
Chapter 3
Double Pareto Lognormal Distributions
in Complex Networks

Zheng Fang, Jie Wang, Benyuan Liu, and Weibo Gong

Abstract This article elaborates the mathematical concept of double Pareto
lognormal distribution and provides an overview of complex networks and natural
phenomena that exhibit double Pareto lognormal distributions. These include the
number of friends in social networks, the number of downloads on the Internet,
Internet file sizes, stock market returns, wealth in human societies, human settlement
sizes, oil field reserves, and areas burnt from forest wildfire.

3.1 Introduction

Power-law distributions have been found in a good number of complex networks
and natural phenomena of significant scientific interests. For example, population
size distribution of cities, wealth distributions, intensities of earthquakes, and sizes
of particles are all thought to follow the power law, and they cannot be correctly
characterized by median or average values. For instance, the average population of
all cities and towns is not a useful concept for most purposes because a significant
fraction of the total population lives in big cities (e.g., New York, Los Angeles, and
Chicago), which is substantially larger than those of many other cities by several
orders of magnitude. Studies on complex networks such as the World Wide Web and
online social networks also reveal that certain attributes of interests exhibit power
law behaviors.
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Pareto distribution, named after the Italian economist Vilfredo Pareto, is a
commonly used canonical power law distribution. Pareto originally used this
distribution to describe the allocation of wealth among individuals, for he observed
that it depicts rather accurately the phenomenon that a larger portion of the wealth
of any society is owned by a smaller percentage of the people in that society. Pareto
also used it to describe the income distribution. This idea is sometimes referred to
as the Pareto principle or the 80–20 rule, which says that 20% of the population
controls 80% of the wealth [40]. Another popular power law distribution is the
Zipfian distribution, also known as Zipf’s law, which is widely cited in linguistic
research of natural languages.

Pareto and Zipfian distributions only exhibit a single tail. It has come to people’s
attention in recent years that certain power-law phenomena, if observed more
closely, actually exhibit two tails: a lower tail and an upper tail. While the two
tails would share a similar shape with lognormal distributions, how to correctly
characterize such phenomena remains a challenge, which has stimulated many
debates among researchers. It is true that the lognormal model could better fit the
bodies of empirical distributions, but it does not seem to fit well with the power law
behavior in the tails.

The concept of double Pareto lognormal distributions has been shown
useful in modeling distributions of various complex networks and natural
phenomena that consist of a lognormal body and Pareto tails, including computer
networks, social networks, economics, finance, geography, geology, and physical
sciences [36, 42, 43]. In this article, we will provide and elaborate mathematical
background on the concept of double Pareto lognormal distribution, demonstrate
how it would fit into empirical data, and present possible explanations of the causes
for the power law behaviors.

The rest of this article is organized as follows. In Sect. 3.2 we will provide a
brief overview of the classical power law and lognormal distributions. We will then
introduce the double Pareto lognormal distribution and several models that gener-
ate it. In Sect. 3.3 we will present examples from diverse areas that fit the double
Pareto (lognormal) distributions. These examples include wealth distributions in
human societies, stock market returns, Internet file sizes, the number of friends
distributions in social networks, downloads distributions on the Internet, human
settlement sizes, oil field reserves, and areas burnt from forest wildfire. Section 3.4
concludes the article.

3.2 Generation Model of Double Pareto Distribution

We start this section by presenting the mathematical background for the power law
distribution and lognormal distribution, and then derive the double Pareto lognormal
distribution as an exponential mixture of lognormal distributions. We will also
introduce several stochastic models of differential equations that converge to the
double Pareto distribution under different sets of scenarios.
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3.2.1 Power Law Distributions

Let X be a random variable. The complementary cumulative distribution function
(ccdf) of X is defined by

FX(x) = Pr(X ≥ x). (3.1)

A non-negative random variable X is said to follow a power law distribution if its
ccdf satisfies

FX (x)∼ x−α , (3.2)

for some constant α > 0. Here, f (x)∼ g(x) denotes limx→∞ f (x)/g(x) = c for some
constant c > 0. The plot of the density of such random variable X has a long tail,
which is referred to as power tail (a.k.a. heavy tail).

The Pareto distribution is one of the canonical power law distributions with the
following ccdf on random variable X :

FX(x) =

{
( x

xm
)−α , x ≥ xm

1, x < xm,
(3.3)

for some α > 0 and xm > 0. Note that the Pareto distribution has the density function
f (x) = αxα

mx−α−1 when x ≥ xm. The ith moment of the density function can be
represented as

E(xi) =

∫ ∞

xm

xi f (x)dx = αxα
m

∫ ∞

xm

x−α−1+idx = αxα
m

x−α+i

i−α

⎪⎪⎪⎪⎪⎪⎪⎪
∞

xm

. (3.4)

Note that when α < 1 the first moment does not exist and when α < 2 the second
moment does not exist. Therefore, if α falls in the range of (0,1], the function has
an infinite mean. If α is in (1,2], the function has a finite mean but infinite variance.
Only when α > 2 will the function have both finite mean and finite variance.

Another popular power law distribution is the Zipfian distribution (a.k.a. Zipf’s
law), which is widely used in linguistic studies of natural languages. Zipf’s law
states that frequency of occurrences of an event, as a function of the ranking of
frequencies, is a power law function with the exponent α close to unity, where a
higher frequency has a smaller rank. For example, in the English language the word
“the” has the highest frequency, and so its rank is equal to 1. The word “of” has the
second highest frequency and so its rank is equal to 2. Zipf’s law predicts that in a
population of N elements, the frequency of elements that is ranked k is determined
by the following formula:

f (k) =
k−α

∑N
n=1 n−α , (3.5)

where α is the value of the exponent characterizing the distribution, typically close
to 1.
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Fig. 3.1 A Pareto density in log-log plot and ccdf

It is customary to plot the power law distribution by taking logarithm on
both sides, referred to as log-log plot, which produces a straight line for the
asymptotic behavior of the ccdf. This is the basis for testing power-law behaviors.
The same is true for the power law density function, which might be easier to
work with mathematically under certain circumstances. For example, for the Pareto
distribution, the logarithm of the density function is linear with the following form:

ln f (x) =−(α + 1) lnx+α lnxm + lnα, (3.6)

Plotting ccdf in the logarithmic scale also emphasizes the tail region, providing a
good visual when fitting empirical data into a power law model. Figure 3.1 shows
the log–log plot of a Pareto density function and the ccdf.

3.2.2 Lognormal Distributions

A positive random variable X is said to be lognormally distributed with parameters
(μ ,σ2) if the random variable Y = lnX is normally distributed with mean μ and
variance σ2. The density function for a lognormal distribution is determined by

f (x) =
1√

2πσx
e−

(lnx−μ)2

2σ2 . (3.7)

The lognormal distribution, in contrast to the normal distribution, is skewed, with
median eμ , mean eμ+ 1

2 σ 2
, and mode eμ−σ 2

. Although the lognormal distribution has
finite moments and the Pareto distribution has infinite moments, their plot shapes
are extremely similar in that a large portion of the body of the density function
and the ccdf can appear linear. To be more specific, take logarithm on a lognormal
distribution density function, we have

ln f (x) =− lnx− ln
√

2πσ − (lnx− μ)2

2σ2 . (3.8)

When σ is sufficiently large, the value of ln f (x) is barely affected by the quadratic
term for a large range of x values. Therefore, the logarithm of the density function
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Fig. 3.2 A lognormal density in log-log plot and ccdf

will appear as a straight line for a large range of x values. The same holds true for
the ccdf, which is shown in Fig. 3.2.

While the normal distribution can be thought of as an additive accumulation
of a number of independent random variables, a variable could be thought of as
lognormal if it is the multiplicative product of a number of independent, positive
random variables, for

lnY = lnX1 + lnX2 + · · ·+ lnXn = ln(X1X2 · · ·Xn). (3.9)

For example, a long-term discount factor in a financial market can be derived from
the product of short-term discount factors. In wireless communications, for another
example, the attenuation caused by shadowing or slow fading from random objects
is often assumed to be lognormally distributed.

This phenomenon may be better illustrated using the following example. Suppose
we start with an initial state X0. At each step, the state may change with a certain
percentage (e.g., changes of price, size, and volume) denoted by an independent
random variable Ci. Thus, each state Xt can be described as

Xt = Xt−1Ct = X0

t

∏
i=1

Ci. (3.10)

Taking logarithm on both sides we have

lnXt = ln(Xt−1Ct) = lnX0 +
t

∑
i=1

lnCi. (3.11)

Since each Ci is independent from each other, applying the Central Limit Theorem
to the summation term yields a convergence to a normal distribution for sufficiently
large t. Hence, random variable Xt is well approximated by a lognormal distribution.
Lognormal distributions are natural distributions for modeling growth of population,
growth of wealth, growth of organisms, and any process where the underlying
change rate is a random factor over a time step independent of the current size.
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3.2.3 Double Pareto Distribution, A Mixture of Lognormals

A double Pareto distribution can be generated by mixing a number of lognormal
distributions. This can be done based on a model defined in Sect. 3.2.2 that yields a
lognormal distribution.

Suppose in Xt = Xt−1Ct we have X0 = c for a constant c > 0, and Ct is a
lognormally distributed random variable with parameters (μ ,σ2). We may view the
subscript of X as a moment in time, then at time t = T , the random variable XT is
also lognormally distributed with parameters (μT,σ2T ). We may also view the time
t itself as a continuous random variable and let the process run for some random time
θ and obtain a random variable that comes from a mixture of lognormal distributions
with parameters (μθ ,σ2θ ). Specifically, if the process stops at a constant rate λ , the
time variable is exponentially distributed with density

ft (θ ) = λ e−λ θ , θ ≥ 0.

Reed et al. [44] show that this mixture of an exponentially distributed number of
lognormal distributions exhibits power law behaviors for both the upper tail and
the lower tail regions, and name it double Pareto distribution. The resulting density
function for this mixture is

f (x) =
∫ ∞

θ=0
λ e−λ θ 1√

2πθσx
e−

(lnx−θ μ)2

2θσ2 dθ

=
2λ eμ lnx/σ 2

√
2πxσ

∫ ∞

u=0
e
−
(

λ+ μ2

2σ2

)
u2

e−
ln2 x

2σ2u2 du

=
λ

σ
√
(μ/σ)2 + 2λ

{
x−1+μ/σ 2+

√
(μ/σ)2+2λ/σ , 0 < x ≤ 1

x−1+μ/σ 2+
√

(μ/σ)2+2λ/σ , x ≥ 1.

Reed [44] suggests the following simpler form of double Pareto distribution density
function:

f (x) =
αβ

α +β

{
xβ−1, 0 < x ≤ 1
x−α−1, x ≥ 1

(3.12)

where α and−β (α > 0,β > 0) are the two roots of the following quadratic equation

σ2

2
z2 +

(
μ − σ2

2

)
z−λ = 0.

Instead of using exponential distribution, Mitzenmacher [35] shows that using
a geometric distribution to randomly sample lognormal distributions can lead to a
distribution that is extremely similar to a double Pareto distribution. This approach
assumes that the random process stops with a probability p. That is, the process
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stops at time k with probability p(1− p)k−1. Using this discrete geometric mixture
we can obtain the following distribution density:

f (x) =
∞

∑
k=1

p(1− p)k−1
(

1√
2πkxσ

e−
(lnx−kμ)2

2kσ2

)
. (3.13)

This summation can be nicely approximated using the following integral when the
absolute value of lnx is sufficiently large.

f (x) ≈
∫ ∞

k=1

p√
2πkxσ(1− p)

ek ln(1−p)− (lnx−kμ)2

2kσ2 dk. (3.14)

The geometric approach produces essentially the same power-tail behavior as the
exponential mixture does, but technically the geometric mixing of lognormal distri-
butions only yields an approximation to the double Pareto distribution according to
Reed’s definition. Mitzenmacher [35] showed the following theorem.

Theorem 3.1. There exist positive constants α,β ,c1,c2,c3,c4,m and ε such that
the density function in equation 3.13 satisfies c1xβ−1 ≤ f (x) ≤ c2xβ−1 for x < ε ,
and c3x−α−1 ≤ f (x)≤ c4x−α−1 for x > m. (Constants ci may depend on p,μ and σ
but not on x.)

It follows from this theorem that at the tails, the density function, the cumulative
distribution function (cdf) and the ccdf of the geometric mixture are each bounded
by two power law distributions that differ only by a constant factor [35]. Thus, the
geometric mixture produces a valid and practical approximation to the double Pareto
distribution for it is the tail behavior that characterizes the power law distribution.

To the extent of double Pareto distribution, Reed [44] also suggests a more
generalized form called double Pareto lognormal distribution, by removing the
constraint that the initial state X0 must be a constant. Assume that the initial state
X0 also follows a lognormal distribution with parameters (ν,τ2). Mixing with the
exponential-time distribution we can show that the distribution of random variable
Y = lnX can be represented as the sum of two independent random variables,
where one variable is normally distributed and the other is double exponentially
distributed. It follows that the density function fX (x) can be obtained from the
density function fY (y) using fX (x) = fY (lnx)/x, which in turn can be found by
convolving a normal density and a double exponential density. The final density
function of X is

fX (x) =
αβ

α +β
(A+B)

A = x−α−1eαν+α2τ2/2Φ
(

lnx−ν −ατ2

τ

)

B = xβ−1e−β ν+β 2τ2/2Φc
(

lnx−ν +β τ2

τ

)
, (3.15)
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Fig. 3.3 The double Pareto lognormal distributions have completely different shapes with β > 1
and β < 1

Fig. 3.4 The log–log plot consisting of two straight line segments

where Φ is the cdf of the standard normal distribution and Φc the compliment of
Φ , that is, Φc is the ccdf of the standard normal distribution. Figure 3.3 shows the
density of the double Pareto lognormal distributions with β > 1 and β < 1 (Note
that changing the value of α does not alter the general shape of the distribution), and
Fig. 3.4 shows the two straight line segments when log–log plot the double Pareto
lognormal distribution.

The double Pareto lognormal distribution provides a reasonable model to
describe a random process that allows random variables to start from different
initial values, as long as they obey the same lognormal distribution. Releasing the
initial value constraint would make the model more useful in empirical studies.
For example, in surveying personal wealth accumulations, it would be more
reasonable to assume that different people begin their asset accumulation with
different starting salaries. Thus, the double Pareto lognormal distribution might
allow closer matches with empirical data distributions.

The double Pareto distribution exhibits power law behavior at both upper and
lower tails. That is, both the ccdf and cdf each has a linear tail on a log–log plot.
This is an important characteristic, which is often used to test if a distribution
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Fig. 3.5 Tail comparisons of lognormal, Pareto, and double Pareto

has a double Pareto distribution. That is, check whether the ccdf and the cdf of a
distribution each have a linear tail on a log-log plot.

The double Pareto distribution falls nicely between the lognormal distribution
and the Pareto distribution. The Pareto distribution and the double Pareto distri-
bution both are power law distributions, but they have the following distinction:
The log–log plot of the density function of the Pareto distribution is a single straight
line, and the log–log plot of the density function of the double Pareto distibution
consists of two straight line segments that meet at a transition point. This is similar
to the lognormal distribution, which has a transition point around its median. Hence,
an appropriate double Pareto distribution can closely match the body of a lognormal
distribution and the tail of the Pareto distribution. Figure 3.5 shows the ccdfs of
lognormal distribution, Pareto, and double Pareto distributions in the log–log plot.
We can see that the double Pareto distribution matches well with the lognormal
distribution in the body, and matches well with the Pareto distribution in the tail.

3.2.4 Power-Law Through Stochastic Differential Equations

The lognormal distribution plays an essential role in generating a double Pareto
(lognormal) distribution. However, how a lognormal distribution is generated is
an interesting topic in its own right. More specifically, one would like to know
what kind of processes that model natural phenomena will result in a lognormal
distribution.
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A stochastic process, a.k.a. a random process, describes the probability
distribution of possible realities of how the process might evolve over time [48].
A stochastic differential equation (SDE) is a differential equation in which one or
more of the terms is a stochastic process, thus resulting in a solution that is itself
a stochastic process. SDEs are used to model diverse phenomena such as personal
income figures, human settlement sizes, fluctuating stock prices, or physical systems
subject to thermal fluctuations. Typically, SDEs incorporate white noise that can
be thought of as the derivative of the Brownian motion (or the Wiener process).
However, it should be mentioned that other types of random fluctuations are also
possible, including jump processes and Poisson counters.

The first SDE we would like to discuss is a Geometric Brownian Motion (GBM)
process. Reed [42–44, 47] uses this model to explain the double Pareto lognormal
distribution. A random variable X is said to follow GBM if its behavior over time is
governed by the following differential equation

dX = (μdt +σdB)X , (3.16)

where dB is the increment of a standard Brownian motion (a.k.a. the white noise).
For a GBM the proportional increment of X in time dt comprises a systematic
component μdt, which is a steady contribution to X , and a random component σdB,
which is fluctuated over time. Thus, the GBM can be seen to be a stochastic version
of simple exponential growth.

Assuming a constant initial state X0. Applying Itō’s lemma [26] on this SDE
produces the following equation at time t = T :

lnXT = lnX0 +

(
μ − 1

2
σ2

)
T +σBT . (3.17)

Since BT is normally distributed with parameters (0,T ), it is evident that the random
variable lnXT is also normally distributed with mean

lnX0 +

(
μ − 1

2
σ2

)
T,

and variance σ2T , which means that the random variable XT is lognormally
distributed with the same set of parameters. Since in a random process the stopping
time (or a starting time) T for each individual instance may be different, it is a
random variable. If it is exponentially distributed, then it can be shown that, as
discussed in Sect. 3.2.3, the mixture of states follows a double Pareto distribution.
If we further assume that the initial state X0 follows a lognormal distribution, the
distribution of X becomes a double Pareto lognormal distribution.

In addition to the GBM model, Jiang et al. [28] propose several other generalized
forms of first order SDEs that also exhibit power law behaviors. In particular, they
consider a different scenario involving the steady state density associated with an
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SDE. The SDE describes a scenario where the quantity of interest decays to zero
exponentially, that is,

dX =−αX ,

but is incremented by a fixed amount of σ at a random moment of time. Under the
assumption that the random variable of time is exponentially distributed, they show
that for a range of parameter values the steady state distribution of X exhibits a
lower-tail power law, and through a simple transformation Y = X−1 the distribution
can be converted into an upper-tail power law. In their model, the random fluctuation
component is implemented by a Poisson counter.

Poisson counter driven SDEs are studied in Brockett [6], one typical SDE with
Poisson counter is

dX =−αXdt +σdN, (3.18)

where α > 0,σ > 0, and N is a Poisson process of intensity λ .
Jiang et al. [28] showed that, through the transformation that converts the lower-

tail power law into an upper-tail power law, the resulting distribution converts to a
Pareto distribution as t → ∞.

It is also possible to let Brownian motion and Poisson counter co-exist in the
SDE. Adding a Brownian motion component, the SDE becomes

dXt = (μdt +σdBt)Xt +(x0 −Xt−)dNt , (3.19)

which is a GBM with Poisson jumps that always reset the motion to a fixed state
x0. This SDE is similar to the one analyzed by Reed [42, 44], and the result is also
similar, for Reed showed that as t → ∞ the steady-state density distribution of Xt

converts to a double Pareto distribution.
Jiang et al. [28] also studied the power-law behavior near a critical point and

derived an SDE comprises of two independent bi-directional Poisson counters to
demonstrate this behavior. They showed that a discontinuity at this critical point
occurs in a surprising way, which might be of interest in statistical physics.

Early studies have all indicated that random multiplication with exponentially
distributed stopping time will lead to power law behaviors. This result may serve as
a guideline in explaining real-world phenomena that obey the power law.

3.3 Power-Law Behaviors in Complex Networks
and Natural Phenomena

The most effective way to evaluate the accuracy a power-law model is to use it
to explain the cause of certain power-law phenomenon and validate the prediction
using empirical data. The goodness of fit is a typical measure of a theoretical model.
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A good model should make this an intuitive process. In this section, we will present
the possible explanations to various real-world complex networks and natural
phenomena that exhibit power-law behaviors, and demonstrate the goodness-of-fit
figures with empirical data.

3.3.1 Income

It is well known that the distribution of a population’s income and wealth follows
the power law. The original observation was made in 1907 by Pareto. He noticed
that 80% of the wealth in Italy was owned by 20% of the population [40]. He then
surveyed a number of various types of countries and found to his surprise that a
similar income distribution applied. For over a century, most of the studies have
been focusing on the distribution itself as well as the impacts imposed by Pareto’s
principle. Not much has been done to explain the underlying reasons that cause
this phenomenon. Reed’s GBM model for the double Pareto lognormal distribution
based was the first-known model that provides an intuitive explanation for the
income distribution.

The distribution of incomes over a population is the same as the probability
distribution of the income of an individual randomly selected from that population.
Thus, a stochastic model for the generation of the income of such an individual can
be used to explain the observed distribution of incomes in a population or in random
samples. For an individual, the more income he or she currently receives, the more
income he or she will accumulate in the next time interval based on an expected
rate of increase (e.g., interests of deposits in saving accounts and annual raises
of salaries). Similarly, finance uncertainties (e.g., good or bad investment, market
depression, marriage or divorce) will directly affect his or her income as well.
This argument suggests that the income behavior over time could be modeled
as a GBM model, which was discussed in Sect. 3.2.4 and is presented here for
convenience:

dX = (μdt +σdB)X ,

where μ represents the instantaneous rate of increase on a riskless asset, σ the
volatility of the income, and dB the infinitesimal change in a Brownian motion over
the next instant of time (a.k.a. white noise). Assume that individual’s income follows
GBM process X with initial state X0 being a constant, then for a randomly selected
individual from the group of people with the same working time T , his or her income
is lognormally distributed.

If an individual is randomly selected from the entire workforce, the time T that he
or she has been in the workforce will be a random variable. To find the distribution
of time T , we consider a simple case when the workforce or population is growing
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at a constant rate ν . We assume that all individuals will eventually merge into the
workforce at certain time. A simple analysis gives us the following equalities:

FT (t) = 1−Pr(T ≥ t)

= 1− NT−t

(1+ν)tNT−t

= 1− (1+ν)−t,

fT (t) = F ′
T (t)

= ln(1+ν)(1+ν)−t

= λ e−λ t .

In this case, the time T has an exponential distribution with a probability density
function fT (t) = λ e−λ t . Therefore, the income distribution from the entire work-
force will be an exponential mixture of lognormal distributions, leading to a double
Pareto distribution. Now let us consider the initial state X0. It would be more realistic
to assume that individuals’ initial incomes will also vary and evolve over time,
which can be described by another GBM. In this case, the income distribution is
changed to a double Pareto lognormal distribution [44].

Figure 3.6 demonstrates the double Pareto lognormal distribution fitted to
empirical income data (originally fitted by Reed [47]): the United States household
income of 1997 and the Canadian personal earnings of 1996, respectively. The data
fits in the theoretical curves quite well, not only in the upper tail region, but also in
the lower tail region.

3.3.2 Stock Market Returns

Stock market returns is another example that fits the double Pareto distribution
and can potentially be explained using a GBM model. During the last several
decades researchers have investigated the statistical distribution of returns and have
concluded that returns are “fat tailed,” which is a key power law characteristic.
Several studies have been devoted studying to the stochastic behaviors of the stock
price changes [21,29,31,32,39]. Bachelier in his 1900 dissertation [4] suggested that
stock prices in successive periods follow a random process that is best described by
a Wiener process (i.e., a Brownian motion).

This suggests that we could treat the return rate of each transaction as an
independent random variable. A simple model can be described as AT = A0 ×X0 ×
·· ·×XT where AT represents the current stock assets, A0 the initial stock investment,
and X0 through XT the average return rate for a certain time period. Thus, at a
certain time the total return could be seen as a sequence of multiplication of such
independent random variables with initial values, which is analogous to a long-term
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Fig. 3.6 The double Pareto lognormal distribution fitted to the US household income (1997) data
and the Canadian personal earnings (1996) data [47]

.

price discount, except that it should not always be a discount. If we assume the
stock is a good pick and has a steady increased rate with small fluctuation, it would
be better to apply the GBM model of dX = (μdt +σdB)X , where μ is the expected
return increase rate and σdB the volatility of the return over time. The stochastic
multiplicative process yields a lognormally distributed variable representing the
stock returns at a fixed time. If we consider a random killing process with a constant
killing rate, by killing here it means to cash out the stocks and settle, and the
returns is observed at the killing time, then the time span a process is kept alive
is exponentially distributed. Thus, if we observe the population of stock returns,
the distribution will be the mixture of lognormal distributions with exponentially
distributed time span, which is a double Pareto distribution. The initial wealth can
be viewed as any wealth naturally accumulated at certain time, which is lognormally
distributed as the result of multiplicative process. Hence, the distribution of stock
returns can be extended to the double Pareto lognormal distribution.

Figure 3.7 shows a good fit to the returns of IBM’s ordinary stocks from Jan 1,
1999 to Sept 18, 2003, originally plotted by Reed [44]. The figure at the left-hand
side shows a density histogram and the fitted double Pareto lognormal density; the
figure at the right-hand side shows the fitted density in logarithmic scale.
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Fig. 3.7 The double Pareto lognormal distribution fitted to stock market returns [44]
.

Fig. 3.8 ccdf of file sizes
statistics from University of
Calgary Web server. Compare
with a lognormal distribution
and a Pareto distribution [11].
The empirical data has the
lognormal body and Pareto
tail, which indicates a double
Pareto distribution

3.3.3 Internet File Sizes

It has been observed that the file size distribution over the internet seem to follow
a double Pareto distribution [11, 14, 41]. Figure 3.8 shows a file size statistics
from a Web server at the University of Calgary, from traces collected by Arlitt
and Williamson [3]. There have been attempts to explain the file size distribution.
Among them, Downey’s multiplicative file size model [12] and Mitzenmacher’s
recursive forest file model [35] have received much attention. The latter can
be viewed as an improvement over Downey’s model by introducing a dynamic
insertion and deleting process.

Downey’s model [12] is based on the following observation: Users tend to create
new files from old files by copying, editing, or filtering in some way, and the size of
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the new file will differ from that of the old file by a multiplicative factor f from a
given distribution D. That is, the system begins with a single root file and repeatedly
performs the following actions: randomly choose a file and create a new file from it
with size equal to f s, where s is the size of the chosen file.

The assumption behind this model is that creating a new file from a template
file through copying, editing, or filtering will cause the size of the new file to
differ from that of the old file by a factor from a given distribution D. For any
file in this system, the history of the creation can always be traced back to the
original root file. Thus, the size of the file can be viewed as the result of a
random multiplicative process. Downey, therefore, suggests that the entire file size
distribution is lognormal. Downey’s model, however, does not address the situations
of insertion and deletion, and the result of empirical fitting on these two operations
is not satisfiable.

To overcome this problem, Mitzenmacher [35] introduces a recursive forest file
model by modifying Downey’s model to include dynamic insertion and deleting
process. In this model, the system begins with a collection of one or more files,
whose sizes are drawn from a distribution D1. New files are generated repeatedly as
follows:

1. With probability γ , add a new file with size chosen from a given distribution D1.
2. With probability η , select a file uniformly at random, delete this file.
3. With probability 1−γ−η , select a file S with size s uniformly at random, choose

a multiplicative factor f from a given distribution D2, and create a new file S′ with
size f s.

Mitzenmacher reasons [35] that the file size density in this model converges to a
double Pareto distribution if D2 is a lognormal distribution D2, and a double Pareto
lognormal distribution if D1 is also a lognormal distribution. This model explains
why file size distribution may appear to have a lognormal body and a Pareto tail,
making it more appealing compared to other attempted explanations. It also provides
a flexible framework that may be extend to handle additional operations in the file
system.

3.3.4 Friends in MySpace

The observation that complex networks often exhibit power-law behaviors has
attracted much attention in recent years [8, 11, 14, 19]. Since Huberman and
Adamic [23] suggested in 1999 that the exponential growth of the World Wide
Web network could explain its power-law degree distribution, many studies have
attempted to migrate this idea to explain other complex networks [5, 13, 15, 34].
The rise of online social networks has generated overwhelmingly huge amount of
data, making it possible to carry out quantitative analysis on human social behaviors
in a large scale.
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Fig. 3.9 Empirical ccdf of the number of friends in MySpace, plotted in the log–log scale [49]
.

Ribeiro et al. [49] recently investigated MySpace and showed that the distribution
of the number of friends follows a double Pareto like distribution, which is shown
in Fig. 3.9.

Making friends in a virtual world is much easier, for the click of “add as friend”
button really does not need any social skill. Thus, the meaning of friends in an online
social network may be weak, which may simply mean “somehow related.” However,
this observation still suggests a reasonable assumption that for a user with a large
number of friends, most of the friends are added through passive referrals, assuming
that all requests of making friends are automatically approved. In addition, if we
assume that every user has a different referral probability to different people and
the referral is always accepted, the growth of the number of friends can be modeled
roughly as a multiplicative process Xt = PtXt−1, where each Pt can be computed
as the average referral probability of the current group of friends. According to the
analysis presented in Sect. 3.2.2, for a fixed period of time the number of friends
follows a lognormally distribution.

Ribeiro et al. [49] also observe that the time span of MySpace accounts is
distributed exponentially. This scenario might be explained by assuming a fixed
increase rate of MySpace accounts. Combining a exponentially distributed time span
with the lognormally distributed number of friends at fixed time, the overall friend
distribution for all MySpace accounts converges to a double Pareto distribution.

3.3.5 Downloads from SourceForge

SourceForge is a Web-based source code repository that provides a centralized
location for software developers to control and manage open source software
development. As of February 2009, the SourceForge repository hosts more than
230,000 projects and has more than 2 million registered users.
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Fig. 3.10 The distribution of downloads in 30 days for active projects [24]
.

Fig. 3.11 A closer look at the distribution of downloads [24]
.

Hunt and Johnson [24] use SourceForce as a downloading platform and study
the statistics of downloads. The data on the number of downloads was collected
from all projects listed on the most active project list on October 22, 2001 for 30
days, which was partially shown in Figs. 3.10 and 3.11. The distribution obtained is
heavily skewed which exhibits a significant sign of power tail. Taking a closer look
at the few download region, it is evident that the download distribution also exhibits
a lower tail, which implies that the double Pareto model could be able to provide an
explanation to both of these tails.

It is reasonable to assume that during these 30 days every download for a single
project comes from different users for the following reasons: People would not
download the same file over and over again unless the download is not successful or
the file has being updated, and the 30 days time span is considered to be a relatively
short cycle that a file only has a small chance of being altered. Popular projects
would attract more user downloads and people tend to broadcast satisfying user
experience. Thus, the popular downloads are more likely to be introduced to new
users and become even more popular, which would in turn increase the download
counts. This process is similar to the growth of the number of MySpace friends.
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The same model can be applied to conclude that the number of downloads of
projects by the same age group would exhibit a lognormal distribution.

No public data is available concerning the distribution of ages for all the projects.
If we assume that the total number of projects increase approximately at a fixed rate,
then at time T + 1 the number of projects would be NT+1 = (1+ ν)NT . From the
analysis in Sect. 3.3.1 it follows that the cumulative distribution of time T is FT (t) =
1−(1+ν)−t and the frequency distribution is fT (t) = F ′

T (t) = ln(1+ν)(1+ν)−t =
λ e−λ t by replacing ln(1+ ν) with λ . Therefore, the ages of projects would follow
an exponential distribution. Thus, the distribution of number of downloads over all
active projects is a double Pareto distribution, which exhibits both the lower tail and
the upper tail.

3.3.6 Sizes of Human Settlements

Auerbach (1913) was the first to discover that the distribution of city sizes can
be well approximated by a power-law distribution. That is, if we rank the cities
based on population, then the size of the largest city is twice as that of the second
largest city, three times as that of the third largest city, and so on. This distribution
was believed to follow Zipf’s law, a.k.a. the rank-size distribution. A number of
studies have since contributed evidence and provided support to this statement until
recently [7, 18, 27, 38]. In a wide spread article [16, 17], Eeckhout points out that
the old evidence is problematic since the early studies only dealt with truncated
samples and only focused on large cities, and the Zipf’s law does not hold when
taking all settlements of a country into consideration. The Zipf’s law is still valid
for the tail behavior since the tail mostly consists of large cities. When adding more
cities of smaller sizes to the distribution, it gradually shows a lognormal body.
Eeckhout [16, 17] then model the growth of settlements using the pure form of
Gibrat’s law (a.k.a Gibrat’s rule of proportionate growth) and generate lognormal
size distribution. Gibrat’s law states that the size and growth rate are independent.
However, the lognormal distribution does not fit well with the power-law tail.

The double Pareto lognormal seems more appropriate since it comprises a
lognormal body and power law tails. Reed [45] suggests a GBM model, similar to
the one that models personal incomes, for obtaining the settlement size distribution.
Individual human settlements grow in many different ways. At the macro level
a GBM process dX = (μdt + σdB)X can be used to model the size growth by
assuming a steady systematic growing rate μ and a random component σdB. The
steady growing rate reflects the average growth rate over all settlements and times,
and the random component reflects the variability of the growth rate. The time when
a city is founded varies from settlement to settlement. If we assume in the time
interval (t, t + dt) any existing settlement can form a new satellite settlement with
probability λ dt, the creation of settlements is a Yule process [52], which was first
proposed as a model for the creation of new biological species. Under Yule process,
the expected number of settlements is eλ t after t time since the first settlement. That
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Fig. 3.12 The double Pareto lognormal distribution fitted to empirical city size data [45]
.

is, the number of settlements is growing at rate λ . Therefore, the existing time for
all settlements is exponentially distributed. It is straightforward to conclude that
under GBM and Yule processes, the overall settlements size distribution will is a
double Pareto distribution. If we further assume a lognormal initial settlement size,
the result will converge to the double Pareto lognormal distribution.

Figure 3.12 shows empirical and fitted double Pareto lognormal distribution
originally plotted by Reed [45] on the West Virginia data and California data
obtained in 1998. The left-hand panel demonstrates the empirical density histogram
in logarithmic size scale and fitted theoretical curve. The right-hand panel shows the
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fitted double Pareto lognormal distribution density in the log–log scale. It is evident
that the double Pareto lognormal distribution provides a nice fit to the data in each
region.

3.3.7 Volumes of Oil Field Reserves

The distribution of oil field sizes (i.e., the volumes of oil field reserves) has been
the subject of much study for decades. Allais [1] was the first to propose to
use a lognormal distribution for mineral resources and Kaufman [30] used this
distribution for a population of oil or gas field in a petroleum basin. After that,
the Pareto distribution has also been commonly used [20, 22, 33, 37] since the
petroleum exploration practice has indicated that the probability of discovering large
oil pools is low while the probability of discovering medium and small-sized pools
is high and the Pareto distribution is consistent with this type of structure. However,
distinguishing lognormal and Pareto features that are both shown in the oil field
size distribution may be difficult, which suggests that the double Pareto lognormal
distribution might be a better choice.

An oil field can be thought of as a percolation cluster. The percolation theory
provides a useful model of connectivity and dynamics in complex geometries
(see [50] for a comprehensive introduction). The typical problem of percolation is
to consider a lattice of n× n sites, each of which is either occupied or unoccupied
with a certain probability. Clusters are formed when neighboring sites are occupied.
The objective is to understand the relationship among groups of clusters. If we think
of an oil field as a percolation cluster, the growth of oil field sizes can then be
considered as a stochastic process of merging adjacent regions. Thus, the growth
of an oil field size can be assumed to be proportional to its current size, for larger
oil fields would have more possible regions to merge, which implies that the size
distribution follows a lognormal distribution for a fixed percolating time.

The initial percolation cluster was formed by burying a huge amount of
organically rich materials (e.g., plants and animal bodies), which could be caused
by geologic hazards such as earthquake, landslides, and mudflows. Such extreme
event occurs with small probability and percolation clusters are formed randomly
with a small constant rate. Thus, the total percolating time span for a cluster is
distributed exponentially. If we also assume a lognormal distribution on the initial
burying amount, the overall size distribution of oil field would be a double Pareto
lognormal distribution.

Figure 3.13 shows empirical and fitted double Pareto lognormal distribution by
Reed [44] for the volume of 634 oil fields in the West Siberian basin. The left-hand
figure demonstrates the empirical density histogram in logarithmic volume scale
and fitted theoretical curve. The right-hand figure shows the fitted double Pareto
lognormal distribution density in the log–log scale.
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Fig. 3.13 The double Pareto lognormal distribution fitted to sizes of oil fields [44]
.

3.3.8 Areas Burned from Forest Wildfire

A number of researches have examined the distribution of burned areas from forest
fires [2,9,10,25,46,51] and claimed that it exhibits power-law behaviors, as shown
in Fig. 3.14. Studying the fire size distribution would be useful to help construct
a wildfire spreading and distinguishing model. Finding a good model that could
precisely describe the process of a forest fire is still an active and open topic in
ecological science. We only provide a sketch model to demonstrate a forest fire
process and omit the details.

The start of a forest fire could just be a random lit up. The growth of a fire is a
very complicated affair, depending on water, topology, temperature, humidity, plant
types (i.e., fuel types), and many other factors. Percolation theory models forest fire
spreads as a multiplicative stochastic process, which is similar to many biological
entities that grow and die in a monotonic and stochastic fashion. That is, the size of
burning area grows proportional to its current burning size as time spans. Therefore,
the sizes of burnt area follows approximately a lognormal distribution for a fixed
burning duration.

The causes of the forest fire extinguishment varies under different situations.
For a small fire, it could extinguish because of lack of fuel in surrounding areas
(burned up or changes of materials). Another possible cause of extinguishment
could come from intervention of human. However, people involved in fire fighting
commonly believe that suppression cannot put out very large fires. The effect of
suppression is more likely to reduce the spread (e.g., by putting separation lines
around the back and sides of fires) rather than to actually extinguish the fires [53].
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Fig. 3.14 A log–log plot of cdf for the size distribution of areas burned for the six dataset [46],
measured in hectares

The only effective cause of extinguishment is precipitation. A few days of heavy
rainfall could put off any size of forest fire. A weaker precipitation might only slow
down the spread, which could be viewed as similar to that of human intervention.
If we assume an equal chance that fires can be put off by natural causes, the time
a forest fire lasts would follow an exponential distribution. Mixing the lognormal
distribution of burned area size and the exponential time span will lead to a double
Pareto distribution.

3.4 Conclusion and Future Directions

In this article, we presented an overview of recent significant research results in
the studies of power law that occur in complex networks and natural phenomena,
explored a two-tailed power-law model called the double Pareto (lognormal) model
and presented a number of real-world examples that can be explained using this
model. The diversity of these examples shows the robustness of the double Pareto
(lognormal) model.

The good fit of double Pareto (lognormal) distribution, however, comes with
costs. The physical meanings of parameters α and β become less intuitive com-
paring with those in the Pareto and lognormal distribution, and making a good
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estimation of the two parameters for the double Pareto distribution (four parameters
for the double Pareto lognormal distribution) requires more mathematic skills.
While we apply double Pareto (lognormal) distribution to empirical data for a close
fit, seeking the underneath mechanism that makes various phenomena follow this
distribution is also crucial. Although “random multiplication with exponentially
distributed stopping time” provides a plausible explanation to the double Pareto
(lognormal) distribution, it is not universal and should not be the only explanation.
Is “exponentially distributed time” necessary to form the double Pareto (lognormal)
distribution? If not, what are the alternatives? Questions like these are vital and
warrant careful studies. The GBM model that essentially inherits from the random
multiplication process and is adopted by numerous cases has its own limitation,
especially in the examples of oil field reserves and forest fire, where a simple
GBM seems not sufficiently sophisticated to precisely capture the nature of those
phenomena. Other good models are still yet to be found.

Nevertheless, we still expect that this model can be further applied to other
areas that are yet to be explored, including the knowledge networks. We would
like to know whether the linkage of human knowledge also exhibits the power
law. If we could manage to divide the knowledge networks into subject domains,
would the different bodies of domain knowledge share the structural similarity?
If so, can we even control the knowledge accumulation process? These questions
seem interesting, for they may help discover new knowledge. The world is expecting
continuous excitement from new findings on power law research.
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