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Optimized Design of Large-Scale Social Welfare
Supporting Systems on Complex Networks
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Abstract Our contemporary societies are supported by several systems of high
importance providing large-scale services substantial for citizens everyday life.
Typically, these systems are built or rely on various types of complex networks such
as road networks, railway networks, electricity networks, communication networks
etc. Examples of such systems are a set of emergency medical stations, fire or police
stations covering the area of a state, social or administration infrastructure. The
problem of how to design these systems efficiently, fairly, and reliably is still timely
and it brings along many new research challenges. This book chapter presents a
brief survey of optimization models and approaches applicable to the problem. We
pay special attention to the methods based on the branch and bound principle and
show how their computational properties can be improved. Furthermore, we discuss
how some of these models can be rearranged in order to allow using the existing
solving techniques as approximative methods. The presented numerical experiments
are conducted on realistic data describing the topology of the Slovak road network.
On the one hand, we hope that this chapter can come handy to researchers working
in the area of complex networks, as it presents efficient methods to design public
service systems on the networks. On the other hand, we can picture the benefits
potentially resulting from the knowledge of the network properties and possibly
being utilized in the algorithms design.
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12.1 Introduction to Public Service Systems

The topology of many real-world systems can be described as a network. In some
cases, the system organization and the network topology result from some long-
term evolution processes directed by billions of interactions [15, 28, 39]. In other
cases this is given by human-controlled decision-making activities, supported by
sophisticated optimization methods [1, 18, 42]. In this book chapter, we revise
some of the techniques that can be applied to the problem of designing the public
service systems operating on all sorts of transportation networks. We focus mainly
on road networks, where the typical applications are locating emergency medical
centers, police or fire stations [38, 41] or other types of social and administration
infrastructures [19,27]. Nevertheless, these approaches can also be applied to many
other man-made systems such as railway networks, telecommunication networks
[37], power grid networks or gas networks [34, 40].

The road network is the example of the spatial complex network featuring many
non-trivial topological properties [31]. So far, it is relatively little known how these
properties influence the efficiency of optimization algorithms. For location problems
it is, for example, known that the corresponding solving methods perform much
more efficiently on real-world networks than on their random counterparts [30]. The
explanation is in the spatial structure of the underlying network, which generates
suitable diversity in cost coefficients. This influences the structure of lower and
upper bounds and finally results in shorter computational time.

The road network is a substrate for the public service systems. These systems
provide various kinds of services to inhabitants of a certain geographical area. The
services can include goods delivery, presence of some necessary facilities or they
can be some kind of civil services, such as medical care, fire-fighting or house
maintenance. Contrary to the private service systems, none of the demands listed
above can be ignored. Hereafter, a serviced person or a group of serviced people,
characterized by their demand and located within the same municipality, will be
referred to as a customer. The customer’s demand will be characterized by its
weight. If a customer is a group of people, the weight can be proportional to the
number of the people in the given group.

Even if the serviced population is concentrated in municipalities, the number of
municipalities is usually too large to have a source of the services at each customer’s
location. That is why placing the sources needs to be really thought through. Hereby,
we assume that there is only a finite set of possible service center locations within
the serviced area. Nevertheless, the set can be very large, e.g. it can be composed of
all municipalities. Therefore, if an appropriate number of service center locations is
to be found, a rather large combinatorial problem arises.

When a public service system is designed, two essential types of objectives,
namely the economic efficiency and the fairness, should be taken into account [9].
The economic efficiency can be measured through how much the system and its
operation cost. The costs of a service system usually consist of fixed expenses paid
for opening and operating service centers, and of the cost of transportation related
to the serving the customer [13].
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This scheme applies only if the system provider serves customers at their
locations. However, some systems can provide services only at the service centers.
In this case, a customer has to travel to the service center, and obviously, the
travel cost is not included in the system costs. The servicing costs are often
considered as being proportional to the network distance between the customer and
the service center.

Fairness or welfare in the public systems design is related to the notion
of justice perceived by the customers resulting from the distribution of limited
resources. This topic has been extensively studied, notably in social sciences,
welfare economics, and engineering. The overview of basic concepts of fairness
can be found in the reference [4]. The customer’s welfare is difficult to quantify.
Therefore, one possibility is to convert it into a customer’s discomfort, expressing
the accessibility of a service. The discomfort of an individual customer can be,
for example, estimated by considering the distance or travel time required to get
from the customer’s residence to the nearest service center. When we use this
approach, several possibilities emerge. The discomfort can be expressed directly
as the distance or only as a part of the distance which exceeds a given accepted real
valued threshold Dmax. The simplest option is to utilize the information whether the
distance is longer than Dmax. If the distance is longer or equal to Dmax, then the
customer’s discomfort is considered to be affected.

Next, two extreme cases, the average customer discomfort or the worst case of
customer’s discomfort, can be considered as possible criteria expressing the quality
of the proposed design. In the first case, the estimations of individual discomforts
are summed up, and the resulting design minimizes the total discomfort. The second
criteria (sometimes denoted as Rawlsian criterion) measures the quality of the
design by the discomfort perceived by the worst positioned customer [36]. This
approach can be extended by repeating the minimization for the second, third,
fourth, etc., worst positioned customer. This extension has been studied throughly
in the context of flow networks, where it is known as the max-min fair allocation of
flows [33], however, only little attention has been paid to it in the context of location
problems [10]. Another possibility, known as the proportional fairness, is based on
the minimization of the utility function, which is the sum of logarithms of individual
discomforts [35].

If the system costs and the customer’s welfare are defined, it is necessary to
decide which type of the public service system design should be preferred. Is
it the cost-oriented design or the customer’s welfare-oriented design? The cost-
oriented design searches for the system optimum, minimizing the system costs,
while assuring the desired level of the welfare. The welfare-oriented design, on the
other hand, minimizes the customer’s discomfort subject to a constraint keeping the
system costs under a given limit. Both approaches can be combined with an arbitrary
evaluation criteria for either cost or discomfort.

In Sect. 12.2, we show some basic examples of how to formulate costs and
discomfort mathematically. With each individual case we demonstrate how to build
mathematical models which can be then solved by optimization tools. In Sect.
12.3, as examples of solving methods, we briefly review the available universal
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solvers and exact algorithms to solve the uncapacitated facility location problem.
To conclude, in Sect. 12.4, we describe a case study where we examine the
network of emergency medical service (EMS) centers operating in the Slovak
Republic.

12.2 Modeling Approaches to Designing Public Service Systems

Let us assume that the serviced area consists of the municipalities located at the
nodes of the graph G(N,E), where N is a set of nodes and E is a set of edges.
The municipalities forming the finite set J ⊆ N are considered as customers. The
demand or the number of inhabitants living in the node j ∈ J is denoted as b j.
The service system design problem can be reduced to the task to decide where to
locate the centers within the large finite set I of possible locations, so that the value
of the chosen criterion is minimal.

The shortest path length between the nodes i ∈ N and j ∈ N is denoted as dij,
and the associated travel time as tij. The fixed charge fi is paid to locate the service
center at the node i, whereas the costs to satisfy the j-th customer from the service
center i can be expressed as (edij + gi)b j, where gi are the costs spent to satisfy one
unit of the demanded volume, and e are the travel costs per one unit of volume and
one unit of distance.

Let s( j) be the index of the center which is the closest to the node j, considering
either the time or the distance, and which belongs to the set I1 ⊆ I of nodes where a
service center is located. Then, the total system costs can be expressed as:

∑
i∈I1

fi + ∑
j∈J

(eds( j), j + gs( j))b j. (12.1)

Here, we ask the question: How could we estimate the discomfort of the
customers? Let j be the customer’s location and s( j) be the nearest service
center as defined above. If the individual customer’s discomfort us( j), j can be
expressed as being linearly proportional to the distance between the customer j
and the nearest service center, then us( j), j is equal to ds( j), jb j, considering b j as
the weight. In the case, when only the part of the distance exceeding the given
threshold Dmax is considered as being proportional to the discomfort perceived by
the customer, then us( j), j is equal to (ds( j), j −Dmax)b j subject to ds( j), j ≥ Dmax, and
otherwise the discomfort us( j), j is equal to zero. Whenever only the information
whether the distance is longer than Dmax is used, the customer’s discomfort us( j), j
equals b j subject to ds( j), j ≥ Dmax; otherwise, the discomfort us( j), j is equal
to zero.

Equivalent definitions of customer’s discomfort can be used for travel time ts( j), j
and the threshold value Tmax.

If the average discomfort is considered to be an appropriate measure, then the
objective function expressing the discomfort experienced by the population can be
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expressed by the formula (12.2). Alternatively, if the worst customer’s discomfort
is some more characteristic quantity, then the expression (12.3) is used instead, to
describe the general discomfort affecting the serviced population.

∑
j∈J

us( j), j (12.2)

max{us( j), j : j ∈ J} (12.3)

To formulate the mathematical model, both the set I1 ⊆ I and assignments s( j)
are expressed as decision variables. Each possible location i ∈ I is subject to the
decision whether to provide a service center or not. This decision can be modeled
by the variable yi, which takes the value of one if a service center is located at
the node i ∈ I and the value of zero otherwise. The assignment s( j) representing
the center i to be assigned to the customer j is expressed by the zero-one decision
variable zij. The decision variable zij takes the value of one, if i = s( j).

Using the variables yi and zij and the substitution cij = (edij + gi)b j, expressions
(12.1), (12.2), and (12.3) can be rewritten as expressions (12.4), (12.5), and (12.6),
respectively:

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij (12.4)

∑
i∈I

∑
j∈J

uijzij (12.5)

max
{

∑
i∈I

uijzij : j ∈ J
}

(12.6)

The non-linearity of the expression (12.6) can be removed by adding a new
variable which is minimized and by adding a set of constraints ensuring that this
variable takes the values greater or equal to the discomfort perceived by each
customer.

In this subsection, we revised the basic forms of the objective functions used
when designing public service systems. For more systematic overviews we refer the
reader to the references [6, 16, 22].

12.2.1 Cost-Oriented Service System Design

The cost-oriented design leads to the system, which minimizes the system cost,
assuring a certain level of the welfare. The structure of the resulting system is
described by the above-introduced variables yi, which determine the nodes, at which
the service centers are located. The quality criterion corresponds, for example, to the
expression (12.4). In addition, some consistency constraints must be now imposed
on the decision variables. With each customer j, only a single allocation variable
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zij is allowed to take value of one, and, furthermore, if the variable zij takes the
value of one, then the associated variable yi must take the value of one as well. If no
other restriction on the customers’ welfare is put except being served from a service
center, then the model of the cost-oriented system design can be stated as follows:

Minimize ∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij (12.7)

subject to∑
i∈I

zij = 1 for j ∈ J (12.8)

zij ≤ yi for i ∈ I, j ∈ J (12.9)

yi, zij ∈ {0, 1} for i ∈ I, j ∈ J (12.10)

The constraints (12.8) ensure that each municipality (customer) is assigned to
exactly one location. Whenever the customer j is assigned to the location i, the
constraints (12.9) (so called linking constraints) force the variable yi to take the
value of one. This problem, introduced in [2], is known as the uncapacitated facility
location problem (UFLP), or the simple plant location problem. This problem is
NP-hard [21] and its properties and solving techniques are broadly discussed, for
example, in [3, 32].

If a certain level of welfare is supposed to be preserved, the model (12.7) –
(12.10) is supplemented with the conditions that keep the discomfort described by
the expression (12.6) below a given threshold Umax. Thus, for this purpose, either
the set of constraints (12.11) or (12.12) is added to the model (12.7)–(12.10).

∑
i∈I

uijzij ≤Umax for j ∈ J (12.11)

uijzij ≤Umax for i ∈ I, j ∈ J (12.12)

Note that the extended model can be easily turned into the original uncapacitated
facility location problem by redefining the cost coefficients cij. It can be done for
example by setting cij to sufficiently high value, whenever the inequality uij ≤Umax

does not hold. In case the total costs of the designed system do not include the costs
cij, then much simpler model can be formulated instead. As the relation between the
customer j and the center location i becomes irrelevant, with the exception of the
constraints (12.12), we can even avoid using the allocation variables zij. We define
the coefficients aij so that aij takes the value of one if and only if the inequality
uij ≤ Umax holds, and otherwise it takes the value of zero. We use the zero-one
location variables yi as before, and formulate the following model:

Minimize ∑
i∈I

fiyi (12.13)

subject to∑
i∈I

aijyi ≥ 1 for j ∈ J (12.14)

yi ∈ {0, 1} for i ∈ I (12.15)
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The constraints (12.14) are satisfied, if at least one service center is located in the
neighborhood of the customer j, so that the discomfort constraint uij ≤Umax is met.
The problem (12.13)–(12.15), known as the set covering problem, was for the first
time formulated in [41]. The problem is NP-hard [29] and its solving algorithms are
over-viewed, for instance, in [11].

12.2.2 Customer’s Welfare-Oriented Service System Design

The welfare-oriented design aims at minimizing the customer’s discomfort, pro-
vided the system costs do not exceed the given level Cmax. Also, in this case,
the structure of the designed system is described by the location variables yi and
allocation variables zij. The quality criterion expressing the average customer’s
welfare could correspond to the expression (12.5). The consistency constraints
imposed on the decision variables yi and zij are the same as before. A simple model
illustrating the system design oriented at the average customer’s welfare can be
stated as follows:

Minimize ∑
i∈I

∑
j∈J

uijzij (12.16)

subject to∑
i∈I

zij = 1 for j ∈ J (12.17)

zij ≤ yi for i ∈ I, j ∈ J (12.18)

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij ≤Cmax (12.19)

yi,zij ∈ {0, 1} for i ∈ I, j ∈ J (12.20)

This problem can be solved directly, using a universal optimization tool.
However, if the sets I and J are too large, then the problem can be rearranged as
the uncapacitated facility location problem, using the Lagrangian relaxation. If the
positive Lagrangian multiplier λ is introduced, and we apply the relaxation to the
constraint (12.19), we obtain a new objective function:

∑
i∈I

∑
j∈J

uijzij +λ
(
∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij −Cmax

)

= ∑
i∈I

λ fiyi +∑
i∈I

∑
j∈J

(uij +λ cij)zij −λCmax (12.21)

For the given value of λ we can minimize the expression (12.21) subject to the
constraints (12.17), (12.18), and (12.20) as an instance of the uncapacitated facility
location problem. Then the optimal or the near-optimal solution of the original
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problem (12.16)–(12.20) can be obtained by iterative process, where the bisection
method is used to find such value of λ that the resulting solution (y,z) fulfills the
constraint (12.19) as the equality with an arbitrary precision.

The same approach can be applied when the total costs do not include the costs
cij. Thus, the constraint (12.19) is replaced by simpler constraint (12.22). If the
parameter p limits the number of the located service centers instead of constraining
the costs, then the constraint (12.19) can be replaced by the constraint (12.23).

∑
i∈I

fiyi ≤Cmax (12.22)

∑
i∈I

yi ≤ p (12.23)

If the discomfort is expressed as uij = b j for dij > Dmax and uij = 0 otherwise,
then the instance of the set covering model can be formulated. The coefficients aij

are defined as above, i.e. aij takes the value of one, if and only if the inequality
dij ≤ Dmax holds, otherwise it takes the value of zero. Also, the location variables yi

are defined as before and, in addition, the auxiliary variables x j are introduced for
each customer j ∈ J. It is expected that the variable x j takes the value of one, if there
is no located service center within the radius Dmax from the customer j. Then the
following set covering model describes the welfare-based system design problem:

Minimize ∑
j∈J

b jx j (12.24)

subject to∑
i∈I

aijyi ≥ 1− x j for j ∈ J (12.25)

∑
i∈I

fiyi ≤Cmax (12.26)

yi ∈ {0, 1} for i ∈ I (12.27)

x j ∈ {0, 1} for j ∈ J (12.28)

The term (12.24) expresses the overall volume of uncovered demands which is
minimized. The constraints (12.25) ensure that the variables x j take the value of
one, if and only if there is no service center located within the radius Dmax from
the customers location j. The constraint (12.26) puts the limit Cmax on the system
costs. More complicated situation arises if the welfare-oriented system is designed
and the discomfort of the worst positioned customer is used as the quality criterion.
The model of this type assumes the following form:

Minimize h (12.29)

subject to∑
i∈I

uijzij ≤ h for j ∈ J (12.30)

∑
i∈I

zij = 1 for j ∈ J (12.31)
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zij ≤ yi for i ∈ I, j ∈ J (12.32)

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij ≤Cmax (12.33)

yi,zij ∈ {0, 1} for i ∈ I, j ∈ J (12.34)

The transformation of the model (12.29)–(12.34) either into the uncapacitated
facility location problem or into the set covering problem is possible, although only
under very strong and simplifying assumptions on both customers’ discomforts and
cost coefficients.

The family of the above reported models can comprise more complex service
system design problems than we have explained. Thus, it is often necessary to
add some additional constraints which can capture restrictions such as limited
capacity of service centers, capacity and time constraints on the communication
links (roads) etc. Another issue is how to find a reasonable trade-off between
various objectives. For example, what should be preferably minimized the total
discomfort of all customers or the worst individual discomfort? As shown above,
each of these criteria leads to a specific objective function. The criterion of the total
discomfort is described by the term (12.16), and the criterion of the worst situated
customer discomfort is described by the term (12.29). To a certain extent, these two
approaches can be combined in one optimization process as the following example
shows. Let us introduce the real valued threshold Umax, and define the penalty P as

P = ∑
j∈J

max{uij : i ∈ I}. (12.35)

Then we define the new disutility uij so that uij = uij if uij ≤ Umax and uij = P
otherwise. The optimal solution of the problem described by (12.16)–(12.20) with
the new coefficients uij does not allow to assign a customer to a service center,
if it should cause bigger discomfort than Umax, under the assumption that such a
solution exists. Using this construction, an optimization process can be formulated.
The process starts with a big value of the threshold Umax, and repeatedly solves
the problem (12.16)–(12.20) for smaller and smaller Umax until the value of (12.16)
exceeds penalty P. The last but one solution is a good compromise between these
two approaches. Another option is to combine different objectives into one model
whereby a multi-objective problem is created.

12.3 Solving the Uncapacitated Facility Location Problem
to Optimality

As we have demonstrated in the previous section, the UFLP can be often either
directly or indirectly used to tackle the public service system design problem. For
this reason we describe in this section the methods enabling to solve this problem
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efficiently. There are usually two options of solving the optimization problem
derived from the real-world situation. We might either choose a specialized algo-
rithm restricted to the problem, which almost always requires the implementation
of the algorithm using a convenient programming language, or, if the problem can
be seen as the instance of a standard class of optimization problems, we can use a
universal optimization tool.

12.3.1 Universal Optimization Tools

A universal optimization tool is a software package designed to solve standard
classes of optimization problems, such as linear programming problems, linear
integer programming problems or quadratic programming problems. Typically, such
a tool consists of a modeler which allows to separate the mathematical model from
the data, describing the particular instance of the optimization problem. Thus, the
formulation of the mathematical model is independent on parameter values, which
makes it easier to maintain both, the model and the data. Nowadays, the most popu-
lar tools are CPLEX (http://www.cplex.com), XPRESS-MP (http://www.fico.com)
or MOSEK (http://www.mosek.com).

Modern optimization packages offer programming languages to simplify the
work with mathematical models, debugging environments and interfaces for graph-
ical output. Moreover, they can be embedded into development environments,
such as AIMMS (http://www.aimms.com). To supplement the results provided by
specialized algorithms, presented in the next section, we compare them with the
results obtained by XPRESS-MP.

12.3.2 Specialized Algorithms

As we have already mentioned in Sect. 12.2, the uncapacitated facility location prob-
lem is broadly applicable in the design of public service systems. The corresponding
solving technique can be used not only to design the cost-optimal two-levels
distribution system [24] but it can be extended in order to solve more complex
location problems. As it was discussed in the reference [20], it is possible to turn
the maximum distance problem, the maximum covering problem and the p-median
problem into the form of the UFLP. Also, the capacitated version of the UFLP or
the p-center problem can be approximatively solved using the solving algorithms
for UFLP [26].

Many scholars have dealt with UFLP [14]. Nevertheless, as far as the exact
algorithms are concerned, the now seminal procedure DualLoc proposed by Donald
Erlenkotter [17] is still one of the most efficient methods, and it enables to find an
optimal solution in tractable computational times [12]. Inspired by this approach in
[30], Manfred Koerkel proposed several successful modifications, which speed up
the solving process and the resulting algorithm was named PDLoc.

http://www.cplex.com
http://www.fico.com
http://www.mosek.com
http://www.aimms.com
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In [25], we have shown how both algorithms, DualLoc and PDLoc, can be
accelerated by modifying the famous procedure of dual ascent (DA) introduced
in [5]. We implemented both algorithms using the integrated programming devel-
opment environment Delphi. In our implementation, we restricted the values of
coefficients fi and cij to integers. For historical reasons, from now on we will refer
to our implementation of the DualLoc algorithm as to the BBDual algorithm [23].

12.3.2.1 Algorithm BBDual

If the variables yi are known, the optimal values of the variables zij can be found
easily. It is sufficient to assign the customer j to the facility i, for which the value of
coefficient cij is minimal. Thus, the most difficult problem is to determine the setting
of the variables yi. The BBDual algorithm is based on the branch and bound method,
in which two subproblems emerge by fixing the variables yi either to zeros or ones.
The algorithm uses of the depth-first strategy. To decide if a given subproblem
should be processed or excluded from the searching process, a lower bound of high
quality is needed. Such lower bound can be obtained by successively performing
the dual ascent (DA) and the dual adjustment algorithms (DAD). The former, the
DA procedure, starts from an arbitrary feasible solution of the dual problem, and
it subsequently increases the value of its objective function. The latter procedure
enables a further improvement of the dual solution by searching for a configuration
in which a small decrease of the objective function will allow larger increase. These
two procedures provide dual feasible solution and the corresponding value of the
objective function serves as the lower bound. Furthermore, a corresponding primal
feasible solution is generated. This is done by the PRIMA procedure, which follows
the complementary conditions holding between an LP relaxation of the problem
(12.8)–(12.10)and its dual. The best-found primal solution is stored and its objective
function value constitutes the upper bound for the optimal solution.

12.3.2.2 Algorithm PDLoc

Algorithm PDLoc comprehends a number of effective modifications and improve-
ments of procedures originally proposed by Erlekotter, and in addition, it is
enhanced by several new procedures. Similarly to the BBDual algorithm, the PDLoc
employs the branch and bound method to determine the optimal solution, but in
contrast to the BBDual, the strategy of the lowest lower bound is used to process
the searching tree. Varying the order of customers in the PRIMA procedure enables
to open new locations, and to explore a broader spectrum of primal solutions. This
leads to faster decrease of the upper bound and to faster termination of the searching
process.

The number of steps in the incremental build-up process that is used to construct a
dual solution by the DA procedure depends on the gap between the fi and cij values.
Therefore, more rapid incrementation leads to considerable improvements in the



348 J. Janáček et al.

cases when the fixed charges fi are considerably higher than the allocation costs cij

are. This is ensured by using the dual multi-ascent procedure (MDA) instead of the
DA procedure.

Another improvement results from applying the simple exchange heuristic right
after the first primal solution is found. Moreover, if a large difference between the
upper and the lower bound occurs, it is reduced by the modified dual adjustment
procedure. This procedure consists of two phases. The first of them is called the
primal-dual multi adjustment (PDMAdj) and the second is the primal-dual adjust-
ment (PDAdj). In a loop, both procedures alternatively decrease and increase the
reached lower bound in order to find a combination of operations which would allow
to increase the lower bound. The difference between those two is in the scheme that
is used to decide which and how many variables are modified in one step.

The used branch and bound searching scheme allows to fix the selected locations
to be permanently open (yi = 1) or closed (yi = 0) and thereby to reduce the size
of the solved problem. To fix a variable, special conditions have to be met. The
evaluation of the conditions is time consuming, especially, if the searching process
is nested deeply in the searching tree. Therefore, fixing variables is preferably done
on the top of the searching tree (pre-processing). If the processed branch is far down
from the root, the variables are fixed only if there is a chance to fix a couple of them
simultaneously.

12.3.2.3 Benchmarks

Benchmarks that we used to test our implementation of algorithms were derived
from the real-world network. The set G700 consists of 700 problems derived from
the road network of the Slovak Republic. This set includes ten subgroups the sizes
of which range from 100× 2,906, 200× 2,906, to as large as 1,000× 2,906. The
first number is the number of candidates for a facility location (|I|), and the second
number refers to the size of the customer set (|J|). Each subgroup contains 70
benchmarks. For each size of the benchmark ten different random subgraphs of the
road network graph of corresponding size were generated. Each subgraph was used
as a base for creating seven benchmarks by modifying the coefficients cij and fi to
cover evenly the whole spectrum of the centers located by the optimal solution.

For instance, for the problem of size 100×2,906 the optimal numbers of located
facilities were 1, 17, 33, 50, 66, 83 and 100, respectively. We will provide the
source code of the algorithms upon request. Our benchmarks were uploaded onto
the supplementary Web page http://frdsa.uniza.sk/∼buzna/supplement.

12.3.2.4 Preliminary Experiments

We solved all problems to get the frequency in which the particular procedures are
executed. These numerical experiments were performed on a PC equipped with Intel
2.4 GHz processor and 256 MB RAM. The average computational time distributed
among the inner procedures is shown in Fig.12.1.

http://frdsa.uniza.sk/~buzna/supplement


12 Optimized Design on Complex Networks 349

Fig. 12.1 The average distribution of computational time among the procedures of the BBDual
algorithm in (a) and the PDLoc algorithm in (b) (these results were obtained for the set G700)

The abbreviations “DA,” “DAD,” and “PRIMA” denote the relative average time
taken by the corresponding procedure. The “REST” includes the time consumed
by the branch and bound method, lower bound computation, as well as necessary
memory operations. “PDLOC ext.” represents the time spent on running the
procedures which are exclusively included only in the PDLOC algorithm. The label
“DA in” stands for the time taken by the procedure DA, which was called from
other procedures (e.g. the DA procedure is called inside the DAD procedure). This
also explains why we plotted this value outside the pie graph. The results clearly
show that the BBDual algorithm took in average 72.6% by performing the DA
procedure, while the PDLOC algorithm devoted only 11.8% of the computational
time to this procedure. The time consumed by the DAD procedure is approximately
equal with both algorithms, although its distribution among the time consuming
activities differs considerably.

In the case of the BBDual algorithm, the DAD procedure took 50.1% of the
time. On the contrary, the PDLoc algorithm needs only a small portion of the time
to perform the DA procedure nested in the DAD procedure. This implies that the
PDLoc algorithm focuses more on intensive searching for improving operations.
More detailed comparison of the computational performance can be found in
Table 12.1.

12.3.2.5 Amendments of Algorithms BBDual and PDLoc

Amendments of algorithms BBDual and PDLoc were inspired by preliminary
experiments, which showed that the DA procedure consumes large portion of the
computational time. In order to describe the procedure DA, we need to consider
the following form of the dual problem [30], derived from the LP relaxation of the
primal problem (12.7)–(12.10).

Maximize zD = ∑
j∈J

v j (12.36)
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Table 12.1 Average time in seconds and corresponding standard deviation obtained for
benchmarks G700

BBDual BBDual∗ PDLoc PDLoc∗

Size of problems t[s] Std D t[s] Std D t[s] Std D t[s] Std D

100×2,906 5.343 12.64 0.28 0.29 1.44 0.93 0.77 0.34
200×2,906 27.16 68.33 0.41 0.39 1.80 0.99 0.87 0.22
300×2,906 52.95 143.11 0.74 0.64 2.40 1.48 1.20 0.90
400×2,906 127.06 337.58 1.01 0.47 2.74 1.82 1.46 0.88
500×2,906 134.17 340.52 1.75 1.05 5.29 6.52 2.83 0.90
600×2,906 277.59 700.73 2.54 1.78 5.21 5.54 3.64 2.88
700×2,906 277.70 704.57 3.90 2.77 6.12 5.45 4.63 4.38
800×2,906 497.26 1,248.42 5.07 4.23 8.56 8.87 6.45 6.35
900×2,906 640.44 1,652.65 7.24 6.31 11.45 11.25 8.89 8.83
1,000×2,906 644.88 1,595.72 7.07 5.89 10.60 11.19 7.47 8.08

Fig. 12.2 The original procedure DA as it was described in [17] or in [30]

subject to ∑
j∈J

max{0,v j − cij}+ si = fi, for i ∈ I. (12.37)

si ≥ 0 for i ∈ I. (12.38)

The original DA procedure (see Fig. 12.2) solves the problem (12.36)–(12.38)
by processing the set of relevant customers J+, customer by customer, in the
order which follows the unordered input sequence. At each step the variable v j

corresponding to the customer j ∈ J+ is incremented by the value d, whereas the
value d is determined as the maximal value, which satisfies the constraints (12.6).
Hence, it becomes obvious, that this variable cannot be increased in the followings
steps, and the customer j can be excluded from the set J+. This procedure is repeated
until J+ is emptied.

As we will demonstrate, the performance of this procedure depends on the
ordering in which the set of relevant customers J+ is processed. This drawback is
illustrated by the example with two possible locations, i1 and i2, and three customers
j1, j2 and j3, as it is depicted in Fig. 12.3. The locations i1 and i2 are associated with
two slack variables, si1 and si2, respectively. The edge connecting the customer j
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Fig. 12.3 The scenario where the ordering of customers improves the efficiency of the DA
procedure. White-colored nodes represent the candidates for the facility location and black nodes
are customers. The variables si1 and si2 are slack variables (see the constraints (12.37)) and v j are
dual variables corresponding to customers. The location i is connected with the customer j by the
edge only if the inequality v j ≥ cij holds

Fig. 12.4 Modified DA∗ procedure

with the location i symbolizes that the inequality v j ≥ cij holds. By the symbol
Kj we denote the cardinality of the set {i ∈ I : cij ≤ v j} for the customer j. From
Fig. 12.3 we get Kj1 = 2, Kj2 = 1 and Kj3 = 1.

The procedure DA (see Fig. 12.2) processes the set of customers J+ in the order
which is given by the sequence in which they enter the procedure. Thus, the first
to be processed is the customer j1 followed by j2 and j3. If the processing of the
customer j1 enables to increase the variable v j1 by a value β , then the lower bound
zD is increased exactly by β . The maximal theoretical increase of the lower bound
zD is thus given by the sum of variables si1 and si2. In the example from Fig. 12.3,
the increment β has to be subtracted from both slack variables si1 and si2, in order to
meet the constraints (12.37). In summary, the theoretical capacity si1+si2 is reduced
by 2β , in order to increase the lower bound zD by β .

Considering the theoretical capacity and its possible decrease by modifying the
variables v j, we formulate a new DA∗ procedure [25] (see Fig. 12.4). This procedure
exploits better the potential of increasing the lower bound. This approach is based
on prioritizing those customers, which preserve better chances for the increase of
the lower bound zD in the following steps. We order the relevant customers J+

ascendingly according to the cardinalities Kj . The benefit of this modification is
demonstrated by the example in Fig. 12.3.
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Fig. 12.5 The average distribution of computational time among the procedures of the BBDual∗
algorithm in (a) and the PDLoc∗ algorithm in (b) (these results were obtained for the set G700)

Having applied the above mentioned ordering of customers, they will be
processed in the order j2, j3 and j1. If processing the customer j2 enables to
increase the variable v j2 by β , then, considering the constraints (12.37), only
slack variable si2 has to be reduced by β . This way the theoretical capacity is
reduced by the value β , and the lower bound zD increases by β . Compared to the
unordered case, the ordering may reduce the sum of slack variables si less than
the original DA procedure does, while preserving the same growth rate for the
variables v j.

12.3.2.6 Verification of the Proposed Amendments

Verification of the proposed amendments was performed with the same set of
benchmarks as described previously. We applied the new DA∗ procedure to both
algorithms. We inserted the MDA procedure into the BBDual algorithm, as it had
proved itself to be very efficient with the PDLoc algorithm when dealing with
the cases in which the costs fi are considerably higher than the costs cij. We also
amended the evaluation of subproblems in the BBDual algorithm. Both incoming
subproblems are solved simultaneously, and the most perspective subproblem is
processed as the first. We would like to point out that we have tested all these
modifications separately [25]. However, none of them brought any remarkable
improvements compared to when applied together. To distinguish the original and
the new versions of the algorithms BBDual and PDLoc, the modified version is
denoted with the superscript “∗.”

The effects of the proposed modifications were extensively examined by numer-
ical experiments [25]. Similarly, as in the preliminary experiments, we evaluated
the average computational time and its distribution among the inner procedures.
Figure 12.5 gives the evidence of the significant change in the time distribution
of the inner procedures. The total usage of the DA procedure was reduced from
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72.6% to 9% for the BBDual∗ algorithm and from 11.8% to 1.4% for the PDLoc∗
algorithm. These results also suggest that the new DA∗ procedure has a significant
influence on the performance of both algorithms. Table 12.1 compares the results
achieved by the original and modified versions of the algorithms. The results
indicate that the proposed modification can save time considerably. Please note that
using the MDA procedure in the BBDual algorithm contributed to this significant
reduction, especially for the benchmarks where fi � cij. However, the improvement
brought by the new DA∗ is perceptible in the whole range of the parameter values.
More details on this computational study can be found in the reference [25].

12.4 Case Study

In this section, we show how the choice of the particular criteria can influence the
resulting design of the public service system. As an illustration example we use the
system of EMS. More precisely, we present the optimized location of ambulance
stations in the area of the Slovak Republic. Another purpose of the following text is
to introduce improving modifications of the mathematical model resulting in better
quality of the final design. When we were carrying out this study, the deployment
of EMS stations was defined by the regulations of the Ministry of Health of the
Slovak Republic Nos. 30/2006 and 365/2006. In accordance with these regulations,
there were 264 EMS stations located in 223 cities and villages, including urban
districts of the capital Bratislava and of the second largest Slovakian city Košice (see
Fig. 12.6). They altogether served 2,916 municipalities populated with 5,379,455
inhabitants.

Fig. 12.6 Road network of the Slovak Republic. Locations of the existing EMS stations are
marked with squares. The size of the squares is proportional to the number of the stations located
in the given municipality
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We evaluate four different criteria:

C1 : ∑
j∈J

b jts( j), j, (12.39)

expressing the total traveling time from all customers to the closest EMS location
weighted by the number of inhabitants b j,

C2 : ∑
j∈J

ts( j), j>Tmax

b j(ts( j), j −Tmax), (12.40)

summing up the travel time exceeding the threshold value Tmax weighted by the
number of inhabitants b j,

C3 : ∑
j∈J

ts( j), j>Tmax

b j, (12.41)

representing the number of inhabitants which are further from the closest EMS than
the threshold Tmax states, and

C4 : ∑
j∈J

tm( j), j>Tmax

b j, (12.42)

expressing the number of inhabitants which are covered by fewer than two EMS
stations, where we define m( j) as the index of the second closest EMS station to the
customer j.

We combine the criterion C1 with the location–allocation type of model (12.7)–
(12.10) and the criteria C3 and C4 with the set covering type of model (12.13)–
(12.15). In all three cases we propose the deployment of 264 stations, which is
optimal with respect to the particular criteria.

The set I of the candidate stations consists of the existing EMS stations defined
by the official regulations, and of the municipalities with at least 300 inhabitants.
Altogether we found 2,283 cities and villages meeting the conditions. Following the
recommendation of the Ministry of Health to deliver medical care within 15 min
from an emergency call, we regard Tmax = 15 min as the threshold value.

As it was indicated in Sect. 12.2, different criteria lead to different kinds of
mathematical models, and therefore we also apply different solution techniques.
The Location–allocation model was solved using the modified algorithm BBDual∗,
described in Sect. 12.3. The size and structure of the covering models are simpler,
and they allow to use the universal optimization tool Xpress-MP (http://www.fico.
com). The experiments were performed on a personal computer equipped with the
Intel Core 26,700 processor with the following parameters: 2.66 GHz and 3 GB
RAM. The computational time for the BBDual∗ algorithm was about 116 min.
Xpress-MP managed to solve the covering models in 1.5 s and 0.3 s, respectively.

http://www.fico.com
http://www.fico.com
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Table 12.2 Values of criteria calculated for three solutions obtained by the optimization
(Location–allocation model, Set covering model, Double covering model) and for the existing
design of EMS stations (Man-made)

Criterion Criterion Criterion Criterion Number of changed
C1 C2 C3 C4 EMS stations

Location–allocation
model (C1)

13,677,537 35,109 15,613 285,324 104

Set covering
model (C3)

23,613,635 180 91 188,937 207

Double covering
model (C4)

25,597,594 182 91 11,684 199

Man-made 16,378,985 92,032 31,672 431,415 0

The last column shows the number of changed EMS locations proposed by the optimization
compared to the existing design

Table 12.2 summarizes the values of the criteria (12.39)–(12.42) for the optimal
solutions obtained by three selected models and for the current deployment.
The results for the Location–allocation model with the criterion (12.39) are in
the first row, the results for the Set covering model with criterion (12.41) are
in the second row, and the results for the Double covering model (12.42) are listed in
the third row. The Man-made row in the table corresponds to the current distribution
of EMS stations over the area of the Slovak Republic.

Comparing the results of mathematical modeling to the current situation, we can
observe that the first model, the Location–allocation model, is able to improve all
of the defined criteria. Although this model minimizes the total travel time from
ambulance locations to all potential patients, the best improvement is achieved
by criterion C3, reflecting the discomfort of uncovered people. It means that the
solution obtained by this model is more social, than the current system offers, in
terms of customer’s equity in the access to the provided service. As expected, the
highest level of equity is assured for the set covering models. They were able to
locate the ambulances in such a way that almost all municipalities were covered.
The only uncovered village was Runina with 91 inhabitants. This small village in the
most eastern part of Slovakia has no candidate location within the radius of 15 min.

To achieve a more fair design, the covering models change substantially the
current deployment of EMS stations (see the last column in Table 12.2). To im-
plement these solutions would thus require to restructure the existing infrastructure
considerably what might be too costly. If this issue is of importance, it can be
practical to reduce the number of changed EMS stations by including the following
constraint

∑
i∈I0

(1− yi)≤ r, (12.43)

where I0 denotes the set of current center locations and r is the upper bound for the
acceptable number of changes.
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Let us look more closely at the results obtained by the Double covering
model. In the solution presented in Table 12.2, there are all candidates for EMS
stations equivalent regardless their population or the distance from a hospital. As
a consequence of such simplification the model deploys, for example, only two
stations in the capital Bratislava and none in the county capital Žilina. At first sight,
this was not a reasonable design, which was also later confirmed by a computer
simulation. To get a more realistic solution, the model needs to be modified. We add
constraint yi ≥ 1 for the selected cities, to ensure that at least one station is located
there. In further experiments, we apply this constraint to those cities that have a
hospital.

The existing situation and the solution of the Double covering model were
evaluated using computer simulations. The goal of the simulations is to assess how
efficiently the system operates in real conditions, and to evaluate the parameters
and properties that are not explicitly captured by mathematical models. From a
customer’s (patient’s) point of view, the simulation should give answers to the
following questions (evaluated separately for every municipality, as well as for the
entire region):

1. What is the real coverage rate, i.e. what is the percentage of the calls processed
within the required time limit?

2. What are the average and maximal waiting times for an ambulance arrival?

The analysis combining mathematical optimization with simple Monte Carlo
simulations allows to verify the arrangements improving the system performance,
such as the number of the ambulances allocated to a station. Simulating the EMS
system can be viewed as a queuing system with the Poisson arrival of events and
exponentially distributed service time [8]. Supposing that every station is equipped
with one ambulance only, the system has as many service lines as the number
of the stations is. Random events are the emergency calls that come from the
populated areas. Every municipality has a specific arrival rate λ j (calls per time
unit). The statistics describing the number of calls for particular municipalities
were not available to us. Therefore we used aggregated statistics for the Slovak
Republic mapping the year 2001 (http://www.kezachranka.sk), reporting that the
overall number of patients was 232,904. We calculated the rate λ per one inhabitant,
and used it to estimate λ j = λ b j, where b j is the number of inhabitants registered in
the municipality j. Processing a call requires to take the following steps:

1. Call handling (a dispatcher has to obtain the address, and assess how serious the
call is, decides which ambulance to assign to it, and contacts the ambulance crew,
then the crew has to reach the vehicle);

2. Driving the ambulance from the station to the patients location;
3. Treating the patient by the ambulance crew;
4. Transporting the patient to the nearest hospital;
5. Passing the patient to the hospital staff;
6. Driving the ambulance back to the station.

http://www.kezachranka.sk
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Table 12.3 Comparison of the real-world situation from the year 2006 with the deployment of the
stations proposed by the mathematical models

Double covering
Double with EMS located

Man-made covering at hospitals

Number of municipalities with at
least one EMS station

223 217 245

Multiply covered inhabitants [%] 91.90 99.77 99.49
Calls not serviced within 15 min [%] 1.22 1.25 0.25
Average waiting time [min] 3.4 5.4 3.9
Maximal waiting time [min] 43.5 30 28.4

When modeling the service time, we neglect the call handling and we assume
deterministic travel times (defined by the distance and the average speed).
According to [8], the treatment time can be considered as to be exponentially
distributed with the mean value 10 min. Hence, as we did not have the relevant
statistical data on the EMS operation, we supposed that every patient was
transported to the nearest hospital, and the time the ambulance spent waiting at
the hospital was constant (10 min).

There are many possible dispatching policies for allocating the calls to EMS
stations. We always assign a call to the nearest station. If the nearest ambulance
is busy, the used policy differs with each situation. The call either waits until the
ambulance returns back to the station or it can be reallocated to the next nearest
station with an idle ambulance. A simulation model allows to experiment with
dispatching policies and consequently to choose the best one. With the experiments,
reported in Table 12.3, we suppose that we know in advance the time when the
ambulance is returning back to the station. The call is then allocated to the station
by which the patient gets served the earliest.

Table 12.3 compares the characteristics of the EMS system given by the official
regulations from the year 2006 (column Man-made), with the results obtained by
the Double covering model and with the design proposed by the modified Double
covering model with stations located at hospitals. In all three cases there are located
264 stations. In Table 12.3, we can see that the solutions proposed by mathematical
modeling increase the occurrence of multiply covered inhabitants from 91.9% to
almost 100%. The last three rows list the performance characteristics of the system
obtained by the computer simulations.

Comparing the solution of the Double covering model with the current de-
ployment shows that the rate of calls not serviced within 15 min remains almost
identical (approximately 1.2%). The average waiting time for an ambulance to
arrive increases (by 59%), while the maximal waiting time decreases (by 31%).
Comparing the solution of the modified Double covering model (with stations
located at hospitals) with the current deployment we can observe significant
improvement in both quantities: The rate of calls not serviced within 15 min
declines to one fifth, and the maximal waiting time is shortened by one third.
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a

b

Fig. 12.7 Municipalities with the average waiting time for an ambulance arrival longer than 15
min. In (a) we show the situation for the existing EMS stations in the year 2006, and (b) depicts
the results we reached when we performed Monte Carlo simulations for the solution obtained by
the Double covering model imposing the stations to be located close to hospitals

Although the average waiting time remains the same, Fig. 12.7a, b confirm that
the number of municipalities where the arrival time exceeds 15 min decreases
dramatically.

In conclusion, the statistics presented in Table 12.3 indicate that the design
proposed by mathematical modeling is better than the current solution with respect
to the service availability to patients. The rate of calls not serviced within 15 min
declines to one fifth, the maximal waiting time for an ambulance arrival shortens by
one third. The number of municipalities with the average waiting time longer than
15 min falls from 102 to 5.
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12.5 Conclusions

In this chapter, we have discussed some issues arising when designing public service
systems on complex networks. We focused mainly on effective solving methods, and
we searched for a desirable compromise between fairness and economic efficiency,
which can be attributed to the resulting design. As possible directions for further
research we consider:

• The analysis of the behavior with focus on customers’ preferences based on
real-world data, and utilization of the results in the modeling of public service
systems,

• More detailed theoretical analysis of the price of fairness in the context of
location problems,

• and last but not least, possible utilization of centrality measures and other
network properties [7] as early indicators of promising solutions in the design
of optimization algorithms.
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360 J. Janáček et al.

11. Caprara A., Toth, P., Fischetti, M.: Algorithms for the set covering problem, Annals of
Operations Research 98, pp. 353–371, (2000).

12. Crainic, T.G.: Long-haul freight transportation. In Handbook of transportation science,
New York: Springer, (2003).

13. Daganzo, C.F.: Logistics System Analysis, Springer Verlag Berlin, (1996).
14. Daskin, M.S.: Network and Discrete Location. Models, Algorithms, and Applications. John

Wiley & Sons, New York, NY, (1995).
15. Dorogovtsev, S., Mendes, J.: Evolution of networks: From biological nets to the Internet and

WWW, Oxford University Press, Oxford (2003).
16. Eiselt, H.A., Laporte, G.: Objectives in Location Problems, In: Drezner, Z., ed., Facility

Location: A Survey of Applications and Methods, Springer Verlag, New York, (1995).
17. Erlenkotter, D.: A dual-based procedure for uncapacitated facility location. Operations

Research, 26, 6, pp. 992–1009, (1978).
18. Frank, H., Frisch, I.T.: Communication, Transmission and Transportation Networks, Addison

Wesley, Series in Electrical Engineering, (1971).
19. Galvao, R.D., Nascimento, E.M.: The location of benefit-distributing facilities in the Brazilian

social security system. Operational Research’90 (Proceedings of the IFORS 1990 Conference),
pp. 433–443, (1990).

20. Galvao, R.D.: Uncapacitated facility location problems: contributions, Pesqui. Oper. 2004, 24,
1, pp. 7–38 . ISSN 0101–7438, (2004).

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP
Completeness, San Francisco, Freeman and Co., (1979).

22. Hakimi, S.L.: Optimum location of switching centers and the absolute centers and medians of
a graph, Operations Research, 12, pp. 450–459, (1964).
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