Chapter 6
Defining and Discovering Communities
in Social Networks

Stephen Kelley, Mark Goldberg, Malik Magdon-Ismail,
Konstantin Mertsalov, and Al Wallace

6.1 Introduction

The categorization of vertices in a network is a common task across a multitude of
domains. Specifically, identifying structural divisions into internally well connected
sets have been shown to be useful in computer science, social science, and biology.
In each of these areas, grouping vertices using structural boundaries helps one to
understand the underlying processes of a network. Identifying such groupings is a
non-trivial task and has been a subject of intense research in recent years.

In general, identifying groups of vertices in a network based on structural
properties alone is known as community detection. Methods to identify such groups
take a wide variety of approaches, mirroring the diversity in domains where an
accurate view of structural communities is useful. Depending on the definition of a
community used, one could discover groups that maximize a global quality function,
contain a specific set of substructures, or satisfy a set of local criteria. Each of these
definitions has resulted in a number of methods which aim to produce the “best” set
of communities relative to the definition chosen.

Rather than focusing on a number of features which differentiate these definitions
and methods from each other, this text will focus on perhaps the most fundamental
question in the field of community detection; should groups be disjoint or should
they be allowed to overlap?

In the past, the field of community detection has primarily focused on identifying
a set of groups such that each vertex in the network is assigned to a single
group. This requirement results in a set of disjoint groups covering the entire
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network. However, with the explosion of social network and on-line communication
data available, research has expanded towards methods which consider overlap-
ping groups.

In the remainder of this text, we will first include a brief discussion on the
intuition behind disjoint and overlapping communities and provide the reader
with a basic understanding of a small sample of commonly used methods for
community detection. Further into the text, we will present the difficulties involved
when detecting overlapping communities and introduce a method for discovering
overlapping communities which avoids these common pitfalls. This algorithm will
be presented with results on real and synthetic benchmark networks. Finally, we
will show that in real data, communities that do overlap are natural and necessary to
capture many of the associations between vertices in a network.

6.2 Methods for Detecting Community Structure

The most fundamental division between community definitions is whether or
not vertices can belong to a single community or any number of communities.
Justifications exist for each approach, and ultimately, the selection of which
definition to use is likely domain and application dependent. For instance, when
analyzing biological protein interaction networks, if an analyst wishes to generate
a taxonomy of proteins, a hierarchical disjoint method is desired. When analyzing
social networks, due to the variety of affiliations and interests that an individual may
have, an overlapping method may be more appropriate.

We begin with a brief examination of some of the previous work in the area
of community detection to give the reader a sense of current methods. This
examination is far from complete; it is intended to serve only as a brief introduction.
For a more comprehensive survey covering a variety of methods in depth, please
see [8].

6.2.1 Disjoint Community Detection

The majority of current methods treat the problem of locating communities as
a hierarchical partitioning problem. According to this approach, the community
structure of a network is assumed to be hierarchical; individuals form disjoint
groups which become subgroups of larger groups until one group, comprising the
whole society, is formed. Such methods form a tree of subgroup relations called
a dendrogram. A dendrogram allows the community structure of a network to be
analyzed at various resolutions. An example of this structure, which is commonly
used as a visual tool for hierarchical clustering methods, is given in Fig. 6.1.
Originally, the method for detecting a hierarchical grouping in networks was to
repetitively identify edges which do not belong to the same dense subgraph [9,21].
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Fig. 6.1 Dendrogram visualization detailing the merging or splitting communities until the entire
society is contained in a single group or until each community consists of a single individual

If we consider a group containing all individuals and for each edge compute the
centrality according to one of a number of definitions (information, shortest path,
circuit, betweenness, etc), edges with higher centrality scores will be ones which
link, rather than compose, dense areas of the network. Such edges are repetitively
removed. Those edges removed first will be edges that form a significant connection
between two dense areas of a network. This process of calculation and removal
is performed until the graph becomes disconnected. Upon disconnection, a single
group splits into two groups containing each component. This process is continued
until each vertex is contained in a group by itself. As a result, a hierarchy of splits
is produced, showing the relationship between small groups and larger ones.

This analysis can be quite useful for networks where visual inspection of the
dendrogram provides an accurate picture of the underlying community structure.
However, this method lacks the ability to point out precisely at which level of the
hierarchy the “best” groups have been discovered. For large networks where visual
inspection is impossible or for networks in which there exists no intuition to suggest
the best set of groups, this fact is problematic. In order to determine the best split
in an automated manner, the notion of modularity [17] has been proposed. This
measure can be expressed as

kik;
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where m is the number of edges in a network, A; ; is the edge weight connecting
vertex i and j, k; is the degree of vertex i, and 6(c;, ¢ j) is a function returning 1 if
the community assignments of vertex i and vertex j are the same and O otherwise.
Intuitively, the measure expresses the difference between the number of edges inside
communities and the number which are expected to be within a community, given
a community’s degree. With this measure, one can compare the modularity of all
levels of the hierarchy and identify the most well defined set of groups compared to
the null model.

The introduction of modularity as an evaluation measure of group quality has
resulted in a number of methods which attempt to optimize this value. The most
well known of these methods is a greedy agglomerative method originally proposed
by Clauset, Newman, and Moore [5]. This algorithm begins by placing vertices
in unique communities and merging those that produce the largest increase in
modularity. Additional methods have been proposed based on simulated annealing
[12], extremal optimization [7], methods from statistical mechanics [23], and other
heuristic optimizations [3]. Recent work has also identified a variety of non-
hierarchical methods utilizing label propagation [22] and minimizing the amount
of information needed to describe random walks in a network [24].

6.2.2 Overlapping Communities

While hierarchical grouping is valid for some types of networks, such as orga-
nizational networks or taxonomies, intuition and experience suggest that social
networks contain pairs of communities that overlap. Consider an individual in a
social network representing “friendship.” He or she may have friendship relations
across many different social circles, such as those formed in the workplace, by
a family unit, by a religious group, or by social clubs. In this case, assuming
the community structure of the network to be hierarchical might lead to missing
important information about members’ attachment to the numerous social circles
with which they concurrently interact.

However, the shift from disjoint community assignments to non-disjoint assign-
ments is not a simple one. Various interpretations exist for how vertices can be
assigned to groups. Specifically, there is some debate as to whether the goal is to
identify a weighted assignment from an individual to all groups or a set of binary
assignments indicating an individual’s membership. The former has been used in
identifying fuzzy groups via probabilistic assignment [6, 27] and maximizing an
overlapping version of modularity [18]. Additional work has been done on finding
the best set of communities such that each individual can only associate with k
sets. An interesting algorithm based on label propagation can be found in [10]. This
text however, will examine only the problem of deriving a set of binary individual to
group mappings without such constraints. Such a mapping allows communities to be
discovered at a local level, where a vertex’s association with a group is determined
independently of any association with other groups.
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Fig. 6.2 A demonstration of
local optimality

Methods which identify these non-fuzzy overlapping communities tend to be
one of two types; either the algorithm attempts to identify instances of a specific
structure in the network or a sets which maximize a localized quality function. It
is important to notice that, unlike the global measure of modularity, each of these
tasks is local in nature.

6.2.2.1 Clique Percolation

An algorithm that attempts to identify a defined, local substructure indicative of a
community is the Clique Percolation Method (CPM), which was proposed in [20]. In
a nutshell, the algorithm first finds all cliques of size k, called k-cliques and defines
a graph such that each node represents one of the identified k-cliques. Two nodes
are adjacent in the new graph if the corresponding cliques share k — 1 nodes. The
nodes in the union of the k-cliques corresponding to each connected component are
declared to be a community. For k = 2, clique percolation defines the communities
as the connected components in the network.

CPM attempts to discover communities by identifying complete subgraphs of
size k. One can claim that, for reasonably sized values of k, such substructure is
clearly an instance of community structure. However, this definition sets a very rigid
definition for a community. If one edge of a otherwise complete subgraph is missing
or if two k-cliques overlap by only k — 2 nodes, it is not considered a community.
Clique percolation would not, for example, be able to find the group illustrated in the
toy community in Fig. 6.2. The main problem with such a definition is that it is too
rigid and is uniform over the whole network, requiring all communities to share the
same structural composition. Additionally, identifying k-cliques of arbitrary sizes
can be expensive computationally.
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6.2.2.2 Local Optimization

In an effort to identify communities of various composition, new methods have been
proposed based on the notion of local optimality. Generally, these methods begin
with some set of seed groups which are then optimized relative to a local density
function. The seed groups are considered communities when a single vertex addition
or removal does not increase the group’s quality.

Despite a large number of proposed methods for detecting communities via
local optimization [2, 4, 16], there has been a general agreement in the form of the
density function used to optimize seed groups. Intuitively, the search for community
structure can be viewed as a search for sets of individuals that are intensely
connected relative to their isolation with the rest of the network. Specifically, this
can be expressed in a manner representative of the functions in previous literature
as the ratio of edges internal to the set over all edges connected to the set. This can
be given as
d ( S) - Win

- b)
Win + Wout

(6.2)

where wj;, is the number of edges internal to the set S and we,; is the number of edges
connecting the set S to the rest of the network. This and similar density functions
are essentially local modularity measures which attempt to maximize internal while
minimizing external edges.

Methods based on local optimization add and remove a vertex relative to a set’s
density when the vertex is evaluated. The implications of this will be discussed at
length later in the chapter. However, for now it is only important to realize that
locally optimal sets are constructed relative to only their neighborhood. This allows
a wide range of communities with both high and low densities to be discovered.

To motivate why this is important, consider the stylized example in Fig.6.2.
This figure depicts some form of organized/coordinated ring-group which would
intuitively pass as a community (e.g., a committee of NSF-reviewers). Since we
allow overlapping groups, a node could belong to multiple communities, as illus-
trated by the shaded areas. A node belongs simultaneously to this ring-community
as well as to other communities. By virtue of belonging to those other communities,
the node communicates extensively outside the ring-group (especially if the node
belongs to many other communities). This means that the node displays more extra-
group similarity than intra-group similarity with respect to the ring-group. There is
no flaw with the intuition that a community should display intra-group similarity;
the reason the extra-group similarity can be larger is because the communities can
overlap. Note that the ring itself in our example, though it is connected and appears
structured, is not particularly dense; in fact, if each member connects to J external
nodes, then d(S) = 1/(0 + 1), which can be sufficiently small. Other communities
may not have as low a density as this.

We can go further in claiming that this subset should be considered a community
independent of the nature of the other communities in the network. Accepting
the locality property of the communities suggests that the methods that define a
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global objective function (e.g., modularity [17]) and optimize it to identify all the
communities might fail to discover the ring-community. Such methods have found
success in partitioning a network, but when overlap is allowed and essential, it is not
even clear how to properly define global objective functions.

In the toy ring group shown in Fig. 6.2, the density of our ring-community is
d(S)=1/(6+1). One can easily verify that if we remove a node u from the group,
its density drops to

1
TS5 +1+6/(S-2)

d(S — u) (6.3)

Alternatively, suppose we try to add one of the neighboring nodes z to S. To
illustrate, assume that this node has one connection into S and 8 connections to
other nodes. In this case, adding z changes the density to

1+1/]8|

d(S+2) = S+1+B/IS|

(6.4)

which is smaller than d(S), when z has more connections to the outside world than
the average for nodes already in S. This means that S is locally optimal with respect
to single node moves. Thus, the requirement of local optimality can capture S as a
community.

The main benefits of defining communities as locally optimal sets are that sets
with vastly different structural properties can be locally optimal, with varying
densities and that locally optimal communities can overlap. Not being able to
improve a community (as measured by the density d) is intuitive; this does not
require a high density or a specific structure of the community. The unified idea
of the discussion is that a community is a locally defined object. A community in
one part of the network should not rely on what is going on in another part of the
network. Further, community structure can vary over the network — communication
in some communities can be more intense than in others; their structures can
be different.

6.3 Local Optimality Examined

The benefits of local optimality as a mechanism to discover overlapping commu-
nities have not been lost on researchers. However, despite general agreement that
locally optimal sets of vertices form reasonable communities, there is a lack of
consensus as to the specifics of the notion of local optimality. Further, additional
issues that present themselves when identifying local communities have largely
ignored. In this section, we begin by examining the notions of local optimality and
density functions. Consolidating this discussion, the section is concluded with a set
of axioms which we suggest to be the simplest, smallest set of criteria that any local,
overlapping groups should satisfy.
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6.3.1 Vertex Removals and Connectivity

As previously stated, various methods have been proposed which attempt to
optimize local density functions to identify potentially overlapping communities.
However, methods define optimality with respect to different processes. In the
process of optimization, some methods allow vertices to be added and removed
while others allow only additions. This results in two different notions of local
optimality.

An additional problem, which exists with any algorithm allowing vertices to
be removed during the optimization, involves the connectivity of communities.
Whether a vertex is added to a group or not is determined by the distribution of
the vertex’s degree as well as the community’s density at the time of consideration.
This may cause a cut vertex, which was previously inserted into the set based on
an earlier, lower density to be removed, thereby disconnecting the set. Producing
a disconnected set of vertices in a grouping algorithm is clearly a problem and
can affect any local optimization algorithms allowing vertex removal. Clauset’s
algorithm in [4] successfully avoids this problem by only adding to the group during
the optimization, and [25] only merges candidate groups, ensuring the connectivity
of the resulting set.

Examining Fig. 6.3, a graph is shown that demonstrates this problem. Consider a
candidate group being optimized containing only vertex 1. Initially, the set’s density
is 0, as there are no internal edges. Upon iterating through all vertices in order of
increasing degree, vertex 2 is added to the cluster. This results in an increase in
density due to the addition of an internal edge. Proceeding to Fig. 6.3c, the group
expands to contain the chains and triangles connected to vertex 2. At this point,
however, the density has increased such that the community would have a higher
density without vertex 2 being a member. This will result in the removal of vertex 2
and the disconnection of the set. Vertex 1 will also be removed producing a locally
optimal, disconnected set.

6.3.2 Tuning Parameters

Examining the previously defined density function in (6.2), we wish to determine
the conditions by which a vertex is added or removed from the set. Consider the
situation detailed in Fig. 6.4. Here, some vertex i is being considered for addition
into the set C. The vertex’s degree ; is split into o and 3 such that o = Zj cc Wi
B = zj g Wis and k; = oc + B. For the vertex i to be added to the set, the density
of CU{i} must be greater than the density of C alone. Therefore, we have

Win Win + O
)
Win + Wout Win + Wout + ﬁ

(6.5)
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d0) =17 d(C) =1

Fig. 6.3 A sample graph demonstrating the generation of a locally optimal, disconnected group.
The density function being used for this examination is (1)

Fig. 6.4 The breakdown of
o and f3 for the addition of a
vertex to community C
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d=0 d=1/2 d=2/3 d=3/4 d=1

Fig. 6.5 A sample graph demonstrating the performance of local optimization on a chain of
vertices

This can be simplified to
o Win
- > — (6.6
ﬂ Win + Wout )

Performing a similar procedure for removals, we arrive at

o Win
=< —. 6.7)
ﬂ Win + Wout

It is clear to see from these two relations, that additions and removals occur
relative to the density of the set at the time of consideration. It is worth examining
how this metric behaves when sparse areas of the graph are encountered. Consider
a vertex with degree 2, adjacent to the set being optimized, where o = § = 1. Since
there is at least one edge cut by the community’s boundary (implying a density < 1),
vertices matching this description will always be added to the group. In practice,
this results in groups with a large amount of edges forming a “core” and expanses
of sparse vertices. This is a problem primarily when dealing with low degree graphs
or social networks whose degree distribution is scale free. This effect is shown in
Fig. 6.5. The d values show how density increases until the entire chain is contained
within the set. For many applications, such a grouping would be inaccurate, since
vertices on the left and right of the chain are very distant and can be presumed to be
dissimilar.

It is unintuitive how a community detection algorithm should handle sparse
chains of vertices. At one end of the spectrum, one could imagine each pair of
vertices in the chain the most salient communities. However, there could also be an
argument made that the entire chain should compose a group. This can be controlled
by adding a parameter to the density function, introducing a penalty for additions
which significantly reduce the edge probability of the community. The following
density function is proposed

d(c) = —n

Win + Wout

+ ey, (6.8)

where e, is the edge probability within the group C
Z €i,j
i,jeC

@< (a1 ©2



6 Defining and Discovering Communities in Social Networks 149

and A is a parameter allowing the results to be fine-tuned. Setting A = 0 will produce
the same results as (6.2), while larger values will increase the amount of significance
the internal edge probability of the set has. This also has the advantage of producing
smaller groups for larger values of A which allows groups to be produced across
a wide variety of resolutions. As suggested by Lancichinetti et al. in [16], this and
other, similar parameters could also be used to determine the significance of groups.
Groups which are structurally significant could maintain their local optimality
across numerous values of A.

6.3.3 Local, Overlapping Axioms

Based on the above observations, as well as previous literature, a set of axioms can
be described that any local, community detection method should aim to satisfy. We
now state the minimum requirements of a community.

Connectedness. A community should induce a connected subgraph in the network.
If the only way to get from one node to another in the community is via some
external node, it suggests that the community is incomplete or trivially divisible.

Local Optimality. According to an appropriate density metric d(C), predefined
on all subsets of nodes, the density of a community cannot be improved with the
removal or addition of a single node.

Note, that the local optimality requirement, but not the connectivity requirement,
was first introduced in [1, 2]. Examples can be easily developed of locally optimal
sets that induce disconnected subgraphs. Our community axioms posit, in particular,
that communities are identified “locally,” within one-hop distance from the set.
Specifically, we require local optimality with respect to the addition or removal of
a single vertex. Previously proposed methods have suggested identifying locally
optimal sets with respect to addition only. However, it can be argued that if a
community can be improved relative to some density function via removal, it is less
meaningful than one constructed via addition and removal. Additionally, one could
suggest further notions of local optimality which are relative to a larger number of
removals or additions. These other notions of optimality are left for future work.
As we will see, these two axioms alone are sufficient for discovering communities
which overlap and satisfy the intuitive properties we expect of a community.

It is important to note that this definition is quite different from many previous
notions such as those of a “strong” or “weak” community suggested by Raddichi in
[21] as well as the definition of modularity which was previously discussed. Rather,
this definition focuses on a localized approach that eschews globally formulated null
models and strict edge-based requirements.

Algorithmically, it is not easy to identify all communities satisfying these
properties. Thus, we resort to a simple heuristic which we discuss next. Our goal
is to show that the communities discovered using this heuristic identify salient
communities in both common benchmark data as well as real, observed on-line
associations.
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6.4 Connected Iterative Scan

In [2], the authors describe a community detection algorithm, termed Iterative
Scan. Here we describe a modification of IS to discover communities satisfying
the previously identified axioms of optimality and connectedness.

Iterative Scan consists of repeated “scans” each starting with an initial set
developed by the previous scan (a “seed-set” for the first iteration). It examines
each node of the network once, adding or removing it if such an action increases
the current density of the set. The scans are repeated until the set is locally
optimal with respect to a defined density metric. The choice of seed-sets is not
predetermined; seeds can consist of any combination of nodes in the network.
A heuristic for seeding, called LinkAggregate, is presented in [1]. LinkAggregate
efficiently produces seed-sets that form a cover (with some overlap) of the entire
vertex set. The nodes are evaluated by IS from low to high degree. Iterative Scan in
this form had been used for a variety of interesting applications such as modeling
dynamic networks [11]. A similar method, implementing the idea of the greedy local
optimization (as a replacement of a scan in IS) was later given in [16]. For every
iteration, the algorithm examines all vertices in order to find the one which causes
the maximum increase of the density. That vertex is used to update the current set
and any density improving removals are then performed.

The density metric itself can be defined in a number of ways; our analysis
uses a modification of the standard density function in Equation 6.2. Rather than
using wj,, recent literature [16] has proposed using using the internal and external
degree of all vertices in the group rather than the number of edges. This is a
slight modification, resulting in the the use of 2 % wj, in place of wj,. For the
sake of comparison to previous work, we will optimize using this density function.
Our experiments show that in many social networks, there is a very large set
of potential communities. Thus, filtering of candidate sets is often necessary and
should be done as dictated by the specifics of the application in which community
structure is useful. One possibility is to order the candidates by d(S), and consider
as most “interesting” those communities which had more internal than external
communication (d(S) > %). This filter is consistent with the notion of a “weak”
community as defined by Raddicchi ef al in [21] and is done in this work to restrict
the scope of the analysis for computational reasons. Note that when overlap is
allowed, this additional requirement might not be satisfied by all communities. The
other possibility of filtering is to look at the communities for which d(S) < %,
as these communities are still connected and locally optimal, even though their
members communicate outside of the community a significant fraction of time,
which results in sparse internal communication.

To ensure the connectivity of the identified communities, we modify IS and
term the resulting algorithm Connected Iterative Scan, CIS. Psuedocode for this
algorithm is presented in Algorithm 1. As is the case with IS, CIS consists of a
number of scans that are repeated for each current set until no change of the set
occurs. The set is then declared to be a community. Every scan proceeds through
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Algorithm 1: Connected Iterative Scan

Require: G= (V,E),S#0
Ensure: density(S) >density(SU{v}) & density(S) >density(S\{v}),¥v e V
improved < true
while improved == true do
improved < false
for allveV do
if v € S then
if density(S\{v}) >density(S) then
S+ S\{v}
improved < true
end if
else
if density(SU {v}) >density(S) then
S+ Su{v}
improved < true
end if
end if
end for
S +—maxComponent(S)
end while

the nodes in the order of increasing node degree. Once a scan is finished, the set’s
connectivity is examined. If the set consists of multiple connected components, it
is replaced by the connected component with the highest density, after which the
next scan starts. Note that selecting only the highest density component effectively
sidesteps the issue of repeatedly optimizing to the same, disconnected cluster.
The specific selection of this rule for identifying connected, locally optimal sets
is motivated by the desire to generate as many groups as possible. The running
time of the algorithm however, suffers from repetitive connectivity evaluations. For
applications where running time is important, one can simply discard those sets that
are not connected as a additional post-processing step. Finally, the seeding is this
text is done by placing each vertex in its own initial seed community.

The disadvantage of CIS is the same as that of IS; both methods may produce
a large number of highly overlapping communities. However, this problem can
be managed by effective post-processing of results and merging of highly similar
communities. Sample results of CIS for a community analysis of Zachary’s Karate
Club data set [26] are given in Fig. 6.6. This network represents a set of friendships
with in a collegiate martial arts club. Performing analysis on the data, which was
collected while the group was undergoing a fissure, provides interesting insight into
the set of individuals for whom selecting which splinter group to join was not a
trivial choice. Using CIS, these individuals exist in the overlap between the two
larger groups in the network. These groups are clearly salient and similar results are
found across a variety of literature in community detection.

The complexity of CIS is difficult to analyze due to its dependence on the number
and quality of the seeds being optimized as well as the underlying graph structure.
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Fig. 6.6 Overlapping groups found in Zachary’s Karate Club dataset. Different shapes identify the
eventual group division. Groups were ordered to correspond to the number of distinct seeds which
produced them. Groups were then selected until the graph was covered. Additional examination of
groups which are produced by fewer seeds offers insight into potentially overlapping subgroups of
the primary groups presented here

However, similar optimization techniques have previously [1, 16] been empirically
shown to have a running time on the order of O(n?). For many graphs, running
time can likely be reduced by introducing higher quality seeds, utilizing a simpler
density function, or simply throwing out locally optimal, disconnected sets rather
than checking for connectivity at each iteration. Additionally, since the optimization
process is independent for each seed, the algorithm is highly parallelizable.

6.4.1 Benchmark Performance

Quantifying the performance of the algorithm is difficult due to the approach.
Namely, few other methods aim to produce a large set of locally optimal groups.
Rather, they tend to focus on finding partitionings or covers which best express
the data. In addition, methods that allow for overlap tend to be insufficient due to
the unsatisfied community axioms. In this section, numerous benchmarks will be
examined. First, a small, toy graph with uniform degree proposed by Girvan and
Newman will be considered. Then, random scale free networks with embedded
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community structure will be explored for both the overlapping and the non-
overlapping case. Each of these experiments will be evaluated via the Normalized
Mutual Information measure proposed in [16].

6.4.1.1 GN Benchmark

One of the first benchmarks proposed for community detection algorithms was
proposed by Girvan and Newman in [9]. This benchmark dataset, consists of 128
vertices divided into four groups of 32. Each vertex has a degree of 16. The strength
of the community associations are given by a mixing parameter which indicates the
probability that an edge is placed between two communities rather than internal to
a single community. Specifically, this mixing parameter is given by

N ki + ko

Uk (6.10)
where k, is the number of edges connecting a vertex to a vertex in another
community and k; are the number of edges connecting a vertex to other vertices
within a community. It should be explicitly noted that this benchmark assigns
each vertex to exactly one community during network generation. Despite this, it
is important that methods which identify non-disjoint communities be capable of
producing accurate communities even when the underlying structures are disjoint.

For Connected Iterative Scan, the results are given in Fig.6.7. Each point
represents the average normalized mutual information over 25 graphs with a given
mixing parameter. Seeds are generated by placing each vertex in a candidate cluster.
The results shown are a reflection of what is considered to be the “base” settings of
the algorithm. This configuration is the density function previously described in the
text, vertices ordered by increasing degree, and seeding done by placing each vertex
into a seed group by itself. Unless otherwise noted, there is no additional weighting
placed on the internal edge probability of the community being optimized.

The two curves in Fig.6.7 show the result of taking all locally optimal sets
discovered by the algorithm as well as using some domain knowledge to filter out the
four most frequently discovered sets. It should be noted in the results that the curve
is similar to those produced via other methods, though with slightly less accuracy
for networks with well defined group structure.

6.4.1.2 LFR Disjoint Benchmark

A more realistic set of benchmark graphs can be tested using the LFR benchmark.
Here, a scale free graph is generated with communities of varying sizes. This
benchmark was first used in [15] to compare methods of community detection on
a more complex network than the GN benchmark. For the experiments contained
within this text, graphs are generated matching a power-law degree distribution with
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Mutual Information on GN Benchmark Graphs

T | |
TR All Discovered Groups ——+—

4 Most Found ----=%----
0.8

0.6 -

0.2

Normalized Mutual Information

0 | | | | —
0 0.1 0.2 0.3 0.4 0.5 0.6

Mixing Parameter

Fig. 6.7 Normalized mutual information for Connected Iterative Scan on GN benchmark graphs

0y =2 and a power-law community size distribution with ¢ = 1. For all networks,
the average degree of each vertex is 20 and the max degree 50. Community sizes are
limited to 10-50 for runs marked “S” and 20—100 for runs marked “B.” The output of
CIS is processed for evaluation by removing duplicate communities and removing
those communities which contain the entire graph. Each data-point represents the
average of 25 trials.

The results of this analysis using CIS and CPM are given in Fig. 6.8. Figure 6.8a
clearly shows the limitations of identifying a specific structure when compared to
Fig. 6.8b—d. Identifying overlapping cliques is much less accurate as group size
increases. While CPM produces better results for networks with well defined,
small communities, Connected Iterative Scan produces better results in networks
with larger community sizes as well as those networks with less well defined
communities. The quality of the communities produced via CIS are comparatively
stable in the face of changing community and graph properties.

6.4.1.3 LFR Overlapping Benchmark

The LFR benchmark software also allows groups to be embedded such that a
given portion of individuals exist in a specified number of groups. This allows
algorithms to be compared on networks with known community overlap. Taking the
same degree and community size distributions as the previous set of experiments,
Connected Iterative Scan and CPM can be compared at varying levels of overlap.
Figures 6.9 and 6.10 detail the results of this comparison for 10% and 30% of the
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Fig. 6.8 Connected Iterative Scan vs CFinder for LFR benchmark graphs with disjoint embedded
comunities

vertices existing in 2 communities. Again, the same general trend exists; identifying
communities by looking for a set of rigid structural traits fails to identify larger
embedded communities, while those produced by CIS are discovered with the same
accuracy regardless of community composition.

6.4.2 A Value

Intuitively, inclusion of the internal edge probability in the density function for
Connected Iterative Scan allows the algorithm to be tuned to discover different types
of communities. It introduces a criteria for addition different from what was initially
proposed during the development of Iterative Scan. When A > 0, the vertex being
considered for addition must strike a balance between the change in the original
density value and the change in edge probability.
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Fig. 6.9 Connected Iterative Scan vs CFinder for LFR benchmark graphs with overlapping
embeded communities where 10% of the vertices associate with 2 communities

This effect can be seen in real networks as well. In this analysis we consider a
network in which vertices represent football teams affiliated with universities within
the United States. Typically, teams are members of conferences, within which they
play a significant portion of their games. Edges in the network indicate that two
teams played each other. Groupings produced by Connected Iterative Scan can be
compared to the natural divisions created by conferences.

Groupings were performed using a number of different values of A and filtering
the communities by taking only the most discovered groups. The normalized mutual
information between the true grouping and the discovered grouping are plotted in
Fig. 6.11. The peak at A = 0.125 indicates the grouping which most closely matches
the underlying conference structure of the network. Qualitatively, the difference
between A = 0 and A = 0.125 is an increased focus on small, tight-knit cores.
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6.5 Significance of Overlap

In order to demonstrate that group overlap is a significant feature of some social
networks, it is important first to consider the features which pairs of groups
should have to indicate that the overlap between them is significant. Consider the
overlapping groups presented in Fig. 6.12. Here, group A consists of white and grey
vertices, and group B consists of the the black and grey vertices. By this definition,
individuals represented by vertices colored grey are members of both group A and B.

For a pair of overlapping groups to have significant overlap, and thus be
considered a non-separable pair, the groups and their overlap must fit certain
criteria. In general, each criterion serves to identify a quality of overlapping groups
that cannot be expressed via a single group (the union), or two, or three partitions.
These criteria can be described conceptually as follows.
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Fig. 6.12 An example of a
pair of groups that overlap.
The overlap is identified by
the grey vertices while
individuals in only one group
are colored black or white
depending on the group of
which they are a member

6.5.1 Structural Significance

The existence of overlap between a pair of groups should enhance the “quality”
of each of the groups individually. For example, if the quality of each group is
measured by the ratio of edges internal to the group to those which are cut by the
boundary of the group, removing AN B from A and B in the groups expressed in
Fig. 6.12 would result in a decrease in the quality of each group. The two vertices in
the intersection A N B have the same degree within each group as they have external
to each group. Thus, relative to the previous quality metric, the vertices should be a
part of each group since they increase the numerator while holding the denominator
constant. Therefore, the overlap is the key to the structural significance of both
groups in Fig. 6.12.

6.5.2 Group Validity

It is also important that each group be somehow verifiable using a reasonable
method relative to the input data. Ideally, using some underlying traits of the
individuals in the network being analyzed, groups should have higher trait similarity
between members than one would expect if membership in groups were determined
at random. Examples of this type of validation have been used in various previous
literature, using age and location as traits of the individuals [19]. Group validity
is essential in filtering out groups that are products of random structures in the
underlying communication graph and serves to ensure that the group detection is
accurate.

6.5.3 Overlap Validity

Using the same notion of trait similarity, the individuals within the overlap must
have some similarity with the remainder of each group of which they are a member.
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In Fig. 6.12, the graph is divided into three groups, A — B, B— A, and AN B (white,
black, and grey respectively). For overlap to be important, A — B and A N B must be
similar, B— A and A N B must be similar, and A — B and B — A must be dissimilar
relative to certain significant traits in the data. Individuals in the overlap need
to be similar to the remainder of either group. However, it is necessary that the
remaining individuals in each group be dissimilar to those in the other group. If this
dissimilarity does not exist, the overlapping pair can be captured in a single partition
and overlap is not necessary to explain the relationships in the data.

Pairs of groups that satisfy each of these criteria are fundamentally sound com-
munities due to their structural significance and their group validity. Conceptually,
the existence of overlap validity restricts how the individuals can be placed in a
partitioning. If all users of the three groups are placed in a single partition, dissimilar
vertices in A — B and B — A are associated. If the vertices are placed in three partitions
according to color, a strong association between AN B and both A — B and B— A is
missed. The vertices may be placed in a pair of disjoint groups only if the similarity
between AN B and both A — B and B — A is highly unbalanced. If the two similarities
are comparable, however, one does not have justification to place the users in one
group or the other. A detailed description of each of these cases is given further
in the text. Significant numbers of non-separable pairs indicate that overlap is an
essential component of communities within the network.

6.5.4 Measures

It becomes necessary to formulate a set of measures to indicate whether the notions
of group validity and overlap validity are satisfied for a given community or pair of
communities. We begin by identifying the set of data used in the analysis.

Due to the implementation of the Friend Feed provided by LiveJournal, friend-
ship declarations can serve as an indicator of interest. By declaring a friendship, the
declaring user is notified whenever his or her friend makes a post. It can be assumed
that individuals which attract a large number of these friend declarations are highly
important to the discourse on some set of topics. Thus, friendship declarations serve
as a proxy for some set of declared interests from each user. In this analysis, an
individual is defined as influential if he or she has a friendship in-degree of 300 or
more. This criteria marks approximately 4,800 bloggers as influential.

The selection of a subset of the friendship relations was done for purely
computational reasons, cutting the set of possible friend relations from 500,000 to
5,000. Additionally, interest declarations could be used as validation data. However,
within LiveJournal, this data is entered via comma separated values, resulting in a
much larger set of possible declarations. Additionally, the popular declared interests,
such as “books”, “movies”, or “music”, are much more universal than the most
popular friendships. Further, words typed with spelling errors, abbreviations, slang,
and the use of synonyms can all be indicative of the same set of topics. The
friendship relationship is used in this situation because of its concreteness.



6 Defining and Discovering Communities in Social Networks 161

Now, given that each vertex i has a set of declared friendships F;, we can describe
our validation measures. The group validity requirement claims that there should
be more similarity within the group than one would find at random. To measure
this, we define the notion of internal pairwise similarity (denoted IPS). For a given
community C, the internal pairwise similarity can be computed as

_ YiecZjec,jrid (Fi F))

IPS(C) = ok , 6.11)

where J (E,Fj) is the Jaccard index [13] between the two sets. This value can be
expressed as

_|FEnF|

(6.12)
The value J(F;,F;) will be maximized (J(F;,F;) = 1) if the sets F; and F;
are identical and will be minimized (J(F;,F;) = 0) if the two sets are disjoint.
Intermediate values of J(F;, F;) indicate shared friendships and is normalized by
the number of possible shared friendships between the two individuals. Thus, the
IPS value measures the average similarity between the friendship declarations of
pairs within the community. This value is utilized in place of Normalized Mutual
Information discussed earlier due to the fact that the “ground truth” in this situation
is unknown.

Revisiting the notion of overlap validity, it becomes apparent that a method
comparing sets of friendship declarations are needed. Given a pair of overlapping
communities A and B, three friendship declaration vectors can be computed. These
vectors, denoted L4 _p, Lp_4, and Lynp, give the probability that a vertex within each
set indicated by the subscript will declare a given individual in the popular friend
set as a friend. Formally, Lim p can be defined for each of the elements of Lynp as

P [{x|x € ANB,i € F, }|
AnB |ANB| ’

(6.13)

where F, is the set of friends declared for vertex x. Similar vectors can be defined
for LA*B and LB*A-

Once these vectors are constructed, the similarity between each of them can be
calculated via the cosine similarity. Formally, this can be given, relative to two equal
dimension vectors X and Y, as

XY

COS(GX’Y) = W (614)

A low value of cos(6y y) indicates that the vectors X and Y are close to orthogonal.
High values indicate that the vectors have similar values across many dimensions.
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Table 6.1 Statistics of groups from CNM and CIS. Q
shows the modularity value of the grouping generated by
CNM and “Cov” indicates the portion of vertices which
are in at least one group

Statistics of groups found via CNM and CIS

Groups  AvSize AvDens Q Cov
CNM 264 1190 0.745 0.485 100%
CIS 14903 168.8 0.455 - 47.5%

Given the three friendship declaration vectors described previously, the cosine
similarity between them can give an indication as to whether or not the overlapping
group satisfies the overlap validity requirement. Namely, that the inter-group
similarity cos(6r, ,1, ,) be less than the intra-group similarities cos(6r, ,1,5)
and cos(0r, 4, 145)-

In order to simplify this notion, the intra-group and inter-group similarities can
be combined into a single statistic representing the relative similarity between the
three sets. For the sake of notation, let the inter-group similarity cos(6, ,r, ,) be
given by the variable inter and let each of the intra-group similarities cos(6r, , 1.4.5)
and cos(0r, ,1,-5) be given by intras and intrag, respectively. These values can be
combined into a measure of overlap validity as

int int
OV(A,B) = w _inter, (6.15)

for values of OV(A, B) > 0, the intersection is more similar to each group than the
remainder of each group is with each other, indicating that the overlap is split in its
association with each set.

6.5.5 Results on LiveJournal

We applied the Connected Iterative Scan algorithm, CIS, to the LiveJournal dataset
to produce a set of communities that satisfy the axioms. We also partitioned this
graph using the algorithm CNM designed by Clauset, Newman, and Moore ([5]) to
give the reader a point of reference and to demonstrate the difference in community
sets produced by the two methods. Statistics demonstrating the number of groups,
average size, average density, modularity (Q, only applicable for the partitioning),
and the number of vertices which are placed in at least one community are given in
Table 6.1.

The partitioning produces a small number of sets across a wide variety of sizes
while the overlapping group detection produces a much larger number of smaller
groups which do not cover the entire graph. Coverage is not a requirement; it is not
necessary for every node to belong to a cluster. Rather, we are interested in finding
those groups which naturally overlap and studying the significance of this overlap.
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Fig. 6.13 Portion of clusters that experience a given percentage change in density when the
intersection of an overlapping pair is removed. Portions are collected in bins of size 10%. This
plot contains 50 data points.

If the overlapping groups detected fit the requirement of having structural
significance, removal of a pair’s overlap will produce a decrease in group quality,
as measured by the density d. Overlapping groups are more compelling when the
overlap is structurally necessary for each group. After filtering out subset inclusion
(a trivial form of overlap), the remaining groups display a high degree of structural
significance for the overlap. Specifically, for 80.8% of the overlapping pairs, both
groups in the pair experience a decrease in density if the intersection is removed.
Figure 6.13 shows more details of the exact distribution of changes in density when
the overlap is removed. Even though we observed that some groups are improved
by the removal of intersection, the overwhelming majority of groups experience a
significant decrease in density. We conclude that in general, within this grouping,
that the overlap is structurally significant.

We now investigate the validity of the groups found with respect to user traits.
Figure 6.14a shows the average internal pairwise similarity between users within
a community as well as the average similarity between users in connected random
groups as a function of size. The figure shows that groups produced by CIS have
much larger amounts of similarity between users than the random case for sizes
greater than 10. This value appears lower than random for sizes less than 10 due to
the number of groups which have undefined friendship declarations. The portion of
these groups discovered by CIS and at random are given in Fig. 6.14b. Figure 6.14c
shows the same information as Fig.6.14a but with these undefined friendships
removed.
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Cohesion of CIS Groups and Random Groups
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Fig. 6.14 Plot showing the average pairwise Jaccard Index of vertex friendships for all pairs within
discovered communities of the same size and values found in randomly generated connected
groups of the same size. The plot indicates that there is more similarity in a majority of the
discovered groups than one would expect at random
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Fig. 6.15 Curves showing the average overlap validity measure OV(A,B) for identified, non-
subset overlapping pairs and random groups of the same size and overlap

Figures 6.14 and 6.15 show the overlap validity measure over pairs of groups
with a given overlap. This value is compared with the overlap validity measure for
randomly selected groups with the same size and overlap. The x-axis denotes the
overlap of the pair, where overlap is defined as the Jaccard index of the two sets.
Clearly, there is a larger difference in similarity between the groups identified via
CIS and those generated at random.

For the 14,903 unique groups that were discovered, 6,373(~42%) of them
overlap with at least one other group such that the pair can be considered justified
by the three conditions previously described. These pairs are composed of 125740
unique users, a very significant portion of the graph.

Further, a significant portion of the non-separable groups have comparable intra-
group similarity between the intersection AN B and both of the sets B—A and A — B.
If the similarities are considered comparable when they are within 5% of each other,
3,544 of the non-separable pairs have an overlap that is associated equally with
the remainder of each group. These groups consist of 100,000 unique users. The
existence of these groups is particularly significant in justifying overlap between
communities. They clearly show that many sets of users are equally associated with
distinct groups. Using a partition-based method for the detection of communities
would either merge the entire pair into one group, failing to recognize the relative
dissimilarity between the vertices in sets A — B and B — A, or place the intersection
with A — B or B — A, missing the connection between the intersection and the
other set.
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6.6 Summary

Detecting communities in networks is a highly useful and non-trivial task. In certain
domains, it is reasonable to expect that community structure overlaps. This neces-
sitates defining the fundamental notions of what overlapping communities should
look like. The axioms laid out in this chapter attempt to fulfill that need, while at the
same time being as minimal as possible to allow for methodological and application
specific variations.

Additionally, this chapter has shown that having a loosely defined definition of
community structure is often a better choice compared to more restrictive methods
that attempt to discover very specific structural formations in networks. The ability
of a method and definition to produce quality communities across a wide array
of network types is quite important. The axioms laid out in this text provide a
framework for such methods to be proposed within. We have also shown that in
some networks, the best set of communities will only be found via some additional
parameter tuning, particularly those parameters that relate to the size of the groups
discovered.

Previous attempts at developing algorithms for the detection of overlapping com-
munities have been primarily intuitive and were developed without first examining
to what degree overlap occurs in naturally occurring networks. A large amount of
justified overlap indicates that the added complexity of new methods is essential to
capturing all relationships expressed in the data. As a test network, we examined a
social network composed of communications in a popular blogging service.

The overlap between groups must satisfy certain criteria to be considered
significant. First, the inclusion of the common region in either group should enhance
the quality of the groups by some metric. In addition, the groups themselves should
be verifiable as significant through the use of a set of relevant user traits. Finally,
the similarity between components of both groups involved in the overlap must be
such that the intersection is more similar with the remainder of each group than the
remainder of the groups are with each other. If each of these criteria is satisfied,
placing the members of the group in some partitioning will not capture the subtle
associations present in the data.

6.7 Future Directions

The use of overlapping community structure has significant potential to aid in the
comprehension of underlying processes in an increasingly interconnected world.
Intuition and the empirical observations contained in this chapter suggest that the
associations contained within such communities capture essential and meaningful
relationships which are implicit in the data. The field is far from mature, and various
questions have arisen throughout research which remain open problems.
Community detection algorithms have tended to focus on static networks.
However, real world data has the potential to be quite dynamic. As a result, new
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methods will need to be proposed to handle network ties with a temporal component.
One simple extension to the work described in this text would be a sociologically
grounded edge weight function. Such a function would take the age of a network
association into account and decrease edge weight accordingly. The introduction
of edge decay creates a potentially interesting area of study involving repetative
reoptimization of sets over time.

An additional open area is the identification of additional methods of validating
and quantifying the correctness of community detection methods. Recent work has
introduced new methods to compare sets of overlapping sets [16], however, more
fundamental analysis techniques should be used for comparison. Additional vali-
dation techniques such as computing feature similarity of identified groups require
data sets with additional, frequently self-reported, information. The problems which
exist with self-reported information can clearly be seen in the lack of networks with
a well defined, overlapping “ground truth.” Often, overlapping communities tend to
be more subtle than their disjoint counterparts. As such, it is difficult for individuals
to list each of the groups with which they associate, as such groups may be ill defined
in the minds of their members.

Another open problem is identifying a method or measure to determine the
significance of a community among the set of those which have been discovered.
As previously stated, using the minimal axioms described above, there are a vast
number of sets which can be considered groups. In order for this type of analysis
to be useful as a feature to some other mechanism, it is likely that the “best”
groups with regard to application specific metrics will prove to be more useful than
others. Significance measures have previously been explored somewhat with regards
to disjoint community detection [14], but with the exception of a brief comment
in [16], this discussion has largely been absent when examining the detection of
overlapping communities.
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