
Chapter 13
Optimal Flows in Dynamic Networks
and Algorithms for their Finding

Maria Fonoberova

Abstract The minimum cost flow problem and the maximum flow problem on
networks with time-dependent characteristics and nonlinear cost functions on
arcs are considered. The algorithms for determining optimal solutions of the
single-commodity and multicommodity network flow problems based on the time-
expanded network method are elaborated. Some applications of the optimal flow
problems are provided.

13.1 Introduction

The chapter considers the minimum cost flow problem and the maximum flow
problem on dynamic networks with different forms of restrictions by parameters
of network and time. The classical optimal flow problems on networks are extended
and generalized for the cases of nonlinear cost functions on arcs, multicommodity
flows, and time- and flow-dependent transactions on arcs of the network. The
time-varying flow models which capture the essential properties of flows arising
in real-life complex systems are studied. The main goal of this chapter consists
in providing methods and algorithms for finding the minimum cost flow and the
maximum flow in single-commodity and multicommodity dynamic networks.

Recently network theory has become an important part in the study and analysis
of complex systems. Dynamic flows can be used in modelling of processes from
different complex systems such as transport networks, social interactions, the In-
ternet. Communication, transportation, economic planning, road traffic assignment,
evacuation planning, scheduling planning, cash flow, and management problems can
be formulated and solved as single-commodity or multicommodity flow problems
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[1, 3, 4, 47]. The maximum and the minimum cost flow problems have large
implementation for many practical problems in complex systems of electronic
communication, transportation, production, and distribution. The considered prob-
lems also have theoretical importance for investigation and solving of various
optimization problems on graphs. For example, the minimum cost flow problem can
be used for research and solving of the distribution problem, the synthesis problem
of communication networks, or the allocation problem.

The field of network flows blossomed in the 1940s and 1950s with interest in
transportation planning and has developed rapidly since then. There is a significant
body of literature devoted to this subject (see, for example, [1, 4, 12, 31, 46]).
However, it has largely ignored a crucial aspect of transportation: transportation
occurs over time. In the 1960s, Ford and Fulkerson [20, 21] introduced flows over
time to include time in the network model.

The following two aspects of dynamic flows distinguish them from the traditional
model. Firstly, the flow value on an arc may change over time. This feature is
important in applications, where the supplies and demands are not given as fixed
measures; instead, they change over time. Naturally, the flow value on each arc
should adjust to these changes. Secondly, there is a transit time on every arc which
specifies the amount of time flow units need to traverse the arc.

In the Ford and Fulkerson model transit times and arc capacities are fixed. Given
a network with capacities and transit times on arcs, they study the problem of
sending a maximum amount of flow from a source node s to a sink node t within
a pre-specified time horizon T . Ford and Fulkerson show that this problem can
be solved by one minimum cost static flow computation, where transit times on
arcs are interpreted as cost coefficients. They prove that an optimal solution of this
minimum cost flow problem can be turned into a maximum flow over time by first
decomposing it into flows on s− t paths. The corresponding flow over time starts
to send flow on each path at time zero, and repeats each so long as there is enough
time left in the T time units for the flow along the path to arrive at the sink.

Subsequently, linear models of optimal dynamic flows have been studied
by Cai, Carey, Fleischer, Glockner, Hoppe, Klinz, Lozovanu, Ma, Nemhauser,
Subrahmanian, Tardos, Woeginger and others in [6, 7, 16, 17, 23, 30, 32, 33, 39–
41]. In this chapter, the minimum cost and the maximum dynamic flow problems
are formulated and studied for nonlinear and multicommodity models. Dynamic
networks are considered with time-varying capacities of arcs. For the minimum cost
flow problem it is assumed that cost functions, defined on arcs, are nonlinear and
depend on time and flow, but the demand-supply function depends on time. It is also
considered the dynamic model with transit time functions that depend on flow and
time. The game-theoretic formulation of the multiobjective multicommodity flow
problem is proposed.

In Sect. 13.2, the main results related to static optimal flow problems on networks
are presented. The basic methods and algorithms for solving the minimum cost flow
problem and the maximum flow problem are examined. The obtained results are
extended for the nonlinear and multicommodity models.
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In Sect. 13.3, the minimum cost flow problem is consider on dynamic networks
with nonlinear cost functions, that depend on flow and time, and demand-supply
functions and capacity functions, that depend on time. The maximum flow problem
is considered on dynamic networks with time-varying capacities of arcs. To solve
the optimal dynamic flow problems methods and algorithms based on the reduction
of dynamic problems to static ones on auxiliary networks are proposed. Dynamic
problems with transit time functions that depend on flow and time are analyzed and
algorithms for solving such problems are elaborated.

In Sect. 13.4, the minimum cost and the maximum multicommodity flow
problems on dynamic networks are considered. The multicommodity flow problem
consists of shipping several different commodities from their respective sources
to their sinks through a given network satisfying certain objectives in such a
way that the total flow going through arcs does not exceed their capacities. No
commodity ever transforms into another commodity, so that each one has its own
flow conservation constraints, but they compete for the resources of the common
network. In this section, the minimum cost multicommodity flow problems are
considered on dynamic networks with time-varying capacities of arcs and transit
times on arcs that depend on sort of commodity entering them. The cost functions,
defined on arcs, are assumed to be nonlinear and depend on time and flow, and
demand-supply functions depend on time. For solving the considered problems
algorithms based on the modification of the time-expanded network method are
proposed. The dynamic problems with transit time functions that depend on flow
and time are also considered and algorithms for their solving are proposed.

In Sect. 13.5, the game-theoretic formulation of the multiobjective multicom-
modity flow problem is considered. If we associate to each commodity a player, we
can regard this problem as a game problem, where players interact between them
and the choices of one player influence the choices of the others.

13.2 Static Flow Models and Determining Optimal Flows
in Networks

In this section we present the most important results related to static flow problems
and systemize some of the relevant methods and algorithms for solving the
maximum and minimum cost flow problems. These results are extended for the
nonlinear and multicommodity cases of the considered models.

13.2.1 Static Flows: Definitions and some Properties

13.2.1.1 Single-Commodity Flow

Let be given a directed graph G = (V,E) with a vertex set V and an arc set E (see
[12,21]). This graph becomes a network N = (V,E,u,d) if we assign to each vertex
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v ∈ V the demand-supply dv and to each arc e ∈ E the non-negative capacity ue,
which represents the maximum amount of flow that can be carried on the arc e. By
using the demand-supply function d we distinct nodes as net generators of flow, net
absorbers of flow, or neither. Nodes v∈V with dv > 0 are called sources, nodes v∈V
with dv < 0 are called sinks and nodes v ∈ V with dv = 0 are called intermediate
nodes. A source node or source has the property that the flow out of the node exceeds
the flow into the node. The inverse case is a sink node or sink, where the flow into
the node exceeds the flow out of node. An intermediate node or transshipment node
has the property that flow in equals flow out.

The considered network admits flow, if there are such values xe ≥ 0, ∀e ∈ E ,
which satisfy the following conditions:

∑
e∈E−(v)

xe − ∑
e∈E+(v)

xe = dv, ∀v ∈V, (13.1)

0 ≤ xe ≤ ue, ∀e ∈ E, (13.2)

where E−(v) = {(v,z) |(v,z) ∈ E}, E+(v) = {(z,v) |(z,v) ∈ E}.
The function x, defined on E and satisfying conditions (13.1)–(13.2), is called the

feasible flow in a network. The value xe is the quantity of flow on arc e. Condition
(13.1) is the flow conservation condition and condition (13.2) is the condition of
flow feasibility.

In [14], it is proved that in order for the feasible flow to exist in network N it is
necessary and sufficient that for every set of vertices A ⊆V the following conditions
are true:

dA ≤ u(A,A),

dV = 0,

where dA = ∑v∈A dv; A =V \A; u(Z,Y) = ∑z∈Z ∑y∈Y u(z,y), ∀Z,Y ⊆V .
In the case when instead of condition (13.2) the following condition holds:

u′e ≤ xe ≤ u′′e , ∀e ∈ E,

where u′e, u′′e ≥ 0 are lower and upper capacities of arc e, respectively, then in order
for the feasible flow to exist in such a network it is necessary and sufficient that for
every set of vertices A ⊆V the following conditions are true:

dA ≤ u′′
(A,A)

− u′
(A,A)

,

dV = 0.

For the first time this result was proved by Hoffman in [29]. In [14], it is shown
that it can be easily obtained from the previous affirmation.
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If there are no restrictions on arc capacities, i.e. u′′e =+∞, u′e =−∞, ∀e ∈ E , then
in order for the feasible flow to exist in such a network it is necessary and sufficient
that the following condition holds:

dV = 0.

13.2.1.2 Multicommodity Flow

We consider the following network N = (V,E,K,u,d), where V is a set of vertices,
E is a set of arcs, K = {1,2, . . . ,q} is a set of commodities, u: E → R+ is a capacity
function, d: V ×K → R is a demand-supply function. A flow x assigns to every
arc e ∈ E for each commodity k ∈ K a flow xk

e ≥ 0 such that the following flow
conservation constraints are satisfied:

∑
e∈E−(v)

xk
e − ∑

e∈E+(v)

xk
e = dk

v , ∀v ∈V, ∀k ∈ K. (13.3)

The multicommodity flow x is called feasible if it obeys the following capacity
constraints:

∑
k∈K

xk
e ≤ ue, ∀e ∈ E. (13.4)

The value xk
e is the quantity of the flow of commodity k on the arc e. In fact, the

considered above single-commodity flow is the multicommodity flow with q = 1.
In order for the feasible multicommodity flow to exist it is required that

∑v∈V dk
v=0, ∀k ∈ K. Nodes v ∈ V with dk

v > 0, k ∈ K, are called sources for
commodity k, nodes v ∈ V with dk

v < 0, k ∈ K, are called sinks for commodity k
and nodes v ∈V with dk

v = 0, k ∈ K, are called intermediate nodes for commodity k.

13.2.2 The Maximum Flow Problem

Let us consider the single-commodity maximum flow problem on a network with
only one source s and one sink t. In the case of many sources and sinks, the
maximum flow problem can be reduced to the standard one by introducing one
additional artificial source and one additional artificial sink as well as arcs leading
from the new source to initial sources and from initial sinks to the new sink. The
capacities of arcs connecting the artificial source with the initial sources are bounded
by the supplies of these sources; the capacities of arcs connecting the initial sinks
with the artificial sink are bounded by the demands of these sinks.

Let us consider the flow x ≥ 0 which satisfies condition (13.2) and the following
conditions:

∑
e∈E−(v)

xe − ∑
e∈E+(v)

xe =

⎧
⎨

⎩

h, v = s,
0, v 	= s, t,
−h, v = t.

(13.5)
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The object of the maximum flow problem is to send a maximum amount of flow
from the source to the sink such that arc capacities are not exceeded.

The maximum flow problem is formulated as follows:

to maximize the objective function

F = h

subject to (13.2), (13.5).

In the following, we introduce a notion of the network cutset, which separates s
from t and is defined by every set R ⊆ V such that s ∈ R, t /∈ R. So, if s ∈ R, t /∈ R,
then the network cutset separating s from t is a set of arcs (R,R) = {(v,z) ∈ E|v ∈
R,z ∈ R}. The quantity u(R,R) = ∑v∈R ∑z∈R u(v,z) is called the capacity of the cutset

(R,R). The cutset, which has the minimum capacity, is called the minimum cutset.
The most important result related to the maximum flow in a network is

formulated by Ford and Fulkerson in [21] and consists in the fact that for every
network the maximum value of a flow from s to t is equal to the minimum capacity
of a cutset separating s and t.

We refer to a path from s to t as an augmenting path for the flow x if x < u for all
its forward arcs and x > 0 for all its backward arcs. We say that arc (v,z) is saturated
with flow x if x(v,z) = u(v,z), and we say that arc (v,z) is free from flow x if x(v,z) = 0.

Using these definitions and the Ford–Fulkerson theorem about the maximum
flow and the minimum cutset the following affirmations can be obtained.

The flow x is maximum if and only if there is no augmenting path for the flow x.
The cutset (R,R) is minimum if and only if every maximum flow x saturates all

arcs of the cutset (R,R) and leaves free all arcs that belong to (R,R).
The Ford–Fulkerson theorem and these affirmations lead to a simple and effective

algorithm for finding the maximum flow, which is named the Ford–Fulkerson
algorithm. This algorithm is proposed and argued by Ford and Fulkerson in [21].
To guarantee the end of the process it is required that arc capacities are integer. This
assumption is not essential from the computational point of view, because in the case
of rational capacities the problem can be reduced to the initial one by introducing a
new quantity such that all existing fractions are its integral multiplies.

13.2.3 The Minimum Cost Flow Problem

13.2.3.1 The Linear Case

The minimum cost flow problem is the problem of sending flows in a network from
supply nodes to demand nodes at minimum total cost such that arc capacities are
not exceeded. The linear minimum cost flow problem consists in finding a feasible
flow, satisfying (13.1)–(13.2), that minimizes the following objective function:

F(x) = ∑
e∈E

cexe,

where c: E → R+ is a cost function.
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There are different approaches for solving this problem. One of the most
propagated methods is the potential method for constructing an optimal flow in the
case when the initial flow is known and its base graph, i.e. a partial graph on arcs of
which there is a positive feasible flow, is a connected graph. If the last condition is
not true, the perturbation method can be applied. The following affirmation, proved
in [14], justifies the potential method.

The flow x is an optimal one if and only if for every vertex v ∈ V there exists a
number Pv such that

Pz −Pv ≤ c(v,z), if x(v,z) = 0;

Pz −Pv = c(v,z), if 0 < x(v,z) < u(v,z);

Pz −Pv ≥ c(v,z), if x(v,z) = u(v,z),

where z ∈ V , (v,z) ∈ E . The numbers Pv may be considered non-negative and are
called potentials or node numbers.

If ce, ue, dv, ∀e∈E , ∀v∈V , are integer or real numbers, then the potential method
is a finite method, i.e. the solution of the problem using this method can be obtained
after a finite number of steps. Besides that, if the initial flow is integer-valued, then
the optimal flow will be also integer-valued.

13.2.3.2 The Non-linear Case

The nonlinear minimum cost flow problem is a problem of determining a feasible
flow, that satisfies (13.1)–(13.2) and minimizes the following objective function:

F(x) = ∑
e∈E

ϕe(xe),

where ϕ : E ×R+ → R+ is a nonlinear cost function.
Let us consider that the cost functions ϕe(xe), ∀e ∈ E , are convex downwards

functions, i.e. for arbitrary nonnegative quantities x(1)e , x(2)e the following inequality
is true:

ϕe

(
λ x(1)e +(1−λ )x(2)e

)
≤ λ ϕe

(
x(1)e

)
+(1−λ )ϕe

(
x(2)e

)
, 0 ≤ λ ≤ 1.

We denote by ϕ+
e (xe) the right derivative of the function ϕe(xe) and by ϕ−

e (xe) the
left derivative of the function ϕe(xe).

In [14] it is proved that the flow x is an optimal flow in the network without
restrictions on arc capacities if and only if for every vertex v ∈ V there exists a
number Pv such that

Pz −Pv ≤ ϕ+
(v,z)(x(v,z)), if x(v,z) = 0;

ϕ−
(v,z)(x(v,z))≤ Pz −Pv ≤ ϕ+

(v,z)(x(v,z)), if x(v,z) > 0,

where z ∈V , (v,z) ∈ E .
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In the case when the functions ϕ(v,z)(x(v,z)) are everywhere differentiable, i.e. if

ϕ+
(v,z)(x(v,z)) = ϕ−

(v,z)(x(v,z)) = ϕ ′
(v,z)(x(v,z)),

and there are no restrictions on arc capacities, the flow x is an optimal one if and
only if for every vertex v ∈V there exists a number Pv such that

Pz −Pv ≤ ϕ ′
(v,z)(x(v,z)), if x(v,z) = 0;

Pz −Pv = ϕ ′
(v,z)(x(v,z)), if x(v,z) > 0,

where z ∈V , (v,z) ∈ E .
If the functions ϕ(v,z)(x(v,z)) are differentiable functions and there exist restric-

tions (13.2) on arc capacities, the flow x is an optimal one if and only if for every
vertex v ∈V there exists a number Pv such that

Pz −Pv ≤ ϕ ′
(v,z)(x(v,z)), if x(v,z) = 0;

Pz −Pv = ϕ ′
(v,z)(x(v,z)), if 0 < x(v,z) < u(v,z);

Pz −Pv ≥ ϕ ′
(v,z)(x(v,z)), if x(v,z) = u(v,z),

where z ∈V , (v,z) ∈ E .
In the case when the functions ϕ(v,z)(x(v,z)) are non-differentiable, the flow x is an

optimal flow in the network with restrictions (13.2) on arc capacities if and only if
for every vertex v ∈V there exists a number Pv and for each saturated arc (v,z) ∈ E
(for which x(v,z) = u(v,z)) there exists a nonnegative arc number γ(v,z), such that

Pz −Pv ≤ ϕ+
(v,z)(x(v,z)), if x(v,z) = 0;

ϕ−
(v,z)(x(v,z))≤ Pz −Pv ≤ ϕ+

(v,z)(x(v,z)),0 < x(v,z) < u(v,z);

ϕ−
(v,z)(x(v,z))+ γ(v,z) ≤ Pz −Pv ≤ ϕ+

(v,z)(x(v,z))+ γ(v,z),x(v,z) = u(v,z),

where z ∈V .
We’d like to mention that if the functions ϕe(xe), ∀e ∈ E , are not assumed to be

convex downwards, then in the considered above cases we can speak about only the
local extremum.

To solve the non-linear minimum cost flow problem the potential method can
be used, which generalizes the potential method for the linear minimum cost flow
problem. To apply this method we consider that the base graph of the initial flow
and every intermediary flow is a connected graph. If this condition is not true, we
apply the perturbation method.
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13.2.4 The Minimum Cost Multicommodity Flow Problem

13.2.4.1 The Continuously Differentiable and Convex Objective Function

The minimum cost multicommodity flow problem is formulated as follows:
to minimize the objective function

F(x) = ∑
e∈E

ϕe(x
1
e ,x

2
e , . . . ,x

q
e), (13.6)

subject to (13.3)–(13.4),

where ϕ : E ×Rq
+ → R+ is a cost function.

We consider that functions ϕe(x) from (13.6) are convex downwards with regard
to vector x = (x1

e ,x
2
e , . . . ,x

q
e) ≥ 0, i.e. for every 0 ≤ λ ≤ 1 the following inequality

is true:

ϕe(λx(1) + (1−λ )x(2))≤ λ ϕe(x
(1))+ (1−λ )ϕe(x

(2)),

where x(1) ≥ 0, x(2) ≥ 0. Moreover, let us consider that these functions are
continuously differentiable. We denote by ϕ

′(k)
e (x) the partial derivative of the

function ϕe(x) by the k-th component of the vector x= (x1
e ,x

2
e , . . . ,x

q
e).

In [14], it is proved that the multicommodity flow x = (x1
e ,x

2
e , . . . ,x

q
e) is an

optimal flow if and only if for every vertex v ∈V there exists a vector of potentials
Pv = (P1

v ,P
2
v , . . . ,P

q
v ) and for every arc (v,z) ∈ E , for which ∑q

k=1 xk
(v,z) = u(v,z), there

exists an arc number γ(v,z) ≥ 0, such that

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z))+ γ(v,z), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) = u(v,z);

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z))+ γ(v,z), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) = u(v,z), (13.7)

where z ∈V , k ∈ K.
If we assume that u(v,z) = ∞, then conditions (13.7) are reduced to the following

conditions:

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) = 0,

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) > 0.
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13.2.4.2 The Separable Objective Function

In many practical problems, the objective function has the following form:

F(x) = ∑
k∈K

∑
e∈E

ϕk
e (x

k
e), (13.8)

where ϕk
e : R+ → R+ is a cost function of commodity k ∈ K for arc e ∈ E .

We consider that functions ϕk
e (x

k
e) from (13.8) are convex downwards if xk

e ≥ 0
and are continuous in xk

e = 0. By ϕ−k
e (xk

e) and ϕ+k
e (xk

e) we denote the left and the
right derivatives of the function ϕk

e (x
k
e), respectively.

In [14] it is proved that the multicommodity flow x=(x1
e ,x

2
e , . . . ,x

q
e) is an optimal

one if and only if for every vertex v ∈ V there exists a vector of potentials Pv =
(P1

v ,P
2
v , . . . ,P

q
v ) and for every arc (v,z)∈ E , for which ∑q

k=1 xk
(v,z) = u(v,z), there exists

an arc number γ(v,z) ≥ 0, such that

Pk
z −Pk

v ≤ ϕ+k
(v,z)(x

k
(v,z)), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) < u(v,z);

ϕ−k
(v,z)(x

k
(v,z))≤ Pk

z −Pk
v ≤ ϕ+k

(v,z)(x
k
(v,z)), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v ≤ ϕ+k
(v,z)(x

k
(v,z))+ γ(v,z), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) = u(v,z);

ϕ−k
(v,z)(x

k
(v,z))+ γ(v,z) ≤ Pk

z −Pk
v ≤ ϕ+k

(v,z)(x
k
(v,z))+ γ(v,z),

if xk
(v,z) > 0, ∑q

k=1 xk
(v,z) = u(v,z),

where z ∈V , k ∈ K.
To solve the minimum cost multicommodity flow problem we can apply the

potential method, the linearization method, the decomposition method and some
other methods [14].

13.3 Optimal Single-Commodity Flow Problems on Dynamic
Networks and Methods for their Solving

In this section, we consider the minimum cost flow problem and the maximum flow
problem on dynamic networks. For the minimum cost flow problem we assume
that demand–supply and capacity functions depend on time, and cost functions,



13 Optimal Flows in Dynamic Networks and Algorithms for their Finding 373

defined on arcs, are nonlinear and depend both on time and on flow. The maximum
flow problem is considered on dynamic networks with time-varying capacities of
arcs. We also study a dynamic model with transit time functions that depend on
the amount of flow and the entering time-moment of flow in the arc. Methods and
algorithms for solving the formulated problems are proposed.

13.3.1 The Minimum Cost Dynamic Flow Problem

A dynamic network N = (V,E,τ,d,u,ϕ) is determined by directed graph G= (V,E)
with set of vertices V , |V | = n, and set of arcs E , |E| = m, transit time function
τ: E → R+, demand-supply function d: V ×T → R, capacity function u: E ×T →
R+, and cost function ϕ : E×R+×T → R+. We consider the discrete time model, in
which all times are integral and bounded by horizon T . The time horizon is the time
until which the flow can travel in the network and it defines the set T = {0,1, . . . ,T}
of the considered time moments. Time is measured in discrete steps, so that if one
unit of flow leaves vertex z at time t on arc e = (z,v), one unit of flow arrives at
vertex v at time t + τe, where τe is the transit time on arc e. The continuous flow
model formulations can be found in [15, 16, 18].

In order for the flow to exist it is required that ∑t∈T ∑v∈V dv(t) = 0. If for an
arbitrary node v ∈ V at a moment of time t ∈ T the condition dv(t) > 0 holds, then
this node v at the time-moment t is treated as a source. If at a moment of time t ∈ T
the condition dv(t)< 0 holds, then the node v at the time-moment t is regarded as a
sink. In the case dv(t) = 0 at a moment of time t ∈ T , the node v at the time-moment
t is considered as an intermediate node.

Without losing generality we consider that the set of vertices V is divided into
three disjoint subsets V+,V−,V∗, such that:

V+ consists of nodes v ∈V , for which dv(t)≥ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dv(t0)> 0;

V− consists of nodes v ∈V , for which dv(t)≤ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dv(t0)< 0;

V∗ consists of nodes v ∈V , for which dv(t) = 0 for every t ∈ T .
So, V+ is a set of sources, V− is a set of sinks and V∗ is a set of intermediate nodes

of the network N.
A feasible dynamic flow in network N is a function x: E ×T → R+ that satisfies

the following conditions:

∑
e∈E−(v)

xe(t)− ∑
e∈E+(v)
t−τe≥0

xe(t − τe) = dv(t), ∀ t ∈ T, ∀v ∈V ; (13.9)

0 ≤ xe(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.10)



374 M. Fonoberova

xe(t) = 0, ∀e ∈ E, t = T − τe + 1,T , (13.11)

where E−(v) = {(v,z) |(v,z) ∈ E}, E+(v) = {(z,v) |(z,v) ∈ E}.
Here the function x defines the value xe(t) of flow entering arc e at time t.

The flow does not enter arc e at time t if it has to leave the arc after time T ;
this is ensured by condition (13.11). Restrictions (13.10) are capacity constraints.
Conditions (13.9) represent flow conservation constraints.

To model transit costs, which may change over time, we define the cost function
ϕe(xe(t), t) with the meaning that flow of value ρ = xe(t) entering arc e at time t will
incur a transit cost of ϕe(ρ , t). It is assumed that ϕe(0, t) = 0 for all e ∈ E and t ∈ T .

The total cost of the dynamic flow x in the network N is defined as follows:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t). (13.12)

The minimum cost dynamic flow problem consists in finding a feasible dynamic
flow that minimizes the objective function (13.12).

13.3.2 The Method for Solving the Minimum Cost Dynamic
Flow Problem

We propose an approach based on the reduction of the dynamic problem to a
corresponding static problem to solve the formulated above problem. We show
that the minimum cost dynamic flow problem on network N = (V,E,τ,d,u,ϕ) can
be reduced to a minimum cost static flow problem on an auxiliary time-expanded
network NT = (V T,ET,dT,uT,ϕT). The advantage of such an approach is that it
turns the problem of determining an optimal flow over time into a classical network
flow problem.

The essence of the time-expanded network is that it contains a copy of the vertex
set of the dynamic network for each moment of time t ∈ T , and the transit times
and flows are implicit in arcs linking those copies. The network NT is defined as
follows:

1. V T: = {v(t) |v ∈V, t ∈ T};

2. ET: = {e(t) = (v(t),z(t + τe)) |e ∈ E, 0 ≤ t ≤ T − τe};

3. dv(t)
T: = dv(t) for v(t) ∈V T;

4. ue(t)
T: = ue(t) for e(t) ∈ ET;

5. ϕe(t)
T(xe(t)

T): = ϕe(xe(t), t) for e(t) ∈ ET.
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Fig. 13.1 The dynamic
network N

e1 e3

e2

v2

v1 v3

Fig. 13.2 The time-expanded
network NT

v1(0) v1(1) v1(2) v1(3)

v2(0) v2(1) v2(2) v2(3)

v3(0) v3(1) v3(2) v3(3)

t = 0 t = 1 t = 2 t = 3

In the following, we construct the time-expanded network NT for the dynamic
network N given in Fig. 13.1. The set of time moments is T = {0,1,2,3}. The transit
times on each arc are as follows: τe1 = 1, τe2 = 1, τe3 = 2. The capacity,
demand–supply and cost functions are considered to be given. The constructed time-
expanded network is presented in Fig. 13.2.

The correspondence between feasible flows in the dynamic network N and
feasible flows in the time-expanded network NT is stated in the following way. Let
xe(t) be a flow in the dynamic network N, then the function xT defined as follows:

xe(t)
T = xe(t), ∀e(t) ∈ ET, (13.13)

represents a flow in the time-expanded network NT.

Lemma 13.1. The correspondence (13.13) is a bijection from the set of feasible
flows in the dynamic network N onto the set of feasible flows in the time-expanded
network NT.

Proof. It is obvious that the correspondence (13.13) is a bijection from the set of
T -horizon functions in the dynamic network N onto the set of functions in the time-
expanded network NT. In the following we have to show that each dynamic flow
in the dynamic network N is put into the correspondence with a static flow in the
time-expanded network NT and vice-versa.
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Let xe(t) be a dynamic flow in N, and let xe(t)
T be a corresponding function in

NT. Let’s prove that xe(t)
T satisfies the conservation constraints in the static network

NT. Let v ∈V be an arbitrary vertex in N and t, 0 ≤ t ≤ T −τe, an arbitrary moment
of time:

dv(t)
(i)
= ∑

e∈E−(v)
xe(t)− ∑

e∈E+(v)
t−τe≥0

xe(t − τe)

= ∑
e(t)∈E−(v(t))

xe(t)
T − ∑

e(t−τe)∈E+(v(t))

xe(t−τe)
T (ii)
= dv(t)

T. (13.14)

Note that according to the definition of the time-expanded network the set of arcs
{e(t − τe)|e(t − τe) ∈ E+(v(t))} consists of all arcs that enter v(t), while the set of
arcs {e(t)|e(t) ∈ E−(v(t))} consists of all arcs that originate from v(t). Therefore,
all necessary conditions are satisfied for each vertex v(t) ∈ V T. Hence, xe(t)

T is a
flow in the time-expanded network NT.

Let xe(t)
T be a static flow in the time-expanded network NT, and let xe(t) be a

corresponding function in the dynamic network N. Let v(t) ∈ V T be an arbitrary
vertex in NT. The conservation constraints for this vertex in the static network are
expressed by equality (ii) from (13.14), which holds for all v(t) ∈V T at all times t,
0 ≤ t ≤ T − τe. Therefore, equality (i) holds for all v ∈ V at all moments of time t,
0 ≤ t ≤ T − τe. In such a way xe(t) is a flow in the dynamic network N.

It is easy to verify that a feasible flow in the dynamic network N is a feasible flow
in the time-expanded network NT and vice-versa. Indeed,

0 ≤ xe(t)
T = xe(t)≤ ue(t) = ue(t)

T.

The lemma is proved. ��
Theorem 13.1. If x is a flow in the dynamic network N and xT is a corresponding
flow in the time-expanded network NT, then

F(x) = FT(xT),

where

FT(xT) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T)

is the total cost of the static flow xT in the time-expanded network NT.
Moreover, for each minimum cost flow x∗ in the dynamic network N there is a

corresponding minimum cost flow x∗T in the static network NT such that

F(x∗) = FT(x∗T)

and vice-versa.
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Proof. Let x : E ×T → R+ be an arbitrary dynamic flow in the dynamic network N.
Then according to Lemma 13.1 the unique flow xT in NT corresponds to the flow x
in N, and therefore we have:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T) = FT(xT).

So, the first part of the theorem is proved.
To prove the second part of the theorem we again use Lemma 13.1. Let x∗ :

E×T →R+ be the optimal dynamic flow in N and x∗T be the corresponding optimal
flow in NT. Then

FT(x∗T) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(x∗e(t)

T) = ∑
t∈T

∑
e∈E

ϕe(x
∗
e(t), t) = F(x∗).

The converse proposition is proved in an analogous way. ��
The following algorithm for solving the minimum cost dynamic flow problem

can be proposed.

1. To build the time-expanded network NT for the dynamic network N.
2. To solve the classical minimum cost flow problem on the static network NT [1,5,

14, 25, 26, 31, 46].
3. To reconstruct the solution of the static problem on the network NT to the

dynamic problem on the network N.

Building the time-expanded network and reconstructing the solution of the
minimum cost static flow problem to the dynamic one has complexity O(nT +mT ).
The complexity of step 2 depends on the complexity of the algorithm used for the
minimum cost flow problem on static networks. If such an algorithm has complexity
O( f (n′,m′)), where n′ is a number of vertices and m′ is a number of arcs in the
network, then the complexity of solving the minimum cost flow problem on the
time-expanded network employing the same algorithm is O( f (nT,mT )).

Some specific algorithms are proposed in [37] to minimize the size of the
auxiliary static network. In the case of uncapacitated dynamic networks with cost
functions that are concave with regard to flow value and do not change over time,
the problem can be reduced to the minimum cost flow problem on a static network
of equal size, not the time-expanded network.

13.3.3 The Dynamic Model with Flow Storage at Nodes

The previous mathematical model can be extended for the case with flow storage
at nodes if we associate a transit time τv to each node v ∈ V which means that the
flow passage through this node takes τv units of time. If in addition we associate
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the capacity function uv(t) and the cost function ϕv(xv(t), t) to each node v, a
more general model can be obtained. In this case, the problem can be reduced to
the previous one by simple transformation of the network where each node v is
changed by a couple of vertices v′ and v′′ connected with directed arc ev = (v′,v′′).
Here, v′ preserves all entering arcs and v′′ preserves all leaving arcs of the previous
network. The transit time τev = τv, the cost function ϕev(xev(t), t) = ϕv(xv(t), t) and
the capacity function uev(t) = uv(t) are associated to arc ev.

An important particular case of the minimum cost dynamic flow problem is the
one when all amount of flow is dumped into the network from sources v ∈V+ at the
time-moment t = 0 and it arrives at sinks v ∈ V− at the time-moment t = T . This
means that the supply–demand function d : V ×T → R satisfies the conditions:

(a) dv(0)> 0, dv(t) = 0, t = 1,2, . . . ,T , for v ∈V+;

(b) dv(T )< 0, dv(t) = 0, t = 0,1,2, . . . ,T − 1, for v ∈V−.

So, let us consider the minimum cost flow problem on the dynamic network with
flow storage at nodes and integral constant demand–supply functions. Let be given
a dynamic network N = (V,E,τ,d,u,ϕ), where the demand–supply function d :
V → R does not depend on time. Without losing generality, we assume that no arcs
enter sources or exit sinks. In order for a flow to exist supply must equal demand:
∑v∈V dv = 0.

The mathematical model of the minimum cost flow problem on this dynamic
network is the following:

∑
e∈E−(v)

T

∑
t=0

xe(t)− ∑
e∈E+(v)

T

∑
t=τe

xe(t − τe) = dv, ∀v ∈V ; (13.15)

∑
e∈E−(v)

θ

∑
t=0

xe(t)− ∑
e∈E+(v)

θ

∑
t=τe

xe(t − τe)≤ 0, ∀v ∈V∗, ∀θ ∈ T ; (13.16)

0 ≤ xe(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.17)

xe(t) = 0, ∀e ∈ E, t = T − τe + 1,T . (13.18)

Condition (13.18) ensures that there is no flow in the network after time horizon
T . Conditions (13.17) are capacity constraints. As flow travels through the network,
unlimited flow storage at the nodes is allowed, but any deficit is prohibited by
constraint (13.16). Finally, all demands must be met, flow must not remain in the
network after time T , and each source must not exceed its supply. This is ensured
by constraint (13.15).
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As above we seek for a feasible dynamic flow x that minimizes the total cost:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t).

We’d like to mention that the more general model can be obtained if we define
the cost function as also dependent on the flow storage at nodes. In this case, the
problem can be solved by using the similar approach.

To solve the formulated above minimum cost dynamic flow problem we use
the modified time-expanded network method. The auxiliary static network NT is
constructed as follows:

1. V T := {v(t)|v ∈V, t ∈ T};

2. V T
+ := {v(0)|v ∈V+} and V T− := {v(T )|v ∈V−};

3. ET := {(v(t),z(t + τe)) | e = (v,z) ∈ E, 0 ≤ t ≤ T − τe}∪
{v(t),v(t + 1) | v ∈V, 0 ≤ t < T};

4. dv(t)
T := dv for v(t) ∈V T

+ ∪V T− ; otherwise dv(t)
T := 0;

5. u(v(t),z(t+τ(v,z)))
T: = u(v,z)(t) for (v(t),z(t + τ(v,z))) ∈ ET;

u(v(t),v(t+1))
T: = ∞ for (v(t),v(t + 1)) ∈ ET;

6. ϕ(v(t),z(t+τ(v,z)))
T(x(v(t),z(t+τ(v,z)))

T): = ϕ(v,z)(x(v,z)(t), t)

for (v(t),z(t + τ(v,z))) ∈ ET;

ϕ(v(t),v(t+1))
T(x(v(t),v(t+1))

T): = 0 for (v(t),v(t + 1)) ∈ ET.

If the flow correspondence is the following: xe(t)
T := xe(t), where x(v(t),v(t+1))

T

in NT corresponds to the flow in N stored at node v at period of time from t to t +1,
the minimum cost flow problem on dynamic networks can be solved by solving the
minimum cost static flow problem on the time-expanded network.

13.3.4 The Minimum Cost Dynamic Flow Problems
with Different Types of Cost Functions on Arcs
and some Generalizations

If the cost function ϕe(xe(t), t) is linear with regard to xe(t), then the cost function
of the time-expanded network is linear. In this case, we can apply well-established
methods for minimum cost flow problems, including linear programming algorithms
[28], combinatorial algorithms, as well as other developments, like [24].

If the cost function ϕe(xe(t), t) is convex with regard to xe(t), then the cost func-
tion of the time-expanded network is convex. To solve the obtained static problem
we can apply methods from convex programming as well as the specialization of
such methods for the minimum cost flow problem.
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If there is exactly one source, and the cost function ϕe(xe(t), t) is concave with
regard to xe(t), then the cost function of the time-expanded network is concave.
If the dynamic network is acyclic, then the time-expanded network is acyclic
and finite [39, 40]. Therefore we can solve the static problem with polynomial
algorithms for the minimum cost flow problem on acyclic networks with concave
cost functions [36].

The same reasoning to solve the minimum cost dynamic flow problem can be
held in the case when, instead of condition (13.10) in the definition of the feasible
dynamic flow, the following condition takes place:

u′e(t)≤ xe(t)≤ u′′e (t), ∀t ∈ T, ∀e ∈ E,

where u′e(t)≥ 0 and u′′e (t)≥ 0 are lower and upper boundaries of the capacity of arc
e, respectively.

13.3.5 Dynamic Networks with Transit Time Functions
that Depend on Flow and Time

In the above dynamic models, the transit time functions are assumed to be constant
on each arc of the network. In this setting, the time it takes to traverse an arc does not
depend on the current flow situation on the arc and the moment of time. Intuitively,
it is clear that in many applications the amount of time needed to traverse an arc
of the network increases as the arc becomes more congested and it also depends on
the entering time-moment of flow in the arc. If these assumptions are taking into
account, a more realistic model can be obtained. In this model, we assume that the
transit time function τe(xe(t), t) is a non-negative non-decreasing left-continuous
step function with respect to the amount of flow xe(t) for every fixed time-moment
t ∈ T and an arbitrary given arc e ∈ E . We also consider two-side restrictions on arc
capacities u′e(t)≤ xe(t)≤ u′′e (t),∀t ∈ T,∀e∈ E , where u′,u′′: E×T → R+ are lower
and upper capacities, respectively.

It is shown [19] that the minimum cost flow problem on dynamic network with
transit time functions that depend on the amount of flow and the entering time-
moment of flow in the arc can be reduced to a static problem on a special time-
expanded network NT = (V T,ET,dT,u′T,u′′T,ϕT), which is defined as follows:

1. V
T: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T ∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈V
T

and corresponding e(v(t))∈ Ṽ T, t ∈ T \
{T}};
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Fig. 13.3 The transit time function for the fixed moment of time t and the given arc e = (v, z)

5. E
T

:={ep(t)=(e(v(t)),z(t+τ p
e (xe(t), t))) |e(v(t)) ∈ Ṽ T, z(t+τ p

e (xe(t), t)) ∈
V

T
, e=(v,z) ∈ E, 0 ≤ t ≤ T − τ p

e (xe(t), t), p∈Pe,t

- set of numbers of steps of the transit time function τ p
e (xe(t), t)};

6. ET: =E
T ∪ ẼT;

7. dv(t)
T: = dv(t) for v(t) ∈V

T
;

de(v(t))
T: = 0 for e(v(t)) ∈ Ṽ T;

8. u′ ẽ(t)T: = u′e(t) for ẽ(t) ∈ ẼT;

u′′ ẽ(t)T: = u′′e (t) for ẽ(t) ∈ ẼT;

u′ep(t)
T: = xp−1

e (t) for ep(t) ∈ E
T
, where x0

e(t) = u′e(t);

u′′ep(t)
T: = xp

e (t) for ep(t) ∈ E
T
;

9. ϕ ẽ(t)
T(xẽ(t)

T): = ϕe(xe(t), t) for ẽ(t) ∈ ẼT;

ϕep(t)
T(xep(t)

T): = εp for ep(t) ∈ E
T
, where ε1 < ε2 < · · · < ε|Pe,t | are small

numbers.

Let us consider, for example, the transit time function τe = τe(xe(t), t), graphic
of which for the fixed moment of time t and the given arc e is presented in Fig. 13.3.
Here Pe,t = {1,2,3}. So, for the fixed moment of time t on the given arc e the transit
time is equal to 3 if the value of flow belongs to interval [u′e(t),2]; the transit time is
equal to 5 if the value of flow belongs to interval (2,4]; the transit time is equal to 8
if the value of flow belongs to interval (4,u′′e (t)].

In Fig. 13.4 a part of the obtained time-expanded network is presented for the
fixed moment of time t for the given arc e = (v,z) with the transit time function in
Fig. 13.3. Lower and upper capacities of arcs are written above each arc and costs
are written below each arc.
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Fig. 13.4 The part of the
constructed time-expanded
network NT for the fixed
moment of time t for the arc
e = (v, z)

( ) (

The solution of the dynamic problem can be found on the basis of the following
results.

Lemma 13.2. Let xT: ET → R+ be a flow in the static network NT. Then the
function x: E ×T → R+ defined as follows:

xe(t) = xẽ(t)
T = xep(t)

T

for e = (v,z) ∈ E, ẽ(t) = (v(t),e(v(t))) ∈ ẼT,

ep(t) = (e(v(t)),z(t + τ p
e (xe(t), t))) ∈ E

T
,

p ∈ Pe,t is such that xẽ(t)
T ∈

(
xp−1

e (t),xp
e (t)

]
, t ∈ T,

represents a flow in the dynamic network N.
Let x: E × T → R+ be a flow in the dynamic network N. Then the function

xT: ET → R+ defined as follows:

xẽ(t)
T = xe(t) for ẽ(t) = (v(t),e(v(t))) ∈ ẼT, e = (v,z) ∈ E, t ∈ T ;

xep(t)
T = xe(t) for such p ∈ Pe,t that xe(t) ∈

(
xp−1

e (t),xp
e (t)

]

and xep(t)
T = 0 for all other p ∈ Pe,t

for ep(t) = (e(v(t)),z(t + τ p
e (xe(t), t))) ∈ E

T
, e = (v,z) ∈ E, t ∈ T,

represents a flow in the static network NT.

Theorem 13.2. If x∗T is a static minimum cost flow in the static network NT,
then the corresponding according to Lemma 13.2 dynamic flow x∗ in the dynamic
network N is also a minimum cost flow and vice-versa.

The proofs of the above lemma and theorem can be obtained by using the
arguments similar to the ones in the proofs of Lemma 13.1 and Theorem 13.1.
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13.3.6 The Maximum Flow Problem on Dynamic Network

Let be given a dynamic network N, determined by a directed graph G = (V,E),
where V is a set of vertices and E is a set of arcs. As above, we consider the discrete
time model, in which all times are integral and bounded by horizon T . The object of
the dynamic problem is to find a maximum flow over time in the network N within
makespan T = {0,1,2, . . . ,T} while respecting the following restrictions. Each arc
e ∈ E has a nonnegative time-varying capacity ue(t) which bounds the amount of
flow allowed on each arc at every moment of time. Moreover, each arc e has an
associated nonnegative transit time τe which determines the amount of time it takes
for flow to travel through the arc.

A feasible dynamic flow in the network N is a function x: E ×T → R+ that
satisfies conditions (13.10)–(13.11) and the following conditions:

∑
e∈E−(v)

xe(t)− ∑
e∈E+(v)
t−τe≥0

xe(t − τe) =

⎧
⎨

⎩

yv(t), v ∈V+,

0, v ∈V∗,
−yv(t), v ∈V−,

∀ t ∈ T, ∀v ∈V ;

yv(t)≥ 0, ∀t ∈ T, ∀v ∈V.

The total value of the dynamic flow x in the network N is defined as follows:

|x|= ∑
t∈T

∑
v∈V+

yv(t).

The maximum dynamic flow problem consists in finding a feasible dynamic flow
that maximizes this objective function.

To solve the considered problem we propose an approach, which is based on the
reduction of the maximum dynamic flow problem to a well studied maximum static
flow problem. We show that our problem on network N can be reduced to a classical
problem on the time-expanded network NT, which is defined in the following way:

1. V T: = {v(t) |v ∈V, t ∈ T};

2. ET: = {(v(t),z(t + τe)) |e = (v,z) ∈ E, 0 ≤ t ≤ T − τe};

3. ue(t)
T: = ue(t) for e(t) ∈ ET;

4. yv(t)
T: = yv(t) for v(t) ∈V T.

The correspondence between feasible flows in the dynamic network N and
feasible flows in the time-expanded network NT is defined by (13.13).

Lemma 13.3. The correspondence (13.13) is a bijection from the set of feasible
flows in the dynamic network N onto the set of feasible flows in the time-expanded
network NT.

Proof. It is easy to see that the correspondence (13.13) is a bijection from the set
of T -horizon functions in the dynamic network N onto the set of functions in the
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time-expanded network NT. In the following, we have to verify that each flow in
the dynamic network N is put into the correspondence with a flow in the time-
expanded network NT and vice-versa. Moreover, we have to show that a feasible
flow in the dynamic network N is a feasible flow in the time-expanded network NT

and vice-versa.
Henceforward, we define

dv(t) =

⎧
⎨

⎩

yv(t), v ∈V+,

0, v ∈V∗,
−yv(t), v ∈V−,

∀t ∈ T, ∀v ∈V,

and continue the proof of the lemma in the way similar to the one for Lemma 13.1.
The lemma is proved. ��

Remark 13.1. The following condition is true:

∑
t∈T

∑
v∈V−

yv(t) = ∑
t∈T

∑
v∈V+

yv(t).

The total value of the static flow in the time-expanded network NT is defined as
follows:

|xT|= ∑
t∈T

∑
v(t)∈V T

+

yv(t)
T.

Theorem 13.3. If x is a flow in the dynamic network N and xT is a corresponding
flow in the time-expanded network NT, then

|x|= |xT|.

Moreover, for each maximum flow x∗ in the dynamic network N there is a
corresponding maximum flow x∗T in the static network NT such that

|x∗|= |x∗T|

and vice-versa.

Proof. Let x : E × T → R+ be an arbitrary dynamic flow in N. Then according to
Lemma 13.3 the unique flow xT in NT corresponds to the flow x in N, and we obtain:

|x|= ∑
t∈T

∑
v∈V+

yv(t) = ∑
t∈T

∑
v(t)∈V T

+

yv(t)
T = |xT|.

So, the first part of the theorem is proved. The second part of the theorem is proved
in the way similar to the one for Theorem 13.1. The theorem is proved. ��

In such a way, the maximum flow problem on dynamic networks can be solved by
applying network flow optimization methods and algorithms for static flows directly
to the time-expanded network. To solve the maximum flow problem on dynamic
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network we have to construct the time-expanded network, after what to solve the
classical maximum flow problem on the static network, using one of the known
algorithms [1,11,13,14,22,27,31,34,43,46,48], and then to reconstruct the solution
of the static problem to the dynamic problem.

13.4 Dynamic Multicommodity Flow Problems and Algorithms
for their Solving

In this section we study dynamic versions of the minimum cost multicommodity
flow problem and the maximum multicommodity flow problem on networks. These
problems are considered on dynamic networks with time-varying capacities of arcs
and transit times on arcs that depend on sort of commodity entering them. For
the minimum cost multicommodity dynamic flow problem we assume that cost
functions, defined on arcs, are nonlinear and depend on time and flow, and demand-
supply functions depend on time. We also consider optimal multicommodity flow
problems on dynamic networks with transit time functions that depend on flow
and time. For solving the considered dynamic problems we propose methods and
algorithms based on reduction of dynamic problems to static ones on an auxiliary
time-expanded network. The algorithm for construction a special reduced time-
expanded network for an acyclic network is also proposed.

13.4.1 The Minimum Cost Multicommodity Flow Problem
on Dynamic Network

We consider a dynamic network N = (V,E,K,τ,d,u,w,ϕ), determined by directed
graph G = (V,E), where V is a set of vertices and E is a set of arcs, set of
commodities K = {1,2, . . . ,q} that must be routed through the same network, transit
time function τ: E ×K → R+, demand-supply function d: V ×K ×T → R, mutual
capacity function u: E ×T → R+, individual capacity function w: E ×K ×T → R+

and cost function ϕ : E ×R+× T → R+. So, τe = (τ1
e ,τ2

e , . . . ,τ
q
e ) is a vector, each

component of which reflects the transit time on arc e ∈ E for commodity k ∈ K.
We consider the discrete time model, where all times are integral and bounded by
horizon T , which defines the set T = {0,1, . . . ,T} of time moments.
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In order for the flow to exist it is required that ∑t∈T ∑v∈V dk
v(t) = 0,∀k ∈ K. As

above without losing generality we consider that for every commodity k ∈ K the set
of vertices V is divided into three disjoint subsets V k

+,V
k−,V k∗ , such that:

V k
+ consists of nodes v ∈V , for which dk

v(t)≥ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dk

v (t0)> 0;
V k− consists of nodes v ∈V , for which dk

v(t)≤ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dk

v (t0)< 0;
V k∗ consists of nodes v ∈V , for which dk

v (t) = 0 for every t ∈ T .
So, V k

+ is a set of sources, V k− is a set of sinks and V k∗ is a set of intermediate
nodes for the commodity k ∈ K in the network N.

A feasible dynamic multicommodity flow in the network N is determined by a
function x: E ×K×T → R+ that satisfies the following conditions:

∑
e∈E−(v)

xk
e(t)− ∑

e∈E+(v)

t−τk
e≥0

xk
e(t − τk

e ) = dk
v(t), ∀t ∈ T, ∀v ∈V, ∀k ∈ K; (13.19)

∑
k∈K

xk
e(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.20)

0 ≤ xk
e(t)≤ wk

e(t), ∀t ∈ T, ∀e ∈ E, ∀k ∈ K; (13.21)

xk
e(t) = 0, ∀e ∈ E, t = T − τk

e + 1,T , ∀k ∈ K. (13.22)

Here, the function x defines the value xk
e(t) of flow of commodity k entering arc

e at moment of time t. Condition (13.22) ensures that the flow of commodity k does
not enter arc e at time t if it has to leave the arc after time horizon T . Individual and
mutual capacity constraints (13.21) and (13.20) are called weak and strong forcing
constraints, respectively. Conditions (13.19) represent flow conservation constraints.

The total cost of the dynamic multicommodity flow x in the network N is defined
as follows:

F(x) = ∑
t∈T

∑
e∈E

ϕe(x
1
e(t),x

2
e(t), . . . ,x

q
e(t), t). (13.23)

The minimum cost dynamic multicommodity flow problem consists in finding
a feasible dynamic multicommodity flow that minimizes the objective function
(13.23).

13.4.2 The Algorithm for Solving the Minimum Cost Dynamic
Multicommodity Flow Problem

To solve the formulated problem we propose an approach based on the reduction
of the dynamic problem to a static problem. We show that the minimum cost
multicommodity flow problem on network N can be reduced to a static problem on
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a special auxiliary network NT. In the case of the minimum cost multicommodity
flow problem on dynamic network with different transit times on an arc for different
commodities the auxiliary time-expanded network NT = (V T,ET,K,dT,uT,wT,ϕT)
is defined in the following way:

1. V
T
: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T ∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T, t ∈
T \ {T}};

5. E
T: = {ek(t) = (e(v(t)),z(t + τk

e )) |e(v(t)) ∈ Ṽ T, z(t + τk
e ) ∈ V

T
, e = (v,z) ∈

E, 0 ≤ t ≤ T − τk
e , k ∈ K};

6. ET: = E
T ∪ ẼT;

7. dk
v(t)

T
: = dk

v (t) for v(t) ∈V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T, k ∈ K;

8. uẽ(t)
T: = ue(t) for ẽ(t) ∈ ẼT;

uek(t)
T: = ∞ for ek(t) ∈ E

T
;

9. wl
ek(t)

T
: =

{
wk

e(t), if l = k for ek(t) ∈ E
T
, l ∈ K;

0, if l 	= k for ek(t) ∈ E
T
, l ∈ K;

wl
ẽ(t)

T
= ∞ for ẽ(t) ∈ ẼT, l ∈ K;

10. ϕ ẽ(t)
T(x1

ẽ(t)
T
,x2

ẽ(t)
T
, . . . ,xq

ẽ(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t)

for ẽ(t) ∈ ẼT;

ϕek(t)
T(x1

ek(t)
T
,x2

ek(t)
T
, . . . ,xq

ek(t)
T
): = 0 for ek(t) ∈ E

T
.

In the following, we construct the time-expanded network NT for the dynamic
network N given in Fig. 13.1 with set of two commodities K = {1,2}, set of
time moments T = {0,1,2,3} and transit times τ1

e1
= 2, τ2

e1
= 1, τ1

e2
= 1, τ2

e2
= 3,

τ1
e3
= 1, τ2

e3
= 2. The mutual capacity, individual capacity, demand–supply, and cost

functions are considered to be known. The constructed time-expanded network NT

is presented in Fig. 13.5.

Lemma 13.4. Let xT: ET×K → R+ be a multicommodity flow in the static network
NT. Then the function x: E ×K ×T → R+ defined in the following way:

xk
e(t) = xk

ek(t)

T
= xk

ẽ(t)
T

for e = (v,z) ∈ E, ek(t) = (e(v(t)),z(t + τk
e )) ∈ E

T
,

ẽ(t) = (v(t),e(v(t))) ∈ ẼT, k ∈ K, t ∈ T,
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Fig. 13.5 The time-expanded network (case of different transit times on an arc for different
commodities)

represents a multicommodity flow in the dynamic network N.
Let x: E ×K × T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET ×K → R+ defined in the following way:

xk
ẽ(t)

T
=xk

e(t) for ẽ(t)=(v(t),e(v(t))) ∈ ẼT, e=(v,z)∈ E, k∈ K, t ∈ T ;

xk
ek(t)

T
= xk

e(t); xl
ek(t)

T
= 0, l 	= k

for ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
, e = (v,z) ∈ E, l,k ∈ K, t ∈ T,

represents a multicommodity flow in the static network NT.

Proof. To prove the first part of the lemma we have to show that conditions
(13.19)–(13.22) for the defined above x in the dynamic network N are true. These
conditions evidently result from the following definition of multicommodity flows
in the static network NT:

∑
e(t)∈E−(v(t))

xk
e(t)

T − ∑
e(t−τk

e )∈E+(v(t))

xk
e(t−τk

e )

T
= dk

v(t)
T
,

∀v(t) ∈V T, ∀k ∈ K; (13.24)
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∑
k∈K

xk
e(t)

T ≤ ue(t)
T, ∀e(t) ∈ ET; (13.25)

0 ≤ xk
e(t)

T ≤ wk
e(t)

T
, ∀e(t) ∈ ET, ∀k ∈ K; (13.26)

xk
e(t)

T
= 0, ∀e(t) ∈ ET, t = T − τk

e + 1,T , ∀k ∈ K, (13.27)

where by v(t) and e(t) we denote v(t) or ṽ(t) and e(t) or ẽ(t), respectively, against
context.

In order to prove the second part of the lemma it is sufficiently to show that
conditions (13.24)–(13.27) hold for the defined above xT. Correctness of these
conditions results from the procedure of constructing the time-expanded network,
the correspondence between flows in static and dynamic networks and the satisfied
conditions (13.19)–(13.22).

The lemma is proved. ��
Theorem 13.4. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.4 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

Proof. Taking into account the correspondence between static and dynamic multi-
commodity flows on the basis of Lemma 13.4, we obtain that costs of the static
multicommodity flow in the time-expanded network NT and the corresponding
dynamic multicommodity flow in the dynamic network N are equal. To solve the
minimum cost multicommodity flow problem on the static time-expanded network
NT, we have to solve the following problem:

FT(xT) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T
(

x1
e(t)

T
,x2

e(t)
T
, . . . ,xq

e(t)
T
)
→ min

subject to (13.24)–(13.27). ��

In the case of the minimum cost multicommodity flow problem on dynamic
network with common transit times on an arc for different commodities the time-
expanded network NT can be constructed more simply:

1. V T: = {v(t) |v ∈V, t ∈ T};

2. ET: = {e(t) = (v(t),z(t +τe)) |v(t) ∈V T, z(t +τe) ∈V T, e = (v,z) ∈ E, 0 ≤ t ≤
T − τe};

3. dk
v(t)

T
: = dk

v(t) for v(t) ∈V T, k ∈ K;

4. ue(t)
T: = ue(t) for e(t) ∈ ET;

5. wk
e(t)

T
: = wk

e(t) for e(t) ∈ ET, k ∈ K;

6. ϕe(t)
T(x1

e(t)
T
,x2

e(t)
T
, . . . ,xq

e(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for e(t) ∈ ET.

The following lemma and theorem can be considered as particular cases of
Lemma 13.4 and Theorem 13.4.
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Lemma 13.5. Let xT: ET×K → R+ be a multicommodity flow in the static network
NT. Then the function x: E ×K ×T → R+ defined as follows:

xk
e(t) = xk

e(t)
T

for e ∈ E, e(t) ∈ ET, k ∈ K, t ∈ T,

represents the multicommodity flow in the dynamic network N.
Let x: E ×K × T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET ×K → R+ defined as follows:

xk
e(t)

T
= xk

e(t) for e(t) ∈ ET, e ∈ E, k ∈ K, t ∈ T,

represents the multicommodity flow in the static network NT.

Theorem 13.5. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.5 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

In such a way, to solve the minimum cost multicommodity flow problem on
dynamic networks we have:

1. To build the time-expanded network NT for the given dynamic network N.
2. To solve the classical minimum cost multicommodity flow problem on the static

network NT [4, 8–10, 14, 15, 44].
3. To reconstruct the solution of the static problem on NT to the dynamic problem

on N.

The complexity of this algorithm depends on the complexity of the algorithm
used for the minimum cost multicommodity flow problem on the static network. If
such an algorithm has complexity O( f (n′,m′)), where n′ is the number of vertices
and m′ is the number of arcs in the network, then the complexity of solving the
minimum cost multicommodity flow problem with different transit times on arcs for
different commodities on the time-expanded network employing the same algorithm
is O( f ((n +m)T,m(k + 1)T )), where n is the number of vertices in the dynamic
network, m is the number of arcs in the dynamic network and k is the number of
commodities.

13.4.3 The Construction of the Time-Expanded Network
for Acyclic Graphs

In this subsection, we consider the minimum cost multicommodity flow problem
on the acyclic dynamic network N = (V,E,K,τ,d,u,w,ϕ) with time horizon T =
+∞ and common transit times on an arc for different commodities. Without losing
generality, we assume that no arcs enter sources or exit sinks. Let T ∗ = max{|L|}=
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Fig. 13.6 The dynamic
network N with five nodes,
and six arcs

v2 v4

v1 v3 v5

Fig. 13.7 The time-expanded
network NT∗

for the dynamic
network N

v1(0) v1(1) v1(2) v1(3)

v2(0) v2(1) v2(2) v2(3)

v3(0) v3(1) v3(2) v3(3)

v4(0) v4(1) v4(2) v4(3)

v5(0) v5(1) v5(2) v5(3)

max{∑e∈L τe}, where L is a directed path in the graph G = (V,E). It is not difficult
to show that xk

e(t) = 0 for ∀e ∈ E , ∀k ∈ K, ∀t ≥ T ∗. This fact allows us to replace the
infinite time horizon with the finite one, by substituting T ∗ for the positive infinity.

In many cases, a big number of nodes is not connected with a directed path both
to a sink and a source. Removing such nodes from the considered network does
not influence the set of flows in this network. These nodes are called irrelevant
to the flow problem. Nodes that are not irrelevant are relevant. The static network
obtained by eliminating the irrelevant nodes and all arcs adjacent to them from the
time-expanded network is called the reduced time-expanded network.

The network in Fig. 13.6 is a dynamic network that conforms to the definition of
the acyclic dynamic network, with V+ = {v1} and V− = {v5}. Let us consider that
all transit times are equal to 1, and accordingly T ∗ = 3.

The time-expanded network built according to the definition is presented in
Fig. 13.7. This network has 20 nodes and 18 arcs.
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Fig. 13.8 The reduced
time-expanded network NrT∗

v1(0) v1(1)

v2(0) v2(1)

v3(0) v3(1) v3(2)

v4(0) v4(1) v4(2)

v5(1) v5(2) v5(3)

t = 0 t = 1 t = 2 t = 3

If we exclude the irrelevant nodes we obtain a smaller static network depicted in
Fig. 13.8 with 13 nodes and 13 arcs.

It is proposed the following algorithm for constructing the reduced network
NrT∗

= (V rT∗
,E rT∗

,drT∗
,urT∗

,wrT∗
,ϕ rT∗

) which is based on the process of elimina-
tion of irrelevant nodes from the time-expanded network:

1. To build the time-expanded network NT∗
for the given dynamic network N.

2. To perform a breadth-first parse of the nodes for each source from the time
expanded-network. The result of this step is the set V−(V T∗

− ) of the nodes that
can be reached from at least a source in V T∗

.
3. To perform a breadth-first parse of the nodes beginning with the sink for each

sink and parsing the arcs in the direction opposite to their normal orientation.
The result of this step is the set V+(V T∗

+ ) of nodes from which at least a sink in
V T∗

can be reached.
4. The reduced network will consist of a subset of nodes V T∗

and arcs from ET∗

determined in the following way:

V rT∗
=V T∗ ∩V−(V T∗

− )∩V+(V
T∗
+ ),

E rT∗
= ET∗ ∩ (V rT∗ ×V rT∗

).

5. drk
v(t)

T∗
: = dk

v(t) for v(t) ∈V rT∗
, k ∈ K.

6. ur
e(t)

T∗
: = ue(t) for e(t) ∈ E rT∗

.
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7. wrk
e(t)

T∗
: = wk

e(t) for e(t) ∈ E rT∗
, k ∈ K.

8. ϕ r
e(t)

T∗
(x1

e(t)
T∗
,x2

e(t)
T∗
, . . . ,xq

e(t)
T∗
): =ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for e(t) ∈ E rT∗

.

The complexity of this algorithm can be estimated to be the same as the
complexity of constructing the time-expanded network. It can be proven by using
the similar approach as in [39] that the reduced network can be used in place of the
time-expanded network.

We’d like to mention that the proposed above approach with some modifica-
tions can be used for constructing the reduced time-expanded network for the
optimal single-commodity dynamic flow problems and the optimal multicommod-
ity dynamic flow problems with different transit times on an arc for different
commodities.

13.4.4 Multicommodity Dynamic Networks with Transit Time
Functions that Depend on Flow and Time

We propose an approach for solving the minimum cost multicommodity dynamic
flow problem with transit time functions that depend on flow and time. This problem
is considered on dynamic networks with time-varying lower and upper capacity
functions, time-varying mutual capacity function and time-varying demand–supply
function. It is assumed that cost functions, defined on arcs, are nonlinear and depend
on flow and time. The transit time function τk

e (x
k
e(t), t) is considered to be a non-

negative non-decreasing left-continuous step function for each commodity k ∈ K.
The method for solving the minimum cost multicommodity dynamic flow

problem with transit time functions that depend on flows and time is based on the
reduction of the dynamic problem to a static problem on an auxiliary time-expanded
network NT = (V T,ET,dT,uT,w′T,w′′T,ϕT) which is defined as follows:

1. V
T: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T ∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T, t ∈
T \ {T}};

5. E
T

: = {ek,p(t)= (e(v(t)),z(t+τk,p
e (xk

e(t), t))) |e(v(t))∈ Ṽ T, z(t+τk,p
e (xk

e(t), t))

∈V
T
,e=(v,z)∈E, 0≤ t ≤ T −τk,p

e (xk
e(t), t), p∈Pk

e,t − set of numbers of steps
of the transit time function τk

e (x
k
e(t), t), k ∈ K};

6. ET: = E
T ∪ ẼT;
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=

Fig. 13.9 The transit time function for commodity 1 for the fixed moment of time t and the given
arc e = (v, z)

7. dk
v(t)

T
: = dk

v (t) for v(t) ∈V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T, k ∈ K;

8. uẽ(t)
T: = ue(t) for ẽ(t) ∈ ẼT;

uek,p(t)
T: = ∞ for ek,p(t) ∈ E

T;

9. w′l
ek,p(t)

T
: =

⎧
⎪⎨

⎪⎩

xk,p−1
e (t), if l = k for ek,p(t) ∈ E

T
, l ∈ K,

where xk,0
e (t) = w

′k
e (t);

0, if l 	= k for ek,p(t) ∈ E
T
, l ∈ K;

w′′l
ek,p(t)

T
: =

{

xk,p
e (t), if l = k for ek,p(t) ∈ E

T
, l ∈ K;

0, if l 	= k for ek,p(t) ∈ E
T
, l ∈ K;

w′l
ẽ(t)

T
=−∞; w′′l

ẽ(t)
T
=+∞ for ẽ(t) ∈ ẼT, l ∈ K;

10. ϕ ẽ(t)
T(x1

ẽ(t)
T
,x2

ẽ(t)
T
, . . . ,xq

ẽ(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for ẽ(t) ∈ ẼT;

ϕek,p(t)
T(x1

ek,p(t)
T
,x2

ek,p(t)
T
, . . . ,xq

ek,p(t)
T
): = εk,p for ek,p(t) ∈ E

T
, where

εk,1 < εk,2 < · · ·< εk,|Pk
e,t | are small numbers.

For example, let us consider the transit time functions for an arc e = (v,z)
at the moment of time t presented in Figs. 13.9 and 13.10, which correspond to
commodities 1 and 2, respectively.

The constructed part of the time-expanded network for the fixed moment of time
t for the arc e = (v,z) is presented in Fig. 13.11.

The following lemma and theorem give us the relationship between flows in
network N and flows in network NT.
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Fig. 13.10 The transit time function for commodity 2 for the fixed moment of time t and the given
arc e = (v, z)

Fig. 13.11 The part of the
constructed time-expanded
network NT for the fixed
moment of time t for the arc
e = (v, z)

Lemma 13.6. Let xT: ET×K → R+ be a multicommodity flow in the static network
NT. Then the function x: E ×K ×T → R+ defined in the following way:

xk
e(t) = xk

ẽ(t)
T
= xk

ek,p(t)
T

for e = (v,z) ∈ E, ẽ(t) = (v(t),e(v(t))) ∈ ẼT,

ek,p(t) = (e(v(t)),z(t + τk,p
e (xk

e(t), t))) ∈ E
T
,

p ∈ Pk
e,t is such that xk

ẽ(t)
T ∈

(
xk,p−1

e (t),xk,p
e (t)

]
, t ∈ T, k ∈ K,

represents a multicommodity flow in the dynamic network N.
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Let x: E ×K × T → R+ be a multicommodity flow in the dynamic network N.
Then the function xT: ET ×K → R+ defined in the following way:

xk
ẽ(t)

T
= xk

e(t)

for ẽ(t) = (v(t),e(v(t))) ∈ ẼT, e = (v,z) ∈ E, k ∈ K, t ∈ T ;

xl
ek,p(t)

T
= 0, l 	= k;

xk
ek,p(t)

T
= xk

e(t) for such p ∈ Pk
e,t that xk

e(t) ∈
(

xk,p−1
e (t),xk,p

e (t)
]
,

xk
ek,p(t)

T
= 0 for all other p ∈ Pk

e,t

for ek,p(t) = (e(v(t)),z(t + τk,p
e (xk

e(t), t))) ∈ E
T
,

e = (v,z) ∈ E, l,k ∈ K, t ∈ T,

represents a multicommodity flow in the static network NT.

Theorem 13.6. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.6 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

13.4.5 The Maximum Multicommodity Dynamic Flow Problem

We show that the proposed time-expanded network method can be used for the
maximum multicommodity dynamic flow problem. The scope of this problem is to
find the maximum flow of a set of commodities within a given time bound through a
network without violating capacity constraints of arcs. As above, time is measured
in discrete steps, the set of time moments is T= {0,1, . . . ,T}.

We consider a network N determined by a directed graph G = (V,E) and a set
of commodities K that must be routed through the same network. Each arc e ∈ E
has a nonnegative time-varying capacity wk

e(t) which bounds the amount of flow
of each commodity k ∈ K allowed on arc e ∈ E at every moment of time t ∈ T.
We also consider that every arc e ∈ E has a nonnegative time-varying capacity for
all commodities, which is known as the mutual capacity ue(t). Moreover, each arc
e ∈ E has an associated nonnegative transit time τk

e which determines the amount of
time it takes for flow of commodity k ∈ K to travel through the arc.

A feasible multicommodity dynamic flow in N is determined by a function x: E×
K ×T→ R+ that satisfies conditions (13.20)–(13.22) and the following conditions:

∑
e∈E−(v)

xk
e(t)− ∑

e∈E+(v)
t−τk

e ≥0

xk
e(t − τk

e ) =

⎧
⎪⎪⎨

⎪⎪⎩

yk
v(t), v ∈V k

+,

0, v ∈V k∗ ,
−yk

v(t), v ∈V k−,
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∀t ∈ T, ∀v ∈V, ∀k ∈ K;

yk
v(t)≥ 0, ∀v ∈V, ∀t ∈ T, ∀k ∈ K.

The total value of the multicommodity dynamic flow x in the network N is
defined as follows:

|x|= ∑
k∈K

∑
t∈T

∑
v∈V k

+

yk
v(t).

The object of the formulated problem is to find a feasible multicommodity dynamic
flow that maximizes this objective function.

To solve the maximum multicommodity dynamic flow problem by its reduction
to a static one we define the time-expanded network NT in a similar way as for
the minimum cost multicommodity dynamic flow problem. The correspondence
between flows in the dynamic network N and the static network NT is also
determined as above.

Using the same reasoning we obtain that if x∗T is a maximum multicommodity
flow in the static network NT, then the corresponding multicommodity flow x∗ in
the dynamic network N is also a maximum one and vice-versa.

In such a way, the maximum multicommodity flow problem on dynamic
networks can be solved by applying network flow optimization techniques for static
flows directly to the expanded network. To solve the maximum multicommodity
flow problem on N we have to build the time-expanded network NT for the given
dynamic network N, after what to solve the classical maximum multicommodity
flow problem on the static network NT, using one of the known algorithms [8–
10, 15, 44] and then to reconstruct the solution of the static problem on NT to the
dynamic problem on N.

13.5 Game-Theoretic Approach for Solving Multiobjective
Multicommodity Flow Problems on Networks

In this section, we consider the game-theoretic formulation of the multiobjective
multicommodity flow problem. If we associate to each commodity a player, we
can regard this problem as a game version of the problem, where players interact
between them and the choices of one player influence the choices of the others.
Each player seeks to optimize his own vector utility function in response to the
actions of the other players and at the same time players are interested to preserve
Nash optimality principle when they interact between them. The game theory fits
perfectly in the realm of such a problem, and an equilibrium or stable operating
point of the system has to be found.
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13.5.1 Pareto–Nash Equilibria for Multiobjective Games

In order to investigate the multiobjective multicommodity flow problem we will use
the game-theoretic concept from [2, 38].

The multiobjective game with q players is denoted by Γ = (X1,X2, . . . ,Xq,
F1,F2, . . . ,Fq), where Xk is a set of strategies of player k, k ∈ {1,2, . . . ,q}, and
Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) is a vector payoff function of player k, k ∈ {1,2, . . . ,q},

defined on the set of situations X = X1 ×X2 ×·· ·×Xq:

Fk : X1 ×X2 ×·· ·×Xq → Rrk , k ∈ {1,2, . . . ,q}.

Each component Fi
k of Fk corresponds to a partial criterion of player k and represents

a real function defined on the set of situations X = X1 ×X2 ×·· ·×Xq:

Fi
k : X1 ×X2 ×·· ·×Xq → R1, i = 1,rk, k ∈ {1,2, . . . ,q}.

In [38], the solution of the multiobjective game Γ = (X1,X2, . . . ,Xq,
F1,F2, . . . ,Fq) is called the Pareto–Nash equilibrium and is defined in the following
way.

Definition 13.1. The situation x∗ = (x∗1,x
∗
2, . . . ,x

∗
q) ∈ X is called the Pareto–Nash

equilibrium for the multiobjective game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) if for
every k ∈ {1,2, . . . ,q} the strategy x∗k represents the Pareto solution for the following
multicriterion problem:

optxk∈Xk → f
k
x∗(xk) = ( f k1

x∗ (xk), f k2
x∗ (xk), . . . , f krk

x∗ (xk)),

where

f ki
x∗(xk) = Fi

k(x
∗
1,x

∗
2, . . . ,x

∗
k−1,xk,x

∗
k+1, . . . ,x

∗
q), i = 1,rk, k ∈ {1,2, . . . ,q}.

This definition generalizes the well-known Nash equilibrium for classical non-
cooperative games (single-objective games) and the Pareto optimum for multi-
criterion problems. If rk = 1, k ∈ {1,2, . . . ,q}, then Γ becomes the classical
noncooperative game, where x∗ represents a Nash equilibrium solution; in the case
q = 1 the game Γ becomes the Pareto multicriterion problem, where x∗ is a Pareto
solution.

In the following, we present the theorem from [38] which represents an extension
of the Nash theorem for the multiobjective version of the game.

Theorem 13.7. Let Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) be a multiobjective game,
where X1,X2, . . . ,Xq are convex compact sets and F1,F2, . . . ,Fq represent continu-
ous vector payoff functions. Moreover, let us assume that for every k ∈ {1,2, . . . ,q}
each component Fi

k(x1,x2, . . . ,xk−1,xk,xk+1, . . . ,xq), i = 1,rk, of the vector function
Fk(x1,x2, . . . ,xk−1,xk,xk+1, . . . ,xq) represents a concave function with respect to xk
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on Xk for fixed x1,x2, . . . ,xk−1,xk+1, . . . ,xq. Then for the multiobjective game Γ =
(X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) there exists the Pareto–Nash equilibrium situation
x∗ = (x∗1,x

∗
2, . . . ,x

∗
q) ∈ X1 ×X2 ×·· ·×Xq.

The proof of Theorem 13.7 in [38] is based on the reduction of the multiobjective
game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) to an auxiliary game Γ = (X1,X2, . . . ,Xq,
f1, f2, . . . , fq) for which Nash theorem from [45] can be applied. In order to reduce
the multiobjective game Γ to an auxiliary game Γ linear convolution criteria for
vector payoff functions are used.

In such a way, if conditions of Theorem 13.7 are satisfied then Pareto–Nash
equilibrium solution for the multiobjective game can be found by using the
following algorithm:

1. Fix an arbitrary set of real numbers α11,α12, . . . ,α1r1 ,α21,α22, . . . ,α2r2 ,
. . . ,αq1,αq2, . . . ,αqrq , which satisfy conditions:

⎧
⎪⎨

⎪⎩

rk

∑
i=1

αki = 1, k ∈ {1,2, . . . ,q};

αki > 0, i = 1,rk, k ∈ {1,2, . . . ,q}.
(13.28)

2. Form the single objective game Γ = (X1,X2, . . . ,Xq, f1, f2, . . . , fq), where

fk(x1,x2, . . . ,xq) =
rk

∑
i=1

αkiF
i
k(x1,x2, . . . ,xq), k ∈ {1,2, . . . ,q}.

3. Find the Nash equilibrium x∗ = (x∗1,x
∗
2, . . . ,x

∗
q) for the noncooperative game Γ =

(X1,X2, . . . ,Xq, f1, f2, . . . , fq) and fix x∗ as the Pareto–Nash equilibrium solution
for the multiobjective game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq).

This algorithm finds only one of the solutions of the multiobjective game
Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq). In order to find all solutions in the
Pareto–Nash sense it is necessary to apply the algorithm for every α11,α12, . . . ,α1r1 ,
α21,α22, . . . ,α2r2 , . . . ,αq1,αq2, . . . ,αqrq , which satisfy condition (13.28), and then
to form the union of all obtained solutions.

13.5.2 The Multiobjective Multicommodity Flow Models

In the following, we formulate the multiobjective multicommodity flow problem
on static and dynamic networks. Such problem consists of shipping a given set of
commodities from their respective sources to their sinks through a network in order
to optimize different criteria so that the total flow going through arcs does not exceed
their capacities.
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13.5.2.1 The Static Model

The aim is to send the flow through the network in order to optimize the vector
utility function Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) for every commodity k ∈ {1,2, . . . ,q}:

Fk : X1 ×X2 ×·· ·×Xq → Rrk ,

Fi
k : X1 ×X2 ×·· ·×Xq → R1, i = 1,rk,

where Xk is a set of flows of commodity k, rk is a number of criteria for commodity k.

13.5.2.2 The Dynamic Model

The purpose is to transport the flow through the network in order to optimize the
vector utility function Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) for every commodity k ∈ {1,2, . . . ,q}:

Fk : (X1 ×T)× (X2×T)×·· ·× (Xq ×T)→ Rrk ,

Fi
k : (X1 ×T)× (X2×T)×·· ·× (Xq ×T)→ R1, i = 1,rk.

where Xk is a set of flows of commodity k, T is a set of considered time moments,
rk is a number of criteria for commodity k.

In the framework of the game theory each commodity is associated with a player.
We consider a general model with q players, each of which wishes to optimize his
own vector utility function Fk, k ∈ {1,2, . . . ,q}, defined on the set of strategies of all
players. Every component Fi

k , i= 1,rk, k∈ {1,2, . . . ,q}, of the vector utility function
Fk of player k corresponds to a partial criterion of player k. The cost of transportation
of a given resource, the time necessary to transport it to its destination as well as the
quality of the transportation play the role of the components of the vector utility
function of a player in the game-theoretic formulation of the problem.

Each player competes in a Nash equilibrium manner so as to optimize his own
criteria in the task of transporting flow from its origins to its destinations. In our
problem each player has several objectives, so we use the Pareto–Nash equilibrium
concept extended to networks. In such a way, players intend to optimize their utility
functions in the sense of Pareto and at the same time players are interested to
preserve Nash optimality principle when they interact between them. So, control
decisions are made by each player according to its own individual performance
objectives and depending on the choices of the other players.

13.5.3 Comments

In real-life problems, users have to make decision concerning routing as well as type
and amount of resources that they wish to transport. Different sets of parameters may
suit the service requirements of a user. However, the performance measures depend
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not only on the user’s choices, but also on the decisions of other connected users,
where this dependence is often described as a function of some network “state.” In
this setting the game paradigm and the Pareto–Nash equilibrium concept become
the natural choice at the user level.

Game-theoretic models are widely employed in the context of flow control,
routing, virtual path bandwidth allocation and pricing in modem networking. Flow
problems in multimedia applications (teleconferencing, digital libraries) over high-
speed broadband networks can serve a good example of this. In a multimedia
network telecommunication companies carrying different traffic types (voice, data,
and video) may share the limited common network resources such as buffers or
transmission lines. These companies may have different objectives of maximizing
packet throughput or minimizing packet blocking probability. A Pareto–Nash
equilibrium may be reached when companies achieve their objectives in such a
way that no company can improve its own performance by unilaterally changing
its traffic load admission and routing strategies.

The problem of providing bandwidth which will be shared by many users [35,42]
is one of the most important problems. As it is typical for games in such a problem
the interaction among the users on their individual strategies has to be imposed. This
can be done using a utility function that depends on the availability of bandwidth
and other factors in the network.

13.6 Conclusions

In this chapter, the minimum cost flow problem and the maximum flow problem
on dynamic networks, that generalize classical optimal flow problems on static
networks, were investigated. The minimum cost flow problem was considered
in the case when demand-supply and capacity functions depend on time and
cost functions on arcs are nonlinear and depend both on time and on flow. The
maximum flow problem was considered on dynamic networks with time-dependent
capacities of arcs. The dynamic model with transit time functions that depend
on the amount of flow and the entering time-moment of flow in the arc was
formulated and studied. The properties of the optimal flows were stated and on
their basis the methods and algorithms for solving the considered optimal dynamic
flow problems were proposed. The time-expanded network method was generalized
for the dynamic versions of the minimum cost multicommodity flow problem
and the maximum multicommodity flow problem on networks. The dynamic
multicommodity problems were studied on networks with time-varying capacities
of arcs and transit times on arcs that depend on sort of commodity entering them.
For the minimum cost multicommodity dynamic flow problem it was assumed that
cost functions, defined on arcs, are nonlinear and depend on time and flow, and
demand-supply functions depend on time. The case when transit time functions
depend on flow and time was also analyzed. The methods and algorithms for solving
the considered optimal dynamic multicommodity flow problems were developed.
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The multiobjective version of the optimal multicommodity flow problem was
considered. Investigation of this problem was effectuated on the basis of the concept
of multiobjective games using the notion of the Pareto–Nash equilibrium.

Acknowledgements I express my gratitude to Dmitrii Lozovanu for close collaboration.
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