
Chapter 16
Theory of Citing

M.V. Simkin and V.P. Roychowdhury

Abstract We present empirical data on misprints in citations to 12 high-profile
papers. The great majority of misprints are identical to misprints in articles that
earlier cited the same paper. The distribution of the numbers of misprint repetitions
follows a power law. We develop a stochastic model of the citation process, which
explains these findings and shows that about 70–90% of scientific citations are
copied from the lists of references used in other papers. Citation copying can explain
not only why some misprints become popular, but also why some papers become
highly cited. We show that a model where a scientist picks few random papers,
cites them, and copies a fraction of their references accounts quantitatively for
empirically observed distribution of citations.

16.1 Statistics of Misprints in Citations

Now let us come to those references to authors, which other books have, and you want for
yours. The remedy for this is very simple: You have only to look out for some book that
quotes them all, from A to Z . . . , and then insert the very same alphabet in your book, and
though the imposition may be plain to see, because you have so little need to borrow from
them, that is no matter; there will probably be some simple enough to believe that you have
made use of them all in this plain, artless story of yours. At any rate, if it answers no other
purpose, this long catalogue of authors will serve to give a surprising look of authority to
your book. Besides, no one will trouble himself to verify whether you have followed them
or whether you have not, being no way concerned in it. . .
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Table 16.1 Papers, misprints in citing which we studied

Number Reference

1 K.G. Wilson, Phys. Rev. 179, 1499 (1969)
2 K.G. Wilson, Phys. Rev. B 4, 3174 (1971)
3 K.G. Wilson, Phys. Rev. B 4, 3184 (1971)
4 K.G. Wilson, Phys. Rev. D 10, 2445 (1974)
5 J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973)
6 J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)
7 M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)
8 M.J. Feigenbaum, J. Stat. Phys. 21, 669 (1979)
9 P. Bak, J. von Boehm, Phys. Rev. B 21, 5297 (1980)
10 P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)
11 P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)
12 P. Bak and C. Tang, J. Geophys. Res. B 94, 15635 (1989)

When scientists are writing their scientific articles, they often use the method
described in the above quote. They can do this and get away with it until one day
they copy a citation, which carries in it a DNA of someone else’s misprint. In such
case, they can be identified and brought to justice, similar to how biological DNA
evidence helps to convict criminals, who committed more serious offences than that.

Our initial report [1] led to a lively discussion1 on whether copying a citation is a
proof of not reading the original paper. Alternative explanations are worth exploring;
however, such hypotheses should be supported by data and not by anecdotal claims.
It is indeed most natural to assume that a copying citer also failed to read the
paper in question (albeit this cannot be rigorously proved). Entities must not be
multiplied beyond necessity. Having thus shaved the critique with Occam’s razor,
we will proceed to use the term non-reader to describe a citer who copies.

As misprints in citations are not too frequent, only celebrated papers provide
enough statistics to work with. Let us have a look at the distribution of misprints in
citations to one renowned paper (number 5 in Table 16.1), which at the time of our
initial inquiry [1], that is in late 2002, had accumulated 4,301 citations. Out of these
citations 196 contained misprints, out of which only 45 were distinct. The most
popular misprint in a page number appeared 78 times.

As a preliminary attempt, one can estimate the ratio of the number of readers to
the number of citers, R, as the ratio of the number of distinct misprints, D, to the
total number of misprints, T . Clearly, among T citers, T −D copied, because they
repeated someone else’s misprint. For the D others, with the information at hand,
we have no evidence that they did not read, so according to the presumed innocent

1See, for example, the discussion “Scientists Don’t Read the Papers They Cite” on Slashdot: http://
science.slashdot.org/article.pl?sid=02/12/14/0115243&mode=thread&tid=134.

http://science.slashdot.org/article.pl?sid=02/12/14/0115243{&}mode=thread{&}tid=134
http://science.slashdot.org/article.pl?sid=02/12/14/0115243{&}mode=thread{&}tid=134
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Table 16.2 Citation and misprint statistics together with estimates of R for 12 studied papers

Percentile
rank for
R =
0.2(%)

Misprints R

Number Citations Total Distinct M(%) (16.1) (16.8) (16.22) MC

1 1,291 61 29 2.2 0.48 0.46 0.44 0.37 15
2 861 33 13 1.5 0.39 0.38 0.35 0.28 44
3 818 38 11 1.3 0.29 0.28 0.22 0.22 68
4 2,578 263 32 1.2 0.12 0.11 – 0.10 95
5 4,301 196 45 1.0 0.23 0.22 0.17 0.15 76
6 1,673 40 12 0.7 0.30 0.29 0.25 0.22 65
7 1,639 36 21 1.3 0.58 0.58 0.57 0.49 6
8 837 55 18 2.2 0.33 0.31 0.26 0.22 57
9 419 20 8 1.9 0.40 0.39 0.34 0.29 50
10 1,717 33 14 0.8 0.42 0.42 0.40 0.31 36
11 1,348 78 27 2.0 0.35 0.33 0.29 0.23 47
12 397 61 18 4.5 0.30 0.26 0.17 0.19 69

The citation data were retrieved from the ISI database in late 2002 and early 2003. The way we
count misprints is look at the whole sequence of volume, page number and the year, which amounts
to between 8 and 11 digits for different studied papers. That is, two misprints are distinct if they
are different in any of the places, and they are repeats if they agree on all of the digits

principle, we assume that they did. Then in our sample, we have D readers and T
citers, which lead to:

R ≈ D/T. (16.1)

Substituting D = 45 and T = 196 in (16.1), we obtain that R ≈ 0.23. The values of
R for the rest of the dozen studied papers are given in Table 16.2.

As we pointed out in [2] the above reasoning would be convincing if the people
who introduced original misprints had always read the original paper. It is more
reasonable to assume that the probability of introducing a new misprint in a citation
does not depend on whether the author had read the original paper. Then, if the
fraction of read citations is R, the number of readers in our sample is RD, and the
ratio of the number of readers to the number of citers in the sample is RD/T. What
happens to our estimate, (16.1)? It is correct, just the sample is not representative:
the fraction of read citations among the misprinted citations is less than in general
citation population.

Can we still determine R from our data? Yes. From the misprint statistics we can
determine the average number of times, np, a typical misprint propagates:

np =
T −D

D
. (16.2)

The number of times a misprint had propagated is the number of times the citation
was copied from either the paper which introduced the original misprint, or from
one of subsequent papers, which copied (or copied from copied, etc.) from it.
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A misprinted citation should not differ from a correct citation as far as copying
is concerned. This means that a selected at random citation, on average, is copied
(including copied from copied, etc.) np times. The read citations are no different
from unread citations as far as copying goes. Therefore, every read citation, on
average, was copied np times. The fraction of read citations is thus

R =
1

1+ np
. (16.3)

After substituting (16.2) into (16.3), we recover (16.1).
Note, however, that the average number of times a misprint propagates is not

equal to the number of times the citation was copied, but to the number of times
it was copied correctly. Let us denote the average number of citations copied
(including copied from copied etc) from a particular citation as nc. It can be
determined from np the following way. The nc consists of two parts: np (the correctly
copied citations) and misprinted citations. If the probability of making a misprint is
M and the number of correctly copied citations is np then the total number of copied
citations is np/(1−M) and the number of misprinted citations is (npM)/(1−M).
As each misprinted citation was itself copied nc times, we have the following self-
consistency equation for nc:

nc = np + np × M
1−M

× (1+ nc) (16.4)

It has the solution

nc =
np

1−M− np×M
(16.5)

After substituting (16.2) into (16.5) we get:

nc =
T −D

D−MT
. (16.6)

From this, we get:

R =
1

1+ nc
=

D
T
× 1− (MT/D)

1−M
(16.7)

The probability of making a misprint we can estimate as M = D/N, where N is the
total number of citations. After substituting this into (16.7) we get:

R =
D
T
× N −T

N −D
. (16.8)
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Fig. 16.1 Rank-frequency distributions of misprints in referencing four high-profile papers (here
the rank is determined by the frequency so that the most popular misprint has rank 1, second most
frequent misprint has rank 2 and so on). Figures (a–d) are for papers 2, 5, 7, and 10 of Table 16.1.
Solid lines are fits to Zipf Law with exponents a 1.20; b 1.05; c 0.66; d 0.85

Substituting D = 45, T = 196, and N = 4301 in (16.8), we get R ≈ 0.22, which is
very close to the initial estimate, obtained using (16.1). The values of R for the rest
of the papers are given in Table 16.2. They range between 11% and 58%.

In the next section we introduce and solve the stochastic model of misprint prop-
agation. The model explains the power law of misprint repetitions (see Fig. 16.1).
If you do not have time to read the whole chapter, you can proceed after Sect. 16.2.1
right to Sect. 16.3.1. There we formulate and solve the model of random-citing
scientists (RCS). The model is as follows: when scientist is writing a manuscript he
picks up several random papers, cites them, and copies a fraction of their references.
The model can explain why some papers are far more cited than others. After that,
you can directly proceed to discussion in Sect. 16.5. If you have questions, you
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can find answers to some of them in other sections. The results of Sect. 16.1 are
exact in the limit of infinite number of citations. Since this number is obviously
finite, we need to study finite size effects, which affect our estimate of R. This is
done in Section 16.2.2 using complicated mathematical methods and in Sect. 16.2.3
using Monte Carlo simulations. The limitations of the simple model arising from
the instances like, for example, the same author repeats the same misprint, are
discussed in Sect. 16.2.4. In Sect. 16.2.5, we review the previous work on identical
misprints. In short: some people did notice repeat misprints and attributed them
to citation copying, but nobody derived (16.1) before us. The RCS model of
Sect. 16.3 can explain a power law in overall citation distribution, but cannot explain
a power-law distribution in citations to the papers of the same age. Section 16.4.1
introduces the modified model of random-citing scientist (MMRCS), which solves
the problem. The model is as follows: when a scientist writes a manuscript, he
picks up several random recent papers, cites them, and also copies some of their
references. The difference with the original model is the word recent. In Sect. 16.4.2
the MMRCS is solved using theory of branching processes and the power-law
distribution of citations to the papers of the same age is derived. Section 16.4.3
considers the model where papers are not created equal but have Darwinian fitness
that affects their citability. Section 16.4.4 studies effects of literature growth (yearly
increase of the number of published papers) on citation distribution. Section 16.4.5
describes numerical simulations of MMRCS, which perfectly match real citation
data. Section 16.4.6 shows that MMRCS can explain the phenomenon of literature
aging that is why papers become less cited as they get older. Section 16.4.7 shows
that MMRCS can explain the mysterious phenomenon of sleeping beauties in
science (papers that are at first hardly noticed suddenly awake and get a lot of
citations). Section 16.4.8 describes the connection of MMRCS to the Science of
Self-Organized Criticality (SOC).

16.2 Stochastic Modeling of Misprints in Citations

16.2.1 Misprint Propagation Model

Our misprint propagation model (MPM) [1, 3] which was stimulated by Simon’s
[4] explanation of Zipf Law and Krapivsky–Redner [5] idea of link redirection, is
as follows. Each new citer finds the reference to the original in any of the papers
that already cite it (or it can be the original paper itself). With probability R he
gets the citation information from the original. With probability 1−R he copies the
citation to the original from the paper he found the citation in. In either case, the
citer introduces a new misprint with probability M.

Let us derive the evolution equations for the misprint distribution. The only way
to increase the number of misprints that appeared only once, N1, is to introduce
a new misprint. So, with each new citation N1 increases by 1 with probability M.
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The only way to decrease N1, is to copy correctly one of misprints that appeared
only once, this happens with probability α × (N1/N), where

α = (1−R)× (1−M) (16.9)

is the probability that a new citer copies the citation without introducing a new error,
and N is the total number of citations. For the expectation value, we thus have:

dN1

dN
= M−α × N1

N
. (16.10)

The number of misprints that appeared K times, NK , (where K > 1) can be increased
only by copying correctly a misprint which appeared K − 1 times. It can only be
decreased by copying (again correctly) a misprint which appeared K times. For the
expectation values, we thus have:

dNK

dK
= α × (K − 1)×NK−1−K ×NK

N
(K > 1). (16.11)

Assuming that the distribution of misprints has reached its stationary state, we can
replace the derivatives (dNK/dN) by ratios (NK/N) to get:

N1

N
=

M
1+α

;
NK+1

NK
=

K
1+ 1/α +K

(K > 1). (16.12)

Note that for large K: NK+1 ≈ NK +dNK/dK, therefore (16.12) can be rewritten as:

dNK

dK
≈− 1+ 1/α

1+ 1/α +K
Nk ≈ 1+ 1/α

K
Nk.

From this follows that the misprints frequencies are distributed according to a
power law:

NK ∼ 1/Kγ , (16.13)

where

γ = 1+
1
α

= 1+
1

(1−R)
× (1−M). (16.14)

Relationship between γ and α in (16.14) is the same as the one between exponents
of number-frequency and rank-frequency distributions.2 Therefore the parameter

2Suppose that the number of occurrences of a misprint (K), as a function of the rank (r), when the
rank is determined by the above frequency of occurrence (so that the most popular misprint has rank
1, second most frequent misprint has rank 2 and so on), follows a Zipf law: K(r) =C/rα . We want
to find the number-frequency distribution, i.e. how many misprints appeared n times. The number
of misprints that appeared between K1 and K2 times is obviously r2 − r1, where K1 = C/rα

1 and
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α , which was defined in (16.9), turned out to be the Zipf law exponent. An exact
formula for Nk can also be obtained by iteration of (16.12) to get:

NK

N
=

Γ(K)Γ(γ)
Γ(K + γ)

× M
α

= B(K,γ)× M
α

(16.15)

Here Γ and B are Euler’s Gamma and Beta functions. Using the asymptotic for
constant γ and large K

Γ(γ)
Γ(K + γ)

∼ K−γ (16.16)

we recover (16.13).
The rate equation for the total number of misprints is:

dT
dN

= M+α × T
N
. (16.17)

The stationary solution of (16.17) is:

T
N

=
M

1−α
=

M
R+M−RM

. (16.18)

The expectation value for the number of distinct misprints is obviously

D = N ×M. (16.19)

From (16.18) and (16.19) we obtain:

R =
D
T
× N −T

N −D
, (16.20)

which is identical to (16.8).
One can ask why we did not choose to extract R using (16.9) or (16.14). This

is because α and γ are not very sensitive to R when it is small (in fact (16.9) gives
negative values of R for some of the fittings in Fig. 16.1). In contrast, T scales as
1/R.

We can slightly modify our model and assume that original misprints are only
introduced when the reference is derived from the original paper, while those who
copy references do not introduce new misprints (e.g., they do cut and paste). In this
case one can show that T = N ×M and D = N ×M ×R. As a consequence (16.1)
becomes exact (in terms of expectation values, of course).

K2 =C/rα
2 . Therefore, the number of misprints that appeared K times, Nk, satisfies NKdK =−dr

and hence, NK =−dr/dK ∼ K−1/α−1.
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16.2.2 Finite-Size Corrections

Preceding analysis assumes that the misprint distribution had reached its stationary
state. Is this reasonable? Equation (16.17) can be rewritten as:

d(T/N)

M− (T/N)× (1−α)
= d lnN. (16.21)

Naturally the first citation is correct (it is the paper itself). Then the initial condition
is N = 1; T = 0. Equation (16.21) can be solved to get:

T
N

=
M

1−α
×
(

1− 1
N1−α

)
=

M
R+M−M×R

×
(

1− 1
NR+M−M×R

)
(16.22)

This should be solved numerically for R. The values obtained using (16.22) are given
in Table 16.2. They range between 17% and 57%. Note that for one paper (No.4)
no solution to (16.22) was found.3 As N is not a continuous variable, integration
of (16.17) is not perfectly justified, particularly when N is small. Therefore, we
reexamine the problem using a rigorous discrete approach due to Krapivsky and
Redner [6]. The total number of misprints, T , is a random variable that changes
according to

T (N + 1) =

{
T (N) with probability 1−M− T (N)

N α
T (N)+ 1 with probability M+

T (N)
N α

(16.23)

after each new citation. Therefore, the expectation values of T obey the following
recursion relations:

〈T (N + 1)〉= 〈T (N)〉+ 〈T (N)〉
N

α +M (16.24)

To solve (16.24) we define a generating function:

χ(ω) =
∞

∑
n=1

〈T (N)〉ωN−1 (16.25)

3Why did this happen? Obviously, T reaches maximum when R equals zero. Substituting R = 0 in
(16.22) we get: TMAX =N(1−1/NM ). For paper No.4 we have N = 2,578, M =D/N = 32/2,578.
Substituting this into the preceding equation, we get TMAX = 239. The observed value T = 263 is
therefore higher than an expectation value of T for any R. This does not immediately suggest
discrepancy between the model and experiment but a strong fluctuation. In fact out of 1,000,000
runs of Monte Carlo simulation of MPM with the parameters of the mentioned paper and R = 0.2
exactly 49,712 runs (almost 5%) produced T ≥ 263.
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After multiplying (16.24) by NωN−1 and summing over N ≥ 1 the recursion relation
is converted into the differential equation for the generating function

(1−ω)
dχ
dω

= (1+α)χ +
M

(1−ω)2 (16.26)

Solving (16.26) subject to the initial condition χ(0) = 〈T (1)〉= 0 gives

χ(ω) =
M

1−α

(
1

(1−ω)2 −
1

(1−ω)1−α

)
(16.27)

Finally we expand the right-hand side of (16.27) in Taylor series in ω and equating
coefficients of ωN−1 obtain:

〈T (N)〉
N

=
M

1−α

(
1− Γ(N +α)

Γ(1+α)Γ(N + 1)

)
(16.28)

Using (16.16) we obtain that for large N

〈T (N)〉
N

=
M

1−α

(
1− 1

Γ(1+α)
× 1

N1−α

)
(16.29)

This is identical to (16.22) except for the pre-factor 1/Γ(1+α). Parameter α (it is
defined in (16.9)) ranges between 0 and 1. Therefore, the argument of Gamma
function ranges between 1 and 2. Because Γ(1) = Γ(2) = 1 and between 1 and 2
Gamma function has just one extremum Γ(1.4616 . . .) = 0.8856 . . ., the continuum
approximation (16.22) is reasonably accurate.

16.2.3 Monte Carlo Simulations

In the preceding section, we calculated the expectation value of T . However, it does
not always coincide with the most likely value when the probability distribution
is not Gaussian. To get a better idea of the model’s behavior for small N and a
better estimate of R we did numerical simulations. To simplify comparison with
actual data the simulations were performed in a “micro-canonical ensemble,” i.e.,
with a fixed number of distinct misprints. Each paper is characterized by the total
number of citations, N, and the number of distinct misprints, D. At the beginning
of a simulation, D misprints are randomly distributed between N citations and
chronological numbers of the citations with misprints are recorded in a list. In the
next stage of the simulation for each new citation, instead of introducing a misprint
with probability M, we introduce a misprint only if its chronological number is
included in the list created at the outset. This way one can ensure that the number
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Fig. 16.2 A typical outcome
of a single simulation of the
MPM (with R = 0.2)
compared to the actual data
for paper 5 in Table 16.1
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Fig. 16.3 The outcome of
1,000,000 runs of the MPM
with N = 4301, D = 45
(parameters of paper 5 from
Table 16.1) for four different
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of distinct misprints in every run of a simulation is equal to the actual number of
distinct misprints for the paper in question. A typical outcome of such simulation
for paper 5 is shown in Fig. 16.2.

To estimate the value of R, 1,000,000 runs of the random-citing model with R= 0,
0.1, 0.2. . . , 0.9 were done. An outcome of such simulations for one paper is shown in
Fig. 16.3. The number of times, NR, when the simulation produced a total number of
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Fig. 16.4 Bayesian inference for the probability density of the readers/citers ratio, R, computed
using (16.30). Figures. (a–d) are for papers 2, 5, 7, and 10 (Table 16.1)

misprints equal to the one actually observed for the paper in question was recorded
for each R. Bayesian inference was used to estimate the probability of R:

P(R) =
NR

∑
R

NR
(16.30)

Estimated probability distributions of R, computed using (16.30) for four sample
papers are shown in Fig. 16.4. The median values are given in Table 16.2 (see the
MC column). They range between 10% and 49%.
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Fig. 16.5 Bayesian inference
for the readers/citers ratio, R,
based on 12 studied papers
computed using (16.31)
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Now let us assume R to be the same for all 12 papers and compute Bayesian
inference:

P(R) =

12
∏
i=1

Ni
R

∑
R

12
∏
i=1

Ni
R

(16.31)

The result is shown in Fig. 16.5. P(R) is sharply peaked around R= 0.2. The median
value of R is 18% and with 95% probability R is less than 34%.

But is the assumption that R is the same for all 12 papers reasonable? The
estimates for separate papers vary between 10% and 50 %! To answer this question
we did the following analysis. Let us define for each paper a “percentile rank.” This
is the fraction of the simulations of the MPM (with R = 0.2) that produced T , which
was less than actually observed T . Actual values of these percentile ranks for each
paper are given in Table 16.2 and their cumulative distribution is shown in Fig. 16.6.
Now if we claim that MPM with same R = 0.2 for all papers indeed describes the
reality – then the distribution of these percentile ranks must be uniform. Whether
or not the data is consistent with this, we can check using Kolmogorov–Smirnov
test [7]. The maximum value of the absolute difference between two cumulative
distribution functions (D-statistics) in our case is D = 0.15. The probability for D to
be more than that is 91%. This means that the data is perfectly consistent with the
assumption of R = 0.2 for all papers.

One can notice that the estimates of M (computed as M = D/N) for different
papers (see Table 16.2) are also different. One may ask if it is possible that M
is the same for all papers and different values of D/N are results of fluctuations.
The answer is that the data is totally inconsistent with single M for all papers. This
is not unexpected, because some references can be more error-prone, for example,
because they are longer. Indeed, the most-misprinted paper (No.12) has two-digit
volume number and five-digit page number.
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Fig. 16.6 Cumulative
distribution of the percentile
ranks of the observed values
of T with regard to the
outcomes of the simulations
of the MPM with R = 0.2
(diamonds). For comparison
the cumulative function of the
uniform distribution is given
(a line)
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16.2.4 Operational Limitations of the Model

Scientists copy citations because they are not perfect. Our analysis is imperfect
as well. There are occasional repeat identical misprints in papers, which share
individuals in their author lists. To estimate the magnitude of this effect we took
a close look at all 196 misprinted citations to paper 5 of Table 16.1. It turned out
that such events constitute a minority of repeat misprints. It is not obvious what to
do with such cases when the author lists are not identical: should the set of citations
be counted as a single occurrence (under the premise that the common co-author
is the only source of the misprint) or as multiple repetitions. Counting all such
repetitions as only a single misprint occurrence results in elimination of 39 repeat
misprints. The number of total misprints, T , drops from 196 to 157, bringing the
upper bound for R (16.1) from 45/196 ∼= 23% up to 45/157 ∼= 29%. An alternative
approach is to subtract all the repetitions of each misprint by the originators of that
misprint from non-readers and add it to the number of readers. There were 11 such
repetitions, which increases D from 45 up to 56 and the upper bound for R (16.1)
rises to 56/196∼= 29%, which is the same value as the preceding estimate. It would
be desirable to redo the estimate using (16.20) and (16.22), but the MPM would
have to be modified to account for repeat citations by same author and multiple
authorships of a paper. This may be a subject of future investigations.

Another issue brought up by the critics [8] is that because some misprints are
more likely than others, it is possible to repeat someone else’s misprint purely by
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chance. By examining the actual data, one finds that about two-third of distinct
misprints fall in to the following categories:

(a) One misprinted digit in volume, page number, or in the year.
(b) One missing or added digit in volume or page number.
(c) Two adjacent digits in a page number are interchanged.

The majority of the remaining misprints are combinations of (a–c), for example,
one digit in page number omitted and one digit in year misprinted.4 For a typical
reference, there are over 50 aforementioned likely misprints. However, even if
probability of certain misprint is not negligibly small but 1 in 50, our analysis still
applies. For example, for paper 5 (Table 16.1) the most popular error appeared 78
times, while there were 196 misprints in total. Therefore, if probability of certain
misprint is 1/50, there should be about 196/50 ≈ 4 such misprints, not 78. In order
to explain repeat misprints distribution by higher probability of certain misprint this
probability should be as big as 78/196 ≈ 0.4. This is extremely unlikely. However,
finding relative propensities of different misprints deserves further investigation.

Smith noticed [9] that some misprints are in fact introduced by the ISI. To esti-
mate the importance of this effect we explicitly verified 88 misprinted (according to
ISI) citations in the original articles. Seventy-two of them were exactly as in the ISI
database, but 16 were in fact correct citations. To be precise some of them had minor
inaccuracies, like second initial of the author was missing, while page number,
volume, and year were correct. Apparently, they were victims of an “erroneous error
correction” [9]. It is not clear how to consistently take into account these effects,
specifically because there is no way to estimate how many wrong citations have
been correctly corrected by ISI [10]. But given the relatively small percentage of
the discrepancy between ISI database and actual articles (16/88 ∼= 18%) this can be
taken as a noise with which we can live.

It is important to note that within the framework of the MPM R is not the ratio of
readers to citers, but the probability that a citer consults the original paper, provided
that he encountered it through another paper’s reference list. However, he could
encounter the paper directly. This has negligible effect for highly-cited papers, but
is important for low-cited papers. Within the MPM framework the probability of
such an event for each new citation is obviously 1/n, where n is the current total
number of citations. The expectation value of the true ratio of readers to citers is
therefore:

R∗(N) = R+(1−R)×

n
∑

n=1

1
n

N
≈ R+(1−R)× ln(2N + 1)

N
. (16.32)

The values of R∗ for papers with different total numbers of citations, computed
using (16.32), are shown in Fig. 16.7. For example, on average, about four people
have read a paper which was cited ten times. One can use (16.32) and empirical

4There are also misprints where author, journal, volume, and year are perfectly correct, but the
page number is totally different. Probably, in such case the citer mistakenly took the page number
from a neighboring paper in the reference list he was lifting the citation from.
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Fig. 16.7 Ratio of readers to
citers as a function of total
amount of citations for
R = 0.2, computed using
(16.32)
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citation distribution to estimate an average value of R∗ for the scientific literature in
general. The formula is:

〈R∗〉= ∑R∗(Ni)×Ni

∑Ni
(16.33)

Here the summation is over all of the papers in the sample and Ni is the number of
citations that ith paper had received. The estimate, computed using citation data for
Physical Review D [11] and (16.32) and (16.33) (assuming R = 0.2), is 〈R∗〉 ≈ 0.33.

16.2.5 Comparison with the Previous Work

The bulk of previous literature on citations was concerned with their counting.
After extensive literature search we found only a handful of papers which analyzed
misprints in citations (the paper by Steel [12], titled identically to our first misprint
paper, i.e., “Read before you cite,” turned out to use the analysis of the content of
the papers, not of the propagation of misprints in references). Broadus [13] looked
through 148 papers, which cited both the renowned book, which misquoted the title
of one of its references, and that paper, the title of which was misquoted in the book.
He found that 34 or 23% of citing papers made the same error as was in the book.
Moed and Vries [14] (apparently independent of Broadus, as they do not refer to
his work), found identical misprints in scientific citations and attributed them to
citation copying. Hoerman and Nowicke [15] looked through a number of papers,
which deal with the so-called Ortega Hypothesis of Cole and Cole. When Cole and
Cole quoted a passage from the book by Ortega they introduced three distortions.
Hoerman and Nowicke found seven papers which cite Cole and Cole and also quote
that passage from Ortega. In six out of these seven papers all of the distortions made
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by Cole and Cole were repeated. According to [15] in this process even the original
meaning of the quotation was altered. In fact, information is sometimes defined by
its property to deteriorate in chains [16].

While the fraction of copied citations found by Hoerman and Nowicke [15],
6/7 ∼= 86% agrees with our estimate, Boadus’ number, 23%, seems to disagree
with it. Note, however, that Broadus [13] assumes that citation, if copied – was
copied from the book (because the book was renowned). Our analysis indicates that
majority of citations to renowned papers are copied. Similarly, we surmise, in the
Broadus’ case citations to both the book and the paper were often copied from a
third source.

16.3 Copied Citations Create Renowned Papers?

16.3.1 The Model of Random-Citing Scientists

During the “Manhattan project” (the making of nuclear bomb), Fermi asked Gen.
Groves, the head of the project, what is the definition of a “great” general [17].
Groves replied that any general who had won five battles in a row might safely
be called great. Fermi then asked how many generals are great. Groves said about
three out of every hundred. Fermi conjectured that considering that opposing forces
for most battles are roughly equal in strength, the chance of winning one battle
is 1/2 and the chance of winning five battles in a row is 1/25 = 1/32. “So you
are right, General, about three out of every hundred. Mathematical probability, not
genius.” The existence of military genius also questioned Lev Tolstoy in his book
“War and Peace.”

A commonly accepted measure of “greatness” for scientists is the number of
citations to their papers [18]. For example, SPIRES, the High-Energy Physics
literature database, divides papers into six categories according to the number of
citations they receive. The top category, “Renowned papers” are those with 500 or
more citations. Let us have a look at the citations to roughly eighteen and a half
thousand papers,5 published in Physical Review D in 1975–1994 [11]. As of 1997
there were about 330 thousands of such citations: 18 per published paper on average.
However, 44 papers were cited 500 times or more. Could this happen if all papers
are created equal? If they indeed are then the chance to win a citation is one in
18,500. What is the chance to win 500 cites out of 330,000? The calculation is

5In our initial report [22] we mentioned “over 24 thousand papers.” This number is incorrect and
the reader surely understands the reason: misprints. In fact, out of 24,295 “papers” in that dataset
only 18,560 turned out to be real papers and 5,735 “papers” turned out to be misprinted citations.
These “papers” got 17,382 out of 351,868 citations. That is every distinct misprint on average
appeared three times. As one could expect, cleaning out misprints lead to much better agreement
between experiment and theory: compare Fig.16.8 and Fig. 1 of [22].
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slightly more complex than in the militaristic case,6 but the answer is 1 in 10500, or,
in other words, it is zero. One is tempted to conclude that those 44 papers, which
achieved the impossible, are great.

In the preceding sections, we demonstrated that copying from the lists of
references used in other papers is a major component of the citation dynamics
in scientific publication. This way a paper that already was cited is likely to be
cited again, and after it is cited again it is even more likely to be cited in the
future. In other words, “unto every one which hath shall be given” [Luke 19:26].
This phenomenon is known as “Matthew effect”,7 “cumulative advantage” [20], or
“preferential attachment” [21].

The effect of citation copying on the probability distribution of citations can
be quantitatively understood within the framework of the model of random-citing
scientists (RCS) [22],8 which is as follows. When a scientist is writing a manuscript
he picks up m random articles,9 cites them, and also copies some of their references,
each with probability p.

The evolution of the citation distribution (here Nk denotes the number of papers
that were cited K times, and N is the total number of papers) is described by the
following rate equations:

dN0

dN
= 1−m× N0

N
,

dNk

dN
= m× (1+ p(K− 1))Nk−1 − (1+ pK)Nk

N
, (16.34)

which have the following stationary solution:

N0 =
N

m+ 1
;Nk =

1+ p(K− 1)
1+ 1/m+ pK

Nk−1. (16.35)

6If one assumes that all papers are created equal then the probability to win m out of n possible
citations when the total number of cited papers is N is given by the Poisson distribution: P =
((n/N)m/m!)× e−n/N . Using Stirling’s formula one can rewrite this as: ln(P) ≈ m ln(ne/Nm)−
(n/N). After substituting n = 330,000, m = 500 and N = 18500 into the above equation we get:
ln(P)≈−1,180, or P ≈ 10−512.
7Sociologist of science Robert Merton observed [19] that when a scientist gets recognition early in
his career he is likely to get more and more recognition. He called it “Matthew Effect” because in
Gospel according to Mathew (25:29) appear the words: “unto every one that hath shall be given”.
The attribution of a special role to St. Matthew is unfair. The quoted words belong to Jesus and
also appear in Luke and Mark’s gospels. Nevertheless, thousands of people who did not read The
Bible copied the name “Matthew Effect.”
8From the mathematical perspective, almost identical to RCS model (the only difference was that
they considered an undirected graph, while citation graph is directed) was earlier proposed in [23].
9The analysis presented here also applies to a more general case when m is not a constant, but a
random variable. In that case m in all of the equations that follow should be interpreted as the mean
value of this variable.
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Fig. 16.8 Outcome of the model of random-citing scientists (with m = 5 and p = 0.14) compared
to actual citation data. Mathematical probability rather than genius can explain why some papers
are cited a lot more than the others

For large K it follows from (16.35) that:

Nk ∼ 1/Kγ ;γ = 1+
1

m× p
· (16.36)

Citation distribution follows a power law, empirically observed in [24–26].
A good agreement between the RCS model and actual citation data [11] is

achieved with input parameters m = 5 and p = 0.14 (see Fig. 16.8). Now what is the
probability for an arbitrary paper to become “renowned,” i.e., receive more than 500
citations? Iteration of (16.35) (with m = 5 and p = 0.14) shows that this probability
is 1 in 420. This means that about 44 out of 18,500 papers should be renowned.
Mathematical probability, not genius.

On one incident [27] Napoleon (incidentally, he was the military commander,
whose genius was questioned by Tolstoy) said to Laplace “They tell me you have
written this large book on the system of the universe, and have never even mentioned
its Creator.” The reply was “I have no need for this hypothesis.” It is worthwhile to
note that Laplace was not against God. He simply did not need to postulate. His
existence in order to explain existing astronomical data. Similarly, the present work
is not blasphemy. Of course, in some spiritual sense, great scientists do exist. It is
just that even if they would not exist, citation data would look the same.
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16.3.2 Relation to Previous Work

Our original paper on the subject [22] was stimulated by the model introduced by
Vazquez [27]. It is as follows. When scientist is writing a manuscript, he picks up
a paper, cites it, follows its references, and cites a fraction p of them. Afterward
he repeats this procedure with each of the papers that he cited. And so on. In two
limiting cases (p = 1 and p = 0) the Vazquez model is exactly solvable [27]. Also
in these cases it is identical to the RCS model (m = 1 case), which in contrast can
be solved for any p. Although theoretically interesting, the Vazquez model cannot
be a realistic description of the citation process. In fact, the results presented in
two preceding sections indicate that there is essentially just one “recursion,” that is,
references are copied from the paper at hand, but hardly followed. To be precise,
results of two preceding sections could support a generalized Vazquez model,
in which the references of the paper at hand are copied with probability p, and
afterward the copied references are followed with probability R. However, given
the low value of this probability (R ≈ 0.2), it is clear that the effect of secondary
recursions on the citation distribution is small.

The book of Ecclesiastes says: “Is there any thing whereof it may be said, See,
this is new? It hath been already of old time, which was before us.” The discovery
reported in this section is no exception. Long ago Price [20], by postulating that the
probability of paper being cited is somehow proportional to the amount of citations
it had already received, explained the power law in citation frequencies, which he
had earlier observed [22]. However, Price did not propose any mechanism for that.
Vasquez did propose a mechanism, but it was only a hypothesis. In contrast, our
paper is rooted in facts.

16.4 Mathematical Theory of Citing

16.4.1 Modified Model of Random-Citing Scientists

. . . citations not only vouch for the authority and relevance of the statements they are called
upon to support; they embed the whole work in context of previous achievements and
current aspirations. It is very rare to find a reputable paper that contains no reference to
other research. Indeed, one relies on the citations to show its place in the whole scientific
structure just as one relies on a man’s kinship affiliations to show his place in his tribe.

John M. Ziman, FRS [28]

In spite of its simplicity, the model of RCS appeared to account for the major
properties of empirically observed distributions of citations. A more detailed
analysis, however, reveals that some features of the citation distribution are not
accounted for by the model. The cumulative advantage process would lead to
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oldest papers being most highly cited [5, 21, 29].10 In reality, the average citation
rate decreases as the paper in question gets older [24, 30–32]. The cumulative
advantage process would also lead to an exponential distribution of citations to
papers of the same age [5, 29]. In reality citations to papers published during the
same year are distributed according to a power-law (see the ISI dataset in Fig.16.1a
in [26]).

In this section, we study the modified model of random-citing scientists (MM-
RCS) [33]: when a scientist writes a manuscript, he picks up several random recent
papers, cites them, and also copies some of their references. The difference with
the original model is the word recent. We solve this model using methods of the
theory of branching processes [34] (we review its relevant elements in Appendix A),
and show that it explains both the power-law distribution of citations to papers
published during the same year and literature aging. A similar model was earlier
proposed by Bentley, Hahn, and Shennan [35] in the context of patents citations.
However they just used it to explain a power law in citation distribution (for what
the usual cumulative advantage model will do) and did not address the topics we
just mentioned.

While working on a paper, a scientist reads current issues of scientific journals
and selects from them the references to be cited in it. These references are of two
sorts:

• Fresh papers he had just read – to embed his work in the context of current
aspirations.

• Older papers that are cited in the fresh papers he had just read – to place his
work in the context of previous achievements.

It is not a necessary condition for the validity of our model that the citations to
old papers are copied, but the paper itself remains unread (although such opinion is
supported by the studies of misprint propagation). The necessary conditions are as
follows:

• Older papers are considered for possible citing only if they were recently cited.
• If a citation to an old paper is followed and the paper is formally read – the

scientific qualities of that paper do not influence its chance of being cited.

A reasonable estimate for the length of time a scientist works on a particular paper
is one year. We will thus assume that “recent” in the MMRCS means the preceding
year. To make the model mathematically tractable we enforce time-discretization
with a unit of one year. The precise model to be studied is as follows. Every year N
papers are published. There is, on average, Nref references in a published paper (the
actual value is somewhere between 20 and 40). Each year, a fraction α of references

10Some of these references do not deal with citing, but with other social processes, which are
modeled using the same mathematical tools. Here we rephrase the results of such papers in terms
of citations for simplicity.
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goes to randomly selected preceding year papers (the estimate11 from actual citation
data is α ≈ 0.1(see Fig. 4 in [24]) or α ≈ 0.15 (see Fig. 6 in [36])). The remaining
citations are randomly copied from the lists of references used in the preceding year
papers.

16.4.2 Branching Citations

When N is large, this model leads to the first-year citations being Poisson-
distributed. The probability to get n citations is

p(n) =
λ0

n

n!
e−λ0 , (16.37)

where λ0 is the average expected number of citations

λ0 = αNref. (16.38)

The number of the second-year citations, generated by each first year citation (as
well as, third-year citations generated by each second year citation and so on), again
follows a Poisson distribution, this time with the mean

λ = (1−α). (16.39)

Within this model, citation process is a branching process (see Appendix A) with
the first-year citations equivalent to children, the second-year citations to grand
children, and so on.

As λ < 1, this branching process is subcritical. Figure 16.9 shows a graphical
illustration of the branching citation process.

Substituting ( 16.37) into (16.78) we obtain the generating function for the first
year citations:

f0(z) = e(z−1)λ0. (16.40)

Similarly, the generating function for the later-years citations is:

f (z) = e(z−1)λ . (16.41)

11The uncertainty in the value of α depends not only on the accuracy of the estimate of the fraction
of citations which goes to previous year papers. We also arbitrarily defined recent paper (in the
sense of our model), as the one published within a year. Of course, this is by order of magnitude
correct, but the true value can be anywhere between half a year and 2 years.
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Fig. 16.9 An illustration of the branching citation process, generated by the modified model of
random-citing scientists. During the first year after publication, the paper was cited in three other
papers written by the scientists who have read it. During the second year one of those citations was
copied in two papers, one in a single paper and one was never copied. This resulted in three second
year citations. During the third year, two of these citations were never copied, and one was copied
in three papers

The process is easier to analyze when λ = λ0, or λ0/λ = (α/(1−α))Nref = 1, as
then we have a simple branching process, where all generations are governed by the
same offspring probabilities. The case when λ �= λ0 we study in Appendix B.

16.4.2.1 Distribution of Citations to Papers Published During the Same Year

Theory of branching processes allows us to analytically compute the probability
distribution, P(n), of the total number of citations the paper receives before it
is forgotten. This should approximate the distribution of citations to old papers.
Substituting (16.41) into (16.85) we get:

P(n) =
1
n!

[
dn−1

dωn−1 en(ω−1)λ
]

ω=0
=

(nλ )n−1

n!
e−λ n. (16.42)

Applying Stirling’s formula to (16.42), we obtain the large n asymptotic of the
distribution of citations:

P(n) ∝
1√

2πλ n3/2
e−(λ−1−lnλ )n. (16.43)

When 1−λ 
 1 we can approximate the factor in the exponent as:

λ − 1− ln λ ≈ (1−λ )2/2. (16.44)
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As 1− λ 
 1, the above number is small. This means that for n 
 2/(1− λ )2

the exponent in (16.43) is approximately equal to 1 and the behavior of P(n) is
dominated by the 1/n3/2 factor. In contrast, when n 
 2/(1−λ )2 the behavior of
P(n) is dominated by the exponential factor. Thus citation distribution changes from
a power law to an exponential (suffers an exponential cut-off) at about

nc =
1

λ − 1− ln λ
≈ 2

(1−λ )2 (16.45)

citations. For example, when α = 0.1 (16.39) gives λ = 0.9 and from (16.45) we
get that the exponential cut-off happens at about 200 citations. We see that, unlike
the cumulative advantage model, our model is capable of qualitative explanation of
the power-law distribution of citations to papers of the same age. The exponential
cut-off at 200, however, happens too soon, as the actual citation distribution obeys
a power law well into thousands of citations. In the following sections we show
that taking into account the effects of literature growth and of variations in papers’
Darwinian fitness can fix this.

In the cumulative advantage (AKA preferential attachment) model, a power-law
distribution of citations is only achieved because papers have different ages. This
is not immediately obvious from the early treatments of the problem [4, 20], but
is explicit in later studies [5, 21, 29]. In that model, the oldest papers are the most
cited ones. The number of citations is mainly determined by paper’s age. At the
same time, distribution of citations to papers of the same age is exponential [5, 29].
The key difference between that model and ours is as follows. In the cumulative
advantage model, the rate of citation is proportional to the number of citations the
paper had accumulated since its publication. In our model, the rate of citation is
proportional to the number of citations the paper received during preceding year.
This means that if an unlucky paper was not cited during previous year – it will
never be cited in the future. This means that its rate of citation will be less than that
in the cumulative advantage model. On the other hand, the lucky papers, which were
cited during the previous year, will get all the citation share of the unlucky papers.
Their citation rates will be higher than in the cumulative advantage model. There
is thus more stratification in our model than in the cumulative advantage model.
Consequently, the resulting citation distribution is far more skewed.

16.4.2.2 Distribution of Citations to Papers Cited During the Same Year

We denote as N(n) the number of papers cited n times during given year. The
equilibrium distribution of N(n) should satisfy the following self-consistency
equation:

N(n) =
∞

∑
m=1

N(m)
(λ m)n

n!
e−λ m +N

(λ0)
n

n!
e−λ0 (16.46)
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Here the first term comes from citation copying and the second from citing previous
year papers. In the limit of large n the second term can be neglected and the sum
can be replaced with integral to get:

N(n) =
1
n!

∞∫
0

dmN(m)(λ m)ne−λ m (16.47)

In the case λ = 1 one solution of (16.47) is N(m) = C, where C is an arbitrary
constant. Clearly, the integral becomes a gamma function and the factorial in the
denominator cancels out. However, this solution is, meaningless since the total
number of citations per year, which is given by

Ncite =
∞

∑
m=1

mN(m) (16.48)

diverges. In the case λ < 1, N(m) = C is no longer a solution since the integral
gives C/λ . However N(m) =C/m is a solution. This solution is again meaningless
because the total number of yearly citations given by (16.48) again diverges. One
can look for a solution of the form

N(m) =
C
m

exp(−μm) (16.49)

After substituting (16.49) into (16.47) we get that N(n) is given by the same function
but instead of μ with

μ ′ = ln(1+ μ/λ ) (16.50)

The self-consistency equation for μ is thus

μ = ln(1+ μ/λ ). (16.51)

The obvious solution is μ = 0 which gives us the previously rejected solution
N(m) = C/m. It is also easy to see that this stationary solution is unstable. If μ
slightly deviates from zero (16.50) gives us μ ′ = μ/λ . Since λ < 1 the deviation
from stationary shape will increase the next year. Another solution of (16.51) can be
found by expansion of the logarithm up to the second order in μ . It is μ ≈ 2(1−λ ).
One can show that this solution is stable. Thus, we get:

N(m)≈ C
m

exp(−2(1−λ )m) (16.52)

After substituting this into (16.48) we get

C ≈ 2(1−λ )Ncite (16.53)
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The solution which we just presented was stimulated by that obtained by Wright
[37], who studied the distribution of alleles (alternative forms of a gene) in a
population. In Wright’s model, the gene pool at any generation has constant size
Ng. To form the next generation we Ng times select a random gene from current
generation pool and copy it to next generation pool. With some probability, a gene
can mutate during the process of copying. The problem is identical to ours with
an allele replaced with a paper and mutation with a new paper. Our solution follows
that of Wright but is a lot simpler. Wright considered finite Ng. and as a consequence
got Binomial distribution and a Beta function in his analog of (16.47). The simplifi-
cation was possible because in the limit of large Ng Binomial distribution becomes
Poissonian. Alternative derivations of (16.52) can be found in [33] and [38].

16.4.3 Scientific Darwinism

Now we proceed to investigate the model, where papers are not created equal, but
each has a specific Darwinian fitness, which is a bibliometric measure of scientific
fangs and claws that help a paper to fight for citations with its competitors. While
this parameter can depend on factors other than the intrinsic quality of the paper, the
fitness is the only channel through which the quality can enter our model. The fitness
may have the following interpretation. When a scientist writes a manuscript he
needs to include in it a certain number of references (typically between 20 and
40, depending on implicit rules adopted by a journal where the paper is to be
submitted). He considers random scientific papers one by one for citation, and
when he has collected the required number of citations, he stops. Every paper has
specific probability to be selected for citing, once it was considered. We will call this
probability a Darwinian fitness of the paper. Defined in such way, fitness is bounded
between 0 and 1.

In this model a paper with fitness φ will on average have

λ0(φ) = αNrefφ/〈φ〉p (16.54)

first-year citations. Here we have normalized the citing rate by the average fitness of
published papers, 〈ϕ〉p, to insure that the fraction of citations going to previous
year papers remained α . The fitness distribution of references is different from
the fitness distribution of published papers, as papers with higher fitness are cited
more often. This distribution assumes an asymptotic form pr(ϕ), which depends on
the distribution of the fitness of published papers, pp(ϕ), and other parameters of
the model.

During later years there will be on average

λ (ϕ) = (1−α)ϕ/〈ϕ〉r (16.55)

next-year citations per one current year citation for a paper with fitness φ . Here,
〈ϕ〉r is the average fitness of a reference.
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16.4.3.1 Distribution of Citations to Papers Published During the Same Year

Let us start with the self-consistency equation for pr(ϕ), the equilibrium fitness
distribution of references:

pr(ϕ) = α
ϕ × pp(ϕ)

〈ϕ〉p
+(1−α)

ϕ × pr(ϕ)
〈ϕ〉r

(16.56)

solution of which is:

pr(ϕ) = α
α ×ϕ × pp(ϕ)/〈ϕ〉p

1− (1−α)ϕ/〈ϕ〉r
(16.57)

One obvious self-consistency condition is that
∫

pr(ϕ)dϕ = 1. (16.58)

Another is:
∫

φ × pr(φ)dφ = 〈φ〉r.

However, when the condition of (16.58) is satisfied the above equation follows
from (16.56).

Let us consider the simplest case when the fitness distribution, pp(ϕ), is uniform
between 0 and 1. This choice is arbitrary, but we will see that the resulting
distribution of citations is close to the empirically observed one. In this case, the
average fitness of a published paper is 〈ϕ〉p = 0.5. After substituting this into
(16.56), the result into (16.58), and performing integration we get:

α =− ((1−α)/〈ϕ〉r)
2/2

ln(1− (1−α)/〈ϕ〉r)+ (1−α)/〈ϕ〉r
(16.59)

Since α is close to 0, 〈ϕ〉r must be very close to 1−α , and we can replace it with
the latter everywhere but in the logarithm to get:

1−α
〈ϕ〉r

= 1− e
1

2α −1 (16.60)

For papers of fitness ϕ , citation distribution is given by (16.42) or (16.43) with λ
replaced with λ (ϕ), given by (16.55):

P(n,φ) ∝
1√

2πλ (φ)n3/2
e−(λ (φ)−1−lnλ (φ))n. (16.61)
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When α = 0.1, (16.60) gives (1−α)/〈ϕ〉r ≈ 1−2×10−3. From (16.55) it follows
that λ (1) = (1−α)/〈ϕ〉r. Substituting this into (16.45) we get that the exponential
cut-off for the fittest papers (ϕ = 1) starts at about 300,000 citations. In contrast,
for the unfit papers the cut-off is even stronger than in the model without fitness.
For example, for papers with fitness ϕ = 0.1 we get λ (0.1)= 0.1(1−α)/〈ϕ〉r ≈ 0.1
and the decay factor in the exponent becomes λ (0.1)−1− lnλ (0.1)≈ 2.4. This cut-
off is so strong than not even a trace of a power-law distribution remains for such
papers.

To compute the overall probability distribution of citations we need to average
(16.61) over fitness:

P(n) ∝
1√

2πn3/2

1∫
0

dφ
λ (φ)

e−(λ (φ)−1−lnλ (φ))n. (16.62)

We will concentrate on the large n asymptotic. Then only highest-fitness papers,
which have λ (ϕ) close to 1, are important and we can approximate the integral in
(16.62), using (16.44), as:

1∫
0

dϕ exp

(
−
[

1−ϕ
1−α
〈ϕ〉r

]2 n
2

)
=

〈ϕ〉r

1−α

√
2
n

√
n
2∫

(
1− 1−α

〈ϕ〉r
)√

n
2

dze−z2

We can replace the upper limit in the above integral with infinity when n is large.
The lower limit can be replaced with zero when n 
 nc, where

nc = 2

(
1− 1−α

〈ϕ〉r

)−2

. (16.63)

In that case the integral is equal to
√

π/2, and (16.62) gives:

P(n) ∝
〈ϕ〉r

2(1−α)

1
n2 . (16.64)

In the opposite case,n >> nc, we get:

P(n) ∝
〈ϕ〉r

4(1−α)

√
nc

n2.5 e−
n

nc . (16.65)

When α = 0.1, nc = 3× 105.
Compared to the model without fitness, we have a modified power-law exponent

(2 instead of 3/2) and a much relaxed cut-off of this power law. This is consistent
with the actual citation data shown in the Fig. 16.10.
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Fig. 16.10 Numerical simulations of the modified model of random-citing scientists (triangles)
compared to actual citation data for papers published during a single year (squares). The solid line
is the prediction of the cumulative advantage (AKA preferential attachment) model

Table 16.3 The onset of exponential cut-off in the distribution
of citations, nc, as a function of α , computed using (16.63) and
(16.60)

α 0.3 0.25 0.2 0.15 0.1 0.05
nc 167 409 1,405 9,286 3.1E + 05 7.2E + 09

As was already mentioned, because of the uncertainty of the definition of
“recent” papers, the exact value of α is not known. Therefore, we give nc for a
range of values of α in Table 16.3. As long as α ≤ 0.5 the value of nc does not
contradict existing citation data.

The major results, obtained for the uniform distribution of fitness, also hold for a
non-uniform distribution, which approaches some finite value at its upper extreme
pp(ϕ = 1) = a > 0. In [33] we show that in this case (1−α)/〈ϕ〉r is very close to
unity when α is small. Thus we can treat (16.62) the same way as in the case of the
uniform distribution of fitness. The only change is that (16.64) and (16.65) acquire
a pre-factor of a. Things turn out a bit different when pp(1) = 0. In Appendix C we
consider the fitness distribution, which vanishes at ϕ = 1 as a power law: pp(ϕ) =
(θ +1)(1−ϕ)θ . When θ is small (θ < 2×α

1−α ) the behavior of the model is similar to
what was in the case of a uniform fitness distribution. The distribution of the fitness
of cited papers pr(ϕ) approaches some limiting form with (1−α)/〈ϕ〉r being very
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close to unity when α is small. The exponent of the power law is, however, no
longer 2 as it was in the case of a uniform fitness distribution (16.64), but becomes
2+θ . However, when θ > 2×α

1−α the model behaves differently: (1−α)/〈ϕ〉r strictly
equals 1. This means that the power law does not have an exponential cut-off. Thus,
a wide class of fitness distributions produces citation distributions very similar to the
experimentally observed one. More research is needed to infer the actual distribution
of the Darwinian fitness of scientific papers.

The fitness distribution of references pr(ϕ) adjusts itself in a way that the fittest
papers become critical. This is similar to what happens in the SOC model [39] where
the distribution of sand grains adjusts itself that the avalanches become critical.
Recently we proposed a similar SOC-type model to describe the distribution of links
in blogosphere [40].

16.4.3.2 Distribution of Citations to Papers Cited During the Same Year

This distribution in the case without fitness is given in (16.52). To account for fitness
we need to replace λ with λ (ϕ) in (16.52) and integrate it over ϕ . The result is:

p(n)∼ 1
n2 e−n/n∗c , (16.66)

where

n∗c =
1
2

(
1− 1−α

〈ϕ〉r

)−1

. (16.67)

Note that n∗c ∼
√

nc. This means that the exponential cut-off starts much sooner for
the distribution of citation to papers cited during the same year, then for citation
distribution for papers published during the same year.

The above results qualitatively agree with the empirical data for papers cited in
1961 (see Fig. 2 in [24]). The exponent of the power law of citation distribution
reported in that work is, however, between 2.5 and 3. Quantitative agreement thus
may be lacking.

16.4.4 Effects of Literature Growth

Up to now we implicitly assumed that the yearly volume of published scientific
literature does not change with time. In reality, however, it grows, and does so
exponentially. To account for this, we introduce a Malthusian parameter, β , which is
yearly percentage increase in the yearly number of published papers. From the data
on the number of items in the Mathematical Reviews Database [41], we obtain that
the literature growth between 1970 and 2000 is consistent with β ≈ 0.045. From
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the data on the number of source publications in the ISI database (see Table 1 in
[30]) we get that the literature growth between 1973 and 1984 is characterized by
β ≈ 0.03. One can argue that the growth of the databases reflected not only growth
of the volume of scientific literature, but also increase in activities of Mathematical
Reviews and ISI and true β must be less. One can counter-argue that may be ISI and
Mathematical Reviews could not cope with literature growth and β must be more.
Another issue is that the average number of references in papers also grows. What
is important for our modeling is the yearly increase not in number of papers, but
in the number of citations these papers contain. Using the ISI data we get that this
increase is characterized by β ≈ 0.05. As we are not sure of the precise value of β ,
we will be giving quantitative results for a range of its values.

16.4.4.1 Model Without Fitness

At first, we will study the effect of β in the model without fitness. Obviously, (16.38)
and (16.39) will change into:

λ0 = α(1+β )Nref, (16.68)

λ = (1−α)(1+β ). (16.69)

The estimate of the actual value of λ is: λ ≈ (1−0.1)(1+0.05)≈ 0.945. Substitut-
ing this into (16.45) we get that the exponential cut-off in citation distribution now
happens after about 660 citations.

A curious observation is that when the volume of literature grows in time the
average amount of citations a paper receives, Ncit, is bigger than the average amount
of references in a paper, Nref. Elementary calculation gives:

Ncit =
∝

∑
m=0

λ0λ m =
λ0

1−λ
=

α(1+β )Nref

1− (1−α)(1+β )
. (16.70)

As we see Ncit = Nref only when β = 0 and Ncit > Nref when β > 0. There is no
contradiction here if we consider an infinite network of scientific papers, as one can
show using methods of the set theory that there are one-to-many mappings of an
infinite set on itself. When we consider real, i.e., finite, network where the number
of citations is obviously equal to the number of references we recall that Ncit, as
computed in (16.70), is the number of citations accumulated by a paper during its
cited lifetime. So recent papers did not yet receive their share of citations and there
is no contradiction again.
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Table 16.4 Critical value of the Malthusian parameter βc as
a function of α computed using (16.73). When β > βc the
fittest papers become supercritical

α 0.3 0.25 0.2 0.15 0.1 0.05
βc 0.12 0.075 0.039 0.015 2.6E-03 1.7E-05

16.4.4.2 Model with Darwinian Fitness

Taking into account literature growth leads to transformation of (16.54) and
(16.55) into:

λ0(φ) = α(1+β )Nrefφ/〈φ〉p, (16.71)

λ (φ) = (1−α)(1+β )φ/〈φ〉r. (16.72)

As far as the average fitness of a reference, 〈ϕ〉r, goes, β has no effect. Clearly, its
only result is to increase the number of citations to all papers (independent of their
fitness) by a factor 1+β . Therefore 〈ϕ〉r is still given by (16.59). While, λ (ϕ) is
always less than unity in the case with no literature growth, it is no longer so when
we take this growth into account. When β is large enough, some papers can become
supercritical. The critical value of β , i.e., the value which makes papers with ϕ = 1
critical, can be obtained from (16.72):

βc = 〈φ〉r/(1−α)− 1 (16.73)

When β > βc, a finite fraction of papers becomes supercritical. The rate of citing
them will increase with time. Note, however, that it will increase always slower than
the amount of published literature. Therefore, the relative fraction of citations to
those papers to the total number of citations will decrease with time.

Critical values of β for several values of α are given in Table 16.4. For realistic
values of parameters (α ≤ 0.15 and β ≥ 0.03) we have β > βc and thus our model
predicts the existence of supercritical papers. Note, however, that this conclusion
also depends on the assumed distribution of fitness.

It is not clear whether supercritical papers exist in reality or are merely a
pathological feature of the model. Supercritical papers probably do exist if one
generalizes “citation” to include references to a concept, which originated from the
paper in question. For instance, these days a negligible fraction of scientific papers
which use Euler’s Gamma function contain a reference to Euler’s original paper.
It is very likely that the number of papers mentioning Gamma function is increasing
year after year.

Let us now estimate the fraction of supercritical papers predicted by the model.
As (1−α)/〈ϕ〉r is very close to unity, it follows from (16.72) that papers with
fitness ϕ > ϕc ≈ 1/(1+ β )≈ 1− β are in the supercritical regime. As β ≈ 0.05,
about 5% of papers are in such regime. This does not mean that 5% of papers will
be cited forever, because being in supercritical regime only means having extinction
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probability less than one. To compute this probability we substitute (16.72) and
(16.41) into (16.80) and get:

pext(φ) = exp((1+β )×φ × (pext(φ)− 1)).

It is convenient to rewrite the above equation in terms of survival probability:

1− psurv(φ) = exp(−(1+β )×φ × psurv(φ)).

As β 
 1 the survival probability is small and we can expand the RHS of the above
equation in powers of psurv. We limit this expansion to terms up to (psurv)

2 and after
solving the resulting equation get:

psurv(φ)≈ 2
φ − 1

1+β

(1+β )φ
≈ 2(φ − 1+β ).

The fraction of forever-cited papers is thus:
1∫

1−β
2(ϕ −1+β )dϕ = β 2. For β ≈ 0.05

this will be one in four hundred. By changing the fitness distribution pp(ϕ) from a
uniform this fraction can be made much smaller.

16.4.5 Numerical Simulations

The analytical results are of limited use, as they are exact only for infinitely old
papers. To see what happens with finitely old papers, one has to do numerical
simulations. Figure 16.10 shows the results from such simulations (with α = 0.1,
β = 0.05, and uniform between 0 and 1 fitness distribution), i.e., distributions of
citations to papers published within a single year, 22 years after publication. Results
are compared with actual citation data for Physical Review D papers published
in 1975 (as of 1997) [11]. Prediction of the cumulative advantage [20] (AKA
preferential attachment [21]) model is also shown. As we mentioned earlier, that
model leads to exponential distribution of citations to papers of same age, and thus
cannot account for highly-skewed distribution empirically observed.

16.4.6 Aging of Scientific Literature

Scientific papers tend to get less frequently cited as time passes since their
publication. There are two ways to look at the age distribution of citations. One
can take all papers cited during a particular year, and study the distribution
of their ages. In Bibliometrics this is called synchronous distribution [30]. One
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can take all the papers published during a particular distant year, and study the
distribution of the citations to these papers with regard to time difference between
citation and publication. Synchronous distribution is steeper than the distribution
of citation to papers published during the same year (see Figs. 16.2 and 16.3 in
[30]). For example, if one looks at a synchronous distribution, then 10-year-old
papers appear to be cited three times less than 2-year-old papers. However, when
one looks at the distribution of citations to papers published during the same year
the number of citations 10 years after publication is only 1.3 times less than 2
years after publication. The apparent discrepancy is resolved by noting that the
number of published scientific papers had grown 2.3 times during 8 years. When
one plots not total number of citations to papers published in a given year, but
the ratio of this number to the annual total of citations than resulting distribution
(it is called diachronous distribution [30]) is symmetrical to the synchronous
distribution.

Recently, Redner [36] who analyzed a century worth of citation data from
Physical Review had found that the synchronous distribution (he calls it citations
from) is exponential, and the distribution of citations to papers published during
the same year (he calls it citations to) is a power law with an exponent close
to 1. If one were to construct a diachronous distribution using Redner’s data, – it
would be a product of a power law and an exponential function. Such distribution is
difficult to tell from an exponential one. Thus, Redner’s data may be consistent with
synchronous and diachronous distributions being symmetric.

The predictions of the mathematical theory of citing are as follows. First, we
consider the model without fitness. The average number of citations a paper receives
during the kth year since its publication, Ck, is:

Ck = λ0λ k−1, (16.74)

and thus, decreases exponentially with time. This is in qualitative agreement with
Nakamoto’s [30] empirical finding. Note, however, that the exponential decay is
empirically observed after the second year, with average number of the second-
year citations being higher than the first year. This can be understood as a mere
consequence of the fact that it takes about a year for a submitted paper to get
published.

Let us now investigate the effect of fitness on literature aging. Obviously, (16.74)
will be replaced with:

Ck =

1∫
0

dφλ0(φ)λ k−1(φ). (16.75)



16 Theory of Citing 497

Table 16.5 The number of years, after which the decrease in average citing
rate will change from a power law to an exponential, kc, computed using
(16.77), as a function of α
α 0.3 0.25 0.2 0.15 0.1 0.05
kc 9 14 26 68 392 59,861

Substituting (16.54) and (16.55) into (16.75) and performing integration we get:

Ck =
αNref

〈φ〉p

(
1−α
〈φ〉r

)k−1 1
k+ 1

. (16.76)

The average rate of citing decays with paper’s age as a power law with an
exponential cut-off. This is in agreement with Redner’s data (See Fig. 7 of [36]),
though it contradicts the older work [30], which found exponential decay of citing
with time.

In our model, the transition from hyperbolic to exponential distribution occurs
after about

kc =−1/ ln((1−α)/〈ϕ〉r) (16.77)

years. The values of kc for different values of α are given in Table 16.5. The values
of kc for α ≤ 0.2 do not contradict the data reported by Redner [36].

We have derived literature aging from a realistic model of scientist’s referencing
behavior. Stochastic models had been used previously to study literature aging, but
they were of artificial type. Glänzel and Schoepflin [31] used a modified cumulative
advantage model, where the rate of citing is proportional to the product of the
number of accumulated citations and some factor, which decays with age. Burrell
[42], who modeled citation process as a non-homogeneous Poisson process had to
postulate some obsolescence distribution function. In both these cases, aging was
inserted by hand. In contrast, in our model, literature ages naturally.

16.4.7 Sleeping Beauties in Science

Figure 16.11 shows two distinct citation histories. The paper, whose citation history
is shown by the squares, is an ordinary paper. It merely followed some trend. When
10 years later that trend got out of fashion the paper got forgotten. The paper, whose
citation history is depicted by the triangles, reported an important but premature
[43] discovery, significance of which was not immediately realized by scientific
peers. Only 10 years after its publication did the paper get recognition, and got
cited widely and increasingly. Such papers are called “Sleeping Beauties” [44].
Surely, the reader has realized that both citation histories are merely the outcomes
of numerical simulations of the MMRCS.
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Fig. 16.11 Two distinct
citation histories: an ordinary
paper (squares) and a
“Sleeping Beauty” (triangles)
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16.4.8 Relation to Self-Organized Criticality

Three out of twelve high-profile papers misprints in citing which we studied in
Sect. 16.1 (see papers 10, 11, and 12 in Tables 16.1 and 16.2) advance the science of
SOC [39]. Interestingly this science itself is directly related to the theory of citing.
We model scientific citing as a random branching process. In its mean-field version,
SOC can also be described as a branching process [45]. Here the sand grains, which
are moved during the original toppling, are equivalent to sons. These displaced
grains can cause further toppling, resulting in the motion of more grains, which
are equivalent to grandsons, and so on. The total number of displaced grains is
the size of the avalanche and is equivalent to the total offspring in the case of a
branching process. The distribution of offspring sizes is equivalent to the distribution
of avalanches in SOC.

Bak [46] himself had emphasized the major role of chance in works of Nature:
one sand grain falls, – nothing happens; another one (identical) falls, – and causes
an avalanche. Applying these ideas to biological evolution, Bak and Sneppen [47]
argued that no cataclysmic external event was necessary to cause a mass extinction
of dinosaurs. It could have been caused by one of many minor external events.
Similarly, in the model of random-citing scientists: one paper goes unnoticed, but
another one (identical in merit), causes an avalanche of citations. Therefore apart
from explanations of 1/ f noise, avalanches in sandpiles, and extinction of dinosaurs,
the highly cited Science of self-organized criticality can also account for its own
success.
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16.5 Discussion

The conclusion of this study that a scientific paper can become famous due to
ordinary law of chances independently of its content may seem shocking to some
people. Here we present more facts to convince them.

Look at the following example. The writings of J. Lacan (10,000 citations) and
G. Deleuze (8,000 citations) were exposed by Sokal and Bricmont [48] as nonsense.
At the same time, the work of the true scientists is far less cited: A. Sokal – 2,700
citations, J. Bricmont – 1,000 citations.

Additional support for the plausibility of this conclusion gives us the statistics of
the very misprints in citations the present study grew from. Few citation slips repeat
dozens of times, while most appear just once (see Fig. 16.1). Can one misprint be
more seminal than the other?

More support comes from the studies of popularity of other elements of culture.
A noteworthy case where prominence is reached by pure chance is the statistics
of baby-names. Hahn and Bentley [49] observed that their frequency distribution
follows a power law, and proposed a copying mechanism that can explain this obser-
vation. For example, during the year 2000 34,448 new-born American babies were
named Jacob, while only 174 were named Samson [50]. This means that the name
“Jacob” is 200 times more popular than the name “Samson.” Is it intrinsically better?

A blind test was administered offering unlabeled paintings, some of which were
famous masterpieces of Modern art while others were produced by the author of
the test [51]. Results indicate that people cannot tell great art from chaff when
the name of a great artist is detached from it. One may wonder if a similar test
with famous scientific articles would lead to similar results. In fact there is one
forgotten experiment though not with scientific articles, but with a scientific lecture.
Naftulin, Ware, and Donnelly [52] programmed an actor to teach on a subject he
knew nothing. They presented him to a scientific audience as Dr. Myron Fox, an
authority on application of mathematics to human behavior (we would like to note
that in practice the degree of authority of a scientist is determined by the number
of citations to his papers). He read a lecture and answered questions and nobody
suspected anything wrong. Afterward the attendees were asked to rate the lecturer
and he got high grades. They indicated that they learned a lot from the lecture and
one of respondents even indicated that he had read Dr. Fox’s articles.

To conclude let us emphasize that the Random-citing model is used not to ridicule
the scientists, but because it can be exactly solved using available mathematical
methods, while yielding a better match with data than any existing model. This
is similar to the random-phase approximation in the theory of an electron gas.
Of course, the latter did not arouse as much protest, as the model of random-citing
scientists, – but this is only because electrons do not have a voice. What is an
electron? – Just a green trace on the screen of an oscilloscope. Meanwhile, within
itself, electron is very complex and is as inexhaustible as the universe. When an
electron is annihilated in a lepton collider, the whole universe dies with it. And as
for the random-phase approximation: Of course, it accounts for the experimental
facts – but so does the model of random-citing scientists.
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Appendix A: Theory of Branching Processes

Let us consider a model where in each generation, p(0) percent of the adult males
have no sons, p(1) have one son and so on. The problem is best tackled using the
method of generating functions [34], which are defined as:

f (z) =
∞

∑
n=0

p(n)zn. (16.78)

These functions have many useful properties, including that the generating function
for the number of grandsons is f2(z) = f ( f (z)). To prove this, notice that if we start
with two individuals instead of one, and both of them have offspring probabilities
described by f (z), their combined offspring has generating function ( f (z))2. This
can be verified by observing that the nth term in the expansion of ( f (z))2 is

equal to
n
∑

m=0
p(n − m)p(m), which is indeed the probability that the combined

offspring of two people is n. Similarly one can show that the generating function of
combined offspring of n people is ( f (z))n . The generating function for the number
of grandsons is thus:

f2(z) =
∞

∑
n=0

p(n)( f (z))n = f ( f (z)).

In a similar way one can show that the generating function for the number of grand-
grandsons is f3(z) = f ( f2(z)) and in general:

fk(z) = f ( fk−1(z)). (16.79)

The probability of extinction, pext, can be computed using the self-consistency
equation:

pext =
∞

∑
n=0

p(n)pn
ext = f (pext). (16.80)

The fate of families depends on the average number of sons λ = ∑np(n) =
[ f ′(z)]z=1. When λ < 1, (16.80) has only one solution, pext = 1, that is all families
get extinct (this is called subcritical branching process). When λ > 1, there is
a solution where pext < 1, and only some of the families get extinct, while
others continue to exist forever (this is called supercritical branching process).
The intermediate case, λ = 1, is critical branching process, where all families get
extinct, like in a subcritical process, though some of them only after very long time.

For a subcritical branching process we will also be interested in the probability
distribution, P(n), of total offspring, which is the sum of the numbers of sons,
grandsons, grand-grandsons, and so on (to be precise we include the original
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individual in this sum just for mathematical convenience). We define the correspond-
ing generating function [54]:

g(z) =
∞

∑
n=1

p(n)zn. (16.81)

Using an obvious self-consistency condition (similar to the one in (16.80)) we get:

zf (g) = g. (16.82)

We can solve this equation using Lagrange expansion (see [53]), which is as follows.
Let z = F(g) and F(0) = 0 where F ′(0) �= 0, then:

Φ(g(z)) =
∞

∑
n=0

1
n!

dn−1

dgn−1

(
Φ′(g)

(
g

F(g)

)n)∣∣
g=0 zn. (16.83)

Substituting F(g) = g/F(g) (see (16.82)) and Φ(g) = g into (16.83) we get:

g =
∞

∑
n=1

zn

n!

[
dn−1

dωn−1 ( f (ω))n
]

ω=0
. (16.84)

Using (16.81) we get:

P(n) =
1
n!

[
dn−1

dωn−1 ( f (ω))n
]

ω=0
. (16.85)

Theory of branching processes can help to understand scientific citation process.
The first-year citations correspond to sons. Second year citations, which are copies
of the first year citations, correspond to grandsons, and so on.

Appendix B

Let us consider the case when λ �= λ0, i.e., a branching process were the generating
function for the first generation is different from the one for subsequent generations.
One can show that the generating function for the total offspring is:

g̃(z) = z f0( f (z)). (16.86)

In the case λ = λ0 we have f (z) = f0(z) and because of (16.82) g̃(z) = g(z). We can
compute f0(g(z)) by substituting f0 for Φ in (16.83)

f0(g(z)) =
∞

∑
n=0

1
n!

dn−1

dgn−1 ( f ′0(g)( f (g))n)
∣∣
g=0 zn. (16.87)
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After substituting (16.40) and (16.41) into (16.87) and the result into (16.86) we get

P̃(n) =
λ0((n− 1)λ +λ0)

n−2

(n− 1)!
(16.88)

The large n asymptotic of (16.88) is

P̃(n) ∝
λ0

λ
exp

(
λ0

λ
− 1+λ −λ0

)
P(n), (16.89)

where P(n) is given by (16.43). We see that having different first generation
offspring probabilities does not change the functional form of the large-n asymp-
totic, but merely modifies the numerical pre-factor. After substituting α ≈ 0.1 and
Nref ≈ 20 into (16.38) and (16.39) and the result into (16.89) we get P̃(n)≈ 2.3P(n).

Appendix C

Let us investigate the fitness distribution

pp(φ) = (θ + 1)(1−φ)θ . (16.90)

After substituting (16.90) into (16.57) we get:

pr(φ) =
α(θ − 1)(θ + 2)φ(1−φ)θ

1− ((1−α)/〈φ〉r)φ
. (16.91)

After substituting this into (16.58) we get:

1 = α(θ + 1)(θ + 2)

( 〈φ〉r

1−α

)2 1∫
0

(1−φ)θ dx
〈φ〉r
1−α +φ

−α(θ + 2)
〈φ〉r

1−α
. (16.92)

As acceptable values of 〈ϕ〉r are limited to the interval between 1−α and 1, it is
clear that when α is small the equality in (16.92) can only be attained when the
integral is large. This requires 〈φ〉r/(1−α) being close to 1. And this will only
help if θ is small. In such case the integral in (16.92) can be approximated as

1∫
〈φ 〉r
1−α

φθ dx
φ

=
1
θ

(
1−

( 〈φ〉r

1−α
− 1

)θ
)
.
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Substituting this into (16.92) and replacing in the rest of it 〈φ〉r/(1−α) with unity
we can solve the resulting equation to get:

〈φ〉r

1−α
− 1 ≈

(
α − θ

θ+2

α(θ + 1)

) 1
θ

. (16.93)

For example, when α = 0.1 and θ = 0.1 we get from (16.93) that 〈φ〉r/(1−α)−1≈
6× 10−4. However (16.93) gives a real solution only when

α ≥ θ
θ + 2

. (16.94)

The R.H.S. of (16.91) has a maximum for all values of ϕ when 〈ϕ〉r = 1−α . After
substituting this into (16.91) and integrating we get that the maximum possible

value of
1∫
0

pr(ϕ)dϕ is α((θ +2)/θ ). We again get a problem when the condition of

(16.94) is violated. Remember, however, that when we derived (16.57) from (16.56)
we divided by 1−(1−α)ϕ/〈ϕ〉r, which, in the case 〈ϕ〉r = 1−α , is zero for ϕ = 1.
Thus, (16.57) is correct for all values of ϕ , except for 1. The solution of (16.56) in
the case when the condition of (16.94) is violated is:

pr(φ) = α(θ + 1)(θ + 2)φ(1−φ)θ−1+

(
1−α

θ + 2
θ

)
δ (φ − 1). (16.95)
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