
Chapter 15
Modeling Epidemic Spreading in Complex
Networks: Concurrency and Traffic
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and Yamir Moreno

Abstract The study of complex networks sheds light on the relation between the
structure and function of complex systems. One remarkable result is the absence of
an epidemic threshold in infinite-size scale-free networks, which implies that any
infection will perpetually propagate regardless of the spreading rate. However, real-
world networks are finite and experience indicates that infections do have a finite
lifetime. In this chapter, we will provide with two new approaches to cope with
the problem of concurrency and traffic in the spread of epidemics. We show that
the epidemic incidence is shaped by contact flow or traffic conditions. Contrary to
the classical assumption that infections are transmitted as a diffusive process from
nodes to all neighbors, we instead consider the scenario in which epidemic pathways
are defined and driven by flows. Extensive numerical simulations and theoretical
predictions show that whether a threshold exists or not depends directly on contact
flow conditions. Two extreme cases are identified. In the case of low traffic, an
epidemic threshold shows up, while for very intense flow, no epidemic threshold
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appears. In this way, the classical mean-field theory for epidemic spreading in scale
free networks is recovered as a particular case of the proposed approach. Our results
explain why some infections persist with low prevalence in scale-free networks,
and provide a novel conceptual framework to understand dynamical processes on
complex networks.

15.1 Introduction

The problem of modeling how diseases spread among individuals has been
intensively studied for many years [2,20,31,39]. The development of mathematical
models to guide our understanding of the disease dynamics has allowed to
address important issues such as immunization and vaccination policies [2, 22, 32].
Physicist’s approaches to problems in epidemiology involve statistical physics,
the theory of phase transitions and critical phenomena [53], which have been
extremely helpful to grasp the macroscopic behavior of epidemic outbreaks
[4,15,24,34,37,38,41,45,46]. The main artifice of this success has been the Mean-
Field (MF) approximation, where local homogeneities of the ensemble are used
to average the system, reducing degrees of freedom. It consists of coarse-grained
vertices within degree classes and considers that all nodes in a degree class have
the same dynamical properties; the approach also assumes that fluctuations can be
neglected.

The study of complex networks [6, 21, 42] has provided new grounds to the
understanding of contagion dynamics. Particularly important in nature are scale-
free (SF) networks, whose degree distribution follows a power law P(k) ∼ k−γ for
the number of connections, k, an individual has. SF networks include patterns of
sexual contacts [33], the Internet [47], as well as other social, technological and
biological networks [10]. SF networks [3, 6, 21] are characterized by the presence
of hubs, which are responsible for several striking properties for the propagation
of information, rumors or infections [4, 24, 34, 38, 41, 45]. The HMF approach
analytically predicts the critical rate βc at which the disease spreads, i.e. the
epidemic threshold.

Theoretical modeling of how diseases spread in complex networks is largely
based on the assumption that the propagation is driven by reaction processes, in
the sense that the transmission occurs from every infected through all its neighbors
at each time step, producing a diffusion of the epidemics on the network. However,
this approach overlooks the notion that the network substrate is a fixed snapshot
of all the possible connections between nodes, which does not imply that all nodes
are concurrently active [26]. Many networks observed in nature [6, 21], including
those in society, biology and technology, have nodes that temporally interact only
with a subset of its neighbors [1, 43]. For instance, hub proteins do not always
interact with all their neighbor proteins at the same time [30], just as individuals in
a social network [33] do not interact simultaneously with all of their acquaintances.
Likewise, Internet connections being utilized at a given time depends on the specific
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traffic and routing protocols. Given that transport is one of the most common
functions of networked systems, a proper consideration of this issue will irreparably
affect how a given dynamical process evolves.

In this chapter, we present a theoretical framework for contact-based spreading
of diseases in complex networks. This formulation, Microscopic Markov-Chain
Approach (MMCA), is based on probabilistic discrete-time Markov chains, gener-
alizes existing HMF approaches and applies to weighted and unweighted complex
networks [26]. Within this context, in addition to capturing the global dynamics of
the different contact models and its associated critical behavior, it is now possible
to quantify the microscopic dynamics at the individual level by computing the
probability that any node is infected in the asymptotic regime. MC simulations
corroborate that the formalism here introduced reproduces correctly the whole
phase diagram for model and real-world networks. Moreover, we capitalize on this
approach to address how the spreading dynamics depends on the number of contacts
actually used by a node to propagate the disease.

After that, we introduce a theoretical approach to investigate the outcome of an
epidemic spreading process driven by transport instead of reaction events [37]. To
this end, we analyze a paradigmatic abstraction of epidemic contagion, the so-called
Susceptible–Infected–Susceptible (SIS) model [40], which assumes that contagion
occurs through the eventual contact or transmission between connected partners
that are using their connections at the time of propagation. This is achieved by
considering a quantized interaction at each time step. Mathematically, we set up the
model in a flow scenario where contagion is carried by interaction packets traveling
across the network. We consider two possible scenarios that encompass most of
real traffic situations: (1) unbounded delivery rate and (2) bounded delivery rate, of
packets per unit time. We derive the equation governing the critical threshold for
epidemic spreading in SF networks, which embeds, as a particular case, previous
theoretical findings. For unbounded delivery rate, it is shown that the epidemic
threshold decreases in finite SF networks when traffic flow increases. In the bounded
case, nodes accumulate packets at their queues when traffic flow overcomes the
maximal delivery rate, i.e. when congestion arises. From this moment on, the results
show that both the epidemic threshold and the infection prevalence are bounded due
to congestion.

15.2 Microscopic Markov-Chain Approach to Disease
Spreading

The critical properties of an epidemic outbreak in SF networks can be addressed
using the heterogeneous MF (HMF) prescription [4, 24, 34, 37, 38, 41, 45, 46]. It
consists of coarse-grained vertices within degree classes and considers that all nodes
in a degree class have the same dynamical properties; the approach also assumes that
fluctuations can be neglected. Specifically, if β is the rate (probability per unit time)
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at which the disease spreads, it follows that the epidemic threshold in uncorrelated
SF networks is given [45] by βc = 〈k〉/〈k2〉, leading to βc → 0 as N → ∞ when
2 < γ ≤ 3.

MF approaches are extremely useful to assess the critical properties of epidemic
models however, they are not designed to give information about the probability
of individual nodes but about classes of nodes. Then, questions concerning the
probability that a given node be infected are not well posed in this framework. To
obtain more details at the individual level of description, one has to rely on Monte
Carlo (MC) simulations, which have also been used to validate the results obtained
using MF methods. Restricting the scope of epidemiological models to those based
in two states [20, 31, 39] −susceptible (S) and infected (I)−, the current theory
concentrates on two specific situations, the contact process [7, 11–13, 29, 35] (CP)
and the reactive process [14, 18, 19, 23] (RP). A CP stands for a dynamical process
that involves an individual stochastic contagion per infected node per unit time,
while in the RP there are as many stochastic contagions per unit time as neighbors a
node has. This latter process underlies the abstraction of the susceptible-infected-
susceptible (SIS) model [20, 31, 39]. However, in real situations, the number of
stochastic contacts per unit time is surely a variable of the problem itself [26]. In
this first part of the chapter, we develop a microscopic model, based on Markov-
Chains, to cope with the concurrency problem in the spreading of epidemics.

15.2.1 Contact-Based Epidemic Spreading Models

Let us suppose we have a complex network, undirected or directed, made up of
N nodes, whose connections are represented by the entries {ai j} of an N-by-N
adjacency matrix A, where ai j ∈ {0,1}. Unlike standard HMF approaches, our
formalism allows the analysis of weighted networks, thus we denote by {wi j} the
non-negative weights (wi j ≥ 0) of the connections between nodes, being wi =∑ j wi j

the total output strength [5] of node i. The above quantities completely define the
structure of the underlying graph. The dynamics we consider is a discrete two-state
contact-based process, where every node is either in a susceptible (S) or infected
(I) state. Each node of the network represents an individual (or a place, a city,
an airport, etc.) and each edge is a connection along which the infection spreads.
At each time step, an infected node makes a number λ of trials to transmit the
disease to its neighbors with probability β per unit time, and then has a probability
μ of recovering to the susceptible state. This forms a Markov chain where the
probability of a node being infected depends only on the last time step, hence the
name Microscopic Markov-Chain Approach (MMCA). After some transient time,
the previous dynamics sets the system into a stationary state in which the average
density of infected individuals, ρ , defines the prevalence of the disease.

We are interested in the probability pi(t) that any given node i is infected at time
step t. We denote by ri j the probability that a node i is in contact with a node j,
defining a matrix R. These entries represent the probabilities that existing links in
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the network are used to transmit the infection. If i and j are not connected, then ri j =
0. With these definitions, the discrete-time version of the evolution of the probability
of infection of any node i reads

pi(t + 1) = (1− qi(t))(1− pi(t))+ (1− μ)pi(t)+ μ(1− qi(t))pi(t) , (15.1)

where qi(t) is the probability of node i not being infected by any neighbor at time t,

qi(t) =
N

∏
j=1

(1−β r jip j(t)) . (15.2)

The first term on the right hand side of (15.1) is the probability that node i is
susceptible (1− pi(t)) and is infected (1− qi(t)) by at least a neighbor. The second
term stands for the probability that node i is infected at time t and does not recover,
and finally the last term takes into account the probability that an infected node
recovers (μ pi(t)) but is re-infected by at least a neighbor (1− qi(t)). Within this
formulation, we are assuming the most general situation in which recovery and
infection occur on the same time scales, allowing then reinfection of individuals
during a discrete time window (for instance, one MC step). This formulation
generalizes previous approximations where one time step reinfections can not occur.

The formulation so far relies on the assumption that the probabilities of being
infected pi are independent random variables. This hypothesis turns out to be valid
in the vast majority of complex networks because the inherent topological disorder
makes dynamical correlations not persistent. The dynamical system ((15.1) and
(15.2)) corresponds to a family of possible models, parameterized by the explicit
form of the contact probabilities ri j. Without loss of generality, it is instructive to
think of these probabilities as the transition probabilities of random walkers on the
network. The general case is represented by λi random walkers leaving node i at
each time step:

ri j = 1−
(

1− wi j

wi

)λi

. (15.3)

The Contact Process (CP) corresponds to a model dynamics of one contact per
unit time, λi = 1, ∀i in (15.3) thus ri j = wi j/wi.1 In the Reactive Process (RP),
all neighbors are contacted, which corresponds, in this description, to set the limit
λi → ∞, ∀i resulting on ri j = ai j regardless of whether the network is weighted or
not. Other prescriptions for λi conform the spectrum of models that can be obtained
using this unified framework. The phase diagram of every model is simply obtained
solving the system formed by (15.1) for i = 1, . . . ,N at the stationary state,

1Strictly speaking, when λ = 1, our model is not exactly the standard CP, since in that case
reinfections are not considered. However, we will refer to it as a CP since only one neighbor is
contacted at each time step and the critical points of both variants are the same.
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pi = (1− qi)+ (1− μ)piqi , (15.4)

qi =
N

∏
j=1

(1−β r jip j) . (15.5)

This equation has always the trivial solution pi = 0, ∀i = 1, . . . ,N. Other non-trivial
solutions are reflected as non zero fixed points of (15.4) and (15.5), and can be easily
computed numerically by iteration. The macroscopic order parameter is given by the
expected fraction of infected nodes ρ , computed as

ρ =
1
N

N

∑
i=1

pi . (15.6)

15.2.2 Numerical Results

To show the validity of the MMCA model here discussed, we have performed MC
simulations on different SF networks for RP. In Fig. 15.1, the phase diagram of
the system obtained by MC simulations is compared with the numerical solution of
(15.4) and (15.5). To model the epidemic dynamics on the described topologies we
incorporate a SIS model in which, at each time step, each node can be susceptible
or infected. Each simulation starts with a fraction ρ0 of randomly chosen infected
individuals (ρ0 = 0.05 in our simulations), and time is discretized in time-steps.
At each time step an infected node i infects with the same probability β all its
neighbors and recovers at a rate μ . The simulation runs until a stationary state
for the density of susceptible individuals, ρ(t) is reached. The agreement between
both curves is matchless. Moreover, the formalism also captures the microscopic
dynamics as given by the pi’s, see the inset of Fig. 15.1. While the computational
cost of the MC simulations is considerably large, the numerical solution of the fix
point (15.4) and (15.5), by iteration, is fast and accurate.

In Fig. 15.2, we analyze our formalism on top of the airports network data set,
composed of passenger flights operating in the time period November 1, 2000, to
October 31, 2001 compiled by OAG Worldwide (Downers Grove, IL) and analyzed
previously by Prof. Amaral’s group [28]. It consists of 3,618 nodes (airports) and
14,142 links, we used the weighted network in our analysis. Airports corresponding
to a metropolitan area have been collapsed into one node in the original database.
We show the density of infected individuals ρ as a function of β for different values
of λ . Both the critical points and the shape of the ρ − β phase diagrams greatly
change at varying the number of stochastic contacts (λ ). We observe a moderate
disease prevalence in the case of small values of λ , even for large values of the
spreading rate β . In contrast, when the number of trials is of order 103 the situation
is akin to a RP.
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Fig. 15.1 Average fraction of infected nodes ρ as a function of the infection rate β for N = 104.
Lines stand for the MMCA solutions (with λ = ∞) and symbols correspond to MC simulations of
the SIS model on top of random scale-free networks with γ = 2.7 (error bars are smaller than the
size of the symbol). In the inset, scatter plot for the probability that a node is infected using results
of MC simulations (the y-axis) and the solutions (x-axis) of (15.4) and (15.5). Both results have
been obtained for μ = 1, the inset is for β = 0.1. After [26]
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Fig. 15.2 Density of infected individuals ρ as a function of β for different values of λ in the air
transportation network [28]. The smallest epidemic threshold and largest incidence is obtained for
the RP, in which the matrix R corresponds to the adjacency matrix. This implies that the SIS on
unweighted networks is a worst case scenario for the epidemic spreading in real weighted networks.
ρ is calculated according to (15.6) once the pi’s are obtained, μ is set to 1. After [26]
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Fig. 15.3 Phase diagram for the SIS model (λ = ∞) in a random scale free network for different
γ’s. The networks size is N = 104 nodes and μ = 1. MC results are averages over 102 realizations.
Dashed lines corresponds to the theoretical prediction and symbols to MC results. After [26]

Finally, we compare the results of the formalism for different random scale-free
networks satisfying P(k)∼ k−γ , which have been generated using the configuration
model [6, 21] with a fixed size of N = 104 nodes. Figure 15.3 shows the phase
diagram for μ = 1 and several values of the exponent γ , both below and above
γ = 3. Symbols correspond to MC simulations, whereas dotted lines represent
the results obtained using the analytical approximation. As it can be seen, the
agreement between both methods is remarkable, even for values of γ < 2.5 where
structural changes are extremely relevant [51]. On the other hand, one may explore
the dependency with the system size while fixing the degree distribution exponent
γ . This is what is shown in Fig. 15.4, where we have depicted the phase diagram
for networks with γ = 2.7 for several system sizes ranging from N = 500 to
N = 105. Except for N = 500, where MC results have a large standard deviation
close to the critical point, the agreement is again excellent in the whole range of β
values.

15.2.3 Epidemic Threshold

Let us now assume the existence of a critical point βc for fixed values of μ and λi

such that ρ = 0 if β < βc and ρ > 0 when β > βc. The calculation of this critical
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Fig. 15.4 Phase diagram for the SIS model (λ = ∞) in a random scale free network for different
system sizes as indicated. The networks have a power-law degree distribution with an exponent
γ = 2.7 and μ = 1. MC results are averages over 102 realizations. After [26]

point is performed by considering that when β → βc, the probabilities pi ≈ εi, where
0 ≤ εi � 1, and then after substitution in (15.2) one gets

qi ≈ 1−β
N

∑
j=1

r jiε j . (15.7)

Inserting (15.7) in (15.4), and neglecting second order terms in ε we get

N

∑
j=1

(
r ji − μ

β
δ ji

)
ε j = 0 , ∀i = 1, . . . ,N , (15.8)

where δi j stands for the Kronecker delta. The system (15.8) has non trivial solutions
if and only if μ/β is an eigenvalue of the matrix R. Since we are looking for the
onset of the epidemic, the lowest value of β satisfying (15.8) is

βc =
μ

Λmax
, (15.9)

where Λmax is the largest eigenvalue of the matrix R. Equation (15.9) defines the
epidemic threshold of the disease spreading process.

With the previous development it is worth analyzing the two limiting cases of
CP and RP above. In the first case, one must take into account that the matrix
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R is a transition matrix whose maximum eigenvalue is always Λmax = 1. Thus,
the trivial result that the only non-zero solution corresponds to βc = μ . For the
RP corresponding to the SIS spreading process usually adopted [45], the classical
result for uncorrelated SF networks is recovered because, in this case, the largest
eigenvalue [16, 48] is Λmax = 〈k2〉/〈k〉.

15.2.4 Mesoscopic Equations at the Critical Point

Once the general framework given by the dynamical system ((15.1) and (15.2)) has
been proposed, it is instructive to approximate it using the hypotheses underlying
HMF. These hypotheses consist of: (1) coarse-graining the system in classes of
nodes by degree, assuming that the dynamical properties within each class are
the same and (2) neglecting fluctuations. To obtain the mesoscopic description we
consider the second order approximation of (15.4) and (15.5), and proceed as in the
previous section. Therefore,

qi ≈ 1−β ∑
j

r jiε j +β 2 ∑
j<l

r jirliε jεl . (15.10)

After substitution in (15.4) and reordering terms one gets

0 =−μεi +β (1− εi)∑
j

r jiε j + μβ εi ∑
j

r jiε j −β 2 ∑
j<l

r jirliε jεl , (15.11)

which are the equations governing the dynamics of the contact-based epidemic
spreading process at the microscopic level. It is possible to write (15.11) at
the commonly used mesoscopic (degree class) level for unweighted, undirected
heterogeneous networks. The interactions then take place between classes of nodes.
Defining the average density of infected nodes with degree k as ρk =

1
Nk

∑ki=k pi,
where Nk is the number of nodes with degree k and the sum runs over the set of
nodes of degree k, we obtain the generalized HMF equation near criticality.

To simplify the notation, we define the function

Rλ (x) = 1− (1− x)λ . (15.12)

Thus, the values of r ji may be expressed as

• Weighted networks:

r ji = Rλ

(
wji

wj

)
. (15.13)
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• Unweighted networks:

r ji = Rλ

(
a ji

k j

)
= a jiRλ

(
1
k j

)
= a jiRλ (k

−1
j ) . (15.14)

15.2.4.1 Homogeneous Networks

For homogeneous unweighted undirected networks, εi = ε and ki ≈〈k〉 for all nodes.
Thus, ρ = 1

N ∑ j ε j = ε and

0 =−μρ +β ρ(1−ρ)∑
j

r ji + μβ ρ2∑
j

r ji −β 2ρ2 ∑
j<l

r jirli . (15.15)

The terms involving values of r ji are

r ji ≈ a jiRλ (〈k〉−1) , (15.16)

∑
j

r ji ≈ 〈k〉Rλ (〈k〉−1) , (15.17)

∑
j<l

r jirli ≈ 1
2
〈k〉(〈k〉− 1)Rλ (〈k〉−1)2 . (15.18)

Now, (15.15) becomes

0 = −μρ +β ρ(1−ρ)〈k〉Rλ(〈k〉−1)

+ μβ ρ2〈k〉Rλ (〈k〉−1)−β 2ρ2 1
2
〈k〉(〈k〉− 1)Rλ (〈k〉−1)2 , (15.19)

which may be considered as the MF approximation of our model for homogeneous
networks.

If λ = 1 then R1(〈k〉−1) = 1
〈k〉 and (15.19) becomes

0 =−μρ +β ρ(1−ρ)+ μβ ρ2− 〈k〉− 1
2〈k〉 β 2ρ2 . (15.20)

If λ → ∞ then R∞(〈k〉−1) = 1 and (15.19) reads

0 =−μρ +β ρ(1−ρ)〈k〉+ μβ ρ2〈k〉− 1
2

β 2ρ2〈k〉(〈k〉− 1) . (15.21)

In both cases, the first two terms correspond to the standard CP and RP models
(previously reported in the literature), respectively, and the additional terms are
second order contributions corresponding to reinfections and multiple infections.



446 S. Meloni et al.

15.2.4.2 Heterogeneous Networks

Now we will concentrate on the class of heterogeneous unweighted undirected net-
works completely specified by their degree distribution P(k) and by the conditional
probability P(k′|k) that a node of degree k is connected to a node of degree k′.
Of course, the normalization conditions ∑k P(k) = 1 and ∑k′ P(k

′|k) = 1 must be
fulfilled. In this case, the average number of links that goes from a node of degree k
to nodes of degree k′ is kP(k′|k).

In these heterogeneous networks, it is supposed that all nodes of the same degree
behave equally, thus εi = ε j if ki = k j, and the density ρk of infected nodes of degree
k is given by ρk = 1

Nk
∑i∈K εi = ε j , ∀ j ∈ K, where Nk = P(k)N is the expected

number of nodes with degree k. Here, we have made use of K to denote the set of
nodes with degree k. This notation allows to group the sums by the degrees of the
nodes. For instance, if the degree of node i is ki = k then

∑
j

a jiε j = ∑
k′

∑
j∈K′

a jiρk′ = ∑
k′

ρk′ ∑
j∈K′

ai j= ∑
k′

ρk′kP(k′|k)=k∑
k′

P(k′|k)ρk′ . (15.22)

Now, let us find the mean field equation for heterogeneous networks. First we
substitute (15.14) in (15.11)

0 = −μεi +β (1− εi)∑
j

a jiRλ (k
−1
j )ε j + μβ εi ∑

j

a jiRλ (k
−1
j )ε j

−β 2 ∑
j<l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl . (15.23)

It is convenient to analize separately the summatory terms in (15.23), supposing
node i has degree k:

∑
j

a jiRλ (k
−1
j )ε j = ∑

k′
∑
j∈K′

a jiRλ (k
′−1

)ρk′

= ∑
k′

Rλ (k
′−1

)ρk′ ∑
j∈K′

ai j

= k∑
k′

P(k′|k)Rλ (k
′−1

)ρk′ , (15.24)

∑
j<l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl

=
1
2 ∑

j
∑

l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl − 1

2 ∑
j

a2
jiRλ (k

−1
j )2ε2

j

=
1
2 ∑

k′
∑
k′′

∑
j∈K′

∑
l∈K′′

a jialiRλ (k
′−1

)Rλ (k
′′−1

)ρk′ρk′′ − 1
2 ∑

k′
∑
j∈K′

a2
jiRλ (k

′−1
)2ρ2

k′
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=
1
2 ∑

k′
∑
k′′

Rλ (k
′−1

)Rλ (k
′′−1

)ρk′ρk′′ ∑
j∈K′

ai j ∑
l∈K′′

ail − 1
2 ∑

k′
Rλ (k

′−1
)2ρ2

k′ ∑
j∈K′

a2
i j

=
1
2

k2 ∑
k′

∑
k′′

Rλ (k
′−1

)Rλ (k
′′−1

)P(k′|k)P(k′′|k)ρk′ρk′′

− 1
2

k∑
k′

Rλ (k
′−1

)2P(k′|k)ρ2
k′ . (15.25)

Substitution in (15.23) leads to the generalized HMF equation

0 = −μρk +β k(1−ρk)∑
k′

P(k′|k)Rλ (k
′−1

)ρk′

+ μβ kρk ∑
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′−1
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− 1
2
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′′−1
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+
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2

β 2k∑
k′

Rλ (k
′−1

)2P(k′|k)ρ2
k′ . (15.26)

If λ = 1, then R1(k−1) = 1
k and (15.26) becomes

0 = −μρk +β k(1−ρk)∑
k′

1
k′

P(k′|k)ρk′

+μβ kρk ∑
k′

1
k′

P(k′|k)ρk′ +
1
2
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1

k′2
P(k′|k)ρ2

k′

−1
2

β 2k2

(
∑
k′

1
k′

P(k′|k)ρk′

)2

. (15.27)

If λ → ∞, then R∞(k−1) = 1 and (15.26) reads

0 = −μρk +β k(1−ρk)∑
k′

P(k′|k)ρk′

+μβ kρk ∑
k′

P(k′|k)ρk′ +
1
2

β 2k∑
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P(k′|k)ρ2
k′

−1
2

β 2k2

(
∑
k′

P(k′|k)ρk′

)2

. (15.28)
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Again, the first two terms in both cases correspond to the standard CP and RP HMF
equations, respectively, and the additional terms are second order contributions
corresponding to reinfections and multiple infections.

15.3 Traffic-Driven Epidemic Spreading in Complex Networks

In the second part of this chapter, we investigate the outcome of an epidemic
spreading process driven by transport instead of diffusion. To this end, we ana-
lyzed a paradigmatic abstraction of epidemic contagion, the so-called Susceptible–
Infected–Susceptible (SIS) model, which assumes that contagion occurs through
the eventual contact or transmission between connected partners that are using their
connections at the time of propagation. This is achieved by considering a quantized
interaction at each time step. Mathematically, we set up the model in a flow scenario
where contagion is carried by interaction packets traveling across the network.

15.3.1 The Model

In the first place, two different types of SF networks are generated. On one
hand, we build random uncorrelated SF networks using the configuration model
[6, 21]. On the other hand, small-world, SF and highly clustered networks – all
properties found in many real-world networks [6, 21] such as the Internet – are
also generated using a class of recently developed network models [9, 50], in
which nearby nodes in a hidden metric space are connected. This metric space
can represent social, geographical or any other relevant distance between the nodes
of the simulated networks. Specifically, in the model currently at study, nodes are
uniformly distributed in a one-dimensional circle by assigning them a random polar
angle θ distributed uniformly in the interval [0,2π) and assigned an expected degree
k. The expected degrees of the nodes are then drawn from some distribution x(k)
and the network is completed by connecting two nodes with hidden coordinates

(θ ,k) and (θ ′,k′) with probability r(θ ,k,θ ′,k′) =
(

1+ d(θ ,θ ′)
η ′kk′

)−α
, where η ′ =

(α −1)/2〈k〉, d(θ ,θ ′) is the geodesic distance between the two nodes on the circle,
and 〈k〉 is the average degree. Finally, choosing x(k) = (γ − 1)kγ−1

0 k−γ , k > k0 ≡
(γ − 2)〈k〉/(γ − 1) generates random networks with a power law distribution with
exponent γ > 2. In most of the simulations, γ = 2.7 〈k〉= 3 and α = 2 are fixed.

Once the networks are built up, the traffic process is implemented in the following
way. At each time step, p = ΛN new packets are created with randomly chosen
origins and destinations. For the sake of simplicity, packets are considered non-
interacting so that no queues are used. The routing of information is modeled
through even a shortest path delivery strategy or a greedy algorithm [8, 9]. In the
latter, the second class of SF networks is used and a node i forwards a packet to
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node j in its neighborhood, which is the closest node (in the hidden metric space)
to the final packet destination. Results are insensitive to the two routing protocols
implemented.

To model the spreading dynamics we have implemented the aforementioned
Susceptible-Infected-Susceptible model, in which each node can be in two possible
states: healthy (S) or infected (I). Starting from an initial fraction of infected
individuals ρ0 = I0/N, the infection spreads in the system as the nodes interact.
A susceptible node has a probability β of becoming infected every time it interact
with an infected neighbors. We also assume that infected nodes are recovered at a
rate μ , which we fix to 1 for most of the simulations. After a transient time, we
compute the average density of infected individuals, ρ , which is the prevalence of
disease in the system. To account for link concurrency, we consider that two nodes
do not interact at all times t, but only when they exchange at least a packet. This
situation is reminiscent of disease transmission on air transportation networks; if
an infected individual did not travel between two cities, then regardless of whether
or not those cities are connected by a direct flight, the epidemic will not spread
from one place to the other. In this way, although a node can potentially interact
with as many contacts as it has and as many times as packets it exchanges with its
neighbors, the effective interactions are driven by a second dynamics (traffic). The
more packets travel through a link, the more likely the disease will spread through
it. On the other hand, once an interaction is at work, the epidemics spreads from
infected to susceptible nodes with probability β . For example, if at time t node i is
infected and a packet is traveling from node i to one of its neighbors node j, then at
the next time step, node j will be infected with probability β . Therefore, susceptible
and infected states are associated with the nodes, whereas the transport of packets
is the mechanism responsible for the propagation of the disease at each time step.

15.3.2 Unbounded Delivery Rate

We firstly concentrate on an unbounded delivery rate scenario, in which every node
can handle as much packets it receives. In this situation, congestion can not arise in
the system. Figure 15.5 shows the results for the stationary density of infected nodes
ρ as a function of β and the traffic generation rate Λ for SF networks.

In this case, the traffic level determines the value of both the epidemic incidence
and the critical thresholds and it’s important to notice the emergence of an epidemic
threshold under low traffic conditions. This implies that for a fixed value of Λ , the
epidemic dies out if the spreading rate is below a certain critical value βc(Λ). More
intense packet flows yield lower epidemic thresholds. The reason for the dependence
of the critical spreading rates on Λ is rooted in the effective topological paths
induced by the flow of packets through the network. At low values of Λ , there are
only a few packets traveling throughout the system, so the epidemic simply dies
out because many nodes do not participate in the interaction via packets exchanges.
As Λ grows, more paths appear between communicating nodes, thus spreading the
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Fig. 15.5 Dependence of epidemic incidence on traffic conditions for unbounded delivery rate.
The density of infected nodes, ρ , is shown as a function of the spreading rate β and the intensity
of flow Λ in SF networks. Flow conditions (controlled by Λ ) determine both the prevalence level
and the values of the epidemic thresholds. Increasing the number of packets traveling through the
system has a malicious effect: the epidemic threshold decreases as the flow increases. Each curve
is an average of 102 simulations starting from an initial density of infected nodes ρ0 = 0.05. The
network is made up of 103 nodes using the model in [9], results correspond to the greedy routing
scheme. The remaining parameters are α = 2, γ = 2.6 and 〈k〉 = 3. After [37]

infection to a larger portion of the network. Therefore, in traffic-driven epidemic
processes the infection is constrained to propagate only through links that transmit
a packet, and thus the number of attempts to transmit the infection depends on the
flow conditions at a local level, namely, on the number of active communication
channels at each time step. As a consequence, the effective network that spreads the
infection is no longer equivalent to the complete underlying topology. Instead, it is
a map of the dynamical process associated with packet traffic flow. The conclusion
is that the disease propagation process has two dynamical components: one intrinsic
to the disease itself (β ) and the other to the underlying traffic dynamics (the
flow). To theorize about these effects we next formulate the analytical expression
for the dependence of the epidemic threshold on the amount of traffic injected into
the system, following a mean-field approach akin to the conventional analysis of the
reaction driven case. Mathematically, the fraction of paths traversing a node given a
certain routing protocol [27], the so-called algorithmic betweenness, bk

alg, defines the
flow pathways. Let us consider the evolution of the relative density, ρk(t), of infected
nodes with degree k. Following the heterogeneous mean-field approximation [45],
the dynamical rate equations for the SIS model are

∂tρk(t) =−μρk(t)+βΛbk
algN [1−ρk(t)]Θ(t). (15.29)
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The first term in (15.29) is the recovery rate of infected individuals (we set
henceforth μ = 1). The second term takes into account the probability that a node
with k links belongs to the susceptible class, [1 − ρk(t)], and gets the infection
via packets traveling from infected nodes. The latter process is proportional to
the spreading probability β , the probability Θ(t) that a packet travels through a
link pointing to an infected node and the number of packets received by a node of
degree k. This, in turns, is proportional to the total number of packets in the system,
∼ΛN, and the algorithmic betweenness of the node, bk

alg. Note that the difference
with the standard epidemic spreading model is given by these factors, as now the
number of contacts per unit time of a node is not proportional to its connectivity but
to the number of packets that travel through it. Finally, Θ(t) takes the form

Θ(t) =
∑k bk

algP(k)ρk(t)

∑k bk
algP(k)

. (15.30)

Equation (15.29) has been obtained assuming: (1) that the network is uncorrelated
P(k′|k) = k′P(k′)/〈k〉 and (2) that the algorithmic flow between the classes of nodes
of degree k and k′ factorizes bkk′

alg ∼ bk
algbk′

alg. Although no uncorrelated networks
exist, this approximation allows us to identify the governing parameters of the
proposed dynamics. The second approximation is an upper bound to the actual value
of the bkk′

alg, whose mathematical expression is, in general, unknown. The validity of
the theory even with these approximations is notable as confirmed by the numerical
simulations.

By imposing stationarity [∂tρk(t) = 0], (15.29) yields

ρk =
βΛbk

algNΘ
1+βΛbk

algNΘ
, (15.31)

from which a self-consistent equation for Θ is obtained as

Θ =
1

∑k bk
algP(k) ∑

k

(bk
alg)

2P(k)βΛNΘ
1+βΛbk

algNΘ
. (15.32)

The value Θ = 0 is always a solution. In order to have a non-zero solution, the
condition

1

∑k bk
algP(k)

d
dΘ

(
∑
k

(bk
alg)

2P(k)βΛNΘ
1+βΛbk

algNΘ

)∣∣∣∣∣
Θ=0

> 1 (15.33)

must be fulfilled, from which the epidemic threshold is obtained as

βc =
〈balg〉
〈b2

alg〉
1

ΛN
, (15.34)
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Fig. 15.6 Comparison between numerical and theoretical critical points. Log–log plot of the
critical thresholds, βc, as a function of the rate at which packets are injected into the system, Λ . Two
regions are differentiated: an active and an absorbing phase as indicated. The solid line corresponds

to (15.34) with
〈balg〉
〈b2

alg〉
1
N = 0.154. The agreement is remarkable even though (15.34) is derived using

a MF approach. The underlying network, infection spreading mechanism and routing protocol are
the same as in Fig. 15.5. Each curve is an average of 102 simulations. Remaining parameters are
the same as in Fig. 15.5. After [37]

below which the epidemic dies out, and above which there is an endemic state. In
Fig. 15.6a comparison between the theoretical prediction and numerical observa-
tions is presented. Here, we have explicitly calculated the algorithmic betweenness
for the greedy routing as it only coincides with the topological betweenness for
shortest paths routing. The obtained curve separates two regions: an absorbing
phase in which the epidemic disappears, and an active phase where the infection
is endemic.

Equation (15.34) is notably simple but has profound implications: the epidemic
threshold decreases with traffic and eventually vanishes in the limit of very large
traffic flow in finite systems, in contrast to the expected result of a finite-size
reminiscent threshold in the classical reactive–diffusive framework. Admittedly,
this is a new feature with respect to previous results on epidemic spreading in SF
networks. It is rooted in the increase of the effective epidemic spreading rate due
to the flow of packets. This is a genuine effect of traffic-driven epidemic processes
and generalizes the hypothesis put forward in the framework of a reaction-diffusion
process [18] on SF networks. It implies that an epidemic will pervade the (finite)
network whatever the spreading rate is if the load on it is high enough. Moreover,
(15.34) reveals a new dependence. The critical threshold depends on the topological
features of the graph, but at variance with the standard case, through the first
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two moments of the algorithmic betweenness distribution. As noted above, the
algorithmic betweenness of a node is given by the number of packets traversing that
node given a routing protocol. In other words, it has two components: a topological
one which is given by the degree of the node and a dynamical component defined
by the routing protocol.

Within our formulation, the classical result [45]

βc =
〈k〉
〈k2〉 , (15.35)

can be obtained for a particular protocol and traffic conditions, although we note
that the microscopic dynamics of our model is different from the classical SIS. To
see this, assume a random protocol. If packets of information are represented as
w random walkers traveling in a network with average degree 〈k〉, then under the
assumption that the packets are not interacting, it follows that the average number
of walkers at a node i in the stationary regime (the algorithmic betweenness) is given
by [36, 44] bi

alg =
ki

N〈k〉w. The effective critical value is then (βΛ)c = 〈k〉2/(〈k2〉w),
that recovers, when w = 〈k〉, the result in (15.35).

Results are robust for other network models and different routing algorithms.
We have also made numerical simulations of the traffic-driven epidemic process
on top of Barabási–Albert and random SF networks implementing a shortest paths
delivery scheme. In this case, packets are diverted following the shortest path (in the
actual topological space) from the packets’ origins to their destinations. The rest of
model parameters and rules for epidemic spreading remain the same. Figures 15.7
and 15.8 show the results obtained for random SF networks generated via the
configuration model and the Barabási–Albert model, respectively. As can be seen,
the phenomenology is the same for both types of networks: the epidemic threshold
depends on the amount of traffic in the network such that the higher the flow is, the
smaller the epidemic threshold separating the absorbing and active phases. On the
other hand, for processes in which the delivery of packets follows a shortest path
algorithm, (15.34) looks like

βc =
〈btop〉
〈b2

top〉
1

ΛN
, (15.36)

where btop is the topological betweenness. To further confirm our findings on a
realistic topology we run the model on top of the Air Transportation Network (ATN)
[28]. The network composed by the direct flies between more the 3,000 airports in
the world, in which each node represents an airport and the links represents the direct
connection between them. Although in the ATN links have weights accounting for
the annual number of passengers voyaging on each connection, we considered the
network as un-weighted and the shortest-path routing protocol. Also in this case the
results are confirmed as shown in Fig. 15.9. Figure 15.10 also shows the agreement
between the analytical prediction and the numerical simulations.
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Fig. 15.7 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and the
epidemic spreading rate β for random scale-free networks and a shortest paths routing scheme
for packets delivery. Each point is the result of 102 averages over different networks and initial
conditions. The exponent of the degree distribution of the network is γ = 2.7. After [37]
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Fig. 15.8 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and
the epidemic spreading rate β for BA scale-free networks and a shortest paths routing scheme
for packets delivery. Each point is the result of 102 averages over different networks and initial
conditions. After [37]
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Fig. 15.9 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and the
epidemic spreading rate β for the ATN (considered as unweighted) and a shortest paths routing
scheme for packets delivery. Each point is the result of 102 averages over different networks and
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Fig. 15.10 Comparison between numerical and theoretical critical points in the ATN. Log–log
plot of the critical thresholds, βc, as a function of the rate at which packets are injected into the
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N = 0.041. Despite

existing degree correlations in the network, the agreement is remarkable. Each point is an average
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15.3.3 Bounded Delivery Rate

Equation (15.36) allows us to investigate also the equivalent scenario in the presence
of congestion. Let us consider the same traffic process above but with nodes having
queues that can store as many packets as needed but can deliver, on average, only a
finite number of them at each time step. It is known that there is a critical value of
Λ above which the system starts to congest [27]

Λc =
(N − 1)

b∗alg
. (15.37)

Equation (15.37) gives the traffic threshold that defines the onset of congestion,
which is governed by the node with maximum algorithmic betweenness b∗alg.
Substituting (15.37) in (15.34) we obtain a critical threshold for an epidemic
spreading process bounded by congestion. Increasing the traffic above Λc will
gradually congest all the nodes in the network up to a limit in which the traffic
is stationary and the lengths of queues grow without limit.

To illustrate this point, let us assume that the capacities for processing and
delivering information are heterogeneously distributed [49,52,54] so that the larger
the number of paths traversing a node, the larger its capability to deliver the packets.
Specifically, each node i of the network delivers at each time step a maximum
of �ci = 1+ kη

i � packets, where η is a parameter of the model. In this case, the
critical value of Λ in (15.37) is multiplied by the maximum delivery capacity
[54]. Moreover, without loss of generality, we will explore the behavior of the
model in random SF networks where the routing is implemented by shortest paths
balg = btop ∼ kν , being ν usually between 1.1 and 1.3 [47]. The previous assumption
for the delivery capability thus allows to explore as a function of η the situations
in which the delivery rate is smaller or larger than the arrival rate (defined by the
algorithmic betweenness). Phenomenologically, these two scenarios correspond to
the cases in which the traffic is in a free flow regime (if η > ν) or when the network
will congest (if η < ν). We also note that the adopted approach is equivalent to
assume a finite length for the queues at the nodes.

Figure 15.11 shows the fraction of active packets on the network, as a function of
the spreading rate β and the rate at which packets are generated Λ for two different
values of η using a shortest path delivery scheme on top of random SF networks. For
η = 0.8, the epidemic incidence is significantly small for all values of the parameters
Λ and β as compared with the results obtained when the rate of packets delivery is
unbounded. On the contrary, when η = 1.7 the phase diagram is qualitatively the
same as for the unbounded case, including the result that the epidemic incidence
vanishes when Λ is large enough. A closer look at the dynamical evolution unveils
an interesting, previously unreported, feature − when the rate at which packets are
delivered is smaller than the rate at which they arrive, the average value of infected
nodes saturates beyond a certain value of the traffic flow rate Λ . This effect is due
to the emergence of traffic congestion. When the flow of packets into the system is
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Fig. 15.11 Fraction of active packets as a function of the traffic flow with bounded delivery rate.
It represents the fraction of active packets A: packets still traveling in the network over the total
amount of generated packets in a time period τ , as function of the traffic injected in the system Λ
for different values of the delivery capacity η . The underlying network and the routing protocol
are the same as in Fig. 15.7

such that nodes are not able to deliver at least as many packets as they receive, their
queues start growing and packets pile up. This in turns implies that the spreading
of the disease becomes less efficient, or in other words, the spreading process slows
down. The consequence is that no matter whether more packets are injected into the
system, the average level of packets able to move from nodes to nodes throughout
the network is roughly constant and so is the average level of infected individuals.

Figure 15.12 illustrates the phenomenological picture described above. It shows
the epidemic incidence ρ for a fixed value of β = 0.15 as a function of Λ for
different values of η . The figure clearly evidences that congestion is the ultimate
reason of the behavior described above. Therefore, the conclusion is that in systems
where a traffic process with finite delivery capacity is coupled to the spreading of
the disease the epidemic incidence is bounded. This is good news as most of the
spreading processes in real-world networks involves different traffic flow conditions.
Further evidence of this phenomenology is given in Fig. 15.13, where we have
depicted the epidemic threshold as a function of Λ for two different values of η , less
and greater than ν . When η < ν congestion arises, and the contrary holds for η > ν
where the diagram is equivalent to that of unbounded traffic. The onset of congestion
determines the value of β above which congestion starts. It is clearly visualized
as the point beyond which the power law dependence in (15.34) breaks down.
The plateau of βc corresponds to the stationary situation of global congestion. A
comparison for different values of η in the bounded delivery rate model is presented
in Fig. 15.14.
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Fig. 15.12 Epidemic incidence in traffic-driven epidemic processes with bounded delivery rate.
The figure represents the average fraction of infected nodes ρ as a function of Λ for different
delivery rates at fixed β = 0.15. When congestion arises, the curves depart from each other and the
epidemic incidence saturates soon afterwards. After [37]
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Fig. 15.13 Epidemic thresholds as a function of Λ for two values of η . The onset of congestion
marks the point, Λc ≈ 0.150, at which the curve for η = 0.8 departs from (15.34), i.e., when the
power law dependence breaks down. Soon afterwards congestion extends to the whole network
leading to a bounded (from below) epidemic threshold. On the contrary, when the delivery rate is
large enough (as in the case of η = 1.7), (15.34) holds for all values of Λ , thus resembling the
unbounded delivery rate case. After [37]
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Fig. 15.14 Comparison between different delivery capacity in the bounded delivery rate model.
The plot represents density of infected nodes, ρ , as a function of traffic flow Λ and the epidemic
spreading rate β for random scale-free networks and a shortest paths routing scheme with different
values of the delivery capacity η : panel (a) η = 0.8, (b) η = 1.0, (c) η = 1.5 and (d) η = 1.7, for
the random SF network and the shortest path delivery scheme. After [37]

15.4 Conclusions

In the first part of this chapter, we have presented a novel framework, the
Microscopic Markov-Chain Approach, to study disease spreading in networks. By
defining a set of discrete-time equations for the probability of individual nodes to
be infected, we construct a dynamical system that generalizes from an individual
contact process to the classical case in which all connections are concurrently used,
for any complex topology. The whole phase diagram of the system can be found
solving the equations at the stationary state. The numerical solution of the analytic
equations overcomes the computational cost of MC simulations. Moreover, the
formalism allows to gain insight on the behavior of the critical epidemic threshold
for different values of the probability of contacting a fraction λ of neighbors per
time step.

The MMCA model deals with infections driven by direct contacts between
nodes, but not with traffic situations where nodes transmit the epidemics by flow
communication with others [37]. In this latter case, the routing protocol of traffic
between nodes is absolutely relevant and can change the critical point of the
epidemic spreading.



460 S. Meloni et al.

In the second part of this chapter, we have developed a framework in the scope of
MF theories to cope with the problem of assessing the impact of epidemics when the
routing of traffic is considered. We have argued both analytically and numerically
the conditions for the emergence of an epidemic outbreak in scale-free networks
when disease contagion is driven by traffic or interaction flow. The study provides a
more general theory of spreading processes in complex heterogeneous networks that
includes the previous results as a particular case of diffusive spreading. Moreover,
we have shown that the situation in which the epidemic threshold vanishes in finite
scale-free networks is also plausible, thus, providing an explanation to the long-
standing question of why some viruses prevail in the system with a low incidence.

The new approach presented here provides a novel framework to address related
problems. For instance, in the context of air-transportation networks [17], a similar
mechanism to the one reported here could explain the observed differences in
the impact of a disease during a year [25]. One might even expect that, due to
seasonal fluctuations in flows, the same disease could not provoke a system-wide
outbreak if the flow were not high enough during the initial states of the disease
contagion. Incorporating the non-diffusive character of the spreading process into
current models has profound consequences for the way the system functions.
Also the theory could help designing new immunization algorithms or robust
protocols; one in particular being quarantining highly sensitive traffic nodes. On
more general grounds, our conclusions point to the need of properly dealing
with link concurrency. Further exploring this challenge will have far-reaching
consequences for the study of dynamical processes on networks, and especially the
relationship between structure and dynamics for networked systems. Ultimately,
this paves the way towards a more complete theoretical framework of complex
networks.
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