the sequence enabling base pair resolution. 
Methylated DNA is marked through a “bisulfi te (BS) conversion” reaction for which 
genomic DNA is treated with sodium bisulfi te under denaturing conditions. Cytosine 
residues get deaminated and converted to uracil leaving methylated cytosine moieties 
unaffected (Frommer et al.  1992  ) . Identifi cation of the resulting DNA sequence leads 
to a detection of converted and unconverted cytosine residues and subsequent iden-
tifi cation of the prior methylation status of the nucleotide. The analysis deduces that 
cytosine residues were methylated if they have not been converted by bisulfi te. 
Common to all direct investigation techniques are pitfalls leading to false positive 
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methylation calls due to incomplete conversion reactions, degraded DNA caused 
by harsh conversion conditions and methylation in pseudogenes (Esteller  2002 ; 
Warnecke et al.  1997  ) . Using conventional sequencing strategies like Sanger 
sequencing, genome-wide undertakings would be extremely time and cost-intensive. 
Only with the aid of HTS technologies do comprehensive m5C patterns become 
feasible (Eckhardt et al.  2006  ) . 

 So far, genome-wide single-nucleotide resolution BS studies with HTS technolo-
gies have been mainly performed for small genomes like  Arabidopsis thaliana  
(Cokus et al.  2008 ; Lister et al.  2008  ) . In these studies approximately 85% of all 
cytosines in the 119 Mb  A. thaliana  genome have been addressed. In a pilot study 
the BS-seq approach has also been used for mouse genomic germ cell DNA where 
66% of all sequencing reads could be mapped to the genome, demonstrating that 
these approaches can be extended to larger genomes such as those in mice or humans 
(Popp et al.  2010  ) . First human genome-wide epigenetic maps after bisulfi te treatment 
have been constructed and show that more than 93% of all CpGs can be targeted 
(Li et al.  2010 ; Lister and Ecker  2009  ) . 

 Major challenges for whole genome BS sequencing are the sequencing capacities 
and costs required, which are still relatively high. Thus, it is more practical to inves-
tigate only parts of the genome to gain insight into methylation patterns of mam-
mals, especially if large numbers of samples need to be analyzed. First approaches 
to reduce the genome complexity for bisulfi te sequencing have been performed by 
PCR-amplifi cation of target regions (BC-Seq) (Korshunova et al.  2008 ; Taylor et al. 
 2007  ) . Another approach, termed BSPP, combines targeted enrichment of specifi c 
DNA regions by padlock probes and rolling circle PCR, BS conversion and HTS. 
As a proof of principle 10,000 independent regions were queried (Ball et al.  2009  ) . 
A disadvantage of targeted enrichment BS-Seq is the bias introduced by selecting a 
subset of “interesting” sites. One protocol, which does not rely on sequence specifi c 
pre-selections of DNA regions but does select for regions with high CpG density is 
reduced representation BS Sequencing (RRBS). It uses the digestion of the genomic 
DNA at CCGG sites with a methylation-insensitive restriction enzyme followed by 
size selection, BS conversion and sequencing (Meissner et al.  2008  ) .  

    9.3.3   Comparison of Epigenetic Analysis Protocols 

 DNA methylation analysis methods cannot easily be compared as many approaches 
have competing strengths and weaknesses. The number of samples which can be 
analyzed in parallel, the quantity of DNA and the desired resolution are the central 
decision points. 

 Methods based on endonuclease treatment (Enzyme-Seq) tend to require 
DNA of high quality and quantity (Oda et al.  2009  ) . Affi nity-enrichment tech-
niques (AE-Seq) can tolerate a certain amount of DNA impurity but result in a 
coarse resolution of DNA methylation (Laird  2010  ) . Bisulfi te treatment  (BS-Seq) 
not only requires DNA denaturation before treatment but also can cause substan-
tial DNA degradation. Even more challenging, an overtreatment with bisulfi te 
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can lead to a conversion of methylated cytosines to thymine (Wang et al.  1980  ) . 
On the other side these protocols give detailed and nucleotide-specifi c informa-
tion on methylation patterns at the price of high sequencing costs and low 
throughput in the case of genome-wide analyses. 

 The focus of most approaches is towards methylated cytosines within the CpG 
context. While other types of methylation, such as methylation at CpHpG (H = A, T, C) 
sites, exist (Kriaucionis and Heintz  2009 ; Lister et al.  2008  ) , they are less frequently 
investigated and fewer studies are published (Huang et al.  2010 ; Jin et al.  2010 ; 
Nestor et al.  2010  ) . 

 Enzyme recognition sites limit the detectable CpG context for Enzyme-Seq 
methods and it is hard to measure DNA methylation quantitatively. While Enzyme-
Seq methods are able to resolve methylation differences in low-CpG-density 
regions, affi nity-based methods perform well for CpG-rich regions (Irizarry et al. 
 2008  ) . On the other hand genome-scale techniques like BS-Seq are not particularly 
well suited for the detection of low-frequency methylation states in a large cohort of 
samples as sensitivity is generally a function of sequencing depth and therefore also 
of costs. 

 The read count methods (AE-Seq and Enzyme-Seq) are prone to sources of bias, 
such as GC content, fragment size and copy-number variations in the source DNA, 
that affect the likelihood that a particular region is included in the sequenced frag-
ments (Aird et al.  2011 ; Dohm et al.  2008 ; Schweiger et al.  2009  ) . The bisulfi te-
based methods are also subject to these effects, but they do not infl uence the DNA 
methylation measurement itself, as this information is extracted from the sequence. 

 Taken together, the number of different HTS epigenetic technologies is large, 
and each has its own advantages and disadvantages. The selection of the right tech-
nology for the research question investigated is crucial in making the most out of the 
enormous power HTS has to offer for basic and clinical directions of research.   

    9.4   Bioinformatic Analyses 

 Along with the development of high-throughput sequencing technologies the need 
for adequate data handling emerged. The large amount of data, the statistical analyses 
with massive multiple-testing approaches, requires advances in both data storage 
and software. To investigate methylation patterns analysis tools comprise software 
for the mapping of short reads to DNA, peak calling algorithms in the case of 
enrichment-based technologies and downstream functional annotation techniques. 

    9.4.1   Alignment 

 The key bioinformatics step of methylation analysis is the fast but accurate mapping 
of short read sequences to the reference genome. For the basic alignment of short reads 
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several algorithms have been developed and are still in the process of improvement. 
Most frequently used softwares comprise: Bowtie (Langmead et al.  2009  ) , BWA 
(Li and Durbin  2009  ) , Eland, Maq (Li et al.  2008  )  and Novoalign. In the case of 
bisulfi te converted DNA the task is somewhat more complicated because the con-
version leads to an overrepresentations of uridines/thymidines and thus to a reduc-
tion of the genetic complexity. Here, either the alignment parameters should be 
optimized to tolerate more mismatches than usual (bowtie: −v, bwa: −M) or special 
software for BS-data should be used [Bismark, BSMAP (Xi and Li  2009  ) , BS seeker 
(Chen et al.  2010  ) , Novoalign, GSNAP (Wu and Nacu  2010  ) ].  

    9.4.2   Interpretation of Data from Bisulfi te Treated DNA 

 After bisulfi te conversion, the majority of DNA being sequenced is effectively com-
posed of just three bases and one encounters a high error rate when base-calling is 
performed. For calibration purposes it is therefore necessary to sequence a control 
library which contains all four bases and it is advisable to optimize the base callers 
(Cokus et al.  2008 ; Lister et al.  2008  ) . 

 Analysis of sequences from bisulfi te treated DNA is based on single-nucleotide 
variant detection methods that identify variants which result from bisulfi te conversion. 
Cytosine residues which have not been converted are assumed to be methylated. 
However, CpG dinucleotides are common sites of polymorphisms and one has to 
distinguish polymorphisms from bisulfi te-induced deaminations. One error prone 
method is to exclude known polymorphisms. However, this approach might miss 
potential methylations within known polymorphisms. Another method is to sequence 
the non-bisulfi te-converted genome of interest and to use it for comparison. 

 A more effi cient method takes advantage of the information gathered by high-through-
put sequencing. A SNV caused by long-term (e.g. evolutionary) deamination of C to T 
will have been propagated on the opposing DNA strand as an A, whereas bisulfi te deami-
nation (spontaneous deamination) of an unmethylated cytosine will leave the G on the 
opposing strand unaffected (Weisenberger et al.  2005  ) . Sequencing of both DNA strands 
of bisulfi te-converted DNA can therefore discriminate between a CpG SNV and an 
unmethylated CpG without the need to sequence the non-bisulfi te converted genome.  

    9.4.3   Peak Detection 

 Enrichment-based approaches (AE-Seq and Enzyme-Seq) to determine methylation 
profi les only exploit the position of the mapped reads as opposed to bisulfi te 
sequencing. In detail, the data can be summarized as counts in a genomic interval 
(bin). Peak fi nding algorithms are then needed to identify regions with signifi cantly 
increased coverage of reads. Numerous algorithms have already been developed 
and evaluated (Pepke et al.  2009 ; Wilbanks and Facciotti  2010  )  for chromatin 
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immunoprecipitation datasets (ChIP-Seq), but they have to be used with caution for 
methylation analysis as there is only limited knowledge of defi ned peak shapes 
(Robinson et al.  2010a  ) . However, two main studies have adapted the ChiP-Seq 
analysis pipeline especially to DNA methylation analyses. Down et al. combined 
MeDIP with high-throughput sequencing for whole-genome methylation studies 
and developed the “Batman” algorithm for analyzing MeDIP profi les (Down et al. 
 2008  ) . With similar performance, but with a more time-effi cient computational 
method Chavez et al. established the MEDIPs package which in addition contains 
quality control metrics and identifi es differential methylation (Chavez et al.  2010  ) . 
Both algorithms have been developed to take local CpG densities into consideration 
and calculate differential methylation levels.  

    9.4.4   Sources of Bias 

 While many studies proclaim that “their” technique used is unbiased and covers the 
whole methylome, fi rst reports (Hodges et al.  2009 ; Robinson et al.  2010b  )  and our 
own data suggest that methylation profi ling is not straightforward. In fact, the 
detection of biases, its accounting and normalization form a signifi cant part of the 
bioinformatic analysis. Next to the limits of the protocol used that determines how 
many CpG sites can actually be observed, four sources of bias have been described: 
sequencing bias, mapping bias, CpG density bias and copy number bias (Robinson 
et al.  2010a  ) . 

 High throughput sequencing in itself is positively correlated with the GC content 
of a region (Down et al.  2008 ; Schweiger et al.  2009 ; Timmermann et al.  2010  ) . In 
addition, enrichment methods also tend to be affected by the local CpG distribution. 
For analyses like SNV detection this bias only has an indirect effect as the coverage 
levels will vary and some positions might be missed entirely. However, for analysis 
strategies that generate information based on coverage levels it is rather important 
to correct for GC content as is implemented for instance in the Batman and MEDIPs 
packages (Chavez et al.  2010 ; Down et al.  2008  )  or background models need to be  
calculated (Zhang et al.  2008  ) . 

 Mapability poses the second challenge to methylation analyses. Depending on 
the read length a certain proportion of the genome cannot be covered by unambigu-
ously placed reads due to repetitive sequences; this affects approximately 13% of 
the genome with 36 bp reads and 8% with 50 bp reads. Although some reads will 
extend into, and thereby recover repetitive sequences, the region will have a lower 
coverage than regions with unique sequence. Longer reads and paired-end (mate-
pair) reads improve the mapability problem signifi cantly. 

 For bisulfi te-treated DNA the situation is even more complicated. The strategy 
how the reference genome is degenerated to enable the sequence alignment step – if 
“C” is replaced by “Y” or “T” – has an impact on mapability. Even more dangerous, 
the substitution of “C” by “Y” in the reference sequence renders the mapability 
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dependent on methylation state while the substitution of “C” to “T” decreases the 
amount of uniquely mapable sequences (Robinson et al.  2010a  ) . 

 The distribution of CpG densities is important for comparisons of data across 
platforms. None of the protocols available today is able to produce data which exactly 
mimics the genome-wide CpG density distribution and, in addition, a few protocols 
seem to have a strong bias towards high CpG density (RRBS and MBP-Seq) 
(Robinson et al.  2010a  ) . 

 In our enrichment-based cancer methylome analyses we fi nd copy number 
alterations as an important cause for bias, and therefore perform experiments for 
copy number alterations in parallel (unpublished data). One possibility used so far 
is to omit known regions of amplifi cation (Ruike et al.  2010  ) . Instead of excluding 
“no-analysis” areas it is desirable to determine copy number levels and correct the 
coverage data accordingly. Unfortunately no algorithm exists to date to accomplish 
this task. 

 A strategy to minimize potential bias is to assess relative rather than absolute 
differences between samples (Li et al.  2010  ) . In this way the observed variance gets 
reduced to technical reproducibility and biological variability while systemic bias 
becomes eliminated. 

 Faced with the increasing amount of software and the work needed to compare 
and evaluate the analysis strategies one has to carefully weigh the need for normal-
ization against the scientifi c question at hand – a few endeavors, as for instance tumor 
classifi cation, might work quite well using only raw data (Boerno et al.  2011  ) .  

    9.4.5   Tertiary Analyses 

 A typical analysis yields hundreds of genes with disease specifi c methylation 
profi les in the promoter and/or gene body. Several bioinformatics methods to iden-
tify common patterns among these genes can be applied like over-representation 
analysis of Gene Ontology terms, sequence motive discovery or genomic clustering 
analyses. 

 Another common approach is to compare the methylation profi les to complemen-
tary data, like e.g. expression profi les or protein interaction networks which will 
help to reverse engineer epigenetic regulation by methylation. An exciting approach 
combining methylation profi les with expression data would be to correlate all sites 
of differential methylation with all differentially regulated transcripts for a number 
of samples as has been exemplifi ed for copy number data by Yuan et al.  (  2010  ) . This 
approach could help to disentangle cis and trans effects of differential methylation. 
Hidden Markov models become even more important as they might allow to infer 
epigenetic states from methylation profi les, an analysis strategy that has already 
proven valuable for histone modifi cations (Filion et al.  2010  ) . As DNA methylation 
bioinformatics, biostatistics and computational biology are under rapid development 
many tools have yet to be developed – with exciting times ahead!   
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    9.5   Conclusion 

 Until quite recently the immense progress in the fi eld of cancer genomics has been 
inconceivable because of the lack of adequate technologies and the limitations in 
performing genome-wide studies. Recent advances in molecular biology, in particular 
the development of high-throughput sequencing technologies, have made it possible 
to gain profound insight into complex biological systems and to analyze the under-
lying networks responsible for the functionality in healthy and diseased states. 
These HTS technologies have been proven to be not only extremely useful for 
genetic, but also for large-scale epigenetic studies. With regard to epigenetic changes 
in cancer it has been shown that DNA methylation and histone modifi cations play 
essential roles in tumor initiation and progression. A number of tumor biomarkers 
based on aberrant methylation profi les have been developed so far and are tested as 
potential markers for early diagnosis and risk assessment (Lopez et al.  2009  ) . 
However, the complex interplay between different aberrant methylation sites or the 
infl uence of mutations and epigenetic alterations on gene expression has just started 
to be addressed. 

 For the examination of epigenetic alterations using HTS technologies mainly 
established epigenetic methods have been adapted to HTS protocols. This is done 
by either an indirect assessment of methylated DNA regions by enrichment or by 
using a direct “labeling” of genomic DNA with bisulfi te treatment followed by 
HTS. Both approaches can be used for genome-wide investigations; they mainly 
differ in the amount of sequencing capacities required and the depth of genomic 
resolution. Regardless of which approach is used, the beauty of the combination of 
epigenetic technology and HTS is a genome-wide readout of methylation patterns. 
Unless a reduction of genome complexity is explicitly desired no pre-selection of 
investigated regions is required as is the case with array or PCR-based technologies. 
This opens up a large fi eld of new questions to be addressed and it is without doubt 
that new insights will be achieved with regard to tumor markers as well as molecular-
biological mechanisms underlying tumor development.  

    9.6   Future Perspectives 

 With the combination of advanced epigenetic techniques and HTS, additional novel 
genes or DNA regions that contribute to tumorigenesis are certain to be identifi ed. 
Since epigenetic marks are chemically stable and relatively easy to detect, they are 
attractive biomarkers in oncology. In addition, specialized protocols permit the 
extraction and conversion of DNA from formalin-fi xed and paraffi n-embedded 
(FFPE) tissue samples (Bian et al.  2001  ) . Patients’ samples at pathology departments 
are routinely stored as FFPE samples and their use would open up access to a variety 
of clinical trials and would enable routine diagnostic work-ups of patients. However, 
an FFPE preparation is incompatible with many downstream molecular biology 
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techniques such as PCR-based amplifi cation methods and gene expression studies. 
Using HTS technologies we were able to show that small samples of over 20-year-
old FFPE material can be used for HTS (Schweiger et al.  2009  ) . With these experi-
ments it is highly likely that BS-converted FFPE DNA can also be used for HTS 
analyses. We and others have already performed MeDIP-seq experiments which 
indicate the usability of FFPE tissues. Furthermore, DNA methylation assays can be 
performed on small numbers of cells obtained by laser capture micro-dissection as 
well as on DNA extracted from diverse body fl uids such as blood, urine or sputum 
(Kerjean et al.  2001  ) . The combinations of all these methods open up a broad fi eld 
of clinically or molecular biologically relevant questions including the problem of 
tumor evolution from single tumor stem cells. 

 Besides these future developments in oncology we will also experience powerful 
advancements in HTS technologies: As indicated by the name the throughput has 
increased enormously, but several enrichment, amplifi cation and labeling steps still 
cause the performance to be relatively time and cost-intensive. In comparison, future 
nanopore and scanning probe sequencing approaches, the so-called “third genera-
tion sequencers”, are directed towards sequencing of single DNA molecules without 
any prior amplifi cation or labeling (Branton et al.  2008 ; Lund and Parviz  2009 ; 
Pushkarev et al.  2009  )  and, most importantly, they can detect all “fi ve” nucleotides 
(A, T, C, G, 5mC) during one sequencing step. However, since these technologies 
are still under development, it will indeed take some time until they are used for 
methylation studies, and in the meantime “conventional” approaches such as those 
described in this review will be emphasized.      
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  Abstract   RNA sequencing (RNA-seq) is an exciting technique that gives 
experimenters unprecedented access to information on transcriptome complexity. 
The costs are decreasing, data analysis methods are maturing, and the fl exibility that 
RNA-seq affords will allow it to become the platform of choice for gene expression 
analysis. Here, we focus on differential expression (DE) analysis using RNA-seq, 
highlighting aspects of mapping reads to a reference transcriptome, quantifi cation 
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of expression levels, normalization for composition biases, statistical modeling to 
account for biological variability and experimental design considerations. We also 
comment on recent developments beyond the analysis of DE using RNA-seq.      

    10.1   Introduction 

 RNA-seq is a rich family of methods that quantitatively measures genome-wide 
expression at single base resolution. It differs from tag-based methods such as serial 
analysis of gene expression (SAGE) and cap analysis of gene expression (CAGE) in 
that it produces multiple distinct sequences from each transcript. RNA-seq differs 
from traditional transcriptome sequencing by aiming to produce a quantitative sam-
ple rather than a normalized comprehensive description of the sequence. RNA-seq 
utilizes the ability of high-throughput sequencing (HTS) platforms (such as the 
Illumina/Solexa HiSeq or LifeTech/ABI SOLiD) to sequence a large number of 
short DNA fragments at a cost and throughput that allows each transcript to be 
observed a suffi cient number of times for the measurement to be quantitative. 

 Constructing the library of fragments to be sequenced requires isolation of RNA, 
random fragmentation of the transcripts into smaller pieces, conversion of the RNA 
into DNA by reverse transcription, ligation of adapter sequences for amplifi cation, 
fragment size selection, and priming the sequencing reaction. Each of these steps 
can vary by the implementation of the protocol and will introduce specifi c technical 
biases in the resulting data. 

 As most applications of RNA-seq aim to measure the abundance of protein-
coding genes, polyA-purifi ed mRNA is usually used for library construction to 
minimize the sequencing of uninformative and abundant ribosomal transcripts 
(rRNA). In cases where long non-coding RNAs need to be measured, the alternative 
protocol of ribosomal depletion can be employed. For small non-coding RNAs, size 
selection is usually employed to remove both mRNA and rRNA, or selective ligation 
of adapters to 3 ¢ -hydroxyl ends. 

 For the study of protein-coding genes, the optimal size of DNA fragment for reverse 
transcription and sequencing on second-generation sequencers is 200–350 base pairs. 
RNA-seq uses physical, chemical (NaOH), or enzymatic (RNAseIII) fragmentation to 
reduce transcripts (averaging 2.2 kb) to a distribution of random sizes that includes the 
effi ciently sequenced lengths. The optimal size range is then selected by gel purifi ca-
tion or SPRI beads, usually after cDNA synthesis and adaptor ligation. 

 Synthesis of cDNA requires priming with a short sequence. This is achieved by 
using randomly synthesized oligonucleotides or ligating known sequences onto the 
RNA. Sequences complementary to the ligated oligonucleotides are used for prim-
ing cDNA synthesis, and the oligos include the sequences necessary for amplifying 
and priming the sequencing reaction. When random priming is performed, the nec-
essary sequences are added by ligating double-stranded adaptors to the double-
stranded cDNA. This results in the loss of any information about strand specifi city 
unless specifi c steps (such as the inclusion of dUTP) have been utilized to mark fi rst 
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or second strand synthesis and actinomycin D is included to prevent DNA-dependent 
polymerase action of the reverse transcriptase (Levin et al.  2010  ) . 

 The end result of all of the variations in RNA-seq protocols is, one hopes, 
sequences from one or both ends of a representative sample of fragments from the 
RNA population of interest. This measurement will be affected by protocol-specifi c 
technical infl uences such as fragmentation site bias, random priming, or ligase bias. 
Additional biases such as fragment length and abundance bias that are inherent to 
all protocols will also be present.  

    10.2   Microarrays and Sequencing for Gene Expression 

 Several comparisons of RNA-seq and microarray data have emerged, demonstrat-
ing that there is a strong concordance between platforms, especially for detecting 
DE (Bradford et al.  2010 ; Cloonan et al.  2008 ; Fu et al.  2009 ; Mortazavi et al.  2008 ; 
Sultan et al.  2008  ) . These comparisons have also established that sequencing-based 
approaches are more sensitive and have a larger dynamic range with minimal levels 
of background and technical variation (‘t Hoen et al.  2008 ; Liu et al.  2011 ; Marioni 
et al.  2008  ) . 

 No genome-scale assay is without its biases, and platform-specifi c nuances can 
affect an assay’s overall performance. For example, cross-hybridization on microar-
rays can have signifi cant effects on probe intensities (Naef and Magnasco  2003 ; Wu 
and Irizarry  2005  ) , as can probe sequence content (Binder et al.  2004  ) . As a result, 
microarrays are not generally used for comparing expression levels between genes, 
but work well for comparisons of the same gene across multiple experimental con-
ditions. On the other hand, one of the purported benefi ts of RNA-seq is the ability 
to compare expression levels between genes in a single sample. However, there are 
still limitations. For example, GC bias is present in RNA-seq data (Bullard et al. 
 2010  )  and ambiguity in mapping can affect some regions more than others. Similarly, 
comparing gene expression levels across experimental conditions using RNA-seq 
has its own biases. For example, statistical power to detect changes is greater at 
higher counts, thus introducing a clear association between DE and gene length, an 
effect not present in microarray data (Oshlack and Wakefi eld  2009 ; Young et al. 
 2010  ) . Furthermore, due to the high sensitivity of sequencing, the protocols used to 
extract RNA, enrich for subpopulations, fragment and convert RNA to cDNA all 
have a large potential to introduce prominent biases. For example, studies thus far 
have identifi ed biases in sequence composition due to hexamer priming and biases 
in the distribution of observed reads along a transcript (Hansen et al.  2010 ; Quail 
et al.  2008 ; Wang et al.  2009  ) . Furthermore, the method by which small RNAs are 
captured has been found to strongly affect the set of observable sequences (Linsen 
et al.  2009  ) . Similarly, de novo transcriptome assembly approaches are necessarily 
biased by expression level, since more information is available for highly expressed 
genes (Robertson et al.  2010 ; Trapnell et al.  2010  ) . 

 Beyond dynamic range and sensitivity, there are several further reasons that 
explain the swift transition from microarrays to sequencing for many research 
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groups. First, sequencing can be used for any organism, even where no reference 
genome or transcriptome exists. While custom microarray design is now widely 
available, many commercial providers only make the platform available for a small 
number of model organisms. In contrast, genomes are available for thousands of 
species (NCBI  2011  ) , and genomes for many more organisms will continue to 
appear rapidly as sequencing costs decrease. Furthermore, sequencing can more 
readily reveal information regarding features such as novel transcribed regions and 
alternative isoforms, as well as provide information that arrays simply cannot, such 
as allele-specifi c expression, RNA-editing, and the discovery of fusion genes. 

 Despite all these advantages, RNA-seq data is complex and the data analysis can 
be a bottleneck. Furthermore, the cost of the platform may be limiting for some 
studies. The cost per sample to generate suffi cient sequence depth (see Sect.  10.7 ) 
will soon be comparable to microarrays (if not already), especially with the expand-
ing capacities of current instruments (e.g. Illumina HiSeq 2000) and the ability to 
multiplex, whereby multiple samples are sequenced simultaneously in a single 
experiment. The required informatics infrastructure for processing even moderately 
sized datasets is non-trivial and the cost of storing and processing the large amounts 
of data is easily underestimated (Schadt et al.  2010  ) . On the other hand, microarray 
data analysis procedures are relatively mature and often can be run on desktop 
computers, so researchers with basic gene expression needs in model organisms 
may still choose to use microarrays.  

    10.3   Mapping 

 The fi rst step towards quantifying gene expression levels using RNA-seq is to 
“map” the millions of short reads to a suitable reference genome or transcrip-
tome. The goal of mapping is to fi nd the unique location where a short read is 
identical, or as close as possible, to the reference sequence. The reference is used 
as a guide, but the mapping procedure must be fl exible enough to accommodate 
sample-specifi c attributes, such as single nucleotide polymorphisms (SNPs), 
insertions/deletion (indels), and sequencing errors that will inevitably be present 
in some sequences. Furthermore, unlike mapping genomic DNA, the transcrip-
tome is “built from” the genome by splicing out intronic regions, so the mapping 
procedure must adjust for this additional complexity. There is also the problem of 
multimapping, whereby reads can align equally well to multiple locations, requir-
ing some solution to this ambiguity. 

 All mapping solutions by necessity involve some compromise between the fl ex-
ibility of mismatches between the read and the reference and the computational 
demands of the algorithm. Generally, short read alignment algorithms utilize a 
“heuristic” fi rst pass step to rapidly fi nd likely candidates, followed by a computa-
tionally demanding “local alignment”. Local alignment strategies are simply too 
ineffi cient to be applied from the outset to even moderately sized genomes. 

 There are many different aligners currently in use, but almost all of them use 
either hash-tables or the Burrows Wheeler Transform (BWT) to enable fast heuristic 
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matching, which reduces the number of local alignments performed. A detailed 
explanation of how these techniques achieve rapid matching to the genome is beyond 
the scope of this chapter, but the details can be found in (Ferragina and Manzini 
 2000 ; Flicek and Birney  2009 ; Li and Durbin  2009 ; Li et al.  2008  ) . The hash-table-
based approach has the advantage of being guaranteed to fi nd all structural variants 
up to the level of variation specifi ed by the user. However, the memory requirements 
for increasing the level of detectable variation from the reference rise rapidly and 
hashed references need to be remade for each experiment. On the other hand, the 
BWT approach needs to store only one copy of the (transformed) reference in mem-
ory, regardless of the level of variation that is detectable. This technique is orders of 
magnitude faster than the hash-table approach when only a small number (<4) of 
mismatches from the reference are allowed. The downside to the BWT approach is 
that the method for determining mismatches involves trying to align a large number 
of variants of each read, each of which has a comparable computational cost to per-
forming a full alignment of a perfectly matching read. To mitigate this computational 
cost, many aligners do not explore all possible mismatched alignments, meaning that 
some valid alignments may be missed. Furthermore, the rapid scaling of complexity 
places a hard ceiling on the number of mismatches that can be detected when align-
ing reads using the BWT, with few aligners allowing more than three possible mis-
matches in the portion of the read used for the fi rst pass and limited ability to fi nd 
insertions or deletions. 

 In order to increase the computational effi ciency and minimize the loss in sensi-
tivity as a result of the heuristic alignment algorithms, the heuristic is usually applied 
not to the entire read, but to an n base substring (usually, the fi rst n bases), called the 
seed. Once the heuristic algorithm has identifi ed all potential mapping locations 
using only the seed, the seed is extended back to the full read and each of these 
locations is evaluated using a local alignment routine. Therefore, the choice of seed 
length involves a tradeoff between speed and sensitivity. A longer seed will mean 
fewer putative matching sites that need to be ranked with local alignment algo-
rithms. However, as the heuristic matching algorithm is always less sensitive than 
a local alignment, a longer seed can cause more valid alignments to be missed. 
On the other hand, a short seed minimizes the loss in sensitivity due to the heuristic 
alignment, but at the cost of having to sort through many more potential mapping 
locations with the slower local alignment algorithm. 

 Aligners also differ in how they handle reads that map equally well to several 
locations. Many algorithms discard them (Langmead et al.  2009  ) , randomly allo-
cate them (Li et al.  2008  ) , or are guided by local coverage (Cloonan et al.  2008 ; 
Mortazavi et al.  2008  ) . Recently, a statistical method that uses alignment scores 
has also been proposed (Taub and Speed  2010  ) . Paired-end reads reduce the prob-
lem of multimapping, since both ends of the cDNA fragment should map nearby on 
the transcriptome, allowing the ambiguity of multimaps to be resolved in many 
cases. 

 The most common choice of reference to map reads against, at least initially, 
is the genome itself. This has the benefi t of being independent of annotation. 
However, reads that cross exon–exon junctions will not map to the reference genome. 
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Specifi cally, under this framework, lower coverage will be observed on average 
(given the same expression level) on transcripts with shorter exons, since they will 
contain more junctions. This situation will be exacerbated by longer reads, since 
more junctions will be covered (Sultan et al.  2008  ) . In order to account for reads that 
span junctions, it is common practice to supplement the genomic reference with 
exon-junction libraries, i.e., small sections of sequence that incorporate the junctions, 
given by an annotation database (Marioni et al.  2008 ; Mortazavi et al.  2008 ; Pickrell 
et al.  2010 ; Sultan et al.  2008  ) . To map reads that cross exon boundaries without 
relying on existing annotations, it is possible to use the data itself to detect splice 
junctions de novo (Ameur et al.  2010 ; De Bona et al.  2008  ) . Another option, if the 
depth of reads is suffi cient, is de novo assembly of the transcriptome, for use as a 
reference, using assembly tools (Robertson et al.  2010 ; Simpson et al.  2009 ; Zerbino 
and Birney  2008  ) . All de novo methods have the ability to identify novel transcripts 
and may be the only option for organisms for which no genomic reference or anno-
tation is available. However, de novo methods are computationally intensive and may 
require long, paired-end reads and high levels of coverage to work reliably.  

    10.4   Summarization 

 In order to estimate expression levels for some biological entity of interest (e.g. exons, 
transcripts or genes), the next step is to summarize reads into a “table of counts,” 
which records the number of reads associated with each entity. The simplest such 
approach records the number of reads overlapping the exons in a gene (e.g. Bullard 
et al.  2010 ; Marioni et al.  2008 ; Mortazavi et al.  2008  ) . This simple and popular 
metric to summarize gene expression levels is a crude summary of the total gene 
output as it pays little regard to the genuine complexity (e.g. alternative splice forms) 
present. 

 Reads often align to genomic regions outside annotated transcripts, even in well-
annotated organisms. An alternative to exonic summarization is to include reads 
that map anywhere between the start and end of a gene, perhaps with the option to 
include regions adjacent to the start and end to account for poorly annotated start 
and termination sites. This measure will include unannotated exons in the count, 
while accounting for poorly annotated or variable UTRs and exon boundaries. In 
some cases, including intronic regions will include overlapping transcripts that 
share a genomic location but in reality originate from different genes. The downside 
to this approach is that if the genomic annotation is accurate, including intronic 
reads adds noise to the summarized counts in unpredictable ways. 

 There are many other possible variations that could be used for summarization: 
for instance, one could include only reads that map to coding sequence or summarize 
based on de novo predicted exons (Trapnell et al.  2009  ) . Junction reads can also be 
added into the gene summary count or be used to model the abundance of splicing 
isoforms (Griffi th et al.  2010 ; Trapnell et al.  2010  ) . These different possibilities are 
illustrated schematically in Fig.  10.1 .  
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 RNA-seq offers the further promise of being able not just to identify alternative 
splicing, but also to quantify the expression level of each isoform in a sample. 
However, as different transcripts of a gene share most of their sequence, quantifying 
the expression level of each transcript is a considerable challenge. There have been 
a number of approaches to solving this problem, all of which utilize sequence 
regions unique to each transcript (such as transcript-specifi c exons or splice junc-
tions) to estimate the expression level of each transcript. Reads that map to multiple 
transcripts can then either be randomly assigned to an isoform (Li et al.  2008  ) , 
ignored (Langmead et al.  2009  )  or used to generate a non-count probabilistic 
measure of transcript expression (such as FPKM) (Trapnell et al.  2010  ) . The problem 
of assigning these reads to transcripts is, in many ways, analogous to the issue of 
assigning multimapped reads to the genome discussed in the previous section. 
As  with multimapped reads, each of the proposed solutions has advantages and 
disadvantages. For example, although the probabilistic FPKM measure may be a 
more realistic measure of transcript expression, it has complex statistical properties 
that make it diffi cult to input to downstream statistical procedures. Many of the 
most promising statistical models for assessing DE using RNA-seq data require raw 
counts as input. 

 The choice of summarization method has the potential to have a large impact on 
the results of a DE analysis. The tradeoffs between different summarization methods 
still need to be explored and their relative merits investigated using real datasets. For 
the purposes of the discussion below, we require that a table of counts be generated 
by one of the methods mentioned above.  

    10.5   Normalization 

 Normalization can be important to ensure that expression measurements are 
directly comparable. For example, if gene-to-gene comparisons of expression in a 
single sample are of interest, compensation needs to be made for the length of the 
genes, since at similar expression levels, longer genes will collect more reads 

  Fig. 10.1    Reads mapping to transcripts. The large colored bars represent a canonical transcript, 
including untranslated regions (UTRs), exons, and introns. Below the transcript, a schematic of 
possible mapped reads is shown, highlighting that reads generally map to exons ( black bars ) 
and exon–exon junctions ( grey bars ), but may be supplemented with novel exons ( blue bars ) and 
novel exon–exon junctions ( light blue bars )       
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(Cloonan et al.  2008 ; Mortazavi et al.  2008 ; Oshlack and Wakefi eld  2009  ) . Our 
focus here is on comparing expression of the same gene across multiple conditions, 
where we expect that length-associated and other biases will largely cancel out. In 
the comparison of expression levels between samples, it is necessary to compen-
sate for the depth of sequencing, which may vary from sample to sample. In addi-
tion, cDNA libraries can have very different composition and therefore we should 
not always expect read densities, even after compensating for total read depth, to 
be directly comparable. This is illustrated by an example shown in Fig.  10.2 . This 
fi gure highlights that the percentage of the transcriptome accounting for the 
observed reads can vary drastically across experimental conditions (Fig.  10.2 ). 
That is, a reasonably small number of genes can consume a signifi cant fraction of 
the sequencing resources, causing an undersampling of the remaining genes 
(Fig.  10.3 ). If not explicitly accounted for, this undersampling induces a bias to the 
detection of DE (Robinson and Oshlack  2010  ) . To compensate for such composi-
tion effects, scaling factors in addition to the adjustment made for depth can be 
calculated. Several strategies have been proposed to determine these factors: fi rst, 
Bullard et al. proposed computing the 75th percentile of the read counts across 
each sample (Bullard et al.  2010  ) ; second, proposed the trimmed mean of M-values 

  Fig. 10.2    Composition. Genes are ordered by the number of reads mapped to them and plotted 
here as the percent of total reads by the percent of genes contributing, highlighting that library 
composition can be very different from sample to sample and can directly affect the depth that each 
gene gets       
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(TMM), which estimates the additional bias not accounted for in depth-normalized 
log-ratios; third, (Anders and Huber  2010  )   calculate a median sample and compute 
a robust relative expression ratio of every sample to the median sample to account 
explicitly for both depth and composition.   

 It is also important to point out that normalization for DE analysis of RNA-seq 
data need not involve changing the raw count data, unlike the many background 
correction and normalization procedures that have been suggested for microarray 
data (Quackenbush  2002  ) . Transforming count data can be problematic, since it 
puts the data on an arbitrary scale, may not effectively stabilize the variance across 
the spectrum of expression levels, and may alter the mean–variance relationship. 
Furthermore, since the calculation of  p -values is dependent on the raw level of the 
count, modifi cations can have substantial effects on these calculations. Further 
study of the transformation approach is required.  

  Fig. 10.3    Hypothetical 
setting of composition biases. 
Six libraries are sampled 
(according to an empirical 
distribution of real RNA-seq 
counts) to the same overall 
depth, but with varying 
composition, i.e. levels of 
unique-to-sample counts. 
About 5,000 genes are 
observed at similar relative 
levels across all six samples. 
The heatmap colors represent 
the sampled expression levels 
( red  = 0,  brighter yellow  
represents high counts). 
Each column sums to the 
same total. These differences 
in composition can induce 
artifi cial (and statistically 
signifi cant) differences in 
counts       
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    10.6   Statistical Models for Differential Expression 

 A summarized table of raw counts, augmented with information regarding additional 
scaling factors, forms the starting point for the statistical analysis of DE. It should 
also be noted that the methods for DE in RNA-seq data represent a general statistical 
framework for count data, and may have uses in other genome-scale datasets that 
can be represented as counts, such as the search for differentially methylated promoters 
using methylated DNA immunoprecipitation sequencing (MeDIP-seq) data (Bock 
et al.  2010 ; Robinson et al.  2010b  ) , fi nding differentially enriched regions using 
chromatin immunoprecipitation sequencing (ChIP-seq), spectral counts in tandem 
mass spectrometry data (Carvalho et al.  2008  )  or in the analysis of counts from 
metagenomic data (White et al.  2009  ) . 

 In terms of statistical models for count-based gene expression data, it is impor-
tant to note that RNA-seq gives a discrete measurement for each gene, whereas 
microarray data have a continuous distribution. Since microarrays are typically 
scanned as 16-bit images (i.e. 65,536 possible values), they are technically discrete 
as well. But, since the resolution is high, microarray expression data can be assumed 
to follow a continuous distribution with negligible loss of information. Furthermore, 
microarray intensities are generally log-transformed to constrain the scale between 
0 and 16 (log base 2) and to better stabilize the variance, allowing them to be more 
appropriately approximated by Gaussian or similar continuously distributed 
 random variables. With very few dedicated tools available, some early adopters 
of RNA-seq elected to transform their count data (e.g. logarithm or square root) 
(‘t Hoen et al.  2008 ; Cloonan et al.  2008  ) , but such transformations cannot be well 
approximated by continuous distributions in small samples or at low counts. 
Therefore, we favor statistical models for DE of RNA-seq that are specifi c to count 
data; simulations suggest that count-based models are better powered for DE 
 analysis (Robinson and Oshlack  2010  ) . 

 Sequencing a population of cDNA fragments can be thought of as random multi-
nomial sampling. That is, from a large sample of reads (e.g. tens of millions), each 
read can be identifi ed to be from one of a number of different genes, ignoring for the 
time being that some reads cannot be mapped and others can map to multiple loca-
tions. Under this framework, the vector of counts for a single sample is a multi-
nomial random variable, with parameters representing the proportion of reads 
mapping to each gene. For simplicity, we often represent modeling assumptions in 
the context of a single gene. In the single gene case, the observed count is a binomial 
random variable, akin to a large-scale coin-tossing experiment. Furthermore, with a 
large number of reads where each gene represents a small proportion of the reads, 
the Poisson distribution provides a very good approximation (large number of tri-
als,  N  and small proportion of “successes”,  p ). In addition, the mathematical sim-
plicity of the Poisson distribution lends itself to form the basis for modeling RNA-seq 
count data. For the purposes of a DE analysis, we are modeling the vector of counts 
for a single gene across experimental conditions. The Poisson model assumes that 
the mean equals the variance and has been validated in one of the early RNA-seq 
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studies using the same initial source of RNA split into multiple lanes of an Illumina 
GA sequencer (Marioni et al.  2008  ) . However, it is important to note that binomial 
sampling through the Poisson assumption only accounts for technical variation, the 
variation in read counts that one can expect by sampling the same DNA library on 
multiple occasions (see Fig.  10.4 ).  

 Genuine biological investigations (e.g. comparing multiple patients) will exhibit 
higher levels of variation, and will require extensions to the Poisson model. 
Analyzing biologically replicated data with the Poisson model will likely be prone 
to high false-positive rates due to the underestimation of the true variability 
(Anders and Huber  2010 ; Langmead et al.  2010 ; Robinson and Smyth  2008  ) . 
Figure  10.5  shows the expected (Poisson) variation observed in the Marioni dataset 
and Fig.  10.6  shows the extent of extra-Poisson variation in biologically replicated 
datasets.   

 Various strategies have been proposed for modeling biological variability in 
RNA-seq count data. Methods originally designed for SAGE data have recently 
been applied to HTS-based digital gene expression data using the negative binomial 
(NB) distribution, as implemented in the edgeR package (Robinson et al.  2010a  ) . 
The NB distribution, which arises as a mixture of Poisson distributions where 
the mixing distribution is a gamma distribution, requires an additional dispersion 
parameter to be estimated. The Poisson distribution represents the technical varia-
tion inherent in sampling fragments, while the gamma distribution models the 

  Fig. 10.4    Technical and Biological Replication. If two independent DNA populations from the 
same experimental conditions are available, one can make technical replicates ( blue  lines, repeat 
sampling of the same population) or biological replicates ( red  lines). The latter is expected to 
have higher variability, but conclusions based on this data should be more generalizable to the 
population       
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biological variation in true expression levels between replicate libraries. Naïve 
estimation of the dispersion parameter (e.g. maximum likelihood) can be improved 
by sharing information across the entire dataset, a strategy that has been successful 
in the analysis of DE using microarray data. The simplest and most extreme example 
of this, in the RNA-seq context, is to assume that all genes have the same dispersion 
(Robinson and Smyth  2008  ) . If this assumption is true, small pieces of information 
for every gene accumulate to give a very accurate estimate, even for small samples. 
A relaxation of this approach is a moderated estimate of dispersion, whereby each 
gene-wise dispersion estimate is smoothed towards the common dispersion (Robinson 
and Smyth  2007  ) , providing a stabilization while avoiding the inherent diffi culty in 
dispersion estimation from very small samples (Lu et al.  2005 ; Robinson and Smyth 
 2008  ) . These methods are implemented in the edgeR package (Robinson et al. 
 2010a  ) . Statistical testing in a multiple group framework can be carried out with 
conditional exact tests (Anders and Huber  2010 ; Robinson and Smyth  2008  ) , there-
fore not relying on large-sample theory for its justifi cation. Variations on the moder-
ated estimation strategy have recently emerged, such as modeling dispersion as a 

  Fig. 10.5    Mean–variance plot for Marioni et al. dataset (Marioni et al.  2008  ) . The variability in 
technically replicated RNA-seq data can be adequately captured using a Poisson model. The  grey  
points in this plot shows the mean and pooled variance for each gene, scaled to account for differ-
ences in library size between samples. The  black  line displays the theoretical variance under the 
Poisson model where the variance is equal to the mean. The  red  crosses show binned variance, 
where genes are grouped by mean level       
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non-linear function of the mean (Anders and Huber  2010  )  or a two-stage Poisson 
model that only permits overdispersion for a selected subset of genes (Auer  2010  ) . 
One slight disadvantage of the fi xed dispersion–mean relationship is that no consid-
eration is made for gene-specifi c dispersion, should larger sample sizes be available 
to provide information for it. Furthermore, a computationally intensive full Bayesian 
implementation of the NB-based DE analyses has been recently proposed (Hardcastle 
and Kelly  2010  ) . 

 Unfortunately, the exact tests (with moderated dispersion estimates) are limited 
to simple experimental designs, such as two-group or multiple-group comparisons. 
For more complicated experimental designs, generalized linear models (GLMs) 
provide a logical extension for assessing DE from count data (McCullagh and 
Nelder  1989  ) . GLM methods can handle time course experiments, paired samples, 
etc., while accounting for confounding variables, such as batch and lane effects. 
Any experimental design that can be expressed in terms of linear combinations of 
predictor variables can, in principle, be analyzed using GLM methods. 

 Thus far, three GLM approaches have been suggested for analyzing RNA-seq 
data – normal, Poisson, and NB models. All of these models can be made to fall under 

  Fig. 10.6    Mean–variance plot for the Parikh et al. Dictyostelium dataset (Parikh et al.  2010  ) . 
The variability in this biologically replicated RNA-seq dataset exhibits prominent extra-Poisson 
variability. The  grey  points show the mean and pooled variance for each gene. The  black  line displays 
the theoretical variance under the Poisson model where the variance is equal to the mean. The  red  
crosses show binned variance, where genes are grouped by mean level       
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the umbrella of GLMs, although the NB model is substantially more challenging to 
use, both mathematically and computationally. Normal models have been applied 
after applying some form of transformation to the count data (Cloonan et al.  2008 ; 
Langmead et al.  2010  ) . Such approaches are computationally fast and convenient, 
but are unlikely to capture the true mean–variance relationship in RNA-seq data. 
Bullard et al.  (  2010  )  introduce GLMs to the RNA-seq context with a Poisson model. 
Their Poisson GLM approach is geared towards dealing with count data directly, 
but does not compensate for the extra-Poisson variation expected in most biologi-
cally interesting contexts. 

 Auer and Doerge  (  2010  )  propose a GLM with extra-Poisson variation, but offer 
no stabilization over all genes in the dataset. Srivastava and Chen  (  2010  )  also dis-
cuss GLM methods using Poisson and NB models, and introduce a position-level 
“generalized Poisson” model to account for overdispersion and purported underdis-
persion in RNA-seq data. Srivastava and Chen dismiss the NB model for RNA-seq 
data, but in their implementation of the NB model there is no sharing of information 
between genes. The edgeR package has shown how effective the NB model is at 
modeling RNA-seq data when information is shared between genes to improve 
inference. Methods recently introduced into the edgeR package (Robinson et al. 
 2010a  )  implement GLM methods that combine the NB model with stabilization 
over all genes in the dataset. This approach seems to be the fi rst to allow appropriate 
modeling of the mean–variance relationship in the GLM context. All of the GLM 
approaches proposed thus far assess evidence for DE using a likelihood-ratio test 
for each gene.  

    10.7   Experimental Design for RNA-Seq 

 Soon after microarray platforms became a commonly used tool for molecular biol-
ogists, articles from statisticians appeared highlighting the need for appropriate exper-
imental design (Churchill  2002 ; Yang and Speed  2002  ) . The foundations of 
experimental design date back to Sir R.A. Fisher and rely on the fundamental concepts 
of replication, randomization, and blocking. Inadequate study design and the potential 
biases introduced from confounding factors cannot generally be corrected by clever 
data analysis. These design considerations are just as, if not more, important for sequenc-
ing-based studies (Auer and Doerge  2010  ) . A common misconception of sequencing 
is that since the platform has low background and basically unlimited dynamic range, 
there is little need for replication. While it has been established that technical 
 variation is indeed low, lack of biological replication prevents inferences regarding 
DE to be generalized to a sampled population. For example, if we compare expression 
levels from a single tumor sample to a single normal sample, any conclusions we 
make cannot possibly generalize to the  populations  of tumor and normal samples, 
since the analysis does not take into account the potentially large tumor-to-tumor or 
normal-to-normal variation. The conclusions apply only to the individuals under study. 
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In human studies, this biological variability is often enormous compared to genetically 
identical laboratory mice. 

 Another consideration is how to assign the samples to the available sequencing 
“lanes” within a fl ow cell (e.g. eight lanes within an Illumina Genome Analyzer). 
Most studies to date have assigned a single library in a single lane, with libraries 
spread over multiple fl ow cells (if the number of samples exceeds the number of 
lanes of a single fl ow cell). In designing an experiment, there are considerations to 
be made regarding how the sample-to-lane assignment is done. Experimenters 
should avoid confounded designs, such as assigning all replicates of one treatment 
condition (say, A) to one fl ow cell and all replicates of experimental condition 
B to another fl ow cell. Similarly, systematic differences may exist between lanes; 
random assignment of samples to lanes will reduce these effects. Cautionary tales in 
the analysis of proteomic data highlight the value in paying close attention to exper-
imental design at the early stages of a study (Hu et al.  2005  ) . 

 Another consideration for experimental design is the concept of blocking, 
whereby experimental units are grouped according to similarity, ensuring that sam-
ples are subjected to the same technical biases. One possibility is multiplexing, 
whereby each sample receives a barcode (incorporated into the adapter sequence). 
Auer and Doerge  (  2010  )  demonstrate the statistical justifi cation of multiplexing to 
block on lane and batch. Their simulations illustrate that in the presence of lane and/
or batch effects, the blocked design (i.e. multiplexed) exhibits improved sensitivity 
and specifi city. Provided that the lane effects are present and the barcode itself does 
not introduce a bias (an assumption that has yet to be rigorously tested), such a 
design will improve statistical power. Designs that include blocking can be analyzed 
using the generalized linear model framework discussed above (cf. Auer and Doerge 
 2010 ; Bullard et al.  2010 ; Robinson et al.  2010a  ) . 

 Another subtle design consideration is the “ideal” length of reads. Longer reads 
cost more, but will have better ability to map to the transcriptome, improved ability 
to discern exon–exon junctions, and more coverage to be able to partition expres-
sion by allele, or discover new genetic variants. However, since inferences of DE 
are made from read density, the statistical power increases with the total number of 
mapped reads, not by the total amount of sequence coverage. If a sequencing provider 
can guarantee a certain amount of total  sequence , researchers may choose shorter 
reads to maximize the number of total reads. The gain in “mappability” from longer 
reads is generally small in comparison to the gain in statistical power from having 
more mapped reads. 

 Researchers may also wish to consider the use of paired-end reads, where both 
ends of a DNA fragment are sequenced. For total gene expression profi ling, paired-
end reads benefi t users primarily from the increase in reads mapping to the tran-
scriptome or genome, since reads mapping to multiple locations can often be 
reconciled by their matching pair. This gives unique access to structural variation 
(Maher et al.  2009  ) , and additional information that helps deconvolve isoform 
expression (Trapnell et al.  2010  ) . However, paired-end reads incur additional cost 
and do not necessarily increase the statistical power to detect DE.  
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    10.8   Saturation Analysis 

 As mentioned above, statistical power is partially dictated by the total number of 
reads, which is ultimately decided by the total depth of sequencing that researchers 
can devote to their study. Therefore, it is important to recognize that DE results are 
dependent on this implicitly chosen depth. In general, deeper sequencing will allow 
increased detection of DE, but the amount of detected DE (at a given false discovery 
rate) should plateau at a suffi cient depth. For many studies, it will be of interest to 
conduct a down-sampling analysis to determine the degree of saturation that has 
been reached, possibly revealing whether to dedicate more sequencing effort to the 
project. A down-sampling analysis works as follows: a proportion of the (mapped) 
reads are discarded and the data is re-analyzed with the same statistical procedure. 
This process is repeated for several levels of down-sampling (and multiple subsam-
ples at a given level are taken). By fi tting a functional form to the saturation curve, 
prediction of the total amount of DE can be made, as well as estimation of additional 
detections from a specifi ed amount of further sequencing. An example of this is 
shown in Fig.  10.7 , in a similar context of detecting differential methylation (see 

  Fig. 10.7    Down-sampling analysis to determine saturation. The  X -axis represents the level of 
downsampling where 1.00 is the full dataset. The  Y -axis shows the number of DE genes that were 
determined at a given false discovery rate cutoff. The  blue  line represents a non-linear least squares 
fi t according to a certain functional form. Estimates of the asymptote (i.e. estimated total number 
of DE genes) can be determined from the fi t       
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Robinson et al.  2010b  ) ; similar saturation analyses are carried out in the assembly 
of transcripts using RNA-seq data. It should be noted that the extrapolated estimates 
of detected DE may be very sensitive to the chosen functional form.   

    10.9   Functional Category and Integrative Analyses 

 Often, biological insight into a system can be gained by placing a set of differen-
tially expressed genes in the context of known functional information. A standard 
approach is so-called “functional category analysis,” whereby each functional cate-
gory is assessed for over-representation amongst differentially expressed genes. 
Such over-represented categories would be suggestive of disregulated pathways 
between the experimental conditions being studied. Similarly, biological insight 
into an experimental system can be gained by looking at the expression changes of 
predetermined  sets  of genes (e.g. Wu et al.  2010  ) . Tools for mapping genes onto 
knowledge databases and inferring set-wise changes in gene expression are readily 
available (Dennis et al.  2003 ; Kanehisa and Goto  2000 ; Subramanian et al.  2005  ) . 

 Careful analysis is required in order to apply the standard tools that have been 
widely used for microarray analysis to sequencing data. As already mentioned, 
RNA-seq is affected by biases not present in microarray data and these biases can 
have a substantial impact on functional category analysis (Young et al.  2010  ) . 
Specifi cally, longer genes are expected to have higher counts compared to short 
genes at the same expression level, resulting in greater statistical power to detect 
changes. Thus, lists of differentially expressed genes are ultimately biased toward 
genes with high counts, which tend to be longer and more highly expressed (Oshlack 
and Wakefi eld  2009  ) . Modifi cations to standard analyses have been suggested to 
account for this, including a DE t-statistic that has been divided by the square root 
of gene length (Bullard et al.  2010  ) , or a sampling-based approach that generates a 
length-adjusted null distribution (Young et al.  2010  ) . It is worth noting that gene 
length bias can affect all analyses that look for patterns of groups of genes. 
Furthermore, other biases in RNA-seq data, such as GC content bias and as yet 
unidentifi ed biases, will also affect downstream systems biology approaches. 

 RNA-seq may be considered as the downstream output of an experimental 
system. Techniques for interrogating upstream gene regulatory mechanisms, such as 
transcription factor binding, histone modifi cations, and DNA methylation, are now 
becoming widely used through the use of immunoprecipitation-based techniques. 
Thus, there is wide scope and interest in integrating expression data from RNA-seq 
to the vast array of available regulatory, genetic, and epigenetic datasets (Hawkins 
et al.  2010  ) . A few reports of these “integrative” analyses have emerged recently 
(Lister et al.  2009 ; Ouyang et al.  2009 ; Raha et al.  2010  ) . For example, Lister and 
coauthors highlighted a striking difference in the correlations of RNA-seq expression 
with CG and non-CG methylation levels in gene bodies (Lister et al.  2009  ) . Similarly, 
combinations of sequencing-based datasets are beginning to provide insights into 
the mono-allelic associations between expression, histone modifi cations, and DNA 
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methylation (Harris et al.  2010  ) . In other work, RNA-seq has been used in conjunction 
with genotyping data to identify genetic loci responsible for variation in gene 
expression between individuals (eQTLs) (Montgomery et al.  2010 ; Pickrell et al. 
 2010  ) . The integration of expression data with transcription factor binding, RNA 
interference, histone modifi cation, and DNA methylation information has the potential 
to provide greater understanding of a variety of regulatory mechanisms.  

    10.10   Going Beyond Differential Expression with RNA-Seq 

 While our focus in this chapter has been on the typical use-case of RNA-seq (i.e. 
discovering changes in gene expression), much of the excitement around sequencing-
based approaches lies in the ability to access biological features that were not readily 
available using previous technologies. RNA-seq data sheds light on many complexi-
ties within the landscape of gene expression, such as splicing events, differential 
isoforms between experimental conditions, and the presence of SNPs, insertions, and 
deletions. Harnessing this information can be used to further understand biological 
phenomena such as alternative splicing, allele-specifi c regulation, and RNA editing, 
as well as mechanisms that contribute to aberrations observed in disease. 

 One active area of research for RNA-seq studies is novel-transcript identifi cation 
and the characterization of alternative splicing. Early reports suggest that approxi-
mately 95% of all multi-exon human genes exhibit alternative forms (Pan et al. 
 2008 ; Sultan et al.  2008 ; Wang et al.  2008  ) , partially accounting for the vast human 
protein diversity. Several tools are available to estimate transcript abundance (Jiang 
and Wong  2009 ; Li et al.  2010  ) , detect alternative splice forms based on existing 
annotation (Griffi th et al.  2010 ; Trapnell et al.  2010 ; Wang et al.  2010  )  or discover 
novel transcripts independent of annotation (Robertson et al.  2010 ; Trapnell et al. 
 2010  ) . This is an active area of research and, at time of writing, many new methods 
and tools are being proposed. Interestingly, aspects of alternative splicing can be 
tackled by representing the mapped read data as counts at exons and exon–exon 
junctions and making comparisons across experimental conditions using statistical 
models similar to those described above. For example, Blekhman et al. used a Poisson 
model with random effects to highlight differential isoform usage between primates 
between gender within species (Blekhman et al.  2010  ) . Similarly, exon-level counts 
were used to fi nd changes in isoform expression between mouse subspecies with 
standard analysis-of-variance (Harr and Turner  2010  ) . 

 RNA-seq data also offer the potential to identify structural aberrations that create 
fusion transcripts. Using a hybrid short- and long-read approach, Maher et al. ( 2009 ) 
provided a proof-of-principle experiment, which recaptured known gene fusions 
from chronic myeloid leukemia and prostate cancer, while identifying and validat-
ing several new chimeric transcripts. 

 RNA-seq data can be used to detect SNPs, albeit with an ability that is biased 
towards highly expressed genes. Despite some potential biases in mapping, RNA-
seq can detect SNPs in transcripts that are different from the reference base or 
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heterozygous in a sample (Degner et al.  2009  ) . Heterozygously transcribed SNPs 
allow researchers to partition observed transcription by allele, a phenomenon that 
occurs with tissue specifi city and in approximately 10–20% of RNAs (Zhang et al. 
 2009  )  and can be associated with monoallelic regulation (Harris et al.  2010  ) . Similarly, 
by further increasing the complexity of the signal (e.g. sampling pools of individuals 
sampled from a population), there is the potential to search for allele-specifi c anti-
sense transcription and alternative splicing variants (Babak et al.  2010  ) . 

 A further use of SNP detection is to study the phenomenon of RNA editing, 
whereby primary transcripts undergo individual base substitutions that result in a 
mature transcript with sequence different from the DNA sequence. The landscape 
of such transitions has been explored recently in mitochondrial RNA, revealing 
hundreds of C-to-U conversions (Picardi et al.  2010  ) . There is also potential to 
modify library preparation protocols to discover and characterize small RNAs and 
non-coding RNAs, further investigating the complex process of transcription.  

    10.11   Conclusions 

 RNA-seq is now a mainstream tool for the analysis of transcriptomes and is well on 
its way to replacing DNA microarrays as the platform of choice. The data from 
RNA-seq is rich in information but complex to analyze and sensitive to technical 
biases. The focus in this chapter was perhaps the most straightforward use-case: 
searching for differentially expressed genes. We have highlighted the issues sur-
rounding mapping short reads to a reference transcriptome, summarizing mapped 
reads into a metric of expression level, normalization for depth and composition, 
statistical models to assess changes in count data, experimental design for RNA-seq 
data, and the impact of biases on downstream analyses. There is wide scope for 
integration of RNA-seq data with other types of high-throughput data, such as 
genetic and epigenetic variation.      
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  Abstract   MicroRNAs are key players of numerous fundamental pathways whose 
dysregulation is involved in the development of many diseases. With the advent of 
High-Throughput Sequencing (HTS) technologies, the expression levels of known 
microRNAs can now be fast and inexpensively profi led. In this chapter, we review 
the basic steps of HTS small RNA data analysis including the preprocessing of the 
reads, expression profi ling, isomiR analysis, differential expression, prediction of 
novel microRNAs, and downstream analyses. We will discuss eight different appli-
cations, including web server tools and software packages, developed for the analysis 
of microRNA data. We will specially emphasize the comparison of the different 
approaches and their putative effects on the results.      

    11.1   Introduction 

 MicroRNAs were discovered almost 20 years ago while studying the lin-14 gene in 
 Caenorhabditis elegans  (Lee et al.  1993  ) . The abundance of the protein encoded by 
this gene was found to depend on a short non-coding RNA transcribed from another 
gene, the lin-4. The 3 ¢  UTR sequence of lin-14 has partial complementary regions 
to the mature, 22 nt-long RNA sequence of lin-4 causing translation inhibition of 
lin-14 due to antisense RNA–RNA interaction. It took almost a decade before the 
second microRNA, let-7, was described in  C. elegans  (Reinhart et al.  2000  ) . This 
microRNA was furthermore found to be conserved in a broad range of species, 
including  Drosophila melanogaster  and human, suggesting that post-transcriptional 
regulation of gene expression by means of short non-coding RNAs might be a 
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widespread phenomenon and by no means nematode specifi c (Pasquinelli et al. 
 2000  ) . Over the last years, microRNAs have been found in virtually all eukaryotic 
organisms except fungi and some plants, and the number of known microRNAs has 
grown strongly. The most recent version of miRBase (Release 16) (Kozomara and 
Griffi ths-Jones  2011  )  contains up to 15,172 microRNAs. Many of them are phylo-
genetically conserved, suggesting a role in the regulation of important and very 
basic cellular functions such as apoptosis and cell differentiation (Wienholds and 
Plasterk  2005  ) . In addition, the dysregulation of microRNAs is involved in the 
appearance of cancer and other diseases (Alvarez-Garcia and Miska  2005 ; Esquela-
Kerscher and Slack  2006  ) . Given the importance of microRNAs and other small 
ncRNAs in the regulation of gene expression, several important goals exist in 
the analysis of microRNAs: (1) profi ling the expression of known microRNAs, 
(2) detecting differentially expressed microRNAs, (3) predicting and detecting 
novel microRNA genes, (4) detecting the microRNA target genes, and (5) developing 
integrated methods to infer microRNA regulatory networks. Until recently, the 
detection of microRNA expression levels has been a daunting task because existing 
techniques as northern blotting (Lagos-Quintana et al.  2001  )  or cloning/sequencing 
approaches (Cummins et al.  2006 ; Landgraf et al.  2007  )  are slow and expensive, 
and microarrays are limited to predefi ned features. With the advent of HTS tech-
nologies this scenario has drastically changed. First, the expression levels of known 
microRNAs and other small ncRNA can be inexpensively profi led within a given 
sample, and second, novel microRNAs can be detected in a more reliable way (Bar 
et al.  2008 ; Creighton et al.  2009 ; Morin et al.  2008  ) . Normally, both the sequence 
composition and the secondary structure are used to predict novel microRNAs [see 
Lim et al.  (  2003  )  or Li et al.  (  2010  )  for a review]. The existence of a hairpin fold-
back structure formed by the pre-microRNA plays a fundamental role in the detec-
tion of microRNA genes. It has been reported however that the human genome 
contains approximately 11 million sequences that can form a hairpin secondary 
structure (Bentwich et al.  2005  ) . This fact suggests that prediction algorithms will 
suffer from a high false positive rate and therefore cross-species comparisons are 
usually applied in order to fi lter for conserved hairpin structures or to analyze the 
conservation profi le (Berezikov et al.  2005  ) . This implies accepting the drawback 
that probably a large number of nonconserved, species-specifi c microRNA genes 
will not be detected (Bentwich et al.  2005  ) . The arrival of HTS technologies added 
new layers of information to the prediction that were not available before. First, the 
knowledge of whether a given sequence is expressed or not is given, and second, the 
traces left by Dicer, a endoribonuclease that cleaves the pre-microRNA to double-
stranded mature microRNA can be assessed. This new information together with 
previously developed, machine-learning based methods helped to improve the 
detection of microRNAs enormously (Li et al.  2010  ) . 

 In this chapter, I will review under a bioinformatics viewpoint the most common 
steps necessary to convert the information of HTS small RNA data contained within 
the FASTQ fi les into biological knowledge. Special emphasis will be put on the pro-
fi ling of microRNA expression, addressing the most common problems like adapter 
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removal, quality fi ltering, isomiR detection, and the multiple-mapping problem. 
I will also briefl y review the different approaches to predict novel microRNAs and 
the downstream analyses that are available so far. I will conclude giving a brief 
outlook on the fi eld mentioning some possible developments for the future.  

    11.2   Profi ling the Expression of Known MicroRNAs 

 A notable number of tools to analyze HTS small RNA data have been developed. 
In this chapter, I will focus on eight of them (see Table  11.1  for a summary): DSAP 
(Huang et al.  2010  ) , E-miR (Buermans et al.  2010  ) , miRanalyzer (Hackenberg et al. 
 2009  ) , miRExpress (Wang et al.  2009  ) , miRNAkey (Ronen et al.  2010  ) , mirTools 
(Zhu et al.  2010  ) , SeqBuster (Pantano et al.  2010  ) , and the UEA sRNA toolkit 
(Moxon et al.  2008  ) . Among the fi rst software packages to analyze HTS microRNA 
data has been miRDeep (Friedlander et al.  2008  ) , which is used now by mirTools for 
the prediction of new microRNAs. Other important protocols, but not software 
applications, have been developed and described elsewhere (Creighton et al.  2009 ; 
Morin et al.  2008  ) .  

 The tools share most analysis steps, but differ in the exact order of the work fl ow 
or in the concrete approach for a given task. I will therefore provide a “task centered” 
rather than a “program centered” review. 

    11.2.1   Input Formats and Scope 

 Although microRNA sequencing protocols are available for all three major sequencing 
platforms, Illumina, 454 and AB SOLiD (Shendure and Ji  2008  ) , most analysis 
tools do not accept color-space sequences as used by SOLiD to encode their di-base 
sequencing chemistry. The main advantage of color-space encoding is that by means 
of the alignments to the reference, sequencing errors (one mismatch) and sequence 
variants (two mismatches) can be distinguished. However, this implies that all align-
ments must be performed in color-space, i.e. the reference sequence must be con-
verted to color-space as well. Note that color-space should not be converted to 
nucleotide sequences before aligning. This is because from the position of a sequenc-
ing error to the end of the read, the conversion would be incorrect. The drawbacks 
of using incorrectly converted reads are obvious: (1) many of them will not align to 
the reference and the information carried by them is lost as well, and (2) the reads 
might map at arbitrary positions, causing therefore a false “signal”. Though, the 
effect of the conversion before aligning is not quantifi ed it is not advisable to pro-
ceed like this. Currently only the new version of miRanalyzer accepts color-space 
input sequences as it uses the Bowtie aligner (Langmead et al.  2009  ) .  



   Ta
bl

e 
11

.1
  

  B
ri

ef
 c

om
pa

ri
so

n 
of

 th
e 

m
os

t i
m

po
rt

an
t p

ro
gr

am
s   

 D
SA

P 
 E

-m
iR

 
 m

iR
an

al
yz

er
 

 m
iR

E
xp

re
ss

 
 m

iR
N

A
ke

y 
 m

ir
To

ol
s 

 Se
qB

us
te

r 
 U

E
A

 s
R

N
A

 to
ol

ki
t 

 A
va

ila
bi

lit
y 

   ht
tp

://
ds

ap
.c

gu
.

ed
u.

tw
/d

sa
p.

ht
m

l     

   ht
tp

://
w

w
w

.
lg

tc
.n

l/E
m

iR
        ht

tp
://

bi
oi

nf
o2

.
ug

r.e
s/

m
iR

an
al

yz
er

/
m

iR
an

al
yz

er
.

ph
p     

   ht
tp

://
m

ir
ex

-
pr

es
s.

m
bc

.n
ct

u.
ed

u.
tw

/     

   ht
tp

://
ib

is
.ta

u.
ac

.il
/

m
iR

N
A

ke
y/

     

   ht
tp

://
ce

nt
re

.
bi

oi
nf

or
m

at
ic

s.
zj

.c
n/

m
ir

to
ol

s/
     

   ht
tp

://
es

tiv
ill

_
la

b.
cr

g.
es

/
se

qb
us

te
r/

     

   ht
tp

://
sr

na
-t

oo
ls

.
cm

p.
ue

a.
ac

.u
k/

an
im

al
/c

gi
-b

in
/

sr
na

-t
oo

ls
.

cg
i?

rm
=

in
pu

t_
fo

rm
&

to
ol

=
m

ir
ca

t     
 Im

pl
em

en
ta

tio
n 

 W
eb

 s
er

ve
r 

 So
ft

w
ar

e 
pa

ck
ag

e 
 W

eb
 s

er
ve

r 
an

d 
lo

ca
l p

ro
gr

am
 

 L
oc

al
 p

ip
el

in
e 

 L
oc

al
 p

ro
gr

am
 

 W
eb

 s
er

ve
r 

 W
eb

 s
er

ve
r 

an
d 

lo
ca

l p
ro

gr
am

 
 W

eb
 s

er
ve

r 

 M
ai

n 
fe

at
ur

es
 

 D
if

fe
re

nt
ia

l 
ex

pr
es

si
on

, 
R

fa
m

 fi 
lte

r, 
gr

ap
hi

ca
l o

ut
pu

t, 
cr

os
s-

sp
ec

ie
s 

co
m

pa
ri

so
n,

 
op

tim
iz

ed
 

se
qu

en
ce

 
al

ig
nm

en
t f

or
 

is
om

iR
s,

 1
42

 
sp

ec
ie

s,
 r

em
ov

e 
po

ly
-A

,C
,G

,T
 

 D
if

fe
re

nt
ia

l 
ex

pr
es

si
on

, 
is

om
iR

 
an

al
ys

is
, 

an
no

ta
tio

ns
 

vi
a 

E
ns

em
bl

 
Pe

rl
 A

PI
, 

 C
ol

or
-s

pa
ce

 s
up

po
rt

, 
pr

ed
ic

tio
n 

of
 n

ov
el

 
m

ic
ro

R
N

A
s 

fo
r 

pl
an

ts
 a

nd
 

an
im

al
s,

 
di

ff
er

en
tia

l 
ex

pr
es

si
on

 
in

cl
ud

in
g 

no
ve

l 
m

ic
ro

R
N

A
s,

 
st

an
da

lo
ne

 
ve

rs
io

n 

 D
et

ec
tio

n 
of

 
no

ve
l 

m
ic

ro
R

N
A

s 
ba

se
d 

on
 

ho
m

ol
og

y 

 G
ra

ph
ic

al
 u

se
r 

in
te

rf
ac

e,
 

gr
ap

hi
ca

l 
ou

tp
ut

, 
ad

di
tio

na
l 

in
fo

rm
at

io
n 

lik
e 

m
ul

tip
le

 
m

ap
pi

ng
 

le
ve

ls
 a

nd
 

po
st

-c
lip

pi
ng

 
re

ad
 le

ng
th

s 

 D
et

ec
tio

n 
of

 n
ew

 
m

ic
ro

R
N

A
s 

(m
iR

D
ee

p)
, 

nc
R

N
A

, 
co

di
ng

 g
en

es
, 

R
fa

m
 a

nd
 

R
ep

ea
tM

as
ke

r 
lib

ra
ri

es
, 

gr
ap

hi
ca

l a
nd

 
te

xt
 o

ut
pu

t, 
lim

ite
d 

to
 

10
 M

 

 D
if

fe
re

nt
ia

l 
ex

pr
es

si
on

, 
is

om
iR

 
an

al
ys

is
, 

gr
ap

hi
ca

l 
us

er
 in

te
rf

ac
e 

an
d 

ou
tp

ut
, 

pr
efi

 lt
er

in
g 

of
 lo

w
 

co
m

pl
ex

ity
 

re
ad

s 

 E
xp

re
ss

io
n 

pr
ofi

 li
ng

 o
f 

kn
ow

n 
m

ic
ro

R
N

A
s 

(m
iR

Pr
of

),
 

de
te

ct
io

n 
of

 
ne

w
 m

ic
ro

R
-

N
A

s 
(m

iR
C

at
),

 
ve

rs
io

ns
 f

or
 

pl
an

t a
nd

 
an

im
al

 

 In
pu

t 
 R

ea
d/

co
un

t 
 FA

ST
Q

, 
SC

A
R

F,
 

re
ad

/c
ou

nt
 

 R
ea

d/
co

un
t, 

fa
st

a 
 FA

ST
Q

, r
ea

d/
co

un
t 

 FA
ST

Q
, f

as
ta

 
 Fa

st
a 

 Fa
st

a,
 il

lu
m

in
a 

“s
eq

” 
fi l

es
 

 Fa
st

a 



 D
if

fe
re

nt
ia

l 
ex

pr
es

si
on

 
 Y

es
 

 Y
es

 (
L

im
m

a)
 

 Y
es

 (
D

E
Se

q)
 

 N
o 

 Y
es

 (
ch

i-
sq

ua
re

) 
 Y

es
 (

B
ay

es
) 

 Y
es

 (
Z

-t
es

t)
 

 Y
es

 

 N
ov

el
 

m
ic

ro
R

N
A

s 
 N

A
 

 N
A

 
 A

ni
m

al
, p

la
nt

 
 H

om
ol

og
y 

ba
se

d 
 N

A
 

 A
ni

m
al

, p
la

nt
 

 N
A

 
 A

ni
m

al
, p

la
nt

 

 Q
ua

lit
y 

 N
ot

 u
se

d 
 N

ot
 u

se
d 

 In
 p

re
pr

oc
es

si
ng

 
w

ith
 a

 p
er

l 
sc

ri
pt

 

 N
ot

 u
se

d 
 N

ot
 u

se
d 

 In
 p

re
pr

oc
es

si
ng

 
w

ith
 a

 p
er

l 
sc

ri
pt

 

 N
ot

 u
se

d 
 N

ot
 u

se
d 

 A
da

pt
er

 
ha

nd
lin

g 
 R

em
ov

e:
 5

 n
t, 

0 
M

M
, 

Su
pe

rm
at

ch
er

 

 R
em

ov
e:

 8
 n

t, 
1 

M
M

 
 Se

ed
 a

lig
nm

en
t 

 R
em

ov
e:

 7
0%

 
id

en
tit

y 
 R

em
ov

e:
 N

A
 

 R
em

ov
e:

 N
A

 
 R

em
ov

e:
 1

0 
nt

, 
3 

M
M

, 
 R

em
ov

e 
ad

ap
te

r 
(p

re
pr

oc
es

si
ng

 
to

ol
) 

 A
lig

ne
r 

 B
L

A
ST

 
 E

la
nd

 
 B

ow
tie

 
 Sm

ith
-

W
at

er
m

an
 

 B
ur

ro
w

s-
W

he
el

er
 

A
lig

ne
r 

 SO
A

P,
 m

eg
a 

B
L

A
ST

 
 M

eg
a 

B
L

A
ST

 
 Pa

tM
aN

 

 C
ol

or
 s

pa
ce

 
 N

o 
 N

o 
 Y

es
 

 N
o 

 N
o 

 N
o 

 N
o 

 N
o 

 A
dd

iti
on

al
 

lib
ra

ri
es

 
 R

fa
m

 
 N

o 
 R

fa
m

, m
R

N
A

, 
(R

ep
B

as
e 

in
 o

ld
 

ve
rs

io
n)

 

 N
o 

 N
o 

 R
fa

m
, m

R
N

A
, 

R
ep

B
as

e 
 N

o 
 N

o 



196 M. Hackenberg

    11.2.2   Preprocessing 

 The preprocessing of the reads is an important step in the analysis of ncRNA data 
that compasses both mere technical but also biological aspects. For example, the 
original FASTQ fi les are usually too big to be sent over the web and therefore the 
web server tools use either tab-separated read/count or fasta fi les in order to reduce 
the input fi le size. However, some steps like the adapter handling, the read count 
threshold and the consideration of quality values might drastically infl uence the 
outcome of the analysis. 

    11.2.2.1   Adapter Handling 

 The sequences of short ncRNA libraries have typically lengths between 17–35 bp 
(like in the case of Illumina “Small RNA Discovery and Analysis”), but the range 
might vary between the different protocols. This implies that very often the read 
length will be longer than the sequenced molecule. In such cases, the adapter will 
also be sequenced appearing at some arbitrary position towards the 3 ¢  end of the 
read. The adapter sequence will cause mismatches in the alignments to the reference 
and must therefore be taken into account. Currently, two different approaches have 
been proposed: (1) the adapter sequence is detected and removed generating 3 ¢  
trimmed, clean reads, and (2) the adapter-free part of the read is aligned fi rst (seed 
alignment), extending the alignment afterwards. Among the tools discussed here, 
with the exception of miRanalyzer, all implement the removal of the adapter 
sequence. The detection of the adapter sequence is not trivial and basically every 
tool has implemented its own method or parameter set; or even worse, do not mention 
in detail how they perform this step. It is known that the frequency of sequencing 
errors increases towards the 3 ¢  end of the reads in Illumina sequencing, which 
implies more sequencing errors in the adapter sequence than in the 5 ¢  end of the read. 
Furthermore, the adapter can appear at a broad range of positions within the read or 
even only partially at the 3 ¢  end. Given this scenario, mismatches must be considered 
and a minimum length must be established. A tradeoff between specifi city and sensi-
tivity of adapter detection must be found. If very stringent alignment parameters are 
used, many adapter sequences will be missed and the reads will very likely fail to 
align, thus losing the information carried by them. If to lax parameters are applied 
(many mismatches and short-detected adapter sequence), non-adapter sequences 
will be erroneously identifi ed as adapters. 

 For example, SeqBuster allows up to three mismatches (corresponding roughly to 
85% sequence identity) and no gaps in the alignment. The fi rst ten bases of the adapter 
are searched for between position 15 and the 3 ¢  end of the read applying a modifi ed 
Needleman-Wunsch algorithm. These parameters can be manipulated in the stand-
alone version of the tool. In the DSAP web server this step is less stringent and only 
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the fi rst 5 nt of the adapter need to be detected (probably without mismatches) using 
the Supermatcher algorithm from the EMBOSS package. In the E-miR paper, the 
authors report that “ matches to the fi rst 4–6 nt of the adapter sequence may occur by 
chance within the RNA insert and cause aberrant truncation of the sequence. ” A fi rst 
consequence of this observation is that the use of a 26-cycle protocol in Illumina 
might be problematic as many adapters would be only partially sequenced causing 
either a high rate of missed adapters and/or a high number of erroneously trimmed 
reads. The E-miR authors recommend the detection of at least 8 nt of the adapter 
sequence allowing 1 MM.    A comparison to SeqBuster yielded a 2–3 times increase 
in speed and a more accurate removing of the adapter sequence without, however, 
mentioning how the comparison was done exactly. In summary, rather huge differ-
ences among the different approaches exist and it would be important to quantify the 
impact by means of a systematic comparison between the methods. 

 On the other hand, miRanalyzer implements a method very similar to the one 
used by Friedlander et al. in the miRDeep package (Friedlander et al.  2008  ) . 
Following this approach, a subsequence of the read starting at the 5 ¢  end called 
“seed” is mapped fi rst to the reference. In the miRanalyzer web server, the fi rst 17 nt 
of the read are used as seed (−l option in Bowtie). Among all possible best align-
ments (those with less mismatches), the longest one(s) maintaining the number of 
mismatches observed in the seed region are retained. In theory, this approach allows 
to align all reads with adapter sequences located after the seed region. The advan-
tage is that the adapter sequence does not need to be detected explicitly, thus avoid-
ing problems derivated from missed adapters or erroneously removed regions. 
A possible disadvantage is that single-nucleotide 3 ¢  extensions cannot be detected 
(Morin et al.  2008  ) .  

    11.2.2.2   Quality Values 

 Probably, one of the most disregarded aspects in the analysis of ncRNA data is the 
consideration of the base call quality values. Each sequenced base has assigned a 
Phred quality score that indicates the probability of a sequencing error. While it is 
clear that for SNV (Single Nucleotide Variants) calling and methylation profi ling, 
the quality of the base calls is crucial, its impact on the analysis of ncRNA data is 
less clear. Currently, none of the programs discussed here uses the quality values 
during the alignment process. Just two programs, miRanalyzer and miRtools pro-
vide scripts allowing the fi ltering of low-quality reads in the preprocessing step 
when converting FASTQ format to read/count or fasta format. As mentioned before, 
the potential of the quality values has not been systematically assessed and probably 
for the expression profi ling it is less important. However, for the detection of RNA 
editing and probably also for the detection of isomiRs it might be important to take 
the quality values of the individual bases into account.  
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    11.2.2.3   Read Length 

 Some programs impose minimum and maximum read lengths. In the UEA sRNA 
toolkit, the length range can be set within the “Filter” tool during the preprocessing 
step, while in the mirTools it is a parameter of the proper tool (between 16 and 
32 nt). miRanalyzer sets a minimum length of 17 nt and maximum length of 26 nt. 
These parameters can be manipulated in the standalone version of the tool. miRana-
lyzer does not perform an explicit adapter removal step and therefore a seed alignment 
is performed using this minimum length as seed length (−l option in Bowtie). For 
the other tools, the reads will be trimmed automatically to the size of the sequenced 
molecule due to the adapter removal. Some programs apply length thresholds after 
this step like E-miR (removing all reads shorter than 15 nt and longer than 32 nt) 
or contain implicit length thresholds like SeqBuster. This tool checks for adapter 
sequences from the position 15 on, and therefore all adapters incorporated earlier 
cannot be removed. Those reads will most likely not align and be therefore lost.  

    11.2.2.4   Number of Unique Reads 

 A common step is the generation of unique sequence reads, i.e. grouping together 
all reads with the same nucleotide sequence counting the number of copies. Some 
programs perform this step during the preprocessing providing data in read/count 
format, others accept redundant fasta fi les doing the grouping and counting inter-
nally (UEA sRNA toolkit). Reads with low copy numbers have a higher probability 
to be caused by sequencing errors and therefore some studies have used minimum 
count thresholds. For example, Morin et al. remove all reads with less than four 
counts, while Creighton et al. regard all reads with less than ten as putative sequencing 
errors. SeqBuster, miRExpress, UEA toolkit, miRNAkey, miRtools, and E-miR do 
not allow the automatic fi ltering of low copy reads although the user could of course 
manipulate the input by manually removing the reads with low counts. DSAP and 
miRanalyzer provide scripts for the preprocessing of the data including the fi ltering 
of reads with low counts. However, in both scripts, the threshold is applied before 
adapter removal and therefore the number of unique reads will be much higher as 
sequencing errors in the adapter will lead to “new” unique read sequences. Therefore, 
the correct way would be to apply this threshold after the adapter trimming or after 
the alignment in case of miRanalzyer (no adapter detection). 

 In summary, just very much as in the other preprocessing steps, so far no perfect 
or advisable threshold for the minimum count has been reported. It is clear that 
when using all reads including those with single or extremely low counts, the 
analysis will be more sensible (more microRNAs can be detected); undoubtfully, 
however, it will be also less specifi c (higher number of false positives). This will 
be especially true for the prediction of novel microRNAs where single count reads 
might constitute an important source of noise. This is an issue that needs to be 
tackled in the future.   
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    11.2.3   Profi ling Expression of Known MicroRNAs 

 The fi rst step in the profi ling of microRNA expression is the alignment of the reads 
to a microRNA reference library. The absolute expression value of a given microRNA 
is the read count sum of all reads that mapped to the reference sequence of this 
microRNA. The values can be normalized dividing the individual absolute counts 
by the read count sum of all reads that mapped to any of the reference sequences of 
the library. Right now, most tools use unique sequence reads that have already 
assigned the read count (copy number of each unique read) for the alignment. In the 
future, probably some local standalone applications or software packages might 
take advantage of the quality values contained within the FASTQ fi les, aligning fi rst 
all reads, grouping them to unique reads afterwards. The most used sequence libraries 
are the known microRNAs from miRBase (Kozomara and Griffi ths-Jones  2011  ) . 
In general, the mature microRNA sequences are used to detect the expression levels 
although when detecting isomiRs, the pre-microRNA sequences must be also taken 
into account (see below). Additionally, miRanalyzer includes the profi ling of all 
theoretically possible mature* sequences which allows the detection of previously 
unobserved mature* microRNAs. 

    11.2.3.1   Aligners and Parameters 

 The crucial step in profi ling the expression of known microRNAs is the alignment 
of the reads to the reference libraries. A huge number of algorithms have been pro-
posed over the last two decades for this task, and recently methods have been devel-
oped to address the specifi c needs of HTS experiments yielding hundreds of millions 
of short reads. Therefore, it is not surprising that the tools discussed here are based 
on different alignment algorithms (see also Table  11.1 ): MegaBLAST or BLAST 
(Zhang et al.  2000  )  (DSAP, miRtools, SeqBuster, Morin protocol), Smith-Waterman 
(miRExpress, Creighton protocol), PatMaN (Prufer et al.  2008  )  (UEA sRNA toolkit), 
the commercial Illumina aligner Eland (E-miR), Bowtie (Langmead et al.  2009  )  
(miRanalyzer), and Burrows-Wheeler Aligner (Li and Durbin  2009  )  (miRNAkey). 

 Moreover, the tools do not coincide in the way mismatches are considered. The 
DSAP web server and the Morin protocol do not allow mismatches to the reference 
sequence. Creighton proposes a two-step philosophy aligning fi rst with 0 MM and 
in a second step with 3 MM to the library of pre-microRNAs (loose matches). All 
other tools allow to manipulate the maximum number of mismatches, thus letting 
the decision to the user (miRExpress uses the % of sequence identity). Some tools 
(miRExpress, DSAP) force full-length alignments discarding therefore implicitly all 
variants (isomiRs) of the microRNA (see next section). It is clear that a high number 
of allowed mismatches might cause erroneous alignments to the wrong reference 
sequence, however, on the other hand, too stringent thresholds will discard valuable 
information. Therefore, the most adequate threshold for the maximum number of 
mismatches is another issue that should be assessed systematically in the future.  
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    11.2.3.2   IsomiRs 

 IsomiRs are defi ned as variations of a mature microRNA sequence from its reference 
(predominant) sequence and have been commonly observed in cloning studies 
(Cummins et al.  2006 ; Landgraf et al.  2007  ) . These variations include length variants 
produced by “incorrect” or alternative Dicer cleavage, nucleotide additions, and 
sequence variants due to RNA editing. In order to detect the length variants, the 
mapping must be done to a library of pre-microRNA sequences. If the position of 
the mature microRNA is known, the 5 ¢  and 3 ¢  base overhang can be determined. 
Creighton allows an overhang of three bases in 5 ¢  and six bases in 3 ¢ . Currently, an 
isomiR analysis is possible in SeqBuster, DSAP, and E-miR. SeqBuster offers the 
most extensive analysis package. The variants are fi rst classifi ed into 5 ¢  trimming, 
3 ¢  trimming, substitutions (RNA editing), and 3 ¢  extensions. The results can be ana-
lyzed both, graphically and statistically. Furthermore, SeqBuster allows comparing 
the expression values of isomiRs over different samples, thus being able to detect 
differentially expressed variants. An analysis performed by these authors showed 
that generally the variants show differential expression if the predominant form is 
differentially expressed. In E-miR the differential expression of the variants is 
assessed in a different way. First the differentially expressed microRNAs are deter-
mined, detecting afterwards the isomiRs that signifi cantly contribute to the observed 
difference. These authors found that the variants are uniformly expressed over the 
analyzed samples. Although, this fi nding might be specifi c for the used samples, it 
might also indicate the absence of functional alternative Dicer processing. 

 Regarding the analysis of RNA editing, it will be indispensable in the future to 
integrate quality values into the analysis of putative RNA editing as many substitu-
tions might be sequencing errors and without quality values, the expected frequency 
of error-driven substitutions is diffi cult to assess. 

 In summary, the existence of isomiRs was shown rather recently and more 
research on this topic is needed. Right now, the tools allow quantifying the variation, 
but virtually nothing is known about the functional implications. However, these 
functional implications should be known in order to correctly classify the variants, 
i.e. whether to analyze them together with the predominant form or separately.  

    11.2.3.3   Multiple Mapping 

 Frequently, a given read maps to more than one reference sequence. The mapping 
to different positions in the genome might indicate the existence of more than one 
microRNA gene leading to the same mature sequence. However, it is less clear how 
to interpret multiple alignments to a non-redundant set of known microRNAs. Often 
microRNAs are members of families with closely related sequences. If mismatches 
are allowed in the mapping, sequencing errors can lead to multiple mapping. The 
miRNAkey authors report that up to 30% of all reads might have multiple or ambig-
uous alignments. They do however not specify the experimental setup where such 
high numbers were observed. Probably, the usage of very short reads (18 cycles) 
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might lead to a high number of ambiguous mappings. However, with a typical 
36-cycle assay, the percentages should be much lower. We observed that when using 
miRanalyzer, typically less than 1% of all reads show multiple mappings. miRana-
lyzer reports those reads in a separate output instead of discarding them.  

    11.2.3.4   Filtering with ncRNA and Quantifi cation of Contamination 

 During the preparation of the small RNA libraries it is unavoidable that other small 
or fragmented RNA molecules are sequenced as well. Some of the tools take this 
fact into account by mapping the reads also to Rfam (Gardner et al.  2009  ) , RepBase 
(Kapitonov and Jurka  2008  ) , and the coding regions of the genes or mRNA librar-
ies. The mappings to these additional libraries can be used for two main purposes. 
First, they allow to quantify the degree of contamination with fragments from 
longer RNA molecules, and second, they can be used to fi lter out reads originating 
from other small RNA molecules prior to the mapping to known microRNAs or 
the genome (for prediction). The order of the mappings however varies between 
the different tools, which might have some impact on the results. For example, 
mirTools maps the reads to Rfam, miRBase, RepBase, and genes. In case of confl icts 
(a read maps to more than one library) they establish a hierarchy given priority 
to non-coding RNA from Rfam, followed by miRBase and afterwards repeat or 
gene-associated reads. DSAP eliminates fi rst all reads that mapped to ncRNA 
(Rfam) and the remaining reads are then mapped to miRBase. miRanalyzer pro-
ceeds in a yet different way. The reads are fi rst mapped to mature microRNAs, 
pre-microRNA, mRNA, Rfam, and fi nally to the genome in order to predict new 
microRNAs. After each step, the assigned reads are eliminated (for Rfam and 
mRNA certain parameters must hold to eliminate the reads, see (Hackenberg et al. 
 2009  )  for more details) so they cannot contribute again. The impact of the mapping 
order on the expression profi ling has not been established so far. It might be  however 
that the main importance of Rfam consideration lies in the prediction of novel 
microRNAs as reads from other small RNAs might lead to a higher number of false 
positive predictions.   

    11.2.4   Visualization 

 Some of the tools discussed here provide means to visualize the results. For example, 
miRtools offers graphically the length distribution of the unique reads and the total 
read count, pie-charts to summarize the mapping to the different reference libraries, 
and scatter plots to compare the expression values between two samples. SeqBuster 
provides a very complete visual analysis of microRNA variants. In this way, it 
allows to visualize the contribution of each variant to the microRNA (read count of 
the variant vs. count of all reads that map to the microRNA), analyzing the isomiRs 
by nucleotide position or depicting the differences between different samples.  
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    11.2.5   Differential Expression 

 The detection of differentially expressed microRNAs is the fi nal goal of many 
experimental assays. Frequently, the differentially expressed microRNAs will be 
the starting points for further, down-stream analyses. Therefore, most tools discussed 
here have incorporated this analysis feature now. Several statistical methods have 
been developed over the last years specially addressing the needs of digital expres-
sion profi ling like RNA-seq (Marioni et al.  2008  ) , DEGseq (Wang et al.  2010  ) , 
edgeR (Robinson et al.  2010  ) , or DESeq (Anders and Huber  2010  ) . One of the fi rst 
methods developed for digital expression data uses a Bayesian approach (Audic and 
Claverie  1997  )  and is applied by the miRtools server. SeqBuster implements a Z-test 
as proposed by Reinartz et al.  (  2002  ) , E-miR uses a Limma (linear models)-based 
statistic, and miRNAkey is based on a chi-squared test. Recent methods are based 
either on the Poisson distribution (RNA-seq and DEGseq) or the negative binomial 
distribution (edgeR and DESeq). The latter method, DESeq, is used in miRanalyzer. 
Given that virtually all tools use a different method to detect differential expression, 
the way the data is processed also differs. Technical artifacts lead to fl uctuations 
between the samples that need to be taken into account, otherwise, these fl uctua-
tions could be detected erroneously as differential expression. For example, miRtools 
normalizes the read counts to the total number of reads mapped to the microRNA 
reference before applying the statistical test. miRNAkey on the other side normal-
izes the data using a RPKM expression index (Mortazavi et al.  2008  )  which might 
be important for gene expression with a broad range of different transcript sizes; 
however, it is less clear if this normalization is meaningful for microRNA data. 
DESeq on the other hand takes raw counts as input doing the normalization inter-
nally and therefore miRanalyzer provides an expression matrix with absolute read 
counts. 

 miRtools has two different modules to detect differential expression. The fi rst 
allows the comparison of two samples, and the other, which takes previously gener-
ated microRNA expression fi les as input, allows up to three samples per condition. 
miRanalyzer has no limitation on the number of samples. First, all samples are pro-
cessed with miRanalyzer and second, by means of the unique ID assigned to each 
job, the groups can be defi ned without any limitations on the number of samples. 

 Finally, at present miRanalyzer seems to be the only tool able to detect differ-
ential expression among the predicted novel microRNAs. Only the UEA sRNA 
toolkit has a similar functionality being able to detect differentially expressed loci.   

    11.3   Prediction of Novel MicroRNAs 

 As mentioned in the introduction, the detection of new microRNAs has been facili-
tated enormously by means of HTS technologies. This is basically due to two reasons: 
fi rst, the search for new microRNAs can be limited to expressed sequences, and 
second, the Dicer processing leaves characteristic pattern which sometimes can be 
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detected by means of these new technologies. In this way, virtually all prediction 
algorithms implemented into the discussed tools (or proposed in other protocols) 
are based on previous works adding the new expression layer information. We can 
distinguish two types of methods, those based on homology and those based on 
machine learning. 

    11.3.1   Homology-Based Approaches 

 The basic idea behind this approach is that microRNAs discovered in other (related) 
organisms might be conserved and therefore be also present in the species under 
analysis. Briefl y, the rough procedure is the following: a set of exogeneous micro-
RNAs is aligned to the species genome, a sequence around the mapping position is 
extracted, and the secondary structure of this sequence is calculated. If the secondary 
structure holds some parameters thresholds like minimum binding energy, the mapping 
is reported as a putative novel microRNA (Artzi et al.  2008 ; Dezulian et al.  2006  ) . 
The miRExpress package implements a method following this philosophy. In their 
analysis of two human cell lines, they mapped all remaining reads (those that did 
not map to known human microRNAs) to all other mammalian microRNAs detecting 
40 and 39 putatively novel microRNAs.  

    11.3.2   Machine-Learning Approaches 

 A signifi cant number of methods have been developed to predict microRNA genes 
like miPred (Jiang et al.  2007  ) , miRFinder (Huang et al.  2007  ) , or ProMiR (Nam 
et al.  2006  )  recently reviewed by Li et al.  (  2010  ) . Based on this knowledge new 
methods have been developed adding the new information granted by HTS experi-
ments. Currently, the prediction of novel microRNAs is available in miRtools 
(through miRDeep), miRanalyzer, and the UEA sRNA toolkit. However, methods 
or protocols have been described also by Morin et al. and Creighton et al. 

 There are notable differences in the details of each method; however, some basic 
steps are shared by all of them:

   Map the reads against the genome sequence.  • 
  Cluster together the reads which map to the same locus (isomiRs, sequencing • 
errors, usage of non-adapter trimmed reads)  
  Extract the genomic sequence plus some fl anking regions in order to include the • 
full pre-microRNA sequence  
  Determine the secondary structure of the extracted sequence and reject non-hairpin • 
structures  
  Calculate properties based on structural and compositional features, expression • 
values and/or traces left by Dicer processing (like existence of mature* sequence).  
  Calculate the probability of the candidate to be a novel microRNA    • 
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 A detailed comparison of the methods is beyond the scope of this chapter; I will, 
however, mention some important differences. Usually, just a single sequence is 
extracted out of the genome to check for secondary fold-back structures. miRana-
lyzer calculates up to 20 different secondary structures with different lengths taking 
into account that the microRNA can be located at either of the two arms of the pre-
microRNA. This slows down the prediction of microRNA enormously; however, it 
reduces the probability that fl anking regions change the secondary structure of the 
candidate pre-microRNA. A second important difference is given by the number of 
predicted microRNAs. It seems that miRanalyzer predicts much more novel 
microRNAs than, for example, miRDeep does or compared to the number reported 
by Morin et al. This might indicate that miRanalyzer is more sensitive than others 
but very likely less specifi c. However, the different methods have not yet been 
benchmarked against each other based on identical data sets. The prediction quality 
can only be compared by means of indicators like sensibility, specifi city, and cor-
relation given by the authors. All these values are obtained on different data sets and 
therefore no conclusions can be drawn so far. It would be an important task and very 
useful for the users of these tools to carry out a large-scale comparison in order to 
quantify the differences in prediction quality between these methods.   

    11.4   Downstream Analysis 

 Especially with a list of differentially expressed microRNAs at hand, usually several 
downstream analyses need to be carried out in order to obtain biological knowledge. 
Of outstanding interest is of course the detection of the microRNA target genes. 
Several techniques are coming up to detect microRNA/mRNA interactions experi-
mentally like HITS-CLIP, high-throughput sequencing of RNAs isolated by cross-
linking immunoprecipitation (Chi et al.  2009  )  or SILAC, and pSILAC to measure 
directly the impact of microRNAs on the protein abundance (Baek et al.  2008 ; 
Selbach et al.  2008  ) . However, these data so far cannot be routinely generated together 
with the microRNA sequencing data and therefore the detection of microRNA/
mRNA interactions is still strongly based on predictions [please see Li et al.  (  2010  )  
for a review]. For example, miRanalyzer provides the target genes predicted by 
microCosm (Griffi ths-Jones et al.  2008  )  for each of the detected known microRNAs. 
Furthermore, it allows the detection of putative target genes for novel microRNAs by 
means of the TargetSpy algorithm (Sturm et al.  2010  ) . Once the target genes have 
been detected, enrichment/depletion analysis (Al-Shahrour et al.  2004  )  can be carried 
out in order to translate the gene list into biological knowledge. 

 If mRNA expression data is available for the same samples, a more directed 
search for regulated genes can be carried out. A common approach is to look for 
the enrichment of target sites from over-expressed microRNAs within the down-
regulated transcripts. There are already some tools available for this kind of analysis 
like DIANA-mirExTra (Alexiou et al.  2010  ) , GeneSet2miRNA (Antonov et al. 
 2009  ) , or miRonTop (Le Brigand et al.  2010  ) .  
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    11.5   Outlook 

 The tools and protocols presented in this chapter concentrate principally on the 
profi ling of microRNA expression data, prediction of novel microRNAs, and the 
detection of differentially expressed microRNAs. However, the ultimate goal of 
most experiments might be to detect those pathways that actively participate in the 
development of a given pathology or more generally being affected between two 
conditions. In order to archive those (microRNA) regulatory networks, not only 
microRNA expression data, but also mRNA, proteomics and probably also methyla-
tion data need to be analyzed together to obtain a complete understanding on the 
molecular background. Thus, the extension of the methods presented here towards 
an integral analysis of data from different experiments together with functional 
analyses will be one major goal in the future.      
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  Abstract   Detecting protein–RNA interaction and identifying RNA-binding protein 
(RBP) targets on a global scale have become increasingly important for understanding 
RNA regulatory mechanisms and reverse-engineering RNA regulation network at 
systems level. Signifi cant progress was made in the past few years. Cross-linking 
and immunoprecipitation (CLIP) coupled with high-throughput sequencing (HITS) 
the method of choice for transcriptome-wide coverage as well as for high-resolution 
mapping of RBP sites and for in vivo target identifi cation. In this chapter, we intro-
duce the current status of the technology, with a focus on bioinformatic analysis of 
HITS-CLIP or CLIP-seq data, in understanding RNA splicing regulation network 
through building RNA splicing maps.      

    12.1   Experimental Background 

 Science is about studying interaction. Genome-wide RNA–RBP (such as SF, splic-
ing factor) interaction biochemistry has always been lagging behind genome-wide 
DNA–DBP (DNA-binding protein) (such as TF, transcription factor) works, largely 
because of the diffi culty associated with handling RNA (less stable, more complex 
structurally, etc.). There are excellent reviews, e.g., Licatalosi and Darnell  (  2010  )  
on RNA processing and regulation, Darnell  (  2010  )  on HITS-CLIP technology, and 
Witten and Ule  (  2011  )  on RNA splicing maps. Here we try to briefl y summarize 
relevant experimental breakthroughs and refer the readers to the above references 
for details. 
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 The revolution of high-throughput sequencing (HITS) or next-generation 
sequencing (NGS) technologies brings powerful tools to study protein–DNA (ChIP-
Seq) and protein–RNA (HITS-CLIP, or CLIP-Seq) interactions, histone modifi ca-
tions, DNase hypersensitive sites, and the transcriptome at a genome-wide scale 
(Wold and Myers  2008 )   . In conjunction with mRNA-Seq, which has already 
emerged as an alternative to expression microarrays for detecting and quantifying 
alternative mRNA transcripts in specifi c conditions (Pepke et al.  2009 ; Wang et al. 
2009; Zhang and Zhang  2011 ; Chap. 11), functional targets of transcription and 
splicing may be identifi ed genome-wide with base-pair resolution. Especially with 
the CLIP-Seq technology, recent studies reveal unprecedented extensiveness of 
alternative pre-mRNA splicing and provide novel insights into global mechanisms 
of splicing regulation. 

    12.1.1   RNA–RBP Analysis by CLIP-Seq 

 In order to overcome some of the early problems in the RNA IP-based technology, 
UV cross-linking and immunoprecipitation (CLIP) technology was developed 
(Ule et al.  2003 ; Jensen and Darnell  2008  ) . After treated with UV-B irradiation of 
the intact cells or tissues, covalent bonds between RNA and RBP in close contact 
can be formed. This physical link allows RNA–RBP complexes to be purifi ed by 
using immunoprecipitation and denaturing gel electrophoresis. RNAs are sheared 
into fragments (from ~20 to 100 nt). The RBP is then digested by proteinase K and 
the RNA is purifi ed. After ligated with RNA linkers, cDNA is synthesized with 
antisense primer and reverse transcriptase (RT) to generate templates for HITS. The 
advantage of UV cross-linking, compared with formaldehyde cross-linking widely 
used in ChIP-seq, is that it only cross-links direct protein–RNA contact and does not 
induce protein–protein cross-links, although it does induce RNA–RNA cross-links, 
which can help solving secondary RNA structures. After protein digestion, an amino 
acid (or a short peptide) remains at the RNA cross-linking site that leads to the fre-
quent truncation of cDNAs previously exploited to map cross-linking sites using 
primer extension assays. A newly improved protocol iCLIP (individual nucleotide 
resolution CLIP: König et al.  2010  ) , using cDNA circularization to prepare the 
cDNA library, allows for the HITS of cDNAs that truncate a peptide (because of 
the irreversibility of the UV cross-link) and mapping of the binding sites at higher 
resolution. Also the use of random barcodes to mark cDNAs during library prepara-
tion allows to determining if identical sequences arose from multiple independent 
cDNAs or PCR artifact. Because    reverse transcriptase used in CLIP frequently skips 
the cross-linked amino acid–RNA adduct, this can result in a nucleotide deletion. 
Genome-wide analysis of these cross-linking-induced mutation sites (CIMS) in 
Nova and Argonaut (Ago) HITS-CLIP data demonstrated deletions in ~8–20% 
mRNA tags. The new CIMS analysis method (Zhang and Darnell  2011  )  can 
systematically analyze HITS-CLIP data to identify exact cross-linking sites, and 
thereby determine protein–RNA interactions at single-nucleotide resolution.  
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    12.1.2   Available HITS Platforms 

 There are several HITS platforms commercially available, including 454 (Roche), 
Illumina Genome Analyzer (Illumina/Solexa), and AB SOLiD (Shendure and Ji 
 2008 ). Without going into details about the biochemistry underlying each sequencing 
platform, the major advantage of 454 pyrosequencing is its read length: approxi-
mately 400,000 reads, each of 300–400 nt, can be generated per instrument-run. In 
contrast, Illumina and SOLiD systems have a much higher throughput (>1 G base 
pairs in an instrument-run that includes ~8 lanes) with a much lower per-base cost, 
but the read length is signifi cantly shorter (~30–100 nt). For CLIP-Seq, normally 
single-end short reads are suffi cient (unlike RNA-seq) unless more complex RNA 
structural motif is involved, and one sample run would give suffi cient coverage, too. 
Although Illumina and SOLiD platforms are in principle more useful; historically 
454 and later more Illumina have been used in published CLIP-Seq studies. However, 
new sequencing technologies are still being actively developed and “portable” HITS 
systems, e.g., Ion Torrent, 454 Jr. and MiSeq will emerge in more individual labs in 
the near future.  

    12.1.3   Genomic Mapping of CLIP-Seq Tags 

 Because detailed analysis will depend on the sequencing platform and/or even 
specifi c protocols, we use Zhang et al.  (  2010  )  as an example for the typical steps 
usually involved. After raw sequencing, reads are obtained and fi ltered to exclude 
those that failed quality controls (e.g., quality score  ³ 20, data generated by Illumina 
1G sequencer with 32 nt in length). Reads (CLIP-tags) can be mapped to the genome 
by a favorite read-mapping program (e.g., ELAND included in the Illumina Genome 
Analyzer pipeline). For effi ciency, each read can be trimmed iteratively at the 3 ¢  
lower quality end and aligned using different sizes from 25 to 32 nt (newer Illumina 
sequencing read can be doubled these sizes), requiring  £ 2 mismatches. A read is kept 
only if mapped to an unambiguous locus. If unambiguous mapping was possible 
with different sizes, the one with minimum mismatches and maximum size is retained. 
For each individual CLIP experiment, tags with the same starting genomic coordinate 
should be collapsed to remove potential RT-PCR duplicates, and identify unique 
tags for further analysis.  

    12.1.4   Clustering of CLIP-Seq Tags 

 Various clustering or peak-calling algorithms may be used to segment the RNA 
sequence region into binding and non-binding regions. In Zhang et al.  (  2010  ) , a 
two-state Hidden Markov Model (HMM) was used to defi ne the (Nova-bound) 
tag-clusters. Briefl y, the algorithm fi rst calculated the number of overlapping CLIP 
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tags at each nucleotide position, and then sampled the resulting CLIP tag coverage 
profi le at a 5-nt resolution. This sampled profi le was used to segment the genome 
into CLIP clusters and non-cluster regions, as represented by the two states, “+” 
and “−”, respectively. To reduce computation, they fi rst partitioned the genome into 
segments by grouping neighboring reads  £ 200 nt apart. Only segments with  ³ 2 
reads were kept for further analysis (there were 386,723 segments, mean 224 nt, 
median 134 nt, std 328 nt in the original experiment). They then ran HMM for a 
two-round procedure which is conceptually similar to the Baum-Welch algorithm, 
an iterative method to decompose unlabeled data and to estimate model parameters. 
The resulting clusters were ranked by peak height (PH), i.e., the number of tags in 
the position with the highest coverage. They identifi ed ~280,000 CLIP tag clusters 
from 20 independent HITS-CLIP experiments. 

 Yeo et al.  (  2009  )  used an alternative method to identify enriched FOX2-bound 
regions. They fi rst computationally extended each mapped read in the 5 ¢ -to-3 ¢  
direction by 100 nt (the average length of RNA fragments). Then they determined 
the false-discovery rate (FDR) for each position by computing the “background” 
frequency after randomly placing the same number of extended reads within the 
gene for 100 iterations. For a particular height, the modifi ed FDR was computed as 
the ratio of the probability of observing background positions of at least that height 
to one standard deviation above the average probability of observing actual posi-
tions of at least that height. Finally, binding clusters were defi ned by grouping 
positions that satisfi ed FDR <0.001 and occurred within 50 nt of each other. They 
identifi ed ~6,000 FOX2 binding clusters in the CLIP-seq analysis of human embry-
onic stem cells.  

    12.1.5   Motif Analysis 

 Once binding clusters are identifi ed, motif enrichment analysis may be carried out. 
RNA-binding motifs are in principle more subtle than DNA-binding motifs, not 
only because it is known that many functional RNA-binding motifs are very short 
and degenerate (tend to occur in cluster), but many longer binding sites also often 
have low complexity and may contain secondary (or even higher order) structure 
components (Kazan et al.  2010  ) , perhaps refl ecting the greater fl exibility in RNA–
RBP interactions and dynamics (Serganov and Patel  2008  ) . Fortunately most of the 
initial CLIP-seq studies were carried out for RBPs with binding motifs largely 
known, and any word counting or alignment-based motif fi nding tools would work. 
Motif discovery tools such as MEME (Bailey and Elkan  1994  ) , Gibbs motif sampler 
(e.g., Thompson et al.  2005  ) , and DWE (Sumazin et al.  2005  ) or DME (Smith et al. 
 2005  )  may be used to identify binding site motifs. Careful modeling of binding 
motifs can yield valuable structural and functional insight to RNA–RBP interaction. 
One such example is the “RNA nucleosome” structures revealed after iCLIP-seq 
analysis of hnRNP C-binding sites (König et al.  2010  ) .   
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    12.2   Integrative Analysis 

 Although identifying protein–RNA interactions with high resolution in a genome-
wide manner is necessary, single genome-wide data sets are often not suffi cient for 
getting signifi cant insight into splicing regulation mechanism on its own. The success 
of genome-wide studies lies in the integration of multiple, independent large-scale 
data sets. 

    12.2.1   RNA Splicing Maps 

 Combining CLIP-seq data with the transcriptome analysis of splicing profi les allows 
building the so-called RNA splicing maps that determine the position-dependent 
regulatory effects of protein–RNA interactions (Witten and Ule  2011  ) . The initial 
approach used with Nova and Fox proteins combined bioinformatically identifi ed 
binding sites (based on conservation, motif scores, etc.) with splicing profi les iden-
tifi ed by splicing-junction microarrays (Ule et al.  2006  )  or Rosetta custom whole-
transcript microarrays (Zhang et al.  2008  ) . Later protein–RNA binding sites were 
determined experimentally by CLIP-seq directly (Licatalosi et al.  2008 ; Yeo et al. 
 2009  ) . Moreover, instead of microarrays, splicing profi les can now be derived from 
RNA-seq (Brooks et al.  2011  ) . 

 To construct an RNA splicing map for a given RBP in a given cell type, the fi rst 
step is to identify differential regulation splicing transcripts (the potential targets) 
under the RBP perturbation (usually by over expression, or by knock-out or knock-
down) from the mRNA expression data. There are many patterns of alternative 
splicing; most genome-wide studies have been focused on the major class: namely, 
cassette exon (inclusion or skipping event); other minor classes, such as alternative 
5 ¢ - or 3 ¢ -splicing and intron retention are also often considered. The second step is to 
map the RBP-binding sites within or near the alternatively spliced exons in each class 
using CLIP-seq data and/or bioinformatic motif analysis. The third is to model how 
the position (and maybe also the affi nity measured by the motif score) of the binding 
site will affect the splicing pattern change (outcome of AS: alternative splicing) 
quantitatively. Such modeling is very similar to model TFBSs and differential tran-
scription, many machine learning or statistical classifi cation and regression methods 
may be used. In the case of modeling Nova-YCAY interaction or Fox-UGCAUG 
interaction sites, the splicing maps for both show that the conserved binding sites 
upstream or downstream of alternative exons signifi cantly correlate with (hence, can 
predict) RBP-dependent exon skipping or inclusion events, respectively. 

 In the future, combination of CLIP-seq and RNA-seq will become the most 
comprehensive and powerful approach for building the RNA-splicing maps. Current 
limitation comes mainly from the diffi culty of splicing isoform identifi cation and 
quantitation in transcriptome analysis with RNA-seq data (see Chap. 11, Zhang and 
Zhang  2011  ) . Some new tools allow specifi c detection, and the quantifi cation of 
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alternative exons has become available, e.g., Bayes factor (BF) approach by MISO 
(Katz et al.  2010 ) and inclusion ratio (IR) approach by SpliceTrap (Wu et al.  2011 ). 
By combining CLIP-seq and RNA-seq data, the RNA map for hnRNP H is gener-
ated (Katz et al.  2010 ) which confi rmed the early study (Xiao et al.  2009 ) using 
bioinformatically predicted binding motif (poly-G runs), namely, that the regulation 
(inclusion) effect is stronger for hnRNP H binding in the downstream intron and is 
reversed for events with exonic-binding sites (or CLIP tags).  

    12.2.2   Functional Target Identifi cation 

 Visualization of CLIP-seq and mRNA-Seq data in the genome browser provides 
effective and intuitive assess of data quality, and integrative analysis with other 
information (such as sequence conservation) already included in the genome 
browser. In general, multiple tracks are generated for each sample: an exon intensity 
track in the “wiggle” format that gives read coverage profi les at a nucleotide-level 
resolution and an exon-junction track that lists individual exon-junction reads. 
Additional tracks often display CLIP-tag clusters, binding site motif predictions, 
and conservation profi les. By zoom-in and zoom-out, it is easy to get an intuitive 
sense if reads are mostly in exons, if exon intensity changes specifi cally in the alter-
natively spliced region, where are binding sides localized and if their positions 
correlate with nearby alternative splicing events (Fig.  12.1 ).  

 As demonstrated recently, the integration of multiple dataset information is the 
key for identifi cation of true functional targets. For example, Zhang et al.  (  2010  )  
showed that in addition to CLIP clusters, bioinformatically predicted YCAY clusters 
are equally important when integrated with the expression data for identifi cation of 
true functional targets of Nova in the mouse brain. In order to integrate diverse 
types of genome-wide datasets, they designed a sophisticated Bayesian network 
(BN) model with 17 notes (variables) for four types of data: CLIP clusters and YCAY 
clusters in each annotated cassette exon or fl anking upstream and downstream intron 
fl anking regions, differentially expressed transcripts from splicing microarray com-
parison of wild-type and Nova KO brains, and evolutionary conservation signa-
tures. Starting from 13,357 annotated cassette exons, 363 are predicted as the direct 
Nava targets (FDR  £ 0.01) with 588 Nova-regulated AS events, achieving an impres-
sive estimated sensitivity of 75–78% and ~90% validation rate.  

    12.2.3   RNA Regulation Network and Combinatorial Controls 

 With the knowledge of regulator–target links, RNA regulation network can be built 
using conventional Gene Regulation Network (GRN) analysis tools. Multiple CLIP-
seq data will facilitate the study of combinatorial controls of interacting RBPs, as 
was done for example in Nova – Fox2 case (Zhang et al.  2010  ) . CLIP-seq technology 
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has been applied to other post-transcriptional regulation analysis (Table  12.1 ). 
For example, CLIP-seq was extended to the study of ternary interactions between 
an RBP (Ago), mRNA, and miRNAs (Chi et al.  2009  ) . Different miRNA targets 
may be “painted” on a standard pathway network (see Fig. 5c in Chi et al.  2009  )  to 
reveal their biological function.  

 Recently, computational portals are being developed to facilitate CLIP-seq data 
manipulation and analysis. For example, CLIPZ (Khorshid et al.  2011 ) at   http://
www.clipz.unibas.ch     has been developed as a database and analysis environment 
for experimentally determined binding sites of RBPs, and aims to provide an open 

  Fig. 12.1    A typical example of visualization of CLIP-seq tags and PE-mRNA-Seq to identify 
Fox-2 target exons (Courtesy of Dr. Chaolin Zhang)       
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access repository of information for broader class of post-transcriptional regulatory 
elements. Predictive modeling tools (e.g., Wen et al.  2011  )  and databases (e.g., 
starBase: Yang et al.  2011  )  of miRNA–mRNA interaction maps have also been 
developed. Future studies will shed light on the interaction of miRNA and other 
RBPs in dynamic regulation of common mRNA targets.       
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  Abstract   Improved sampling of diverse environments and advances in the develop-
ment and application of next-generation sequencing technologies are accelerating the 
rate at which new metagenomes are produced. Over the past few years, the major chal-
lenge associated with metagenomics has shifted from generating to analyzing 
sequences. Metagenomic analysis includes the identifi cation, and functional and evo-
lutionary analysis of the genomic sequences of a community of organisms. There are 
many challenges involved in the analysis of these data sets including sparse meta-
data, a high volume of sequence data, genomic heterogeneity, and incomplete 
sequences. Because of the nature of metagenomic data, analysis is very complex and 
requires new approaches and signifi cant compute resources. Recently, several com-
putational systems and tools have been developed and applied to analyze their func-
tional and phylogenetic composition. 

 The metagenomics RAST server (MG-RAST) is a high-throughput system that 
has been built to provide high-performance computing to researchers interested in 
analyzing metagenomic data. It has removed one of the primary bottlenecks in 
metagenome sequence analysis, the availability of high-performance computing for 
annotating data.     
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     13.1   Introduction 

 Studying uncultivable microorganisms has been a major obstacle to understanding 
natural microbial populations within the context of their environment. Metagenomics 
is expanding quickly, as next-generation sequencing approaches become more 
widespread and applied to an increasing number of environments. It has bypassed 
the need for cloning and has enabled a new approach to comparative metagenomics 
(Ronaghi et al.  1996,   1998 ; Margulies et al.  2005  ) . Now sequence abundance can be 
used to contextualize datasets for driving pattern recognition and uncovering unique 
properties within natural microbial communities. 

 Regardless of the sequencing approach used to generate data, the fi rst steps in 
analysis of any metagenome involve comparative analysis against various ribosomal 
and protein and nucleotide databases. These comparisons have a large computa-
tional cost but provide the basic data types for many subsequent analyses, including 
phylogenetic comparisons, functional annotations, binning of sequences, phylog-
enomic profi ling, and metabolic reconstructions and modeling. Analysis of single 
metagenomes can provide a greater understanding of a microbial community, but 
the comparison of multiple metagenomes provides greater insight. 

 Sequence data, however, must be accompanied by enough contextual informa-
tion (metadata), such as sample characteristics, to make individual investigations 
reproducible and enable valid interpretation (Field et al.  2009  ) . Community-driven 
minimum information checklists (   Taylor et al.  2008  ) , common ontologies (Smith 
et al.  2007  ) , and formats (Jones et al.  2007 ; Sansone et al.  2008  )  have major roles 
to play. Therefore, data describing such information as a sample’s environment, 
sample origin, isolation, and treatment are an important resource to link to sequence 
data in order to enable meaningful comparative analysis. The Genomics Standards 
Consortium (GSC) has defi ned the Minimum Information About a (Meta)Genome 
Sequence (MIGS/MIMS) (Kottmann et al.  2008  ) , which describes core descriptors 
of environmental context (habitat). MIGS/MIMS extends the minimum information 
provided by the International Nucleotide Sequence Database Collaboration (INSDC) 
(   Cochrane et al.  2011  ) . 

 Recently, several computational systems and tools have been developed and 
applied to analyze their functional and phylogenetic composition. One such system, 
MG-RAST  ( Meyer et al.  2008  ) , is available over the web to researchers, and access is 
not limited to specifi c groups or data types. This system has a scalable compute back-
end that has enabled the analysis of over 10,000 metagenomes (as of January 2011).  

    13.2   Metagenomic Analysis 

 Metagenomic analysis is not straightforward. The data is much more complex than 
what has previously been seen in genomics. Metagenomic sequence data have lower 
sequence redundancy, lower sequence quality, short read lengths, increased polymor-
phisms, and relative abundance (simple vs. complex communities). In addition to 
these inherent issues and the evolution of sequencing technologies and chemistries, 
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the size of the data is changing. The scientifi c community has already seen the size 
of these data sets quickly move from Megabase pairs (Mbps) to Gigabasepairs 
(Gbps) and now Terabases, which require signifi cant compute resources. 

 Given the suffi cient compute resources, there are several different approaches 
that can be taken with raw sequence reads. The analysis “path” and the tools you 
choose can infl uence your results. There is no “one size fi ts all” tool or best practice 
established for analyzing metagenomic data sets. Various approaches have strengths 
and weaknesses and are constantly evolving. 

 However, the major metagenomic analysis pipelines such as MG-RAST, IMG/M 
(Markowitz et al.  2008  ) , and CAMERA (Sun et al.  2011  )  provide compelling analysis 
strategies and features as well as distinct implementations of common operations. 
The MG-RAST server is the most widely used tool for the analysis of shotgun meta-
genomics and provides a basis for sequence analysis of large, complex data sets. 
Over 4,000 users have submitted data sets and several hundred users work on the 
system each day. 

 The MG-RAST system accepts shotgun metagenomic DNA sequence data in 
different formats and from a variety of platforms, providing initial quality control and 
normalization of the data. The pipeline also accepts assembled sequences in fasta 
format. Sequence data may be compressed by one of several common computer 
programs to speed upload. Users may choose to upload raw unassembled reads or 
assembled contigs. The system also provides a GSC compliant metadata editor to 
enter relevant information about a sample. This information is then incorporated 
into the analysis and querying capabilities. The server provides several methods to 
access different data types, including phylogenetic and metabolic reconstructions, 
and the ability to compare the metabolism and annotations of one or more metage-
nomes and genomes. In addition, the server offers browsing of data and a compre-
hensive search capability. Access to the data is password protected, and all data 
generated by the automated pipeline are available for download and analysis in 
variety of common formats. One of the more widely used features is the ability to 
share data prior to publication, leading to networks of shared data sets. 

    13.2.1   Metadata 

 It is apparent that the full potential of comparative metagenome analysis can be 
achieved only in the context of the metadata (information describing the sample). 
The selection of samples based on rich metadata is crucial for understanding large-
scale patterns when multiple metagenomes are compared. The GSC has proposed a 
minimal set of data, called the Minimum Information about a (Meta)Genome 
Sequence (MIGS/MIMS) that should be collected with every metagenome sequence. 
Although this is an evolving standard, the MG-RAST server is MIGS/MIMS-
compliant. Metadata is requested from the user at the time of sequence submission 
to MG-RAST. Metadata can be added to at any point after submission and a minimal 
set is required for sharing or publishing (making public). This data is stored with the 
user’s data and is made available to them.  
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    13.2.2   Preprocessing 

 Preprocessing of sequence reads before analysis (assembly, gene prediction, and 
annotation) is an overlooked aspect of metagenomic analysis. Preprocessing 
includes steps in fi ltering data for vectors, host contaminants, and quality trimming. 
Mistakes in any of these steps can have signifi cant downstream affect on analyses 
 ( Koonin     2007  ) . MG-RAST employs a normalization step, generating unique internal 
IDs, and removing duplicate sequences. Users can select fi ltering for contaminants. 
It also includes a runtime-effi cient method for obtaining a quality estimate for each 
sample and removal of sequencing artifacts.  

    13.2.3   Identifying Genes 

 Sequence length is an important factor in determining an approach to gene calling. 
Shorter reads’ lengths pose an obvious and signifi cant challenge. The most com-
monly used method for identifying genes in metagenomic reads is via similarity 
searches using metagenomic sequences against databases of known proteins. 
BLAST (Altschul et al.  1997  )  has become too costly in terms of computation. Faster 
alternatives such as BLAT  ( Kent   2002  ) , doing assembly and feature prediction, 
greatly reduce the computational burden of comparing all pairs of short reads. 
MG-RAST relies on BLAT to perform sequence similarity searches as it provides 
signifi cant speed-ups over BLAST, offers very similar results, and looses little 
sensitivity in our tests. 

 MG-RAST screens for potential protein-encoding genes (PEGs) via a BLAT 
search against the MG-RAST nonredundant database. This strategy will reveal 
already known genes that are present in the metagenome. A drawback to using this 
approach as a sole means to identify genes is that many genes are most probably not 
present in the databases because of the bias toward culturable organisms. Therefore, 
MG-RAST performs feature prediction using FragGeneScan  ( Rho et al.  2010  ) , 
before running similarity searches. FragGeneScan predicts coding regions in 
sequences that are greater than or equal to 80 bp. 

 In parallel with feature prediction and BLAT similarity searches against the protein 
database, the sequence data is also compared to other databases by using the appro-
priate algorithms and signifi cant selection criteria. These databases include several 
ribosomal databases, including GREENGENES (DeSantis et al.  2006  ) , RDP-II 
(Cole et al.  2007  ) , and Silva (Pruesse et al.  2007  ) . The search criteria are specifi c for 
each database. For example, using Sblat against the rDNA databases enables users 
to screen for ribosomal RNA genes, but much more stringent selection criteria are 
used to identify candidate RNA genes than for identifying protein-encoding genes 
(by default, the similarity must exceed 50 bp in length and have an expect value less 
than 1 × 10–5). Lastly, these matches to the MG-RAST database and ribosomal 
databases are used to compute the derived data. A phylogenomic reconstruction of 
the sample is computed by using both the phylogenetic information contained in the 
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non-redundant database and the similarities to the ribosomal RNA databases. 
Functional classifi cations of the PEGs are computed by projecting against protein 
functional annotations based on these similarity searches. These annotations become 
the raw input to an automatically generated initial metabolic reconstruction of the 
sample, as well as subsequent metabolic model for the sample by providing sugges-
tions for metabolic fl uxes and fl ows, reactions, and enzymes. 

 While the existing version relied on sequence comparison with the non-redundant 
database provided by the SEED (Overbeek et al.  2005  )  and SEED subsystems 
solely, the new version is based on a database emanating from the Genomics 
Standards Consortiums M5 platform. This non-redundant database provides a non-
redundant integration of many databases [e.g., INSD, SEED, IMG, KEGG (Kanehisa 
et al.  2004  ) , and EGGNOGs (Jensen et al.  2008  ) ], thus allowing supporting multiple 
different views on the data with one similarity search.  

    13.2.4   Multiple Supported Classifi cation Schemes 

 A number of competing naming schemes to describe functional classifi cation of 
genes and proteins exist. While the use of consistent SEED subsystem-based anno-
tations provides many advantages, other databases provide different functional 
hierarchies (e.g. SEED subsystems, IMG, COG/NOGs) or ontologies [GO (Barrell 
et al.  2009  ) ]. Enabled by this protein database, we provide the ability to “on-the-fl y” 
switch between different annotation resources. Allowing users to view their data 
through mapping to different classifi cation schemes enables them to tease out 
differences or similarities between metagenomic data sets not visible otherwise. 

 The user interface for MG-RAST was designed to provide easy navigation and 
use of comparative tools. There are multiple views for browsing and analysis of the 
data, as well as a means to download all result tables and the sequences for every 
subset displayed. Users are also enabled to modify the displayed results by modifying 
search parameters used to compute the functional, metabolic, and phylogenetic 
reconstruction. This allows more stringent match criteria (e.g., expectation value, 
score, overall percent identity, length of match, and number of mismatches) and by 
restricting the matches, the derived data is dynamically changed. The default param-
eters have been chosen by empirical testing and represent a tradeoff between accuracy 
and specifi city.  

    13.2.5   Annotations 

 Users can view and search their annotated metagenome based on annotation source 
(see description of MG-RAST database) through various avenues. Metagenome 
Overview provides a summary of the sequence and annotation statistics against 
the various databases. More details are presented in the Sequence Profi les, which 
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display the metabolic and phylogenetic distributions in a given sample. Views are in 
the form of charts and tables and data is downloadable for each profi le (Fig.  13.1 ). 
Like all analyses in MG-RAST, the user can modify inclusion parameters and export 
results. Each metabolic or phylogenetic/phylogenomic profi le can also be viewed 
singularly or compared with other metagenomes using a circular tree comparison 
tool (Fig.  13.2 ).    

    13.2.6   Comparative Metagenomics 

 Considering that comparative analysis is the core driver for discovery-based 
biology, MG-RAST enables more than just views of the analysis results of a 
given metagenome, the system supports comparative analysis. Therefore, com-
parative metagenomics tools are central to the utility of the MG-RAST platform. 
Several tools have been developed and integrated into the MG-RAST framework, 
allowing users to compare a metagenome to either (1) other metagenomes, (2) indi-
vidual genomes, or (3) both metagenomes and genomes. 

    13.2.6.1   Comparative Heat Maps 

 Metabolic: PEGs identifi ed to have functions belonging to a SEED subsytem(s) and 
KEGG pathways are mapped to that subsystem/pathway. When these functional 
roles are linked to specifi c genes across metagenomes and a populated subsystem 
emerges. The utility of this organization is extended by subsystem connections that 
allow linkage of genes between subsystems. 

  Fig. 13.1    Sequences are compared to the MG-RAST protein database that provides a non-redundant 
integration of many databases (INSDC, SEED, IMG, KEGG, and eggNOGs), supporting many 
complementary views into the data with one similarity search. Shown are the functional distributions 
based on COG annotations       

 



22513 Analysis of Metagenomics Data

 Each subsystem present in a sample is scored by counting the number of 
sequences that are similar to a protein in each subsystem. This score is divided by 
the total number of sequences from the sample that are similar to any protein in a 
subsystem, to give a fraction of sequences in subsystems that are in a given subsystem. 
This approach allows comparisons between samples that have different numbers 
of sequences. Because the fractions tend to be small, the scores can be factored for 
display purposes. Moreover, the display can be limited or expanded to include 
various levels in the subsystem hierarchy, to specifi c areas of metabolism, or other 
subsystem groups, as chosen by the user. 

 Phylogenetic: The taxonomic heat map works in an analogous fashion but high-
lights the different taxonomic profi les in each sample, as determined by the phylo-
genetic or phylogenomic approaches selected by the end user (e.g., 16S comparisons, 
phylogenomics from BLAT results). Again, samples may be grouped in a nonquan-
titative fashion to rapidly highlight particular phylogenetic groups that predominate 
in different samples.  

  Fig. 13.2    An example of a comparative view in MG-RAST. A circular tree representing phylo-
genetic profi les from four samples is compared. Each node can be expanded to get detailed infor-
mation about the distribution for each sample. Color shading of the family names indicates class 
membership       
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    13.2.6.2   Principal Component Analysis 

 Many comparative analyses use multivariate statistics when several metagenomic 
datasets are involved, or when several types of factors are thought to affect the 
observed compositions of the communities. MG-RAST has incorporated an R-based 
PCA (principal component analysis) to its suite of comparative tools.  

    13.2.6.3   Recruitment Plot 

 The recruitment plot tool is set up to provide a selected sequenced microbial genome 
as a scaffold to map metagenome-derived sequences. As in the heat map, sequences 
that have been annotated from a metagenome are used as the queries. The initial 
view provides a ranked list of microbial genomes that contain the most number of 
matched sequences from the metagenome. This gives an indication of the relative 
representations in terms of genomic content found within the metagenome.   

    13.2.7   Metabolic Reconstructions and Models 

 Metagenomics also has the potential to provide insights into the critical biochemical 
mechanisms in each environment. Models in the MG-RAST are based on the initially 
assembled metabolic reconstructions. The functional roles from the reconstruction 
are then mapped to reactions in the SEED and KEGG biochemistry databases, and 
this mapping is used to assemble a reaction list for the model. Models are based on 
a steady state and undergo fl ux balance analysis.   

    13.3   Results and Discussion 

 Improved sampling of diverse environments, combined with the advances in the 
development and application of next-generation sequencing technologies, is accel-
erating the pace at which new metagenomes are generated. In fact, the amount of 
sequence data being produced will quickly outpace the ability of scientists to analyze 
it. Analysis of metagenomic data needs to incorporate scalable computing resources. 

 The process of building MG-RAST is the result of several years of planning and 
engineering. The system provides integration of metagenome data, microbial 
genomics, and manually curated annotations. The metagenomics analysis pipeline 
was designed to allow for interactive analysis and the system as a whole has been 
built by using an extensible format allowing the integration of new datasets and 
algorithms without a need for recomputation of existing results. The system has 
been restructured to be scalable. This means MG-RAST uses cloud computing, 
which decouples it from a particular dataset and allows vast compute resources, to 
conduct the analysis. 
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 The MG-RAST server handles both assembled and unassembled data. Each 
approach has advantages that should be considered when comparing metagenomes. 
For example, a case where sequences should be assembled is when comparisons 
between samples are being calculated, as the assembly process loses the frequency 
information critical for determining differences between samples. In contrast, assem-
bled sequences tend to be longer and therefore more likely to accurately identify 
gene function or phylogenetic source from binning (McHardy et al.  2007  ) . 

 The analytical methods integrated into MG-RAST provide core annotations and 
analysis tools to compare and contrast sets of metagenomes (Edwards et al.  2006 ; 
Fierer et al.  2007 ; Mou et al.  2008  ) . The approach underlying the subsystems-based 
functional analysis of metagenomes has been validated with 90 different samples 
from nine major biomes. The analysis demonstrated that the biomes could clearly 
be separated by their functional composition (Dinsdale et al.  2008  ) . All of the meta-
genomes present in that study are included in the publicly available datasets visible 
on the MG-RAST server. 

 Although the service contains core functionality for the annotation and analysis 
of metagenomes, many of the techniques traditionally used for genome analysis 
either do not work with metagenomes or show signifi cant performance degradation 
(Krause et al.  2006  ) . Therefore, new analytical methods are needed to fully under-
stand metagenomics data. The most obvious problem is with the large number of 
unknown sequences in any sample. Others and we are developing new binning, 
clustering, and coding region prediction tools to handle these unknown sequences, 
and effective tools will be incorporated into the pipeline when available. Another 
problem is that the rapid pace with which sequence data is being generated outpaces 
increases in computational speed, and therefore improvements in common search 
algorithms are required to ensure that sequence space can be accurately and effi ciently 
searched.  

    13.4   Internet Resources 

 MG-RAST (  http://metagenomics.anl.gov    )      
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  Abstract   In previous chapters of this book, there is detailed treatment of the 
technicalities of such problems as de novo sequence assembly and sequence align-
ment. In this chapter, we take a different perspective. Drawing on nearly a decade 
of the authors’ collective experience in providing bioinformatics support to bench-
based biologists, we focus on the practical applications and on the biologist 
 end-user’s experience. We attempt to make some observations, speculations and 
recommendations that might help the “wet” biologist who wishes to take responsi-
bility for dealing their own data.      

    14.1   Introduction/Pre-amble 

 Biology is becoming increasingly data-rich science. This is especially true in recent 
years with the advent of high-throughput technologies such as proteomics, metabo-
lomics and second-generation sequencing. With the ever-increasing performance of 
second-generation sequencers and the advent of the third generation of technolo-
gies, this trend is set to continue. Data-rich science demands that computational 
techniques and tools become as central to molecular biology as aseptic technique, 
restriction digests and electrophoresis have been in the last few decades. Typically 
the bottleneck in many high-throughput projects is no longer the data generation but 
the data analysis. It is not the actual computation time that is the bottleneck, but 
rather the availability of the bioinformatician who needs to make decisions and 
manual interventions in the course of the analysis, integration with other datasets 
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and visualisation of the results. Unfortunately, the undergraduate and post-graduate 
training of biologists has not yet caught up with this new landscape. Similarly, the 
computational tools have not yet caught up. Despite the impressive array of clever 
algorithms and neat solutions available to data analysis problems, effective use of 
these tools usually still requires a level of computer-literacy that is beyond most 
laboratory-based biologists. There are relatively few individuals who are highly pro-
fi cient in both “wet” laboratory-based disciplines and “dry” computational methods. 
This gap between the computational skills of the biologist and the usability of the 
software needs to be closed, and probably will over time. But that could take decades 
and we need to deal with a deluge of data right now. So in the meantime, many 
biologists will need to call on the help of professional specialists in applied bioin-
formatics and/or acquire some core computational competencies right now. 

 In previous chapters of this book, there is detailed treatment of the technicalities 
of such problems as de novo sequence assembly and sequence alignment. In this 
chapter, we take a different perspective. Drawing on nearly a decade of the authors’ 
collective experience in providing bioinformatics support to bench-based biologists, 
we focus on the practical applications and on the biologist end-user’s experience. 
We attempt to make some observations, speculations and recommendations that 
might help the “wet” biologist who wishes to take responsibility for dealing their 
own data.  

    14.2   Overview of Software Available for NGS 

 There are hundreds of software packages available that provide some aspect of 
analysing second-generation sequence data. The SeqAnswers website  (  2011  )  list 
nearly 400. Most of these packages are aimed at a specifi c task or step in a sequence-
analysis workfl ow. For example, there is a bewildering plethora of software tools 
available for aligning a set of short sequence reads (e.g. from the Illumina GA2 or 
ABI SOLiD platforms) against a reference genome sequence. Which one should we 
use? Not surprisingly, there is no simple and straightforward answer to this question. 
Each package has its own unique strengths and weaknesses. For example, the majority 
of the alignment tools are only able to handle letter-space data and cannot deal with 
SOLiD’s colourspace data. However, SHRiMP (Rumble et al.  2009    ) and SOCS (Ondov 
et al.  2008  )  were amongst the fi rst freely available tools for mapping SOLiD data 
against a reference genome. Similarly, not all alignment methods take into account 
quality scores of the base-calls in the query sequences; MAQ (Li and Durbin  2008  )  
was the fi rst to offer this feature. Furthermore, many of the alignment programs offer 
extra features in addition to alignment; e.g. MAQ was one of the fi rst to offer an inte-
grated SNP-caller and useful reports on alignment statistics. On the other hand, the 
initial releases of MAQ could only perform ungapped alignment, which was a serious 
limitation when aligning intron-free cDNA sequences against genomic DNA contain-
ing introns. Subsequently, many alignment-based tools offered solutions for gapped 
alignment (e.g. BWA,    Li and Durbin  2009 ; NovoAlign,   http://novocraft.com    ) 
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and identifi cation of intron–exon boundaries in RNA-seq data (TopHat, Trapnell 
et al.  2009 ; MapSplice, Wang et al.  2010  ) . However, gapped alignment inevitably 
comes at the expense of speed and usually does not signifi cantly improve sensitivity. 
Another confounding factor is the fact that many of these packages are actively 
maintained and developed. This is something of a double-edged sword. The progres-
sive improvements mean that nothing stays still. Whereas, 2 years ago it might have 
been straightforward to recommend MAQ the ungapped alignment tool of choice, 
MAQ is now obsolete and replaced by BWA (Li and Durbin  2009  ) . Also, many of 
the other tools have acquired new features and/or improved speed, sensitivity and 
accuracy since their original release. Published papers describing these tools are 
usually out of date almost as soon as they are published. New improvements developed 
after acceptance for publication will, of course, not be absent from the manuscript. 
The most up-to-date information about a software package should normally be found 
in its user manual and its project website.  

    14.3   The Two Types of Analysis: Alignment 
and De Novo Assembly 

 From a data-analysis point of view, second-generation sequencing projects fall into 
two types: those centred around de novo assembly and those based around alignment. 
Some projects will, of course, use a combination of both approaches. For example, 
in comparative genomics there will often be a shared core component of the genome 
that can be tackled through alignment of sequence reads against a reference sequence 
but may also be a variable section of the genome that is completely absent from the 
reference sequence and so must be tackled through de novo assembly. Even in a 
purely de novo genome-sequencing project, there is often a requirement to align the 
original sequence reads against the assembly for quality control purposes, as the 
assembly software does not keep track of the positions of each read. 

    14.3.1   Alignment-Based Analysis of Second-Generation 
Sequence Data 

 Alignment of multiple sequence reads against a reference sequence comprises the 
key step in many applications of second-generation sequencing. Once genomic DNA 
reads are aligned against a reference genome sequence, it is possible to infer variants 
such as SNPs, CNVs, insertions and deletions. From an alignment of RNA-Seq reads, 
mRNA abundance can be inferred for quantitative expression profi ling. Furthermore, 
the alignment may be used to infer splice-variants and a transcription start sites or 
to discover novel transcripts. Alignments of ChIP-Seq or Methyl-Seq data against a 
genome can be mined for peaks of coverage that indicate protein-binding sites or 
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DNA methylation sites. With new sequencing platforms generating as much as 
gigabases of sequence per day, the traditional workhorses of sequence alignment 
such as FASTA, BLAST and BLAT are just not fast enough and neither are they 
optimised for dealing with short sequence reads and therefore may have poor sensi-
tivity. Fortunately, in the last 4 years many researchers and developers have turned 
their attention to this and created and released excellent tools for aligning second-
generation sequence datasets against reference sequences. Most of these methods 
are characterised by the creation of an auxiliary data structure called an index to 
speed-up the alignment. The index usually consists of either a hash table (also found 
in BLAST) or a suffi x tree. 

 In principle, it should be possible to combine any chosen alignment method with 
any software for the subsequent steps (variant discovery, abundance quantifi cation, 
peak fi nding, etc.). This relies on the alignments being produced in a standard 
format that is readable by the downstream software. The emerging de facto standard 
fi le-format for alignments is SAM, along with its binary compressed derivative, 
BAM. These were made popular by the 1000 Genomes Project. When selecting an 
alignment tool, we would very strongly recommend choosing one that complies 
with this standard format to facilitate modularity in the evolving workfl ow. Good 
examples include BWA (Li and Durbin  2009  )  and Bowtie (Langmead et al.  2009 ). 

 As a consequence of the frenzy of activity in developing algorithms over the last 
few years, alignment of short reads against a reference is rarely a major bottleneck 
in analysis nowadays. Given a modern workstation equipped with 2 Gb RAM, one 
can typically align a few million Illumina reads against a bacterial genome in a 
matter of minutes using tools such as BWA or Bowtie. To align tens of millions of 
reads against a human genome would require more RAM (8 Gb should be suffi cient) 
and might take on the order of hours rather than minutes. 

 Much of the recent activity in this fi eld has been aimed at optimising the alignment 
of short reads, typically 30–100 nt, generated by Illumina and SOLiD platforms. 
However, in coming years, longer reads will make something of a comeback. Not 
only does the 454 GS-FLX already generate reads of several hundred nucleotides in 
length, but the read-length of the other technologies is steadily increasing. Similarly, 
the next wave of sequencing technologies, the so-called third generation, will likely 
offer relatively long reads, perhaps several kilobases in length. Currently, most of 
the alignment packages designed for second-generation sequence data do not cope 
well with reads longer than about 200 nt. The notable exceptions are BWA and 
Mosaik, which can both align 454 and Sanger reads as well as short reads.  

    14.3.2   Variant Detection 

 One of the most common applications of second-generation sequencing is the rese-
quencing of genomes in order to identify SNPs and other sequence variants among 
individuals of the same species. For example, the discovery of new SNPs can be 
fed into genome-wide association studies aimed at discovering the genetic basis 
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for diseases and other phenotypes in humans. Variants can also be invaluable for 
characterising diseases, such as cancers, where the particular catalogue of SNPs and 
other variants can be used for a more precise diagnosis that may have an impact on 
the choice of therapy. A patient’s genotype, as indicated by its SNPs will likely be 
increasingly used to inform therapeutic intervention in the age of personalised 
medicine. SNPs can also be enormously valuable in assisting breeding programmes 
for crop improvement and as epidemiological markers for monitoring the spread of 
microbial pathogens. 

 Given deep coverage of a reference sequence by aligned second-generation 
sequence reads, it is relatively straightforward to detect consistent discrepancies 
between the sequence reads and the reference sequence and there are many useful 
tools available for doing this including SAMtools (Li et al.  2009  ) . Reliable infer-
ence is more diffi cult when coverage is shallow. The situation is even further compli-
cated if the genotype in question is non-homozygous or contains multiple paralogous 
genes whose sequences are very similar but non-identical. Malhis and Jones  (  2010  )  
Slider package uses a Bayesian approach to incorporate previous knowledge of 
SNPs as priors to optimise SNP-calling with low-coverage data. VarScan (Koboldt 
et al.  2009  )  was specifi cally designed to infer variants from pooled samples, where 
there is likely genetic heterogeneity among individuals in the pool; but there are still 
opportunities in this area to develop methods that reliably distinguish between rare 
variants and sequencing errors. Furthermore, we are still clearly a long way from 
software that can be used routinely by medical practitioners in a clinical (rather than 
academic research) setting.  

    14.3.3   De Novo Sequence Assembly 

 For the biologist faced with assembling real data, which of the many available soft-
ware tools is the “best”? Any answer to that question will soon become out of date; 
this is an active fi eld and existing software is continually being improved whilst 
new programs are being developed. The key issues will, however, be usability and 
quality of the fi nal assembly. Several factors contribute to usability, including hard-
ware and software requirements, ease of installation and execution, as well as speed. 
The quality of an assembly has two dimensions: contiguity (lengths of the contigs 
or scaffolds) and accuracy. Cultural issues may also be important. For example, the 
level of support available from online forums and mailing lists. 

 To the best of our knowledge, there has been no comparative survey of assembly 
tools by a “neutral” researcher. Such a survey could be a challenging task. Outcomes 
might depend on properties of a specifi c dataset. Some programs perform better on 
some datasets than on others. Each program differs in respect of how it resolves 
errors and inconsistencies in the data. Algorithms based on the de Bruijn graph, e.g. 
Velvet (Zerbino and Birney  2008  ) , are highly sensitive to choice of  k -mer size. This 
means that, even after having chosen which software to use, it is equally important 
to choose the optimal parameter values. There is an urgent need for a comprehensive 
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comparison (or competition) between the candidates on a suitably broad selection 
of datasets. Such a study should utilise a range of different datasets varying in 
factors such as size, error-rate, heterozygosity, repeat structure, sequence complexity, 
sampling bias, read lengths, insert lengths (for paired reads or mate pairs), etc. 
Rather than being a single once-off study revealing a snapshot of the situation at a 
given time, ideally the comparison should be continually updated as new software 
is released. Once set up initially, updates to such a comparison database could be 
largely automated. 

 Some guidelines can be made based on the published literature as well as our 
own experience. For assembling a whole-genome dataset, from a single insert-
length library, Velvet would be a good choice, especially for small genomes up to 
about 40 Mb. Simpson et al.  (  2009  )  reported that ABySS, Velvet and EULER-SR 
performed much better than SSAKE and Edena on Illumina reads from a 5-Mb 
bacterial genome. However, Velvet generally runs much faster and with a smaller 
memory footprint than ABySS for relatively small datasets (e.g. bacterial genomes). 
On Illumina datasets from fi ve microbial genomes, Velvet gave longer scaffolds and 
greater accuracy than EULER-SR (Simpson et al.  2009  ) . ALLPATHS2 yielded 
signifi cantly more contiguous and more accurate assemblies but only when provided 
with multiple DNA libraries with differing insert lengths (Maccallum et al.  2009  ) . 
SOAP de novo produced more contiguous and more complete assemblies of a 
human genome than did ABySS and also produced better assemblies than ABySS, 
Velvet, EULER-SR, SSAKE and Edena on a bacterial genome (Li et al.  2010  ) . The 
contiguity of assemblies by QSRA on small genomes were comparable with Velvet, 
but no data were provided on their accuracy (Bryant et al.  2009  ) . Large memory 
requirements mean that assembly of non-hierarchical reads from large (e.g. mamma-
lian) genomes is only practically feasible using a parallelisation strategy such as 
that of ABySS. However, a better solution might be to generate hierarchical sequence 
data from such genomes, as exemplifi ed by (Sundquist et al.  2007 ; Hiatt et al.  2010 ; 
Young et al.  2010 ; Sorber et al.  2008  ) , though these methods are more laborious. 

 De novo assembly is confounded by repetitive elements, low coverage and 
sequencing errors. Problems of low coverage and/or sequencing errors can usually 
be overcome by additional sequencing and stringent fi ltering. Repetitive elements 
therefore tend to be the greatest hurdle to achieving a good assembly. Where long 
repetitive stretches of the genome occur, unless reads or paired-end inserts are able 
to span the length of the repeat, the assembly will remain repeat limited. Typically 
the best method here is to use paired-end reads with both long (e.g. 10 kb) and short 
inserts (e.g. 400 bp). Shorter inserts will tend to provide the greatest yield of 
sequence data whilst the sparse long inserts will enable repeats to be spanned. This 
can in fact be a useful feature when determining whether an assembly is as good as 
the data theoretically allows. By analysing the ends of contigs/scaffolds to deter-
mine whether the ends contain repeats that have a typical length in excess of the 
largest read length or insert size. In this way one can assess whether or not an assem-
bly is limited by the size of repetitive elements, in which case further sequencing 
may be the only way forward, or whether there may be further scope for improvement 
using the existing data. 
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 Correlated SNPs are positions in an assembly where at any given position most 
of the reads contain one base, but multiple other reads have another base. Because 
sequencing errors generally occur at random, such correlated discrepancies can 
indicate the presence of a mis-assembly or the presence of a polyploid genome. 
In the case of a haploid genome, correlated SNPs may indicate that near-identical 
repeats have been collapsed into a single copy. In the case of polyploid genomes, if 
the frequency of correlated SNPs is higher than expected based on the number of 
homologous chromosomes, it is strong evidence for a collapsed repeat. 

 A random shearing process of input DNA should ideally result in a uniform 
coverage of all locations in the genome. A variety of factors can prevent the DNA 
shearing process from occurring truly randomly. However, signifi cant increases in 
the level of coverage within a small region can be indicative of a collapsed repeat. 
Certainly, packages such as AmosValidate (Phillippy et al.  2008  )  implement such 
procedures well. However, with the proliferation of de novo sequencing projects, it 
is anticipated that additional features and metrics will be developed to evaluate 
assembly quality. 

 What exactly is “an optimal assembly”? The one with the highest N50? Longest 
single contig? Of course, the optimal assembly is the assembly which most closely 
resembles the biological sequence. This assembly minimises the number of mis-
assemblies and incorrect bases. Assessing this without a reference sequence is a 
great challenge – what exactly does one use as a metric? 

 It is now possible to assemble complete genome sequences, even for mammals, 
from short sequence reads only. However, these are only of “draft” quality, containing 
many gaps and are by no means “fi nished”. Most genome sequences published 
recently are based on long reads (capillary or 454 sequence) or mixtures of long and 
short reads. However, recent innovations in bioinformatics and in vitro library prep-
aration make assembly of short reads increasingly tractable. With the prevailing 
trend towards increasing read-lengths in technologies such as Illumina, it is quite 
possible that in 5 years from now, de novo assembly of short reads will be obsolete 
as sequencing becomes dominated by new long-read technologies such as Pacifi c 
Biosciences’ SMRT platform, presenting new challenges for sequence assembly. 
However, the current crop of sequencers are continued to pump out huge volumes 
of short-read data and will continue to do so for some time into the future.  

    14.3.4   RNA-Seq 

 Whilst in the long run a genomic sequence may be desirable or even necessary, for 
the purposes of many projects, there is an argument that simply sequencing a cDNA 
library may provide suffi cient information to answer some experimental questions. 
This enables a much smaller and more manageable subset of data to be analysed 
whilst preserving information regarding alternative splicing, exon usage and quan-
titative levels of mRNA expression. It also has the advantage that there is no need 
to undertake complex and potentially labour-intensive genome assembly and gene 
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prediction. Although de novo assembly will still be necessary, such projects are less 
memory intensive and repetitive/non-unique sequences pose less of a problem 
(although complex isoforms can confound assembly from short-reads). 

 As third-generation sequence information with multi-kilobase read lengths 
become available, this assembly step will be bypassed entirely – entire transcrip-
tomes should be sequenced without the need for assembly. 

 The usual fi rst step in analysing transcript data is to map (i.e. align) sequence 
reads against a reference genome. When dealing with a eukaryotic transcriptome 
that undergoes RNA splicing, the alignment step needs to take into account exon–
exon junctions. One approach is to align reads against a set of predicted cDNA 
sequences rather than the raw genome sequence. The success of this approach is 
limited by prior knowledge of splice junctions and cannot discover new ones. An 
alternative is to use an alignment algorithm such as TopHat (Trapnell et al.  2009  ) , 
which allows ab initio discovery of splice sites from RNA-Seq data. TopHat fi rst 
uses the Bowtie alignment tool (Langmead et al.  2009  )  to map sequence reads 
against the reference genome sequence. Among the reads that fail to align will be 
those that span an exon–exon boundary. This genome-wide multiple alignment 
reveals islands of genomic sequence to which RNA-Seq reads map and thus reveals 
the approximate locations of the exons. TopHat then predicts all likely splice donor 
and acceptor sites in the vicinity of these empirically revealed exons and hence 
predicts all likely splice junctions, assuming splicing between pairs of splice sites 
that are nearby, but not necessarily adjacent. The RNA-Seq reads that initially failed 
to map to the genome are then compared against the catalogue of predicted potential 
exon–exon junctions. Thus, TopHat offers an effi cient means of discovering tran-
scripts in RNA-Seq data without the need for prior knowledge of splice sites. It does, 
however, depend on the splice sites having canonical splice-junction motifs that are 
conserved between the transcriptome under investigation and the reference genome. 
Therefore, it is vulnerable to false positives and false negatives arising from genetic 
variation. Transcripts generated through non-canonical splicing will also be missed; 
such transcripts are known in plants, oomycetes and fungi (Russell et al.  2006  ) . 
To avoid these limitations, RNA-Seq data may be assembled de novo, i.e. without 
use of a reference genome. 

 De novo assembly of transcript data presents additional challenges to those 
encountered when assembling genomic DNA sequence. Transcription is discon-
tinuous, leading to much less contiguity in the transcriptome than the genome. 
Transcriptome assembly also needs to capture the various different isoforms that 
can arise from a single gene via alternative splicing, alternative transcriptional start 
and end sites and other forms of RNA processing. The situation is further compli-
cated by contamination of the cDNA library with genomic DNA. Despite these 
challenges, Birol et al.  (  2009  )  successfully assembled a transcriptome from a human 
cancer cell line using the ABySS assembler. They fi rst used a DNA molecular dena-
turisation and re-association method to normalise the cDNA library. Without normali-
sation, the frequency distribution of cDNA sequences would be heavily biased, with 
a few transcripts dominating and many rare transcripts being below the limits of 
detection. The optimal parameter values for de novo assembly vary with sequence 
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depth. Therefore, heterogeneity in depths of coverage between different transcripts 
will have a detrimental effect of assembly of RNA-Seq data. Even after molecular 
normalisation, cDNA libraries are expected to show some bias; so, Birol and col-
leagues chose a very low threshold depth-of-coverage value for trimming false 
branches from the de Bruijn graph. They also took care not to discard “bubble” 
structures in the de Bruijn graph, which might represent alternative isoforms. This 
strategy successfully led to discovery of novel transcripts. Recently, at least two 
de novo sequence assembly tools have been released that are specifi cally designed to 
deal with RNA-Seq data. One of these, called Oases, is based on the Velvet assembler. 
The other, Trans-ABySS (Robertson et al.  2010  ) , consists of a pipeline around the 
ABySS assembler. The most important parameter for assembly methods such as 
ABySS based on the De Bruijn graph is the  k  (i.e. the length of the  k -mers). The 
Trans-ABySS method essentially performs a series of ABySS assemblies using a 
range of values for  k  and then merges the results into a non-redundant set of contigs.  

    14.3.5   Visualisation 

 One area where there is much room for improvement is tools for visualisation of 
alignments and assemblies. It is inadvisable to blindly trust the output of programs 
that process alignments. The results reported in the output fi les may not be what you 
were expecting and may contain artefacts. It is good practice to visually inspect the 
alignment and check a random subset of your predicted peaks, SNPs, unusually 
spliced transcripts, or other feature of interest on the alignment itself. There are now 
several excellent freely available tools for inspecting alignments. The most basic is 
the text-based tview program in SAMtools. It is fast, relatively straightforward to 
use and is suffi cient for routine use. However, it does not offer suffi cient fl exibility 
(e.g. smooth zooming) for preparing fi gures for publication or for presentations. 
Another option is the BAMview plug-in for the Artemis annotation tool. This simul-
taneously offers all the functionality of Artemis, including graphical representation 
of annotated features such as genes and plots of G + C content, etc. But Artemis is 
primarily intended as an annotation tool rather than a visualisation tool. Tablet is a 
freely available Java application that is fl exible and generates visually appealing 
views of alignments and also can read the standard SAM/BAM format. However, 
none of these tools easily allow the simultaneous visualisation of several alignments 
based on a common reference sequence. 

 The Integrative Genomics Viewer (IGV) from the Broad Institute (  http://www.
broadinstitute.org/software/igv/    ) does offer the ability to view multiple BAM tracks 
relative to a common reference sequence along with the ability to upload GFF annota-
tion. This makes it useful for both comparative genomics and for early-stage genome 
sequencing projects where multiple contigs are present. 

 The Broad Institute also hosts a sister program ARGO which is also capable 
of displaying BAM alignment information as well as additional details from BLAST 
and Genbank-formatted fi les. It also contains a comparative genomics viewer (ComBo) 
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which can be a very useful tool when comparing individual chromosomes between 
species or samples. 

 Both IGV and ARGO have the advantage of running as Java WebStart tools and 
can be launched from a Windows or Mac web-browser on a users desktop without 
the need to install any software. Although current 32-bit machines on user desktops 
may preclude the use of these tools for very large projects, with the advent of 
Windows 7 and the ability to address >4 Gb RAM on 64-bit machines, this problem 
may be alleviated in coming years. 

 One of the most common tools used in model-organism projects over the past 
5 years has been the GMOD Gbrowse platform. This system displays overlaying 
tracks to display different features and is used as a base-platform by a number of 
model organism consortia (e.g. Flybase, TAIR etc). This is a powerful and fl exible 
system capable of displaying SAM/BAM information as well as more detailed 
information regarding micro-array, RNA-seq and sequence variation. However, it is 
reliant on centralised management and a backend database, potentially making it 
diffi cult for a user without signifi cant Unix experience to set up for their own non-
model organism. 

 Most of our discussion so far has centred around hanging data around a one-
dimensional representation of the genome. However, the next generation of visuali-
sation tools need to innovatively and effi ciently accommodate multidimensional 
datasets. There is a need for creative solutions to integrate both molecular data and 
non-molecular phenotypic data and patient history. We need go beyond a linear map 
of the genome and visualise its network of many dynamic interactions within the 
cell and its external environment.  

    14.3.6   File Formats 

 Data storage and long-term archival of the vast quantities of data being produced is 
critical. At the present rate of growth, the volumes of data being generated exceed 
the projected growth of non-volatile storage in the larger genome centres. A single 
Illumina HiSeq 2000 can produce over 1 Tb of data within a week. Although perhaps 
only half of this need be archived, it still represents a considerable challenge. 

 Some innovations have already been made in terms of storage of quality scores. 
Rather than storing these as numbers, these are now often stored as ASCII characters. 
However, this will need to be reduced further in larger centres if data volumes are 
not to outrun capacity. One suggestion is to align sequences to a dummy reference 
and only store the alignments. In theory, this should require less space than storing 
each individual read separately. Illumina are themselves now looking at this 
approach to reduce their data storage from 30 bytes per base to less than 6. 

 Beyond pure data storage is the storage of metadata. While the NCBI and EBI 
archives insist upon metadata upon submission to their databases, for smaller 
sequencing centres this can be a challenge to manage on a day-to-day basis. FASTQ, 
SFF and other NGS formats have little if any scope for such information to be 
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encoded. The Pacifi c Biosciences SMRT sequencer is designed to produce HDF5 
fi les (Hierarchical Data Format). Though a proprietary format, it does at least enable 
metadata to be stored and parsed in a standardised fashion. 

 Interestingly, the SAM format (Li et al.  2009  )  already has this capability within 
its headers. In addition to storing the command which generated the fi le, information 
regarding the sample, library, sequencer and sequencing centre can be stored. This 
is, however, reliant on the feature being used consistently prior to publication. 

 On a more practical level, currently end-users need to be aware of some nuances 
of fi le format. For example, the FastQ format, a popular medium for representing 
sequence reads and their associated quality scores, comes in at least three different 
fl avours: “Solexa”, “Illumina” and “Sanger”. Most alignment tools assume that the 
data are in the “Sanger” variant and attempting to align data in “Solexa” or “Illumina” 
FastQ format will lead to erroneous results. This kind of unnecessary confusion 
must be avoided in the development of future standards and ideally, software should 
perhaps intelligently discern what kind of input they are being provided with.  

    14.3.7   Monolithic Tools and Platforms 

 One of the main barriers coming between biologists and their data is the apparent 
lack of a single integrated “one-stop-shop” for the whole analysis workfl ow. 
Bioinformaticians tend to work with a set of command-line tools, each one perform-
ing a single step and spewing-out arcane output fi les that, despite being text-based, 
are certainly not human-readable. This way of working is very much in the tradition 
of Unix culture, which extols such virtues as: “small is beautiful”, “make each pro-
gram to do one thing well”. A great strength of this approach is that tools can be 
strung together in modular pipelines, offering great power and fl exibility. However, 
the average biologist not steeped in the traditions of the Unix operating system is 
more at home using large monolithic computer applications that integrate many dif-
ferent tools and tasks into a single graphical user interface. A good example of this 
approach is Agilent’s GeneSpring platform, which will be familiar to many biologists 
who have analysed gene-expression data from microarrays. On the other hand, the 
more Unix-oriented bioinformatician would probably eschew GeneSpring and opt 
for something like Bioconductor, which is a set of modules and tools implemented 
in the R programming language. Each one of the packages in the Bioconductor 
toolbox does one job well and for each job, there are often several alternative tools 
to choose from. Once equipped with the basic skills in using R and Bioconductor, 
the bioinformatician is usually very resistant to giving up all that fl exibility and 
control in favour of a single integrated graphical application. 

 A similar situation is unfolding in the world of second-generation sequence 
analysis. To the bioinformatician who is comfortable with working on the command 
line and is fl uent in a multi-purpose scripting language, a rich selection of tools are 
available for nearly all steps in any conceivable analysis workfl ow. And, for any step 
for which tools are not available, the bioinformatician will quickly and effi ciently 
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write a script to plug the gap. On the other hand, several applications are now available 
that enable at least some analysis to be performed from a desktop computer by a 
biologist rather than a specialist bioinformatician. Many of these tools are still in 
their early stages and additional features and programs will undoubtedly be added 
in future. Most of these are provided by commercial vendors and require payment 
of a hefty license fee. However, these commercial packages offer the advantage of 
relatively well-tested and supported programs with easy-to-use graphical interfaces. 
The fi nancial cost of the license may be more than justifi ed if it buys the laboratory-
based biologist self-suffi ciency in data analysis, or at least the ability to start explor-
ing one’s hard-won data without having to wait for availability of a specialist 
bioinformatician. We would also like to point out that as Unix-steeped command-line 
enthusiasts, we professional bioinformaticians do not see these easy-to-use mono-
lithic applications as a threat to our livelihoods; on the contrary, we want to encourage 
our colleagues to take responsibility and ownership of their datasets and have more 
than enough interesting bioinformatics challenges to fi ll our time and satisfy our 
desire for new challenges. 

 The down-side of adopting a commercial solution is, inevitably, some loss of 
fl exibility and confi gurability, though this need not be too great. A signifi cant 
danger is the temptation to simply apply a pre-confi gured workfl ow and treat it as a 
“black box” without fully considering or understanding whether each of the steps is 
appropriate for this particular project’s objectives and this dataset. Whereas the 
open-source command-line tools that a bioinformatician draws upon have usually 
been subject to offi cial peer-review as well as informal scrutiny of any interested 
party, the inner workings of proprietary software are not always so clear. A further 
concern is that by putting all one’s metaphorical eggs in one basket by building the 
analysis infrastructure on a single commercial product, one is dependent on that 
vendor’s ongoing maintenance and development of the product and its continued 
commitment to the current licensing costs and conditions. On the other hand, with 
the modular approach, if one component of the pipeline (say, a short-read assembly 
tool) comes to be no longer suitable, then it can simply be substituted with another 
open-source component that does the same job. 

 In the past, these packages have tried to provide easy one-stop-shop systems for 
individual biologists and labs without access to bioinformatics support or familiarity 
with Unix-based tools. Especially in the early stages of a new technology, open-source 
community efforts are nearly always limited to command-line tools. This gap is 
likely to close, however, as sequencing companies often have initiatives to help 
software providers (whether community-driven or commercial), provide timely and 
effi cient tools to access datasets. These are extremely important if new sequencing 
technologies are not to take the community by surprise. 

 Avadis NGS (  http://www.avadis-ngs.com    ) offers workfl ows for RNA-seq, ChIP-
seq and DNA variant analysis. It was developed on the same platform as used for the 
development of GeneSpring GX; so, it has the same look and feel as GeneSpring 
and many of the features behave in the same way. It Supports the SAM/BAM format 
as the main import format for pre-aligned data. 
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 Similarly, CLC Genomics Workbench software is able to perform similar analyses 
and even has an API to enable bioinformaticians to plug-in custom tools for biolo-
gists to use. However, the take-up of such plug-in systems will be highly dependent 
on the number of users who adopt such commercial systems. There is little incentive 
for a bioinformatician to develop software if it is tied to a platform few users are 
able to access. 

 Another commercial approach to integrated data analysis is offered by Genome 
Quest (  http://www.genomequest.com/    ). This is a web-based solution. You transfer 
raw reads, BAM fi les, or called variants into GQ via Aspera or FTP (or send a disk). 
They map to arbitrary reference genomes, call variants, and then annotate them with 
a variety of data including dbSNP, pharmGKB. They have integrated diagnostic 
gene panel tests into the annotation as well as 1,000 genomes data. You can add 
your own annotation tracks and you can do large-scale genome to genome compari-
sons of your genomes/exomes over public data. Also supports RNA-seq, CHiP-seq, 
de novo assembly, and metagenomics, as well as general purpose large-scale 
sequence searching (e.g., all by all comparisons of large datasets). All sequence 
formats are accepted, including Illumina, SOLiD, Ion Torrent, 454 and Pacifi c 
Biosciences. GenomeQuest integrates with Ingenuity, Geneious, GeneSpring. 

 Galaxy is an open-source web-based front-end to provide a standard interface for 
many different types of programs. These include programs for sequence assembly, 
taxonomic classifi cation, sequence similarity searches and assorted tools for data 
manipulation. In addition, Galaxy offers the ability to keep a record of which steps 
and parameters were used, pipeline custom analyses and share data and results with 
other users. The great benefi t of Galaxy is that analyses are run remotely so that 
your PC needs to have nothing more than a web-browser and internet connection. 
Also other researchers can easily add programs to the Galaxy framework. However, 
diffi culties in transferring large datasets between sites mean that an installation at 
the user’s home institution is usually needed to deal with sequencing data. This may 
be alleviated if Galaxy servers can access NCBI SRA and EBI ENA archives directly 
to obtain raw sequence data. Overall, however, the Galaxy framework provides easy 
access to powerful tools to manipulate and analyse data without the complexity of 
command line tools or the need to learn to use Unix-style operating systems. 

 The disadvantages of commercial software are, of course, the initial and some-
times recurring cost of licensing and/or support, often a lack of proper benchmarking 
and a lack of proper review of the underlying algorithm and code-base. 

 It should be noted that all such tools either do not permit most parameters to be 
set (e.g. CLC Genomic Workbench) or permit parameter setting but require an 
understanding of their meaning (e.g. Galaxy). For example, an assembly using 
 de-bruijn graph-based de novo assemblers require a sweep of parameter space to 
optimise the assembly (see assessing the quality of an assembly below). This can 
mean dozens of assemblies to evaluate prior to accepting one for downstream 
analysis. In summary, the above methodologies offer a way in to various types of 
analysis. However, to get the most up-to-date and customisable experience, it is 
always best to learn some basic tools oneself.  
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    14.3.8   Learn a Scripting Language 

 For the biologist that wants to take ownership of their data analysis, profi ciency in a 
scripting language is extremely useful and perhaps essential. Despite the plethora of 
useful (and not so useful) computer programs that are available, there are still gaps 
not fi lled. We can illustrate this with a few examples from our own experience. For 
example, we have a backlog of Illumina GA and GA2 sequence datasets generated 
at various times over the last 3 years and generated at various sites, including our 
own. During this period, the Illumina base-calling software underwent several 
upgrades. So we could never be absolutely certain which version of FastQ format 
our data fi les were in. However, being fl uent in Perl, within a few minutes we were 
able to write a script (in Perl) that reads through a whole FastQ fi le and infers which 
version of FastQ it is based on the frequency distribution of encoded quality scores. 
Another task for which no tools seemed to exist is, given a list of SNPs in a bacterial 
genome, determining which are silent and which are non-silent. Again, this was a 
relatively easy problem to solve using Perl. Other common uses for Perl scripts 
include automating the running of large numbers of repetitive tasks. For example, 
we write a simple Perl wrapper script to manage the alignment of 100 bacterial 
genomic Illumina sequence datasets against a reference genome using BWA and use 
SAMtools to detect SNPs. To run this analysis manually would require thousands of 
keystrokes and many hours at the computer terminal. Once the script is deployed, 
the computer can be left to get on with it. 

 Although we use Perl, there are at least several alternative scripting languages 
that are approximately as useful. One of the attractions of Perl is that it provides 
access to the large and mature set of tools provided by the BioPerl project. Specialist 
bioinformatics modules are also available for languages including Ruby and Python, 
amongst others. Arguably, Python is easier to learn than Perl and Ruby is, in many 
ways, a more elegant language. But the deciding factor in choosing a language may 
come down to what others around you are using so that you can draw on their support 
and expertise.  

    14.3.9   Data Pre-processing 

 Precisely how “dirty” data can be whilst permitting an “optimal” assembly (see 
below), is dependent on multiple factors. These include the nature of the sequencing 
platform, read lengths and the package used for assembly and the amount of 
sequence remaining after fi ltering as compared with the size of the genome and the 
type of sample. There is as yet no optimal and universal set of parameters for each 
sequencing platform and application. 

 Anecdotally, a good balance can be struck by removing or trimming reads con-
taining adaptor or other contaminating sequence and only retaining reads with a 
given proportion of high-quality reads (e.g. 90% of bases must have quality scores 
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>30 for Illumina reads). If performing SNP calling or other variant analyses it is 
also crucial to remove PCR duplicates. Typically these can be readily identifi ed if 
paired-end reads are used. 

 When preprocessing such datasets the wet-lab process to generate the libraries 
and the potential biases they can introduce must always be born in mind. For 
instance, the shearing process used to generate acceptable DNA fragment lengths in 
RNA-seq experiments will always bias against shorter transcripts. Normalising by 
the gene-length will not correct this issue. The limitations of current technology 
must always be considered when interpreting fi nal results. 

    14.3.9.1   Metagenomics 

 One of the long-term goals of this fi eld is to be able to take a sample of soil, water 
or other material containing organic matter, extract all biologically relevant material 
present and to then characterise and compare them. This could involve, cell-based 
population studies, protein and metabolite characterisation using mass-spectrometry 
or DNA/RNA sequencing. 

 In diverse environments, this could potentially involve sequencing petabases of 
RNA or DNA (mention direct RNA sequencing) to ensure that all members of the 
environmental population are sequenced to an adequate depth. 

 Once sequenced, it would in theory be possible to reconstruct all genomes or 
transcriptomes present, and profi le cell-based, protein and metabolite changes 
against each other. One could envisage observing changes due to temperature, light, 
pH and invading populations. There are some major hurdles to overcome before this 
becomes feasible on a routine basis, however:

    1.    Sequence length. Short sequences are more likely to be identical between two 
species than longer ones.  

    2.    Sequencing error rates. Are single base differences between two sequences due 
to errors or do they truly represent their hosts?  

    3.    Sequencing volumes  
    4.    Assembly algorithms  
    5.    Computational hardware  
    6.    Analysis pipelines     

 Until recently these problems have been side-stepped by sequencing ribosomal 
tag sequences which it is thought represent individual sub-species. In recent years, 
however, the more ambitious approach has been undertaken in the Human Gut 
Microbiome project demonstrating that it is possible to perform metagenomics with 
currently available hardware. However, this is far from routine and requires consid-
erable development before it is can be considered as straightforward as a typical 
genome assembly. 

 Current programs which are beginning to deal with the data in a user-friendly 
and intuitive manner is the Metagenome Analyser (MEGAN). Although this will 
not perform any assembly, it will analyse reads or contigs which have been run 
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through NCBI Blast and report taxonomy information, GO and KEGG information 
in an easy to interpret format. With such software it is straightforward to visualise 
whether particular species are present and even whether particular bio-chemical 
pathways are likely to be present. 

  K -mer-based approaches to genome assembly generally contain assumptions 
which do not lend themselves to metagenome assembly. For example, some pack-
ages such as EulerSR contain error-correction algorithms which remove and/or 
correct relatively low-coverage  k -mers on the assumption that these are likely to be 
errors. However, this is only a valid assumption when large coverage of a genome 
is available and there are no near-identical sequences within a genome. In a metag-
enome, this may not be a valid assumption. 

 As yet there is no single “Metagenome” standard due to the lack of datasets, 
however, these will undoubtedly appear once we as a community learn the best 
ways of dealing with such data.  

    14.3.9.2   Applications in Personalised Medicine 

 Personalised medicine, utilising whole genome information is likely to become a key 
focus for development of high-throughput processing and analysis. Commercial pro-
viders such as 23andMe and the now defunct DECODE provide coverage of known 
markers for disease along with basic information to interpret this information. 

 However, the lack of large-scale studies in many markers mean that the statistics 
in use to predict risk ratios often vary between providers and can often change 
drastically if new studies overturn previous results. Presenting such information to 
users who may have little or no training in either genetics or statistics is a major 
challenge. 

 An even greater challenge will be utilising whole exome/genome data. Whilst 
known markers for particular diseases provide relatively straightforward indicators 
for clinicians, the lack of genomes and association data for many less common 
diseases, or diseases with low penetrance means that a great deal of additional work 
still remains.  

    14.3.9.3   Computer Environment: Use a 64-Bit Unix-Like System 

 Choice of computer operating system currently still has an impact on effi ciency of 
data analysis. In general, bench-based biological scientists tend to use Microsoft 
Windows, whereas bioinformaticians tend to favour Linux or some other Unix-like 
operating system. The Macintosh OS X occupies a kind of middle ground appealing 
to members of both communities with its Unix-like core and its slick user interface. 
Most of the existing tools surveyed in this book are primarily developed for use in a 
Linux-like environment. Windows 7 is the fi rst all 64-bit OS released by Microsoft 
(with the exception of Windows 7 Home Basic). This enables the use of >3.5 Gb of 



24714 High-Throughput Sequencing Data Analysis Software…

RAM and PCs will soon begin to ship to take advantage of this. How long before 
University IT systems are upgraded to take advantage of this however is uncertain. 
However, it does enable developers to design applications with looser constraints.  

    14.3.9.4   NGS Datasets are Large 

 The proliferation of sequencing projects and other high-throughput biological data 
will inevitably mean that data integration and dissemination will be a crucial issue. 
How does one ensure good QC and curation of data when there may only be 2–3 
individuals in the world with an interest in the project? Individual researchers will 
not (in all probability) have the expertise necessary to maintain GMOD style data-
bases and web-front-ends.    

    14.4   Concluding Remarks 

 Computational challenges of data analysis, visualisation and data integration are 
now the bottlenecks in genomics, no longer the DNA sequencing itself. Innovative 
new approaches will be needed to overcome these challenges. In integrating datasets, 
we need to go beyond the one-dimensional genome and integrate heterogeneous 
data-types, both molecular and on-molecular. Computational tools must be available 
that are specifi cally tailored to non-bioinformaticians. In particular, well-engineered 
robust software will be needed to support personalised medicine. This software will 
have to perform analysis of large datasets, communicate with vast existing data-
bases whilst securely dealing with patient privacy concerns. Finally, to meet these 
changes, the next generation of genomics scientists needs to include multidiscipli-
narians with expertise in biological sciences as well as in at least one mathematical, 
engineering or computational discipline.      
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