
Chapter 7
Modularity Maximization and Tree Clustering:
Novel Ways to Determine Effective
Geographic Borders

D. Grady, R. Brune, C. Thiemann, F. Theis, and D. Brockmann

Abstract Territorial subdivisions and geographic borders are essential for
understanding phenomena in sociology, political science, history, and economics.
They influence the interregional flow of information and cross-border trade
and affect the diffusion of innovation and technology. However, most existing
administrative borders were determined by a variety of historic and political
circumstances along with some degree of arbitrariness. Societies have changed
drastically, and it is doubtful that currently existing borders reflect the most logical
divisions. Fortunately, at this point in history we are in a position to actually measure
some aspects of the geographic structure of society through human mobility. Large-
scale transportation systems such as trains and airlines provide data about the
number of people traveling between geographic locations, and many promising
human mobility proxies are being discovered, such as cell phones, bank notes,
and various online social networks. In this chapter we apply two optimization
techniques to a human mobility proxy (bank note circulation) to investigate the
effective geographic borders that emerge from a direct analysis of human mobility.
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7.1 Introduction

The geographic compartmentalization of maps into coherent territorial units is not
only essential for the management and distribution of administrative responsibilities
and the allocation of public resources. Territorial subdivisions also serve as an
important frame of reference for understanding a variety of phenomena related to
human activity. Existing borders frequently correlate with cultural and linguistic
boundaries or topographical features [17, 34], they represent essential factors in
trade and technology transfer [19, 29], and they indirectly shape the evolution
of human-mediated dynamic processes such as the spread of emergent infectious
diseases [11, 12, 21, 32].

The majority of existing administrative and political borders, for example in
the United States and Europe, evolved over centuries and typically stabilized
many decades ago, during a time when human interactions and mobility were
predominantly local and the conceptual separation of spatially extended human pop-
ulations into a hierarchy of geographically coherent subdivisions was meaningful
and plausible.

However, modern human communication and mobility has undergone massive
structural changes in the past few decades [30, 34]. Efficient communication
networks, large-scale and widespread social networks, and more affordable long-
distance travel generated highly complex connectivity patterns among individuals in
large-scale human populations [3,9]. Although geographic proximity still dominates
human activities, increasing interactions over long distances [7, 25, 38] and across
cultural and political borders amplify the small-world effect [31, 41] and decrease
the relative importance of local interactions.

Human mobility networks epitomize the complexity of multi-scale connectivity
in human populations (see Fig. 7.1). More than 17 million passengers travel each
week across long distances on the United States air transportation network alone.
However, including all means of transportation, 80% of all traffic occurs across
distances less than 50 km [7, 8]. The coexistence of dominant short-range and
significant long-range interactions handicaps efforts to define and assess the location
and structure of effective borders that are implicitly encoded in human activities
across distance. The paradigm of spatially coherent communities may no longer be
plausible, and it is unclear what structures emerge from the interplay of interactions
and activities across spatial scales [7, 8, 25, 40]. This difficulty is schematically
illustrated in Fig. 7.2. Depending on the ratio of local versus long-range traffic,
one of two structurally different divisions of subpopulations is plausible. If short-
range traffic outweighs long-range traffic, local, spatially coherent subdivisions
are meaningful. Conversely, if long-range traffic dominates, subdividing into a
single, spatially de-coherent urban community and disconnected suburban modules
is appropriate and effective geographic borders are difficult to define in this case.

Although previous studies identified community structures in long-range mobil-
ity networks based on topological connectivity [28,36], this example illustrates that
the traffic intensity resulting from the interplay of mobility on all spatial scales must
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Fig. 7.1 The Where’s George? network. Multi-scale human mobility is characterized by dominant
short-range and significant long-range connectivity patterns. The illustrated network represents a
proxy for human mobility, the flux of bank notes between 3,109 counties in the lower 48 United
States. Each link is represented by a line, the color scale encodes the strength of a connection from
small (dark red) to large (bright yellow) values of wi j spanning four orders of magnitude

AB BA

Fig. 7.2 A simplified illustration of generic traffic patterns between and within metropolitan
mobility hubs (A and B), with two types of connections wL and wD, local traffic connecting
individual hubs to smaller nodes in their local environment (blue) and long-distance links
connecting the hubs (red). Depending on the ratio of local and long-range flux magnitude,
two qualitatively different modularizations are plausible. If wL � wD, two spatially compact
communities are meaningful (left), whereas if wL � wD, the metropolitan centers belong to one
geographically delocalized module (orange), effectively detached from their local environment,
yielding three communities altogether (right)

be taken into account. Obtaining comprehensive, complete, and precise datasets on
human mobility covering many spatial scales is a difficult task, and recent studies
have followed a promising alternative strategy based on the analysis of proxies that
permit indirect measurement of human mobility patterns [7, 15, 16, 25, 30, 38].

We focus on one human mobility proxy, a dataset collected at the website www.
wheresgeorge.com. This website hosts a bill-tracking game called Where’s George?
in which participants can tag an individual US banknote of any denomination by
logging in to the website and entering the bill’s serial number along with their
location. Subsequent participants who receive the bill may do the same, thereby

www.wheresgeorge.com
www.wheresgeorge.com
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recording a part of the spatial trajectory the bill follows during its lifetime. We
use this information to construct a network whose nodes represent counties in the
continental United States and whose edges encode the number of bills exchanged
between pairs of counties; details of this and a discussion of some statistics of the
data are given in Sect. 7.3.

Both of our analyses rest on the idea of finding community partitions of the
network, that is, dividing all of the nodes into a set of mutually disjoint groups
or communities. A community of nodes can be defined in many different ways, but
all definitions try to capture some aspect of the intuitive idea of a community: a set
of nodes that belong together, or are more similar to one another than they are to the
rest of the population.

Our first analysis in Sect. 7.2 uses a modularity maximization technique to
identify community partitions. Modularity is a method of scoring any given
community partition in a network. A partition with a high modularity score has
many more intra-group links, and fewer inter-group links, than expected by random
chance. Our optimization algorithm searches for high-modularity partitions through
a stochastic, simulated annealing process.

We go on to determine community partitions in Sect. 7.6 by searching for nodes
with similar topological features, namely their shortest-path tree. Each node is
the root of a shortest-path tree that comprises a minimal set of the strongest
links connecting that node to the rest of the network. By looking for topological
similarities between shortest-path trees, we identify groups of nodes that have
similar patterns of connectivity.

With both methods, once a community partition is identified, a corresponding
geographic border structure is produced simply by drawing borders between
counties that do not belong to the same community, and in Sect. 7.5 we discuss how
a superposition of border structures alleviates some of the long-standing weaknesses
of modularity maximization. The fact that communities tend to be spatially compact
is one of the most surprising findings of this research, and we conclude in Sect. 7.7
by developing a method for comparing border structures and examining the degree
to which effective mobility borders line up with various existing borders, such as
state boundary lines, census areas, and economic areas.

7.2 Network Modularity

This section introduces the modularity measure and describes the simulated anneal-
ing algorithm we use for finding maximal-modularity community partitions.

We assume here that W is a square, symmetric matrix that represents a symmet-
ric, weighted network; the elements wi j are nonnegative and measure the strength of
the connection between nodes i and j. Based on the idea that two nodes i and j are
effectively proximal if wi j is large, we search for a community partition of the nodes
that has a high value of modularity [13, 24, 35]. This standard network-theoretic
measure of community structure prefers partitions such that the intra-connectivity
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of the modules in the partition is high and inter-connectivity between them is low as
compared to a random null model. Given a partition P of the nodes into k modules
Mn, the modularity Q(P) is defined as

Q = ∑
n

ΔFn (7.1)

in which ΔFn = Fn −F0
n is the difference between Fn, the fraction of total mobility

within the module Mn, and the expected fraction F0
n of a random network with an

identical weight distribution p(w). Q cannot exceed unity; high values indicate that
a partition successfully groups nodes into modules, whereas random partitions yield
Q ≈ 0. Maximizing Q in large networks is an NP-hard problem [6], but a variety of
algorithms have been developed to systematically explore and sample the space of
possible divisions in order to identify high-modularity partitions [13, 22].

7.2.1 Finding Optimal Partitions

As discussed in more detail in Sect. 7.4, our method relies on finding several differ-
ent high-modularity partitions, which restricts the range of applicable algorithms.
For example, the deterministic divisive algorithms described by Newman and
Girvan [35] cannot find several different local maxima of the modularity function.
In contrast, Monte Carlo algorithms return different partitions with probabilities that
monotonically increase with the corresponding modularity values, one of which
is the simulated annealing algorithm described by Guimerà and Amaral [27].
Additionally, this algorithm has been found to perform the best in terms of correctly
identifying modules in networks with artificial community structure in a survey by
Danon et al. [13], which lead us to choose this algorithm for our work.

The partition vector P is initialized such that each of the N nodes is in its own
module, Pi = i. Alternatively, one could randomly assign each node to one of a
few modules to form the initial partition. We found, however, that in this case the
algorithm will split these few large modules into a large number of very small
modules before slowly merging them into the final result. Since splits of large
modules, involving a recursive simulated annealing run, are computationally very
expensive, we avoid them by starting with a partition of single-node modules.

A small modification of the partition is then made (see below) to obtain a new
partition P′ and its effect on the modularity value, ΔQ = Q(P′)−Q(P). If ΔQ > 0,
the new partition is better than the old one and we replace P = P′. If ΔQ < 0, the
partition is only accepted with probability pT (ΔQ) = exp(ΔQ/T ), where T is a
“temperature” that controls the typical penalty on Q we are willing to accept with
the new partition P′.

This procedure is repeated a number of times, initially with a high T =T0 accept-
ing modifications with large negative impact on modularity and therefore allowing
to sample multiple local maxima. After O(N2) modifications, the temperature is
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lowered by a cooling factor c. When T is small enough, worse partitions are not
accepted anymore and the partition P has “annealed” into a local maxima of the
modularity landscape Q(·).

During each temperature step, we intersperse f N2 local with f N global mod-
ifications of the partitions, where f is a tuning parameter. A local modification
is a switch of one node to another, randomly selected, module, while a global
modification can be a merge of two or a split of one randomly selected module.
Finding a suitable split of a module that is not immediately rejected is done by
recursively running a simplified version of the simulated annealing algorithm on it:
the module in question is extracted and treated as an independent network, initially
randomly partitioned into two modules. Only local modifications are allowed while
annealing this bipartition into a local modularity maximum. Afterwards, the split
module is replaced into the full network and evaluated against the modularity value
of the full partition.

We observed that the global structure of the partition is found quickly by the
algorithm and mostly only local modifications are accepted at low temperatures.
Since the split operations are computationally intensive, we therefore track the
number of rejected split modifications in each temperature step and reduce the
probability of future trials if that number is high.

To generate the large ensemble of partitions discussed in Sect. 7.5, we used T0 =
2.5 · 10−4 as initial temperature, c = 0.75 as the cooling factor, and f = 0.05. We
abort the procedure and accept the partition as “optimal” if no better partition is
found in three consecutive temperature steps.

The run time of this stochastic algorithm depends in a complex way on both the
size and the structure of the the input, and therefore the time complexity does not
scale with a simple function of the input size. However, we found the algorithm to
perform very well and in acceptable runtime (60–90 minutes on a 2.8 GHz processor
for most runs) with the configuration given above, although these parameters are
less conservative than those proposed by Guimerà et al. [27]. The large ensemble
of resulting partitions (Fig. 7.15) has a tight distribution of modularity values,
indicating the algorithm tends to converge onto a stable maximum.

7.3 A Proxy for Multiscale Human Mobility Networks

Here, we construct a proxy network for human mobility from the geographic
circulation of banknotes in the United States. Movement data was collected using
the online bill-tracking game at www.wheresgeorge.com. Individuals participating
in this game can mark individual bills and return them to circulation; other
individuals who randomly receive bills can report this find online along with their
current location (zip code). Our analysis is based on the intuitive notion that the
coupling strength between two locations i and j increases with wH

i j , the number of
individuals that travel between a pair of locations per unit time, and furthermore
that the flux of individuals in turn is proportional to the flux of bank notes,

www.wheresgeorge.com
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Table 7.1 Denominations in the WG dataset

Denomination $1 $2 $5 $10 $20 $50 $100

Number of bills 9,931,261 36,639 1,069,427 401,101 461,076 24,209 26,526
Fraction [%] 83.11 0.31 8.95 3.36 3.86 0.20 0.22

Table 7.2 Absolute number and relative fraction of bills
based on Federal Reserve Bank

FRB Code Location Count Fraction [%]

A Boston 799,537 6.69
B New York City 1,325,942 11.10
C Philadelphia 822,340 6.88
D Cleveland 661,278 5.53
E Richmond 948,516 7.94
F Atlanta 1,565,732 13.10
G Chicago 1,207,448 10.10
H St. Louis 472,930 3.96
I Minneapolis 360,194 3.01
J Kansas City 713,393 5.97
K Dallas 869,866 7.28
L San Francisco 2,203,063 18.44

denoted by wi j. Evidence for the validity of this assumption has been obtained
previously [7, 8, 25] and we provide further evidence below.

As of January 15th, 2010 a total of 187,925,059 individual bills are being tracked
at the website www.wheresgeorge.com. Approximately 11.24% of those have had
“hits”, that is they were reported a second time at the site after initial entry. The
current analysis is based on a set of N0 = 11,950,239 bills that were reported at
least a second time. For each bill n we have a sequence of pairs of data

Bn = {Zn,i,Tn,i} i = 0, . . . ,Ln n = 1, . . . ,N0

of zip codes Zn,i and times Tn,i at which the bill was reported. Each Bn reflects a
geographic trajectory of a bill with Ln individual legs. In total, we have 14,612,391
single legs in our database. Note that the majority (81.78%) of trajectories are
single-legged reflecting a reporting probability of ≈20% during the lifetime of a
bill.

The set of Bn represents the core dataset of our analysis. For each bill we have
additional information:

1. Denomination: $1, $2, $5, $10, $20, $50, or $100. The fraction of each
denomination is depicted in Table 7.1.

2. The Federal Reserve Bank code, A through L, corresponding to one of 12 of the
United States Federal Reserve Banks that issued the bill. The fraction of bills as
a function of FRB origin is provided in Table 7.2.

www.wheresgeorge.com
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We restrict the analysis to the lower 48 states and the District of Columbia (thus
excluding Hawaii and Alaska) and consider only legs with origin and destination
locations in these states, reducing the original dataset to 11,759,420 bills (98.40%
of the original data) and 14,376,232 trajectory legs (98.38%).

The spatial resolution of the dataset is given by 41,106 zip codes, with mean
linear extent of 14 km. The mean linear extent of the lower 48 states is 2,842 km
defining the bounds of the system. For each zip code Zi we use centroid information
to associate with each report a longitude/latitude location x = (Θ ,φ), such that each
trajectory n corresponds to a sequence of geographic locations Xi with i = 1, . . . ,Ln:

tn : {Xn,0,ΔTn,1,Xn,1, . . . ,ΔTn,Ln ,Xn,Ln} with n = 1, . . . ,N0, (7.2)

where Xn,0 is the initial entry location, and ΔTn,i = Tn,i−Tn,i−1 are inter-report times.

7.3.1 Geographical Distributions

Based on these trajectories we define the density of initial entries as

pIE(x) =
1
N

N

∑
n=1

δ (x−Xn,0), (7.3)

and the density of reports as

pR(x) =
1
N

N

∑
n=1

1
Ln

Ln

∑
i=1

δ (x−Xn,i), (7.4)

where δ is the Dirac delta function, equal to 1 when its argument is 0 and equal to
0 otherwise.

In order to assess the spatial distribution of reports and initial entries and to
quantify the correlation with the population density we compute the number of
reports and initial entries for each of the M = 3,109 counties in the lower 48 states.
Defining for each county k a characteristic function

χk(x) =

{
1 if x ∈ Pk

0 otherwise
(7.5)

where Pk is the polygon defining the county’s interior, the number of reports and
initial entries in county k are given by

mR(k) = 〈χk〉R =
∫

χk(x) pR(x)dx and mIE(k) = 〈χk〉IE =
∫

χk(x) pIE(x)dx,

respectively. Figure 7.3 compares the distribution of reports mR(k), initial entries
mIE(k) and the population P(k) of the 3,109 counties. As all three quantities are
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Fig. 7.3 The frequencies of reports (top) and initial entries (middle) correlate with the county
population (bottom) in the lower 48 states
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positive and vary over many orders of magnitude, the maps depict log10(mR),
log10(mIE) and log10(P). Qualitatively, reports and initial entries correlate strongly
with the population density. Computing the correlation coefficient of the logarithmic
quantities yields c(R,P) = 0.933 and c(IE,P) = 0.819. Despite the expected in-
crease of mR(k) and mIE(k) with P(k), only the report count increases approximately
linearly with population size, whereas initial entries show a deviation for small
populations. We believe that this deviation is a consequence of the social difference
between the subpopulation of “Georgers” that are responsible for initiating bills and
entering them into the system, “actively” playing the game, and the larger group
of people that randomly receive a bill and report it, “passively” participating. This
hypothesis could explain that areas with higher population densities contain a larger
proportion of internet-savvy communities that are inclined to become Georgers and
initiate bills. In order to exclude a potential bias caused by this effect we exclude all
the legs in (7.6) that contain an initial entry as the origin, i.e. we only investigate the
reduced set

t2,n : {Xn,1,ΔTn,2,Xn,2, . . . ,ΔTn,Ln ,Xn,Ln} with n = 1, . . . ,N0, (7.6)

that excludes the first legs of all tn. Excluding the first leg reduces the number of
bills to 4,743,330. However, the key results, for example the border structures
discussed in Sect. 7.5, are robust against the inclusion of initial entries. Computing
mobility networks based on either set, tn or t2,n does not change the observed pattern
significantly.

7.3.2 Distance and Time: Spatially Averaged Quantities

From t2,n we extract pairs of spatio-temporal leg distances {ds(Xn,i,Xn,i−1),ΔTn,i},
where ds(·, ·) denotes the distance on a sphere (shorter segment of the great circle
that passes through both points). This type of dataset was first investigated in 2006
based on a much smaller core dataset of bill trajectories [7]. In particular, the
combined probability density (pdf)

p(r, t) = 〈δ (r− ds(Xn,i,Xn,i−1))δ (t −ΔTn,i)〉 , (7.7)

was estimated as well as marginal pdfs p(r) and p(t). The central finding of the
2006 study was that p(r)∼ r−(1+β ) and that the time evolution of the density (7.7)
can be described by a bi-fractional diffusion equation. Here, we reproduce some
of the properties before we construct the mobility network used in the main text.
Figure 7.4 shows the short time pdf of a bill traversing a distance r in a time t < τ
where we chose τ = 4 days. Using maximum likelihood we find this function can
be described by a power-law

p(r)∼ 1

r1+β with β = 0.7056± 0.0659.
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Fig. 7.4 The estimated probability p(r|t < τ) of a bill traversing a distance r in time t < τ where
τ = 4 days. In red a maximum likelihood fit of the the function p(r) ∼ r−(1+β ) with β = 0.7056

This power law describes the dispersal characteristics on a population-averaged
level. The short-time distance pdf represents a dispersal kernel and for small times
t approximates the instantaneous rate of traversing a distance r.

Complementary to this, temporal aspects of the process can be revealed by
computing the pdf for the time t between reporting events given that these occur
within a small radius r > r0. Figure 7.5 depicts p(t) for all legs with r < 10 km and
a minimal inter-report time of tmin = 1 day. The inter-report times are described well
by a power law moderated by an exponential factor

p(t)∼ t−α e−t/T0 with T0 = 248± 27, α = 0.99± 0.05. (7.8)

The observed power-law decay ∼ t−1 for times t � T0 is intriguing. These type of
decays have been observed in a multitude of contexts involving human activity, for
instance the time between consecutive phone calls [25], emails, [5] and the number
of words between two identical words in texts [1]. A consequence of this law is
bursting behavior, i.e. given an event occurred at time t0 the probability rate that
an event occurs immediately after the first is higher than expected from ordinary
Poisson statistics. This behavior is best illustrated by the so-called hazard function
h(t) that quantifies the instantaneous probability rate of an event happening at t
given that the last event occurred at t = 0. If we let

P(τ > t) =
∫ ∞

t
p(s)ds,
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Fig. 7.5 Inter-report time statistics. (Left) The function p(t|r < r0) for r0 = 10 km. The observed
function can be accounted for by an initial algebraic decay t−1 moderated by an exponential
function for large arguments. The red dashed curved is a fit obtained from maximum-likelihood
estimation. (Right) The hazard function h(t) that represents the instantaneous rate of an event at
time t provided that an event occurred at t = 0. The dashed lines represent reporting rates of once
per 2 weeks (top), once per month (middle) and once per T0 = 248 days (bottom). (Bottom) p(t)
for very short times. A zoom-in resolves daily oscillations modulated by the decay observed on the
left. These oscillations indicate that users tend to report to the website at the same time of the day
with the highest probability

be the cumulative probability that the second event occurs at a time τ later than t,
the hazard function is defined by

P(τ > t) = e−
∫ t

0 h(s)ds.

For a Poisson process with rate γ we have

h(t) = γ ⇒ P(τ > t) = e−γt .

The hazard function can be computed according to

h(t) =− d
dt

log [P(τ > t)] =
p(t)

P(τ > t)
.
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Figure 7.5 depicts the function h(t) for inter-report times in the WG data. For small
times (t < 1 week) the probability rate for a report is of the order of one report per
two weeks, which is also the expected time between two reports in this time window.
For larger times (t > 100 days) the constant value of 1/T0 is approached, equivalent
to one report in 3/4 of a year. Possible explanations of the bursting behavior and the
initial algebraic decay in p(t) are a strong behavioral heterogeneity of players that
participate in the game or an effective queueing in the system, i.e. bills may enter
shops and initially have a comparatively high likelihood of leaving, being “on top
of the stack.” As time passes these bills may “get stuck” and equilibrate to the long
time scale present in the system.

7.3.3 Definition of the Mobility Network

From the trajectories defined by (7.6) and the characteristic functions of the
counties (7.5) we construct a matrix w̃i j that counts the number of legs which
originate at county i and terminate at j,

w̃i j =
N

∑
n=1

Ln

∑
k=2

χi
(
Xn,k−1

)
χ j

(
Xn,k

)
Θ(T −ΔTn,k),

where Θ(·) is the Heaviside step-function. In order to exclude potential biases
induced by initial entries we ignore the first leg of all trajectories (k = 2 in the
above sum). This choice is motivated by the fact that the community of individuals
that initiate bills might be less representative than those that find bills and report
them. Indications that this might have an effect are supported by the different
scaling behavior of initial entry frequencies with population as compared to report
frequencies with population. The factor Θ(T −ΔTn,k) excludes legs that have an
inter-event time larger than time T . The matrix w̃i j need not to be symmetric, as the
flux of bills from i → j need not equal those that travel j → i. However, as Fig. 7.6
indicates the flux matrix is statistically symmetric. Plotting w̃i j against w̃ ji indicates
a clear mean linear relationship. Since we base our analysis on the flux of money
between two given counties we symmetrize the network and use wi j in our analysis
defined by

wi j =
1
2
(w̃i j + w̃ ji) ,

which of course also depends on the time threshold parameter T . Choosing the
optimal value for T is a trade-off between trying to estimate instantaneous flux,
i.e. choosing T as small as possible, and using as many legs as possible to decrease
fluctuations, i.e. choosing large values for T . Choosing a value for T < 30 days
for instance rules out bills that visit a Federal Reserve Bank in between reports
in counties i and j, as bills that enter FRBs do not return to circulation until
approximately 3–4 weeks after entering the FRB. To make sure that our results do
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Fig. 7.6 Symmetry of flux
network w̃i j

not significantly change as the parameter T is varied we performed the analysis
for various values of T ranging from a few days to T = 1 year. The computed
border structure does not significantly depend on the value of T . Decreasing T thins
out the network and reduces the overall connectivity, yet the effects are similar to
bootstrapping the network randomly, a process that also does not change our results
and is discussed in Sect. 7.7.1.

7.3.4 Gravity as a Null Model

In addition to the empirical data described above, we also construct a synthetic
mobility network based on the well-known gravity law hypothesis [2,10,42] to serve
as a null model. In gravity models, the interaction strength between a collection of
sub-populations with geographic positions xi, sizes Ni (obtained from census data,1)
and distances di j =

∣∣xi − x j
∣∣ is given by

pi j ∝
Nα

i Nβ
j

di j
1+μ (7.9)

in which α , β , and μ are non-negative parameters.

1http://www.census.gov.

http://www.census.gov


7 Novel Ways to Determine Effective Geographic Borders 183

α

μ

log(χ2
w

 + χ2
f
 + χ2

d
)

0.8 0.9 1 1.1 1.2

−0.4

−0.2

0

0.2

0.4

0.6

0.8 −2

−1.5

−1

−0.5

0

Fig. 7.7 χ2 goodness-of-fit for different parameters of the gravity law. The minimum is at
(α ,μ) = (0.96,0.3)

To create a model network comparable to our data, we first compute pi j for all
counties i and j in the continental U.S. and normalize them such that ∑i, j pi j = 1. We
then interpret these values as probabilities for a travel event to happen between the
two counties (or, speaking in terms of the original data source, a dollar bill report).
Thus, starting with all-zero link weights wi j, we repeatedly draw a pair of nodes
according to pi j and increase the corresponding wi j by one, until approximately the
same connectivity (number of non-zero wi j) as in the real-data network is reached.

We generated gravity networks for different parameter values and gauged them
against our real data by comparing the distributions of first-order network statistics
to find the best fit to our data. Distributions have been compared by log-binning the
values and computing the χ2 statistic

χ2 =
n

∑
i

(NG
i −NR

i )
2

NR
i

where n is the number of bins and NG
i (NR

i ) is the number of values from the gravity
(real-data) network in bin i.

Our real data is symmetric and node fluxes are proportional to population sizes,
therefore we assume α = β ≈ 1 to narrow down the search volume in parameter
space. We computed χ2 for the distribution of link weights, node fluxes and
geographical distances and used the sum of them, χ2

w+χ2
f +χ2

d , as the goodness-of-
it measure. Figure 7.7 shows this quantity for (α,μ) ∈ [0.8,1.2]× [−0.4,0.9], from
which we concluded that α = β = 0.96 and μ = 0.3 are the best parameter choices.
The resulting network and first-order statistics are shown in Fig. 7.8.
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Fig. 7.8 Comparison of the real-data network (top left) and the gravity model network with α =
β = 0.96 and μ = 0.3 (top right). The bottom plot shows the distributions of geographical distances
d, link weights w, and node fluxes f in the real-data network (blue lines) and the gravity model
(green lines)

Similar to the bootstrapping procedure described in Sect. 7.7.1, we tested the ro-
bustness of the community structure of the model network by generating snapshots
of the network at different connectivities and computing an ensemble of 80 high-
modularity partitions for each snapshot. We found that the modularity statistics are
stable around the target connectivity of 0.0765 (Fig. 7.9).

7.4 Degeneracy and Superposition

Given a mobility network constructed from the Where’s George data, we then
apply the optimization algorithm described in Sect. 7.2 to generate community
partitions. Since the optimization process is stochastic, the resulting partition
varies between realizations of the process. Two representative examples of high-
modularity partitions are displayed in Fig. 7.10. Note that, although modularity only
takes into account the structure of the weight matrix W and is explicitly blind to
the geographic locations of nodes, the effective large-scale modules are spatially
compact in every map. Consequently, although long-distance mobility plays an
important role, the massive traffic along short distances generates spatial coherence
of community patches of mean linear extension l = 633± 250 km. Note however
that although each maps exhibits qualitative similarities between detected large-
scale subdivisions and although each of the maps possess a high modularity score,
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Fig. 7.9 Distributions of modularity values for an ensemble of 80 partitions each computed for
snapshots of the model network at different connectivities. The dashed line corresponds to 0.0765,
the connectivity of the real-data mobility network

Fig. 7.10 High-modularity community partitions of the WG mobility network. The stochastic
algorithm produces different partitions when run many times; these are two representative
examples. Modularity values are 0.6808 (left) and 0.6807 (right)

obvious structural differences exist; in fact, even if it were possible to determine a
partition with maximal modularity, any such partition is not in principle unique. It
is thus questionable whether any single effective map can be considered the most
plausible partition.

Theoretical concerns aside, recent work [23] has identified practical issues
with modularity maximization, in particular the so-called resolution limit. We
demonstrate that a superposition of community partitions can alleviate these issues
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Fig. 7.11 Two networks that expose the resolution limit problem with modularity. The shaded
areas indicate an artificial geography for nicer visualization of the boundaries in the next figures.
(Left) A ring of 34 cliques, each of 6 nodes and connected to their neighbors by single links. (Right)
A network of two 20-node cliques and two five-node cliques

with the modularity score, and to this end discuss its known shortcomings in more
detail.

In fact, it is straightforward to construct networks of which several distinct
partitions with equal and maximum modularity value exist. This degeneracy of
modularity was independently found by Good et al. [26] and marked as a drawback
of the modularity measure.

Fortunato and Barthélemy [23] also report on the resolution limit of modularity.
The authors present two artificial, unweighted networks that exhibit an intuitively
very clear community structure, yet partitions exist that do not reflect this structure
but have a higher modularity value than the partition that does. In particular, these
networks are constructed by connecting multiple fully connected graphs (“cliques”)
with single links (Fig. 7.11). It is clear that every clique should be grouped into
one module, but the best partition according to modularity will group multiple
cliques together. This only occurs if the cliques are small (in terms of number of
links) compared to the full network, thus the modularity measure cannot detect
communities below a certain resolution limit.

Our proposed method combines an ensemble of partitions by focusing on the
boundaries of a partition (“Which adjacent nodes are separated into different
modules?”) rather than its volumes (“Which nodes are grouped together?),” and then
computing for each boundary the fraction of partitions in which it exists. Because
we are interested in geographically embedded networks and modules are virtually
always spatially compact in our case, we can restrict ourselves to boundaries that
are also real geographical borders between nodes. However, the idea can be easily
generalized to non-geographical networks, at the expense of convenient straight-
forward visualization. Since all partitions in the ensemble have a high modularity
value, this method highlights similarities and differences in degenerated partitions,
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Fig. 7.12 (Left) The optimal partition in the clique ring groups pairs of cliques together (the same
color is used for multiple modules). (Center) Example of a partition found by the modularity
optimization algorithm. (Right) Superposition reveals boundaries in the clique ring between every
clique. Color codes the fraction of partitions in which the boundary was found. We use T = 2.5 ·
10−4, c = 0.75, and f = 0.5 for this example and the next

yielding a unique “partition” (or to be more precise, a map) of the network and thus
overcoming the degeneracy problem.

In our method, any single partition obviously suffers from this limitation as well.
However, the resolution limit can be alleviated by looking at an ensemble, if enough
small modules exist to create degeneracies. To illustrate this, we applied our method
to the two example networks from Fortunato and Barthélemy [23]. Figure 7.11 (left)
shows a ring of 34 6-cliques, all connected to their neighbors by a single link. The
intuitive partition in which each clique is in its own module has modularity Qreal =
0.9081 while a partition that groups pairs of cliques together has Qopt = 0.9099.
However, two distinct partitions exist that group pairs of cliques. Thus, an ensemble
of optimal partitions will be composed out of those two partitions, yielding a
boundary map in which every boundary between two cliques appears in 50% of
the ensemble partitions. For nicer visualization, we created an artificial geography
for this network and computed partitions and boundaries, shown in Fig. 7.12. Due to
the nature of our algorithm, the resulting partitions contain a few n-tuples of cliques
and single-clique modules that have not been split or merged into perfect clique-
pairs before the termination criterion, and thus the observed boundaries are stronger
than expected.

The second network proposed in Fortunato and Barthélemy is constructed from
two 20-cliques and two 5-cliques (Fig. 7.11 (right)). Here, the two smaller cliques
are merged into one module by the optimal partition (Qopt = 0.5426), although
one would again expect each of them to be in its own module (Qreal = 0.5416).
Our method is not able to capture the intuitive community structure in this case
(Fig. 7.13), because no degeneracy exists (the partitions in which only one of the
small cliques are grouped with the large one, but not the other, are too far from the
optimum to be produced by the algorithm, Qdeg = 0.4959).

But if we extend the network such that four small cliques exist, the partition
which groups all cliques into their own modules is still suboptimal to any partition
that groups together more than one of the small cliques, but degeneracies are created
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Fig. 7.13 Boundaries found in the clique network shown in Fig. 7.11 (right). Our algorithm is not
able to find a boundary between the two small cliques

Fig. 7.14 Modification of the clique network in Fig. 7.11 (right). Because there are multiple high-
modularity partitions that group the smaller cliques into pairs, our method can detect the correct
community structure in this case

and the ensemble of partitions reveals the true community structure in this network
(Fig. 7.14).

In conclusion, our method is able to dissolve both the degeneracy and resolution
limit problems if enough small modules exist to create degeneracies. In fact, we will
observe small “building blocks” in the WG data that are not seen in single partitions
but emerge from the superposition of a partition ensemble.
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7.5 Assessment of Border Structures

Using the algorithm described in Sect. 7.2, we compute an ensemble of 1,000 parti-
tions of the WG mobility network, all exhibiting a high modularity (Q = 0.6744±
0.0026, see also Fig. 7.15 for the distribution of modularity values) and spatially
compact modules, and perform a linear superposition of the set of maps. This
method extracts features that are structural properties of the entire ensemble. The
most prominent emergent feature is a complex network of spatially continuous
geographic borders (Fig. 7.16). These borders are statistically significant topological
features of the underlying multi-scale mobility network. An important aspect of this
method is the ability to not only identify the location of these borders but also to
quantify the frequency with which individual borders appear in the set of partitions,
a measure for the strength of a border.

Investigating this system of effective mobility borders more closely, we see
that although they correlate significantly with territorial state borders (p < 0.001,
see Sect. 7.7) they frequently occur in unexpected locations. For example, they
effectively split some states into independent patches, as with Pennsylvania, where
the strongest border of the map separates the state into regions centered around
Pittsburgh and Philadelphia. Other examples are Missouri, which is split into two
halves, the eastern part dominated by St. Louis (also taking a piece of Illinois) and
the western by Kansas City, and the southern part of Georgia, which is effectively
allocated to Florida. Also of note are the Appalachian mountains. Representing a
real topographical barrier to most means of transportation, this mountain range only
partially coincides with state borders, but the effective mobility border is clearly

Fig. 7.15 Ensemble statistics
of geographic subdivisions
for a set of N = 1,000
partitions. The number of
modules k in each subdivision
is narrowly distributed around
13 (grey bars), and so are the
conditional distributions of
modularity (superimposed
whisker plots). The ensemble
mean is Q = 0.674±0.0026
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Fig. 7.16 Effective borders emerge from linear superposition of all maps in the ensemble (blue
lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border).
Black lines indicate state borders. Although 44% of state borders coincide with effective borders
(left pie chart), approximately 64% of effective borders do not coincide with state borders. These
borders are statistically significant features of the ensemble of high modularity maps, they partially
correlate with administrative borders, topographical features, and frequently split states

correlated with it. Finally, note that effective patches are often centered around large
metropolitan areas that represent hubs in the transportation network, for instance
Atlanta, Minneapolis and Salt Lake City. We find that 44% of the administrative
state borders are also effective boundaries, while 64% of all effective boundaries do
not coincide with state borders.

7.5.1 Comparison to Gravity Models

We also investigate whether the observed pattern of borders can be accounted for by
the prominent class of gravity models [2,10,42], frequently encountered in modeling
spatial disease dynamics [42]. In these phenomenological models, it is assumed that
the interaction strength wi j between a collection of sub-populations is given by (7.9),
and we construct such a model according to the procedure described in Sect. 7.3.4.
Although their validity is still a matter of debate, gravity models are commonly
used if no direct data on mobility is available. The key feature of a gravity model
is that wi j is entirely determined by the spatial distribution of sub-populations.
We, therefore, test whether the observed patterns of borders (Fig. 7.16) are indeed
determined by the existing multi-scale mobility network or rather indirectly by the
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Fig. 7.17 The border structure of the gravity network (red) partially coincides with the borders in
the original data (blue), but not significantly. The overlap is shown in green, for significance tests
see Sect. 7.7

Fig. 7.18 Sample partitions of the gravity network. Although they share qualitative features with
those from the original network (Fig. 7.10), generic partitions of the gravity model network are
structurally different, typically exhibiting fewer modules per partition, in different locations and
with less spatial compactness

underlying spatial distribution of the population in combination with gravity law
coupling. Figure 7.17 illustrates the borders we find in a network that obeys (7.9).

Comparing this model network to the original multi-scale network we see
that their qualitative properties are similar, with strong short-range connections as
well as prominent long-range links. However, maximal modularity maps typically
contain only five subdivisions with a mean modularity of only Q̄ = 0.4791. Because
borders determined for the model system are strongly fluctuating (Fig. 7.18), they
yield much less coherent large-scale patches. Some specific borders, e.g. the
Appalachian rim, are correctly reproduced in the model. The difference between
the borders of the model system and the empirical data is statistically significant
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(see Sect. 7.7), and we conclude that the sharp definition of borders in the original
multi-scale mobility network and the pronounced spatial coherence of the building
blocks are an intrinsic feature of the real multi-scale mobility network and cannot
be generated by a gravity model that has a maximum first-order statistical overlap
with the original mobility network.

7.6 Shortest-Path Tree Clustering

The methods already discussed successfully extract the structure of geographic
borders inherent in multi-scale mobility networks. Bootstrapping the network
indicates that these structures are surprisingly stable in response to perturbations
of the network, but neither the modularity measure nor the stochastic algorithm we
use to discover partitions provide specific information about the substructures in
the network that make these borders so robust. What feature of the network, more
specifically which subset of links if any, generates the observed borders? In order to
address this question and further investigate the structural stability of the observed
patterns, we developed a new and efficient computational technique based on the
concept of shortest-path trees (SPT). Like stochastic modularity maximization,
this technique identifies a structure of borders that encompass spatially coherent
regions (Fig. 7.19), but unlike modularity this structure is unique. More importantly,
it identifies a unique set of connections in the network, a network backbone, that
correlates strongly with the observed borders.

This second method for identifying community partitions, based on topological
features of the analyzed network, has three parts. Given a network with N nodes
containing a single connected component, we first compute a shortest-path tree for
each node in the network. At least three widely-known algorithms are applicable
(Dijkstra, Floyd–Warshall, and Bellman–Ford) and various optimizations are pos-
sible; in addition, if the input is sparse some of these algorithms improve in time
complexity. In the worst case, however, this can be computed in O(N3) time.

Second, we compute a dissimilarity score for each pair of shortest-path trees, and
using the dissimilarity functions described below, this can also be accomplished in
O(N3) time.

Third and last, we apply hierarchical clustering to the table of dissimilarity
scores, which also takes O(N3) time for a naive implementation (because we
compute the smallest element of an at-largest-N-by-N table N times). Therefore
the entire suggested procedure takes O(N3) time.

As mentioned, various optimizations are possible for computing shortest-path
trees and hierarchical clustering, and these algorithms are so widely used that high-
quality, efficient implementations are easily available. In fact, we find that the
second step, computing dissimilarity scores, actually dominates the running time
although it is by far the simplest computation; this is due to the fact that we use
interfaces to pre-compiled, canned routines for steps 1 and 3, while step 2 is a naive
MATLAB script. In practice the entire analysis can be run start to finish in under a
half hour for our network of N = 3,109 nodes on a circa-2008 laptop.



7 Novel Ways to Determine Effective Geographic Borders 193

Fig. 7.19 By comparing the border structure from SPT clustering with the ensemble of significant
links (those that appear in at least half of the shortest-path trees) we identify topological structures
which reveal the core of the network that explains the majority of border locations. This core is
represented by the network in blue consisting of star-shaped modules centered around large cities
(yellow squares)

7.6.1 Computing Shortest-Path Trees

The shortest path from vertex i to vertex j is the series of edges that minimizes the
total effective distance d = ∑1/wi j along the legs of the path [14]. The distance
along an edge for us is the inverse of the edge weight, as a highly-weighted edge
indicates that two vertices are effectively proximal. (There are no edges with an
infinite distance, because we do not define an edge between vertices if there is zero
weight.)

The shortest-path tree Ti rooted at node i is the union of all shortest paths
originating at i and ending at other nodes. We use the MATLAB interface2 to
the Boost Graph Library3 to compute shortest-path trees. To prevent random
fluctuations in our data from overwhelming the signal, we add a weak link between
neighboring counties.

2http://www.stanford.edu/∼dgleich/programs/matlab bgl/.
3http://www.boost.org/doc/libs/1 41 0/libs/graph/doc/index.html.

http://www.stanford.edu/~dgleich/programs/matlab_bgl/
http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/index.html
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7.6.2 Measuring Tree Distance

A shortest-path tree can be easily represented as a vector of vertex labels T =
[tk],k = 1 . . .N, such that tk is the label of the parent of vertex k, with a special
symbol (perhaps 0) used to indicate the root. There are no disconnected nodes in the
mobility network, thus each tree vector represents a single tree and not a forest. This
representation lends itself to straightforward and meaningful comparisons between
two trees.

We define two related measures of the dissimilarity between two trees. The first,
called parent dissimilarity, asks the question, how many of the vertices in TA do
not have the same parent in TB? We denote this by zp(TA,TB), and it is exactly the
general Hamming distance of two symbol sequences, that is, the number of places
where corresponding labels in TA and TB do not match. The second, called overlap
dissimilarity, asks the question, how many edges do the two trees not share? It is
defined as zo(TA,TB) = smax − s(TA,TB). Here, smax is the largest number of edges
two trees could share, which is the number of vertices less one (since the root does
not contribute an edge). s(TA,TB) is the number of edges that TA and TB do share,
and where zp asks essentially the same question considering edges to be directed,
zo considers edges to be undirected. Also note that although we consider only the
topology of trees when measuring their dissimilarity, the topology is determined
by the weight of edges in the original graph and thus the mobility dynamics. For
both measures, possible z values range from 0 (completely identical trees) to N, the
number of nodes in the network.

We compute both measures for each distinct pair of trees in our network and find
that they are highly correlated (the Pearson correlation coefficient of the two sets
is 0.9980). For this reason, and because of the more straightforward interpretation,
we focus exclusively on zp. The parent dissimilarity values in our data range from 2
to 240.

To test the stability of this measure we also added various amounts of noise to the
original weight matrix; for example, adding 1% noise means that we adjusted each
entry by a random number such that its perturbed value is within 1% of its original
value. We then compute the set of shortest-path trees for the perturbed weight
matrix, calculate the tree dissimilarities, and then compute the Pearson correlation
of the original dissimilarities and the perturbed. The results (0.9995 for 0.1% noise,
0.9984 for 1% noise, 0.9937 for 5% noise) indicate the method is robust against
small perturbations, and in addition we do not observe significant changes in the
structure of borders determined by the perturbed matrices.

7.6.3 Hierarchical Clustering and Borders

The measures described above produce a dissimilarity matrix well-suited for use
with hierarchical clustering [20]. This technique iteratively groups data points
together into clusters that are less and less similar; it begins by identifying the
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Table 7.3 Cophenetic correlation coefficients [37] for
various linkage functions using parent dissimilarity of
trees and inverse weight of links

Linkage zp(Ti,Tj) 1/wij

Single 0.6584 0.1883
Average 0.8048 0.3757
Complete 0.7197 0.1400

Fig. 7.20 Dendrograms from hierarchical clustering. (Left) Using the parent dissimilarity matrix
and average linkage. Colors correspond to a particular community partition depicted in Fig. 7.21.
(Right) Using the inverse weight matrix with noise and average linkages. Even inspection by eye
reveals immediately that clustering of the inverse weight matrix produces a poor fit to the data,
pointing to the need for some type of “pre-conditioning,” here provided by SPT dissimilarity

two points with the lowest dissimilarity and grouping them together, then finding
the next-most-similar data point or group, and so on. When it is necessary to
compare the dissimilarity of one point (or group of points) with another group
of points, a linkage function is used. There are several commonly-used linkage
functions; we compute single linkages (comparing the shortest distance between two
groups), average linkages (the average distance between two groups), and complete
linkages (the greatest distance between two groups) and find that the average linkage
produces the best fit to our data (Table 7.3).

The result of the hierarchical clustering algorithm is a linkage structure that can
be represented graphically with a dendrogram (Fig. 7.20). The radial lines in the
dendrogram represent vertices in our network or groups of vertices, and the arcs
represent a link that joins groups together in the hierarchy. The nearer an arc is to
the center of the circle, the greater the dissimilarity between the groups joined by
the arc.

Each arc corresponds to a geographic border between a set of counties, and the
closer the arc is to the center of the circle, the more significant the border. At the
outermost level, the dendrogram necessarily puts a border around each individual
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Fig. 7.21 The geographic partition determined by cutting the dendrogram of Fig. 7.20 at a
height of 95

county, and we threshold at 30% of the height of the tree (corresponding to a
dissimilarity zp = 41.6019) for the analysis of the WG network.

As you can see in Fig. 7.21, the high-level groups identified by this procedure
are spatially coherent, but may be divided into spatially disjoint regions at certain
heights in the dendrogram.

Hierarchical clustering is also sometimes applied directly to the inverse of the
weights, 1/wi j. We have investigated this method as well and find that it has several
shortcomings. First, to apply a hierarchical clustering algorithm requires computing
a dissimilarity for every pair of data points; since many pairs of counties are not
directly connected by a link in our network (wi j is zero), the inverse does not exist
and it is consequently necessary to add some noise to the weight matrix at the
very first step, representing pairs of vertices that are “extremely distant” but not
disconnected. Second, the linkage structures produced from this approach fit the
data poorly (Table 7.3). Last, one can see by visual inspection of the dendrograms
in Fig. 7.20 that this approach does not yield significant information. Comparing
the dendrograms for the zp and 1/w matrix, we see that in the shortest-path tree
approach most of the links that appear higher in the tree (closer to the center) are
linking together two groups that are strongly dissimilar from one another (seen by
comparing the height of the parent link to the heights of the children links). In the
inverse weight method, this is not true: links high in the tree are linking groups
that are quite similar; that is, inverse weight clustering does not identify groups of
strongly dissimilar vertices.



7 Novel Ways to Determine Effective Geographic Borders 197

Fig. 7.22 Comparing borders from modularity maximization (blue) with SPT clustering (red)
reveals a significant overlap (green). The cumulative topological overlap (see Sect. 7.7) is 0.5282
indicating that the SPTD method represents an alternative computational approach to border
extraction

Although the method yields a unique sequence of topological segmentations, the
observed geographic borders exhibit a strong correlation with those determined by
modularity maximization (Fig. 7.22).

7.6.4 Link Significance

The key advantage of this method is that it can systematically extract properties
of the network that match the observed borders. A way to demonstrate this is to
measure the frequency σ at which individual links appear in the ensemble of all
SPTs, which is conceptually related to their link betweenness [35]. Computing
this link significance σ for each connection, we find that the distribution P(σ) of
the network is bimodally peaked (Fig. 7.23). This is a promising feature of P(σ)
as it allows labeling links as either significant or redundant without introducing
an arbitrary threshold which is necessary for more continuously distributed link
centrality measures. Extracting the group of significant links and constructing a
subnetwork from these links only we observe that this subnetwork matches the
computed border structure. By virtue of the fact that the most frequently shared links
between SPTs are local, short-range connections we see that the SPT boundaries
enclose local neighborhoods and that the boundaries fall along lines where SPTs
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Fig. 7.23 The distribution of link significance σ , defined for each link as the number of shortest-
path trees the link appears in, exhibits a strong bimodal distribution. This implies that SPTD can
sort links into important or not, and that σ is approximately a binary variable

do not share common features. Note that effective metropolitan areas around cities
can be detected with greater precision than modularity, although the western US is
detected as effectively a single community.

Finally, we performed statistical analyses that quantify the overlap of the
effective, mobility-induced borders with those provided by census-related systems.
We choose the set of borders separating the states, the borders defined by the districts
of the 12 Federal Reserve Banks, and the borders of Economic Areas [39]. We
discuss this analysis in more detail in Sect. 7.7, but briefly, we find a significant
correlation with economic boundaries (p < 0.001, z-score 8.024 for the modularity
borders and p < 0.001, z-score 13.29 for the SPT borders).

7.7 Significance and Comparison of Border Structures

7.7.1 Bootstrapping the Where’s George Data

In order to test the robustness of our method against random data removal, we
performed the following bootstrapping analysis. Starting with the full dollar bill
dataset, and the resulting network weight matrix W with elements wi j , we randomly
remove single dollar bill reports until the total flux f = ∑i, j wi j is reduced by a
factor γ . Using this method we constructed several networks for 0 ≤ γ ≤ 0.95 and
computed an ensemble of 100 partitions for every value of γ , using the simulated
annealing algorithm described in Sect. 7.2. We find that the modularity value is
unaffected by bootstrapping even if 95% of the total flux is removed, although the
number of modules in each partition rises as the network is thinned out more than
85% (Fig. 7.24). Also, the boundary structure emerging from superposition of all
partitions is very robust under this procedure (Fig. 7.25). At 20% of the original
flux (γ = 0.8) virtually all of the boundaries found in the complete network are still
identified, although the sparsity of the data evokes some singular counties. Even
with only 5% of the flux, when boundaries become more fuzzy, some of the original
structures are still detected.
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Fig. 7.24 Distributions of modularity values and number of modules for an ensemble of 100 par-
titions computed for each value of the bootstrapping parameter γ . The dashed line corresponds to
78.2%, the amount of flux ignored if all links shorter than 400 km would be removed

Fig. 7.25 Linear superposition of 100 partitions for four different values of the bootstrapping
parameter γ , color-coded according to the fraction of partitions they appear in

7.7.2 Measuring Overlap of Two Boundary Networks

In this section, we describe how to compare boundary networks defined on a planar
graph, in our case the county network of the continental US excluding Alaska.

A boundary network b is simply given by assigning a nonnegative number w to
each edge between adjacent counties: If the two counties are not divided by b, then
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w= 0. Otherwise, w > 0 implies that the border shared between the two counties has
the strength w. In Sect. 7.4, we described how to generate such a boundary network
by superposition of many partitions of the Where’s George money travel network.
We denote this boundary network by the modularity boundaries bM.

We want to quantify how much information the modularity boundaries bM shares
with e.g. a state network, a random network, or a boundary network generated with
another method.

For this we essentially need to determine the cross-correlation between two
boundary networks b and b′. However, cross-correlation itself is not well-suited
for dealing with the non-negativity of the edge weightings, so we calculate a non-
centered version of it. The absolute cross-correlation of the two boundary networks
b and b′ is then given by the normalized scalar product of their edge weightings,
i.e. by

a(b,b′) :=
(1/|E|)∑e∈E b(e)b′(e)√

(1/|E|)∑e∈E b(e)2
√
(1/|E|)∑e∈E b′(e)2

,

where E denotes the set of edges connecting adjacent counties. This quantity lies
between 0 and 1 and equals 1 if and only if the two boundaries are identical up to
scaling.

Apart from the upper bound, this quantity however is difficult to judge. In
particular, we cannot compare right away two cross-correlations between different
networks since a(·, ·) might depend on the number of clusters and inhomogeneity of
weights etc. We avoid finding a direct interpretation of the absolute cross-correlation
by instead considering deviation of observed values against cross-correlations with
a null model.

Such null models are used to tell random occurrences of structures from true
information. One typically wants to keep some statistics of the network fixed while
at the same time randomly sampling from its representational class. This results
in the notion of random graphs with certain additional properties such as Erdös–
Rényi [18] or Barabási–Albert [4]. The key idea is to generate a random network
preserving planarity and possible additional information by using the original
structure and iteratively changing it by a random local modification. For instance
for unweighted networks, a random graph can be generated by “rewiring”: two
distinct edges and two different vertices contained in either of the two are randomly
selected and then swapped. Clearly this operation keeps both degree distributions
fixed. After a certain number of iterations, the thus-generated Markov chain
produces independent samples of the underlying random graph with given degree
distributions [33]. This concept has been generalized to weighted graphs [43]; in
this case, it is debatable whether to swap the whole weighted edge or to split up the
weight.

In our case, we search for a randomization of a boundary network i.e. of a planar,
weighted graph. Rewiring as above is not possible since it would destroy planarity.
Instead, we propose to locally modify the graph at a random county: select a subpath



7 Novel Ways to Determine Effective Geographic Borders 201

1

1

1

2

1

1

1

1

Fig. 7.26 Local modification of a planar graph. We select the bottom left county to modify. The
selected path to modify is shown in bold in the left figure. Its minimal weight is 1. This is subtracted
in the right hand figure, where the complementary path is shown

of its boundary and flip it to its complement. In the case of non-trivial weights, we
reassign a random number between 0 and the minimal edge weight on the subpath.
We have illustrated this procedure on an example in Fig. 7.26.

This procedure is now repeated multiple times until sufficiently de-correlated
samples from the original network are produced. In practice, it is common to choose
iterations in the range of the number of edges in the network or more.

7.7.3 Randomization of the Mean Partition Boundary
of the Where’s George Network

In order to test for significances of calculated similarities, we build a random model
of the mean partition boundary by generating 1,000 random networks using the
above algorithm with >15,000 successful iterations for each random network. The
corresponding maps for the first 900 iterations are shown in Fig. 7.27. Clearly, the
original structure in the boundary network is increasingly diluted, and after >10,000
iterations becomes stably random.

This can be seen by calculating the absolute cross-correlation a(bM,bR) of the
modularity boundary network bM with the random networks bR, when increasing
the number of iterations, see Fig. 7.28. We observe convergence to roughly 0.5 after
about 10,000 steps. This lies well in the range of random correlation with a mean of
0.49 and a standard deviation of 0.028, see histogram in Fig. 7.29(a). This implies
that the randomization procedure converges to a set of random boundary networks,
which can now be used to put calculated autocorrelations into perspective against
this null model.
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Fig. 7.27 Randomization of the modularity boundary network bM. The original network and the
first 900 iterations are shown

7.7.4 Significances when Comparing Boundary Networks
with the Null Model

We describe and quantify overlap of the estimated modularity boundaries bM with
other political or social boundaries. As described before, we can quantify overlap
by determining the absolute cross-correlation a(b,bM). In order to determine inter-
pretable numbers, we compare this value to correlations with random boundaries bR

from a null model.
We now determine significance of coincidence of the modularity boundary

network bM and the SPT boundary network bS with:

• Modularity boundaries bM

• State boundaries



7 Novel Ways to Determine Effective Geographic Borders 203

0 5000 10000 15000
0.4

0.5

0.6

0.7

0.8

0.9

1

number of randomization steps

ab
so

lu
te

 c
or

re
la

tio
n 

w
ith

 b
ou

nd
ar

ie
s

Fig. 7.28 Absolute cross-correlation of the randomized network after the given number of
iterations with the modularity boundary network bM
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Fig. 7.29 Absolute cross-correlation of state and county boundaries when compared with a null
model based on the modularity boundary network bM
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Table 7.4 Comparing boundary overlaps for various boundary networks with the modularity
boundaries bM and the corresponding null model bR using absolute cross-correlation a

Boundary network a(·,bM) a(·,bR) p-value z-score

Modularity boundaries 1.000 0.495±0.028 <10−3 18.15
SPT communities 0.552 0.385±0.024 <10−3 7.03
State boundaries 0.439 0.272±0.018 <10−3 9.46
County boundaries 0.398 0.419±0.023 0.84 0.90
Gravity boundaries 0.260 0.253±0.019 0.35 0.40
Large-range network boundaries 0.198 0.181±0.017 0.14 1.02
Federal reserve district boundaries 0.377 0.227±0.019 <10−3 7.91
Economic area boundaries 0.452 0.307±0.018 <10−3 8.024

• County boundaries (to test for sensitivity of the method against number of
communities)

• Boundaries resulting from the SPT algorithm bS

• Boundaries determined on the gravity model
• Boundaries determined on long-range distances only
• Federal reserve district boundaries (FRB)
• Economic area boundaries (http://www.bea.gov)

The significance is calculated by replacing bM and bS, respectively, by elements
from the corresponding null model.

For illustration we show two histograms and actual values for state and county
boundaries in Fig. 7.29. Clearly, the random cross-correlations are quite different,
which means that we have to interpret the actual values of 0.439 and 0.398 differ-
ently as well. Indeed it turns out that the state value is far from the mean random
cross-correlation 0.272± 0.018, whereas the county one is not (0.419± 0.023).
Indeed, the empirical p-values, determined as the fraction of random correlations
above the observed true one, is 0 in the former and 0.84 in the latter case.

In order to compare cases with large deviation from the distribution, we
determine the z-score that is the distance of the absolute cross-correlation from the
mean of the null model normalized by the standard deviation:

z(b) :=
a(b,bM)−E(a(b,bR))

std(a(b,bR))
,

where E denotes mean and std standard deviation. In the state case, this z-score is
very high, 9.46, which means that the observed correlation is more than 9 standard
deviations away from the random mean. In contrast the county z-score is 0.90,
which means that the observation is within one standard deviation and hence not
significant.

We summarize the calculated cross-correlations in Tables 7.4 and 7.5 for bM

and bS.

http://www.bea.gov
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Table 7.5 Comparing boundary overlaps for various boundary networks with the SPT-based
boundary bS and the corresponding null model bR using absolute cross-correlation a

Boundary network a(·,bS) a(·,bR) p-value z-score

Modularity boundaries 0.552 0.251±0.013 <10−3 22.55
SPT communities 1.000 0.367±0.0164 <10−3 40.63
State boundaries 0.358 0.220±0.0138 <10−3 10.99
County boundaries 0.569 0.562±0.016 0.36 0.44
Gravity boundaries 0.305 0.260±0.016 0.002 2.73
Large-range network boundaries 0.257 0.199±0.015 <10−3 3.94
Federal reserve district boundaries 0.307 0.159±0.013 <10−3 11.79
Economic area boundaries 0.492 0.318±0.013 <10−3 13.29

7.7.5 Discussion

For the state and the SPT boundaries we observe a strong deviation from the null
model when comparing against the modularity boundaries. So we can conclude that
both state boundaries and SPT boundaries are more similar to bM than expected by
chance with a p-value <10−3.

This is not the case for the gravity model, the county boundaries and the long-
range model. In these cases, the cross-correlation with bM is not larger than with a
random model (p-value ≈ 0.44, ≈ 0.84 and ≈ 0.14). This means that they do not
significantly coincide with bM.

The absolute cross-correlation of the FRB boundaries with bM is a(bF,bM) =
0.38, which is significantly high when compared with the null model, which exhibits
cross-correlations of only a(bF,bR) = 0.23± 0.019. We observe a strong deviation
from the null model and can therefore conclude that the FRB boundaries are more
similar to bM than expected by chance with a p-value <10−3.

The corresponding z-score equals 7.91, which is lower than the one for states
(9.46). This implies that the modularity boundaries’ overlap with the states is larger
than the one with the FRB boundaries.

We interpret the results on the FRB boundaries when compared with bM as
follows:

• The structure of bM may be (partially) due to political structure i.e. result from
bS or due to additional money transport within FRB districts i.e. correlate with
bF. Since both bS and bF share strong similarities, in each of the two situations,
we would see overlap with both boundaries, so we can only judge strength of
overlap with respect to the other boundary.

• We quantified strength of overlap by deviation from the null model, and the
corresponding z-score was more than 1.5 standard deviations higher for the state
model. This stronger overlap of states with bF therefore favors the first hypothesis
i.e. the situation that political boundaries are a stronger factor for the pattern
observed in bM. In the case of dominance of the second hypothesis, we would
instead expect to still see overlap with state boundaries, but less overlap than
with the FRB ones.
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