
Chapter 2
Review of Linear Algebra

This chapter reviews the linear algebra that we shall assume throughout the book.
Proofs of standard results are mostly omitted. The reader can consult a linear algebra
text such as [4] for details. In this book all vector spaces considered will be finite
dimensional over the field C of complex numbers.

2.1 Basic Definitions and Notation

This section introduces some basic notions from linear algebra. We start with some
notation, not all of which belongs to linear algebra. Let V and W be vector spaces.

• If X is a set of vectors, then CX = SpanX .
• Mmn(C) = {m× n matrices with entries in C}.
• Mn(C) = Mnn(C).
• Hom(V,W ) = {A : V −→ W | A is a linear map}.
• End(V ) = Hom(V, V ) (the endomorphism ring of V ).
• GL(V ) = {A ∈ End(V ) | A is invertible} (known as the general linear group

of V ).
• GLn(C) = {A ∈ Mn(C) | A is invertible}.
• The identity matrix/linear transformation is denoted I , or In if we wish to

emphasize the dimension n.
• Z is the ring of integers.
• N is the set of non-negative integers.
• Q is the field of rational numbers.
• R is the field of real numbers.
• Z/nZ = {[0], . . . , [n− 1]} is the ring of integers modulo n.
• R∗ denotes the group of units (i.e., invertible elements) of a ring R.
• Sn is the group of permutations of {1, . . . , n}, i.e., the symmetric group on n

letters.
• The identity permutation is denoted Id.
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Elements of Cn will be written as n-tuples or as column vectors, as is convenient.
If A ∈ Mmn(C), we sometimes write Aij for the entry in row i and column j.

We may also write A = (aij) to mean the matrix with aij in row i and column j.
If k, �,m, and n are natural numbers, then matrices in Mmk,�n(C) can be viewed
as m × n block matrices with blocks in Mk�(C). If we view an mk × �n matrix
A as a block matrix, then we write [A]ij for the k × � matrix in the i, j block, for
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 2.1.1 (Coordinate vector). If V is a vector space with basis B =
{b1, . . . , bn} and v = c1b1 + · · · + cnbn is a vector in V , then the coordinate
vector of v with respect to the basis B is the vector [v]B = (c1, . . . , cn) ∈ Cn.
The map T : V −→ Cn given by Tv = [v]B is a vector space isomorphism that we
sometimes call taking coordinates with respect to B.

Suppose that T : V −→ W is a linear transformation and B,B′ are bases for
V,W , respectively. Let B = {v1, . . . , vn} and B′ = {w1, . . . , wm}. Then the
matrix of T with respect to the bases B,B′ is the m × n matrix [T ]B,B′ whose
jth column is [Tvj]B′ . In other words, if

Tvj =

m∑

i=1

aijwi,

then [T ]B,B′ = (aij). When V = W and B = B′, then we write simply [T ]B for
[T ]B,B.

The standard basis for Cn is the set {e1, . . . , en} where ei is the vector with 1 in
the ith coordinate and 0 in all other coordinates. So when n = 3, we have

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Throughout we will abuse the distinction between End(Cn) and Mn(C) and the
distinction between GL(Cn) and GLn(C) by identifying a linear transformation
with its matrix with respect to the standard basis.

Suppose dimV = n and dimW = m. Then by choosing bases for V and W
and sending a linear transformation to its matrix with respect to these bases we see
that:

End(V ) ∼= Mn(C);

GL(V ) ∼= GLn(C);

Hom(V,W ) ∼= Mmn(C).

Notice that GL1(C) ∼= C
∗ and so we shall always work with the latter. We

indicate W is a subspace of V by writing W ≤ V .
If W1,W2 ≤ V , then by definition

W1 +W2 = {w1 + w2 | w1 ∈ W1, w2 ∈ W2}.
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This is the smallest subspace of V containing W1 and W2. If, in addition,
W1 ∩W2 = {0}, then W1 +W2 is called a direct sum, written W1 ⊕W2. As vector
spaces, W1 ⊕ W2

∼= W1 × W2 via the map W1 × W2 −→ W1 ⊕ W2 given by
(w1, w2) �→ w1 + w2. In fact, if V and W are any two vector spaces, one can form
their external direct sum by setting V ⊕W = V ×W . Note that

dim(W1 ⊕W2) = dimW1 + dimW2.

More precisely, if B1 is a basis for W1 and B2 is a basis for W2, then B1 ∪B2 is a
basis for W1 ⊕W2.

2.2 Complex Inner Product Spaces

Recall that if z = a+bi ∈ C, then its complex conjugate is z = a−bi. In particular,
zz = a2 + b2 = |z|2. An inner product on V is a map

〈·, ·〉 : V × V −→ C

such that, for v, w, v1, v2 ∈ V and c1, c2 ∈ C:

• 〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉;
• 〈w, v〉 = 〈v, w〉;
• 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

A vector space equipped with an inner product is called an inner product space.
The norm ‖v‖ of a vector v in an inner product space is defined by ‖v‖ =

√〈v, v〉.
Example 2.2.1. The standard inner product on Cn is given by

〈(a1, . . . , an), (b1, . . . , bn)〉 =
n∑

i=1

aibi.

Two important properties of inner products are the Cauchy–Schwarz inequality

|〈v, w〉| ≤ ‖v‖ · ‖w‖
and the triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Recall that two vectors v, w in an inner product space V are said to be
orthogonal if 〈v, w〉 = 0. A subset of V is called orthogonal if its elements are
pairwise orthogonal. If, in addition, the norm of each vector is 1, the set is termed
orthonormal. An orthogonal set of non-zero vectors is linearly independent. In
particular, any orthonormal set is linearly independent.
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Every inner product space has an orthonormal basis. One can obtain an
orthonormal basis from an arbitrary basis using the Gram–Schmidt process [4,
Theorem 15.9]. If B = {e1, . . . , en} is an orthonormal basis for an inner product
space V and v ∈ V , then

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en
In other words,

[v]B = (〈v, e1〉, . . . , 〈v, en〉).

Example 2.2.2. For a finite set X , the set CX = {f : X −→ C} is a vector space
with pointwise operations. Namely, one defines

(f + g)(x) = f(x) + g(x);

(cf)(x) = cf(x).

For each x ∈ X , define a function δx : X −→ C by

δx(y) =

{
1 x = y

0 x �= y.

There is a natural inner product on CX given by

〈f, g〉 =
∑

x∈X

f(x)g(x).

The set {δx | x ∈ X} is an orthonormal basis with respect to this inner product. If
f ∈ CX , then its unique expression as a linear combination of the δx is given by

f =
∑

x∈X

f(x)δx.

Consequently, dim CX = |X |.
Direct sum decompositions are easy to obtain in inner product spaces. If

W ≤ V , then the orthogonal complement of W is the subspace

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ W}.

Proposition 2.2.3. Let V be an inner product space and W ≤ V . Then there is a
direct sum decomposition V = W ⊕W⊥.

Proof. First, if w ∈ W ∩W⊥ then 〈w,w〉 = 0 implies w = 0; so W ∩W⊥ = {0}.
Let v ∈ V and suppose that {e1, . . . , em} is an orthonormal basis for W . Put v̂ =
〈v, e1〉e1 + · · ·+ 〈v, em〉em and z = v − v̂. Then v̂ ∈ W . We claim that z ∈ W⊥.
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To prove this, it suffices to show 〈z, ei〉 = 0 for all i = 1, . . . ,m. To this effect we
compute

〈z, ei〉 = 〈v, ei〉 − 〈v̂, ei〉 = 〈v, ei〉 − 〈v, ei〉 = 0

because {e1, . . . , em} is an orthonormal set. As v = v̂ + z, it follows that V =
W +W⊥. This completes the proof. ��

We continue to assume that V is an inner product space.

Definition 2.2.4 (Unitary operator). A linear operator U ∈ GL(V ) is said to be
unitary if

〈Uv, Uw〉 = 〈v, w〉

for all v, w ∈ V .

Notice that if U is unitary and v ∈ kerU , then 0 = 〈Uv, Uv〉 = 〈v, v〉 and so
v = 0. Thus unitary operators are invertible. The set U(V ) of unitary maps is a
subgroup of GL(V ).

If A = (aij) ∈ Mmn(C) is a matrix, then its transpose is the matrix AT =
(aji) ∈ Mnm(C). The conjugate of A is A = (aij). The conjugate-transpose or
adjoint of A is the matrix A∗ = AT . One can verify directly the equality (AB)∗ =
B∗A∗. Routine computation shows that if v ∈ Cn and w ∈ Cm, then

〈Av,w〉 = 〈v,A∗w〉 (2.1)

where we use the standard inner product on Cm and Cn. Indeed, viewing vectors as
column vectors one has 〈v1, v2〉 = v∗1v2 and so 〈Av,w〉 = (Av)∗w = v∗(A∗w) =
〈v,A∗w〉.

With respect to the standard inner product on Cn, the linear transformation
associated to a matrix A ∈ GLn(C) is unitary if and only if A−1 = A∗ [4, Theorem
32.7]; such a matrix is thus called unitary. We denote by Un(C) the group of all
n × n unitary matrices. A matrix A ∈ Mn(C) is called self-adjoint if A∗ = A.
A matrix A is symmetric if AT = A. If A has real entries, then A is self-adjoint if

and only if A is symmetric.
More generally, if T is a linear operator on an inner product space V , then

T ∗ : V −→ V is the unique linear operator satisfying 〈Tv, w〉 = 〈v, T ∗w〉 for
all v, w ∈ V . It is called the adjoint of T . If B is an orthonormal basis for V ,
then [T ∗]B = [T ]∗B . The operator T is self-adjoint if T = T ∗, or equivalently if the
matrix of T with respect to some (equals any) orthonormal basis of V is self-adjoint.

2.3 Further Notions from Linear Algebra

If X ⊆ End(V ) and W ≤ V , then W is called X-invariant if, for any A ∈ X and
any w ∈ W , one has Aw ∈ W , i.e., XW ⊆ W .
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A key example comes from the theory of eigenvalues and eigenvectors. Recall
that λ ∈ C is an eigenvalue of A ∈ End(V ) if λI − A is not invertible, or in other
words, if Av = λv for some v �= 0. The eigenspace corresponding to λ is the set

Vλ = {v ∈ V | Av = λv},

which is a subspace of V . Note that if v ∈ Vλ, then A(Av) = A(λv) = λAv, so
Av ∈ Vλ. Thus Vλ is A-invariant. On the other hand, if W ≤ V is A-invariant with
dimW = 1 (that is, W is a line), then W ⊆ Vλ for some λ. In fact, if w ∈ W \{0},
then {w} is a basis for W . Since Aw ∈ W , we have that Aw = λw for some λ ∈ C.
So w is an eigenvector with eigenvalue λ, whence w ∈ Vλ. Thus W ⊆ Vλ.

The trace of a matrix A = (aij) is defined by

Tr(A) =

n∑

i=1

aii.

Some basic facts concerning the trace function Tr: Mn(C) −→ C are that Tr is
linear and Tr(AB) = Tr(BA). Consequently, Tr(PAP−1) = Tr(P−1PA) =
Tr(A) for any invertible matrix P . In particular, if T ∈ End(V ), then Tr(T )
makes sense: choose any basis for the vector space V and compute the trace of
the associated matrix.

The determinant detA of a matrix is defined as follows:

detA =
∑

σ∈Sn

sgn(σ) · a1σ(1) · · · anσ(n).

We recall that

sgn(σ) =

{
1 σ is even

−1 σ is odd.

The key properties of the determinant that we shall use are:

• detA �= 0 if and only if A ∈ GLn(C);
• det(AB) = detA · detB;
• det(A−1) = (detA)−1.

In particular, one has det(PAP−1) = detA and so we can define, for any T ∈
End(V ), the determinant by choosing a basis for V and computing the determinant
of the corresponding matrix for T .

The characteristic polynomial pA(x) of a linear operator A on an n-dimensional
vector space V is given by pA(x) = det(xI − A). This is a monic polynomial
of degree n (i.e., has leading coefficient 1) and the roots of pA(x) are precisely
the eigenvalues of A. The classical Cayley–Hamilton theorem says that any linear
operator is a zero of its characteristic polynomial [4, Corollary 24.7].

Theorem 2.3.1 (Cayley–Hamilton). Let pA(x) be the characteristic polynomial
of A. Then pA(A) = 0.
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If A ∈ End(V ), the minimal polynomial of A, denoted mA(x), is the smallest
degree monic polynomial f(x) such that f(A) = 0.

Proposition 2.3.2. If q(A) = 0 then mA(x) | q(x).
Proof. Write q(x) = mA(x)f(x) + r(x) with either r(x) = 0, or deg(r(x)) <
deg(mA(x)). Then

0 = q(A) = mA(A)f(A) + r(A) = r(A).

By minimality of mA(x), we conclude that r(x) = 0. ��
Corollary 2.3.3. If pA(x) is the characteristic polynomial of A, then mA(x)
divides pA(x).

The relevance of the minimal polynomial is that it provides a criterion for
diagonalizability of a matrix, among other things. A standard result from linear
algebra is the following characterization of diagonalizable matrices, cf. [4, Theorem
23.11].

Theorem 2.3.4. A matrix A ∈ Mn(C) is diagonalizable if and only if mA(x) has
no repeated roots.

Example 2.3.5. The diagonal matrix

A =

⎡

⎣
3 0 0

0 1 0

0 0 1

⎤

⎦

has mA(x) = (x−1)(x−3), whereas pA(x) = (x−1)2(x−3). On the other hand,
the matrix

B =

[
1 1

0 1

]

has mB(x) = (x− 1)2 = pB(x) and so is not diagonalizable.

One of the main results from linear algebra is the spectral theorem for self-adjoint
matrices. We sketch a proof since it is indicative of several proofs later in the text.

Theorem 2.3.6 (Spectral Theorem). Let A ∈ Mn(C) be self-adjoint. Then there
is a unitary matrix U ∈ Un(C) such that U∗AU is diagonal. Moreover, the
eigenvalues of A are real.

Proof. First we verify that the eigenvalues are real. Let λ be an eigenvalue of A with
corresponding eigenvector v. Then

λ〈v, v〉 = 〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉 = 〈Av, v〉 = λ〈v, v〉

and hence λ = λ because 〈v, v〉 > 0. Thus λ is real.
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To prove the remainder of the theorem, it suffices to show that Cn has an
orthonormal basis B of eigenvectors for A. One can then take U to be a matrix
whose columns are the elements of B. We proceed by induction on n, the case
n = 1 being trivial. Assume the theorem is true for all dimensions smaller than n.
Let λ be an eigenvalue of A with corresponding eigenspace Vλ. If Vλ = Cn, then
A already is diagonal and there is nothing to prove. So we may assume that Vλ is a
proper subspace; it is of course non-zero. Then Cn = Vλ⊕V ⊥

λ by Proposition 2.2.3.
We claim that V ⊥

λ is A-invariant. Indeed, if v ∈ Vλ and w ∈ V ⊥
λ , then

〈Aw, v〉 = 〈w,A∗v〉 = 〈w,Av〉 = 〈w, λv〉 = 0

and so Aw ∈ V ⊥
λ . Note that V ⊥

λ is an inner product space in its own right by
restricting the inner product on V , and moreover the restriction of A to V ⊥

λ is
still self-adjoint. Since dimV ⊥

λ < n, an application of the induction hypothesis
yields that V ⊥

λ has an orthonormal basis B′ of eigenvectors for A. Let B be any
orthonormal basis for Vλ. Then B ∪B′ is an orthonormal basis for Cn consisting of
eigenvectors for A, as required. ��

Exercises

Exercise 2.1. Suppose that A,B ∈ Mn(C) are commuting matrices, i.e., AB =
BA. Let Vλ be an eigenspace of A. Show that Vλ is B-invariant.

Exercise 2.2. Let V be an n-dimensional vector space and B a basis. Prove that the
map F : End(V ) −→ Mn(C) given by F (T ) = [T ]B is an isomorphism of unital
rings.

Exercise 2.3. Let V be an inner product space and let W ≤ V be a subspace. Let
v ∈ V and define v̂ ∈ W as in the proof of Proposition 2.2.3. Prove that if w ∈ W
with w �= v̂, then ‖v − v̂‖ < ‖v − w‖. Deduce that v̂ is independent of the choice
of orthonormal basis for W . It is called the orthogonal projection of v onto W .

Exercise 2.4. Prove that (AB)∗ = B∗A∗.

Exercise 2.5. Prove that Tr(AB) = Tr(BA).

Exercise 2.6. Let V be an inner product space and let T : V −→ V be a linear
transformation. Show that T is self-adjoint if and only if V has an orthonormal
basis of eigenvectors of T and the eigenvalues of T are real. (Hint: one direction is
a consequence of the spectral theorem.)

Exercise 2.7. Let V be an inner product space. Show that U ∈ End(V ) is unitary
if and only if ‖Uv‖ = ‖v‖ for all vectors v ∈ V . (Hint: use the polarization formula
〈v, w〉 = 1/4

[‖v + w‖2 − ‖v − w‖2].)
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Exercise 2.8. Prove that if A ∈ Mn(C), then there is an upper triangular matrix T
and an invertible matrix P such that P−1AP = T . (Hint: use induction on n. Look
at the proof of the spectral theorem for inspiration.)

Exercise 2.9. This exercise sketches a proof of the Cayley–Hamilton Theorem
using a little bit of analysis.

1. Use Exercise 2.8 to reduce to the case when A is an upper triangular matrix.
2. Prove the Cayley–Hamilton theorem for diagonalizable operators.
3. Identifying Mn(C) with Cn2

, show that the mapping Mn(C) −→ Mn(C) given
by A �→ pA(A) is continuous. (Hint: the coefficients of pA(x) are polynomials
in the entries of A.)

4. Prove that every upper triangular matrix is a limit of matrices with distinct
eigenvalues (and hence diagonalizable).

5. Deduce the Cayley–Hamilton theorem.
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