
Chapter 3
Group Representations

The goal of group representation theory is to study groups via their actions on
vector spaces. Consideration of groups acting on sets leads to such important results
as the Sylow theorems. By studying actions on vector spaces even more detailed
information about a group can be obtained. This is the subject of representation
theory. Our study of matrix representations of groups will lead us naturally to
Fourier analysis and the study of complex-valued functions on a group. This in
turn has applications to various disciplines like engineering, graph theory, and
probability, just to name a few.

3.1 Basic Definitions and First Examples

The reader should recall from group theory that an action of a group G on a set X
is by definition a homomorphism ϕ : G −→ SX , where SX is the symmetric group
on X . This motivates the following definition.

Definition 3.1.1 (Representation). A representation of a group G is a homo-
morphism ϕ : G −→ GL(V ) for some (finite-dimensional) vector space V . The
dimension of V is called the degree of ϕ. We usually write ϕg for ϕ(g) and ϕg(v),
or simply ϕgv, for the action of ϕg on v ∈ V .

Remark 3.1.2. We shall rarely have occasion to consider degree zero representa-
tions and so the reader can safely ignore them. That is, we shall tacitly assume in
this text that representations are non-zero, although this is not formally part of the
definition.

A particularly simple example of a representation is the trivial representation.

Example 3.1.3 (Trivial representation). The trivial representation of a group G is
the homomorphism ϕ : G −→ C∗ given by ϕ(g) = 1 for all g ∈ G.
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Let us consider some other examples of degree one representations.

Example 3.1.4. ϕ : Z/2Z −→ C∗ given by ϕ([m]) = (−1)m is a representation.

Example 3.1.5. ϕ : Z/4Z −→ C∗ given by ϕ([m]) = im is a representation.

Example 3.1.6. More generally, ϕ : Z/nZ −→ C∗ defined by ϕ([m]) = e2πim/n

is a representation.

Letϕ : G −→ GL(V ) be a representation of degreen. To a basisB for V , we can
associate a vector space isomorphism T : V −→ Cn by taking coordinates. We can
then define a representation ψ : G−→GLn(C) by setting ψg = TϕgT

−1 for g∈G.
If B′ is another basis, we have another isomorphism S : V −→ Cn, and hence a
representation ψ′ : G −→ GLn(C) given by ψ′

g = SϕgS
−1. The representations ψ

and ψ′ are related via the formula ψ′
g = ST−1ψgTS

−1 = (ST−1)ψg(ST
−1)−1.

We want to think of ϕ, ψ, and ψ′ as all being the same representation. This leads us
to the important notion of equivalence.

Definition 3.1.7 (Equivalence). Two representations ϕ : G −→ GL(V ) and
ψ : G −→ GL(W ) are said to be equivalent if there exists an isomorphism
T : V −→ W such that ψg = TϕgT

−1 for all g ∈ G, i.e., ψgT = Tϕg for all
g ∈ G. In this case, we write ϕ ∼ ψ. In pictures, we have that the diagram

V
ϕg

��

T

��

V

T

��
W

ψg

�� W

commutes, meaning that either of the two ways of going from the upper left to the
lower right corner of the diagram give the same answer.

Example 3.1.8. Define ϕ : Z/nZ −→ GL2(C) by

ϕ[m] =

⎡
⎢⎢⎣
cos

(
2πm

n

)
− sin

(
2πm

n

)

sin

(
2πm

n

)
cos

(
2πm

n

)

⎤
⎥⎥⎦ ,

which is the matrix for rotation by 2πm/n, and ψ : Z/nZ −→ GL2(C) by

ψ[m] =

[
e

2πmi
n 0

0 e
−2πmi

n

]
.

Then ϕ ∼ ψ. To see this, let

A =

[
i −i
1 1

]
,
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and so

A−1 =
1

2i

[
1 i

−1 i

]
.

Then direct computation shows

A−1ϕ[m]A =
1

2i

[
1 i

−1 i

]
⎡
⎢⎢⎣
cos

(
2πm

n

)
− sin

(
2πm

n

)

sin

(
2πm

n

)
cos

(
2πm

n

)

⎤
⎥⎥⎦
[
i −i
1 1

]

=
1

2i

[
e

2πmi
n ie

2πmi
n

−e−2πmi
n ie

−2πmi
n

][
i −i
1 1

]

=
1

2i

[
2ie

2πmi
n 0

0 2ie
−2πmi

n

]

= ψ[m].

The following representation of the symmetric group is very important.

Example 3.1.9 (Standard representation of Sn). Define ϕ : Sn −→ GLn(C) on the
standard basis by ϕσ(ei) = eσ(i). One obtains the matrix for ϕσ by permuting the
rows of the identity matrix according to σ. So, for instance, when n = 3 we have

ϕ(1 2) =

⎡
⎣
0 1 0

1 0 0

0 0 1

⎤
⎦, ϕ(1 2 3) =

⎡
⎣
0 0 1

1 0 0

0 1 0

⎤
⎦.

Notice that in Example 3.1.9

ϕσ(e1 + e2 + · · ·+ en) = eσ(1) + eσ(2) + · · ·+ eσ(n) = e1 + e2 + · · ·+ en

where the last equality holds since σ is a permutation and addition is commutative.
Thus C(e1 + · · · + en) is invariant under all the ϕσ with σ ∈ Sn. This leads to the
following definition.

Definition 3.1.10 (G-invariant subspace). Let ϕ : G −→ GL(V ) be a represen-
tation. A subspace W ≤ V is G-invariant if, for all g ∈ G and w ∈ W , one has
ϕgw ∈ W .

For ψ from Example 3.1.8, Ce1 and Ce2 are both Z/nZ-invariant and C2 =
Ce1 ⊕ Ce2. This is the kind of situation we would like to happen always.

Definition 3.1.11 (Direct sum of representations). Suppose that representations
ϕ(1) : G −→ GL(V1) and ϕ(2) : G −→ GL(V2) are given. Then their (external)
direct sum

ϕ(1) ⊕ ϕ(2) : G −→ GL(V1 ⊕ V2)
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is given by
(ϕ(1) ⊕ ϕ(2))g(v1, v2) = (ϕ(1)

g (v1), ϕ
(2)
g (v2)).

Let us try to understand direct sums in terms of matrices. Suppose that
ϕ(1) : G −→ GLm(C) and ϕ(2) : G −→ GLn(C) are representations. Then

ϕ(1) ⊕ ϕ(2) : G −→ GLm+n(C)

has block matrix form

(ϕ(1) ⊕ ϕ(2))g =

[
ϕ
(1)
g 0

0 ϕ
(2)
g

]
.

Example 3.1.12. Define representations ϕ(1) : Z/nZ −→ C∗ by ϕ(1)
[m] = e2πim/n,

and ϕ(2) : Z/nZ −→ C∗ by ϕ(2)
[m] = e−2πim/n. Then

(ϕ(1) ⊕ ϕ(2))[m] =

[
e

2πim
n 0

0 e
−2πim

n

]
.

Remark 3.1.13. If n > 1, then the representation ρ : G −→ GLn(C) given by
ρg = I all g ∈ G is not equivalent to the trivial representation; rather, it is equivalent
to the direct sum of n copies of the trivial representation.

Since representations are a special kind of homomorphism, if a group G is
generated by a set X , then a representation ϕ of G is determined by its values
on X ; of course, not any assignment of matrices to the generators gives a valid
representation!

Example 3.1.14. Let ρ : S3 −→ GL2(C) be specified on the generators (1 2) and
(1 2 3) by

ρ(1 2) =

[−1 −1

0 1

]
, ρ(1 2 3) =

[−1 −1

1 0

]

(check this is a representation!) and let ψ : S3 −→ C
∗ be defined by ψσ = 1. Then

(ρ⊕ ψ)(12) =

⎡
⎣
−1 −1 0

0 1 0

0 0 1

⎤
⎦ , (ρ⊕ ψ)(123) =

⎡
⎣
−1 −1 0

1 0 0

0 0 1

⎤
⎦ .

We shall see later that ρ⊕ ψ is equivalent to the representation of S3 considered in
Example 3.1.9.

Let ϕ : G −→ GL(V ) be a representation. If W ≤ V is a G-invariant subspace,
we may restrict ϕ to obtain a representation ϕ|W : G −→ GL(W ) by setting
(ϕ|W )g(w) = ϕg(w) for w ∈ W . Precisely because W is G-invariant, we have
ϕg(w) ∈ W . Sometime one says ϕ|W is a subrepresentation of ϕ. If V1, V2 ≤ V
are G-invariant and V = V1 ⊕ V2, then one easily verifies ϕ is equivalent to the
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Table 3.1 Analogies between groups, vector spaces, and representations

Groups Vector spaces Representations

Subgroup Subspace G-invariant subspace
Simple group One-dimensional subspace Irreducible representation
Direct product Direct sum Direct sum
Isomorphism Isomorphism Equivalence

(external) direct sum ϕ|V1 ⊕ ϕ|V2 . It is instructive to see this in terms of matrices.
Let ϕ(i) = ϕ|Vi and choose bases B1 and B2 for V1 and V2, respectively. Then it
follows from the definition of a direct sum that B = B1 ∪B2 is a basis for V . Since
Vi is G-invariant, we have ϕg(Bi) ⊆ Vi = CBi. Thus we have in matrix form

[ϕg]B =

[
[ϕ(1)]B1 0

0 [ϕ(2)]B2

]

and so ϕ ∼ ϕ(1) ⊕ ϕ(2).
In mathematics, it is often the case that one has some sort of unique factorization

into primes, or irreducibles. This is the case for representation theory. The notion of
“irreducible” in this context is modeled on the notion of a simple group.

Definition 3.1.15 (Irreducible representation). A non-zero representation ϕ :
G −→ GL(V ) of a group G is said to be irreducible if the only G-invariant
subspaces of V are {0} and V .

Example 3.1.16. Any degree one representation ϕ : G −→ C∗ is irreducible, since
C has no proper non-zero subspaces.

Table 3.1 exhibits some analogies between the concepts we have seen so far with
ones from Group Theory and Linear Algebra.

If G = {1} is the trivial group and ϕ : G −→ GL(V ) is a representation, then
necessarily ϕ1 = I . So to give a representation of the trivial group is the same thing
as to give a vector space. For the trivial group, a G-invariant subspace is nothing
more than a subspace. A representation of the trivial group is irreducible if and only
if it has degree one. So the middle column of Table 3.1 is a special case of the third
column.

Example 3.1.17. The representations from Example 3.1.8 are not irreducible. For
instance,

C

[
i

1

]
and C

[−i
1

]

are Z/nZ-invariant subspaces for ϕ, while the coordinate axes Ce1 and Ce2 are
invariant subspaces for ψ.

Not surprisingly, after the one-dimensional representations, the next easiest class
to analyze consists of the two-dimensional representations.
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Example 3.1.18. The representation ρ : S3 −→ GL2(C) from Example 3.1.14 is
irreducible.

Proof. Since dim C2 = 2, any non-zero proper S3-invariant subspace W is one-
dimensional. Let v be a non-zero vector in W ; so W = Cv. Let σ ∈ S3. Then
ρσ(v) = λv for some λ ∈ C, since by S3-invariance of W we have ρσ(v) ∈ W =
Cv. It follows that v must be an eigenvector for all the ρσ with σ ∈ S3.

Claim. ρ(1 2) and ρ(1 2 3) do not have a common eigenvector.

Indeed, direct computation reveals ρ(1 2) has eigenvalues 1 and −1 with

V−1 = Ce1 and V1 = C

[−1

2

]
.

Clearly e1 is not an eigenvector of ρ(1 2 3) as

ρ(1 2 3)

[
1

0

]
=

[−1

1

]
.

Also,

ρ(1 2 3)

[−1

2

]
=

[−1

−1

]
,

so (−1, 2) is not an eigenvector of ρ(1 2 3). Thus ρ(1 2) and ρ(1 2 3) have no common
eigenvector, which implies that ρ is irreducible by the discussion above. 	


Let us summarize as a proposition the idea underlying this example.

Proposition 3.1.19. If ϕ : G −→ GL(V ) is a representation of degree 2 (i.e.,
dimV = 2), then ϕ is irreducible if and only if there is no common eigenvector
v to all ϕg with g ∈ G.

Notice that this trick of using eigenvectors only works for degree 2 and degree 3
representations (and the latter case requires finiteness of G).

Example 3.1.20. Let r be rotation by π/2 and s be reflection over the x-axis.
These permutations generate the dihedral group D4. Let the representation
ϕ : D4 −→ GL2(C) be defined by

ϕ(rk) =

[
ik 0

0 (−i)k
]
, ϕ(srk) =

[
0 (−i)k
ik 0

]
.

Then one can apply the previous proposition to check that ϕ is an irreducible
representation.

Our eventual goal is to show that each representation is equivalent to a direct sum
of irreducible representations. Let us define some terminology to this effect.
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Definition 3.1.21 (Completely reducible). Let G be a group. A representation
ϕ : G −→ GL(V ) is said to be completely reducible if V = V1 ⊕ V2 ⊕ · · · ⊕ Vn
where the Vi are G-invariant subspaces and ϕ|Vi is irreducible for all i = 1, . . . , n.

Equivalently, ϕ is completely reducible if ϕ ∼ ϕ(1) ⊕ ϕ(2) ⊕ · · · ⊕ ϕ(n) where
the ϕ(i) are irreducible representations.

Definition 3.1.22 (Decomposable representation). A non-zero representation ϕ
of a group G is decomposable if V = V1 ⊕ V2 with V1, V2 non-zero G-invariant
subspaces. Otherwise, V is called indecomposable.

Complete reducibility is the analog of diagonalizability in representation theory.
Our aim is then to show that any representation of a finite group is completely
reducible. To do this we show that any representation is either irreducible or
decomposable, and then proceed by induction on the degree. First we must show
that these notions depend only on the equivalence class of a representation.

Lemma 3.1.23. Let ϕ : G −→ GL(V ) be equivalent to a decomposable represen-
tation. Then ϕ is decomposable.

Proof. Let ψ : G −→ GL(W ) be a decomposable representation with ψ ∼ ϕ and
T : V −→ W a vector space isomorphism with ϕg = T−1ψgT . Suppose that W1

and W2 are non-zero invariant subspaces of W with W =W1 ⊕W2. Since T is an
equivalence we have that

V
ϕg

��

T
��

V

T
��

W
ψg

�� W

commutes, i.e., Tϕg = ψgT for all g ∈ G. Let V1 = T−1(W1) and V2 = T−1(W2).
First we claim that V = V1⊕V2. Indeed, if v ∈ V1∩V2, then Tv ∈W1∩W2 = {0}
and so Tv = 0. But T is injective so this implies v = 0. Next, if v ∈ V , then
Tv = w1+w2 somew1 ∈ W1 andw2 ∈ W2. Then v = T−1w1+T

−1w2 ∈ V1+V2.
Thus V = V1 ⊕ V2.

Finally, we show that V1, V2 are G-invariant. If v ∈ Vi, then ϕgv = T−1ψgTv.
But Tv ∈Wi implies ψgTv ∈Wi since Wi is G-invariant. Therefore, we conclude
that ϕgv = T−1ψgTv ∈ T−1(Wi) = Vi, as required. 	


We have the analogous results for other types of representations, whose proofs
we omit.

Lemma 3.1.24. Let ϕ : G −→ GL(V ) be equivalent to an irreducible representa-
tion. Then ϕ is irreducible.

Lemma 3.1.25. Let ϕ : G −→ GL(V ) be equivalent to a completely reducible
representation. Then ϕ is completely reducible.
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3.2 Maschke’s Theorem and Complete Reducibility

In order to effect direct sum decompositions of representations, we take advantage
of the tools of inner products and orthogonal decompositions.

Definition 3.2.1 (Unitary representation). Let V be an inner product space. A
representation ϕ : G −→ GL(V ) is said to be unitary if ϕg is unitary for all g ∈
G, i.e.,

〈ϕg(v), ϕg(w)〉 = 〈v, w〉
for all v, w ∈W . In other words, we may view ϕ as a map ϕ : G −→ U(V ).

IdentifyingGL1(C) with C∗, we see that a complex number z is unitary (viewed
as a matrix) if and only if z = z−1, that is zz = 1. But this says exactly that
|z| = 1, so U1(C) is exactly the unit circle T = {z ∈ C | |z| = 1} in C. Hence a
one-dimensional unitary representation is a homomorphism ϕ : G −→ T.

Example 3.2.2. Define ϕ : R −→ T by ϕ(t) = e2πit. Then ϕ is a unitary
representation of the additive group of R since ϕ(t+s) = e2πi(t+s) = e2πite2πis =
ϕ(t)ϕ(s).

A crucial fact, which makes unitary representations so useful, is that every
indecomposable unitary representation is irreducible as the following proposition
shows.

Proposition 3.2.3. Let ϕ : G −→ GL(V ) be a unitary representation of a group.
Then ϕ is either irreducible or decomposable.

Proof. Suppose ϕ is not irreducible. Then there is a non-zero proper G-invariant
subspace W of U . Its orthogonal complement W⊥ is then also non-zero and V =
W ⊕W⊥. So it remains to prove that W⊥ is G-invariant. If v ∈ W⊥ and w ∈ W ,
then

〈ϕg(v), w〉 = 〈ϕg−1ϕg(v), ϕg−1 (w)〉 (3.1)

= 〈v, ϕg−1 (w)〉 (3.2)

= 0 (3.3)

where (3.1) follows because ϕ is unitary, (3.2) follows because ϕg−1ϕg = ϕ1 = I
and (3.3) follows because ϕg−1w ∈ W , as W is G-invariant, and v ∈ W⊥. We
conclude ϕ is decomposable. 	


It turns out that for finite groups every representation is equivalent to a unitary
one. This is not true for infinite groups, as we shall see momentarily.

Proposition 3.2.4. Every representation of a finite group G is equivalent to a
unitary representation.
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Proof. Let ϕ : G −→ GL(V ) be a representation where dim V = n. Choose a
basis B for V , and let T : V −→ Cn be the isomorphism taking coordinates with
respect to B. Then setting ρg = TϕgT

−1, for g ∈ G, yields a representation
ρ : G −→ GLn(C) equivalent to ϕ. Let 〈·, ·〉 be the standard inner product on Cn.
We define a new inner product (·, ·) on Cn using the crucial “averaging trick.” It will
be a frequent player throughout the text. Without further ado, define

(v, w) =
∑
g∈G

〈ρgv, ρgw〉.

This summation over G, of course, requires that G is finite. It can be viewed as a
“smoothing” process.

Let us check that this is indeed an inner product. First we check:

(c1v1 + c2v2, w) =
∑
g∈G

〈ρg(c1v1 + c2v2), ρgw〉

=
∑
g∈G

[c1〈ρgv1, ρgw〉 + c2〈ρgv2, ρgw〉]

= c1
∑
g∈G

〈ρgv1, ρgw〉 + c2
∑
g∈G

〈ρgv2, ρgw〉

= c1(v1, w) + c2(v2, w).

Next we verify:

(w, v) =
∑
g∈G

〈ρgw, ρgv〉

=
∑
g∈G

〈ρgv, ρgw〉

= (v, w).

Finally, observe that

(v, v) =
∑
g∈G

〈ρgv, ρgv〉 ≥ 0

because each term 〈ρgv, ρgv〉 ≥ 0. If (v, v) = 0, then

0 =
∑
g∈G

〈ρgv, ρgv〉
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which implies 〈ρgv, ρgv〉 = 0 for all g ∈ G since we are adding non-negative
numbers. Hence, 0 = 〈ρ1v, ρ1v〉 = 〈v, v〉, and so v = 0. We have now established
that (·, ·) is an inner product.

To verify that the representation is unitary with respect to this inner product, we
compute

(ρhv, ρhw) =
∑
g∈G

〈ρgρhv, ρgρhv〉 =
∑
g∈G

〈ρghv, ρghw〉.

We now apply a change of variables by setting x = gh. As g ranges over all G,
x ranges over all elements of G since if k ∈ G, then when g = kh−1, x = k.
Therefore,

(ρhv, ρhw) =
∑
x∈G

〈ρxv, ρxw〉 = (v, w).

This completes the proof. 	

As a corollary we obtain that every indecomposable representation of a finite

group is irreducible.

Corollary 3.2.5. Let ϕ : G −→ GL(V ) be a non-zero representation of a finite
group. Then ϕ is either irreducible or decomposable.

Proof. By Proposition 3.2.4, ϕ is equivalent to a unitary representation ρ.
Proposition 3.2.3 then implies that ρ is either irreducible or decomposable. Lemmas
3.1.23 and 3.1.24 then yield that ϕ is either irreducible or decomposable, as was
desired. 	


The following example shows that Corollary 3.2.5 fails for infinite groups and
hence Proposition 3.2.4 must also fail for infinite groups.

Example 3.2.6. We provide an example of an indecomposable representation of Z,
which is not irreducible. Define ϕ : Z −→ GL2(C) by

ϕ(n) =

[
1 n

0 1

]
.

It is straightforward to verify that ϕ is a homomorphism. The vector e1 is an
eigenvector of ϕ(n) for all n ∈ Z and so Ce1 is a Z-invariant subspace. This shows
that ϕ is not irreducible. On the other hand, if ϕ were decomposable, it would be
equivalent to a direct sum of one-dimensional representations. Such a representation
is diagonal. But we saw in Example 2.3.5 that ϕ(1) is not diagonalizable. It follows
that ϕ is indecomposable.

Remark 3.2.7. Observe that any irreducible representation is indecomposable. The
previous example shows that the converse fails.

The next theorem is the central result of this chapter. Its proof is quite analogous
to the proof of the existence of a prime factorization of an integer or of a
factorization of polynomials into irreducibles.
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Theorem 3.2.8 (Maschke). Every representation of a finite group is completely
reducible.

Proof. Let ϕ : G −→ GL(V ) be a representation of a finite group G. The proof
proceeds by induction on the degree of ϕ, that is, dimV . If dimV = 1, then ϕ
is irreducible since V has no non-zero proper subspaces. Assume the statement is
true for dim V ≤ n. Let ϕ : G −→ GL(V ) be a representation with dimV =
n + 1. If ϕ is irreducible, then we are done. Otherwise, ϕ is decomposable by
Corollary 3.2.5, and so V = V1 ⊕ V2 where 0 �= V1, V2 are G-invariant subspaces.
Since dimV1, dimV2 < dim V , by induction, ϕ|V1 and ϕ|V2 are completely
reducible. Therefore, V1 = U1 ⊕ · · · ⊕ Us and V2 = W1 ⊕ · · · ⊕Wr where the
Ui,Wj are G-invariant and the subrepresentations ϕ|Ui , ϕ|Wj are irreducible for all
1 ≤ i ≤ s, 1 ≤ j ≤ r. Then V = U1 ⊕ · · ·Us ⊕W1 ⊕ · · · ⊕Wr and hence ϕ is
completely irreducible. 	

Remark 3.2.9. If one follows the details of the proof carefully, one can verify that
if ϕ is a unitary matrix representation, then ϕ is equivalent to a direct sum of
irreducible unitary representations via an equivalence implemented by a unitary
matrix T .

In conclusion, if ϕ : G −→ GLn(C) is any representation of a finite group, then

ϕ ∼

⎡
⎢⎢⎢⎢⎣

ϕ(1) 0 · · · 0

0 ϕ(2) . . .
...

...
. . .

. . . 0

0 · · · 0 ϕ(m)

⎤
⎥⎥⎥⎥⎦

where the ϕ(i) are irreducible for all i. This is analogous to the spectral theorem
stating that all self-adjoint matrices are diagonalizable.

There still remains the question as to whether the decomposition into irreducible
representations is unique. This will be resolved in the next chapter.

Exercises

Exercise 3.1. Let ϕ : D4 −→ GL2(C) be the representation given by

ϕ(rk) =

[
ik 0

0 (−i)k
]
, ϕ(srk) =

[
0 (−i)k
ik 0

]

where r is rotation counterclockwise by π/2 and s is reflection over the x-axis.
Prove that ϕ is irreducible.

Exercise 3.2. Prove Lemma 3.1.24.
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Exercise 3.3. Let ϕ, ψ : G −→ C∗ be one-dimensional representations. Show that
ϕ is equivalent to ψ if and only if ϕ = ψ.

Exercise 3.4. Let ϕ : G −→ C∗ be a representation. Suppose that g ∈ G has
order n.

1. Show that ϕ(g) is an nth-root of unity (i.e., a solution to the equation zn = 1).
2. Construct n inequivalent one-dimensional representations Z/nZ −→ C∗.
3. Explain why your representations are the only possible one-dimensional repre-

sentations.

Exercise 3.5. Let ϕ : G −→ GL(V ) be a representation of a finite groupG. Define
the fixed subspace

V G = {v ∈ V | ϕgv = v, ∀g ∈ G}.

1. Show that V G is a G-invariant subspace.
2. Show that

1

|G|
∑
h∈G

ϕhv ∈ V G

for all v ∈ V .
3. Show that if v ∈ V G, then

1

|G|
∑
h∈G

ϕhv = v.

4. Conclude dim V G is the rank of the operator

P =
1

|G|
∑
h∈G

ϕh.

5. Show that P 2 = P .
6. Conclude Tr(P ) is the rank of P .
7. Conclude

dim V G =
1

|G|
∑
h∈G

Tr(ϕh).

Exercise 3.6. Let ϕ : G −→ GLn(C) be a representation.

1. Show that setting ψg = ϕg provides a representation ψ : G −→ GLn(C). It is
called the conjugate representation. Give an example showing that ϕ and ψ do
not have to be equivalent.

2. Let χ : G −→ C∗ be a degree 1 representation of G. Define a map
ϕχ : G −→ GLn(C) by ϕχg = χ(g)ϕg . Show that ϕχ is a representation. Give
an example showing that ϕ and ϕχ do not have to be equivalent.
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Exercise 3.7. Give a bijection between unitary, degree one representations of Z and
elements of T.

Exercise 3.8.

1. Let ϕ : G −→ GL3(C) be a representation of a finite group. Show that ϕ is
irreducible if and only if there is no common eigenvector for the matrices ϕg
with g ∈ G.

2. Given an example of a finite group G and a decomposable representation
ϕ : G −→ GL4(C) such that the ϕg with g ∈ G do not have a common
eigenvector.
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