Chapter 2
Review of Linear Algebra

This chapter reviews the linear algebra that we shall assume throughout the book.
Proofs of standard results are mostly omitted. The reader can consult a linear algebra
text such as [4] for details. In this book all vector spaces considered will be finite
dimensional over the field C of complex numbers.

2.1 Basic Definitions and Notation

This section introduces some basic notions from linear algebra. We start with some
notation, not all of which belongs to linear algebra. Let V' and W be vector spaces.

e If X is a set of vectors, then CX = Span X.

* Mpn(C) = {m x n matrices with entries in C}.

o M,(C) = M,,(C).

* Hom(V,W)={A: V — W | Aisalinear map}.

e End(V) = Hom(V, V) (the endomorphism ring of V).

* GL(V) = {A € End(V) | Aisinvertible} (known as the general linear group
of V).

* GL,(C)={A € M,(C)| Aisinvertible}.

e The identity matrix/linear transformation is denoted I, or I, if we wish to
emphasize the dimension n.

e Zis the ring of integers.

* Nis the set of non-negative integers.

¢ (s the field of rational numbers.

e Ris the field of real numbers.

o Z/nZ ={[0],...,[n — 1]} is the ring of integers modulo n.

e R* denotes the group of units (i.e., invertible elements) of a ring R.

* S, is the group of permutations of {1,...,n}, i.e., the symmetric group on n
letters.

e The identity permutation is denoted /d.
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Elements of C™ will be written as n-tuples or as column vectors, as is convenient.

If A € M,,,(C), we sometimes write A;; for the entry in row ¢ and column j.
We may also write A = (a;;) to mean the matrix with a;; in row ¢ and column j.
If k, ¢, m, and n are natural numbers, then matrices in M, ¢, (C) can be viewed
as m x n block matrices with blocks in My, (C). If we view an mk X ¢n matrix
A as a block matrix, then we write [A];; for the k& x ¢ matrix in the ¢, j block, for
1<i<mandl1<j<n.

Definition 2.1.1 (Coordinate vector). If V' is a vector space with basis B =
{b1,...,bn} and v = ¢1by + -+ + ¢cpby, is a vector in V, then the coordinate
vector of v with respect to the basis B is the vector [v]p = (c1,...,¢,) € C™
The map T: V. — C™ given by T'v = [v] 5 is a vector space isomorphism that we
sometimes call taking coordinates with respect to B.

Suppose that T: V' — W is a linear transformation and B, B’ are bases for
V, W, respectively. Let B = {vy,...,v,} and B’ = {w1,...,wy}. Then the
matrix of T with respect to the bases B, B is the m X n matrix [T g, g whose
Jjth column is [T'v;] g/. In other words, if

m
T’Uj: E Q5 Wy,
i=1

then [T']g, g = (ai;). When V = W and B = B’, then we write simply [T']z for
[T]5,5-

The standard basis for C™ is the set {ey, . . ., e, } where ¢; is the vector with 1 in
the 7th coordinate and 0 in all other coordinates. So when n = 3, we have

e1 = (1,0,0), ex=(0,1,0), e3=(0,0,1).

Throughout we will abuse the distinction between End(C™) and M,,(C) and the
distinction between GL(C™) and GL,,(C) by identifying a linear transformation
with its matrix with respect to the standard basis.

Suppose dim V' = n and dim W = m. Then by choosing bases for V' and W
and sending a linear transformation to its matrix with respect to these bases we see
that:

End(V) = M, (C);
GL(V) = GL,(C);
Hom(V, W) = M, (C).
Notice that GL;(C) = C* and so we shall always work with the latter. We

indicate IV is a subspace of V' by writing W < V.
If Wi, Wy <V, then by definition

W1+W2:{w1+w2|w1 € Wy, ws EWQ}.
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This is the smallest subspace of V' containing W; and Ws. If, in addition,
Wi N Wo ={0}, then Wy + W is called a direct sum, written W1 & Ws. As vector
spaces, W1 @ Wy = Wy x Wy via the map Wy, x Wy — W; @ Wy given by
(w1, ws) — wy 4+ ws. In fact, if V and W are any two vector spaces, one can form
their external direct sum by setting V @& W =V x W. Note that

More precisely, if B; is a basis for W, and Bs is a basis for Wy, then By U By is a
basis for W7 & Ws.

2.2 Complex Inner Product Spaces

Recall that if z = a+bi € C, then its complex conjugate is Z = a — bi. In particular,
2%z = a® + b% = |2|%. An inner product on V is a map

(,):VxV-—C
such that, for v, w, v1,vo € V and ¢, co € C:

s (c1v1 + cauz, w) = c1(vi, w) + c2(v2, w);
* (w,v) = (v,w);
e (v,v) > 0and (v,v) = 0if and only if v = 0.

A vector space equipped with an inner product is called an inner product space.
The norm ||v|| of a vector v in an inner product space is defined by ||v|| = 1/ (v, v).

Example 2.2.1. The standard inner product on C" is given by

((a1,...,an), (b1, .. by)) = Zaib_i.

Two important properties of inner products are the Cauchy—Schwarz inequality
(v, w)| < ol - [|w]
and the triangle inequality
[v 4wl < [|v]| + [Jwl].

Recall that two vectors v,w in an inner product space V are said to be
orthogonal if (v,w) = 0. A subset of V is called orthogonal if its elements are
pairwise orthogonal. If, in addition, the norm of each vector is 1, the set is termed
orthonormal. An orthogonal set of non-zero vectors is linearly independent. In
particular, any orthonormal set is linearly independent.
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Every inner product space has an orthonormal basis. One can obtain an
orthonormal basis from an arbitrary basis using the Gram-Schmidt process [4,
Theorem 15.9]. If B = {ey,...,e,} is an orthonormal basis for an inner product
space V and v € V, then

v = <U, €1>€1 +-+ <’U, €n>€n
In other words,

vl = ({(v,e1),...,{(v,en)).

Example 2.2.2. For a finite set X, the set C* = {f: X — C} is a vector space
with pointwise operations. Namely, one defines

(f+9)(@) = f(z) + g(2);
(cf)(z) = cf(z).

For each € X, define a function §,.: X — C by

1 2=y
0z(y) =
(v) {0 ety

There is a natural inner product on CX given by

(fo9) = 3 F@)glo).

zeX

The set {J, | € X} is an orthonormal basis with respect to this inner product. If
f € CX, then its unique expression as a linear combination of the 4, is given by

f=> fx).
reX
Consequently, dim C* = | X]|.
Direct sum decompositions are easy to obtain in inner product spaces. If
W <V, then the orthogonal complement of W is the subspace
Wt ={veV|(ww)=0forallwe W}.
Proposition 2.2.3. Let V' be an inner product space and W < V. Then there is a
direct sum decomposition V=W & W+,

Proof. First,if w € W N W+ then (w, w) = 0 implies w = 0; s0o W NW+ = {0}.
Let v € V and suppose that {ey, ..., e} is an orthonormal basis for W. Put & =
(v,e1)er + -+ (v,em)em and z = v — 0. Then © € W. We claim that z € W+,
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To prove this, it suffices to show (z,e;) = 0 forall ¢ = 1, ..., m. To this effect we
compute

<Z,61‘> = <Uvei> - <1A)aei> = <Uvei> - <1),61'> =0
because {ej,..., e} is an orthonormal set. As v = 9 + z, it follows that V' =
W + W+, This completes the proof. O

We continue to assume that V' is an inner product space.

Definition 2.2.4 (Unitary operator). A linear operator U € GL(V) is said to be
unitary if

({Uv,Uw) = (v, w)

forallv,w € V.

Notice that if U is unitary and v € ker U, then 0 = (Uv,Uv) = (v, v) and so
v = 0. Thus unitary operators are invertible. The set U (V') of unitary maps is a
subgroup of GL(V').

If A = (a;;) € My,,(C) is a matrix, then its transpose is the matrix AT =
(aji) € Myum(C). The conjugate of Ais A = (a;;). The conjugate-transpose or
adjoint of A is the matrix A* = AT. One can verify directly the equality (AB)* =
B* A*. Routine computation shows that if v € C"™ and w € C™, then

(Av,w) = (v, A*w) (2.1

where we use the standard inner product on C"™ and C™. Indeed, viewing vectors as
column vectors one has (v1,v2) = vivg and so (Av, w) = (Av)*w = v*(A*w) =
(v, A*w).

With respect to the standard inner product on C”, the linear transformation
associated to a matrix A € G L,,(C) is unitary if and only if A=! = A* [4, Theorem
32.7]; such a matrix is thus called unitary. We denote by U, (C) the group of all
n X n unitary matrices. A matrix A € M, (C) is called self-adjoint if A* = A.
A matrix A is symmetric if AT = A.If A has real entries, then A is self-adjoint if
and only if A is symmetric.

More generally, if 7' is a linear operator on an inner product space V, then
T*:V — V is the unique linear operator satisfying (Tv,w) = (v, T*w) for
all v,w € V. It is called the adjoint of T'. If B is an orthonormal basis for V,
then [T*] g = [T]%. The operator T is self-adjoint if T = T, or equivalently if the
matrix of 7" with respect to some (equals any) orthonormal basis of V' is self-adjoint.

2.3 Further Notions from Linear Algebra

If X C End(V)and W <V, then W is called X -invariant if, for any A € X and
any w € W, one has Aw € W,ie, XW CW.
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A key example comes from the theory of eigenvalues and eigenvectors. Recall
that A € C is an eigenvalue of A € End(V') if AI — A is not invertible, or in other
words, if Av = Av for some v # 0. The eigenspace corresponding to A is the set

Ww={veV|Av =)},

which is a subspace of V. Note that if v € V), then A(Av) = A(\v) = MAv, so
Av € V. Thus V, is A-invariant. On the other hand, if W < V is A-invariant with
dim W = 1 (that is, W is a line), then W C V) for some A. In fact, if w € W'\ {0},
then {w} is a basis for . Since Aw € W, we have that Aw = Aw for some A € C.
So w is an eigenvector with eigenvalue A, whence w € V. Thus W C V.

The trace of a matrix A = (a;;) is defined by

TY(/U ::zzjaﬁ.

Some basic facts concerning the trace function Tr: M,,(C) — C are that Tr is
linear and Tr(AB) = Tr(BA). Consequently, Tr(PAP~!) = Tr(P~1PA) =
Tr(A) for any invertible matrix P. In particular, if T € End(V), then Tr(T)
makes sense: choose any basis for the vector space V' and compute the trace of
the associated matrix.

The determinant det A of a matrix is defined as follows:

det A = Z sgn(o) "A1o(1) * " Gno(n)-
geSy,

We recall that

(o) 1 o is even
sgn(o) =
—1 oisodd.

The key properties of the determinant that we shall use are:

e det A #0ifandonlyif A € GL,(C);
o det(AB) =det A - det B;
o det(A™1) = (det A)~L.

In particular, one has det(PAP~!) = det A and so we can define, for any 7' €
End(V), the determinant by choosing a basis for V' and computing the determinant
of the corresponding matrix for 7.

The characteristic polynomial p o(x) of a linear operator A on an n-dimensional
vector space V' is given by pa(x) = det(x] — A). This is a monic polynomial
of degree n (i.e., has leading coefficient 1) and the roots of p4(x) are precisely
the eigenvalues of A. The classical Cayley—Hamilton theorem says that any linear
operator is a zero of its characteristic polynomial [4, Corollary 24.7].

Theorem 2.3.1 (Cayley—Hamilton). Ler p(z) be the characteristic polynomial
of A. Then pa(A) = 0.
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If A € End(V), the minimal polynomial of A, denoted m 4(x), is the smallest
degree monic polynomial f(x) such that f(A) = 0.

Proposition 2.3.2. If q(A) = 0then ma(x) | q(z).
Proof. Write q(x) = ma(z)f(z) + r(z) with either r(x) = 0, or deg(r(x)) <
deg(ma(x)). Then

0 =q(A) =ma(A)f(A) +r(A) =r(4).

By minimality of m 4 (z), we conclude that r(z) = 0. O

Corollary 2.3.3. If pa(x) is the characteristic polynomial of A, then ma(x)
divides ps(x).

The relevance of the minimal polynomial is that it provides a criterion for
diagonalizability of a matrix, among other things. A standard result from linear
algebra is the following characterization of diagonalizable matrices, cf. [4, Theorem
23.11].

Theorem 2.3.4. A matrix A € M, (C) is diagonalizable if and only if m 4(x) has
no repeated roots.

Example 2.3.5. The diagonal matrix

A:

S O W
o~ O
_ o O

has m4(z) = (x—1)(x —3), whereas ps(z) = (x —1)?(x — 3). On the other hand,

the matrix
1 1
B =
b )

has mp(r) = (z — 1)? = pp(z) and so is not diagonalizable.

One of the main results from linear algebra is the spectral theorem for self-adjoint
matrices. We sketch a proof since it is indicative of several proofs later in the text.

Theorem 2.3.6 (Spectral Theorem). Ler A € M, (C) be self-adjoint. Then there
is a unitary matrix U € U,(C) such that U*AU is diagonal. Moreover, the
eigenvalues of A are real.

Proof. First we verify that the eigenvalues are real. Let A be an eigenvalue of A with
corresponding eigenvector v. Then

Mo, v) = (Av,v) = (v, A*v) = (v, Av) = (Av,v) = (v, v)

and hence A\ = X because (v, v) > 0. Thus \ is real.
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To prove the remainder of the theorem, it suffices to show that C™ has an
orthonormal basis B of eigenvectors for A. One can then take U to be a matrix
whose columns are the elements of B. We proceed by induction on n, the case
n = 1 being trivial. Assume the theorem is true for all dimensions smaller than n.
Let A\ be an eigenvalue of A with corresponding eigenspace V). If V), = C", then
A already is diagonal and there is nothing to prove. So we may assume that V), is a
proper subspace; it is of course non-zero. Then C" = V, & Vi by Proposition 2.2.3.
We claim that VAL is A-invariant. Indeed, if v € V), and w € V/\L, then

(Aw, v) = (w, A*v) = (w, Av) = (w, ) =0

and so Aw € VAJ-. Note that VAJ- is an inner product space in its own right by
restricting the inner product on V, and moreover the restriction of A to V)\J- is
still self-adjoint. Since dim VAJ‘ < n, an application of the induction hypothesis
yields that V)\J- has an orthonormal basis B’ of eigenvectors for A. Let B be any
orthonormal basis for V). Then B U B’ is an orthonormal basis for C™ consisting of
eigenvectors for A, as required. O

Exercises

Exercise 2.1. Suppose that A, B € M,,(C) are commuting matrices, i.e., AB =
BA. Let V), be an eigenspace of A. Show that V), is B-invariant.

Exercise 2.2. Let V' be an n-dimensional vector space and B a basis. Prove that the
map F': End(V) — M, (C) given by F(T') = [T]p is an isomorphism of unital
rings.

Exercise 2.3. Let V be an inner product space and let W < V be a subspace. Let
v € V and define © € W as in the proof of Proposition 2.2.3. Prove that if w € W
with w # 0, then ||[v — 9]| < |[v — w||. Deduce that ¢ is independent of the choice
of orthonormal basis for W. It is called the orthogonal projection of v onto V.

Exercise 2.4. Prove that (AB)* = B*A*.
Exercise 2.5. Prove that Tr(AB) = Tr(BA).

Exercise 2.6. Let V' be an inner product space and let 7': V' — V be a linear
transformation. Show that 7" is self-adjoint if and only if V' has an orthonormal
basis of eigenvectors of 7" and the eigenvalues of 1" are real. (Hint: one direction is
a consequence of the spectral theorem.)

Exercise 2.7. Let V' be an inner product space. Show that U € End(V') is unitary
if and only if ||[Uv]|| = ||v|| for all vectors v € V. (Hint: use the polarization formula
(v,w) =1/4 [l +wl® = [lv — w[*])
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Exercise 2.8. Prove thatif A € M,,(C), then there is an upper triangular matrix 7'
and an invertible matrix P such that P~' AP = T (Hint: use induction on n. Look
at the proof of the spectral theorem for inspiration.)

Exercise 2.9. This exercise sketches a proof of the Cayley—Hamilton Theorem
using a little bit of analysis.

1. Use Exercise 2.8 to reduce to the case when A is an upper triangular matrix.

2. Prove the Cayley—Hamilton theorem for diagonalizable operators.

3. Identifying M, (C) with €™, show that the mapping M,,(C) — M, (C) given
by A — pa(A) is continuous. (Hint: the coefficients of p4(x) are polynomials
in the entries of A.)

4. Prove that every upper triangular matrix is a limit of matrices with distinct
eigenvalues (and hence diagonalizable).

5. Deduce the Cayley—Hamilton theorem.
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