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Abstract The remarkable discovery of many large-scale real networks is the
power-law distribution in degree sequence: the number of vertices with degree
i is proportional to i−β for some constant β > 1. A lot of researchers believe
that it may be easier to solve some optimization problems in power-law graphs.
Unfortunately, many problems have been proved NP-hard even in power-law
graphs as Ferrante proposed in Ferrante et al. (Theoretical Computer Science
393(1–3):220–230, 2008). Intuitively, a theoretical question is raised: Are these
problems on power-law graphs still as hard as on general graphs? The chapter
shows that many optimal substructure problems, such as minimum dominating
set, minimum vertex cover and maximum independent set, are easier to solve in
power-law graphs by illustrating better inapproximability factors. An optimization
problem has the property of optimal substructure if its optimal solution on some
given graph is essentially the union of the optimal subsolutions on all maximal
connected components. In particular, the above problems and a more general
problem (ρ-minimum dominating set) are proven to remain APX-hard and their
constant inapproximability factors on general power-law graphs by using the cycle-
based embedding technique to embed any d-bounded graphs into a power-law
graph. In addition, the corresponding inapproximability factors of these problems
are further proven in simple power-law graphs based on the graphic embed-
ding technique as well as that of maximum clique and minimum coloring using
the embedding technique in Ferrante et al. (Theoretical Computer Science 393
(1–3):220–230, 2008). As a result of these inapproximability factors, the belief that
there exists some (1+o(1))-approximation algorithm for these problems on power-
law graphs is proven not always true. In addition, this chapter contains the in-depth
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investigations in the relationship between the exponential factor β and constant
greedy approximation algorithms. The last part includes some minor NP-hardness
results on simple power-law graphs for small β < 1.

10.1 Introduction

A great number of large-scale networks in real life are discovered to follow a
power-law distribution in their degree sequences, ranging from the Internet [15],
the World-Wide Web (WWW) [4] to social networks [25]. That is, the number of
vertices with degree i is proportional to i−β for some constant β in these graphs,
which is called power-law graphs. The observations show that the exponential factor
β ranges between 1 and 4 for most real-world networks [10], i.e., β = 2.1 in
Internet and World Wide Web, β = 2.3 in social networks and β = 2.5 in protein–
protein interaction networks. Erdös collaboration network in 1997 is illustrated as
an example of power-law networks in Fig. 10.1. Intuitively, the following theoretical
question is raised: What are the differences in terms of complexity hardness
and inapproximability factor of several optimization problems between in general
graphs and in power-law graphs?
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Fig. 10.1 Erdös collaboration network in 1997 [1]
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Many experimental results on random power-law graphs give us a belief that
the problems might be much easier to solve on power-law graphs. Eubank et al.
[14] showed that a simple greedy algorithm leads to a 1 + o(1) approximation
factor on minimum dominating set (MDS) and minimum vertex cover (MVC) on
power-law graphs (without any formal proof) although MDS and MVC has been
proven NP-hard to be approximated within (1−ε) logn and 1.366 on general graphs
respectively [12]. In [24], Gopal also claimed that there exists a polynomial time
algorithm that guarantees a 1 + o(1) approximation of the MVC problem with
probability at least 1− o(1). Unfortunately, there is no such formal proof for this
claim either. Furthermore, several papers also have some theoretical guarantees for
some problems on power-law graphs. Gkantsidis et al. [17] proved the flow through
each link is at most O(n log2 n) on power-law random graphs where the routing of
O(dudv) units of flow between each pair of vertices u and v with degrees du and dv.
In [17], the authors took advantage of the property of power-law distribution by
using the structural random model [2, 3] and showed the theoretical upper bound
with high probability 1−o(1) and the corresponding experimental results. Likewise,
Janson et al. [19] gave an algorithm that approximated maximum clique within
1− o(1) on power-law graphs with high probability on the random poisson model
G(n,α) (i.e., the number of vertices with degree at least i decreases roughly as n−i).
Although these results were based on experiments and various random models, they
raised an interest in investigating hardness and inapproximability of optimization
problems on power-law graphs.

Recently, Ferrante et al. [16] had an initial attempt on power-law graphs to
show the NP-hardness of maximum clique (CLIQUE) and minimum graph coloring
(COLORING) (β > 1) by constructing a bipartite graph to embed a general graph
into a power-law graph and NP-hardness of MVC, MDS and maximum independent
set (MIS) (β > 0) based on their optimal substructure properties. Unfortunately,
there is a minor flaw which makes the proof of NP-hardness of MIS, MVC, MDS
with β < 1 no longer hold.

In this chapter, two new techniques are proposed especially for optimal substruc-
ture problems, cycle-based embedding technique and graphic embedding technique,
which embed a d-bounded graph into a general power-law graph and a simple
power-law graph respectively. Then we use these two techniques to further prove
the APX-hardness and the inapproximability of MIS, MDS, and MVC on general
power-law graphs and simple power-law graphs for β > 1. These inapproximability
results on power-law graphs are shown in Table 10.1. Furthermore, the inapprox-
imability results in CLIQUE and COLORING are shown by taking advantage of
the reduction in [16]. The corresponding relationship is analyzed between β and
constant greedy approximation algorithms for MIS and MDS. To show the minor
NP-hardness of these problems for β < 1, we propose another eligible embedding
technique in the last part of this chapter.

In addition, due to a lot of recent studies in online social networks on the
influence propagation problem [21,22], ρ-minimum dominating set (ρ-MDS) is for-
mulated and proven hard to be approximated within 2− (2+ od(1)) log logd/ logd
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Table 10.1 Inapproximability factors on power-law graphs with exponen-
tial factor β > 1

Problem General power-law graph Simple power-law graph

MIS 1+ 1
140(2ζ (β )3β−1)

− ε 1+ 1
1120ζ (β )3β − ε

MDS 1+ 1
390(2ζ (β )3β−1)

1+ 1
3120ζ (β )3β

MVC, ρ-MDS 1+
2
(

1−(2+oc(1))
log logc

logc

)
(

ζ (β )cβ +c
1
β

)
(c+1)

1+
2−(2+oc(1))

log logc
logc

2ζ (β )cβ (c+1)

CLIQUE − O
(
n1/(β+1)−ε)

COLORING − O
(
n1/(β+1)−ε)

aConditions: MIS and MDS: P�=NP; MVC, ρ-MDS: unique games conjecture; CLIQUE,
COLORING: NP�=ZPP

bc is a constant which is the smallest d satisfying the condition in [6]

factor on d-bounded graphs under unique games conjecture, which further leads to
the following inapproximability result on power-law graphs (shown in Table 10.1).

The rest of chapter is organized as follows. In Sect. 10.2, we introduce some
problem definitions, the model of power-law graphs, and some related concepts.
The inapproximability optimal substructure framework is presented in Sect. 10.3.
We show the hardness and inapproximability of MIS, MDS, MVC on general
power-law graphs using the cycle-based embedding technique in Sect. 10.4. More
inapproximability results in simple power-law graphs are illustrated in Sect. 10.5
based on the graphic embedding technique, which implies the APX-hardness of
these problems. Additionally, the inapproximability factor on maximum clique and
minimum coloring problems are proven. In Sect. 10.6, we analyze the relationship
between β and constant approximation algorithms, which further proves that the
integral gap is typically small for optimization problems on power-law graphs
than that on general bounded graphs. Some minor NP-hardness results of optimal
substructure problems for β < 1 are presented in Sect. 10.7.

10.2 Preliminaries

In this section, we first recall the definition of several classical optimization
problems having the optimal substructure property and formulate the new opti-
mization problem ρ-minimum dominating set. Then the power-law model and some
corresponding concepts are proposed. At last, some special graphs are introduced
which will be used in the analysis throughout the whole chapter.
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10.2.1 Problem Definitions

Definition 10.1 (Maximum Independent Set). Given an undirected graph G =
(V,E), find a subset S ⊆ V with the maximum size such that no two vertices in
S are adjacent.

Definition 10.2 (Minimum Vertex Cover). Given an undirected graph G= (V,E),
find a subset S ⊆ V with the minimum size such that for each edge E at least one
endpoint belongs to S.

Definition 10.3 (Minimum Dominating Set). Given an undirected graph G =
(V,E), find a subset S⊆V with the minimum size such that for each vertex vi ∈V \S,
at least one neighbor of vi belongs to S.

Definition 10.4 (Maximum Clique). Given an undirected graph G = (V,E), find a
clique with maximum size where a subgraph of G is called a clique if all its vertices
are pairwise adjacent.

Definition 10.5 (Minimum Graph Coloring). Given an undirected graph G =
(V,E), label the vertices in V with minimum number of colors such that no two
adjacent vertices share the same color.

The ρ-minimum dominating set is defined as general version of MDS problem.
In the context of influence propagation, the ρ-MDS problem aims to find a subset of
nodes with minimum size such that all nodes in the whole network can be influenced
within t rounds. In particular, a node is influenced when ρ fraction of its neighbors
are influenced. For simplicity, we define ρ-MDS problem in the case that t = 1.

Definition 10.6 (ρ-Minimum Dominating Set). Given an undirected graph G =
(V,E), find a subset S⊆V with the minimum size such that for each vertex vi ∈V \S,
|S∩N(vi)| ≥ ρ |N(vi)|.

10.2.2 Power-Law Model and Some Notations

A great number of models [2, 3, 7, 8, 23] on power-law graphs are emerging in
the past recent years. The analysis in this chapter is based on the general (α,β )
graph model, that is, the graphs are only constrained by the power-law distribution
in degree sequences. To begin with, the following two types of degree sequences are
defined.

Definition 10.7 ( y-Degree Sequence). Given a graph G = (V,E), the y-degree
sequence of G is a sequence Y = 〈y1,y2, . . . ,yΔ 〉 where Δ is the maximum degree of
G and yi = |{u|u ∈V ∧deg(u) = i}|.
Definition 10.8 (d-Degree Sequence). Given a graph G = (V,E), the d-degree
sequence of G is a sequence D = 〈d1,d2, . . . ,dn〉 of vertex in non-increasing order
of their degrees.
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Note that y-degree sequence and d-degree sequence are interchangeable. Given
a y-degree sequence Y = 〈y1,y2, . . . ,yΔ 〉, the corresponding d-degree sequence is
D = 〈Δ ,Δ , . . . ,Δ − 1,Δ − 1, . . . ,Δ − 1, . . . ,1, . . . ,1〉 where the number i appears yi

times. Because of their equivalence, we may use only y-degree sequence or d-degree
sequence or both without changing the meaning or validity of results. The definition
of power-law graphs can be expressed via y-degree sequences as follows.

Definition 10.9 (General (α ,β ) Power-Law Graph Model). A graph G = (V,E)
is called a (α,β ) power-law graph G(α ,β ) where multiedges and self-loops are

allowed if the maximum degree is Δ =
⌊
eα/β⌋ and the number of vertices of

degree i is

yi =

{⌊
eα/iβ

⌋
, if i > 1 or ∑Δ

i=1

⌊
eα/iβ

⌋
is even


eα�+ 1, otherwise.
(10.1)

In simple (α,β ) power-law graphs, there are no multiedges and self-loops.
Note that a power-law graph are represented by two parameters α and β . Since

graphs with the same β express the same behaviors, we categorize all graphs with
the same β into a β -family of graphs such that β is regarded as a constant instead
of an input. In addition, we focus more on the case β > 1 because almost all real
large-scale networks have β > 1. In this case, the number of vertices is:

Δ

∑
i=1

eα

iβ
= ζ (β )eα + n

1
β ≈ ζ (β )eα ,

where ζ (β ) = ∑∞
i=1

1
iβ

is the Riemann Zeta function. Also, the d-degree sequence of
any (α,β ) power-law graph is continuous according to the following definition.

Definition 10.10 (Continuous Sequence). An integer sequence 〈d1,d2, . . . ,dn〉,
where d1 ≥ d2 ≥ ·· · ≥ dn, is continuous if ∀1≤ i≤ n− 1, |di− di+1| ≤ 1.

Definition 10.11 (Graphic Sequence). A sequence D is said to be graphic if there
exists a graph such that D is its d-degree sequence.

Definition 10.12 (Degree Set). Given a graph G, let Di(G) be the set of vertices of
degree i on G.

Definition 10.13 (d-Bounded Graph). Given a graph G = (V,E), G is a d-
bounded graph if the degree of any vertex is upper bounded by an integer constant d.

10.2.3 Special Graphs

Definition 10.14 (d-Regular Cycle RCd
n ). Given a vector d = (d1, . . . ,dn), a

d-regular cycle RCd
n is composed of two cycles. Each cycle has n vertices and two
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Fig. 10.2 Special graph examples: the left one is a (3,3,3,3,3,3,3,3)-regular cycle and the right
one is a (3,3,3,3)-branch-(2,2,2,2,2,2)-cycle. The grey vertices consist of the optimal solution
of MDS on these two special graphs

ith vertices in each cycle are adjacent with each other by di− 2 multiedges. That is,
d-regular cycle RCd

n has 2n vertices and the two ith vertex has the same degree di.
An example RCd

8 is shown in Fig. 10.2a.

Definition 10.15 (κ-Branch-d-Cycle κ-BCd
n ). Given two vectors d = (d1, . . . ,dn)

and κ = (κ1, . . . ,κm), the κ-branch-d-cycle is composed of a cycle with a number of
vertices n such that each vertex has degree di as well as |κ|/2 appendant branches,
where |κ | is a even number. Note that any κ-branch-d-cycle has |κ| even number of
vertices with odd degrees. An example is shown in Fig. 10.2b.

10.2.4 Existing Inapproximability Results

Some inapproximability results are listed here in the literature to use later in our
proofs.

1. MVC is hard to be approximated into 2− (2+ od(1)) loglogd/ logd for every
sufficiently large integer d in d-bounded graphs under unique games conjecture
[6, 11].

2. In three-bounded graphs, MIS and MDS is NP-hard to be approximated into
140
139 − ε for any ε > 0 and 391

390 respectively [5].
3. Maximum clique and minimum coloring problem is hard to be approximated into

n1−ε on general graphs unless NP=ZPP [18].
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10.3 Inapproximability Optimal Substructure Framework
in Power-Law Graphs

In this section, by taking advantage of the optimal substructure property, we
introduce a framework to derive the approximation hardness of the class of problems
in power-law graphs. Recall that a graph optimization problem is said to satisfy
optimal substructure if its optimal solution is the union of the optimal solutions on
each connected component. Therefore, when a graph G is embedded into a power-
law graph G′, the optimal solution in G′ consists of a subset of the optimal solution
in G. According to this important property, inapproximability optimal substruc-
ture framework is proposed to prove the inapproximability factor if there exists
a embedded-approximation-preserving reduction that relates the approximation
hardness in general graphs and power-law graphs by guaranteeing the relationship
between the solutions in the original graph and the constructed graph.

Definition 10.16 (Embedded-Approximation-Preserving Reduction). Given an
optimal substructure problem O, a reduction from an instance on graph G = (V,E)
to another instance on a power-law graph G′ = (V ′,E ′) is called embedded-
approximation-preserving if it satisfies the following properties:

1. G is a subset of maximal connected components of G′.
2. The optimal solution of O on G′, OPT (G′), is upper bounded by COPT (G)

where C is a constant correspondent to the growth of the optimal solution.

Theorem 10.1 (Inapproximability Optimal Substructure Framework). Given
an optimal substructure problem O, if there exists an embedded-approximation-
preserving reduction from a graph G to another graph G′, we can extract the
inapproximability factor δ of O on G′ using ε-inapproximability of O on G, where
δ is lower bounded by εC

(C−1)ε+1 and ε+C−1
C when O is a maximum and minimum

optimization problem respectively.

Proof. Suppose that there exists an algorithm providing a solution of O on G′
with size at most δ times the optimal solution. Denote A and B to be the sizes of
the produced solution on G and G′ \G and A∗ and B∗ to be their corresponding
optimal values. Hence, we have B∗ ≤ (C − 1)A∗. With the completeness that
OPT (G) = A∗ ⇒OPT (G′) =B∗, the soundness leads to the lower bound of δ which
is dependent on the type of O, maximization or minimization problem, as follows.

Case 10.1. When O is a maximization problem, the proof of soundness is as follows

A∗+B∗ ≤ δ (A+B) (10.2)

⇔ A∗ ≤ δA+(δ − 1)B∗ (10.3)

⇔ A∗ ≤ δA+(δ − 1)(C− 1)A∗, (10.4)

where (10.3) holds since B≤ B∗ and (10.4) holds since B∗ ≤ (C− 1)A∗.
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On the other hand, it is hard to approximate O within ε on G, thus A∗ > εA.
Replace it to the above inequality, we have:

A∗ < A∗δ/ε +(δ − 1)(C− 1)A∗ ⇔ δ >
εC

(C− 1)ε + 1
.

Case 10.2. When O is a minimization problem, since B∗ ≤ B, similarly

A+B≤ δ (A∗+B∗)

⇔ A≤ δA∗+(δ − 1)B∗

⇔ A≤ δA∗+(δ − 1)(C− 1)A∗.

Then from A > εA∗,

ε < δ +(δ − 1)(C− 1)⇔ δ >
ε +C− 1

C
.

10.4 Hardness and Inapproximability of Optimal Substructure
Problems on General Power-Law Graphs

10.4.1 General Cycle-Based Embedding Technique

In this section, a general cycle-based embedding technique is proposed on (α,β )
power-law graphs with β > 1. The basic idea is to embed an arbitrary d-bounded
graph into a power-law graph using a d1-regular cycle, a κ-branch-d2-cycle, and a
number of cliques K2, where d1, d2, and κ are defined by α and β . Before discussing
the main embedding technique, we first show that most optimal substructure
problems can be polynomially solved in both d-regular cycles and κ-branch-d-
cycle. In this context, the cycle-based embedding technique helps to prove the
complexity of these optimal substructure problems on power-law graphs according
to their corresponding complexity results on general bounded graphs.

Lemma 10.1. MDS, MVC, and MIS are polynomially solvable on d-regular cycles.

Proof. Here, we just prove MDS problem is polynomially solvable on d-regular
cycles. The algorithm is simple. From an arbitrarily vertex, we select the vertex
on the other cycle in two hops. The algorithm will terminate until all vertices are
dominated. Now we will show that this gives the optimal solution. Let’s take RC3

8
as an example. As shown in Fig. 10.2a, the size of MDS is 4. Notice that each
vertex can dominate exact three vertices, that is, 4 vertices can dominate exactly
12 vertices. However, in RC3

8 , there are altogether 16 vertices, which have to be
dominated by at least four vertices apart from the vertices in MDS. That is, the
algorithm returns an optimal solution. The proofs of MVC and MIS are similar.
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Algorithm 2: Cycle Embedding Algorithm

1 α ←max{lnmax1≤i≤d{ni · iβ},β lnd};
2 For τ(1) vertices of degree 1, add 
τ(1)/2� number of cliques K2;
3 For τ(2) vertices of degree 2, add a cycle with the size τ(2);
4 For all vertices of degree larger than 2 and smaller than Δ , construct a d1-regular cycle

where d1 is a vector composed of 
τ(i)/2� number of elements i for all i satisfying τ(i)> 0;
5 For all leftover isolated vertices L such that τ(i)−2
τ(i)/2� = 1, construct a

d1
2-branch-d2

2-cycle, where d1
2 and d2

2 are the vectors containing odd and even elements
correspondent to the vertices of odd and even degrees in L respectively.

Lemma 10.2. MDS, MVC, and MIS is polynomially solvable on κ-branch-d-
cycles.

Proof. Again, we show the proof of MDS. First, we select the vertices connecting
both the branches and the cycle. Then by removing the branches, we will have a
line graph regardless of self-loops, on which MDS is polynomially solvable. It is
easy to see that the size of MDS will increase if any one vertex connecting both the
branch and the cycle in MDS is replaced by some other vertices. The proof of MIS
is similar. Note that the optimal solution for MVC consists of all vertices since all
edges need to be covered.

Theorem 10.2 (Cycle-Based Embedding Technique). Any d-bounded graph Gd

can be embedded into a power-law graph G(α ,β ) with β > 1 such that Gd is a
maximal component and most optimal substructure problems can be polynomially
solvable on G(α ,β ) \Gd.

Proof. With the given β , we choose α to be max{lnmax1≤i≤d{ni · iβ},β lnd}.
Based on τ(i) = 
eα/iβ �− ni where ni = 0 when i > d, we construct the power-
law graph G(α ,β ) as the following Algorithm 2. The last step holds since the
number of vertices of odd degrees has to be even. From Step 1, we know eα =
max{max1≤i≤d{ni · iβ},dβ} ≤ dβ n, that is, the number of vertices N in graph
G(α ,β ) satisfies N ≤ ζ (β )dβ n, which means that N/n is a constant. According to
Lemma 10.1 and Lemma 10.2, since G(α ,β ) \Gd is composed of a d1-regular cycle
and a d1

2-branch-d2-cycle, it can be polynomially solvable. Note that the number of
vertices in L is at most Δ since there is at most one leftover vertex of each degree.

10.4.2 APX-Hardness

In this section, MIS, MDS, and MVC are proven to remain APX-hard even on power-
law graphs.

Theorem 10.3. MDS is APX-hard on power-law graphs.
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Proof. According to Theorem 10.2, we use the cycle-based embedding technique to
show L -reduction from MDS on any d-bounded graph Gd to MDS on a power-law
graph G(α ,β ) since MDS is proven APX-hard on d-bounded graphs [20].

Letting φ be a feasible solution on Gd , we can construct MDS in G′ such that
MDS on a K2 is 1, n/4 on a d-regular cycle and n/3 on a cycle and a κ-branch-
d-cycle. Therefore, for a solution φ on Gd , we have a solution ϕ on G(α ,β ) to be
ϕ = φ +n1/2+n2/3+n3/4, where n1, n2 and n3 corresponds to τ(1), τ(2)∪L and
all leftover vertices. Hence, we have OPT (ϕ) = OPT (φ)+ n1/2+ n2/3+ n3/4.

On one hand, for a d-bounded graph with vertices n, the optimal MDS is lower
bounded by n/(d+ 1). Thus, we know

OPT(ϕ) = OPT(φ)+ n1/2+ n2/3+ n3/4

≤ OPT(φ)+ (N− n)/2

≤ OPT(φ)+ (ζ (β )dβ − 1)n/2

≤ OPT(φ)+ (ζ (β )dβ − 1)(d+ 1)OPT(φ)/2

=
[
1+(ζ (β )dβ − 1)(d+ 1)/2

]
OPT(φ),

where N is the number of vertices in G(α ,β ).
On the other hand, with |OPT (φ)− φ | = |OPT (ϕ)− ϕ |, we proved the L -

reduction with c1 = 1+(ζ (β )dβ − 1)(d+ 1)/2 and c2 = 1.

Theorem 10.4. MVC is APX-hard on power-law graphs.

Proof. In this proof, we show L -reduction from MVC on d-bounded graph Gd to
MVC on power-law graph G(α ,β ) using cycle-based embedding technique.

Let φ be a feasible solution on Gd . We construct the solution ϕ ≤ φ +(N− n)
since the optimal solution of MVC is n/2 on K2, cycle, d-regular cycle and n on κ-
branch-d-cycle. Therefore, since the optimal MVC on a d-bounded graph is lower
bounded by n/(d+ 1), we have

OPT(ϕ)≤
[
1+(ζ (β )dβ − 1)(d+ 1)

]
OPT (φ).

On the other hand, with |OPT (φ)− φ | = |OPT (ϕ)− ϕ |, we proved the L -
reduction with c1 = 1+(ζ (β )dβ − 1)(d+ 1) and c2 = 1.

Corollary 10.1. MIS is APX-hard on power-law graphs.

10.4.3 Inapproximability Factors

In this section, we show the inapproximability factors on MIS, MVC, and MDS on
power-law graphs, respectively, using the results in Sect. 10.2.4.



266 Y. Shen et al.

Theorem 10.5. For any ε > 0, there is no 1+ 1
140(2ζ (β )3β−1)

− ε approximation

algorithm for maximum independent set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α ,β ) based on cycle-
based embedding technique in Theorem 10.2 from d-bounded graph Gd . Let φ
and ϕ be feasible solutions of MIS on Gd and G(α ,β ). Then OPT (ϕ) composed
of OPT (φ), clique K2, cycle, d-regular cycle and κ-branch-d-cycles are all
exactly half number of vertices. Hence, we have OPT (ϕ) = OPT (φ)+ (N− n)/2
where n and N is the number of vertices in Gd and G(α ,β ), respectively. Since

OPT (φ) ≥ n/(d + 1) on d-bounded graphs for MIS and N ≤ ζ (β )dβ n, we further

have C= 1+ (ζ (β )dβ−1)(d+1)
2 from

OPT(ϕ) = OPT(φ)+
N− n

2

≤ OPT(φ)+
(ζ (β )dβ − 1)

2
n

≤ OPT(φ)+
(ζ (β )dβ − 1)(d+ 1)

2
OPT(φ)

=

(
1+

(ζ (β )dβ − 1)(d+ 1)
2

)
OPT(φ).

Since ε = 140
139−ε ′ for any ε ′ > 0 on three-bounded graphs, the inapproximability

factor can be derived from inapproximability optimal substructure framework as

δ >
εC

(C− 1)ε + 1
> 1+

1
140C

− ε = 1+
1

140(2ζ (β )3β − 1)
− ε,

where the last step follows from d = 3.

Theorem 10.6. There is no 1+ 1
390(2ζ (β )3β−1)

approximation algorithm for mini-

mum dominating set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α ,β ) based on cycle-based
embedding technique in Theorem 10.2 from d-bounded graph Gd . Let φ and ϕ be
feasible solutions of MDS on Gd and G(α ,β ). The optimal MDS on OPT (φ), clique
K2, cycle, d-regular cycle and κ-branch-d-cycles are n/2, n/4 and n/3 respectively.
Let φ and ϕ be feasible solutions of MDS on Gd and G(α ,β ). Then we have C =

1+ (ζ (β )dβ−1)(d+1)
2 similar as the proof in Theorem 10.5.

Since ε = 391
390 in three-bounded graphs, the inapproximability factor can be

derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C

= 1+
1

390(2ζ (β )3β − 1)
,

where the last step follows from d = 3.
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Theorem 10.7. MVC is hard to be approximated within 1+
2

(
1−(2+oc(1))

loglogc
logc

)

⎛
⎝ζ (β )cβ+c

1
β

⎞
⎠(c+1)

on power-law graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α ,β ) based on cycle-based embed-
ding technique in Theorem 10.2 from d-bounded graph Gd , the optimal MVC on
clique K2, cycle, d-regular cycle are half number of vertices while the optimal MVC

on κ-branch-d-cycles are all vertices. Thus, we have C= 1+

⎛
⎝ζ (β )dβ−1+d

1
β

⎞
⎠(d+1)

2
since

OPT(ϕ) ≤ OPT(φ)+
N− n−Δ

2
+Δ (10.5)

≤ OPT(φ)+
(ζ (β )dβ − 1)n+ n

1
β d

2
(10.6)

= OPT(φ)+

(
ζ (β )dβ − 1+ d

n
1− 1

β

)
n

2
(10.7)

≤ OPT(φ)+

(
ζ (β )dβ − 1+ d

(d+1)
1− 1

β

)
(d + 1)

2
OPT(φ) (10.8)

≤

⎛
⎜⎝1+

(
ζ (β )dβ − 1+ d

1
β
)
(d + 1)

2

⎞
⎟⎠OPT(φ), (10.9)

where φ and ϕ be feasible solutions of MVC on Gd and G(α ,β ), Δ is the maximum
degree in G(α ,β ). The inequality (10.6) holds since there are at most Δ vertices in

κ-branch-d-cycle, i.e., Δ = eα/β ≤ n1/β d; (10.8) holds since there are at least d+1
vertices in a d-bounded graph and the optimal MVC in a d-bounded graph is at least
n/(d+ 1).

Since ε = 2− (2 + od(1)) loglogd/ logd, the inapproximability factor can be
derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2
(

1− (2+ oc(1))
log logc

logc

)
(

ζ (β )cβ + c
1
β
)
(c+ 1)

,

where c is the smallest d satisfying the condition in [6]. The last inequality holds
since function f (x) = (1− (2+ox(1)) log logx/ logx)/g(x)(x+1) is monotonously
decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.
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Fig. 10.3 The reduction from MVC to ρ-MDS

Theorem 10.8. ρ-MDS is hard to be approximated into 2− (2+ od(1))
log logd

logd on
d-bounded graphs under unique games conjecture.

Proof. In this proof, we show the gap-preserving from MVC on (d/ρ)-bounded
graph G = (V,E) to ρ-MDS on d-bounded graph G′ = (V ′,E ′). w.l.o.g., we assume
that d and d/ρ are integers. First, we construct a graph G′ = (V ′,E ′) by adding
new vertices and edges to G as follows. For each edge (vi,v j) ∈ E , create k new
vertices v1

i j, . . . ,v
k
i j where 1 ≤ k ≤ 
1/ρ� and ρ ≤ 1/2. Then we add 2k new edges

(vl
i j,vi) and (vl

i j,v j) for all l ∈ [1,k] as shown in Fig. 10.3. Clearly, G′ = (V ′,E ′) is
a d-bounded graph.

Let φ and ϕ be feasible solutions to MVC on G and G′ respectively. We claim
that OPT (φ) = OPT (ϕ).

On one hand, if S = {v1,v2, . . . ,v j} ∈V is the minimum vertex cover on G. Then
{v1,v2, . . . ,v j} is a ρ-MDS on G′ because each vertex in V has ρ of all neighbors
in MVC and every new vertex in V ′ \V has at least one of two neighbors in MVC.
Thus, OPT (φ)≥ OPT (ϕ).

One the other hand, we can prove that OPT (ϕ) does not contain new vertices,
that is, V ′ \V . Consider a vertex vi ∈ V , if vi ∈ OPT (ϕ), the new vertices vl

i j for
all v j ∈ N(vi) and all l ∈ [1,k] are not needed to be selected. If vi �∈ OPT (ϕ), it has
to be dominated by ρ proportion of its all neighbors. That is, for each edge (vi,v j)
incident to vi, either v j or all vl

i j have to be selected since every vl
i j has to be either

selected or dominated. If all vl
i j are selected in OPT (ϕ) for some edge (vi,v j), v j is

still not dominated by enough vertices if there are some more edges incident to v j

and the number of vertices vl
i j k is great than 1, that is, 
1/ρ� ≥ 1. In this case, v j

will be selected to dominate all vl
i j. Thus, OPT (ϕ) does not contain new vertices.

Since the vertices in V selected is a solution to ρ-MDS, that is, for each vertex vi
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in graph G, vi will be selected or at least the number of neighbors of vi will be
selected. Therefore, the vertices in OPT (ϕ) consist of a vertex cover in G. Thus,
OPT (φ)≤OPT (ϕ). Then we show the completeness and soundness as follows.

• If OPT(φ) = m⇒ OPT(ϕ) = m
• If OPT(φ )>

(
2− (2+od(1))

log log(d/2)
log(d/2)

)
m⇒ OPT(ϕ)>

(
2− (2+od(1))

log logd
logd

)
m

OPT (ϕ)>
(

2− (2+ od(1))
log log(d/ρ)

log(d/ρ)

)
m >

(
2− (2+ od(1))

loglogd
logd

)
m

since the function f (x) = 2− loglogx/ logx is monotonously increasing for any
x > 0.

Theorem 10.9. ρ-MDS is hard to be approximated into 1+
2
(

1−(2+oc(1))
loglogc

logc

)

2+(ζ (β )cβ−1)(c+1)
on

power-law graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α ,β ) based on cycle-based embed-
ding technique in Theorem 10.2 from d-bounded graph Gd , we have C = 1 +
(ζ (β )dβ−1)(d+1)

2 from the optimal MVC on OPT (φ), clique K2, cycle, d-regular cycle
and κ-branch-d-cycles as

OPT (ϕ) = OPT (φ)+ n1/2+ f (ρ)n2+ g(ρ)n3

≤ OPT (φ)+
N− n

2
≤
(

1+
(ζ (β )dβ − 1)(d+ 1)

2

)
OPT (φ),

where f (ρ) =

{
1
4 , ρ ≤ 1

3
1
3 ,

1
3 < ρ ≤ 1

2

, g(ρ) = 1
3 for all ρ ≤ 1

2 and φ , ϕ are feasible

solutions of MVC on Gd and G(α ,β ). n1, n2 and n3 are correspondent to the number
of vertices in cliques K2, cycle, d-regular cycle and κ-branch-d-cycle.

Since ε = 2− (2 + od(1)) loglogd/ logd, the inapproximability factor can be
derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2
(

1− (2+ oc(1))
log logc

logc

)

2+(ζ (β )cβ − 1)(c+ 1)
,

where c is the smallest d satisfying the condition in [6]. The last inequality holds
since function f (x) = (1− (2+ox(1)) log logx/ logx)/g(x)(x+1) is monotonously
decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.
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Algorithm 3: Graphic Sequence Construction Algorithm
Input : d-degree sequence D = 〈d1,d2, . . .,dn〉 where d1 ≥ d2 ≥ . . .≥ dn

Output: Graph H
1 while D �= /0 do
2 Connect vertex of d1 to vertices of d2,d3, . . . ,dd1+1;
3 d1← 0;
4 for i = 2 to d1 +1 do
5 di← di−1;
6 end
7 Sort D in non-increasing order;
8 Remove all zero elements in D;
9 end

10.5 More Inapproximability Results on Simple
Power-Law Graphs

10.5.1 General Graphic Embedding Technique

In this section, we introduce a general graphic embedding technique to embed a d
bounded graph into a simple power-law graph. Before presenting the embedding
technique, we first show that a graph can be constructed in polynomial time from a
class of integer sequences.

Lemma 10.3. Given a sequence of integers D = 〈d1,d2, . . . ,dn〉 which is non-
increasing, continuous and the number of elements is at least as twice as the largest
element in D, i.e., n ≥ 2d1, it is possible to construct a simple graph G whose d-
degree sequence is D in polynomial time O(n2 logn).

Proof. Starting with a set of individual vertices S of degree 0 and |S| = n, we
iteratively connect vertices together to increase their degrees up to given degree
sequence. In each step, the leftover vertex of highest degree is connected to other
vertices one by one in the decreasing order of their degrees. Then the sequence D
will be resorted and all zero elements will be removed. The algorithm stops until D
is empty. The whole algorithm is shown as follows (Algorithm 3).

After each while loop, the new degree sequence, called D′, is still continuous and
its number of elements is at least as twice as its maximum element. To show this,
we consider three cases: (1) If the maximum degree in D′ remains the same, there
are at least d1 + 2 vertices in D. Since D is continuous, the number of elements in
D is at least d1 + 2+ d1− 1, that is, 2d1 + 1. Therefore, the number of elements in
D′ is 2d1, i.e., n ≥ 2d1 still holds. (2) If the maximum degree in D′ is decreased by
1, there are at least two elements of degree d1 in D. Thus, at most one element in D
will become 0. Then we have n ≥ 2d1− 2 = 2(d1− 1). (3) If the maximum degree
in D′ is decreased by 2, there are at most two elements in D becoming 0. Thus,
n≥ 2d1− 3 > 2(d1− 2).
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Algorithm 4: Graphic Embedding Algorithm

1 α ←max{ β
β−1 (ln4+β lnd), ln2+ lnn+β lnd} and corresponding G(α,β );

2 D be the d-degree sequence of G(α,β ) \Gd ;
3 Construct G(α,β ) \Gd using Algorithm 3.

The time complexity of the algorithm is O(n2 logn) since there are at most n
iterations and each iteration takes at most O(n logn) to sort the new sequence D.

Theorem 10.10 (Graphic Embedding Technique). Any d-bounded graph Gd can
be embedded into a simple power-law graph G(α ,β ) with β > 1 in polynomial time
such that Gd is a maximal component and the number of vertices in G(α ,β ) can be
polynomially bounded by the number of vertices in Gd.

Proof. Given a d-bounded degree graph Gd = (V,E) and β > 1, we construct a
power-law graph G(α ,β ) of exponential factor β which includes Gd as a set of
maximal components. The construction is shown as Algorithm 4.

According to Lemma 10.3, the above construction is valid and finishes in
polynomial time. Then we show that N is upper bounded by ζ (β )2dβ n, where n and
N are the number of vertices in Gd and G(α ,β ) respectively. From the construction,
we know either

α ≥ β
β − 1

(ln4+β lnd)⇒ α ≥ ln4+β lnd +α/β ⇒ eα

dβ ≥ 4e
α
β

or

α ≥ ln2+ lnn+β lnd⇒ eα

dβ ≥ 2n.

Therefore, eα

dβ ≥ 2e
α
β + n. Note that

⌊
eα

dβ

⌋
is the number of vertices of degree d.

In addition, G has at most n vertices of degree d, so D is continuous degree sequence
and has the number of vertices at least as twice as the maximum degree.

In addition, when n is large enough, we have α = ln2+ lnn+ β lnd. Hence,
the number of vertices N in G(α ,β ) is bound as N ≤ ζ (β )eα = 2ζ (β )dβ n, i.e., the
number of vertices of G(α ,β ) is polynomial bounded by the number of vertices in Gd .

10.5.2 Inapproximability of MIS, MVC and MDS

Theorem 10.11. For any ε > 0, it is NP-hard to approximate maximum indepen-
dent set within 1+ 1

1120ζ (β )3β − ε on simple power-law graphs.

Proof. In this proof, we construct the simple power-law graph G(α ,β ) based on
graphic embedding technique in Theorem 10.10 from d-bounded graph Gd . Let φ
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and ϕ be feasible solutions of MIS on Gd and G(α ,β ). Since OPT (φ)≥ n/(d+1) on

d-bounded graphs and N ≤ 2ζ (β )dβ n, we further have C= 2ζ (β )dβ (d + 1) from

OPT (ϕ)≤ N ≤ 2ζ (β )dβ n≤ 2ζ (β )dβ (d + 1)OPT(φ).

Since ε = 140
139−ε ′ for any ε ′ > 0 on three-bounded graphs, the inapproximability

factor can be derived from inapproximability optimal substructure framework as

δ >
εC

(C− 1)ε + 1
= 1+

1
140C− 1

− ε > 1+
1

1120ζ (β )3β − ε.

Theorem 10.12. It is NP-hard to approximate minimum dominating set within 1+
1

3120ζ (β )3β on simple power-law graphs.

Proof. From the proof of Theorem 10.11, we have C= 2ζ (β )dβ (d+1). Then since
ε = 391

390 on three-bounded graphs, we have

δ > 1+
ε− 1
C
≥ 1+

1

3120ζ (β )3β .

Theorem 10.13. There is no 1+
2−(2+oc(1))

loglogc
logc

2ζ (β )cβ (c+1)
approximation algorithm of Min-

imum Vertex Cover on simple power-law graphs under unique games conjecture.

Proof. Similar as the proof of Theorem 10.12, we have C= 2ζ (β )dβ (d + 1). Then
since ε = 2−(2+od(1)) log logd/ logd, the inapproximability factor can be derived
from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2− (2+ oc(1))
log logc

logc

2ζ (β )cβ (c+ 1)
,

where c is the smallest d satisfying the condition in [6].

Theorem 10.14. There is no 1 +
2−(2+oc(1))

loglogc
logc

2ζ (β )cβ (c+1)
approximation algorithm for

minimum positive dominating set on simple power-law graphs.

Proof. Similar Theorem 10.14, the proof follows from Theorem 10.8.

10.5.3 Maximum Clique, Minimum Coloring

Lemma 10.4 (Ferrante et al. [16]). Let G = (V,E) be a simple graph with n
vertices, β ≥ 1 and α ≥ max{4β ,β logn + log(n+ 1)}. Then, we can construct
a graph G2 such that G2 = G1 \G is a bipartite graph and G1 is a simple (α,β )
power-law graphs.
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Lemma 10.5. Given a function f (x) (x ∈ Z, f (x) ∈ Z
+) monotonously decreases,

then ∑x f (x)≤ ∫x f (x).

Corollary 10.2. eα ∑eα/β
i=1

( 1
d

)β
< (eα − eα/β )/(β − 1).

Theorem 10.15. Maximum clique cannot be approximated within O
(

n1/(β+1)−ε
)

on simple large power-law graphs with β > 1 and n > 54 for any ε > 0 unless
NP=ZPP.

Proof. In [16], the authors proved the hardness of maximum clique problem on
power-law graphs. Here we use the same construction. According to Lemma 10.4,
G2 = G \G1 is a bipartite graph when α ≥ max{4β ,β logn+ log(n+ 1)} for any
β ≥ 1. Let φ be a solution on general graph G and ϕ be a solution on power-law
graph G2. We show the completeness and soundness.

• If OPT (φ) = m⇒OPT (ϕ) = m
If OPT (φ) ≤ 2 on graph G, we can solve clique problem in polynomial time by
iterating the edges and their endpoints one by one. However, G is not a general
graph in this case. w.l.o.g., assuming OPT (φ)> 2, then OPT (ϕ) = OPT (φ)> 2
since the maximum clique on bipartite graph is 2.

• If OPT (φ)≤ m/n1−ε ⇒ OPT (ϕ)< O
(

1/(N1/(β+1)−ε ′)
)

m

In this case, we consider the case that 4β < β logn+ log(n+ 1), that is, n > 54.
According to Lemma 10.4, let α = β logn+ log(n+1). From Corollary 10.2, we
have

N = eα
Δ

∑
i=1

(
1
i

)β
<

eα − eα/β

β − 1
=

nβ (n+ 1)− n(n+ 1)1/β

β − 1
<

2nβ+1− n
β − 1

.

Therefore, OPT (ϕ) = OPT (φ)≤ m/n1−ε < O
(

m/
(

N1/(β+1)−ε ′
))

.

Corollary 10.3. Minimum coloring problem cannot be approximated within

O
(

n1/(β+1)−ε
)

on simple large power-law graphs with β > 1 and n > 54 for

any ε > 0 unless NP=ZPP.

10.6 Relationship Between β and Approximation Hardness

As shown in previous sections, many hardness and inapproximability results
are dependent on β . In this section, we analyze the hardness of some optimal
substructure problems based on β by showing that trivial greedy algorithms can
achieve constant guarantee factors for MIS and MDS.

Lemma 10.6. When β > 2, the size of MDS of a power-law graph is greater than
Cn where n is the number of vertices, C is some constant only dependent on β .
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Proof. Let S = (v1,v2, . . . ,vt) of degrees d1,d2, . . . ,dt be the MDS of power-law
graph G(α ,β ). Observing that the total degrees of vertices in dominating set must be
at least the number of vertices outside the dominating set, we have ∑i=t

i=1 di ≥ |V \S|.
With a given total degree, a set of vertices has minimum size when it includes the
vertices of highest degrees. Since the function ζ (β −1)=∑∞

i=1
1

iβ−1 converges when
β > 2, there exists a constant t0 = t0(β ) such that

Δ

∑
i=t0

i

⌊
eα

iβ

⌋
≥

t0

∑
i=1

⌊
eα

iβ

⌋
,

where α is any large enough constant. Thus, the size of MDS is at least

Δ

∑
i=t0

⌊
eα

iβ

⌋
≈
(

ζ (β )−
t0−1

∑
i=1

1

iβ

)
eα ≈C|V |,

where C = (ζ (β )−∑t0
i=1

1
iβ
)/(ζ (β )).

Consider the greedy algorithm which selects from the vertices of the highest
degree to the lowest. In the worst case, it selects all vertices with degree greater than
1 and a half of vertices with degree 1 to form a dominating set. The approximation
factor of this simple algorithm is a constant.

Corollary 10.4. Given a power-law graph with β > 2, the greedy algorithm that
selects vertices in decreasing order of degrees provides a dominating set of size
at most ∑Δ

i=2

⌊
eα/iβ

⌋
+ 1

2 eα ≈ (ζ (β )− 1/2)eα . Thus the approximation ratio is
(ζ (β )− 1

2 )/(ζ (β )−∑t0
i=1 1/iβ ).

Let us consider another maximization problem MIS, we propose a greedy
algorithm Power-law-Greedy-MIS as follows. We sort the vertices in non-increasing
order of degrees and start checking from the vertex of the lowest degree. If the vertex
is not adjacent to any selected vertex, it is selected. The set of selected vertices forms
an independent set with the size at least a half the number of vertices of degree 1
which is eα/2. The size of MIS is at most a half of number of vertices. Thus, the
following lemma holds.

Lemma 10.7. Power-law-Greedy-MIS has factor 1/(2ζ (β )) on power-law graphs
with β > 1.

10.7 Minor NP-Hardness on Simple Power-Law Graphs
for β < 1

In the section, we show some minor NP-hardness of optimal substructure problems
on simple power-law graphs for small β < 1.
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Definition 10.17 (Eligible Sequences). A sequence of integers S = 〈s1, . . . ,sn〉 is
eligible if s1 ≥ s2 ≥ . . .≥ sn and fS(k)≥ 0 for all k ∈ [n], where

fS(k) = k(k− 1)+
n

∑
i=k+1

min{k,si}−
k

∑
i=1

si.

Erdős and Gallai [13] showed that an integer sequence is graphic – d-degree
sequence of an graph, if and only if it is eligible and the total of all elements is even.
Then Havel and Hakimi [9] gave an algorithm to construct a simple graph from a
degree sequence. We now prove the following eligible embedding technique based
on this result.

Theorem 10.16 (Eligible Embedding Technique). Given an undirected simple
graph G= (V,E) and 0< β < 1, there exists polynomial time algorithm to construct
a power-law graph G′ = (V ′,E ′) of exponential factor β such that G is a set of
maximal components of G′.

Proof. To construct G′, we choose α = max{β ln(n− 1)+ ln(n+ 2),3ln2}. Then

eα/((n− 1)β )�> n+ 2, i.e., there are at least two vertices of degree d in G′ \G if
there are a least two vertices of degree d in G′. According to the definition, the total
degrees of all vertices in G′ and G are even. Therefore, the lemma will follow if we
prove that the degree sequence D of G′ \G is eligible.

In D, the maximum degree is 
eα/β �. There is only one vertex of degree i if
1≤ eα/iβ < 2, i.e., eα/β ≥ i > (eα/2)1/β .

Let us consider fD(k) in two cases:

1. Case: k ≤ ⌊eα/β/2
⌋

fD(k) = k(k− 1)+
n

∑
i=k+1

min{k,di}−
k

∑
i=1

di

> k(k− 1)+
T−k

∑
i=k

k+
k−1

∑
i=B

i+
B−1

∑
i=1

2−
k

∑
i=1

(T − k+ 1)

= k(T − k)+ (k−B)(k− 1+B)/2+B(B−1)− k(2T− k+ 1)/2

= (B2−B)/2− k,

where T =
⌊
eα/β⌋ and B =

⌊
(eα/2)1/β⌋+ 1. Note that α/β > ln2(2/β + 1)

since α > 3ln2 and 0 < β < 1. Hence
(⌊
(eα/2)1/β⌋+ 1

)(⌊
(eα/2)1/β⌋) >⌊

eα/β⌋≥ 2k, that is, fD(k)> 0.

2. Case: k >
⌊
eα/β/2

⌋

fD(k+ 1)≥ fD(k)+ 2k− 2dk+1≥ fD(k) ≥ . . .≥ fD(
⌊

eα/β/2
⌋
)> 0.
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Corollary 10.5. An optimal substructure problem is also NP-hard on power-law
graphs for all 0 < β < 1 if it is NP-hard on simple general graphs.

Proof. According to Theorem 10.16, we can embed an undirected graph G = (V,E)
into a power-law graph G′ of β lying in (0,1) and of vertices polynomial time in the
size of G. Since the optimization problem has optimal substructure property and G
is a set of maximal connected components of G′, its optimum solution for the graph
G can be computed easily from an optimal solution for G′. This completes the proof
of NP-hardness.

10.8 Conclusion

This chapter focuses on the analysis of approximation hardness and inapproxima-
bility for optimal substructure problems on power-law graphs. These problems are
only illustrated not be able to approximated into some constant factors on both
general and simple power-law graphs although they remain APX-hard. However, we
also notice that the gap between inapproximability factor and the simple constant
approximation ratio of these problems is still not small enough and the hardness on
power-law graph is weaker than that on degree bounded graphs. Is there any efficient
reduction which is not from bounded graph will improve the hardness results on
power-law graphs? Can we obtain stronger hardness results based on some specific
power-law models? For example, if the number of vertices only follow power-law
distribution when degree is larger than some constant i0, we can reduce from graph
of degree bounded by i0 and get better results.

On the contrary, we also show that maximum clique and minimum coloring are
still very hard to be approximated since the optimal solutions to these problems
are dependent on the structure of local graph components rather than global graph.
In other words, the power-law distribution in degree sequence does not help much
for such optimization problems without optimal substructure property.
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11. Chlebı́k, M., Chlebı́ková, J.: Approximation hardness of dominating set problems in bounded
degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

12. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of
Mathematics 162, 2005 (2004)

13. Erdos, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok 11, 264–274
(1960)

14. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorith-
mic aspects of massive social networks. In: SODA ’04, pp. 718–727. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2004)

15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology.
In: Proceedings of the conference on Applications, technologies, architectures, and protocols
for computer communication, SIGCOMM ’99, pp. 251–262. ACM, New York, NY, USA
(1999)

16. Ferrante, A., Pandurangan, G., Park, K.: On the hardness of optimization in power-law graphs.
Theoretical Computer Science 393(1-3), 220–230 (2008)

17. Gkantsidis, C., Mihail, M., Saberi, A.: Conductance and congestion in power law graphs.
SIGMETRICS Perform. Eval. Rev. 31(1), 148–159 (2003)

18. Hastad, J.: Clique is hard to approximate within n1−ε . In: FOCS ’96, p. 627. IEEE Computer
Society, Washington, DC, USA (1996)

19. Janson, S., Luczak, T., Norros, I.: Large cliques in a power-law random graph (2009)
20. Kann, V.: On the Approximability of NP-complete Optimization Problems. Ph.D. thesis, Royal

Institute of Technology Stockholm (1992)
21. Kempe, D., Kleinberg, J., 07va Tardos: Influential nodes in a diffusion model for social

networks. In: IN ICALP, pp. 1127–1138. Springer Verlag (2005)
22. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social

network. In: In KDD, pp. 137–146. ACM Press (2003)
23. Norros, I., Reittu, H.: On a conditionally poissonian graph process. Advances in Applied

Probability pp. 38–59 (2006)
24. Pandurangan, G.: http://www.cs.purdue.edu/homes/gopal/powerlawtalk.pdf (2006)
25. Redner, S.: How popular is your paper? An empirical study of the citation distribution. The

European Physical Journal B - Condensed Matter and Complex Systems 4(2), 131–134 (1998)


	Chapter 10 Hardness Complexity of Optimal Substructure Problems on Power-Law Graphs
	10.1 Introduction
	10.2 Preliminaries
	10.2.1 Problem Definitions
	10.2.2 Power-Law Model and Some Notations
	10.2.3 Special Graphs
	10.2.4 Existing Inapproximability Results

	10.3 Inapproximability Optimal Substructure Framework in Power-Law Graphs
	10.4 Hardness and Inapproximability of Optimal Substructure Problems on General Power-Law Graphs
	10.4.1 General Cycle-Based Embedding Technique
	10.4.2 APX-Hardness
	10.4.3 Inapproximability Factors

	10.5 More Inapproximability Results on Simple Power-Law Graphs
	10.5.1 General Graphic Embedding Technique
	10.5.2 Inapproximability of MIS, MVC and MDS
	10.5.3 Maximum Clique, Minimum Coloring

	10.6 Relationship Between  and Approximation Hardness
	10.7 Minor NP-Hardness on Simple Power-Law Graphs for β< 1
	10.8 Conclusion
	References


