
Chapter 2
Fitness-Based Generative Models
for Power-Law Networks

Khanh Nguyen and Duc A. Tran

Abstract Many real-world complex networks exhibit a power-law degree
distribution. A dominant concept traditionally believed to underlie the emergence
of this phenomenon is the mechanism of preferential attachment which originally
states that in a growing network a node with higher degree is more likely to
be connected by joining nodes. However, a line of research towards a naturally
comprehensible explanation for the formation of power-law networks has argued
that degree is not the only key factor influencing the network growth. Instead, it is
conjectured that each node has a “fitness” representing its propensity to attract links.
The concept of fitness is more general than degree; the former may be some factor
that is not degree, or may be degree in combination with other factors. This chapter
presents a discussion of existing models for generating power-law networks, that
belong to this approach.

2.1 Introduction

The last decade has seen much interest in studying complex real-world networks
and attempting to find theoretical models that elucidate their structure. Although
empirical networks have been studied for some time, a surge in activity is often seen
as having started with Watts and Strogatz’s paper on “small-world networks” [23].
More recently, the major focus of research has moved from small-world networks
to “scale-free” networks, which are characterized by having power-law degree
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Table 2.1 Real-world
networks: power-law
exponent (λ )

Case λ
Mathematics coauthorship 2.2
Film actor collaborations 2.1–2.3

WWW 2.1
Internet backbone 2.15–2.2
Protein interactions 2–2.4

ER graph NA
BA graph 3

distributions [3]; that is, if p(k) is the fraction of nodes in the network having degree
k (i.e., having k connections to other nodes), then (for suitably large k)

p(k) = ck−λ , (2.1)

where c = (λ − 1)mλ−1 is a normalization factor and m is the minimum degree in
the network. This distribution is observed in many real-world networks, including
the WWW [1], the Internet [12], metabolic networks [15], protein networks [14],
co-authorship networks [21], and sexual contact networks [19]. In these networks,
there are a few nodes with high degree and many other nodes with small degree, a
property not found in standard Erdós–Rényi (ER) random graphs [9].

The near ubiquity of heavy-tailed degree distributions such as the power-law (2.1)
for real-world complex networks, together with the inadequacy of the ER random
graphs as a theoretical model for such networks, brings into sharp relief the
fundamental problem of obtaining a satisfactory theoretical explanation for how
heavy-tailed degree distribution can naturally arise in complex networks.

A dominant concept traditionally believed to underlie the emergence of the
power-law phenomenon is the mechanism of preferential attachment, proposed by
Barabási and Albert [3]: the higher degree a node has, the more likely it is to
be connected by new nodes. This model, hereafter referred to as the BA model,
leads to a growing random network which simulations and analytic arguments show
has a power-law degree distribution with exponent λ = 3. Despite its elegance and
simplicity, a deficiency of this mechanism is due to its fixed power-law exponent. As
real-world networks exhibit a wide range of exponents, typically between 2 and 3
(see Table 2.1 for examples), the BA model may only explain a small subset of
complex networks.

Consequently, other mechanisms have been proposed. Some, e.g., [8], are
merely formulaic without a natural interpretation. Others use different connectivity
information, not merely degree, of each node to influence the formation of a
network, such as the mechanism in [17]. Still, a universally accepted explanation
that works for not just one network but also others remains to be found. For example,
if we use the BA-based models to explain the sexual contact network studied
in [19], which is known to be power-law, a new individual will prefer to have sexual
contact with those individuals who already have a large number of sexual contacts,
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while the explanation according to [17] will infer that a new individual will have
sexual contact with some existing partners of a randomly chosen individual. These
explanations seem bizarre for human sexual behavior.

In searching for a more natural explanation for the formation of power-law
networks in the real world, there is a line of research, [4–6,13,16,22], founded based
on the conjecture that in many complex networks each node will have associated to it
a “fitness” representing the propensity of the node to attract links. Using the fitness
concept to explain the sexual contact network above, we could say that it is the
fitness of an individual that attracts other individuals; an individual wants to have
sexual contact with another individual because of the latter’s fitness, not the latter’s
connectivity. The fact that a node has many contacts may just be a consequence of its
high fitness. The key challenge in the design of fitness-based models is how fitness
is defined; for example, what is fitness? what is it made of? what is its influence?
Fitness may be just degree, or something not, or a combination of many factors,
explicit or implicit. Fundamental differences in the approach to addressing these
questions is discussed in the remaining sections of this chapter.

It is important to note that, as argued in [18], there are a rich variety of “emergent”
topological signatures beyond mere power-law degree distributions that are also
present in real-world complex networks. To date, there has been no perfect network
generative model satisfying all signatures. This chapter is focused only on the
power-law degree property of complex networks.

2.2 Early Network Models

One of the earliest theoretical models of a complex network was proposed and
studied in detail by Erdós and Rényi [9–11] in a famous series of papers in the
1950s and 1960s. The ER random graph model consists of n nodes (or vertices)
joined by links (or edges), where each possible edge between two vertices is present
independently with probability p and absent with probability 1− p. The probability
p(k) that a node has exactly degree k is given by the binomial distribution

p(k) =

(
n− 1

k

)
pk(1− p)n−k−1. (2.2)

In the limit when n � kz, where z = (n − 1)p is the mean degree, the degree
distribution becomes the Poisson distribution

p(k) =
zke−z

k!
. (2.3)

The Poisson distribution is strongly peaked about the mean z, and has a tail that
decays very rapidly as 1/k!. This rapid decay is completely different from the heavy-
tailed power-law nature of the tail of the degree distribution that is observed in many
real-world complex networks.
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Most widely known among the theoretical models for complex networks with a
degree distribution similar to real-world networks is the BA model [3], which works
as follows. Starting from a small number (n0) of nodes (which could, for example,
be chosen to form a random graph), at every time-step we add a new node with
m ≤ n0 edges linking the new node to the m distinct nodes already present in the
network such that the probability Πi that the new node will connect to node i is
proportional to the degree ki of that node; that is,

Πi =
ki

∑ j k j
. (2.4)

Consider a node i that joins the network at time i. Denote by ki(t) the degree of
this node at time t. When the network is sufficiently large, ki(t) can be represented
as a continuous function of time t, which grows at the following rate:

∂ki

∂ t
=

mki

k1 + k2 + · · ·+ kn
, (2.5)

where n = n0 + t is the network size at time t, and k j’s are the degrees of the
current nodes. For large n, we can ignore the value of n0 and since m new links are
added after each time step (resulting in 2m degree increase), the sum of all nodes’
degrees, k1+k2+ · · ·+kn, can be approximated by 2mt. Thus, (2.5) can be rewritten
approximately as

∂ki

∂ t
=

mki

2mt
=

ki

2t
.

Hence, ki(t) must be of the form ki(t) = c
√

t for some constant c. When node i just
joins the network, that is, t = i, its degree is m and so we have m = c

√
i or c=m/

√
i.

Consequently, the degree of node i as a function of time t is

ki(t) = m
√

t/i.

Given k, the probability that ki(t) is less than k is

Pr[ki(t)< k] = Pr
[
m
√

t/i < k] = Pr[i > tm2/k2
]
.

Because node i can equally likely be any node among (n0 + t) current nodes
(consisting of n0 initial nodes and t nodes added by time t), we have

Pr[i > i0] = 1− i0
n0 + t

, (2.6)

for any given i0. Consequently,

Pr[i > tm2/k2] = 1− tm2/k2

n0 + t
= 1− m2/k2

n0/t + 1
≈ 1−m2/k2

(when t is large).
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The probability density function (pdf) of node i’s degree is

P(k) =
∂Pr[ki(t)< k]

∂k
= 2m2/k3.

Thus, BA results in a power-law degree distribution with λ = 3 (independent of m,
which only changes the mean degree of the network).

A different generative model for power-law networks is the copy model studied
by Kumar et al. [17], in which the new node chooses an existing node at random
and copies a fraction of the links of the existing node. This model assumes that the
new node knows who the chosen existing node is connected to. This assumption
is reasonable for web graphs for which the model is originally proposed. However,
the assumption is not always reasonable in other circumstances, as is clear from the
case of sexual contact networks discussed in Sect. 2.1.

2.3 Combination of Degree and Fitness

An early fitness-based model for constructing power-law networks was proposed
in [5]. This model assumes that the evolution of a network is driven by two
factors associated with each node, its node degree and its fitness. These factors
jointly determine the rate at which new links are added to the node. While node
degree represents an ability to attract links that is increasing over time, node fitness
represents something attractive about the node, that is constant. For example, in the
WWW network, there can be two web pages published at the same time (thus, same
degree) but later one might be much more popular than the other; this might be
because of something intrinsic about one page, e.g., its content, that makes it more
attractive than the other page.

In the proposed model, each node i has a fitness Φi which is chosen according
to some distribution ρ(Φi). The network construction algorithm generalizes the BA
algorithm as follows:

• Parameters

– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to distribution ρ .
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2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to distribution ρ
– Add m edges linking the new node to m distinct existing nodes such

that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
kiΦi

∑ j k jΦ j
. (2.7)

Suppose that i is the time node i joins the network. When the network is
sufficiently large, the degree of node i over time, ki, can be represented as a
continuous function of time t. The value of this function increases over time as
follows:

∂ki

∂ t
= m

(
kiΦi

∑ j k jΦ j
.

)
(2.8)

It can be shown that ki(t) follows a power law

ki(t) = m
( t

i

)Φi/A
,

with A given by

1 =
∫ Φmax

0
dxρ(x)

1
A
x − 1

.

(Here, Φmax defines the maximum fitness.)
The degree of a node therefore grows faster if it has a larger fitness. This allows

a node with a higher fitness to enter the network late but still become more popular
than nodes that have stayed in the network for a much longer period.

If every node has the same fitness, this model is identical to the orignal BA
model, resulting in power-law networks of exponent λ = 3. In the case that fitness is
chosen uniformly in the interval [0, 1], we have A = 1.255 and the fraction of nodes
in the network having degree k follows a generalized power-law with an inverse
logarithmic correction:

p(k) ∝
k−2.255

lnk
. (2.9)

This estimation has been confirmed by numerical simulations [5].
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2.4 Fitness-Based Model with Deletion

The BA model cannot explain the heavy-tail degree distribution in complex
networks where there are many node deletions [20]. On the other hand, the deletion
rate can be significant for certain networks, such as the WWW. In the study of [16],
based on the result of year-long web crawls to track the creation and deletion of
web pages on the Internet, it was found that at least 0.76 pages were removed for
every new web page created. Towards an approach that accommodates deletion, a
model was proposed in [16] which extends the fitness-based model of [5] discussed
in the previous section by allowing a probability for deleting a node at each time
step. Specifically, the network is constructed as follow:

• Parameters

– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to distribution ρ .

2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to distribution ρ .
– Add m edges linking the new node to m distinct existing nodes such

that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
kiΦi

∑ j k jΦ j
. (2.10)

– With probablity c, a random node is removed, along with all its
edges.

It can be shown that the evolution of the degree of node i over time follows a
power law

ki(t) = m
( t

i

)β (Φi)

,
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where the growth exponent β is a function of fitness and deletion rate

β (Φi) =
Φi

A
− c

1− c
,

with A given by

1 =

∫ Φmax

0
dxρ(x)

1
A
x

1+c
1−c − 1

.

If fitness is identical for every node, this model is exactly the same as the BA
model applied to networks with deletion, resulting in a power-law exponent λ =
1+ 2/(1− c) for small c. As c is closer to 1 (i.e., a high deletion rate), the degree
distribution diverges rapidly from power-law. This explains why the BA model is
not appropriate for networks with deletion.

In the case that fitness follows a truncated exponential distribution, which has
been shown to empirically characterize the fitness distribution of web pages defined
as its degree growth rate, the result is that the power-law exponent is not affected
by the deletion rate and stablizes around two. In other words, the network as it is
growing remains power-law, regardless of the rate of node deletion.

The models discussed in this section and the previous section combine fitness
with degree to influence the growth of a network. A fundamentally different model
is presented in the next section, which uses fitness as the only driver for the network
growth.

2.5 Preferential Attachment Using Fitness Only

In a citation network such as [21] the different nodes (i.e., papers) will have different
propensities to attract links (i.e., citations). The various factors that contribute to the
likelihood of a paper being cited could include the prominence of the author(s),
the importance of the journal in which it is published, the apparent scientific merit
of the work, the timeliness of the ideas contained in the paper, etc. Moreover, it
is plausible that the overall quantity that determines the propensity of a paper to be
cited depends essentially multiplicatively on such various factors. The multiplicative
nature is likely in this case since if one or two of the factors happen to be very small
then the overall likelihood of a paper being cited is often also small, even when other
factors are not small; e.g., an unknown author and an obscure journal were enough
to bury a fundamentally important scientific paper.

The lognormal fitness attachment (LNFA) model, proposed by Ghadge et al.
in [13], was motivated by the observation above. In this model, the fitness Φi

representing the property of each node i to attract links is formed multiplicatively
from a number of factors {φ1, φ2, ..., φL} as follows:

Φi =
L

∏
l=1

φl , (2.11)
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where each factor φl is represented as a real non-negative value. Since there may
be many factors contributing to the a node’s attractiveness, explicit or implicit, we
assume that the number of factors φi is reasonably large and that they are statistically
independent. The fitness Φi will therefore be lognormally distributed, irrespective
of the manner in which the individual factors are distributed. Indeed, we have

lnΦi =
L

∑
l=1

lnφl , (2.12)

and the Central Limit Theorem implies that this sum will converge to a normal
distribution. Therefore, lnΦi will be normally distributed. Since a random variable
X has a lognormal distribution if the random variable Y = lnX has a normal
distribution, Φi will be lognormally distributed. The density function of the normal
distribution is

f (y) =
1√

2πσ
e−(y−μ)2/(2σ 2), (2.13)

where μ is the mean and σ is the standard derivation (i.e., σ2 is the variance). The
range of the normal distribution is y ∈ (−∞,∞). It follows from the logarithmic
relation Y = lnX that the density function of the lognormal distribution is given by

f (x) =
1√

2πσx
e−(lnx−μ)2/2σ 2

. (2.14)

It is conventional to say that the lognormal distribution has parameters μ and σ
when the associated normal distribution has mean μ and standard deviation σ .
The range of the lognormal distribution is x ∈ (0,∞). The lognormal distribution

is skewed with mean eμ+σ 2/2 and variance (eσ 2 − 1)e2μ+σ 2
.

Thus, the basic hypothesis that each of the nodes has associated to it a fitness
of the form (2.11) entails that under quite general conditions this fitness will be
lognormally distributed. In the LNFA model, without loss of generality, one can
assume that μ = 0; hence, the fitness distribution is characterized by only a single

parameter σ . This lognormal distribution has mean eσ 2/2 and variance (eσ 2 −1)eσ 2
;

examples are shown in Fig. 2.1.
The network construction algorithm works as follows:

• Parameters

– σ : parameter for the lognormal fitness distribution.
– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.
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Fig. 2.1 Lognormal fitness distribution for three representative values of σ . The extreme cases are
when σ is small (0.1) or large (9). In most cases, the distribution will have the shape similar to the
case σ = 1.5. Figure 2.5 is plotted in the log-log scale to emphasize that all the nodes except a few
have fitness zero (or extremely close) while the rest (very few) have high fitness

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to the lognormal distribution.

2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to the lognormal
distribution.

– Add m edges linking the new node to m distinct existing nodes such
that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
Φi

∑ j Φ j
. (2.15)

LNFA is almost identical to the BA model, the difference being that fitness
information is used in place of degree information. Although this difference seems
to be minor, it makes a fundamental shift in how the network is formed. To make
this point, recall that in the BA protocol, the degree of a new node at the time it joins
the network is small (m) and so it takes this node a long time before it may become
a preferential choice for future new nodes to attach to. In LNFA, the new node
may have a large fitness at the time it joins the network, making itself a preferential
choice immediately. This is naturally reasonable because the attractiveness of a node
may not result from how many nodes it is connected to; it may instead result from
the “inner self ” factors such as the personality of a person in a friendship network
and his or her age.

As demonstrated in Fig. 2.2, LNFA can be used to generate a large spectrum
of networks as seen in the real world and it is possible to do so by varying the
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Fig. 2.2 2,000-node networks resulting from increasing σ . Transitions from exponential to power-
law to winner-take-all graphs are observed

parameter σ . Consider two extreme cases of this parameter. In the first case, if σ
is zero, nodes have exact same fitnesses and so, basing on Formula 2.15, each time
a new node joins the network it chooses an existing node as neighbor with equal
chance. This construction is simply the random graph model of [7] which yields a
network with exponential degree distribution. On the other extreme, if σ is increased
to reach a certain threshold, few nodes will stand out having very large fitnesses
while all the other nodes will have very low fitnesses (zero or near zero; see Fig. 2.5).
Consequently, an extremely high number of connections will be made to just a single
node, resulting in a monopolistic network; this “winner-take-all” degree pattern is
also observed in the real world [2]. Between these two extreme cases (exponential
and monopolistic) we find a spectrum of power-law networks.

The transition between the regimes of degree distributions is not discontinuous.
It is observed that when σ reaches 1 power-law degree distributions emerge and
remain until σ is beyond 4. After that (σ > 4), the network becomes less power-law
and more of a winner-take-all network. This is illustrated in Fig. 2.3 which shows the
exponent λ as a function of σ . This figure plots the exponent values for 20 different
networks of size ranging from 10,000 nodes to 20,000 nodes, that are constructed
with the same σ value (ranging from 1 to 4.5). Here exponent values are not shown
for the case σ < 1 because the corresponding resultant networks are not power-
law; they are exponential random graphs. Seen from the figure, as σ increases from
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Fig. 2.3 Power-law exponent λ as a function of parameter σ . For each value of σ , 20 networks
with size ranging from 10,000 to 200,000 nodes were considered. Each sample (“dot”) in the plot
shows the exponent for each network (for each value of σ )

1 to 3.5, there is remarkable consistency among all the 20 networks considered: they
are all power-law with nearly identical exponent (it is noted that in the figure the
increase in fluctuations seen at larger σ (σ ≥ 4) is a consequence of the cross-over
from power-law to a more monopolistic degree distribution). For example, when
σ = 2, all networks have the same exponent 2.25. This implies that with LNFA
the power-law degree distribution will emerge quickly as the network grows (in our
observation, networks with 10,000 nodes already show their scale-freeness). It is
also important to see that when the power-law pattern is observed, the exponent
ranges between 1.8 and 2.8, which is close to the range [2, 3] typically observed in
the real world. The exponent is monotonically decreasing as a function of σ .

2.6 Fitness-Based Model with Mutual Benefit

It is argued that in many cases of interest the power-law degree behavior is neither
related to dynamical properties nor to preferential attachment. Also, the concept that
the likelihood of a new node to link to an existing node depends solely on the latter’s
fitness might only apply to certain networks. The model proposed in [6] is suited for
complex networks where it is the mutual benefit that makes two nodes link to each
other. This model puts the emphasis on fitness itself without using the preferential
attachment rule. Further, it is a static model building a network by growing links
instead of growing nodes.
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Specifically, the network construction algorithm starts with a set of n isolated
nodes, where n is the size of the network to be built. Similar to the models discussed
in the previous sections, each node i has a fitness Φi drawn from some distribution ρ .
Then, for every pair of nodes, i and j, a link is drawn with a probability f (Φi,Φ j)
which is some joint function of Φi and Φ j. This model can be considered a
generalization of the ER random graph model [9]. Rather than using an identical
link probability for every pair of nodes as in the ER model, here two nodes are
linked with a likelihood depending jointly on their fitnesses. A general expression
for p(k) can be easily derived. Indeed, the mean degree of a node of fitness Φ is

k(Φ) = n
∫ ∞

0
f (Φ,x)ρ(x)dx = nF(Φ). (2.16)

Assuming F to be a monotonous function, and for large enough n, the following
form can be obtained for p(k):

p(k) = ρ
[

F−1
(

k
n

)]
d
dk

F−1
(

k
n

)
. (2.17)

Thus, one can choose an appropriate formula for ρ and f to achieve a given
distribution for p(k). It is shown that a power law for p(k) will emerge if fitness
follows a power law and the linking probability for two nodes is proportional to the
product of their fitnesses. For example, one can choose

f (Φi,Φ j) = (ΦiΦ j)/Φ2
max

and

ρ(Φ) ∝ Φ−β ,

(corresponding to a Zipf’s behavior with Zipf coefficient α = 1/(β − 1)).
In the case that fitness does not follow a power law, it is possible to find a

linking function that will result in a power-law degree distribution. For example,
considering an exponential fitness distribution, ρ(Φ) ∝ e−Φ (representing a Poisson
distribution), one can choose

f (Φi,Φ j) = θ [Φi +Φ j − z(n)]

where θ is the usual Heaviside step function and z(n) is some threshold, meaning
that two nodes are neighbors only if the sum of their fitness values is larger than
the threshold z(n). Using these rules, the degree distribution has a power law with
exponent λ = 2. This is interesting because it shows that power-law networks can
emerge even if fitness is not power-law. The same behavior also emerges if a more
generic form of the linking function is used,

f (Φi,Φ j) = θ [Φc
i +Φc

j − zc(n)],
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(where c is an integer number); however, the power-law degree distribution has
logarithmic corrections in some cases.

Closely related to the above model is the work of [22] which assumes the same
concept that the linking probability is a joint function of the fitnesses of the end
nodes. In this related work, it is concluded that for any given fitness distribution
ρ(Φ) there exists a function g(Φ) such that the network generated by ρ(Φ) and
f (Φi,Φ j) = g(Φi)g(Φ j) is power-law with an arbitrary real exponent. Mutual-
benefit based linking can also be combined with preferential attachment to drive
the growth of a power-law network as shown in the work of [4].

2.7 Summary

This chapter has provided a review of existing models aimed at constructing
power-law complex networks, that are inspired by the idea that there is some
intrinsic fitness associated with a node to drive its evolution in the network. This
fitness might be causal to why a node has a high degree or low, or might be an
independent factor which together with the node’s degree affect the node’s ability
to compete for links. The models discussed differ in how they interpret fitness and
its influence on growing the network. It is suggested in [5, 16] that both degree and
fitness jointly determine the growth rate of node degree. This may apply to complex
networks such as a social network where a person’s attractiveness is a combination
of both his or her experience (represented by node degree) and talent (represented
by fitness), or the WWW network where a web page is popular because its long time
staying online (represented by node degree) and quality of its content (represented
by fitness). A different approach is proposed in [6,13,22] where all the attractiveness
factors associated with a node can be combined into a single factor (fitness). While
the models in [6, 22] are motivated by static networks where two nodes require
mutual benefit in order to make a connection, the lognormal fitness model in [13] is
suitable to explain growing networks where a node wants to be a neighbor of another
solely because of the latter’s fitness, regardless of the former’s. Although none of
these models is one-size-fits-all, they do represent a vast population of complex
networks. The current models, however, assume that fitness is an intrinsic factor
that does not change over time. In practice, there are cases of networks where the
overall attractiveness of a node might increase for one period of time and decrease
for another. For the future work, it is thus an interesting research problem to explore
fitness models that allow fitness to have its own evolution. The future research
should also pay great attention to (in)validating theoretical models with the data
collected from real-world networks.
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9. Erdós, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)
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