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Preface

The oldest, shortest words - “yes” and “no” - are those which
require the most thought.

Pythagoras (Greek Philosopher 582 BC – 497 BC)

One common problem that spans several diverse applications is the management
and derivation of knowledge from huge amounts of data, especially in scenarios
involving human and social activities. In many practical situations, a real-life dataset
can be represented as a large network (graph) – a structure that can be easily
understood and visualized. Furthermore, special structures of graphs, when viewed
in the context of a given application, provide insights into the internal structure and
patterns of the data. Among the many examples of datasets that can be represented as
graphs are the Web graph derived from the World Wide Web, the Call graph arising
in telecommunications traffic data, and metabolic networks arising in biology. Of
particular interest are social networks, in which vertices represent people or groups
of people.

Although the concept of a network roots back to the ancient Greek philosopher
Pythagoras in his theory of cosmos (κ óσ μoς ), the mathematical principles of
networks were first developed in the last century. The first book in networks
appeared in 1936 (D. König: Theory of Finite and Infinite Graphs). Since then, there
has been a huge explosion of research regarding theoretical tools and algorithms in
the analysis of networks.

One of the most exciting moments came at the dawn of the new Millennium, in
1999 with the discovery of new types of graphs, called complex networks. Examples
of such well-known classes of complex networks are scale-free networks and small-
world networks. These classes of networks are characterized by specific structural
features such as the power-law vertex degree distribution (scale-free networks)
and for the short path lengths, small diameter, and high clustering (small-world
networks). Moreover, several other measures and features have been discovered,
and are recently the focus of active research, that related to the structural properties
of complex networks. A new area of complex networks has been rapidly developing,
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spanning several disciplines such as mathematics, physics, computer science, social
science, biology, and telecommunications.

In our two volume handbook, an attempt was made to present a wide spec-
trum of recent developments with emphasis in both theory and applications on
complex networks. The first volume focuses on basic theory and properties of
complex networks, on their structure and dynamics, and optimization algorithmic
approaches. The last part of the volume concentrates on some feature applications.
The second volume, this volume, deals with the emerging issues on communication
networks and social networks. It covers material on vulnerability and robustness
of complex networks. The second part is dedicated to complex communication
networks, discussing several critical problems such as traffic activity graph analysis,
throughput optimization, and traffic optimization. The last part of this volume
focuses on recent research topics on online social networks such as security and
privacy, social aware solutions, and social based routing algorithms.

We would like to take this opportunity to thank all authors, the anonymous
referees, and Springer for helping us to finalize this handbook. Our thanks also go to
our students for their help during the processing of all contributions. We hope that
this handbook will encourage research on the many intriguing open questions and
applications on complex networks that still remain.

Gainesville, Florida My T. Thai
Panos M. Pardalos
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Chapter 1
Optimization in Designing Complex
Communication Networks

Fernanda S.H. Souza, Geraldo R. Mateus, and Alexandre Salles da Cunha

Abstract Complex networks are found in real world in different areas of science,
such as technological, social and biological. These networks are many times
characterized by a non-trivial topology, with connection patterns among their
elements that are neither purely regular nor purely random. The interesting features
presented by this class of networks may be useful in improving the overall efficiency
of engineered networks as computer, communication and transportation ones. There
is a conjecture indicating that such complex topologies normally appear as a result
of optimization processes. Optimization techniques have been applied to design
complex communication networks, showing that features such as small path length,
high clustering coefficient and power-law degree distribution can be achieved
through optimization processes. In this chapter, models and algorithms based on
optimization techniques to generate complex network topologies are discussed.
We review some models, heuristics as well as exact solution approaches based on
Integer Programing methods to generate topologies owning complex features.

1.1 Introduction

The Network Science concept has its roots in graph theory dating back to the 1730s.
However, it is evolving, since it reemerged in the late 1990s as a new science [1].
Even though a definitive description of its meaning is still open, there are many
ways to define it, for sure. Network science involves the study of the theoretical
foundations of network structure, dynamic behavior, and its application to many
subfields [2–6]. Thus, the study of topics like structure, topology, emergence,

F.S.H. Souza (�) • G.R. Mateus • A.S. da Cunha
Department of Computer Science, Federal University of Minas Gerais,
Belo Horizonte, MG, Brazil
e-mail: fersouza@dcc.ufmg.br; mateus@dcc.ufmg.br; acunha@dcc.ufmg.br

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Theory and Applications, Springer Optimization and Its Applications 57,
DOI 10.1007/978-1-4614-0754-6 1, © Springer Science+Business Media, LLC 2012

3

fersouza@dcc.ufmg.br;
mateus@dcc.ufmg.br;
acunha@dcc.ufmg.br


4 F.S.H. Souza et al.

dynamism, autonomy, and so on is certainly of great importance in the field. In
particular, the origin of real world complex networks is constantly a topic of interest,
as an attempt to clarify what kind of processes naturally is taking place on these
networks. On the other hand, there is a conjecture whether such complex topologies
normally appear as a result of some optimization processes. A challenge can be to
identify these processes and properties and apply them to manage or to design the
network from scratch.

Complex systems are found in real world in different areas of science, includ-
ing the Internet, WWW, neural networks, friendship relationships, among others
[4, 7–10]. All these networks are large scale networks and very different from
traditional network problems explored by operations researchers. Also, they have
an intense amount of activities and behaviors that cannot be fully explained. Since
then, networks have been used to model and simulate complex interactions among
elements of a system, providing support for a better understanding and analysis.
Surely, it is important to emphasize that complex systems differ from complicated
systems [6]. Large scale systems can be considered complicated, although their
components and behaviors are well known. However, complex systems show diverse
behaviors, not always known or predictable.

Complex networks can be defined as large scale networks with an intricate
relationship among their components and many degrees of freedom in the possible
actions of components [11]. In this context, the concept of complex is based on
behaviors exhibited by the network that arise naturally and unplanned. On the other
hand, a complicated network is also a large scale network where the components and
the rules governing its functioning are known [6]. In this case, complex is associated
with the difficulties to solve the problems using traditional approaches, including the
computational complexity.

Optimization approaches have been applied successfully to solve engineering
problems [12, 13]. Given the network structure with their components, interactions
and constraints, the objective is to optimize a well known function resulting from
that structure. This solution allows the user to control and design the network.The
models consider costs, performance, resource, and design constraints. In complex
networks, we have the inverse problem, or the reverse engineering, where the
objective is to know how the observed structure supports a perceived function [11].

Complex networks are many times characterized by a non-trivial topology and
present interesting features which may be useful in designing engineered networks.
One of these features concerns the cheap price for sending information (or a
packet, a commodity) through the network. Thereby, computer, communication, and
transportation networks, just to name a few, could take advantage of being modeled
to present specific complex features, to improve their overall efficiency. On the other
hand, it is expected that the structure and function of a complex network can be
interpreted from some optimization process. Consequently, the existing complex
network can also be redesigned or restructured or a new network can be designed
from scratch.

Regarding these considerations, the objective of this chapter is the investiga-
tion of how optimization strategies could be applied in the context of complex
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communication networks. We show that a given network can be tuned to satisfy
a desired property or set of properties and to avoid others. This tuning can be guided
by a set of patterns previously defined. This is possible by changing the structure
level, i.e., modifying the physical topology of the network to get improvements in a
function.

This chapter is organized as follows. Section 1.2 presents the main network met-
rics used in complex theory. These metrics are explored by the optimization models.
In Sect. 1.3, different classical network structures and models are introduced; in
particular, we present the regular, random, small world, and scale-free concepts of
networks.

Section 1.4 presents optimization models and algorithms to create complex
network topologies. Two mathematical formulations are proposed, the Arc-Flow
and the Arc-Path. Both are Integer Linear Programs to treat the same combinatorial
optimization problem. The first is based on network flows and is solved by a
commercial software that is based on Branch-and-bound (BB). The Arc-Path
Formulation is an implicit and stronger formulation, but demands specific methods
as column generation and Branch-and-price [14, 15]. Variations of the proposed
formulations are explored in the end of the section in order to capture diverse
network features and properties.

Section 1.5 shows how complex networks can be reached through a heuristic
approach. Some of the classical heuristic algorithms are discussed and some
computational results are reported based on GRASP [16]. Comparisons between
the heuristic solutions and the optimal solutions obtained with the mathematical
formulations are presented to show the quality of the GRASP approach.

This chapter is concluded with final remarks in Sect. 1.6.

1.2 Measurements of Complex Networks

Complex systems have been modeled through network representation, making pos-
sible the analysis of topological features using informative measurements. A central
issue in the study of complex systems is understanding the relationship between
system structure and function. Network metrics are, therefore, of great importance
while investigating network representation, characterization and behavior. This
Section is devoted to the presentation of the key measurements of networks which
will be discussed along the chapter.

Let an undirected graph G = (V,E) where V is the set of vertices and E is the set
of edges (also called links) connecting the nodes. The degree of a vertex i ∈V is the
number of edges incident to vertex i and the degree distribution is the probability
distribution of these degrees over the whole network. The density of a graph is the
ratio between the number of edges and the upper bound on the number of edges.

A path connecting two vertices i, j ∈V is said to be minimal, if there is no other
path connecting i to j with fewer links. Accordingly, the average path length of G
is given by the average number of links in all shortest paths connecting all pairs of
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Table 1.1 Network metrics

Metric Formula

Number of vertices n = |V |
Number of edges m = ∑

i, j∈V :i< j

aij

where aij =

{
1, if vertices i and j are connected

0, otherwise
Degree di = ∑

j∈V

aij

Degree distribution P(k) =
nk

n
where nk is the number of vertices with degree k

Density ρ =
2m

n(n−1)

Average path length L =
1

n(n−1) ∑
i, j∈V :i �= j

dij

where dij is the distance between vertices i and j
Diameter D = max

{
dij

}
, ∀i, j ∈V, i �= j

Clustering coefficient of a vertex Ci =
2ei

ri(ri−1)
where ei is the number of edges between neighbors
of i and ri is the number of neighbors of vertex i

Clustering coefficient of a graph CC =
1
n ∑

i∈V
Ci

Betweenness centrality Bi = ∑
s,t∈N:s�=t

σ (s, i, t)
σ (s, t)

, s �= i, t �= i

where σ (s, i, t) is the number of shortest paths between
vertices s and t that pass through vertex i and σ (s, t) is
the total number of shortest paths between s and t

Global efficiency GE =
1

n(n−1) ∑
i, j∈V :i �= j

1
dij

vertices in V . The graph diameter is the maximum shortest path length between all
pairs of vertices in V . The clustering coefficient of a vertex i is the ratio between
the number of edges between neighbors of vertex i and the upper bound on the
number of edges between them. For instance, given i, j,k ∈ N and assuming that
edges (i, j),(i,k) ∈ E , the clustering coefficient defines the probability that ( j,k)
also belongs to set E . The clustering coefficient of a graph is the average value
of the clustering coefficients of all vertices in G. The betweenness centrality of a
vertex i is associated with an importance measure, based on the number of paths
between other pairs of vertices that include vertex i. The global efficiency of a
network quantifies the efficiency in sending information between vertices, assuming
that for a pair of vertices i and j it is proportional to the reciprocal of their distance.
Table 1.1 summarizes the mathematical formulas for the main network metrics
outlined above. See [17] for a complete review of measurements.
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1.3 Network Models

Several network models were proposed and studied in an attempt to represent
elements of a system and their relationships [1, 4–6]. In the following Sections,
different network structures and the models used to generate them are introduced.
Network models can be classified into static and dynamic. Three static and one
dynamic network models are discussed.

1.3.1 Regular Networks

Regular networks are characterized by an associated regular graph structure where
the connections between vertices follow a common pattern. They have some
theoretical importance since other models can be derived by rewiring the regular
networks. Early work on the design of complex networks [7, 18] contrasted the
features of regular and random graphs. A regular network with vertices of degree k is
called a k-regular network or regular network of degree k. Sparse k-regular networks
are known to own high average path length and high clustering coefficient. As we
will show in Sect. 1.3.3, k-regular networks are used on the design of small world
networks.

Other examples of regular networks include rings, lattices, n-ary trees, stars and
full or complete graphs [1]. Ring networks are a special case of a connected k-
regular network, in which k = 2. In a lattice, the vertices are placed on a grid
and connected to their immediate neighbors. A n-ary tree consists of a connected
network without cycles, with a root vertex and each vertex which is not a leaf having
at most n children. A star network is a special tree, where every vertex is connected
to the root. In a full or complete network there is an edge between every pair of
vertices. Figure 1.1 illustrates regular network structures. Figure 1.1a, in particular,
depicts a 4-regular ring network.

1.3.2 Random Networks

Random networks have been studied since the 1950s, when they were independently
defined by Erdös and Rényi [19] and Gilbert [20]. A random network is generated
by a random process, in which a set of edges are added at random between pairs of
vertices belonging to the network. The class of random networks contrasts directly
to that of regular networks mainly in the structure aspect, being a useful baseline for
comparison.

The main idea of the Gilbert [20] random network model is to add edges
independently with probability p (0 < p < 1) from the n(n−1)/2 potential edges of
an undirected graph. Let G(n, p) denote a graph G with n vertices and an associated
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4-regular network

a b c

d e f

Ring network Lattice network

Binary tree network Star network Full network

Fig. 1.1 Regular networks

probability p. One may note that the number of edges of a network added according
to the G(n, p) model is not known in advance. Moreover, the total number of
possible graphs sums up to 2n(n−1)/2. On average, the resulting network ends up
with m = p[n(n− 1)/2] and p also corresponds to the density of the network.

Another random network model, also known as ER model, was proposed by
Erdös and Rényi [19]. Unlike Gilbert’s procedure, the ER model is characterized
by generating networks with a previously known fixed number m of edges. In the
G(n,m) model, equal probability is assigned to all graphs with exactly m edges. In
other words, considering a stochastic process that starts with n vertices and no edges
and at each step adds one new edge chosen uniformly from the set of missing edges,
G(n,m) represents a snapshot at a particular time (m) of this process.

The difference between ER and Gilbert models is that the ER model generates a
network with a certain number of edges while the Gilbert model generates a network
with a defined density. However, in both models the probability that a given vertex
has degree k approaches a Poisson distribution for n >> 1, i.e., P(k)= < k >k

e−k/k!, where < k > is the average vertex degree. This means that random graphs
tend to be homogeneous in vertex degree as the majority of the vertex degrees
are close to the average value. The randomness attached to this class of networks
induces properties based on two of the metrics presented before, small average path
length and small clustering coefficient. Figure 1.2 shows an example of a random
network (Fig. 1.2a) and its Poisson degree distribution curve (Fig. 1.2b).

For a long time, random networks were widely studied and used to model
complex systems. Indeed, real world networks present an average path length
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Fig. 1.2 Random network

close to the average path length of a random network with the same number of
edges. However, in the last few years it was noticed that general properties of real
world networks are quite different from random ones. For instance, the clustering
coefficient of a network found in nature is remarkably larger than the clustering
coefficient of a random network with the same number of vertices and edges. It
seems that real networks present a kind of local interaction not observed in random
ones. Furthermore, the typical degree distribution found in nature is significantly
different from a Poisson distribution. Thus, new models were developed as Small
World and Scale Free networks.

1.3.3 Small World Networks

The small world concept, first introduced from Milgram’s experiment [21], showed
that the “world is small” because a person can reach all other people in the
world, directly or indirectly, through few intermediaries. In [7, 18], the authors
formalized the small world concept and defined small world networks. The small
world phenomenon is found in various networks like the Internet and the routing
of messages in social environments [5, 22, 23]. Small world graphs are intriguing,
because, among other reasons, they share characteristics of regular graphs (high
clustering coefficient) and random graphs (small average path length).

In [7], a simple procedure to generate a small world network based on rewiring
edges of the network was proposed by Watts and Strogatz (WS model). The WS
model of a small world network is described as follows. Given a k-regular ring
graph G= (V,E) where each node is connected to its first k neighbors, rewiring edge
(i, j) ∈ E according to a probability p (0 ≤ p ≤ 1), consists in randomly replacing
one of its endpoints i or j by another vertex q. After all edges of E are attempted
to be rewired, one at a time, multiple edges and loops are not allowed, another type
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Fig. 1.3 WS model

of graph may emerge from this process. Depending on which probabilities are used,
the graph obtained may exhibit small world features. An example of the rewiring
procedure is presented in Fig. 1.3. Starting with the 4-regular graph (p= 0) depicted
in Fig. 1.3a, two other types of graphs can be obtained. If a small value of p is used,
a small world structure like that in Fig. 1.3b arises. On the other hand, if larger
values of p are used, random graphs like that in Fig. 1.3c may appear.

A similar procedure grounded in a slight improvement of the method was
proposed by Newman and Watts [18]. Instead of rewiring edges, the addition model
starts with a k-regular graph G = (V,E) and then adds new edges, according to
probability p. As in the rewiring process, depending on the probability p, different
graph structures may appear: small world graphs if p is small and random graphs if
larger values of p are used.

This class of networks presents a high clustering coefficient for small values of p
as the procedure starts with a regular graph, which has a high clustering coefficient
value. However, the average path length falls significantly, since the random
rewiring or addition of an edge works as a shortcut in the network, decreasing
the distance among the vertices. This particular feature is extremely profitable in
communication networks and indeed resides in real world networks such as social
networks. As the global efficiency of the network (defined in Table 1.1) is based on
the distance among its elements, the overall efficiency of small world networks is
said to be improved comparing to regular networks.

1.3.4 Scale Free Networks

The dynamic behavior of real world systems leads to the emergence of another
important class of networks, known as scale free [2–4, 8]. Static models formerly
presented are not able to capture the constant growth of a large scale network or how
to attach new vertices and to connect them to existing ones. Scale free networks, in
contrast to random ER graphs that follow a Poisson distribution, are characterized
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by a power-law degree distribution, in which there is a small number of high-
degreed vertices and a large number of low-degreed vertices. The few vertices with
high degree are usually called hubs, resulting in a network with skewed degree
distribution. A power-law distribution follows the form P(k) ∼ k−γ , where k is the
degree (1 < k < ∞) and γ is an exponent (2 < γ < 3).

Barabási and Albert [24] introduced the idea of evolving networks and addressed
the origin of this power-law degree distribution in many real networks in a
pioneering work. As previously noticed, contrary to the idea that real networks could
be represented by random networks, it was proven that many real networks obey a
power-law degree distribution instead of a Poisson distribution. Examples include
the WWW, the Internet, railroads, and protein–protein interaction networks [4], just
to name a few.

The Barabási-Albert network, also called BA network, is generated through a
constructive procedure known as preferential attachment. The preferential attach-
ment is biased (not random), in which new vertices entering the network do not
connect uniformly to existing nodes, but attach preferentially to vertices of a higher
degree. This model better represents the evolving real world networks, creating
hubs in an unequal addition of new components. It starts with a small number
(m0) of connected vertices and assume that every time step a new vertex is added,
and m ≤ m0 edges are connecting the new vertex to m different vertices already
present in the network.The preferential attachment is incorporated assuming that the
probability Πi that a new vertex will be connected to the existing vertex i depends
on the degree ki of that vertex, so that Πi = ki/∑ j k j. After t time steps, the model
leads to a random network with t +m0 vertices and mt edges.

The main property of this class of networks is the extremely high hub degree.
This also means that the betweenness values of these vertices tend to be high, since
they can participate in many paths connecting vertices in the network. The average
path length of this class grows as log(n)/ log(log(n)) and thus displays the small
world property. A linear relationship between clustering coefficient versus number
of edges is found in a scale free network. This means that the clustering coefficient
increases linearly with density (CC ∼ O(ρ)). At last, it was observed that random
failures do not affect the usual operation of the network as the majority of vertices
are those with a small degree and the likelihood that a hub be affected is almost
minimum. On the other hand, if the vertices chosen to quit the network are specific,
it may be turned into a set of isolated graphs easily. A scale free network is presented
in Fig. 1.4a, while Fig. 1.4b shows a power-law degree distribution.

1.3.5 Summary of Network Models

Table 1.2 shows a summary of the features for each one of the network models
presented.

A comparison between complex and engineered networks was introduced in
the first section and optimization techniques can be applied in both contexts.
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Table 1.2 Network models’ features

Network model Features

Regular networks – High average path length
– High clustering coefficient

Random networks – Small average path length
– Small clustering coefficient
– Poisson degree distribution

Small world networks – Small average path length
– High clustering coefficient

Scale free networks – Small average path length
– High betweenness centrality
– Power-law degree distribution (small number of high-degreed

vertices and high number of low-degreed vertices)

To illustrate this idea, let us take a telecommunication network as motivation
to establish a comparison. Although engineering metrics have been used for a
long time as optimization criteria, it is possible to optimize complex metrics to
achieve similar objectives. Thus, four widely known metrics in traffic engineering
for telecommunication networks were chosen to establish our comparison: delay,
load balancing, resilience, and vulnerability. Table 1.3 presents the relation between
engineering and complex metrics.

1.4 Optimization Models for Complex Networks

As pointed out in Sect. 1.3, early work in complex systems has focused mainly
on how complex networks can be obtained by means of stochastic algorithms. In
contrast, this section is dedicated to introduce optimization models representing
networks that, if solved to optimality by exact solution algorithms, allow such
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Table 1.3 Engineering
metrics × Complex metrics

Telecommunication
metric Complex metric

Delay – Small average path length
– High betweenness centrality

Load balancing – High average path length
– Small betweenness centrality

Resilience – High average path length
– High clustering coefficient
– Poisson degree distribution

Vulnerability – Small average path length
– High betweenness centrality
– Power-law degree distribution

networks to exhibit complex features. Our goal is to show that some complex
features (such as small path length, high clustering coefficient and power-law
degree distribution), often desirable for engineered networks outside the complex
network domain, may arise as a result of deterministic optimization processes and
algorithms.

In order to attain the goals we have set, we start with a network given by a
directed graph D=(V,A) having weights and capacities assigned to its arcs and state
the core optimization problem we deal with in the section, the Optimal Topology
Design Problem (OTDP). We formulate OTDP as two different Integer Programs
(IPs) and describe algorithms for solving each of them. As we detail the models and
algorithms, we review some basic aspects on Integer Programing. Advantages of one
program (and associated algorithm) over the other are also highlighted. We close the
section indicating how small modifications in the core optimization problem allow
us to obtain engineered networks where other complex features arise.

1.4.1 The Optimal Topology Design Problem

The OTDP for complex networks was introduced by [25, 26] and is defined as
follows. Given a complete directed graph D = (V,A) with set of vertices V and
arcs A, costs {cij = cji ≥ 0 : ∀i, j ∈ V, j �= i} assigned to the arcs of A, and a wire
budget B, OTDP consists in defining a subset S of arcs of A such that ∑(i, j)∈S cij ≤ B,
the subgraph (V,S) of D is connected and exhibits complex network features. By
minimizing the average path length among all pairs of vertices under a limited
budget, complex features may arise as we show in the sequence.

An IP to model an optimization problem like OTDP can be defined in many
different ways, depending on our choices to select decision variables, to state
the constraint set and the objective function (the function we wish to minimize).
Usually, there is a close connection between the way the model is formulated and
the algorithms we devise to solve it.
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Two Integer Programing Formulations for OTDP were proposed in [26]. In the
first one, named Arc-Flow Formulation, connectivity between each pair of vertices is
enforced through network flows [27]. In the second one, the Arc-Path Formulation,
connectivity is guaranteed by imposing that one path connecting every pair of
vertices must be available in the subgraph of D implied by the arcs selected in a
solution. In the next two sections, we discuss the two formulations. Each one leads
to a different exact algorithm.

1.4.1.1 Arc-Flow Formulation and BB Algorithm

Let us assume that, given D = (V,A), A−j and A+
j respectively denote the set of arcs

arriving and leaving j ∈ V . To model OTDP, we make use of the following sets of
decision variables:

• {xst
ij ∈ R+ : (i, j) ∈ A,∀s, t ∈ V,s �= t}. Variable xst

ij indicates the amount of flow
of a commodity that is sent from vertex s to t, that passes through arc (i, j).

• {mij ∈ {0,1} : (i, j) ∈ A}. Variable mij takes value 1 if arc (i, j) is included in the
solution we are aiming for (0, otherwise).

OTDP can now be stated as the following IP

w = min ∑
s∈V

∑
t∈V

∑
(i, j)∈A

xst
ij (1.1)

s.t.

∑
j∈A+

s

xst
sj = 1 ∀s, t ∈V,s �= t, (1.2)

∑
i∈A−t

xst
it = 1 ∀s, t ∈V,s �= t, (1.3)

∑
i∈A−j

xst
ij − ∑

k∈A+
j

xst
jk = 0 ∀s, t, j ∈V,s �= t,s �= j, t �= j, (1.4)

∑
(i, j)∈A:i< j

cijmij ≤ B, (1.5)

xst
ij −mij ≤ 0 ∀s, t ∈V,∀(i, j) ∈ A, (1.6)

mij−mji = 0 ∀(i, j) ∈ A, (1.7)

0≤ xij ≤ 1 ∀(i, j) ∈ A, (1.8)

mij ∈ {0,1} ∀(i, j) ∈ A. (1.9)

Constraints (1.2)–(1.4) impose flow balance conditions for each pair of vertices
s, t. Note that (1.2) ensures that one unity of a commodity will be sent from s
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to t, for every possible pair of distinct vertices s, t ∈ V , while (1.3) guarantees
that every commodity sent by s to t will arrive its destination vertex. Constraints
(1.4) guarantee the flow conservation of a commodity associated with the pair s, t
in vertices that are neither the origin nor the destination of the flow. Inequalities
(1.6) couple flow and binary variables, imposing that an arc cannot be used to send
flow if it is not included in the solution. Constraints (1.7) impose that whenever
arc (i, j) is selected to be in a solution, so is ( j, i). The knapsack inequality (1.5)
assures that the selected arcs do not violate the budget. Note that whenever arcs
(i, j) and ( j, i) are included in the solution, the cost cij is considered only once
in the left hand side of (1.5). Finally, objective function (1.1) aims to minimize
the average path length among all pairs of vertices. Note that in model (1.1)–
(1.9), variables xst

ij were not imposed to assume binary values. However, due to
constraints (1.6) and (1.9), whenever {mij : (i, j) ∈ A} variables assume integer
values, {xst

ij : (i, j) ∈ A,s, t ∈V,s �= t} variables also do.
One approach to solve IPs like (1.1)–(1.9) is to provide valid lower w and upper

w bounds on the optimal objective function w, such that w = w = w. Usually, this
task is conducted by an algorithm that provides a sequence of non-decreasing lower
bounds (through relaxations or from duality) and non-increasing upper bounds
(through heuristics, for example) that, in a given moment, converge to the same
(optimal) value. One widely known algorithm to solve IPs like (1.1)–(1.9) that
explores such idea is the BB method (see Chap. 7 in [28] for further details).
Depending on how the lower bounds are calculated, different types of BB algorithms
arise. In the sequence, we illustrate a Linear Programing (LP) based BB algorithm
tailored for OTDP model (1.1)–(1.9).

For the particular case considered here, BB calculates lower bounds on w through
LP relaxations of model (1.1)–(1.9). A LP relaxation of model (1.1)–(1.9) is given
by the LP problem obtained when constraints (1.9) are replaced by their continuous
version: {0≤ mij ≤ 1 : (i, j) ∈ A}. Note that when the integrality on mij variables is
relaxed, the set of feasible solutions of the (relaxed) Linear Program contains all the
solutions of the IP it derived from. Consequently, the optimal value of the (relaxed)
Linear Program is a valid lower bound on w. Usually, in LP based BB algorithms, the
LP relaxations of the IP are computed through the Simplex Algorithm [29] proposed
by George Dantzig.

Assume now that the optimal solution to the LP relaxation of (1.1)–(1.9) is given
by vector (x,m) and that the optimal objective function to the LP relaxation is w.
If (x,m) has only 0−1 entries, constraints (1.9) are satisfied and, thus, (x,m) is an
optimal solution to the original IP as well. Note also that if (x,m) has only 0−1
entries, w provides, at the same time, valid lower and upper bounds for w.

Let us now assume that (x,m) has at least one entry (say, variable mpq : mpq �∈
{0,1} for a given (p,q) ∈ A) that is not binary and that a valid upper bound on w,
w, is available (if not, set w = ∞). If w < w, to proceed with the resolution, BB must
resort to some kind of enumeration of the solution space. This is accomplished by
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following the divide and conquer paradigm. Two new IPs are created, with the same
objective function (1.1). In one of them, one variable for which the corresponding
entry in (x,m) is not integer is imposed to be at its (integer) lower bound. In
the other, the same variable is fixed to its (integer) upper bound. More precisely,
assuming that mpq: mpq �∈ {0,1} is the branching variable, we create two new IPs.
The constraint set of the first is (1.2)–(1.9) and mpq = 0, while the constraint set
of the second is (1.2)–(1.9) and mpq = 1. Note that if the two new IPs are solved to
optimality, we actually solve the original one. This is true since the whole domain of
the original program is covered by the union of the domains of the two programs that
derived from it. Therefore, by following the approach outlined above, the problem of
solving the original IP was replaced by the problem of solving two new IPs, each one
defined on a smaller domain. Let us call the IPs that were created as a consequence
of branching as IP subproblems or simply subproblems. Both are stored in a list of
subproblems to be investigated. After implementing branching, BB iteratively picks
one subproblem from the list and tries to solve it, using the LP relaxation procedure
outlined above. BB finishes when the list of subproblems is empty and, therefore,
the original IP was solved.

When a subproblem in the list is picked and its LP relaxation is computed, the
following cases may occur:

• The LP relaxation gives a lower bound w : w<w. We proceed as explained above,
picking a variable to branch on and creating two new subproblems that are added
to the list.

• The LP relaxation is unfeasible. In this case, the IP subproblem is unfeasible as
well and the subproblem is said to be pruned by unfeasibility. In this case, BB
just picks another subproblem from the list and the search goes on.

• The LP lower bound implied by the LP relaxation is equal or greater than the
best known valid upper bound w for the original IP. In this case, it does not make
sense to branch and to create two new subproblems from the current one, since
any feasible solution to them costs at least w. The subproblem is thus said to be
pruned by bounds.

• The solution to the LP relaxation is integer feasible. As explained above, the LP
relaxation solution solves the subproblem and no branching is needed. In this
case, the subproblem is said to be pruned by optimality. If the implied upper
bound improves on the best known upper bound, the latter is updated.

Putting in another way, BB is a divide and conquer algorithm that partitions the
original solution space into a number of smaller subsets and then solves the resulting
smaller IPs in a recursive fashion. Usually, the algorithm starts with an upper bound
w = ∞. As new subproblems are solved and their LP relaxations turn out to be
integer feasible, the best upper bounds are updated. At the end, when the list of
subproblems is empty, the best lower and upper bounds match.

It is common to associate the set of subproblems in the list with a tree, called
the BB search tree. Each node in the tree connects to its parent (the subproblem
it derived from) and to its children (the subproblems that were originated from it).
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Therefore, we interchangeably use the terms IP subproblem or tree node to refer to
one subproblem in the list. The original IP, in this sense, is called the root node of
the search tree.

The practical performance of BB algorithms, i.e., the rate in which the sequence
of the best lower and upper bounds converge to the optimal solution, depends
heavily on the following aspects:

• The quality of the lower bounds implied by the LP relaxations of the subprob-
lems. The stronger the lower bounds (i.e., the greater the w figures), the more
likely BB becomes to prune subproblems by bounds. As a consequence, fewer
subproblems are created.

• The computing time needed by the Simplex Algorithm to solve each LP relax-
ation. Usually, the larger the number of constraints and variables in the Linear
Program, the larger the computing time needed to solve the LP relaxations.

• How fast valid upper bounds derived from integer feasible solutions are found
through the search. In order to prune nodes by bounds, BB must have a valid
upper bound on w.

• How variables on which to branch are chosen (the branching policy).
• How subproblems are picked from the list (the node selection policy). In order

to choose a node to explore from the list, many approaches may be considered,
such as the breadth first, the depth first and the best bound. In the breadth first,
the nodes of the tree are explored in the same order in which they were created.
Depth first selection policy explores the last node created, going deeper in the
BB tree. The best bound or best first chooses the node having the lowest value of
the LP relaxation among all BB nodes.

Several commercial solvers for IPs that operate under the LP based BB frame-
work are available. Such optimization packages include an implementation of the
Simplex Algorithm, as well other procedures to manage the BB tree (to implement
branching, node selection, etc.).

For solving OTDP by a LP based BB algorithm, we have chosen the state-of-the-
art commercial solver CPLEX [30]. The advantage of the LP based BB approach
we just described for OTDP is that, after model (1.1)–(1.9) is stated and loaded into
an optimization package, little additional programing effort is needed, once one has
in hands an Integer Programing solver like CPLEX.

Formulation (1.1)–(1.9), however, has O(n4) variables and constraints. There-
fore, even with the help of a highly sophisticated optimization package like CPLEX,
only OTDP instances of limited size are expected be solved to proven optimality by
LP based BB algorithms that rely on this formulation. Therefore, the drawback of
the approach we have just described is that, in practice, only limited size instances
of OTDP can be actually solved in a reasonable amount of time.

In order to overcome this difficulty, in the following, we present a reformulation
for OTDP that, despite having exponentially many variables, can lead to a spe-
cialized BB procedure, named Branch-and-price (BP) algorithm [14, 15]. Roughly
speaking, the procedure consists in applying the Delayed Column Generation
method [31] to derive lower bounds to be used in the search.
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Another motivation for using the Delayed Column Generation method is to
provide stronger LP bounds through the BB search. In doing so, fewer BB subprob-
lems should be solved. In the sequence, we briefly explain how the technique works,
for the particular case of OTDP. For additional details regarding Delayed Column
Generation algorithms and Branch-and-price implementations, see [14, 31–33].

1.4.1.2 Arc-Path Formulation, Delayed Column Generation
and Branch-and-Price Algorithm

Given a pair of vertices s, t ∈ V,s �= t, assume that Pst denotes the set of all simple
directed paths connecting s to t in D. The main idea of the Arc-Path Formulation to
enforce connectivity is to impose that, for every s, t, out of all paths in Pst, exactly
one that uses only the arcs included in the solution will be used to compute the
average paths we aim to minimize.

Accordingly, in addition to binary variables mij defined previously, our second
model uses binary variables {λ st

p : s, t ∈V,s �= t,∀p∈ Pst} (taking value 1 if path p∈
Pst is selected, 0, otherwise) to choose the paths. Assume that ap

ij ∈ {0,1} denotes a
binary parameter that indicates whether arc (i, j) belongs (ap

ij = 1) or not (ap
ij = 0)

to path p. The Arc-Path Formulation for OTDP is given by the IP:

w = min ∑
s∈V

∑
t∈V

∑
p∈Pst

|λ st
p |λ st

p (1.10)

s.t.

∑
p∈Pst

λ st
p = 1 ∀s, t ∈V,s �= t, (1.11)

∑
(i, j)∈A

cijmij ≤ B, i < j, (1.12)

∑
p∈Pst

ap
ijλ

st
p −mij ≤ 0 ∀s, t ∈ N,∀(i, j) ∈ A, (1.13)

λ st
p ∈ {0,1} ∀s, t ∈V,∀p ∈ Pst, (1.14)

mij ∈ {0,1} ∀(i, j) ∈ A, (1.15)

where |λ st
p | stands for the number of arcs in path p. As before, the objective function

(1.10) minimizes the average path length among all pairs of vertices. Convexity
constraints (1.11) ensure that exactly one path connecting every pair of distinct
vertices s, t will be selected. Inequalities (1.13) assure that if at least one selected
path crosses arc (i, j), this arc should be included in the solution.

Formulation (1.10)–(1.15) involves exponentially many λ st
p variables, one for

each possible path connecting each pair s, t of vertices in D. Therefore, if we plan



1 Optimization in Designing Complex Communication Networks 19

to use formulation (1.10)–(1.15) to provide LP lower bounds in a BB algorithm, we
have to find a way to deal with the large number of columns (variables) in the model.
It should be clear that, even for very small instances (for small values of |V |), the
memory requirements to load the LP Relaxation of (1.10)–(1.15) into a computer
are huge. Therefore, to derive lower bounds from (1.10)–(1.15), we must deal with
the excessive number of columns in our formulation implicitly.

The exact algorithm we plan to implement to solve model (1.10)–(1.15) is a
LP based BB method, where the LP relaxations of the subproblems are solved
through the Delayed Column Generation approach [31]. As its name suggests, the
technique for solving the LP problems (relaxations) does not consider all columns
at once. Instead, it starts with a restricted set of columns, solves a Linear Program
defined over that restricted set of columns (usually this Linear Program is called the
Restricted LP Master or simply Restricted Master Program) and adds new columns
on-the-fly, only when needed. A new Restricted LP Master, enlarged with new
columns, is then solved. The procedure iterates until no further columns need to
be added. At this point, the Linear Program has been solved. Typically, the total
number of columns in the last Restricted Master Program is a tiny fraction of the
total number of columns.

Let us now describe, more precisely, how the Delayed Column Generation
proceeds to solve the LP Relaxation implied by (1.10)–(1.15). Firstly, recall that
the LP relaxation of (1.10)–(1.15) is the Linear Program obtained by replacing
constraints (1.14) and (1.15) by their continuous counterparts. Assume that dual
variables π st ∈R,γ ≤ 0 and β st

ij ≤ 0 are associated with constraints (1.11), (1.12) and
(1.13), respectively, in the LP Relaxation of (1.10)–(1.15). The LP Dual associated
wtih the LP relaxation of (1.10)–(1.15) is given by:

max ∑
s∈V

∑
t∈V

π st +Bγ (1.16)

s.t.

π st + ∑
(i, j)∈A

ap
ijβ

st
ij ≤ |λ st

p | ∀s, t ∈V,s �= t,∀p ∈ Pst (1.17)

cijγ− ∑
(s,t)∈V

β st
ij ≤ 0 ∀(i, j) ∈ A, (1.18)

π ∈ R, (1.19)

γ ≤ 0, (1.20)

β ≤ 0. (1.21)

Let us now consider what happens when, instead of including in the LP relaxation
of (1.10)–(1.15) all the columns associated with the λ st

p variables, we formulate
and solve another Linear Program, related to it, that involve a small subset of
these columns. More precisely, let us assume that we have formulated the LP
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Relaxation of (1.10)–(1.15), in terms of a restricted set of λ st
p variables, defined

only for those paths included in restricted sets Cst ⊂ Pst,∀s, t ∈ V,s �= t. Of course,
for our procedure to work, it is mandatory that each Cst has very few paths, i.e.,
|Cst|<<|Pst|. Then assume that, given the sets Cst,∀s, t, the associated Restricted
Master Program (RMP) reads:

min ∑
s∈V

∑
t∈V

∑
p∈Cst

|λ st
p |λ st

p (1.22)

s.t.

∑
p∈Cst

λ st
p = 1 ∀s, t ∈V,s �= t, (1.23)

∑
(i, j)∈A

cijmij ≤ B, i < j, (1.24)

∑
p∈Cst

ap
ijλ

st
p −mij ≤ 0 ∀s, t ∈ N,∀(i, j) ∈ A, (1.25)

λ st
p ≥ 0 ∀s, t ∈V,∀p ∈Cst, (1.26)

mij ≥ 0 ∀(i, j) ∈ A. (1.27)

Note that the Linear Program (1.22)–(1.27) is exactly the LP Relaxation associ-
ated with (1.10)–(1.15), if sets Pst are replaced by Cst for all s, t ∈V,s �= t.

Consider now that (1.22)–(1.27) has one basic feasible solution λ̂ , m̂. Let π̂, γ̂
and β̂ be the corresponding optimal dual solutions. LP Duality theory states that, if
for all pairs s, t, no path p ∈ Pst \Cst violates the dual constraints

π̂ st + ∑
(i, j)∈A

ap
ijβ̂

st
ij ≤ |λ st

p |, (1.28)

then, λ̂ , m̂ solves the LP relaxation of (1.10)–(1.15) and the corresponding optimal
LP objective function value gives a valid lower bound w on w. Otherwise, for a given
pair s, t there must be a path in Pst \Cst that violates (1.28) that must be included in
Cst and a new RMP must be formulated and re-optimized.

The problem of finding a path p ∈ Pst \Cst such that the corresponding dual
constraint (1.28) is violated or to provide a certificate that there is no violated dual
constraint is called the pricing problem. If after solving the pricing problems for all
pairs of distinct vertices s, t, no constraint (1.28) is found to be violated, the Column
Generation procedure stops and the LP relaxation of (1.10)–(1.15) is computed.
Otherwise, if a solution (path) p to one of the s, t pricing problems violates the
corresponding dual constraint, a new column (variable λ st

p ) associated with the path
p ∈ Pst \Cst that violates the constraint is included in the new Restricted Master
Program. The new RMP, enlarged with the sets of paths associated with violated
constraints (1.28), is re-optimized (through the Simplex Algorithm). The Column
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Generation procedure goes on until no further dual constraints are found to be
violated.

Let us now discuss how, for a given pair s, t ∈V , the associated pricing problem
is solved. Firstly, recall that |λ st

p | denotes the number of arcs in path p. Define the
reduced cost of a path p∈Pst as cst

p :=−π̂ st+∑(i, j)∈p(1− β̂ st
ij ). In the previous definition,

we allow ourselves the abuse of notation (i, j) ∈ p to mean the arcs that are included
in path p. Note that constraint (1.28) associated with path p ∈ Pst is violated if
and only if cst

p < 0. Instead of checking for the reduced cost of each possible path
p ∈ Pst \Cst, the pricing problem is formulated as an optimization problem as well.
It involves finding a constrained shortest path connecting s to t in digraph D, under
arcs costs given by {1− β̂ st

ij : (i, j) ∈ A} (note that these costs are non negative since

β̂ st
ij ≤ 0). The paths are constrained to use a budget that does not exceed B. If the

sum of the optimal constrained path length plus −π̂ st is negative, the corresponding
path has negative reduced cost, i.e., a violated constraint (1.28) has been found. For
details on algorithms for the resolution of the Resource Constrained Shortest Path
Problems see [34, 35]. For the particular case considered here, for each pair s, t the
associated pricing problem can be solved in O(Bn) time.

As we pointed out, when no more columns with negative reduced costs are found,
the LP relaxation of the Arc-Path formulation has been computed. If the LP solution
is integer, it solves the original problem (1.10)–(1.15). Otherwise, being fractional,
we must resort to branching.

It should be clear that applying a traditional BB algorithm for the RMP obtained
at the end of the column generation process does not guarantee that an optimal (nor
even feasible) solution to OTDP will be found. In contrast to that, we must embed
the whole Delayed Column Generation procedure in the BB framework, leading to
what is called a Branch-and-price algorithm, where new columns are likely to be
generated at each node in the enumeration tree.

One key issue in the implementation of BP algorithms is how branching
is performed [36, 37]. Since at each node of the enumeration tree the pricing
subproblems are called repeatedly and solving them accounts for much of the
computing time in BP algorithms, ideally, branching rules should not destroy their
structure (in the OTDP case, the constrained shortest path structure).

To illustrate, assume that λ st
p is fractional and BP implements branching on

variable dichotomy (by imposing λ st
p = 1 and λ st

p = 0 on the two child nodes). While
the first branching decision can be easily accommodated, the latter cannot. Note that
for the first branch (λ st

p = 1), it is sufficient to remove from the associated RMP
all the other columns associated with paths that connect s, t and not to solve the
subproblem defined by the pair s, t. However, the λ st

p = 0 branch cannot be enforced
by solving a simple constrained shortest path problem. This is true since there is no
guarantee that variable λ p

st will not be regenerated again and again. Although this
issue could be tackled by finding the next cheapest shortest path, as we go deeper
in the enumeration tree and many other decision variables have been fixed to 0,
the complexity of finding such next shortest paths increases and solving the pricing
subproblems become more and more inefficient.
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In order to go around the difficulty associated with the λ p
st = 0 branch, we

implemented a branching rule proposed in [38]. The idea to deal with the λ st
p = 0

case is to create several child nodes, one for each arc in path p. In order to guarantee
that the path will not be regenerated, we create |λ st

p | subproblems and, in each of
these, we impose that mij = 0 for an arc (i, j) in path p. Indeed, in each of these
branches, we are avoiding that path p (and any other path that includes (i, j)) to be
priced once again. The main advantage of this additional branching rule is that it
does not affect the structure of the pricing problem. It only requires the elimination
of the corresponding arc from the input graph, when solving the constrained shortest
path problem between s and t.

In our BP implementation, the selection of which variable to branch on is based
on the fractional λ p

st variable associated with the maximal integer unfeasibility
(farthest from integrality). This means that among all paths of all s, t pairs, the
variable closest to 1

2 is to be selected. A best-first strategy for selecting nodes from
the list is also implemented.

In contrast to solving OTDP through the LP BB algorithm described in Sect.
1.4.1.2, the implementation of a BP algorithm like the one described here imposes
additional challenges. For example, we can not rely on CPLEX’s pre-implemented
procedures for managing the search tree. We only use the CPLEX LP solver in our
own code. All other procedures, being problem specific, have to be implemented by
ourselves. On the positive side, BP algorithms typically scale much better than BB
methods based on network flow formulations. Consequently, BP allows us to solve
larger instances of OTDP.

1.4.1.3 Computational Results

In this section, we report computational results for OTDP, obtained with both
formulations/algorithms discussed previously. Our aim is to illustrate the main
advantages of the Branch-and-price method based on the Arc-Path formulation for
the problem.

Different network sizes n ∈ {30,45,60} were tested, each one with eight
budget values B in the interval [bmin,bmax]. It was observed that the small world
phenomenon is achieved for small values of probability p (adding or rewiring links)
in the stochastic model presented in Sect. 1.3.3. Following the same idea, the sample
budget values grow in a logarithmic scale, to better achieve the desired topologies,
since they tend to be sparse. Parameter bmin corresponds to the cost of a minimum
spanning tree of D (regardless of arc orientations) while bmax = ∑(i, j)∈A:i< j cij. We
consider that all arcs have unitary costs (cij = 1, ∀(i, j) ∈ A).

All computational results reported in this section were conducted with a Intel
Xeon Core 2 Quad machine, with 2GHz and 8Gb of RAM memory, running under
Linux operating system. CPLEX release 10.2 was used for both algorithms.

Since computing the LP relaxations of the Arc-Flow formulation are very time
consuming, for that model, we only report associated LP lower bounds, for the root
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node. For the Arc-Path formulation, on the other hand, we report results associated
to the LP relaxation as well as results given by the full Branch-and-price method.

In Table 1.4, we present results for both formulations. The first two columns
in the table indicate the network size n and the budget value B. In the next two
columns, we report GAP (in % figures), the LP duality gap implied by the Arc-Flow
formulation and tLP, the time (in seconds) taken to evaluate the LP relaxation bound.
In the next three columns, similar entries are given for the Arc-Path Formulation: the
implied LP duality gap (GAP), the time tLP (also in seconds) taken by the Delayed
Column Generation, at the root node, to evaluate the bound, and, the number of
columns (#col) generated at the root node. In the last three columns, we provide
more detailed results for the Branch-and-price search tree. They are the optimal
solution values (under headings opt), the total time tBP (in seconds) spent in the
search, the total number of columns (#col) priced out, and finally, the total number
of nodes (#nod) investigated in the tree.

Results in Table 1.4 indicate that BP was able to solve all instances for each
network size. As one can observe, the smaller the budget B, the larger the CPU time
to solve the instances to proven optimality. These results confirm our expectations
that harder OTDP instances have small values of B. Sparse graphs tend to be harder
since each single edge represents a high contribution minimizing the average path
length and where it should be placed may be tough. Although the LP bounds given
by both formulations are the same for these instances, the time taken to compute the
bounds by the Delayed Column Generation algorithm is just a tiny fraction of the
times needed to compute them by the Arc-Flow Formulation. Since the number of
nodes explored in the BP tree is very small, the total computing time needed by BP
is also very small compared to the computing time needed to evaluate the LP bound
given by the Arc-Flow Formulation.

1.4.2 Exploring Objective Functions and Constraints

As mentioned before, depending on the desired complex network features and prop-
erties (network structure, function, and the different metrics), different criteria may
be explored in the objective function or even in the constraints of an optimization
problem.

In what follows, minor modifications into the core optimization problem, OTDP,
are introduced. These modifications account for different objective functions and
constraints in order to capture other network features into our mathematical models.
For simplicity, such functions and constraints are formulated to replace or to be
appended in the Arc-Flow Formulation. Equivalent counterparts could be presented
in terms of the variables of the Arc-Path Formulation. The optimization problems
discussed next, thus, correspond to variants of OTDP, in which some complex
metrics and network models are explored.

Generally, the formation of hubs (high-degreed vertices) is associated with a sort
of vulnerability to external attacks and does not prioritize the resilience [39, 40].
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A practical way to avoid them is to impose constraints limiting vertex degrees from
above. Expected topologies tend to show a regular structure as the vertex degrees
will be close to the average value, a regular structure in its characteristic of high
average path length and a small betweenness for all nodes. Compared to ODTP
model (1.10)–(1.15), the IP

min ω (1.29)

s.t.

∑
j∈V

mij ≤ ω , ∀i ∈V, (1.30)

∑
(i, j)∈A

cijmij = B, i < j, (1.31)

(1.2)–(1.4), (1.6)–(1.9)

makes use of a new decision variable ω that means the maximum degree of a node
in a solution, in addition to xst

ij and mij variables that keep their previously defined
meaning. Note that constraints (1.30) assure that the degree of each vertex is no
more than ω , the variable that it is minimized through objective function (1.29).
Another important difference between the two models is that inequality (1.12) is
now turned into equality form, constraint (1.31). In this case, different topologies
can be designed by varying the budget value that needs to be completely spent
adding B arcs of unitary cost to the network.

Applying the complex metric to minimize the maximal degree of each vertex
in the telecommunication context, implies to improve the load balance and the
resilience aspects and consequently to reduce the vulnerability.

A third formulation can be proposed with the objective of decreasing the
maximum distance (in number of hops) between pairs of vertices in the network
and, therefore, leading to a network with smaller average length. Following this
idea, the created network is characterized by the small world phenomenon and scale
free properties since it can generate a subset of high-degreed vertices with high
betweenness and a subset of low-degreed vertices. To attain this goal, we formulated
the next model:

min χ (1.32)

s.t.

∑
(i, j)∈A

xst
ij ≤ χ , ∀s, t (1.33)

(1.2)–(1.4),(1.6)–(1.9), (1.31).

The model uses variable χ that represents the maximum number of arcs in any
path connecting two vertices of the network. Constraints (1.33) assure that only
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paths with less than χ arcs can be used in a solution. The model can be seen as a
telecommunication problem where the objective is to minimize delay, a well known
quality of service (QoS) metric in the context of routing problems.

The objective functions of both problems use number of arcs to define ω and
χ . Therefore, a mono-objective problem can also be obtained considering the sum
of both functions. In this case, it is possible to balance the minimization of the
maximum path length of the network and the maximum degree of the vertices in the
same model:

min ω + χ (1.34)

s.t.

∑
j∈V

mij ≤ ω , ∀i ∈V, (1.35)

∑
(i, j)∈A

xst
ij ≤ χ , ∀s, t (1.36)

(1.2)–(1.4),(1.6)–(1.9), (1.31).

Note that the objective function (1.34) seeks a trade off between average path
length and vulnerability to external attacks, since it minimizes the sum of ω and χ .
All the complex characteristics emphasized for both models are competing for the
optimal structure. For large and sparse networks, the χ variable has a great influence.
On the other hand, for small and dense networks the variable ω will predominate in
the network structure.

In the next model, capacities {Fij ≥ 0 : (i, j) ∈ A} are assigned to the use of each
arc in D. The value Fij limits from above the number of paths that make use of arc
(i, j), in order to connect two vertices in a solution. Assume that a variable α is
associated with the maximum occupation of any arc in the network. The occupation
of an arc means the fraction of its capacity that is used in a solution.

min α (1.37)

s.t.

∑
s∈V

∑
t∈V

xst
ij ≤ αFij, ∀(i, j) ∈ A, (1.38)

0≤ α ≤ 1, (1.39)

(1.2)–(1.9),

The model attempts to balance the flow distribution in the whole network min-
imizing the maximum occupation of an arc. Note that constraints (1.38) guarantee
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that the occupation of arc (i, j) is no more than α times its capacity Fij. Solutions to
this model tend to follow a regular structure, where the average path length cannot
be too small since capacity constraints on the use of the arcs are now imposed and
the betweenness is small for majority of the vertices.

Another result is that the associated telecommunication network is likely to show
more load balancing and resilience because the balanced flow distribution allows
smaller losses in case of failure.

It may be the case that, under a very tight budget constraint, not all connections
between pairs of vertices of V can be established. In such cases, it may be interesting
to have a model that maximizes the number of pairs of vertices that actually have a
path connecting them. The next model represents this case. The model uses {θ st :
∀s, t ∈ V,s �= t} variables to indicate whether or not there will be a directed path
connecting s to t in the solution. The model reads:

min ∑
s∈V

∑
t∈V

(1−θ st) (1.40)

s.t.

∑
j∈A+

s

xst
s j = θ st ∀s, t ∈V,s �= t, (1.41)

∑
i∈A−t

xst
it = θ st ∀s, t ∈V,s �= t, (1.42)

θ ≥ 0, (1.43)

(1.4)–(1.9).

Note that the right hand side of the convexity constraints (1.41) and (1.42) may
take a zero value. When that happens, no path to the corresponding pair of vertices
will be available in the solution. The objective function (1.40) thus maximizes the
number of pairs of vertices that can be connected. None of the complex metrics is
being considered in this case, but in the context of telecommunications the objective
is to maximize the number of requests accepted.

1.4.2.1 Results and Discussion

Let us now illustrate how different network features arise when OTDP and its
variations introduced in the last section are solved for different values of the
budget B.

Firstly, let us evaluate the impact of the choice of the budget B on the optimal
solution to the core ODTP, given by IP (1.10)–(1.15). In Fig. 1.5, we present
the optimal network topologies found for 8 different values of B in the range
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Fig. 1.5 Optimal solutions for eight budget values, minimizing objective function (1.10), n = 15

[bmin,bmax] for n = 15.1 Recall that, in this case, we are minimizing objective
function (1.10). The upper-left-most figure accounts for the smallest value of B in
our test bed, while the lower-right-most figure accounts for the largest value of
B considered in our study. Note that smaller budgets lead to a simple spanning
tree topology (Fig. 1.5a) or the union of a spanning tree and just few more
arcs (Fig. 1.5b, c). Increasing the budget, topologies showing the small world
phenomenon arise, where the average path length is small, the clustering coefficient

1The BP algorithm outlined previously is capable of solving OTDP instances with up to 60 vertices
in less than one desktop computer hour. However, we depict instances with only 15 vertices since,
as n and B grow, the higher number of crossing arcs does not allow one to identify the features we
plan to discuss.
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a b c
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g h

e f

Fig. 1.6 Optimal solutions for eight budget values, minimizing objective function (1.29), n = 15

is high and graph densities are low (see Fig. 1.5d–f). For such intermediate values
of B, we also identify the formation of hubs, associated with a power-law degree
distribution. On the other hand, budget values near bmax induce dense graphs (Fig.
1.5 g) and finally a complete graph in Fig. 1.5h. In this sense, the budget value B
plays here a similar role played by the probability of addition or rewiring arcs in
random procedures for generating network topologies. The main feature of this set
of topologies is the extremely small average path length. As mentioned before, the
formation of hubs is crucial to reduce the average path length in the whole network.

Figure 1.6 presents network topologies found when optimizing objective (1.29),
i.e., when the maximum vertex degree is minimized. As before, the upper-left-
most figure accounts for the smallest value of B. The smallest budget value leads
to a chain topology (Fig. 1.6a), with very high average path length. As the budget
increases a bit, we obtain a ring (Fig. 1.6b) and a ring with few extra arcs, (Fig. 1.6c),
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Fig. 1.7 Optimal solutions for eight budget values, minimizing objective function (1.34), n = 15

for which the solution still presents high average path length. Increasing the budget
value a bit further, average length starts to decrease, improving the communication
efficiency of the network (see Fig. 1.6d–f). We clearly observe that hub formation is
indeed avoided. Budget values near bmax also induce dense graphs, but with fewer
hubs (Fig. 1.6g) and, finally, a complete graph in Fig. 1.6h. Topologies indicated
in Fig. 1.6 directly contrast to the previous set. The average path length is much
higher due to the regular structure. However, random failures are less dangerous in
this case.

Lying between minimizing the average path length and the maximum vertex
degree, objective (1.34) leads to intermediate topologies, if compared to the
previous solutions. Figure 1.7 illustrates the case where objective function (1.34)
is minimized. Once again, by varying the budget values, different topologies arise.
Figure 1.7a–c are characterized by fragments of a regular structure together with
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some additional arcs connecting opposite vertices, that contribute to decrease the
average path length. As the budget increases, we observe that the degrees increase as
well, but not to the point of generating hubs (see Fig. 1.7d–f). As expected, budget
values near bmax induce dense graphs (Fig. 1.7g, h). By the way the two metrics
were combined into the objective function, the interesting aspect about solutions in
Fig. 1.7 is that they share features like regularity and hub formation. Topologies like
these may be quite interesting in engineered networks where one seeks for a certain
efficiency in communication and a level of robustness against possible failures.

1.5 Heuristic Approaches

High computing times involved in LP based BB algorithms (and in BP as well)
preclude their use to solve huge network optimization problems. In such cases,
we must resort to heuristics. Differently from exact approaches, heuristics are
concerned in seeking good solutions, not necessarily the optimal one. They have
been applied in the solution of several practical problems. The progress in that
approach gave rise to a set of metaheuristics [41, 42]. Metaheuristics are based
on stochastic selection and iteratively seek for an improved candidate solution
regarding a given measure of quality. Despite not guaranteeing that an optimal
solution will be found, quite often they are capable of providing near-optimal
solutions if properly implemented. In this section, we present related work in which
metaheuristics were applied in order to create complex network topologies. In the
following we present three models that have proven their merit for generating
networks with complex features and share the same principle: desired topologies are
generated by means of randomized algorithms. It is important to emphasize that all
models were developed independently and although each approach aimed to create
complex topologies, each one formulated a different starting optimization problem
in order to attain that goal.

1.5.1 Small World Optimization Algorithm

In order to achieve an efficient communication system in which the information
among entities should be exchanged as fast as possible, one aims to minimize
the average path length, taking into account that it is wasteful to wire everything
to everything else. An optimization model based on simulated annealing [43] is
proposed for that purpose in [44]. The idea is to investigate whether the emergence
of small world topologies could arise as a tradeoff between maximal connectivity
(small path length) and minimal wiring (physical distance as a goal criterion).

The input k-regular graph is composed by vertices symmetrically placed along
a ring, similar to the WS model. The size of the graph, as well as the total number
of edges is fixed. Given a weighting factor μ ∈ [0,1], the procedure minimizes the
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function O = μL+(1− μ)W , where L and W , respectively, denote the normalized
average path length among all pairs of vertices and the normalized wiring cost
(which corresponds to the Euclidean distance between pairs of vertices). The
characteristic path length L is normalized by L(0) (which is the path length in
the corresponding k-regular network); W (which is a physical distance measure)
is normalized by the total wiring cost that results when the edges at each vertex
are the longest possible, namely, when each vertex is connected to its diametrically
opposite vertex, and to the vertices surrounding it.

By weighting two goals into the objective function the optimization of either
one or the other will result in two extremes. At μ = 0, when the optimization lies
on minimizing the cost of wiring edges, a regular network emerges with a uniform
degree and a high average path length (L ∼ n). On the other hand, at μ = 1, when
only the average path length is minimized, the resulting network is random (L ∼
logn). At intermediate values of μ , the emergence of hub vertices is observed, due
to the contribution of L to the objective function. Moreover, due to the contribution
of W , hubs tend to be formed by connections to the closest vertices. Also, in order
to reduce the path length, hubs may appear connected. Thus, opposite to the WS
model, in which the average path length decreases by the presence of long range
shortcuts, the reduction here is due to a small fraction of significant hub vertices.

Analyzing metrics as average path length, clustering coefficient and wiring cost
and comparing them to the metrics from WS model, the following became apparent:
(1) in both models L shows a sharp drop related to the small word behavior, such that
the drop caused by hub formation is much sharper; (2) the drop observed in CC in the
WS model is not valid for the optimized network, since hub formation keeps the CC
at values higher than those for regular networks; and (3) the minimal wiring objec-
tive makes a clearly difference between the two models, as for larger values of μ the
amount of wiring in the WS model is much greater than in the optimization model.

The authors in [44] conclude that the optimized networks are more clustered than
corresponding regular networks, and have a smaller average degree of separation
than their corresponding random graphs. Besides, small world topologies that arise
from optimization consumes less wiring than their WS counterparts, being useful
when wiring is expensive.

1.5.2 Scale Free Optimization Algorithm

An evolutionary algorithm for optimized network design is presented in [45],
combining into the objective function, the minimization of the graph density and
the average path length. These objectives include two relevant aspects of network
performance: the cost of physical links and the communication speed among
entities. Observing that most complex networks are extremely sparse and exhibit
the so-called small world phenomenon, a minimization procedure based on these
two criteria was expected to lead to small world and hub formation features.
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The proposed procedure consists in optimizing an energy function defined as
E(φ) = φd + (1− φ)ρ , where 0 ≤ φ ,d,ρ ≤ 1. φ is a parameter controlling the
linear combination of d (average path length) and ρ (density), which are normalized
accordingly. The minimization of E(φ) involves the simultaneous minimization of
distance and number of links (which is associated with cost).

The algorithm in [45] works with discrete time intervals. Starting at time t = 0,
the network is set up with a density ρ(0) following a Poisson distribution of degrees
(connectedness is enforced). At time t > 0, the graph is modified by randomly
changing the state of some pairs of vertices. For instance, with probability ν , each
aij can switch from 0 to 1 or vice-versa. The new adjacency matrix is accepted if
E(φ , t + 1)< E(φ , t). Otherwise, a different set of changes is tested. The algorithm
stops when the modifications applied are not accepted a given number of times in
sequence. This number is a parameter of the algorithm, set up by the designers.

Depending on how density and path length are weighted into the objective
function, four main types of networks can be found: (a) exponential networks, (b)
scale free networks, (c) star networks, and (d) dense networks. Analyzing some
basic properties such as density, clustering coefficient and path length as a function
of φ along with another measure defined as degree entropy, the authors identified
four different phases, separated by three sharp transitions at φ∗1 ≈ 0.25,φ∗2 ≈ 0.80
and φ∗3 ≈ 0.95. Examining the degree distributions achieved by the procedure, it is
possible to note that the transitions are easily explained since from (a) to (b) hub
formation emerges, from (b) to (c) a hub competition leads to a central vertex and
finally a dense graph (d) results when a progressive increase in the average degree
of non-central vertices occurs and a sudden loss of the central vertex.

The results in [45] suggest that preferential attachment networks (scale free)
might emerge at the boundary between random attachment networks (a) and forced
attachment (all vertices linked to a central vertex) networks (c). Exponential like
networks appear when the path length is minimized under high density weight.
When linking cost substantially decreases, the reduction of vertex–vertex distance
is enforced heading to a complete graph for high values of φ .

1.5.3 Small World Topologies Using GRASP

The problem of generating a small world topology treated in [46] consists in turning
a regular graph into a small world graph with the principle of adding new edges to
it (such as the addition model presented in Sect. 1.3.3), minimizing its average path
length. Instead of the probability p used in the stochastic model from the literature,
the authors make use of an additional parameter B called budget, which defines the
number of shortcuts (edges) that may be included in the graph. Therefore, the input
parameters are the original regular graph and the budget value.

A GRASP approach is adopted for solving the studied problem. GRASP
(Greedy Randomized Adaptive Search Procedure) is an iterative method for solving
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Table 1.5 Path length improvement

n = 15 n = 30

B GRASP (%) LP BB (%) B GRASP (%) LP BB (%)

1 3.2 3.2 3 8.1 8.5
4 8 9 25 7.2 7.7
5 1.1 2.2 38 2.9 3.5
6 4.4 7.1 64 0 0.6
10 6.9 6.9 107 0 0.6
19 1.2 1.2 148 0 0
60 0 0 240 0 0

optimization problems proposed by Feo and Resende [16], composed by two phases:
a construction phase, in which a solution is built from scratch; and a refinement
phase (local search), in which a local optima solution is reached. The best solution
found during the GRASP iterations is returned as the result of the algorithm.

In the particular application considered here, at each iteration of the construction
phase, a new solution is created by adding to the graph as many edges that can be
fitted with the budget. A higher priority is given to edges offering best benefit (low
cost and high impact in reducing the average shortest path length of the graph).
However, a portion of randomness is also included in order to avoid a purely
greedy behavior that allows the procedure to be applied repeatedly, in a multi-start
scheme. The refinement phase, which is applied only to the best solution found in
the construction phase, works as follows. For each edge in the current solution, we
attempt to replace it by an edge that if included in the solution does not violate the
budget and decreases the average shortest path length. Note that the evaluation of
the benefit of the movement (the operation of replacing one edge by another) is very
time consuming. That is the reason why in the proposed implementation of GRASP,
the local search is applied only to the best solution, and not to all solutions provided
by GRASP at the end of its first phase.

In Table 1.5, we show how the network obtained by the application of GRASP
compares to the optimal one, in terms of their average path length. Optimal networks
were obtained by means of the BB algorithm based on the Arc-Flow Formulation
(named here LP BB) proposed in Sect. 1.4.1.1 with an additional constraint set that
forces every edge initially included in the regular graph to be included in the final
solution as well. In doing so, the quality of the solution provided by GRASP can be
compared to the optimal one.

For each value of B in our test bed, we report in Table 1.5, how much the solutions
provided by GRASP and LP BB improve the average path length of the solution
provided by the stochastic model from Sect. 1.3.3. For example, for B = 25, the
average shortest path length of the optimal solution is 7.7% inferior than the average
shortest path length of the solution obtained by the stochastic model.

As one could expect, graphs generated by the optimization approaches present
better values of the average path length (indicated by the improvement values)
compared to the stochastic method, except when the budget value B is very high
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(in such cases, all approaches provided solutions with identical average path length).
This means that using the same number of additional links, the optimization
approaches are capable of finding small world networks with a smaller average path
length, increasing the efficiency of the whole network.

1.6 Final Remarks

In this chapter, we presented different alternatives to design complex communi-
cation networks. Besides the stochastic methods from the literature, we focused
on how optimization techniques both based on exact solution methods as well as
in heuristics may be applied to generate complex communication networks. The
main difference between both approaches concerns in the scalability provided by
them. The Branch-and-price method is able to solve problems to optimality while
heuristics can find feasible approximate solutions, with no guarantee of optimality.

Irrespective of how the optimization models are solved (through heuristics or
exact methods), it can be observed that all optimization techniques have shown that
features such as small path length, high clustering coefficient and power-law degree
distribution can be achieved. It has been shown that the optimization of different
criteria in the objective function and constraints leads to diverse complex network
topologies.
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Chapter 2
Fitness-Based Generative Models
for Power-Law Networks

Khanh Nguyen and Duc A. Tran

Abstract Many real-world complex networks exhibit a power-law degree
distribution. A dominant concept traditionally believed to underlie the emergence
of this phenomenon is the mechanism of preferential attachment which originally
states that in a growing network a node with higher degree is more likely to
be connected by joining nodes. However, a line of research towards a naturally
comprehensible explanation for the formation of power-law networks has argued
that degree is not the only key factor influencing the network growth. Instead, it is
conjectured that each node has a “fitness” representing its propensity to attract links.
The concept of fitness is more general than degree; the former may be some factor
that is not degree, or may be degree in combination with other factors. This chapter
presents a discussion of existing models for generating power-law networks, that
belong to this approach.

2.1 Introduction

The last decade has seen much interest in studying complex real-world networks
and attempting to find theoretical models that elucidate their structure. Although
empirical networks have been studied for some time, a surge in activity is often seen
as having started with Watts and Strogatz’s paper on “small-world networks” [23].
More recently, the major focus of research has moved from small-world networks
to “scale-free” networks, which are characterized by having power-law degree
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Table 2.1 Real-world
networks: power-law
exponent (λ )

Case λ
Mathematics coauthorship 2.2
Film actor collaborations 2.1–2.3

WWW 2.1
Internet backbone 2.15–2.2
Protein interactions 2–2.4

ER graph NA
BA graph 3

distributions [3]; that is, if p(k) is the fraction of nodes in the network having degree
k (i.e., having k connections to other nodes), then (for suitably large k)

p(k) = ck−λ , (2.1)

where c = (λ − 1)mλ−1 is a normalization factor and m is the minimum degree in
the network. This distribution is observed in many real-world networks, including
the WWW [1], the Internet [12], metabolic networks [15], protein networks [14],
co-authorship networks [21], and sexual contact networks [19]. In these networks,
there are a few nodes with high degree and many other nodes with small degree, a
property not found in standard Erdós–Rényi (ER) random graphs [9].

The near ubiquity of heavy-tailed degree distributions such as the power-law (2.1)
for real-world complex networks, together with the inadequacy of the ER random
graphs as a theoretical model for such networks, brings into sharp relief the
fundamental problem of obtaining a satisfactory theoretical explanation for how
heavy-tailed degree distribution can naturally arise in complex networks.

A dominant concept traditionally believed to underlie the emergence of the
power-law phenomenon is the mechanism of preferential attachment, proposed by
Barabási and Albert [3]: the higher degree a node has, the more likely it is to
be connected by new nodes. This model, hereafter referred to as the BA model,
leads to a growing random network which simulations and analytic arguments show
has a power-law degree distribution with exponent λ = 3. Despite its elegance and
simplicity, a deficiency of this mechanism is due to its fixed power-law exponent. As
real-world networks exhibit a wide range of exponents, typically between 2 and 3
(see Table 2.1 for examples), the BA model may only explain a small subset of
complex networks.

Consequently, other mechanisms have been proposed. Some, e.g., [8], are
merely formulaic without a natural interpretation. Others use different connectivity
information, not merely degree, of each node to influence the formation of a
network, such as the mechanism in [17]. Still, a universally accepted explanation
that works for not just one network but also others remains to be found. For example,
if we use the BA-based models to explain the sexual contact network studied
in [19], which is known to be power-law, a new individual will prefer to have sexual
contact with those individuals who already have a large number of sexual contacts,
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while the explanation according to [17] will infer that a new individual will have
sexual contact with some existing partners of a randomly chosen individual. These
explanations seem bizarre for human sexual behavior.

In searching for a more natural explanation for the formation of power-law
networks in the real world, there is a line of research, [4–6,13,16,22], founded based
on the conjecture that in many complex networks each node will have associated to it
a “fitness” representing the propensity of the node to attract links. Using the fitness
concept to explain the sexual contact network above, we could say that it is the
fitness of an individual that attracts other individuals; an individual wants to have
sexual contact with another individual because of the latter’s fitness, not the latter’s
connectivity. The fact that a node has many contacts may just be a consequence of its
high fitness. The key challenge in the design of fitness-based models is how fitness
is defined; for example, what is fitness? what is it made of? what is its influence?
Fitness may be just degree, or something not, or a combination of many factors,
explicit or implicit. Fundamental differences in the approach to addressing these
questions is discussed in the remaining sections of this chapter.

It is important to note that, as argued in [18], there are a rich variety of “emergent”
topological signatures beyond mere power-law degree distributions that are also
present in real-world complex networks. To date, there has been no perfect network
generative model satisfying all signatures. This chapter is focused only on the
power-law degree property of complex networks.

2.2 Early Network Models

One of the earliest theoretical models of a complex network was proposed and
studied in detail by Erdós and Rényi [9–11] in a famous series of papers in the
1950s and 1960s. The ER random graph model consists of n nodes (or vertices)
joined by links (or edges), where each possible edge between two vertices is present
independently with probability p and absent with probability 1− p. The probability
p(k) that a node has exactly degree k is given by the binomial distribution

p(k) =

(
n− 1

k

)
pk(1− p)n−k−1. (2.2)

In the limit when n � kz, where z = (n− 1)p is the mean degree, the degree
distribution becomes the Poisson distribution

p(k) =
zke−z

k!
. (2.3)

The Poisson distribution is strongly peaked about the mean z, and has a tail that
decays very rapidly as 1/k!. This rapid decay is completely different from the heavy-
tailed power-law nature of the tail of the degree distribution that is observed in many
real-world complex networks.
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Most widely known among the theoretical models for complex networks with a
degree distribution similar to real-world networks is the BA model [3], which works
as follows. Starting from a small number (n0) of nodes (which could, for example,
be chosen to form a random graph), at every time-step we add a new node with
m ≤ n0 edges linking the new node to the m distinct nodes already present in the
network such that the probability Πi that the new node will connect to node i is
proportional to the degree ki of that node; that is,

Πi =
ki

∑ j k j
. (2.4)

Consider a node i that joins the network at time i. Denote by ki(t) the degree of
this node at time t. When the network is sufficiently large, ki(t) can be represented
as a continuous function of time t, which grows at the following rate:

∂ki

∂ t
=

mki

k1 + k2 + · · ·+ kn
, (2.5)

where n = n0 + t is the network size at time t, and k j’s are the degrees of the
current nodes. For large n, we can ignore the value of n0 and since m new links are
added after each time step (resulting in 2m degree increase), the sum of all nodes’
degrees, k1+k2+ · · ·+kn, can be approximated by 2mt. Thus, (2.5) can be rewritten
approximately as

∂ki

∂ t
=

mki

2mt
=

ki

2t
.

Hence, ki(t) must be of the form ki(t) = c
√

t for some constant c. When node i just
joins the network, that is, t = i, its degree is m and so we have m = c

√
i or c=m/

√
i.

Consequently, the degree of node i as a function of time t is

ki(t) = m
√

t/i.

Given k, the probability that ki(t) is less than k is

Pr[ki(t)< k] = Pr
[
m
√

t/i < k] = Pr[i > tm2/k2
]
.

Because node i can equally likely be any node among (n0 + t) current nodes
(consisting of n0 initial nodes and t nodes added by time t), we have

Pr[i > i0] = 1− i0
n0 + t

, (2.6)

for any given i0. Consequently,

Pr[i > tm2/k2] = 1− tm2/k2

n0 + t
= 1− m2/k2

n0/t + 1
≈ 1−m2/k2

(when t is large).
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The probability density function (pdf) of node i’s degree is

P(k) =
∂Pr[ki(t)< k]

∂k
= 2m2/k3.

Thus, BA results in a power-law degree distribution with λ = 3 (independent of m,
which only changes the mean degree of the network).

A different generative model for power-law networks is the copy model studied
by Kumar et al. [17], in which the new node chooses an existing node at random
and copies a fraction of the links of the existing node. This model assumes that the
new node knows who the chosen existing node is connected to. This assumption
is reasonable for web graphs for which the model is originally proposed. However,
the assumption is not always reasonable in other circumstances, as is clear from the
case of sexual contact networks discussed in Sect. 2.1.

2.3 Combination of Degree and Fitness

An early fitness-based model for constructing power-law networks was proposed
in [5]. This model assumes that the evolution of a network is driven by two
factors associated with each node, its node degree and its fitness. These factors
jointly determine the rate at which new links are added to the node. While node
degree represents an ability to attract links that is increasing over time, node fitness
represents something attractive about the node, that is constant. For example, in the
WWW network, there can be two web pages published at the same time (thus, same
degree) but later one might be much more popular than the other; this might be
because of something intrinsic about one page, e.g., its content, that makes it more
attractive than the other page.

In the proposed model, each node i has a fitness Φi which is chosen according
to some distribution ρ(Φi). The network construction algorithm generalizes the BA
algorithm as follows:

• Parameters

– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to distribution ρ .
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2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to distribution ρ
– Add m edges linking the new node to m distinct existing nodes such

that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
kiΦi

∑ j k jΦ j
. (2.7)

Suppose that i is the time node i joins the network. When the network is
sufficiently large, the degree of node i over time, ki, can be represented as a
continuous function of time t. The value of this function increases over time as
follows:

∂ki

∂ t
= m

(
kiΦi

∑ j k jΦ j
.

)
(2.8)

It can be shown that ki(t) follows a power law

ki(t) = m
( t

i

)Φi/A
,

with A given by

1 =
∫ Φmax

0
dxρ(x)

1
A
x − 1

.

(Here, Φmax defines the maximum fitness.)
The degree of a node therefore grows faster if it has a larger fitness. This allows

a node with a higher fitness to enter the network late but still become more popular
than nodes that have stayed in the network for a much longer period.

If every node has the same fitness, this model is identical to the orignal BA
model, resulting in power-law networks of exponent λ = 3. In the case that fitness is
chosen uniformly in the interval [0, 1], we have A = 1.255 and the fraction of nodes
in the network having degree k follows a generalized power-law with an inverse
logarithmic correction:

p(k) ∝
k−2.255

lnk
. (2.9)

This estimation has been confirmed by numerical simulations [5].
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2.4 Fitness-Based Model with Deletion

The BA model cannot explain the heavy-tail degree distribution in complex
networks where there are many node deletions [20]. On the other hand, the deletion
rate can be significant for certain networks, such as the WWW. In the study of [16],
based on the result of year-long web crawls to track the creation and deletion of
web pages on the Internet, it was found that at least 0.76 pages were removed for
every new web page created. Towards an approach that accommodates deletion, a
model was proposed in [16] which extends the fitness-based model of [5] discussed
in the previous section by allowing a probability for deleting a node at each time
step. Specifically, the network is constructed as follow:

• Parameters

– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to distribution ρ .

2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to distribution ρ .
– Add m edges linking the new node to m distinct existing nodes such

that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
kiΦi

∑ j k jΦ j
. (2.10)

– With probablity c, a random node is removed, along with all its
edges.

It can be shown that the evolution of the degree of node i over time follows a
power law

ki(t) = m
( t

i

)β (Φi)

,
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where the growth exponent β is a function of fitness and deletion rate

β (Φi) =
Φi

A
− c

1− c
,

with A given by

1 =

∫ Φmax

0
dxρ(x)

1
A
x

1+c
1−c − 1

.

If fitness is identical for every node, this model is exactly the same as the BA
model applied to networks with deletion, resulting in a power-law exponent λ =
1+ 2/(1− c) for small c. As c is closer to 1 (i.e., a high deletion rate), the degree
distribution diverges rapidly from power-law. This explains why the BA model is
not appropriate for networks with deletion.

In the case that fitness follows a truncated exponential distribution, which has
been shown to empirically characterize the fitness distribution of web pages defined
as its degree growth rate, the result is that the power-law exponent is not affected
by the deletion rate and stablizes around two. In other words, the network as it is
growing remains power-law, regardless of the rate of node deletion.

The models discussed in this section and the previous section combine fitness
with degree to influence the growth of a network. A fundamentally different model
is presented in the next section, which uses fitness as the only driver for the network
growth.

2.5 Preferential Attachment Using Fitness Only

In a citation network such as [21] the different nodes (i.e., papers) will have different
propensities to attract links (i.e., citations). The various factors that contribute to the
likelihood of a paper being cited could include the prominence of the author(s),
the importance of the journal in which it is published, the apparent scientific merit
of the work, the timeliness of the ideas contained in the paper, etc. Moreover, it
is plausible that the overall quantity that determines the propensity of a paper to be
cited depends essentially multiplicatively on such various factors. The multiplicative
nature is likely in this case since if one or two of the factors happen to be very small
then the overall likelihood of a paper being cited is often also small, even when other
factors are not small; e.g., an unknown author and an obscure journal were enough
to bury a fundamentally important scientific paper.

The lognormal fitness attachment (LNFA) model, proposed by Ghadge et al.
in [13], was motivated by the observation above. In this model, the fitness Φi

representing the property of each node i to attract links is formed multiplicatively
from a number of factors {φ1, φ2, ..., φL} as follows:

Φi =
L

∏
l=1

φl , (2.11)
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where each factor φl is represented as a real non-negative value. Since there may
be many factors contributing to the a node’s attractiveness, explicit or implicit, we
assume that the number of factors φi is reasonably large and that they are statistically
independent. The fitness Φi will therefore be lognormally distributed, irrespective
of the manner in which the individual factors are distributed. Indeed, we have

lnΦi =
L

∑
l=1

lnφl , (2.12)

and the Central Limit Theorem implies that this sum will converge to a normal
distribution. Therefore, lnΦi will be normally distributed. Since a random variable
X has a lognormal distribution if the random variable Y = lnX has a normal
distribution, Φi will be lognormally distributed. The density function of the normal
distribution is

f (y) =
1√

2πσ
e−(y−μ)2/(2σ 2), (2.13)

where μ is the mean and σ is the standard derivation (i.e., σ2 is the variance). The
range of the normal distribution is y ∈ (−∞,∞). It follows from the logarithmic
relation Y = lnX that the density function of the lognormal distribution is given by

f (x) =
1√

2πσx
e−(lnx−μ)2/2σ 2

. (2.14)

It is conventional to say that the lognormal distribution has parameters μ and σ
when the associated normal distribution has mean μ and standard deviation σ .
The range of the lognormal distribution is x ∈ (0,∞). The lognormal distribution

is skewed with mean eμ+σ 2/2 and variance (eσ 2− 1)e2μ+σ 2
.

Thus, the basic hypothesis that each of the nodes has associated to it a fitness
of the form (2.11) entails that under quite general conditions this fitness will be
lognormally distributed. In the LNFA model, without loss of generality, one can
assume that μ = 0; hence, the fitness distribution is characterized by only a single

parameter σ . This lognormal distribution has mean eσ 2/2 and variance (eσ 2−1)eσ 2
;

examples are shown in Fig. 2.1.
The network construction algorithm works as follows:

• Parameters

– σ : parameter for the lognormal fitness distribution.
– n0: the size of the initial network which can be any graph.
– m ≤ n0: the number of nodes a new node connects to when it joins the

network.
– n: number of nodes in the final network.
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Fig. 2.1 Lognormal fitness distribution for three representative values of σ . The extreme cases are
when σ is small (0.1) or large (9). In most cases, the distribution will have the shape similar to the
case σ = 1.5. Figure 2.5 is plotted in the log-log scale to emphasize that all the nodes except a few
have fitness zero (or extremely close) while the rest (very few) have high fitness

• Procedure

1. Initially, start with the initial network of n0 nodes, each assigned a
random fitness according to the lognormal distribution.

2. Each time a new node is added; stop after the nth node is added.

– Assign a random fitness to the new node according to the lognormal
distribution.

– Add m edges linking the new node to m distinct existing nodes such
that the probability Πi for connecting to an existing node i is taken
to be proportional to its fitness Φi:

Πi =
Φi

∑ j Φ j
. (2.15)

LNFA is almost identical to the BA model, the difference being that fitness
information is used in place of degree information. Although this difference seems
to be minor, it makes a fundamental shift in how the network is formed. To make
this point, recall that in the BA protocol, the degree of a new node at the time it joins
the network is small (m) and so it takes this node a long time before it may become
a preferential choice for future new nodes to attach to. In LNFA, the new node
may have a large fitness at the time it joins the network, making itself a preferential
choice immediately. This is naturally reasonable because the attractiveness of a node
may not result from how many nodes it is connected to; it may instead result from
the “inner self ” factors such as the personality of a person in a friendship network
and his or her age.

As demonstrated in Fig. 2.2, LNFA can be used to generate a large spectrum
of networks as seen in the real world and it is possible to do so by varying the
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Fig. 2.2 2,000-node networks resulting from increasing σ . Transitions from exponential to power-
law to winner-take-all graphs are observed

parameter σ . Consider two extreme cases of this parameter. In the first case, if σ
is zero, nodes have exact same fitnesses and so, basing on Formula 2.15, each time
a new node joins the network it chooses an existing node as neighbor with equal
chance. This construction is simply the random graph model of [7] which yields a
network with exponential degree distribution. On the other extreme, if σ is increased
to reach a certain threshold, few nodes will stand out having very large fitnesses
while all the other nodes will have very low fitnesses (zero or near zero; see Fig. 2.5).
Consequently, an extremely high number of connections will be made to just a single
node, resulting in a monopolistic network; this “winner-take-all” degree pattern is
also observed in the real world [2]. Between these two extreme cases (exponential
and monopolistic) we find a spectrum of power-law networks.

The transition between the regimes of degree distributions is not discontinuous.
It is observed that when σ reaches 1 power-law degree distributions emerge and
remain until σ is beyond 4. After that (σ > 4), the network becomes less power-law
and more of a winner-take-all network. This is illustrated in Fig. 2.3 which shows the
exponent λ as a function of σ . This figure plots the exponent values for 20 different
networks of size ranging from 10,000 nodes to 20,000 nodes, that are constructed
with the same σ value (ranging from 1 to 4.5). Here exponent values are not shown
for the case σ < 1 because the corresponding resultant networks are not power-
law; they are exponential random graphs. Seen from the figure, as σ increases from
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Fig. 2.3 Power-law exponent λ as a function of parameter σ . For each value of σ , 20 networks
with size ranging from 10,000 to 200,000 nodes were considered. Each sample (“dot”) in the plot
shows the exponent for each network (for each value of σ )

1 to 3.5, there is remarkable consistency among all the 20 networks considered: they
are all power-law with nearly identical exponent (it is noted that in the figure the
increase in fluctuations seen at larger σ (σ ≥ 4) is a consequence of the cross-over
from power-law to a more monopolistic degree distribution). For example, when
σ = 2, all networks have the same exponent 2.25. This implies that with LNFA
the power-law degree distribution will emerge quickly as the network grows (in our
observation, networks with 10,000 nodes already show their scale-freeness). It is
also important to see that when the power-law pattern is observed, the exponent
ranges between 1.8 and 2.8, which is close to the range [2, 3] typically observed in
the real world. The exponent is monotonically decreasing as a function of σ .

2.6 Fitness-Based Model with Mutual Benefit

It is argued that in many cases of interest the power-law degree behavior is neither
related to dynamical properties nor to preferential attachment. Also, the concept that
the likelihood of a new node to link to an existing node depends solely on the latter’s
fitness might only apply to certain networks. The model proposed in [6] is suited for
complex networks where it is the mutual benefit that makes two nodes link to each
other. This model puts the emphasis on fitness itself without using the preferential
attachment rule. Further, it is a static model building a network by growing links
instead of growing nodes.
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Specifically, the network construction algorithm starts with a set of n isolated
nodes, where n is the size of the network to be built. Similar to the models discussed
in the previous sections, each node i has a fitness Φi drawn from some distribution ρ .
Then, for every pair of nodes, i and j, a link is drawn with a probability f (Φi,Φ j)
which is some joint function of Φi and Φ j. This model can be considered a
generalization of the ER random graph model [9]. Rather than using an identical
link probability for every pair of nodes as in the ER model, here two nodes are
linked with a likelihood depending jointly on their fitnesses. A general expression
for p(k) can be easily derived. Indeed, the mean degree of a node of fitness Φ is

k(Φ) = n
∫ ∞

0
f (Φ,x)ρ(x)dx = nF(Φ). (2.16)

Assuming F to be a monotonous function, and for large enough n, the following
form can be obtained for p(k):

p(k) = ρ
[

F−1
(

k
n

)]
d
dk

F−1
(

k
n

)
. (2.17)

Thus, one can choose an appropriate formula for ρ and f to achieve a given
distribution for p(k). It is shown that a power law for p(k) will emerge if fitness
follows a power law and the linking probability for two nodes is proportional to the
product of their fitnesses. For example, one can choose

f (Φi,Φ j) = (ΦiΦ j)/Φ2
max

and

ρ(Φ) ∝ Φ−β ,

(corresponding to a Zipf’s behavior with Zipf coefficient α = 1/(β − 1)).
In the case that fitness does not follow a power law, it is possible to find a

linking function that will result in a power-law degree distribution. For example,
considering an exponential fitness distribution, ρ(Φ) ∝ e−Φ (representing a Poisson
distribution), one can choose

f (Φi,Φ j) = θ [Φi +Φ j− z(n)]

where θ is the usual Heaviside step function and z(n) is some threshold, meaning
that two nodes are neighbors only if the sum of their fitness values is larger than
the threshold z(n). Using these rules, the degree distribution has a power law with
exponent λ = 2. This is interesting because it shows that power-law networks can
emerge even if fitness is not power-law. The same behavior also emerges if a more
generic form of the linking function is used,

f (Φi,Φ j) = θ [Φc
i +Φc

j − zc(n)],
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(where c is an integer number); however, the power-law degree distribution has
logarithmic corrections in some cases.

Closely related to the above model is the work of [22] which assumes the same
concept that the linking probability is a joint function of the fitnesses of the end
nodes. In this related work, it is concluded that for any given fitness distribution
ρ(Φ) there exists a function g(Φ) such that the network generated by ρ(Φ) and
f (Φi,Φ j) = g(Φi)g(Φ j) is power-law with an arbitrary real exponent. Mutual-
benefit based linking can also be combined with preferential attachment to drive
the growth of a power-law network as shown in the work of [4].

2.7 Summary

This chapter has provided a review of existing models aimed at constructing
power-law complex networks, that are inspired by the idea that there is some
intrinsic fitness associated with a node to drive its evolution in the network. This
fitness might be causal to why a node has a high degree or low, or might be an
independent factor which together with the node’s degree affect the node’s ability
to compete for links. The models discussed differ in how they interpret fitness and
its influence on growing the network. It is suggested in [5, 16] that both degree and
fitness jointly determine the growth rate of node degree. This may apply to complex
networks such as a social network where a person’s attractiveness is a combination
of both his or her experience (represented by node degree) and talent (represented
by fitness), or the WWW network where a web page is popular because its long time
staying online (represented by node degree) and quality of its content (represented
by fitness). A different approach is proposed in [6,13,22] where all the attractiveness
factors associated with a node can be combined into a single factor (fitness). While
the models in [6, 22] are motivated by static networks where two nodes require
mutual benefit in order to make a connection, the lognormal fitness model in [13] is
suitable to explain growing networks where a node wants to be a neighbor of another
solely because of the latter’s fitness, regardless of the former’s. Although none of
these models is one-size-fits-all, they do represent a vast population of complex
networks. The current models, however, assume that fitness is an intrinsic factor
that does not change over time. In practice, there are cases of networks where the
overall attractiveness of a node might increase for one period of time and decrease
for another. For the future work, it is thus an interesting research problem to explore
fitness models that allow fitness to have its own evolution. The future research
should also pay great attention to (in)validating theoretical models with the data
collected from real-world networks.
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Chapter 3
Double Pareto Lognormal Distributions
in Complex Networks

Zheng Fang, Jie Wang, Benyuan Liu, and Weibo Gong

Abstract This article elaborates the mathematical concept of double Pareto
lognormal distribution and provides an overview of complex networks and natural
phenomena that exhibit double Pareto lognormal distributions. These include the
number of friends in social networks, the number of downloads on the Internet,
Internet file sizes, stock market returns, wealth in human societies, human settlement
sizes, oil field reserves, and areas burnt from forest wildfire.

3.1 Introduction

Power-law distributions have been found in a good number of complex networks
and natural phenomena of significant scientific interests. For example, population
size distribution of cities, wealth distributions, intensities of earthquakes, and sizes
of particles are all thought to follow the power law, and they cannot be correctly
characterized by median or average values. For instance, the average population of
all cities and towns is not a useful concept for most purposes because a significant
fraction of the total population lives in big cities (e.g., New York, Los Angeles, and
Chicago), which is substantially larger than those of many other cities by several
orders of magnitude. Studies on complex networks such as the World Wide Web and
online social networks also reveal that certain attributes of interests exhibit power
law behaviors.
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Pareto distribution, named after the Italian economist Vilfredo Pareto, is a
commonly used canonical power law distribution. Pareto originally used this
distribution to describe the allocation of wealth among individuals, for he observed
that it depicts rather accurately the phenomenon that a larger portion of the wealth
of any society is owned by a smaller percentage of the people in that society. Pareto
also used it to describe the income distribution. This idea is sometimes referred to
as the Pareto principle or the 80–20 rule, which says that 20% of the population
controls 80% of the wealth [40]. Another popular power law distribution is the
Zipfian distribution, also known as Zipf’s law, which is widely cited in linguistic
research of natural languages.

Pareto and Zipfian distributions only exhibit a single tail. It has come to people’s
attention in recent years that certain power-law phenomena, if observed more
closely, actually exhibit two tails: a lower tail and an upper tail. While the two
tails would share a similar shape with lognormal distributions, how to correctly
characterize such phenomena remains a challenge, which has stimulated many
debates among researchers. It is true that the lognormal model could better fit the
bodies of empirical distributions, but it does not seem to fit well with the power law
behavior in the tails.

The concept of double Pareto lognormal distributions has been shown
useful in modeling distributions of various complex networks and natural
phenomena that consist of a lognormal body and Pareto tails, including computer
networks, social networks, economics, finance, geography, geology, and physical
sciences [36, 42, 43]. In this article, we will provide and elaborate mathematical
background on the concept of double Pareto lognormal distribution, demonstrate
how it would fit into empirical data, and present possible explanations of the causes
for the power law behaviors.

The rest of this article is organized as follows. In Sect. 3.2 we will provide a
brief overview of the classical power law and lognormal distributions. We will then
introduce the double Pareto lognormal distribution and several models that gener-
ate it. In Sect. 3.3 we will present examples from diverse areas that fit the double
Pareto (lognormal) distributions. These examples include wealth distributions in
human societies, stock market returns, Internet file sizes, the number of friends
distributions in social networks, downloads distributions on the Internet, human
settlement sizes, oil field reserves, and areas burnt from forest wildfire. Section 3.4
concludes the article.

3.2 Generation Model of Double Pareto Distribution

We start this section by presenting the mathematical background for the power law
distribution and lognormal distribution, and then derive the double Pareto lognormal
distribution as an exponential mixture of lognormal distributions. We will also
introduce several stochastic models of differential equations that converge to the
double Pareto distribution under different sets of scenarios.
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3.2.1 Power Law Distributions

Let X be a random variable. The complementary cumulative distribution function
(ccdf) of X is defined by

FX(x) = Pr(X ≥ x). (3.1)

A non-negative random variable X is said to follow a power law distribution if its
ccdf satisfies

FX (x)∼ x−α , (3.2)

for some constant α > 0. Here, f (x)∼ g(x) denotes limx→∞ f (x)/g(x) = c for some
constant c > 0. The plot of the density of such random variable X has a long tail,
which is referred to as power tail (a.k.a. heavy tail).

The Pareto distribution is one of the canonical power law distributions with the
following ccdf on random variable X :

FX(x) =

{
( x

xm
)−α , x≥ xm

1, x < xm,
(3.3)

for some α > 0 and xm > 0. Note that the Pareto distribution has the density function
f (x) = αxα

mx−α−1 when x ≥ xm. The ith moment of the density function can be
represented as

E(xi) =

∫ ∞

xm

xi f (x)dx = αxα
m

∫ ∞

xm

x−α−1+idx = αxα
m

x−α+i

i−α

⎪⎪⎪⎪⎪⎪⎪⎪
∞

xm

. (3.4)

Note that when α < 1 the first moment does not exist and when α < 2 the second
moment does not exist. Therefore, if α falls in the range of (0,1], the function has
an infinite mean. If α is in (1,2], the function has a finite mean but infinite variance.
Only when α > 2 will the function have both finite mean and finite variance.

Another popular power law distribution is the Zipfian distribution (a.k.a. Zipf’s
law), which is widely used in linguistic studies of natural languages. Zipf’s law
states that frequency of occurrences of an event, as a function of the ranking of
frequencies, is a power law function with the exponent α close to unity, where a
higher frequency has a smaller rank. For example, in the English language the word
“the” has the highest frequency, and so its rank is equal to 1. The word “of” has the
second highest frequency and so its rank is equal to 2. Zipf’s law predicts that in a
population of N elements, the frequency of elements that is ranked k is determined
by the following formula:

f (k) =
k−α

∑N
n=1 n−α , (3.5)

where α is the value of the exponent characterizing the distribution, typically close
to 1.
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Fig. 3.1 A Pareto density in log-log plot and ccdf

It is customary to plot the power law distribution by taking logarithm on
both sides, referred to as log-log plot, which produces a straight line for the
asymptotic behavior of the ccdf. This is the basis for testing power-law behaviors.
The same is true for the power law density function, which might be easier to
work with mathematically under certain circumstances. For example, for the Pareto
distribution, the logarithm of the density function is linear with the following form:

ln f (x) =−(α + 1) lnx+α lnxm + lnα, (3.6)

Plotting ccdf in the logarithmic scale also emphasizes the tail region, providing a
good visual when fitting empirical data into a power law model. Figure 3.1 shows
the log–log plot of a Pareto density function and the ccdf.

3.2.2 Lognormal Distributions

A positive random variable X is said to be lognormally distributed with parameters
(μ ,σ2) if the random variable Y = lnX is normally distributed with mean μ and
variance σ2. The density function for a lognormal distribution is determined by

f (x) =
1√

2πσx
e−

(lnx−μ)2

2σ2 . (3.7)

The lognormal distribution, in contrast to the normal distribution, is skewed, with
median eμ , mean eμ+ 1

2 σ 2
, and mode eμ−σ 2

. Although the lognormal distribution has
finite moments and the Pareto distribution has infinite moments, their plot shapes
are extremely similar in that a large portion of the body of the density function
and the ccdf can appear linear. To be more specific, take logarithm on a lognormal
distribution density function, we have

ln f (x) =− lnx− ln
√

2πσ − (lnx− μ)2

2σ2 . (3.8)

When σ is sufficiently large, the value of ln f (x) is barely affected by the quadratic
term for a large range of x values. Therefore, the logarithm of the density function
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Fig. 3.2 A lognormal density in log-log plot and ccdf

will appear as a straight line for a large range of x values. The same holds true for
the ccdf, which is shown in Fig. 3.2.

While the normal distribution can be thought of as an additive accumulation
of a number of independent random variables, a variable could be thought of as
lognormal if it is the multiplicative product of a number of independent, positive
random variables, for

lnY = lnX1 + lnX2 + · · ·+ lnXn = ln(X1X2 · · ·Xn). (3.9)

For example, a long-term discount factor in a financial market can be derived from
the product of short-term discount factors. In wireless communications, for another
example, the attenuation caused by shadowing or slow fading from random objects
is often assumed to be lognormally distributed.

This phenomenon may be better illustrated using the following example. Suppose
we start with an initial state X0. At each step, the state may change with a certain
percentage (e.g., changes of price, size, and volume) denoted by an independent
random variable Ci. Thus, each state Xt can be described as

Xt = Xt−1Ct = X0

t

∏
i=1

Ci. (3.10)

Taking logarithm on both sides we have

lnXt = ln(Xt−1Ct) = lnX0 +
t

∑
i=1

lnCi. (3.11)

Since each Ci is independent from each other, applying the Central Limit Theorem
to the summation term yields a convergence to a normal distribution for sufficiently
large t. Hence, random variable Xt is well approximated by a lognormal distribution.
Lognormal distributions are natural distributions for modeling growth of population,
growth of wealth, growth of organisms, and any process where the underlying
change rate is a random factor over a time step independent of the current size.
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3.2.3 Double Pareto Distribution, A Mixture of Lognormals

A double Pareto distribution can be generated by mixing a number of lognormal
distributions. This can be done based on a model defined in Sect. 3.2.2 that yields a
lognormal distribution.

Suppose in Xt = Xt−1Ct we have X0 = c for a constant c > 0, and Ct is a
lognormally distributed random variable with parameters (μ ,σ2). We may view the
subscript of X as a moment in time, then at time t = T , the random variable XT is
also lognormally distributed with parameters (μT,σ2T ). We may also view the time
t itself as a continuous random variable and let the process run for some random time
θ and obtain a random variable that comes from a mixture of lognormal distributions
with parameters (μθ ,σ2θ ). Specifically, if the process stops at a constant rate λ , the
time variable is exponentially distributed with density

ft (θ ) = λ e−λ θ , θ ≥ 0.

Reed et al. [44] show that this mixture of an exponentially distributed number of
lognormal distributions exhibits power law behaviors for both the upper tail and
the lower tail regions, and name it double Pareto distribution. The resulting density
function for this mixture is

f (x) =
∫ ∞

θ=0
λ e−λ θ 1√

2πθσx
e−

(lnx−θ μ)2

2θσ2 dθ

=
2λ eμ lnx/σ 2

√
2πxσ

∫ ∞

u=0
e
−
(

λ+ μ2

2σ2

)
u2

e−
ln2 x

2σ2u2 du

=
λ

σ
√
(μ/σ)2 + 2λ

{
x−1+μ/σ 2+

√
(μ/σ)2+2λ/σ , 0 < x≤ 1

x−1+μ/σ 2+
√

(μ/σ)2+2λ/σ , x≥ 1.

Reed [44] suggests the following simpler form of double Pareto distribution density
function:

f (x) =
αβ

α +β

{
xβ−1, 0 < x≤ 1
x−α−1, x≥ 1

(3.12)

where α and−β (α > 0,β > 0) are the two roots of the following quadratic equation

σ2

2
z2 +

(
μ− σ2

2

)
z−λ = 0.

Instead of using exponential distribution, Mitzenmacher [35] shows that using
a geometric distribution to randomly sample lognormal distributions can lead to a
distribution that is extremely similar to a double Pareto distribution. This approach
assumes that the random process stops with a probability p. That is, the process
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stops at time k with probability p(1− p)k−1. Using this discrete geometric mixture
we can obtain the following distribution density:

f (x) =
∞

∑
k=1

p(1− p)k−1
(

1√
2πkxσ

e−
(lnx−kμ)2

2kσ2

)
. (3.13)

This summation can be nicely approximated using the following integral when the
absolute value of lnx is sufficiently large.

f (x) ≈
∫ ∞

k=1

p√
2πkxσ(1− p)

ek ln(1−p)− (lnx−kμ)2

2kσ2 dk. (3.14)

The geometric approach produces essentially the same power-tail behavior as the
exponential mixture does, but technically the geometric mixing of lognormal distri-
butions only yields an approximation to the double Pareto distribution according to
Reed’s definition. Mitzenmacher [35] showed the following theorem.

Theorem 3.1. There exist positive constants α,β ,c1,c2,c3,c4,m and ε such that
the density function in equation 3.13 satisfies c1xβ−1 ≤ f (x) ≤ c2xβ−1 for x < ε ,
and c3x−α−1 ≤ f (x)≤ c4x−α−1 for x > m. (Constants ci may depend on p,μ and σ
but not on x.)

It follows from this theorem that at the tails, the density function, the cumulative
distribution function (cdf) and the ccdf of the geometric mixture are each bounded
by two power law distributions that differ only by a constant factor [35]. Thus, the
geometric mixture produces a valid and practical approximation to the double Pareto
distribution for it is the tail behavior that characterizes the power law distribution.

To the extent of double Pareto distribution, Reed [44] also suggests a more
generalized form called double Pareto lognormal distribution, by removing the
constraint that the initial state X0 must be a constant. Assume that the initial state
X0 also follows a lognormal distribution with parameters (ν,τ2). Mixing with the
exponential-time distribution we can show that the distribution of random variable
Y = lnX can be represented as the sum of two independent random variables,
where one variable is normally distributed and the other is double exponentially
distributed. It follows that the density function fX (x) can be obtained from the
density function fY (y) using fX (x) = fY (lnx)/x, which in turn can be found by
convolving a normal density and a double exponential density. The final density
function of X is

fX (x) =
αβ

α +β
(A+B)

A = x−α−1eαν+α2τ2/2Φ
(

lnx−ν−ατ2

τ

)

B = xβ−1e−β ν+β 2τ2/2Φc
(

lnx−ν +β τ2

τ

)
, (3.15)
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Fig. 3.3 The double Pareto lognormal distributions have completely different shapes with β > 1
and β < 1

Fig. 3.4 The log–log plot consisting of two straight line segments

where Φ is the cdf of the standard normal distribution and Φc the compliment of
Φ , that is, Φc is the ccdf of the standard normal distribution. Figure 3.3 shows the
density of the double Pareto lognormal distributions with β > 1 and β < 1 (Note
that changing the value of α does not alter the general shape of the distribution), and
Fig. 3.4 shows the two straight line segments when log–log plot the double Pareto
lognormal distribution.

The double Pareto lognormal distribution provides a reasonable model to
describe a random process that allows random variables to start from different
initial values, as long as they obey the same lognormal distribution. Releasing the
initial value constraint would make the model more useful in empirical studies.
For example, in surveying personal wealth accumulations, it would be more
reasonable to assume that different people begin their asset accumulation with
different starting salaries. Thus, the double Pareto lognormal distribution might
allow closer matches with empirical data distributions.

The double Pareto distribution exhibits power law behavior at both upper and
lower tails. That is, both the ccdf and cdf each has a linear tail on a log–log plot.
This is an important characteristic, which is often used to test if a distribution
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Fig. 3.5 Tail comparisons of lognormal, Pareto, and double Pareto

has a double Pareto distribution. That is, check whether the ccdf and the cdf of a
distribution each have a linear tail on a log-log plot.

The double Pareto distribution falls nicely between the lognormal distribution
and the Pareto distribution. The Pareto distribution and the double Pareto distri-
bution both are power law distributions, but they have the following distinction:
The log–log plot of the density function of the Pareto distribution is a single straight
line, and the log–log plot of the density function of the double Pareto distibution
consists of two straight line segments that meet at a transition point. This is similar
to the lognormal distribution, which has a transition point around its median. Hence,
an appropriate double Pareto distribution can closely match the body of a lognormal
distribution and the tail of the Pareto distribution. Figure 3.5 shows the ccdfs of
lognormal distribution, Pareto, and double Pareto distributions in the log–log plot.
We can see that the double Pareto distribution matches well with the lognormal
distribution in the body, and matches well with the Pareto distribution in the tail.

3.2.4 Power-Law Through Stochastic Differential Equations

The lognormal distribution plays an essential role in generating a double Pareto
(lognormal) distribution. However, how a lognormal distribution is generated is
an interesting topic in its own right. More specifically, one would like to know
what kind of processes that model natural phenomena will result in a lognormal
distribution.
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A stochastic process, a.k.a. a random process, describes the probability
distribution of possible realities of how the process might evolve over time [48].
A stochastic differential equation (SDE) is a differential equation in which one or
more of the terms is a stochastic process, thus resulting in a solution that is itself
a stochastic process. SDEs are used to model diverse phenomena such as personal
income figures, human settlement sizes, fluctuating stock prices, or physical systems
subject to thermal fluctuations. Typically, SDEs incorporate white noise that can
be thought of as the derivative of the Brownian motion (or the Wiener process).
However, it should be mentioned that other types of random fluctuations are also
possible, including jump processes and Poisson counters.

The first SDE we would like to discuss is a Geometric Brownian Motion (GBM)
process. Reed [42–44, 47] uses this model to explain the double Pareto lognormal
distribution. A random variable X is said to follow GBM if its behavior over time is
governed by the following differential equation

dX = (μdt +σdB)X , (3.16)

where dB is the increment of a standard Brownian motion (a.k.a. the white noise).
For a GBM the proportional increment of X in time dt comprises a systematic
component μdt, which is a steady contribution to X , and a random component σdB,
which is fluctuated over time. Thus, the GBM can be seen to be a stochastic version
of simple exponential growth.

Assuming a constant initial state X0. Applying Itō’s lemma [26] on this SDE
produces the following equation at time t = T :

lnXT = lnX0 +

(
μ− 1

2
σ2

)
T +σBT . (3.17)

Since BT is normally distributed with parameters (0,T ), it is evident that the random
variable lnXT is also normally distributed with mean

lnX0 +

(
μ− 1

2
σ2

)
T,

and variance σ2T , which means that the random variable XT is lognormally
distributed with the same set of parameters. Since in a random process the stopping
time (or a starting time) T for each individual instance may be different, it is a
random variable. If it is exponentially distributed, then it can be shown that, as
discussed in Sect. 3.2.3, the mixture of states follows a double Pareto distribution.
If we further assume that the initial state X0 follows a lognormal distribution, the
distribution of X becomes a double Pareto lognormal distribution.

In addition to the GBM model, Jiang et al. [28] propose several other generalized
forms of first order SDEs that also exhibit power law behaviors. In particular, they
consider a different scenario involving the steady state density associated with an
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SDE. The SDE describes a scenario where the quantity of interest decays to zero
exponentially, that is,

dX =−αX ,

but is incremented by a fixed amount of σ at a random moment of time. Under the
assumption that the random variable of time is exponentially distributed, they show
that for a range of parameter values the steady state distribution of X exhibits a
lower-tail power law, and through a simple transformation Y = X−1 the distribution
can be converted into an upper-tail power law. In their model, the random fluctuation
component is implemented by a Poisson counter.

Poisson counter driven SDEs are studied in Brockett [6], one typical SDE with
Poisson counter is

dX =−αXdt +σdN, (3.18)

where α > 0,σ > 0, and N is a Poisson process of intensity λ .
Jiang et al. [28] showed that, through the transformation that converts the lower-

tail power law into an upper-tail power law, the resulting distribution converts to a
Pareto distribution as t→ ∞.

It is also possible to let Brownian motion and Poisson counter co-exist in the
SDE. Adding a Brownian motion component, the SDE becomes

dXt = (μdt +σdBt)Xt +(x0−Xt−)dNt , (3.19)

which is a GBM with Poisson jumps that always reset the motion to a fixed state
x0. This SDE is similar to the one analyzed by Reed [42, 44], and the result is also
similar, for Reed showed that as t → ∞ the steady-state density distribution of Xt

converts to a double Pareto distribution.
Jiang et al. [28] also studied the power-law behavior near a critical point and

derived an SDE comprises of two independent bi-directional Poisson counters to
demonstrate this behavior. They showed that a discontinuity at this critical point
occurs in a surprising way, which might be of interest in statistical physics.

Early studies have all indicated that random multiplication with exponentially
distributed stopping time will lead to power law behaviors. This result may serve as
a guideline in explaining real-world phenomena that obey the power law.

3.3 Power-Law Behaviors in Complex Networks
and Natural Phenomena

The most effective way to evaluate the accuracy a power-law model is to use it
to explain the cause of certain power-law phenomenon and validate the prediction
using empirical data. The goodness of fit is a typical measure of a theoretical model.
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A good model should make this an intuitive process. In this section, we will present
the possible explanations to various real-world complex networks and natural
phenomena that exhibit power-law behaviors, and demonstrate the goodness-of-fit
figures with empirical data.

3.3.1 Income

It is well known that the distribution of a population’s income and wealth follows
the power law. The original observation was made in 1907 by Pareto. He noticed
that 80% of the wealth in Italy was owned by 20% of the population [40]. He then
surveyed a number of various types of countries and found to his surprise that a
similar income distribution applied. For over a century, most of the studies have
been focusing on the distribution itself as well as the impacts imposed by Pareto’s
principle. Not much has been done to explain the underlying reasons that cause
this phenomenon. Reed’s GBM model for the double Pareto lognormal distribution
based was the first-known model that provides an intuitive explanation for the
income distribution.

The distribution of incomes over a population is the same as the probability
distribution of the income of an individual randomly selected from that population.
Thus, a stochastic model for the generation of the income of such an individual can
be used to explain the observed distribution of incomes in a population or in random
samples. For an individual, the more income he or she currently receives, the more
income he or she will accumulate in the next time interval based on an expected
rate of increase (e.g., interests of deposits in saving accounts and annual raises
of salaries). Similarly, finance uncertainties (e.g., good or bad investment, market
depression, marriage or divorce) will directly affect his or her income as well.
This argument suggests that the income behavior over time could be modeled
as a GBM model, which was discussed in Sect. 3.2.4 and is presented here for
convenience:

dX = (μdt +σdB)X ,

where μ represents the instantaneous rate of increase on a riskless asset, σ the
volatility of the income, and dB the infinitesimal change in a Brownian motion over
the next instant of time (a.k.a. white noise). Assume that individual’s income follows
GBM process X with initial state X0 being a constant, then for a randomly selected
individual from the group of people with the same working time T , his or her income
is lognormally distributed.

If an individual is randomly selected from the entire workforce, the time T that he
or she has been in the workforce will be a random variable. To find the distribution
of time T , we consider a simple case when the workforce or population is growing



3 Double Pareto Lognormal Distributions in Complex Networks 67

at a constant rate ν . We assume that all individuals will eventually merge into the
workforce at certain time. A simple analysis gives us the following equalities:

FT (t) = 1−Pr(T ≥ t)

= 1− NT−t

(1+ν)tNT−t

= 1− (1+ν)−t,

fT (t) = F ′T (t)

= ln(1+ν)(1+ν)−t

= λ e−λ t .

In this case, the time T has an exponential distribution with a probability density
function fT (t) = λ e−λ t . Therefore, the income distribution from the entire work-
force will be an exponential mixture of lognormal distributions, leading to a double
Pareto distribution. Now let us consider the initial state X0. It would be more realistic
to assume that individuals’ initial incomes will also vary and evolve over time,
which can be described by another GBM. In this case, the income distribution is
changed to a double Pareto lognormal distribution [44].

Figure 3.6 demonstrates the double Pareto lognormal distribution fitted to
empirical income data (originally fitted by Reed [47]): the United States household
income of 1997 and the Canadian personal earnings of 1996, respectively. The data
fits in the theoretical curves quite well, not only in the upper tail region, but also in
the lower tail region.

3.3.2 Stock Market Returns

Stock market returns is another example that fits the double Pareto distribution
and can potentially be explained using a GBM model. During the last several
decades researchers have investigated the statistical distribution of returns and have
concluded that returns are “fat tailed,” which is a key power law characteristic.
Several studies have been devoted studying to the stochastic behaviors of the stock
price changes [21,29,31,32,39]. Bachelier in his 1900 dissertation [4] suggested that
stock prices in successive periods follow a random process that is best described by
a Wiener process (i.e., a Brownian motion).

This suggests that we could treat the return rate of each transaction as an
independent random variable. A simple model can be described as AT = A0×X0×
·· ·×XT where AT represents the current stock assets, A0 the initial stock investment,
and X0 through XT the average return rate for a certain time period. Thus, at a
certain time the total return could be seen as a sequence of multiplication of such
independent random variables with initial values, which is analogous to a long-term
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Fig. 3.6 The double Pareto lognormal distribution fitted to the US household income (1997) data
and the Canadian personal earnings (1996) data [47]

.

price discount, except that it should not always be a discount. If we assume the
stock is a good pick and has a steady increased rate with small fluctuation, it would
be better to apply the GBM model of dX = (μdt +σdB)X , where μ is the expected
return increase rate and σdB the volatility of the return over time. The stochastic
multiplicative process yields a lognormally distributed variable representing the
stock returns at a fixed time. If we consider a random killing process with a constant
killing rate, by killing here it means to cash out the stocks and settle, and the
returns is observed at the killing time, then the time span a process is kept alive
is exponentially distributed. Thus, if we observe the population of stock returns,
the distribution will be the mixture of lognormal distributions with exponentially
distributed time span, which is a double Pareto distribution. The initial wealth can
be viewed as any wealth naturally accumulated at certain time, which is lognormally
distributed as the result of multiplicative process. Hence, the distribution of stock
returns can be extended to the double Pareto lognormal distribution.

Figure 3.7 shows a good fit to the returns of IBM’s ordinary stocks from Jan 1,
1999 to Sept 18, 2003, originally plotted by Reed [44]. The figure at the left-hand
side shows a density histogram and the fitted double Pareto lognormal density; the
figure at the right-hand side shows the fitted density in logarithmic scale.
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Fig. 3.7 The double Pareto lognormal distribution fitted to stock market returns [44]
.

Fig. 3.8 ccdf of file sizes
statistics from University of
Calgary Web server. Compare
with a lognormal distribution
and a Pareto distribution [11].
The empirical data has the
lognormal body and Pareto
tail, which indicates a double
Pareto distribution

3.3.3 Internet File Sizes

It has been observed that the file size distribution over the internet seem to follow
a double Pareto distribution [11, 14, 41]. Figure 3.8 shows a file size statistics
from a Web server at the University of Calgary, from traces collected by Arlitt
and Williamson [3]. There have been attempts to explain the file size distribution.
Among them, Downey’s multiplicative file size model [12] and Mitzenmacher’s
recursive forest file model [35] have received much attention. The latter can
be viewed as an improvement over Downey’s model by introducing a dynamic
insertion and deleting process.

Downey’s model [12] is based on the following observation: Users tend to create
new files from old files by copying, editing, or filtering in some way, and the size of
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the new file will differ from that of the old file by a multiplicative factor f from a
given distribution D. That is, the system begins with a single root file and repeatedly
performs the following actions: randomly choose a file and create a new file from it
with size equal to f s, where s is the size of the chosen file.

The assumption behind this model is that creating a new file from a template
file through copying, editing, or filtering will cause the size of the new file to
differ from that of the old file by a factor from a given distribution D. For any
file in this system, the history of the creation can always be traced back to the
original root file. Thus, the size of the file can be viewed as the result of a
random multiplicative process. Downey, therefore, suggests that the entire file size
distribution is lognormal. Downey’s model, however, does not address the situations
of insertion and deletion, and the result of empirical fitting on these two operations
is not satisfiable.

To overcome this problem, Mitzenmacher [35] introduces a recursive forest file
model by modifying Downey’s model to include dynamic insertion and deleting
process. In this model, the system begins with a collection of one or more files,
whose sizes are drawn from a distribution D1. New files are generated repeatedly as
follows:

1. With probability γ , add a new file with size chosen from a given distribution D1.
2. With probability η , select a file uniformly at random, delete this file.
3. With probability 1−γ−η , select a file S with size s uniformly at random, choose

a multiplicative factor f from a given distribution D2, and create a new file S′ with
size f s.

Mitzenmacher reasons [35] that the file size density in this model converges to a
double Pareto distribution if D2 is a lognormal distribution D2, and a double Pareto
lognormal distribution if D1 is also a lognormal distribution. This model explains
why file size distribution may appear to have a lognormal body and a Pareto tail,
making it more appealing compared to other attempted explanations. It also provides
a flexible framework that may be extend to handle additional operations in the file
system.

3.3.4 Friends in MySpace

The observation that complex networks often exhibit power-law behaviors has
attracted much attention in recent years [8, 11, 14, 19]. Since Huberman and
Adamic [23] suggested in 1999 that the exponential growth of the World Wide
Web network could explain its power-law degree distribution, many studies have
attempted to migrate this idea to explain other complex networks [5, 13, 15, 34].
The rise of online social networks has generated overwhelmingly huge amount of
data, making it possible to carry out quantitative analysis on human social behaviors
in a large scale.
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Fig. 3.9 Empirical ccdf of the number of friends in MySpace, plotted in the log–log scale [49]
.

Ribeiro et al. [49] recently investigated MySpace and showed that the distribution
of the number of friends follows a double Pareto like distribution, which is shown
in Fig. 3.9.

Making friends in a virtual world is much easier, for the click of “add as friend”
button really does not need any social skill. Thus, the meaning of friends in an online
social network may be weak, which may simply mean “somehow related.” However,
this observation still suggests a reasonable assumption that for a user with a large
number of friends, most of the friends are added through passive referrals, assuming
that all requests of making friends are automatically approved. In addition, if we
assume that every user has a different referral probability to different people and
the referral is always accepted, the growth of the number of friends can be modeled
roughly as a multiplicative process Xt = PtXt−1, where each Pt can be computed
as the average referral probability of the current group of friends. According to the
analysis presented in Sect. 3.2.2, for a fixed period of time the number of friends
follows a lognormally distribution.

Ribeiro et al. [49] also observe that the time span of MySpace accounts is
distributed exponentially. This scenario might be explained by assuming a fixed
increase rate of MySpace accounts. Combining a exponentially distributed time span
with the lognormally distributed number of friends at fixed time, the overall friend
distribution for all MySpace accounts converges to a double Pareto distribution.

3.3.5 Downloads from SourceForge

SourceForge is a Web-based source code repository that provides a centralized
location for software developers to control and manage open source software
development. As of February 2009, the SourceForge repository hosts more than
230,000 projects and has more than 2 million registered users.
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Fig. 3.10 The distribution of downloads in 30 days for active projects [24]
.

Fig. 3.11 A closer look at the distribution of downloads [24]
.

Hunt and Johnson [24] use SourceForce as a downloading platform and study
the statistics of downloads. The data on the number of downloads was collected
from all projects listed on the most active project list on October 22, 2001 for 30
days, which was partially shown in Figs. 3.10 and 3.11. The distribution obtained is
heavily skewed which exhibits a significant sign of power tail. Taking a closer look
at the few download region, it is evident that the download distribution also exhibits
a lower tail, which implies that the double Pareto model could be able to provide an
explanation to both of these tails.

It is reasonable to assume that during these 30 days every download for a single
project comes from different users for the following reasons: People would not
download the same file over and over again unless the download is not successful or
the file has being updated, and the 30 days time span is considered to be a relatively
short cycle that a file only has a small chance of being altered. Popular projects
would attract more user downloads and people tend to broadcast satisfying user
experience. Thus, the popular downloads are more likely to be introduced to new
users and become even more popular, which would in turn increase the download
counts. This process is similar to the growth of the number of MySpace friends.
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The same model can be applied to conclude that the number of downloads of
projects by the same age group would exhibit a lognormal distribution.

No public data is available concerning the distribution of ages for all the projects.
If we assume that the total number of projects increase approximately at a fixed rate,
then at time T + 1 the number of projects would be NT+1 = (1+ ν)NT . From the
analysis in Sect. 3.3.1 it follows that the cumulative distribution of time T is FT (t) =
1−(1+ν)−t and the frequency distribution is fT (t) = F ′T (t) = ln(1+ν)(1+ν)−t =
λ e−λ t by replacing ln(1+ ν) with λ . Therefore, the ages of projects would follow
an exponential distribution. Thus, the distribution of number of downloads over all
active projects is a double Pareto distribution, which exhibits both the lower tail and
the upper tail.

3.3.6 Sizes of Human Settlements

Auerbach (1913) was the first to discover that the distribution of city sizes can
be well approximated by a power-law distribution. That is, if we rank the cities
based on population, then the size of the largest city is twice as that of the second
largest city, three times as that of the third largest city, and so on. This distribution
was believed to follow Zipf’s law, a.k.a. the rank-size distribution. A number of
studies have since contributed evidence and provided support to this statement until
recently [7, 18, 27, 38]. In a wide spread article [16, 17], Eeckhout points out that
the old evidence is problematic since the early studies only dealt with truncated
samples and only focused on large cities, and the Zipf’s law does not hold when
taking all settlements of a country into consideration. The Zipf’s law is still valid
for the tail behavior since the tail mostly consists of large cities. When adding more
cities of smaller sizes to the distribution, it gradually shows a lognormal body.
Eeckhout [16, 17] then model the growth of settlements using the pure form of
Gibrat’s law (a.k.a Gibrat’s rule of proportionate growth) and generate lognormal
size distribution. Gibrat’s law states that the size and growth rate are independent.
However, the lognormal distribution does not fit well with the power-law tail.

The double Pareto lognormal seems more appropriate since it comprises a
lognormal body and power law tails. Reed [45] suggests a GBM model, similar to
the one that models personal incomes, for obtaining the settlement size distribution.
Individual human settlements grow in many different ways. At the macro level
a GBM process dX = (μdt + σdB)X can be used to model the size growth by
assuming a steady systematic growing rate μ and a random component σdB. The
steady growing rate reflects the average growth rate over all settlements and times,
and the random component reflects the variability of the growth rate. The time when
a city is founded varies from settlement to settlement. If we assume in the time
interval (t, t + dt) any existing settlement can form a new satellite settlement with
probability λ dt, the creation of settlements is a Yule process [52], which was first
proposed as a model for the creation of new biological species. Under Yule process,
the expected number of settlements is eλ t after t time since the first settlement. That
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Fig. 3.12 The double Pareto lognormal distribution fitted to empirical city size data [45]
.

is, the number of settlements is growing at rate λ . Therefore, the existing time for
all settlements is exponentially distributed. It is straightforward to conclude that
under GBM and Yule processes, the overall settlements size distribution will is a
double Pareto distribution. If we further assume a lognormal initial settlement size,
the result will converge to the double Pareto lognormal distribution.

Figure 3.12 shows empirical and fitted double Pareto lognormal distribution
originally plotted by Reed [45] on the West Virginia data and California data
obtained in 1998. The left-hand panel demonstrates the empirical density histogram
in logarithmic size scale and fitted theoretical curve. The right-hand panel shows the
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fitted double Pareto lognormal distribution density in the log–log scale. It is evident
that the double Pareto lognormal distribution provides a nice fit to the data in each
region.

3.3.7 Volumes of Oil Field Reserves

The distribution of oil field sizes (i.e., the volumes of oil field reserves) has been
the subject of much study for decades. Allais [1] was the first to propose to
use a lognormal distribution for mineral resources and Kaufman [30] used this
distribution for a population of oil or gas field in a petroleum basin. After that,
the Pareto distribution has also been commonly used [20, 22, 33, 37] since the
petroleum exploration practice has indicated that the probability of discovering large
oil pools is low while the probability of discovering medium and small-sized pools
is high and the Pareto distribution is consistent with this type of structure. However,
distinguishing lognormal and Pareto features that are both shown in the oil field
size distribution may be difficult, which suggests that the double Pareto lognormal
distribution might be a better choice.

An oil field can be thought of as a percolation cluster. The percolation theory
provides a useful model of connectivity and dynamics in complex geometries
(see [50] for a comprehensive introduction). The typical problem of percolation is
to consider a lattice of n× n sites, each of which is either occupied or unoccupied
with a certain probability. Clusters are formed when neighboring sites are occupied.
The objective is to understand the relationship among groups of clusters. If we think
of an oil field as a percolation cluster, the growth of oil field sizes can then be
considered as a stochastic process of merging adjacent regions. Thus, the growth
of an oil field size can be assumed to be proportional to its current size, for larger
oil fields would have more possible regions to merge, which implies that the size
distribution follows a lognormal distribution for a fixed percolating time.

The initial percolation cluster was formed by burying a huge amount of
organically rich materials (e.g., plants and animal bodies), which could be caused
by geologic hazards such as earthquake, landslides, and mudflows. Such extreme
event occurs with small probability and percolation clusters are formed randomly
with a small constant rate. Thus, the total percolating time span for a cluster is
distributed exponentially. If we also assume a lognormal distribution on the initial
burying amount, the overall size distribution of oil field would be a double Pareto
lognormal distribution.

Figure 3.13 shows empirical and fitted double Pareto lognormal distribution by
Reed [44] for the volume of 634 oil fields in the West Siberian basin. The left-hand
figure demonstrates the empirical density histogram in logarithmic volume scale
and fitted theoretical curve. The right-hand figure shows the fitted double Pareto
lognormal distribution density in the log–log scale.
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Fig. 3.13 The double Pareto lognormal distribution fitted to sizes of oil fields [44]
.

3.3.8 Areas Burned from Forest Wildfire

A number of researches have examined the distribution of burned areas from forest
fires [2,9,10,25,46,51] and claimed that it exhibits power-law behaviors, as shown
in Fig. 3.14. Studying the fire size distribution would be useful to help construct
a wildfire spreading and distinguishing model. Finding a good model that could
precisely describe the process of a forest fire is still an active and open topic in
ecological science. We only provide a sketch model to demonstrate a forest fire
process and omit the details.

The start of a forest fire could just be a random lit up. The growth of a fire is a
very complicated affair, depending on water, topology, temperature, humidity, plant
types (i.e., fuel types), and many other factors. Percolation theory models forest fire
spreads as a multiplicative stochastic process, which is similar to many biological
entities that grow and die in a monotonic and stochastic fashion. That is, the size of
burning area grows proportional to its current burning size as time spans. Therefore,
the sizes of burnt area follows approximately a lognormal distribution for a fixed
burning duration.

The causes of the forest fire extinguishment varies under different situations.
For a small fire, it could extinguish because of lack of fuel in surrounding areas
(burned up or changes of materials). Another possible cause of extinguishment
could come from intervention of human. However, people involved in fire fighting
commonly believe that suppression cannot put out very large fires. The effect of
suppression is more likely to reduce the spread (e.g., by putting separation lines
around the back and sides of fires) rather than to actually extinguish the fires [53].
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Fig. 3.14 A log–log plot of cdf for the size distribution of areas burned for the six dataset [46],
measured in hectares

The only effective cause of extinguishment is precipitation. A few days of heavy
rainfall could put off any size of forest fire. A weaker precipitation might only slow
down the spread, which could be viewed as similar to that of human intervention.
If we assume an equal chance that fires can be put off by natural causes, the time
a forest fire lasts would follow an exponential distribution. Mixing the lognormal
distribution of burned area size and the exponential time span will lead to a double
Pareto distribution.

3.4 Conclusion and Future Directions

In this article, we presented an overview of recent significant research results in
the studies of power law that occur in complex networks and natural phenomena,
explored a two-tailed power-law model called the double Pareto (lognormal) model
and presented a number of real-world examples that can be explained using this
model. The diversity of these examples shows the robustness of the double Pareto
(lognormal) model.

The good fit of double Pareto (lognormal) distribution, however, comes with
costs. The physical meanings of parameters α and β become less intuitive com-
paring with those in the Pareto and lognormal distribution, and making a good
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estimation of the two parameters for the double Pareto distribution (four parameters
for the double Pareto lognormal distribution) requires more mathematic skills.
While we apply double Pareto (lognormal) distribution to empirical data for a close
fit, seeking the underneath mechanism that makes various phenomena follow this
distribution is also crucial. Although “random multiplication with exponentially
distributed stopping time” provides a plausible explanation to the double Pareto
(lognormal) distribution, it is not universal and should not be the only explanation.
Is “exponentially distributed time” necessary to form the double Pareto (lognormal)
distribution? If not, what are the alternatives? Questions like these are vital and
warrant careful studies. The GBM model that essentially inherits from the random
multiplication process and is adopted by numerous cases has its own limitation,
especially in the examples of oil field reserves and forest fire, where a simple
GBM seems not sufficiently sophisticated to precisely capture the nature of those
phenomena. Other good models are still yet to be found.

Nevertheless, we still expect that this model can be further applied to other
areas that are yet to be explored, including the knowledge networks. We would
like to know whether the linkage of human knowledge also exhibits the power
law. If we could manage to divide the knowledge networks into subject domains,
would the different bodies of domain knowledge share the structural similarity?
If so, can we even control the knowledge accumulation process? These questions
seem interesting, for they may help discover new knowledge. The world is expecting
continuous excitement from new findings on power law research.
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5. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social
network of scientific collaborations. Physica A: Statistical Mechanics and its Applications,
Vol. 311, No. 3–4, 590-614 (2002)

6. Brockett, R.W.: Talk at Kyoto University, Kyoto, Japan (2007)
7. Chen, Y., Zhou, Y.: Multi-fractal measures of city-size distributions based on the three-

parameter Zipf model. Chaos, Solitons & Fractals, Vol. 22, No. 4, 793–805 (2004)



3 Double Pareto Lognormal Distributions in Complex Networks 79

8. Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distribution in the World
Wide Web. A practical guide to heavy tails, Birkhauser Boston Inc., Cambridge, MA, USA,
3–25 (1998)

9. Cumming, S.G.: A Parametric models of the fire-size distribution. Forest Research Vol. 31,
No. 8, 1297–1303 (2001)

10. Cui, W., Perera A.H.: What do we know about forest fire size distribution, and why is this
knowledge useful for forest management? International Journal of Wildland Fire, CSIRO
Publishing, Collingwood, Victoria, Australia, Vol. 17, 234–244 (2008)

11. Downey, A.B.: Evidence for long-tailed distributions in the internet. In Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement (IMW ’01), CSIRO Publishing,
Collingwood, Victoria, Australia, 229–241 (2001)

12. Downey, A.B.: The structural cause of file size distributions. In Proceedings of the 2001 ACM
SIGMETRICS international conference on measurement and modeling of computer systems,
Cambridge, Massachusetts, United States, ACM, New York, NY, USA, 328–329 (2001)

13. Dorogovtsev, S.N., Mendes, J.F.F.: Language as an evolving word web. Proc. R. Soc. Lond.
B 22, Vol. 268, No. 1485, 2603–2606 (2001)

14. Downey, A.B.: Lognormal and Pareto distributions in the Internet. Comput. Commun. 28, 7,
790–801 (2005)

15. Ebel, H., Mielsch, L., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E
Vol. 66, No. 3 (2002)

16. Eeckhout, J.: Gibrat’s law for (all) cities. The American Economic Review, Vol. 94, No. 5,
1429–1451 (2004)

17. Eeckhout, J.: Gibrat’s law for (all) cities: reply. The American Economic Review, Vol. 99,
No. 4, 1676–1683 (2009)

18. Giesen, K., Zimmermann, A., Suedekum, J.: The size distribution across all cities – double
Pareto lognormal strikes. Journal of Urban Economics, Vol. 68, 129–137 (2010)

19. Gong, W., Liu, Y., Misra, V., Towsley, D.: Self-similarity and long range dependence on the
internet: a second look at the evidence, origins and implications. Comput. Netw. 48, 3, 377–399
(2005)

20. Greenman, J.V., Fryer, M.J.: Hydrocarbon Field Size Distributions: A Case Study in Mixed
Integer Nonlinear Programming. The Journal of the Operational Research Society Vol. 47,
No. 12, 1433–1442 (1996)

21. Gu, G., Chen, W., Zhou, W.: Empirical distribution of Chinese stock returns at different
microscopic timescales. Physica A, 387, 495–502 (2008)

22. Houghton, J.C.: Use of the truncated shifted Pareto distribution in assessing size distribution
of oil and gas fields. Mathematical Geology, Vol. 20, No. 8 (1988)

23. Huberman, B., Adamic, L.: Growth dynamics of the World Wide Web. Nature, page 130–130
(1999)

24. Hunt, F., Johnson, P.: On the Pareto distribution of SourceForge projects. In C. Gacek and B.
Arief (eds.), Proc. Open Source Software Development Workshop, pps. 122–129, University
of Newcastle, UK (2002)

25. Holmes, T.P., Huggett, R.J., Westerling, A.L.: Statistical Analysis of Large Wildfires. Forestry
Sciences, Vol. 79, II, 59–77 (2008)

26. Itō, K.: On stochastic differential equations. Memoirs, American Mathematical Society 4, 1–51
(1951)

27. Jiang, B., Jia, T.: Zipf’s law for all the natural cities in the United States: A geospatial
perspective. Preprint, http://arxiv.org/abs/1006.0814

28. Jiang, B., Brockett, R., Gong, W., Towsley, D.: Stochastic differential equations for power law
behaviors. Submitted to Journal of Applied Probability, Applied Probability Trust (2010)

29. Jondeau, E., Rocklinger, M.: The tail behavior of stock returns: Emerging versus mature
markets. Les Cahiers de Recherche, HEC Paris, 668 (1999)

30. Kaufman, G.M.: Statistical decision and related techniques in oil and gas exploration. Prentice
Hall, Englewood Cliffs (1963)

http://arxiv.org/abs/1006.0814


80 Z. Fang et al.

31. Klass, O.S., Biham, O., Levy, M., Malcai, O., Solomon, S.: The Forbes 400 and the Pareto
wealth distribution. Economics Letters, Vol. 90, 290–295 (2006)

32. Levy, M.: Market efficiency, the Pareto wealth distribution, and the Levy distribution of stock
returns. Economy as an Evolving Complex System III, Oxford University Press (2006)

33. Liu, X., Jin, Z., Chen, S., Liu, L.: Generalized Pareto distribution model and its application
to hydrocarbon resource structure prediction of the Huanghua depression. Petroleum Science,
Vol. 3, No. 2, 22–27 (2006)

34. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs:
Simple building blocks of complex networks. Science, Vol. 298, No. 5594, 824–827 (2002)

35. Mitzenmacher, M.: Dynamic models for file sizes and double pareto distributions. Internet
Mathematics, Vol. 1, No. 3, 305–333 (2004)

36. Mitzenmacher, M.: A history of and new directions for power law research. Invite talk at
University at Buffalo (2008)

37. Michel, B.: Oil production: A probabilistic model of the Hubbert curve. Applied Stochastic
Models in Business and Industry, Vol. 27, No. 4, 434–449, John Wiley & Sons, Ltd. (2011)

38. Nishiyama, Y., Osada, S., Morimune, K.: Estimation and testing for rank size rule regression
under pareto distribution. In Proceedings of the International Environmental Modelling and
Software Society iEMSs, University of Osnabrck, Germany, (2004)

39. Onour, I.A.: Extreme risk and fat-tails distribution model: Empirical analysis. Journal of
Money, Investment and Banking ISSN 1450-288X Issue 13, EuroJournals Publishing, Inc.
(2010) http://www.eurojournals.com/jmib 13 03.pdf

40. Pareto, V.: Un applicazione di teorie sociologiche, published in Revista Italiana di sociologia,
1901, p. 402–456. (1971. Manual of political economy. Translated by Ann S. Schwier. Edited
by Ann S. Schwier and Alfred N. Page. New York: A.M. Kelley)

41. Park, K., Kim, G., Crovella, M.: On the relationship between file sizes, transport protocols, and
self-similar network traffic. In Proceedings of the 1996 International Conference on Network
Protocols (ICNP ’96), IEEE Computer Society, Washington, DC, USA, (1996)

42. Reed, W.: The Pareto, Zipf and other power laws. Economics Letters, Vol. 74, No. 1, 15–19
(2001)

43. Reed, W., Hughes, B.D.: From gene families and genera to incomes and internet file sizes:
Why power laws are so common nature. Physical Review E, Vol. 66, No. 6 (2002)

44. Reed, W., Jorgensen, M.: The double Pareto-lognormal distribution - A new parametric model
for size distributions. Commun. in Statistics – Theory and Methods, Vol. 33, No. 8 (2004)

45. Reed, W.: On the rank-size distribution for human settlements. Journal of Regional Science
Vol. 42, No. 1, 1–17 (2002)

46. Reed, W., McKelvey, K.S.: Power-law behaviour and parametric models for the size-
distribution of forest fires. Ecological Modelling, Vol. 150, 239–254 (2002)

47. Reed, W.: A parametric model for income and other size distributions and some extensions.
International Journal of Statistics, Vol. LXIV, No. 1, 93–106 (2006)

48. Ross, S.M.: Stochastic Processes, Second Edition, Wiley. ISBN 9780471120629, (1995)
49. Ribeiro, B., Gauvin, W., Liu, B., Towsley, D.:On MySpace Account Spans and Double

Pareto-Like Distribution of Friends. Second International Workshop on Network Science for
Communication Networks (NetSciCom), pp. 1–6 (2010)

50. Stauffer, D., Aharony, A.: Introduction to percolation theory, Second Edition. London: Taylor
and Francis (1992)

51. Schoenberg, F.P., Peng R., Woods J.: On the distribution of wildfire sizes. Environmetrics,
Vol. 14, No. 6, 583–592 (2003)

52. Yule, G.U.: A Mathematical Theory of Evolution, based on the Conclusions of Dr. J. C. Willis,
F.R.S.. Philosophical Transactions of the Royal Society of London, Ser. B 213: 21–87 (1925)

53. Incident Operations Standards Working Team (2010), Incident Response Pocket Guide,
National Wildfire Coordinating Group (NWCG), pp. i–101

http://www.eurojournals.com/jmib_13_03.pdf


Chapter 4
Laplacian Spectra and Synchronization
Processes on Complex Networks

Juan Chen, Jun-an Lu, Choujun Zhan, and Guanrong Chen

Abstract The spectrum of the Laplacian matrix of a network contains a great
deal of information about the network structure and plays a fundamental role in
the dynamical behavior of the network. This chapter is to explore and analyze the
Laplacian eigenvalue distributions of several typical network models, to study the
network dynamics towards synchronization at a mesoscale level of description, and
to report the finding of a relation between the spectral information of the Laplacian
matrix and the dynamics in the network synchronization process. First, an example
of adding long-distance edges is given to show that the network synchronizability
may not be directly inferred from statistical properties of the network. Then, the
Laplacian eigenvalues of several representative complex networks are shown to
possess very different properties, and yet they also share some common features
meanwhile. Further, the correlation between the Laplacian spectrum and the node-
degree sequence of a network is investigated, revealing that scale-free networks
have the highest correlation values, followed by random networks and then by
small-world networks. To that end, a simple local prediction–correction algorithm
is presented for approximating the eigenvalue λi+1 from λi, i = 1,2, · · · ,N, where
N is the network size. Finally, it is shown that the processes of synchronization and
generalized synchronization (GS) display different patterns, depending intrinsically
on the topological structures of the networks. It is found that in the process of
synchronization (or GS), roughly speaking, synchronization (or GS) first starts from
a small part of hub nodes and then spreads to the other nodes with smaller degrees.
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It is also demonstrated that, for community networks, a typical synchronization
process generally starts from partial synchronization through cluster synchroniza-
tion to evolve to global complete synchronization.

4.1 Introduction

In recent years, the theory of complex networks has attracted wide attention and
become an area of great interest [1–5], for its advances in the understanding of
many natural and social systems. One subject in the studies of complex networks
that has received a great deal of attention is the topological characterization of
various networks. Indeed, there has been considerable interest in investigating how
the statistical properties of a network, such as the degree distribution, average
distance, clustering coefficient, betweenness, and so on, are related to the dynamical
processes taking place on the network [6–14]. However, it was shown in [15] that
some statistical network properties are not sufficient to determine various complex
dynamical patterns. It is found that unfortunately statistical properties may actually
infer completely opposite conclusions about some large-scale complex networks
sometimes.

From a graph-theoretic perspective, the spectrum (i.e., the set of eigenvalues)
of the Laplacian matrix of a network contains tremendous information about the
underlying network, which provides useful insights into the intrinsic structural
features of the network [16]. A prototype example is the synchronizability of a
network [17–20], which is crucially determined by the ratio of the smallest nonzero
eigenvalue to the largest one of the corresponding Laplacian matrix. Also, the
eigenvectors of the Laplacian matrix are known to be useful for detecting the
community structure of a network [21].

Synchronization, as an emerging phenomenon of a population of dynamically
interacting units, has fascinated humans since the ancient times. Synchronization
phenomena and processes are ubiquitous in nature and play a vital role within vari-
ous contexts in biology, chemistry, ecology, sociology, technology, and even visual
arts. To date, the problem of how the structural properties of a network influence
the performance and stability of the fully synchronized states of the network have
been extensively investigated and discussed, both numerically and theoretically.
Regarding partial synchrony, however, research results obtained thus far are much
less and unmature [22–32]. It is well known today that synchronization analysis,
synchronization processes and topological scales are all crucially determined by the
whole eigenvalues spectrum of the Laplacian matrix of the network [15, 24, 25].
As such, a careful investigation on the eigenvalues spectrum of a complex network
is of great significance especially regarding the evolution of the dynamical behaviors
of the network.

The present chapter studies the Laplacian spectra of complex networks and
their effects on the synchronization processes over the networks. Specifically, it
is to further explore and analyze the Laplacian eigenvalue distributions of several
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typical network models, to study the network dynamics towards synchronization at
a mesoscale level of description, and to report a connection between the spectra of
the Laplacian matrix and the dynamical process through the emergence of network
synchronization.

Section 4.2 introduces the notion of eigenvalues spectrum of the Laplacian matrix
of a network, and some well-known estimations of the eigenvalues. As reported in
[15], some networks with the same statistical properties may have very different
synchronization characteristics. Here, in addition, an example is given to show that
adding long-distance edges can sensitively affect the average distance, a typical
statistical property, while the smallest nonzero eigenvalue remains essentially
unchanged.

Section 4.3 introduces and analyzes the spectral distributions of regular, random,
small-world, scale-free, and community networks. The main finding is that the
Laplacian eigenvalues of these four types of complex networks have very different
properties in general and yet they also share some common features meanwhile. The
spectral distributions of regular, random, and small-world networks are homoge-
neous, whereas that of the scale-free networks is quite heterogeneous. Furthermore,
for random and small-world networks, the smallest nonzero eigenvalue depends
approximately linearly on the connection probability adopted in network generation.
There exist some big gaps between consecutive eigenvalues in community networks,
while for a network with k prominent communities there are k− 1 eigenvalues near
zero. In various realizations of the same type of network topology of the same size,
the variations of their Laplacian eigenvalues are quite small; and this is roughly the
same for all different types of network models studied.

In Sect. 4.4, it is revealed that the distributions of the Laplacian eigenvalues are
very similar to the distributions of the node-degree sequence. It is found that the
correlation between the spectrum and the node-degree sequence of a scale-free
network is the highest, followed by random networks and then by small-world
networks. Meanwhile, a simple local prediction-correction algorithm is designed
to determine the eigenvalue λi + 1 from λi, i = 1,2, ...,N where N is the size of the
network. It is also demonstrated that the eigenvalue curves are quite different from
their corresponding node-degree distributions in some regions with small indexes,
although they are quite similar in other regions.

Section 4.5 studies the dynamics towards synchronization in complex networks
at the mesoscale level of description. The dynamical processes towards synchro-
nization show different patterns depending intrinsically on the network topological
structures. It is found that the processes of synchronization and generalized synchro-
nization (GS) display different patterns, depending intrinsically on the topological
structures of the networks. It is also found that in the process of synchronization
(or GS), roughly speaking, synchronization (or GS) first starts from a small part
of hub nodes and then spreads to the other nodes with smaller degrees. Finally, it
is demonstrated that, for community networks, a typical synchronization process
generally starts from partial synchronization through cluster synchronization to
global complete synchronization.
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4.2 The Laplacian Matrix and Its Eigenvalues

Consider a network G of N nodes, with edges linking certain pairs of nodes together.
Suppose that there are no self-loops and no multiple edges between the same pair of
nodes. The Laplacian matrix L of the network is defined by

Luv =

⎧⎪⎨
⎪⎩

dv if u = v,

−1 if u and v are adjacent,

0 otherwise.

where dv denotes the degree of node v. The adjacency matrix A = (auv) is defined
by auv = 1 if u is adjacent to v or 0 others. Thus, the Laplacian matrix L is defined
to be L = D−A, where D = (di j) is the diagonal matrix of all node degrees, that is,
with dii equals the degree of node i, i = 1,2, . . . ,N. Only undirected networks are
considered here, for which all the Laplacian matrices are symmetric and positive
semi-definite, with nonnegative real eigenvalues arranged as λ1 ≤ λ2 ≤ ·· · ≤ λN .

Since the Laplacian matrix, described as above, has zero row-sums (hence, zero
column-sums), the smallest eigenvalue λ1 = 0 with the corresponding eigenvector
(1,1, . . . ,1)T; in particular, λ2 is nonzero if and only if the network is connected,
and furthermore the number of connected components is equa1 to the multiplicity
of the 0 eigenvalue.

4.2.1 Basic Properties of Laplacian Eigenvalues

Let dmin and dmax denote the smallest and the largest degree of a network,
respectively, and use the index i to order the degrees of its nodes: dmin = d1 ≤ d2 ≤
·· · ≤ dN = dmax. The following estimates are well-known [33]:

λ2 ≤ N
N− 1

dmin ≤ N
N− 1

dmax ≤ λN ≤ 2dmax . (4.1)

Similarly, using the average degree davg, it was shown in [34] that

davg < λN(A)≤ N, (4.2)

where λN(A) is the largest eigenvalue of the adjacency matrix A and, moreover,
λN(A) = N if and only if the complementary graph of G is disconnected [35].
However, the above estimations are generally conservative.

Fiedler [36] further established the following bounds relative to the node
connectivity and the edge connectivity:

λ2 ≤ υ(G)≤ e(G),
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where υ(G) is the node connectivity of G, namely the minimal number of
nodes whose removal together with the adjacent edges would result in losing the
connectivity of G, while e(G) is the edge connectivity, defined as the minimal
number of edges whose removal would result in losing the connectivity of G.

Fiedler [36] also established a lower bound relative to the edge connectivity or to
the largest degree, as follows:

λ2 ≥ 2e(G)(1− cos(π/N)),

λ2 ≥ 2[cos(π/N)− cos(2π/N)]− 2cos(π/N)(1− cos(π/N))dmax.

The second lower bound is better if and only if 2e(G) > dmax. Relatively, one also
has 2(1−cos(π/N)) = λ2(PN), where λ2(PN) the second smallest eigenvalue of the
adjacent matrix corresponding to PN , a path through N nodes.

Anderson and Morley [37] showed that

λN ≤max{du + dv : u and v are adjacent},
The equality holds if and only if G is a semi-regular bipartite graph.

Merris [38] showed that

λN ≤max{dv +mv},
where mv is the average degree of all the neighbors of node v.

Rojo, Soto, and Rojo [39] gave another upper bound on λN , as follows:

λN ≤max{du + dv−|Nu∩Nv| : u �= v},

where |Nu∩Nv| denotes the number of the common neighbors of nodes u and v.
Li and Pan [40] proved that

λN−1 ≥ dN−1,

where the equality holds for a complete bipartite graph or a tree with a degree
sequence {N/2,N/2,1, . . . ,1}. Prior to this, it was known [41] that

λN ≥ dmax + 1,

where the equality holds if and only if dmax = N− 1.
Last but not least, Duan, Liu, and Chen [42] reported some useful estimation

bounds for some Laplacian eigenvalues and the eigenvalue ratio about complex
network synchronizability, with respect to subgraphs, complementary and product
graphs.
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4.2.2 Statistical Properties Versus Laplacian Spectra

In [13], it was shown that the synchronizability of a large class of networks is
determined by the eigenvalue ratio λ2/λN , of which it was shown that the main
dependence is on the smallest nonzero eigenvalue λ2 [43, 44]. Since in most real
networks, dmin = 1, it follows from (4.1) that

λ2 ≤ N/(N− 1),

which, of course, is a rather conservative estimation.
From (4.1), one immediately gets that

λ2

λN
≤ dmin

dmax
≤ 1. (4.3)

Therefore, generally speaking, the closer to 1 the ratio is, the better the network syn-
chronizability will be. For example, that scale-free networks have dmin/dmax� 1;
therefore, as has been well experienced, they have relatively poorer synchronizabil-
ity in comparison to most other types of network structures in general.

It should be noted, however, that (4.3) does not imply that a more homogeneous
degree distribution always means a better synchronizability. It was shown in [15]
that the effect of small structural changes on synchronizability may not average out
within a large-scale network, therefore the synchronizability may not be described
by the statistical network properties. Moreover, some examples were presented in
[15, 16] to show that networks with the same degree distribution can have very
different synchronizability characteristics.

According to [15], furthermore, an upper bound of λ2 can be estimated by

λ2 ≤ 2
|∂S|
|S| , (4.4)

where S is any subset of nodes satisfying 0 < |S| ≤ N/2, |S| is the total number
of nodes in S, and |∂S| is the number of common edges between S and its
complementary graph. It was also reported in [15] that the estimation (4.4) plays
a key role in understanding why the statistical properties of a network may fail to
determine λ2. An important observation is that the above bound on λ2 is determined
by the properties of some subgraph S but not in general by the network itself.
In particular, S can be very small comparing to the whole network, so in this case the
statistical properties of the network need not be reflected by S, therefore the former
may not be very crucial for bounding the value of λ2.

Here, an example is given to further show that adding long-distance edges to a
network can sensitively affect the average distance, but they have very little effect
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Fig. 4.1 Synchronizability comparison: (a) between network N0, composing of a small-world
model H of 500 nodes, and network N1, composing of a small-world model H of 500 nodes
and a fully connected model S of 50 nodes, with only one edge connecting H and S together;
(b) between network N0 and network N2, composing of a small-world model H of 500 nodes and
a fully connected model S of 50 nodes, with two edges connecting H and S together

on the smallest nonzero eigenvalue. To do so, consider a community network N1

composing of a huge part H and a small part S, where H is a small-world model
of 500 nodes and S is a fully connected model of 50 nodes, which is connected to
H by only one edge. For comparison, define another network, N0, composing of
H only, without the small part S. Then, add some long-distance edges into H with
probability p, so as to shorten the average network distance. Under this framework,
the synchronizability of the networks N0 and N1 is analyzed numerically, with
results as shown in Fig. 4.1a.

From Fig. 4.1a, one can observe the following: (1) Without the small part S, if
p is increased, then λ2 and λ2/λN both rise up, implying that increasing p yields
a better synchronizability of the network. (2) With the small part S, when p is
large enough, λ2 first increases and then saturates, while the largest eigenvalue
λN continues to increase. Therefore, the ratio λ2/λN eventually decays, thereby
reducing the synchronizability. In other words, the network does not become
more synchronizable, even though the probability p with long-distance connections
increases, that is, the average network distance becomes smaller. This means
that one cannot use the statistical properties to measure the synchronizability of
networks in general, which is consistent with the observations reported in [15]. (3)
It is easier for a network to synchronize in the case without the small community S
than the case with S.
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Furthermore, when there exists a small part S, as p is increased, the numerical
result shows that the final value of the eigenvalue λ2 remains to be about 0.021
(see Fig. 4.1a). In terms of (4.4), the theoretical value is λ2 ≤ 2/50 = 0.04, which
is not of significant difference from the numerical result. In addition, when there
exist two edges between H and S, the final value of λ2 remains to be about 0.042
(see Fig. 4.1b), implying that the value of λ2 is positively proportional to the number
of edges between the two parts, at least for the present simple cases with one or two
connections. In fact, this conclusion may also be deduced from (4.4).

4.3 Spectral Properties of Several Typical Networks

The spectrum of a network is the set of eigenvalues of the network’s Laplacian
matrix. While there are strict mathematical formulas to describe the spectra of some
very regular networks, much less is known about the spectra of many real-world
networks for their complex and irregular topological structures. A critical limitation
in addressing the spectra of these real-world networks is the lack of theoretical tools
for analysis; therefore, numerical simulation becomes the only way for investigation
today.

For all the numerical results reported below, each value is obtained through
averaging 50 simulation runs.

4.3.1 Regular Networks

Some very regular cases are easy to analyze.
For a fully connected network, the Laplacian matrix is

L =

⎛
⎜⎜⎜⎝

N− 1 −1 · · · −1
−1 N− 1 · · · −1
. . .

. . .
. . .

. . .

−1 −1 · · · N− 1

⎞
⎟⎟⎟⎠,

with eigenvalues

λ1 = 0, λ2 = · · ·= λN = N. (4.5)

For a star-shaped network, the Laplacian matrix is

L =

⎛
⎜⎜⎜⎜⎜⎝

N− 1 −1 −1 · · · −1
−1 1 0 · · · 0

...
. . .

−1 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠,
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Fig. 4.2 Rank index i versus eigenvalues of the Laplacian matrices L: (a) 2K-ring network with
N = 1000 and K = 2; (b) random network with N = 1000 and p = 0.007

with eigenvalues

λ1 = 0, λ2 = · · ·= λN−1 = 1, λN = N. (4.6)

In a 2K-ring network with degree sequence {2K,2K, . . . ,2K}, each node is
connected to its 2K nearest neighbors, thereby forming a ring-shape of graph. Its
Laplacian matrix is a circulant matrix:

L =

⎛
⎜⎜⎜⎝

2K −1 · · · −1 0 · · · 0 −1 · · · −1
−1 2K −1 · · · −1
. . .

. . .
. . .

. . .

−1 · · · −1 0 · · · 0 −1 · · · −1 2K

⎞
⎟⎟⎟⎠,

with eigenvalues 0 and 2K − 2∑K
l=1 cos 2π il

N = 4∑K
l=1 sin2 π il

N , i = 1,2, . . . ,
N− 1.

To show some spectral properties of the 2K-ring networks, consider the simple
case of K = 2 as an example, and compute the eigenvalues of its Laplacian matrix for
size N = 1,000. It can be seen from Fig. 4.2a that the nonzero eigenvalues come out
equally in pairs, except the eigenvalue 4. Moreover, the smallest nonzero eigenvalue
is λ2 = 0.00019739 and the largest one is λN = 6.25. The eigenvalue ratio λ2/λN is
so small, implying that this network is very difficult to synchronize.

4.3.2 Random Networks

In contrary to the completely regular networks, a completely random network can
be described by a random graph. One classical model of random graphs was first
defined and then studied extensively by Erdös and Rényi [45]. An ER random
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Fig. 4.3 Rank index i versus eigenvalues of the Laplacian matrices L, for random networks of size
N = 1,000 with different connection probabilities

network has all edges established at random, with probability p, between each
possible pair of nodes in the network. Thus, a random graph of N nodes with
probability p will have pN(N− 1)/2 edges statistically.

For example, consider such a network with N = 1,000 nodes. When p = 0.007>
pc, where pc = (1+ ε)lnN/N ≈ 0.0069, the random network will almost surely be
connected. The eigenvalues are uniformly distributed in the interval [0,20), as can
be seen from Fig. 4.2b. The spectrum has a short span and is quite homogeneous.
It is found that the smallest nonzero eigenvalue λ2 = 0.3712 and the largest one is
λN = 19.0554, giving the ratio λ2/λN = 0.0195.

Figure 4.3 displays the spectra of random networks, which are changing with the
connection probability p. One can observe that as p increases, the spectral width
decreases quickly, meanwhile the smallest nonzero eigenvalue λ2 and the largest
one λN both increase. The main reason is that the increased p not only reduces the
total number of isolated subgraphs, leading to increase of λ2, but also raises the
largest degree dmax, indicating the increase of λN according to (4.1).

In the case of p = 0.005, the network has very sparse edges, and there exist some
disconnected subgraphs, since p < pc. Hence, λ2 = 0, consistent with the numerical
result. As a result, such random networks generated with p = 0.005 are impossible
to synchronize in general. When p = 0.01, the smallest nonzero eigenvalue and the
eigenvalue ratio are changed to λ2 = 1.4512 and λ2/λN = 0.0610, respectively. As
the probability is further increased to p = 0.1, one has λ2 = 68.0447 and the ratio
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becomes λ2/λN = 0.4979. When the probability p is very close to 1, the model
becomes very much like a fully connected network, and so the eigenvalue ratio
λ2/λN tends to 1. Therefore, from a statistical point of view, the synchronizability
is enhanced gradually as the connection probability p is increased, as can be clearly
seen from Fig. 4.4.

Interestingly, for random networks, a prominent approximately linear depen-
dence between λ2 and the connection probability p can be observed from Fig. 4.4a.
Thus, λ2(p) is used to denote the dependence of λ2 on the probability p. For a fixed
size N, if λ2(p1) and λ2(p2) are computed from two suitable numbers of p1 and p2

(p1 �= p2), then one can estimate the smallest nonzero eigenvalue λ ∗2 (p) for any p
by using the following formula:

λ ∗2 (p)≈ λ2(p1)−λ2(p2)

p1− p2
(p− p1)+λ2(p1).

Since p > pc, these random networks will almost surely be connected; therefore,
it is reasonable to choose both p1, p2 > pc. Here, take p1 = 0.1 and p2 = 0.25 to
compute the corresponding λ ∗2 of other probabilities p, resulting the plots shown
in Fig. 4.5. It can be observed that the relative error |λ2−λ ∗2 |/λ2 is quite big when
p < 0.05, while it is small when p > 0.1, and these estimations are almost exact.

4.3.3 Small-World Networks

Small-world networks are neither completely regular nor completely random; one
representative model is the NW small-world network, proposed by Newman and
Watts [46]. In this model, some edges are added to an initial 2K-ring at random,
with a probability p ∈ [0,1].
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Fig. 4.6 Small-world networks of size N = 1,000: (a) Rank index i versus eigenvalues of
Laplacian matrices L; (b) the smallest nonzero eigenvalue λ2 versus the connection probability p

With p = 0, the network is the initial 2K-ring network. As p is increased,
the smallest nonzero eigenvalue λ2 and the largest one λN both will increase
(see Fig. 4.6a). However, λ2 grows much faster than λN , resulting in an increased
eigenvalue ratio λ2/λN . It implies that the synchronizability of the small-world
network is improved as the connection probability is increased.

For 0 < p < 1, it can be seen from Figs. 4.3 and 4.6a that, similarly to random
networks, the spectral range of a small-world network becomes narrower when the
connection probability p is increased.

With p=1, the small-world model becomes a fully connected graph, so the
spectrum of this case is similar to the fully connected network discussed before.
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Thus, it can be concluded that the spectrum of an NW small-world network,
which is quite homogeneous, transits from the spectrum of a 2K-ring network to
that of a fully connected network, as the connection probability p is increased.

For the NW small-world network model, a similar phenomenon of a prominent
approximately linear dependence of λ2 on the connection probability p can be
observed, as seen from Fig. 4.6b. By linear fitting, the estimation of λ2 for an NW
small-world network of N = 1,000 can be obtained, as λ ∗2nw(p) = 992.48 ∗ p−
38.831. It should be noted that these values are related to several parameters such as
the probability p, the ring constant K, and the size N of the network.

4.3.4 Scale-Free Networks

Scale-free networks are characterized by the power-law form of their degree distri-
butions, which can be generated with the Barabási–Albert’s preferential attachment
algorithm [47]. Staring from an initial set of m0 fully connected nodes, one node is
added along with m new edges, at every time step. Nodes in the existing network
with higher degrees have higher probabilities, proportional to their degrees, to be
connected by the new node through a new edge, where multiple connections are
prohibited. This algorithm yields a typical BA scale-free network, which is growing
until the process stops.

Figure 4.7a shows some spectral properties of a scale-free network of size N =
1,000. It can be seen that the eigenvalues are distributed in a very heterogeneous
way. Part of the eigenvalues are located in the interval [0,20], while some larger
ones are located far away from this interval. The smallest nonzero eigenvalue is λ2 =
0.5391 and the largest one is λN = 81.6367, resulting in the ratio λ2/λN = 0.0066.
It can also be observed that a large difference exists between λ2 and λN , implying
that the spectral distribution range of the scale-free network is wide, distinctive from
regular, random and small-world networks.

Figure 4.7b compares the spectra between NW small-world and BA scale-free
networks. It can be seen that the span of the eigenvalues distribution in the small-
world network is smaller than that of the scale-free network. For the latter, most of
its eigenvalues are comparatively concentrated, and meantime there are some very
large eigenvalues.

In summary, the spectral properties of different networks are clearly different.
Thus, one can tell which category a network belongs to, by simply looking at
its spectral properties. The spectra of regular, random, and small-world networks
are homogeneous, whereas those of scale-free networks are heterogeneous. Fur-
thermore, for random and small-world networks, the synchronizability is increased
as the connection probability p is increased. In particular, the smallest nonzero
eigenvalue is almost linearly dependent on the connected probability for both ER
random and NW small-world networks.
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Fig. 4.7 Rank index i versus Eigenvalues of the Laplacian matrices L: (a) scale-free networks
with N=1,000, m0=5 and m=2; (b) scale-free networks with N=1,000, m0 = 5 and m=3, and
small-world networks with N=1,000 and p=0.0025

4.3.5 Community Networks

Community structure means densely connected groups of nodes with sparse connec-
tions between them. This section discusses the spectra of networks with prominent
community structures, called community networks.

First, consider the spectra of networks composing of two communities, each of
which is (1) a fully connected graph (Fig. 4.8a); (2) a random network (Fig. 4.8b);
(3) a small-world network (Fig. 4.8c); and (4) a scale-free network (Fig. 4.8d). There
are some random edges between two communities. It can be seen from Fig. 4.8 that
there is a big gap between λ2 and λ3. Moreover, as the number of edges between two
communities is increased, λ2 is increased and the gap between λ2 and λ3 decreases,
indicating that the community structure becomes blurred. It can also be seen that
the other eigenvalues basically remain unchanged, reflecting the robustness of the
spectral properties of the corresponding subgraphs.

Next, consider some networks composing of three communities: (1) each
community is a small-world network (Fig. 4.9a); (2) each community is a scale-
free network (Fig. 4.9b). There exist several random edges between every two
communities. It can be seen that there is a big gap between λ3 and λ4, and
the increased number of random edges among the three communities led to the
increased values of λ2 and λ3. Furthermore, λ2 and λ3 are increased much faster
than the other eigenvalues; therefore, the difference between λ3 and λ4 is reduced,
and the community structure becomes blurred.

Remark 4.1. From Figs. 4.8c (4.9a), namely, and 4.8d (4.9b), one can find that
the distributions of the eigenvalues in Figs. 4.8c and 4.9a are more homogeneous
than those shown in Figs. 4.8d and 4.9b. This is probably due to the heterogeneity
of the BA scale-free subnetworks and the homogeneity of the NW small-world
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Fig. 4.8 Rank index i versus eigenvalues of the Laplacian matrix L: (a) a network composing of
two fully connected subgraphs of size N = 250, with random edges 100, 200 and 300 between
two communities, respectively; (b) a network composing of two random subgraphs of size N =
250, with p = 0.03, having 5, 20 and 100 random edges between two communities, respectively;
(c) a network composing of two small-world subgraphs of size N = 250, with p = 0.005, having
5,20 and 100 random edges between two communities, respectively; (d) a network composing of
two scale-free subgraphs of size N = 250, with m0 = 5 and m = 2, having 5, 20 and 100 random
edges between two communities, respectively

subnetworks, since there exists a positive correlation between the spectrum and
the degree sequence, as will be further discussed later in Sect. 4.4. Thus, the more
diverse the degree distribution, the more heterogeneous the eigenvalues of the BA
scale-free subnetworks.

In summary, the spectra of community networks bring to light many aspects of
the network topologies: (1) the number of zero eigenvalues equals the number of
isolated communities; (2) a gap between eigenvalues indicates the existence of a
community structure; (3) for a network with k prominent communities, there are
k−1 eigenvalues near zero, the gap between λk and λk+1 is larger than the difference
between any other consecutive eigenvalues, and larger eigenvalues in the last part of
the sequence reflect some major properties of communities; and (4) the increase of
the number of edges between communities can result in the increase of the value of
λ2, which also means a better synchronizability.
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Fig. 4.9 Rank index i versus eigenvalues of the Laplacian matrix L: (a) a network composing of
three small-world subgraphs of size N=250, with p=0.005, 5, 20, and 80, respectively, having
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4.4 Relation Between the Spectrum and the Degree Sequence

Real-world networks are usually very large in size; thus, it is generally difficult and
time-consuming to compute their spectra. However, the degree sequence is easy to
obtain. So, if one can find the relation between a spectrum and a degree sequence, it
will be reasonable to make use of the degree sequence for estimating the spectrum of
a real network. The question is, then, whether or not they have any easily described
and computable relations?

4.4.1 Theoretical Analysis

In order to identify some intrinsic relations between the Laplacian eigenvalues and
the degree sequence of a network, the following lemma is needed.

Lemma 4.1 (Wielanelt-Hoffman Theorem [48]). Suppose C = A + B, where
A,B,C ∈ RN×N are symmetric matrices, and let the eigenvalue sets λ (B) and λ (C)
be arranged in the non-decreasing order. Then,

N

∑
i=1
|λi(C)−λi(B)|2 ≤ ||A||2F ,

where ||A||F =
(

∑i j |ai j|2
)1/2

denotes the Frobenius norm of matrix A.
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Theorem 4.1 ([49]). Let G be a graph of N nodes with Laplacian matrix L,
and arrange the node-degree set and the eigenvalue set in the vector form, as
d = (d1,d2, . . . ,dN)

T and λ (L) = (λ1,λ2, . . . ,λN)
T, respectively, both in the non-

decreasing order. Then,

δ =
||λ (L)− d||2
||d||2 ≤

√||d||1
||d||2 ≤

√
N
||d||1 .

Remark 4.2. Theorem 4.1 shows that for the Laplacian matrix L, the difference
between Laplacian eigenvalues λ (L) and node-degrees d is bounded by ||d||1/||d||22.
Thus, for a large-scale complex network with a huge number of edges, ||d||1/||d||22
typically have a small value, implying that the distribution of the Laplacian
eigenvalues is indeed similar to the distribution of the node degrees. On the other
hand, however, for a large-scale network with sparse connections, the value of

N/
(

∑N
i=1 di

)
is usually small, implying that the inequality is quite conservative.

Remark 4.3. It is reported in [49] that the differences between Laplacian eigenval-
ues λ (L) and node-degrees d are very small for random, small-world and scale-free
networks, according to extensive numerical simulations. In the next subsection, it
will be shown that the eigenvalues distributions are very closely related to the node-
degree sequences, which is consistent with the results of [49].

Theorem 4.2 ([49]). Let λ j be the eigenvalues of the Laplacian matrix L of a graph
with N nodes, and di be the degree of node i, i = 1,2, · · · ,N. Then, in every interval
[di−

√
di,di +

√
di], there is at least one eigenvalue λ ∗ ∈ {λ j| j = 1,2, . . . ,N} of L,

that is,

(di−
√

di)≤ λ ∗ ≤ (di +
√

di), i = 1,2, · · · ,N.

Remark 4.4. In Theorem 4.2, some intervals [di−
√

di,di +
√

di] may overlap, and
some eigenvalues of L may not fall into any of such intervals at all.

Remark 4.5. By the Gerschgorin Theorem, the eigenvalues of L satisfy that

|λ − lii| ≤
N

∑
j=1, j �=i

|li j|.

Since lii = di, and L has zero row-sum, one has |λ − di| ≤ di, namely,

0≤ λ ≤ 2di , i = 1,2, . . . ,N.

Thus, one can see that the result given by Theorem 4.2 is less conservative than this
estimation given by the Gerschgorin Theorem.
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Fig. 4.10 ER random networks of size N = 1,000: (a) rank index i versus the relative spectrum
and relative degree sequence, when p = 0.0258; (b) correlation coefficient between the spectrum
and degree sequence versus the probability p

4.4.2 Numerical Results

To visualize the relation between the eigenvalues distribution and the degree
sequence, extensive numerical simulations were performed and analyzed.

For convenience of analysis, define the relative spectrum

Re(i) := (λi−λ2)/(λN−λ2), i = 2,3, . . . ,N,

and the relative degree sequence

Rd(i) := (di− d2)/(dN− d2), i = 1,2, . . . ,N.

Numerical results illustrated in Figs. 4.10a, 4.11a and 4.12a show the relations
between the relative spectrum Re and the relative degree sequence Rd. The total
numbers of edges, in the random networks with p = 0.0258, the small-world
networks with p = 0.0218, and the scale-free networks with m0 = m = 13, are all
equal to 12909± 10.

It can be easily seen from Fig. 4.10a that the spectrum and the degree sequence
of a random network seems to be correlated, but how much the two are correlated is
unclear, so the correlation coefficient between the spectrum and the degree sequence
is calculated. When the connection probability p = 0.0258, from Fig. 4.10b, one
can see that the correlation coefficient is 0.9925. That is, the spectrum and degree
sequence are quite correlated. And, the correlation coefficient is increased, though
slowly, as p is increased.

Figure 4.11a shows the correlation between the spectrum and degree sequence of
a small-world network of 1,000 node with the connection probability p = 0.0218.
Calculation yields the correlation coefficient 0.9921 in this case, implying that the
spectrum and degree sequence are comparatively correlated. Fig. 4.11b shows that
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Fig. 4.12 BA scale-free networks of size N = 1,000: (a) rank index i versus the relative spectrum
and relative degree sequence of scale-free networks of size N = 1,000, when m0 = m = 13;
(b) correlation coefficient between the spectrum and degree sequence versus m

the correlation coefficient ascends to a certain degree, and then converges to a
constant value of 0.9935 as the probability p is increased further.

From Fig. 4.12, one can see that the spectrum and degree sequence of a BA scale-
free network are closely correlated. Indeed, when m0 = m = 13, the correlation
coefficient equals 0.9992. Figure 4.12b shows the increasing correlation coefficient
with the increasing m.

Moreover, it can also be observed that the correlation between the spectrum
and degree sequence of a scale-free network is the highest, followed by random
networks and then by small-world networks. Therefore, in the following, a scale-
free network with m0 = m = 13 is used as an example to estimate all the eigenvalues
in terms of λ2, λN , and the degree sequence.
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It is known that if the correlation coefficient between two random variables X ,Y
is close to 1, then it means that the probability of the linear relation Y = aX + b
is close to 1. But the parameters a and b are usually unknown, so it is difficult
to compute the whole spectrum of eigenvalues (the so-called global method) from
the degree sequence, λ2 and λN . The following is an efficient local algorithm for
computing approximations of λi+1 from λi, i = 1,2, ...,N.

• Initial conditions: λ̄1 = λ ∗1 = 0.
• Step 1 (Prediction). Compute λ̄i in terms of the degree sequence, λ2, and λN , as

follows:

λ̄i =
di− d2

dN− d2
(λN−λ2)+λ2.

• Step 2 (Correction). Compute the approximation λ ∗i+1 from λi, iteratively, by

λ ∗i+1 = λi +(λ̄i+1− λ̄i), i = 1,2, . . . ,N− 1.

Figure 4.13a shows a comparison between the approximated λ ∗i and the exact
λi, i = 2,3, . . . ,N. It is clear that the estimations are very accurate. From Fig. 4.13b,
one can see that the relative error (λi− λ ∗i )/λi is very small, with an average of
0.3263%, demonstrating that the local algorithm for estimating λi+1 from λi is
indeed highly effective.

4.5 Synchronization Processes on Complex Networks

Complex networks in various physical systems can be described at different scales.
This section discusses networks at the “mesoscale,” as defined in [25], addressing
subgraphs rather than at the “microscale” which addresses individual nodes or at
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the “macroscale” which addresses the network as a whole. The mesoscale is an
intermediate scale examining substructures such as motifs, cliques, cores, loops,
and communities. In particular, the community detection problem concerning the
determination of mesoscopic structures that have functional, relational or even
social dynamics and impacts is an important and yet also challenging subject for
investigation in the field of complex networks.

This section focuses only on synchronization processes on complex networks
at the mesoscale level of description. Synchronization is a generic feature of
networked dynamical systems such as cells and oscillators. Previous studies have
discussed the onset of synchronization and the impact of structural properties on
network synchronizability. The interest here is the regions outside the onset of phase
synchronization and the role of network topology in the synchronization processes.

4.5.1 Paths to Synchronization on Complex Networks

One of the most popular models for coupled oscillators is the Kuramoto model [50]:

dθi

dt
= ωi +λ

N

∑
j=1

Ai j sin(θ j−θi), i = 1,2, . . . ,N, (4.7)

where ωi represents the natural frequency of the ith oscillator and λ is the coupling
constant.

This model can be studied in terms of an order parameter, r, that measures the
extent of phase synchronization in the network, defined by

reiΨ =
1
N

N

∑
j=1

eiθ j ,

where Ψ represents the average phase of the network. The parameter 0 ≤ r ≤ 1
displays a second-order phase transition in the coupling strength, with r = 0 being
the value of the incoherent solution and r = 1 the value of the complete phase
synchronization.

In [26], a new parameter, redge, is defined, as

redge =
1

2Nl
∑

i
∑
j∈Γi

∣∣∣∣ lim
Δ t→∞

∫ tr+Δ t

tr
ei[θi(t)−θ j(t)]dt

∣∣∣∣,
where Γi is the set of neighbors of node i and Nl is the total number of edges. This
parameter represents the fraction of edges with which the network achieves phase
synchronization, averaging over a large enough time interval Δ t after the network is
relaxed at a large time instant tr.

In [26], the dynamics of (4.7) for ER and scale-free (SF) networks were studied,
with respect to both global and local synchronization. It shows that the evolution
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of the order parameter r, as λ increases, can capture the global coherence of
synchronization in the network, and that redge can be used to measure the local
formation of synchronization patterns thereby revealing how global synchronization
is achieved.

Synchronization processes in ER and SF networks were studied numerically in
[26]. It can be seen from Fig. 4.14 that the global coherence of the synchronized
state, represented by r and implying the onset of synchronization, first occurs for the
SF network. If λ is further increased, there is a value of r for the ER network curve to
cross over the SF network curve. From this value up, in λ , the ER network remains
slightly better in synchrony than the SF network. The behavior of redge provides
some additional information about the processes between ER and SF networks.
Interestingly, the nonzero values of redge for very small λ indicate that some local
synchronization patterns has occurred even in the regime of global incoherence
(r ≈ 0). Right at the onset of synchronization for the SF network, its redge value
grows faster than the ER network. This implies that for the SF network the locally
synchronized structures rise at a faster rate than the ER network. Finally, when λ
is further increased, for the ER network, the growth in its synchronization patterns
increases drastically up to those obtained from the SF network, and even higher.

From the evolution of the number of synchronized clusters and the size of the
largest generated clusters (GC) shown in Fig. 4.14, the emergence of clusters of
synchronized pairs of oscillators (edges) in the networks shows that for small λ
values, still in the incoherent range with r ≈ 0, both ER and SF networks have
developed a largest cluster of synchronized pairs of oscillators involving about 50%
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Fig. 4.15 Correlation
between the likelihood that a
node belongs to the GC of
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a function of the coupling
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of the network nodes, with an equal number of smaller synchronization clusters.
From this point of view, in the SF network the GC grows up but the number of
smaller clusters goes down, whereas for the ER network the growth exploits. These
results indicate that although SF networks present more coherence in terms of both
r and redge, the mesoscopic evolution of the synchronization patterns is slower than
the ER networks, which are far more locally synchronizable than heterogeneous
networks in general (see [26]).

In [26], it argued that the above observed differences in the local behavior are
resulted from the growth of the GC. It is shown in [26] that for ER networks pairs
of oscillators synchronize to merge and form many different clusters and then form
a GC when the coupling strength is increased. Many small clusters join together
to produce a giant component consisting of synchronized pairs, the size of which
is almost the same as the whole network, as soon as the global coherent state is
achieved. However, this is far from the case for SF networks, where the GC is
formed from a core consisting of about a half of the nodes in the network, and then
new pairs of oscillators are incorporated into the GC one by one, as the coupling
strength is increased.

In Fig. 4.15, it can be seen that for the SF network, the probability that a node of
degree k belongs to the GC is an increasing function of k for every fixed λ , hence the
more connected a node is, the more likely it takes part in the cluster of synchronized
entries, as reported in [26]. Therefore, one can conclude that synchronization starts
from the node with the largest degree and then spreads to the rest nodes in the
network in this scenario.

Remark 4.6. The observed phenomena may be understood from the master-
stability-function point of view. In this setting, the dynamics of a network of N
coupled oscillators is described by

ẋi(t) = f (xi(t))− ε
N

∑
j=1

Li jΓ x j, i = 1,2, . . . ,N, (4.8)

where xi is the state of oscillator i and f (xi(t)) governs its dynamics, Γ is the inner
coupling matrix, and L = (Li j) is the Laplacian matrix of the network. Denote the
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completely synchronizing state of (4.8) as {x j(t) = s(t), ∀ j | ṡ(t)= f (s(t))}. A small
perturbation on s(t) yields the following linear variational equations:

δ̇ xi(t) = D f (s(t))δxi− ε
N

∑
j=1

Li jΓ (δx j), i = 1,2, . . . ,N. (4.9)

Further, (4.9) can be diagonalized into N decoupled blocks of the form

η̇i = [D f (s(t))− ελiΓ ]ηi, i = 1,2, . . . ,N. (4.10)

From (4.10), the speed of node i converging to the synchronization manifold is
mainly determined by λi, with f (·) given. It has been shown in the above that the
distribution of the Laplacian eigenvalues of a network is strongly related to the node-
degree distribution; therefore, one can conclude that synchronization typically starts
from the node with the largest degree.

4.5.2 Paths to Generalized Synchronization
on Complex Networks

In [32], the processes of generalized synchronization (GS) of complex networks was
studied, mainly on NW small-world networks and BA scale-free networks, using the
adaptive coupling strategy in the following form:

ẋi = fi(xi(t))− ci(t)
N

∑
j=1

ai jΓ (xi(t)− x j(t)), i = 1,2, . . . ,N, (4.11)

where xi is the state of node i, fi(·) is a continuous vector function, ci(t) > 0
is a time-varying coupling strength to be designed using only the neighborhood
information of node i, Γ is the inner coupling matrix, and A = (ai j) is the adjacency
matrix of the network.

Construct an auxiliary network of the form

ẋ′i = fi(x
′
i)− ci(t)

N

∑
j=1

ai jΓ (x′i− x j), i = 1,2, . . . ,N, (4.12)

denote ei = x′i− xi, and apply the adaptive controller

ċi(t) = γi

N

∑
j=1

ai jei
T Γ ei, i = 1,2, . . . ,N, (4.13)

where γi are positive constants.
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Fig. 4.16 Visualization of the evolutionary process to reach global GS via adaptive coupling
strength regulation on a BA network. Total number of nodes N = 800 and total number of edges is
2388±2 [32]

To describe the process of GS on network (4.11), define the following error
signals at each time step:

Ei(t) = ||x′i(t)− xi(t)||2 , i = 1,2, . . . ,N, (4.14)

and label the nodes according to their decreasing degree ordering d(1) ≥ d(2) ≥
·· · ≥ d(N). Thus, i = 1 denotes the node with the largest degree, i = 2 the node
with the second largest degree, and so on.

Numerical results illustrated by Figs. 4.16 and 4.17 show the processes towards
global GS. Figure 4.16a shows the synchronization process of a BA network with
m = 3; Fig. 4.16b displays the evolution process of Ei(t), with i = 2, 202 and
402, respectively, for t ∈ [0,1.0]. Figure 4.17a shows the synchronous process of
a NW network, with connection probability p = 0.0025; Fig. 4.17b displays the
evolution process of Ei(t), with i = 2, 202, and 402, respectively, for t ∈ [0,1.0]. The
total numbers of edges in the BA network and the NW network are both equal to
2388± 2.

Clearly, not all nodes can achieve a common GS state simultaneously. Also
obviously, there is a transition process from non-GS to global GS. It can be seen
from Fig. 4.16a that, as time evolves, GS starts from the nodes with the largest
degree and then spreads to the rest of the network. This can also be verified by
(4.11)–(4.12), from which linearization results in

ėi =

[
D fi(xi)− ci(t)

N

∑
j=1

ai jΓ

]
ei, (4.15)
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Fig. 4.18 A comparition of BA network and NW network. (a) shows the evolution of the total
errors E(t); (b) shows the percentage of nodes which have achieved GS in the adaptive evolution
process [32]

where D fi(xi) denotes the Jacobian matrix of fi(x) at xi. In (4.15), ∑N
j=1 ai j is the

degree of node i; hence, the larger a node’s degree is, the faster its synchronization
error converges, as can be seen in Figs. 4.16b and 4.17b.

Next, define E(t) = ∑N
i=1 Ei(t).

Figure 4.18a shows the evolution of E(t) for a BA scale-free network and a NW
small-world network, while Fig. 4.18b shows the percentage of synchronized nodes
in the GS process.

From Fig. 4.18, one can see that the BA network is easier to reach GS in the
early stage, but harder in the later stage, in the process. This can be explained by the
fact that the NW network has a comparative homogeneous node-degree distribution
while the BA network has some hubs with extremely large degrees. In fact, in the
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beginning of the process, the existence of these hubs accelerates the GS speed on
the BA network. But, at the later stage, the speed to achieve GS is dominated by the
large number of nodes with smaller degrees. Thus, for the BA network, although the
hubs achieve GS rather quickly, the distant nodes are much more difficult to achieve
GS. So, as a result on the whole large network, it is easier for the NW network to
achieve global GS than the BA network with the same numbers of nodes and edges.

4.5.3 Paths to Synchronization on Community Networks

In this subsection, synchronization processes on community networks are investi-
gated.

Again, consider the network of N coupled identical oscillators, described by (4.7)
with ωi = ω , ∀i. The objective is to achieve θi→ θ , ∀i as t→∞. This problem was
studied in [24, 25], where the following concepts were defined to characterize the
dynamic time scales:

• The average of the correlations between pairs of oscillators

ρi j(t) = 〈cos(θi(t)−θ j(t))〉, (4.16)

where the brackets stand for the average over initial random phases;
• A connectively matrix with a given threshold T based on the above average

correlations between pairs of oscillators

DT (t)i j =

{
1 if ρi j(t)> T,

0 if ρi j(t)< T.
(4.17)

For large enough T , the evolution of this matrix unravels the process of nodes
merging into groups or communities.

In this part, a community network is composed of a huge part H and a small part
S, where H is a NW small-world model of 500 nodes with connection probability
p = 0.01, and S is a fully connected model of 50 nodes and is connected to H via
only one edge. Through numerical simulations, some relation between the dynamic
time scales and the Laplacian spectrum are obtained, as shown in Fig. 4.19.

In Fig. 4.19a, one can see the evolution of the oscillators, and find a path to
the final global complete synchronization on a community network. When time
t < 0.02, the whole network is in the state of “non-synchronization.” As time goes
on, the nodes in the small community S begin to synchronize, while those in the
huge community H do not. This situation is referred to as “partial synchronization,”
which is determined by the community topological structure, where nodes inside the
communities are first to synchronize. The small community S is fully connected,
so is easier to synchronize than the huge one H. When t > 0.5, the nodes in
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nodes with p = 0.01; another is a small part S of a fully connected model of 50 nodes; with only
one edge linking the two communities. (a) The time evolution of oscillators θi (i = 1,2, · · · ,N).
Red line: nodes in H; Blue line: nodes in S; (b) number of disconnected components as a function
of time t; (c) average of the correlation between pairs of oscillators. The colors are graded from
blue (0) to dark red (1); (d) the inverse of the corresponding eigenvalues of the Laplacian matrix
of L versus the rank index i

the huge community H also achieve synchronization, but the synchronous state
of H is different from that of S. At this time, the synchronous state of the whole
network achieves the so-called “cluster synchronization.” Obviously, this regime is
a particular transition to the global complete synchronization for the community
network. A side benefit is that one can easily detect the community structure of a
network during the stage of cluster synchronization. Finally, when the time is long
enough, with t > 30 here, all oscillators in the whole network are entrained to the
“global complete synchronization” state.

According to [24,25], the number of zero eigenvalues of DT (t) in (4.17) indicates
the number of connected components of the dynamical (synchronized) network.
Figure 4.19b plots the number of disconnected components as a function of time.
At the beginning, all nodes are uncorrelated, so there are N disconnected sets. As
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time goes on, some nodes become synchronized to each other and then merge into
groups until a single synchronized component is formed after a long enough time.
One can observe two plateau regions here, which indicate the relative stability of
the dynamics at a given time scale. Notice that the plateau of 300 communities is
shorter than the plateau of 2 communities, namely, the synchronization of 2 groups
is much more stable than 300 groups, indicating that the 2-group community has
better coherence in topological structure.

From Figs. 4.19b and d, one can see that there is a link between the stability of
these regions and the spectrum of the Laplacian matrix. The huge gaps between
eigenvalues indicates the existence of a relatively stable community structure. It can
be observed that three groups of eigenvalues are separated by gaps. Each gap sep-
arates two communities, with 550, 300, or 2 groups of nodes. The synchronization
dynamics and the spectrum of the Laplacian matrix, which reflects the topological
structure of the network, show a surprising similarity.

Finally, Fig. 4.19c presents ρi j(t) at a fixed time instant, t = 2s. At this instant,
the whole network is at the stage of cluster synchronization, and it is easy to identify
the separation of two communities. Therefore, the network is very close to a state in
which two communities are synchronized individually, with different synchronous
states from each other, once again proving the side benefit of cluster synchronization
in community identification.

Similar synchronization processes can be observed for other communities, as
shown in Fig. 4.20. Here, Fig. 4.20a displays the evolution of oscillators in a
network consisting of two fully connected communities. There exists a clear
transition to global complete synchronization. Figure 4.20b also verifies that the
community structure of the two communities is very stable. In Fig. 4.20c, one can
see that the network with three communities has a trend moving towards cluster
synchronization. However, this transition is not as obvious as that of the community
network shown in Fig. 4.20a. This is because the network in Fig. 4.20c has an
inapparent community structure, where the first community is a small-world model
of 100 nodes with p = 0.01, which has very sparse edges. Figure 4.20d shows an
even fuzzier community structure of three communities, which is consistent with
Fig. 4.20c.

Based on the above-described analysis, one can draw the following conclusions.
(1) For community networks, there exists a general path to achieve global complete
synchronization as time goes on: non-synchronization→ partial synchronization→
cluster synchronization → global complete synchronization. (2) Synchronization
processes can be used to identify topological scales, that is, communities at different
time scales. (3) Synchronization dynamics have a strong relation with the spectrum
of the Laplacian matrix, which reflects the topological structure of the network.

Finally, it is remarked that this chapter only discusses complex networks of
identical nodes. As to networks of non-identical nodes, spectral analysis becomes
much more complicated, even for cluster synchronization (see, e.g., [51,52]), which
is beyond the scope of the present study.
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Fig. 4.20 Top: Network with 2 communities; each is a fully connected model of 150 nodes. There
are 10 edges between the two communities. (a) The time evolution of oscillators θi (i= 1,2, · · · ,N).
Red line: nodes in one community; Blue line: nodes in the other community. (b) Number of
disconnected components as a function of time t . Bottom: Network with 3 communities: the first
one is a small-world model of 100 nodes, with p = 0.01; the second is a small-world model of 150
nodes, with p = 0.1; the third is a small-world model of 200 nodes, with p = 0.5. There are 5 edges
between every pair of communities. (c) The time evolution of oscillators θi (i = 1,2, · · · ,N). Red
line: nodes in the first community; Blue line: nodes in the second community; Green line: nodes in
the third community. (d) Number of disconnected components as a function of time t

4.6 Conclusions

The Laplacian spectra of several typical complex networks, particularly community
networks, have been analyzed mainly from a numerical simulation approach. It
is found that four representative complex networks have completely different
spectra, where for ER random and NW small-world networks, the smallest nonzero
eigenvalue λ2 depends approximately linearly on the connection probability p. For
community networks, the number of eigenvalues near zero reflects the number
of communities identifiable from the network. In particular, for random, small-
world, and scale-free networks, their spectra are positively correlated to their
degree sequences. To find an approximated eigenvalue λi+1 from λi, a local
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prediction-correction algorithm has been proposed, which is shown to be very
effective. Furthermore, paths to complete synchronization and generalized syn-
chronization of different networks have been investigated, concluding that the
synchronization processes are different with respect to different topological struc-
tures, and that nodes with the largest degree firstly achieve synchronization (and
generalized synchronization) and then synchronous dynamics spread out to the
rest nodes in the network. It has also been found that there is a general path
towards global complete synchronization: non-synchronization→ partial synchro-
nization→ cluster synchronization→ global complete synchronization. Finally, it
has been revealed that the gaps existing in a Laplacian spectrum are largely depen-
dent on the stability of the communities of the networks at different time scales.
All these new findings should provide useful insights to a better understanding of
complex network synchronization.
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Chapter 5
Growing Networks Driven by the Evolutionary
Prisoner’s Dilemma Game

J. Poncela, J. Gómez-Gardeñes, L.M. Florı́a, and Yamir Moreno

Abstract In this chapter, we present a model of growing networks in which the
attachment of nodes is driven by the dynamical state of the evolving network.
In particular, we study the interplay between form and function during network
formation by considering that the capacity of a node to attract new links from
newcomers depends on a dynamical variable: its evolutionary fitness. The fitness
of nodes are governed in turn by the payoff obtained when playing a weak
Prisoner’s Dilemma game with their nearest neighbors. Thus, we couple the
structural evolution of the system with its evolutionary dynamics. On the one hand,
we study both the levels of cooperation observed during network evolution and the
structural outcome of the model. Our results point out that scale-free networks arise
naturally in this setting and that they present non-trivial topological attributes such
as degree-degree correlations and hierarchical clustering. On the other hand, we
also look at the long-term survival of the cooperation on top of these networks, once
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Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain
e-mail: gardenes@gmail.com

L.M. Florı́a
Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza,
Zaragoza, Spain

Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain
e-mail: mario.floria@gmail.com

Y. Moreno (�)
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI),
Universidad de Zaragoza, Zaragoza, Spain
e-mail: yamir.moreno@gmail.com

M.T. Thai and P.M. Pardalos (eds.), Handbook of Optimization in Complex Networks:
Theory and Applications, Springer Optimization and Its Applications 57,
DOI 10.1007/978-1-4614-0754-6 5, © Springer Science+Business Media, LLC 2012

115

poncela@unizar.es
gardenes@gmail.com
mario.floria@gmail.com
yamir.moreno@gmail.com


116 J. Poncela et al.

the growth has finished. This mechanism points to an evolutionary origin of real
complex networks and can be straightforwardly applied to other kinds of dynamical
networks problems.

5.1 Introduction

It is well established that the pattern of interactions among the constituents of
many complex systems can not be accurately described neither by lattices or
other uniformly distributed spatial models, nor using mean-field formulations.
Instead, they need to be characterized by what is generally known as a complex
network [1, 2]. In many of these networks, the distribution of the number of
interactions, that is the degree k, that an individual shares with the rest of the
elements of the system, it is to say, P(k), is found to follow a power-law, P(k)∼ k−γ ,
with an exponent 2 < γ < 3 in most cases. This implies a high heterogeneity in
the degree distribution. The ubiquity in Nature of these so-called scale-free (SF)
networks has led scientists to propose many models aimed at reproducing the SF
degree distribution [1, 2]. Nonetheless, most of the existing approaches are based
on growth rules that depend solely on the topological properties of the network and
therefore neglect the connection between the structural evolution and the particular
function of the network or the dynamics that takes place on it. This is the case
of the well-known Barabási–Albert (BA) model [3], based on two fundamental
ingredients: growth and preferential attachment. In this model, the new nodes are
sequentially added to the network attaching preferentially to those who have the
highest connectivity. However, it is important to recall that accumulated evidences
suggest that form follows function [4] and that the formation of a network is also
related to the dynamical states of its components through a feedback mechanism that
shapes its structure. Taking these facts into consideration, one should not ignore the
particular dynamics evolving on top of a network when trying to propose a model
for its growth. On the contrary, the outcome of that dynamics should affect somehow
the development of the structure.

A paradigmatic case study of the structure and dynamics of complex systems is
that of social networks. In these systems, it is particularly relevant to understand how
cooperative behavior emerges. The mathematical approach to model the cooperative
versus defective interactions is usually addressed under the general framework
of Evolutionary Game Theory [5–7] through diverse social dilemmas [8]. In the
general case, it is the individual benefit rather than the overall welfare what
drives the system evolution. The emergence of cooperation in natural and social
systems has been the subject of intense research recently [9–19]. (see also the
recent reviews [20, 21]). These works are based either on the assumption of an
underlying, given static network (or two static, separate networks for interaction
and imitation, respectively) or on a coevolution and rewiring process, starting from a
fully developed network that already includes all the participating elements [22–27]
(see also the recent review [28]). As we already know, it has been shown that if the
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well-mixed population hypothesis is abandoned, so that individuals only interact
with their neighbors, cooperation is promoted by heterogeneity, specifically on
SF networks. However, the main questions remain unanswered: Are cooperative
behavior and structural properties of networks related or linked in any way? If
so, how? Moreover, if SF networks are best suited to support cooperation, then,
where did they come from? What are the mechanisms that shape the structure of the
system?

To contribute answering those questions, in this chapter we analyze the growth
and formation of complex networks by coupling the network formation rules
to the dynamical states of the elements of the system. As we have already
mentioned, many mechanisms have been proposed for constructing complex scale-
free networks similar to those observed in natural, social, and technological systems
from purely topological arguments (for instance, using a preferential attachment
rule or any other rule available in the literature [1, 2]). As those works do not
include information on the specific function or origin of the network, it is very
difficult to discuss the origin of the observed networks on the basis of those models,
hence motivating the question we are going to address. The fact that the existing
approaches consider separately the two directions of the feedback loop between
the function and form of a complex system demands a new mechanism where the
network grows coupled to the dynamical features of its components. Our aim here
is to discuss a recent attempt in this direction, by linking the growth of the network
to the dynamics taking place among its nodes.

The model combines two ideas in a novel manner: preferential attachment
and evolutionary game dynamics. Indeed, with the problem of the emergence of
cooperation as a specific application in mind, we consider that the nodes of the
network are individuals involved in a social dilemma and that newcomers are
preferentially linked to nodes with high fitness, the latter being proportional to the
payoffs obtained in the game. In this way, the fitness of an element is not imposed as
an external constraint [29, 30], but rather it is the result of the dynamical evolution
of the system. At the same time, the network is not exogenously imposed as a static
and rigid structure on top of which the dynamics evolves, but instead it grows from
a small seed and acquires its structure during its formation process.

Finally, we stress that this is not yet another preferential attachment model,
since the quantity that favors linking of new nodes has no direct relation with the
instantaneous topology of the network. In fact, as we will see, the main result of this
interplay is the formation of homogeneous or heterogeneous networks (depending
on the values of the parameters of our system) that share a number of topological
features with real world networks such as a high clustering and degree-degree
correlations. Thus, the model we propose not only explains why heterogeneous
networks are appropriate to sustain cooperation, but also provides an evolutionary
mechanism for their origin. On the other hand, we will find that there are some
important and quite surprising differences between the networks we build using
this model, and SF topologies. In particular, we will show that the microscopic
organization of cooperation is quite different from that observed when studying the
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Prisoner’s Dilemma game in static networks. This new organization of cooperation
appears during network growth and its fingerprint is still observed when analyzing
again the microscopic patterns formed by cooperators when the network has ceased
its growth.

5.2 The Model

Our model naturally incorporates an intrinsic feedback between dynamics and
topology. In this way, the growth of the network starts at time t = 0 with a core
of m0 fully connected nodes. New elements are incorporated to the network and
attached to m of the existing nodes with a probability that depends on the dynamical
states of these nodes. In particular, the growth of the network proceeds by adding a
new node at equally spaced time intervals (denoted by τT), and the probability that
a node i in the network receives one of the m new links is

Πi(t) =
1− ε + ε fi(t)

∑N(t)
j=1(1− ε + ε f j(t))

, (5.1)

where fi(t) accounts for the dynamical state of a node i, namely its instant
fitness [37] (see below), and N(t) is the size of the network at time t. The parameter
ε ∈ [0,1) controls the weight that newcomers assign to the fitness fi(t) of the
existing nodes in order to decide the attachment probabilities. Therefore, when ε > 0
those nodes with large fitness fi(t) are preferentially chosen.

How does the dynamical fitness of nodes change in time? The fitness of a node at
time t, fi(t), is defined by the payoffs obtained when playing the Prisoner’s Dilemma
(PD) game [31] with its ki(t) neighbors (note that the connectivity ki of a node i
depends on time since it increases due to the attachment of the nodes as the network
grows). In particular, each of the nodes present in the network play a round of the PD
game at equally spaced time intervals (denoted by τD). Each of these rounds consist
in playing once with each of its ki(t) neighbors. The sum of the payoffs obtained
in the last round of the game constitutes its instant evolutionary fitness, fi(t), that
appears in the attachment probability (5.1). Obviously, when a new round of the PD
game is played the fitness changes, so that fi(t) is updated every τD time steps.

What is the payoff obtained by a node after playing with a neighbor? The payoff
that a node receives when playing with one of its neighbors depends on their instant
strategies. The strategy of a node can take two values: Cooperation (C) or Defection
(D). According to the PD game there are three possible situations for each pair of
nodes linked together in the network, as far as the payoffs obtained by them are
concerned:

• If two cooperators meet, both receive R (Reward).
• If two defectors play, both receive P (Punishment).
• If a cooperator and a defector compete, the former receives S (Sucker’s payoff)

and the latter obtains T (Temptation).
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In the PD game, the ordering of the four payoffs (T , R, P and S) is the following:
T > R > P > S. In the following, we will fix the value of three of these parameters
to R = 1 and P = S = 0, and we will leave the Temptation payoff as the unique free
parameter T = b > 1 of the game [9, 32, 33]. With this choice we are considering
the so-called weak PD game.

Are the strategies of nodes fixed or do they change in time? After playing a round
of the PD game (at each τD time steps), every node i compares its evolutionary
fitness with that corresponding to a randomly chosen neighbor j. Then, if fi(t) ≥
f j(t), node i will keep its strategy for the next round of the game, but if f j(t)> fi(t)
node i will adopt the strategy of player j with a probability proportional to the payoff
difference, f j(t)− fi(t) [6, 7, 9, 11, 34–36]. The specific form of this probability is
given by

Pi =
f j(t)− fi(t)

b ·max [ki(t),k j(t)]
. (5.2)

Note that the denominator of the above expression provides a proper normalization
so that 0≥Pi≤ 1. To this aim, the denominator, b ·max [ki(t),k j(t)], is the maximum
possible fitness difference between two nodes of degree ki and k j.

To complete the description of our model we have to set the initial strategy of the
initial core of m0 nodes and newcomers. Those nodes in the initial core are initially
set as cooperators. Therefore, our model can be seen as a test for the survival of this
small initial core of cooperation. On the other hand, newcomers adopt with the same
probability one of the two available strategies, cooperation or defection, since these
nodes have not played any round of the game before being added to the network .

Having introduced how the network grows (at each τT time steps) and how
the fitness of nodes evolve (at each τD time steps) we have settled the basis of a
model in which both processes evolve entangled. In other words, the growth of
the network as defined above is coupled to the evolutionary dynamics of the PD
game that simultaneously evolves in the system. The strength of this coupling is
controlled by the parameter ε and by the two associated time scales (τT and τD).
Therefore, (5.1) can be viewed as an “Evolutionary Preferential Attachment” (EPA)
mechanism. Depending on the value of ε , we can have two extreme situations:

(1) When ε � 0, referred to as the weak selection limit [16], the network growth is
independent of the evolutionary dynamics as all nodes have roughly the same
probability of attracting new links.

(2) Alternatively, in the strong selection limit, ε → 1, the fittest players (highest
payoffs) are much more likely to attract the links from newcomers.

Between the above two situations there is a continuum of intermediate values that
will give rise to a wide range of in-between behaviors.

We have carried out numerical simulations of the model exploring the (ε , b)-
space. It is worth mentioning that we have also explored different time relations
τD− τT, but we will focus on the results obtained when τD/τT > 1, that is when
the network growth is faster than the evolutionary dynamics. Since τD > τT, the
linking procedure is done with the payoffs obtained after the last round of the



120 J. Poncela et al.

game. All results reported have been averaged over at least 102 realizations, and
the number of links of a newcomer is taken to be m = 2 whereas the size of the
initial core is m0 = 3. Note that, since a fixed number of m links are added with each
new node, during network growth the average degree of the nodes remains constant
to 〈k〉= 2m.

5.3 Degree Distribution and Average Level of Cooperation

The dependence of the degree distribution on ε and b is shown in Fig. 5.1. As it can
be seen, the weak selection limit produces homogeneous networks characterized by
a tail that decays exponentially fast with k. Alternatively, when ε is large, scale-
free networks arise. Although this might a priori be expected from the definition of
the growth rules, this needs not be the case: indeed, it must be taken into account
that in a one-shot PD game (i.e. when the PD game is played only once), defection

10−6

10−5

10−4

10−3

10−2

10−1

1

1 103102101

P
(k

)

10−6

10−5

10−4

10−3

10−2

10−1

1

P
(k

)

10−6

10−5

10−4

10−3

10−2

10−1

1

P
(k

)

k

1 103102101

k

1 103102101

k

a b

c d

10−6

10−5

10−4

10−3

10−2

10−1

1

P
(k

)

1 103102101

k

ε =0.00
ε =0.30
ε =0.60
ε =0.90
ε =0.99

ε =0.00
ε =0.30
ε =0.60
ε =0.90
ε =0.99

b=1.0
b=1.3
b=1.6
b=1.9
b=2.2
b=2.5

b=1.0
b=1.3
b=1.6
b=1.9
b=2.2
b=2.5

Fig. 5.1 Degree distribution of the topologies created for fixed values of b = 1.5 (Top left) and
b = 2.5 (Top right), and fixed values of ε = 0.3 (Bottom left) and ε = 0.99 (Bottom right). The
networks are made up of N = 103 nodes, with 〈k〉 = 4, and τD = 10τT. Every point is the average
of 300 independent realizations
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Fig. 5.2 Color-coded average level of cooperation in the system 〈c〉 right at the end of the EPA
procedure, it is to say, when the final size is achieved as a function of the temptation to defect b
and the selection pressure ε . The networks are made up of 103 nodes with 〈k〉 = 4 and τD = 10τT.
Reprinted from [38]

is the best strategy regardless of the opponent’s choice. However, if the network
dynamics evolves into a state in which all players (or a large part of the network) are
defectors, they will often play against themselves and their payoffs will be reduced
(we recall that P = 0). The system’s dynamics will then end up in a state close to an
all-D configuration (i.e. with all the nodes playing as defectors) rendering fi(t) = 0
∀i ∈ [1,N(t)] in (5.1). From this point on, new nodes would attach randomly to
other existing nodes (see (5.1)) and therefore no hubs can come out. This turns out
not to be the case, which indicates that for having some degree of heterogeneity,
a nonzero level of cooperation is needed. Conversely, the heterogeneous character
of the system provides a feedback mechanism for the survival of cooperators that
would not overcome defectors otherwise.

In Fig. 5.1, we also show the dependence of the degree of heterogeneity of the
networks with the temptation to defect, and we found out that only in the strong
selection limit, it depends slightly on b. On the other hand, for small values of ε ,
there is not any dependence of the degree distribution on b, because in this scenario
the dynamics does not play a relevant role on the attachment, on the contrary, it is
almost random.

Regarding the outcome of the dynamics, we have also studied the average level
of cooperation 〈c〉. The average level of cooperation is defined as the fraction of
nodes that play as cooperators in the stationary state of the evolutionary dynamics.
We have checked that, although the network keeps growing, the fraction of nodes
that play as cooperators reaches a stationary value after a transient time. The Fig. 5.2
shows the dependence of 〈c〉, as a function of the two model parameters ε and
b. As shown in the figure, for a fixed value of b � 1, the level of cooperation
increases with ε . In particular, in the strong selection limit 〈c〉, the system attains
its maximum value. This is a somewhat counterintuitive result as in the limit ε→ 1,
new nodes are preferentially linked to those with the highest payoffs, which for
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the PD game, should correspond to defectors. However, the population achieves the
highest value of 〈c〉. On the other hand, higher levels of cooperation are achieved
in heterogeneous rather than in homogeneous topologies, which is consistent with
previous findings [9–11].

5.4 Degree Distribution Among Cooperators

In this section we want to study the dependence between strategy and degree of
connectivity, comparing the results with those obtained for the static SF scenario,
where we recall that cooperators occupy always the highest and medium classes
of connectivity, while defectors are not stable when seating on the hubs ([39]).
As we will show, the interplay between the local structure of the network and
the hierarchical organization of cooperation seems to be highly nontrivial, and
quite different to what has been reported for static scale-free networks [9, 11].
In Fig. 5.3 one can see that, surprisingly enough, as the temptation to defect
increases, the likelihood that cooperators occupy the hubs decreases. Indeed, during
network growth, cooperators are not localized neither at the hubs nor at the lowly
connected nodes, but in intermediate degree classes. It is important to realize that
this is a new effect that arises from the competition between network growth and
the evolutionary dynamics. In particular, it highlights the differences between the
microscopic organization in the steady state for the PD game in static networks and
that found when the network is evolving.

To address this interesting and previously unobserved phenomenon, we have
developed a simple analytical argument that can help understand the reasons behind
it. Let kc

i be the number of cooperator neighbors of a given node i. Its fitness is
f d
i = bkc

i , if node i is a defector, and f c
i = kc

i , if it is a cooperator. The value of kc
i

Fig. 5.3 Probability Pc(k) that a node with connectivity k plays as a cooperator for different values
of b in the strong selection limit (ε = 0.99) at the end of the growth of a network with N = 103

nodes and 〈k〉 = 4. Reprinted from [38]
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is expected to change because of two factors. On the one hand, due to the network
growth (node accretion flow, at a rate of one new node each time unit τT) and on the
other hand, due to imitation processes dictated by (5.2), that take place at a pace τD.
As it has been mentioned before, we will focus on the case in which τD is much
larger than τT, for now. Thus, the expected increase of fitness is

Δ fi = Δflow fi +Δevol fi, (5.3)

where Δflow fi means the variation of fitness in node i due to the newcomers flow,
and Δevol fi stands for the change in fitness due to changes of neighbors’ strategies.
Note that both Δflow fi and Δevol fi are related to the change of kc

i (the former due to
the attachment of new cooperator neighbors to node i and the latter due to the old
neighbors that changed their strategy). Therefore, the above expression leads to an
expected increase in kc

i given by

Δkc
i = kc

i (t + τD)− kc
i (t) = Δflowkc

i +Δevolk
c
i . (5.4)

On the other hand, the expected increase of degree of node i in the interval of
time (t, t + τD) only has the contribution from newcomer flow, and recalling that
new nodes are generated with the same probability to be cooperators or defectors,
i.e, ρ0 = 0.5, it will take the form

Δki = Δflowki = 2Δflowkc
i . (5.5)

If the fitness (hence connectivity) of node i is high enough to attract a significant
part of the newcomer flow, the first term in (5.3) dominates at short time scales,
and then the hub degree ki increases exponentially. Connectivity patterns are
then dominated by the growth by preferential attachment, ensuring, as in the BA
model [3], that the network will have a SF degree distribution. Moreover, the rate of
increase of the connectivity:

Δflowkc
i =

1
2

mτD
fi

∑ j f j
(5.6)

is larger for a defector hub by a factor b, because of its larger fitness, and then
one should expect hubs to be mostly defectors, as confirmed by the results shown
in Fig. 5.3. This small set of most connected defector nodes attracts most of the
newcomer flow.

On the contrary, for nodes of intermediate degree, say of connectivity m� ki�
kmax, the term Δflow fi in (5.3) can be neglected, in other words, the arrival of new
nodes is a rare event, so for a large time scale, we have that k̇i = 0. Note that if
k̇i(t) = 0 for all t in an interval t0 ≤ t ≤ t0 + T , the size of the neighborhood
is constant during that whole interval T , and thus the evolutionary dynamics
of strategies through imitation is exclusively responsible for the strategic field
configuration in the neighborhood of node i. During these periods, the probability
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distribution of strategies in the neighborhood of node i approaches that of a static
network. Thus, recalling that the probability for this node i of intermediate degree
to be a cooperator is large in the static regime [11], we then arrive to the conclusion
that for these nodes the density of cooperators must reach a maximum, in agreement
with Fig. 5.3. Of course, it is clear that this scenario can be occasionally subject to
sudden avalanche-type perturbations following “punctuated equilibrium” patterns
in the rare occasions in which a new node arrive.

Furthermore, our simulations show that these features of the shape of the curve
Pc(k) are indeed preserved as time goes by, giving further support to the above
argument based on time scale separation and confirming that our understanding of
the mechanisms at work in the model is correct.

5.5 Clustering Coefficient and Degree–Degree Correlations

Apart from the degree distribution, we are also interested in exploring other
topological features emerging from the interaction between network growth and
the evolutionary dynamics in our EPA networks. Namely, we will focus on two
important topological measures that describes the existence of nontrivial two-
body and three-body correlations: the degree–degree correlations and the clustering
coefficient respectively. We will show that the networks generated by the EPA model
display both hierarchical clustering and disassortative degree–degree correlations.

5.5.1 Clustering Coefficient

The clustering coefficient of a given node i, cci, expresses the probability that two
neighbors j and m of node i, are also connected. The value of cci is obtained by
counting the actual number of edges, denoted by ei, in Gi, the subgraph induced by
the ki neighbors of i, and dividing this number by the maximum possible number of
edges in Gi:

cci =
2ei

ki(ki− 1)
. (5.7)

The clustering coefficient of a given network, CC is calculated by averaging the
individual values {cci} across the network nodes, CC = ∑i cci/N. Therefore, the
clustering coefficient CC measures the probability that two different neighbors of a
same node, are also connected to each other. In the left panel of Fig. 5.4, we show
the value of CC as a function of b and ε . In this figure, we observe that it is in
the strong selection limit where the largest values of CC are obtained. Therefore,
in this regime, not only highly heterogeneous networks are obtained but the nodes
also display a large clusterization into neighborhoods of densely connected nodes.
In the right panel of Fig. 5.4 we show the scaling of the clustering with the network
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Fig. 5.4 (Left) Clustering coefficient CC as a function of b and ε . (Right) Scaling of CC with the
network size for several values of b in the strong selection limit (ε = 0.99). The networks are made
up of N = 103 nodes and have 〈k〉 = 4

Fig. 5.5 Dependence of the
clustering coefficient
CC(k) ∼ k−β with the nodes’
degree for different values of
b in the strong selection limit
(ε = 0.99). The networks are
made up of N = 103 nodes
and have 〈k〉= 4. The straight
line is an eye guide that
corresponds to k−1. Reprinted
from [38]
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size CC(N) in the strong selection limit. In this case, we observe that for b ≥ 2.5
the value of CC is stationary while when b < 2.5 the addition of new nodes in the
network tends to decrease its clustering.

We now focus on the dependence of the clustering coefficient CC with the degree
of the nodes, k, in the strong selection limit (ε = 0.99). Interestingly enough, we
show in Fig. 5.5 that the dependence of CC(k) is consistent with a hierarchical
organization expressed by the power law CC(k) ∼ k−β , a statistical feature found
to describe many real-world networks [2]. The behavior of CC(k) in Fig. 5.5 can be
understood by recalling that in scale-free networks, cooperators are not extinguished
even for large values of b if they organize into clusters of cooperators that provide
the group with a stable source of benefits [11]. To understand this feature in
detail, let’s assume that a new node j arrives to the network: since the attachment
probability depends on the payoff of the receiver, node j may link either to a defector
hub or to a node belonging to a cooperator cluster. In the first scenario, it will receive
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less payoff than the hub, so it will sooner or later imitate its strategy, and therefore
will get trapped playing as a defector with a payoff equal to f j = 0. Thus, node j
will not be able to attract any links during the subsequent network growth. On the
other hand if it attaches to a cooperator cluster and forms new connections with m
elements of the cooperator cluster, two different outcomes are possible, depending
on its initial strategy: if it plays as a defector, the triad may eventually be invaded
by defectors and may end up in an state where the nodes have no capacity to receive
new links. But if it plays as a cooperator, the group will be reinforced, both in its
robustness against defector attacks and in its overall fitness to attract new links.

To sum up, playing as a cooperator while taking part in a successful (high
fitness) cooperator cluster reinforces its future success, while playing as a defector
undermines its future fitness and leads to dynamically and topologically frozen
structures (it is to say, with fi = 0), so defection cannot take long-term advantage
from cooperator clusters. Therefore, cooperator clusters that emerge from coopera-
tor triads to which new cooperators are attached can then continue to grow if more
cooperators are attracted or even if defectors attach to the nodes whose connectivity
verifies k > mb. Moreover, the stability of cooperator clusters and its global fitness
grow with their size, specially for their members with higher degree, and naturally
favors the formation of triads among its components. Thus, it follows from the above
mechanism that a node of degree k is a vertex of (k− 1) triangles, and then

CC(k) =
k− 1

k(k− 1)/2
= 2/k, (5.8)

which is exactly the sort of functional form for the clustering coefficient we have
found (Fig. 5.5).

5.5.2 Degree–Degree Correlations

Now we turn the attention to the degree–degree correlations of EPA networks.
Degree–degree correlations are defined by the conditional probability, P(k

′ |k), that
a node of degree k is connected with a node of degree k

′
. However, since the

computation of this probability yields very noisy results, it is difficult to assess
whether degree–degree correlations exist in a given network topology. A useful
measure to overcome this technical difficulty is to compute the average degree of
the neighbors of nodes with degree k, Knn(k), that is related with the probability
P(k|k′) as

Knn(k) = ∑
k′

k
′
P(k

′ |k). (5.9)

In networks without degree–degree correlations the function Knn(k) is flat whereas
for degree–degree correlated networks the function is approximated by Knn ∼ kν

and the sign of the exponent ν reveals the nature of the correlations. For assortative
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Fig. 5.6 Degree–degree
correlations among the nodes
of the EPA networks. We plot
the average nearest-neighbors
degree Knn(k) of a node of
degree k for several values of
the parameter b used to
generate the networks. The
networks are generated with
ε = 0.99, and have N = 4.103

nodes and 〈k〉. Note that
negative correlations imply
that hubs are not likely to be
connected to each other
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networks ν > 0 and nodes are connected to neighbors with similar degrees. On
the other hand, for disassortative networks ν < 0, high degree nodes tend to be
surrounded by low degree nodes.

In Fig. 5.6, we plot several functions Knn(k) corresponding to different values of
b in the strong selection limit. We observe that for all the cases there exist negative
correlations that make highly connected nodes to be more likely connected to poorly
connected nodes and viceversa. Therefore, the EPA topologies are disassortative
while this behavior is enhanced as the temptation to defect, b, increases as observed
from the slope of the curves in the log-log plot. This disassortative nature of EPA
networks will be of relevance when analyzing the results presented in the following
section.

5.6 Dynamics on Static Networks Constructed
Using the EPA Model

Up to this section we have analyzed the topology and the dynamics of the
EPA networks while the growing process takes place. Now we adopt a different
perspective by considering the networks as static substrates while studying the
evolutionary dynamics of the nodes. This approach will be done in different ways
allowing us to have a deeper insight on the EPA networks and their robustness.

5.6.1 Stopping Growth and Letting Evolutionary
Dynamics Evolve

To confirm the robustness of the networks generated by Evolutionary Preferential
Attachment, let us consider the realistic situation in which after incorporating a
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Fig. 5.7 Degree of cooperation when the last node of the network is incorporated, 〈c〉, and the
average fraction of cooperators observed when the system is time-evolved 〈c〉∞ after the network
growth ends. The four panels show these measures for several values of ε . From top to bottom and
left to right we show ε = 0.5, 0.75, 0.9, and 0.99 (strong selection limit). The networks are made
up of N = 103 nodes with 〈k〉 = 4 and τD = 10τT. Every point is the average over 103 realizations

large number of participants, the network growth stops when a given size N is
reached, and after that, only evolutionary dynamics takes place. The question we
aim to address here is: will the cooperation observed during the coevolution process
resist?

In Fig. 5.7, we compare the average level of cooperation 〈c〉 when the network
just ceased growing with the same quantity computed after allowing the evolution-
ary dynamics to evolve many more time steps without attaching new nodes, 〈c〉∞.
The green area indicates the region of the parameter b where the level of cooperation
increases with respect to that at the moment the network stops growing. On the
contrary, the red zone shows that beyond a certain value, bc, of the temptation to
defect the cooperative behavior does not survive and the system dynamics evolves
to an all-D state. Surprisingly, the cooperation is enhanced by the growth stop for
a wide range of b values pointing out that the cooperation levels observed during
growth are very robust. Moreover, the value of bc appears to increase with the
intensity of selection ε in agreement with the increase of the degree heterogeneity
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Fig. 5.8 Cooperation levels at the end of the growth process and after letting the network relax
as a function of b. The original network was grown up to N = 4.103 nodes with ε = 0.99 and
〈k〉= 4, and the asymptotic cooperation levels are computed 107 time steps afterwards. Full circles
show the cooperation level when the network stops growing. The other curves show the asymptotic
cooperation when the structure of the network has been randomized (triangles), when the strategies
of the nodes have been reassigned randomly (squares) and with both randomizations processes
(diamonds). Reprinted from [40]

of the substrate network. These results highlight the phenomenological difference
between playing the PD game simultaneously to the growth of the underlying
network and playing on fixed static networks.

5.6.2 Effects of Randomizations in the Evolutionary Dynamics

Now, in order to gain more insight in the relation between network topology and the
supported level of cooperation, we study the evolution of cooperation when network
growth is stopped and we make different randomizations of both the local structure
and the strategies of the nodes. In particular, in Fig. 5.8, we show the asymptotic
level of cooperation when the following randomizations are made after the growth
is stopped: (1) the structure of the EPA network is randomized by rewiring its links
while preserving the degree of each node; (2) the structure of the network is kept
intact but the strategies of the nodes are reassigned while preserving the global
fraction of cooperation (strategy randomization); and (3) when the two former
randomization procedures are combined. Note that the randomization of the network
structure is made by interchanging pair of links. This randomization, although
preserves the degree distribution of the network destroys the degree correlations
of the original EPA network and decreases significantly its clustering coefficient.
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Fig. 5.9 Cooperation levels in ER, BA, and our Evolutionary Preferential Attachment network
models, as a function of the temptation parameter b. The EPA network is built up using the model
described in the main text for b = 2.1 and ε = 0.99. All networks are made up of N = 103 nodes,
with 〈k〉 = 4, and every point shown is the average over 103 independent realizations. Reprinted
from [40]

As it can be seen from Fig. 5.8, the crucial factor for the cooperation increment
during the size-fixed period of the dynamics is the structure of these EPA networks,
since its randomization leads to an important decrease of cooperation at levels far
away from those of the original one. This drop of cooperation when randomizing
the structure is in good agreement with previous findings in complex topologies,
specifically, for static BA networks [35, 41]. On the other hand, the strategy ran-
domization procedure does not prevent high levels of cooperation, thus confirming
that the governing factor of the network behavior is the structure arising from the
co-evolutionary process. Moreover, the asymptotic level of cooperation in this case
(squares in Fig. 5.8) is larger that those observed when the network is simply let to
evolve without any randomization (C∞ in Fig. 5.7). This result points out that using
a random initial condition for the strategies differs strongly from starting from a
configuration where degrees and strategies are correlated as a result of the EPA
model (Fig. 5.3). We will come back to this point in Sect. 5.8.

5.6.3 EPA Networks as Substrates for Evolutionary Dynamics

The high levels of cooperation observed when applying a random initial configu-
ration for the strategies to EPA networks motivate the question on whether EPA
networks are best suited to support cooperative behavior than other well-known
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models. In order to answer this question, we consider our EPA networks when used
as static substrates for the evolutionary dynamics and compare with the cases of
both Barabási–Albert [3] and Erdős–Reńyi (ER) [42] graphs. To this aim, we take
a particular example of our model networks, grown with b = 2.1 and ε = 0.99,
and run the evolutionary dynamics starting from an initial configuration with 50%
cooperators and defectors placed at random. The average level of cooperation as
a function of the temptation to defect is represented in Fig. 5.9 together with the
diagrams for BA and ER networks. Surprisingly, the plot shows that the EPA
network remarkably enhances the survival of cooperation for all the values of b
studied. Therefore, the attachment process followed by EPA networks is seen to
be more efficient than the BA preferential attachment model studied in [9, 11, 14].
Obviously, the roots of this behavior cannot be found in the degree distribution,
P(k), but in the high levels of clustering [43] and the disassortative mixing [44]
shown above.

5.7 Time Evolution of the Pc(k) After Network Growth

As we have already mentioned, it is widely known that SF topologies are able to
sustain higher levels of cooperation than random structures, due to the microscopical
organization of the strategies [9, 11]. In particular, it has been shown that in those
heterogeneous settings the hubs always play as cooperators being surrounded by
a unique cluster of cooperators, while defectors cannot take advantage of high
connectivity, and thus occupy medium and low degree classes. Nonetheless, in
our EPA structures, we have observed (Sect. 5.4) that during network grows, some
hubs play as defectors, thus implying a very different scenario than that of static
heterogeneous networks.

In this section, we turn again to the situation in which the network growth is
stopped (and no randomization is made) to study the roots of the increment of
the asymptotic level of cooperation observed in Fig. 5.7. To this aim, we look at
the temporal evolution of the probability that a node of degree k is a cooperator,
Pc(k), once the network growth has ceased. As we have observed in Sect. 5.4,
the growth process leads to a concentration of cooperators at intermediate degree
nodes, explained from the fact that while the network is growing, newcomers join
in with the same probability of being cooperators or defectors. In this situation,
defectors have an evolutionary advantage as they get higher payoffs from cooperator
newcomers. Although these cooperators will subsequently change into defectors and
stop providing payoff to the original defector, the stable source of fresh cooperator
nodes entering the network compensates for this effect. However, when the growth
stops while the dynamics continues, we observe from Fig. 5.10 that low degree
nodes are rapidly taken over by cooperators, and after 104 time steps they are mainly
cooperators. On the contrary, hubs are much more resistant to change, and even after
107 time steps not all of them have changed into cooperators (revealed by those
values Pc(k) = 0 in Fig. 5.10).
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Fig. 5.10 Probability of
being a cooperator as a
function of the degree at the
end of the Evolutionary
Preferential Attachment
process, 104 time steps later,
and 107 time steps later, for
b = 2.2 and ε = 0.99.
Reprinted from [40]
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The persistence of hub defectors is a very striking observation, in contrast with
previous findings in static SF networks [9, 11, 41], for which hubs are always
cooperators or, in other words, a defector hub is unstable. This occurs because a
defector seating on a hub will rapidly convert its neighbors to defectors, which
in turn leaves it with zero payoff; subsequently, if one of its neighbors turns
back to cooperation, the hub will eventually follow it. It seems, however, that
the coupling of evolutionary game dynamics with the network growth leads to a
structural configuration that stabilizes defection on hubs. The unexpected result that
Fig. 5.10 shows is that defector hubs can also be asymptotically stable once the
network growth has ceased. Indeed, we have observed in our simulations that hubs
are defectors for as long as the dynamics continues (at least, t = 107 generations
after finishing growing the network). However, it is important to stress that not all
realizations of the process end up with defector hubs. For low values of b, this
is practically never the case and almost no realizations produce defectors at the
hubs, but, as b increases, the percentage of realizations where this phenomenon is
observed increases rapidly.

In Sect. 5.4, we have discussed why a hub can be a defector while the network
is growing, because it takes advantage of the newcomer flow, getting high benefits
from them. Nevertheless, the surprising fact that defector hubs may have very long
lives on the static regime, may be the relevant feature for the cooperative behavior
of the network resulting from the growth process, and thus it is important to fully
understand the reason for such a slow dynamics. We next analyze this in detail.

5.8 Microscopic Roots of Cooperation After Network Growth

Having identified the coexistence of cooperator and defector hubs, we next study
why this configuration seems to be asymptotically stable and why the hubs
are not invaded by opposite strategies. In Fig. 5.11, we present the payoffs of
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Fig. 5.11 Average payoffs of cooperators and defector nodes at the end of network growth (t = 0)
as a function of their degrees, k, for a realization of the Evolutionary Preferential Attachment
model with b = 1.8. Note that the similarity between cooperators’ and defectors’ payoffs implies
that imitation events take place on a long time scale. Reprinted from [40]

cooperators and defectors as a function of their degree. This plot is taken from a
single realization of the dynamics in which defector and cooperator hubs coexist
asymptotically. As can be seen, the payoff grows approximately as a power law,
fk ∼ kα ; however, the key point here is not this law but the fact that the payoffs for
defectors and cooperators of the same degree are very similar. In view of the strategy
update rule (5.2), it becomes clear that the evolution must be very slow. Moreover,
if we take into account the role of the degree in that expression, we see that hubs
have a very low probability to change their strategies, whatever they may be.

Considering now the disassortative nature of the degree–degree correlations
(Fig. 5.6) we can explain how these dynamical configurations can be promoted by
the structure of the network. The large dissasortativity of EPA networks suggests
that hubs are mostly surrounded by low degree nodes and not directly connected to
other hubs. Instead, the connection with hubs is made in two steps (i.e. via a low
degree node). This local configuration resembles that of the so-called Dipole Model
[45], a configuration in which two hubs (not directly connected) are in contact
with a large amount of common neighbors which in turn are low degree nodes.
In this configuration, it can be shown analytically that the two hubs can coexist
asymptotically with opposite strategies, provided that the hub playing as cooperator
is in contact with an additional set of nodes playing as cooperators, for this will
provide the hubs with a stable source of benefits. On the contrary, defector hubs are
only connected to the set of nodes that are also in contact with the cooperator hubs.
In this setting, the low degree individuals attached to both hubs experience cycles
of cooperation and defection (we call them fluctuating individuals, because their
strategies can never get fixed) due to the high payoffs obtained by the hubs. If such
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Fig. 5.12 Connectivity matrix of cooperators with defectors (Left) and of cooperators with
themselves (Right). The element (i, j) is set to 1 (black square in the figure) when a link between
a defector (cooperator) of degree i and a cooperator (cooperator) of degree j exists, respectively.
Reprinted from [40]

a local configuration for the strategies of hubs and their leaves arises, neither of the
two hubs will take over the set of fluctuating individuals, nor the latter will invade
the hubs as they are mainly lowly connected nodes with small payoffs.

In order to test if the grown networks exhibit local dipole-like structures, we have
measured the connectivity of the neighbors of defector and cooperator hubs, which
we represent in Fig. 5.12. The figure undoubtedly shows that highly connected nodes
playing as defectors are mainly connected to poorly connected cooperators (acting
as the set of fluctuating strategists), whereas cooperator hubs are connected to each
other and also to a significant fraction of lowly connected nodes. This fully confirms
that, in contrast to all previous results, there is a structure allowing the resilience of
defector hubs, and moreover, it gives rise to a situation quite similar to that described
by the Dipole Model.

5.9 Conclusions

In this chapter we have presented a model in which the rules governing the formation
of the network are linked to the dynamics of its components. This model provides an
evolutionary explanation for the origin of the two most common types of networks
found in natural systems: when the selection pressure is weak, homogeneous
networks arise, whereas strong selection pressure gives rise to scale-free networks.
A remarkable fact is that the proposed evolution rule gives rise to complex networks
that share some topological features with those measured in real systems, such
as the power law dependence of the clustering coefficient with the degree of the
nodes. Interestingly, our results shows that the microscopic dynamical organization
of strategists in EPA networks is very different from the case in which the population
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evolves on static networks. Namely, there can be hubs playing as defectors during
network growth, while cooperators occupy mainly the middle classes. It is worth
stressing that the level of cooperation during network growth reach the largest values
for the strong selection limit in which the newcomers launch their links to those
fittest elements of the system.

Furthermore, the generated networks are robust in the sense that after the growth
process stops, the cooperative behavior remains. Moreover, we have shown that for
most cases the cooperative behavior increases when network growth is stopped.
We have also shown that the non-trivial topological patterns of EPA networks are
the roots for such enhancement of the cooperation. In particular, we have shown
that rewiring the links while keeping the degree distribution (thus destroying any
kind of correlations between nodes) yields a dramatic decrease of the levels of
cooperation. On the other hand, a randomization of the strategies does not affect the
asymptotic levels of cooperation. Therefore, the ability of EPA networks to promote
the resilience of cooperation is rooted in the correlations created during network
formation via the coevolution with evolutionary dynamics.

Maybe the most important difference we have found between the evolutionary
dynamics on top of EPA networks and that on top of well-known model networks
is the dynamic stabilization of defectors on hubs, long after the growth has finished.
We have shown that these defector hubs can be extremely long-lived due to
the similarity of payoffs between cooperators and defectors arising from the co-
evolutionary process. Moreover, we have been able to link the payoff distribution to
the network structure. In particular, we show that the disassortative nature of EPA
networks together with the formation of local dipole-like structures during network
growth is responsible for the fixation of defection in hubs.

Finally, the coevolutionary perspective presented in this chapter has focused on
the formation of a complex system rather than being applied to the rewiring of links
in already formed systems. Given the simplicity of the formulation presented here
we thus expect that the model will contribute to explain other realistic scenarios in
which the dynamical states of the constituents of a complex system coevolve with
its formation.
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11. J. Gómez-Gardeñes, M. Campillo, L.M. Florı́a, Y. Moreno, Phys. Rev. Lett. 98, 108103 (2007)
12. H. Ohtsuki, E.L. C. Hauert, M.A. Nowak, Nature 441, 502 (2006)
13. V.M. Eguı́luz, M.G. Zimmermann, C.J. Cela-Conde, M. San Miguel, American Journal of

Sociology 110, 977 (2005)
14. F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006)
15. F.C. Santos, J.M. Pacheco, T. Lenaerts, PLos Comput. Biol. 2(10), e140 (2006)
16. M. Nowak, Science 314, 1560 (2006)
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(2009)



Part II
Structure and Dynamics of Complex

Networks



Chapter 6
Defining and Discovering Communities
in Social Networks

Stephen Kelley, Mark Goldberg, Malik Magdon-Ismail,
Konstantin Mertsalov, and Al Wallace

6.1 Introduction

The categorization of vertices in a network is a common task across a multitude of
domains. Specifically, identifying structural divisions into internally well connected
sets have been shown to be useful in computer science, social science, and biology.
In each of these areas, grouping vertices using structural boundaries helps one to
understand the underlying processes of a network. Identifying such groupings is a
non-trivial task and has been a subject of intense research in recent years.

In general, identifying groups of vertices in a network based on structural
properties alone is known as community detection. Methods to identify such groups
take a wide variety of approaches, mirroring the diversity in domains where an
accurate view of structural communities is useful. Depending on the definition of a
community used, one could discover groups that maximize a global quality function,
contain a specific set of substructures, or satisfy a set of local criteria. Each of these
definitions has resulted in a number of methods which aim to produce the “best” set
of communities relative to the definition chosen.

Rather than focusing on a number of features which differentiate these definitions
and methods from each other, this text will focus on perhaps the most fundamental
question in the field of community detection; should groups be disjoint or should
they be allowed to overlap?

In the past, the field of community detection has primarily focused on identifying
a set of groups such that each vertex in the network is assigned to a single
group. This requirement results in a set of disjoint groups covering the entire
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network. However, with the explosion of social network and on-line communication
data available, research has expanded towards methods which consider overlap-
ping groups.

In the remainder of this text, we will first include a brief discussion on the
intuition behind disjoint and overlapping communities and provide the reader
with a basic understanding of a small sample of commonly used methods for
community detection. Further into the text, we will present the difficulties involved
when detecting overlapping communities and introduce a method for discovering
overlapping communities which avoids these common pitfalls. This algorithm will
be presented with results on real and synthetic benchmark networks. Finally, we
will show that in real data, communities that do overlap are natural and necessary to
capture many of the associations between vertices in a network.

6.2 Methods for Detecting Community Structure

The most fundamental division between community definitions is whether or
not vertices can belong to a single community or any number of communities.
Justifications exist for each approach, and ultimately, the selection of which
definition to use is likely domain and application dependent. For instance, when
analyzing biological protein interaction networks, if an analyst wishes to generate
a taxonomy of proteins, a hierarchical disjoint method is desired. When analyzing
social networks, due to the variety of affiliations and interests that an individual may
have, an overlapping method may be more appropriate.

We begin with a brief examination of some of the previous work in the area
of community detection to give the reader a sense of current methods. This
examination is far from complete; it is intended to serve only as a brief introduction.
For a more comprehensive survey covering a variety of methods in depth, please
see [8].

6.2.1 Disjoint Community Detection

The majority of current methods treat the problem of locating communities as
a hierarchical partitioning problem. According to this approach, the community
structure of a network is assumed to be hierarchical; individuals form disjoint
groups which become subgroups of larger groups until one group, comprising the
whole society, is formed. Such methods form a tree of subgroup relations called
a dendrogram. A dendrogram allows the community structure of a network to be
analyzed at various resolutions. An example of this structure, which is commonly
used as a visual tool for hierarchical clustering methods, is given in Fig. 6.1.

Originally, the method for detecting a hierarchical grouping in networks was to
repetitively identify edges which do not belong to the same dense subgraph [9, 21].
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Fig. 6.1 Dendrogram visualization detailing the merging or splitting communities until the entire
society is contained in a single group or until each community consists of a single individual

If we consider a group containing all individuals and for each edge compute the
centrality according to one of a number of definitions (information, shortest path,
circuit, betweenness, etc), edges with higher centrality scores will be ones which
link, rather than compose, dense areas of the network. Such edges are repetitively
removed. Those edges removed first will be edges that form a significant connection
between two dense areas of a network. This process of calculation and removal
is performed until the graph becomes disconnected. Upon disconnection, a single
group splits into two groups containing each component. This process is continued
until each vertex is contained in a group by itself. As a result, a hierarchy of splits
is produced, showing the relationship between small groups and larger ones.

This analysis can be quite useful for networks where visual inspection of the
dendrogram provides an accurate picture of the underlying community structure.
However, this method lacks the ability to point out precisely at which level of the
hierarchy the “best” groups have been discovered. For large networks where visual
inspection is impossible or for networks in which there exists no intuition to suggest
the best set of groups, this fact is problematic. In order to determine the best split
in an automated manner, the notion of modularity [17] has been proposed. This
measure can be expressed as

Q =
1

2m ∑
i, j∈V

[
Ai, j− kik j

2m

]
δ (ci,c j), (6.1)
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where m is the number of edges in a network, Ai, j is the edge weight connecting
vertex i and j, ki is the degree of vertex i, and δ (ci,c j) is a function returning 1 if
the community assignments of vertex i and vertex j are the same and 0 otherwise.
Intuitively, the measure expresses the difference between the number of edges inside
communities and the number which are expected to be within a community, given
a community’s degree. With this measure, one can compare the modularity of all
levels of the hierarchy and identify the most well defined set of groups compared to
the null model.

The introduction of modularity as an evaluation measure of group quality has
resulted in a number of methods which attempt to optimize this value. The most
well known of these methods is a greedy agglomerative method originally proposed
by Clauset, Newman, and Moore [5]. This algorithm begins by placing vertices
in unique communities and merging those that produce the largest increase in
modularity. Additional methods have been proposed based on simulated annealing
[12], extremal optimization [7], methods from statistical mechanics [23], and other
heuristic optimizations [3]. Recent work has also identified a variety of non-
hierarchical methods utilizing label propagation [22] and minimizing the amount
of information needed to describe random walks in a network [24].

6.2.2 Overlapping Communities

While hierarchical grouping is valid for some types of networks, such as orga-
nizational networks or taxonomies, intuition and experience suggest that social
networks contain pairs of communities that overlap. Consider an individual in a
social network representing “friendship.” He or she may have friendship relations
across many different social circles, such as those formed in the workplace, by
a family unit, by a religious group, or by social clubs. In this case, assuming
the community structure of the network to be hierarchical might lead to missing
important information about members’ attachment to the numerous social circles
with which they concurrently interact.

However, the shift from disjoint community assignments to non-disjoint assign-
ments is not a simple one. Various interpretations exist for how vertices can be
assigned to groups. Specifically, there is some debate as to whether the goal is to
identify a weighted assignment from an individual to all groups or a set of binary
assignments indicating an individual’s membership. The former has been used in
identifying fuzzy groups via probabilistic assignment [6, 27] and maximizing an
overlapping version of modularity [18]. Additional work has been done on finding
the best set of communities such that each individual can only associate with k
sets. An interesting algorithm based on label propagation can be found in [10]. This
text however, will examine only the problem of deriving a set of binary individual to
group mappings without such constraints. Such a mapping allows communities to be
discovered at a local level, where a vertex’s association with a group is determined
independently of any association with other groups.
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Fig. 6.2 A demonstration of
local optimality

Methods which identify these non-fuzzy overlapping communities tend to be
one of two types; either the algorithm attempts to identify instances of a specific
structure in the network or a sets which maximize a localized quality function. It
is important to notice that, unlike the global measure of modularity, each of these
tasks is local in nature.

6.2.2.1 Clique Percolation

An algorithm that attempts to identify a defined, local substructure indicative of a
community is the Clique Percolation Method (CPM), which was proposed in [20]. In
a nutshell, the algorithm first finds all cliques of size k, called k-cliques and defines
a graph such that each node represents one of the identified k-cliques. Two nodes
are adjacent in the new graph if the corresponding cliques share k− 1 nodes. The
nodes in the union of the k-cliques corresponding to each connected component are
declared to be a community. For k = 2, clique percolation defines the communities
as the connected components in the network.

CPM attempts to discover communities by identifying complete subgraphs of
size k. One can claim that, for reasonably sized values of k, such substructure is
clearly an instance of community structure. However, this definition sets a very rigid
definition for a community. If one edge of a otherwise complete subgraph is missing
or if two k-cliques overlap by only k− 2 nodes, it is not considered a community.
Clique percolation would not, for example, be able to find the group illustrated in the
toy community in Fig. 6.2. The main problem with such a definition is that it is too
rigid and is uniform over the whole network, requiring all communities to share the
same structural composition. Additionally, identifying k-cliques of arbitrary sizes
can be expensive computationally.
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6.2.2.2 Local Optimization

In an effort to identify communities of various composition, new methods have been
proposed based on the notion of local optimality. Generally, these methods begin
with some set of seed groups which are then optimized relative to a local density
function. The seed groups are considered communities when a single vertex addition
or removal does not increase the group’s quality.

Despite a large number of proposed methods for detecting communities via
local optimization [2, 4, 16], there has been a general agreement in the form of the
density function used to optimize seed groups. Intuitively, the search for community
structure can be viewed as a search for sets of individuals that are intensely
connected relative to their isolation with the rest of the network. Specifically, this
can be expressed in a manner representative of the functions in previous literature
as the ratio of edges internal to the set over all edges connected to the set. This can
be given as

d(S) =
win

win +wout
, (6.2)

where win is the number of edges internal to the set S and wout is the number of edges
connecting the set S to the rest of the network. This and similar density functions
are essentially local modularity measures which attempt to maximize internal while
minimizing external edges.

Methods based on local optimization add and remove a vertex relative to a set’s
density when the vertex is evaluated. The implications of this will be discussed at
length later in the chapter. However, for now it is only important to realize that
locally optimal sets are constructed relative to only their neighborhood. This allows
a wide range of communities with both high and low densities to be discovered.

To motivate why this is important, consider the stylized example in Fig. 6.2.
This figure depicts some form of organized/coordinated ring-group which would
intuitively pass as a community (e.g., a committee of NSF-reviewers). Since we
allow overlapping groups, a node could belong to multiple communities, as illus-
trated by the shaded areas. A node belongs simultaneously to this ring-community
as well as to other communities. By virtue of belonging to those other communities,
the node communicates extensively outside the ring-group (especially if the node
belongs to many other communities). This means that the node displays more extra-
group similarity than intra-group similarity with respect to the ring-group. There is
no flaw with the intuition that a community should display intra-group similarity;
the reason the extra-group similarity can be larger is because the communities can
overlap. Note that the ring itself in our example, though it is connected and appears
structured, is not particularly dense; in fact, if each member connects to δ external
nodes, then d(S) = 1/(δ + 1), which can be sufficiently small. Other communities
may not have as low a density as this.

We can go further in claiming that this subset should be considered a community
independent of the nature of the other communities in the network. Accepting
the locality property of the communities suggests that the methods that define a
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global objective function (e.g., modularity [17]) and optimize it to identify all the
communities might fail to discover the ring-community. Such methods have found
success in partitioning a network, but when overlap is allowed and essential, it is not
even clear how to properly define global objective functions.

In the toy ring group shown in Fig. 6.2, the density of our ring-community is
d(S) = 1/(δ +1). One can easily verify that if we remove a node u from the group,
its density drops to

d(S− u) =
1

δ + 1+ δ/(|S|− 2)
. (6.3)

Alternatively, suppose we try to add one of the neighboring nodes z to S. To
illustrate, assume that this node has one connection into S and β connections to
other nodes. In this case, adding z changes the density to

d(S+ z) =
1+ 1/|S|

δ + 1+β/|S|, (6.4)

which is smaller than d(S), when z has more connections to the outside world than
the average for nodes already in S. This means that S is locally optimal with respect
to single node moves. Thus, the requirement of local optimality can capture S as a
community.

The main benefits of defining communities as locally optimal sets are that sets
with vastly different structural properties can be locally optimal, with varying
densities and that locally optimal communities can overlap. Not being able to
improve a community (as measured by the density d) is intuitive; this does not
require a high density or a specific structure of the community. The unified idea
of the discussion is that a community is a locally defined object. A community in
one part of the network should not rely on what is going on in another part of the
network. Further, community structure can vary over the network – communication
in some communities can be more intense than in others; their structures can
be different.

6.3 Local Optimality Examined

The benefits of local optimality as a mechanism to discover overlapping commu-
nities have not been lost on researchers. However, despite general agreement that
locally optimal sets of vertices form reasonable communities, there is a lack of
consensus as to the specifics of the notion of local optimality. Further, additional
issues that present themselves when identifying local communities have largely
ignored. In this section, we begin by examining the notions of local optimality and
density functions. Consolidating this discussion, the section is concluded with a set
of axioms which we suggest to be the simplest, smallest set of criteria that any local,
overlapping groups should satisfy.
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6.3.1 Vertex Removals and Connectivity

As previously stated, various methods have been proposed which attempt to
optimize local density functions to identify potentially overlapping communities.
However, methods define optimality with respect to different processes. In the
process of optimization, some methods allow vertices to be added and removed
while others allow only additions. This results in two different notions of local
optimality.

An additional problem, which exists with any algorithm allowing vertices to
be removed during the optimization, involves the connectivity of communities.
Whether a vertex is added to a group or not is determined by the distribution of
the vertex’s degree as well as the community’s density at the time of consideration.
This may cause a cut vertex, which was previously inserted into the set based on
an earlier, lower density to be removed, thereby disconnecting the set. Producing
a disconnected set of vertices in a grouping algorithm is clearly a problem and
can affect any local optimization algorithms allowing vertex removal. Clauset’s
algorithm in [4] successfully avoids this problem by only adding to the group during
the optimization, and [25] only merges candidate groups, ensuring the connectivity
of the resulting set.

Examining Fig. 6.3, a graph is shown that demonstrates this problem. Consider a
candidate group being optimized containing only vertex 1. Initially, the set’s density
is 0, as there are no internal edges. Upon iterating through all vertices in order of
increasing degree, vertex 2 is added to the cluster. This results in an increase in
density due to the addition of an internal edge. Proceeding to Fig. 6.3c, the group
expands to contain the chains and triangles connected to vertex 2. At this point,
however, the density has increased such that the community would have a higher
density without vertex 2 being a member. This will result in the removal of vertex 2
and the disconnection of the set. Vertex 1 will also be removed producing a locally
optimal, disconnected set.

6.3.2 Tuning Parameters

Examining the previously defined density function in (6.2), we wish to determine
the conditions by which a vertex is added or removed from the set. Consider the
situation detailed in Fig. 6.4. Here, some vertex i is being considered for addition
into the set C. The vertex’s degree ki is split into α and β such that α = ∑ j∈C

wi, j ,

β = ∑ j/∈C
wi, j , and ki = α +β . For the vertex i to be added to the set, the density

of C∪{i} must be greater than the density of C alone. Therefore, we have

win

win +wout
<

win +α
win +wout +β

, (6.5)
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Fig. 6.3 A sample graph demonstrating the generation of a locally optimal, disconnected group.
The density function being used for this examination is (1)

Fig. 6.4 The breakdown of
α and β for the addition of a
vertex to community C

C
C

α β
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...
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Fig. 6.5 A sample graph demonstrating the performance of local optimization on a chain of
vertices

This can be simplified to
α
β

>
win

win +wout
. (6.6)

Performing a similar procedure for removals, we arrive at

α
β

<
win

win +wout
. (6.7)

It is clear to see from these two relations, that additions and removals occur
relative to the density of the set at the time of consideration. It is worth examining
how this metric behaves when sparse areas of the graph are encountered. Consider
a vertex with degree 2, adjacent to the set being optimized, where α = β = 1. Since
there is at least one edge cut by the community’s boundary (implying a density < 1),
vertices matching this description will always be added to the group. In practice,
this results in groups with a large amount of edges forming a “core” and expanses
of sparse vertices. This is a problem primarily when dealing with low degree graphs
or social networks whose degree distribution is scale free. This effect is shown in
Fig. 6.5. The d values show how density increases until the entire chain is contained
within the set. For many applications, such a grouping would be inaccurate, since
vertices on the left and right of the chain are very distant and can be presumed to be
dissimilar.

It is unintuitive how a community detection algorithm should handle sparse
chains of vertices. At one end of the spectrum, one could imagine each pair of
vertices in the chain the most salient communities. However, there could also be an
argument made that the entire chain should compose a group. This can be controlled
by adding a parameter to the density function, introducing a penalty for additions
which significantly reduce the edge probability of the community. The following
density function is proposed

d(C) =
win

win +wout
+λ ep. (6.8)

where ep is the edge probability within the group C

ep =

∑
i, j∈C

ei, j

|C|× (|C|− 1)
(6.9)
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and λ is a parameter allowing the results to be fine-tuned. Setting λ = 0 will produce
the same results as (6.2), while larger values will increase the amount of significance
the internal edge probability of the set has. This also has the advantage of producing
smaller groups for larger values of λ which allows groups to be produced across
a wide variety of resolutions. As suggested by Lancichinetti et al. in [16], this and
other, similar parameters could also be used to determine the significance of groups.
Groups which are structurally significant could maintain their local optimality
across numerous values of λ .

6.3.3 Local, Overlapping Axioms

Based on the above observations, as well as previous literature, a set of axioms can
be described that any local, community detection method should aim to satisfy. We
now state the minimum requirements of a community.

Connectedness. A community should induce a connected subgraph in the network.
If the only way to get from one node to another in the community is via some
external node, it suggests that the community is incomplete or trivially divisible.

Local Optimality. According to an appropriate density metric d(C), predefined
on all subsets of nodes, the density of a community cannot be improved with the
removal or addition of a single node.

Note, that the local optimality requirement, but not the connectivity requirement,
was first introduced in [1, 2]. Examples can be easily developed of locally optimal
sets that induce disconnected subgraphs. Our community axioms posit, in particular,
that communities are identified “locally,” within one-hop distance from the set.
Specifically, we require local optimality with respect to the addition or removal of
a single vertex. Previously proposed methods have suggested identifying locally
optimal sets with respect to addition only. However, it can be argued that if a
community can be improved relative to some density function via removal, it is less
meaningful than one constructed via addition and removal. Additionally, one could
suggest further notions of local optimality which are relative to a larger number of
removals or additions. These other notions of optimality are left for future work.
As we will see, these two axioms alone are sufficient for discovering communities
which overlap and satisfy the intuitive properties we expect of a community.

It is important to note that this definition is quite different from many previous
notions such as those of a “strong” or “weak” community suggested by Raddichi in
[21] as well as the definition of modularity which was previously discussed. Rather,
this definition focuses on a localized approach that eschews globally formulated null
models and strict edge-based requirements.

Algorithmically, it is not easy to identify all communities satisfying these
properties. Thus, we resort to a simple heuristic which we discuss next. Our goal
is to show that the communities discovered using this heuristic identify salient
communities in both common benchmark data as well as real, observed on-line
associations.
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6.4 Connected Iterative Scan

In [2], the authors describe a community detection algorithm, termed Iterative
Scan. Here we describe a modification of IS to discover communities satisfying
the previously identified axioms of optimality and connectedness.

Iterative Scan consists of repeated “scans” each starting with an initial set
developed by the previous scan (a “seed-set” for the first iteration). It examines
each node of the network once, adding or removing it if such an action increases
the current density of the set. The scans are repeated until the set is locally
optimal with respect to a defined density metric. The choice of seed-sets is not
predetermined; seeds can consist of any combination of nodes in the network.
A heuristic for seeding, called LinkAggregate, is presented in [1]. LinkAggregate
efficiently produces seed-sets that form a cover (with some overlap) of the entire
vertex set. The nodes are evaluated by IS from low to high degree. Iterative Scan in
this form had been used for a variety of interesting applications such as modeling
dynamic networks [11]. A similar method, implementing the idea of the greedy local
optimization (as a replacement of a scan in IS) was later given in [16]. For every
iteration, the algorithm examines all vertices in order to find the one which causes
the maximum increase of the density. That vertex is used to update the current set
and any density improving removals are then performed.

The density metric itself can be defined in a number of ways; our analysis
uses a modification of the standard density function in Equation 6.2. Rather than
using win, recent literature [16] has proposed using using the internal and external
degree of all vertices in the group rather than the number of edges. This is a
slight modification, resulting in the the use of 2 ∗ win in place of win. For the
sake of comparison to previous work, we will optimize using this density function.
Our experiments show that in many social networks, there is a very large set
of potential communities. Thus, filtering of candidate sets is often necessary and
should be done as dictated by the specifics of the application in which community
structure is useful. One possibility is to order the candidates by d(S), and consider
as most “interesting” those communities which had more internal than external
communication (d(S) > 1

3 ). This filter is consistent with the notion of a “weak”
community as defined by Raddicchi et al in [21] and is done in this work to restrict
the scope of the analysis for computational reasons. Note that when overlap is
allowed, this additional requirement might not be satisfied by all communities. The
other possibility of filtering is to look at the communities for which d(S) < 1

3 ,
as these communities are still connected and locally optimal, even though their
members communicate outside of the community a significant fraction of time,
which results in sparse internal communication.

To ensure the connectivity of the identified communities, we modify IS and
term the resulting algorithm Connected Iterative Scan, CIS. Psuedocode for this
algorithm is presented in Algorithm 1. As is the case with IS, CIS consists of a
number of scans that are repeated for each current set until no change of the set
occurs. The set is then declared to be a community. Every scan proceeds through
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Algorithm 1: Connected Iterative Scan
Require: G = (V,E),S �= /0
Ensure: density(S) ≥density(S∪{v}) & density(S) ≥density(S\{v}),∀v ∈V

improved← true
while improved == true do

improved← false
for all v ∈V do

if v ∈ S then
if density(S\{v}) >density(S) then

S← S\{v}
improved← true

end if
else

if density(S∪{v}) >density(S) then
S← S∪{v}
improved← true

end if
end if

end for
S←maxComponent(S)

end while

the nodes in the order of increasing node degree. Once a scan is finished, the set’s
connectivity is examined. If the set consists of multiple connected components, it
is replaced by the connected component with the highest density, after which the
next scan starts. Note that selecting only the highest density component effectively
sidesteps the issue of repeatedly optimizing to the same, disconnected cluster.
The specific selection of this rule for identifying connected, locally optimal sets
is motivated by the desire to generate as many groups as possible. The running
time of the algorithm however, suffers from repetitive connectivity evaluations. For
applications where running time is important, one can simply discard those sets that
are not connected as a additional post-processing step. Finally, the seeding is this
text is done by placing each vertex in its own initial seed community.

The disadvantage of CIS is the same as that of IS; both methods may produce
a large number of highly overlapping communities. However, this problem can
be managed by effective post-processing of results and merging of highly similar
communities. Sample results of CIS for a community analysis of Zachary’s Karate
Club data set [26] are given in Fig. 6.6. This network represents a set of friendships
with in a collegiate martial arts club. Performing analysis on the data, which was
collected while the group was undergoing a fissure, provides interesting insight into
the set of individuals for whom selecting which splinter group to join was not a
trivial choice. Using CIS, these individuals exist in the overlap between the two
larger groups in the network. These groups are clearly salient and similar results are
found across a variety of literature in community detection.

The complexity of CIS is difficult to analyze due to its dependence on the number
and quality of the seeds being optimized as well as the underlying graph structure.
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Fig. 6.6 Overlapping groups found in Zachary’s Karate Club dataset. Different shapes identify the
eventual group division. Groups were ordered to correspond to the number of distinct seeds which
produced them. Groups were then selected until the graph was covered. Additional examination of
groups which are produced by fewer seeds offers insight into potentially overlapping subgroups of
the primary groups presented here

However, similar optimization techniques have previously [1, 16] been empirically
shown to have a running time on the order of O(n2). For many graphs, running
time can likely be reduced by introducing higher quality seeds, utilizing a simpler
density function, or simply throwing out locally optimal, disconnected sets rather
than checking for connectivity at each iteration. Additionally, since the optimization
process is independent for each seed, the algorithm is highly parallelizable.

6.4.1 Benchmark Performance

Quantifying the performance of the algorithm is difficult due to the approach.
Namely, few other methods aim to produce a large set of locally optimal groups.
Rather, they tend to focus on finding partitionings or covers which best express
the data. In addition, methods that allow for overlap tend to be insufficient due to
the unsatisfied community axioms. In this section, numerous benchmarks will be
examined. First, a small, toy graph with uniform degree proposed by Girvan and
Newman will be considered. Then, random scale free networks with embedded
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community structure will be explored for both the overlapping and the non-
overlapping case. Each of these experiments will be evaluated via the Normalized
Mutual Information measure proposed in [16].

6.4.1.1 GN Benchmark

One of the first benchmarks proposed for community detection algorithms was
proposed by Girvan and Newman in [9]. This benchmark dataset, consists of 128
vertices divided into four groups of 32. Each vertex has a degree of 16. The strength
of the community associations are given by a mixing parameter which indicates the
probability that an edge is placed between two communities rather than internal to
a single community. Specifically, this mixing parameter is given by

μk =
ko

ki + ko
(6.10)

where ko is the number of edges connecting a vertex to a vertex in another
community and ki are the number of edges connecting a vertex to other vertices
within a community. It should be explicitly noted that this benchmark assigns
each vertex to exactly one community during network generation. Despite this, it
is important that methods which identify non-disjoint communities be capable of
producing accurate communities even when the underlying structures are disjoint.

For Connected Iterative Scan, the results are given in Fig. 6.7. Each point
represents the average normalized mutual information over 25 graphs with a given
mixing parameter. Seeds are generated by placing each vertex in a candidate cluster.
The results shown are a reflection of what is considered to be the “base” settings of
the algorithm. This configuration is the density function previously described in the
text, vertices ordered by increasing degree, and seeding done by placing each vertex
into a seed group by itself. Unless otherwise noted, there is no additional weighting
placed on the internal edge probability of the community being optimized.

The two curves in Fig. 6.7 show the result of taking all locally optimal sets
discovered by the algorithm as well as using some domain knowledge to filter out the
four most frequently discovered sets. It should be noted in the results that the curve
is similar to those produced via other methods, though with slightly less accuracy
for networks with well defined group structure.

6.4.1.2 LFR Disjoint Benchmark

A more realistic set of benchmark graphs can be tested using the LFR benchmark.
Here, a scale free graph is generated with communities of varying sizes. This
benchmark was first used in [15] to compare methods of community detection on
a more complex network than the GN benchmark. For the experiments contained
within this text, graphs are generated matching a power-law degree distribution with
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Fig. 6.7 Normalized mutual information for Connected Iterative Scan on GN benchmark graphs

αd = 2 and a power-law community size distribution with αc = 1. For all networks,
the average degree of each vertex is 20 and the max degree 50. Community sizes are
limited to 10–50 for runs marked “S” and 20–100 for runs marked “B.” The output of
CIS is processed for evaluation by removing duplicate communities and removing
those communities which contain the entire graph. Each data-point represents the
average of 25 trials.

The results of this analysis using CIS and CPM are given in Fig. 6.8. Figure 6.8a
clearly shows the limitations of identifying a specific structure when compared to
Fig. 6.8b–d. Identifying overlapping cliques is much less accurate as group size
increases. While CPM produces better results for networks with well defined,
small communities, Connected Iterative Scan produces better results in networks
with larger community sizes as well as those networks with less well defined
communities. The quality of the communities produced via CIS are comparatively
stable in the face of changing community and graph properties.

6.4.1.3 LFR Overlapping Benchmark

The LFR benchmark software also allows groups to be embedded such that a
given portion of individuals exist in a specified number of groups. This allows
algorithms to be compared on networks with known community overlap. Taking the
same degree and community size distributions as the previous set of experiments,
Connected Iterative Scan and CPM can be compared at varying levels of overlap.
Figures 6.9 and 6.10 detail the results of this comparison for 10% and 30% of the
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Fig. 6.8 Connected Iterative Scan vs CFinder for LFR benchmark graphs with disjoint embedded
comunities

vertices existing in 2 communities. Again, the same general trend exists; identifying
communities by looking for a set of rigid structural traits fails to identify larger
embedded communities, while those produced by CIS are discovered with the same
accuracy regardless of community composition.

6.4.2 � Value

Intuitively, inclusion of the internal edge probability in the density function for
Connected Iterative Scan allows the algorithm to be tuned to discover different types
of communities. It introduces a criteria for addition different from what was initially
proposed during the development of Iterative Scan. When λ > 0, the vertex being
considered for addition must strike a balance between the change in the original
density value and the change in edge probability.
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Fig. 6.9 Connected Iterative Scan vs CFinder for LFR benchmark graphs with overlapping
embeded communities where 10% of the vertices associate with 2 communities

This effect can be seen in real networks as well. In this analysis we consider a
network in which vertices represent football teams affiliated with universities within
the United States. Typically, teams are members of conferences, within which they
play a significant portion of their games. Edges in the network indicate that two
teams played each other. Groupings produced by Connected Iterative Scan can be
compared to the natural divisions created by conferences.

Groupings were performed using a number of different values of λ and filtering
the communities by taking only the most discovered groups. The normalized mutual
information between the true grouping and the discovered grouping are plotted in
Fig. 6.11. The peak at λ = 0.125 indicates the grouping which most closely matches
the underlying conference structure of the network. Qualitatively, the difference
between λ = 0 and λ = 0.125 is an increased focus on small, tight-knit cores.
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Fig. 6.10 Connected Iterative Scan vs CFinder for LFR benchmark graphs where 30% of the
vertices associate with 2 communities

6.5 Significance of Overlap

In order to demonstrate that group overlap is a significant feature of some social
networks, it is important first to consider the features which pairs of groups
should have to indicate that the overlap between them is significant. Consider the
overlapping groups presented in Fig. 6.12. Here, group A consists of white and grey
vertices, and group B consists of the the black and grey vertices. By this definition,
individuals represented by vertices colored grey are members of both group A and B.

For a pair of overlapping groups to have significant overlap, and thus be
considered a non-separable pair, the groups and their overlap must fit certain
criteria. In general, each criterion serves to identify a quality of overlapping groups
that cannot be expressed via a single group (the union), or two, or three partitions.
These criteria can be described conceptually as follows.
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Fig. 6.12 An example of a
pair of groups that overlap.
The overlap is identified by
the grey vertices while
individuals in only one group
are colored black or white
depending on the group of
which they are a member

.

6.5.1 Structural Significance

The existence of overlap between a pair of groups should enhance the “quality”
of each of the groups individually. For example, if the quality of each group is
measured by the ratio of edges internal to the group to those which are cut by the
boundary of the group, removing A∩B from A and B in the groups expressed in
Fig. 6.12 would result in a decrease in the quality of each group. The two vertices in
the intersection A∩B have the same degree within each group as they have external
to each group. Thus, relative to the previous quality metric, the vertices should be a
part of each group since they increase the numerator while holding the denominator
constant. Therefore, the overlap is the key to the structural significance of both
groups in Fig. 6.12.

6.5.2 Group Validity

It is also important that each group be somehow verifiable using a reasonable
method relative to the input data. Ideally, using some underlying traits of the
individuals in the network being analyzed, groups should have higher trait similarity
between members than one would expect if membership in groups were determined
at random. Examples of this type of validation have been used in various previous
literature, using age and location as traits of the individuals [19]. Group validity
is essential in filtering out groups that are products of random structures in the
underlying communication graph and serves to ensure that the group detection is
accurate.

6.5.3 Overlap Validity

Using the same notion of trait similarity, the individuals within the overlap must
have some similarity with the remainder of each group of which they are a member.
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In Fig. 6.12, the graph is divided into three groups, A−B, B−A, and A∩B (white,
black, and grey respectively). For overlap to be important, A−B and A∩B must be
similar, B−A and A∩B must be similar, and A−B and B−A must be dissimilar
relative to certain significant traits in the data. Individuals in the overlap need
to be similar to the remainder of either group. However, it is necessary that the
remaining individuals in each group be dissimilar to those in the other group. If this
dissimilarity does not exist, the overlapping pair can be captured in a single partition
and overlap is not necessary to explain the relationships in the data.

Pairs of groups that satisfy each of these criteria are fundamentally sound com-
munities due to their structural significance and their group validity. Conceptually,
the existence of overlap validity restricts how the individuals can be placed in a
partitioning. If all users of the three groups are placed in a single partition, dissimilar
vertices in A−B and B−A are associated. If the vertices are placed in three partitions
according to color, a strong association between A∩B and both A−B and B−A is
missed. The vertices may be placed in a pair of disjoint groups only if the similarity
between A∩B and both A−B and B−A is highly unbalanced. If the two similarities
are comparable, however, one does not have justification to place the users in one
group or the other. A detailed description of each of these cases is given further
in the text. Significant numbers of non-separable pairs indicate that overlap is an
essential component of communities within the network.

6.5.4 Measures

It becomes necessary to formulate a set of measures to indicate whether the notions
of group validity and overlap validity are satisfied for a given community or pair of
communities. We begin by identifying the set of data used in the analysis.

Due to the implementation of the Friend Feed provided by LiveJournal, friend-
ship declarations can serve as an indicator of interest. By declaring a friendship, the
declaring user is notified whenever his or her friend makes a post. It can be assumed
that individuals which attract a large number of these friend declarations are highly
important to the discourse on some set of topics. Thus, friendship declarations serve
as a proxy for some set of declared interests from each user. In this analysis, an
individual is defined as influential if he or she has a friendship in-degree of 300 or
more. This criteria marks approximately 4,800 bloggers as influential.

The selection of a subset of the friendship relations was done for purely
computational reasons, cutting the set of possible friend relations from 500,000 to
5,000. Additionally, interest declarations could be used as validation data. However,
within LiveJournal, this data is entered via comma separated values, resulting in a
much larger set of possible declarations. Additionally, the popular declared interests,
such as “books”, “movies”, or “music”, are much more universal than the most
popular friendships. Further, words typed with spelling errors, abbreviations, slang,
and the use of synonyms can all be indicative of the same set of topics. The
friendship relationship is used in this situation because of its concreteness.
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Now, given that each vertex i has a set of declared friendships Fi, we can describe
our validation measures. The group validity requirement claims that there should
be more similarity within the group than one would find at random. To measure
this, we define the notion of internal pairwise similarity (denoted IPS). For a given
community C, the internal pairwise similarity can be computed as

IPS(C) =
∑i∈C ∑ j∈C, j �=i J(Fi,Fj)

|C|2−|C| , (6.11)

where J(Fi,Fj) is the Jaccard index [13] between the two sets. This value can be
expressed as

J(Fi,Fj) =
|Fi∩Fj|
|Fi∪Fj| . (6.12)

The value J(Fi,Fj) will be maximized (J(Fi,Fj) = 1) if the sets Fi and Fj

are identical and will be minimized (J(Fi,Fj) = 0) if the two sets are disjoint.
Intermediate values of J(Fi,Fj) indicate shared friendships and is normalized by
the number of possible shared friendships between the two individuals. Thus, the
IPS value measures the average similarity between the friendship declarations of
pairs within the community. This value is utilized in place of Normalized Mutual
Information discussed earlier due to the fact that the “ground truth” in this situation
is unknown.

Revisiting the notion of overlap validity, it becomes apparent that a method
comparing sets of friendship declarations are needed. Given a pair of overlapping
communities A and B, three friendship declaration vectors can be computed. These
vectors, denoted LA−B, LB−A, and LA∩B, give the probability that a vertex within each
set indicated by the subscript will declare a given individual in the popular friend
set as a friend. Formally, Li

A∩B can be defined for each of the elements of LA∩B as

Li
A∩B =

|{x|x ∈ A∩B, i ∈ Fx}|
|A∩B| , (6.13)

where Fx is the set of friends declared for vertex x. Similar vectors can be defined
for LA−B and LB−A.

Once these vectors are constructed, the similarity between each of them can be
calculated via the cosine similarity. Formally, this can be given, relative to two equal
dimension vectors X and Y , as

cos(θX ,Y ) =
X ·Y
‖X‖‖Y‖ . (6.14)

A low value of cos(θX ,Y ) indicates that the vectors X and Y are close to orthogonal.
High values indicate that the vectors have similar values across many dimensions.
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Table 6.1 Statistics of groups from CNM and CIS. Q
shows the modularity value of the grouping generated by
CNM and “Cov” indicates the portion of vertices which
are in at least one group

Statistics of groups found via CNM and CIS

Groups AvSize AvDens Q Cov

CNM 264 1190 0.745 0.485 100%
CIS 14903 168.8 0.455 – 47.5%

Given the three friendship declaration vectors described previously, the cosine
similarity between them can give an indication as to whether or not the overlapping
group satisfies the overlap validity requirement. Namely, that the inter-group
similarity cos(θLA−B,LB−A) be less than the intra-group similarities cos(θLA−B,LA∩B)
and cos(θLB−A,LA∩B).

In order to simplify this notion, the intra-group and inter-group similarities can
be combined into a single statistic representing the relative similarity between the
three sets. For the sake of notation, let the inter-group similarity cos(θLA−B,LB−A) be
given by the variable inter and let each of the intra-group similarities cos(θLA−B,LA∩B)
and cos(θLB−A,LA∩B) be given by intraA and intraB, respectively. These values can be
combined into a measure of overlap validity as

OV(A,B) =
intraA + intraB

2
− inter, (6.15)

for values of OV(A,B)> 0, the intersection is more similar to each group than the
remainder of each group is with each other, indicating that the overlap is split in its
association with each set.

6.5.5 Results on LiveJournal

We applied the Connected Iterative Scan algorithm, CIS, to the LiveJournal dataset
to produce a set of communities that satisfy the axioms. We also partitioned this
graph using the algorithm CNM designed by Clauset, Newman, and Moore ([5]) to
give the reader a point of reference and to demonstrate the difference in community
sets produced by the two methods. Statistics demonstrating the number of groups,
average size, average density, modularity (Q, only applicable for the partitioning),
and the number of vertices which are placed in at least one community are given in
Table 6.1.

The partitioning produces a small number of sets across a wide variety of sizes
while the overlapping group detection produces a much larger number of smaller
groups which do not cover the entire graph. Coverage is not a requirement; it is not
necessary for every node to belong to a cluster. Rather, we are interested in finding
those groups which naturally overlap and studying the significance of this overlap.
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Fig. 6.13 Portion of clusters that experience a given percentage change in density when the
intersection of an overlapping pair is removed. Portions are collected in bins of size 10%. This
plot contains 50 data points.

If the overlapping groups detected fit the requirement of having structural
significance, removal of a pair’s overlap will produce a decrease in group quality,
as measured by the density d. Overlapping groups are more compelling when the
overlap is structurally necessary for each group. After filtering out subset inclusion
(a trivial form of overlap), the remaining groups display a high degree of structural
significance for the overlap. Specifically, for 80.8% of the overlapping pairs, both
groups in the pair experience a decrease in density if the intersection is removed.
Figure 6.13 shows more details of the exact distribution of changes in density when
the overlap is removed. Even though we observed that some groups are improved
by the removal of intersection, the overwhelming majority of groups experience a
significant decrease in density. We conclude that in general, within this grouping,
that the overlap is structurally significant.

We now investigate the validity of the groups found with respect to user traits.
Figure 6.14a shows the average internal pairwise similarity between users within
a community as well as the average similarity between users in connected random
groups as a function of size. The figure shows that groups produced by CIS have
much larger amounts of similarity between users than the random case for sizes
greater than 10. This value appears lower than random for sizes less than 10 due to
the number of groups which have undefined friendship declarations. The portion of
these groups discovered by CIS and at random are given in Fig. 6.14b. Figure 6.14c
shows the same information as Fig. 6.14a but with these undefined friendships
removed.
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Fig. 6.14 Plot showing the average pairwise Jaccard Index of vertex friendships for all pairs within
discovered communities of the same size and values found in randomly generated connected
groups of the same size. The plot indicates that there is more similarity in a majority of the
discovered groups than one would expect at random
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Fig. 6.15 Curves showing the average overlap validity measure OV(A,B) for identified, non-
subset overlapping pairs and random groups of the same size and overlap

Figures 6.14 and 6.15 show the overlap validity measure over pairs of groups
with a given overlap. This value is compared with the overlap validity measure for
randomly selected groups with the same size and overlap. The x-axis denotes the
overlap of the pair, where overlap is defined as the Jaccard index of the two sets.
Clearly, there is a larger difference in similarity between the groups identified via
CIS and those generated at random.

For the 14,903 unique groups that were discovered, 6,373(∼42%) of them
overlap with at least one other group such that the pair can be considered justified
by the three conditions previously described. These pairs are composed of 125740
unique users, a very significant portion of the graph.

Further, a significant portion of the non-separable groups have comparable intra-
group similarity between the intersection A∩B and both of the sets B−A and A−B.
If the similarities are considered comparable when they are within 5% of each other,
3,544 of the non-separable pairs have an overlap that is associated equally with
the remainder of each group. These groups consist of 100,000 unique users. The
existence of these groups is particularly significant in justifying overlap between
communities. They clearly show that many sets of users are equally associated with
distinct groups. Using a partition-based method for the detection of communities
would either merge the entire pair into one group, failing to recognize the relative
dissimilarity between the vertices in sets A−B and B−A, or place the intersection
with A− B or B− A, missing the connection between the intersection and the
other set.
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6.6 Summary

Detecting communities in networks is a highly useful and non-trivial task. In certain
domains, it is reasonable to expect that community structure overlaps. This neces-
sitates defining the fundamental notions of what overlapping communities should
look like. The axioms laid out in this chapter attempt to fulfill that need, while at the
same time being as minimal as possible to allow for methodological and application
specific variations.

Additionally, this chapter has shown that having a loosely defined definition of
community structure is often a better choice compared to more restrictive methods
that attempt to discover very specific structural formations in networks. The ability
of a method and definition to produce quality communities across a wide array
of network types is quite important. The axioms laid out in this text provide a
framework for such methods to be proposed within. We have also shown that in
some networks, the best set of communities will only be found via some additional
parameter tuning, particularly those parameters that relate to the size of the groups
discovered.

Previous attempts at developing algorithms for the detection of overlapping com-
munities have been primarily intuitive and were developed without first examining
to what degree overlap occurs in naturally occurring networks. A large amount of
justified overlap indicates that the added complexity of new methods is essential to
capturing all relationships expressed in the data. As a test network, we examined a
social network composed of communications in a popular blogging service.

The overlap between groups must satisfy certain criteria to be considered
significant. First, the inclusion of the common region in either group should enhance
the quality of the groups by some metric. In addition, the groups themselves should
be verifiable as significant through the use of a set of relevant user traits. Finally,
the similarity between components of both groups involved in the overlap must be
such that the intersection is more similar with the remainder of each group than the
remainder of the groups are with each other. If each of these criteria is satisfied,
placing the members of the group in some partitioning will not capture the subtle
associations present in the data.

6.7 Future Directions

The use of overlapping community structure has significant potential to aid in the
comprehension of underlying processes in an increasingly interconnected world.
Intuition and the empirical observations contained in this chapter suggest that the
associations contained within such communities capture essential and meaningful
relationships which are implicit in the data. The field is far from mature, and various
questions have arisen throughout research which remain open problems.

Community detection algorithms have tended to focus on static networks.
However, real world data has the potential to be quite dynamic. As a result, new
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methods will need to be proposed to handle network ties with a temporal component.
One simple extension to the work described in this text would be a sociologically
grounded edge weight function. Such a function would take the age of a network
association into account and decrease edge weight accordingly. The introduction
of edge decay creates a potentially interesting area of study involving repetative
reoptimization of sets over time.

An additional open area is the identification of additional methods of validating
and quantifying the correctness of community detection methods. Recent work has
introduced new methods to compare sets of overlapping sets [16], however, more
fundamental analysis techniques should be used for comparison. Additional vali-
dation techniques such as computing feature similarity of identified groups require
data sets with additional, frequently self-reported, information. The problems which
exist with self-reported information can clearly be seen in the lack of networks with
a well defined, overlapping “ground truth.” Often, overlapping communities tend to
be more subtle than their disjoint counterparts. As such, it is difficult for individuals
to list each of the groups with which they associate, as such groups may be ill defined
in the minds of their members.

Another open problem is identifying a method or measure to determine the
significance of a community among the set of those which have been discovered.
As previously stated, using the minimal axioms described above, there are a vast
number of sets which can be considered groups. In order for this type of analysis
to be useful as a feature to some other mechanism, it is likely that the “best”
groups with regard to application specific metrics will prove to be more useful than
others. Significance measures have previously been explored somewhat with regards
to disjoint community detection [14], but with the exception of a brief comment
in [16], this discussion has largely been absent when examining the detection of
overlapping communities.
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Chapter 7
Modularity Maximization and Tree Clustering:
Novel Ways to Determine Effective
Geographic Borders

D. Grady, R. Brune, C. Thiemann, F. Theis, and D. Brockmann

Abstract Territorial subdivisions and geographic borders are essential for
understanding phenomena in sociology, political science, history, and economics.
They influence the interregional flow of information and cross-border trade
and affect the diffusion of innovation and technology. However, most existing
administrative borders were determined by a variety of historic and political
circumstances along with some degree of arbitrariness. Societies have changed
drastically, and it is doubtful that currently existing borders reflect the most logical
divisions. Fortunately, at this point in history we are in a position to actually measure
some aspects of the geographic structure of society through human mobility. Large-
scale transportation systems such as trains and airlines provide data about the
number of people traveling between geographic locations, and many promising
human mobility proxies are being discovered, such as cell phones, bank notes,
and various online social networks. In this chapter we apply two optimization
techniques to a human mobility proxy (bank note circulation) to investigate the
effective geographic borders that emerge from a direct analysis of human mobility.
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7.1 Introduction

The geographic compartmentalization of maps into coherent territorial units is not
only essential for the management and distribution of administrative responsibilities
and the allocation of public resources. Territorial subdivisions also serve as an
important frame of reference for understanding a variety of phenomena related to
human activity. Existing borders frequently correlate with cultural and linguistic
boundaries or topographical features [17, 34], they represent essential factors in
trade and technology transfer [19, 29], and they indirectly shape the evolution
of human-mediated dynamic processes such as the spread of emergent infectious
diseases [11, 12, 21, 32].

The majority of existing administrative and political borders, for example in
the United States and Europe, evolved over centuries and typically stabilized
many decades ago, during a time when human interactions and mobility were
predominantly local and the conceptual separation of spatially extended human pop-
ulations into a hierarchy of geographically coherent subdivisions was meaningful
and plausible.

However, modern human communication and mobility has undergone massive
structural changes in the past few decades [30, 34]. Efficient communication
networks, large-scale and widespread social networks, and more affordable long-
distance travel generated highly complex connectivity patterns among individuals in
large-scale human populations [3,9]. Although geographic proximity still dominates
human activities, increasing interactions over long distances [7, 25, 38] and across
cultural and political borders amplify the small-world effect [31, 41] and decrease
the relative importance of local interactions.

Human mobility networks epitomize the complexity of multi-scale connectivity
in human populations (see Fig. 7.1). More than 17 million passengers travel each
week across long distances on the United States air transportation network alone.
However, including all means of transportation, 80% of all traffic occurs across
distances less than 50 km [7, 8]. The coexistence of dominant short-range and
significant long-range interactions handicaps efforts to define and assess the location
and structure of effective borders that are implicitly encoded in human activities
across distance. The paradigm of spatially coherent communities may no longer be
plausible, and it is unclear what structures emerge from the interplay of interactions
and activities across spatial scales [7, 8, 25, 40]. This difficulty is schematically
illustrated in Fig. 7.2. Depending on the ratio of local versus long-range traffic,
one of two structurally different divisions of subpopulations is plausible. If short-
range traffic outweighs long-range traffic, local, spatially coherent subdivisions
are meaningful. Conversely, if long-range traffic dominates, subdividing into a
single, spatially de-coherent urban community and disconnected suburban modules
is appropriate and effective geographic borders are difficult to define in this case.

Although previous studies identified community structures in long-range mobil-
ity networks based on topological connectivity [28,36], this example illustrates that
the traffic intensity resulting from the interplay of mobility on all spatial scales must
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Fig. 7.1 The Where’s George? network. Multi-scale human mobility is characterized by dominant
short-range and significant long-range connectivity patterns. The illustrated network represents a
proxy for human mobility, the flux of bank notes between 3,109 counties in the lower 48 United
States. Each link is represented by a line, the color scale encodes the strength of a connection from
small (dark red) to large (bright yellow) values of wi j spanning four orders of magnitude

AB BA

Fig. 7.2 A simplified illustration of generic traffic patterns between and within metropolitan
mobility hubs (A and B), with two types of connections wL and wD, local traffic connecting
individual hubs to smaller nodes in their local environment (blue) and long-distance links
connecting the hubs (red). Depending on the ratio of local and long-range flux magnitude,
two qualitatively different modularizations are plausible. If wL � wD, two spatially compact
communities are meaningful (left), whereas if wL � wD, the metropolitan centers belong to one
geographically delocalized module (orange), effectively detached from their local environment,
yielding three communities altogether (right)

be taken into account. Obtaining comprehensive, complete, and precise datasets on
human mobility covering many spatial scales is a difficult task, and recent studies
have followed a promising alternative strategy based on the analysis of proxies that
permit indirect measurement of human mobility patterns [7, 15, 16, 25, 30, 38].

We focus on one human mobility proxy, a dataset collected at the website www.
wheresgeorge.com. This website hosts a bill-tracking game called Where’s George?
in which participants can tag an individual US banknote of any denomination by
logging in to the website and entering the bill’s serial number along with their
location. Subsequent participants who receive the bill may do the same, thereby

www.wheresgeorge.com
www.wheresgeorge.com
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recording a part of the spatial trajectory the bill follows during its lifetime. We
use this information to construct a network whose nodes represent counties in the
continental United States and whose edges encode the number of bills exchanged
between pairs of counties; details of this and a discussion of some statistics of the
data are given in Sect. 7.3.

Both of our analyses rest on the idea of finding community partitions of the
network, that is, dividing all of the nodes into a set of mutually disjoint groups
or communities. A community of nodes can be defined in many different ways, but
all definitions try to capture some aspect of the intuitive idea of a community: a set
of nodes that belong together, or are more similar to one another than they are to the
rest of the population.

Our first analysis in Sect. 7.2 uses a modularity maximization technique to
identify community partitions. Modularity is a method of scoring any given
community partition in a network. A partition with a high modularity score has
many more intra-group links, and fewer inter-group links, than expected by random
chance. Our optimization algorithm searches for high-modularity partitions through
a stochastic, simulated annealing process.

We go on to determine community partitions in Sect. 7.6 by searching for nodes
with similar topological features, namely their shortest-path tree. Each node is
the root of a shortest-path tree that comprises a minimal set of the strongest
links connecting that node to the rest of the network. By looking for topological
similarities between shortest-path trees, we identify groups of nodes that have
similar patterns of connectivity.

With both methods, once a community partition is identified, a corresponding
geographic border structure is produced simply by drawing borders between
counties that do not belong to the same community, and in Sect. 7.5 we discuss how
a superposition of border structures alleviates some of the long-standing weaknesses
of modularity maximization. The fact that communities tend to be spatially compact
is one of the most surprising findings of this research, and we conclude in Sect. 7.7
by developing a method for comparing border structures and examining the degree
to which effective mobility borders line up with various existing borders, such as
state boundary lines, census areas, and economic areas.

7.2 Network Modularity

This section introduces the modularity measure and describes the simulated anneal-
ing algorithm we use for finding maximal-modularity community partitions.

We assume here that W is a square, symmetric matrix that represents a symmet-
ric, weighted network; the elements wi j are nonnegative and measure the strength of
the connection between nodes i and j. Based on the idea that two nodes i and j are
effectively proximal if wi j is large, we search for a community partition of the nodes
that has a high value of modularity [13, 24, 35]. This standard network-theoretic
measure of community structure prefers partitions such that the intra-connectivity
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of the modules in the partition is high and inter-connectivity between them is low as
compared to a random null model. Given a partition P of the nodes into k modules
Mn, the modularity Q(P) is defined as

Q = ∑
n

ΔFn (7.1)

in which ΔFn = Fn−F0
n is the difference between Fn, the fraction of total mobility

within the module Mn, and the expected fraction F0
n of a random network with an

identical weight distribution p(w). Q cannot exceed unity; high values indicate that
a partition successfully groups nodes into modules, whereas random partitions yield
Q≈ 0. Maximizing Q in large networks is an NP-hard problem [6], but a variety of
algorithms have been developed to systematically explore and sample the space of
possible divisions in order to identify high-modularity partitions [13, 22].

7.2.1 Finding Optimal Partitions

As discussed in more detail in Sect. 7.4, our method relies on finding several differ-
ent high-modularity partitions, which restricts the range of applicable algorithms.
For example, the deterministic divisive algorithms described by Newman and
Girvan [35] cannot find several different local maxima of the modularity function.
In contrast, Monte Carlo algorithms return different partitions with probabilities that
monotonically increase with the corresponding modularity values, one of which
is the simulated annealing algorithm described by Guimerà and Amaral [27].
Additionally, this algorithm has been found to perform the best in terms of correctly
identifying modules in networks with artificial community structure in a survey by
Danon et al. [13], which lead us to choose this algorithm for our work.

The partition vector P is initialized such that each of the N nodes is in its own
module, Pi = i. Alternatively, one could randomly assign each node to one of a
few modules to form the initial partition. We found, however, that in this case the
algorithm will split these few large modules into a large number of very small
modules before slowly merging them into the final result. Since splits of large
modules, involving a recursive simulated annealing run, are computationally very
expensive, we avoid them by starting with a partition of single-node modules.

A small modification of the partition is then made (see below) to obtain a new
partition P′ and its effect on the modularity value, ΔQ = Q(P′)−Q(P). If ΔQ > 0,
the new partition is better than the old one and we replace P = P′. If ΔQ < 0, the
partition is only accepted with probability pT (ΔQ) = exp(ΔQ/T ), where T is a
“temperature” that controls the typical penalty on Q we are willing to accept with
the new partition P′.

This procedure is repeated a number of times, initially with a high T =T0 accept-
ing modifications with large negative impact on modularity and therefore allowing
to sample multiple local maxima. After O(N2) modifications, the temperature is
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lowered by a cooling factor c. When T is small enough, worse partitions are not
accepted anymore and the partition P has “annealed” into a local maxima of the
modularity landscape Q(·).

During each temperature step, we intersperse f N2 local with f N global mod-
ifications of the partitions, where f is a tuning parameter. A local modification
is a switch of one node to another, randomly selected, module, while a global
modification can be a merge of two or a split of one randomly selected module.
Finding a suitable split of a module that is not immediately rejected is done by
recursively running a simplified version of the simulated annealing algorithm on it:
the module in question is extracted and treated as an independent network, initially
randomly partitioned into two modules. Only local modifications are allowed while
annealing this bipartition into a local modularity maximum. Afterwards, the split
module is replaced into the full network and evaluated against the modularity value
of the full partition.

We observed that the global structure of the partition is found quickly by the
algorithm and mostly only local modifications are accepted at low temperatures.
Since the split operations are computationally intensive, we therefore track the
number of rejected split modifications in each temperature step and reduce the
probability of future trials if that number is high.

To generate the large ensemble of partitions discussed in Sect. 7.5, we used T0 =
2.5 · 10−4 as initial temperature, c = 0.75 as the cooling factor, and f = 0.05. We
abort the procedure and accept the partition as “optimal” if no better partition is
found in three consecutive temperature steps.

The run time of this stochastic algorithm depends in a complex way on both the
size and the structure of the the input, and therefore the time complexity does not
scale with a simple function of the input size. However, we found the algorithm to
perform very well and in acceptable runtime (60–90 minutes on a 2.8 GHz processor
for most runs) with the configuration given above, although these parameters are
less conservative than those proposed by Guimerà et al. [27]. The large ensemble
of resulting partitions (Fig. 7.15) has a tight distribution of modularity values,
indicating the algorithm tends to converge onto a stable maximum.

7.3 A Proxy for Multiscale Human Mobility Networks

Here, we construct a proxy network for human mobility from the geographic
circulation of banknotes in the United States. Movement data was collected using
the online bill-tracking game at www.wheresgeorge.com. Individuals participating
in this game can mark individual bills and return them to circulation; other
individuals who randomly receive bills can report this find online along with their
current location (zip code). Our analysis is based on the intuitive notion that the
coupling strength between two locations i and j increases with wH

i j , the number of
individuals that travel between a pair of locations per unit time, and furthermore
that the flux of individuals in turn is proportional to the flux of bank notes,

www.wheresgeorge.com
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Table 7.1 Denominations in the WG dataset

Denomination $1 $2 $5 $10 $20 $50 $100

Number of bills 9,931,261 36,639 1,069,427 401,101 461,076 24,209 26,526
Fraction [%] 83.11 0.31 8.95 3.36 3.86 0.20 0.22

Table 7.2 Absolute number and relative fraction of bills
based on Federal Reserve Bank

FRB Code Location Count Fraction [%]

A Boston 799,537 6.69
B New York City 1,325,942 11.10
C Philadelphia 822,340 6.88
D Cleveland 661,278 5.53
E Richmond 948,516 7.94
F Atlanta 1,565,732 13.10
G Chicago 1,207,448 10.10
H St. Louis 472,930 3.96
I Minneapolis 360,194 3.01
J Kansas City 713,393 5.97
K Dallas 869,866 7.28
L San Francisco 2,203,063 18.44

denoted by wi j. Evidence for the validity of this assumption has been obtained
previously [7, 8, 25] and we provide further evidence below.

As of January 15th, 2010 a total of 187,925,059 individual bills are being tracked
at the website www.wheresgeorge.com. Approximately 11.24% of those have had
“hits”, that is they were reported a second time at the site after initial entry. The
current analysis is based on a set of N0 = 11,950,239 bills that were reported at
least a second time. For each bill n we have a sequence of pairs of data

Bn = {Zn,i,Tn,i} i = 0, . . . ,Ln n = 1, . . . ,N0

of zip codes Zn,i and times Tn,i at which the bill was reported. Each Bn reflects a
geographic trajectory of a bill with Ln individual legs. In total, we have 14,612,391
single legs in our database. Note that the majority (81.78%) of trajectories are
single-legged reflecting a reporting probability of ≈20% during the lifetime of a
bill.

The set of Bn represents the core dataset of our analysis. For each bill we have
additional information:

1. Denomination: $1, $2, $5, $10, $20, $50, or $100. The fraction of each
denomination is depicted in Table 7.1.

2. The Federal Reserve Bank code, A through L, corresponding to one of 12 of the
United States Federal Reserve Banks that issued the bill. The fraction of bills as
a function of FRB origin is provided in Table 7.2.

www.wheresgeorge.com
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We restrict the analysis to the lower 48 states and the District of Columbia (thus
excluding Hawaii and Alaska) and consider only legs with origin and destination
locations in these states, reducing the original dataset to 11,759,420 bills (98.40%
of the original data) and 14,376,232 trajectory legs (98.38%).

The spatial resolution of the dataset is given by 41,106 zip codes, with mean
linear extent of 14 km. The mean linear extent of the lower 48 states is 2,842 km
defining the bounds of the system. For each zip code Zi we use centroid information
to associate with each report a longitude/latitude location x = (Θ ,φ), such that each
trajectory n corresponds to a sequence of geographic locations Xi with i = 1, . . . ,Ln:

tn : {Xn,0,ΔTn,1,Xn,1, . . . ,ΔTn,Ln ,Xn,Ln} with n = 1, . . . ,N0, (7.2)

where Xn,0 is the initial entry location, and ΔTn,i = Tn,i−Tn,i−1 are inter-report times.

7.3.1 Geographical Distributions

Based on these trajectories we define the density of initial entries as

pIE(x) =
1
N

N

∑
n=1

δ (x−Xn,0), (7.3)

and the density of reports as

pR(x) =
1
N

N

∑
n=1

1
Ln

Ln

∑
i=1

δ (x−Xn,i), (7.4)

where δ is the Dirac delta function, equal to 1 when its argument is 0 and equal to
0 otherwise.

In order to assess the spatial distribution of reports and initial entries and to
quantify the correlation with the population density we compute the number of
reports and initial entries for each of the M = 3,109 counties in the lower 48 states.
Defining for each county k a characteristic function

χk(x) =

{
1 if x ∈ Pk

0 otherwise
(7.5)

where Pk is the polygon defining the county’s interior, the number of reports and
initial entries in county k are given by

mR(k) = 〈χk〉R =
∫

χk(x) pR(x)dx and mIE(k) = 〈χk〉IE =
∫

χk(x) pIE(x)dx,

respectively. Figure 7.3 compares the distribution of reports mR(k), initial entries
mIE(k) and the population P(k) of the 3,109 counties. As all three quantities are
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Fig. 7.3 The frequencies of reports (top) and initial entries (middle) correlate with the county
population (bottom) in the lower 48 states
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positive and vary over many orders of magnitude, the maps depict log10(mR),
log10(mIE) and log10(P). Qualitatively, reports and initial entries correlate strongly
with the population density. Computing the correlation coefficient of the logarithmic
quantities yields c(R,P) = 0.933 and c(IE,P) = 0.819. Despite the expected in-
crease of mR(k) and mIE(k) with P(k), only the report count increases approximately
linearly with population size, whereas initial entries show a deviation for small
populations. We believe that this deviation is a consequence of the social difference
between the subpopulation of “Georgers” that are responsible for initiating bills and
entering them into the system, “actively” playing the game, and the larger group
of people that randomly receive a bill and report it, “passively” participating. This
hypothesis could explain that areas with higher population densities contain a larger
proportion of internet-savvy communities that are inclined to become Georgers and
initiate bills. In order to exclude a potential bias caused by this effect we exclude all
the legs in (7.6) that contain an initial entry as the origin, i.e. we only investigate the
reduced set

t2,n : {Xn,1,ΔTn,2,Xn,2, . . . ,ΔTn,Ln ,Xn,Ln} with n = 1, . . . ,N0, (7.6)

that excludes the first legs of all tn. Excluding the first leg reduces the number of
bills to 4,743,330. However, the key results, for example the border structures
discussed in Sect. 7.5, are robust against the inclusion of initial entries. Computing
mobility networks based on either set, tn or t2,n does not change the observed pattern
significantly.

7.3.2 Distance and Time: Spatially Averaged Quantities

From t2,n we extract pairs of spatio-temporal leg distances {ds(Xn,i,Xn,i−1),ΔTn,i},
where ds(·, ·) denotes the distance on a sphere (shorter segment of the great circle
that passes through both points). This type of dataset was first investigated in 2006
based on a much smaller core dataset of bill trajectories [7]. In particular, the
combined probability density (pdf)

p(r, t) = 〈δ (r− ds(Xn,i,Xn,i−1))δ (t−ΔTn,i)〉 , (7.7)

was estimated as well as marginal pdfs p(r) and p(t). The central finding of the
2006 study was that p(r)∼ r−(1+β ) and that the time evolution of the density (7.7)
can be described by a bi-fractional diffusion equation. Here, we reproduce some
of the properties before we construct the mobility network used in the main text.
Figure 7.4 shows the short time pdf of a bill traversing a distance r in a time t < τ
where we chose τ = 4 days. Using maximum likelihood we find this function can
be described by a power-law

p(r)∼ 1

r1+β with β = 0.7056± 0.0659.



7 Novel Ways to Determine Effective Geographic Borders 179

104103102

102

101

100

10−2

10−2

10−3

10−4

10−5

10−6

10−7

Distance r in km

p(
r)

r

P
(R

>
r)

Fig. 7.4 The estimated probability p(r|t < τ) of a bill traversing a distance r in time t < τ where
τ = 4 days. In red a maximum likelihood fit of the the function p(r) ∼ r−(1+β ) with β = 0.7056

This power law describes the dispersal characteristics on a population-averaged
level. The short-time distance pdf represents a dispersal kernel and for small times
t approximates the instantaneous rate of traversing a distance r.

Complementary to this, temporal aspects of the process can be revealed by
computing the pdf for the time t between reporting events given that these occur
within a small radius r > r0. Figure 7.5 depicts p(t) for all legs with r < 10 km and
a minimal inter-report time of tmin = 1 day. The inter-report times are described well
by a power law moderated by an exponential factor

p(t)∼ t−α e−t/T0 with T0 = 248± 27, α = 0.99± 0.05. (7.8)

The observed power-law decay ∼ t−1 for times t � T0 is intriguing. These type of
decays have been observed in a multitude of contexts involving human activity, for
instance the time between consecutive phone calls [25], emails, [5] and the number
of words between two identical words in texts [1]. A consequence of this law is
bursting behavior, i.e. given an event occurred at time t0 the probability rate that
an event occurs immediately after the first is higher than expected from ordinary
Poisson statistics. This behavior is best illustrated by the so-called hazard function
h(t) that quantifies the instantaneous probability rate of an event happening at t
given that the last event occurred at t = 0. If we let

P(τ > t) =
∫ ∞

t
p(s)ds,
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Fig. 7.5 Inter-report time statistics. (Left) The function p(t|r < r0) for r0 = 10 km. The observed
function can be accounted for by an initial algebraic decay t−1 moderated by an exponential
function for large arguments. The red dashed curved is a fit obtained from maximum-likelihood
estimation. (Right) The hazard function h(t) that represents the instantaneous rate of an event at
time t provided that an event occurred at t = 0. The dashed lines represent reporting rates of once
per 2 weeks (top), once per month (middle) and once per T0 = 248 days (bottom). (Bottom) p(t)
for very short times. A zoom-in resolves daily oscillations modulated by the decay observed on the
left. These oscillations indicate that users tend to report to the website at the same time of the day
with the highest probability

be the cumulative probability that the second event occurs at a time τ later than t,
the hazard function is defined by

P(τ > t) = e−
∫ t

0 h(s)ds.

For a Poisson process with rate γ we have

h(t) = γ ⇒ P(τ > t) = e−γt .

The hazard function can be computed according to

h(t) =− d
dt

log [P(τ > t)] =
p(t)

P(τ > t)
.
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Figure 7.5 depicts the function h(t) for inter-report times in the WG data. For small
times (t < 1 week) the probability rate for a report is of the order of one report per
two weeks, which is also the expected time between two reports in this time window.
For larger times (t > 100 days) the constant value of 1/T0 is approached, equivalent
to one report in 3/4 of a year. Possible explanations of the bursting behavior and the
initial algebraic decay in p(t) are a strong behavioral heterogeneity of players that
participate in the game or an effective queueing in the system, i.e. bills may enter
shops and initially have a comparatively high likelihood of leaving, being “on top
of the stack.” As time passes these bills may “get stuck” and equilibrate to the long
time scale present in the system.

7.3.3 Definition of the Mobility Network

From the trajectories defined by (7.6) and the characteristic functions of the
counties (7.5) we construct a matrix w̃i j that counts the number of legs which
originate at county i and terminate at j,

w̃i j =
N

∑
n=1

Ln

∑
k=2

χi
(
Xn,k−1

)
χ j

(
Xn,k

)
Θ(T −ΔTn,k),

where Θ(·) is the Heaviside step-function. In order to exclude potential biases
induced by initial entries we ignore the first leg of all trajectories (k = 2 in the
above sum). This choice is motivated by the fact that the community of individuals
that initiate bills might be less representative than those that find bills and report
them. Indications that this might have an effect are supported by the different
scaling behavior of initial entry frequencies with population as compared to report
frequencies with population. The factor Θ(T −ΔTn,k) excludes legs that have an
inter-event time larger than time T . The matrix w̃i j need not to be symmetric, as the
flux of bills from i→ j need not equal those that travel j→ i. However, as Fig. 7.6
indicates the flux matrix is statistically symmetric. Plotting w̃i j against w̃ ji indicates
a clear mean linear relationship. Since we base our analysis on the flux of money
between two given counties we symmetrize the network and use wi j in our analysis
defined by

wi j =
1
2
(w̃i j + w̃ ji) ,

which of course also depends on the time threshold parameter T . Choosing the
optimal value for T is a trade-off between trying to estimate instantaneous flux,
i.e. choosing T as small as possible, and using as many legs as possible to decrease
fluctuations, i.e. choosing large values for T . Choosing a value for T < 30 days
for instance rules out bills that visit a Federal Reserve Bank in between reports
in counties i and j, as bills that enter FRBs do not return to circulation until
approximately 3–4 weeks after entering the FRB. To make sure that our results do
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Fig. 7.6 Symmetry of flux
network w̃i j

not significantly change as the parameter T is varied we performed the analysis
for various values of T ranging from a few days to T = 1 year. The computed
border structure does not significantly depend on the value of T . Decreasing T thins
out the network and reduces the overall connectivity, yet the effects are similar to
bootstrapping the network randomly, a process that also does not change our results
and is discussed in Sect. 7.7.1.

7.3.4 Gravity as a Null Model

In addition to the empirical data described above, we also construct a synthetic
mobility network based on the well-known gravity law hypothesis [2,10,42] to serve
as a null model. In gravity models, the interaction strength between a collection of
sub-populations with geographic positions xi, sizes Ni (obtained from census data,1)
and distances di j =

∣∣xi− x j
∣∣ is given by

pi j ∝
Nα

i Nβ
j

di j
1+μ (7.9)

in which α , β , and μ are non-negative parameters.

1http://www.census.gov.

http://www.census.gov
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Fig. 7.7 χ2 goodness-of-fit for different parameters of the gravity law. The minimum is at
(α ,μ) = (0.96,0.3)

To create a model network comparable to our data, we first compute pi j for all
counties i and j in the continental U.S. and normalize them such that ∑i, j pi j = 1. We
then interpret these values as probabilities for a travel event to happen between the
two counties (or, speaking in terms of the original data source, a dollar bill report).
Thus, starting with all-zero link weights wi j, we repeatedly draw a pair of nodes
according to pi j and increase the corresponding wi j by one, until approximately the
same connectivity (number of non-zero wi j) as in the real-data network is reached.

We generated gravity networks for different parameter values and gauged them
against our real data by comparing the distributions of first-order network statistics
to find the best fit to our data. Distributions have been compared by log-binning the
values and computing the χ2 statistic

χ2 =
n

∑
i

(NG
i −NR

i )
2

NR
i

where n is the number of bins and NG
i (NR

i ) is the number of values from the gravity
(real-data) network in bin i.

Our real data is symmetric and node fluxes are proportional to population sizes,
therefore we assume α = β ≈ 1 to narrow down the search volume in parameter
space. We computed χ2 for the distribution of link weights, node fluxes and
geographical distances and used the sum of them, χ2

w+χ2
f +χ2

d , as the goodness-of-
it measure. Figure 7.7 shows this quantity for (α,μ) ∈ [0.8,1.2]× [−0.4,0.9], from
which we concluded that α = β = 0.96 and μ = 0.3 are the best parameter choices.
The resulting network and first-order statistics are shown in Fig. 7.8.
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Similar to the bootstrapping procedure described in Sect. 7.7.1, we tested the ro-
bustness of the community structure of the model network by generating snapshots
of the network at different connectivities and computing an ensemble of 80 high-
modularity partitions for each snapshot. We found that the modularity statistics are
stable around the target connectivity of 0.0765 (Fig. 7.9).

7.4 Degeneracy and Superposition

Given a mobility network constructed from the Where’s George data, we then
apply the optimization algorithm described in Sect. 7.2 to generate community
partitions. Since the optimization process is stochastic, the resulting partition
varies between realizations of the process. Two representative examples of high-
modularity partitions are displayed in Fig. 7.10. Note that, although modularity only
takes into account the structure of the weight matrix W and is explicitly blind to
the geographic locations of nodes, the effective large-scale modules are spatially
compact in every map. Consequently, although long-distance mobility plays an
important role, the massive traffic along short distances generates spatial coherence
of community patches of mean linear extension l = 633± 250 km. Note however
that although each maps exhibits qualitative similarities between detected large-
scale subdivisions and although each of the maps possess a high modularity score,
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Fig. 7.9 Distributions of modularity values for an ensemble of 80 partitions each computed for
snapshots of the model network at different connectivities. The dashed line corresponds to 0.0765,
the connectivity of the real-data mobility network

Fig. 7.10 High-modularity community partitions of the WG mobility network. The stochastic
algorithm produces different partitions when run many times; these are two representative
examples. Modularity values are 0.6808 (left) and 0.6807 (right)

obvious structural differences exist; in fact, even if it were possible to determine a
partition with maximal modularity, any such partition is not in principle unique. It
is thus questionable whether any single effective map can be considered the most
plausible partition.

Theoretical concerns aside, recent work [23] has identified practical issues
with modularity maximization, in particular the so-called resolution limit. We
demonstrate that a superposition of community partitions can alleviate these issues
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Fig. 7.11 Two networks that expose the resolution limit problem with modularity. The shaded
areas indicate an artificial geography for nicer visualization of the boundaries in the next figures.
(Left) A ring of 34 cliques, each of 6 nodes and connected to their neighbors by single links. (Right)
A network of two 20-node cliques and two five-node cliques

with the modularity score, and to this end discuss its known shortcomings in more
detail.

In fact, it is straightforward to construct networks of which several distinct
partitions with equal and maximum modularity value exist. This degeneracy of
modularity was independently found by Good et al. [26] and marked as a drawback
of the modularity measure.

Fortunato and Barthélemy [23] also report on the resolution limit of modularity.
The authors present two artificial, unweighted networks that exhibit an intuitively
very clear community structure, yet partitions exist that do not reflect this structure
but have a higher modularity value than the partition that does. In particular, these
networks are constructed by connecting multiple fully connected graphs (“cliques”)
with single links (Fig. 7.11). It is clear that every clique should be grouped into
one module, but the best partition according to modularity will group multiple
cliques together. This only occurs if the cliques are small (in terms of number of
links) compared to the full network, thus the modularity measure cannot detect
communities below a certain resolution limit.

Our proposed method combines an ensemble of partitions by focusing on the
boundaries of a partition (“Which adjacent nodes are separated into different
modules?”) rather than its volumes (“Which nodes are grouped together?),” and then
computing for each boundary the fraction of partitions in which it exists. Because
we are interested in geographically embedded networks and modules are virtually
always spatially compact in our case, we can restrict ourselves to boundaries that
are also real geographical borders between nodes. However, the idea can be easily
generalized to non-geographical networks, at the expense of convenient straight-
forward visualization. Since all partitions in the ensemble have a high modularity
value, this method highlights similarities and differences in degenerated partitions,
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Fig. 7.12 (Left) The optimal partition in the clique ring groups pairs of cliques together (the same
color is used for multiple modules). (Center) Example of a partition found by the modularity
optimization algorithm. (Right) Superposition reveals boundaries in the clique ring between every
clique. Color codes the fraction of partitions in which the boundary was found. We use T = 2.5 ·
10−4, c = 0.75, and f = 0.5 for this example and the next

yielding a unique “partition” (or to be more precise, a map) of the network and thus
overcoming the degeneracy problem.

In our method, any single partition obviously suffers from this limitation as well.
However, the resolution limit can be alleviated by looking at an ensemble, if enough
small modules exist to create degeneracies. To illustrate this, we applied our method
to the two example networks from Fortunato and Barthélemy [23]. Figure 7.11 (left)
shows a ring of 34 6-cliques, all connected to their neighbors by a single link. The
intuitive partition in which each clique is in its own module has modularity Qreal =
0.9081 while a partition that groups pairs of cliques together has Qopt = 0.9099.
However, two distinct partitions exist that group pairs of cliques. Thus, an ensemble
of optimal partitions will be composed out of those two partitions, yielding a
boundary map in which every boundary between two cliques appears in 50% of
the ensemble partitions. For nicer visualization, we created an artificial geography
for this network and computed partitions and boundaries, shown in Fig. 7.12. Due to
the nature of our algorithm, the resulting partitions contain a few n-tuples of cliques
and single-clique modules that have not been split or merged into perfect clique-
pairs before the termination criterion, and thus the observed boundaries are stronger
than expected.

The second network proposed in Fortunato and Barthélemy is constructed from
two 20-cliques and two 5-cliques (Fig. 7.11 (right)). Here, the two smaller cliques
are merged into one module by the optimal partition (Qopt = 0.5426), although
one would again expect each of them to be in its own module (Qreal = 0.5416).
Our method is not able to capture the intuitive community structure in this case
(Fig. 7.13), because no degeneracy exists (the partitions in which only one of the
small cliques are grouped with the large one, but not the other, are too far from the
optimum to be produced by the algorithm, Qdeg = 0.4959).

But if we extend the network such that four small cliques exist, the partition
which groups all cliques into their own modules is still suboptimal to any partition
that groups together more than one of the small cliques, but degeneracies are created
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Fig. 7.13 Boundaries found in the clique network shown in Fig. 7.11 (right). Our algorithm is not
able to find a boundary between the two small cliques

Fig. 7.14 Modification of the clique network in Fig. 7.11 (right). Because there are multiple high-
modularity partitions that group the smaller cliques into pairs, our method can detect the correct
community structure in this case

and the ensemble of partitions reveals the true community structure in this network
(Fig. 7.14).

In conclusion, our method is able to dissolve both the degeneracy and resolution
limit problems if enough small modules exist to create degeneracies. In fact, we will
observe small “building blocks” in the WG data that are not seen in single partitions
but emerge from the superposition of a partition ensemble.
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7.5 Assessment of Border Structures

Using the algorithm described in Sect. 7.2, we compute an ensemble of 1,000 parti-
tions of the WG mobility network, all exhibiting a high modularity (Q = 0.6744±
0.0026, see also Fig. 7.15 for the distribution of modularity values) and spatially
compact modules, and perform a linear superposition of the set of maps. This
method extracts features that are structural properties of the entire ensemble. The
most prominent emergent feature is a complex network of spatially continuous
geographic borders (Fig. 7.16). These borders are statistically significant topological
features of the underlying multi-scale mobility network. An important aspect of this
method is the ability to not only identify the location of these borders but also to
quantify the frequency with which individual borders appear in the set of partitions,
a measure for the strength of a border.

Investigating this system of effective mobility borders more closely, we see
that although they correlate significantly with territorial state borders (p < 0.001,
see Sect. 7.7) they frequently occur in unexpected locations. For example, they
effectively split some states into independent patches, as with Pennsylvania, where
the strongest border of the map separates the state into regions centered around
Pittsburgh and Philadelphia. Other examples are Missouri, which is split into two
halves, the eastern part dominated by St. Louis (also taking a piece of Illinois) and
the western by Kansas City, and the southern part of Georgia, which is effectively
allocated to Florida. Also of note are the Appalachian mountains. Representing a
real topographical barrier to most means of transportation, this mountain range only
partially coincides with state borders, but the effective mobility border is clearly

Fig. 7.15 Ensemble statistics
of geographic subdivisions
for a set of N = 1,000
partitions. The number of
modules k in each subdivision
is narrowly distributed around
13 (grey bars), and so are the
conditional distributions of
modularity (superimposed
whisker plots). The ensemble
mean is Q = 0.674±0.0026
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Fig. 7.16 Effective borders emerge from linear superposition of all maps in the ensemble (blue
lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border).
Black lines indicate state borders. Although 44% of state borders coincide with effective borders
(left pie chart), approximately 64% of effective borders do not coincide with state borders. These
borders are statistically significant features of the ensemble of high modularity maps, they partially
correlate with administrative borders, topographical features, and frequently split states

correlated with it. Finally, note that effective patches are often centered around large
metropolitan areas that represent hubs in the transportation network, for instance
Atlanta, Minneapolis and Salt Lake City. We find that 44% of the administrative
state borders are also effective boundaries, while 64% of all effective boundaries do
not coincide with state borders.

7.5.1 Comparison to Gravity Models

We also investigate whether the observed pattern of borders can be accounted for by
the prominent class of gravity models [2,10,42], frequently encountered in modeling
spatial disease dynamics [42]. In these phenomenological models, it is assumed that
the interaction strength wi j between a collection of sub-populations is given by (7.9),
and we construct such a model according to the procedure described in Sect. 7.3.4.
Although their validity is still a matter of debate, gravity models are commonly
used if no direct data on mobility is available. The key feature of a gravity model
is that wi j is entirely determined by the spatial distribution of sub-populations.
We, therefore, test whether the observed patterns of borders (Fig. 7.16) are indeed
determined by the existing multi-scale mobility network or rather indirectly by the
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Fig. 7.17 The border structure of the gravity network (red) partially coincides with the borders in
the original data (blue), but not significantly. The overlap is shown in green, for significance tests
see Sect. 7.7

Fig. 7.18 Sample partitions of the gravity network. Although they share qualitative features with
those from the original network (Fig. 7.10), generic partitions of the gravity model network are
structurally different, typically exhibiting fewer modules per partition, in different locations and
with less spatial compactness

underlying spatial distribution of the population in combination with gravity law
coupling. Figure 7.17 illustrates the borders we find in a network that obeys (7.9).

Comparing this model network to the original multi-scale network we see
that their qualitative properties are similar, with strong short-range connections as
well as prominent long-range links. However, maximal modularity maps typically
contain only five subdivisions with a mean modularity of only Q̄ = 0.4791. Because
borders determined for the model system are strongly fluctuating (Fig. 7.18), they
yield much less coherent large-scale patches. Some specific borders, e.g. the
Appalachian rim, are correctly reproduced in the model. The difference between
the borders of the model system and the empirical data is statistically significant
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(see Sect. 7.7), and we conclude that the sharp definition of borders in the original
multi-scale mobility network and the pronounced spatial coherence of the building
blocks are an intrinsic feature of the real multi-scale mobility network and cannot
be generated by a gravity model that has a maximum first-order statistical overlap
with the original mobility network.

7.6 Shortest-Path Tree Clustering

The methods already discussed successfully extract the structure of geographic
borders inherent in multi-scale mobility networks. Bootstrapping the network
indicates that these structures are surprisingly stable in response to perturbations
of the network, but neither the modularity measure nor the stochastic algorithm we
use to discover partitions provide specific information about the substructures in
the network that make these borders so robust. What feature of the network, more
specifically which subset of links if any, generates the observed borders? In order to
address this question and further investigate the structural stability of the observed
patterns, we developed a new and efficient computational technique based on the
concept of shortest-path trees (SPT). Like stochastic modularity maximization,
this technique identifies a structure of borders that encompass spatially coherent
regions (Fig. 7.19), but unlike modularity this structure is unique. More importantly,
it identifies a unique set of connections in the network, a network backbone, that
correlates strongly with the observed borders.

This second method for identifying community partitions, based on topological
features of the analyzed network, has three parts. Given a network with N nodes
containing a single connected component, we first compute a shortest-path tree for
each node in the network. At least three widely-known algorithms are applicable
(Dijkstra, Floyd–Warshall, and Bellman–Ford) and various optimizations are pos-
sible; in addition, if the input is sparse some of these algorithms improve in time
complexity. In the worst case, however, this can be computed in O(N3) time.

Second, we compute a dissimilarity score for each pair of shortest-path trees, and
using the dissimilarity functions described below, this can also be accomplished in
O(N3) time.

Third and last, we apply hierarchical clustering to the table of dissimilarity
scores, which also takes O(N3) time for a naive implementation (because we
compute the smallest element of an at-largest-N-by-N table N times). Therefore
the entire suggested procedure takes O(N3) time.

As mentioned, various optimizations are possible for computing shortest-path
trees and hierarchical clustering, and these algorithms are so widely used that high-
quality, efficient implementations are easily available. In fact, we find that the
second step, computing dissimilarity scores, actually dominates the running time
although it is by far the simplest computation; this is due to the fact that we use
interfaces to pre-compiled, canned routines for steps 1 and 3, while step 2 is a naive
MATLAB script. In practice the entire analysis can be run start to finish in under a
half hour for our network of N = 3,109 nodes on a circa-2008 laptop.
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Fig. 7.19 By comparing the border structure from SPT clustering with the ensemble of significant
links (those that appear in at least half of the shortest-path trees) we identify topological structures
which reveal the core of the network that explains the majority of border locations. This core is
represented by the network in blue consisting of star-shaped modules centered around large cities
(yellow squares)

7.6.1 Computing Shortest-Path Trees

The shortest path from vertex i to vertex j is the series of edges that minimizes the
total effective distance d = ∑1/wi j along the legs of the path [14]. The distance
along an edge for us is the inverse of the edge weight, as a highly-weighted edge
indicates that two vertices are effectively proximal. (There are no edges with an
infinite distance, because we do not define an edge between vertices if there is zero
weight.)

The shortest-path tree Ti rooted at node i is the union of all shortest paths
originating at i and ending at other nodes. We use the MATLAB interface2 to
the Boost Graph Library3 to compute shortest-path trees. To prevent random
fluctuations in our data from overwhelming the signal, we add a weak link between
neighboring counties.

2http://www.stanford.edu/∼dgleich/programs/matlab bgl/.
3http://www.boost.org/doc/libs/1 41 0/libs/graph/doc/index.html.

http://www.stanford.edu/~dgleich/programs/matlab_bgl/
http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/index.html
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7.6.2 Measuring Tree Distance

A shortest-path tree can be easily represented as a vector of vertex labels T =
[tk],k = 1 . . .N, such that tk is the label of the parent of vertex k, with a special
symbol (perhaps 0) used to indicate the root. There are no disconnected nodes in the
mobility network, thus each tree vector represents a single tree and not a forest. This
representation lends itself to straightforward and meaningful comparisons between
two trees.

We define two related measures of the dissimilarity between two trees. The first,
called parent dissimilarity, asks the question, how many of the vertices in TA do
not have the same parent in TB? We denote this by zp(TA,TB), and it is exactly the
general Hamming distance of two symbol sequences, that is, the number of places
where corresponding labels in TA and TB do not match. The second, called overlap
dissimilarity, asks the question, how many edges do the two trees not share? It is
defined as zo(TA,TB) = smax− s(TA,TB). Here, smax is the largest number of edges
two trees could share, which is the number of vertices less one (since the root does
not contribute an edge). s(TA,TB) is the number of edges that TA and TB do share,
and where zp asks essentially the same question considering edges to be directed,
zo considers edges to be undirected. Also note that although we consider only the
topology of trees when measuring their dissimilarity, the topology is determined
by the weight of edges in the original graph and thus the mobility dynamics. For
both measures, possible z values range from 0 (completely identical trees) to N, the
number of nodes in the network.

We compute both measures for each distinct pair of trees in our network and find
that they are highly correlated (the Pearson correlation coefficient of the two sets
is 0.9980). For this reason, and because of the more straightforward interpretation,
we focus exclusively on zp. The parent dissimilarity values in our data range from 2
to 240.

To test the stability of this measure we also added various amounts of noise to the
original weight matrix; for example, adding 1% noise means that we adjusted each
entry by a random number such that its perturbed value is within 1% of its original
value. We then compute the set of shortest-path trees for the perturbed weight
matrix, calculate the tree dissimilarities, and then compute the Pearson correlation
of the original dissimilarities and the perturbed. The results (0.9995 for 0.1% noise,
0.9984 for 1% noise, 0.9937 for 5% noise) indicate the method is robust against
small perturbations, and in addition we do not observe significant changes in the
structure of borders determined by the perturbed matrices.

7.6.3 Hierarchical Clustering and Borders

The measures described above produce a dissimilarity matrix well-suited for use
with hierarchical clustering [20]. This technique iteratively groups data points
together into clusters that are less and less similar; it begins by identifying the
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Table 7.3 Cophenetic correlation coefficients [37] for
various linkage functions using parent dissimilarity of
trees and inverse weight of links

Linkage zp(Ti,Tj) 1/wij

Single 0.6584 0.1883
Average 0.8048 0.3757
Complete 0.7197 0.1400

Fig. 7.20 Dendrograms from hierarchical clustering. (Left) Using the parent dissimilarity matrix
and average linkage. Colors correspond to a particular community partition depicted in Fig. 7.21.
(Right) Using the inverse weight matrix with noise and average linkages. Even inspection by eye
reveals immediately that clustering of the inverse weight matrix produces a poor fit to the data,
pointing to the need for some type of “pre-conditioning,” here provided by SPT dissimilarity

two points with the lowest dissimilarity and grouping them together, then finding
the next-most-similar data point or group, and so on. When it is necessary to
compare the dissimilarity of one point (or group of points) with another group
of points, a linkage function is used. There are several commonly-used linkage
functions; we compute single linkages (comparing the shortest distance between two
groups), average linkages (the average distance between two groups), and complete
linkages (the greatest distance between two groups) and find that the average linkage
produces the best fit to our data (Table 7.3).

The result of the hierarchical clustering algorithm is a linkage structure that can
be represented graphically with a dendrogram (Fig. 7.20). The radial lines in the
dendrogram represent vertices in our network or groups of vertices, and the arcs
represent a link that joins groups together in the hierarchy. The nearer an arc is to
the center of the circle, the greater the dissimilarity between the groups joined by
the arc.

Each arc corresponds to a geographic border between a set of counties, and the
closer the arc is to the center of the circle, the more significant the border. At the
outermost level, the dendrogram necessarily puts a border around each individual
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Fig. 7.21 The geographic partition determined by cutting the dendrogram of Fig. 7.20 at a
height of 95

county, and we threshold at 30% of the height of the tree (corresponding to a
dissimilarity zp = 41.6019) for the analysis of the WG network.

As you can see in Fig. 7.21, the high-level groups identified by this procedure
are spatially coherent, but may be divided into spatially disjoint regions at certain
heights in the dendrogram.

Hierarchical clustering is also sometimes applied directly to the inverse of the
weights, 1/wi j. We have investigated this method as well and find that it has several
shortcomings. First, to apply a hierarchical clustering algorithm requires computing
a dissimilarity for every pair of data points; since many pairs of counties are not
directly connected by a link in our network (wi j is zero), the inverse does not exist
and it is consequently necessary to add some noise to the weight matrix at the
very first step, representing pairs of vertices that are “extremely distant” but not
disconnected. Second, the linkage structures produced from this approach fit the
data poorly (Table 7.3). Last, one can see by visual inspection of the dendrograms
in Fig. 7.20 that this approach does not yield significant information. Comparing
the dendrograms for the zp and 1/w matrix, we see that in the shortest-path tree
approach most of the links that appear higher in the tree (closer to the center) are
linking together two groups that are strongly dissimilar from one another (seen by
comparing the height of the parent link to the heights of the children links). In the
inverse weight method, this is not true: links high in the tree are linking groups
that are quite similar; that is, inverse weight clustering does not identify groups of
strongly dissimilar vertices.
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Fig. 7.22 Comparing borders from modularity maximization (blue) with SPT clustering (red)
reveals a significant overlap (green). The cumulative topological overlap (see Sect. 7.7) is 0.5282
indicating that the SPTD method represents an alternative computational approach to border
extraction

Although the method yields a unique sequence of topological segmentations, the
observed geographic borders exhibit a strong correlation with those determined by
modularity maximization (Fig. 7.22).

7.6.4 Link Significance

The key advantage of this method is that it can systematically extract properties
of the network that match the observed borders. A way to demonstrate this is to
measure the frequency σ at which individual links appear in the ensemble of all
SPTs, which is conceptually related to their link betweenness [35]. Computing
this link significance σ for each connection, we find that the distribution P(σ) of
the network is bimodally peaked (Fig. 7.23). This is a promising feature of P(σ)
as it allows labeling links as either significant or redundant without introducing
an arbitrary threshold which is necessary for more continuously distributed link
centrality measures. Extracting the group of significant links and constructing a
subnetwork from these links only we observe that this subnetwork matches the
computed border structure. By virtue of the fact that the most frequently shared links
between SPTs are local, short-range connections we see that the SPT boundaries
enclose local neighborhoods and that the boundaries fall along lines where SPTs
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Fig. 7.23 The distribution of link significance σ , defined for each link as the number of shortest-
path trees the link appears in, exhibits a strong bimodal distribution. This implies that SPTD can
sort links into important or not, and that σ is approximately a binary variable

do not share common features. Note that effective metropolitan areas around cities
can be detected with greater precision than modularity, although the western US is
detected as effectively a single community.

Finally, we performed statistical analyses that quantify the overlap of the
effective, mobility-induced borders with those provided by census-related systems.
We choose the set of borders separating the states, the borders defined by the districts
of the 12 Federal Reserve Banks, and the borders of Economic Areas [39]. We
discuss this analysis in more detail in Sect. 7.7, but briefly, we find a significant
correlation with economic boundaries (p < 0.001, z-score 8.024 for the modularity
borders and p < 0.001, z-score 13.29 for the SPT borders).

7.7 Significance and Comparison of Border Structures

7.7.1 Bootstrapping the Where’s George Data

In order to test the robustness of our method against random data removal, we
performed the following bootstrapping analysis. Starting with the full dollar bill
dataset, and the resulting network weight matrix W with elements wi j , we randomly
remove single dollar bill reports until the total flux f = ∑i, j wi j is reduced by a
factor γ . Using this method we constructed several networks for 0 ≤ γ ≤ 0.95 and
computed an ensemble of 100 partitions for every value of γ , using the simulated
annealing algorithm described in Sect. 7.2. We find that the modularity value is
unaffected by bootstrapping even if 95% of the total flux is removed, although the
number of modules in each partition rises as the network is thinned out more than
85% (Fig. 7.24). Also, the boundary structure emerging from superposition of all
partitions is very robust under this procedure (Fig. 7.25). At 20% of the original
flux (γ = 0.8) virtually all of the boundaries found in the complete network are still
identified, although the sparsity of the data evokes some singular counties. Even
with only 5% of the flux, when boundaries become more fuzzy, some of the original
structures are still detected.
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Fig. 7.24 Distributions of modularity values and number of modules for an ensemble of 100 par-
titions computed for each value of the bootstrapping parameter γ . The dashed line corresponds to
78.2%, the amount of flux ignored if all links shorter than 400 km would be removed

Fig. 7.25 Linear superposition of 100 partitions for four different values of the bootstrapping
parameter γ , color-coded according to the fraction of partitions they appear in

7.7.2 Measuring Overlap of Two Boundary Networks

In this section, we describe how to compare boundary networks defined on a planar
graph, in our case the county network of the continental US excluding Alaska.

A boundary network b is simply given by assigning a nonnegative number w to
each edge between adjacent counties: If the two counties are not divided by b, then
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w= 0. Otherwise, w > 0 implies that the border shared between the two counties has
the strength w. In Sect. 7.4, we described how to generate such a boundary network
by superposition of many partitions of the Where’s George money travel network.
We denote this boundary network by the modularity boundaries bM.

We want to quantify how much information the modularity boundaries bM shares
with e.g. a state network, a random network, or a boundary network generated with
another method.

For this we essentially need to determine the cross-correlation between two
boundary networks b and b′. However, cross-correlation itself is not well-suited
for dealing with the non-negativity of the edge weightings, so we calculate a non-
centered version of it. The absolute cross-correlation of the two boundary networks
b and b′ is then given by the normalized scalar product of their edge weightings,
i.e. by

a(b,b′) :=
(1/|E|)∑e∈E b(e)b′(e)√

(1/|E|)∑e∈E b(e)2
√
(1/|E|)∑e∈E b′(e)2

,

where E denotes the set of edges connecting adjacent counties. This quantity lies
between 0 and 1 and equals 1 if and only if the two boundaries are identical up to
scaling.

Apart from the upper bound, this quantity however is difficult to judge. In
particular, we cannot compare right away two cross-correlations between different
networks since a(·, ·) might depend on the number of clusters and inhomogeneity of
weights etc. We avoid finding a direct interpretation of the absolute cross-correlation
by instead considering deviation of observed values against cross-correlations with
a null model.

Such null models are used to tell random occurrences of structures from true
information. One typically wants to keep some statistics of the network fixed while
at the same time randomly sampling from its representational class. This results
in the notion of random graphs with certain additional properties such as Erdös–
Rényi [18] or Barabási–Albert [4]. The key idea is to generate a random network
preserving planarity and possible additional information by using the original
structure and iteratively changing it by a random local modification. For instance
for unweighted networks, a random graph can be generated by “rewiring”: two
distinct edges and two different vertices contained in either of the two are randomly
selected and then swapped. Clearly this operation keeps both degree distributions
fixed. After a certain number of iterations, the thus-generated Markov chain
produces independent samples of the underlying random graph with given degree
distributions [33]. This concept has been generalized to weighted graphs [43]; in
this case, it is debatable whether to swap the whole weighted edge or to split up the
weight.

In our case, we search for a randomization of a boundary network i.e. of a planar,
weighted graph. Rewiring as above is not possible since it would destroy planarity.
Instead, we propose to locally modify the graph at a random county: select a subpath
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Fig. 7.26 Local modification of a planar graph. We select the bottom left county to modify. The
selected path to modify is shown in bold in the left figure. Its minimal weight is 1. This is subtracted
in the right hand figure, where the complementary path is shown

of its boundary and flip it to its complement. In the case of non-trivial weights, we
reassign a random number between 0 and the minimal edge weight on the subpath.
We have illustrated this procedure on an example in Fig. 7.26.

This procedure is now repeated multiple times until sufficiently de-correlated
samples from the original network are produced. In practice, it is common to choose
iterations in the range of the number of edges in the network or more.

7.7.3 Randomization of the Mean Partition Boundary
of the Where’s George Network

In order to test for significances of calculated similarities, we build a random model
of the mean partition boundary by generating 1,000 random networks using the
above algorithm with >15,000 successful iterations for each random network. The
corresponding maps for the first 900 iterations are shown in Fig. 7.27. Clearly, the
original structure in the boundary network is increasingly diluted, and after >10,000
iterations becomes stably random.

This can be seen by calculating the absolute cross-correlation a(bM,bR) of the
modularity boundary network bM with the random networks bR, when increasing
the number of iterations, see Fig. 7.28. We observe convergence to roughly 0.5 after
about 10,000 steps. This lies well in the range of random correlation with a mean of
0.49 and a standard deviation of 0.028, see histogram in Fig. 7.29(a). This implies
that the randomization procedure converges to a set of random boundary networks,
which can now be used to put calculated autocorrelations into perspective against
this null model.
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Fig. 7.27 Randomization of the modularity boundary network bM. The original network and the
first 900 iterations are shown

7.7.4 Significances when Comparing Boundary Networks
with the Null Model

We describe and quantify overlap of the estimated modularity boundaries bM with
other political or social boundaries. As described before, we can quantify overlap
by determining the absolute cross-correlation a(b,bM). In order to determine inter-
pretable numbers, we compare this value to correlations with random boundaries bR

from a null model.
We now determine significance of coincidence of the modularity boundary

network bM and the SPT boundary network bS with:

• Modularity boundaries bM

• State boundaries
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Fig. 7.28 Absolute cross-correlation of the randomized network after the given number of
iterations with the modularity boundary network bM
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Fig. 7.29 Absolute cross-correlation of state and county boundaries when compared with a null
model based on the modularity boundary network bM
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Table 7.4 Comparing boundary overlaps for various boundary networks with the modularity
boundaries bM and the corresponding null model bR using absolute cross-correlation a

Boundary network a(·,bM) a(·,bR) p-value z-score

Modularity boundaries 1.000 0.495±0.028 <10−3 18.15
SPT communities 0.552 0.385±0.024 <10−3 7.03
State boundaries 0.439 0.272±0.018 <10−3 9.46
County boundaries 0.398 0.419±0.023 0.84 0.90
Gravity boundaries 0.260 0.253±0.019 0.35 0.40
Large-range network boundaries 0.198 0.181±0.017 0.14 1.02
Federal reserve district boundaries 0.377 0.227±0.019 <10−3 7.91
Economic area boundaries 0.452 0.307±0.018 <10−3 8.024

• County boundaries (to test for sensitivity of the method against number of
communities)

• Boundaries resulting from the SPT algorithm bS

• Boundaries determined on the gravity model
• Boundaries determined on long-range distances only
• Federal reserve district boundaries (FRB)
• Economic area boundaries (http://www.bea.gov)

The significance is calculated by replacing bM and bS, respectively, by elements
from the corresponding null model.

For illustration we show two histograms and actual values for state and county
boundaries in Fig. 7.29. Clearly, the random cross-correlations are quite different,
which means that we have to interpret the actual values of 0.439 and 0.398 differ-
ently as well. Indeed it turns out that the state value is far from the mean random
cross-correlation 0.272± 0.018, whereas the county one is not (0.419± 0.023).
Indeed, the empirical p-values, determined as the fraction of random correlations
above the observed true one, is 0 in the former and 0.84 in the latter case.

In order to compare cases with large deviation from the distribution, we
determine the z-score that is the distance of the absolute cross-correlation from the
mean of the null model normalized by the standard deviation:

z(b) :=
a(b,bM)−E(a(b,bR))

std(a(b,bR))
,

where E denotes mean and std standard deviation. In the state case, this z-score is
very high, 9.46, which means that the observed correlation is more than 9 standard
deviations away from the random mean. In contrast the county z-score is 0.90,
which means that the observation is within one standard deviation and hence not
significant.

We summarize the calculated cross-correlations in Tables 7.4 and 7.5 for bM

and bS.

http://www.bea.gov
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Table 7.5 Comparing boundary overlaps for various boundary networks with the SPT-based
boundary bS and the corresponding null model bR using absolute cross-correlation a

Boundary network a(·,bS) a(·,bR) p-value z-score

Modularity boundaries 0.552 0.251±0.013 <10−3 22.55
SPT communities 1.000 0.367±0.0164 <10−3 40.63
State boundaries 0.358 0.220±0.0138 <10−3 10.99
County boundaries 0.569 0.562±0.016 0.36 0.44
Gravity boundaries 0.305 0.260±0.016 0.002 2.73
Large-range network boundaries 0.257 0.199±0.015 <10−3 3.94
Federal reserve district boundaries 0.307 0.159±0.013 <10−3 11.79
Economic area boundaries 0.492 0.318±0.013 <10−3 13.29

7.7.5 Discussion

For the state and the SPT boundaries we observe a strong deviation from the null
model when comparing against the modularity boundaries. So we can conclude that
both state boundaries and SPT boundaries are more similar to bM than expected by
chance with a p-value <10−3.

This is not the case for the gravity model, the county boundaries and the long-
range model. In these cases, the cross-correlation with bM is not larger than with a
random model (p-value ≈ 0.44, ≈ 0.84 and ≈ 0.14). This means that they do not
significantly coincide with bM.

The absolute cross-correlation of the FRB boundaries with bM is a(bF,bM) =
0.38, which is significantly high when compared with the null model, which exhibits
cross-correlations of only a(bF,bR) = 0.23± 0.019. We observe a strong deviation
from the null model and can therefore conclude that the FRB boundaries are more
similar to bM than expected by chance with a p-value <10−3.

The corresponding z-score equals 7.91, which is lower than the one for states
(9.46). This implies that the modularity boundaries’ overlap with the states is larger
than the one with the FRB boundaries.

We interpret the results on the FRB boundaries when compared with bM as
follows:

• The structure of bM may be (partially) due to political structure i.e. result from
bS or due to additional money transport within FRB districts i.e. correlate with
bF. Since both bS and bF share strong similarities, in each of the two situations,
we would see overlap with both boundaries, so we can only judge strength of
overlap with respect to the other boundary.

• We quantified strength of overlap by deviation from the null model, and the
corresponding z-score was more than 1.5 standard deviations higher for the state
model. This stronger overlap of states with bF therefore favors the first hypothesis
i.e. the situation that political boundaries are a stronger factor for the pattern
observed in bM. In the case of dominance of the second hypothesis, we would
instead expect to still see overlap with state boundaries, but less overlap than
with the FRB ones.
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12. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The modeling of global epidemics:
Stochastic dynamics and predictability. B Math Biol 68(8), 1893–1921 (2006). DOI 10.1007/
s11538-006-9077-9

13. Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identifica-
tion. J Stat Mech-Theory E p. P09008 (2005). DOI 10.1088/1742-5468/2005/09/P09008. URL
http://www.iop.org/EJ/abstract/1742-5468/2005/09/P09008/

14. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1),
269–271 (1959). URL http://www.springerlink.com/index/UU8608U0U27K7256.pdf

15. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science
328(5981), 1029–1031 (2010). DOI 10.1126/science.1186605

16. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile
phone data. P Natl Acad Sci USA 106(36), 15,274–15,278 (2009). DOI 10.1073/pnas.
0900282106. URL http://www.pnas.org/content/106/36/15274

17. Eaton, J., Kortum, S.: Technology, geography, and trade. Econometrica 70(5), 1741–1779
(2002)
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Chapter 8
Emergence and Structure of Cybercommunities

Marija Mitrović and Bosiljka Tadić

Abstract We study topology of bipartite networks representing high-resolution
data of the online communications of users on Blogs and similar Web portals.
User communities occurring in connection with certain popular posts, movies etc.,
are detected by spectral analysis of these networks. Due to indirect nature of
the online interactions between users, further information about the structure of
the communities is inferred by text analysis of the related comments. We employ
the emotion classifier based on machine-learning methods and trained for this type
of data, to determine the emotional contents of text of each post and comment
within a given community. Combined with the network theory, in this way we are
able to unravel the role of emotion expressed in the text for the patterns of user
behavior, which leads to the emergence of collective states with the appearance
of communities, and their internal structure and evolution. All data are fully
anonymized. No information about user IDs are given.

8.1 Introduction

Mechanisms underlying online interactions of users at Web portals may lead to new
social phenomena in Cyberspace, with certain features which are not known in the
conventional social grouping [7, 18]. The emergent social phenomena among Web
users are the primary concern of the multidisciplinary area known as science of the
Web [2], apart from developing the technology and algorithms for safe and efficient
information processing and understanding the Web structure [10] and its evolution
mechanisms [36].
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The online interactions have several features which make them different from
conventional face-to-face interactions [5]. In particular, user interactions are fast
and virtually no distance is involved. Moreover, the user interactions are indirect,
i.e., mediated by the posted material (text of comments, movie, music, etc.).
In contrast to conventional social interactions, users interacting via posted material
are not associated in real life, which has several implications in their conduct
and thus influences the emergent collective phenomena [5, 34]. The dynamics of
the online interactions is a large degree self-driven, i.e., user’s action (posting
a comment) on previously posted material induces more actions that eventually
lead to a burst of activities [1, 2, 6, 18, 28]. Recent studies of the data from Blogs
[5,15,22,23,30,35,38], Diggs [28], Forums [19], movie or music sharing databases
[16, 20, 21, 24, 40] suggest very rich structures of interactions, leading to temporary
occurrence of user communities in Cyberspace.

Mapping the interaction data onto networks and using the theory of complex
networks [3] provides a way for the quantitative analysis of various complex systems
and detecting the topological community structure [13] of the networks. In the case
of online interactions, for example Blogdata, a suitable representation is by bipartite
networks [30], where the users are represented as one partition having no direct
interactions with each other, while the posts and comments are the other natural
partition thorough which the users are connected. The communities occurring on
these networks thus consist of users linked via certain posts and comments, and can
be identified by formal graph theory methods [13, 21, 31].

Further insight into a particular community structure and its dynamics is achieved
by analysis of contents in the text of the related posts and comments. It has been
recognized recently that beside conveyed information, the emotional content of
the text has profound effects on user emotional conduct, which can be measured
at different scales [9, 14, 33, 37]. Text analysis methods are being developed in
the computer science [25, 26], independently from the theory of complex systems
and phenomena of the collective user behavior. The theoretical foundations for the
analysis of the emotional contents contained in the text, seen as a classification
problem, is described in [27].

In this chapter, we review a combined methodology for quantitative analysis of
user communities appearing on Blogs, Diggs, and movie datasets: Full data mapping
onto bipartite graphs and the use of the network theory is combined with the
machine-learning methods of text analysis for the emotional contents. We present
some results of the emergent networks, their topology and community structure as
well as the patterns of user emotional behavior, which underly the occurrence and
the evolution of the observed Cybercommunities.

8.2 Networks of Users’ Online Interactions

High-resolution data of user online interactions via different Web portals can be
mapped onto different types of techno-social networks. In particular, bipartite
networks are suitable representations of the indirect interactions between users
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Table 8.1 Size and structure of the analysed data from Blogs and Diggs

Name
Emotional
content

Number
of posts

Number of
comments

Number
of users

Comment-
on-comment

BBC Blogs Yes NP = 3972 NC = 80873 NU = 21462 No
B92 Blogs No NP = 4784 NC = 406527 NU = 4598 Yes
digg.com Yes NP = 1195808 NC = 1646153 NU = 484986 Yes

which are mediated by the posts (and comments) on Blogs and similar Web portals.
By definition, in bipartite graphs no link exists between two nodes of the same
partition [4]. Below we describe several types of networks, by which we represent
the interactions contained in the datasets from Blogs and Diggs [28, 30] and the
movie database [17].

The data structures from Blogs and Diggs that we consider have high-resolution
(1 sec) of the temporal occurrence of the events (posting a comment) and full
information about both Users and Posts-and-Comments, as well as the full Text
of the Posts and Comments. It should be stressed that, although at all considered
blogsites, user registration with a unique ID is requested, different policy is practiced
in storing the information, especially regarding the information about comment-on-
comment. In view of our precise mapping, as described below, such information
affects the structure of the emergent network. For this reason, we also collected
and analysed data from different blogsite, B92 Blogs, where such information
is available. On the other hand, the emotion classifier of text data is currently
available [27] for English language only. Summary of the data is given in Table 8.1.

In the movie data, somewhat similar structure with the texts of comments is
available. However, we do not analyse the text of these comments. For the present
analysis, we only consider topology of the emergent networks for small sets of
movies, selected according to the number of votes [17].

8.2.1 Data Mapping and Types of Networks

The datasets from Blogs and Diggs, which we analyse have high resolution in
time of the data on both users and posts and comments, which we map onto a
bipartite network. On these networks users are recognized as one natural partition,
while the other partition are posts and comments together. As discussed above, this
representation is particularly suitable for the users in the Cyberspace of Blogs (and
similar Web portals, see also [17, 20]). Depending on the type of user activity,
i.e., reading the existing text or posting a new text, we distinguish the directions
of the links as follows: post (comment)→user represents the user reading the post
(comment), while user→post (comment) indicates that the user is writing a new post
(comment).
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Fig. 8.1 Illustration of data mapping onto a directed bipartite network with users represented by
bullets, and posts and comments, represented by squares (a), and a bipartite network of users
and posts, while the weighted links represent the number of related comments (b). Weighted
monopartite networks of users connected via number of common posts (c) and network of posts
connected via number of common users (d)

Starting with a given dataset, several types of networks can be derived, depending
on the degree of information that we want to keep. In particular, we consider
following types of networks:

• Full bipartite network, as described above, with users (U) and posts & comments
(P + C), as two partitions. Together with the direction of the links and times
of their appearance, this network contains full information stored in the data. It
is most suitable for visually presenting a network of an individual post with all
its users and their comments as separate nodes. Notice that in the considered
datasets such network can be very large (cf. Table 8.1 for the size of data).
The mapping is illustrated in Fig. 8.1a.
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• Weighted bipartite network is a compressed bipartite network with users and
posts as two types of nodes (U + P), while the weights of links Wij represent the
number of comments of the user i on the post j, as illustrated in Fig. 8.1b. These
networks are undirected and more suitable for the spectral analysis, compared to
full bipartite networks.

• Weighted networks in user-projection or post-projection, are undirected monopar-
tite versions obtained by suitable projections from the full bipartite network of
the data. In the projection onto user networks, two users are connected directly
with a weighted link, representing the number of common posts per pair of
users, CB

ij , or similarly, the number of common users per pair of posts, CU
ij , in the

post-projection networks, as illustrated in Fig. 8.1c,d.

Four examples of the networks which are generated from our datasets of Diggs,
Blogs, and movies are shown in Fig. 8.2. They represent different levels of the
data mapping described above as directed and weighted bipartite networks and the
weighted networks of two monopartite projections. Most of these networks also
exhibit the community structure, which will be further discussed in the Sect. 8.2.3.

8.2.2 Topological Properties of the Emergent Networks

We have explored in detail the topological properties of the networks derived
from Blogs and Diggs [27, 30] and movie datasets [17]. As discussed below, these
networks are topologically inhomogeneous at the microscopic scale, at the level
of node connectivity, and appear to have specific mixing properties, at the level
of neighboring nodes. The projected monopartite networks appear to have high
clustering coefficient. Moreover, a striking topological property of these networks
is their mesoscopic inhomogeneity, or the occurrence of communities of nodes with
stronger connections among each other [12, 13, 31]. These communities play an
important role in the collective dynamics that we are interested in. The methodology
to systematically detect the communities in these types of networks based on the
eigenvalue spectral analysis of the weighted bipartite graphs is outlined below in
Sect. 8.2.3. Details of the spectral analysis of modular monopartite networks can be
found in recent work [31] and references cited therein.

Degree of a node q, is given by the number of its first neighbors, the number of
links between that node and the rest of the network [3]. In directed networks, one
can distinguish between in- and out-degree of the nodes. The degree distribution
P(q) is a probability that a randomly chosen node in the network has degree q,
while cumulative degree distribution represents probability that a randomly chosen
node has degree > q [3]. In our bipartite networks, the node degree has a particular
meaning for each partition. Specifically, for the user partition, the in-degree qU

in of a
node represents the number of posts and comments read (and commented), while the
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Fig. 8.2 Examples of networks studied in this work, which are obtained by mapping from Blogs,
Diggs, and Movie datasets. (top left) Directed bipartite network related to one Digg story with
comments, shown as colored boxes, and users, shown as bullets. Color of the comments denotes
their emotional content: white-neutral, red-positive and black-negative. (top right) Weighted
bipartite networks of popular BBC Blogs with posts as ccolored boxes, and users as bullets.
Weights of the links indicate multiple comments by the user to the post, while the color of posts
indicates their overall emotional contents, computed from all comments made at that post. (bottom
left) Monopartite weighted network of users from popular Digg stories. Colors of the nodes where
indicate that these nodes belong to the same user community. (bottom right) Weighted network of
movies with number of votes between 1,000 and 2,000. Only part of the network of size 596
nodes is shown, corresponding to commons above CM

ij > 5. Colors indicate different modules
identified by the weighted maximum-likelihood algorithm [29]. The nodes in red group appear
to be predominantly marked as “horror,” green nodes as “drama,” and blue nodes as “romance”
movies [17] in the dataset. [Data replotted from [17]]

out-degree qU
out represents the number of posts and comments written by that user.

Note that in the data the same user often comments a particular post (or comment)
more than once, which is denoted by multiple link. Within the posts-and-comments
partition, the out-degree qB

out of a node represents the number of users who left a
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Fig. 8.3 Cumulative degree distributions for users and posts from the bipartite networks repre-
senting data from (top) Blogs [Reprinted from [30], c©Springer 2009.]; (middle) Diggs data, and
(bottom) data for popular movies with more than 1,000 votes

comment on that particular post (comment), whereas the in-degree qB
in is the number

of authors of the post (comment), which is always equal to one in the Blogs and
Diggs data.

Cumulative distributions for in- and out-degree for both partitions of the
networks corresponding to the Blog and Digg data listed in Table 8.1 are shown
in Fig. 8.3. Broad degree distributions indicate large inhomogeneity both in the
user- and post-partition. In particular, for the user partition, we have power-law
dependences for both in- and out-degree over two orders of magnitude, before
the cut-off. Note that when the information about comment-on-comment is not
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available, that is BBC Blogs data, in- and out-degree distributions coincide, oth-
erwise they are different. The observed exponent is compatible with the differential
distributions of user degree as

P(q)∼ (q)−τ exp

[
−
(

q
q0

)σ]
, (8.1)

with the exponent is found in the range τ ∈ [1.5,2] and the cut-off q0 and stretching
σ are depending on the dataset.

The degree distributions of the posts-and-comments partition, on the other hand,
show a characteristic bending around qB ∼ 100. The posts with the degree above
this point represent a different category of popular posts, which follow another
dynamical pattern, as discussed in [27]. Because of the different data structure in
the case of movie networks, the user degree qU and movie degree qM, which we
define here, are affected differently by the applied filter with the number of votes
above 1,000. The results are shown in Fig. 8.3 (bottom panels). Again, we observe
high heterogeneity in both partitions (see also [17]). The user degree distribution
exhibits prominent power-law with the slope close to 1.5, while the applied filter
affects the movie distribution for small values of qM.

Mixing pattern (or dis-assortativity) is another local topology measure, defined
at the level of node’s neighborhood, which in our bipartite techno-social networks
differs from the conventional social networks. The (dis)-assortativity measures the
node’s preferences to attach to (dis-)similar neighbors [32] and can be quantified
through the average degree of its neighbors < q >nn. In the case of our bipartite
networks, we have

< qκ >nn=
qκ

∑
i

qi
κ ′

qκ
, (8.2)

where (κ ,κ ′) indicate neighboring nodes, which belong to the different partitions.
For instance, in the user–movie network when qκ indicates degree of a given user-
node, then qi

κ ′ stands for the degree of a movie-node i, which is directly linked to that
user. Plotting the average degree of nearest-neighbor nodes < qκ >nn against node’s
degree qκ marked in (8.2), leads to a specific pattern, which can be recognized
either as disassortative mixing (descending curve, indicating that rich nodes link to
poor nodes), or the opposite, assortative mixing, where rich nodes link to similarly
rich nodes. The respective power-law dependences with small negative exponents
are found in a number of technological networks, while positive exponents are
characteristic for conventional social networks [32]. Whereas a number of networks
exhibit neither the assortative nor disassortative behavior (zero exponent).

The corresponding plot in the case of our bipartite movie network is shown in
Fig. 8.4 (right). Descending curve indicates a disassortative mixing for both user
and movie nodes. This indicates that in the techno-social interactions the underlying
technological network dominates the social mixing of users. However, the functional
dependence is logarithmic rather than power-law. Similar formula applies for the
weighted bipartite networks of posts and users, where instead of the degree we rather
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consider the strength of the corresponding node, i.e., qi
κ ′ → �i

κ ′ , where �i
κ ′ ≡∑ j C

μ
ij is

a sum of weights of all links at that node. The results are also shown in Fig. 8.4 (left).
In this case a disassortative mixing is also found in both user and post partitions.
However, a power-law decay is observed for the posts partition, while in the case
of user partition we have a power-law tail for node degree above q0 ∼ 30 and no
assortativity at smaller degree.

In the directed bipartite networks representing our data from Blogs and Diggs,
one can distinguish between several combinations of the node’s degrees in (8.2),
which have particular meaning. Besides typical in–out degree correlations in (8.2)
one can also consider in–in and out–out degree correlations or next-neighborhood
of a node. For example, consider a user node i, whose out-degree is given by the
number of posts and comments written by that user, while out-degree of these posts
and comments is given by the number of users who read them, possibly ‘fans’
or a community. Similarly, in-degree is given by all posts and comments that the
user i read, while their out-degree is given by the number of other users who read
them, and thus might share similar interests with the user i. The mixing at the next-
neighborhood level in our bipartite networks thus indicates the linking patterns that
may lead to the formation of communities, which we discuss below.

Distributions of commons, that is the number of common users per pair of posts
and vice versa, the common number of posts per pair of users, is a particular property
of our bipartite networks, which further characterizes their local topology at the level
of pairs of nodes. It is thus related to both the degree and the mixing properties of
nodes. Moreover, a systematic study of the commons on a bipartite network provides
a natural way to project the networks to either one of the monopartite versions with
the weights of links given exactly by the commons. Note that on such monopartite
projections, the sum of commons of a node with all its neighbors determines the
topological strength of that node. The distributions of common number of posts CB

ij

and CP
ij per pair of users from our data on Blogs and Diggs, respectively, are shown

in top row of Fig. 8.5. We find power-law dependences of these distributions, with
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the exponents and the cut-offs depending on the dataset and popularity of the posts.
In the case of movie dataset, we have a fat-tail distribution both in the movie and
user partition. The distribution depends on the popularity or the number of votes of
the movies (see Fig. 8.5, lower panels).

8.2.3 Occurrence of Communities in Blogs, Diggs,
and MDb Users

Having the networks constructed from the data and put into a suitable forms, as
discussed above, we look for the community structure of these networks. In the
topological sense, a community is a mesoscopic inhomogeneity with a group of
nodes, which are better connected among themselves than to the rest of the network,
and thus can be detected by suitable methods (for a recent review of different
methods, see [13]). Our networks representing the user interactions over Blogs,
Diggs and movies, have several specific features, that need to be taken into account
when the communities are searched on them. In particular,
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• High clustering coefficient of the monopartite projections: note that k-links of a
user node project to a k-clique in the post-projection network. Having the power-
law degree distributions in both partitions, Fig. 8.3, thus leads to a high clustering
and an overlap of cliques of different sizes in the projected networks;

• Weights on links, both in the projected and compressed bipartite versions, are
given by power-law distributions, e.g., commons in Fig. 8.5.

For these reasons the standard methods of community structure analysis, based
on the max-flow–min-cut principle, are often less efficient. We use two methods,
based on the spectral analysis of graphs [31], and the weighted maximum-likelihood
method [29], which are suitable for strongly clustered and weighted networks. Here
we describe the basic features of the spectral method and show some results of
the community structure in our networks derived from the Blogs, Diggs and movie
datasets, as the networks shown in Fig. 8.2.

Spectral analysis method for finding communities is based on specific proper-
ties of eigenvalues and eigenvectors of normalized Laplacian for mesoscopically
inhomogeneous graphs [11, 31], which is related to the adjacency matrix of the
underlying (weighted) network. For all cases considered in this work, the Laplacian
operator can be written in the form

LU
ij = δij− Wij√

�i� j
; �i ≡∑

j
Wij . (8.3)

where the matrix representing the network to be considered is given by Wij and �i

is so called strength of a node (that can be defined both for user or post nodes).
As mentioned above, in the cases that we consider here the matrix Wij is weighted,
i.e., its nonzero elements are real numbers or integers larger than 1, for instance
representing the commons, as further discussed below. In the limit of binary graphs,
the elements Wij = {0,1}, whereby the strength �i reduces to the number of links
(degree) of the node i.

In each particular network, the matrix Wij is specified. For instance, in the case
of user-projected networks, which is more suitable for the community analysis in
normally popular Blogs discussed in [30], the matrix Wij is replaced by the commons
CB

ij . Similarly, in the monopartite networks projected onto posts-and-comments
partition, the weighted network connections Wij is suitably given by the number
of common users linking them, i.e., CU

ij . Whereas in the weighted bipartite networks
of posts and users, suitable for the analysis of popular posts [27,28], one can use the
number of comments of a user to a post as the elements of the matrix Wij. Below we
discuss several of these cases in detail.

The standard algorithms for solving the eigenvalue problem are then used
to determine the complete spectrum of the eigenvalues {λ0,λ1, . . . ,λN} and the
corresponding eigenvectors {V0,V1, . . . ,VN}. The size of the network N can be
sometimes a limiting factor for the numerical algorithm. In such cases, we reduce
the network by using its topological properties, for example node’s connectivity,
centrality or strengths, or by removing the links below certain weight. The spectrum
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Fig. 8.6 Spectrum (left) and 3D scatter plot of eigenvectors corresponding to smallest non-zero
eigenvalues (right) for weighted projection of bipartite network of BBC normal posts on user
partition. [Figure on right reprinted from [30], c©Springer 2009.]

of normalized Laplacian is bounded and all eigenvalues are in the interval [0,2]
regardless of network size and its structure. The number of zero eigenvalues is equal
to the number of disconnected components. For connected network there is only one
zero eigenvalue with the eigenvector V0 = (

√
l1, . . . ,

√
lN). Since the operator given

in (8.3) is symmetric and has real elements, the eigenvalues are real while the cor-
responding eigenvectors are orthogonal. In addition, the spectrum of the Laplacian
of a modular network has specific structure, with a separate set of the eigenvalues
occurring between zero and the main part of the spectrum (corresponding to an extra
peak in the spectral density of such graphs, see [31]). Furthermore, the eigenvectors
corresponding to these eigenvalues appear to be localized on the network modules,
in view of the orthogonality to the eigenvector V0. This means that the nonzero
(positive or negative) components of these eigenvectors carry indexes of the nodes
belonging to a particular network subgraph. Consequently, scatter plots in the space
of the eigenvectors of the lowest nonzero eigenvalues, for example in the (V1,V2)-
plane, exhibit a characteristic branched structure, with different branches indicating
a different substructure on the graph. A typical example of such branched structure
in 3-dimensional space of the eigenvectors and the corresponding spectrum of the
eigenvalues obtained from the user-projected network of normally popular Blogs is
shown in Fig. 8.6.

Having the IDs of nodes which belong to each community, the structure of the
communities can be further examined using additional information contained in
the original data. For example, in the communities shown in Fig. 8.6, we find the
lists of posts that the users in each community commented. They appear to have
strong subject similarity, for example sports, economy and business, etc. However,
the user communities identified with the same approach on Diggs and the popular
Blogs do not entirely follow the subject-related structure. For example, among the
three communities found in the user-projected network on Diggs, shown in Fig. 8.2
(bottom left), the smallest one contain users who commented a particular subject
(politics). While the other two groups are related with a mixture of different subjects.
The difference between the two groups is that the users in one of the groups are in
the average three times more active than in the other.
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In the case of popular Blogs, we find the community structure on the weighted
bipartite networks with users and posts, while the weights Wij are given by the
number of comments, as explained above. An example of the spectrum and the
corresponding scatter plot with a rich structure of the communities is shown in
Fig. 8.7, top row. Note that in this case the points in each branch indicate the nodes
of both partitions, i.e., users and posts. An example of the network with three such
communities found on popular Blogs is shown in Fig. 8.2 (top right), where user
nodes within a community are linked via several posts. As mentioned above, the
subjects of the posts within the same community vary, which indicates that another
feature of these posts makes them popular.

In Fig. 8.7, lower panels show the spectrum and the corresponding two-
dimensional scatter plot of the eigenvectors obtained for the movie-projection
network from the bipartite network of the movie data. Note that in this case the
weights of the links Wij are given by the number of common users per pair of movies,
CU

ij , which also exhibits a power-law distribution (cf. in Fig. 8.5). As the scatter plot
indicates, three groups of movies can be distinguished, based on the community
structure analysis, in which the numbers of common users per pair of movies play
a role. Following the IDs of the movies in each group (away from the center of the
plot), further information in the database suggests their strong similarity according
to the genre.
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8.3 Robust Features of User’s Emotional Behavior on Blogs

Beyond the topological features with the community structure, the origin and the
evolution of the user communities is a question for which both the patterns of user
behavior and the emotional contents of the posts and comments play an important
role. In this section, we address this question in connection with the community
detection, that we have studied above (see also [27, 28]). With the help of the
Emotion Classifier, described in [27], we can take into account the emotional
contents of the texts of posts and comments made by the users within identified
communities, and thus unravel the role of the expressed emotions for the evolution
and the structure of that community. As mentioned above, the communities related
with the posts of normal popularity that we studied in Blogs data, are predominantly
subject-related, or author-related [30]. Applying the emotion classifier to the texts
of comments at these posts, we find that they are often classified as “positive” or
“neutral,” with few texts that are classified as “negative.” In Fig. 8.8, we show
how a smaller community emerges on such posts, the snapshots of the weighted
bipartite networks are shown at several time intervals. As the Fig. 8.8 shows, among
many posts written by the two very productive authors, only few of them become
commented and even smaller number of them attract more users. The weights of
the links indicate that few users comment the particular post multiple times. The
emotional contents of the posts is not shown.

In the evolution of popular posts, with the number of comments above 100,
however, the role of the emotions is much more pronounced. Closer inspection in
the fluctuations of the number of users (size of the community) reveals strong cor-
relations with the emotional contents of their comments made to the posts through
which they are linked. The results are shown in Fig. 8.9 for two communities which
are visible on the network in Fig. 8.2 (top right). As the figure shows, the excess of
negative comments (critique) is strongly correlated with the increase of the size of
community, and vice versa, the community size decreases when the overall charge
of the comments is balanced around zero. Similar correlations are found for other
communities on popular Blogs and in the case of popular Digg stories [27, 28].

Patterns of user behavior at posts is another feature that can be studied from
the available Blog data [30]. The temporal patterns of user activity have a fractal
structure, as shown for instance for the blogsdata which we consider here in [30].
This means that the distance between two successive points in time Δ t, that is user
inactivity time, obeys a power-law distribution

P(Δ t)∼ (Δ t)−τΔ exp

[
−Δ t

Δ0

]
, (8.4)

with the exponent τΔ � 1 and the cut-off length depending on the dataset. Combined
with our emotion classifier, we now consider the times of user actions which resulted
in an emotional (positive/negative) comment on the popular posts in our Blogdata.
The distributions P(Δ t) averaged over all 3,000 most active users in our dataset are
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Fig. 8.8 Snapshots in the evolution of the community of users on normally popular Blogs.
Weighted bipartite network featuring users (circles) and posts (squares), while links are weighted
by the number of comments of a user to the post

given in Fig. 8.10a. The power-law distributions up to a cut-off are found for both
positive and negative emotional comments, with the exponent τΔ ∼ 1, compared
with τΔ = 1.15 found for the distribution of all types of comments in the entire
dataset [30], indicating the robustness in the user’s activity.

Another situation is found on posts, i.e., when one considers the reaction time to
the posted material. The distribution P(t− tP0), where t stands for the action time
of anyone of the users, and tP0 is the time of posting of a given post, is shown in
Fig. 8.10b for our dataset of popular posts. We also consider here only actions which
resulted in emotional comments. The delay of the user’s emotional action to the
posted text obeys a power-law distribution, shown in Fig. 8.10b for both positive and
negative comments. Such distributions are fitted with the q-exponential expression

P(t− tP0) = B

(
1− (1− q)

t− tP0

T0

)1/1−q

, (8.5)
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which is often found in nonergodic dynamical systems [39]. The fits are also shown
in Fig. 8.10b, where q= 1.60. The power-law tail has the decay exponent τ = 1.66 of
the cumulative distribution (or 2.66 for the differential distribution), compared with
2.3 found in all comment types in the entire dataset from Blogs in [30]. The reaction
time with the emotional comments thus represents another robust feature of human
behavior, which belongs to class of events leading to τ > 2, predicted in [8].

8.4 Conclusions

Datasets from Blogs and similar Web portals contain valuable information from
which the social interaction in Cyberspace can be studied. We have demonstrated
a systematic methodology for detecting Cybercommunities of users linked over
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different movies or textual posts, and study of their internal structure and the
evolution. In our approach we emphasise the combined methods of the network
theory and the machine-learning algorithms of the text analysis, specifically the
emotion-classifier, which reveals the role of emotions expressed in particular posts
(and related comments) in the occurrence and the evolution of user communities.

The bipartite networks, which are suitable representations of the datasets from
Blogs, Diggs, movie databases, and similar Web portals, have several specific
features, which we studied here. In particular:

• Networks topology is rich, characterized with power-law dependences of various
quantities, including the weights of links. High clustering and community struc-
ture occur in the appropriate monopartite projections. Furthermore, the mixing
patterns with a dis-assortative nature in both user and post partitions, induced
by technology-mediated interactions, are found in contrast to conventional social
networks.

• Cybercommunities, identified as topological mesoscopic inhomogeneities on
these emergent networks, consist of users grouped around certain popular posts.
The contents of these posts and to them related comments thus play an important
role in user grouping.

• Emotional content, which we classify with the machine-learning methods, of the
posts and comments related with the communities, reveal the role of emotions in
the appearance and evolution of these communities.

• Patterns of user behaviors underlies the community evolution. We have studied
the response time to the posts, especially in respect to the posts with emotional
contents. The results reveal robust behavior characteristic to a larger class of
human response patterns, which suggests that the emotional comments are
not contemplated but provoked by the posted material within a self-organized
dynamics.

The idea of the methodology that we demonstrated here on Blogdata, which
combines the network theory with the appropriate machine-learning methods, can
be useful for study online communications in different other media.
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Chapter 9
k-Core Organization in Complex Networks

G.J. Baxter, S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes

Abstract We analyse the complex network architectures based on the k-core
notion, where the k-core is the maximal subgraph in a network, whose vertices all
have internal degree at least k. We explain the nature of the unusual “hybrid” phase
transition of the emergence of a giant k-core in a network, which combines a jump
in the order parameter and a critical singularity, and relate this transition to critical
phenomena in other systems. Finally, we indicate generic features and differences
between the k-core problem and bootstrap percolation.

9.1 Introduction

The first natural description of the global organization of a random network is based
on connected components [1–4]. The emergence of a giant connected component
in a network is the most important structural change in the network architecture.
In a connected component, there exists a path between every pair of nodes of this
component. By definition the giant connected component consists of a finite fraction
of vertices (nodes) in an infinite network. Although this notion formally assumes
that the network is infinite, this transition is still observable in large yet finite
networks. The emergence of a giant component is a continuous phase transition
which usually takes place when a network is sparse, that is, when the average
degree of a node (the average number of connections) is finite. As the average
degree of a node 〈q〉 increases, at the critical point for this phase transition, qc,
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the giant component emerges from zero continuously, without a jump. Usually,
the relative size S of the giant connected component (the fraction of nodes within
this component) grows continuously above the critical point qc, S ∝ (〈q〉− qc)

β at
〈q〉−qc� 1 , where the critical exponent β equals, for example, 1 for Erdős–Rényi
networks.

The k-core is the maximal subgraph in a network, whose vertices all have
internal degree at least k. Using k-cores, that is, the straightforward generalization of
connected components, allows one to understand the network architecture in more
detail [5,6]. A network can be considered as a hierarchical set of its k-cores. We will
demonstrate that, in contrast to the giant connected component, a giant k-core with
k ≥ 3 in a network emerges discontinuously at a critical value qc(k) of the average
degree. Its relative size Mk emerges from zero with a jump Mkc > 0 but also has a
critical singularity, Mk−Mkc ∝ (〈q〉−qc(k))βk where the critical exponent βk = 1/2
is universal for this transition. This so called “hybrid” (or “mixed”) transition differs
sharply from both first-order and continuous phase transitions. This kind of phase
transition is far less well known than first-order and continuous transitions, although
it is present in various cooperative systems, see, e.g., [7] for the Kuramoto model.
We will discuss the nature and features of this transition in detail.

The notion of the k-core has proven to be a useful tool giving insight into the
deep structure of real complex networks [4, 8–13]. Alvarez-Hamelin et al in [9]
used this k-core architecture to produce a set of beautiful visualizations of various
networks. The notion of the k-core has found applications in diverse areas, from
magnetic systems [5], rigidity [14] and jamming [15] transitions to neural networks
[16, 17] and evolution [18] . The k-core has been extensively studied on tree-like
networks, starting with Bethe lattices [5] and random graphs [19,20], before finally
being extended to arbitrary degree distributions [11,12,21,22]. Results on non tree-
like graphs have been largely numerical [23–26], although some analytic results
incorporating clustering have recently been obtained [27, 28].

The k-cores can be more generally defined for heterogeneous thresholds k, where
k may vary from node to node in a network. This generalization will allow us
to establish a clear relation between the heterogeneous-k-core problem and so
called bootstrap percolation. Bootstrap percolation is an activation process, in which
a node becomes active if at least k of its neighbors are active. We will show
that the heterogeneous-k-core problem and bootstrap percolation admit a uniform
description.

9.2 Tree Ansatz

Here, we discuss only large uncorrelated networks, that is random networks, in
which correlations between degrees of neighboring nodes are absent. Conveniently,
in the infinite size limit, they have very few finite loops if the networks are sparse
[2–4], which is the most interesting case for us. Since trees are graphs without
loops, the absence of finite loops means that the uncorrelated random networks
have a locally tree-like structure, and so only the infinite loops should be taken into
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account. One of the consequences of this tree-like structure is the absence of loops in
finite connected components, which are thus perfect trees. The second consequence
is the absence of finite k-cores with k ≥ 3. The locally tree-like structure of the
networks dramatically simplifies calculations for a wide class of problems for
complex networks.

9.3 Giant Components and Percolation

Let us outline the calculation of the giant connected component in an uncorrelated
network with an arbitrary degree distribution P(q) [29]. This is the so-called
configuration model, that is a uniformly random network with a given degree
sequence, in which degrees of nodes are given and otherwise the network is random,
see the review [4] and references therein. The calculation is based on the tree ansatz.
Introducing the probability x that, following a randomly chosen edge to one of its
end vertices, one arrives at a finite connected component, we obtain the equation for
x and the expression for the relative size of the giant connected component:

x = ∑
q

qP(q)
〈q〉 xq−1, (9.1)

1− S = ∑
q

P(q)xq. (9.2)

Figure 9.1 presents these equations in graphic form. In this problem, 1− x plays the
role of the order parameter.

The giant connected component exists if (9.1) has a nontrivial solution x < 1
in addition to the solution x = 1, see Fig. 9.2. Equations (9.1) and (9.2) change
only slightly if we, in addition, remove some of vertices (the percolation problem).

= + + + + ...1−S

= + +

=

+ +

x

...

a

b

c

Fig. 9.1 (a) The graphical notation for the probability x that, following a randomly chosen edge
to one of its end vertices, we arrive at a finite connected component. (b) Equation (9.1) in graphical
form. (c) The graphical representation of formula (9.2) for the relative size S of the giant connected
component
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Fig. 9.2 Graphical solution of (9.1). The lines show the left- and the right-hand sides of (9.1)
as functions of x. (a) The normal phase, the giant component is absent, the only intersection is at
x = 1, so the solution is x = 1. Here, the derivative of the right-hand side of the equation is less than
1 at x = 1. (b) The critical point above which the giant component emerges. Here the derivative
of the right-hand side of the equation equals 1 at x = 1. (c) The giant component is present. The
derivative of the right-hand side of the equation exceeds 1 at x = 1, and so the non-trivial solution
is present at x < 1

If a fraction p of vertices retained, then for the giant connected components the
following results are obtained. The percolation threshold is

pc =
〈q〉

〈q(q− 1)〉 , (9.3)

where 〈q〉 and 〈q2〉 are the first and the second moments of the degree distribution.
This expression shows that the threshold pc approaches zero if the second moment
of the degree distribution diverges. Let us assume that the network is scale-free
with a degree distribution P(q) ∝ q−γ . (1) If γ > 4, then S ∝ p− pc. (2) If 3 <
γ < 4, then S ∝ (p− pc)

1/(γ−3). (3) If γ < 3, then pc = 0, and the giant component
is present at any finite p (hyper-resilience against random damage). For a more
detailed discussion of these results and literature, see, for example, [2–4].

9.4 Statistics of Finite Components in a Network

Any continuous phase transition must demonstrate a power-law divergence of the
corresponding susceptibility. This power law must be present both below and above
the phase transition. For the emergence of the giant connected component in these
problems, the average size of a finite component to which a randomly chosen vertex
belongs plays the role of susceptibility. One can show that this quantity diverges as
1/|p− pc|, as it should for infinite-dimensional systems [4]. At the critical point,
p = pc, the size distribution of finite components is power-law, P(s) ∝ s−τ . Here,
(1) if the exponent γ > 4, then τ = 5/2, as in classical random graphs, and (2) if the
exponent 3 < γ < 4, then τ = 2+ 1/(γ− 2), see, for example, [4].
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Fig. 9.3 Construction of the 3-core of a graph. First we remove vertices 1, 2 and 4 together with
their links because they have degrees smaller than 3. In the obtained graph, vertex 3 has degree 1.
Removing it, we get the 3-core of the graph

9.5 k-Cores: Pruning Algorithm

Recall that the k-core is the maximal subgraph whose vertices all have internal
degree at least k [5, 6]. The k-core of a graph may be obtained by the “pruning
algorithm” which is as follows (see Fig. 9.3). Remove from the graph all vertices
of degrees less than k. Some of remaining vertices may now have less than k edges.
Prune these vertices, and so on until no further pruning is possible. The result, if it
exists, is the k-core. The “pruning algorithm” is a kind of optimization procedure
which permits us to remove “weak nodes.” It is obvious that the k + 1-core is
a subgraph of the k-core. Thus, one can represent a network as a hierarchically
organized set of successfully enclosed k-cores, similar to a Russian nesting doll –
“matrioshka.” The first nontrivial k-core is the k = 2-core which can obtained by
pruning dangling branches attached to the giant connected component of a network
(see below). Below we will study giant connected k-cores which consist of a finite
fraction of nodes in an infinite sparse uncorrelated random network. For this purpose
we will use the configuration model of sparse uncorrelated random networks. In
graph theory, these networks are also called random labeled graphs with a given
degree sequence, see, for example, [4]. In a finite network, finite k-cores with a
given k may also emerge due to a non-zero clustering coefficient and numerous
finite loops, see Sect. 9.2. However, in the infinite size limit, sparse uncorrelated
random networks have a tree-like structure and finite k-cores are absent. Note also
that in these networks, there may be only one giant k-core at any k.

9.6 Order Parameter and Sizes of k-cores

The k-core percolation implies the breakdown of the giant k-core at a threshold
concentration of vertices or edges removed at random from an infinite network.
Recently, [19, 20], it was mathematically proved that the k-core organization of
the configuration model is asymptotically exactly described in the framework of
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Fig. 9.4 Diagrammatic
representation of (9.4)–(9.6).
(a) Graphical notations for
the order parameter R and for
1−R. (b) The probability that
both ends of an edge are in
the k-core, (9.4).
(c) Configurations
contributing to Mk, which is
the probability that a vertex is
in the k-core, (9.5). The
symbol ∀ here indicates that
there may be any number of
the nearest neighbors which
are not trees of infinite
(k−1)-ary subtrees. (d) A
graphical representation of
(9.6) for the order parameter

R 1−R

≥ k

≥ k− 1

Σp=

∀

∀
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a simple tree ansatz. The validity of the tree ansatz here is non-trivial since in
this theory it is applied to a giant k-core which has loops. Note that in tree-like
networks, (k≥ 3)-cores (if they exist) are giant – finite (k≥ 3)-cores are impossible.
In contrast to the giant connected component problem, the tree ansatz in application
to higher k-cores fails far from the k-core birth points. It is interesting to note that
the tree ansatz gives very accurate results for networks even with the presence of
significant clustering, for example, the AS Internet network and Facebook social
networks [8–11, 30].

Let us discuss the k-core percolation in the configuration model with degree
distribution P(q) by using intuitive arguments based on the tree ansatz [11–13].
We assume that a vertex in the network is present with probability p. In this locally
tree-like network, the giant k-core coincides with the infinite (k−1)-ary subtree.
By definition, the m-ary tree is a tree where all vertices have branching at least m.
We introduce the order parameter R in the problem as follows. R is the probability
that a given end of an edge of a network is not the root of an infinite (k−1)-ary
subtree [11]. (Of course, R depends on k.) Note that R defined in this way is 1 in the
phase without the k-core, and R < 1 if the k-core is present. An edge is in the k-core
if both ends of this edge are roots of infinite (k−1)-ary subtrees, which happens
with probability (1−R)2. In other words,

(1−R)2 =
Le(k)

L
(9.4)

which expresses the order parameter R in terms of observables: the number of edges
in the k-core, Le(k), and the total number of edges, L, in the network. Le(k) and L can
be measured in real networks. Figure 9.4 graphically explains this and the following
two relations. A vertex is in the k-core if at least k of its neighbors are roots of
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Fig. 9.5 Graphic solution of (9.6), compare with Fig. 9.2. For the sake of convenience, we rewrite
(9.6) in the form R = f (R) and omit the index k in Rk . (a) The k-core is absent. The only solution
is trivial R = 1. (b) The point of emergence of the order parameter and the k-core, that is the point
of singularity. (c) Solution above the critical point

infinite (k−1)-ary trees. So, the probability Mk that a random vertex belongs to the
k-core (the relative size of the k-core) is given by the equation:

Mk = p ∑
n≥k

∑
q≥n

P(q)Cq
nRq−n(1−R)n, (9.5)

where Cq
n = q!/[(q− n)!n!]. To obtain the relative size Mk of the k-core, one must

substitute the physical solution of (9.6) (see below) for the order parameter R into
(9.5). We can write the equation for the order parameter, noticing that a given end
of an edge is a root of an infinite (k−1)-ary subtree if it has at least k− 1 children
which are roots of infinite (k−1)-ary subtrees. Therefore, we obtain

1−R = p
∞

∑
n=k−1

∞

∑
i=n

(i+1)P(i+1)
z1

Ci
nRi−n(1−R)n ≡ 1− f (R). (9.6)

This equation strongly differs from that for the order parameter in the ordinary
percolation, compare with (9.2). (R should be compared with x.) The solution of
(9.6) for k≥3 indicates a quite unusual critical phenomenon. See Fig. 9.5 for the
graphical solution of this equation. This figure shows that the order parameter (and
also the size of the k-core) has a jump at the critical point like a first order phase
transition, compare with Fig. 9.2 for the connected component problem. On the
other hand, the order parameter has a square root critical singularity:

Rc−R ∝ [p− pc(k)]
1/2 ∝ Mk−Mkc, (9.7)
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Fig. 9.6 Relative sizes of the k-cores, Mk, in classical random graphs with the mean degree z1 =
10 vs. the fraction Q = 1− p of randomly removed vertices. The highest k-core, kh, in classical
random graphs is determined by the mean degree, for example, kh=7 at z1 = 10 [11]

see Fig. 9.6. This intriguing critical phenomenon is often called a hybrid phase
transition [15, 26]. Relations (9.7) are valid if the second moment of the degree
distribution is finite.

Figure 9.6 shows the dependence of relative sizes of k-cores on the fraction
Q = 1− p of the removed vertices. As we have mentioned above, a complex net-
work can be represented as a hierarchically organized set of successively enclosed
k-cores. With increasing Q, first, the highest kh-core disappears discontinuously with
a critical singularity (9.7) at a critical concentration Qc(kh) = 1− p(kh). Then the
kh−1-core disappears and so on. Lastly, a giant connected k = 2-core disappears. At
large Q there are only finite clusters. If the second moment of the degree distribution
diverges, the picture is very similar to what we observed for ordinary percolation.
In this case, the k-cores, even of high order, practically cannot be destroyed by the
random removal of vertices from an infinite network. In other words, the k-core
architecture is robust against a random damage of this class of complex networks.

The 2-core of a graph can be obtained from the giant connected component of
this graph by pruning dangling branches. At k = 2, (9.6) for the order parameter is
identical to one for the ordinary percolation. Therefore, the birth point of the 2-core
coincides with that of the giant connected component, and the phase transition is
continuous. According to (9.5) the size M2 of the 2-core is proportional to (1−R)2

near the critical point, and so it is proportional to the square of the size of the giant
connected component. This gives M2 ∝ (p− pc)

2 if the degree distribution decays
rapidly.
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Fig. 9.7 A finite corona cluster of the (k=3)-core. This cluster consists of vertices represented by
open circles with exactly three edges. Removal of any vertex on this figure results in pruning all
vertices which belong to the corona cluster

In stark contrast to ordinary percolation, the emergence of (k≥3)-cores, that
occurs, for example, at critical values of the mean degree, is not related to
the divergence of corresponding finite components which are absent in tree-like
networks. Then, is there any divergence associated with this hybrid transition? The
answer is yes. To unravel the nature of this divergence, let us introduce a new notion.
The k-core’s corona is a subset of vertices in the k-core (with their edges) which
have exactly k neighbors in the k-core, that is the minimum possible number of
connections. One may see that the corona itself is a set of disconnected clusters (see
Fig. 9.7). Let Ncrn be the mean total size of corona clusters attached to a vertex in the
k-core. It turns out that it is Ncrn(p) which diverges at the birth point of the k-core,

Ncrn(p) ∝ [p− pc(k)]
−1/2 (9.8)

[12,13,15]. Moreover, the mean intervertex distance in the corona clusters diverges
by the same law as Ncrn(p) [12]. It looks like the corona clusters “merge together”
exactly at the k-core percolation threshold pc(k) and simultaneously disappear
together with the k-core, which, of course, does not exist at p < pc(k).

By using (9.5) and (9.6), we can easily find the k-core sizes, Mk in the important
range 2 < γ < 3:

Mk = p1/(3−γ)(q0/k)(γ−1)/(3−γ), (9.9)

where q0 is the minimal degree in the scale-free degree distribution [11]. The
exponent of this power law agrees with the observed one in a real-world network –
the Internet at the Autonomous System level and the map of routers [8, 9]. In the
infinite scale-free networks of this kind, there is an infinite sequence of k-cores (9.9).
All these cores have a practically identical architecture – their degree distributions
asymptotically coincide with the degree distribution of the network in the range of
high degrees.

Above we considered networks of an infinite size. Let us discuss networks of a
finite but sufficiently large size. If a network is finite, then in (9.6) the summation
over degree has a cutoff, i+ 1 ≤ qcut. If γ > 3, then the finiteness of networks does
not qualitatively change the results obtained above. The finiteness of networks with
fat tailed degree distributions, i.e., for 2 < γ ≤ 3, restricts the k-core sequence to
some maximum number kh for the highest k-core. In [11–13], kh was estimated
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Fig. 9.8 Relative size, Mk, of the k-cores vs. k in several networks: (1) ©, Mk calculated
neglecting correlations, by using the degree distribution of Internet router network, N ≈ 190,000,
adapted from [11]; (2) �, measurements for the Autonomous System network (CAIDA map),
N = 8,542, adapted from [9]; (3) •, results for a maximally random scale-free (γ = 2.5) network
of 106 vertices; (4) �, for a clustered network with the same γ = 2.5, but with very large clustering
coefficient C = 0.71, adapted from [24]

by substituting empirical degree distributions into the equations for uncorrelated
networks. Unfortunately, the resulting kh turned out to be several (3) times smaller
than the observed values [8, 9]. In [24, 25], a much more realistic kh was obtained
by taking into account high clustering (see Fig. 9.8). (A maximally random network
with a given degree distribution and a given clustering was simulated in [24, 25].)
Sizes of k-cores and the maximum number kh for some real networks (the Internet
at the AS level, Facebook social networks, the PGP network, and the power grid)
were found in [30]. There is also another way to diminish kh: random damaging first
destroys the highest k-core, then the second highest, and so on.

9.7 Hybrid Transition as a Limiting Metastable State

Let us briefly discuss the nature of hybrid phase transitions. These transitions form
a specific new kind of phase transition which combines a discontinuity like a first
order phase transition with a critical singularity like a continuous phase transition,
see (9.7) for the k-core problem and (9.27) for bootstrap percolation. Strong
analogies between bootstrap percolation and metastable behavior in systems with
first order phase transitions were already remarked upon in the early mathematical
work [31]. Let us discuss this question from a more physical point of view.

In thermodynamics, where the changes of a control parameter (e.g., decreasing/
increasing temperature) are assumed to be infinitely slow, a first order transition has
no hysteresis. In reality, the changes always occur with a small but finite rate, and
the “heating” and “cooling” branches of a first order transition do not coincide,
which indicates the presence of a metastable state and hysteresis. The width of
the hysteresis increases with this rate until some limit, which corresponds to the
limiting metastable state. One can show that the resulting limiting curve for the
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Fig. 9.9 The schematic view
of the dependence of
magnetization m (solid line)
and zero-field susceptibility χ
(dashed line) on temperature
near the limiting metastable
state for a first-order phase
transitions in magnetic
systems. Here,
m(T )−m(Tb−0) ∝

√
Tb−T

and χ(T < Tb) ∝ 1/
√

Tb−T

m ,χ

TTb

order parameter has a square-root singularity at the breakdown point, see Fig. 9.9.
One can easily obtain this behavior by using, for example, the Landau theory with
the free energy

F(m,H) =−mH + a(T −Tc)m
2 + bm4 + cm6, (9.10)

where the coefficients a, b, and c are positive and H is a magnetic field. A simple
analysis shows that metastable states with m �= 0 emerge below the critical
temperature Tb = T0 + b2/(3ac),

m(T )−m(Tb− 0) ∝
√

Tb−T , (9.11)

with the jump m(Tb − 0) =
√

b/3c, see Fig. 9.9. The thermodynamic first order
phase transition takes place at a lower temperature. The susceptibility χ(T,H=0) =
dm/dH|H=0, also shows a singularity χ(T < Tb) ∝ 1/

√
Tb−T but it has no

singularity above Tb.
Compare these singularities with those of (9.7) and (9.8). In the k-core problem,

it is Ncrn that plays the role of susceptibility similarly to the mean size of a
cluster to which a vertex belongs in ordinary percolation, see [12, 13] for more
details. The exponent of the singularity in (9.8), 1/2, dramatically differs from the
standard mean-field value of exponent γ̃ = 1. The only essential difference is that,
in contrast to the k-core percolation, in ordinary thermodynamics this region is not
approachable. In this sense, the hybrid (mixed) transition is a limiting metastable
state for a first order phase transition. As we have mentioned in Sect. 9.1, a
similar asymmetrical hybrid transition has been observed in the Kuramoto model
of oscillator synchronization [7].

Importantly, the hybrid transition is asymmetrical. Namely, there are critical
fluctuations and a divergent correlation length on only one side of the critical point.
In contrast to that, continuous phase transitions demonstrate critical fluctuations and
a divergent correlation length on the both sides of the transition, while in first order
phase transitions, there are no critical fluctuations and the correlation length is finite
everywhere.
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9.8 Heterogeneous k-core

The concept of the k-core of a network may be generalized to allow each vertex in a
network to have a different threshold. Each vertex of a network is assigned a variable
ki ∈ {0,1,2, ...}. The ki values are assumed to be uncorrelated, selected from a
distribution Qk(r). The heterogeneous k-core is then the largest subgraph of the
network for which each vertex i has at least ki neighbors. To find the heterogeneous
k-core of a given network, we start with the full network, and prune any vertices
whose degree is less than its value of ki. We repeat the pruning until a stationary
state is reached. The heterogeneous k-core may include finite clusters as well as any
giant component. If a giant component is present we call it the giant heterogeneous
k-core (giant-HKC). As we did for the ordinary k-core, we examine sparse random
uncorrelated networks. These networks are completely determined by the degree
distribution, and we make use of their locally tree-like property in the infinite size
limit.

If all ki = 1, then the HKC is simply the connected component of the network, and
the giant-HKC is the giant connected component, exactly as in ordinary percolation.
It appears with a continuous transition at the critical point pc given by (9.3). If k= 2,
we again have a continuous transition, similar to ordinary percolation. If all ki are
equal to k≥ 3, then we have the ordinary k-core. In this case the giant k-core appears
with a discontinuous hybrid transition [11–13, 15].

In general, we might expect a combination of continuous and hybrid transitions.
Let us define a simple representative example of the heterogeneous k-core (HKC)
in which vertices have a threshold of either 1 or k≥ 3, distributed randomly through
the network with probabilities f and (1− f ), respectively:

Qk(r) =

⎧⎪⎪⎨
⎪⎪⎩

f if r = 1,

1− f if r = k,

0 otherwise,

(9.12)

for some integer k ≥ 3. This parametrized HKC has as its two limits ordinary
percolation ( f = 1) and the original k-core ( f = 0).

There are two transitions in the size of the giant heterogeneous k-core (giant-
HKC): a continuous transition similar to that found in ordinary percolation and
a discontinuous, hybrid, transition, similar to that found for the ordinary k-core.
We find a complex phase diagram for this giant-HKC with respect to the proportion
of each threshold and the amount of damage to the network, in which, depending
on the parameter region, either transition may occur first, see Fig. 9.10. The giant-
HKC is absent in the region labeled I. For p below the percolation threshold pc,
the giant-HKC never appears for any f . Above pc, the giant-HKC appears with
a continuous transition, growing linearly with f (or p for that matter) close to
the critical point. The threshold is indicated by the thin black line in the Figure,
which divides regions I and II. From ps−k a second, discontinuous, hybrid transition
appears. This is marked by the heavy black curve in Fig. 9.10.
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Fig. 9.10 Phase diagram for heterogeneous k-core (left) in the f -p plane. The giant-HKC is
present in region II, appearing continuously at the threshold marked by the thin black curve. The
hybrid, discontinuous transition occurs at the points marked by the heavy black line, beginning
from ps−k . Above pt−k the first appearance of the giant-HKC is with a discontinuous transition.
Above p f−k the giant-HKC appears discontinuously for any f > 0

Let Sk be the fraction of vertices that are in the heterogeneous k-core. That is, the
total of all components, whether finite or infinite, that meet the threshold conditions.
This is equal to the probability that an arbitrarily chosen vertex of the original
network is in the heterogeneous k-core. The hybrid transition is discontinuous, and
the size of the heterogeneous k-core grows as the square root of the distance above
the critical point f = fc2−k:

Sk( f ) = Sk( fc2−k)+ a( f − fc2−k)
1/2. (9.13)

See line 2 in Fig. 9.13. This is the same as the hybrid transition found in the
ordinary k-core. For a given p the critical point fc2−k can be found from self-
consistent solution of (9.16) and (9.19). Solving (9.16) near the critical point fc2−k

and substituting it into (9.15), we arrive at (9.13). Note that fc2−k may be greater
than the critical point fc1−k above which the giant heterogeneous-k-core appears
continuously – so that the first appearance of the giant-HKC is similar to that
found in ordinary percolation – or less than fc1−k, with the giant-HKC appearing
discontinuously from zero, as in the ordinary k-core [12,13,15] (see Fig. 9.13). The
critical point fc1−k for a given p can be found from (9.18), see below.

At the special point ps−k (Fig. 9.10) the size of the discontinuity reduces to zero
and the scaling near the critical point is cube root:

Sk( f ) = Sk( fc2−k)+ a( f − fc2−k)
1/3. (9.14)
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Table 9.1 Symbols used in graphi-
cal representations of self-consistency
equations for the heterogeneous k-core

The probability Sk is the sum of the probabilities that it has ki = 1 and at least
one neighbor in the core, or ki = k and has at least k neighbors in the core. We can
represent this diagrammatically as (see Table 9.1):

These conditions can be written as binomial terms, and summing over all possible
values of the degree of i, this diagram can be written in mathematical form as:

Sk = p f
∞

∑
q=1

P(q)
q

∑
l=1

(
q
l

)
Zl(1−Z)q−l

+ p(1− f )
∞

∑
q=k

P(q)
q

∑
l=k

(
q
l

)
Zl(1−Z)q−l , (9.15)

where the factor p accounts for the probability that the vertex has not been damaged.
A square represents the probability Z, which we define in terms of a “(ki− 1)-ary
tree,” a generalization of the (k− 1)-ary tree. A (ki− 1)-ary tree is a sub-tree in
which, as we traverse the tree, each vertex encountered has at least ki − 1 child
edges (edges leading from the vertex, not including the one we entered by). In our
example, ki is either 1, in which case the vertex does not need to have any children
(though it may have them), and is only required to be connected to the tree, or
ki = k, in which case it must have at least k− 1 children. The probability Z can
then be very simply stated as the probability that, on following an arbitrarily chosen
edge in the network, we reach a vertex that is a root of a (ki− 1)-ary tree. For the
specific case considered in this chapter, the vertex encountered either has ki = 1, or
it has k− 1 children leading to the roots of (ki− 1)-ary trees. The probability Z is
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represented by a square in the diagram. A bar represents the probability (1−Z), a
black circle represents a vertex with ki = 1, and a white circle a vertex with ki = k –
see Table 9.1. To calculate Z, we construct a recursive (self consistency) expression
in a similar way, based on the definition given above. This is represented by the
diagram:

which, in equation form is:

Z= p f + p(1− f )∑
q≥k

qP(q)
〈q〉

q−1

∑
l=k−1

(
q− 1

l

)
Zl(1−Z)q−1−l

≡Ψ(Z, p, f ) . (9.16)

We have used that qP(q)/〈q〉 is the probability that the vertex reached along an
arbitrary edge has degree q. Solving (9.16) (usually numerically) for Z and then
substituting into (9.15) allows the calculation of Sk.

We follow a similar procedure to calculate Sgc−k, the relative size of the giant
heterogeneous k-core (that is, the subset of the heterogeneous k-core which forms
a giant component) – also the probability that an arbitrarily chosen vertex is in
the giant heterogeneous k-core. The fraction of vertices forming finite clusters is
therefore Sk−Sgc−k. Note that in the standard k-core this is negligibly small. We
denote by X the probability that an arbitrarily chosen edge leads to a vertex which
is the root of an infinite (ki − 1)-ary tree. That is, the definition is similar to Z,
but with the extra condition that the sub-tree reached must extend indefinitely. We
represented X by an infinity symbol (Table 9.1). The diagram for Sgc−k is:

which is equivalent to the equation:

Sgc−k= p f
∞

∑
q=0

P(q)
q

∑
m=1

(
q
m

)
Xm(1−X)q−m

+ p(1− f )
∞

∑
q=k

P(q)
q

∑
l=k

(
q
l

)
(1−Z)q−l

l

∑
m=1

(
l
m

)
Xm(Z−X)l−m . (9.17)

To find X , we construct a self-consistency equation from the diagram
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Z

Fig. 9.11 Graphic solution of (9.16), compare with Fig. 9.5. (a) At small f , f < fc2−k, there is
only one solution of (9.16) which determines the parameter Z for the heterogeneous k-core. (b) At
the critical point f = fc2−k a second solution with a larger Z (black dot) emerges. This is a stable
solution. (c) At f > fc2−k only the solution with the largest Z (black dot) is stable

leading to

X = p f
∞

∑
q=0

qP(q)
〈q〉

q−1

∑
m=1

(
q− 1

m

)
Xm(1−X)q−1−m

+p(1− f )
∞

∑
q=k

qP(q)
〈q〉

q−1

∑
l=k−1

(
q− 1

l

)
(1−Z)q−1−l

l

∑
m=1

(
l
m

)
Xm(Z−X)l−m .

(9.18)

Solution of (9.16) and (9.18) then allows the calculation of Sgc−k through (9.17).
Note that when there are multiple solutions of Z, we choose the largest solution as
the “physical” one. To find the appearance of the giant component for a given p, we
find leading term O(X) of the right hand side of (9.18) for X � 1, and solve (9.18)
for f . This gives the critical point fc1−k.

To calculate the location of the hybrid transition, i.e., the critical point fc2−k, we
note that at this critical point a second solution to (9.16) appears. This occurs when
the function Ψ(Z) just touches the line Z (see Fig. 9.11b), which must be at a local
extremum of Ψ/Z:

d
dZ

(
Ψ
Z

)
= 0. (9.19)

Expanding (9.16) about Zc, the value of Z at the critical point (at the top of the
jump), and using (9.19), we see that Z grows as the square-root of the distance from
the critical point. Using (9.15) we find (9.13). In a general case, (9.16) may have
three solutions, see Fig. 9.11c. Only the solution with the largest Z is stable.
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Furthermore, at the special point ps−k where the second transition disappears, by
a similar argument, a further condition must also be satisfied:

d2

dZ2

(
Ψ
Z

)
= 0. (9.20)

Thus, the critical point ps−k is determined by simultaneous solution of (9.16), (9.19),
and (9.20). This in turn leads to cube root scaling above the threshold; hence, (9.14).
These conditions are very similar to those used for the ordinary k-core.

In this chapter, we have examined only a special case of the heterogeneous k-
core, in which vertices have threshold either 1 or k ≥ 3. For completeness, we
now give the self-consistency equations for arbitrary threshold distribution Q(r)
where Q(r) is the fraction of vertices with a threshold r ≥ 1. The size Sk of the
heterogeneous k-core is

Sk = p ∑
r≥1

Q(r)
∞

∑
q=r

P(q)

[
q

∑
l=r

(
q
l

)
Zl(1−Z)q−l

]
, (9.21)

where, as above, Z is the probability of encountering a vertex i which is the root of
a (ri− 1)-ary tree:

Z = p ∑
r≥1

Q(r)
∞

∑
q=r

(q)P(q)
〈q〉

q−1

∑
l=r−1

(
q− 1

l

)
Zl(1−Z)q−1−l. (9.22)

We do not derive any results for this general case, but we can speculate that a more
complicated phase diagram would appear. If any vertices have threshold less than
3, i.e. Q(1)+Q(2)> 0, we would find a continuous appearance of the giant-HKC.
Thresholds of 3 or more, on the other hand, contribute discontinuous transitions,
and it may be that there are multiple such transitions.

9.8.1 Effect of Network Structure

Network heterogeneity plays an important role. The results above and in Figs. 9.13
and 9.14, are qualitatively the same for networks with any degree distribution which
has finite second and third moments. When only the second moment is finite, the
phase diagram remains qualitatively the same, but the critical behavior is changed.
Instead of a second order continuous transition, we have a transition of higher order.
When the second moment diverges, we have quite different behavior.

To examine the behavior when the second and third moments diverge, we
consider scale-free networks, with degree distributions tending to the form

P(q)≈ q−γ (9.23)

for large q. At present we consider only values of γ > 2.
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To find the behavior near the critical points, we expand the right hand side of
(9.18) near the appearance of the giant-HKC (that is, near X = 0, X � 1). When
γ < 4, the third and possibly second moment of the degree distribution diverge. This
means that coefficients of integral powers of X diverge, and we must instead find
leading non-integral powers of X . When γ > 4, the second and third moments of the
distribution are finite (9.18) leads to

X = c1X + c2X2 + higher order terms, (9.24)

which gives the critical behavior X ∝ ( f − fc2−k)
β with β = 1. When 3 < γ ≤ 4,

the linear term in the expansion of (9.18) survives, but the second leading power is
γ− 2:

X = c1X + c2X γ−2 + higher terms, (9.25)

where the coefficients c1 and c2 depend on the degree distribution, the parameters
p and f , and the (non-zero) value of Z. The presence of the linear term means the
giant-HKC appears at a finite threshold, but because the second leading power is not
2, the giant-HKC grows not linearly but with exponent β = 1/(γ− 3). This means
that the phase diagram remains qualitatively the same as Fig. 9.14, however, the size
of the giant-HKC grows as ( f − fc1)

β with β = 1/(γ−3). This is the same scaling
as was found for ordinary percolation [33].

For values of γ below 3, the change in behavior is more dramatic. When 2 <
γ ≤ 3, the second moment of P(q) also diverges, meaning the leading order in the
equation for X is no longer linear but γ− 2:

X = d1X γ−2 + higher terms. (9.26)

From this equation it follows that there is no threshold for the appearance of the
giant-HKC (or giant-BPC). The giant-HKC appears immediately and discontinu-
ously for any f > 0 (or p > 0), and there is also no upper limit to the threshold
k. This behavior is the same for bootstrap percolation, so the (featureless) phase
diagram is the same for both processes, even though the sizes of the giant-HKC and
giant-BPC are different.

We can understand the hybrid transition in the heterogeneous k-core by consider-
ing the corona clusters. Corona clusters are clusters of vertices with threshold k that
have exactly k neighbors in the HKC. These clusters are part of the heterogeneous
k-core, but if any member of a cluster loses a neighbor, a domino-like effect leads
to an avalanche as the entire cluster is removed from the HKC, see Fig. 9.12. The
corona clusters are finite everywhere except at the discontinuous transition, where
the mean size of corona clusters diverges as we approach from above [12, 13, 18].
Thus, an infinitesimal change in f (or p) leads to a finite fraction of the network
being removed from the heterogeneous k-core; hence, a discontinuity in Sk (and
also in Sgc−k). The size distribution of corona clusters, and hence avalanches at this
transition is determined by the size distribution G(s), which at the critical point can
be shown to follow G(s) ∼ s−3/2. This can be shown using a generating function
approach, as demonstrated in [12, 13].
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Fig. 9.12 Corona clusters of different sizes in heterogeneous k-core. Left: Because they are in-
cluded unless pruned, two connected vertices (whose threshold is k) form part of the heterogeneous
k-core if each has k− 1 other neighbors in the core, as each is “assisted” by the other. In general
(right) a corona cluster consists of vertices (with threshold k) that each have exactly k active
neighbors, either inside or outside the cluster. If one neighbor of any of the cluster vertices is
removed from the core, an avalanche is caused as the entire cluster is pruned

9.9 k-Core vs. Bootstrap Percolation

The Heterogeneous k-core can be directly contrasted with another well known
problem related to percolation, bootstrap percolation (BPC). In bootstrap perco-
lation, vertices can be of two types: with probability f , a vertex is a “seed” and
is initially active, and remains active. The remaining vertices (a fraction 1− f )
become active if their number of active neighbors reaches or exceeds a threshold
value k. Once activated, a vertex remains active. The activation of vertices may mean
that new vertices now meet the threshold criterion, and hence become active. This
activation process continues iteratively until a stationary state is reached. The seed
and activated vertices in bootstrap percolation are analogous to the threshold 1 and
threshold k groups in the heterogeneous k-core. We will first smmarise the behavior
of the bootstrap percolation process, before comparing with the heterogeneous
k-core.

Again, two transitions are observed in the phase diagram of the giant component
of active vertices in bootstrap percolation (giant-BPC). Above a certain value of
p, pc, the giant active component (giant-BPC) may appear continuously from zero
at a finite value of f , fc1−b, and grow smoothly with f , see lines 1 and 2 in the right
panel of Fig. 9.13. For larger p, after the giant active component appears, there may
also be a second discontinuous hybrid phase transition, at fc2−b, as seen in line 3 of
Fig. 9.13. There is a jump in the size of the giant active component Sgc−b from the
value at the critical point (marked by a circle on dashed line 3). When approaching
from below, the difference of Sgc−b, from the critical value goes as the square root
of the distance from the critical point:

Sb( f ) = Sb( fc2−b)− a( fc2−b− f )1/2. (9.27)

At the special critical point ps−b, the scaling becomes cube root:

Sb( f ) = Sb( fc2−b)− a( fc2−b− f )1/3. (9.28)
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Fig. 9.13 Left: relative size Sk of the heterogeneous k-core (curves with arrows directed to the
left, upper of each numbered pair), which is the subgraph including all vertices which meet the
threshold requirements of (9.12), and fraction Sb of active vertices in bootstrap percolation (lower
curves, with arrows directed to the right) as a function of f for the same network – an Erdős-Rényi
graph of mean degree 5 – with the same k = 3, at three different values of p, corresponding to
different regions of the phase diagrams. (1) p = 0.5, which is between pc and ps for both models.
(2) p = 0.61, which is above ps-k but still below ps-b. (3) p = 0.91, which is above pf-k and ps-b.
Each numbered pair forms the two branches of a hysteresis process. Right: Size Sgc−k of the giant
heterogeneous k-core (arrows to the left) and size Sgc−b of the giant-BPC (arrows to the right) as
a function of f for the same network and the same values of p

The overall behavior with respect to the parameters p and f of each model is
summarized by the phase diagram Fig. 9.14. This diagram is qualitatively the same
for any degree distribution with finite second moment.

Note the difference between (9.27) and (9.13) and between (9.28) and (9.14).
In bootstrap percolation, the hybrid transition always occurs above the continuous
one, and neither reaches f = 0. Note also that the special critical point ps−b is above
the critical point p f−k, so that for a given p we may have a hybrid transition for the
HKC or for BPC, but not for both. Thus the giant-HKC is present everywhere in
regions II and III of Fig. 9.14, the giant-BPC is present in region III, and both are
absent in region I. If the value of k is increased, the locations of the hybrid transitions
move toward larger values of p, and there is a limiting value of k after which
these transitions disappear altogether. Our numerical calculations revealed that in
the case of Erdös–Rényi graphs for both the heterogeneous k-core and bootstrap
percolation, this limit is proportional to the mean degree, see also [11]. Note also
that the continuous transition also moves slightly with increasing k, and in the limit
k→ ∞, tends to the line p f = pc for both processes.

Because bootstrap percolation is an activation process, while the heterogeneous
k-core is found by pruning, we can characterize them as two branches of the
same process, with the difference between the curves shown in Fig. 9.13. Consider
beginning from a completely inactive network (that may be damaged so that
some fraction p of vertices remain). As we gradually increase f from zero, under
the bootstrap percolation process, more and more vertices become active (always
reaching equilibrium before further increases of f ) until at a certain threshold value,
fc1−b a giant active component appears. As we increase f further, the size of the
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Fig. 9.14 Phase diagram for heterogeneous k-core and bootstrap percolation in the f -p plane. The
giant-HKC is present in regions II and III, the giant-BPC is present in region III. The giant-HKC
appears continuously at the threshold marked by the thin black curve. The hybrid, discontinuous
transition occurs at the points marked by the heavy black line, beginning from ps−k . Above pt−k the
first appearance of the giant-HKC is with a discontinuous transition. Above p f−k the giant-HKC
appears discontinuously for any f > 0. The continuous appearance of the giant-BPC is marked
by the thin white curve, and the hybrid transition (beginning at ps−b by a heavy white curve. This
diagram is for a Bethe lattice with degree 5, and for k = 3, but the diagram for any network with
finite second moments of the degree distribution will be qualitatively the same

giant-BPC traces the dashed curves shown in Fig. 9.13. See also [32]. The direction
of this process is indicated by the arrows on these curves. Finally, at f = 1 all
undamaged vertices are active. Now we reverse the process, beginning with a fully
active network, and gradually reducing f , de-activating (equivalent to pruning)
vertices that fall below their threshold ki under the heterogeneous k-core process.
As f decreases, the solid curves in Fig. 9.13 will be followed, in the direction
indicated by the arrows. Notice that the size of the giant-HKC for given values
of f and p is always larger than the giant-BPC.

It is clear from Figs. 9.13 and 9.14 that even though bootstrap percolation and
the heterogeneous k-core described above have the same thresholds and proportions
of each kind of vertex, the equilibrium size of the respective giant components
is very different. The difference results from the top-down vs. bottom-up ways
in which they are constructed. To find the heterogeneous k-core, we begin with
the full network, and prune vertices which don’t meet the criteria, until we
reach equilibrium. In contrast, bootstrap percolation begins with a largely inactive
network, and successively activates vertices until equilibrium is reached. To see
the effect of this difference, we now describe an important concept: the subcritical
clusters of bootstrap percolation.

A subcritical cluster in bootstrap percolation is a cluster of activatable vertices
(i.e. not seed vertices) who each have exactly k− 1 active neighbors external to
the cluster. Under the rules of bootstrap percolation, such clusters cannot become
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Fig. 9.15 Top row: Subcritical clusters of different sizes in bootstrap percolation. Left: Because
they start in an inactive state, two connected vertices (shaded area) cannot become active if each
has k−1 active neighbors. (In this example k = 3.) The same follows for clusters of three (center)
or more vertices (right). If any member of a subcritical cluster gains another active neighbor, an
avalanche of activations encompasses the whole cluster. Bottom row: Similar clusters would be
included in the heterogeneous k-core

activated. The vertices within the cluster block each other from becoming active –
see Fig. 9.15. Now compare the situation for the heterogeneous k-core. Any cluster
of threshold k vertices which each have k− 1 neighbors in the core external to
the cluster, is always included in the heterogeneous k-core. for the heterogeneous
k-core, vertices in clusters like those in Fig. 9.12 assist one another. Thus, the
exclusion of subcritical clusters from activation in bootstrap percolation accounts
for the difference in sizes of the bootstrap percolation core and the heterogeneous
k-core.

These results are found in a similar way to those for the heterogeneous k-core:
we draw recursive diagrams for the relevant probabilities, and use them to correctly
write down self-consistency equations. Activation in bootstrap percolation must
spread through the network, meaning that the vertex needs k active downstream
neighbors in order to become active (and thus provide an active neighbor to its
upstream “parent”). For example, the probability that an arbitrarily chosen vertex is
active, Sb is then [compare (9.15)]:

Sb = p f
∞

∑
q=1

P(q)
q

∑
l=1

(
q
l

)
Y l(1−Y)q−l

+ p(1− f )
∞

∑
q=k

P(q)
q

∑
l=k

(
q
l

)
Y l(1−Y)q−l . (9.29)



9 k-Core Organization in Complex Networks 251

Where we define Y to be the probability (counterpart of Z) that on following an
arbitrary edge, we encounter a vertex that is either a seed or has k active children.
Then:

Y = p f + p(1− f ) ∑
q≥k+1

qP(q)
〈q〉

q−1

∑
l=k

(
q− 1

l

)
Y l(1−Y)q−1−l

≡ Φ(Y, p, f ). (9.30)

Note that (9.30) differs from (9.16) because the number of children required is k
not k− 1. This is equivalent to excluding the subcritical clusters represented in Fig.
9.15. The equation for Sgc−b follows similarly.

9.10 Conclusions

We conclude that various k-core problems and bootstrap percolation on networks
constitute a wide class of problems which allow a uniform treatment. We have
demonstrated that the heterogeneous k-core problem and bootstrap percolation
are actually complementary. In both these problems the phases transitions are
determined by the divergence of some specific clusters. In the case of k-cores, these
clusters are corona clusters, while for the hybrid transition in bootstrap percolation,
the subcritical clusters diverge. One should note that this comparison turns out to
be possible only after the formulation of the heterogeneous k-core problem, which
explains the importance of this generalization.
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FIS/71551/2006, FIS/108476/2008, SAU-NEU/103904/2008, and MAT/114515/
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Chapter 10
Hardness Complexity of Optimal Substructure
Problems on Power-Law Graphs

Yilin Shen, Dung T. Nguyen, and My T. Thai

Abstract The remarkable discovery of many large-scale real networks is the
power-law distribution in degree sequence: the number of vertices with degree
i is proportional to i−β for some constant β > 1. A lot of researchers believe
that it may be easier to solve some optimization problems in power-law graphs.
Unfortunately, many problems have been proved NP-hard even in power-law
graphs as Ferrante proposed in Ferrante et al. (Theoretical Computer Science
393(1–3):220–230, 2008). Intuitively, a theoretical question is raised: Are these
problems on power-law graphs still as hard as on general graphs? The chapter
shows that many optimal substructure problems, such as minimum dominating
set, minimum vertex cover and maximum independent set, are easier to solve in
power-law graphs by illustrating better inapproximability factors. An optimization
problem has the property of optimal substructure if its optimal solution on some
given graph is essentially the union of the optimal subsolutions on all maximal
connected components. In particular, the above problems and a more general
problem (ρ-minimum dominating set) are proven to remain APX-hard and their
constant inapproximability factors on general power-law graphs by using the cycle-
based embedding technique to embed any d-bounded graphs into a power-law
graph. In addition, the corresponding inapproximability factors of these problems
are further proven in simple power-law graphs based on the graphic embed-
ding technique as well as that of maximum clique and minimum coloring using
the embedding technique in Ferrante et al. (Theoretical Computer Science 393
(1–3):220–230, 2008). As a result of these inapproximability factors, the belief that
there exists some (1+o(1))-approximation algorithm for these problems on power-
law graphs is proven not always true. In addition, this chapter contains the in-depth
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investigations in the relationship between the exponential factor β and constant
greedy approximation algorithms. The last part includes some minor NP-hardness
results on simple power-law graphs for small β < 1.

10.1 Introduction

A great number of large-scale networks in real life are discovered to follow a
power-law distribution in their degree sequences, ranging from the Internet [15],
the World-Wide Web (WWW) [4] to social networks [25]. That is, the number of
vertices with degree i is proportional to i−β for some constant β in these graphs,
which is called power-law graphs. The observations show that the exponential factor
β ranges between 1 and 4 for most real-world networks [10], i.e., β = 2.1 in
Internet and World Wide Web, β = 2.3 in social networks and β = 2.5 in protein–
protein interaction networks. Erdös collaboration network in 1997 is illustrated as
an example of power-law networks in Fig. 10.1. Intuitively, the following theoretical
question is raised: What are the differences in terms of complexity hardness
and inapproximability factor of several optimization problems between in general
graphs and in power-law graphs?

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30 35 40 45

N
um

be
r 

of
 N

od
es

Degree

Fig. 10.1 Erdös collaboration network in 1997 [1]
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Many experimental results on random power-law graphs give us a belief that
the problems might be much easier to solve on power-law graphs. Eubank et al.
[14] showed that a simple greedy algorithm leads to a 1 + o(1) approximation
factor on minimum dominating set (MDS) and minimum vertex cover (MVC) on
power-law graphs (without any formal proof) although MDS and MVC has been
proven NP-hard to be approximated within (1−ε) logn and 1.366 on general graphs
respectively [12]. In [24], Gopal also claimed that there exists a polynomial time
algorithm that guarantees a 1 + o(1) approximation of the MVC problem with
probability at least 1− o(1). Unfortunately, there is no such formal proof for this
claim either. Furthermore, several papers also have some theoretical guarantees for
some problems on power-law graphs. Gkantsidis et al. [17] proved the flow through
each link is at most O(n log2 n) on power-law random graphs where the routing of
O(dudv) units of flow between each pair of vertices u and v with degrees du and dv.
In [17], the authors took advantage of the property of power-law distribution by
using the structural random model [2, 3] and showed the theoretical upper bound
with high probability 1−o(1) and the corresponding experimental results. Likewise,
Janson et al. [19] gave an algorithm that approximated maximum clique within
1− o(1) on power-law graphs with high probability on the random poisson model
G(n,α) (i.e., the number of vertices with degree at least i decreases roughly as n−i).
Although these results were based on experiments and various random models, they
raised an interest in investigating hardness and inapproximability of optimization
problems on power-law graphs.

Recently, Ferrante et al. [16] had an initial attempt on power-law graphs to
show the NP-hardness of maximum clique (CLIQUE) and minimum graph coloring
(COLORING) (β > 1) by constructing a bipartite graph to embed a general graph
into a power-law graph and NP-hardness of MVC, MDS and maximum independent
set (MIS) (β > 0) based on their optimal substructure properties. Unfortunately,
there is a minor flaw which makes the proof of NP-hardness of MIS, MVC, MDS
with β < 1 no longer hold.

In this chapter, two new techniques are proposed especially for optimal substruc-
ture problems, cycle-based embedding technique and graphic embedding technique,
which embed a d-bounded graph into a general power-law graph and a simple
power-law graph respectively. Then we use these two techniques to further prove
the APX-hardness and the inapproximability of MIS, MDS, and MVC on general
power-law graphs and simple power-law graphs for β > 1. These inapproximability
results on power-law graphs are shown in Table 10.1. Furthermore, the inapprox-
imability results in CLIQUE and COLORING are shown by taking advantage of
the reduction in [16]. The corresponding relationship is analyzed between β and
constant greedy approximation algorithms for MIS and MDS. To show the minor
NP-hardness of these problems for β < 1, we propose another eligible embedding
technique in the last part of this chapter.

In addition, due to a lot of recent studies in online social networks on the
influence propagation problem [21,22], ρ-minimum dominating set (ρ-MDS) is for-
mulated and proven hard to be approximated within 2− (2+ od(1)) log logd/ logd
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Table 10.1 Inapproximability factors on power-law graphs with exponen-
tial factor β > 1

Problem General power-law graph Simple power-law graph

MIS 1+ 1
140(2ζ (β )3β−1)

− ε 1+ 1
1120ζ (β )3β − ε

MDS 1+ 1
390(2ζ (β )3β−1)

1+ 1
3120ζ (β )3β

MVC, ρ-MDS 1+
2
(

1−(2+oc(1))
log logc

logc

)
(

ζ (β )cβ +c
1
β

)
(c+1)

1+
2−(2+oc(1))

log logc
logc

2ζ (β )cβ (c+1)

CLIQUE − O
(
n1/(β+1)−ε)

COLORING − O
(
n1/(β+1)−ε)

aConditions: MIS and MDS: P�=NP; MVC, ρ-MDS: unique games conjecture; CLIQUE,
COLORING: NP�=ZPP

bc is a constant which is the smallest d satisfying the condition in [6]

factor on d-bounded graphs under unique games conjecture, which further leads to
the following inapproximability result on power-law graphs (shown in Table 10.1).

The rest of chapter is organized as follows. In Sect. 10.2, we introduce some
problem definitions, the model of power-law graphs, and some related concepts.
The inapproximability optimal substructure framework is presented in Sect. 10.3.
We show the hardness and inapproximability of MIS, MDS, MVC on general
power-law graphs using the cycle-based embedding technique in Sect. 10.4. More
inapproximability results in simple power-law graphs are illustrated in Sect. 10.5
based on the graphic embedding technique, which implies the APX-hardness of
these problems. Additionally, the inapproximability factor on maximum clique and
minimum coloring problems are proven. In Sect. 10.6, we analyze the relationship
between β and constant approximation algorithms, which further proves that the
integral gap is typically small for optimization problems on power-law graphs
than that on general bounded graphs. Some minor NP-hardness results of optimal
substructure problems for β < 1 are presented in Sect. 10.7.

10.2 Preliminaries

In this section, we first recall the definition of several classical optimization
problems having the optimal substructure property and formulate the new opti-
mization problem ρ-minimum dominating set. Then the power-law model and some
corresponding concepts are proposed. At last, some special graphs are introduced
which will be used in the analysis throughout the whole chapter.
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10.2.1 Problem Definitions

Definition 10.1 (Maximum Independent Set). Given an undirected graph G =
(V,E), find a subset S ⊆ V with the maximum size such that no two vertices in
S are adjacent.

Definition 10.2 (Minimum Vertex Cover). Given an undirected graph G= (V,E),
find a subset S ⊆ V with the minimum size such that for each edge E at least one
endpoint belongs to S.

Definition 10.3 (Minimum Dominating Set). Given an undirected graph G =
(V,E), find a subset S⊆V with the minimum size such that for each vertex vi ∈V \S,
at least one neighbor of vi belongs to S.

Definition 10.4 (Maximum Clique). Given an undirected graph G = (V,E), find a
clique with maximum size where a subgraph of G is called a clique if all its vertices
are pairwise adjacent.

Definition 10.5 (Minimum Graph Coloring). Given an undirected graph G =
(V,E), label the vertices in V with minimum number of colors such that no two
adjacent vertices share the same color.

The ρ-minimum dominating set is defined as general version of MDS problem.
In the context of influence propagation, the ρ-MDS problem aims to find a subset of
nodes with minimum size such that all nodes in the whole network can be influenced
within t rounds. In particular, a node is influenced when ρ fraction of its neighbors
are influenced. For simplicity, we define ρ-MDS problem in the case that t = 1.

Definition 10.6 (ρ-Minimum Dominating Set). Given an undirected graph G =
(V,E), find a subset S⊆V with the minimum size such that for each vertex vi ∈V \S,
|S∩N(vi)| ≥ ρ |N(vi)|.

10.2.2 Power-Law Model and Some Notations

A great number of models [2, 3, 7, 8, 23] on power-law graphs are emerging in
the past recent years. The analysis in this chapter is based on the general (α,β )
graph model, that is, the graphs are only constrained by the power-law distribution
in degree sequences. To begin with, the following two types of degree sequences are
defined.

Definition 10.7 ( y-Degree Sequence). Given a graph G = (V,E), the y-degree
sequence of G is a sequence Y = 〈y1,y2, . . . ,yΔ 〉 where Δ is the maximum degree of
G and yi = |{u|u ∈V ∧deg(u) = i}|.
Definition 10.8 (d-Degree Sequence). Given a graph G = (V,E), the d-degree
sequence of G is a sequence D = 〈d1,d2, . . . ,dn〉 of vertex in non-increasing order
of their degrees.
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Note that y-degree sequence and d-degree sequence are interchangeable. Given
a y-degree sequence Y = 〈y1,y2, . . . ,yΔ 〉, the corresponding d-degree sequence is
D = 〈Δ ,Δ , . . . ,Δ − 1,Δ − 1, . . . ,Δ − 1, . . . ,1, . . . ,1〉 where the number i appears yi

times. Because of their equivalence, we may use only y-degree sequence or d-degree
sequence or both without changing the meaning or validity of results. The definition
of power-law graphs can be expressed via y-degree sequences as follows.

Definition 10.9 (General (α ,β ) Power-Law Graph Model). A graph G = (V,E)
is called a (α,β ) power-law graph G(α ,β ) where multiedges and self-loops are

allowed if the maximum degree is Δ =
⌊
eα/β⌋ and the number of vertices of

degree i is

yi =

{⌊
eα/iβ

⌋
, if i > 1 or ∑Δ

i=1

⌊
eα/iβ

⌋
is even

�eα�+ 1, otherwise.
(10.1)

In simple (α,β ) power-law graphs, there are no multiedges and self-loops.
Note that a power-law graph are represented by two parameters α and β . Since

graphs with the same β express the same behaviors, we categorize all graphs with
the same β into a β -family of graphs such that β is regarded as a constant instead
of an input. In addition, we focus more on the case β > 1 because almost all real
large-scale networks have β > 1. In this case, the number of vertices is:

Δ

∑
i=1

eα

iβ
= ζ (β )eα + n

1
β ≈ ζ (β )eα ,

where ζ (β ) = ∑∞
i=1

1
iβ

is the Riemann Zeta function. Also, the d-degree sequence of
any (α,β ) power-law graph is continuous according to the following definition.

Definition 10.10 (Continuous Sequence). An integer sequence 〈d1,d2, . . . ,dn〉,
where d1 ≥ d2 ≥ ·· · ≥ dn, is continuous if ∀1≤ i≤ n− 1, |di− di+1| ≤ 1.

Definition 10.11 (Graphic Sequence). A sequence D is said to be graphic if there
exists a graph such that D is its d-degree sequence.

Definition 10.12 (Degree Set). Given a graph G, let Di(G) be the set of vertices of
degree i on G.

Definition 10.13 (d-Bounded Graph). Given a graph G = (V,E), G is a d-
bounded graph if the degree of any vertex is upper bounded by an integer constant d.

10.2.3 Special Graphs

Definition 10.14 (d-Regular Cycle RCd
n ). Given a vector d = (d1, . . . ,dn), a

d-regular cycle RCd
n is composed of two cycles. Each cycle has n vertices and two
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Fig. 10.2 Special graph examples: the left one is a (3,3,3,3,3,3,3,3)-regular cycle and the right
one is a (3,3,3,3)-branch-(2,2,2,2,2,2)-cycle. The grey vertices consist of the optimal solution
of MDS on these two special graphs

ith vertices in each cycle are adjacent with each other by di− 2 multiedges. That is,
d-regular cycle RCd

n has 2n vertices and the two ith vertex has the same degree di.
An example RCd

8 is shown in Fig. 10.2a.

Definition 10.15 (κ-Branch-d-Cycle κ-BCd
n ). Given two vectors d = (d1, . . . ,dn)

and κ = (κ1, . . . ,κm), the κ-branch-d-cycle is composed of a cycle with a number of
vertices n such that each vertex has degree di as well as |κ|/2 appendant branches,
where |κ | is a even number. Note that any κ-branch-d-cycle has |κ| even number of
vertices with odd degrees. An example is shown in Fig. 10.2b.

10.2.4 Existing Inapproximability Results

Some inapproximability results are listed here in the literature to use later in our
proofs.

1. MVC is hard to be approximated into 2− (2+ od(1)) loglogd/ logd for every
sufficiently large integer d in d-bounded graphs under unique games conjecture
[6, 11].

2. In three-bounded graphs, MIS and MDS is NP-hard to be approximated into
140
139 − ε for any ε > 0 and 391

390 respectively [5].
3. Maximum clique and minimum coloring problem is hard to be approximated into

n1−ε on general graphs unless NP=ZPP [18].



262 Y. Shen et al.

10.3 Inapproximability Optimal Substructure Framework
in Power-Law Graphs

In this section, by taking advantage of the optimal substructure property, we
introduce a framework to derive the approximation hardness of the class of problems
in power-law graphs. Recall that a graph optimization problem is said to satisfy
optimal substructure if its optimal solution is the union of the optimal solutions on
each connected component. Therefore, when a graph G is embedded into a power-
law graph G′, the optimal solution in G′ consists of a subset of the optimal solution
in G. According to this important property, inapproximability optimal substruc-
ture framework is proposed to prove the inapproximability factor if there exists
a embedded-approximation-preserving reduction that relates the approximation
hardness in general graphs and power-law graphs by guaranteeing the relationship
between the solutions in the original graph and the constructed graph.

Definition 10.16 (Embedded-Approximation-Preserving Reduction). Given an
optimal substructure problem O, a reduction from an instance on graph G = (V,E)
to another instance on a power-law graph G′ = (V ′,E ′) is called embedded-
approximation-preserving if it satisfies the following properties:

1. G is a subset of maximal connected components of G′.
2. The optimal solution of O on G′, OPT (G′), is upper bounded by COPT (G)

where C is a constant correspondent to the growth of the optimal solution.

Theorem 10.1 (Inapproximability Optimal Substructure Framework). Given
an optimal substructure problem O, if there exists an embedded-approximation-
preserving reduction from a graph G to another graph G′, we can extract the
inapproximability factor δ of O on G′ using ε-inapproximability of O on G, where
δ is lower bounded by εC

(C−1)ε+1 and ε+C−1
C when O is a maximum and minimum

optimization problem respectively.

Proof. Suppose that there exists an algorithm providing a solution of O on G′
with size at most δ times the optimal solution. Denote A and B to be the sizes of
the produced solution on G and G′ \G and A∗ and B∗ to be their corresponding
optimal values. Hence, we have B∗ ≤ (C − 1)A∗. With the completeness that
OPT (G) = A∗ ⇒OPT (G′) =B∗, the soundness leads to the lower bound of δ which
is dependent on the type of O, maximization or minimization problem, as follows.

Case 10.1. When O is a maximization problem, the proof of soundness is as follows

A∗+B∗ ≤ δ (A+B) (10.2)

⇔ A∗ ≤ δA+(δ − 1)B∗ (10.3)

⇔ A∗ ≤ δA+(δ − 1)(C− 1)A∗, (10.4)

where (10.3) holds since B≤ B∗ and (10.4) holds since B∗ ≤ (C− 1)A∗.
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On the other hand, it is hard to approximate O within ε on G, thus A∗ > εA.
Replace it to the above inequality, we have:

A∗ < A∗δ/ε +(δ − 1)(C− 1)A∗ ⇔ δ >
εC

(C− 1)ε + 1
.

Case 10.2. When O is a minimization problem, since B∗ ≤ B, similarly

A+B≤ δ (A∗+B∗)

⇔ A≤ δA∗+(δ − 1)B∗

⇔ A≤ δA∗+(δ − 1)(C− 1)A∗.

Then from A > εA∗,

ε < δ +(δ − 1)(C− 1)⇔ δ >
ε +C− 1

C
.

10.4 Hardness and Inapproximability of Optimal Substructure
Problems on General Power-Law Graphs

10.4.1 General Cycle-Based Embedding Technique

In this section, a general cycle-based embedding technique is proposed on (α,β )
power-law graphs with β > 1. The basic idea is to embed an arbitrary d-bounded
graph into a power-law graph using a d1-regular cycle, a κ-branch-d2-cycle, and a
number of cliques K2, where d1, d2, and κ are defined by α and β . Before discussing
the main embedding technique, we first show that most optimal substructure
problems can be polynomially solved in both d-regular cycles and κ-branch-d-
cycle. In this context, the cycle-based embedding technique helps to prove the
complexity of these optimal substructure problems on power-law graphs according
to their corresponding complexity results on general bounded graphs.

Lemma 10.1. MDS, MVC, and MIS are polynomially solvable on d-regular cycles.

Proof. Here, we just prove MDS problem is polynomially solvable on d-regular
cycles. The algorithm is simple. From an arbitrarily vertex, we select the vertex
on the other cycle in two hops. The algorithm will terminate until all vertices are
dominated. Now we will show that this gives the optimal solution. Let’s take RC3

8
as an example. As shown in Fig. 10.2a, the size of MDS is 4. Notice that each
vertex can dominate exact three vertices, that is, 4 vertices can dominate exactly
12 vertices. However, in RC3

8 , there are altogether 16 vertices, which have to be
dominated by at least four vertices apart from the vertices in MDS. That is, the
algorithm returns an optimal solution. The proofs of MVC and MIS are similar.
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Algorithm 2: Cycle Embedding Algorithm

1 α ←max{lnmax1≤i≤d{ni · iβ},β lnd};
2 For τ(1) vertices of degree 1, add �τ(1)/2� number of cliques K2;
3 For τ(2) vertices of degree 2, add a cycle with the size τ(2);
4 For all vertices of degree larger than 2 and smaller than Δ , construct a d1-regular cycle

where d1 is a vector composed of �τ(i)/2� number of elements i for all i satisfying τ(i)> 0;
5 For all leftover isolated vertices L such that τ(i)−2�τ(i)/2� = 1, construct a

d1
2-branch-d2

2-cycle, where d1
2 and d2

2 are the vectors containing odd and even elements
correspondent to the vertices of odd and even degrees in L respectively.

Lemma 10.2. MDS, MVC, and MIS is polynomially solvable on κ-branch-d-
cycles.

Proof. Again, we show the proof of MDS. First, we select the vertices connecting
both the branches and the cycle. Then by removing the branches, we will have a
line graph regardless of self-loops, on which MDS is polynomially solvable. It is
easy to see that the size of MDS will increase if any one vertex connecting both the
branch and the cycle in MDS is replaced by some other vertices. The proof of MIS
is similar. Note that the optimal solution for MVC consists of all vertices since all
edges need to be covered.

Theorem 10.2 (Cycle-Based Embedding Technique). Any d-bounded graph Gd

can be embedded into a power-law graph G(α ,β ) with β > 1 such that Gd is a
maximal component and most optimal substructure problems can be polynomially
solvable on G(α ,β ) \Gd.

Proof. With the given β , we choose α to be max{lnmax1≤i≤d{ni · iβ},β lnd}.
Based on τ(i) = �eα/iβ �− ni where ni = 0 when i > d, we construct the power-
law graph G(α ,β ) as the following Algorithm 2. The last step holds since the
number of vertices of odd degrees has to be even. From Step 1, we know eα =
max{max1≤i≤d{ni · iβ},dβ} ≤ dβ n, that is, the number of vertices N in graph
G(α ,β ) satisfies N ≤ ζ (β )dβ n, which means that N/n is a constant. According to
Lemma 10.1 and Lemma 10.2, since G(α ,β ) \Gd is composed of a d1-regular cycle
and a d1

2-branch-d2-cycle, it can be polynomially solvable. Note that the number of
vertices in L is at most Δ since there is at most one leftover vertex of each degree.

10.4.2 APX-Hardness

In this section, MIS, MDS, and MVC are proven to remain APX-hard even on power-
law graphs.

Theorem 10.3. MDS is APX-hard on power-law graphs.



10 Hardness Complexity of Optimal Substructure Problems on Power-Law Graphs 265

Proof. According to Theorem 10.2, we use the cycle-based embedding technique to
show L -reduction from MDS on any d-bounded graph Gd to MDS on a power-law
graph G(α ,β ) since MDS is proven APX-hard on d-bounded graphs [20].

Letting φ be a feasible solution on Gd , we can construct MDS in G′ such that
MDS on a K2 is 1, n/4 on a d-regular cycle and n/3 on a cycle and a κ-branch-
d-cycle. Therefore, for a solution φ on Gd , we have a solution ϕ on G(α ,β ) to be
ϕ = φ +n1/2+n2/3+n3/4, where n1, n2 and n3 corresponds to τ(1), τ(2)∪L and
all leftover vertices. Hence, we have OPT (ϕ) = OPT (φ)+ n1/2+ n2/3+ n3/4.

On one hand, for a d-bounded graph with vertices n, the optimal MDS is lower
bounded by n/(d+ 1). Thus, we know

OPT(ϕ) = OPT(φ)+ n1/2+ n2/3+ n3/4

≤ OPT(φ)+ (N− n)/2

≤ OPT(φ)+ (ζ (β )dβ − 1)n/2

≤ OPT(φ)+ (ζ (β )dβ − 1)(d+ 1)OPT(φ)/2

=
[
1+(ζ (β )dβ − 1)(d+ 1)/2

]
OPT(φ),

where N is the number of vertices in G(α ,β ).
On the other hand, with |OPT (φ)− φ | = |OPT (ϕ)− ϕ |, we proved the L -

reduction with c1 = 1+(ζ (β )dβ − 1)(d+ 1)/2 and c2 = 1.

Theorem 10.4. MVC is APX-hard on power-law graphs.

Proof. In this proof, we show L -reduction from MVC on d-bounded graph Gd to
MVC on power-law graph G(α ,β ) using cycle-based embedding technique.

Let φ be a feasible solution on Gd . We construct the solution ϕ ≤ φ +(N− n)
since the optimal solution of MVC is n/2 on K2, cycle, d-regular cycle and n on κ-
branch-d-cycle. Therefore, since the optimal MVC on a d-bounded graph is lower
bounded by n/(d+ 1), we have

OPT(ϕ)≤
[
1+(ζ (β )dβ − 1)(d+ 1)

]
OPT (φ).

On the other hand, with |OPT (φ)− φ | = |OPT (ϕ)− ϕ |, we proved the L -
reduction with c1 = 1+(ζ (β )dβ − 1)(d+ 1) and c2 = 1.

Corollary 10.1. MIS is APX-hard on power-law graphs.

10.4.3 Inapproximability Factors

In this section, we show the inapproximability factors on MIS, MVC, and MDS on
power-law graphs, respectively, using the results in Sect. 10.2.4.
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Theorem 10.5. For any ε > 0, there is no 1+ 1
140(2ζ (β )3β−1)

− ε approximation

algorithm for maximum independent set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α ,β ) based on cycle-
based embedding technique in Theorem 10.2 from d-bounded graph Gd . Let φ
and ϕ be feasible solutions of MIS on Gd and G(α ,β ). Then OPT (ϕ) composed
of OPT (φ), clique K2, cycle, d-regular cycle and κ-branch-d-cycles are all
exactly half number of vertices. Hence, we have OPT (ϕ) = OPT (φ)+ (N− n)/2
where n and N is the number of vertices in Gd and G(α ,β ), respectively. Since

OPT (φ) ≥ n/(d + 1) on d-bounded graphs for MIS and N ≤ ζ (β )dβ n, we further

have C= 1+ (ζ (β )dβ−1)(d+1)
2 from

OPT(ϕ) = OPT(φ)+
N− n

2

≤ OPT(φ)+
(ζ (β )dβ − 1)

2
n

≤ OPT(φ)+
(ζ (β )dβ − 1)(d+ 1)

2
OPT(φ)

=

(
1+

(ζ (β )dβ − 1)(d+ 1)
2

)
OPT(φ).

Since ε = 140
139−ε ′ for any ε ′ > 0 on three-bounded graphs, the inapproximability

factor can be derived from inapproximability optimal substructure framework as

δ >
εC

(C− 1)ε + 1
> 1+

1
140C

− ε = 1+
1

140(2ζ (β )3β − 1)
− ε,

where the last step follows from d = 3.

Theorem 10.6. There is no 1+ 1
390(2ζ (β )3β−1)

approximation algorithm for mini-

mum dominating set on power-law graphs.

Proof. In this proof, we construct the power-law graph G(α ,β ) based on cycle-based
embedding technique in Theorem 10.2 from d-bounded graph Gd . Let φ and ϕ be
feasible solutions of MDS on Gd and G(α ,β ). The optimal MDS on OPT (φ), clique
K2, cycle, d-regular cycle and κ-branch-d-cycles are n/2, n/4 and n/3 respectively.
Let φ and ϕ be feasible solutions of MDS on Gd and G(α ,β ). Then we have C =

1+ (ζ (β )dβ−1)(d+1)
2 similar as the proof in Theorem 10.5.

Since ε = 391
390 in three-bounded graphs, the inapproximability factor can be

derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C

= 1+
1

390(2ζ (β )3β − 1)
,

where the last step follows from d = 3.
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Theorem 10.7. MVC is hard to be approximated within 1+
2

(
1−(2+oc(1))

loglogc
logc

)
⎛
⎝ζ (β )cβ+c

1
β

⎞
⎠(c+1)

on power-law graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α ,β ) based on cycle-based embed-
ding technique in Theorem 10.2 from d-bounded graph Gd , the optimal MVC on
clique K2, cycle, d-regular cycle are half number of vertices while the optimal MVC

on κ-branch-d-cycles are all vertices. Thus, we have C= 1+

⎛
⎝ζ (β )dβ−1+d

1
β

⎞
⎠(d+1)

2
since

OPT(ϕ) ≤ OPT(φ)+
N− n−Δ

2
+Δ (10.5)

≤ OPT(φ)+
(ζ (β )dβ − 1)n+ n

1
β d

2
(10.6)

= OPT(φ)+

(
ζ (β )dβ − 1+ d

n
1− 1

β

)
n

2
(10.7)

≤ OPT(φ)+

(
ζ (β )dβ − 1+ d

(d+1)
1− 1

β

)
(d + 1)

2
OPT(φ) (10.8)

≤

⎛
⎜⎝1+

(
ζ (β )dβ − 1+ d

1
β
)
(d + 1)

2

⎞
⎟⎠OPT(φ), (10.9)

where φ and ϕ be feasible solutions of MVC on Gd and G(α ,β ), Δ is the maximum
degree in G(α ,β ). The inequality (10.6) holds since there are at most Δ vertices in

κ-branch-d-cycle, i.e., Δ = eα/β ≤ n1/β d; (10.8) holds since there are at least d+1
vertices in a d-bounded graph and the optimal MVC in a d-bounded graph is at least
n/(d+ 1).

Since ε = 2− (2 + od(1)) loglogd/ logd, the inapproximability factor can be
derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2
(

1− (2+ oc(1))
log logc

logc

)
(

ζ (β )cβ + c
1
β
)
(c+ 1)

,

where c is the smallest d satisfying the condition in [6]. The last inequality holds
since function f (x) = (1− (2+ox(1)) log logx/ logx)/g(x)(x+1) is monotonously
decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.
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Fig. 10.3 The reduction from MVC to ρ-MDS

Theorem 10.8. ρ-MDS is hard to be approximated into 2− (2+ od(1))
log logd

logd on
d-bounded graphs under unique games conjecture.

Proof. In this proof, we show the gap-preserving from MVC on (d/ρ)-bounded
graph G = (V,E) to ρ-MDS on d-bounded graph G′ = (V ′,E ′). w.l.o.g., we assume
that d and d/ρ are integers. First, we construct a graph G′ = (V ′,E ′) by adding
new vertices and edges to G as follows. For each edge (vi,v j) ∈ E , create k new
vertices v1

i j, . . . ,v
k
i j where 1 ≤ k ≤ �1/ρ� and ρ ≤ 1/2. Then we add 2k new edges

(vl
i j,vi) and (vl

i j,v j) for all l ∈ [1,k] as shown in Fig. 10.3. Clearly, G′ = (V ′,E ′) is
a d-bounded graph.

Let φ and ϕ be feasible solutions to MVC on G and G′ respectively. We claim
that OPT (φ) = OPT (ϕ).

On one hand, if S = {v1,v2, . . . ,v j} ∈V is the minimum vertex cover on G. Then
{v1,v2, . . . ,v j} is a ρ-MDS on G′ because each vertex in V has ρ of all neighbors
in MVC and every new vertex in V ′ \V has at least one of two neighbors in MVC.
Thus, OPT (φ)≥ OPT (ϕ).

One the other hand, we can prove that OPT (ϕ) does not contain new vertices,
that is, V ′ \V . Consider a vertex vi ∈ V , if vi ∈ OPT (ϕ), the new vertices vl

i j for
all v j ∈ N(vi) and all l ∈ [1,k] are not needed to be selected. If vi �∈ OPT (ϕ), it has
to be dominated by ρ proportion of its all neighbors. That is, for each edge (vi,v j)
incident to vi, either v j or all vl

i j have to be selected since every vl
i j has to be either

selected or dominated. If all vl
i j are selected in OPT (ϕ) for some edge (vi,v j), v j is

still not dominated by enough vertices if there are some more edges incident to v j

and the number of vertices vl
i j k is great than 1, that is, �1/ρ� ≥ 1. In this case, v j

will be selected to dominate all vl
i j. Thus, OPT (ϕ) does not contain new vertices.

Since the vertices in V selected is a solution to ρ-MDS, that is, for each vertex vi
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in graph G, vi will be selected or at least the number of neighbors of vi will be
selected. Therefore, the vertices in OPT (ϕ) consist of a vertex cover in G. Thus,
OPT (φ)≤OPT (ϕ). Then we show the completeness and soundness as follows.

• If OPT(φ) = m⇒ OPT(ϕ) = m
• If OPT(φ )>

(
2− (2+od(1))

log log(d/2)
log(d/2)

)
m⇒ OPT(ϕ)>

(
2− (2+od(1))

log logd
logd

)
m

OPT (ϕ)>
(

2− (2+ od(1))
log log(d/ρ)

log(d/ρ)

)
m >

(
2− (2+ od(1))

loglogd
logd

)
m

since the function f (x) = 2− loglogx/ logx is monotonously increasing for any
x > 0.

Theorem 10.9. ρ-MDS is hard to be approximated into 1+
2
(

1−(2+oc(1))
loglogc

logc

)
2+(ζ (β )cβ−1)(c+1)

on

power-law graphs under unique games conjecture.

Proof. By constructing the power-law graph G(α ,β ) based on cycle-based embed-
ding technique in Theorem 10.2 from d-bounded graph Gd , we have C = 1 +
(ζ (β )dβ−1)(d+1)

2 from the optimal MVC on OPT (φ), clique K2, cycle, d-regular cycle
and κ-branch-d-cycles as

OPT (ϕ) = OPT (φ)+ n1/2+ f (ρ)n2+ g(ρ)n3

≤ OPT (φ)+
N− n

2
≤

(
1+

(ζ (β )dβ − 1)(d+ 1)
2

)
OPT (φ),

where f (ρ) =

{
1
4 , ρ ≤ 1

3
1
3 ,

1
3 < ρ ≤ 1

2

, g(ρ) = 1
3 for all ρ ≤ 1

2 and φ , ϕ are feasible

solutions of MVC on Gd and G(α ,β ). n1, n2 and n3 are correspondent to the number
of vertices in cliques K2, cycle, d-regular cycle and κ-branch-d-cycle.

Since ε = 2− (2 + od(1)) loglogd/ logd, the inapproximability factor can be
derived from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2
(

1− (2+ oc(1))
log logc

logc

)
2+(ζ (β )cβ − 1)(c+ 1)

,

where c is the smallest d satisfying the condition in [6]. The last inequality holds
since function f (x) = (1− (2+ox(1)) log logx/ logx)/g(x)(x+1) is monotonously
decreasing when f (x) > 0 for all x > 0 when g(x) is monotonously increasing.
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Algorithm 3: Graphic Sequence Construction Algorithm
Input : d-degree sequence D = 〈d1,d2, . . .,dn〉 where d1 ≥ d2 ≥ . . .≥ dn

Output: Graph H
1 while D �= /0 do
2 Connect vertex of d1 to vertices of d2,d3, . . . ,dd1+1;
3 d1← 0;
4 for i = 2 to d1 +1 do
5 di← di−1;
6 end
7 Sort D in non-increasing order;
8 Remove all zero elements in D;
9 end

10.5 More Inapproximability Results on Simple
Power-Law Graphs

10.5.1 General Graphic Embedding Technique

In this section, we introduce a general graphic embedding technique to embed a d
bounded graph into a simple power-law graph. Before presenting the embedding
technique, we first show that a graph can be constructed in polynomial time from a
class of integer sequences.

Lemma 10.3. Given a sequence of integers D = 〈d1,d2, . . . ,dn〉 which is non-
increasing, continuous and the number of elements is at least as twice as the largest
element in D, i.e., n ≥ 2d1, it is possible to construct a simple graph G whose d-
degree sequence is D in polynomial time O(n2 logn).

Proof. Starting with a set of individual vertices S of degree 0 and |S| = n, we
iteratively connect vertices together to increase their degrees up to given degree
sequence. In each step, the leftover vertex of highest degree is connected to other
vertices one by one in the decreasing order of their degrees. Then the sequence D
will be resorted and all zero elements will be removed. The algorithm stops until D
is empty. The whole algorithm is shown as follows (Algorithm 3).

After each while loop, the new degree sequence, called D′, is still continuous and
its number of elements is at least as twice as its maximum element. To show this,
we consider three cases: (1) If the maximum degree in D′ remains the same, there
are at least d1 + 2 vertices in D. Since D is continuous, the number of elements in
D is at least d1 + 2+ d1− 1, that is, 2d1 + 1. Therefore, the number of elements in
D′ is 2d1, i.e., n ≥ 2d1 still holds. (2) If the maximum degree in D′ is decreased by
1, there are at least two elements of degree d1 in D. Thus, at most one element in D
will become 0. Then we have n ≥ 2d1− 2 = 2(d1− 1). (3) If the maximum degree
in D′ is decreased by 2, there are at most two elements in D becoming 0. Thus,
n≥ 2d1− 3 > 2(d1− 2).
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Algorithm 4: Graphic Embedding Algorithm

1 α ←max{ β
β−1 (ln4+β lnd), ln2+ lnn+β lnd} and corresponding G(α,β );

2 D be the d-degree sequence of G(α,β ) \Gd ;
3 Construct G(α,β ) \Gd using Algorithm 3.

The time complexity of the algorithm is O(n2 logn) since there are at most n
iterations and each iteration takes at most O(n logn) to sort the new sequence D.

Theorem 10.10 (Graphic Embedding Technique). Any d-bounded graph Gd can
be embedded into a simple power-law graph G(α ,β ) with β > 1 in polynomial time
such that Gd is a maximal component and the number of vertices in G(α ,β ) can be
polynomially bounded by the number of vertices in Gd.

Proof. Given a d-bounded degree graph Gd = (V,E) and β > 1, we construct a
power-law graph G(α ,β ) of exponential factor β which includes Gd as a set of
maximal components. The construction is shown as Algorithm 4.

According to Lemma 10.3, the above construction is valid and finishes in
polynomial time. Then we show that N is upper bounded by ζ (β )2dβ n, where n and
N are the number of vertices in Gd and G(α ,β ) respectively. From the construction,
we know either

α ≥ β
β − 1

(ln4+β lnd)⇒ α ≥ ln4+β lnd +α/β ⇒ eα

dβ ≥ 4e
α
β

or

α ≥ ln2+ lnn+β lnd⇒ eα

dβ ≥ 2n.

Therefore, eα

dβ ≥ 2e
α
β + n. Note that

⌊
eα

dβ

⌋
is the number of vertices of degree d.

In addition, G has at most n vertices of degree d, so D is continuous degree sequence
and has the number of vertices at least as twice as the maximum degree.

In addition, when n is large enough, we have α = ln2+ lnn+ β lnd. Hence,
the number of vertices N in G(α ,β ) is bound as N ≤ ζ (β )eα = 2ζ (β )dβ n, i.e., the
number of vertices of G(α ,β ) is polynomial bounded by the number of vertices in Gd .

10.5.2 Inapproximability of MIS, MVC and MDS

Theorem 10.11. For any ε > 0, it is NP-hard to approximate maximum indepen-
dent set within 1+ 1

1120ζ (β )3β − ε on simple power-law graphs.

Proof. In this proof, we construct the simple power-law graph G(α ,β ) based on
graphic embedding technique in Theorem 10.10 from d-bounded graph Gd . Let φ
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and ϕ be feasible solutions of MIS on Gd and G(α ,β ). Since OPT (φ)≥ n/(d+1) on

d-bounded graphs and N ≤ 2ζ (β )dβ n, we further have C= 2ζ (β )dβ (d + 1) from

OPT (ϕ)≤ N ≤ 2ζ (β )dβ n≤ 2ζ (β )dβ (d + 1)OPT(φ).

Since ε = 140
139−ε ′ for any ε ′ > 0 on three-bounded graphs, the inapproximability

factor can be derived from inapproximability optimal substructure framework as

δ >
εC

(C− 1)ε + 1
= 1+

1
140C− 1

− ε > 1+
1

1120ζ (β )3β − ε.

Theorem 10.12. It is NP-hard to approximate minimum dominating set within 1+
1

3120ζ (β )3β on simple power-law graphs.

Proof. From the proof of Theorem 10.11, we have C= 2ζ (β )dβ (d+1). Then since
ε = 391

390 on three-bounded graphs, we have

δ > 1+
ε− 1
C
≥ 1+

1

3120ζ (β )3β .

Theorem 10.13. There is no 1+
2−(2+oc(1))

loglogc
logc

2ζ (β )cβ (c+1)
approximation algorithm of Min-

imum Vertex Cover on simple power-law graphs under unique games conjecture.

Proof. Similar as the proof of Theorem 10.12, we have C= 2ζ (β )dβ (d + 1). Then
since ε = 2−(2+od(1)) log logd/ logd, the inapproximability factor can be derived
from inapproximability optimal substructure framework as

δ > 1+
ε− 1
C
≥ 1+

2− (2+ oc(1))
log logc

logc

2ζ (β )cβ (c+ 1)
,

where c is the smallest d satisfying the condition in [6].

Theorem 10.14. There is no 1 +
2−(2+oc(1))

loglogc
logc

2ζ (β )cβ (c+1)
approximation algorithm for

minimum positive dominating set on simple power-law graphs.

Proof. Similar Theorem 10.14, the proof follows from Theorem 10.8.

10.5.3 Maximum Clique, Minimum Coloring

Lemma 10.4 (Ferrante et al. [16]). Let G = (V,E) be a simple graph with n
vertices, β ≥ 1 and α ≥ max{4β ,β logn + log(n+ 1)}. Then, we can construct
a graph G2 such that G2 = G1 \G is a bipartite graph and G1 is a simple (α,β )
power-law graphs.
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Lemma 10.5. Given a function f (x) (x ∈ Z, f (x) ∈ Z
+) monotonously decreases,

then ∑x f (x)≤ ∫
x f (x).

Corollary 10.2. eα ∑eα/β
i=1

( 1
d

)β
< (eα − eα/β )/(β − 1).

Theorem 10.15. Maximum clique cannot be approximated within O
(

n1/(β+1)−ε
)

on simple large power-law graphs with β > 1 and n > 54 for any ε > 0 unless
NP=ZPP.

Proof. In [16], the authors proved the hardness of maximum clique problem on
power-law graphs. Here we use the same construction. According to Lemma 10.4,
G2 = G \G1 is a bipartite graph when α ≥ max{4β ,β logn+ log(n+ 1)} for any
β ≥ 1. Let φ be a solution on general graph G and ϕ be a solution on power-law
graph G2. We show the completeness and soundness.

• If OPT (φ) = m⇒OPT (ϕ) = m
If OPT (φ) ≤ 2 on graph G, we can solve clique problem in polynomial time by
iterating the edges and their endpoints one by one. However, G is not a general
graph in this case. w.l.o.g., assuming OPT (φ)> 2, then OPT (ϕ) = OPT (φ)> 2
since the maximum clique on bipartite graph is 2.

• If OPT (φ)≤ m/n1−ε ⇒ OPT (ϕ)< O
(

1/(N1/(β+1)−ε ′)
)

m

In this case, we consider the case that 4β < β logn+ log(n+ 1), that is, n > 54.
According to Lemma 10.4, let α = β logn+ log(n+1). From Corollary 10.2, we
have

N = eα
Δ

∑
i=1

(
1
i

)β
<

eα − eα/β

β − 1
=

nβ (n+ 1)− n(n+ 1)1/β

β − 1
<

2nβ+1− n
β − 1

.

Therefore, OPT (ϕ) = OPT (φ)≤ m/n1−ε < O
(

m/
(

N1/(β+1)−ε ′
))

.

Corollary 10.3. Minimum coloring problem cannot be approximated within

O
(

n1/(β+1)−ε
)

on simple large power-law graphs with β > 1 and n > 54 for

any ε > 0 unless NP=ZPP.

10.6 Relationship Between β and Approximation Hardness

As shown in previous sections, many hardness and inapproximability results
are dependent on β . In this section, we analyze the hardness of some optimal
substructure problems based on β by showing that trivial greedy algorithms can
achieve constant guarantee factors for MIS and MDS.

Lemma 10.6. When β > 2, the size of MDS of a power-law graph is greater than
Cn where n is the number of vertices, C is some constant only dependent on β .



274 Y. Shen et al.

Proof. Let S = (v1,v2, . . . ,vt) of degrees d1,d2, . . . ,dt be the MDS of power-law
graph G(α ,β ). Observing that the total degrees of vertices in dominating set must be
at least the number of vertices outside the dominating set, we have ∑i=t

i=1 di ≥ |V \S|.
With a given total degree, a set of vertices has minimum size when it includes the
vertices of highest degrees. Since the function ζ (β −1)=∑∞

i=1
1

iβ−1 converges when
β > 2, there exists a constant t0 = t0(β ) such that

Δ

∑
i=t0

i

⌊
eα

iβ

⌋
≥

t0

∑
i=1

⌊
eα

iβ

⌋
,

where α is any large enough constant. Thus, the size of MDS is at least

Δ

∑
i=t0

⌊
eα

iβ

⌋
≈

(
ζ (β )−

t0−1

∑
i=1

1

iβ

)
eα ≈C|V |,

where C = (ζ (β )−∑t0
i=1

1
iβ
)/(ζ (β )).

Consider the greedy algorithm which selects from the vertices of the highest
degree to the lowest. In the worst case, it selects all vertices with degree greater than
1 and a half of vertices with degree 1 to form a dominating set. The approximation
factor of this simple algorithm is a constant.

Corollary 10.4. Given a power-law graph with β > 2, the greedy algorithm that
selects vertices in decreasing order of degrees provides a dominating set of size
at most ∑Δ

i=2

⌊
eα/iβ

⌋
+ 1

2 eα ≈ (ζ (β )− 1/2)eα . Thus the approximation ratio is
(ζ (β )− 1

2 )/(ζ (β )−∑t0
i=1 1/iβ ).

Let us consider another maximization problem MIS, we propose a greedy
algorithm Power-law-Greedy-MIS as follows. We sort the vertices in non-increasing
order of degrees and start checking from the vertex of the lowest degree. If the vertex
is not adjacent to any selected vertex, it is selected. The set of selected vertices forms
an independent set with the size at least a half the number of vertices of degree 1
which is eα/2. The size of MIS is at most a half of number of vertices. Thus, the
following lemma holds.

Lemma 10.7. Power-law-Greedy-MIS has factor 1/(2ζ (β )) on power-law graphs
with β > 1.

10.7 Minor NP-Hardness on Simple Power-Law Graphs
for β < 1

In the section, we show some minor NP-hardness of optimal substructure problems
on simple power-law graphs for small β < 1.
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Definition 10.17 (Eligible Sequences). A sequence of integers S = 〈s1, . . . ,sn〉 is
eligible if s1 ≥ s2 ≥ . . .≥ sn and fS(k)≥ 0 for all k ∈ [n], where

fS(k) = k(k− 1)+
n

∑
i=k+1

min{k,si}−
k

∑
i=1

si.

Erdős and Gallai [13] showed that an integer sequence is graphic – d-degree
sequence of an graph, if and only if it is eligible and the total of all elements is even.
Then Havel and Hakimi [9] gave an algorithm to construct a simple graph from a
degree sequence. We now prove the following eligible embedding technique based
on this result.

Theorem 10.16 (Eligible Embedding Technique). Given an undirected simple
graph G= (V,E) and 0< β < 1, there exists polynomial time algorithm to construct
a power-law graph G′ = (V ′,E ′) of exponential factor β such that G is a set of
maximal components of G′.

Proof. To construct G′, we choose α = max{β ln(n− 1)+ ln(n+ 2),3ln2}. Then
�eα/((n− 1)β )�> n+ 2, i.e., there are at least two vertices of degree d in G′ \G if
there are a least two vertices of degree d in G′. According to the definition, the total
degrees of all vertices in G′ and G are even. Therefore, the lemma will follow if we
prove that the degree sequence D of G′ \G is eligible.

In D, the maximum degree is �eα/β �. There is only one vertex of degree i if
1≤ eα/iβ < 2, i.e., eα/β ≥ i > (eα/2)1/β .

Let us consider fD(k) in two cases:

1. Case: k ≤ ⌊
eα/β/2

⌋

fD(k) = k(k− 1)+
n

∑
i=k+1

min{k,di}−
k

∑
i=1

di

> k(k− 1)+
T−k

∑
i=k

k+
k−1

∑
i=B

i+
B−1

∑
i=1

2−
k

∑
i=1

(T − k+ 1)

= k(T − k)+ (k−B)(k− 1+B)/2+B(B−1)− k(2T− k+ 1)/2

= (B2−B)/2− k,

where T =
⌊
eα/β⌋ and B =

⌊
(eα/2)1/β⌋+ 1. Note that α/β > ln2(2/β + 1)

since α > 3ln2 and 0 < β < 1. Hence
(⌊
(eα/2)1/β⌋+ 1

)(⌊
(eα/2)1/β⌋) >⌊

eα/β⌋≥ 2k, that is, fD(k)> 0.

2. Case: k >
⌊
eα/β/2

⌋
fD(k+ 1)≥ fD(k)+ 2k− 2dk+1≥ fD(k) ≥ . . .≥ fD(

⌊
eα/β/2

⌋
)> 0.
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Corollary 10.5. An optimal substructure problem is also NP-hard on power-law
graphs for all 0 < β < 1 if it is NP-hard on simple general graphs.

Proof. According to Theorem 10.16, we can embed an undirected graph G = (V,E)
into a power-law graph G′ of β lying in (0,1) and of vertices polynomial time in the
size of G. Since the optimization problem has optimal substructure property and G
is a set of maximal connected components of G′, its optimum solution for the graph
G can be computed easily from an optimal solution for G′. This completes the proof
of NP-hardness.

10.8 Conclusion

This chapter focuses on the analysis of approximation hardness and inapproxima-
bility for optimal substructure problems on power-law graphs. These problems are
only illustrated not be able to approximated into some constant factors on both
general and simple power-law graphs although they remain APX-hard. However, we
also notice that the gap between inapproximability factor and the simple constant
approximation ratio of these problems is still not small enough and the hardness on
power-law graph is weaker than that on degree bounded graphs. Is there any efficient
reduction which is not from bounded graph will improve the hardness results on
power-law graphs? Can we obtain stronger hardness results based on some specific
power-law models? For example, if the number of vertices only follow power-law
distribution when degree is larger than some constant i0, we can reduce from graph
of degree bounded by i0 and get better results.

On the contrary, we also show that maximum clique and minimum coloring are
still very hard to be approximated since the optimal solutions to these problems
are dependent on the structure of local graph components rather than global graph.
In other words, the power-law distribution in degree sequence does not help much
for such optimization problems without optimal substructure property.
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Chapter 11
Path Problems in Complex Networks

Pavel Ghosh and Arun Sen

Abstract In this chapter network path problems arising in several different domains
have been discussed. Based on the different characteristics of the paths typical to
the nature of the application domain, a general classification of the problems has
been made. The goal of path computation may be finding a single path or multiple
paths between a source-destination node pair in a network. In case of multiple
path computation, one may seek to find totally disjoint or partially disjoint paths.
In this chapter, two problems corresponding to a single path scenario and two
corresponding to a multiple path scenario have been discussed in four different
subsections. In these subsections, the problems have been formally defined first,
followed by discussion on the proposed algorithms for solution of the problems,
complexity analysis and experimental results.

11.1 Introduction

One of the most complex networks ever created by the human beings is the
Internet.Since its inception in the 1960, it has grown be a vital part of everyday life
of nearly a third of the human race. It is estimated that 1.9 billion people are using
the Internet today with 5 million terabytes of data available on it. There are 193
million registered domain names and according to the Internet Systems Consortium
(www.isc.org) as of July 2008 there were nearly 600 million end systems attached
to the Internet. This number does not include cell phones, laptops and other devices
that are only intermittently connected to the Internet. Given the proliferation of the
smart phones in the last few years, the number of end systems today could very
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well be above a billion. In the studies undertaken in the 1990s, it has been shown
that the Internet is a scale-free network that with a power-law degree distribution.
The focus of this chapter is to study path problems in this complex network known
as the Internet. Path problems in networks have been extensively studied by many
researchers in Mathematics, Computer Science, and Operations Research because of
their application in problems in many different domains. In most of these problems,
one weight is associated with a link representing, among other things, the cost,
delay or the reliability of that link. The objective most often is to find a least
weighted path between a specified source–destination pair. The classical shortest
path algorithms due to Dijkstra [7] and Bellman–Ford [1, 8] can be utilized for
this purpose. However, there can be many different variations of the path problems.
Some of the variants are listed below.

• One might be interested in finding a single path between a source–destination
node pair, or multiple paths between them.

• In case of multiple paths, one might be interested in finding completely disjoint
paths or partially (maximally) disjoint paths.

• Both in case of single and multiple paths, there may be only a single weight
associated with each link or multiple weights associated with each link.

• In case of multiple weights, there can be multiple path lengths associated with
each path (computed using each weight independently) or a single path length
associated with each path (computed by some combination of multiple link
weights into a single super-weight).

• The weights associated with each link may be either time varying or time
invariant.

• The contribution of a link weight on the path length computation may be an
identity function ( f (x) = x) or a nonidentity function ( f (x) �= x).

• The contribution of a link weight on the path length computation may be
independent of the links traversed before traversing this link or dependent on it.
Accordingly, path length computation process can be viewed as without-memory
(Markovian) or with-memory (non-Markovian).

• Weights on various links of a path can be combined using an additive function or
a nonadditive function.

From the above discussion, it is clear that based on the desired objective of
different applications, path problems can be classified into several different fashions.
Various ways of classifying the path problems has been shown in Fig. 11.1. In
order to enhance the clarity of the presentation, several similar subtrees in different
branches has been omitted.

It is clear from the above classification that there can be many different variations
of the path problems. In this chapter, we focus only four of them – two single path
problems and two multiple path problems.

The first single path problem studied here relates to scenarios where the
contribution of a link to the path length computation depends not only on the weight
of that link but also the weights of the links already traversed. This is significantly
different from most of the other path problems where the contribution of a link to the
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Path Problems

Single Path Multiple Paths

Totally 
Disjoint 

Partially (maximally)
Disjoint

Single weight
on links

Multiple weights
on links

Time Invariant Time Varying

Single Path 
Length

Multiple Path 
Lengths

Contribution as
Identity Function

Contribution as
Non-identity Function

Memory-less with Memory

Additive 
Function

Non-additive
Function

Tree
Expansion

in the multiple path
scenario is  the
same as in the

single-path
scenario and is not

shown for clarity

Fig. 11.1 Variation of the path problems

path length computation depends only on the weight of that link and is independent
of the weights of the links already traversed. This condition is similar to a Markov
chain where the next state is dependent only on the current state and is independent
of the past states. This class of path problems may be viewed as “non-Markovian”
as the contribution of a link towards the path length depends on the current link as
well as the links traversed in the past on the path from the source to the destination.
We present results of such path problems in Sect. 11.2.1.

The second single path problem studied here relates to the growth of bulk data
and fast distribution of voluminous data. The recent emergence of bulk data is
visible both in the entertainment, business and scientific world. In entertainment,
very large content such as digital video programming or VOD movies need to be
distributed from central server to edge servers for subsequent on-demand streaming
to recipients. In network assisted storage (NAS) appliances, large pieces of data
files need to be updated, replicated and reconciled at remote storage locations
inter-connected over IP network. Large software companies and enterprises require
updating their mirror sites with their software products. In e-science collaboration,
large experimental data are moved among geographically distributed location using
underlying IP network. To that end, in an interview in ACM queue [21], Turing
award winner Jim Grey indicated for his work with astronomers, he had to exchange
2 terabytes of data regularly with his collaborators and the data size is expected to
grow to 40 terabytes soon. In contrast to streaming or related real-time applications,
bulk data applications are elastic and do not care about packet delay or rate/flow
level guarantees. Instead, the only performance metric of importance to a bulk data
is the net transfer time. In Sect. 11.2.2, we focus on exactly the same metric and
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try to explore a relevant routing problem in bulk data transfer. Specifically, we
consider a realistic case of a network where the link bandwidth varies over time.
Such a scenario is of practical importance where we focus on large-scale data files
requiring hours of transfer time. For example, assuming 10 megabytes/s of sustained
data transfer over a period of time, it may take more than 2 days to transfer a file of
size 2 terabytes. One cannot assume that link bandwidth will remain stationary for
that entire duration.

The first multiple path problem studied here relates to computation of widest
pair of disjoint paths. As multiple path routing between a source–destination node
pair offers significant advantages over traditional single path routing, the topic has
received considerable attention in the networking research community in the last
few years. The advantages of multipath routing include better network utilization,
reduced congestion, increased probability for survival in case of failure and better
traffic engineering. These advantages can be exploited to its fullest extent if the
paths are (node or link) disjoint. For this reason, routing using disjoint or nearly
disjoint paths have received special attention from the researchers [32–34, 41–48].
Suurballe [46,47] was one of the earliest researchers to explore disjoint path routing.
He presented polynomial time algorithms for computation of a pair of disjoint paths
such that the sum of the path lengths is minimum. In [42,44] it has been shown that
the problem of finding a disjoint pair of paths such that the length of the longer path
of the pair is shortest among all such pairs is NP-complete. In all these papers, the
metric used for computation of the length of a path is additive [19]. An example
of such a metric is the delay associated with each link of the network. Although
bandwidth as a metric is just as important as the delay for quality-of-service routing,
results comparable to [46, 47] is not known for nonadditive metrics like bandwidth.

The bandwidth of a path is equal to the bandwidth of the link with the smallest
capacity used by the path. A path from a source node s to a destination node t
is known as the widest path if the bandwidth of this path is largest among all
paths between s to t [19]. Algorithms for computation of a widest path between a
source–destination node pair is well studied [19]. In Sect. 11.3.1, we study problems
related to disjoint path routing with a nonadditive metric like bandwidth and present
results related to the computation of widest pair of disjoint paths. We consider two
versions of the problem. In the first version, we address the problem of finding a pair
of disjoint paths between a source–destination node pair, such that the combined
bandwidth of this path-pair is maximum over all such path-pairs. In the second
version, we want to find a pair of disjoint paths, such that the bandwidth of the
first path is at least X1 and the bandwidth of the second path is at least X2, for
some prespecified values X1 and X2. We prove that both versions of the problem
are NP-complete. We provide exact and approximate solutions for both versions of
the problem.

The second multiple path problem studied here relates to routing in the Internet
using transit hubs. The current Internet routers select only a single path for a given
destination. The choice of this default IP path is not left to the end hosts instead
on the administrative system (AS) domain operator or on the BGP level policies.
Relying just on the single default path may lead to various end-to-end performance
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bottlenecks. Empirical studies reported by authors in [62] shows that about 50%
of the bandwidth bottlenecks are not on access links to users but within the ISP
carrier networks. These studies suggest that just by upgrading the last mile access
link, one cannot assure a better level of end-to-end performance. It, thus, makes a
clear case for the need of alternate path to avoid bottleneck at core network. Such
a case was validated by experimental studies conducted by authors of DETOUR
[63] showing that in many cases alternate overlay paths have better latency and
throughput characteristics than direct default IP paths. For example, in specific
experiments the authors in [63] have shown that in 30% of direct IP paths have
better alternate paths with respect to the round trip time metric and 70% of direct IP
paths have better alternate paths with respect to the loss metric.

However, alternate paths cannot be directly created using existing routers as
they do not provide any rerouting flexibilities. Circumventing this problem, it was
proposed in [20, 63, 64] to deploy intermediate nodes that can provide a level of
indirection in creating alternate path. These nodes often referred as overlay node,
rendezvous point [64], transit hubs have the capability of forwarding packets and can
realize an end-to-end alternate path by chaining a set of default IP paths. Forwarding
and routing of packets along the alternate path can be done at application layer
by forming an overlay network as [20]. Another approach is to use IP-in-IP
encapsulation [65]. In this case, an IP header indicating the final destination is
encapsulated in the payload of another IP header. The latter header contains in its
destination address field the IP address of an intermediate router.

Formally, the K-transit hub routing problem can be stated as follows. Suppose
the path Pvi,v j between every pair of nodes vi and v j is known. Given the source and
the destination nodes s and t respectively, is it possible to establish an alternate path
from s to d, disjoint from the primary path Ps,d , by concatenating at most K other
paths Pvi,v j ? In other words, is it possible to find a set of paths {Ps,v1 ,Pv1,v2 ,Pv2,v3 ,
Pv3,v4 , . . . ,Pvk−1,vk ,Pvk,d} such that the concatenation of these paths will produce a
path from s to d subject to the constraints that (1) no two paths in this set share an
edge and (2) no paths in this set share an edge with the primary path Ps,d? If such
paths exist, it is possible to establish two disjoint paths between the nodes s and d
and utilize the bandwidths of both the paths for data transfer.

11.2 Single Path Problems

11.2.1 Shorest Path Computation with Non-Markovain Link
Contribution to Path Length

In this subsection, we consider two specific problems that can be classified as non-
Markovian. One of them is encountered in the multimedia data transmission domain
and the other one is encountered in the VLSI circuit design domain. We consider
these problems under different conditions and develop algorithms for the problems
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under these conditions. The shortest path problem in multimedia data transmission
environment can be solved in O(n2) or O(n3) computational time. We also provide
mathematical programming solutions for the multimedia data transmission problem
as well as the VLSI circuit design problem.

11.2.1.1 Problem Formulation

In the classical path problem, each edge ei ∈ E of the graph G = (V,E) has a weight
wi associated with it and if there is a path P from the node v0 to vk in the graph
G = (V,E)

v0
w1→ v1

w2→ v2
w3→ . . .

wk→ vk,

then the path length or the distance between the nodes v0 and vk is given by

PL(v0,vk) = w1 +w2 + · · ·+wk.

This model is valid as long as the weights on the links represents the cost or the
delay associated with the link. However, if the weight represents the reliability
or the bandwidth associated with the link, then addition of the link weights
on the path is not meaningful. In case the weights represent the reliability, the
calculation once again becomes meaningful if the addition operator is replaced by a
multiplication operator. In case the weight represents the bandwidth, the calculation
becomes meaningful if a minimum operator replaces the addition operator. Thus a
generalization of the path length will be

PL(v0,vk) = w1⊕w2⊕w3⊕·· ·⊕wk,

where ⊕ is a suitable operator for the particular application. In [19], the authors
consider three different types of operators and call them additive, multiplicative and
concave metrics, respectively.

In the next level of generalization, the path length computation is based on not
the link weight itself but a function of the link weight. In this case the path length is
given by

PL(v0,vk) = f (w1)⊕ f (w2)⊕ f (w3)⊕·· ·⊕ f (wk),

where f (wi) can be any function of the link weight wi, appropriate for the particular
application.

In the next higher level of generalization each link has multiple weights asso-
ciated with it. This model realistically captures the data transmission environment
where the Quality of Service (QoS) issues are of paramount importance. The various
weights associated with a link may represent among other things, the delay, the cost,
the jitter, the cell loss rate, etc. In this case the path length computation is carried
out in one of the following two ways:
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Case I: In this case, each path has multiple path lengths associated with it. If
(wi,1,wi,2, . . . ,wi,m) are m different link weights associated with the link ei, then
there are m different path lengths associated with a path between a given source
node v0 and a given destination node vk and they are given as the following vector:

⎡
⎢⎢⎢⎣

PL1(v0,vk)

PL2(v0,vk)
...

PLm(v0,vk)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

f (w1,1)⊕ f (w2,1)⊕·· ·⊕ f (wk,1)

f (w1,2)⊕ f (w2,2)⊕·· ·⊕ f (wk,2)
...

f (w1,m)⊕ f (w2,m)⊕·· ·⊕ f (wk,m)

⎤
⎥⎥⎥⎦ .

This class of problems is known as the multicriteria optimization problems and
is studied in [9, 10, 12, 17–19].

Case II: In this case, each path has a single path length associated it and it is
given by:

PL(v0,vk) = f (w1,1, . . . ,w1,m)⊕ f (w2,1, . . . ,w2,m)⊕·· ·⊕ f (wk,1, . . . ,wk,m),

where (wi,1,wi,2, . . . ,wi,m) are m different link weights associated with the link ei,
appropriate for the particular application. It may be noted that this formulation gives
rise to a single criterion optimization problem as opposed to the multiple criteria
optimization problem formulated in Case I.

Both Case I and Case II of the previous level can be further generalized at the
next higher level. As in the previous case, each link has multiple weights associated
with them. In this level of generalization, the contribution of a link in the path length
computation depends not only on the weights associated with that link but also on
the weights of the links already traversed. In this case, the path length for Case I is

⎡
⎢⎢⎢⎣

PL1(v0,vk)

PL2(v0,vk)
...

PLm(v0,vk)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

f (w1,1)⊕·· ·⊕ f (w1,1, · · · ,wk,1)

f (w1,2)⊕·· ·⊕ f (w1,2, · · · ,wk,2)
...

f (w1,m)⊕·· ·⊕ f (w1,m, · · · ,wk,m)

⎤
⎥⎥⎥⎦ .

At this level of generalization, the path length for Case II is

PL(v0,vk) = f (w1,1, . . . ,w1,m)⊕ f (w1,1, . . . ,w1,m,w2,1, . . . ,w2,m)⊕·· ·
⊕ f (w1,1, . . . ,w1,m, . . . ,wk,1, . . . ,wk,m).

The two path problems discussed here belong to this last category.
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1. Path Problem in Multimedia Data Transmission

In the variant of the path problem for the multimedia data transmission, each edge
ei has two weights, δi and si associated with it, δi ≥ 0 and si ≥ 0. These two weights
are referred to as (1) the per unit delay factor and (2) the size factor, respectively. If
P is a path from the node v0 to vk,

v0
δ1,s1→ v1

δ2,s2→ v2
δ3,s3→ . . .

δk,sk→ vk,

then the path length or the total delay between the nodes v0 and vk denoted
PL(v0,vk) is given by

PL(v0,vk) = δ1 + s1δ2 + s1s2δ3 + . . .+ s1 . . . sk−1δk

=
k

∑
i=1

δi

i−1

∏
j=1

s j with
0

∏
j=1

s j = 1.

It is clear that the path length in this case fits into the most general case discussed
in the previous paragraph with m = 2,wi,1 = δi,wi,2 = si and f (w1,1,w1,2,w2,1,w2,2,
. . . ,wi,1,wi,2) = s1s2 . . .si−1δi, for all i, 1≤ i≤ k, and s0 = 1.

The physical significance of the parameters δi and si are as follows: the
transmission delay is clearly proportional to the size of the multimedia data file
being transmitted. Therefore, we consider the per unit delay factor δi and to compute
the total delay, we multiply δi with the size of the file being transmitted. As a
multimedia data file travels through different nodes in a network on its journey from
the source to the destination, it passes through some compression or decompression
algorithms. As a result the size of the multimedia data file may change. The size
factor si captures this aspect of multimedia data transmission. The expression for
the path length (or total delay) given above is obtained on the assumption that one
unit of data is being transmitted from the source to the destination.

2. Path Problem in VLSI Circuit Design

In the VLSI circuit design domain, one often encounters a resistor–capacitor (RC)
circuit of the form shown in Fig. 11.2. For the purpose of computing the signal
propagation delay between the points S and T , the RC-circuit is modeled as a graph
shown in Fig. 11.3. Each link ei of this graph has two weights ri and ci associated
with it and the delay between the points S and T is given by [11].

r1(c1 + c2 + c3 + c4)+ r2(c2 + c3 + c4)+ r3(c3 + c4)+ r4(c4).

In general, if the RC-circuit contains k resistors and k capacitors, the delay or the
path length between the source node v0 and the destination node vk is given by

PL(v0,vk) = r1(c1 + . . .+ ck)+ r2(c2 + . . .+ ck)+ . . .+ rk(ck)
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S T
X Y Zr1 r2 r3 r4

c1 c2 c3 c4

Fig. 11.2 RC circuit

Fig. 11.3 Delay model
of RC circuit S T

X Y Z

(r1,c1) (r2,c2) (r3,c3) (r4,c4)

or it can be rewritten as

PL(v0,vk) = c1(r1)+ c2(r1 + r2)+ . . .+ ck(r1 + . . .+ rk)

=
k

∑
i=1

ci

(
i

∑
j=1

r j

)
.

Thus, it can be seen that the delay computation in this model also fits into the
most general case of path length computation discussed earlier in this section with
m = 2,wi,1 = ci,wi,2 = ri and

f (w1,1,w1,2,w2,1,w2,2, . . . ,wi,1,wi,2) = ci

(
i

∑
j=1

r j

)
, for all i,1≤ i≤ k.

11.2.1.2 Path Problem in Multimedia Data Transmission

The length of a path P(v0,vk) : v0→v1→v2→ . . .→vk, in the multimedia data trans-
mission problem, is given by PL(v0,vk) = δ1 + s1δ2 + s1s2δ3 + . . .+ s1 . . . sk−1δk.
The traditional shortest path algorithms such as the Dijkstra’s algorithm make the
observation that “subpaths of shortest paths are shortest paths” [6] and exploits
it to develop the shortest path algorithm. The main lemma on which the Dijkstra’s
algorithm depends is given below. The proof of the lemma can be found in [6].

Lemma 11.1. Given a weighted directed graph G = (V,E) with weight function
wi associated with each link ei, (ei ∈ E,1 ≤ i ≤ |E|), and the length of a path
is computed as the sum of the weights of the links on that path. Let P(v0,vk):
v0→v1→v2→ . . .→vk be a shortest path from vertex v0 to vertex vk and for any i
and j such that 0 ≤ i ≤ j ≤ k, let P(vi,v j) : vi→vi+1→ . . .→v j be a subpath of P
from vertex vi to vertex v j. Then, P(vi,v j) is the shortest path from vi to v j [6].

Corollary 11.1. If the shortest path from the source node s to the destination node
d is given by s = v0→v1→v2→ . . .→vk = d then s = v0→v1→v2→ . . .→vi is the
shortest path from s to vi for all i, 1≤ i≤ k− 1.
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Fig. 11.4 Shortest path
for MMD transmission,
Example 1
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Table 11.1 Delay factor δ
and the size factor s of the
graph in Fig. 11.4

Delay factor δ Size factor s

δS,A = 1 sS,A = 1
δS,C = 1 sS,C = 3
δA,B = 1 sA,B = 1
δB,X = 1 sB,X = 4
δC,X = 1 sC,X = 1
δX ,D = 1 sX ,D = 1
δD,T = 1 sD,T = 1

In other words, to get to the destination from the source using the shortest path,
the intermediate nodes must be visited using the shortest path from the source to the
intermediate nodes. This is true because, the path length in this case is computed
as the sum of weights on the links that make up the path. In case of multimedia
data transmission problem, where the path length is not computed as the sum of the
links weights, this is no longer true. This is demonstrated with an example shown
in Fig. 11.4. The δi and si values associated with the links of this graph is given
in Table 11.1.

With this data set the length of the path, S → C → X → D → T , is
δS,C + sS,CδC,X + sS,CsC,X δX ,D + sS,CsC,X sX ,DδD,T = 1 + 3.1 + 3.1.1 + 3.1.1.1 =
1 + 3 + 3 + 3 = 10 whereas the length of the path S→ A→ B→ X → D→ T
is δS,A + sS,AδA,B + sS,AsA,BδB,X + sS,AsA,BsB,X δX ,D + sS,AsA,BsB,X sX ,DδD,T =
1 + 1.1 + 1.1.1 + 1.1.4.1 + 1.1.4.1.1 = 1 + 1 + 1 + 4 + 4 = 11. Thus, the path
S→ C→ X → D→ T is shorter than the path S→ A→ B→ X → D→ T in the
example. However, in this example the length of the path S→C→ X is 1+3.1= 4,
which is greater than the length of the path S→ A→ B→ X , 1+ 1.1+ 1.1.1= 3.

As noted earlier, the length of a path P(v0,vk) : v0→v1→ . . .→vk, in the
multimedia data transmission problem, is given by PL(v0,vk) = δ1+s1δ2+s1s2δ3+
. . .+ s1 . . .sk−1δk. This path length function has an interesting property and this
property is utilized to establish the following lemma.

Lemma 11.2. Given a weighted directed graph G = (V,E) with weight functions
(δi,si), associated with each link ei, (ei ∈ E,1 ≤ i ≤ |E|), and the length of a path
P(v0,vk) : v0→v1→ . . .→vk computed as PL(v0,vk) = δ1 + s1δ2 + s1s2δ3 + . . .+
s1 . . . sk−1δk. Let P(v0,vk) : v0→v1→ . . .→vk be a shortest path from vertex v0 to
vertex vk and for any i, 1≤ i≤ k− 1, let P(vi,vk) : vi→vi+1→ . . .→vk be a subpath
of P from vertex vi to vertex vk. Then, P(vi,vk) is the shortest path from vi to vk,
1≤ i≤ k.
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Proof. The length function PL(v0,vk) = δ1 + s1δ2 + s1s2δ3 + . . . + s1 . . . sk−1δk

can be rewritten as PL(v0,vk) = δ1 + s1(δ2 + s2(δ3 + s3(δ4 + . . .+ sk−2(δk−1 +
sk−1δk) . . .). Consider the path P(vo,vk) : v0→v1→ . . .→vi−1→vi→vi+1→ . . .→vk.
The length of this path is PL(v0,vk) = δ1 + s1(δ2 . . .+ si−1(δi + si(δi+1 + . . .+
sk−2(δk−1 + sk−1δk) . . .). Thus, PL(v0,vk) = δ1 + s1(δ2 . . .+ si−1(PL(vi,vk) . . .). If
P(vi,vk) is not the shortest path between the nodes vi and vk with a path length
PL(vi,vk), then it can be replaced by a shorter path between the nodes vi and
vk, reducing the total path length PL(v0,vk) and contradicting the assumption that
P(v0,vk) is the shortest path between the nodes v0 and vk. "#

Path Problem in Multimedia Data Transmission with No Reduction in Size

In this subsection, we consider the case where the size factor, si, associated with
a link ei is greater than or equal to unity for all links. This implies that the data
size will never reduce from its original size while passing through a link. The more
general case where the size factor, si, does not have any such restriction (i.e., si is
allowed to be less than unity) will be considered in the next subsection.

Because of lemma 11.2 and the fact si ≥ 1,δi ≥ 0, we can apply a modified
version of Dijkstra’s algorithm to solve the shortest path problem in the multimedia
data transmission environment. The traditional version of the algorithm starts from
the source node and computes the shortest path to other nodes until it finds
the shortest path to the destination. In this modified version, we start from the
destination node and compute the shortest path from other nodes to the destination
nodes until it finds the shortest path from the source to the destination node. The
algorithm is given below:

Shortest Path Algorithm for Multimedia Data Transmission Environment

Input: The directed graph G = (V,E), (V = {1,2, . . . ,n}), two n×n matrices δ and
s, the (i, j)-th entry of the matrices stores the delay factor δ and the size factor s of
the link from the node i to node j. If there is no link from the node i to j, both δi, j

and si, j is taken to be ∞. Without any loss of generality, we assume that the node 1
is the source node and node n is the destination node.

Output: Array D(1, . . . ,n), that stores the shortest path length from node i to the
destination node n for all i, 1≤ i≤ n.

Comments: The algorithm starts from the destination node and in each iteration
finds the shortest path from a node i in the graph to the destination node n, 1 ≤
i≤ n− 1.

Theorem 11.1. If ∀i, j the delay factor δ (i, j) ≥ 0 and the size factor s(i, j) ≥ 1,
then the above algorithm correctly computes the shortest path from any node i,1 ≤
i≤ n− 1 to the destination node n.
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Algorithm 5 Shortest Path for Multimedia Data Transfer
1: C = {1,2, . . . ,n−1};
2: for i = n−1 downto 1 do do
3: D[i] = δ [i,n]
4: end for
5: repeat
6: v = i ∈C such that D[i] has the minimum value;
7: C =C \{v};
8: for each w ∈C do
9: D[w] = min(D[w],δ [w,v]+ s[w,v]D[v]);

10: end for
11: until n−2 times

Fig. 11.5 Shortest path
for MMD transmission,
Example 2
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Proof. In each iteration of the repeat loop, the node i that has the smallest value of
D[i] among the set of nodes in the set C, is removed from the set C. Suppose that
during the p-th iteration of the loop some node v was removed from the set C and
the corresponding D[v] never changed till the termination of the algorithm. Suppose,
if possible, that D[v] is not the shortest path length from node v to the destination
node n. Suppose that there exists a path from v to n through some node w ∈ C,
and the length of this path is shorter than D[v]. The length of such a path from v
to n is δ (v,w) + s[v,w]D[w]. If δ (v,w) + s[v,w]D[w] < D[v], when δ (i, j) ≥ 0 and
s(i, j) ≥ 1 then D[w] < D[v]. However, if D[w] is indeed smaller than D[v], during
the p-th iteration, the node w would have been removed from the set C, instead of
the node v, contradicting the assumption that the D[v] is not the shortest path length
from the node v to the destination node n. "#
Theorem 11.2. The complexity of the Algorithm 5 is O(n2).

Proof. The algorithm is a slight modification of the classical shortest path algo-
rithm due to Dijkstra. Following similar arguments as in the complexity analysis
of Dijkstra’s algorithm [6], the complexity of this algorithm can be shown to
be O(n2). "#

An example of the result of execution of the algorithm on the graph in Fig. 11.5
is shown in Table 11.2. In this graph, the source node is 1 and the destination
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Table 11.2 Shortest path
computation for the graph in
Fig. 11.5

Iteration
number Nodes of the graph

1 2 3 4 5 6
1 ∞ ∞ ∞ 1∗ 3 0
2 ∞ 3 4 1 3∗ 0
3 ∞ 3∗ 4 1 3 0
4 7 3 4∗ 1 3 0
5 5∗ 3 4 1 3 0

Fig. 11.6 Shortest path
for MMD transmission,
Example 3
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Table 11.3 Delay factor δ
and the size factor s of the
graph in Fig. 11.6

Delay factor δ Size factor s

δS,A = 1 sS,A = 1
δA,X = 2 sA,X = 1
δX ,B = 1 sX ,B = 0.25
δX ,D = 2 sX ,D = 1
δB,C = 2 sB,C = 1
δC,T = 2 sC,T = 1
δD,T = 1 sD,T = 1

node 6. The shortest path length from node 1 to node 6 is 5 and the path
is v1→ v3→ v4→ v6.

It is well known that if the path length is measured as the sum of the weights on
the links, Dijkstra’s algorithm fails to compute the shortest path betwen the source–
destination nodes, in case some of the link weights are negative. For exactly the
same reason, our modified version of the Dijkstra’s algorithm fails to compute the
shortest path in case si, j < 1. An example of the case where the above algorithm fails
to compute the shortest path is shown in Fig. 11.6. The δi and si values associated
with the links of this graph is given in Table 11.3. The result of the execution of the
modified Dijkstra algorithm on this graph is shown in Table 11.4.

At termination of the algorithm, the shortest path length between the source
node S and the destination node T is given as 6 and the path is S→ A→ X →
D → T (δS,A + sS,AδA,X + sS,AsA,X δX ,D + sS,AsA,X sX ,DδD,T = 1 + 1.2 + 1.1.2 +
1.1.1.1 = 6). However, this result is incorrect because the length of the path
S→ A→ X → B→C→ T is δS,A + sS,AδA,X + sS,AsA,X δX ,B + sS,AsA,X sX ,BδB,C+
sS,AsA,X sX ,BsB,CδC,T = 1+ 1.2+ 1.1.1+ 1.1.(0.25).2+ 1.1.(0.25).1.2= 5. In this
case, the algorithm computes the shortest path length incorrectly, because one of the
size factors, sX ,B < 1 (sX ,B = 0.25).
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Table 11.4 Shortest path
computation for the graph
in Fig. 11.6

Iteration
number Nodes of the graph

S A X B C D T
1 ∞ ∞ ∞ ∞ 2 1∗ 0
2 ∞ ∞ 3 ∞ 2∗ 1 0
3 ∞ ∞ 3∗ 4 2 1 0
4 ∞ 5 3 4∗ 2 1 0
5 ∞ 5∗ 3 2 1 0
6 6∗ 5 3 4 2 1 o

Fig. 11.7 Shortest path with
negative weighted cycle 1

2 3
4

Path Problem in Multimedia Data Transmission with Reduction in Size

It was mentioned in the previous section that in this path problem if some size
factor si < 1, it has the same effect as a negative weighted link in a traditional
shortest path problem. The example given earlier, shows that our version of the
Dijkstra’s algorithm fails to correctly compute the shortest path from the source to
the destination in this situation. In the traditional shortest path problem, where the
path length is computed as the sum of the weights on the links of a path, there is
a notion of a negative weighted cycle. A cycle is referred to as a negative weighted
cycle if sum of the weights on the links making up the cycle is a negative number.
The multimedia data transmission problem that is presently under consideration,
both the weights (the delay factor δi and size factor si) associated with a link ei, are
nonnegative. However, in this problem path length is computed in a different way. In
this problem also we have a notion of a negative weighted cycle. Suppose the links
e1,e2, . . . ,ep makes a cycle in the graph. This cycle will be referred to a negative
weighted cycle, if δi ∏p

j=1 s j < 1.
The implication of such a negative weighted cycle is that the data size decreases

every time it goes around such a cycle. As the source to destination transmission
delay is dependent on the size of the data, this delay is also reduced every time the
data goes around such a cycle. An example of such a phenomenon is given next.

Consider the graph in Fig. 11.7 with the nodes 1 and 4 being the source and the
destination respectively. The nodes 2 and 3 form a loop, as shown in the figure. The
delay and the size factor on the links is given in the Table 11.5 below.

Consider the path 1→ 2→ 3→ 4. This is a no loop path between the nodes 1
and 4. The path length of this path is d1 + 1.ε + 1.(1/p).d2 = d1 + ε + d2/p. The
length of the path from 1 to 4, if it passes through the loop 1,2, . . . ,k times is given
in Table 11.6.

Thus the path length is d1 +(1/(p− 1))(p− 1/p2k)ε +(1/p2k+1)d2, if the path
loops through k times and d1+(1/(p−1))(p−1/p2k+2)ε +(1/p2k+3)d2 if the path
loops through k+ 1 times. Thus the path length increases by ((p+ 1)/p2k+2)ε and
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Table 11.5 Delay factor δ
and the size factor s of the
graph in Fig. 11.7, (p is an
integer, ε is a very small
number)

Delay factor δ Size factor s

δ1,2 = d1 s1,2 = 1
δ2,3 = ε s2,3 = 1/p
δ3,2 = ε s3,2 = 1/p
δ3,4 = d2 s3,4 = 1

Table 11.6 Delay after
going through the loops

Loop count Path length

1 d1 +(1+1/p+1/p2)ε +d2/p3

2 d1 +(1+1/p+ . . .+1/p4)ε +d2/p5

3 d1 +(1+1/p+ . . .+1/p6)ε +d2/p7

· · · · · ·
k d1 +(1+1/p+ . . .+1/p2k)ε +d2/p2k+1

decreases by ((p2− 1)/p2k+3)d2 if the number of times the path goes through the
loop increases from k to k + 1. If d2 is much larger than ε , the total decrease is
much larger than the total increase and as a result if the path goes through the loop
one more time, the path length decreases. The situation is similar to the negative
weighted cycle problem in the traditional shortest path length.

In the path problem for multimedia data transmission environment, we can
compute the shortest path between a specified source–destination pair, even with
“negative” weights (i.e., with size factor si < 1) on the links, as long as there is no
negative weighted cycles in the graph. We use a modified version of the Bellman–
Ford algorithm for this purpose.

Just like the traditional Bellman–Ford algorithm, we find the shortest path lengths
subject to the constraint that paths contain at most one link, then relax the condition
on the length of the path and find the shortest path length subject to the constraint
that paths contain at most two links and so on. Using the same terminology and
notations as in [2] we call the shortest path that uses at most h links as the shortest
(≤ h) path.

Suppose that Dh
i denotes the shortest (≤ h) path length from node i to the

destination node n, (1 ≤ i ≤ n− 1). Dh
n = 0 for all h. The algorithm works as

follows.

Shortest Path Algorithm for Multimedia Data Transmission Environment

Input: The directed graph G = (V,E), (V = {1,2, . . . ,n}), two n×n matrices δ and
s, the (i, j)-th entry of the matrices stores the delay factor δ and the size factor s of
the link from the node i to node j. If there is no link from the node i to j, both δi, j

and si, j is taken to be ∞. Without any loss of generality, we assume that the node 1
is the source node and node n is the destination node.

Output: The shortest path length from every node in the graph to the destination
node n.
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Comments: The algorithm starts from the destination node and in each iteration
finds the shortest (≤ h) path from a node i in the graph to the destination node n,
1≤ i,h≤ n− 1.

Algorithm 6 Shortest Path for Multimedia Data Transfer with Reduction in Size
1: for i = 1 to n−1 do
2: D0

i = ∞;
3: end for
4: for i = 1 to n−1 do
5: D1

i = δ (i,n);
6: end for
7: for h = 1 to n−2 do
8: for i = 1 to n−1 do
9: Dh+1

i = min1≤ j≤n−1[s(i, j)Dh
j +δ (i, j)];

10: end for
11: end for

Theorem 11.3. If the graph G = (V,E) does not contain any negative weighted
cycle, then the above algorithm correctly computes the shortest path length from
any node i,1 ≤ i ≤ n− 1 to the destination node n, even when some of the size
factors si associated with a link ei is less than 1.

Proof. The proof follows along the same lines as the correctness proof of the
traditional Bellman–Ford algorithm. We follow the notations, terminologies and the
proof technique given in [2].

From the algorithm, D1
i := δi,n for all i,1 ≤ i ≤ n− 1. Clearly, these are the

correct shortest (≤ 1) path lengths from the node i to destination node n. Induction
can be used on h to prove the correctness of the algorithm. We show that if Dh

i is
the shortest (≤ h) path length from node i to n for all i,1 ≤ i ≤ n− 1, then Dh+1

i is
the shortest (≤ h+ 1) path length from node i to n for all i,1≤ i≤ n− 1.

First, we show that Dh+1
i ≥min1≤ j≤n−1[si, jDh

j + δi, j]. Suppose that (i,k, . . . ,n)
is a shortest (≤ h+1) path from i to n. Then, its path length is the sum of path length
from i to k and path length from k to n. The shortest (≤ h) path length from k to n
is Dh

k . The path length from i to k is δi,k. Taking the size factor si,k into account, we
can say that Dh+1

i ≥min1≤ j≤n−1[si, jDh
j + δi, j].

Next, we show that Dh+1
i ≤ min1≤ j≤n−1[si, jDh

j + δi, j]. Suppose that some k

finds the minimum of si, jDh
j + δi, j,1 ≤ j ≤ n− 1 and that (k, . . . ,n is the shortest

(≤ h) path from k to n. By our inductive hypothesis, this length is Dh
k. Taking the

size factor δi, j in to account, the length of (i,k, . . . ,n) path is si,kDh
k + δi,k. Clearly,

si,kDh
k +δi,k = min(si, jDh

j +δi, j),1≤ j≤ n−1. If Dh+1
i is the shortest path length

from i to n, then Dh+1
i ≤ si,kDh

k + δi,k. Therefore, Dh+1
i ≤ min1≤ j≤n−1[si, jDh

j +

δi, j].
Therefore, Dh+1

i = min1≤ j≤n−1[si, jDh
j + δi, j], and this is computed in the last

line of the algorithm. "#
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Table 11.7 Shortest path
computation for the graph in
Fig. 11.6 using modified
Bellman–Ford algorithm

Iteration
number Nodes of the graph

S A X B C D T
1 ∞ ∞ ∞ ∞ 2 1 0
2 ∞ ∞ 3 4 2 1 0
3 ∞ ∞ 2 4 2 1 0
4 ∞ 4 2 4 2 1 0
5 5 4 2 4 2 1 0
6 5 4 2 4 2 1 0

Theorem 11.4. The Complexity of the Algorithm 6 is O(n3).

Proof. The algorithm is a slight modification of the classical shortest path algorithm
due to Bellman and Ford. Following similar arguments as in the complexity analysis
of the Bellman–Ford algorithm [2], the complexity of this algorithm can be shown
to be O(n3). "#

An example of the result of execution of the algorithm on the graph in Fig. 11.6
is shown in Table 11.7.

Mathematical Programming Solution to the Path Problem in Multimedia Data
Transmission

In this subsection, we show that the shortest path problem for the multimedia
data transmission problem can also be solved using mathematical programming
techniques.

Given a graph G = (V,E) with weights δi and si associated with each link ei ∈ E
and two specified vertices s and t, the problem is to find the shortest (or the least
weighted) path from s to t.

In the mathematical programming formulation of the problem, we associate a
binary indicator variable xi, j with each link (i, j) of the directed graph G = (V,E).
By assigning a zero or a one to the variable xi, j the solution indicates whether or not
the link (i, j) is a part of the shortest path from the source to the destination. We also
introduce two other variables yi, j and zi, j, (1≤ i, j ≤ |V |).
Minimize ∑(i, j)∈E δi, jzi, j

Subject to the following constraints:

1 ∑
{ j|(i, j)∈E}

xi, j− ∑
{ j|( j,i)∈E}

x j,i = ri,∀i ∈V

ri = 1, if i is the source node, ri = −1 if i is the destination node and ri = 0 if i is
any other node.
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2 ∑
{ j|(i, j)∈E}

yi, j− ∑
{ j|( j,i)∈E}

z j,i = 0,∀i ∈V −{s, t},

3 zi, j = si, jyi, j,∀(i, j) ∈ E,

4 zi, j ≤ Kxi, j,∀(i, j) ∈ E.

where K is a large constant.
The first constraint establishes a path from the source to the destination. As data

passes through a link (i, j), its size changes by a factor si, j. This is ensured by the
constraint (3). The delay keeps accumulating as the data file passes through various
links on its journey from the source to the destination. This aspect is captured by the
constraint (2). The purpose of constraint (4) is to ensure that the variable zi, j does
not have a nonzero value when xi, j = 0, i.e., when the the link (i, j) is not part of
the path from the source to the destination. The contribution of the delay factor δi, j

associated with the link (i, j) is taken into account in the objective function of the
formulation.

11.2.1.3 Path Problem in VLSI Circuit Design

The shortest path problem in the VLSI circuit design environment was introduced
in Sect. 11.3. The path length in such an environment is carried out in the following
way: If the RC-circuit shown in Fig. 11.2 and modeled in Fig. 11.3 contains k
resistors and k capacitors, the delay or the path length between the source node
v0 and the destination node vk is given by

PL(v0,vk) = r1(c1 + . . .+ ck)+ r2(c2 + . . .+ ck)+ . . .+ rk(ck)

or it can be rewritten as

PL(v0 ,vk) = c1(r1)+ c2(r1 + r2)+ . . .+ ck(r1 + . . .+ rk)

=
k

∑
i=1

ci

(
i

∑
j=1

r j

)
.

It may be interesting to note that neither lemma 11.1 (based on which the
traditional shortest path algorithm of Dijkstra is developed) nor lemma 11.2 (based
on which our modified Dijkstra and Bellman–Ford algorithms for multimedia data
transmission are developed) is true for this path length function. We demonstrate
this with the following two examples.

Consider the graph shown Fig. 11.8. The first of the two parameters associated
with a link represents resistance r and the second represents the capacitance c.

With this data set the length of the path, A→ B→ D, is cA,BrA,B + cB,D(rA,B +
rB,D) = 1.1+1.(1+2)= 4 whereas the length of the path A→C→ D is cA,CrA,C +
cC,D(rA,C + rC,D) = 3.1+ 1.(1+ 1) = 5. Thus, the path A→ B→ D is shorter than
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Fig. 11.8 Shortest path for
VLSI circuit, Example 1
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Fig. 11.9 Shortest path for
VLSI circuit, Example 2
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the path A→ C→ D. However, in this example the length of the path A→ B→
D→ E is cA,BrA,B + cB,D(rA,B + rB,D)+ cD,E(rA,B + rB,D+ rD,E) = 1.1+1.(1+2)+
2(1+ 2+ 1) = 12, which is greater than the length of the path A→ C→ D→ E
is cA,CrA,C + cC,D(rA,C + rC,D)+ cD,E(rA,C + rC,D + rD,E) = 3.1+ 1.(1+ 1)+ 2(1+
1+ 1) = 11. This example shows that lemma 11.1 does not hold for this problem.

Next, we show that even lemma 11.2 does not hold for this problem. Consider
the graph shown in Fig. 11.9.

With this data set the length of the path, B→ C→ E , is cB,CrB,C + cC,E(rB,C +
rC,E) = 1.1+3.(1+1)= 7 whereas the length of the path B→D→ E is cB,DrB,D+
cD,E(rB,D+rD,E)= 1.1+1.(1+6)= 8. Thus, the path B→C→E is shorter than the
path B→D→ E . However, in this example the length of the path A→ B→C→ E
is cA,BrA,B+cB,C(rA,B+rB,C)+cC,E(rA,B+rB,C+rC,E) = 1.1+1.(1+1)+3(1+1+
1) = 12, which is greater than the length of the path A→ B→ D→ E is cA,BrA,B +
cB,D(rA,B + rB,D)+ cD,E(rA,B + rB,D + rD,E) = 1.1+ 1.(1+ 1)+ 1(1+ 1+ 6) = 11.
This example shows that lemma 11.2 does not hold for this problem.

Although neither lemma 11.1 nor lemma 11.2 hold for this path problem, we can
still solve the problem using mathematical programming techniques.

Mathematical Programming Solution to the Path Problem in VLSI
Circuit Design

We will use the variables xi, j,yi, j, and zi, j associated with the links, just like the
ones in the multimedia data transmission problem. The source and the destination
of the path is denoted by s and t respectively.

Minimize ∑(i, j)∈E ci, jzi, j
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Subject to the following constraints:

1 ∑
{ j|(i, j)∈E}

xi, j− ∑
{ j|( j,i)∈E}

x j,i = ri,∀i ∈V,

ri = 1 if i is the source node, ri =−1 if i is the destination node and ri = 0 if i is any
other node.

2 ∑
{ j|(i, j)∈E}

yi, j− ∑
{ j|( j,i)∈E}

z j,i = 0,∀i ∈V −{s, t},

3 zi, j = yi, j + ri, jxi, j,∀(i, j) ∈ {E−α(s)},

where α(s) = {s,v} ∈ E,v ∈V −{s}
4 zi, j = ri, jxi, j,∀(i, j) ∈ α(s),

5 zi, j ≤ Kxi, j,∀(i, j) ∈ E,

where K is a large constant.
The first constraint establishes a path from the source to the destination. As

data passes through a link (i, j), its size changes by a factor ri, j. This is ensured
by the constraints (3) and (4). The delay keeps accumulating as the data passes
through various links on its journey from the source to the destination. This aspect
is captured by the constraint (2). The purpose of constraint (5) is to ensure that
the variable zi, j does not have a nonzero value when xi, j = 0, i.e., when the the link
(i, j) is not part of the path from the source to the destination. The contribution of the
capacitance ci, j associated with the link (i, j) is taken into account in the objective
function of the formulation.

11.2.2 Fast Transfer of Bulk Data Files in Time-Varying
Networks

Focusing on this important issue of time-varying link bandwidths, we address two
relevant problems in this subsection: (1) how to find an optimal path from source
to destination in a graph with time-varying bandwidth that minimizes the total data
transfer time and (2) if we adapt our path with time, how do we minimize the number
of path shifts. One must observe that in a network with stationary bandwidth, the
solution is trivial and corresponds to computing a shortest widest path by modifying
Dijkstra’s algorithm. However, in time-varying bandwidth scenario, wideness of a
given path varies with time and therefore the challenge is in finding a path that is
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optimal over a specified duration of time. The second problem, that we address is
relevant to the scalability issues if we allow shifting of path based on the bandwidth
variation.

Application of our proposed solution can be used in the context of overlay
networks or private networks. In this work, we assume that knowledge of the
bandwidth variation is available for routing purpose. In a shared network like
Internet, bandwidth prediction on a daily or hourly basis is possible up to certain
level of accuracy based on measurement (a relevant study of this issue is available
in [30]). Further, in a advanced reservation framework as was proposed in [28], the
available bandwidth at different time can be known directly based on reservation
states at each link. Corollary of our solution can be directly applied to advanced
reservation framework for bulk-data transfer where the amount of bandwidth to be
reserved at different slots can be computed.

11.2.2.1 Related Work

Various point-to-point routing schemes were proposed in the past mostly targeting
real-time applications. These real-time applications have their bandwidth demand
either fixed or is adaptive over a specified range and requires packet level delay/jitter
guarantees. Routing of such applications in an advanced reservation framework as
discussed in [28] although considers time variation of link bandwidth but signifi-
cantly differs in the following aspect. Bulk data applications unlike, for example,
real-time streaming applications do not have a fixed bandwidth requirement and can
use as much bandwidth as provided to it at any given time towards minimizing the
transfer time. The above goal differentiates the underlying approach in routing bulk
data.

Previous work in bulk data transfer has looked into the data transport mechanisms
and concentrated on how to provide a fast and reliable transfer of bulk data by
employing erasure correcting codes [22, 23].

In the context of overlay network, several schemes were proposed that through
coordination among overlay nodes results in efficient transfer of bulk data or
content. In [24], authors propose establishing parallel connections from multiple
sources with complementary data sets to increase the total download speed. Similar
work is also proposed in [26], where authors proposed efficient scheduling of bulk
data upload from multiple source sites where these sites can coordinate among
themselves. In [25], the authors propose a coordinated approach where multiple
receivers can exchange mutually exclusive data sets in addition to relying on the ac-
tual data source to minimize total download time. In another recent work presented
in [27], authors propose multiple multicast trees to minimize the replication time of
bulk content to multiple sites. Most of these aforementioned works require strong
coordination among servers and are only applications to overlay networks. Also,
these work focus more on coordinating the content distribution and not the routing.
In contrast, we here consider point-to-point optimal routing of content or bulk data.



300 P. Ghosh and A. Sen

The closest work with similar goals as ours is presented in [20], where optimal
single point-to-point path is created based on network congestion or path failures.
However, optimality of the path is based on present network condition and not
conditioned over the entire duration of transfer. Further, the above solution does
not address the scalability issue when switching of paths are used to better adapt to
network bandwidth variability. Frequent switching of path can introduce significant
signaling in setting up new path and can also lead to route instability and flapping.
In this work, we address the issue of how to minimize the switching of paths with a
limited increase in the data transfer time. Shortest path problems in time dependent
networks have been studied in [4, 13–15, 29].

11.2.2.2 Problem Formulation

When the file size is so large that the data transmission is likely to continue over
an extended period of time, the residual bandwidth of each link of the network is
likely to change during this period. Suppose that the data transfer begins at 9 AM on
Monday and continues up to 9 AM on Tuesday. At 9 AM on Monday, there exists
some residual bandwidth on each link of the network. Since we want the data to be
transferred to the destination as early as possible, we may use the widest path1, i.e.,
the path with the largest residual bandwidth for data transfer (maximum bandwidth
path). The problem with this approach is, since the residual bandwidth changes with
time, the widest path between the source and the destination may change with time.
We give a concrete example to illustrate this point. Suppose a large file needs to be
transferred from A to B starting at 9 AM. The widest path from A to B at 9 AM
may be through the intermediate node C. At 10 AM, the widest path from A to B
may be through the intermediate node D and at 11 AM through the node E. If we
want the file transfer to be completed at the earliest possible time, we should use
A–C–B path at 9 AM, A–D–B path at 10 AM, A–E–B path at 11 AM and so on.
The first question is then which is the single optimal path that we can use for the
entire duration of the file transfer. If we even allow path changes whenever there is
a change in the residual bandwidth, the signaling overhead in setting up new path
maybe significant. We next formally state the above problems in details.

To capture the notion of time varying residual bandwidth on each link, we
divide the time into slots of some fixed duration. We consider a graph G = (V,E),
representing the network and time slots 1, 2, 3, ... of equal size. The availability of
network resources such as the residual bandwidth is tracked at the granularity of a
slot. The elements bl [i] of the vector bl = {bl[1],bl [2], ...,} associated with each link
l ∈ E , represents residual bandwidth of link l at time slot i.

1A widest path from the source to the destination with respect to bandwidth bl , associated with link
l, is a path P∗ that maximizes the value of minl∈Pbl , over all path P i.e., P∗ = argmaxP minl∈Pwl .
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• Routing problem: Given the above definition of graph G with bl for each link
l ∈ E , a file size F , source s and destination d, compute a path from s to d that
minimizes the number of slots required to transfer F .

• Path switching problem: Given the above definition of graph G with bl for each
link l ∈ E , a file size F , source s, destination d and specified slots Ts, find the
minimum number of path switching and associated switching positions (in slots)
such that the given file can be transferred in Ts number of slots.

In the context of the above problems, we define Tmin as the minimum number of
slots necessary to transfer a file of size F from the source to the destination. Tmin

corresponds to the case where widest path in each time slot is used to transfer the
file. Therefore, in our first problem, number of slots corresponding to the optimal
path is always greater than or equal to Tmin. Similarly, Ts ≥ Tmin for a valid solution
to the path switching problem.

In discussion of the algorithms, we define bandwidth for a link in terms of
number of bytes/slot since we assume bandwidth does not vary during the slot
duration. In that case, link bandwidth b also means the amount of data that can
be transferred in a slot which we refer here as throughput. Therefore, we use link
bandwidth, file size in a given slot and throughput interchangeably throughout the
text. In the next two sections, we provide the solutions to the above two problems.

11.2.2.3 Optimal Routing Algorithm

The algorithm takes as input a directed graph G = (V,E) and n× n×T matrix B.
(i, j,k)-th entry of the matrix stores the residual bandwidth of the link from the node
i to node j during time slot k, (1 ≤ k ≤ T ). The specified source and destination
nodes are s and d, respectively. Based on the inputs, we refer this algorithm as
Route(G,B). We use the term T hroughput on a given time interval in slots to be size
of the data that can be transferred in that time interval.

Algorithm Route(G,B) uses an algorithm, called FileRoute(G,B,F,p,q), which
finds if there is a route in the slots [p : q] 2 where file with size F can be transferred,
to find out the minimum number of time slots needed to send F , in the following
way. The maximum number of slots Tmax can be easily found by taking the minimum
residual bandwidth among all slots for each link in the graph and finding the widest
path. Therefore, we can safely say that the minimum number of slots using the
optimal path will belong in the range [Tmin,Tmax]. We next perform a binary search
on this range to find the exact number of slots and the corresponding path.

Before presenting the algorithm FileRoute(G,B,F,p,q), we first define certain
notations and operations for ease of explanations. Let EG(p,α) denote the subset
of the edges of G, consisting of edges whose residual bandwidth for time slot p

2The notation [t1 : t2] will be used to denote the range starting with time slot t1 and ending with
time slot t2.
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Algorithm 7 FileRoute
1: Initialize Q(p, f ,G): {NOTE: a subroutine called by algorithm FileRoute}

For all slot r; i≤ r ≤ j
Q(p)← enqueue distinct bandwidth values (less than or equal to f) for slot p in G in
descending order

2: Initialize Q(i,F,G)
3: if (i == j) then
4: β = throughput of widest path P from s→ d in G′
5: if (β > F) then
6: return yes and path P
7: else
8: return no
9: end if

10: end if
11: while (Q(i)! = /0) do
12: α = dequeue (Q(p))
13: G′ = G−EG(p,α)
14: if (∃ path P from s→ d in G′) then
15: F = F−α
16: end if
17: if (F ≤ 0) then
18: return yes and path P
19: end if
20: test = FileRoute(G′,B,F−α , i+1, j)
21: if (test = yes) then
22: return yes and path P {NOTE: P is the path found by the previous recursive call.}
23: end if
24: end while

is less than α . Let G′ = G− EG(p,α) be the operation of deleting the edges in
EG(p,α) from graph G. Let Q(p) denotes a Queue for a given slot p with enqueue
and dequeue operations defined with the additional property that all elements in Q
are in sorted decreasing order.

Now, we present the algorithm FileRoute(G,B,F, i, j) where G is a capacitated
graph, i, j are slots where i ≤ j and F is the file size. The output of the algorithm
is a decision: yes or no based on if a single path exists such that file size F can be
transferred in the time range of slots [i : j] or not. If the decision is yesthe algorithm
also provides the optimal path. Let us now formally present the algorithm with
G′, i, j,F initialized to G, p,q, f .

The algorithm starts with the p-th slot. The algorithm recursively calls itself by
modifying the graph, advancing to the next slot and adjusting the size of the file to
be transmitted. The idea is as follows: During the first recursive call, it asks if the
slots i+1 through j will be able to transfer a file of size F−α . If the answer to this
question is yes, then it implies that total file of size F can be completely transferred
in the slot range [i : j]. This is true because the minimum bandwidth associated with
a link in the graph at this time is α since G′ has no edges less than value α and there
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exist a path from s→ d in G′. Accordingly, the first slot will be able to transfer a file
of size α along with F−α sent over the slots i+ 1 through j.

The terminating condition is invoked when the recursion reaches the last slot j
or when the queue gets empty any slot. At the last slot, if widest path is found with
throughput β > F (F here is the remaining part of file that needs to be transferred),
then it returns yes.

An example Suppose we have a 6-node network, Graph0, as in the Fig. 11.10 We
want to know if it can transfer a file of size 8, from node 1 to node 6, within three
time slots by calling the function FileRoute(Graph0,B,8,1,3).
Iteration 1: (G′ = Graph0,F = 8, p = 1,q = 3) Recursion: 0
Get G′ = G′(1)− 10 by deleting all edges less than 10 from G′(1). (shown in
Fig. 11.11).

Iteration 2: (G = Graph0,F = 8, p = 1,q = 3) Recursion :0
Since there is no path from node 1 to 6 in G′, dequeue Q(1) gives 5 and G′ is
updated accordingly as showing in Fig. 11.12. Being there is a path from 1 to 6 with
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throughput 5 resulting in F = 8− 5 = 3. Next FileRoute(G′,B,F = 3, p = 2,q = 3)
is called.

Iteration 3: (G=Graph2,F = 3, p= 2,q= 3) Dequeue Q(2) giving 3 and resultant
graph G′ after updating using operation G′ − 3 is shown in Fig. 11.13.

Iteration 4: (G = Graph2,F = 3, p = 2,q = 3) Recursion :1
There is no path from node 1 to 6 in G′ (Graph3), therefore, next dequeue Q(2) gives
1 and corresponding updating G′ = G′ − 1 gives the graph as shown in Fig. 11.14.
Since there is a path from 1 to 6 in G′ with throughput 1, F gets updated to F =
3− 1 = 2 and FileRoute(G′,B,F = 2, p = 3,q = 3) is called.

Iteration 5: (G = Graph4,F = 2, p = 3,q = 3) Recursion :2
Since p = q, throughput can be computed using the widest path algorithm (Widest-
Path). WidestPath() algorithm in this case returns 1. Hence, return NO to the upper
level of recursion, Recursion#1. Reset F = 3.

Iteration 6: (G = Graph2,F = 3, p = 2,q = 3) Recursion :1
Since Q(2) is empty, return NO to the upper level recursion, Recursion 0. Reset
F = 8.

Iteration 7: (G = Graph0,F = 8, p = 1,q = 3) Recursion :0
Dequeue Q(1) giving 1 and G′ is updated as shown in Fig. 11.15 Update F = 8−
1 = 7. Recursive call to FileRoute(G′,B,7,2,3).

Iteration 8: (G = Graph5,F = 7, p = 2,q = 3) Recursion :1
Dequeue Q(2) gives 7 which makes no 1–6 path in the updated graph shown in
Fig. 11.16.

Iteration 9: (G = Graph5,F = 7, p = 2,q = 3) Recursion :1
Further dequeue Q(2) gives 6 which results in a path in updated G′ show in in
Fig. 11.17. F is updated to F = 7− 6 = 1 and FileRoute(G′,B,1,3,3) is called.

Iteration 10: (G = Graph7,F = 1, p = 3,q = 3) Recursion :2
Since p = q, compute the throughput in slot3 by using the widest path algorithm
which returns 1 that is equal to F , hence return yes.

Solution:
Path: 1-3-5-6, found by widest path as the terminating stage of the algorithm, is the
solution. Thus the contribution for 1,2 and 3 slots in terms of throughput is 1, 6 and
1 respectively adding to 8 (input file size).

11.2.2.4 Path Switching Algorithm

We first describe the idea of our algorithms before their formal presentation. The
algorithms compute the paths for data transfer from the source to the destination,
such that a file of size F can be transferred from the source to the destination with
fewest number of path switching and the number of time slots used for data transfer
will at most be Tmin + δ , where δ is a prespecified threshold value.



11 Path Problems in Complex Networks 305

5,3,1

2

3

4

5

61

10,6,4 5,
6,
5

1

Bandwidth
1

5

Bandwidth
2

1

Fig. 11.13 Graph2: G′ of recursion#0

5,3,1

2

3

4

5

61

11
,1
,5

10,6,4

5,1,3

5,
6,
5

1

Bandwidth
1

5

Bandwidth
2

1

Fig. 11.14 Graph1: G′ of recursion#0

5,3,1

2

3

4

5

61

11
,1
,5

10,6,4

1,6,1

5,1,3

5,
6,
5

1,1,5

1,
1,
5

1

Bandwidth
1

5

Fig. 11.15 Graph2: G′ of recursion#0

2

3

4

5

611

Bandwidth
1

5

Bandwidth
2

3

6

1

Fig. 11.16 Graph1: G′ of recursion#0



306 P. Ghosh and A. Sen
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In Fig. 11.18, we show an example with ten time slots. The number of points on
the time line, where the paths can change are known as the switching points. In this
example, there are nine switching points. In general, there will be n− 1 switching
points corresponding to n slots.

It may be noted that the throughput may be different if path switching is allowed.
We use the matrix Max Thp[p, q, r] in our algorithms. The (p,q,r)-th entry in the
Max Thp matrix indicates the maximum size file that can be transferred between the
time slots p and q (both inclusive) with r path switching.

First, we describe the MaxThroughput algorithm which we will subsequently
use in the main algorithm that finds the minimum number of paths. The algorithm
MaxThroughput computes the maximum file size that can be transferred fromthe
source to the destination using one path (i.e., without path switching) within the
specified time slots by repeated calls to the FileRoute(G,B,F,p,q). We note that
the maximum file size Fmax that can be sent over the range [p : q] can be obtained by
summing the throughput obtained by running widest path algorithm for each time
slot in [p : q]. Let us now define G′ which is derived from G with same nodes and
edges, but capacity of edge e in G′ is given by c(e) = minr∈[p:q]be(r), where be(r)
is the capacity of the edge in original graph G for time slot r. Let Fmin be the file
size that can be sent over G′ using widest path algorithm. Next, we perform a binary
search within in the range [Fmin : Fmax] using the algorithm FileRoute(G,B,F,p,q), to
find maximum F for which FileRoute gives a yes decision.

As noted earlier, we will use Max T hp[p,q,r] to indicate the maximum size file
that can be transferred between the time slots p and q (both inclusive) with r path
switching. In addition, we will use a matrix switch on such that the (p,q,r)-th entry
in the switch on matrix will indicate the position of the first switching point where
path switching takes place for maximum data transfer between the slots p through
q with r path switching. Max Thp[p,q,r] can be computed in the following way.

Max T hp[p,q,r] = max
p≤s≤q−r

[Max Thp[p,s,0]+Max T hp[s+ 1,q,r− 1]].
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Algorithm 8 Path Switching
1: Using widest path algorithm compute Max Thp[i, i,0] f or1≤ i≤ T ;
2: TotalThroughput = ∑T

i=1 Max Thp[i, i,0];
3: if (TotalThroughput < F) then
4: return {“File F cannot be transferred in T slots”}; EXIT;
5: else
6: Call Algorithm MaxThroughput to compute Max Thp[1,T,0]
7: if (Max Thp[1,T,0]≥ F) then
8: return {“File F can be transferred in T slots without
9: else

10: Call Algorithm MaxThroughput to compute Max T hp[i,T,0] f or1≤ i≤ T −1;
11: for r := 1 to T −1 do
12: for p := 1 to T − r do
13: Max Thp[p,T, r] = maxp≤s≤T−r[Max Thp[p, s,0]+Max Thp[s+1,T, r−1]];
14: s∗ = the value of s that maximizes [Max Thp[p, s,0]+Max Thp[s+1,T, r−1]];
15: switch on[p,T, r] = s∗;
16: if (Max thp[p,T, r]≥ F) then
17: return switch on[p,T, r]; EXIT;
18: end if
19: end for
20: end for
21: end if
22: end if

The algorithm presented next, Algorithm 8, uses dynamic programming tech-
nique and computes the value of Max T hp[p,T,r], by varying r, the number of
switches used and p, the index of the starting slot for file transfer. It may be noted
that once, r and p is fixed, there may be several switching positions in the slot
interval p to T , where path switching can take place. s∗ stores the position of first
path switching for realization of maximum data transfer between the slots p and T
with r path switchings.

Example of Path Switching Algorithm

We consider the network shown in Fig. 11.10. Suppose that we want to transfer
a file of size 10. In this graph, Max T hp[1,1,0] = 5, Max T hp[2,2,0] = 6, and
Max T hp[3,3,0] = 5. Since TotalThroughput (16) is greater than the file size
(10), algorithm MaxThroughput is called to compute Max Thp[1,3,0]. In this
example Max T hp[1,3,0] = 8. Since Max T hp[1,3,0] is less than the file size, path
switching will be necessary in this case. Max Thp[1,3,0]= 8, Max Thp[2,3,0]= 7.

Max T hp[1,3,1] = max{(Max T hp[1,1,0]+Max T hp[2,3,0]),

(Max Thp[1,2,0]+Max T hp[3,3,0])}
= max{(5+ 7),(7+ 5)}= 12
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and switch on[1,3,1] = 1. This means two paths, one only over the slot 1 and the
other over the slots 2 and 3 will be used in this case.

Computational Complexity

Finally, Algorithm PathSwitching uses the Algorithm MaxThroughput for comput-
ing the points where the paths have to be switched. If m is the number of edges
of the network and T is the total number of slots, then the complexity of the
Algorithm ThroughputTest is O(mT ). Since the Algorithm MaxThroughput executes
Algorithm ThroughputTest, O(log B) time, where B is the sum of the maximum
throughput in each time slot, the complexity of the Algorithm MaxThroughput is
O(mT log B). The complexity of the Algorithnm PathSwitching is O(mT +n2+T 3).

11.3 Multiple Path Problems

11.3.1 Widest Pair of Disjoint Paths

As indicated earlier, we consider two versions of the problem in this section. In the
first version, we address the problem of finding a pair of disjoint paths between a
source–destination node pair, such that the combined bandwidth of this path-pair
is maximum over all such path-pairs. In the second version, we want to find a
pair of disjoint paths, such that the bandwidth of the first path is at least X1 and
the bandwidth of the second path is at least X2, for some prespecified values X1

and X2. We prove that both versions of the problem are NP-complete. We provide
exact and approximate solutions for both versions of the problem. In our extensive
experimentations, the heuristics produced optimal or near-optimal solutions for
almost all the instances of the problem.

Kishimoto in [55] introduced the concept of maximum multiroute flows in a
network, which at a first glance may appear to be same as the widest pair of disjoint
paths problem being introduced here. However, on closer examination one will find
that the maximum 2-route flow problem [31, 39, 55] is completely different from
the problem under consideration here. Maximum 2-route flow is defined in terms
of elementary 2-flow. An elementary 2-flow is defined to be a flow of one unit
along a pair of link-disjoint paths. A 2-route flow is any flow such that it can be
expressed as a nonnegative linear sum of elementary 2-flows. The maximum 2-route
flow between two nodes is a 2-route flow with the maximum value that can be sent
between the two nodes, without exceeding the link capacities [31, 39, 55]. To see
the difference between maximum 2-route flow and widest pair of disjoint paths,
consider the example shown in Fig. 11.19. The maximum 2-route flow between the
nodes s and t is 30, whereas the flow using the widest pair of disjoint paths will only
be 25. It may be noted that, whereas widest pair of disjoint paths can use only two
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Fig. 11.19 An example
of maximum 2-route flow
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paths from the source to the destination for data transmission, maximum 2-route
flow is not restricted to use only two paths. In the example of Fig. 11.19, maximum
2-route flow of 30 units is achieved by using three paths from s to t, s −→ 1 −→ t,
s−→ 2−→ t and s−→ 3−→ t.

Taft-Plotkin et al. in [48] used maximally disjoint paths for QoS routing. They
present Maximally Disjoint Shortest and Widest Paths (MADSWIP) algorithm,
which can compute maximum bandwidth disjoint or maximally disjoint paths
between a source–destination node pair. Although the objective of MADSWIP
appears to be same as the widest pair of disjoint path problem, closer examination
reveals significant difference between the two. If BW (P1) and BW (P2) are the
bandwidths associated with disjoint paths P1 and P2, in our formulation of the
problem, the bandwidth of path-pair (P1,P2), BW (P1,P2) = BW (P1)+BW (P2). In
contrast, in [48] bandwidth of path pair (P1,P2) is defined to be BW (P1,P2) =
min{BW(P1),BW (P2)}. This difference in the definition has a significant impact in
the computational complexity of the two problems in that, whereas the MADSWIP
can be computed in O(|E|log |V |) time, we prove that the widest pair of disjoint
path problem is NP-complete.

11.3.1.1 Model and Problem Formulation

Like most of the researchers [31, 38, 43, 46–48, 55], we model the network as a
directed graph G = (V,E) with a capacity c(e) associated with each arc e ∈ E [35].
We will use the notation (u,v) to indicate an arc e ∈ E , where the direction of the
arc is from u to v, (u−→ v). In addition, a source node s and a destination node t are
specified. If P is a path from the s to t, then the bandwidth of the path P, denoted by
BW (P) is equal to the minimum of the capacities of the arcs that make up the path P.
We consider two different versions of the Widest Pair of Disjoint Paths (WPDP)
problem. In one version, we want the combined bandwidths of two disjoint paths
to be at least a specified value X , and in the other version we want the bandwidths
of the two disjoint paths individually be greater than X1 and X2, respectively. We
refer to the first version as the Widest Pair of Disjoint Paths (Coupled) (WPDPC)
and the second version as the Widest Pair of Disjoint Paths (Decoupled)) (WPDPD)
problem. The two problems are defined formally next.
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Widest Pair of Disjoint Paths (Coupled)

Instance: Given a graph G= (V,E), a capacity c(e) associated with each arc e∈ E ,
a source node s, a destination node t and a specified number X .

Question: Are there disjoint paths P1 and P2 from s to t, such that the sum of the
bandwidths of the paths P1 and P2 is greater than or equal to X?

Widest Pair of Disjoint Paths (Decoupled)

Instance: Given a graph G= (V,E), a capacity c(e) associated with each arc e∈ E ,
a source node s, a destination node t and specified numbers X1 and X2.

Question: Are there disjoint paths P1 and P2 from s to t, such that the bandwidth
of the path P1 is greater than or equal to X1 and the bandwidth of of the path P2 is
greater than or equal to X2?

It may be noted that the paths P1 and P2 may be either node-disjoint or arc-disjoint
[35]. The NP-completeness proofs presented here are for the arc-disjoint version of
the problems. However, the results are true for the node disjoint versions as well. For
the sake of brevity, the proofs related to node-disjoint version of the problem are not
presented here. Without loss of generality, we will assume that X1 > X2. It may be
noted that the WPDPD problem is solvable in polynomial time if X1 = X2, [46, 47].
WPDPD can be viewed as a path finding problem where each arc is colored either
red or blue, and the objective is to find a pair of disjoint paths such that at least one
of the paths uses the red arcs only. Formally, the disjoint path problem in a graph
with red and blue colored arcs can be stated as follows.

Disjoint Path Problem with Red and Blue Arcs (DPPRB)

Instance: A graph G = (V,E), where each arc e ∈ E is colored either red or blue; a
source node s and a destination node t.

Question: Is it possible to establish two disjoint paths from s to t, such that at least
one of the paths uses the red arcs only?

From an instance of the WPDPD problem, an instance of the DPPRB can be
constructed in the following way. From the graph G = (V,E) of the instance of the
WPDPD problem, delete all the arcs with capacity c(e) less than X2. Call this graph
G′ = (V,E ′). If the capacity of an arc in G′ is at least X1, then color the arc red,
otherwise color it blue. It can be easily verified that it is possible to find disjoint
paths P1 and P2 from the source node s to the destination node t in the graph G with
BW (P1) ≥ X1 and BW (P2) ≥ X2, if and only if, it is possible to find two disjoint
paths in G′ from s to t such that at least one of the paths use red arcs only.
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11.3.1.2 Complexity Analysis

In this section we first prove that the DPPRB problem is NP-complete. Any path P
from s to t in the graph G, an instance of the DPPRB problem, will be called a red–
blue path. A path from s to t will be called a red path if all the arcs in the path are
red. It may be noted from the definition that any red path is a red–blue path, while
the reverse is not true. The proof technique used here is similar to the one used in
one of our earlier papers [32].

Theorem 11.5. The DPPRB Problem is NP-Complete.

Proof. Clearly, DPPRB is in NP, as one can easily verify if the two paths are arc-
disjoint and at least one of them uses red arcs only.

We give a polynomial time transformation from 3SAT to DPPRB. From a
instance φ of the 3SAT problem, we generate an instance of the DPPRB problem
(G,s, t), so that φ is satisfiable if and only if G contains a red s–t path pR and a
red–blue s–t path pRB such that pR and pRB are arc-disjoint in G.

Suppose the 3SAT instance φ is made up of clauses C = {C1, . . . ,Ck} and
variables {x1,x2, . . . ,xl}. Let L = {x1, x̄1, . . .xl , x̄l} be the set of literals made from
the variables {x1,x2, . . . ,xl}. It may be noted that the number of clauses is k and the
number of variables is l in φ .

The construction of the graph G, the instance of the DPPRB problem, takes place
in two steps. In the first step, we construct G1, a subgraph of G and in the second
step augment G1 with additional nodes and arcs to construct G.

Step 1. We define a graph G1 in the following way: Create vertices s and t. For each
clause-literal pair (Ci,x j), create two vertices ui, j and vi, j and a red arc connecting
them. For each clause-literal pair (Ci, x̄ j), create two vertices u′i, j and v′i, j and a red
arc connecting them. For each variable x j, create two vertices u j and v j and blue
arcs (u j,u1, j), (u j,u′1, j), (vk, j,v j), (v′k, j ,v j), as well as blue arcs (vi, j,ui+1, j) and
(v′i, j,u′i+1, j) for i = 1,2, . . . ,k− 1. Finally we add blue arcs (s,u1), (vl , t) and blue
arcs (v j,u j+1) for j = 1,2, . . . , l− 1.

If the instance φ of the 3SAT problem is given by φ = (x̄1∨ x̄2∨ x̄3)∧ (x̄1∨ x2∨
x3)∧ (x1 ∨ x2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x̄3), then the graph G1 corresponding to φ is shown
in Fig. 11.20.

Step 2. Next we add 2k+ 2 vertices and 7k+ 3 red arcs to G1 in the following way
to obtain the graph G: Add vertices w0,1,w0,2,w1,1,w1,2 . . . ,wk,1,wk,2 and two red
arcs (s,w0,1) and (wk,2, t).

Let Ci be the ith clause and αi be one of the three literals in Ci. If αi is x j,
we add two red arcs (wi−1,2,ui, j) and (vi, j,wi,1); if αi is x̄ j, we add two red arcs
(wi−1,2,u′i, j) and (v′i, j ,wi,1). 6k red arcs are added in this way. In addition k+ 1 red
arcs (wi,1,wi,2),0 ≤ i≤ k are added.
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Fig. 11.20 G1 corresponding to the sample 3SAT instance

The graph G1 (shown in Fig. 11.20) after augmentation with these additional
nodes and arcs is shown in Fig. 11.21. This is graph G, the instance of the DPPRB
problem generated from the instance of the 3SAT problem.

It is clear that graph G can be constructed from the instance of the 3SAT problem
φ in polynomial time, since G contains 4kl + 2l + 2k+ 4 nodes, 2kl + 6k+ 4 red
arcs, and 2kl+ 3l+ 1 blue arcs.

From the construction of G as shown in Fig. 11.21 we can see the following
facts: Any red path must use the arcs (wi,1,wi,2),0 ≤ i ≤ k, and the red–blue path,
if it has to be arc-disjoint from the red path, cannot use these arcs. This implies
pRBcan only use arcs from G1. Let pR be any red s–t path in G and pRB be any
red–blue s–t path in G which is arc-disjoint with pR. For any variable x j, if pR goes
through any of the vertices corresponding to literal x j, then pRB must go through
all of the vertices corresponding to literal x̄ j. Similarly, if pR goes through any of
the vertices corresponding to literal x̄ j, then pRB must go through all of the vertices
corresponding to literal x j. If pR goes through some of the vertices corresponding to
literal x j as well as some of the vertices corresponding to literal x̄ j, then pRB cannot
be arc-disjoint with pR.
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Fig. 11.21 G corresponding to the sample 3SAT instance

We now prove the desired result that (G,s, t) contains a pair of arc-disjoint
red and red–blue s–t paths if and only if φ is satisfiable. Let us first assume that
(G,s, t) contains arc-disjoint paths pR and pRB, where pR goes through only the
red arcs and pRB goes through red and blue arcs. We will define a truth assignment
of the variables f : {x1,x2, . . . ,xl} &→ {TRUE,FALSE} so that φ is true under this
assignment.

Let x j be any literal in φ . If pR goes through any of the vertices corresponding to
literal x j, then pRB must go through all of the vertices corresponding to literal x̄ j. In
this case, we assign f (x j) = T RUE .

If pR goes through any of the vertices corresponding to literal x̄ j, then pRB must
go through all of the vertices corresponding to literal x j. In this case, we assign
f (x j) = FALSE .

If pR does not go through any of the vertices corresponding to literal x j or literal
x̄ j, then pRB goes through either all of vertices corresponding to literal x j or all the
vertices corresponding to literal x̄ j. In the former case, we set f (x j) = FALSE . In
the latter case, we set f (x j) = TRUE .
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Fig. 11.22 Arc-disjoint R/B paths to truth assignment satisfying φ

In short, pR goes through the arcs (wi,1,wi,2),0 ≤ i ≤ k, and the arcs (ui, j,vi, j)
(with f (x j) = T RUE) and arcs (u′i, j,v

′
i, j) (with f (x j) = FALSE) in the truth

assignment. Since the red path pR passes through the (wi,1,wi,2),0 ≤ i ≤ k in that
order, φ is satisfied with the above truth assignment.

Figure 11.22 illustrates the two arc disjoint paths from s to t. The red path pR:
s→ w0,1 → w0,2 → u′1,1 → v′1,1 → w1,1 → w1,2 → u′2,1 → v′2,1 → w2,1 → w2,2 →
u3,3→ v3,3→ w3,1→ w3,2→ u4,2→ v4,2→ w4,1→ w4,2→ t and the red–blue path
pRB: s→ u1→ u1,1→ v1,1→ u2,1→ v2,1→ u3,1→ v3,1→ u4,1→ v4,1→ v1→ u2→
u′1,2→ v′1,2→ u′2,2→ v′2,2→ u′3,2→ v′3,2→ u′4,2→ v′4,2→ v2→ u3→ u′1,3→ v′1,3→
u′2,3→ v′2,3→ u′3,3→ v′3,3→ u′4,3→ v′4,3→ v3→ t.

Since pR goes through the vertices u′1,1, v′1,1, u′2,1, v′2,1 which correspond to the
literal x̄1, we set f (x1) = FALSE in the truth assignment. Since pR goes through the
vertices u3,3, v3,3, which correspond to the literal x3, we set f (x3) = TRUE in the
truth assignment. Since pR goes through the vertices u4,2, v4,2 which correspond to
the literal x2, we set f (x2) = T RUE in the truth assignment. One can easily verify
that φ evaluates to T RUE with this truth assignment.

To show the converse, assume φ is satisfiable and let f be a truth assignment that
satisfies φ . We will show that there exist a red s–t path pR and a red–blue s–t path
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pRB which are arc-disjoint in G. Note that any red–blue s–t path will contain the
arcs (s,u1), (vl , t), (v j−1,u j) for j = 2,3, . . . , l, and a red–blue path from u j to v j for
j = 1,2, . . . , l.

If f (x j) = FALSE , we define the segment of pRB from u j–v j to be u j-u1, j-v1, j-
u2, j-v2, j-· · · -uk, j-vk, j-v j. Otherwise, we define the segment of pRB from u j–v j to be
u j-u′1, j-v

′
1, j-u

′
2, j-v

′
2, j-· · · -u′k, j-v′k, j-v j.

We define the red s–t path pR to contain the red arcs (s,w0,1), (wc,2, t). Let Ci be
the ith clause. Since Ci is TRUE under truth assignment f , at least one of the three
literals of Ci is T RUE . Let x j (x̄ j, respectively) be one such literal. The red path pR

contains the red arcs (wi−1,2,ui, j), (ui, j,vi, j), (vi, j,wi,1) (the red arcs (wi−1,2,u′i, j),
(u′i, j,v′i, j), (v′i, j,wi,1), respectively). In addition, the red path pR must contain all the
red arcs (wi,1,wi,2),0 ≤ i≤ k.

Since pR does not go through any vertices corresponding to literal whose value is
FALSE and the ui–vi segment of pRB goes through only those vertices corresponding
to a literal whose value is not T RUE , pB and pR are arc-disjoint. Therefore the red
path pR and the red–blue path pRB thus constructed are arc disjoint.

Consider the sample 3SAT instance φ again. The truth assignment f (x1) =
FALSE , f (x2) = T RUE , f (x3) = T RUE satisfies φ . The corresponding red and
red–blue paths are shown in Fig. 11.22. "#
Theorem 11.6. The WPDPD problem is NP-complete.

Proof. Since there exists one-to-one correspondence between the WPDPD and the
DPPRB problem, and the later problem is NP-complete, so is the former.

Theorem 11.7. The WPDPC problem is NP-complete.

Proof. WPDPC is in NP since we can verify in polynomial time whether a given
solution has two arc disjoint paths from the source to the destination and their com-
bined bandwidth is greater than the specified value X . Let 〈G = (V,E),c,s, t,X1,X2〉
be an instance of the WPDPD problem, where X1 > X2. We construct an instance
〈G′ = (V ′,E ′),c′,s′, t ′,X〉 of WPDPC problem from the instance of WPDPD in
polynomial time as follows:

1. Construct V ′ by adding two new nodes s′ and v′. V ′ =V ∪{s′,v′}.
2. Construct a new arc (s′,s) with capacity X2, and two new arcs (s′,v′) and (v′,s)

both with capacity M, where M is at least as large as the largest capacity in G.
3. Let E ′ = E ′′ ∪ {(s′,s),(s′,v′),(v′,s)}, where E ′′ ⊆ E is the set of arcs whose

capacities are at least X2 in G. We keep those arcs in E ′′ having same capacities
in G′.

4. Let t ′ = t be the destination.
5. Let X = X1 +X2 be the required combined bandwidths of the disjoint paths.

Suppose that P1 and P2 are two arc disjoint paths in G from s to t with BW (P1)≥
X1 and BW (P2) ≥ X2. By the construction of G′, all arcs in P1 and P2 must be in
E ′. We now construct two arc disjoint paths P′1 and P′2 in G′ from s′ to t ′ to be
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Maximize y1 + y2
Subject to

∑
(i, j)∈E

xk
i, j− ∑

( j,i)∈E
xk

i, j =

⎧⎨
⎩

1 if i = s,
−1 if i = t,
0 otherwise.

for ∀i ∈V , k ∈ {1,2} (1)

x1
i, j + x2

i, j � 1 for ∀(i, j) ∈ E (2)
yk � Bi, jxk

i, j +M(1− xk
i, j) for ∀(i, j) ∈ E, k ∈ {1,2} (3)

xk
i, j = 0/1 for ∀(i, j) ∈ E, k ∈ {1,2} (4)
yk � 0 for k ∈ {1,2} (5)

Fig. 11.23 ILP formulation of the WPDPC problem

{(s′,v′),(v′,s)}∪P1 and {(s′,s)} ∪P2, respectively. Obviously, BW (P′1) ≥ X1 and
BW (P′2) = X2. We have BW (P′1) + BW (P′2) ≥ X1 + X2 ≥ X . Suppose that P′1 and
P′2 are two arc disjoint paths in G′ from s′ to t ′ with combined bandwidth at least
X . Without lost of generality, assume that {(s′,v′),(v′,s)} ⊆ P′1 and {(s′,s)} ⊆ P′2.
By the construction of G′, the capacity of any arc in G′ is at least X2. This implies
that BW (P′2) must be X2, since (s′,s) is a bottleneck of P′2 and its capacity is
X2. Since BW (P′1)+BW(P′2) ≥ X and BW (P′2) = X2, BW (P′1) ≥ X −X2 = X1. We
now construct path P1 from P′1\{(s′,v′),(v′,s)} and its arc disjoint path P2 from
P′2\{(s′,s)}. It is easy to verify that removing those arcs does not reduce the
bandwidths of the paths. We have BW (P1)≥ X1 and BW (P1)≥ X2. "#

11.3.1.3 Exact Solution Using Integer Linear Programming

In this section, we provide the integer linear programming formulations of both
WPDPC and WPDPD problems. The formulations for the WPDPC and WPDPD are
shown in Figs. 11.23 and 11.24 respectively. The formulations of the two problems
have considerable similarity. The variable yk represents the bandwidth of path k. The
binary variable xk

i, j indicates that the arc (i, j) is in path k if and only if it is equal
to 1. The objective is to maximize the combined bandwidth. Constraint (1) is for
flow conservation. Constraint (2) ensures that the paths are arc disjoint. Constraint
(3) determines the capacity of a bottleneck arc for each path. M in that constraint is
any large constant.

In the WPDPD problem, the target values for the bandwidths of the paths P1 and
P2, X1 and X2 respectively, are provided as part of the input. In the ILP formulation of
the WPDPD problem given in Fig. 11.24, we use a variable ρ to determine if the goal
of establishing the disjoint paths P1 and P2 with bandwidths X1 and X2 respectively
can be realized. The objective of the ILP is to maximize ρ . If the value of ρ after
execution of the ILP is at least 1, it implies the goal can be realized. Otherwise, it
provides information about proximity of the realizable goal to the desired goal.
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Maximize ρ
Subject to

∑
(i, j)∈E

xk
i, j− ∑

( j,i)∈E
xk

i, j =

⎧⎨
⎩

1 if i = s,
−1 if i = t,
0 otherwise.

for ∀i ∈V , k ∈ {1,2} (1)

x1
i, j + x2

i, j � 1 for ∀(i, j) ∈ E (2)
ρXk � Bi, jxk

i, j +M(1− xk
i, j) for ∀(i, j) ∈ E, k ∈ {1,2} (3)

xk
i, j = 0/1 for ∀(i, j) ∈ E, k ∈ {1,2} (4)
ρ � 0 for k ∈ {1,2} (5)

Fig. 11.24 ILP formulation of the WPDPD problem

11.3.1.4 Heuristic Solution Using Relaxation and Randomization

In this section, we suggest two heuristic techniques for the solution of the widest
pair of disjoint paths problem. The heuristics are given for the coupled version of the
problem, i.e., WPDPC problem. However, same ideas can be used for the decoupled
version, i.e., WPDPD problem.

Deterministic Heuristic Algorithm

The algorithm is executed in two phases. In the first phase the relaxed version of
the ILP given in Fig. 11.23 is executed (i.e., the constraint number 4 is changed to
xk

i, j ≥ 0 from xk
i, j = 0/1). Phase 2 of this heuristic algorithm uses the same technique

as in [46, 47].

Algorithm: Deterministic heuristic algorithm (DHA)
Phase 1

Step 1 Find M, the bandwidth of the widest path in the network from s to t.
Step 2 Relax the integrality constraint (4 in Fig. 11.23) and solve the LP, using

the value of M obtained in the previous step. If the LP returns a solution with
integral values for the variables xk

i, j, then stop. Otherwise, go to Phase 2.

Phase 2

Step 1 Let the arc sets P = /0 and F = /0.
Step 2 For each arc (i, j) in the network, replace its capacity by the value of

variable x1
i, j obtained in the LP solution. Find a widest path from s to t with

the new capacities on the arcs and add the arcs that make up the widest path to
the set P.

Step 3 For each arc (i, j) of P, add arc ( j, i) to the network if the network already
does not have it. Add those new arcs to the set F .

Step 4 Remove all the arcs in the set P from the network.
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Step 5 For each arc (i, j) in the network, replace its capacity by the value of
variable x2

i, j obtained in the LP solution. Find a widest path from s to t with
the new capacities on the arcs. If the arcs that make up this widest path is not in
the set F , then add them to the set P.

Step 6 Construct two arc disjoint paths from the set of arcs in P.

Randomized Heuristic Algorithm

The randomized heuristic algorithm (RHA) also executed in two phases and its first
phase is identical to that of the DHA.

Algorithm: RHA
Phase 1 Same as Phase 1 of DHA.
Phase 2

Step 1 Construct two networks G1 and G2 from the LP solution obtained in Phase
1. Both G1 and G2 has the same set of nodes as in the original network. An edge
(i, j) in the network is in G1 if and only if x1

i, j > 0 and its capacity is set equal to
x1

i, j. Similarly, An edge (i, j) in the network is in G2 if and only if x2
i, j > 0 and its

capacity is set equal to x2
i, j.

Step 2 Two disjoint paths P1 and P2 are constructed by random walks on G1 and
G2. Both paths start at the source node and attempt to reach the destination. They
use Random Pick Arc function to determine the next node on their paths from
the current node u. Once an arc is traversed by a path, it is no longer available
for the other path. The paths get a chance to call Random Pick Arc alternatively
using its current node u until they reach the destination.

Random Pick Arc(ui, Gi, G)
ui: current node of path Pi.

Step 1 Let Aui be the set of arcs leaving uiin Gi. Let Sumi be the sum of the
capacities of the set of arcs Aui . If Aui = /0, then goto Step 2. Otherwise, goto
Step 3.

Step 2 Divide the interval [0,Sumi) into several left-open-right-close subintervals,
where each subinterval corresponds to an arc a in Aui and the size of the
subinterval is equal to the capacity of a. Randomly generate a number R between
0 and Sum. Clearly, R will fall into one of the subintervals. Return the arc
corresponding to the subinterval and then Stop.

Step 3 Let A′ui
be the set of arcs leaving ui in G. Let Numi be the number

of all these arcs. Divide the interval [0,Numi) into Numi left-open-right-close
subintervals, where each subinterval corresponds to an arc a′ in A′ui

and the size of
the subinterval is equal to 1. Randomly generate a number R between 0 and Numi.
Clearly, R will fall into one of the subintervals. Return the arc corresponding to
the subinterval and then Stop.
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Table 11.8 Simulation results for WPDPC problem with ARPANET topology

Source Capacity set 1 Capacity set 2 Capacity set 3

destination OPT DHA RHA OPT DHA RHA OPT DHA RHA

0,19 12 12 12 225 219 219 945 928 880
2,17 12 12 12 226 215 215 1139 1049 1119
4,15 11 11 11 223 219 219 1139 1053 1084
6,13 11 10 10 229 220 218 1139 1119 1119
8,11 9 8 8 230 230 230 1062 1062 1012
10,9 11 10 10 253 253 253 1277 1105 1265
12,7 10 10 10 276 271 276 1251 1251 1230
14,5 8 7 7 219 217 217 1083 970 970
16,3 8 4 4 221 221 221 1072 976 816
18,1 9 8 8 221 215 215 1117 1084 1084

11.3.1.5 Experimental Results

In this section, we compare the performance of our heuristic algorithms against
the optimal solution obtained by ILP. The simulation results are provided for both
WPDPC and WPDPD. Simulation experiments were carried out on the ARPANET
topology, with 20 nodes and 32 links. For each version, we tested ten different
source–destination pairs, and three different sets of capacities on the arcs, i.e.,
Capacity Set 1, 2, and 3. In order to get a better result for RHA, we repeat the
algorithm for 800 times and pick the best solution. In Table 11.8, results for coupled
version are presented. For each capacity set, the combined bandwidth obtained by
ILP, DHA and RHA are listed. In Table 11.9, results for decoupled version are
presented. For each capacity set, the two bandwidths of the pair of paths obtained by
ILP, DHA and RHA are listed. It may be observed that for the coupled version, in
about one third of the instances, the heuristic algorithms produced optimal solutions.
For the decoupled version, more half of the instances, the optimal solution is
achieved by the heuristic algorithms. In the cases where the heuristics failed to find
the optimal solution, they were within 50% of the optimal solution. From these
experimental results, we conclude that the quality of heuristics are high and they
produce optimal or near optimal solutions most of the time.

11.3.2 Multipath Routing Using Transit Hubs

The practical benefits of having intermediate nodes for alternate path routing have
given rise to a new direction of research efforts focussing on computing alternate
paths to optimize various end-to-end performance objectives. An example is a recent
work proposed in [50] where authors studies the problem of computing alternate
paths that minimizes the maximum load on a link. In the context of the overlay
networks, significant amount of works is proposed as well in maximizing end-to-end
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bandwidth, minimizing loss and delay. In this subsection, we focus on computing
alternate disjoint path that can provide resilience to end-to-end path outages – an
event whose occurrence has become quite frequent in present Internet.

Resilience to Path Failure

Path failures or outages can happen due to various reasons such as physical link
disconnection, software errors, router misconfigurations. Due to path outages, the
end hosts experience broken connection, packets loss or congestion. In many cases,
the recovery phase by BGP takes many minutes before converging into a stable
path. Empirical studies done on Internet as reported in [66] shows up to ten path
failures per day for a given end host. The same study done over various hosts over a
long period of time shows that the outage time is greater than 30 min for 5% of the
cases and around 4–5 min for 71% of the cases. The path failures are observed to
happen with equal probability at both Inter-AS and Intra-AS level that path failure
is widespread and affect any end host.

In trying to alleviate the above path failure problem, the authors in [20]
proposed resilient overlay network (RON). RON presented the protocols and system
architecture for deploying alternate path using overlay nodes between end hosts.
Such an alternate backup path can be created either reactive to a path failure or can
co-exist with the default path.

The goal of this work is the design of algorithm for the computation of an
alternate path P such that P does not share any underlying IP links with the
default path. The understanding is that by having disjoint path, we can avoid any
possible correlation between the failure probability of default and the back up path.
In our application scenario, given the transit nodes, one can easily establish the
underlying IP path in terms of the routers using traceroute and router resolution tool
Rocketfuel [67].

In a traditional disjoint path computation problem, a disjoint path is defined a set
of link concatenated to find a path from source to destination. However, in the case
considered here, the disjoint path consists of overlay links between transit nodes
T N1→ T N2 that maps to a prespecified shortest path between T N1 and T N2.

We consider an application scenario where there exist a set of dedicated transit
nodes which can be placed at diverse locations on the Internet. To ensure a good
performance, we assume that the transit nodes have very good access link bandwidth
and is not a bottleneck in terms of forwarding load.

In this scenario, we consider the problem of disjoint path routing using transit
nodes where the default path between the transit nodes are prespecified. The
objective is to minimize the number of transit nodes required to find the disjoint
path. Such a minimizing criteria is required for various reasons. For example, one
may want to minimize the deployment cost of transit nodes. In case of VPN network,
one may want to minimize the number of leased connections.

Our first contribution is to present the decision version of the above problem
where given a number of k transit nodes, the question is to find if there exist a path
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which is disjoint to the default IP path. We prove that the solution to the above
decision version is NP complete.

Our second contribution is to take the next step and study the design of an
exact algorithm. The solution to the exact problem leads to solving the maximal
independent sets in a graph. In many practical cases if the maximum number of
independent sets is small, such an exact algorithm can come to use.

Our third contribution is to present a heuristic based solution for the aforemen-
tioned problem. And we present some results on various topologies including the
abelene network.

11.3.2.1 Transit Hub Routing in IP Networks

In this paper, we study the K-transit hub routing problem. The problem is defined
as follows: Suppose the path Pvi,v j between every pair of nodes vi and v j is known.
Given the source and the destination nodes s and t respectively, is it possible to
establish an alternate path from s to d, disjoint from the primary path Ps,d , by
concatenating at most K other paths Pvi,v j ? In other words, is it possible to find a
set of paths {Ps,v1 ,Pv1,v2 ,Pv2,v3 ,Pv3,v4 , . . . ,Pvk−1,vk ,Pvk,d} such that the concatenation
of these paths will produce a path from s to d subject to the constraint that (1) no
two paths in this set share an edge and (2) no paths in this set share an edge with the
primary path Ps,d . If such paths exists, it is possible to establish two disjoint paths
between the nodes s and d and utilize the bandwidths of both the paths for data
transfer.

11.3.2.2 Problem Formulation and Complexity Analysis

As indicated earlier, the input to the K-transit hub routing problem is (1) an
undirected network graph G = (V,E), (2) a set of n∗(n−1) paths (|V |= n) between
every source–destination node pair (the path from node i to j is not necessarily the
same as the path from j to i), and (3) specified source and destination nodes s and
d respectively. The objective of the K-transit hub routing problem is to find out if it
is possible to construct a path from s to d by concatenating at most K paths (from
the set of n ∗ (n− 1) paths) so that (1) each of the K paths is edge disjoint with the
original s to d path and (2) the K paths are mutually edge disjoint.

In order to find an answer to this question, we first remove from the graph G =
(V,E), all the edges used by the path from s to d. Let P be the set of all n ∗ (n− 1)
paths given as the input. After removal of the edges belonging to the s to d path,
many of the paths in P may become disconnected. We will refer to such paths
as “unavailable” and will denote by Punav. The other paths in the set P are the
“available” and will be denoted by Pav
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Definitions and Notations

Definition 11.1. Intersection set of paths: The intersection set of two paths Pi and
Pj is the set of edges common between the paths and is denoted by Pi∩Pj.

Definition 11.2. Compatible Paths: Two paths Pi and Pj are said to be compatible
if their intersection set is empty.

Definition 11.3. Concatenation of Paths: If Pi is a path from si to di and Pj is a path
from s j to d j, they can be concatenated if di = s j and the result of the concatenation
operation is a path from si to d j.

K-Transit Hub Routing Problem

Instance: Given an undirected graph G= (V,E), a set of triples (si,di,Pi),1≤ i≤ r,
where si is a source node, di is destination node and Pi is a path from si to di,
specified source/destination nodes s and d respectively and an integer K.

Question: Suppose Pav = {P1, . . . ,Pr}. Is there a subset P ′
av ⊆Pav such that

(1) |P ′
av | ≤ K, and

(2) The paths in P ′
av are mutually compatible, i.e., if Pi,Pj ∈P ′

av then Pi ∩Pj =
/0,∀i �= j, and

(3) A path from s to d can be constructed by concatenating the paths in P ′
av.

Complexity Analysis Theorem. The K-transit hub routing problem is NP-
complete.

Proof. It is not difficult to verify that the K-transit hub routing problem is in NP.
We show that the K-transit hub routing problem is NP-complete by a polynomial
transformation from the 3SAT problem. From a given instance of the 3SAT
problem, specified by a set of variables X = {§∞, . . . ,§\} and a set of clauses
C = {C∞, . . . ,C'}, we construct an instance of the K-transit hub routing problem in
the following way.

For the sake of convenience in the proof, we define two types of edges in the
graph G = (V,E).

Definition. An edge (uv) ∈ E , is called a path-edge, if in the set of paths given as
the input of the K-transit hub routing problem, the path from the node u to v uses
this edge. Otherwise, the edge is known as a non-path-edge.

All the edges are classified into one of these two classes (path-edge and non-path
edge). It may be noted that both of these two types of edges can be used by paths
whose source/destination nodes are different from the end-points of the edge.

The instance of the K-transit hub routing problem can be generated from
the instance of the 3-SAT problem in the following way. ∀xi ∈ X and ∀c j ∈
C , construct 4-vertex subgraph, with vertex set {ui, j,u′i, j,vi, j,v′i, j}, and edge set
{(ui, j,u′i, j),(vi, j ,v′i, j)}, where both edges are path-edges.

For each xi and ∀ j = 1, . . . ,m−1, we connect the subgraph for xi,Cj, and the one
for xi,Cj+1 with two non-path-edges, (u′i, j,ui, j+1) and (v′i, j,vi, j+1). Then, for each xi,
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we add six more vertices: ai,bi,ci,a′i,b′i, and c′i. We connect ai,bi,ci with path-edges
(ai,bi) and (ai,ci) and connect a′i,b′i,c′i with path-edges (a′i,b′i) and (a′i,c′i). For
each xi, we add four more non-path-edges: (bi,ui,1),(ci,vi,1),(b′i,u′i,m), and (c′i,v′i,m).
Now, for each xi, we have a subgraph as shown in Fig. 11.25.

In the next step, we add a set of vertices, s,w0,w1, . . . ,wm,d′ and two path-
edges (s,w0),(wm,d′). Furthermore, we add a set of path-edges between w′js and
the subgraphs corresponding to xi,Cj for all i, j, in the following way: ∀i =
1, . . . ,n,∀ j = 1, . . . ,m,, if xi ∈ Cj, then add (wj−1,ui, j) and (u′i, j,wj); if x̄i ∈ Cj,
then add (wj−1,vi, j) and (v′i, j,wj).

Now, we add the destination node d, and a set of path-edges: (d′,a1),(a′1,a2),(a′2,
a3), . . . ,(a′n−1,an), and (a′n,d). The construction of the graph G is now complete
and is shown in Fig. 11.26.

Now, we specify the paths as part of the input of transit hub routing problem.
First of all, every path-edge in G represents a path between its endpoints. Besides
these one-edge paths, we specify a set of longer paths: ∀i = 1, . . . ,n, a path between
bi and b′i, Pbi = bi− ui,1− u′i,1 . . .− u′i,m− b′i, and a path between ci and c′i, Pci =
ci− vi,1− v′i,1 . . .− v′i,m− c′i.

Set s,d to be the source node and destination node respectively and set K to be
infinity. Construction of an instance of the K-transit hub problem is now complete.

Claim. There exists a truth assignment satisfying the instance of the 3SAT problem,
if and only if a path from s to d can be constructed in the generated instance of the
K-transit hub routing problem by concatenating at most K mutually compatible
paths.
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Fig. 11.26 The graph G constructed for NP-completeness proof

Proof of the claim: Suppose there is a truth assignment satisfying the instance of
the 3SAT problem. We can construct a path from s to d by concatenating a subset
of paths in the following way: (1) go from s to w0 following the path-edge between
them, (2) Each Cj, j = 1, . . . ,m, has at least one literal, z that has been assigned
“true” by the truth assignment. This means we can go from wj−1 to wj using the
corresponding path-edges (i.e., wj−1−ui, j−u′i, j−wj or wj−1− vi, j− v′i, j−wj), (3)
go from wm to d′ using the path-edge between them, (4) go from d′ to a1 using the
path-edge between them. (5) If x1 = “true,” then no edge on the path from c1 to c′1
has been used so far; otherwise, if x1 = “false,” then no edge on the path from b1 to
b′1 has been used. Hence we can get to a′1 from a1 following the unused path. (6) Go
from a′i to ai+1, for 1≤ i≤ n−1, using the path-edge between them. (7) At last, go
from a′n to d following the path-edge between them.
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Thus, we find a s− d path, which is a concatenation of a sequence of mutually
compatible paths.

Now to prove the reverse, suppose we can go from s to d by concatenating a
sequence of mutually compatible paths. It is not hard see that we must go from s to
d′ by following the path-edges connecting the w′js first. Then, from d′, we have to
go through each subgraph for the x′is, from ai to a′i. For each i = 1, . . . ,n, if the path
from bi to b′i is used, then assign xi to be “false”; if the path from ci to c′i is used, then
assign xi to be “true.” It is easy to check this assignment satisfies the corresponding
3SAT problem.

This proves that the K-transit hub routing problem is NP-complete.

11.3.2.3 Exact Solution for the K-Transit Hub Routing Problem

In this section, we provide an exact algorithm for the solution of the K-transit hub
routing problem as shown in Algorithm 9. Recall from Sect. 11.3 that the set Pav

represents the set of paths available for the construction of an alternate path from s
to d, disjoint from the original s to d path in the path set P . Because of the way of
construction of the set Pav from the set P , a path between s and d, constructed by
concatenating a subset of the path in Pav, will automatically be edge disjoint from
the original s to d path. Thus, requirement (2) of the K-transit hub problem will
automatically be satisfied. Therefore, we only need to make sure that requirement
(1) is satisfied, i.e., the paths from the set Pav concatenated to generate a path from
s to d must be mutually edge disjoint.

In Sect. 11.3, two paths Pi and Pj were defined to be compatible if they do not
share an edge. Therefore, it is clear that when we attempt to construct the alternate
s to d path, it must be done with only the compatible paths in the set Pav. As a first
step in that direction, we first construct a path intersection graph (PIG).

Definition 11.4. A path intersection graph is the intersection graph of paths in
the set Pav. This is a graph Gpig = (Vpig,Epig), where each node represents a path
in the set Pav and two nodes have an edge between them, if the corresponding paths
have any common edge.

Definition 11.5. An independent set (or a stable set) in a graph G = (V,E) is a
subset V ′ ⊆ V , such that no two nodes in V ′ are adjacent to each other in the graph
G = (V,E).

Definition 11.6. An independent set in a graph G = (V,E) is called a maximal
independent set if it is not a proper subset of any other independent set in the graph.

As a second step towards construction of the alternate s to d path, we compute
all the maximal independent sets of the path intersection graph. The maximal
independent sets of the path intersection graph will correspond to the sets of
maximal compatible paths in Pav. Suppose {MIS1,MIS2, . . .} represent the set of
maximal independent sets of the path intersection graph.
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Algorithm 9 K-Transit Hub Routing Algorithm (G,Pav,s,d,K)

setp 1 Compute the path intersection graph, Gpig = (Vpig ,Epig) corresponding to the paths in
Pav.

setp 2 Compute all Maximal Independent Sets of Gpig, MI S = {MIS1 ,MIS2, . . . ,MISt}.
setp 3 Compute a subset MI S ′ ⊆MI S , such that all elements of MI S ′, contain at least

one path whose terminating point is s and another path whose terminating point is d.
setp 4 Repeat steps 5–7 for each elements MISi of MI S ′.
setp 5 Compute the path construction graph Gpcg(i) corresponding to MISi.
setp 6 Let Vi,s be the set of nodes in Gpcg(i) that corresponds to those paths whose one

terminating point is s and Vi,d be the set of nodes in Gpcg(i) that corresponds to those
paths whose one terminating point is s. Repeat step 5 for each element vi,s ∈Vi,s and for
each element vi,d ∈Vi,d .

setp 7 Compute the shortest path from vi,s to vi,d . If the shortest path length is at most K then an
alternate path from s to d using compatible paths from the set Pav exists. EXIT from the
loop.

setp 8 If no path of length at most K can be found in any of the combinations of vi,s and vi,d , then
an alternate path from s to d using compatible paths from the set Pav does not exist.

setp 9 EXIT.

As a third step in the process to construct an alternate s to d path, we
construct a path construction graph corresponding to each maximal independent
set MIS1,MIS2, . . . ,MISt , computed in the previous step.

Definition 11.7. Each node in a path construction graph corresponding to a
MISi,1 ≤ i ≤ t, Gpcg(i) = (Vpcg(i),Epcg(i)), corresponds to a path in MISi and
two nodes have an edge between them if the corresponding paths have a common
terminating point, i.e., if the terminating points of a path is vi and v j and the
terminating points of another path is vk and v j, then the nodes corresponding to
these two paths will have an edge between them in the graph Gpcg(i).

Some nodes in the graph Gpcg(i) will correspond to paths whose one terminating
point is the designated source node s. Similarly, there will be a set of nodes in
the graph Gpcg(i) that will correspond to paths whose one terminating point is the
designated destination node d. Let Vpcg(i,s) = {vs,1,vs,2, . . . ,vs,p} denote the set
of nodes that correspond to paths whose one terminating point is the designated
source node s. Similarly, let Vpcg(i,d) = {vd,1,vd,2, . . . ,vd,q} denote the set of nodes
that correspond to paths whose one terminating point is the designated destination
node d. Now in the graph Gpcg(i), we compute the shortest path between the nodes
vs, j,1≤ j ≤ p and vd,k,1 ≤ k ≤ q. If any of these paths have length at most K, then
it is possible to construct an alternate path from s to d, disjoint from the original
path Ps,d in the graph G = (V,E), by concatenating compatible paths in the set
Pav. This process of building a path construction graph Gpcg(i) from MISi and then
computation of shortest path needs to be repeated ∀i,1 ≤ i≤ t. If a shortest path of
length at most K cannot be found in any one of these graphs Gpcg(i),1 ≤ i≤ t, then
it is impossible to construct an alternate path from s to d, disjoint from the original
path Ps,d in the graph G = (V,E), byconcatenating compatible paths in the set Pav.
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We present the algorithm in pseudocode below:

11.3.2.4 Algorithm Analysis

The algorithm first computes the path intersection graph of the set of available paths
Pav and then computes all maximal independent sets of this graph. The maximal
independent sets gives the set of compatible paths that can be concatenated for
constructing the path from the source s to destination d. In step 5 of the algorithm
the path construction graph is constructed and in step 7, the shortest path between a
vi,s and vi,d is computed. Since the process is repeated for all maximal independent
sets that contains a vi,s and vi,d and for all vi,s and vi,d , if a path between s to d can be
obtained by concatenating at most K compatible paths in the set Pav, this process
will find it. This ensures the correctness of the algorithm.

Since in Sect. 11.3 we proved that the K-transit hub routing problem is NP-
complete, it is highly unlikely that an exact solution to the problem can be found
in polynomial time. The complexity of the algorithm presented in this section
is exponential and it is due to the fact that the number of maximal independent
sets in a graph can be an exponential function of the number of nodes in the
graph. An upper bound on the number of maximal independent sets in a graph
was established by Moon and Moser [58] in 1965. They proved that the number
of maximal independent sets in any graph is at most 3n/3 where n is number of
nodes in the graph. Recently, Eppstein in [51] and Nielsen in [59] have improved
the bound Nielsen has shown in [59] that the number of maximal independent sets
of size exactly k in any graph of size n is n/kk−(n mod k)(n/k+ 1)n mod k. It was also
shown in [59] that for maximal independent sets of size at most k the same bound
holds for k ≤ n/3 and for k > n/3 the bound is 3n/3.

For generating all maximal independent sets of a graph, algorithms such as
the ones presented in [60] and [54] can be used. Both the algorithms produce
the maximal independent sets one after another in such a way that that the delay
between generation of two consecutive maximal independent sets is bounded by a
polynomial function of the input size. The computation complexity of the algorithm
in [60] is O(n ∗m ∗α) [56] and the algorithm in [54] is O(n3 ∗α) [54] where n,m
and α represents the number of nodes, edges and the maximal independent sets
of the graph respectively. We use the algorithm in [54] for generating all maximal
independent sets in step 2 of the K-transit hub routing algorithm.

The worst case computational complexity of the step 1 of the algorithm is O(β 2),
step 2 is O(β 3 ∗α) and step 3 is O(β 2 ∗α). The combined complexity of the steps
4, 5, 6 and 7 is O(β 4 ∗α) where α,β represents the number maximal independent
sets of the path intersection graph and the paths (i.e., |Pav|), respectively. Thus, the
overall complexity of the algorithm is O(α ∗β 4).

Special Cases The above analysis is based on the assumption that the path
intersection graph does not have any special structure. However, if the path
intersection graph has a special structure than the properties of that structure can
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Fig. 11.27 Network topology (a), spanning trees generated by the nodes 1–4 (b–e) and the cycle
of size 4 in the path intersection graph

be exploited to design more efficient algorithms. During the routing process, each
node establishes a path to every other node of the graph. These paths essentially
establish a spanning tree of the underlying graph rooted at this particular node. This
is shown in Fig. 11.29. The spanning trees rooted at nodes 1 through 4 is shown in
Fig. 11.29b–e.

Definition 11.8. An undirected graph G is called a chordal or triangulated graph
if every cycle of length strictly greater than 3 possesses a chord, that is, an edge
joining two nonconsecutive nodes of the cycle [53]. Equivalently G does not contain
any induced subgraph isomorphic to a cycle of size 3 or greater.

Intersection graphs of paths in a tree was studied by Gavril in [52] and [57]. It
has been shown that [52] that the intersection graphs of paths in a tree are chordal.
Efficient algorithms for the generation of all maximal independent sets of a chordal
graph is presented in [56]. The complexity of generating all maximal independent
sets of a chordal graph is O(n+m)∗α whereas for general graphs it is O(n ∗m ∗
α) where n,m,α are the number of nodes, edges and maximal independent sets,
respectively.

Since each node of the network generates a spanning tree rooted at that node,
the path intersection graph produced by the paths starting at the root node will
be chordal. Figure 11.29a shows a network topology. The Fig. 11.29a–d shows
the spanning trees rooted at nodes 1 through 4, respectively. The path intersection
graph produced from each of the individual spanning trees will be chordal [52].
Unfortunately, when the path intersection graph produced by the spanning trees
rooted at different nodes are combined, they are no longer chordal if the underlying
spanning trees are different. The Fig. 11.29e shows such a phenomenon. The node
(1,3) represents the path from 1 to 3 obtained from the spanning tree rooted at node
1 (Fig. 11.29b); the node (2, 4) represents the path from 2 to 4 obtained from the
spanning tree rooted at node 2 (Fig. 11.29c); the node (3, 5) represents the path
from 3 to 5 obtained from the spanning tree rooted at node 3 (Fig. 11.29d); the node
(4, 1) represents the path from 4 to 1 obtained from the spanning tree rooted at node
4 (Fig. 11.29e). It can be seen from Fig. 11.29e, the path intersection graph in this
example will have a cycle of size 4 as a subgraph. Accordingly, the path intersection
graph cannot be chordal. Such a situation is encountered because the spanning trees
produced by nodes 1, 2, 3 and 4 are different and when they are combined, it is no
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Fig. 11.29 Performance of the heuristic solution, (a) probability of success vs. value of K for
instance 1; (b) Probability of success vs. value of K for instance 2

longer a tree. However, in a special case if the spanning trees produced by different
nodes are identical, after combination of all the spanning trees, it will still be a tree.
In this case, the path intersection graph will be chordal and the efficient algorithm
for generating all maximal independent sets, given in [56], can be utilized to reduce
overall computational complexity.

11.3.2.5 Heuristic Solution for the K-Transit Hub Routing Problem

The main overhead involved in the exact algorithm is in the computation of all the
Maximal Independent Sets of the path intersection graph. In this section, we present
a heuristic solution using randomization technique for the K-transit hub routing
problem that produces a solution with high probability as shown in Algorithm 10.
The complexity of the solution is bounded by a polynomial function of the number
of nodes in the overlay network.
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Algorithm 10 Heuristic Solution for the K-Transit Hub Routing Problem
(G,Pav,s,d,K)

1. Compute the path intersection graph Gpig = (Vpig,Epig) corresponding to the paths in Pav.
2. Determine Vs ∈Vpig as the set of nodes that correspond to the paths whose one terminating

point is s and Vd ∈Vpig as the set of nodes that correspond to the paths whose one termination
point is d.

3. Repeat steps 4 through 7for every node-pair (vs,vd) ∈Vs×Vd .
4. Construct a maximal independent set with two nodes vs and vd , MI S = {vs,vd}.
5. Let N N S (S), the “Non-Neighborhood Set” of S be defined as

N N S (S) =Vpig\(N (S)
⋃

S), where N (S) represents the neighborhood set of S. Select
with equal probability a node v ∈N N S (S). Augment the maximal independent set,
MI S = MI S

⋃{v}.
6. If MI S is not a maximal independent set, go back to step 5. Otherwise, form the path

construction graph Gpcg. Compute Vi,s,Vi,d ∈V (Gpcg) as the set of nodes corresponding
to paths having one terminating point in s,d respectively.

7. Compute the shortest path between every vi,s ∈Vi,s and vi,d ∈Vi,d . there exists a shortest
path of length at most K between any vi,s ∈Vi,s and vi,d ∈Vi,d , then an alternate path from
s to d using compatible paths from the set P exists. EXIT from the loop.

8. If none of the combinations of vs and vd report a path of length at most K, then there is no
alternate path from s to d using compatible paths from the set Pav.

9. EXIT.

Complexity Analysis As in the exact algorithm, the heuristic solution starts by
determining the path intersection graph of the available paths Pav. However, instead
of finding all maximal independent sets involving the two nodes(paths) vs and vd

that terminate in s and d respectively, the algorithm randomly generates a maximal
independent set for each pair-wise combination of vs and vd . The random generation
procedure first includes the two nodes vs and vd into a working set MI S of
independent nodes. It then randomly selects a node from all the remaining non-
neighboring nodes of MI S in the path intersection graph and includes it into
MI S . This process is continued until MI S is maximally independent.

Step 1 of the algorithm has the worst case computational complexity O(β 2),
where β is the number of nodes in the path intersection graph. Steps 5 and 6 perform
O(β 2) operations in the worst case to compute a Maximal Independent Set. Step 7 of
the algorithm performs O(β 2) operations in the worst case to check if there exists
compatible paths in the path construction graph between the source node and the
destination node. Thus, the overall complexity of the algorithm is O(β 4).

Performance of the Heuristic Solution

In order to evaluate the performance of our proposed exact and heuristic solutions,
we conducted experiments for the K-transit hub routing problem, on randomly
generated topologies.

The problem instances are generated in three steps.
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Step 1. GT-ITM (Georgia-Tech Internet Topology Model) [61] topology generator
was used to generate the physical layer topologies. Several random graphs consist-
ing of 30 nodes and for different values of the average node degree were generated
for the simulation experiments.

Step 2. A subset of these nodes were randomly chosen, with uniform distribution,
as the set of overlay nodes.

Step 3. Shortest Paths using Dijkstra’s algorithm between every pair of the overlay
nodes were computed.

One of the metrics used for the evaluation of the performance of the heuristic
technique is the success ratio. The success ratio is defined as the ratio of the number
of source–destination pairs for which a path was found by the algorithm to the total
number of source–destination pairs.

Three sets of experiments were conducted to study the performance of the
heuristic solutions. In the first set of experiments, the number of overlay nodes were
varied from 3 to 7 and success ratio of both the exact and the heuristic solutions
were measured for all source–destination pairs. The value of K was chosen to be
greater than the number of overlay nodes.

In the second set of experiments, different physical topologies consisting of 30
nodes were chosen with varying average node degrees. In each case, six nodes
were chosen to be overlay nodes and the success ratio of the exact and heuristic
algorithms were measured for all the 30 source–destination pairs. The aim of this
experiment was to study the impact of the average node degree on the performance
of the algorithm.

The third set of experiments were conducted with two data sets. For various
values of K, the success ratio of both the algorithms were recorded. The physical
topology had 30 nodes with an average node-degree of 4 and the overlay structure
had seven nodes.

In most of the cases, the success ratio of the heuristic was close to the exact
algorithm. From the first set of results, among the five cases, the success ratio of
the heuristic algorithm is within 4% deviation from the success ratio of the exact
algorithm in four cases.

In the second set of results, increasing the average node-degree in the physical
topology has a positive effect on finding alternate paths in the overlay. The success
ratio for both the heuristic and the exact algorithms increase with increased average
node-degree. The success ratio of the heuristic algorithm follows closely with that
of exact algorithm. Both the algorithms benefit from increased path availability.

The results of the third simulation indicate that the performance of the heuristic
solution is not significantly dependent on the value of K, the number of paths that
are allowed to be concatenated to construct the source to destination path.

In all of these cases, the performance of the heuristic technique was close to
the exact solution. We noted the execution timings of both the heuristic and the
exact solution. In almost all the cases, the computational time for the exact solution
was significantly higher than that of the heuristic solution. In many instances, the
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computational time for the exact solution was about 100 times more than that for
the heuristic solution. We thus conclude that our heuristic technique almost always
produces a very high quality solution in a fraction of time needed to find the exact
solution.
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Chapter 12
Optimized Design of Large-Scale Social Welfare
Supporting Systems on Complex Networks

Jaroslav Janáček, Ľudmila Jánošı́ková, and Ľuboš Buzna

Abstract Our contemporary societies are supported by several systems of high
importance providing large-scale services substantial for citizens everyday life.
Typically, these systems are built or rely on various types of complex networks such
as road networks, railway networks, electricity networks, communication networks
etc. Examples of such systems are a set of emergency medical stations, fire or police
stations covering the area of a state, social or administration infrastructure. The
problem of how to design these systems efficiently, fairly, and reliably is still timely
and it brings along many new research challenges. This book chapter presents a
brief survey of optimization models and approaches applicable to the problem. We
pay special attention to the methods based on the branch and bound principle and
show how their computational properties can be improved. Furthermore, we discuss
how some of these models can be rearranged in order to allow using the existing
solving techniques as approximative methods. The presented numerical experiments
are conducted on realistic data describing the topology of the Slovak road network.
On the one hand, we hope that this chapter can come handy to researchers working
in the area of complex networks, as it presents efficient methods to design public
service systems on the networks. On the other hand, we can picture the benefits
potentially resulting from the knowledge of the network properties and possibly
being utilized in the algorithms design.
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12.1 Introduction to Public Service Systems

The topology of many real-world systems can be described as a network. In some
cases, the system organization and the network topology result from some long-
term evolution processes directed by billions of interactions [15, 28, 39]. In other
cases this is given by human-controlled decision-making activities, supported by
sophisticated optimization methods [1, 18, 42]. In this book chapter, we revise
some of the techniques that can be applied to the problem of designing the public
service systems operating on all sorts of transportation networks. We focus mainly
on road networks, where the typical applications are locating emergency medical
centers, police or fire stations [38, 41] or other types of social and administration
infrastructures [19,27]. Nevertheless, these approaches can also be applied to many
other man-made systems such as railway networks, telecommunication networks
[37], power grid networks or gas networks [34, 40].

The road network is the example of the spatial complex network featuring many
non-trivial topological properties [31]. So far, it is relatively little known how these
properties influence the efficiency of optimization algorithms. For location problems
it is, for example, known that the corresponding solving methods perform much
more efficiently on real-world networks than on their random counterparts [30]. The
explanation is in the spatial structure of the underlying network, which generates
suitable diversity in cost coefficients. This influences the structure of lower and
upper bounds and finally results in shorter computational time.

The road network is a substrate for the public service systems. These systems
provide various kinds of services to inhabitants of a certain geographical area. The
services can include goods delivery, presence of some necessary facilities or they
can be some kind of civil services, such as medical care, fire-fighting or house
maintenance. Contrary to the private service systems, none of the demands listed
above can be ignored. Hereafter, a serviced person or a group of serviced people,
characterized by their demand and located within the same municipality, will be
referred to as a customer. The customer’s demand will be characterized by its
weight. If a customer is a group of people, the weight can be proportional to the
number of the people in the given group.

Even if the serviced population is concentrated in municipalities, the number of
municipalities is usually too large to have a source of the services at each customer’s
location. That is why placing the sources needs to be really thought through. Hereby,
we assume that there is only a finite set of possible service center locations within
the serviced area. Nevertheless, the set can be very large, e.g. it can be composed of
all municipalities. Therefore, if an appropriate number of service center locations is
to be found, a rather large combinatorial problem arises.

When a public service system is designed, two essential types of objectives,
namely the economic efficiency and the fairness, should be taken into account [9].
The economic efficiency can be measured through how much the system and its
operation cost. The costs of a service system usually consist of fixed expenses paid
for opening and operating service centers, and of the cost of transportation related
to the serving the customer [13].
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This scheme applies only if the system provider serves customers at their
locations. However, some systems can provide services only at the service centers.
In this case, a customer has to travel to the service center, and obviously, the
travel cost is not included in the system costs. The servicing costs are often
considered as being proportional to the network distance between the customer and
the service center.

Fairness or welfare in the public systems design is related to the notion
of justice perceived by the customers resulting from the distribution of limited
resources. This topic has been extensively studied, notably in social sciences,
welfare economics, and engineering. The overview of basic concepts of fairness
can be found in the reference [4]. The customer’s welfare is difficult to quantify.
Therefore, one possibility is to convert it into a customer’s discomfort, expressing
the accessibility of a service. The discomfort of an individual customer can be,
for example, estimated by considering the distance or travel time required to get
from the customer’s residence to the nearest service center. When we use this
approach, several possibilities emerge. The discomfort can be expressed directly
as the distance or only as a part of the distance which exceeds a given accepted real
valued threshold Dmax. The simplest option is to utilize the information whether the
distance is longer than Dmax. If the distance is longer or equal to Dmax, then the
customer’s discomfort is considered to be affected.

Next, two extreme cases, the average customer discomfort or the worst case of
customer’s discomfort, can be considered as possible criteria expressing the quality
of the proposed design. In the first case, the estimations of individual discomforts
are summed up, and the resulting design minimizes the total discomfort. The second
criteria (sometimes denoted as Rawlsian criterion) measures the quality of the
design by the discomfort perceived by the worst positioned customer [36]. This
approach can be extended by repeating the minimization for the second, third,
fourth, etc., worst positioned customer. This extension has been studied throughly
in the context of flow networks, where it is known as the max-min fair allocation of
flows [33], however, only little attention has been paid to it in the context of location
problems [10]. Another possibility, known as the proportional fairness, is based on
the minimization of the utility function, which is the sum of logarithms of individual
discomforts [35].

If the system costs and the customer’s welfare are defined, it is necessary to
decide which type of the public service system design should be preferred. Is
it the cost-oriented design or the customer’s welfare-oriented design? The cost-
oriented design searches for the system optimum, minimizing the system costs,
while assuring the desired level of the welfare. The welfare-oriented design, on the
other hand, minimizes the customer’s discomfort subject to a constraint keeping the
system costs under a given limit. Both approaches can be combined with an arbitrary
evaluation criteria for either cost or discomfort.

In Sect. 12.2, we show some basic examples of how to formulate costs and
discomfort mathematically. With each individual case we demonstrate how to build
mathematical models which can be then solved by optimization tools. In Sect.
12.3, as examples of solving methods, we briefly review the available universal
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solvers and exact algorithms to solve the uncapacitated facility location problem.
To conclude, in Sect. 12.4, we describe a case study where we examine the
network of emergency medical service (EMS) centers operating in the Slovak
Republic.

12.2 Modeling Approaches to Designing Public Service Systems

Let us assume that the serviced area consists of the municipalities located at the
nodes of the graph G(N,E), where N is a set of nodes and E is a set of edges.
The municipalities forming the finite set J ⊆ N are considered as customers. The
demand or the number of inhabitants living in the node j ∈ J is denoted as b j.
The service system design problem can be reduced to the task to decide where to
locate the centers within the large finite set I of possible locations, so that the value
of the chosen criterion is minimal.

The shortest path length between the nodes i ∈ N and j ∈ N is denoted as dij,
and the associated travel time as tij. The fixed charge fi is paid to locate the service
center at the node i, whereas the costs to satisfy the j-th customer from the service
center i can be expressed as (edij + gi)b j, where gi are the costs spent to satisfy one
unit of the demanded volume, and e are the travel costs per one unit of volume and
one unit of distance.

Let s( j) be the index of the center which is the closest to the node j, considering
either the time or the distance, and which belongs to the set I1 ⊆ I of nodes where a
service center is located. Then, the total system costs can be expressed as:

∑
i∈I1

fi + ∑
j∈J

(eds( j), j + gs( j))b j. (12.1)

Here, we ask the question: How could we estimate the discomfort of the
customers? Let j be the customer’s location and s( j) be the nearest service
center as defined above. If the individual customer’s discomfort us( j), j can be
expressed as being linearly proportional to the distance between the customer j
and the nearest service center, then us( j), j is equal to ds( j), jb j, considering b j as
the weight. In the case, when only the part of the distance exceeding the given
threshold Dmax is considered as being proportional to the discomfort perceived by
the customer, then us( j), j is equal to (ds( j), j−Dmax)b j subject to ds( j), j ≥ Dmax, and
otherwise the discomfort us( j), j is equal to zero. Whenever only the information
whether the distance is longer than Dmax is used, the customer’s discomfort us( j), j
equals b j subject to ds( j), j ≥ Dmax; otherwise, the discomfort us( j), j is equal
to zero.

Equivalent definitions of customer’s discomfort can be used for travel time ts( j), j
and the threshold value Tmax.

If the average discomfort is considered to be an appropriate measure, then the
objective function expressing the discomfort experienced by the population can be
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expressed by the formula (12.2). Alternatively, if the worst customer’s discomfort
is some more characteristic quantity, then the expression (12.3) is used instead, to
describe the general discomfort affecting the serviced population.

∑
j∈J

us( j), j (12.2)

max{us( j), j : j ∈ J} (12.3)

To formulate the mathematical model, both the set I1 ⊆ I and assignments s( j)
are expressed as decision variables. Each possible location i ∈ I is subject to the
decision whether to provide a service center or not. This decision can be modeled
by the variable yi, which takes the value of one if a service center is located at
the node i ∈ I and the value of zero otherwise. The assignment s( j) representing
the center i to be assigned to the customer j is expressed by the zero-one decision
variable zij. The decision variable zij takes the value of one, if i = s( j).

Using the variables yi and zij and the substitution cij = (edij + gi)b j, expressions
(12.1), (12.2), and (12.3) can be rewritten as expressions (12.4), (12.5), and (12.6),
respectively:

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij (12.4)

∑
i∈I

∑
j∈J

uijzij (12.5)

max
{

∑
i∈I

uijzij : j ∈ J
}

(12.6)

The non-linearity of the expression (12.6) can be removed by adding a new
variable which is minimized and by adding a set of constraints ensuring that this
variable takes the values greater or equal to the discomfort perceived by each
customer.

In this subsection, we revised the basic forms of the objective functions used
when designing public service systems. For more systematic overviews we refer the
reader to the references [6, 16, 22].

12.2.1 Cost-Oriented Service System Design

The cost-oriented design leads to the system, which minimizes the system cost,
assuring a certain level of the welfare. The structure of the resulting system is
described by the above-introduced variables yi, which determine the nodes, at which
the service centers are located. The quality criterion corresponds, for example, to the
expression (12.4). In addition, some consistency constraints must be now imposed
on the decision variables. With each customer j, only a single allocation variable



342 J. Janáček et al.

zij is allowed to take value of one, and, furthermore, if the variable zij takes the
value of one, then the associated variable yi must take the value of one as well. If no
other restriction on the customers’ welfare is put except being served from a service
center, then the model of the cost-oriented system design can be stated as follows:

Minimize ∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij (12.7)

subject to∑
i∈I

zij = 1 for j ∈ J (12.8)

zij ≤ yi for i ∈ I, j ∈ J (12.9)

yi, zij ∈ {0, 1} for i ∈ I, j ∈ J (12.10)

The constraints (12.8) ensure that each municipality (customer) is assigned to
exactly one location. Whenever the customer j is assigned to the location i, the
constraints (12.9) (so called linking constraints) force the variable yi to take the
value of one. This problem, introduced in [2], is known as the uncapacitated facility
location problem (UFLP), or the simple plant location problem. This problem is
NP-hard [21] and its properties and solving techniques are broadly discussed, for
example, in [3, 32].

If a certain level of welfare is supposed to be preserved, the model (12.7) –
(12.10) is supplemented with the conditions that keep the discomfort described by
the expression (12.6) below a given threshold Umax. Thus, for this purpose, either
the set of constraints (12.11) or (12.12) is added to the model (12.7)–(12.10).

∑
i∈I

uijzij ≤Umax for j ∈ J (12.11)

uijzij ≤Umax for i ∈ I, j ∈ J (12.12)

Note that the extended model can be easily turned into the original uncapacitated
facility location problem by redefining the cost coefficients cij. It can be done for
example by setting cij to sufficiently high value, whenever the inequality uij ≤Umax

does not hold. In case the total costs of the designed system do not include the costs
cij, then much simpler model can be formulated instead. As the relation between the
customer j and the center location i becomes irrelevant, with the exception of the
constraints (12.12), we can even avoid using the allocation variables zij. We define
the coefficients aij so that aij takes the value of one if and only if the inequality
uij ≤ Umax holds, and otherwise it takes the value of zero. We use the zero-one
location variables yi as before, and formulate the following model:

Minimize ∑
i∈I

fiyi (12.13)

subject to∑
i∈I

aijyi ≥ 1 for j ∈ J (12.14)

yi ∈ {0, 1} for i ∈ I (12.15)
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The constraints (12.14) are satisfied, if at least one service center is located in the
neighborhood of the customer j, so that the discomfort constraint uij ≤Umax is met.
The problem (12.13)–(12.15), known as the set covering problem, was for the first
time formulated in [41]. The problem is NP-hard [29] and its solving algorithms are
over-viewed, for instance, in [11].

12.2.2 Customer’s Welfare-Oriented Service System Design

The welfare-oriented design aims at minimizing the customer’s discomfort, pro-
vided the system costs do not exceed the given level Cmax. Also, in this case,
the structure of the designed system is described by the location variables yi and
allocation variables zij. The quality criterion expressing the average customer’s
welfare could correspond to the expression (12.5). The consistency constraints
imposed on the decision variables yi and zij are the same as before. A simple model
illustrating the system design oriented at the average customer’s welfare can be
stated as follows:

Minimize ∑
i∈I

∑
j∈J

uijzij (12.16)

subject to∑
i∈I

zij = 1 for j ∈ J (12.17)

zij ≤ yi for i ∈ I, j ∈ J (12.18)

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij ≤Cmax (12.19)

yi,zij ∈ {0, 1} for i ∈ I, j ∈ J (12.20)

This problem can be solved directly, using a universal optimization tool.
However, if the sets I and J are too large, then the problem can be rearranged as
the uncapacitated facility location problem, using the Lagrangian relaxation. If the
positive Lagrangian multiplier λ is introduced, and we apply the relaxation to the
constraint (12.19), we obtain a new objective function:

∑
i∈I

∑
j∈J

uijzij +λ
(
∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij−Cmax

)

= ∑
i∈I

λ fiyi +∑
i∈I

∑
j∈J

(uij +λ cij)zij−λCmax (12.21)

For the given value of λ we can minimize the expression (12.21) subject to the
constraints (12.17), (12.18), and (12.20) as an instance of the uncapacitated facility
location problem. Then the optimal or the near-optimal solution of the original
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problem (12.16)–(12.20) can be obtained by iterative process, where the bisection
method is used to find such value of λ that the resulting solution (y,z) fulfills the
constraint (12.19) as the equality with an arbitrary precision.

The same approach can be applied when the total costs do not include the costs
cij. Thus, the constraint (12.19) is replaced by simpler constraint (12.22). If the
parameter p limits the number of the located service centers instead of constraining
the costs, then the constraint (12.19) can be replaced by the constraint (12.23).

∑
i∈I

fiyi ≤Cmax (12.22)

∑
i∈I

yi ≤ p (12.23)

If the discomfort is expressed as uij = b j for dij > Dmax and uij = 0 otherwise,
then the instance of the set covering model can be formulated. The coefficients aij

are defined as above, i.e. aij takes the value of one, if and only if the inequality
dij ≤ Dmax holds, otherwise it takes the value of zero. Also, the location variables yi

are defined as before and, in addition, the auxiliary variables x j are introduced for
each customer j ∈ J. It is expected that the variable x j takes the value of one, if there
is no located service center within the radius Dmax from the customer j. Then the
following set covering model describes the welfare-based system design problem:

Minimize ∑
j∈J

b jx j (12.24)

subject to∑
i∈I

aijyi ≥ 1− x j for j ∈ J (12.25)

∑
i∈I

fiyi ≤Cmax (12.26)

yi ∈ {0, 1} for i ∈ I (12.27)

x j ∈ {0, 1} for j ∈ J (12.28)

The term (12.24) expresses the overall volume of uncovered demands which is
minimized. The constraints (12.25) ensure that the variables x j take the value of
one, if and only if there is no service center located within the radius Dmax from
the customers location j. The constraint (12.26) puts the limit Cmax on the system
costs. More complicated situation arises if the welfare-oriented system is designed
and the discomfort of the worst positioned customer is used as the quality criterion.
The model of this type assumes the following form:

Minimize h (12.29)

subject to∑
i∈I

uijzij ≤ h for j ∈ J (12.30)

∑
i∈I

zij = 1 for j ∈ J (12.31)
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zij ≤ yi for i ∈ I, j ∈ J (12.32)

∑
i∈I

fiyi +∑
i∈I

∑
j∈J

cijzij ≤Cmax (12.33)

yi,zij ∈ {0, 1} for i ∈ I, j ∈ J (12.34)

The transformation of the model (12.29)–(12.34) either into the uncapacitated
facility location problem or into the set covering problem is possible, although only
under very strong and simplifying assumptions on both customers’ discomforts and
cost coefficients.

The family of the above reported models can comprise more complex service
system design problems than we have explained. Thus, it is often necessary to
add some additional constraints which can capture restrictions such as limited
capacity of service centers, capacity and time constraints on the communication
links (roads) etc. Another issue is how to find a reasonable trade-off between
various objectives. For example, what should be preferably minimized the total
discomfort of all customers or the worst individual discomfort? As shown above,
each of these criteria leads to a specific objective function. The criterion of the total
discomfort is described by the term (12.16), and the criterion of the worst situated
customer discomfort is described by the term (12.29). To a certain extent, these two
approaches can be combined in one optimization process as the following example
shows. Let us introduce the real valued threshold Umax, and define the penalty P as

P = ∑
j∈J

max{uij : i ∈ I}. (12.35)

Then we define the new disutility uij so that uij = uij if uij ≤ Umax and uij = P
otherwise. The optimal solution of the problem described by (12.16)–(12.20) with
the new coefficients uij does not allow to assign a customer to a service center,
if it should cause bigger discomfort than Umax, under the assumption that such a
solution exists. Using this construction, an optimization process can be formulated.
The process starts with a big value of the threshold Umax, and repeatedly solves
the problem (12.16)–(12.20) for smaller and smaller Umax until the value of (12.16)
exceeds penalty P. The last but one solution is a good compromise between these
two approaches. Another option is to combine different objectives into one model
whereby a multi-objective problem is created.

12.3 Solving the Uncapacitated Facility Location Problem
to Optimality

As we have demonstrated in the previous section, the UFLP can be often either
directly or indirectly used to tackle the public service system design problem. For
this reason we describe in this section the methods enabling to solve this problem
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efficiently. There are usually two options of solving the optimization problem
derived from the real-world situation. We might either choose a specialized algo-
rithm restricted to the problem, which almost always requires the implementation
of the algorithm using a convenient programming language, or, if the problem can
be seen as the instance of a standard class of optimization problems, we can use a
universal optimization tool.

12.3.1 Universal Optimization Tools

A universal optimization tool is a software package designed to solve standard
classes of optimization problems, such as linear programming problems, linear
integer programming problems or quadratic programming problems. Typically, such
a tool consists of a modeler which allows to separate the mathematical model from
the data, describing the particular instance of the optimization problem. Thus, the
formulation of the mathematical model is independent on parameter values, which
makes it easier to maintain both, the model and the data. Nowadays, the most popu-
lar tools are CPLEX (http://www.cplex.com), XPRESS-MP (http://www.fico.com)
or MOSEK (http://www.mosek.com).

Modern optimization packages offer programming languages to simplify the
work with mathematical models, debugging environments and interfaces for graph-
ical output. Moreover, they can be embedded into development environments,
such as AIMMS (http://www.aimms.com). To supplement the results provided by
specialized algorithms, presented in the next section, we compare them with the
results obtained by XPRESS-MP.

12.3.2 Specialized Algorithms

As we have already mentioned in Sect. 12.2, the uncapacitated facility location prob-
lem is broadly applicable in the design of public service systems. The corresponding
solving technique can be used not only to design the cost-optimal two-levels
distribution system [24] but it can be extended in order to solve more complex
location problems. As it was discussed in the reference [20], it is possible to turn
the maximum distance problem, the maximum covering problem and the p-median
problem into the form of the UFLP. Also, the capacitated version of the UFLP or
the p-center problem can be approximatively solved using the solving algorithms
for UFLP [26].

Many scholars have dealt with UFLP [14]. Nevertheless, as far as the exact
algorithms are concerned, the now seminal procedure DualLoc proposed by Donald
Erlenkotter [17] is still one of the most efficient methods, and it enables to find an
optimal solution in tractable computational times [12]. Inspired by this approach in
[30], Manfred Koerkel proposed several successful modifications, which speed up
the solving process and the resulting algorithm was named PDLoc.

http://www.cplex.com
http://www.fico.com
http://www.mosek.com
http://www.aimms.com
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In [25], we have shown how both algorithms, DualLoc and PDLoc, can be
accelerated by modifying the famous procedure of dual ascent (DA) introduced
in [5]. We implemented both algorithms using the integrated programming devel-
opment environment Delphi. In our implementation, we restricted the values of
coefficients fi and cij to integers. For historical reasons, from now on we will refer
to our implementation of the DualLoc algorithm as to the BBDual algorithm [23].

12.3.2.1 Algorithm BBDual

If the variables yi are known, the optimal values of the variables zij can be found
easily. It is sufficient to assign the customer j to the facility i, for which the value of
coefficient cij is minimal. Thus, the most difficult problem is to determine the setting
of the variables yi. The BBDual algorithm is based on the branch and bound method,
in which two subproblems emerge by fixing the variables yi either to zeros or ones.
The algorithm uses of the depth-first strategy. To decide if a given subproblem
should be processed or excluded from the searching process, a lower bound of high
quality is needed. Such lower bound can be obtained by successively performing
the dual ascent (DA) and the dual adjustment algorithms (DAD). The former, the
DA procedure, starts from an arbitrary feasible solution of the dual problem, and
it subsequently increases the value of its objective function. The latter procedure
enables a further improvement of the dual solution by searching for a configuration
in which a small decrease of the objective function will allow larger increase. These
two procedures provide dual feasible solution and the corresponding value of the
objective function serves as the lower bound. Furthermore, a corresponding primal
feasible solution is generated. This is done by the PRIMA procedure, which follows
the complementary conditions holding between an LP relaxation of the problem
(12.8)–(12.10)and its dual. The best-found primal solution is stored and its objective
function value constitutes the upper bound for the optimal solution.

12.3.2.2 Algorithm PDLoc

Algorithm PDLoc comprehends a number of effective modifications and improve-
ments of procedures originally proposed by Erlekotter, and in addition, it is
enhanced by several new procedures. Similarly to the BBDual algorithm, the PDLoc
employs the branch and bound method to determine the optimal solution, but in
contrast to the BBDual, the strategy of the lowest lower bound is used to process
the searching tree. Varying the order of customers in the PRIMA procedure enables
to open new locations, and to explore a broader spectrum of primal solutions. This
leads to faster decrease of the upper bound and to faster termination of the searching
process.

The number of steps in the incremental build-up process that is used to construct a
dual solution by the DA procedure depends on the gap between the fi and cij values.
Therefore, more rapid incrementation leads to considerable improvements in the



348 J. Janáček et al.

cases when the fixed charges fi are considerably higher than the allocation costs cij

are. This is ensured by using the dual multi-ascent procedure (MDA) instead of the
DA procedure.

Another improvement results from applying the simple exchange heuristic right
after the first primal solution is found. Moreover, if a large difference between the
upper and the lower bound occurs, it is reduced by the modified dual adjustment
procedure. This procedure consists of two phases. The first of them is called the
primal-dual multi adjustment (PDMAdj) and the second is the primal-dual adjust-
ment (PDAdj). In a loop, both procedures alternatively decrease and increase the
reached lower bound in order to find a combination of operations which would allow
to increase the lower bound. The difference between those two is in the scheme that
is used to decide which and how many variables are modified in one step.

The used branch and bound searching scheme allows to fix the selected locations
to be permanently open (yi = 1) or closed (yi = 0) and thereby to reduce the size
of the solved problem. To fix a variable, special conditions have to be met. The
evaluation of the conditions is time consuming, especially, if the searching process
is nested deeply in the searching tree. Therefore, fixing variables is preferably done
on the top of the searching tree (pre-processing). If the processed branch is far down
from the root, the variables are fixed only if there is a chance to fix a couple of them
simultaneously.

12.3.2.3 Benchmarks

Benchmarks that we used to test our implementation of algorithms were derived
from the real-world network. The set G700 consists of 700 problems derived from
the road network of the Slovak Republic. This set includes ten subgroups the sizes
of which range from 100× 2,906, 200× 2,906, to as large as 1,000× 2,906. The
first number is the number of candidates for a facility location (|I|), and the second
number refers to the size of the customer set (|J|). Each subgroup contains 70
benchmarks. For each size of the benchmark ten different random subgraphs of the
road network graph of corresponding size were generated. Each subgraph was used
as a base for creating seven benchmarks by modifying the coefficients cij and fi to
cover evenly the whole spectrum of the centers located by the optimal solution.

For instance, for the problem of size 100×2,906 the optimal numbers of located
facilities were 1, 17, 33, 50, 66, 83 and 100, respectively. We will provide the
source code of the algorithms upon request. Our benchmarks were uploaded onto
the supplementary Web page http://frdsa.uniza.sk/∼buzna/supplement.

12.3.2.4 Preliminary Experiments

We solved all problems to get the frequency in which the particular procedures are
executed. These numerical experiments were performed on a PC equipped with Intel
2.4 GHz processor and 256 MB RAM. The average computational time distributed
among the inner procedures is shown in Fig.12.1.

http://frdsa.uniza.sk/~buzna/supplement
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Fig. 12.1 The average distribution of computational time among the procedures of the BBDual
algorithm in (a) and the PDLoc algorithm in (b) (these results were obtained for the set G700)

The abbreviations “DA,” “DAD,” and “PRIMA” denote the relative average time
taken by the corresponding procedure. The “REST” includes the time consumed
by the branch and bound method, lower bound computation, as well as necessary
memory operations. “PDLOC ext.” represents the time spent on running the
procedures which are exclusively included only in the PDLOC algorithm. The label
“DA in” stands for the time taken by the procedure DA, which was called from
other procedures (e.g. the DA procedure is called inside the DAD procedure). This
also explains why we plotted this value outside the pie graph. The results clearly
show that the BBDual algorithm took in average 72.6% by performing the DA
procedure, while the PDLOC algorithm devoted only 11.8% of the computational
time to this procedure. The time consumed by the DAD procedure is approximately
equal with both algorithms, although its distribution among the time consuming
activities differs considerably.

In the case of the BBDual algorithm, the DAD procedure took 50.1% of the
time. On the contrary, the PDLoc algorithm needs only a small portion of the time
to perform the DA procedure nested in the DAD procedure. This implies that the
PDLoc algorithm focuses more on intensive searching for improving operations.
More detailed comparison of the computational performance can be found in
Table 12.1.

12.3.2.5 Amendments of Algorithms BBDual and PDLoc

Amendments of algorithms BBDual and PDLoc were inspired by preliminary
experiments, which showed that the DA procedure consumes large portion of the
computational time. In order to describe the procedure DA, we need to consider
the following form of the dual problem [30], derived from the LP relaxation of the
primal problem (12.7)–(12.10).

Maximize zD = ∑
j∈J

v j (12.36)
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Table 12.1 Average time in seconds and corresponding standard deviation obtained for
benchmarks G700

BBDual BBDual∗ PDLoc PDLoc∗

Size of problems t[s] Std D t[s] Std D t[s] Std D t[s] Std D

100×2,906 5.343 12.64 0.28 0.29 1.44 0.93 0.77 0.34
200×2,906 27.16 68.33 0.41 0.39 1.80 0.99 0.87 0.22
300×2,906 52.95 143.11 0.74 0.64 2.40 1.48 1.20 0.90
400×2,906 127.06 337.58 1.01 0.47 2.74 1.82 1.46 0.88
500×2,906 134.17 340.52 1.75 1.05 5.29 6.52 2.83 0.90
600×2,906 277.59 700.73 2.54 1.78 5.21 5.54 3.64 2.88
700×2,906 277.70 704.57 3.90 2.77 6.12 5.45 4.63 4.38
800×2,906 497.26 1,248.42 5.07 4.23 8.56 8.87 6.45 6.35
900×2,906 640.44 1,652.65 7.24 6.31 11.45 11.25 8.89 8.83
1,000×2,906 644.88 1,595.72 7.07 5.89 10.60 11.19 7.47 8.08

Fig. 12.2 The original procedure DA as it was described in [17] or in [30]

subject to ∑
j∈J

max{0,v j− cij}+ si = fi, for i ∈ I. (12.37)

si ≥ 0 for i ∈ I. (12.38)

The original DA procedure (see Fig. 12.2) solves the problem (12.36)–(12.38)
by processing the set of relevant customers J+, customer by customer, in the
order which follows the unordered input sequence. At each step the variable v j

corresponding to the customer j ∈ J+ is incremented by the value d, whereas the
value d is determined as the maximal value, which satisfies the constraints (12.6).
Hence, it becomes obvious, that this variable cannot be increased in the followings
steps, and the customer j can be excluded from the set J+. This procedure is repeated
until J+ is emptied.

As we will demonstrate, the performance of this procedure depends on the
ordering in which the set of relevant customers J+ is processed. This drawback is
illustrated by the example with two possible locations, i1 and i2, and three customers
j1, j2 and j3, as it is depicted in Fig. 12.3. The locations i1 and i2 are associated with
two slack variables, si1 and si2, respectively. The edge connecting the customer j
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Fig. 12.3 The scenario where the ordering of customers improves the efficiency of the DA
procedure. White-colored nodes represent the candidates for the facility location and black nodes
are customers. The variables si1 and si2 are slack variables (see the constraints (12.37)) and v j are
dual variables corresponding to customers. The location i is connected with the customer j by the
edge only if the inequality v j ≥ cij holds

Fig. 12.4 Modified DA∗ procedure

with the location i symbolizes that the inequality v j ≥ cij holds. By the symbol
Kj we denote the cardinality of the set {i ∈ I : cij ≤ v j} for the customer j. From
Fig. 12.3 we get Kj1 = 2, Kj2 = 1 and Kj3 = 1.

The procedure DA (see Fig. 12.2) processes the set of customers J+ in the order
which is given by the sequence in which they enter the procedure. Thus, the first
to be processed is the customer j1 followed by j2 and j3. If the processing of the
customer j1 enables to increase the variable v j1 by a value β , then the lower bound
zD is increased exactly by β . The maximal theoretical increase of the lower bound
zD is thus given by the sum of variables si1 and si2. In the example from Fig. 12.3,
the increment β has to be subtracted from both slack variables si1 and si2, in order to
meet the constraints (12.37). In summary, the theoretical capacity si1+si2 is reduced
by 2β , in order to increase the lower bound zD by β .

Considering the theoretical capacity and its possible decrease by modifying the
variables v j, we formulate a new DA∗ procedure [25] (see Fig. 12.4). This procedure
exploits better the potential of increasing the lower bound. This approach is based
on prioritizing those customers, which preserve better chances for the increase of
the lower bound zD in the following steps. We order the relevant customers J+

ascendingly according to the cardinalities Kj . The benefit of this modification is
demonstrated by the example in Fig. 12.3.
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Fig. 12.5 The average distribution of computational time among the procedures of the BBDual∗
algorithm in (a) and the PDLoc∗ algorithm in (b) (these results were obtained for the set G700)

Having applied the above mentioned ordering of customers, they will be
processed in the order j2, j3 and j1. If processing the customer j2 enables to
increase the variable v j2 by β , then, considering the constraints (12.37), only
slack variable si2 has to be reduced by β . This way the theoretical capacity is
reduced by the value β , and the lower bound zD increases by β . Compared to the
unordered case, the ordering may reduce the sum of slack variables si less than
the original DA procedure does, while preserving the same growth rate for the
variables v j.

12.3.2.6 Verification of the Proposed Amendments

Verification of the proposed amendments was performed with the same set of
benchmarks as described previously. We applied the new DA∗ procedure to both
algorithms. We inserted the MDA procedure into the BBDual algorithm, as it had
proved itself to be very efficient with the PDLoc algorithm when dealing with
the cases in which the costs fi are considerably higher than the costs cij. We also
amended the evaluation of subproblems in the BBDual algorithm. Both incoming
subproblems are solved simultaneously, and the most perspective subproblem is
processed as the first. We would like to point out that we have tested all these
modifications separately [25]. However, none of them brought any remarkable
improvements compared to when applied together. To distinguish the original and
the new versions of the algorithms BBDual and PDLoc, the modified version is
denoted with the superscript “∗.”

The effects of the proposed modifications were extensively examined by numer-
ical experiments [25]. Similarly, as in the preliminary experiments, we evaluated
the average computational time and its distribution among the inner procedures.
Figure 12.5 gives the evidence of the significant change in the time distribution
of the inner procedures. The total usage of the DA procedure was reduced from
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72.6% to 9% for the BBDual∗ algorithm and from 11.8% to 1.4% for the PDLoc∗
algorithm. These results also suggest that the new DA∗ procedure has a significant
influence on the performance of both algorithms. Table 12.1 compares the results
achieved by the original and modified versions of the algorithms. The results
indicate that the proposed modification can save time considerably. Please note that
using the MDA procedure in the BBDual algorithm contributed to this significant
reduction, especially for the benchmarks where fi� cij. However, the improvement
brought by the new DA∗ is perceptible in the whole range of the parameter values.
More details on this computational study can be found in the reference [25].

12.4 Case Study

In this section, we show how the choice of the particular criteria can influence the
resulting design of the public service system. As an illustration example we use the
system of EMS. More precisely, we present the optimized location of ambulance
stations in the area of the Slovak Republic. Another purpose of the following text is
to introduce improving modifications of the mathematical model resulting in better
quality of the final design. When we were carrying out this study, the deployment
of EMS stations was defined by the regulations of the Ministry of Health of the
Slovak Republic Nos. 30/2006 and 365/2006. In accordance with these regulations,
there were 264 EMS stations located in 223 cities and villages, including urban
districts of the capital Bratislava and of the second largest Slovakian city Košice (see
Fig. 12.6). They altogether served 2,916 municipalities populated with 5,379,455
inhabitants.

Fig. 12.6 Road network of the Slovak Republic. Locations of the existing EMS stations are
marked with squares. The size of the squares is proportional to the number of the stations located
in the given municipality
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We evaluate four different criteria:

C1 : ∑
j∈J

b jts( j), j, (12.39)

expressing the total traveling time from all customers to the closest EMS location
weighted by the number of inhabitants b j,

C2 : ∑
j∈J

ts( j), j>Tmax

b j(ts( j), j−Tmax), (12.40)

summing up the travel time exceeding the threshold value Tmax weighted by the
number of inhabitants b j,

C3 : ∑
j∈J

ts( j), j>Tmax

b j, (12.41)

representing the number of inhabitants which are further from the closest EMS than
the threshold Tmax states, and

C4 : ∑
j∈J

tm( j), j>Tmax

b j, (12.42)

expressing the number of inhabitants which are covered by fewer than two EMS
stations, where we define m( j) as the index of the second closest EMS station to the
customer j.

We combine the criterion C1 with the location–allocation type of model (12.7)–
(12.10) and the criteria C3 and C4 with the set covering type of model (12.13)–
(12.15). In all three cases we propose the deployment of 264 stations, which is
optimal with respect to the particular criteria.

The set I of the candidate stations consists of the existing EMS stations defined
by the official regulations, and of the municipalities with at least 300 inhabitants.
Altogether we found 2,283 cities and villages meeting the conditions. Following the
recommendation of the Ministry of Health to deliver medical care within 15 min
from an emergency call, we regard Tmax = 15 min as the threshold value.

As it was indicated in Sect. 12.2, different criteria lead to different kinds of
mathematical models, and therefore we also apply different solution techniques.
The Location–allocation model was solved using the modified algorithm BBDual∗,
described in Sect. 12.3. The size and structure of the covering models are simpler,
and they allow to use the universal optimization tool Xpress-MP (http://www.fico.
com). The experiments were performed on a personal computer equipped with the
Intel Core 26,700 processor with the following parameters: 2.66 GHz and 3 GB
RAM. The computational time for the BBDual∗ algorithm was about 116 min.
Xpress-MP managed to solve the covering models in 1.5 s and 0.3 s, respectively.

http://www.fico.com
http://www.fico.com
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Table 12.2 Values of criteria calculated for three solutions obtained by the optimization
(Location–allocation model, Set covering model, Double covering model) and for the existing
design of EMS stations (Man-made)

Criterion Criterion Criterion Criterion Number of changed
C1 C2 C3 C4 EMS stations

Location–allocation
model (C1)

13,677,537 35,109 15,613 285,324 104

Set covering
model (C3)

23,613,635 180 91 188,937 207

Double covering
model (C4)

25,597,594 182 91 11,684 199

Man-made 16,378,985 92,032 31,672 431,415 0

The last column shows the number of changed EMS locations proposed by the optimization
compared to the existing design

Table 12.2 summarizes the values of the criteria (12.39)–(12.42) for the optimal
solutions obtained by three selected models and for the current deployment.
The results for the Location–allocation model with the criterion (12.39) are in
the first row, the results for the Set covering model with criterion (12.41) are
in the second row, and the results for the Double covering model (12.42) are listed in
the third row. The Man-made row in the table corresponds to the current distribution
of EMS stations over the area of the Slovak Republic.

Comparing the results of mathematical modeling to the current situation, we can
observe that the first model, the Location–allocation model, is able to improve all
of the defined criteria. Although this model minimizes the total travel time from
ambulance locations to all potential patients, the best improvement is achieved
by criterion C3, reflecting the discomfort of uncovered people. It means that the
solution obtained by this model is more social, than the current system offers, in
terms of customer’s equity in the access to the provided service. As expected, the
highest level of equity is assured for the set covering models. They were able to
locate the ambulances in such a way that almost all municipalities were covered.
The only uncovered village was Runina with 91 inhabitants. This small village in the
most eastern part of Slovakia has no candidate location within the radius of 15 min.

To achieve a more fair design, the covering models change substantially the
current deployment of EMS stations (see the last column in Table 12.2). To im-
plement these solutions would thus require to restructure the existing infrastructure
considerably what might be too costly. If this issue is of importance, it can be
practical to reduce the number of changed EMS stations by including the following
constraint

∑
i∈I0

(1− yi)≤ r, (12.43)

where I0 denotes the set of current center locations and r is the upper bound for the
acceptable number of changes.
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Let us look more closely at the results obtained by the Double covering
model. In the solution presented in Table 12.2, there are all candidates for EMS
stations equivalent regardless their population or the distance from a hospital. As
a consequence of such simplification the model deploys, for example, only two
stations in the capital Bratislava and none in the county capital Žilina. At first sight,
this was not a reasonable design, which was also later confirmed by a computer
simulation. To get a more realistic solution, the model needs to be modified. We add
constraint yi ≥ 1 for the selected cities, to ensure that at least one station is located
there. In further experiments, we apply this constraint to those cities that have a
hospital.

The existing situation and the solution of the Double covering model were
evaluated using computer simulations. The goal of the simulations is to assess how
efficiently the system operates in real conditions, and to evaluate the parameters
and properties that are not explicitly captured by mathematical models. From a
customer’s (patient’s) point of view, the simulation should give answers to the
following questions (evaluated separately for every municipality, as well as for the
entire region):

1. What is the real coverage rate, i.e. what is the percentage of the calls processed
within the required time limit?

2. What are the average and maximal waiting times for an ambulance arrival?

The analysis combining mathematical optimization with simple Monte Carlo
simulations allows to verify the arrangements improving the system performance,
such as the number of the ambulances allocated to a station. Simulating the EMS
system can be viewed as a queuing system with the Poisson arrival of events and
exponentially distributed service time [8]. Supposing that every station is equipped
with one ambulance only, the system has as many service lines as the number
of the stations is. Random events are the emergency calls that come from the
populated areas. Every municipality has a specific arrival rate λ j (calls per time
unit). The statistics describing the number of calls for particular municipalities
were not available to us. Therefore we used aggregated statistics for the Slovak
Republic mapping the year 2001 (http://www.kezachranka.sk), reporting that the
overall number of patients was 232,904. We calculated the rate λ per one inhabitant,
and used it to estimate λ j = λ b j, where b j is the number of inhabitants registered in
the municipality j. Processing a call requires to take the following steps:

1. Call handling (a dispatcher has to obtain the address, and assess how serious the
call is, decides which ambulance to assign to it, and contacts the ambulance crew,
then the crew has to reach the vehicle);

2. Driving the ambulance from the station to the patients location;
3. Treating the patient by the ambulance crew;
4. Transporting the patient to the nearest hospital;
5. Passing the patient to the hospital staff;
6. Driving the ambulance back to the station.

http://www.kezachranka.sk
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Table 12.3 Comparison of the real-world situation from the year 2006 with the deployment of the
stations proposed by the mathematical models

Double covering
Double with EMS located

Man-made covering at hospitals

Number of municipalities with at
least one EMS station

223 217 245

Multiply covered inhabitants [%] 91.90 99.77 99.49
Calls not serviced within 15 min [%] 1.22 1.25 0.25
Average waiting time [min] 3.4 5.4 3.9
Maximal waiting time [min] 43.5 30 28.4

When modeling the service time, we neglect the call handling and we assume
deterministic travel times (defined by the distance and the average speed).
According to [8], the treatment time can be considered as to be exponentially
distributed with the mean value 10 min. Hence, as we did not have the relevant
statistical data on the EMS operation, we supposed that every patient was
transported to the nearest hospital, and the time the ambulance spent waiting at
the hospital was constant (10 min).

There are many possible dispatching policies for allocating the calls to EMS
stations. We always assign a call to the nearest station. If the nearest ambulance
is busy, the used policy differs with each situation. The call either waits until the
ambulance returns back to the station or it can be reallocated to the next nearest
station with an idle ambulance. A simulation model allows to experiment with
dispatching policies and consequently to choose the best one. With the experiments,
reported in Table 12.3, we suppose that we know in advance the time when the
ambulance is returning back to the station. The call is then allocated to the station
by which the patient gets served the earliest.

Table 12.3 compares the characteristics of the EMS system given by the official
regulations from the year 2006 (column Man-made), with the results obtained by
the Double covering model and with the design proposed by the modified Double
covering model with stations located at hospitals. In all three cases there are located
264 stations. In Table 12.3, we can see that the solutions proposed by mathematical
modeling increase the occurrence of multiply covered inhabitants from 91.9% to
almost 100%. The last three rows list the performance characteristics of the system
obtained by the computer simulations.

Comparing the solution of the Double covering model with the current de-
ployment shows that the rate of calls not serviced within 15 min remains almost
identical (approximately 1.2%). The average waiting time for an ambulance to
arrive increases (by 59%), while the maximal waiting time decreases (by 31%).
Comparing the solution of the modified Double covering model (with stations
located at hospitals) with the current deployment we can observe significant
improvement in both quantities: The rate of calls not serviced within 15 min
declines to one fifth, and the maximal waiting time is shortened by one third.



358 J. Janáček et al.

a

b

Fig. 12.7 Municipalities with the average waiting time for an ambulance arrival longer than 15
min. In (a) we show the situation for the existing EMS stations in the year 2006, and (b) depicts
the results we reached when we performed Monte Carlo simulations for the solution obtained by
the Double covering model imposing the stations to be located close to hospitals

Although the average waiting time remains the same, Fig. 12.7a, b confirm that
the number of municipalities where the arrival time exceeds 15 min decreases
dramatically.

In conclusion, the statistics presented in Table 12.3 indicate that the design
proposed by mathematical modeling is better than the current solution with respect
to the service availability to patients. The rate of calls not serviced within 15 min
declines to one fifth, the maximal waiting time for an ambulance arrival shortens by
one third. The number of municipalities with the average waiting time longer than
15 min falls from 102 to 5.
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12.5 Conclusions

In this chapter, we have discussed some issues arising when designing public service
systems on complex networks. We focused mainly on effective solving methods, and
we searched for a desirable compromise between fairness and economic efficiency,
which can be attributed to the resulting design. As possible directions for further
research we consider:

• The analysis of the behavior with focus on customers’ preferences based on
real-world data, and utilization of the results in the modeling of public service
systems,

• More detailed theoretical analysis of the price of fairness in the context of
location problems,

• and last but not least, possible utilization of centrality measures and other
network properties [7] as early indicators of promising solutions in the design
of optimization algorithms.
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Chapter 13
Optimal Flows in Dynamic Networks
and Algorithms for their Finding

Maria Fonoberova

Abstract The minimum cost flow problem and the maximum flow problem on
networks with time-dependent characteristics and nonlinear cost functions on
arcs are considered. The algorithms for determining optimal solutions of the
single-commodity and multicommodity network flow problems based on the time-
expanded network method are elaborated. Some applications of the optimal flow
problems are provided.

13.1 Introduction

The chapter considers the minimum cost flow problem and the maximum flow
problem on dynamic networks with different forms of restrictions by parameters
of network and time. The classical optimal flow problems on networks are extended
and generalized for the cases of nonlinear cost functions on arcs, multicommodity
flows, and time- and flow-dependent transactions on arcs of the network. The
time-varying flow models which capture the essential properties of flows arising
in real-life complex systems are studied. The main goal of this chapter consists
in providing methods and algorithms for finding the minimum cost flow and the
maximum flow in single-commodity and multicommodity dynamic networks.

Recently network theory has become an important part in the study and analysis
of complex systems. Dynamic flows can be used in modelling of processes from
different complex systems such as transport networks, social interactions, the In-
ternet. Communication, transportation, economic planning, road traffic assignment,
evacuation planning, scheduling planning, cash flow, and management problems can
be formulated and solved as single-commodity or multicommodity flow problems
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[1, 3, 4, 47]. The maximum and the minimum cost flow problems have large
implementation for many practical problems in complex systems of electronic
communication, transportation, production, and distribution. The considered prob-
lems also have theoretical importance for investigation and solving of various
optimization problems on graphs. For example, the minimum cost flow problem can
be used for research and solving of the distribution problem, the synthesis problem
of communication networks, or the allocation problem.

The field of network flows blossomed in the 1940s and 1950s with interest in
transportation planning and has developed rapidly since then. There is a significant
body of literature devoted to this subject (see, for example, [1, 4, 12, 31, 46]).
However, it has largely ignored a crucial aspect of transportation: transportation
occurs over time. In the 1960s, Ford and Fulkerson [20, 21] introduced flows over
time to include time in the network model.

The following two aspects of dynamic flows distinguish them from the traditional
model. Firstly, the flow value on an arc may change over time. This feature is
important in applications, where the supplies and demands are not given as fixed
measures; instead, they change over time. Naturally, the flow value on each arc
should adjust to these changes. Secondly, there is a transit time on every arc which
specifies the amount of time flow units need to traverse the arc.

In the Ford and Fulkerson model transit times and arc capacities are fixed. Given
a network with capacities and transit times on arcs, they study the problem of
sending a maximum amount of flow from a source node s to a sink node t within
a pre-specified time horizon T . Ford and Fulkerson show that this problem can
be solved by one minimum cost static flow computation, where transit times on
arcs are interpreted as cost coefficients. They prove that an optimal solution of this
minimum cost flow problem can be turned into a maximum flow over time by first
decomposing it into flows on s− t paths. The corresponding flow over time starts
to send flow on each path at time zero, and repeats each so long as there is enough
time left in the T time units for the flow along the path to arrive at the sink.

Subsequently, linear models of optimal dynamic flows have been studied
by Cai, Carey, Fleischer, Glockner, Hoppe, Klinz, Lozovanu, Ma, Nemhauser,
Subrahmanian, Tardos, Woeginger and others in [6, 7, 16, 17, 23, 30, 32, 33, 39–
41]. In this chapter, the minimum cost and the maximum dynamic flow problems
are formulated and studied for nonlinear and multicommodity models. Dynamic
networks are considered with time-varying capacities of arcs. For the minimum cost
flow problem it is assumed that cost functions, defined on arcs, are nonlinear and
depend on time and flow, but the demand-supply function depends on time. It is also
considered the dynamic model with transit time functions that depend on flow and
time. The game-theoretic formulation of the multiobjective multicommodity flow
problem is proposed.

In Sect. 13.2, the main results related to static optimal flow problems on networks
are presented. The basic methods and algorithms for solving the minimum cost flow
problem and the maximum flow problem are examined. The obtained results are
extended for the nonlinear and multicommodity models.
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In Sect. 13.3, the minimum cost flow problem is consider on dynamic networks
with nonlinear cost functions, that depend on flow and time, and demand-supply
functions and capacity functions, that depend on time. The maximum flow problem
is considered on dynamic networks with time-varying capacities of arcs. To solve
the optimal dynamic flow problems methods and algorithms based on the reduction
of dynamic problems to static ones on auxiliary networks are proposed. Dynamic
problems with transit time functions that depend on flow and time are analyzed and
algorithms for solving such problems are elaborated.

In Sect. 13.4, the minimum cost and the maximum multicommodity flow
problems on dynamic networks are considered. The multicommodity flow problem
consists of shipping several different commodities from their respective sources
to their sinks through a given network satisfying certain objectives in such a
way that the total flow going through arcs does not exceed their capacities. No
commodity ever transforms into another commodity, so that each one has its own
flow conservation constraints, but they compete for the resources of the common
network. In this section, the minimum cost multicommodity flow problems are
considered on dynamic networks with time-varying capacities of arcs and transit
times on arcs that depend on sort of commodity entering them. The cost functions,
defined on arcs, are assumed to be nonlinear and depend on time and flow, and
demand-supply functions depend on time. For solving the considered problems
algorithms based on the modification of the time-expanded network method are
proposed. The dynamic problems with transit time functions that depend on flow
and time are also considered and algorithms for their solving are proposed.

In Sect. 13.5, the game-theoretic formulation of the multiobjective multicom-
modity flow problem is considered. If we associate to each commodity a player, we
can regard this problem as a game problem, where players interact between them
and the choices of one player influence the choices of the others.

13.2 Static Flow Models and Determining Optimal Flows
in Networks

In this section we present the most important results related to static flow problems
and systemize some of the relevant methods and algorithms for solving the
maximum and minimum cost flow problems. These results are extended for the
nonlinear and multicommodity cases of the considered models.

13.2.1 Static Flows: Definitions and some Properties

13.2.1.1 Single-Commodity Flow

Let be given a directed graph G = (V,E) with a vertex set V and an arc set E (see
[12,21]). This graph becomes a network N = (V,E,u,d) if we assign to each vertex
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v ∈ V the demand-supply dv and to each arc e ∈ E the non-negative capacity ue,
which represents the maximum amount of flow that can be carried on the arc e. By
using the demand-supply function d we distinct nodes as net generators of flow, net
absorbers of flow, or neither. Nodes v∈V with dv > 0 are called sources, nodes v∈V
with dv < 0 are called sinks and nodes v ∈ V with dv = 0 are called intermediate
nodes. A source node or source has the property that the flow out of the node exceeds
the flow into the node. The inverse case is a sink node or sink, where the flow into
the node exceeds the flow out of node. An intermediate node or transshipment node
has the property that flow in equals flow out.

The considered network admits flow, if there are such values xe ≥ 0, ∀e ∈ E ,
which satisfy the following conditions:

∑
e∈E−(v)

xe− ∑
e∈E+(v)

xe = dv, ∀v ∈V, (13.1)

0≤ xe ≤ ue, ∀e ∈ E, (13.2)

where E−(v) = {(v,z) |(v,z) ∈ E}, E+(v) = {(z,v) |(z,v) ∈ E}.
The function x, defined on E and satisfying conditions (13.1)–(13.2), is called the

feasible flow in a network. The value xe is the quantity of flow on arc e. Condition
(13.1) is the flow conservation condition and condition (13.2) is the condition of
flow feasibility.

In [14], it is proved that in order for the feasible flow to exist in network N it is
necessary and sufficient that for every set of vertices A⊆V the following conditions
are true:

dA ≤ u(A,A),

dV = 0,

where dA = ∑v∈A dv; A =V \A; u(Z,Y) = ∑z∈Z ∑y∈Y u(z,y), ∀Z,Y ⊆V .
In the case when instead of condition (13.2) the following condition holds:

u′e ≤ xe ≤ u′′e , ∀e ∈ E,

where u′e, u′′e ≥ 0 are lower and upper capacities of arc e, respectively, then in order
for the feasible flow to exist in such a network it is necessary and sufficient that for
every set of vertices A⊆V the following conditions are true:

dA ≤ u′′
(A,A)
− u′

(A,A)
,

dV = 0.

For the first time this result was proved by Hoffman in [29]. In [14], it is shown
that it can be easily obtained from the previous affirmation.
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If there are no restrictions on arc capacities, i.e. u′′e =+∞, u′e =−∞, ∀e∈ E , then
in order for the feasible flow to exist in such a network it is necessary and sufficient
that the following condition holds:

dV = 0.

13.2.1.2 Multicommodity Flow

We consider the following network N = (V,E,K,u,d), where V is a set of vertices,
E is a set of arcs, K = {1,2, . . . ,q} is a set of commodities, u: E→ R+ is a capacity
function, d: V ×K → R is a demand-supply function. A flow x assigns to every
arc e ∈ E for each commodity k ∈ K a flow xk

e ≥ 0 such that the following flow
conservation constraints are satisfied:

∑
e∈E−(v)

xk
e− ∑

e∈E+(v)

xk
e = dk

v , ∀v ∈V, ∀k ∈ K. (13.3)

The multicommodity flow x is called feasible if it obeys the following capacity
constraints:

∑
k∈K

xk
e ≤ ue, ∀e ∈ E. (13.4)

The value xk
e is the quantity of the flow of commodity k on the arc e. In fact, the

considered above single-commodity flow is the multicommodity flow with q = 1.
In order for the feasible multicommodity flow to exist it is required that

∑v∈V dk
v=0, ∀k ∈ K. Nodes v ∈ V with dk

v > 0, k ∈ K, are called sources for
commodity k, nodes v ∈ V with dk

v < 0, k ∈ K, are called sinks for commodity k
and nodes v∈V with dk

v = 0, k ∈ K, are called intermediate nodes for commodity k.

13.2.2 The Maximum Flow Problem

Let us consider the single-commodity maximum flow problem on a network with
only one source s and one sink t. In the case of many sources and sinks, the
maximum flow problem can be reduced to the standard one by introducing one
additional artificial source and one additional artificial sink as well as arcs leading
from the new source to initial sources and from initial sinks to the new sink. The
capacities of arcs connecting the artificial source with the initial sources are bounded
by the supplies of these sources; the capacities of arcs connecting the initial sinks
with the artificial sink are bounded by the demands of these sinks.

Let us consider the flow x≥ 0 which satisfies condition (13.2) and the following
conditions:

∑
e∈E−(v)

xe− ∑
e∈E+(v)

xe =

⎧⎨
⎩

h, v = s,
0, v �= s, t,
−h, v = t.

(13.5)
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The object of the maximum flow problem is to send a maximum amount of flow
from the source to the sink such that arc capacities are not exceeded.

The maximum flow problem is formulated as follows:

to maximize the objective function

F = h

subject to (13.2), (13.5).

In the following, we introduce a notion of the network cutset, which separates s
from t and is defined by every set R ⊆ V such that s ∈ R, t /∈ R. So, if s ∈ R, t /∈ R,
then the network cutset separating s from t is a set of arcs (R,R) = {(v,z) ∈ E|v ∈
R,z ∈ R}. The quantity u(R,R) = ∑v∈R ∑z∈R u(v,z) is called the capacity of the cutset

(R,R). The cutset, which has the minimum capacity, is called the minimum cutset.
The most important result related to the maximum flow in a network is

formulated by Ford and Fulkerson in [21] and consists in the fact that for every
network the maximum value of a flow from s to t is equal to the minimum capacity
of a cutset separating s and t.

We refer to a path from s to t as an augmenting path for the flow x if x < u for all
its forward arcs and x > 0 for all its backward arcs. We say that arc (v,z) is saturated
with flow x if x(v,z) = u(v,z), and we say that arc (v,z) is free from flow x if x(v,z) = 0.

Using these definitions and the Ford–Fulkerson theorem about the maximum
flow and the minimum cutset the following affirmations can be obtained.

The flow x is maximum if and only if there is no augmenting path for the flow x.
The cutset (R,R) is minimum if and only if every maximum flow x saturates all

arcs of the cutset (R,R) and leaves free all arcs that belong to (R,R).
The Ford–Fulkerson theorem and these affirmations lead to a simple and effective

algorithm for finding the maximum flow, which is named the Ford–Fulkerson
algorithm. This algorithm is proposed and argued by Ford and Fulkerson in [21].
To guarantee the end of the process it is required that arc capacities are integer. This
assumption is not essential from the computational point of view, because in the case
of rational capacities the problem can be reduced to the initial one by introducing a
new quantity such that all existing fractions are its integral multiplies.

13.2.3 The Minimum Cost Flow Problem

13.2.3.1 The Linear Case

The minimum cost flow problem is the problem of sending flows in a network from
supply nodes to demand nodes at minimum total cost such that arc capacities are
not exceeded. The linear minimum cost flow problem consists in finding a feasible
flow, satisfying (13.1)–(13.2), that minimizes the following objective function:

F(x) = ∑
e∈E

cexe,

where c: E→ R+ is a cost function.
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There are different approaches for solving this problem. One of the most
propagated methods is the potential method for constructing an optimal flow in the
case when the initial flow is known and its base graph, i.e. a partial graph on arcs of
which there is a positive feasible flow, is a connected graph. If the last condition is
not true, the perturbation method can be applied. The following affirmation, proved
in [14], justifies the potential method.

The flow x is an optimal one if and only if for every vertex v ∈ V there exists a
number Pv such that

Pz−Pv ≤ c(v,z), if x(v,z) = 0;

Pz−Pv = c(v,z), if 0 < x(v,z) < u(v,z);

Pz−Pv ≥ c(v,z), if x(v,z) = u(v,z),

where z ∈ V , (v,z) ∈ E . The numbers Pv may be considered non-negative and are
called potentials or node numbers.

If ce, ue, dv, ∀e∈E , ∀v∈V , are integer or real numbers, then the potential method
is a finite method, i.e. the solution of the problem using this method can be obtained
after a finite number of steps. Besides that, if the initial flow is integer-valued, then
the optimal flow will be also integer-valued.

13.2.3.2 The Non-linear Case

The nonlinear minimum cost flow problem is a problem of determining a feasible
flow, that satisfies (13.1)–(13.2) and minimizes the following objective function:

F(x) = ∑
e∈E

ϕe(xe),

where ϕ : E×R+→ R+ is a nonlinear cost function.
Let us consider that the cost functions ϕe(xe), ∀e ∈ E , are convex downwards

functions, i.e. for arbitrary nonnegative quantities x(1)e , x(2)e the following inequality
is true:

ϕe

(
λ x(1)e +(1−λ )x(2)e

)
≤ λ ϕe

(
x(1)e

)
+(1−λ )ϕe

(
x(2)e

)
, 0≤ λ ≤ 1.

We denote by ϕ+
e (xe) the right derivative of the function ϕe(xe) and by ϕ−e (xe) the

left derivative of the function ϕe(xe).
In [14] it is proved that the flow x is an optimal flow in the network without

restrictions on arc capacities if and only if for every vertex v ∈ V there exists a
number Pv such that

Pz−Pv ≤ ϕ+
(v,z)(x(v,z)), if x(v,z) = 0;

ϕ−(v,z)(x(v,z))≤ Pz−Pv ≤ ϕ+
(v,z)(x(v,z)), if x(v,z) > 0,

where z ∈V , (v,z) ∈ E .
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In the case when the functions ϕ(v,z)(x(v,z)) are everywhere differentiable, i.e. if

ϕ+
(v,z)(x(v,z)) = ϕ−(v,z)(x(v,z)) = ϕ ′(v,z)(x(v,z)),

and there are no restrictions on arc capacities, the flow x is an optimal one if and
only if for every vertex v ∈V there exists a number Pv such that

Pz−Pv ≤ ϕ ′(v,z)(x(v,z)), if x(v,z) = 0;

Pz−Pv = ϕ ′(v,z)(x(v,z)), if x(v,z) > 0,

where z ∈V , (v,z) ∈ E .
If the functions ϕ(v,z)(x(v,z)) are differentiable functions and there exist restric-

tions (13.2) on arc capacities, the flow x is an optimal one if and only if for every
vertex v ∈V there exists a number Pv such that

Pz−Pv ≤ ϕ ′(v,z)(x(v,z)), if x(v,z) = 0;

Pz−Pv = ϕ ′(v,z)(x(v,z)), if 0 < x(v,z) < u(v,z);

Pz−Pv ≥ ϕ ′(v,z)(x(v,z)), if x(v,z) = u(v,z),

where z ∈V , (v,z) ∈ E .
In the case when the functions ϕ(v,z)(x(v,z)) are non-differentiable, the flow x is an

optimal flow in the network with restrictions (13.2) on arc capacities if and only if
for every vertex v ∈V there exists a number Pv and for each saturated arc (v,z) ∈ E
(for which x(v,z) = u(v,z)) there exists a nonnegative arc number γ(v,z), such that

Pz−Pv ≤ ϕ+
(v,z)(x(v,z)), if x(v,z) = 0;

ϕ−
(v,z)(x(v,z))≤ Pz−Pv ≤ ϕ+

(v,z)(x(v,z)),0 < x(v,z) < u(v,z);

ϕ−
(v,z)(x(v,z))+ γ(v,z) ≤ Pz−Pv ≤ ϕ+

(v,z)(x(v,z))+ γ(v,z),x(v,z) = u(v,z),

where z ∈V .
We’d like to mention that if the functions ϕe(xe), ∀e ∈ E , are not assumed to be

convex downwards, then in the considered above cases we can speak about only the
local extremum.

To solve the non-linear minimum cost flow problem the potential method can
be used, which generalizes the potential method for the linear minimum cost flow
problem. To apply this method we consider that the base graph of the initial flow
and every intermediary flow is a connected graph. If this condition is not true, we
apply the perturbation method.
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13.2.4 The Minimum Cost Multicommodity Flow Problem

13.2.4.1 The Continuously Differentiable and Convex Objective Function

The minimum cost multicommodity flow problem is formulated as follows:
to minimize the objective function

F(x) = ∑
e∈E

ϕe(x
1
e ,x

2
e , . . . ,x

q
e), (13.6)

subject to (13.3)–(13.4),

where ϕ : E×Rq
+→ R+ is a cost function.

We consider that functions ϕe(x) from (13.6) are convex downwards with regard
to vector x = (x1

e ,x
2
e , . . . ,x

q
e) ≥ 0, i.e. for every 0 ≤ λ ≤ 1 the following inequality

is true:

ϕe(λx(1) + (1−λ )x(2))≤ λ ϕe(x
(1))+ (1−λ )ϕe(x

(2)),

where x(1) ≥ 0, x(2) ≥ 0. Moreover, let us consider that these functions are
continuously differentiable. We denote by ϕ

′(k)
e (x) the partial derivative of the

function ϕe(x) by the k-th component of the vector x= (x1
e ,x

2
e , . . . ,x

q
e).

In [14], it is proved that the multicommodity flow x = (x1
e ,x

2
e , . . . ,x

q
e) is an

optimal flow if and only if for every vertex v ∈V there exists a vector of potentials
Pv = (P1

v ,P
2
v , . . . ,P

q
v ) and for every arc (v,z) ∈ E , for which ∑q

k=1 xk
(v,z) = u(v,z), there

exists an arc number γ(v,z) ≥ 0, such that

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z))+ γ(v,z), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) = u(v,z);

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z))+ γ(v,z), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) = u(v,z), (13.7)

where z ∈V , k ∈ K.
If we assume that u(v,z) = ∞, then conditions (13.7) are reduced to the following

conditions:

Pk
z −Pk

v ≤ ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) = 0,

Pk
z −Pk

v = ϕ
′(k)
(v,z)(x(v,z)), if xk

(v,z) > 0.



372 M. Fonoberova

13.2.4.2 The Separable Objective Function

In many practical problems, the objective function has the following form:

F(x) = ∑
k∈K

∑
e∈E

ϕk
e (x

k
e), (13.8)

where ϕk
e : R+→ R+ is a cost function of commodity k ∈ K for arc e ∈ E .

We consider that functions ϕk
e (x

k
e) from (13.8) are convex downwards if xk

e ≥ 0
and are continuous in xk

e = 0. By ϕ−k
e (xk

e) and ϕ+k
e (xk

e) we denote the left and the
right derivatives of the function ϕk

e (x
k
e), respectively.

In [14] it is proved that the multicommodity flow x=(x1
e ,x

2
e , . . . ,x

q
e) is an optimal

one if and only if for every vertex v ∈ V there exists a vector of potentials Pv =
(P1

v ,P
2
v , . . . ,P

q
v ) and for every arc (v,z)∈ E , for which ∑q

k=1 xk
(v,z) = u(v,z), there exists

an arc number γ(v,z) ≥ 0, such that

Pk
z −Pk

v ≤ ϕ+k
(v,z)(x

k
(v,z)), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) < u(v,z);

ϕ−k
(v,z)(x

k
(v,z))≤ Pk

z −Pk
v ≤ ϕ+k

(v,z)(x
k
(v,z)), if xk

(v,z) > 0,
q

∑
k=1

xk
(v,z) < u(v,z);

Pk
z −Pk

v ≤ ϕ+k
(v,z)(x

k
(v,z))+ γ(v,z), if xk

(v,z) = 0,
q

∑
k=1

xk
(v,z) = u(v,z);

ϕ−k
(v,z)(x

k
(v,z))+ γ(v,z) ≤ Pk

z −Pk
v ≤ ϕ+k

(v,z)(x
k
(v,z))+ γ(v,z),

if xk
(v,z) > 0, ∑q

k=1 xk
(v,z) = u(v,z),

where z ∈V , k ∈ K.
To solve the minimum cost multicommodity flow problem we can apply the

potential method, the linearization method, the decomposition method and some
other methods [14].

13.3 Optimal Single-Commodity Flow Problems on Dynamic
Networks and Methods for their Solving

In this section, we consider the minimum cost flow problem and the maximum flow
problem on dynamic networks. For the minimum cost flow problem we assume
that demand–supply and capacity functions depend on time, and cost functions,
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defined on arcs, are nonlinear and depend both on time and on flow. The maximum
flow problem is considered on dynamic networks with time-varying capacities of
arcs. We also study a dynamic model with transit time functions that depend on
the amount of flow and the entering time-moment of flow in the arc. Methods and
algorithms for solving the formulated problems are proposed.

13.3.1 The Minimum Cost Dynamic Flow Problem

A dynamic network N = (V,E,τ,d,u,ϕ) is determined by directed graph G= (V,E)
with set of vertices V , |V | = n, and set of arcs E , |E| = m, transit time function
τ: E → R+, demand-supply function d: V ×T → R, capacity function u: E×T →
R+, and cost function ϕ : E×R+×T → R+. We consider the discrete time model, in
which all times are integral and bounded by horizon T . The time horizon is the time
until which the flow can travel in the network and it defines the set T = {0,1, . . . ,T}
of the considered time moments. Time is measured in discrete steps, so that if one
unit of flow leaves vertex z at time t on arc e = (z,v), one unit of flow arrives at
vertex v at time t + τe, where τe is the transit time on arc e. The continuous flow
model formulations can be found in [15, 16, 18].

In order for the flow to exist it is required that ∑t∈T ∑v∈V dv(t) = 0. If for an
arbitrary node v ∈ V at a moment of time t ∈ T the condition dv(t) > 0 holds, then
this node v at the time-moment t is treated as a source. If at a moment of time t ∈ T
the condition dv(t)< 0 holds, then the node v at the time-moment t is regarded as a
sink. In the case dv(t) = 0 at a moment of time t ∈ T , the node v at the time-moment
t is considered as an intermediate node.

Without losing generality we consider that the set of vertices V is divided into
three disjoint subsets V+,V−,V∗, such that:

V+ consists of nodes v ∈V , for which dv(t)≥ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dv(t0)> 0;

V− consists of nodes v ∈V , for which dv(t)≤ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dv(t0)< 0;

V∗ consists of nodes v ∈V , for which dv(t) = 0 for every t ∈ T .
So, V+ is a set of sources, V− is a set of sinks and V∗ is a set of intermediate nodes

of the network N.
A feasible dynamic flow in network N is a function x: E×T → R+ that satisfies

the following conditions:

∑
e∈E−(v)

xe(t)− ∑
e∈E+(v)
t−τe≥0

xe(t− τe) = dv(t), ∀ t ∈ T, ∀v ∈V ; (13.9)

0≤ xe(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.10)
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xe(t) = 0, ∀e ∈ E, t = T − τe + 1,T , (13.11)

where E−(v) = {(v,z) |(v,z) ∈ E}, E+(v) = {(z,v) |(z,v) ∈ E}.
Here the function x defines the value xe(t) of flow entering arc e at time t.

The flow does not enter arc e at time t if it has to leave the arc after time T ;
this is ensured by condition (13.11). Restrictions (13.10) are capacity constraints.
Conditions (13.9) represent flow conservation constraints.

To model transit costs, which may change over time, we define the cost function
ϕe(xe(t), t) with the meaning that flow of value ρ = xe(t) entering arc e at time t will
incur a transit cost of ϕe(ρ , t). It is assumed that ϕe(0, t) = 0 for all e ∈ E and t ∈ T .

The total cost of the dynamic flow x in the network N is defined as follows:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t). (13.12)

The minimum cost dynamic flow problem consists in finding a feasible dynamic
flow that minimizes the objective function (13.12).

13.3.2 The Method for Solving the Minimum Cost Dynamic
Flow Problem

We propose an approach based on the reduction of the dynamic problem to a
corresponding static problem to solve the formulated above problem. We show
that the minimum cost dynamic flow problem on network N = (V,E,τ,d,u,ϕ) can
be reduced to a minimum cost static flow problem on an auxiliary time-expanded
network NT = (V T,ET,dT,uT,ϕT). The advantage of such an approach is that it
turns the problem of determining an optimal flow over time into a classical network
flow problem.

The essence of the time-expanded network is that it contains a copy of the vertex
set of the dynamic network for each moment of time t ∈ T , and the transit times
and flows are implicit in arcs linking those copies. The network NT is defined as
follows:

1. V T: = {v(t) |v ∈V, t ∈ T};
2. ET: = {e(t) = (v(t),z(t + τe)) |e ∈ E, 0≤ t ≤ T − τe};
3. dv(t)

T: = dv(t) for v(t) ∈V T;

4. ue(t)
T: = ue(t) for e(t) ∈ ET;

5. ϕe(t)
T(xe(t)

T): = ϕe(xe(t), t) for e(t) ∈ ET.
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Fig. 13.1 The dynamic
network N

e1 e3

e2

v2

v1 v3

Fig. 13.2 The time-expanded
network NT

v1(0) v1(1) v1(2) v1(3)

v2(0) v2(1) v2(2) v2(3)

v3(0) v3(1) v3(2) v3(3)

t = 0 t = 1 t = 2 t = 3

In the following, we construct the time-expanded network NT for the dynamic
network N given in Fig. 13.1. The set of time moments is T = {0,1,2,3}. The transit
times on each arc are as follows: τe1 = 1, τe2 = 1, τe3 = 2. The capacity,
demand–supply and cost functions are considered to be given. The constructed time-
expanded network is presented in Fig. 13.2.

The correspondence between feasible flows in the dynamic network N and
feasible flows in the time-expanded network NT is stated in the following way. Let
xe(t) be a flow in the dynamic network N, then the function xT defined as follows:

xe(t)
T = xe(t), ∀e(t) ∈ ET, (13.13)

represents a flow in the time-expanded network NT.

Lemma 13.1. The correspondence (13.13) is a bijection from the set of feasible
flows in the dynamic network N onto the set of feasible flows in the time-expanded
network NT.

Proof. It is obvious that the correspondence (13.13) is a bijection from the set of
T -horizon functions in the dynamic network N onto the set of functions in the time-
expanded network NT. In the following we have to show that each dynamic flow
in the dynamic network N is put into the correspondence with a static flow in the
time-expanded network NT and vice-versa.



376 M. Fonoberova

Let xe(t) be a dynamic flow in N, and let xe(t)
T be a corresponding function in

NT. Let’s prove that xe(t)
T satisfies the conservation constraints in the static network

NT. Let v ∈V be an arbitrary vertex in N and t, 0≤ t ≤ T −τe, an arbitrary moment
of time:

dv(t)
(i)
= ∑

e∈E−(v)
xe(t)− ∑

e∈E+(v)
t−τe≥0

xe(t− τe)

= ∑
e(t)∈E−(v(t))

xe(t)
T− ∑

e(t−τe)∈E+(v(t))

xe(t−τe)
T (ii)
= dv(t)

T. (13.14)

Note that according to the definition of the time-expanded network the set of arcs
{e(t− τe)|e(t− τe) ∈ E+(v(t))} consists of all arcs that enter v(t), while the set of
arcs {e(t)|e(t) ∈ E−(v(t))} consists of all arcs that originate from v(t). Therefore,
all necessary conditions are satisfied for each vertex v(t) ∈ V T. Hence, xe(t)

T is a
flow in the time-expanded network NT.

Let xe(t)
T be a static flow in the time-expanded network NT, and let xe(t) be a

corresponding function in the dynamic network N. Let v(t) ∈ V T be an arbitrary
vertex in NT. The conservation constraints for this vertex in the static network are
expressed by equality (ii) from (13.14), which holds for all v(t) ∈V T at all times t,
0 ≤ t ≤ T − τe. Therefore, equality (i) holds for all v ∈ V at all moments of time t,
0≤ t ≤ T − τe. In such a way xe(t) is a flow in the dynamic network N.

It is easy to verify that a feasible flow in the dynamic network N is a feasible flow
in the time-expanded network NT and vice-versa. Indeed,

0≤ xe(t)
T = xe(t)≤ ue(t) = ue(t)

T.

The lemma is proved. "#
Theorem 13.1. If x is a flow in the dynamic network N and xT is a corresponding
flow in the time-expanded network NT, then

F(x) = FT(xT),

where

FT(xT) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T)

is the total cost of the static flow xT in the time-expanded network NT.
Moreover, for each minimum cost flow x∗ in the dynamic network N there is a

corresponding minimum cost flow x∗T in the static network NT such that

F(x∗) = FT(x∗T)

and vice-versa.
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Proof. Let x : E×T → R+ be an arbitrary dynamic flow in the dynamic network N.
Then according to Lemma 13.1 the unique flow xT in NT corresponds to the flow x
in N, and therefore we have:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(xe(t)

T) = FT(xT).

So, the first part of the theorem is proved.
To prove the second part of the theorem we again use Lemma 13.1. Let x∗ :

E×T →R+ be the optimal dynamic flow in N and x∗T be the corresponding optimal
flow in NT. Then

FT(x∗T) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T(x∗e(t)

T) = ∑
t∈T

∑
e∈E

ϕe(x
∗
e(t), t) = F(x∗).

The converse proposition is proved in an analogous way. "#
The following algorithm for solving the minimum cost dynamic flow problem

can be proposed.

1. To build the time-expanded network NT for the dynamic network N.
2. To solve the classical minimum cost flow problem on the static network NT [1,5,

14, 25, 26, 31, 46].
3. To reconstruct the solution of the static problem on the network NT to the

dynamic problem on the network N.

Building the time-expanded network and reconstructing the solution of the
minimum cost static flow problem to the dynamic one has complexity O(nT +mT ).
The complexity of step 2 depends on the complexity of the algorithm used for the
minimum cost flow problem on static networks. If such an algorithm has complexity
O( f (n′,m′)), where n′ is a number of vertices and m′ is a number of arcs in the
network, then the complexity of solving the minimum cost flow problem on the
time-expanded network employing the same algorithm is O( f (nT,mT )).

Some specific algorithms are proposed in [37] to minimize the size of the
auxiliary static network. In the case of uncapacitated dynamic networks with cost
functions that are concave with regard to flow value and do not change over time,
the problem can be reduced to the minimum cost flow problem on a static network
of equal size, not the time-expanded network.

13.3.3 The Dynamic Model with Flow Storage at Nodes

The previous mathematical model can be extended for the case with flow storage
at nodes if we associate a transit time τv to each node v ∈ V which means that the
flow passage through this node takes τv units of time. If in addition we associate
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the capacity function uv(t) and the cost function ϕv(xv(t), t) to each node v, a
more general model can be obtained. In this case, the problem can be reduced to
the previous one by simple transformation of the network where each node v is
changed by a couple of vertices v′ and v′′ connected with directed arc ev = (v′,v′′).
Here, v′ preserves all entering arcs and v′′ preserves all leaving arcs of the previous
network. The transit time τev = τv, the cost function ϕev(xev(t), t) = ϕv(xv(t), t) and
the capacity function uev(t) = uv(t) are associated to arc ev.

An important particular case of the minimum cost dynamic flow problem is the
one when all amount of flow is dumped into the network from sources v ∈V+ at the
time-moment t = 0 and it arrives at sinks v ∈ V− at the time-moment t = T . This
means that the supply–demand function d : V ×T → R satisfies the conditions:

(a) dv(0)> 0, dv(t) = 0, t = 1,2, . . . ,T , for v ∈V+;

(b) dv(T )< 0, dv(t) = 0, t = 0,1,2, . . . ,T − 1, for v ∈V−.

So, let us consider the minimum cost flow problem on the dynamic network with
flow storage at nodes and integral constant demand–supply functions. Let be given
a dynamic network N = (V,E,τ,d,u,ϕ), where the demand–supply function d :
V → R does not depend on time. Without losing generality, we assume that no arcs
enter sources or exit sinks. In order for a flow to exist supply must equal demand:
∑v∈V dv = 0.

The mathematical model of the minimum cost flow problem on this dynamic
network is the following:

∑
e∈E−(v)

T

∑
t=0

xe(t)− ∑
e∈E+(v)

T

∑
t=τe

xe(t− τe) = dv, ∀v ∈V ; (13.15)

∑
e∈E−(v)

θ

∑
t=0

xe(t)− ∑
e∈E+(v)

θ

∑
t=τe

xe(t− τe)≤ 0, ∀v ∈V∗, ∀θ ∈ T ; (13.16)

0≤ xe(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.17)

xe(t) = 0, ∀e ∈ E, t = T − τe + 1,T . (13.18)

Condition (13.18) ensures that there is no flow in the network after time horizon
T . Conditions (13.17) are capacity constraints. As flow travels through the network,
unlimited flow storage at the nodes is allowed, but any deficit is prohibited by
constraint (13.16). Finally, all demands must be met, flow must not remain in the
network after time T , and each source must not exceed its supply. This is ensured
by constraint (13.15).
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As above we seek for a feasible dynamic flow x that minimizes the total cost:

F(x) = ∑
t∈T

∑
e∈E

ϕe(xe(t), t).

We’d like to mention that the more general model can be obtained if we define
the cost function as also dependent on the flow storage at nodes. In this case, the
problem can be solved by using the similar approach.

To solve the formulated above minimum cost dynamic flow problem we use
the modified time-expanded network method. The auxiliary static network NT is
constructed as follows:

1. V T := {v(t)|v ∈V, t ∈ T};
2. V T

+ := {v(0)|v ∈V+} and V T− := {v(T )|v ∈V−};
3. ET := {(v(t),z(t + τe)) | e = (v,z) ∈ E, 0≤ t ≤ T − τe}∪
{v(t),v(t + 1) | v ∈V, 0≤ t < T};

4. dv(t)
T := dv for v(t) ∈V T

+ ∪V T− ; otherwise dv(t)
T := 0;

5. u(v(t),z(t+τ(v,z)))
T: = u(v,z)(t) for (v(t),z(t + τ(v,z))) ∈ ET;

u(v(t),v(t+1))
T: = ∞ for (v(t),v(t + 1)) ∈ ET;

6. ϕ(v(t),z(t+τ(v,z)))
T(x(v(t),z(t+τ(v,z)))

T): = ϕ(v,z)(x(v,z)(t), t)

for (v(t),z(t + τ(v,z))) ∈ ET;

ϕ(v(t),v(t+1))
T(x(v(t),v(t+1))

T): = 0 for (v(t),v(t + 1)) ∈ ET.

If the flow correspondence is the following: xe(t)
T := xe(t), where x(v(t),v(t+1))

T

in NT corresponds to the flow in N stored at node v at period of time from t to t +1,
the minimum cost flow problem on dynamic networks can be solved by solving the
minimum cost static flow problem on the time-expanded network.

13.3.4 The Minimum Cost Dynamic Flow Problems
with Different Types of Cost Functions on Arcs
and some Generalizations

If the cost function ϕe(xe(t), t) is linear with regard to xe(t), then the cost function
of the time-expanded network is linear. In this case, we can apply well-established
methods for minimum cost flow problems, including linear programming algorithms
[28], combinatorial algorithms, as well as other developments, like [24].

If the cost function ϕe(xe(t), t) is convex with regard to xe(t), then the cost func-
tion of the time-expanded network is convex. To solve the obtained static problem
we can apply methods from convex programming as well as the specialization of
such methods for the minimum cost flow problem.
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If there is exactly one source, and the cost function ϕe(xe(t), t) is concave with
regard to xe(t), then the cost function of the time-expanded network is concave.
If the dynamic network is acyclic, then the time-expanded network is acyclic
and finite [39, 40]. Therefore we can solve the static problem with polynomial
algorithms for the minimum cost flow problem on acyclic networks with concave
cost functions [36].

The same reasoning to solve the minimum cost dynamic flow problem can be
held in the case when, instead of condition (13.10) in the definition of the feasible
dynamic flow, the following condition takes place:

u′e(t)≤ xe(t)≤ u′′e (t), ∀t ∈ T, ∀e ∈ E,

where u′e(t)≥ 0 and u′′e (t)≥ 0 are lower and upper boundaries of the capacity of arc
e, respectively.

13.3.5 Dynamic Networks with Transit Time Functions
that Depend on Flow and Time

In the above dynamic models, the transit time functions are assumed to be constant
on each arc of the network. In this setting, the time it takes to traverse an arc does not
depend on the current flow situation on the arc and the moment of time. Intuitively,
it is clear that in many applications the amount of time needed to traverse an arc
of the network increases as the arc becomes more congested and it also depends on
the entering time-moment of flow in the arc. If these assumptions are taking into
account, a more realistic model can be obtained. In this model, we assume that the
transit time function τe(xe(t), t) is a non-negative non-decreasing left-continuous
step function with respect to the amount of flow xe(t) for every fixed time-moment
t ∈ T and an arbitrary given arc e ∈ E . We also consider two-side restrictions on arc
capacities u′e(t)≤ xe(t)≤ u′′e (t),∀t ∈ T,∀e∈ E , where u′,u′′: E×T→ R+ are lower
and upper capacities, respectively.

It is shown [19] that the minimum cost flow problem on dynamic network with
transit time functions that depend on the amount of flow and the entering time-
moment of flow in the arc can be reduced to a static problem on a special time-
expanded network NT = (V T,ET,dT,u′T,u′′T,ϕT), which is defined as follows:

1. V
T: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈V
T

and corresponding e(v(t))∈ Ṽ T, t ∈ T \
{T}};
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Fig. 13.3 The transit time function for the fixed moment of time t and the given arc e = (v, z)

5. E
T

:={ep(t)=(e(v(t)),z(t+τ p
e (xe(t), t))) |e(v(t)) ∈ Ṽ T, z(t+τ p

e (xe(t), t)) ∈
V

T
, e=(v,z) ∈ E, 0 ≤ t ≤ T − τ p

e (xe(t), t), p∈Pe,t

- set of numbers of steps of the transit time function τ p
e (xe(t), t)};

6. ET: =E
T∪ ẼT;

7. dv(t)
T: = dv(t) for v(t) ∈V

T
;

de(v(t))
T: = 0 for e(v(t)) ∈ Ṽ T;

8. u′ ẽ(t)T: = u′e(t) for ẽ(t) ∈ ẼT;

u′′ ẽ(t)T: = u′′e (t) for ẽ(t) ∈ ẼT;

u′ep(t)
T: = xp−1

e (t) for ep(t) ∈ E
T
, where x0

e(t) = u′e(t);

u′′ep(t)
T: = xp

e (t) for ep(t) ∈ E
T
;

9. ϕ ẽ(t)
T(xẽ(t)

T): = ϕe(xe(t), t) for ẽ(t) ∈ ẼT;

ϕep(t)
T(xep(t)

T): = εp for ep(t) ∈ E
T
, where ε1 < ε2 < · · · < ε|Pe,t | are small

numbers.

Let us consider, for example, the transit time function τe = τe(xe(t), t), graphic
of which for the fixed moment of time t and the given arc e is presented in Fig. 13.3.
Here Pe,t = {1,2,3}. So, for the fixed moment of time t on the given arc e the transit
time is equal to 3 if the value of flow belongs to interval [u′e(t),2]; the transit time is
equal to 5 if the value of flow belongs to interval (2,4]; the transit time is equal to 8
if the value of flow belongs to interval (4,u′′e (t)].

In Fig. 13.4 a part of the obtained time-expanded network is presented for the
fixed moment of time t for the given arc e = (v,z) with the transit time function in
Fig. 13.3. Lower and upper capacities of arcs are written above each arc and costs
are written below each arc.
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Fig. 13.4 The part of the
constructed time-expanded
network NT for the fixed
moment of time t for the arc
e = (v, z)

( ) (

The solution of the dynamic problem can be found on the basis of the following
results.

Lemma 13.2. Let xT: ET → R+ be a flow in the static network NT. Then the
function x: E×T → R+ defined as follows:

xe(t) = xẽ(t)
T = xep(t)

T

for e = (v,z) ∈ E, ẽ(t) = (v(t),e(v(t))) ∈ ẼT,

ep(t) = (e(v(t)),z(t + τ p
e (xe(t), t))) ∈ E

T
,

p ∈ Pe,t is such that xẽ(t)
T ∈

(
xp−1

e (t),xp
e (t)

]
, t ∈ T,

represents a flow in the dynamic network N.
Let x: E × T → R+ be a flow in the dynamic network N. Then the function

xT: ET→ R+ defined as follows:

xẽ(t)
T = xe(t) for ẽ(t) = (v(t),e(v(t))) ∈ ẼT, e = (v,z) ∈ E, t ∈ T ;

xep(t)
T = xe(t) for such p ∈ Pe,t that xe(t) ∈

(
xp−1

e (t),xp
e (t)

]
and xep(t)

T = 0 for all other p ∈ Pe,t

for ep(t) = (e(v(t)),z(t + τ p
e (xe(t), t))) ∈ E

T
, e = (v,z) ∈ E, t ∈ T,

represents a flow in the static network NT.

Theorem 13.2. If x∗T is a static minimum cost flow in the static network NT,
then the corresponding according to Lemma 13.2 dynamic flow x∗ in the dynamic
network N is also a minimum cost flow and vice-versa.

The proofs of the above lemma and theorem can be obtained by using the
arguments similar to the ones in the proofs of Lemma 13.1 and Theorem 13.1.
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13.3.6 The Maximum Flow Problem on Dynamic Network

Let be given a dynamic network N, determined by a directed graph G = (V,E),
where V is a set of vertices and E is a set of arcs. As above, we consider the discrete
time model, in which all times are integral and bounded by horizon T . The object of
the dynamic problem is to find a maximum flow over time in the network N within
makespan T = {0,1,2, . . . ,T} while respecting the following restrictions. Each arc
e ∈ E has a nonnegative time-varying capacity ue(t) which bounds the amount of
flow allowed on each arc at every moment of time. Moreover, each arc e has an
associated nonnegative transit time τe which determines the amount of time it takes
for flow to travel through the arc.

A feasible dynamic flow in the network N is a function x: E ×T → R+ that
satisfies conditions (13.10)–(13.11) and the following conditions:

∑
e∈E−(v)

xe(t)− ∑
e∈E+(v)
t−τe≥0

xe(t− τe) =

⎧⎨
⎩

yv(t), v ∈V+,

0, v ∈V∗,
−yv(t), v ∈V−,

∀ t ∈ T, ∀v ∈V ;

yv(t)≥ 0, ∀t ∈ T, ∀v ∈V.

The total value of the dynamic flow x in the network N is defined as follows:

|x|= ∑
t∈T

∑
v∈V+

yv(t).

The maximum dynamic flow problem consists in finding a feasible dynamic flow
that maximizes this objective function.

To solve the considered problem we propose an approach, which is based on the
reduction of the maximum dynamic flow problem to a well studied maximum static
flow problem. We show that our problem on network N can be reduced to a classical
problem on the time-expanded network NT, which is defined in the following way:

1. V T: = {v(t) |v ∈V, t ∈ T};
2. ET: = {(v(t),z(t + τe)) |e = (v,z) ∈ E, 0≤ t ≤ T − τe};
3. ue(t)

T: = ue(t) for e(t) ∈ ET;

4. yv(t)
T: = yv(t) for v(t) ∈V T.

The correspondence between feasible flows in the dynamic network N and
feasible flows in the time-expanded network NT is defined by (13.13).

Lemma 13.3. The correspondence (13.13) is a bijection from the set of feasible
flows in the dynamic network N onto the set of feasible flows in the time-expanded
network NT.

Proof. It is easy to see that the correspondence (13.13) is a bijection from the set
of T -horizon functions in the dynamic network N onto the set of functions in the
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time-expanded network NT. In the following, we have to verify that each flow in
the dynamic network N is put into the correspondence with a flow in the time-
expanded network NT and vice-versa. Moreover, we have to show that a feasible
flow in the dynamic network N is a feasible flow in the time-expanded network NT

and vice-versa.
Henceforward, we define

dv(t) =

⎧⎨
⎩

yv(t), v ∈V+,

0, v ∈V∗,
−yv(t), v ∈V−,

∀t ∈ T, ∀v ∈V,

and continue the proof of the lemma in the way similar to the one for Lemma 13.1.
The lemma is proved. "#

Remark 13.1. The following condition is true:

∑
t∈T

∑
v∈V−

yv(t) = ∑
t∈T

∑
v∈V+

yv(t).

The total value of the static flow in the time-expanded network NT is defined as
follows:

|xT|= ∑
t∈T

∑
v(t)∈V T

+

yv(t)
T.

Theorem 13.3. If x is a flow in the dynamic network N and xT is a corresponding
flow in the time-expanded network NT, then

|x|= |xT|.

Moreover, for each maximum flow x∗ in the dynamic network N there is a
corresponding maximum flow x∗T in the static network NT such that

|x∗|= |x∗T|

and vice-versa.

Proof. Let x : E× T → R+ be an arbitrary dynamic flow in N. Then according to
Lemma 13.3 the unique flow xT in NT corresponds to the flow x in N, and we obtain:

|x|= ∑
t∈T

∑
v∈V+

yv(t) = ∑
t∈T

∑
v(t)∈V T

+

yv(t)
T = |xT|.

So, the first part of the theorem is proved. The second part of the theorem is proved
in the way similar to the one for Theorem 13.1. The theorem is proved. "#

In such a way, the maximum flow problem on dynamic networks can be solved by
applying network flow optimization methods and algorithms for static flows directly
to the time-expanded network. To solve the maximum flow problem on dynamic
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network we have to construct the time-expanded network, after what to solve the
classical maximum flow problem on the static network, using one of the known
algorithms [1,11,13,14,22,27,31,34,43,46,48], and then to reconstruct the solution
of the static problem to the dynamic problem.

13.4 Dynamic Multicommodity Flow Problems and Algorithms
for their Solving

In this section we study dynamic versions of the minimum cost multicommodity
flow problem and the maximum multicommodity flow problem on networks. These
problems are considered on dynamic networks with time-varying capacities of arcs
and transit times on arcs that depend on sort of commodity entering them. For
the minimum cost multicommodity dynamic flow problem we assume that cost
functions, defined on arcs, are nonlinear and depend on time and flow, and demand-
supply functions depend on time. We also consider optimal multicommodity flow
problems on dynamic networks with transit time functions that depend on flow
and time. For solving the considered dynamic problems we propose methods and
algorithms based on reduction of dynamic problems to static ones on an auxiliary
time-expanded network. The algorithm for construction a special reduced time-
expanded network for an acyclic network is also proposed.

13.4.1 The Minimum Cost Multicommodity Flow Problem
on Dynamic Network

We consider a dynamic network N = (V,E,K,τ,d,u,w,ϕ), determined by directed
graph G = (V,E), where V is a set of vertices and E is a set of arcs, set of
commodities K = {1,2, . . . ,q} that must be routed through the same network, transit
time function τ: E×K→ R+, demand-supply function d: V ×K×T → R, mutual
capacity function u: E×T → R+, individual capacity function w: E×K×T → R+

and cost function ϕ : E×R+× T → R+. So, τe = (τ1
e ,τ2

e , . . . ,τ
q
e ) is a vector, each

component of which reflects the transit time on arc e ∈ E for commodity k ∈ K.
We consider the discrete time model, where all times are integral and bounded by
horizon T , which defines the set T = {0,1, . . . ,T} of time moments.
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In order for the flow to exist it is required that ∑t∈T ∑v∈V dk
v(t) = 0,∀k ∈ K. As

above without losing generality we consider that for every commodity k ∈ K the set
of vertices V is divided into three disjoint subsets V k

+,V
k−,V k∗ , such that:

V k
+ consists of nodes v ∈V , for which dk

v(t)≥ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dk

v (t0)> 0;
V k− consists of nodes v ∈V , for which dk

v(t)≤ 0 for t ∈ T and there exists at least
one moment of time t0 ∈ T such that dk

v (t0)< 0;
V k∗ consists of nodes v ∈V , for which dk

v (t) = 0 for every t ∈ T .
So, V k

+ is a set of sources, V k− is a set of sinks and V k∗ is a set of intermediate
nodes for the commodity k ∈ K in the network N.

A feasible dynamic multicommodity flow in the network N is determined by a
function x: E×K×T → R+ that satisfies the following conditions:

∑
e∈E−(v)

xk
e(t)− ∑

e∈E+(v)

t−τk
e≥0

xk
e(t− τk

e ) = dk
v(t), ∀t ∈ T, ∀v ∈V, ∀k ∈ K; (13.19)

∑
k∈K

xk
e(t)≤ ue(t), ∀t ∈ T, ∀e ∈ E; (13.20)

0≤ xk
e(t)≤ wk

e(t), ∀t ∈ T, ∀e ∈ E, ∀k ∈ K; (13.21)

xk
e(t) = 0, ∀e ∈ E, t = T − τk

e + 1,T , ∀k ∈ K. (13.22)

Here, the function x defines the value xk
e(t) of flow of commodity k entering arc

e at moment of time t. Condition (13.22) ensures that the flow of commodity k does
not enter arc e at time t if it has to leave the arc after time horizon T . Individual and
mutual capacity constraints (13.21) and (13.20) are called weak and strong forcing
constraints, respectively. Conditions (13.19) represent flow conservation constraints.

The total cost of the dynamic multicommodity flow x in the network N is defined
as follows:

F(x) = ∑
t∈T

∑
e∈E

ϕe(x
1
e(t),x

2
e(t), . . . ,x

q
e(t), t). (13.23)

The minimum cost dynamic multicommodity flow problem consists in finding
a feasible dynamic multicommodity flow that minimizes the objective function
(13.23).

13.4.2 The Algorithm for Solving the Minimum Cost Dynamic
Multicommodity Flow Problem

To solve the formulated problem we propose an approach based on the reduction
of the dynamic problem to a static problem. We show that the minimum cost
multicommodity flow problem on network N can be reduced to a static problem on



13 Optimal Flows in Dynamic Networks and Algorithms for their Finding 387

a special auxiliary network NT. In the case of the minimum cost multicommodity
flow problem on dynamic network with different transit times on an arc for different
commodities the auxiliary time-expanded network NT = (V T,ET,K,dT,uT,wT,ϕT)
is defined in the following way:

1. V
T
: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T, t ∈
T \ {T}};

5. E
T: = {ek(t) = (e(v(t)),z(t + τk

e )) |e(v(t)) ∈ Ṽ T, z(t + τk
e ) ∈ V

T
, e = (v,z) ∈

E, 0≤ t ≤ T − τk
e , k ∈ K};

6. ET: = E
T∪ ẼT;

7. dk
v(t)

T
: = dk

v (t) for v(t) ∈V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T, k ∈ K;

8. uẽ(t)
T: = ue(t) for ẽ(t) ∈ ẼT;

uek(t)
T: = ∞ for ek(t) ∈ E

T
;

9. wl
ek(t)

T
: =

{
wk

e(t), if l = k for ek(t) ∈ E
T
, l ∈ K;

0, if l �= k for ek(t) ∈ E
T
, l ∈ K;

wl
ẽ(t)

T
= ∞ for ẽ(t) ∈ ẼT, l ∈ K;

10. ϕ ẽ(t)
T(x1

ẽ(t)
T
,x2

ẽ(t)
T
, . . . ,xq

ẽ(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t)

for ẽ(t) ∈ ẼT;

ϕek(t)
T(x1

ek(t)
T
,x2

ek(t)
T
, . . . ,xq

ek(t)
T
): = 0 for ek(t) ∈ E

T
.

In the following, we construct the time-expanded network NT for the dynamic
network N given in Fig. 13.1 with set of two commodities K = {1,2}, set of
time moments T = {0,1,2,3} and transit times τ1

e1
= 2, τ2

e1
= 1, τ1

e2
= 1, τ2

e2
= 3,

τ1
e3
= 1, τ2

e3
= 2. The mutual capacity, individual capacity, demand–supply, and cost

functions are considered to be known. The constructed time-expanded network NT

is presented in Fig. 13.5.

Lemma 13.4. Let xT: ET×K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E×K×T → R+ defined in the following way:

xk
e(t) = xk

ek(t)

T
= xk

ẽ(t)
T

for e = (v,z) ∈ E, ek(t) = (e(v(t)),z(t + τk
e )) ∈ E

T
,

ẽ(t) = (v(t),e(v(t))) ∈ ẼT, k ∈ K, t ∈ T,
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Fig. 13.5 The time-expanded network (case of different transit times on an arc for different
commodities)

represents a multicommodity flow in the dynamic network N.
Let x: E ×K× T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET×K→ R+ defined in the following way:

xk
ẽ(t)

T
=xk

e(t) for ẽ(t)=(v(t),e(v(t))) ∈ ẼT, e=(v,z)∈ E, k∈ K, t ∈ T ;

xk
ek(t)

T
= xk

e(t); xl
ek(t)

T
= 0, l �= k

for ek(t) = (e(v(t)), z(t + τk
e )) ∈ E

T
, e = (v,z) ∈ E, l,k ∈ K, t ∈ T,

represents a multicommodity flow in the static network NT.

Proof. To prove the first part of the lemma we have to show that conditions
(13.19)–(13.22) for the defined above x in the dynamic network N are true. These
conditions evidently result from the following definition of multicommodity flows
in the static network NT:

∑
e(t)∈E−(v(t))

xk
e(t)

T− ∑
e(t−τk

e )∈E+(v(t))

xk
e(t−τk

e )

T
= dk

v(t)
T
,

∀v(t) ∈V T, ∀k ∈ K; (13.24)
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∑
k∈K

xk
e(t)

T ≤ ue(t)
T, ∀e(t) ∈ ET; (13.25)

0≤ xk
e(t)

T ≤ wk
e(t)

T
, ∀e(t) ∈ ET, ∀k ∈ K; (13.26)

xk
e(t)

T
= 0, ∀e(t) ∈ ET, t = T − τk

e + 1,T , ∀k ∈ K, (13.27)

where by v(t) and e(t) we denote v(t) or ṽ(t) and e(t) or ẽ(t), respectively, against
context.

In order to prove the second part of the lemma it is sufficiently to show that
conditions (13.24)–(13.27) hold for the defined above xT. Correctness of these
conditions results from the procedure of constructing the time-expanded network,
the correspondence between flows in static and dynamic networks and the satisfied
conditions (13.19)–(13.22).

The lemma is proved. "#
Theorem 13.4. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.4 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

Proof. Taking into account the correspondence between static and dynamic multi-
commodity flows on the basis of Lemma 13.4, we obtain that costs of the static
multicommodity flow in the time-expanded network NT and the corresponding
dynamic multicommodity flow in the dynamic network N are equal. To solve the
minimum cost multicommodity flow problem on the static time-expanded network
NT, we have to solve the following problem:

FT(xT) = ∑
t∈T

∑
e(t)∈ET

ϕe(t)
T
(

x1
e(t)

T
,x2

e(t)
T
, . . . ,xq

e(t)
T
)
→min

subject to (13.24)–(13.27). "#

In the case of the minimum cost multicommodity flow problem on dynamic
network with common transit times on an arc for different commodities the time-
expanded network NT can be constructed more simply:

1. V T: = {v(t) |v ∈V, t ∈ T};
2. ET: = {e(t) = (v(t),z(t +τe)) |v(t) ∈V T, z(t +τe) ∈V T, e = (v,z) ∈ E, 0≤ t ≤

T − τe};
3. dk

v(t)
T

: = dk
v(t) for v(t) ∈V T, k ∈ K;

4. ue(t)
T: = ue(t) for e(t) ∈ ET;

5. wk
e(t)

T
: = wk

e(t) for e(t) ∈ ET, k ∈ K;

6. ϕe(t)
T(x1

e(t)
T
,x2

e(t)
T
, . . . ,xq

e(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for e(t) ∈ ET.

The following lemma and theorem can be considered as particular cases of
Lemma 13.4 and Theorem 13.4.
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Lemma 13.5. Let xT: ET×K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E×K×T → R+ defined as follows:

xk
e(t) = xk

e(t)
T

for e ∈ E, e(t) ∈ ET, k ∈ K, t ∈ T,

represents the multicommodity flow in the dynamic network N.
Let x: E ×K× T → R+ be a multicommodity flow in the dynamic network N.

Then the function xT: ET×K→ R+ defined as follows:

xk
e(t)

T
= xk

e(t) for e(t) ∈ ET, e ∈ E, k ∈ K, t ∈ T,

represents the multicommodity flow in the static network NT.

Theorem 13.5. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.5 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

In such a way, to solve the minimum cost multicommodity flow problem on
dynamic networks we have:

1. To build the time-expanded network NT for the given dynamic network N.
2. To solve the classical minimum cost multicommodity flow problem on the static

network NT [4, 8–10, 14, 15, 44].
3. To reconstruct the solution of the static problem on NT to the dynamic problem

on N.

The complexity of this algorithm depends on the complexity of the algorithm
used for the minimum cost multicommodity flow problem on the static network. If
such an algorithm has complexity O( f (n′,m′)), where n′ is the number of vertices
and m′ is the number of arcs in the network, then the complexity of solving the
minimum cost multicommodity flow problem with different transit times on arcs for
different commodities on the time-expanded network employing the same algorithm
is O( f ((n +m)T,m(k + 1)T )), where n is the number of vertices in the dynamic
network, m is the number of arcs in the dynamic network and k is the number of
commodities.

13.4.3 The Construction of the Time-Expanded Network
for Acyclic Graphs

In this subsection, we consider the minimum cost multicommodity flow problem
on the acyclic dynamic network N = (V,E,K,τ,d,u,w,ϕ) with time horizon T =
+∞ and common transit times on an arc for different commodities. Without losing
generality, we assume that no arcs enter sources or exit sinks. Let T ∗ = max{|L|}=



13 Optimal Flows in Dynamic Networks and Algorithms for their Finding 391

Fig. 13.6 The dynamic
network N with five nodes,
and six arcs

v2 v4

v1 v3 v5

Fig. 13.7 The time-expanded
network NT∗ for the dynamic
network N

v1(0) v1(1) v1(2) v1(3)

v2(0) v2(1) v2(2) v2(3)

v3(0) v3(1) v3(2) v3(3)

v4(0) v4(1) v4(2) v4(3)

v5(0) v5(1) v5(2) v5(3)

max{∑e∈L τe}, where L is a directed path in the graph G = (V,E). It is not difficult
to show that xk

e(t) = 0 for ∀e∈ E , ∀k ∈ K, ∀t ≥ T ∗. This fact allows us to replace the
infinite time horizon with the finite one, by substituting T ∗ for the positive infinity.

In many cases, a big number of nodes is not connected with a directed path both
to a sink and a source. Removing such nodes from the considered network does
not influence the set of flows in this network. These nodes are called irrelevant
to the flow problem. Nodes that are not irrelevant are relevant. The static network
obtained by eliminating the irrelevant nodes and all arcs adjacent to them from the
time-expanded network is called the reduced time-expanded network.

The network in Fig. 13.6 is a dynamic network that conforms to the definition of
the acyclic dynamic network, with V+ = {v1} and V− = {v5}. Let us consider that
all transit times are equal to 1, and accordingly T ∗ = 3.

The time-expanded network built according to the definition is presented in
Fig. 13.7. This network has 20 nodes and 18 arcs.
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Fig. 13.8 The reduced
time-expanded network NrT∗

v1(0) v1(1)

v2(0) v2(1)

v3(0) v3(1) v3(2)

v4(0) v4(1) v4(2)

v5(1) v5(2) v5(3)

t = 0 t = 1 t = 2 t = 3

If we exclude the irrelevant nodes we obtain a smaller static network depicted in
Fig. 13.8 with 13 nodes and 13 arcs.

It is proposed the following algorithm for constructing the reduced network
NrT∗ = (V rT∗ ,E rT∗ ,drT∗ ,urT∗ ,wrT∗ ,ϕ rT∗) which is based on the process of elimina-
tion of irrelevant nodes from the time-expanded network:

1. To build the time-expanded network NT∗ for the given dynamic network N.
2. To perform a breadth-first parse of the nodes for each source from the time

expanded-network. The result of this step is the set V−(V T∗− ) of the nodes that
can be reached from at least a source in V T∗ .

3. To perform a breadth-first parse of the nodes beginning with the sink for each
sink and parsing the arcs in the direction opposite to their normal orientation.
The result of this step is the set V+(V T∗

+ ) of nodes from which at least a sink in
V T∗ can be reached.

4. The reduced network will consist of a subset of nodes V T∗ and arcs from ET∗

determined in the following way:

V rT∗ =V T∗ ∩V−(V T∗
− )∩V+(V

T∗
+ ),

E rT∗ = ET∗ ∩ (V rT∗ ×V rT∗).

5. drk
v(t)

T∗
: = dk

v(t) for v(t) ∈V rT∗ , k ∈ K.

6. ur
e(t)

T∗ : = ue(t) for e(t) ∈ E rT∗ .
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7. wrk
e(t)

T∗
: = wk

e(t) for e(t) ∈ E rT∗ , k ∈ K.

8. ϕ r
e(t)

T∗(x1
e(t)

T∗
,x2

e(t)
T∗
, . . . ,xq

e(t)
T∗
): =ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for e(t) ∈ E rT∗ .

The complexity of this algorithm can be estimated to be the same as the
complexity of constructing the time-expanded network. It can be proven by using
the similar approach as in [39] that the reduced network can be used in place of the
time-expanded network.

We’d like to mention that the proposed above approach with some modifica-
tions can be used for constructing the reduced time-expanded network for the
optimal single-commodity dynamic flow problems and the optimal multicommod-
ity dynamic flow problems with different transit times on an arc for different
commodities.

13.4.4 Multicommodity Dynamic Networks with Transit Time
Functions that Depend on Flow and Time

We propose an approach for solving the minimum cost multicommodity dynamic
flow problem with transit time functions that depend on flow and time. This problem
is considered on dynamic networks with time-varying lower and upper capacity
functions, time-varying mutual capacity function and time-varying demand–supply
function. It is assumed that cost functions, defined on arcs, are nonlinear and depend
on flow and time. The transit time function τk

e (x
k
e(t), t) is considered to be a non-

negative non-decreasing left-continuous step function for each commodity k ∈ K.
The method for solving the minimum cost multicommodity dynamic flow

problem with transit time functions that depend on flows and time is based on the
reduction of the dynamic problem to a static problem on an auxiliary time-expanded
network NT = (V T,ET,dT,uT,w′T,w′′T,ϕT) which is defined as follows:

1. V
T: = {v(t) |v ∈V, t ∈ T};

2. Ṽ T: = {e(v(t)) |v(t) ∈V
T
, e ∈ E−(v), t ∈ T \ {T}};

3. V T: =V
T∪ Ṽ T;

4. ẼT: = {ẽ(t) = (v(t),e(v(t))) |v(t) ∈ V
T

and corresponding e(v(t)) ∈ Ṽ T, t ∈
T \ {T}};

5. E
T

: = {ek,p(t)= (e(v(t)),z(t+τk,p
e (xk

e(t), t))) |e(v(t))∈ Ṽ T, z(t+τk,p
e (xk

e(t), t))

∈V
T
,e=(v,z)∈E, 0≤ t≤ T−τk,p

e (xk
e(t), t), p∈Pk

e,t− set of numbers of steps
of the transit time function τk

e (x
k
e(t), t), k ∈ K};

6. ET: = E
T∪ ẼT;
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=

Fig. 13.9 The transit time function for commodity 1 for the fixed moment of time t and the given
arc e = (v, z)

7. dk
v(t)

T
: = dk

v (t) for v(t) ∈V
T
, k ∈ K;

dk
e(v(t))

T
: = 0 for e(v(t)) ∈ Ṽ T, k ∈ K;

8. uẽ(t)
T: = ue(t) for ẽ(t) ∈ ẼT;

uek,p(t)
T: = ∞ for ek,p(t) ∈ E

T;

9. w′l
ek,p(t)

T
: =

⎧⎪⎨
⎪⎩

xk,p−1
e (t), if l = k for ek,p(t) ∈ E

T
, l ∈ K,

where xk,0
e (t) = w

′k
e (t);

0, if l �= k for ek,p(t) ∈ E
T
, l ∈ K;

w′′l
ek,p(t)

T
: =

{
xk,p

e (t), if l = k for ek,p(t) ∈ E
T
, l ∈ K;

0, if l �= k for ek,p(t) ∈ E
T
, l ∈ K;

w′lẽ(t)
T
=−∞; w′′lẽ(t)

T
=+∞ for ẽ(t) ∈ ẼT, l ∈ K;

10. ϕ ẽ(t)
T(x1

ẽ(t)
T
,x2

ẽ(t)
T
, . . . ,xq

ẽ(t)
T
): = ϕe(x1

e(t),x
2
e(t), . . . ,x

q
e(t), t) for ẽ(t) ∈ ẼT;

ϕek,p(t)
T(x1

ek,p(t)
T
,x2

ek,p(t)
T
, . . . ,xq

ek,p(t)
T
): = εk,p for ek,p(t) ∈ E

T
, where

εk,1 < εk,2 < · · ·< εk,|Pk
e,t | are small numbers.

For example, let us consider the transit time functions for an arc e = (v,z)
at the moment of time t presented in Figs. 13.9 and 13.10, which correspond to
commodities 1 and 2, respectively.

The constructed part of the time-expanded network for the fixed moment of time
t for the arc e = (v,z) is presented in Fig. 13.11.

The following lemma and theorem give us the relationship between flows in
network N and flows in network NT.
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Fig. 13.10 The transit time function for commodity 2 for the fixed moment of time t and the given
arc e = (v, z)

Fig. 13.11 The part of the
constructed time-expanded
network NT for the fixed
moment of time t for the arc
e = (v, z)

Lemma 13.6. Let xT: ET×K→ R+ be a multicommodity flow in the static network
NT. Then the function x: E×K×T → R+ defined in the following way:

xk
e(t) = xk

ẽ(t)
T
= xk

ek,p(t)
T

for e = (v,z) ∈ E, ẽ(t) = (v(t),e(v(t))) ∈ ẼT,

ek,p(t) = (e(v(t)),z(t + τk,p
e (xk

e(t), t))) ∈ E
T
,

p ∈ Pk
e,t is such that xk

ẽ(t)
T ∈

(
xk,p−1

e (t),xk,p
e (t)

]
, t ∈ T, k ∈ K,

represents a multicommodity flow in the dynamic network N.
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Let x: E ×K× T → R+ be a multicommodity flow in the dynamic network N.
Then the function xT: ET×K→ R+ defined in the following way:

xk
ẽ(t)

T
= xk

e(t)

for ẽ(t) = (v(t),e(v(t))) ∈ ẼT, e = (v,z) ∈ E, k ∈ K, t ∈ T ;

xl
ek,p(t)

T
= 0, l �= k;

xk
ek,p(t)

T
= xk

e(t) for such p ∈ Pk
e,t that xk

e(t) ∈
(

xk,p−1
e (t),xk,p

e (t)
]
,

xk
ek,p(t)

T
= 0 for all other p ∈ Pk

e,t

for ek,p(t) = (e(v(t)),z(t + τk,p
e (xk

e(t), t))) ∈ E
T
,

e = (v,z) ∈ E, l,k ∈ K, t ∈ T,

represents a multicommodity flow in the static network NT.

Theorem 13.6. If x∗T is a minimum cost multicommodity flow in the static network
NT, then the corresponding according to Lemma 13.6 multicommodity flow x∗ in the
dynamic network N is also a minimum cost one and vice-versa.

13.4.5 The Maximum Multicommodity Dynamic Flow Problem

We show that the proposed time-expanded network method can be used for the
maximum multicommodity dynamic flow problem. The scope of this problem is to
find the maximum flow of a set of commodities within a given time bound through a
network without violating capacity constraints of arcs. As above, time is measured
in discrete steps, the set of time moments is T= {0,1, . . . ,T}.

We consider a network N determined by a directed graph G = (V,E) and a set
of commodities K that must be routed through the same network. Each arc e ∈ E
has a nonnegative time-varying capacity wk

e(t) which bounds the amount of flow
of each commodity k ∈ K allowed on arc e ∈ E at every moment of time t ∈ T.
We also consider that every arc e ∈ E has a nonnegative time-varying capacity for
all commodities, which is known as the mutual capacity ue(t). Moreover, each arc
e ∈ E has an associated nonnegative transit time τk

e which determines the amount of
time it takes for flow of commodity k ∈ K to travel through the arc.

A feasible multicommodity dynamic flow in N is determined by a function x: E×
K×T→ R+ that satisfies conditions (13.20)–(13.22) and the following conditions:

∑
e∈E−(v)

xk
e(t)− ∑

e∈E+(v)
t−τk

e≥0

xk
e(t− τk

e ) =

⎧⎪⎪⎨
⎪⎪⎩

yk
v(t), v ∈V k

+,

0, v ∈V k∗ ,
−yk

v(t), v ∈V k−,
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∀t ∈ T, ∀v ∈V, ∀k ∈ K;

yk
v(t)≥ 0, ∀v ∈V, ∀t ∈ T, ∀k ∈ K.

The total value of the multicommodity dynamic flow x in the network N is
defined as follows:

|x|= ∑
k∈K

∑
t∈T

∑
v∈V k

+

yk
v(t).

The object of the formulated problem is to find a feasible multicommodity dynamic
flow that maximizes this objective function.

To solve the maximum multicommodity dynamic flow problem by its reduction
to a static one we define the time-expanded network NT in a similar way as for
the minimum cost multicommodity dynamic flow problem. The correspondence
between flows in the dynamic network N and the static network NT is also
determined as above.

Using the same reasoning we obtain that if x∗T is a maximum multicommodity
flow in the static network NT, then the corresponding multicommodity flow x∗ in
the dynamic network N is also a maximum one and vice-versa.

In such a way, the maximum multicommodity flow problem on dynamic
networks can be solved by applying network flow optimization techniques for static
flows directly to the expanded network. To solve the maximum multicommodity
flow problem on N we have to build the time-expanded network NT for the given
dynamic network N, after what to solve the classical maximum multicommodity
flow problem on the static network NT, using one of the known algorithms [8–
10, 15, 44] and then to reconstruct the solution of the static problem on NT to the
dynamic problem on N.

13.5 Game-Theoretic Approach for Solving Multiobjective
Multicommodity Flow Problems on Networks

In this section, we consider the game-theoretic formulation of the multiobjective
multicommodity flow problem. If we associate to each commodity a player, we
can regard this problem as a game version of the problem, where players interact
between them and the choices of one player influence the choices of the others.
Each player seeks to optimize his own vector utility function in response to the
actions of the other players and at the same time players are interested to preserve
Nash optimality principle when they interact between them. The game theory fits
perfectly in the realm of such a problem, and an equilibrium or stable operating
point of the system has to be found.
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13.5.1 Pareto–Nash Equilibria for Multiobjective Games

In order to investigate the multiobjective multicommodity flow problem we will use
the game-theoretic concept from [2, 38].

The multiobjective game with q players is denoted by Γ = (X1,X2, . . . ,Xq,
F1,F2, . . . ,Fq), where Xk is a set of strategies of player k, k ∈ {1,2, . . . ,q}, and
Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) is a vector payoff function of player k, k ∈ {1,2, . . . ,q},

defined on the set of situations X = X1×X2×·· ·×Xq:

Fk : X1×X2×·· ·×Xq→ Rrk , k ∈ {1,2, . . . ,q}.

Each component Fi
k of Fk corresponds to a partial criterion of player k and represents

a real function defined on the set of situations X = X1×X2×·· ·×Xq:

Fi
k : X1×X2×·· ·×Xq→ R1, i = 1,rk, k ∈ {1,2, . . . ,q}.

In [38], the solution of the multiobjective game Γ = (X1,X2, . . . ,Xq,
F1,F2, . . . ,Fq) is called the Pareto–Nash equilibrium and is defined in the following
way.

Definition 13.1. The situation x∗ = (x∗1,x
∗
2, . . . ,x

∗
q) ∈ X is called the Pareto–Nash

equilibrium for the multiobjective game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) if for
every k∈ {1,2, . . . ,q} the strategy x∗k represents the Pareto solution for the following
multicriterion problem:

optxk∈Xk → f
k
x∗(xk) = ( f k1

x∗ (xk), f k2
x∗ (xk), . . . , f krk

x∗ (xk)),

where

f ki
x∗(xk) = Fi

k(x
∗
1,x
∗
2, . . . ,x

∗
k−1,xk,x

∗
k+1, . . . ,x

∗
q), i = 1,rk, k ∈ {1,2, . . . ,q}.

This definition generalizes the well-known Nash equilibrium for classical non-
cooperative games (single-objective games) and the Pareto optimum for multi-
criterion problems. If rk = 1, k ∈ {1,2, . . . ,q}, then Γ becomes the classical
noncooperative game, where x∗ represents a Nash equilibrium solution; in the case
q = 1 the game Γ becomes the Pareto multicriterion problem, where x∗ is a Pareto
solution.

In the following, we present the theorem from [38] which represents an extension
of the Nash theorem for the multiobjective version of the game.

Theorem 13.7. Let Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) be a multiobjective game,
where X1,X2, . . . ,Xq are convex compact sets and F1,F2, . . . ,Fq represent continu-
ous vector payoff functions. Moreover, let us assume that for every k ∈ {1,2, . . . ,q}
each component Fi

k(x1,x2, . . . ,xk−1,xk,xk+1, . . . ,xq), i = 1,rk, of the vector function
Fk(x1,x2, . . . ,xk−1,xk,xk+1, . . . ,xq) represents a concave function with respect to xk
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on Xk for fixed x1,x2, . . . ,xk−1,xk+1, . . . ,xq. Then for the multiobjective game Γ =
(X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) there exists the Pareto–Nash equilibrium situation
x∗ = (x∗1,x

∗
2, . . . ,x

∗
q) ∈ X1×X2×·· ·×Xq.

The proof of Theorem 13.7 in [38] is based on the reduction of the multiobjective
game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq) to an auxiliary game Γ = (X1,X2, . . . ,Xq,
f1, f2, . . . , fq) for which Nash theorem from [45] can be applied. In order to reduce
the multiobjective game Γ to an auxiliary game Γ linear convolution criteria for
vector payoff functions are used.

In such a way, if conditions of Theorem 13.7 are satisfied then Pareto–Nash
equilibrium solution for the multiobjective game can be found by using the
following algorithm:

1. Fix an arbitrary set of real numbers α11,α12, . . . ,α1r1 ,α21,α22, . . . ,α2r2 ,
. . . ,αq1,αq2, . . . ,αqrq , which satisfy conditions:

⎧⎪⎨
⎪⎩

rk

∑
i=1

αki = 1, k ∈ {1,2, . . . ,q};
αki > 0, i = 1,rk, k ∈ {1,2, . . . ,q}.

(13.28)

2. Form the single objective game Γ = (X1,X2, . . . ,Xq, f1, f2, . . . , fq), where

fk(x1,x2, . . . ,xq) =
rk

∑
i=1

αkiF
i
k(x1,x2, . . . ,xq), k ∈ {1,2, . . . ,q}.

3. Find the Nash equilibrium x∗ = (x∗1,x
∗
2, . . . ,x

∗
q) for the noncooperative game Γ =

(X1,X2, . . . ,Xq, f1, f2, . . . , fq) and fix x∗ as the Pareto–Nash equilibrium solution
for the multiobjective game Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq).

This algorithm finds only one of the solutions of the multiobjective game
Γ = (X1,X2, . . . ,Xq,F1,F2, . . . ,Fq). In order to find all solutions in the
Pareto–Nash sense it is necessary to apply the algorithm for every α11,α12, . . . ,α1r1 ,
α21,α22, . . . ,α2r2 , . . . ,αq1,αq2, . . . ,αqrq , which satisfy condition (13.28), and then
to form the union of all obtained solutions.

13.5.2 The Multiobjective Multicommodity Flow Models

In the following, we formulate the multiobjective multicommodity flow problem
on static and dynamic networks. Such problem consists of shipping a given set of
commodities from their respective sources to their sinks through a network in order
to optimize different criteria so that the total flow going through arcs does not exceed
their capacities.
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13.5.2.1 The Static Model

The aim is to send the flow through the network in order to optimize the vector
utility function Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) for every commodity k ∈ {1,2, . . . ,q}:

Fk : X1×X2×·· ·×Xq→ Rrk ,

Fi
k : X1×X2×·· ·×Xq→ R1, i = 1,rk,

where Xk is a set of flows of commodity k, rk is a number of criteria for commodity k.

13.5.2.2 The Dynamic Model

The purpose is to transport the flow through the network in order to optimize the
vector utility function Fk = (F1

k ,F
2
k , . . . ,F

rk
k ) for every commodity k ∈ {1,2, . . . ,q}:

Fk : (X1×T)× (X2×T)×·· ·× (Xq×T)→ Rrk ,

Fi
k : (X1×T)× (X2×T)×·· ·× (Xq×T)→ R1, i = 1,rk.

where Xk is a set of flows of commodity k, T is a set of considered time moments,
rk is a number of criteria for commodity k.

In the framework of the game theory each commodity is associated with a player.
We consider a general model with q players, each of which wishes to optimize his
own vector utility function Fk, k ∈ {1,2, . . . ,q}, defined on the set of strategies of all
players. Every component Fi

k , i= 1,rk, k∈ {1,2, . . . ,q}, of the vector utility function
Fk of player k corresponds to a partial criterion of player k. The cost of transportation
of a given resource, the time necessary to transport it to its destination as well as the
quality of the transportation play the role of the components of the vector utility
function of a player in the game-theoretic formulation of the problem.

Each player competes in a Nash equilibrium manner so as to optimize his own
criteria in the task of transporting flow from its origins to its destinations. In our
problem each player has several objectives, so we use the Pareto–Nash equilibrium
concept extended to networks. In such a way, players intend to optimize their utility
functions in the sense of Pareto and at the same time players are interested to
preserve Nash optimality principle when they interact between them. So, control
decisions are made by each player according to its own individual performance
objectives and depending on the choices of the other players.

13.5.3 Comments

In real-life problems, users have to make decision concerning routing as well as type
and amount of resources that they wish to transport. Different sets of parameters may
suit the service requirements of a user. However, the performance measures depend
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not only on the user’s choices, but also on the decisions of other connected users,
where this dependence is often described as a function of some network “state.” In
this setting the game paradigm and the Pareto–Nash equilibrium concept become
the natural choice at the user level.

Game-theoretic models are widely employed in the context of flow control,
routing, virtual path bandwidth allocation and pricing in modem networking. Flow
problems in multimedia applications (teleconferencing, digital libraries) over high-
speed broadband networks can serve a good example of this. In a multimedia
network telecommunication companies carrying different traffic types (voice, data,
and video) may share the limited common network resources such as buffers or
transmission lines. These companies may have different objectives of maximizing
packet throughput or minimizing packet blocking probability. A Pareto–Nash
equilibrium may be reached when companies achieve their objectives in such a
way that no company can improve its own performance by unilaterally changing
its traffic load admission and routing strategies.

The problem of providing bandwidth which will be shared by many users [35,42]
is one of the most important problems. As it is typical for games in such a problem
the interaction among the users on their individual strategies has to be imposed. This
can be done using a utility function that depends on the availability of bandwidth
and other factors in the network.

13.6 Conclusions

In this chapter, the minimum cost flow problem and the maximum flow problem
on dynamic networks, that generalize classical optimal flow problems on static
networks, were investigated. The minimum cost flow problem was considered
in the case when demand-supply and capacity functions depend on time and
cost functions on arcs are nonlinear and depend both on time and on flow. The
maximum flow problem was considered on dynamic networks with time-dependent
capacities of arcs. The dynamic model with transit time functions that depend
on the amount of flow and the entering time-moment of flow in the arc was
formulated and studied. The properties of the optimal flows were stated and on
their basis the methods and algorithms for solving the considered optimal dynamic
flow problems were proposed. The time-expanded network method was generalized
for the dynamic versions of the minimum cost multicommodity flow problem
and the maximum multicommodity flow problem on networks. The dynamic
multicommodity problems were studied on networks with time-varying capacities
of arcs and transit times on arcs that depend on sort of commodity entering them.
For the minimum cost multicommodity dynamic flow problem it was assumed that
cost functions, defined on arcs, are nonlinear and depend on time and flow, and
demand-supply functions depend on time. The case when transit time functions
depend on flow and time was also analyzed. The methods and algorithms for solving
the considered optimal dynamic multicommodity flow problems were developed.



402 M. Fonoberova

The multiobjective version of the optimal multicommodity flow problem was
considered. Investigation of this problem was effectuated on the basis of the concept
of multiobjective games using the notion of the Pareto–Nash equilibrium.

Acknowledgements I express my gratitude to Dmitrii Lozovanu for close collaboration.
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Chapter 14
Some Distributed Approaches to the Service
Facility Location Problem in Dynamic
and Complex Networks

Ioannis Stavrakakis

Abstract The need to efficiently accommodate over the Internet the ever exploding
(user-generated) content and services, calls for the development of service place-
ment schemes that are distributed and of low complexity. As the derivation of the
optimal placement in such environments is prohibitive due to the global topology
and demand requirement and the large scale and dynamicity of the environment,
feasible and efficient solutions of low complexity are necessary even at the expense
of non-guaranteed optimality. This chapter presents three such approaches that
migrate the service along cost-reducing paths by utilizing topology and demand
information that is strictly local or confined to a small neighborhood: the neighbor
hopping migration requires strictly local information and guarantees optimality for
topologies of unique shortest path tree; the r-hop neighborhood migration appears to
be more effective for general topologies and can also address jointly the derivation
of both the number and locations of services to be deployed; the generalized
neighborhood migration approach opens up new possibilities in defining localities,
other than topological ones, that contain the most relevant candidates for the
optimal placement, by exploiting emerging metrics and structures associated with
complex and social networks. The underlying assumptions, strengths, efficiency and
applicability of each of these approaches are discussed and some indicative results
are shown.

14.1 Introduction

The problem of determining the location of facilities (factories, merchandise
distribution centers, etc.) so that their operational cost is minimized is an old one.
It has appeared since the early years of the industrial revolution and has been
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extensively pursued by the operations research scientific community. Depending
on the driving application, this problem has yielded various variants and given rise
to numerous formulations. The most widely considered and studied have been those
of the uncapacitated k-median and the uncapacitated Facility Location (FL), [1].
The uncapacitated k-median problem prescribes the locations for instantiating a
fixed number of facilities so as to minimize the distance between users and the
closest facility that can serve them. In the uncapacitated facility location problem,
the number of facilities is not fixed, but jointly derived along with the locations, as
part of a solution that minimizes the combined facility opening and accessing costs.

The vast majority of work on the general facility location problem until recently
has considered a centralized environment. All the information needed as an input
to the problem, such as the demand for service and the access cost, is considered
to be centrally available. The challenge then has been to devise computational
efficient approaches to solving or approximating the high complexity (or NP
hard) optimization problems, [1–3]. The centralized approaches focus on greedy
heuristics [4–7], on linear programming [8–10], on primal-dual [11, 12], local
search [13,14], and other techniques [15–20] that have been proposed in the past to
deal with the increased complexity of the facility location problem.

Recently emerged distributed environments (such as those of networked users
demanding services from network service providing facilities) have motivated the
consideration of distributed approaches to solving the facility location problem.
One recently initiated research thread relates to the approximability of distributed
approaches to the facility location problem. The work in [21] draws on a primal-dual
approach earlier devised in [12], to derive a distributed algorithm that trades-off
the approximation ratio with the communication overhead under the assumption
of O(logn) bits message size, where n is the number of clients. More recently, an
alternative distributed algorithm was derived in [22] that compares favorably with
the one in [21] in resolving the same trade-off.

Several specific application-oriented approaches to the distributed facility lo-
cation (service placement) problem have appeared in the literature, such as:
[23] (deployment of multicast reflectors), [24] (deployment of mirrored web
content), [25] (on-line multi-player network games), [26] (constrained mirror
placement), and [27] (cache placement). Relevant is also the work in [28] on systems
aspects of a distributed shared platform for service deployment, and [29] on the
overheads of updating replica placements under non-stationary demand.

The aforementioned works on distributed approaches to solving the service
placement problem either are applicable to a specific application scenario or aim at
providing provable bounds for the run time and the quality of the solutions. In this
chapter we present some distributed approaches to the service placement problem
that are of broad applicability to general and, complex networking environments,
rely on local or other limited network topology and demand information and
employ heuristics to yield the optimal or near-optimal solutions. More specifi-
cally, this chapter presents three approaches to addressing the service placement
problem in a networking environment, based on the kind of limited (topology and
demand) information that is available. Although some of the approaches are directly
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applicable to the case of multiple facilities or that of unknown number of facilities,
the presentation here is limited to the k-median formulation (with k = 1 in some
cases) to be kept simple. Pointers to extensions are provided occasionally. The
terms service, facility, service facility, host and occasionally content will be used
interchangeably in this chapter.

Distributed solutions to the service placement problem are needed today in the
design and operation of several applications in modern networks, such as for the
large-scale timely distribution of customized software due to a software update (e.g.,
Microsoft Windows update). Such an update operation not only delivers immense
amounts of data to millions of users, but it also has to incorporate complex decision
processes for customizing the delivered updates to the peculiarities of different users
[30] with respect to localization, previously-installed updates, compatibilities, and
optional components, among others. This complex update process goes beyond the
dissemination of a single large file, which could also be carried out through a peer-
to-peer approach [31]. As it is unlikely that software providers will be willing to
trust intermediaries to undertake such a responsibility, the software update (and
other tasks) are likely to be undertaken by dedicated or virtual hosts, such as servers
offered for lease through third-party overlay networks (Akamai or Planet Lab),
or the newest breed of Cloud Computing platforms (e.g., Amazon EC2). To that
end, distributed solutions to the service placement problem would be necessary to
optimize the operational cost and improve end user experience.

The general environment considered here is that of a network of nodes and links
over which some service located at a specific node (referred to also as the host)
is provided. The path employed is assumed to be the shortest path between the
node requesting the service and the node hosting it. The information required to
solve the global optimization problem that will yield the optimal location for the
service is the per node demand for the service and the costs of the links of the
network; that is, full topology and demand information. Even if such information
were available to a central entity, it would have required the solution of a very large
(for realistic networking environments) and complex optimization problem, which
is cumbersome if not impossible. Furthermore, the dynamicity of typical networking
environments today would render any such centralized and global information-
based approach useless as it would soon loose its optimality.

The approaches presented in this chapter have the following common character-
istics. The service placement process is initiated by assuming an initial solution
(location of the service). Given this location, some limited service demand and
topology information is considered (which may be collected or be assumed to be
a priori available) and a critical calculation (that captures the cost for providing
the service from the particular host) is carried out based on it. The outcome of
this calculation dictates whether the service should be placed at another node
(and which) or not, anticipating a reduced service provisioning from the new
location. The procedure repeats from the new location until the cost reduction
achieved by moving to the new location falls below a small value or it starts
increasing. This approach is not only a reasonable one for potentially converging
to an optimal solution by starting from a random one, but is also one that matches
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well the intricacies of modern networking environments, where the service entity is
generated at an almost random networked node and can be equipped with certain
autonomicity features to allow it to migrate to and be hosted by pretty much any
other network node. The starting location in the solution approach then corresponds
to the physical location launching initially the service.

In Sect. 14.2, a distributed solution that utilizes strictly local information (i.e.,
own knowledge only) to solve the 1-median problem is presented. This approach
yields the optimal location for specific networking environments, while yielding
good performing solutions, although sub-optimal, for more general ones. This work
was originally introduced in [32] where more details may also be found. In Sect.
14.3, a different distributed approach is presented that utilizes information from
a broader locality and is shown to yield a solution that although not provably
the optimal is shown to approximate it well. This work was originally introduced
in [33] where more details may also be found. Finally, Sect. 14.4 presents a
different approach that exploits the “social” standing of the nodes in terms of their
significance in relaying the service between the nodes and the host of the service, to
define “social” localities to engage in the limited complexity approach. This work
was originally introduced in [34] where more details may also be found.

14.2 Neighbor-Hopping Service Migration

The key assumption here is that the node that executes the (distributed) algorithm
for solving the service placement problem (i.e., the host) requires no topology or
demand information to be communicated to it, besides that locally available at the
specific node. As it will be shown, this very limited complexity approach reaches
provably the optimal solution for certain network topologies. For more general
topologies, an extension to this approach is presented that is of higher complexity
and requires knowledge from the neighboring nodes.

14.2.1 Problem Formulation and Algorithm

The network topology throughout the chapter is represented by a connected
undirected graph G(V,E), where V and E denote the set of nodes and links between
them, respectively; let |V | = N denote the number of nodes in the network. The
definitions illustrated in Table 14.1 will be adopted. To facilitate the discussion,
some key quantities are also depicted in Fig. 14.1.

It is assumed that a shortest path is established by an underlying routing protocol
between the host and any network node. Eventually, a generally non-unique shortest
path tree is created, rooted at the host and including all network nodes. After a
service movement, some of the (parts of the) shortest paths appearing between the
nodes and the new host would change, while some new alternative ones of equal
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Table 14.1 Notation used

Symbol Meaning

Sv The set of neighbor nodes of node v (i.e., nodes having a link with node v)

(u,v) The link between two neighbor nodes u and v

w(u,v)≥ 0 The weight associated with link (u,v)

d(x,y) The distance between node x and node y, derived as the summation of the weights
of the links along a shortest path between these nodes, with
d(x,x) = w(x,x) = 0

λv The traffic load generated by node v as a result of requesting and receiving the
service

Kt The host at time t , where t represents the discrete times at which the service
placement algorithm is executed and a (next) location decision is taken

Tt(x) The set of all shortest path trees rooted at node x at time t

T x
t The shortest path tree in Tt(x) that is actually utilized for data exchanges in

connection with the service between the nodes and the host x at time t

v ∈ T x
t Indicates that node v is served by host x

Ct (x) The cost incurred at time t for providing service by host x to all nodes v ∈ T x
t (i.e.,

by utilizing the specific shortest path tree T x
t ); it is given by

Ct(x) = ∑∀v∈T x
t

λvd(v,x)

C The minimal service provisioning cost possible, incurred when the hosts location
is the optimal; the latter is can be determined by solving the classical 1-median
problem by using full topology and demand information

at =
Ct
C The approximation ratio of the cost induced at time t by the host Kt , over the

minimum (optimal) one; the closer the value of at to 1, the closer the induced
cost at time t to the optimal one. This ratio will be used as a benchmark to
establish the efficiency of the neighbor-hopping service migration solution

Iy(T x
t ) The subtree – which is also a tree rooted at neighbor node y – that carries all the

demand that reaches host x through neighbor y

Λ (Iy(T x
t )) The aggregate service demands that are forwarded to host x through link (x,y)

(for some neighbor node y ∈ Sx, and y ∈ T x
t ) over subtree Iy(T x

t ); Λ (Iy(T x
t )) is

equal to the summation of the service demands of the individual nodes of the
corresponding subtree, i.e., Λ (Iy(T x

t )) = ∑∀v∈Iy(T x
t )

λv
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Fig. 14.1 Some key
quantities assuming the host
at node x at time t

distance to the ones used before the movement may appear. It is reasonable to
assume that the underlying routing protocol would try to minimize the overhead
introduced by a service movement by not modifying previously utilized shortest
paths provided that they are not worse than any of the new shortest paths that
emerged as a result of the facility movement; this assumption will be adopted here
and will be referred to as the migration rule. Notice that Λ (Iy(T x

t )) can be available
to host x using a monitoring mechanism that captures the incoming and outgoing
packets or, in case λv is known to node v, by communicating these values to x (e.g.,
through piggybacking). It will be assumed that host x has knowledge of Λ(Iy(T x

t ))
associated with all neighbor nodes y ∈ Sx. This locally available information is
utilized by the neighbor-hopping service migration policy.

The key idea behind neighbor-hopping service migration is to establish con-
ditions, based on information locally available at the host, under which a cost
reduction would be achieved or not by moving the facility to a neighbor node y.
Such local information which is sufficient for this is shown below to be Λ(Iy(T x

t )).
Let x → y(t) denote a facility movement – initiated at time t – from host

x at t to its neighbor node y that becomes the host at time t + 1. Let CT x
t

t+1(y)
denote a hypothetical cost assuming that (a) the facility moves to node y at time
t + 1 and (b) the corresponding shortest path tree over which data are forwarded
towards host y (which should have been T y

t+1, if facility movement x → y(t)
had actually taken place) remains the current one (i.e., T x

t ). For this hypothetical
cost, let the distance between any node v that is served by facility y over the
shortest path tree T x

t be denoted by dT x
t (v,y) instead of d(v,y) and consequently

CT x
t

t+1(y) = ∑∀v∈T x
t

λvdT x
t (v,y). Note that in general shortest path trees are different

for different roots (i.e., T y
t+1 �= T x

t ), except for the special case of topologies with
unique shortest path trees [35]. Unique shortest path tree topologies are those for
which Tt(x) = Tt(y), for all pairs of nodes x,y ∈ V , at any time t. The following
lemmas (see [32]) are the basis for the migration policy presented later.

Lemma 14.1. Assuming node x is the host at t and y ∈ Sx, then CT x
t

t+1(y)≥Ct+1(y),
with the equality holding for unique shortest path tree topologies; in addition, the
difference between cost CT x

t
t+1(y) and cost Ct(x) is given by:

CT x
t

t+1(y)−Ct(x) =
(

Λ
(
T x

t \ Iy(T x
t )

)−Λ
(
Iy(T x

t )
))

w(x,y). (14.1)
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Sketch of Proof . The distance between node y and any node v over any shortest
path of T y

t+1 is smaller than or equal to the distance over a shortest path of any
other shortest path tree of different root (e.g., T x

t ). d(v,y) ≤ dT x
t (v,y), ∀v ∈ V , and

Ct+1(y) ≤ CT x
t

t+1(y). The equality holds for the particular case that T y
t+1 = T x

t , as
it is the case for unique shortest path tree topologies. For any node v ∈ Iy(T x

t ),
dT x

t (v,y) = d(v,x)−w(x,y), while for any node v∈ T x
t \ Iy(T x

t ), dT x
t (v,y) = d(v,x)+

w(x,y). From the above it is derived that, CT x
t

t+1(y)−Ct(x) =−∑∀v∈Iy(T x
t )

λvw(x,y)+
∑∀v∈T x

t \Iy(T x
t )

λvw(x,y) = (Λ(T x
t \ Iy(T x

t ))−Λ(Iy(T x
t )))w(x,y).

The right part of (14.1) depends on the link weight w(x,y), the aggregate service
demands that are forwarded to node x through node y (i.e., Λ

(
Iy(T x

t )
)
) and the rest of

the aggregate service demands that arrive through the other neighbor nodes of x (i.e.,
set Sx \ {y}) plus the service demands of node x itself (i.e., ∑∀v∈Sx\{y}Λ

(
Iv(T x

t )
)
+

λx = Λ
(
T x

t \ Iy(T x
t )

)
, since ∪∀v∈Sx\{y}I

v(T x
t )∪ {x} = T x

t \ Iy(T x
t )). As mentioned

before, both Λ
(
T x

t \ Iy(T x
t )

)
and Λ

(
Iy(T x

t )
)

are locally available at node x (i.e.,
strictly local information).

In view of Lemma 14.1, two interesting observations can be made regarding the
cost difference shown there. First, this difference does not depend on the weights of
the links of the network, apart from the weight of the link between the two involved
neighboring nodes, i.e., w(x,y). Second, it depends on the difference between the
aggregate service demands. Consequently, global knowledge of the network (i.e.,
knowledge of the weights of each link and the service demands of each node in
the network) is not necessary to determine the differences in costs associated with
neighboring hosting nodes and, eventually, determine the host that induces the low-
est cost among all neighboring nodes. Even knowledge of w(x,y) is not necessary, as
it is shown later in Theorem 14.1. What is actually required is information regarding
the aggregate service demands, which can be available at the host. The following
theorem (proved in [32]) provides the conditions that need to be checked by the
host, in order to decide or not to move the service to some neighbor node.

Theorem 14.1. Assuming node x is the host at t and y ∈ Sx, then a cost reduction
is achieved by moving the service to node y, i.e., Ct+1(y) < Ct(x), provided that
Λ
(
T x

t \ Iy(T x
t )

)
< Λ

(
Iy(T x

t )
)
.

Sketch of Proof . In view of Lemma 14.1 and since w(x,y) > 0, if Λ(T x
t \ Iy(T x

t ))<

Λ(Iy(T x
t ) then CT x

t
t+1(y) < Ct(x). Since CT x

t
t+1(y) ≥ Ct+1(y), Ct+1(y) < Ct(x) is also

satisfied.

In view of Theorem 14.1, the following neighbor-hopping migration policy can
be employed to solve the 1-median problem in a large-scale, distributed networking
environment using strictly local information.

The neighbor-hopping migration strategy: Assuming node x is the host at t, then the
service is moved from node x to some neighbor node y ∈ Sx iff Λ

(
T x

t \ Iy(T x
t )

)
<

Λ
(
Iy(T x

t )
)
; this move results in cost reduction per Theorem 14.1. Moving a service

under the conditions stated in Theorem 14.1 and achieving overall cost reduction
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does not necessarily mean that the service will eventually reach the optimal position
in the general case. The latter is shown to be guaranteed for networks with a unique
shortest path tree as stated next and shown in [32, 36].

Theorem 14.2. In a network consisted of a unique shortest path tree, a single
service facility always arrives at the optimal location under the neighbor-hopping
migration strategy.

As shown in [32], the neighbor-hopping service migration strategy can also be
applied in the case of two or more service facilities, as a distributed and of low-
complexity approximate approach to solving the k-median problem, k > 1. The
following theorem, proved in [32], shows this strategy moves the service facilities
along cost decreasing paths.

Theorem 14.3. In a network of more than one facilities, if a facility located at
some node x at time t moves under the neighbor-hopping service strategy to some
neighbor node y, then Ct+1(y)<Ct(x).

14.2.2 Assessment and Extensions of the Neighbor-Hopping
Migration Strategy

While the neighbor-hopping migration strategy provably moves the service along
a monotonically cost decreasing path, it does not guarantee that the service will
move all the way till the optimal location, except from the case of one service and
a network topology consisted of a unique shortest path tree (Theorem 14.2). Notice
that unique shortest path tree topologies (e.g., trees) are not uncommon; in fact, trees
are formed frequently as a result of routing protocols in dynamic environments (e.g.,
mobile ad-hoc networks [37]).

In the case of network topologies with non-unique shortest path trees, the
neighbor-hopping migration strategy is not guaranteed to reach the optimal location.
For such topologies the efficiency of the neighbor-hopping migration strategy is
measured in terms of the divergence of the approximation ratio at =

Ct
C from 1;

C denotes the minimum cost induced when the service is in the optimal location
and Ct denotes the cost induced by the neighbor-hopping migration strategy as a
consequence of the location the strategy has moved the service to at time step t.

Simulation results under various network topologies (trees, grids, geometric
random graphs [38], Erdős–Rényi random graphs [39], and Albert–Barabási graphs
[40]) are derived to illustrate the behavior of the neighbor-hopping service migration
strategy and their accordance with the analytical study. The initial service location
is randomly selected and the demand of the nodes for the service is uniformly
distributed.

Figure 14.2 presents simulation results under the neighbor-hopping migration
strategy for cases with 1 and more than one (2 and 3) service facilities and for
tree and grid network topologies. In Fig. 14.2, a results are shown under a tree
topology of 100 nodes with equal link weights. Notice that all three curves for at
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Fig. 14.2 Neighbor-hopping migration strategy in tree and grid topologies of 100 nodes

are monotonically decreasing with time, which is consistent with Theorems 14.1
and 14.3; that is, facilities are moving to neighbor nodes of smaller overall cost.
For a single service facility, the approximation ratio eventually (here after six
movements) becomes 1 (i.e., the optimal location is reached), as anticipated in view
of Theorem 14.2. For the case of two service facilities, facility movements stop
at time 6 when a6 > 1, implying that they did not arrive at the optimal location;
notice that the analysis did not provide any guarantee for that. For the case of three
facilities, facility movements stop at time 9 when a9 = 1, implying that the facilities
arrived (and remained) at their optimal locations. Note that according to the analysis
(Theorem 14.3), if facilities do move under the neighbor-hopping migration strategy,
overall cost reduction is always achieved; nevertheless, they may or may not finally
arrive at the optimal locations. In Fig. 14.2, b results are shown under a grid topology
of 100 nodes with equal link weights. Notice that although all facilities move along
a monotonically cost decreasing path, they fail in this particular case to arrive at the
optimal positions (at > 1 in all cases).

Besides the tree and grid topologies results are also shown under other popular
and relevant networking topologies, such as the geometric random graphs (suitable
for studying mobile ad hoc networks [38]), Erdős–Rényi random graphs (suitable
for comparison reasons [39]), and Albert–Barabási graphs (power-law graphs that
model many modern networks including the Internet [40]). More specifically,
geometric random graphs are created considering a connectivity radius rc = 0.21
around each node in the square plane [0,1]× [0,1], Erdős–Rényi random graphs
considering connectivity probability pc = 0.1 and Albert–Barabási based on prefer-
ential attachment [40].

Figure 14.3.a presents simulation results under the neighbor-hopping migration
strategy for various network sizes. Link weights are equal, which typically leads
to a large number of shortest path trees and, consequently shortcuts, that can make
the neighbor-hopping migration strategy stop prematurely and miss a better sub-
optimal or even the optimal location (see later). Let T denote the termination time
and let aT be the value of at at termination time. Based on Fig. 14.3.a, it is observed
that the approximation ratio is not affected as the network size increases. It is also
interesting to observe that the approximation ratio remains below 1.5, which is
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Fig. 14.3 Approximation ratio and termination time as a function of N

small considering the fact that equal link topologies do not allow for significant
improvements under the neighbor-hopping migration strategy.

The performance of the neighbor-hopping migration strategy can be improved
using extensions and heuristics that may be found in [32]. The basic idea behind
them is to try to address to some extent the premature termination of the course along
a cost decreasing path of the neighbor-hopping migration strategy due to shortcuts.
This issue is briefly elaborated next.

As mentioned earlier, in the case of network topologies with non-unique shortest
path trees, the neighbor-hopping migration strategy is not guaranteed to reach the
optimal location, as it may stop prematurely its course along the cost decreasing path
and fail to further reduce the cost. One reason that this may happen is because while
a cost reducing neighboring node to the host exists, this is wrongly not detected by
the neighbor-hopping migration strategy, as it fails to account for routing shortcuts
that could reduce the cost by moving the facility to the neighbor. Shortcuts appear
in topologies with a non-unique shortest path tree. Suppose that node x is the host
at time t when the facility moves to neighbor node y (at t + 1). If the shortest path
tree of root node y is different from that of root node x (i.e., T y

t+1 �= T x
t ), then this

indicates that some nodes have preferred a shortcut, i.e., a shortest path towards the
new host y that is shorter than that towards node x plus the weight w(x,y).

One extension (referred to as Migration Policy E in [32]) can help alleviate
the problem of missing shortcuts by the neighbor-hopping migration strategy, or
eliminate it entirely in the case of topologies with equal weights. This is achieved
through tentative movements to a neighbor node and utilization of neighbors’ local
information. In general topologies, this extension can be invoked when the neighbor-
hopping migration strategy comes to a stop and potentially move it further along the
cost decreasing path.
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14.3 The r-hop Neighborhood Service Migration

14.3.1 Introduction and Overview

In this subsection, a different distributed approach to service migration is presented
that utilizes information from a broader locality compared to the neighborhood-
hopping one. Through the broader information considered and the formulation
developed, this approach is expected to be applicable to and deal more effectively
with more general networking environments. On the positive side, the neighbor-
hopping approach requires strictly local information and is provably reaching the
optimal location for single shortest path tree topologies and a single service facility.
Nevertheless, reaching the final location may take some time due to the neighbor
by neighbor-hopping constraint, it may fail to move further to a decreased cost
neighbor due to the shortcuts, it does not address the problem of jointly determining
the location and number of facilities to be deployed, etc. By paying a slightly
higher overhead in information gathering, the r-hop neighborhood service migration
approach presented here can reach potentially faster a more efficient location as its
local optimization scope is broader than the 1-hop neighborhood constrained one.
Furthermore, it has a common framework for handling the pursue for the optimal
or near-optimal location of k facilities, as well as determining an optimal or near
optimal number of required facilities.

The r-hop neighborhood service migration scheme was presented originally and
in detail in [33]. According to this strategy, an initial set of service facilities are
allowed to migrate adaptively to (ideally) the best network locations, and optionally
to increase/decrease in number so as to best service the current demand while also
minimizing the service deployment (facility opening) expenses. The basic idea is to
develop distributed versions of the (uncapacitated) k-median (for the case in which
the total number of facilities is fixed) and the (uncapacitated) Facility Location (FL)
problem when additional facilities can be opened at a price or some of them be
closed, to yield a lesser global cost for providing the service.

Both problems are combined under a common framework with the following
characteristics. An existing facility gathers the topology information of its immedi-
ate surrounding area, which is defined by nodes that are within a radius of r hops
from the facility. The facility also monitors the demand that it receives from the
nodes that have it as the closest facility. It keeps an exact account of the demand
from within its r-hop neighborhood, and an approximate and aggregate account of
the demand of all the nodes outside the r-hop neighborhood that receive service
from it (nodes on the ring of its r-hop neighborhood). The latter is accomplished by
increasing the demand of the nodes on the “surface” of the r-hop neighborhood to
account for the aggregate demand that flows through those nodes within the r-hop
neighborhood from outside it. When multiple r-hop neighborhoods (when multiple
facilities are considered) intersect, they merge to form more complex sub-graphs
referred to as r-shapes. The observed topology and demand information is then used
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to re-optimize the current facility locations (and their number if the FL problem is
pursued) by solving the uncapacitated k-median UKM (or the uncapacitated FL)
problem within the r-shape.

It should be pointed out that reducing the radius r also decreases the amount of
topological / demand information that needs to be gathered and processed centrally
at any stage of the process, which makes the approach more scalable. On the
other hand, reducing the radius r impacts negatively on the prospects for finding
the optimal solution or the overall effectiveness of the solution, as compared to
centralized solutions that consider the entire topological information. This trade-off
is investigated experimentally using synthetic (Erdös–Rényi [39] and Barabási–
Albert [40]) and real (AS-level [41]) topologies. It is shown that even for very
small radius, e.g., r = 1, or r = 2, the performance of the distributed approach
tracks closely that of the centralized one. Thus, increasing r substantially is not that
necessary for performance, while it might result in large complexities since r-shapes
typically increase fast with the radius due to the small, typically O(logn), diameter
of most networks, including the aforementioned ones.

14.3.2 Problem Formulation, Projection of the World Outside
and Algorithm

The r-hop neighborhood service migration approach to the facility location problem
is described in some detail here. The focus of the discussion here will be on the
case of a fixed number of facilities, that is the k-median problem. Nevertheless, the
formulation is directly applicable to the case of the uncapacitated facility location
problem that determines the optimal number of facilities in addition to their optimal
location [33].

As already said the basic idea is to provide a distributed and of low-complexity,
yet efficient if not optimal, solution to the k-median problem, by requiring the
tentative hosts (of the service facilities) to have exact knowledge of the topology
and demand of nodes in their r-hop neighborhood and approximate knowledge of
the aggregate demand from nodes on the ring surrounding their r-hop neighborhood
(see below). The approach described will be based on an iterative method in which
the locations of the hosts may change between iterations.

The following definitions are employed below, where a superscript m denotes
the step of the iteration. Let F (m) ⊆ V denote the set of hosts at the mth iteration,
containing the locations of the k service facilities at this iteration, or of the currently
available service facilities in the case of the uncapacitated facility location problem.

Let V (m)
i denote the r-hop neighborhood of host vi and U (m)

i denote its ring vi,

i.e., the set of nodes not contained in V (m)
i , which are being served by host vi, or

equivalently, the nodes that have vi as their closest facility; the domain W (m)
i =

V (m)
i

⋃
U (m)

i of host vi consists of its r-hop neighborhood and the surrounding ring.
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From the previous definitions it is easy to see that V = V (m)⋃U (m), where V (m) =⋃
vi∈F(m) V (m)

i , U (m) =
⋃

vi∈F(m) U (m)
i .

The r-hop neighborhood service migration algorithm in the case of the k-median
considers k service facilities located initially in randomly selected locations (hosts);
these locations are refined iteratively through relocation until a (locally) optimal
solution is reached. It includes the following steps:

An initial set F (0) ⊆ V of k0 = |F (0)| nodes are randomly picked to act as hosts.
Let F = F (0) denote a temporary variable containing the “unprocessed” hosts
during the current iteration; that is, the hosts for which the small scale k-median
problem associated with their r-hop neighborhood, or r-shape, is not yet pursued.
Also, let F− = F (0) denote a variable containing the current hosts.

At each iteration m the following steps are executed for each host vi ∈F :

1. The r-hop neighborhood is formed by employing some neighborhood discovery
protocol (e.g., [42]).

2. It is examined whether its r-hop neighborhood can be merged with that of other
nearby hosts. Two or more hosts can be merged (i.e., their r-hop neighborhoods
can be merged), if their r-hop neighborhoods intersect, that is when there exists
at least one node that is part of these two or more neighborhoods. Let J ⊆ F(m)

denote a set composed of vi and the hosts that can be merged with it. J induces
an r-shape GJ = (VJ,EJ), defined as the sub-graph of G composed of the service
facilities in J, their neighbors up to distance r, and the edges between them.
Constraints on the maximal size of r-shapes could be placed to guarantee that it
is always much smaller than O(n).

3. The r-shape GJ is re-optimized by solving for the |J|-median within the r-shape,
which can produce a new set of hosts (i.e., locations for the |J| facilities). The re-
optimization is carried out by using a centralized algorithm, such as the Integer
Linear Programming (ILP) formulations [1] or local-search heuristics [14], for
solving the k-median within r-shapes.

4. Processed hosts (both the original vi and the ones merged with it) are removed
from the set of unprocessed hosts of the current iteration, i.e., set F =
F\(J⋂

F−). Also F (m) is updated with the new hosts (service facility locations)
after the re-optimization.

5. After all the hosts have been processed and provided that there has been a change
in the hosts in the current iteration, another iteration is carried out. Otherwise
(i.e., if no host change has been observed), the search is terminated yielding the
(local) optimal solution to the k-median problem.

The input to a k-median problem is defined completely by a tuple 〈V,s,k〉, con-
taining the topology, the demand, and the number of allowed medians, respectively.
For optimizing the r-shapes or r-hop neighborhoods that are formed during the
execution of the algorithm, the topology and number of medians (service facilities)
are set as V =VJ , and k = |J|. Determining the demand input in these smaller scale
optimization problems is a less straightforward issue and is discussed next.
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The most straightforward approach would be to retain in the re-optimization
of an r-shape the original demand of the nodes contained in that r-shape, i.e., set
s = {s(v j) : ∀v j ∈VJ}. Such an approach would, nonetheless, be inaccurate (as was
also confirmed through results) since the hosts within an r-shape serve the demand
of the nodes contained in the r-shape, as well as those in the corresponding ring
of the r-shape. Since the number of hosts k is expected to typically be small, each
one of them would serve a potentially large number of nodes (e.g., of order O(n)),
and thus the rings would typically be much larger than the corresponding r-shapes.
Re-optimizing the locations of the hosts within an r-shape without considering the
demand that flows-in from the ring would, therefore, amount to disregarding too
much information, as compared to the information considered by a centralized
solution yielding the optimal locations. Including the nodes of the ring into the
optimization is, of course, not an option, as the ring could then become arbitrarily
large (O(n)) and this would contradict our prime objective to solve the facility
location problem in a scalable, distributed manner.

In order to account for the impact of the nodes of the ring on the solution, the
demand of the ring is implicitly mapped into the local demand of the nodes that
constitute the surface of the r-shape. The surface consists of nodes on the border
(or edge) of the r-shape, i.e., nodes of the r-shape that have direct links to nodes of
the ring. This mapping bridges the gap between absolute disregard for the ring, and
full consideration of its exact topology. More details of the mapping may be found
in [33].

14.3.3 Assessment of the r-hop Neighborhood Service
Migration Strategy

In this part, some discussions are presented on the performance of the algorithm: the
load mapping error and the closeness of the delivered solution to the optimal one.

It is not hard to show that the iterative algorithm presented earlier converges in
a finite number of iterations. Since the solution space is finite, it suffices to show
that there cannot be loops, i.e., repeated visits to the same configuration of hosts.
A sufficient condition for this is that the cost be monotonically decreasing between
successive iterations, i.e., c(m) ≥ c(m+1). It is not hard to show (see [33]) that this is
the case for the 1-median applied to r-shapes; the case of k-median (k > 1) applied
to r-shapes follows from straightforward generalizations.

In the sequel, it is shown how to control the convergence speed so as to adapt it
to the requirements of practical systems. Specifically, the condition that the cost is
reduced at least by a factor of α could be imposed, in order for the iteration to be
accepted and continue the optimizing process; i.e., accept the outcome from the re-
optimization of an r-shape at the mth iteration, only if c(m) ≥ (1+α)c(m+1). In this
case it can be shown [33] that the r-hop neighborhood service migration algorithm
converges in O(log1+α n) steps.
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Fig. 14.4 Example of a
possible facility movement
from node vi to node v j with
respect to a particular node
u ∈Ui
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The largest price paid for gaining in complexity by sequentially optimizing the
solution within an r-shape, is the potential for not arriving at the optimal global
solution due to the approximate consideration of the demand of the ring through its
mapping on the surface of the r-hop neighborhood. Under the centralized approach,
the amount of demand generated by or attributed to a node is not affected by
the particular configuration of the hosts within the graph, since all nodes in the
network are included and considered with their original demand. Under the r-hop
neighborhood approach, however, the amount of demand attributed to a surface
node can be affected by the particular configuration of hosts within the r-shape.
Figure 14.4 illustrates why this is the case. Node u on the ring has a shortest path
to facility node vi that intersects the surface of vi’s r-hop neighborhood (drawn as
a circle with radius r in Fig. 14.4) at point B, thereby increasing the demand of a
local node at B by s(u). As the locations of the facilities may change during the
various steps of the local optimizing process (e.g., the facility moves from C to
D, Fig. 14.4), the node on the surface along the shortest path between u and the
new location of the facility may change (node/point E in Fig. 14.4). Consequently,
a demand mapping error is introduced by keeping the mapping fixed (as initially
determined) throughout the location optimization process.

The mapping error could be eliminated by re-computing the surface mapping
at each stage of the optimizing process (i.e., for each new intermediate facility
configuration). Such an approach not only would add to the computational cost
but – most important – would be practically extremely difficult to implement; it
would require the collection of demand statistics under each new facility placement,
delaying the optimization process and inducing substantial overhead.

A more detailed discussion on the mapping error may be found in [33], where
it is shown that this mapping error is upper bounded by Δi(r) ≤ 2π2r3(R2− r2),
where R is the radius of the particular domain Wi (assumed for simplicity to be also
a circle), under the assumption that nodes are scattered in a uniform and continuous
manner over this domain. This upper bound for Δi(r) is close to 0, when r→ 0 or
r→R. Since small values of r are to be used, a small mapping error and performance
penalty is expected.
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In the sequel, some results on the performance of the r-hop neighborhood
service migration are presented by employing synthetic Erdös–Rényi (ER) [39] and
Barabási–Albert (BA) [40] graphs. In the particular set of results, these graphs were
generated by employing the BRITE generator [43], under which the ER graph is
constructed by assuming that the probability of existence of a direct link between
two nodes is given by P(u,v) = α · e−d/(β L), where d is the Euclidean distance
between u and v, and L is the maximum distance between any two nodes [44]. The
default values of BRITE α = 0.15, β = 0.2 combined with an incremental model in
which each node connects to m= 2 other nodes is used; the same incremental growth
with m = 2 is also used for the BA graphs. This parametrization creates graphs in
which the number of (undirected) links is almost double the number of vertices. The
latter is also observed in real traces associated with Autonomous Systems (AS) of
the Internet.

For network sizes n= 400, 600, 800, 1,000 – which are typical sizes of Internet
ASs – it turns out that a substantial fraction of the total node population lays within a
relatively small number of hops r from any node. For instance, for ER graphs, r = 2
covers 2− 10% of the nodes, whereas r = 3 increases the coverage to 10− 32%,
depending on network size. The coverage is even higher in BA graphs, where r = 2
covers 4− 15%, whereas r = 3 covers 20− 50%, depending again on network size.
These observations are explained by the fact that larger networks exhibit longer
shortest paths and diameters and also because BA graphs possess shorter shortest
paths and diameters than corresponding ER graphs of the same link density, due to
their highly skewed (power-law) degree distribution.

In the sequel the performance of the r-hop neighborhood service migration is
compared to the centralized k-median solution utilizing full knowledge. Consider a
network size of n = 400 nodes and assume that all nodes generate the same amount
of service demand s(v) = 1,∀v ∈ V . For scalability reasons, the radius values are
limited to r = 1 and r = 2, to avoid running into r-shapes involving more than
10% of the total nodes. In the cases considered, the number of hosts (k) take values
k/n= 0.1%,0.5%,1%,2%, and 5%. The cost induced under the r-hop neighborhood
service migration approach (denoted by c(dUKM(r)) normalized with respect to
that under the centralized k-median approach (denoted by c(UKM(r)) is depicted
on the left-hand-side of Fig. 14.5, with the plot on top for ER graphs and the plot
on the bottom for BA graphs. For both ER and BA graphs, the performance of the
distributed approach tracks closely that of the centralized one, with the difference
diminishing fast as r and k increase. The normalized performance for BA graphs
converges faster (i.e., at smaller k for a given r) to ratios that approach 1, which
is attributed to the existence of highly-connected nodes (“hubs”) in BA graphs.
Creating service facilities in few of the hubs is sufficient for approximating closely
the performance of the centralized k-median. The two plots on the right-hand-side
of Fig. 14.5 depict the number of iterations needed for the distributed approach to
converge. A smaller value of r requires more iterations as it leads to the creation of a
large number of small sub-problems (re-optimizations of many small r-shapes). BA
graphs converge in fewer iterations, since for the same value of r BA graphs induce
larger r-shapes.
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Fig. 14.5 The relative cost performance between the r-hop neighborhood service migration
approach and the centralized k-median approach, and the number of iterations needed for
the convergence of the former, for r = 1 and r = 2, and different facility densities k/n =
0.1%,0.5%,1%,2%, and 5% under ER and BA graphs

More results on the performance of the distributed approach may be found in [33]
for real topologies of ASs in the Internet and employing real traces, as well as for the
case of non-stationary demands and under imperfect re-direction. Although perfect
redirection is feasible using route triangulation and DNS [45], it may be costly to
implement or perform sub-optimally due to faults or excessive load. Imperfect re-
direction amounts to allowing that the demand is not always served by the closest
host; it may easily emerge under host migration, introducing performance penalties.
The effect of imperfect re-direction may be investigated by assuming that there
exists a certain amount of lag between the time a host migrates to a new node and
the time that the migration is communicated to the affected clients. During this time
interval, a node might be receiving service from its previously closest host which,
however, may have ceased to be optimal due to one or several migrations. Notice
that under the existence of lag, even under stationary demand, the optimization is
no longer guaranteed to be loop-free, as indicated earlier. Further discussion on this
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topic and some results showing a smooth performance degradation due to imperfect
redirections may be found in [33].

14.4 Generalized Neighborhood Service Migration

14.4.1 Introduction and Motivation

The r-hop neighborhood service migration approach presented earlier aims at
solving the large scale facility location optimization problem by solving sequentially
smaller ones defined over r-hop topological localities around the current host
(service location). The main rational for working with r-hop topological localities
is that information about such locality and associated computations are expected
to incur low overhead. No other node selection criterion, besides its topological
location, is applied in forming these localities.

In this chapter, the locality over which the smaller facility location problems
are solved is generalized in the sense that the criteria for including a node in this
generalized locality are broadened. This generalization is motivated and largely
enabled by recent trends in networking that create new (overlay) structures to
be exploited in defining generalized localities and collecting relevant information.
Complex Network Analysis (CNA) insights are employed to naturally define these
generalized neighborhoods and construct the sub-graph that is typically now not
spread almost symmetrically around the current host (as under the r-hop neigh-
borhood approach) but asymmetrically as needed to include the most important
nodes according to the selection criterion applied. The contrast between the r-hop
neighborhood and the generalized neighborhood is depicted in Fig. 14.6.

In complex networking environments (including online and mobile social net-
works), nodes may exhibit fairly diverse characteristics with respect to their (sta-
tistical) connectivity properties (e.g., degree distribution) that eventually determine
their links with other nodes. From a communication standpoint, this means they
can have different roles as intermediaries, as, e.g., nodes having a higher number
of links might be key in helping establish links between other nodes. Such nodes
appear to hold critical positions throughout the network topology that helps them
exhibit relatively high service demand concentration power and should probably
be major players in the solution of the facility location problem. The CNA methods
applied to identify such nodes and subsequently construct this subgraph, introduce a
new thread of heuristic solutions to effectively address global location optimization
problems.

Let Gi denote the subgraph of nodes that constitute the generalized neighborhood
of some host i. The generalized neighborhood service migration strategy amounts
to sequentially solving the small scale 1-median problems over Gi, determining
the optimal location for the host in Gi, moving the host there, forming the new
generalized neighborhood associated with the new host and repeating the process
until the cost reduction achieved is below a threshold. The cost that is minimized in
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each step is given in terms of the minimum cost of the path linking the host i and a
node n, d(i,n), and some weight weff(n) (to be discussed later) associated with node
n, for n ∈ Gi.

Cost(i) = ∑
n∈Gi

weff(n) ·d(i,n). (14.2)

Notice that the global optimal location of the service facility is obtained by
minimizing the following cost function over the entire network, V , and weights wn

that are equal to the service demand associated with each network node:

Cost(k) = ∑
n∈ V

w(n) ·d(k,n). (14.3)

14.4.2 The Generalized Neighborhood

The generalized neighborhood around the current host is defined as the sub-graph
that includes the host and all network nodes that meet a certain criterion. This
criterion involves an innovative Centrality metric that:

1. Identifies the nodes that are seen to contribute the most to the aggregate service
access cost by holding a central position within the network topology and/or
route large amounts of the demand for the service; such nodes are expected to pull
the service strongly in their direction in order to reduce the service provisioning
cost and eventually optimize the location of the host;

Fig. 14.6 A pictorial comparison of the r-hop (left) and generalized (right) neighborhoods,
depicting also the pulling forces from outside them
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2. Properly projects the intensity of the attraction forces these nodes exert to the
service under the current location of the host and, thus, expected to facilitate the
migration steps towards the optimal location.

Centrality indices are widely used in social network analysis, since Freeman’s
late 1970s influential articles [46,47]; they are usually used as graph-theoretic tools
in order to explain social phenomena. They are defined either on the nodes or edges
of a graph and are usually based on geodesic paths that link members of a network,
aiming at providing a measure of their importance. Different measures have been
introduced to capture a variety of a node’s attributes, such as its ability to reach
numerous nodes via relative short paths or its popularity [47].

Betweenness centrality is a centrality index that measures the extent to which a
node lies on the (shortest) paths linking other nodes and is defined as follows. Let σst

denote the number of shortest paths between any two nodes s and t in a connected
graph G = (V,E). If σst(u) is the number of shortest paths passing through node
u ∈V , then the betweenness centrality index is given by:

BC(u) =
|V |
∑
s=1

s−1

∑
t=1

σst(u)
σst

(14.4)

BC(u) captures a node’s ability to control or help establish paths between pairs
of nodes; this is an average over all network pairs. When the host node is t, the
traffic flow of relevance – that shapes the resulting cost of service provisioning from
that host – is the one between all node pairs (x, t), ∀ x ∈ V , for the fixed node t,
and not all possible pairs, as it is the case with the betweeness centrality index.
Consequently, it would make sense to include in the subgraph of nodes over which
the small-scale optimization problem would be solved, the nodes that stand between
the most paths linking the network nodes to the specific host. Under a uniform
demand pattern, the presence of such nodes would reflect the fact that relatively
high demand (that shapes the resulting cost) is coming through such nodes. The
conditional betweenness centrality (CBC) index defined below, can be employed in
the selection of the nodes to be included in the subgraph:

CBC(u;t) = ∑
s∈V,u �=t

σst(u)
σst

(14.5)

Effectively, CBC assesses the extent to which a node u acts as a shortest path
aggregator towards the current host t, by enumerating the shortest paths from all
other network nodes to host t that pass through node u. This metric has been firstly
introduced to facilitate the subgraph extraction [48] in synthetic graph topologies
characterized by nodes producing equal demand load, and furthermore proved to
yield (generalized) localities that lead the optimization sequence towards efficient
locations.

In general, a high number of shortest paths through some node u does not nec-
essarily mean that equally high demand load stems from the sources of those paths.
Naturally, the pure topology-aware metric shown in (14.5) should be enhanced
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in order to also account for the service demand that will eventually be served
by the shortest paths routes towards the host. To this end, a weighted conditional
betweenness centrality (wCBC) has been introduced in [34], where the shortest path
ratio of σst(u)/σst in (14.5), is modulated by the demand load generated by each
node, as given by:

wCBC(u;t) = ∑
s∈V,u �=t

w(s) · σst(u)
σst

. (14.6)

Therefore, wCBC assesses the extent to which a node can serve as demand load
concentrator towards a given service location. Clearly, when a service is requested
equally by all nodes in the network (uniform demand) the wCBC metric degenerates
to the CBC one, within a constant factor.

By employing the CBC or wCBC metric, the generalized neighborhood can be
defined to include only nodes with high such values, as opposed to all the nodes
that are topologically close (e.g., up to r-hops away) to the current host. More
specifically the generalized neighborhood around the host over which the smaller
scale 1-median problems are sequentially solved is determined by requiring that
only a small percentage of the top network nodes be included. Some discussion on
the nature and the construction of the generalized neighborhood is presented later;
more details on these and related discussion may be found in [34].

After having selected the generalized neighborhood, a critical issue that comes up
– as it was the case with the r-hop neighborhood service migration strategy – is how
to represent the neglected nodes outside the generalized neighborhood in the small
scale set up confined to the nodes and associated links included in the generalized
neighborhood only. That is, how to set the coefficients weff(n) for n ∈Gi that are the
keys to the cost formulation (see (14.2)). This is discussed next.

14.4.3 Projection of the World Outside the Generalized
Neighborhood

As it was also stated in the presentation of the r-hop neighborhood service migration
approach, by restricting the solution domain to a subgraph of nodes and their
corresponding demand, the contribution to the service provisioning cost of the nodes
outside the subgraph is totally neglected. This would most likely result in trapping
the solution to a local optimum with little or no chance for moving out of it, since
potentially strong (due to high service demand) cost-reducing forces exercised by
such outside nodes (see Fig. 14.6) that would pull the host under the global problem
formulation towards them are neglected. To allow for the inclusion of the outside
forces, which would potentially pull the location of the host away from a local
and towards the global optimal, the demand for service from the nodes outside the
subgraph were mapped on the surface of the r-hop neighborhood; this way, the
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relative impact on the solution under the small scale formulation of the different
outside forces was reasonably well represented.

A mapping of the outside demand as above should also be considered in the
generalized neighborhood service migration approach. Besides using the CBC
metric to determine which nodes to include in the generalized neighborhood
(or subgraph Gi for host i) and be considered as candidate hosts, this metric also
allows for mapping directly the demand of the rest of the network nodes on the ones
forming the subgraph over which the facility location problem is solved. To this end,
the weights involved in the description of the service cost to be minimized under the
small scale set up (i.e., Weff(n) in (14.2)) consists of two terms. One term that is
equal to the service demand load generated locally by node n∈Gi and another term
that brings in a properly identified part of the influence of the outside world. The
second one corresponds to the contribution of the remaining outer network nodes
which is captured by a new quantity defined for each node in the subgraph based on
a modification of the original CBC metric, as detailed in [34] and discussed briefly
here. To properly capture the impact on the small scale solution of some node z that
is not part of the generalized neighborhood, its host-attraction power (analogous to
its service demand) is “delegated” or “credited” to the first node contained in the
subgraph that is encountered on each shortest path from z towards the service host.

14.4.4 Assessment of the Generalized Neighborhood Service
Migration Strategy

The CNA-driven metric adopted for the identification of the generalized neigh-
borhood and, furthermore, the quality of the derived solutions (i.e., degree of
convergence to the optimal) are expected to be heavily dependent on two factors:
the network topology and service demand distribution. The joint impact of the latter
may enforce or suppress strong service demand attractors and assist or impede
the progress of the service migration process towards the optimal location in the
network. Evaluation of the generalized neighborhood service migration strategy has
been carried out based on simulation on a set of physical topologies (snapshots
of ISP networks); extensive results are reported in [34], along with a proof of the
convergence of the strategy in a finite number of iterations.

Graphs of real-world networks provide testbeds for highly realistic and practice-
oriented experiments. From a structural point of view, those networks do not have
the predictable properties of the commonly used synthetic graphs and may differ
substantially one from another. The ISP topology dataset [49] employed includes,
among others, a number of Tier-1 ISP network topology files; high-degree nodes and
considerable variance in the connectivity properties of nodes are typically present
across such network snapshots.

To assess the generalized neighborhood service migration strategy under the
simultaneous influence of network topology and service demand dynamics, asym-
metry in the service demand distribution within the network is introduced. A Zipf
distribution of the service demand is employed to model the diverse preference
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Table 14.2 Results derived
by the generalized
neighborhood service
migration strategy

Min. Subgraph size for solutions
within 2.5% of the optimal

Size of physical topology s=0 s=1

76 4 4
100 5 5
180 5 4
184 4 4
216 4 4
339 7 6
378 5 5

of nodes to a given service. Practically, the distribution could correspond to the
normalized request rate for a given service by each network node. By increasing the
value of the Zipf parameter s from 0 to 1, the distribution asymmetry grows from
zero (uniform demand) towards higher values.

As already stated earlier in this chapter, there is a clear trade-off between the
size of the neighborhood or subgraph considered (in number of nodes) and the
goodness of the approximation to the optimal solution by the one derived by solving
sequentially the smaller scale optimization problems. To put it in another way, it is
important to determine the minimum number of nodes required to participate in the
subgraph so as to yield an (almost) optimal solution. The results shown in Table 14.2
present the minimum number of subgraph nodes required to achieve a solution
that induces a cost that lies within 2.5% of that induced by the optimal solution,
for different levels of asymmetry in the service demand distribution. The main
observation is that this number shows a remarkable insensitivity to both topological
structure and service demand dynamics. Although the considered ISP topologies
differ significantly in size and diameter [34], the number of nodes that need to
be included in the generalized neighborhood over which the 1-median problem
is solved, does not change. On the contrary, about half a dozen nodes suffice to
yield very good accuracy even under uniform demand distribution, which is the
least favorable scenario, as no high contrast demands – to intensify the pulling
of the location towards the optimal – are then present. Likewise, the required
minimum number remains practically invariable with the demand distribution
skewness. Although for larger values of s, more nodes exhibit larger asymmetries
in the demand and, thus, become stronger attractors towards the optimal solution
(location), the added value for the algorithms accuracy is negligible.

These results suggest that there is already adequate topological structure of these
real-world topologies. The high-degree nodes that are present, can easily be “identi-
fied” by the generalized neighborhood service migration strategy as low-cost hosts
for the migrating service; even for small 1-median subgraph sizes, their attraction
forces appear to be strong enough to pave a cost-effective service migration path.
Moreover, the performance of this migration strategy is robust to possibly inaccurate
estimates of the service demand generated by each node. Regarding implementation
considerations and overheads associated with the generalized neighborhood service
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migration strategy, it is clear that the strategy is highly decentralized; all nodes
that are candidates for hosting the service share the decision-making process for
optimally placing the service in the network. It is also scalable, as it formulates
and solves small scale optimization problems and avoids the computational burden
related to the (global) solution of the 1-median problem; the latter may become a
prohibitive task for large-scale networks, especially when changes in the service
demand characteristics call for its repeated execution.

Nevertheless, some topological and demand information still needs to be shared
in the network when implementing the generalized neighborhood service migration
strategy, to enable the computation of the CNA metrics that serve as the criterion
for forming the neighborhoods. For small-size networks, topological information is
available through the operation of link-state routing protocols that distribute and
use global topology information. For larger-scale networks, one way to acquire
topology information would be through the deployment of some kind of source-
routing or path-switching protocol that carries information about the path it traverses
on its headers. Likewise, information about the interest of end-users in contents
and services has become more abundant recently through social infrastructures
such as online social networks. User-profiling mechanisms could interact with
the generalized neighborhood process as built in components of some peer-to-
peer protocol, so that information that is already available could be reused at no
additional cost.

14.5 Concluding Remarks

Motivated by the explosion of content and services generated, accommodated and
provided over the Internet, this chapter presents some distributed approaches to the
optimal/efficient service placement within a large-scale networking structure, by
relying only on local topology and demand information. The approaches assume an
initial host (i.e., node hosting the service) that progressively migrates along cost-
reducing paths and stops at some location which in the general case is not provably
the optimal. The lack of provable optimality is compensated for by (a) showing that
the achieved solution induces a cost that is close to that under the optimal solution,
and (b) the tremendous reduction in the complexity compared to a traditional
approach yielding the optimal solution. The latter statement is substantiated by
the fact that while the latter traditional approach requires full network topology
(weights of all links) and service demand information, the presented approaches
require such information (possibly somewhat modified based on information that
is locally available through standard networking operations) confined to a small
locality.

The neighbor-hopping service migration strategy requires no information outside
the host; based on locally available neighbor information and locally observable
demand request flows, the host can determine if migrating the service to a
neighbor node would reduce the service provisioning cost. For single shortest path
topologies (e.g., trees) this strategy provably reaches the optimal location. For
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general topologies the migration may stop prematurely due to unidentifiable routing
short-cuts; results on various topologies have shown that the cost reduction gain can
be substantial and close to that of under the optimal location. Some heuristics to
help unlock a premature termination of the migration are also pointed to in [32].

The r-hop and generalized neighborhood service migration strategies [33, 34],
share a common framework in that a neighborhood around the host is identified and
topology and demand information associated with that neighborhood is utilized in
solving a small-scale k-median problem confined to that neighborhood. This low
complexity solution identifies the optimal location within the neighborhood and
migrates the host accordingly. At the end, the host migrates along a cost reducing
path in jumps that are not restricted to (one-hop) neighbors. A great challenge
associated with this approach is the representation of the world (key information
associated with nodes) outside the neighborhood.

Under the r-hop neighborhood service migration strategy, the demand associated
with a node outside the neighborhood is mapped on the node that acts as the entry
point of the shortest path connecting the outside node and the host; the topology
information outside the neighbor is indirectly employed in identifying the afore-
mentioned entry node. In practice, the operation of the network and the routing
protocol employed determine those entry nodes, which also can record the demand
load passing through them. Thus, the mapping is easily implemented.

The generalized neighborhood service migration approach opens up new pos-
sibilities in defining localities that contain the most relevant candidates for the
placement solution. In the particular approach presented here, emerging metrics and
structures associated with complex and social networks are exploited to identify
an appropriate subgraph (neighborhood) over which the k-median problem could
be solved. Again, the operation of the network and information available for
establishing overlay structures (and in particular, social networking structures,
here), are exploited in order to identify the generalized neighborhoods as well as
implement effectively the mapping of the outside world inside.

Finally, it should be noted that the migration approach to the distributed and low
complexity approximation to the optimal placement solution matches well a natural
implementation strategy in real networking environments. As the service/content
is expected to be generated at pretty much any network node (e.g., user-generated
content), the demand for this content would not be in the general case such that the
location of the generation of the service would be the one minimizing the service
provisioning cost. The original host would then run one of the migration strategies
to determine a cost reducing location within the locality considered. Following the
initial migration, the new host will eventually define its own broad locality, run
one of the migration strategies and the migration procedure will continue until
no further migration is detected. Occasionally, the host can redefine its locality
and collect demand statistics and run the migration strategy again, in case the
dynamicity of the topology or the demand have created new conditions which may
lead to the identification of a better host. Thus, the presented migration strategy
can naturally follow topological and demand changes in a dynamic environment
and adapt to them by restarting the service migration strategy. Considering the fact
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that current networking designs seek to equip the various networking elements and
entities with autonomicity features or, since autonomicity emerges naturally on its
own in modern networking structures services are expected to be equipped with
autonomicity features that would allow for the running of the migration strategy by
service-residing functions and only utilize computing/communication resources of
the host nodes and locally available input. Thus, the migration strategy could easily
become an autonomic feature loaded to the service itself.
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Chapter 15
Modeling Epidemic Spreading in Complex
Networks: Concurrency and Traffic

Sandro Meloni, Alex Arenas, Sergio Gómez, Javier Borge-Holthoefer,
and Yamir Moreno

Abstract The study of complex networks sheds light on the relation between the
structure and function of complex systems. One remarkable result is the absence of
an epidemic threshold in infinite-size scale-free networks, which implies that any
infection will perpetually propagate regardless of the spreading rate. However, real-
world networks are finite and experience indicates that infections do have a finite
lifetime. In this chapter, we will provide with two new approaches to cope with
the problem of concurrency and traffic in the spread of epidemics. We show that
the epidemic incidence is shaped by contact flow or traffic conditions. Contrary to
the classical assumption that infections are transmitted as a diffusive process from
nodes to all neighbors, we instead consider the scenario in which epidemic pathways
are defined and driven by flows. Extensive numerical simulations and theoretical
predictions show that whether a threshold exists or not depends directly on contact
flow conditions. Two extreme cases are identified. In the case of low traffic, an
epidemic threshold shows up, while for very intense flow, no epidemic threshold
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appears. In this way, the classical mean-field theory for epidemic spreading in scale
free networks is recovered as a particular case of the proposed approach. Our results
explain why some infections persist with low prevalence in scale-free networks,
and provide a novel conceptual framework to understand dynamical processes on
complex networks.

15.1 Introduction

The problem of modeling how diseases spread among individuals has been
intensively studied for many years [2,20,31,39]. The development of mathematical
models to guide our understanding of the disease dynamics has allowed to
address important issues such as immunization and vaccination policies [2, 22, 32].
Physicist’s approaches to problems in epidemiology involve statistical physics,
the theory of phase transitions and critical phenomena [53], which have been
extremely helpful to grasp the macroscopic behavior of epidemic outbreaks
[4,15,24,34,37,38,41,45,46]. The main artifice of this success has been the Mean-
Field (MF) approximation, where local homogeneities of the ensemble are used
to average the system, reducing degrees of freedom. It consists of coarse-grained
vertices within degree classes and considers that all nodes in a degree class have
the same dynamical properties; the approach also assumes that fluctuations can be
neglected.

The study of complex networks [6, 21, 42] has provided new grounds to the
understanding of contagion dynamics. Particularly important in nature are scale-
free (SF) networks, whose degree distribution follows a power law P(k) ∼ k−γ for
the number of connections, k, an individual has. SF networks include patterns of
sexual contacts [33], the Internet [47], as well as other social, technological and
biological networks [10]. SF networks [3, 6, 21] are characterized by the presence
of hubs, which are responsible for several striking properties for the propagation
of information, rumors or infections [4, 24, 34, 38, 41, 45]. The HMF approach
analytically predicts the critical rate βc at which the disease spreads, i.e. the
epidemic threshold.

Theoretical modeling of how diseases spread in complex networks is largely
based on the assumption that the propagation is driven by reaction processes, in
the sense that the transmission occurs from every infected through all its neighbors
at each time step, producing a diffusion of the epidemics on the network. However,
this approach overlooks the notion that the network substrate is a fixed snapshot
of all the possible connections between nodes, which does not imply that all nodes
are concurrently active [26]. Many networks observed in nature [6, 21], including
those in society, biology and technology, have nodes that temporally interact only
with a subset of its neighbors [1, 43]. For instance, hub proteins do not always
interact with all their neighbor proteins at the same time [30], just as individuals in
a social network [33] do not interact simultaneously with all of their acquaintances.
Likewise, Internet connections being utilized at a given time depends on the specific
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traffic and routing protocols. Given that transport is one of the most common
functions of networked systems, a proper consideration of this issue will irreparably
affect how a given dynamical process evolves.

In this chapter, we present a theoretical framework for contact-based spreading
of diseases in complex networks. This formulation, Microscopic Markov-Chain
Approach (MMCA), is based on probabilistic discrete-time Markov chains, gener-
alizes existing HMF approaches and applies to weighted and unweighted complex
networks [26]. Within this context, in addition to capturing the global dynamics of
the different contact models and its associated critical behavior, it is now possible
to quantify the microscopic dynamics at the individual level by computing the
probability that any node is infected in the asymptotic regime. MC simulations
corroborate that the formalism here introduced reproduces correctly the whole
phase diagram for model and real-world networks. Moreover, we capitalize on this
approach to address how the spreading dynamics depends on the number of contacts
actually used by a node to propagate the disease.

After that, we introduce a theoretical approach to investigate the outcome of an
epidemic spreading process driven by transport instead of reaction events [37]. To
this end, we analyze a paradigmatic abstraction of epidemic contagion, the so-called
Susceptible–Infected–Susceptible (SIS) model [40], which assumes that contagion
occurs through the eventual contact or transmission between connected partners
that are using their connections at the time of propagation. This is achieved by
considering a quantized interaction at each time step. Mathematically, we set up the
model in a flow scenario where contagion is carried by interaction packets traveling
across the network. We consider two possible scenarios that encompass most of
real traffic situations: (1) unbounded delivery rate and (2) bounded delivery rate, of
packets per unit time. We derive the equation governing the critical threshold for
epidemic spreading in SF networks, which embeds, as a particular case, previous
theoretical findings. For unbounded delivery rate, it is shown that the epidemic
threshold decreases in finite SF networks when traffic flow increases. In the bounded
case, nodes accumulate packets at their queues when traffic flow overcomes the
maximal delivery rate, i.e. when congestion arises. From this moment on, the results
show that both the epidemic threshold and the infection prevalence are bounded due
to congestion.

15.2 Microscopic Markov-Chain Approach to Disease
Spreading

The critical properties of an epidemic outbreak in SF networks can be addressed
using the heterogeneous MF (HMF) prescription [4, 24, 34, 37, 38, 41, 45, 46]. It
consists of coarse-grained vertices within degree classes and considers that all nodes
in a degree class have the same dynamical properties; the approach also assumes that
fluctuations can be neglected. Specifically, if β is the rate (probability per unit time)
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at which the disease spreads, it follows that the epidemic threshold in uncorrelated
SF networks is given [45] by βc = 〈k〉/〈k2〉, leading to βc → 0 as N → ∞ when
2 < γ ≤ 3.

MF approaches are extremely useful to assess the critical properties of epidemic
models however, they are not designed to give information about the probability
of individual nodes but about classes of nodes. Then, questions concerning the
probability that a given node be infected are not well posed in this framework. To
obtain more details at the individual level of description, one has to rely on Monte
Carlo (MC) simulations, which have also been used to validate the results obtained
using MF methods. Restricting the scope of epidemiological models to those based
in two states [20, 31, 39] −susceptible (S) and infected (I)−, the current theory
concentrates on two specific situations, the contact process [7, 11–13, 29, 35] (CP)
and the reactive process [14, 18, 19, 23] (RP). A CP stands for a dynamical process
that involves an individual stochastic contagion per infected node per unit time,
while in the RP there are as many stochastic contagions per unit time as neighbors a
node has. This latter process underlies the abstraction of the susceptible-infected-
susceptible (SIS) model [20, 31, 39]. However, in real situations, the number of
stochastic contacts per unit time is surely a variable of the problem itself [26]. In
this first part of the chapter, we develop a microscopic model, based on Markov-
Chains, to cope with the concurrency problem in the spreading of epidemics.

15.2.1 Contact-Based Epidemic Spreading Models

Let us suppose we have a complex network, undirected or directed, made up of
N nodes, whose connections are represented by the entries {ai j} of an N-by-N
adjacency matrix A, where ai j ∈ {0,1}. Unlike standard HMF approaches, our
formalism allows the analysis of weighted networks, thus we denote by {wi j} the
non-negative weights (wi j ≥ 0) of the connections between nodes, being wi =∑ j wi j

the total output strength [5] of node i. The above quantities completely define the
structure of the underlying graph. The dynamics we consider is a discrete two-state
contact-based process, where every node is either in a susceptible (S) or infected
(I) state. Each node of the network represents an individual (or a place, a city,
an airport, etc.) and each edge is a connection along which the infection spreads.
At each time step, an infected node makes a number λ of trials to transmit the
disease to its neighbors with probability β per unit time, and then has a probability
μ of recovering to the susceptible state. This forms a Markov chain where the
probability of a node being infected depends only on the last time step, hence the
name Microscopic Markov-Chain Approach (MMCA). After some transient time,
the previous dynamics sets the system into a stationary state in which the average
density of infected individuals, ρ , defines the prevalence of the disease.

We are interested in the probability pi(t) that any given node i is infected at time
step t. We denote by ri j the probability that a node i is in contact with a node j,
defining a matrix R. These entries represent the probabilities that existing links in
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the network are used to transmit the infection. If i and j are not connected, then ri j =
0. With these definitions, the discrete-time version of the evolution of the probability
of infection of any node i reads

pi(t + 1) = (1− qi(t))(1− pi(t))+ (1− μ)pi(t)+ μ(1− qi(t))pi(t) , (15.1)

where qi(t) is the probability of node i not being infected by any neighbor at time t,

qi(t) =
N

∏
j=1

(1−β r jip j(t)) . (15.2)

The first term on the right hand side of (15.1) is the probability that node i is
susceptible (1− pi(t)) and is infected (1− qi(t)) by at least a neighbor. The second
term stands for the probability that node i is infected at time t and does not recover,
and finally the last term takes into account the probability that an infected node
recovers (μ pi(t)) but is re-infected by at least a neighbor (1− qi(t)). Within this
formulation, we are assuming the most general situation in which recovery and
infection occur on the same time scales, allowing then reinfection of individuals
during a discrete time window (for instance, one MC step). This formulation
generalizes previous approximations where one time step reinfections can not occur.

The formulation so far relies on the assumption that the probabilities of being
infected pi are independent random variables. This hypothesis turns out to be valid
in the vast majority of complex networks because the inherent topological disorder
makes dynamical correlations not persistent. The dynamical system ((15.1) and
(15.2)) corresponds to a family of possible models, parameterized by the explicit
form of the contact probabilities ri j. Without loss of generality, it is instructive to
think of these probabilities as the transition probabilities of random walkers on the
network. The general case is represented by λi random walkers leaving node i at
each time step:

ri j = 1−
(

1− wi j

wi

)λi

. (15.3)

The Contact Process (CP) corresponds to a model dynamics of one contact per
unit time, λi = 1, ∀i in (15.3) thus ri j = wi j/wi.1 In the Reactive Process (RP),
all neighbors are contacted, which corresponds, in this description, to set the limit
λi→ ∞, ∀i resulting on ri j = ai j regardless of whether the network is weighted or
not. Other prescriptions for λi conform the spectrum of models that can be obtained
using this unified framework. The phase diagram of every model is simply obtained
solving the system formed by (15.1) for i = 1, . . . ,N at the stationary state,

1Strictly speaking, when λ = 1, our model is not exactly the standard CP, since in that case
reinfections are not considered. However, we will refer to it as a CP since only one neighbor is
contacted at each time step and the critical points of both variants are the same.
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pi = (1− qi)+ (1− μ)piqi , (15.4)

qi =
N

∏
j=1

(1−β r jip j) . (15.5)

This equation has always the trivial solution pi = 0, ∀i = 1, . . . ,N. Other non-trivial
solutions are reflected as non zero fixed points of (15.4) and (15.5), and can be easily
computed numerically by iteration. The macroscopic order parameter is given by the
expected fraction of infected nodes ρ , computed as

ρ =
1
N

N

∑
i=1

pi . (15.6)

15.2.2 Numerical Results

To show the validity of the MMCA model here discussed, we have performed MC
simulations on different SF networks for RP. In Fig. 15.1, the phase diagram of
the system obtained by MC simulations is compared with the numerical solution of
(15.4) and (15.5). To model the epidemic dynamics on the described topologies we
incorporate a SIS model in which, at each time step, each node can be susceptible
or infected. Each simulation starts with a fraction ρ0 of randomly chosen infected
individuals (ρ0 = 0.05 in our simulations), and time is discretized in time-steps.
At each time step an infected node i infects with the same probability β all its
neighbors and recovers at a rate μ . The simulation runs until a stationary state
for the density of susceptible individuals, ρ(t) is reached. The agreement between
both curves is matchless. Moreover, the formalism also captures the microscopic
dynamics as given by the pi’s, see the inset of Fig. 15.1. While the computational
cost of the MC simulations is considerably large, the numerical solution of the fix
point (15.4) and (15.5), by iteration, is fast and accurate.

In Fig. 15.2, we analyze our formalism on top of the airports network data set,
composed of passenger flights operating in the time period November 1, 2000, to
October 31, 2001 compiled by OAG Worldwide (Downers Grove, IL) and analyzed
previously by Prof. Amaral’s group [28]. It consists of 3,618 nodes (airports) and
14,142 links, we used the weighted network in our analysis. Airports corresponding
to a metropolitan area have been collapsed into one node in the original database.
We show the density of infected individuals ρ as a function of β for different values
of λ . Both the critical points and the shape of the ρ − β phase diagrams greatly
change at varying the number of stochastic contacts (λ ). We observe a moderate
disease prevalence in the case of small values of λ , even for large values of the
spreading rate β . In contrast, when the number of trials is of order 103 the situation
is akin to a RP.
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Fig. 15.1 Average fraction of infected nodes ρ as a function of the infection rate β for N = 104.
Lines stand for the MMCA solutions (with λ = ∞) and symbols correspond to MC simulations of
the SIS model on top of random scale-free networks with γ = 2.7 (error bars are smaller than the
size of the symbol). In the inset, scatter plot for the probability that a node is infected using results
of MC simulations (the y-axis) and the solutions (x-axis) of (15.4) and (15.5). Both results have
been obtained for μ = 1, the inset is for β = 0.1. After [26]
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Fig. 15.2 Density of infected individuals ρ as a function of β for different values of λ in the air
transportation network [28]. The smallest epidemic threshold and largest incidence is obtained for
the RP, in which the matrix R corresponds to the adjacency matrix. This implies that the SIS on
unweighted networks is a worst case scenario for the epidemic spreading in real weighted networks.
ρ is calculated according to (15.6) once the pi’s are obtained, μ is set to 1. After [26]
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Fig. 15.3 Phase diagram for the SIS model (λ = ∞) in a random scale free network for different
γ’s. The networks size is N = 104 nodes and μ = 1. MC results are averages over 102 realizations.
Dashed lines corresponds to the theoretical prediction and symbols to MC results. After [26]

Finally, we compare the results of the formalism for different random scale-free
networks satisfying P(k)∼ k−γ , which have been generated using the configuration
model [6, 21] with a fixed size of N = 104 nodes. Figure 15.3 shows the phase
diagram for μ = 1 and several values of the exponent γ , both below and above
γ = 3. Symbols correspond to MC simulations, whereas dotted lines represent
the results obtained using the analytical approximation. As it can be seen, the
agreement between both methods is remarkable, even for values of γ < 2.5 where
structural changes are extremely relevant [51]. On the other hand, one may explore
the dependency with the system size while fixing the degree distribution exponent
γ . This is what is shown in Fig. 15.4, where we have depicted the phase diagram
for networks with γ = 2.7 for several system sizes ranging from N = 500 to
N = 105. Except for N = 500, where MC results have a large standard deviation
close to the critical point, the agreement is again excellent in the whole range of β
values.

15.2.3 Epidemic Threshold

Let us now assume the existence of a critical point βc for fixed values of μ and λi

such that ρ = 0 if β < βc and ρ > 0 when β > βc. The calculation of this critical
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Fig. 15.4 Phase diagram for the SIS model (λ = ∞) in a random scale free network for different
system sizes as indicated. The networks have a power-law degree distribution with an exponent
γ = 2.7 and μ = 1. MC results are averages over 102 realizations. After [26]

point is performed by considering that when β→ βc, the probabilities pi ≈ εi, where
0≤ εi� 1, and then after substitution in (15.2) one gets

qi ≈ 1−β
N

∑
j=1

r jiε j . (15.7)

Inserting (15.7) in (15.4), and neglecting second order terms in ε we get

N

∑
j=1

(
r ji− μ

β
δ ji

)
ε j = 0 , ∀i = 1, . . . ,N , (15.8)

where δi j stands for the Kronecker delta. The system (15.8) has non trivial solutions
if and only if μ/β is an eigenvalue of the matrix R. Since we are looking for the
onset of the epidemic, the lowest value of β satisfying (15.8) is

βc =
μ

Λmax
, (15.9)

where Λmax is the largest eigenvalue of the matrix R. Equation (15.9) defines the
epidemic threshold of the disease spreading process.

With the previous development it is worth analyzing the two limiting cases of
CP and RP above. In the first case, one must take into account that the matrix
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R is a transition matrix whose maximum eigenvalue is always Λmax = 1. Thus,
the trivial result that the only non-zero solution corresponds to βc = μ . For the
RP corresponding to the SIS spreading process usually adopted [45], the classical
result for uncorrelated SF networks is recovered because, in this case, the largest
eigenvalue [16, 48] is Λmax = 〈k2〉/〈k〉.

15.2.4 Mesoscopic Equations at the Critical Point

Once the general framework given by the dynamical system ((15.1) and (15.2)) has
been proposed, it is instructive to approximate it using the hypotheses underlying
HMF. These hypotheses consist of: (1) coarse-graining the system in classes of
nodes by degree, assuming that the dynamical properties within each class are
the same and (2) neglecting fluctuations. To obtain the mesoscopic description we
consider the second order approximation of (15.4) and (15.5), and proceed as in the
previous section. Therefore,

qi ≈ 1−β ∑
j

r jiε j +β 2 ∑
j<l

r jirliε jεl . (15.10)

After substitution in (15.4) and reordering terms one gets

0 =−μεi +β (1− εi)∑
j

r jiε j + μβ εi ∑
j

r jiε j−β 2 ∑
j<l

r jirliε jεl , (15.11)

which are the equations governing the dynamics of the contact-based epidemic
spreading process at the microscopic level. It is possible to write (15.11) at
the commonly used mesoscopic (degree class) level for unweighted, undirected
heterogeneous networks. The interactions then take place between classes of nodes.
Defining the average density of infected nodes with degree k as ρk =

1
Nk

∑ki=k pi,
where Nk is the number of nodes with degree k and the sum runs over the set of
nodes of degree k, we obtain the generalized HMF equation near criticality.

To simplify the notation, we define the function

Rλ (x) = 1− (1− x)λ . (15.12)

Thus, the values of r ji may be expressed as

• Weighted networks:

r ji = Rλ

(
wji

wj

)
. (15.13)
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• Unweighted networks:

r ji = Rλ

(
a ji

k j

)
= a jiRλ

(
1
k j

)
= a jiRλ (k

−1
j ) . (15.14)

15.2.4.1 Homogeneous Networks

For homogeneous unweighted undirected networks, εi = ε and ki≈〈k〉 for all nodes.
Thus, ρ = 1

N ∑ j ε j = ε and

0 =−μρ +β ρ(1−ρ)∑
j

r ji + μβ ρ2∑
j

r ji−β 2ρ2 ∑
j<l

r jirli . (15.15)

The terms involving values of r ji are

r ji ≈ a jiRλ (〈k〉−1) , (15.16)

∑
j

r ji ≈ 〈k〉Rλ (〈k〉−1) , (15.17)

∑
j<l

r jirli ≈ 1
2
〈k〉(〈k〉− 1)Rλ (〈k〉−1)2 . (15.18)

Now, (15.15) becomes

0 = −μρ +β ρ(1−ρ)〈k〉Rλ(〈k〉−1)

+ μβ ρ2〈k〉Rλ (〈k〉−1)−β 2ρ2 1
2
〈k〉(〈k〉− 1)Rλ (〈k〉−1)2 , (15.19)

which may be considered as the MF approximation of our model for homogeneous
networks.

If λ = 1 then R1(〈k〉−1) = 1
〈k〉 and (15.19) becomes

0 =−μρ +β ρ(1−ρ)+ μβ ρ2− 〈k〉− 1
2〈k〉 β 2ρ2 . (15.20)

If λ → ∞ then R∞(〈k〉−1) = 1 and (15.19) reads

0 =−μρ +β ρ(1−ρ)〈k〉+ μβ ρ2〈k〉− 1
2

β 2ρ2〈k〉(〈k〉− 1) . (15.21)

In both cases, the first two terms correspond to the standard CP and RP models
(previously reported in the literature), respectively, and the additional terms are
second order contributions corresponding to reinfections and multiple infections.
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15.2.4.2 Heterogeneous Networks

Now we will concentrate on the class of heterogeneous unweighted undirected net-
works completely specified by their degree distribution P(k) and by the conditional
probability P(k′|k) that a node of degree k is connected to a node of degree k′.
Of course, the normalization conditions ∑k P(k) = 1 and ∑k′ P(k

′|k) = 1 must be
fulfilled. In this case, the average number of links that goes from a node of degree k
to nodes of degree k′ is kP(k′|k).

In these heterogeneous networks, it is supposed that all nodes of the same degree
behave equally, thus εi = ε j if ki = k j, and the density ρk of infected nodes of degree
k is given by ρk = 1

Nk
∑i∈K εi = ε j , ∀ j ∈ K, where Nk = P(k)N is the expected

number of nodes with degree k. Here, we have made use of K to denote the set of
nodes with degree k. This notation allows to group the sums by the degrees of the
nodes. For instance, if the degree of node i is ki = k then

∑
j

a jiε j = ∑
k′

∑
j∈K′

a jiρk′= ∑
k′

ρk′ ∑
j∈K′

ai j= ∑
k′

ρk′kP(k′|k)=k∑
k′

P(k′|k)ρk′ . (15.22)

Now, let us find the mean field equation for heterogeneous networks. First we
substitute (15.14) in (15.11)

0 = −μεi +β (1− εi)∑
j

a jiRλ (k
−1
j )ε j + μβ εi ∑

j

a jiRλ (k
−1
j )ε j

−β 2 ∑
j<l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl . (15.23)

It is convenient to analize separately the summatory terms in (15.23), supposing
node i has degree k:

∑
j

a jiRλ (k
−1
j )ε j = ∑

k′
∑
j∈K′

a jiRλ (k
′−1

)ρk′

= ∑
k′

Rλ (k
′−1

)ρk′ ∑
j∈K′

ai j

= k∑
k′

P(k′|k)Rλ (k
′−1

)ρk′ , (15.24)

∑
j<l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl

=
1
2 ∑

j
∑

l

a jialiRλ (k
−1
j )Rλ (k

−1
l )ε jεl − 1

2 ∑
j

a2
jiRλ (k

−1
j )2ε2

j

=
1
2 ∑

k′
∑
k′′

∑
j∈K′

∑
l∈K′′

a jialiRλ (k
′−1

)Rλ (k
′′−1

)ρk′ρk′′ − 1
2 ∑

k′
∑
j∈K′

a2
jiRλ (k

′−1
)2ρ2

k′
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=
1
2 ∑

k′
∑
k′′

Rλ (k
′−1

)Rλ (k
′′−1

)ρk′ρk′′ ∑
j∈K′

ai j ∑
l∈K′′

ail− 1
2 ∑

k′
Rλ (k

′−1
)2ρ2

k′ ∑
j∈K′

a2
i j

=
1
2

k2 ∑
k′

∑
k′′

Rλ (k
′−1

)Rλ (k
′′−1

)P(k′|k)P(k′′|k)ρk′ρk′′

− 1
2

k∑
k′

Rλ (k
′−1

)2P(k′|k)ρ2
k′ . (15.25)

Substitution in (15.23) leads to the generalized HMF equation

0 = −μρk +β k(1−ρk)∑
k′

P(k′|k)Rλ (k
′−1

)ρk′

+ μβ kρk ∑
k′

P(k′|k)Rλ (k
′−1

)ρk′

− 1
2

β 2k2 ∑
k′

∑
k′′

Rλ (k
′−1

)Rλ (k
′′−1

)P(k′|k)P(k′′|k)ρk′ρk′′

+
1
2

β 2k∑
k′

Rλ (k
′−1

)2P(k′|k)ρ2
k′ . (15.26)

If λ = 1, then R1(k−1) = 1
k and (15.26) becomes

0 = −μρk +β k(1−ρk)∑
k′

1
k′

P(k′|k)ρk′

+μβ kρk ∑
k′

1
k′

P(k′|k)ρk′+
1
2

β 2k∑
k′

1

k′2
P(k′|k)ρ2

k′

−1
2

β 2k2

(
∑
k′

1
k′

P(k′|k)ρk′

)2

. (15.27)

If λ → ∞, then R∞(k−1) = 1 and (15.26) reads

0 = −μρk +β k(1−ρk)∑
k′

P(k′|k)ρk′

+μβ kρk ∑
k′

P(k′|k)ρk′ +
1
2

β 2k∑
k′

P(k′|k)ρ2
k′

−1
2

β 2k2

(
∑
k′

P(k′|k)ρk′

)2

. (15.28)
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Again, the first two terms in both cases correspond to the standard CP and RP HMF
equations, respectively, and the additional terms are second order contributions
corresponding to reinfections and multiple infections.

15.3 Traffic-Driven Epidemic Spreading in Complex Networks

In the second part of this chapter, we investigate the outcome of an epidemic
spreading process driven by transport instead of diffusion. To this end, we ana-
lyzed a paradigmatic abstraction of epidemic contagion, the so-called Susceptible–
Infected–Susceptible (SIS) model, which assumes that contagion occurs through
the eventual contact or transmission between connected partners that are using their
connections at the time of propagation. This is achieved by considering a quantized
interaction at each time step. Mathematically, we set up the model in a flow scenario
where contagion is carried by interaction packets traveling across the network.

15.3.1 The Model

In the first place, two different types of SF networks are generated. On one
hand, we build random uncorrelated SF networks using the configuration model
[6, 21]. On the other hand, small-world, SF and highly clustered networks – all
properties found in many real-world networks [6, 21] such as the Internet – are
also generated using a class of recently developed network models [9, 50], in
which nearby nodes in a hidden metric space are connected. This metric space
can represent social, geographical or any other relevant distance between the nodes
of the simulated networks. Specifically, in the model currently at study, nodes are
uniformly distributed in a one-dimensional circle by assigning them a random polar
angle θ distributed uniformly in the interval [0,2π) and assigned an expected degree
k. The expected degrees of the nodes are then drawn from some distribution x(k)
and the network is completed by connecting two nodes with hidden coordinates

(θ ,k) and (θ ′,k′) with probability r(θ ,k,θ ′,k′) =
(

1+ d(θ ,θ ′)
η ′kk′

)−α
, where η ′ =

(α−1)/2〈k〉, d(θ ,θ ′) is the geodesic distance between the two nodes on the circle,
and 〈k〉 is the average degree. Finally, choosing x(k) = (γ − 1)kγ−1

0 k−γ , k > k0 ≡
(γ − 2)〈k〉/(γ − 1) generates random networks with a power law distribution with
exponent γ > 2. In most of the simulations, γ = 2.7 〈k〉= 3 and α = 2 are fixed.

Once the networks are built up, the traffic process is implemented in the following
way. At each time step, p = ΛN new packets are created with randomly chosen
origins and destinations. For the sake of simplicity, packets are considered non-
interacting so that no queues are used. The routing of information is modeled
through even a shortest path delivery strategy or a greedy algorithm [8, 9]. In the
latter, the second class of SF networks is used and a node i forwards a packet to
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node j in its neighborhood, which is the closest node (in the hidden metric space)
to the final packet destination. Results are insensitive to the two routing protocols
implemented.

To model the spreading dynamics we have implemented the aforementioned
Susceptible-Infected-Susceptible model, in which each node can be in two possible
states: healthy (S) or infected (I). Starting from an initial fraction of infected
individuals ρ0 = I0/N, the infection spreads in the system as the nodes interact.
A susceptible node has a probability β of becoming infected every time it interact
with an infected neighbors. We also assume that infected nodes are recovered at a
rate μ , which we fix to 1 for most of the simulations. After a transient time, we
compute the average density of infected individuals, ρ , which is the prevalence of
disease in the system. To account for link concurrency, we consider that two nodes
do not interact at all times t, but only when they exchange at least a packet. This
situation is reminiscent of disease transmission on air transportation networks; if
an infected individual did not travel between two cities, then regardless of whether
or not those cities are connected by a direct flight, the epidemic will not spread
from one place to the other. In this way, although a node can potentially interact
with as many contacts as it has and as many times as packets it exchanges with its
neighbors, the effective interactions are driven by a second dynamics (traffic). The
more packets travel through a link, the more likely the disease will spread through
it. On the other hand, once an interaction is at work, the epidemics spreads from
infected to susceptible nodes with probability β . For example, if at time t node i is
infected and a packet is traveling from node i to one of its neighbors node j, then at
the next time step, node j will be infected with probability β . Therefore, susceptible
and infected states are associated with the nodes, whereas the transport of packets
is the mechanism responsible for the propagation of the disease at each time step.

15.3.2 Unbounded Delivery Rate

We firstly concentrate on an unbounded delivery rate scenario, in which every node
can handle as much packets it receives. In this situation, congestion can not arise in
the system. Figure 15.5 shows the results for the stationary density of infected nodes
ρ as a function of β and the traffic generation rate Λ for SF networks.

In this case, the traffic level determines the value of both the epidemic incidence
and the critical thresholds and it’s important to notice the emergence of an epidemic
threshold under low traffic conditions. This implies that for a fixed value of Λ , the
epidemic dies out if the spreading rate is below a certain critical value βc(Λ). More
intense packet flows yield lower epidemic thresholds. The reason for the dependence
of the critical spreading rates on Λ is rooted in the effective topological paths
induced by the flow of packets through the network. At low values of Λ , there are
only a few packets traveling throughout the system, so the epidemic simply dies
out because many nodes do not participate in the interaction via packets exchanges.
As Λ grows, more paths appear between communicating nodes, thus spreading the
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Fig. 15.5 Dependence of epidemic incidence on traffic conditions for unbounded delivery rate.
The density of infected nodes, ρ , is shown as a function of the spreading rate β and the intensity
of flow Λ in SF networks. Flow conditions (controlled by Λ ) determine both the prevalence level
and the values of the epidemic thresholds. Increasing the number of packets traveling through the
system has a malicious effect: the epidemic threshold decreases as the flow increases. Each curve
is an average of 102 simulations starting from an initial density of infected nodes ρ0 = 0.05. The
network is made up of 103 nodes using the model in [9], results correspond to the greedy routing
scheme. The remaining parameters are α = 2, γ = 2.6 and 〈k〉 = 3. After [37]

infection to a larger portion of the network. Therefore, in traffic-driven epidemic
processes the infection is constrained to propagate only through links that transmit
a packet, and thus the number of attempts to transmit the infection depends on the
flow conditions at a local level, namely, on the number of active communication
channels at each time step. As a consequence, the effective network that spreads the
infection is no longer equivalent to the complete underlying topology. Instead, it is
a map of the dynamical process associated with packet traffic flow. The conclusion
is that the disease propagation process has two dynamical components: one intrinsic
to the disease itself (β ) and the other to the underlying traffic dynamics (the
flow). To theorize about these effects we next formulate the analytical expression
for the dependence of the epidemic threshold on the amount of traffic injected into
the system, following a mean-field approach akin to the conventional analysis of the
reaction driven case. Mathematically, the fraction of paths traversing a node given a
certain routing protocol [27], the so-called algorithmic betweenness, bk

alg, defines the
flow pathways. Let us consider the evolution of the relative density, ρk(t), of infected
nodes with degree k. Following the heterogeneous mean-field approximation [45],
the dynamical rate equations for the SIS model are

∂tρk(t) =−μρk(t)+βΛbk
algN [1−ρk(t)]Θ(t). (15.29)
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The first term in (15.29) is the recovery rate of infected individuals (we set
henceforth μ = 1). The second term takes into account the probability that a node
with k links belongs to the susceptible class, [1− ρk(t)], and gets the infection
via packets traveling from infected nodes. The latter process is proportional to
the spreading probability β , the probability Θ(t) that a packet travels through a
link pointing to an infected node and the number of packets received by a node of
degree k. This, in turns, is proportional to the total number of packets in the system,
∼ΛN, and the algorithmic betweenness of the node, bk

alg. Note that the difference
with the standard epidemic spreading model is given by these factors, as now the
number of contacts per unit time of a node is not proportional to its connectivity but
to the number of packets that travel through it. Finally, Θ(t) takes the form

Θ(t) =
∑k bk

algP(k)ρk(t)

∑k bk
algP(k)

. (15.30)

Equation (15.29) has been obtained assuming: (1) that the network is uncorrelated
P(k′|k) = k′P(k′)/〈k〉 and (2) that the algorithmic flow between the classes of nodes
of degree k and k′ factorizes bkk′

alg ∼ bk
algbk′

alg. Although no uncorrelated networks
exist, this approximation allows us to identify the governing parameters of the
proposed dynamics. The second approximation is an upper bound to the actual value
of the bkk′

alg, whose mathematical expression is, in general, unknown. The validity of
the theory even with these approximations is notable as confirmed by the numerical
simulations.

By imposing stationarity [∂tρk(t) = 0], (15.29) yields

ρk =
βΛbk

algNΘ
1+βΛbk

algNΘ
, (15.31)

from which a self-consistent equation for Θ is obtained as

Θ =
1

∑k bk
algP(k) ∑

k

(bk
alg)

2P(k)βΛNΘ
1+βΛbk

algNΘ
. (15.32)

The value Θ = 0 is always a solution. In order to have a non-zero solution, the
condition

1

∑k bk
algP(k)

d
dΘ

(
∑
k

(bk
alg)

2P(k)βΛNΘ
1+βΛbk

algNΘ

)∣∣∣∣∣
Θ=0

> 1 (15.33)

must be fulfilled, from which the epidemic threshold is obtained as

βc =
〈balg〉
〈b2

alg〉
1

ΛN
, (15.34)
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Fig. 15.6 Comparison between numerical and theoretical critical points. Log–log plot of the
critical thresholds, βc, as a function of the rate at which packets are injected into the system, Λ . Two
regions are differentiated: an active and an absorbing phase as indicated. The solid line corresponds

to (15.34) with
〈balg〉
〈b2

alg〉
1
N = 0.154. The agreement is remarkable even though (15.34) is derived using

a MF approach. The underlying network, infection spreading mechanism and routing protocol are
the same as in Fig. 15.5. Each curve is an average of 102 simulations. Remaining parameters are
the same as in Fig. 15.5. After [37]

below which the epidemic dies out, and above which there is an endemic state. In
Fig. 15.6a comparison between the theoretical prediction and numerical observa-
tions is presented. Here, we have explicitly calculated the algorithmic betweenness
for the greedy routing as it only coincides with the topological betweenness for
shortest paths routing. The obtained curve separates two regions: an absorbing
phase in which the epidemic disappears, and an active phase where the infection
is endemic.

Equation (15.34) is notably simple but has profound implications: the epidemic
threshold decreases with traffic and eventually vanishes in the limit of very large
traffic flow in finite systems, in contrast to the expected result of a finite-size
reminiscent threshold in the classical reactive–diffusive framework. Admittedly,
this is a new feature with respect to previous results on epidemic spreading in SF
networks. It is rooted in the increase of the effective epidemic spreading rate due
to the flow of packets. This is a genuine effect of traffic-driven epidemic processes
and generalizes the hypothesis put forward in the framework of a reaction-diffusion
process [18] on SF networks. It implies that an epidemic will pervade the (finite)
network whatever the spreading rate is if the load on it is high enough. Moreover,
(15.34) reveals a new dependence. The critical threshold depends on the topological
features of the graph, but at variance with the standard case, through the first
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two moments of the algorithmic betweenness distribution. As noted above, the
algorithmic betweenness of a node is given by the number of packets traversing that
node given a routing protocol. In other words, it has two components: a topological
one which is given by the degree of the node and a dynamical component defined
by the routing protocol.

Within our formulation, the classical result [45]

βc =
〈k〉
〈k2〉 , (15.35)

can be obtained for a particular protocol and traffic conditions, although we note
that the microscopic dynamics of our model is different from the classical SIS. To
see this, assume a random protocol. If packets of information are represented as
w random walkers traveling in a network with average degree 〈k〉, then under the
assumption that the packets are not interacting, it follows that the average number
of walkers at a node i in the stationary regime (the algorithmic betweenness) is given
by [36, 44] bi

alg =
ki

N〈k〉w. The effective critical value is then (βΛ)c = 〈k〉2/(〈k2〉w),
that recovers, when w = 〈k〉, the result in (15.35).

Results are robust for other network models and different routing algorithms.
We have also made numerical simulations of the traffic-driven epidemic process
on top of Barabási–Albert and random SF networks implementing a shortest paths
delivery scheme. In this case, packets are diverted following the shortest path (in the
actual topological space) from the packets’ origins to their destinations. The rest of
model parameters and rules for epidemic spreading remain the same. Figures 15.7
and 15.8 show the results obtained for random SF networks generated via the
configuration model and the Barabási–Albert model, respectively. As can be seen,
the phenomenology is the same for both types of networks: the epidemic threshold
depends on the amount of traffic in the network such that the higher the flow is, the
smaller the epidemic threshold separating the absorbing and active phases. On the
other hand, for processes in which the delivery of packets follows a shortest path
algorithm, (15.34) looks like

βc =
〈btop〉
〈b2

top〉
1

ΛN
, (15.36)

where btop is the topological betweenness. To further confirm our findings on a
realistic topology we run the model on top of the Air Transportation Network (ATN)
[28]. The network composed by the direct flies between more the 3,000 airports in
the world, in which each node represents an airport and the links represents the direct
connection between them. Although in the ATN links have weights accounting for
the annual number of passengers voyaging on each connection, we considered the
network as un-weighted and the shortest-path routing protocol. Also in this case the
results are confirmed as shown in Fig. 15.9. Figure 15.10 also shows the agreement
between the analytical prediction and the numerical simulations.
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Fig. 15.7 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and the
epidemic spreading rate β for random scale-free networks and a shortest paths routing scheme
for packets delivery. Each point is the result of 102 averages over different networks and initial
conditions. The exponent of the degree distribution of the network is γ = 2.7. After [37]
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Fig. 15.8 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and
the epidemic spreading rate β for BA scale-free networks and a shortest paths routing scheme
for packets delivery. Each point is the result of 102 averages over different networks and initial
conditions. After [37]
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Fig. 15.9 Density of infected nodes, ρ , as a function of traffic flow (determined by Λ ) and the
epidemic spreading rate β for the ATN (considered as unweighted) and a shortest paths routing
scheme for packets delivery. Each point is the result of 102 averages over different networks and
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Fig. 15.10 Comparison between numerical and theoretical critical points in the ATN. Log–log
plot of the critical thresholds, βc, as a function of the rate at which packets are injected into the

system, Λ for the ATN. The dashed line corresponds to (15.34) with
〈balg〉
〈b2

alg〉
1
N = 0.041. Despite

existing degree correlations in the network, the agreement is remarkable. Each point is an average
of 102 simulations. After [37]
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15.3.3 Bounded Delivery Rate

Equation (15.36) allows us to investigate also the equivalent scenario in the presence
of congestion. Let us consider the same traffic process above but with nodes having
queues that can store as many packets as needed but can deliver, on average, only a
finite number of them at each time step. It is known that there is a critical value of
Λ above which the system starts to congest [27]

Λc =
(N− 1)

b∗alg
. (15.37)

Equation (15.37) gives the traffic threshold that defines the onset of congestion,
which is governed by the node with maximum algorithmic betweenness b∗alg.
Substituting (15.37) in (15.34) we obtain a critical threshold for an epidemic
spreading process bounded by congestion. Increasing the traffic above Λc will
gradually congest all the nodes in the network up to a limit in which the traffic
is stationary and the lengths of queues grow without limit.

To illustrate this point, let us assume that the capacities for processing and
delivering information are heterogeneously distributed [49,52,54] so that the larger
the number of paths traversing a node, the larger its capability to deliver the packets.
Specifically, each node i of the network delivers at each time step a maximum
of (ci = 1+ kη

i ) packets, where η is a parameter of the model. In this case, the
critical value of Λ in (15.37) is multiplied by the maximum delivery capacity
[54]. Moreover, without loss of generality, we will explore the behavior of the
model in random SF networks where the routing is implemented by shortest paths
balg = btop∼ kν , being ν usually between 1.1 and 1.3 [47]. The previous assumption
for the delivery capability thus allows to explore as a function of η the situations
in which the delivery rate is smaller or larger than the arrival rate (defined by the
algorithmic betweenness). Phenomenologically, these two scenarios correspond to
the cases in which the traffic is in a free flow regime (if η > ν) or when the network
will congest (if η < ν). We also note that the adopted approach is equivalent to
assume a finite length for the queues at the nodes.

Figure 15.11 shows the fraction of active packets on the network, as a function of
the spreading rate β and the rate at which packets are generated Λ for two different
values of η using a shortest path delivery scheme on top of random SF networks. For
η = 0.8, the epidemic incidence is significantly small for all values of the parameters
Λ and β as compared with the results obtained when the rate of packets delivery is
unbounded. On the contrary, when η = 1.7 the phase diagram is qualitatively the
same as for the unbounded case, including the result that the epidemic incidence
vanishes when Λ is large enough. A closer look at the dynamical evolution unveils
an interesting, previously unreported, feature − when the rate at which packets are
delivered is smaller than the rate at which they arrive, the average value of infected
nodes saturates beyond a certain value of the traffic flow rate Λ . This effect is due
to the emergence of traffic congestion. When the flow of packets into the system is
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Fig. 15.11 Fraction of active packets as a function of the traffic flow with bounded delivery rate.
It represents the fraction of active packets A: packets still traveling in the network over the total
amount of generated packets in a time period τ , as function of the traffic injected in the system Λ
for different values of the delivery capacity η . The underlying network and the routing protocol
are the same as in Fig. 15.7

such that nodes are not able to deliver at least as many packets as they receive, their
queues start growing and packets pile up. This in turns implies that the spreading
of the disease becomes less efficient, or in other words, the spreading process slows
down. The consequence is that no matter whether more packets are injected into the
system, the average level of packets able to move from nodes to nodes throughout
the network is roughly constant and so is the average level of infected individuals.

Figure 15.12 illustrates the phenomenological picture described above. It shows
the epidemic incidence ρ for a fixed value of β = 0.15 as a function of Λ for
different values of η . The figure clearly evidences that congestion is the ultimate
reason of the behavior described above. Therefore, the conclusion is that in systems
where a traffic process with finite delivery capacity is coupled to the spreading of
the disease the epidemic incidence is bounded. This is good news as most of the
spreading processes in real-world networks involves different traffic flow conditions.
Further evidence of this phenomenology is given in Fig. 15.13, where we have
depicted the epidemic threshold as a function of Λ for two different values of η , less
and greater than ν . When η < ν congestion arises, and the contrary holds for η > ν
where the diagram is equivalent to that of unbounded traffic. The onset of congestion
determines the value of β above which congestion starts. It is clearly visualized
as the point beyond which the power law dependence in (15.34) breaks down.
The plateau of βc corresponds to the stationary situation of global congestion. A
comparison for different values of η in the bounded delivery rate model is presented
in Fig. 15.14.
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Fig. 15.12 Epidemic incidence in traffic-driven epidemic processes with bounded delivery rate.
The figure represents the average fraction of infected nodes ρ as a function of Λ for different
delivery rates at fixed β = 0.15. When congestion arises, the curves depart from each other and the
epidemic incidence saturates soon afterwards. After [37]
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Fig. 15.13 Epidemic thresholds as a function of Λ for two values of η . The onset of congestion
marks the point, Λc ≈ 0.150, at which the curve for η = 0.8 departs from (15.34), i.e., when the
power law dependence breaks down. Soon afterwards congestion extends to the whole network
leading to a bounded (from below) epidemic threshold. On the contrary, when the delivery rate is
large enough (as in the case of η = 1.7), (15.34) holds for all values of Λ , thus resembling the
unbounded delivery rate case. After [37]
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Fig. 15.14 Comparison between different delivery capacity in the bounded delivery rate model.
The plot represents density of infected nodes, ρ , as a function of traffic flow Λ and the epidemic
spreading rate β for random scale-free networks and a shortest paths routing scheme with different
values of the delivery capacity η : panel (a) η = 0.8, (b) η = 1.0, (c) η = 1.5 and (d) η = 1.7, for
the random SF network and the shortest path delivery scheme. After [37]

15.4 Conclusions

In the first part of this chapter, we have presented a novel framework, the
Microscopic Markov-Chain Approach, to study disease spreading in networks. By
defining a set of discrete-time equations for the probability of individual nodes to
be infected, we construct a dynamical system that generalizes from an individual
contact process to the classical case in which all connections are concurrently used,
for any complex topology. The whole phase diagram of the system can be found
solving the equations at the stationary state. The numerical solution of the analytic
equations overcomes the computational cost of MC simulations. Moreover, the
formalism allows to gain insight on the behavior of the critical epidemic threshold
for different values of the probability of contacting a fraction λ of neighbors per
time step.

The MMCA model deals with infections driven by direct contacts between
nodes, but not with traffic situations where nodes transmit the epidemics by flow
communication with others [37]. In this latter case, the routing protocol of traffic
between nodes is absolutely relevant and can change the critical point of the
epidemic spreading.
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In the second part of this chapter, we have developed a framework in the scope of
MF theories to cope with the problem of assessing the impact of epidemics when the
routing of traffic is considered. We have argued both analytically and numerically
the conditions for the emergence of an epidemic outbreak in scale-free networks
when disease contagion is driven by traffic or interaction flow. The study provides a
more general theory of spreading processes in complex heterogeneous networks that
includes the previous results as a particular case of diffusive spreading. Moreover,
we have shown that the situation in which the epidemic threshold vanishes in finite
scale-free networks is also plausible, thus, providing an explanation to the long-
standing question of why some viruses prevail in the system with a low incidence.

The new approach presented here provides a novel framework to address related
problems. For instance, in the context of air-transportation networks [17], a similar
mechanism to the one reported here could explain the observed differences in
the impact of a disease during a year [25]. One might even expect that, due to
seasonal fluctuations in flows, the same disease could not provoke a system-wide
outbreak if the flow were not high enough during the initial states of the disease
contagion. Incorporating the non-diffusive character of the spreading process into
current models has profound consequences for the way the system functions.
Also the theory could help designing new immunization algorithms or robust
protocols; one in particular being quarantining highly sensitive traffic nodes. On
more general grounds, our conclusions point to the need of properly dealing
with link concurrency. Further exploring this challenge will have far-reaching
consequences for the study of dynamical processes on networks, and especially the
relationship between structure and dynamics for networked systems. Ultimately,
this paves the way towards a more complete theoretical framework of complex
networks.
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Chapter 16
Theory of Citing

M.V. Simkin and V.P. Roychowdhury

Abstract We present empirical data on misprints in citations to 12 high-profile
papers. The great majority of misprints are identical to misprints in articles that
earlier cited the same paper. The distribution of the numbers of misprint repetitions
follows a power law. We develop a stochastic model of the citation process, which
explains these findings and shows that about 70–90% of scientific citations are
copied from the lists of references used in other papers. Citation copying can explain
not only why some misprints become popular, but also why some papers become
highly cited. We show that a model where a scientist picks few random papers,
cites them, and copies a fraction of their references accounts quantitatively for
empirically observed distribution of citations.

16.1 Statistics of Misprints in Citations

Now let us come to those references to authors, which other books have, and you want for
yours. The remedy for this is very simple: You have only to look out for some book that
quotes them all, from A to Z . . . , and then insert the very same alphabet in your book, and
though the imposition may be plain to see, because you have so little need to borrow from
them, that is no matter; there will probably be some simple enough to believe that you have
made use of them all in this plain, artless story of yours. At any rate, if it answers no other
purpose, this long catalogue of authors will serve to give a surprising look of authority to
your book. Besides, no one will trouble himself to verify whether you have followed them
or whether you have not, being no way concerned in it. . .
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Table 16.1 Papers, misprints in citing which we studied

Number Reference

1 K.G. Wilson, Phys. Rev. 179, 1499 (1969)
2 K.G. Wilson, Phys. Rev. B 4, 3174 (1971)
3 K.G. Wilson, Phys. Rev. B 4, 3184 (1971)
4 K.G. Wilson, Phys. Rev. D 10, 2445 (1974)
5 J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973)
6 J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)
7 M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)
8 M.J. Feigenbaum, J. Stat. Phys. 21, 669 (1979)
9 P. Bak, J. von Boehm, Phys. Rev. B 21, 5297 (1980)
10 P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)
11 P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)
12 P. Bak and C. Tang, J. Geophys. Res. B 94, 15635 (1989)

When scientists are writing their scientific articles, they often use the method
described in the above quote. They can do this and get away with it until one day
they copy a citation, which carries in it a DNA of someone else’s misprint. In such
case, they can be identified and brought to justice, similar to how biological DNA
evidence helps to convict criminals, who committed more serious offences than that.

Our initial report [1] led to a lively discussion1 on whether copying a citation is a
proof of not reading the original paper. Alternative explanations are worth exploring;
however, such hypotheses should be supported by data and not by anecdotal claims.
It is indeed most natural to assume that a copying citer also failed to read the
paper in question (albeit this cannot be rigorously proved). Entities must not be
multiplied beyond necessity. Having thus shaved the critique with Occam’s razor,
we will proceed to use the term non-reader to describe a citer who copies.

As misprints in citations are not too frequent, only celebrated papers provide
enough statistics to work with. Let us have a look at the distribution of misprints in
citations to one renowned paper (number 5 in Table 16.1), which at the time of our
initial inquiry [1], that is in late 2002, had accumulated 4,301 citations. Out of these
citations 196 contained misprints, out of which only 45 were distinct. The most
popular misprint in a page number appeared 78 times.

As a preliminary attempt, one can estimate the ratio of the number of readers to
the number of citers, R, as the ratio of the number of distinct misprints, D, to the
total number of misprints, T . Clearly, among T citers, T −D copied, because they
repeated someone else’s misprint. For the D others, with the information at hand,
we have no evidence that they did not read, so according to the presumed innocent

1See, for example, the discussion “Scientists Don’t Read the Papers They Cite” on Slashdot: http://
science.slashdot.org/article.pl?sid=02/12/14/0115243&mode=thread&tid=134.

http://science.slashdot.org/article.pl?sid=02/12/14/0115243{&}mode=thread{&}tid=134
http://science.slashdot.org/article.pl?sid=02/12/14/0115243{&}mode=thread{&}tid=134
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Table 16.2 Citation and misprint statistics together with estimates of R for 12 studied papers

Percentile
rank for
R =
0.2(%)

Misprints R

Number Citations Total Distinct M(%) (16.1) (16.8) (16.22) MC

1 1,291 61 29 2.2 0.48 0.46 0.44 0.37 15
2 861 33 13 1.5 0.39 0.38 0.35 0.28 44
3 818 38 11 1.3 0.29 0.28 0.22 0.22 68
4 2,578 263 32 1.2 0.12 0.11 – 0.10 95
5 4,301 196 45 1.0 0.23 0.22 0.17 0.15 76
6 1,673 40 12 0.7 0.30 0.29 0.25 0.22 65
7 1,639 36 21 1.3 0.58 0.58 0.57 0.49 6
8 837 55 18 2.2 0.33 0.31 0.26 0.22 57
9 419 20 8 1.9 0.40 0.39 0.34 0.29 50
10 1,717 33 14 0.8 0.42 0.42 0.40 0.31 36
11 1,348 78 27 2.0 0.35 0.33 0.29 0.23 47
12 397 61 18 4.5 0.30 0.26 0.17 0.19 69

The citation data were retrieved from the ISI database in late 2002 and early 2003. The way we
count misprints is look at the whole sequence of volume, page number and the year, which amounts
to between 8 and 11 digits for different studied papers. That is, two misprints are distinct if they
are different in any of the places, and they are repeats if they agree on all of the digits

principle, we assume that they did. Then in our sample, we have D readers and T
citers, which lead to:

R≈ D/T. (16.1)

Substituting D = 45 and T = 196 in (16.1), we obtain that R≈ 0.23. The values of
R for the rest of the dozen studied papers are given in Table 16.2.

As we pointed out in [2] the above reasoning would be convincing if the people
who introduced original misprints had always read the original paper. It is more
reasonable to assume that the probability of introducing a new misprint in a citation
does not depend on whether the author had read the original paper. Then, if the
fraction of read citations is R, the number of readers in our sample is RD, and the
ratio of the number of readers to the number of citers in the sample is RD/T. What
happens to our estimate, (16.1)? It is correct, just the sample is not representative:
the fraction of read citations among the misprinted citations is less than in general
citation population.

Can we still determine R from our data? Yes. From the misprint statistics we can
determine the average number of times, np, a typical misprint propagates:

np =
T −D

D
. (16.2)

The number of times a misprint had propagated is the number of times the citation
was copied from either the paper which introduced the original misprint, or from
one of subsequent papers, which copied (or copied from copied, etc.) from it.
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A misprinted citation should not differ from a correct citation as far as copying
is concerned. This means that a selected at random citation, on average, is copied
(including copied from copied, etc.) np times. The read citations are no different
from unread citations as far as copying goes. Therefore, every read citation, on
average, was copied np times. The fraction of read citations is thus

R =
1

1+ np
. (16.3)

After substituting (16.2) into (16.3), we recover (16.1).
Note, however, that the average number of times a misprint propagates is not

equal to the number of times the citation was copied, but to the number of times
it was copied correctly. Let us denote the average number of citations copied
(including copied from copied etc) from a particular citation as nc. It can be
determined from np the following way. The nc consists of two parts: np (the correctly
copied citations) and misprinted citations. If the probability of making a misprint is
M and the number of correctly copied citations is np then the total number of copied
citations is np/(1−M) and the number of misprinted citations is (npM)/(1−M).
As each misprinted citation was itself copied nc times, we have the following self-
consistency equation for nc:

nc = np + np× M
1−M

× (1+ nc) (16.4)

It has the solution

nc =
np

1−M− np×M
(16.5)

After substituting (16.2) into (16.5) we get:

nc =
T −D

D−MT
. (16.6)

From this, we get:

R =
1

1+ nc
=

D
T
× 1− (MT/D)

1−M
(16.7)

The probability of making a misprint we can estimate as M = D/N, where N is the
total number of citations. After substituting this into (16.7) we get:

R =
D
T
× N−T

N−D
. (16.8)
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Fig. 16.1 Rank-frequency distributions of misprints in referencing four high-profile papers (here
the rank is determined by the frequency so that the most popular misprint has rank 1, second most
frequent misprint has rank 2 and so on). Figures (a–d) are for papers 2, 5, 7, and 10 of Table 16.1.
Solid lines are fits to Zipf Law with exponents a 1.20; b 1.05; c 0.66; d 0.85

Substituting D = 45, T = 196, and N = 4301 in (16.8), we get R ≈ 0.22, which is
very close to the initial estimate, obtained using (16.1). The values of R for the rest
of the papers are given in Table 16.2. They range between 11% and 58%.

In the next section we introduce and solve the stochastic model of misprint prop-
agation. The model explains the power law of misprint repetitions (see Fig. 16.1).
If you do not have time to read the whole chapter, you can proceed after Sect. 16.2.1
right to Sect. 16.3.1. There we formulate and solve the model of random-citing
scientists (RCS). The model is as follows: when scientist is writing a manuscript he
picks up several random papers, cites them, and copies a fraction of their references.
The model can explain why some papers are far more cited than others. After that,
you can directly proceed to discussion in Sect. 16.5. If you have questions, you
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can find answers to some of them in other sections. The results of Sect. 16.1 are
exact in the limit of infinite number of citations. Since this number is obviously
finite, we need to study finite size effects, which affect our estimate of R. This is
done in Section 16.2.2 using complicated mathematical methods and in Sect. 16.2.3
using Monte Carlo simulations. The limitations of the simple model arising from
the instances like, for example, the same author repeats the same misprint, are
discussed in Sect. 16.2.4. In Sect. 16.2.5, we review the previous work on identical
misprints. In short: some people did notice repeat misprints and attributed them
to citation copying, but nobody derived (16.1) before us. The RCS model of
Sect. 16.3 can explain a power law in overall citation distribution, but cannot explain
a power-law distribution in citations to the papers of the same age. Section 16.4.1
introduces the modified model of random-citing scientist (MMRCS), which solves
the problem. The model is as follows: when a scientist writes a manuscript, he
picks up several random recent papers, cites them, and also copies some of their
references. The difference with the original model is the word recent. In Sect. 16.4.2
the MMRCS is solved using theory of branching processes and the power-law
distribution of citations to the papers of the same age is derived. Section 16.4.3
considers the model where papers are not created equal but have Darwinian fitness
that affects their citability. Section 16.4.4 studies effects of literature growth (yearly
increase of the number of published papers) on citation distribution. Section 16.4.5
describes numerical simulations of MMRCS, which perfectly match real citation
data. Section 16.4.6 shows that MMRCS can explain the phenomenon of literature
aging that is why papers become less cited as they get older. Section 16.4.7 shows
that MMRCS can explain the mysterious phenomenon of sleeping beauties in
science (papers that are at first hardly noticed suddenly awake and get a lot of
citations). Section 16.4.8 describes the connection of MMRCS to the Science of
Self-Organized Criticality (SOC).

16.2 Stochastic Modeling of Misprints in Citations

16.2.1 Misprint Propagation Model

Our misprint propagation model (MPM) [1, 3] which was stimulated by Simon’s
[4] explanation of Zipf Law and Krapivsky–Redner [5] idea of link redirection, is
as follows. Each new citer finds the reference to the original in any of the papers
that already cite it (or it can be the original paper itself). With probability R he
gets the citation information from the original. With probability 1−R he copies the
citation to the original from the paper he found the citation in. In either case, the
citer introduces a new misprint with probability M.

Let us derive the evolution equations for the misprint distribution. The only way
to increase the number of misprints that appeared only once, N1, is to introduce
a new misprint. So, with each new citation N1 increases by 1 with probability M.
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The only way to decrease N1, is to copy correctly one of misprints that appeared
only once, this happens with probability α× (N1/N), where

α = (1−R)× (1−M) (16.9)

is the probability that a new citer copies the citation without introducing a new error,
and N is the total number of citations. For the expectation value, we thus have:

dN1

dN
= M−α× N1

N
. (16.10)

The number of misprints that appeared K times, NK , (where K > 1) can be increased
only by copying correctly a misprint which appeared K− 1 times. It can only be
decreased by copying (again correctly) a misprint which appeared K times. For the
expectation values, we thus have:

dNK

dK
= α× (K− 1)×NK−1−K×NK

N
(K > 1). (16.11)

Assuming that the distribution of misprints has reached its stationary state, we can
replace the derivatives (dNK/dN) by ratios (NK/N) to get:

N1

N
=

M
1+α

;
NK+1

NK
=

K
1+ 1/α +K

(K > 1). (16.12)

Note that for large K: NK+1 ≈ NK +dNK/dK, therefore (16.12) can be rewritten as:

dNK

dK
≈− 1+ 1/α

1+ 1/α +K
Nk ≈ 1+ 1/α

K
Nk.

From this follows that the misprints frequencies are distributed according to a
power law:

NK ∼ 1/Kγ , (16.13)

where

γ = 1+
1
α

= 1+
1

(1−R)
× (1−M). (16.14)

Relationship between γ and α in (16.14) is the same as the one between exponents
of number-frequency and rank-frequency distributions.2 Therefore the parameter

2Suppose that the number of occurrences of a misprint (K), as a function of the rank (r), when the
rank is determined by the above frequency of occurrence (so that the most popular misprint has rank
1, second most frequent misprint has rank 2 and so on), follows a Zipf law: K(r) =C/rα . We want
to find the number-frequency distribution, i.e. how many misprints appeared n times. The number
of misprints that appeared between K1 and K2 times is obviously r2− r1, where K1 = C/rα

1 and
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α , which was defined in (16.9), turned out to be the Zipf law exponent. An exact
formula for Nk can also be obtained by iteration of (16.12) to get:

NK

N
=

Γ(K)Γ(γ)
Γ(K + γ)

× M
α

= B(K,γ)× M
α

(16.15)

Here Γ and B are Euler’s Gamma and Beta functions. Using the asymptotic for
constant γ and large K

Γ(γ)
Γ(K + γ)

∼ K−γ (16.16)

we recover (16.13).
The rate equation for the total number of misprints is:

dT
dN

= M+α× T
N
. (16.17)

The stationary solution of (16.17) is:

T
N

=
M

1−α
=

M
R+M−RM

. (16.18)

The expectation value for the number of distinct misprints is obviously

D = N×M. (16.19)

From (16.18) and (16.19) we obtain:

R =
D
T
× N−T

N−D
, (16.20)

which is identical to (16.8).
One can ask why we did not choose to extract R using (16.9) or (16.14). This

is because α and γ are not very sensitive to R when it is small (in fact (16.9) gives
negative values of R for some of the fittings in Fig. 16.1). In contrast, T scales as
1/R.

We can slightly modify our model and assume that original misprints are only
introduced when the reference is derived from the original paper, while those who
copy references do not introduce new misprints (e.g., they do cut and paste). In this
case one can show that T = N×M and D = N×M×R. As a consequence (16.1)
becomes exact (in terms of expectation values, of course).

K2 =C/rα
2 . Therefore, the number of misprints that appeared K times, Nk, satisfies NKdK =−dr

and hence, NK =−dr/dK ∼ K−1/α−1.
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16.2.2 Finite-Size Corrections

Preceding analysis assumes that the misprint distribution had reached its stationary
state. Is this reasonable? Equation (16.17) can be rewritten as:

d(T/N)

M− (T/N)× (1−α)
= d lnN. (16.21)

Naturally the first citation is correct (it is the paper itself). Then the initial condition
is N = 1; T = 0. Equation (16.21) can be solved to get:

T
N

=
M

1−α
×

(
1− 1

N1−α

)
=

M
R+M−M×R

×
(

1− 1
NR+M−M×R

)
(16.22)

This should be solved numerically for R. The values obtained using (16.22) are given
in Table 16.2. They range between 17% and 57%. Note that for one paper (No.4)
no solution to (16.22) was found.3 As N is not a continuous variable, integration
of (16.17) is not perfectly justified, particularly when N is small. Therefore, we
reexamine the problem using a rigorous discrete approach due to Krapivsky and
Redner [6]. The total number of misprints, T , is a random variable that changes
according to

T (N + 1) =

{
T (N) with probability 1−M− T (N)

N α
T (N)+ 1 with probability M+

T (N)
N α

(16.23)

after each new citation. Therefore, the expectation values of T obey the following
recursion relations:

〈T (N + 1)〉= 〈T (N)〉+ 〈T (N)〉
N

α +M (16.24)

To solve (16.24) we define a generating function:

χ(ω) =
∞

∑
n=1
〈T (N)〉ωN−1 (16.25)

3Why did this happen? Obviously, T reaches maximum when R equals zero. Substituting R = 0 in
(16.22) we get: TMAX =N(1−1/NM ). For paper No.4 we have N = 2,578, M =D/N = 32/2,578.
Substituting this into the preceding equation, we get TMAX = 239. The observed value T = 263 is
therefore higher than an expectation value of T for any R. This does not immediately suggest
discrepancy between the model and experiment but a strong fluctuation. In fact out of 1,000,000
runs of Monte Carlo simulation of MPM with the parameters of the mentioned paper and R = 0.2
exactly 49,712 runs (almost 5%) produced T ≥ 263.
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After multiplying (16.24) by NωN−1 and summing over N ≥ 1 the recursion relation
is converted into the differential equation for the generating function

(1−ω)
dχ
dω

= (1+α)χ +
M

(1−ω)2 (16.26)

Solving (16.26) subject to the initial condition χ(0) = 〈T (1)〉= 0 gives

χ(ω) =
M

1−α

(
1

(1−ω)2 −
1

(1−ω)1−α

)
(16.27)

Finally we expand the right-hand side of (16.27) in Taylor series in ω and equating
coefficients of ωN−1 obtain:

〈T (N)〉
N

=
M

1−α

(
1− Γ(N +α)

Γ(1+α)Γ(N + 1)

)
(16.28)

Using (16.16) we obtain that for large N

〈T (N)〉
N

=
M

1−α

(
1− 1

Γ(1+α)
× 1

N1−α

)
(16.29)

This is identical to (16.22) except for the pre-factor 1/Γ(1+α). Parameter α (it is
defined in (16.9)) ranges between 0 and 1. Therefore, the argument of Gamma
function ranges between 1 and 2. Because Γ(1) = Γ(2) = 1 and between 1 and 2
Gamma function has just one extremum Γ(1.4616 . . .) = 0.8856 . . ., the continuum
approximation (16.22) is reasonably accurate.

16.2.3 Monte Carlo Simulations

In the preceding section, we calculated the expectation value of T . However, it does
not always coincide with the most likely value when the probability distribution
is not Gaussian. To get a better idea of the model’s behavior for small N and a
better estimate of R we did numerical simulations. To simplify comparison with
actual data the simulations were performed in a “micro-canonical ensemble,” i.e.,
with a fixed number of distinct misprints. Each paper is characterized by the total
number of citations, N, and the number of distinct misprints, D. At the beginning
of a simulation, D misprints are randomly distributed between N citations and
chronological numbers of the citations with misprints are recorded in a list. In the
next stage of the simulation for each new citation, instead of introducing a misprint
with probability M, we introduce a misprint only if its chronological number is
included in the list created at the outset. This way one can ensure that the number
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Fig. 16.2 A typical outcome
of a single simulation of the
MPM (with R = 0.2)
compared to the actual data
for paper 5 in Table 16.1
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1,000,000 runs of the MPM
with N = 4301, D = 45
(parameters of paper 5 from
Table 16.1) for four different
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of distinct misprints in every run of a simulation is equal to the actual number of
distinct misprints for the paper in question. A typical outcome of such simulation
for paper 5 is shown in Fig. 16.2.

To estimate the value of R, 1,000,000 runs of the random-citing model with R= 0,
0.1, 0.2. . . , 0.9 were done. An outcome of such simulations for one paper is shown in
Fig. 16.3. The number of times, NR, when the simulation produced a total number of
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Fig. 16.4 Bayesian inference for the probability density of the readers/citers ratio, R, computed
using (16.30). Figures. (a–d) are for papers 2, 5, 7, and 10 (Table 16.1)

misprints equal to the one actually observed for the paper in question was recorded
for each R. Bayesian inference was used to estimate the probability of R:

P(R) =
NR

∑
R

NR
(16.30)

Estimated probability distributions of R, computed using (16.30) for four sample
papers are shown in Fig. 16.4. The median values are given in Table 16.2 (see the
MC column). They range between 10% and 49%.
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Fig. 16.5 Bayesian inference
for the readers/citers ratio, R,
based on 12 studied papers
computed using (16.31)
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Now let us assume R to be the same for all 12 papers and compute Bayesian
inference:

P(R) =

12
∏
i=1

Ni
R

∑
R

12
∏
i=1

Ni
R

(16.31)

The result is shown in Fig. 16.5. P(R) is sharply peaked around R= 0.2. The median
value of R is 18% and with 95% probability R is less than 34%.

But is the assumption that R is the same for all 12 papers reasonable? The
estimates for separate papers vary between 10% and 50 %! To answer this question
we did the following analysis. Let us define for each paper a “percentile rank.” This
is the fraction of the simulations of the MPM (with R = 0.2) that produced T , which
was less than actually observed T . Actual values of these percentile ranks for each
paper are given in Table 16.2 and their cumulative distribution is shown in Fig. 16.6.
Now if we claim that MPM with same R = 0.2 for all papers indeed describes the
reality – then the distribution of these percentile ranks must be uniform. Whether
or not the data is consistent with this, we can check using Kolmogorov–Smirnov
test [7]. The maximum value of the absolute difference between two cumulative
distribution functions (D-statistics) in our case is D = 0.15. The probability for D to
be more than that is 91%. This means that the data is perfectly consistent with the
assumption of R = 0.2 for all papers.

One can notice that the estimates of M (computed as M = D/N) for different
papers (see Table 16.2) are also different. One may ask if it is possible that M
is the same for all papers and different values of D/N are results of fluctuations.
The answer is that the data is totally inconsistent with single M for all papers. This
is not unexpected, because some references can be more error-prone, for example,
because they are longer. Indeed, the most-misprinted paper (No.12) has two-digit
volume number and five-digit page number.
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Fig. 16.6 Cumulative
distribution of the percentile
ranks of the observed values
of T with regard to the
outcomes of the simulations
of the MPM with R = 0.2
(diamonds). For comparison
the cumulative function of the
uniform distribution is given
(a line)
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16.2.4 Operational Limitations of the Model

Scientists copy citations because they are not perfect. Our analysis is imperfect
as well. There are occasional repeat identical misprints in papers, which share
individuals in their author lists. To estimate the magnitude of this effect we took
a close look at all 196 misprinted citations to paper 5 of Table 16.1. It turned out
that such events constitute a minority of repeat misprints. It is not obvious what to
do with such cases when the author lists are not identical: should the set of citations
be counted as a single occurrence (under the premise that the common co-author
is the only source of the misprint) or as multiple repetitions. Counting all such
repetitions as only a single misprint occurrence results in elimination of 39 repeat
misprints. The number of total misprints, T , drops from 196 to 157, bringing the
upper bound for R (16.1) from 45/196∼= 23% up to 45/157∼= 29%. An alternative
approach is to subtract all the repetitions of each misprint by the originators of that
misprint from non-readers and add it to the number of readers. There were 11 such
repetitions, which increases D from 45 up to 56 and the upper bound for R (16.1)
rises to 56/196∼= 29%, which is the same value as the preceding estimate. It would
be desirable to redo the estimate using (16.20) and (16.22), but the MPM would
have to be modified to account for repeat citations by same author and multiple
authorships of a paper. This may be a subject of future investigations.

Another issue brought up by the critics [8] is that because some misprints are
more likely than others, it is possible to repeat someone else’s misprint purely by
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chance. By examining the actual data, one finds that about two-third of distinct
misprints fall in to the following categories:

(a) One misprinted digit in volume, page number, or in the year.
(b) One missing or added digit in volume or page number.
(c) Two adjacent digits in a page number are interchanged.

The majority of the remaining misprints are combinations of (a–c), for example,
one digit in page number omitted and one digit in year misprinted.4 For a typical
reference, there are over 50 aforementioned likely misprints. However, even if
probability of certain misprint is not negligibly small but 1 in 50, our analysis still
applies. For example, for paper 5 (Table 16.1) the most popular error appeared 78
times, while there were 196 misprints in total. Therefore, if probability of certain
misprint is 1/50, there should be about 196/50≈ 4 such misprints, not 78. In order
to explain repeat misprints distribution by higher probability of certain misprint this
probability should be as big as 78/196≈ 0.4. This is extremely unlikely. However,
finding relative propensities of different misprints deserves further investigation.

Smith noticed [9] that some misprints are in fact introduced by the ISI. To esti-
mate the importance of this effect we explicitly verified 88 misprinted (according to
ISI) citations in the original articles. Seventy-two of them were exactly as in the ISI
database, but 16 were in fact correct citations. To be precise some of them had minor
inaccuracies, like second initial of the author was missing, while page number,
volume, and year were correct. Apparently, they were victims of an “erroneous error
correction” [9]. It is not clear how to consistently take into account these effects,
specifically because there is no way to estimate how many wrong citations have
been correctly corrected by ISI [10]. But given the relatively small percentage of
the discrepancy between ISI database and actual articles (16/88∼= 18%) this can be
taken as a noise with which we can live.

It is important to note that within the framework of the MPM R is not the ratio of
readers to citers, but the probability that a citer consults the original paper, provided
that he encountered it through another paper’s reference list. However, he could
encounter the paper directly. This has negligible effect for highly-cited papers, but
is important for low-cited papers. Within the MPM framework the probability of
such an event for each new citation is obviously 1/n, where n is the current total
number of citations. The expectation value of the true ratio of readers to citers is
therefore:

R∗(N) = R+(1−R)×

n
∑

n=1

1
n

N
≈ R+(1−R)× ln(2N + 1)

N
. (16.32)

The values of R∗ for papers with different total numbers of citations, computed
using (16.32), are shown in Fig. 16.7. For example, on average, about four people
have read a paper which was cited ten times. One can use (16.32) and empirical

4There are also misprints where author, journal, volume, and year are perfectly correct, but the
page number is totally different. Probably, in such case the citer mistakenly took the page number
from a neighboring paper in the reference list he was lifting the citation from.
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Fig. 16.7 Ratio of readers to
citers as a function of total
amount of citations for
R = 0.2, computed using
(16.32)
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citation distribution to estimate an average value of R∗ for the scientific literature in
general. The formula is:

〈R∗〉= ∑R∗(Ni)×Ni

∑Ni
(16.33)

Here the summation is over all of the papers in the sample and Ni is the number of
citations that ith paper had received. The estimate, computed using citation data for
Physical Review D [11] and (16.32) and (16.33) (assuming R = 0.2), is 〈R∗〉 ≈ 0.33.

16.2.5 Comparison with the Previous Work

The bulk of previous literature on citations was concerned with their counting.
After extensive literature search we found only a handful of papers which analyzed
misprints in citations (the paper by Steel [12], titled identically to our first misprint
paper, i.e., “Read before you cite,” turned out to use the analysis of the content of
the papers, not of the propagation of misprints in references). Broadus [13] looked
through 148 papers, which cited both the renowned book, which misquoted the title
of one of its references, and that paper, the title of which was misquoted in the book.
He found that 34 or 23% of citing papers made the same error as was in the book.
Moed and Vries [14] (apparently independent of Broadus, as they do not refer to
his work), found identical misprints in scientific citations and attributed them to
citation copying. Hoerman and Nowicke [15] looked through a number of papers,
which deal with the so-called Ortega Hypothesis of Cole and Cole. When Cole and
Cole quoted a passage from the book by Ortega they introduced three distortions.
Hoerman and Nowicke found seven papers which cite Cole and Cole and also quote
that passage from Ortega. In six out of these seven papers all of the distortions made
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by Cole and Cole were repeated. According to [15] in this process even the original
meaning of the quotation was altered. In fact, information is sometimes defined by
its property to deteriorate in chains [16].

While the fraction of copied citations found by Hoerman and Nowicke [15],
6/7 ∼= 86% agrees with our estimate, Boadus’ number, 23%, seems to disagree
with it. Note, however, that Broadus [13] assumes that citation, if copied – was
copied from the book (because the book was renowned). Our analysis indicates that
majority of citations to renowned papers are copied. Similarly, we surmise, in the
Broadus’ case citations to both the book and the paper were often copied from a
third source.

16.3 Copied Citations Create Renowned Papers?

16.3.1 The Model of Random-Citing Scientists

During the “Manhattan project” (the making of nuclear bomb), Fermi asked Gen.
Groves, the head of the project, what is the definition of a “great” general [17].
Groves replied that any general who had won five battles in a row might safely
be called great. Fermi then asked how many generals are great. Groves said about
three out of every hundred. Fermi conjectured that considering that opposing forces
for most battles are roughly equal in strength, the chance of winning one battle
is 1/2 and the chance of winning five battles in a row is 1/25 = 1/32. “So you
are right, General, about three out of every hundred. Mathematical probability, not
genius.” The existence of military genius also questioned Lev Tolstoy in his book
“War and Peace.”

A commonly accepted measure of “greatness” for scientists is the number of
citations to their papers [18]. For example, SPIRES, the High-Energy Physics
literature database, divides papers into six categories according to the number of
citations they receive. The top category, “Renowned papers” are those with 500 or
more citations. Let us have a look at the citations to roughly eighteen and a half
thousand papers,5 published in Physical Review D in 1975–1994 [11]. As of 1997
there were about 330 thousands of such citations: 18 per published paper on average.
However, 44 papers were cited 500 times or more. Could this happen if all papers
are created equal? If they indeed are then the chance to win a citation is one in
18,500. What is the chance to win 500 cites out of 330,000? The calculation is

5In our initial report [22] we mentioned “over 24 thousand papers.” This number is incorrect and
the reader surely understands the reason: misprints. In fact, out of 24,295 “papers” in that dataset
only 18,560 turned out to be real papers and 5,735 “papers” turned out to be misprinted citations.
These “papers” got 17,382 out of 351,868 citations. That is every distinct misprint on average
appeared three times. As one could expect, cleaning out misprints lead to much better agreement
between experiment and theory: compare Fig.16.8 and Fig. 1 of [22].
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slightly more complex than in the militaristic case,6 but the answer is 1 in 10500, or,
in other words, it is zero. One is tempted to conclude that those 44 papers, which
achieved the impossible, are great.

In the preceding sections, we demonstrated that copying from the lists of
references used in other papers is a major component of the citation dynamics
in scientific publication. This way a paper that already was cited is likely to be
cited again, and after it is cited again it is even more likely to be cited in the
future. In other words, “unto every one which hath shall be given” [Luke 19:26].
This phenomenon is known as “Matthew effect”,7 “cumulative advantage” [20], or
“preferential attachment” [21].

The effect of citation copying on the probability distribution of citations can
be quantitatively understood within the framework of the model of random-citing
scientists (RCS) [22],8 which is as follows. When a scientist is writing a manuscript
he picks up m random articles,9 cites them, and also copies some of their references,
each with probability p.

The evolution of the citation distribution (here Nk denotes the number of papers
that were cited K times, and N is the total number of papers) is described by the
following rate equations:

dN0

dN
= 1−m× N0

N
,

dNk

dN
= m× (1+ p(K− 1))Nk−1− (1+ pK)Nk

N
, (16.34)

which have the following stationary solution:

N0 =
N

m+ 1
;Nk =

1+ p(K− 1)
1+ 1/m+ pK

Nk−1. (16.35)

6If one assumes that all papers are created equal then the probability to win m out of n possible
citations when the total number of cited papers is N is given by the Poisson distribution: P =
((n/N)m/m!)× e−n/N . Using Stirling’s formula one can rewrite this as: ln(P) ≈ m ln(ne/Nm)−
(n/N). After substituting n = 330,000, m = 500 and N = 18500 into the above equation we get:
ln(P)≈−1,180, or P ≈ 10−512.
7Sociologist of science Robert Merton observed [19] that when a scientist gets recognition early in
his career he is likely to get more and more recognition. He called it “Matthew Effect” because in
Gospel according to Mathew (25:29) appear the words: “unto every one that hath shall be given”.
The attribution of a special role to St. Matthew is unfair. The quoted words belong to Jesus and
also appear in Luke and Mark’s gospels. Nevertheless, thousands of people who did not read The
Bible copied the name “Matthew Effect.”
8From the mathematical perspective, almost identical to RCS model (the only difference was that
they considered an undirected graph, while citation graph is directed) was earlier proposed in [23].
9The analysis presented here also applies to a more general case when m is not a constant, but a
random variable. In that case m in all of the equations that follow should be interpreted as the mean
value of this variable.
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Fig. 16.8 Outcome of the model of random-citing scientists (with m = 5 and p = 0.14) compared
to actual citation data. Mathematical probability rather than genius can explain why some papers
are cited a lot more than the others

For large K it follows from (16.35) that:

Nk ∼ 1/Kγ ;γ = 1+
1

m× p
· (16.36)

Citation distribution follows a power law, empirically observed in [24–26].
A good agreement between the RCS model and actual citation data [11] is

achieved with input parameters m = 5 and p = 0.14 (see Fig. 16.8). Now what is the
probability for an arbitrary paper to become “renowned,” i.e., receive more than 500
citations? Iteration of (16.35) (with m = 5 and p = 0.14) shows that this probability
is 1 in 420. This means that about 44 out of 18,500 papers should be renowned.
Mathematical probability, not genius.

On one incident [27] Napoleon (incidentally, he was the military commander,
whose genius was questioned by Tolstoy) said to Laplace “They tell me you have
written this large book on the system of the universe, and have never even mentioned
its Creator.” The reply was “I have no need for this hypothesis.” It is worthwhile to
note that Laplace was not against God. He simply did not need to postulate. His
existence in order to explain existing astronomical data. Similarly, the present work
is not blasphemy. Of course, in some spiritual sense, great scientists do exist. It is
just that even if they would not exist, citation data would look the same.



482 M.V. Simkin and V.P. Roychowdhury

16.3.2 Relation to Previous Work

Our original paper on the subject [22] was stimulated by the model introduced by
Vazquez [27]. It is as follows. When scientist is writing a manuscript, he picks up
a paper, cites it, follows its references, and cites a fraction p of them. Afterward
he repeats this procedure with each of the papers that he cited. And so on. In two
limiting cases (p = 1 and p = 0) the Vazquez model is exactly solvable [27]. Also
in these cases it is identical to the RCS model (m = 1 case), which in contrast can
be solved for any p. Although theoretically interesting, the Vazquez model cannot
be a realistic description of the citation process. In fact, the results presented in
two preceding sections indicate that there is essentially just one “recursion,” that is,
references are copied from the paper at hand, but hardly followed. To be precise,
results of two preceding sections could support a generalized Vazquez model,
in which the references of the paper at hand are copied with probability p, and
afterward the copied references are followed with probability R. However, given
the low value of this probability (R ≈ 0.2), it is clear that the effect of secondary
recursions on the citation distribution is small.

The book of Ecclesiastes says: “Is there any thing whereof it may be said, See,
this is new? It hath been already of old time, which was before us.” The discovery
reported in this section is no exception. Long ago Price [20], by postulating that the
probability of paper being cited is somehow proportional to the amount of citations
it had already received, explained the power law in citation frequencies, which he
had earlier observed [22]. However, Price did not propose any mechanism for that.
Vasquez did propose a mechanism, but it was only a hypothesis. In contrast, our
paper is rooted in facts.

16.4 Mathematical Theory of Citing

16.4.1 Modified Model of Random-Citing Scientists

. . . citations not only vouch for the authority and relevance of the statements they are called
upon to support; they embed the whole work in context of previous achievements and
current aspirations. It is very rare to find a reputable paper that contains no reference to
other research. Indeed, one relies on the citations to show its place in the whole scientific
structure just as one relies on a man’s kinship affiliations to show his place in his tribe.

John M. Ziman, FRS [28]

In spite of its simplicity, the model of RCS appeared to account for the major
properties of empirically observed distributions of citations. A more detailed
analysis, however, reveals that some features of the citation distribution are not
accounted for by the model. The cumulative advantage process would lead to
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oldest papers being most highly cited [5, 21, 29].10 In reality, the average citation
rate decreases as the paper in question gets older [24, 30–32]. The cumulative
advantage process would also lead to an exponential distribution of citations to
papers of the same age [5, 29]. In reality citations to papers published during the
same year are distributed according to a power-law (see the ISI dataset in Fig.16.1a
in [26]).

In this section, we study the modified model of random-citing scientists (MM-
RCS) [33]: when a scientist writes a manuscript, he picks up several random recent
papers, cites them, and also copies some of their references. The difference with
the original model is the word recent. We solve this model using methods of the
theory of branching processes [34] (we review its relevant elements in Appendix A),
and show that it explains both the power-law distribution of citations to papers
published during the same year and literature aging. A similar model was earlier
proposed by Bentley, Hahn, and Shennan [35] in the context of patents citations.
However they just used it to explain a power law in citation distribution (for what
the usual cumulative advantage model will do) and did not address the topics we
just mentioned.

While working on a paper, a scientist reads current issues of scientific journals
and selects from them the references to be cited in it. These references are of two
sorts:

• Fresh papers he had just read – to embed his work in the context of current
aspirations.

• Older papers that are cited in the fresh papers he had just read – to place his
work in the context of previous achievements.

It is not a necessary condition for the validity of our model that the citations to
old papers are copied, but the paper itself remains unread (although such opinion is
supported by the studies of misprint propagation). The necessary conditions are as
follows:

• Older papers are considered for possible citing only if they were recently cited.
• If a citation to an old paper is followed and the paper is formally read – the

scientific qualities of that paper do not influence its chance of being cited.

A reasonable estimate for the length of time a scientist works on a particular paper
is one year. We will thus assume that “recent” in the MMRCS means the preceding
year. To make the model mathematically tractable we enforce time-discretization
with a unit of one year. The precise model to be studied is as follows. Every year N
papers are published. There is, on average, Nref references in a published paper (the
actual value is somewhere between 20 and 40). Each year, a fraction α of references

10Some of these references do not deal with citing, but with other social processes, which are
modeled using the same mathematical tools. Here we rephrase the results of such papers in terms
of citations for simplicity.
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goes to randomly selected preceding year papers (the estimate11 from actual citation
data is α ≈ 0.1(see Fig. 4 in [24]) or α ≈ 0.15 (see Fig. 6 in [36])). The remaining
citations are randomly copied from the lists of references used in the preceding year
papers.

16.4.2 Branching Citations

When N is large, this model leads to the first-year citations being Poisson-
distributed. The probability to get n citations is

p(n) =
λ0

n

n!
e−λ0 , (16.37)

where λ0 is the average expected number of citations

λ0 = αNref. (16.38)

The number of the second-year citations, generated by each first year citation (as
well as, third-year citations generated by each second year citation and so on), again
follows a Poisson distribution, this time with the mean

λ = (1−α). (16.39)

Within this model, citation process is a branching process (see Appendix A) with
the first-year citations equivalent to children, the second-year citations to grand
children, and so on.

As λ < 1, this branching process is subcritical. Figure 16.9 shows a graphical
illustration of the branching citation process.

Substituting ( 16.37) into (16.78) we obtain the generating function for the first
year citations:

f0(z) = e(z−1)λ0. (16.40)

Similarly, the generating function for the later-years citations is:

f (z) = e(z−1)λ . (16.41)

11The uncertainty in the value of α depends not only on the accuracy of the estimate of the fraction
of citations which goes to previous year papers. We also arbitrarily defined recent paper (in the
sense of our model), as the one published within a year. Of course, this is by order of magnitude
correct, but the true value can be anywhere between half a year and 2 years.
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Fig. 16.9 An illustration of the branching citation process, generated by the modified model of
random-citing scientists. During the first year after publication, the paper was cited in three other
papers written by the scientists who have read it. During the second year one of those citations was
copied in two papers, one in a single paper and one was never copied. This resulted in three second
year citations. During the third year, two of these citations were never copied, and one was copied
in three papers

The process is easier to analyze when λ = λ0, or λ0/λ = (α/(1−α))Nref = 1, as
then we have a simple branching process, where all generations are governed by the
same offspring probabilities. The case when λ �= λ0 we study in Appendix B.

16.4.2.1 Distribution of Citations to Papers Published During the Same Year

Theory of branching processes allows us to analytically compute the probability
distribution, P(n), of the total number of citations the paper receives before it
is forgotten. This should approximate the distribution of citations to old papers.
Substituting (16.41) into (16.85) we get:

P(n) =
1
n!

[
dn−1

dωn−1 en(ω−1)λ
]

ω=0
=

(nλ )n−1

n!
e−λ n. (16.42)

Applying Stirling’s formula to (16.42), we obtain the large n asymptotic of the
distribution of citations:

P(n) ∝
1√

2πλ n3/2
e−(λ−1−lnλ )n. (16.43)

When 1−λ � 1 we can approximate the factor in the exponent as:

λ − 1− ln λ ≈ (1−λ )2/2. (16.44)
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As 1− λ � 1, the above number is small. This means that for n� 2/(1− λ )2

the exponent in (16.43) is approximately equal to 1 and the behavior of P(n) is
dominated by the 1/n3/2 factor. In contrast, when n� 2/(1−λ )2 the behavior of
P(n) is dominated by the exponential factor. Thus citation distribution changes from
a power law to an exponential (suffers an exponential cut-off) at about

nc =
1

λ − 1− ln λ
≈ 2

(1−λ )2 (16.45)

citations. For example, when α = 0.1 (16.39) gives λ = 0.9 and from (16.45) we
get that the exponential cut-off happens at about 200 citations. We see that, unlike
the cumulative advantage model, our model is capable of qualitative explanation of
the power-law distribution of citations to papers of the same age. The exponential
cut-off at 200, however, happens too soon, as the actual citation distribution obeys
a power law well into thousands of citations. In the following sections we show
that taking into account the effects of literature growth and of variations in papers’
Darwinian fitness can fix this.

In the cumulative advantage (AKA preferential attachment) model, a power-law
distribution of citations is only achieved because papers have different ages. This
is not immediately obvious from the early treatments of the problem [4, 20], but
is explicit in later studies [5, 21, 29]. In that model, the oldest papers are the most
cited ones. The number of citations is mainly determined by paper’s age. At the
same time, distribution of citations to papers of the same age is exponential [5, 29].
The key difference between that model and ours is as follows. In the cumulative
advantage model, the rate of citation is proportional to the number of citations the
paper had accumulated since its publication. In our model, the rate of citation is
proportional to the number of citations the paper received during preceding year.
This means that if an unlucky paper was not cited during previous year – it will
never be cited in the future. This means that its rate of citation will be less than that
in the cumulative advantage model. On the other hand, the lucky papers, which were
cited during the previous year, will get all the citation share of the unlucky papers.
Their citation rates will be higher than in the cumulative advantage model. There
is thus more stratification in our model than in the cumulative advantage model.
Consequently, the resulting citation distribution is far more skewed.

16.4.2.2 Distribution of Citations to Papers Cited During the Same Year

We denote as N(n) the number of papers cited n times during given year. The
equilibrium distribution of N(n) should satisfy the following self-consistency
equation:

N(n) =
∞

∑
m=1

N(m)
(λ m)n

n!
e−λ m +N

(λ0)
n

n!
e−λ0 (16.46)
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Here the first term comes from citation copying and the second from citing previous
year papers. In the limit of large n the second term can be neglected and the sum
can be replaced with integral to get:

N(n) =
1
n!

∞∫
0

dmN(m)(λ m)ne−λ m (16.47)

In the case λ = 1 one solution of (16.47) is N(m) = C, where C is an arbitrary
constant. Clearly, the integral becomes a gamma function and the factorial in the
denominator cancels out. However, this solution is, meaningless since the total
number of citations per year, which is given by

Ncite =
∞

∑
m=1

mN(m) (16.48)

diverges. In the case λ < 1, N(m) = C is no longer a solution since the integral
gives C/λ . However N(m) =C/m is a solution. This solution is again meaningless
because the total number of yearly citations given by (16.48) again diverges. One
can look for a solution of the form

N(m) =
C
m

exp(−μm) (16.49)

After substituting (16.49) into (16.47) we get that N(n) is given by the same function
but instead of μ with

μ ′ = ln(1+ μ/λ ) (16.50)

The self-consistency equation for μ is thus

μ = ln(1+ μ/λ ). (16.51)

The obvious solution is μ = 0 which gives us the previously rejected solution
N(m) = C/m. It is also easy to see that this stationary solution is unstable. If μ
slightly deviates from zero (16.50) gives us μ ′ = μ/λ . Since λ < 1 the deviation
from stationary shape will increase the next year. Another solution of (16.51) can be
found by expansion of the logarithm up to the second order in μ . It is μ ≈ 2(1−λ ).
One can show that this solution is stable. Thus, we get:

N(m)≈ C
m

exp(−2(1−λ )m) (16.52)

After substituting this into (16.48) we get

C ≈ 2(1−λ )Ncite (16.53)
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The solution which we just presented was stimulated by that obtained by Wright
[37], who studied the distribution of alleles (alternative forms of a gene) in a
population. In Wright’s model, the gene pool at any generation has constant size
Ng. To form the next generation we Ng times select a random gene from current
generation pool and copy it to next generation pool. With some probability, a gene
can mutate during the process of copying. The problem is identical to ours with
an allele replaced with a paper and mutation with a new paper. Our solution follows
that of Wright but is a lot simpler. Wright considered finite Ng. and as a consequence
got Binomial distribution and a Beta function in his analog of (16.47). The simplifi-
cation was possible because in the limit of large Ng Binomial distribution becomes
Poissonian. Alternative derivations of (16.52) can be found in [33] and [38].

16.4.3 Scientific Darwinism

Now we proceed to investigate the model, where papers are not created equal, but
each has a specific Darwinian fitness, which is a bibliometric measure of scientific
fangs and claws that help a paper to fight for citations with its competitors. While
this parameter can depend on factors other than the intrinsic quality of the paper, the
fitness is the only channel through which the quality can enter our model. The fitness
may have the following interpretation. When a scientist writes a manuscript he
needs to include in it a certain number of references (typically between 20 and
40, depending on implicit rules adopted by a journal where the paper is to be
submitted). He considers random scientific papers one by one for citation, and
when he has collected the required number of citations, he stops. Every paper has
specific probability to be selected for citing, once it was considered. We will call this
probability a Darwinian fitness of the paper. Defined in such way, fitness is bounded
between 0 and 1.

In this model a paper with fitness φ will on average have

λ0(φ) = αNrefφ/〈φ〉p (16.54)

first-year citations. Here we have normalized the citing rate by the average fitness of
published papers, 〈ϕ〉p, to insure that the fraction of citations going to previous
year papers remained α . The fitness distribution of references is different from
the fitness distribution of published papers, as papers with higher fitness are cited
more often. This distribution assumes an asymptotic form pr(ϕ), which depends on
the distribution of the fitness of published papers, pp(ϕ), and other parameters of
the model.

During later years there will be on average

λ (ϕ) = (1−α)ϕ/〈ϕ〉r (16.55)

next-year citations per one current year citation for a paper with fitness φ . Here,
〈ϕ〉r is the average fitness of a reference.
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16.4.3.1 Distribution of Citations to Papers Published During the Same Year

Let us start with the self-consistency equation for pr(ϕ), the equilibrium fitness
distribution of references:

pr(ϕ) = α
ϕ× pp(ϕ)
〈ϕ〉p +(1−α)

ϕ× pr(ϕ)
〈ϕ〉r (16.56)

solution of which is:

pr(ϕ) = α
α×ϕ× pp(ϕ)/〈ϕ〉p
1− (1−α)ϕ/〈ϕ〉r (16.57)

One obvious self-consistency condition is that∫
pr(ϕ)dϕ = 1. (16.58)

Another is: ∫
φ × pr(φ)dφ = 〈φ〉r.

However, when the condition of (16.58) is satisfied the above equation follows
from (16.56).

Let us consider the simplest case when the fitness distribution, pp(ϕ), is uniform
between 0 and 1. This choice is arbitrary, but we will see that the resulting
distribution of citations is close to the empirically observed one. In this case, the
average fitness of a published paper is 〈ϕ〉p = 0.5. After substituting this into
(16.56), the result into (16.58), and performing integration we get:

α =− ((1−α)/〈ϕ〉r)2/2
ln(1− (1−α)/〈ϕ〉r)+ (1−α)/〈ϕ〉r (16.59)

Since α is close to 0, 〈ϕ〉r must be very close to 1−α , and we can replace it with
the latter everywhere but in the logarithm to get:

1−α
〈ϕ〉r = 1− e

1
2α−1 (16.60)

For papers of fitness ϕ , citation distribution is given by (16.42) or (16.43) with λ
replaced with λ (ϕ), given by (16.55):

P(n,φ) ∝
1√

2πλ (φ)n3/2
e−(λ (φ)−1−lnλ (φ))n. (16.61)
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When α = 0.1, (16.60) gives (1−α)/〈ϕ〉r ≈ 1−2×10−3. From (16.55) it follows
that λ (1) = (1−α)/〈ϕ〉r. Substituting this into (16.45) we get that the exponential
cut-off for the fittest papers (ϕ = 1) starts at about 300,000 citations. In contrast,
for the unfit papers the cut-off is even stronger than in the model without fitness.
For example, for papers with fitness ϕ = 0.1 we get λ (0.1)= 0.1(1−α)/〈ϕ〉r≈ 0.1
and the decay factor in the exponent becomes λ (0.1)−1− lnλ (0.1)≈ 2.4. This cut-
off is so strong than not even a trace of a power-law distribution remains for such
papers.

To compute the overall probability distribution of citations we need to average
(16.61) over fitness:

P(n) ∝
1√

2πn3/2

1∫
0

dφ
λ (φ)

e−(λ (φ)−1−lnλ (φ))n. (16.62)

We will concentrate on the large n asymptotic. Then only highest-fitness papers,
which have λ (ϕ) close to 1, are important and we can approximate the integral in
(16.62), using (16.44), as:

1∫
0

dϕ exp

(
−
[

1−ϕ
1−α
〈ϕ〉r

]2 n
2

)
=
〈ϕ〉r
1−α

√
2
n

√
n
2∫

(
1− 1−α
〈ϕ〉r

)√
n
2

dze−z2

We can replace the upper limit in the above integral with infinity when n is large.
The lower limit can be replaced with zero when n� nc, where

nc = 2

(
1− 1−α
〈ϕ〉r

)−2

. (16.63)

In that case the integral is equal to
√

π/2, and (16.62) gives:

P(n) ∝
〈ϕ〉r

2(1−α)

1
n2 . (16.64)

In the opposite case,n >> nc, we get:

P(n) ∝
〈ϕ〉r

4(1−α)

√
nc

n2.5 e−
n

nc . (16.65)

When α = 0.1, nc = 3× 105.
Compared to the model without fitness, we have a modified power-law exponent

(2 instead of 3/2) and a much relaxed cut-off of this power law. This is consistent
with the actual citation data shown in the Fig. 16.10.
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Fig. 16.10 Numerical simulations of the modified model of random-citing scientists (triangles)
compared to actual citation data for papers published during a single year (squares). The solid line
is the prediction of the cumulative advantage (AKA preferential attachment) model

Table 16.3 The onset of exponential cut-off in the distribution
of citations, nc, as a function of α , computed using (16.63) and
(16.60)

α 0.3 0.25 0.2 0.15 0.1 0.05
nc 167 409 1,405 9,286 3.1E + 05 7.2E + 09

As was already mentioned, because of the uncertainty of the definition of
“recent” papers, the exact value of α is not known. Therefore, we give nc for a
range of values of α in Table 16.3. As long as α ≤ 0.5 the value of nc does not
contradict existing citation data.

The major results, obtained for the uniform distribution of fitness, also hold for a
non-uniform distribution, which approaches some finite value at its upper extreme
pp(ϕ = 1) = a > 0. In [33] we show that in this case (1−α)/〈ϕ〉r is very close to
unity when α is small. Thus we can treat (16.62) the same way as in the case of the
uniform distribution of fitness. The only change is that (16.64) and (16.65) acquire
a pre-factor of a. Things turn out a bit different when pp(1) = 0. In Appendix C we
consider the fitness distribution, which vanishes at ϕ = 1 as a power law: pp(ϕ) =
(θ +1)(1−ϕ)θ . When θ is small (θ < 2×α

1−α ) the behavior of the model is similar to
what was in the case of a uniform fitness distribution. The distribution of the fitness
of cited papers pr(ϕ) approaches some limiting form with (1−α)/〈ϕ〉r being very
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close to unity when α is small. The exponent of the power law is, however, no
longer 2 as it was in the case of a uniform fitness distribution (16.64), but becomes
2+θ . However, when θ > 2×α

1−α the model behaves differently: (1−α)/〈ϕ〉r strictly
equals 1. This means that the power law does not have an exponential cut-off. Thus,
a wide class of fitness distributions produces citation distributions very similar to the
experimentally observed one. More research is needed to infer the actual distribution
of the Darwinian fitness of scientific papers.

The fitness distribution of references pr(ϕ) adjusts itself in a way that the fittest
papers become critical. This is similar to what happens in the SOC model [39] where
the distribution of sand grains adjusts itself that the avalanches become critical.
Recently we proposed a similar SOC-type model to describe the distribution of links
in blogosphere [40].

16.4.3.2 Distribution of Citations to Papers Cited During the Same Year

This distribution in the case without fitness is given in (16.52). To account for fitness
we need to replace λ with λ (ϕ) in (16.52) and integrate it over ϕ . The result is:

p(n)∼ 1
n2 e−n/n∗c , (16.66)

where

n∗c =
1
2

(
1− 1−α
〈ϕ〉r

)−1

. (16.67)

Note that n∗c ∼
√

nc. This means that the exponential cut-off starts much sooner for
the distribution of citation to papers cited during the same year, then for citation
distribution for papers published during the same year.

The above results qualitatively agree with the empirical data for papers cited in
1961 (see Fig. 2 in [24]). The exponent of the power law of citation distribution
reported in that work is, however, between 2.5 and 3. Quantitative agreement thus
may be lacking.

16.4.4 Effects of Literature Growth

Up to now we implicitly assumed that the yearly volume of published scientific
literature does not change with time. In reality, however, it grows, and does so
exponentially. To account for this, we introduce a Malthusian parameter, β , which is
yearly percentage increase in the yearly number of published papers. From the data
on the number of items in the Mathematical Reviews Database [41], we obtain that
the literature growth between 1970 and 2000 is consistent with β ≈ 0.045. From
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the data on the number of source publications in the ISI database (see Table 1 in
[30]) we get that the literature growth between 1973 and 1984 is characterized by
β ≈ 0.03. One can argue that the growth of the databases reflected not only growth
of the volume of scientific literature, but also increase in activities of Mathematical
Reviews and ISI and true β must be less. One can counter-argue that may be ISI and
Mathematical Reviews could not cope with literature growth and β must be more.
Another issue is that the average number of references in papers also grows. What
is important for our modeling is the yearly increase not in number of papers, but
in the number of citations these papers contain. Using the ISI data we get that this
increase is characterized by β ≈ 0.05. As we are not sure of the precise value of β ,
we will be giving quantitative results for a range of its values.

16.4.4.1 Model Without Fitness

At first, we will study the effect of β in the model without fitness. Obviously, (16.38)
and (16.39) will change into:

λ0 = α(1+β )Nref, (16.68)

λ = (1−α)(1+β ). (16.69)

The estimate of the actual value of λ is: λ ≈ (1−0.1)(1+0.05)≈ 0.945. Substitut-
ing this into (16.45) we get that the exponential cut-off in citation distribution now
happens after about 660 citations.

A curious observation is that when the volume of literature grows in time the
average amount of citations a paper receives, Ncit, is bigger than the average amount
of references in a paper, Nref. Elementary calculation gives:

Ncit =
∝

∑
m=0

λ0λ m =
λ0

1−λ
=

α(1+β )Nref

1− (1−α)(1+β )
. (16.70)

As we see Ncit = Nref only when β = 0 and Ncit > Nref when β > 0. There is no
contradiction here if we consider an infinite network of scientific papers, as one can
show using methods of the set theory that there are one-to-many mappings of an
infinite set on itself. When we consider real, i.e., finite, network where the number
of citations is obviously equal to the number of references we recall that Ncit, as
computed in (16.70), is the number of citations accumulated by a paper during its
cited lifetime. So recent papers did not yet receive their share of citations and there
is no contradiction again.
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Table 16.4 Critical value of the Malthusian parameter βc as
a function of α computed using (16.73). When β > βc the
fittest papers become supercritical

α 0.3 0.25 0.2 0.15 0.1 0.05
βc 0.12 0.075 0.039 0.015 2.6E-03 1.7E-05

16.4.4.2 Model with Darwinian Fitness

Taking into account literature growth leads to transformation of (16.54) and
(16.55) into:

λ0(φ) = α(1+β )Nrefφ/〈φ〉p, (16.71)

λ (φ) = (1−α)(1+β )φ/〈φ〉r. (16.72)

As far as the average fitness of a reference, 〈ϕ〉r, goes, β has no effect. Clearly, its
only result is to increase the number of citations to all papers (independent of their
fitness) by a factor 1+β . Therefore 〈ϕ〉r is still given by (16.59). While, λ (ϕ) is
always less than unity in the case with no literature growth, it is no longer so when
we take this growth into account. When β is large enough, some papers can become
supercritical. The critical value of β , i.e., the value which makes papers with ϕ = 1
critical, can be obtained from (16.72):

βc = 〈φ〉r/(1−α)− 1 (16.73)

When β > βc, a finite fraction of papers becomes supercritical. The rate of citing
them will increase with time. Note, however, that it will increase always slower than
the amount of published literature. Therefore, the relative fraction of citations to
those papers to the total number of citations will decrease with time.

Critical values of β for several values of α are given in Table 16.4. For realistic
values of parameters (α ≤ 0.15 and β ≥ 0.03) we have β > βc and thus our model
predicts the existence of supercritical papers. Note, however, that this conclusion
also depends on the assumed distribution of fitness.

It is not clear whether supercritical papers exist in reality or are merely a
pathological feature of the model. Supercritical papers probably do exist if one
generalizes “citation” to include references to a concept, which originated from the
paper in question. For instance, these days a negligible fraction of scientific papers
which use Euler’s Gamma function contain a reference to Euler’s original paper.
It is very likely that the number of papers mentioning Gamma function is increasing
year after year.

Let us now estimate the fraction of supercritical papers predicted by the model.
As (1−α)/〈ϕ〉r is very close to unity, it follows from (16.72) that papers with
fitness ϕ > ϕc ≈ 1/(1+ β )≈ 1− β are in the supercritical regime. As β ≈ 0.05,
about 5% of papers are in such regime. This does not mean that 5% of papers will
be cited forever, because being in supercritical regime only means having extinction
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probability less than one. To compute this probability we substitute (16.72) and
(16.41) into (16.80) and get:

pext(φ) = exp((1+β )×φ× (pext(φ)− 1)).

It is convenient to rewrite the above equation in terms of survival probability:

1− psurv(φ) = exp(−(1+β )×φ× psurv(φ)).

As β � 1 the survival probability is small and we can expand the RHS of the above
equation in powers of psurv. We limit this expansion to terms up to (psurv)

2 and after
solving the resulting equation get:

psurv(φ)≈ 2
φ − 1

1+β

(1+β )φ
≈ 2(φ − 1+β ).

The fraction of forever-cited papers is thus:
1∫

1−β
2(ϕ−1+β )dϕ = β 2. For β ≈ 0.05

this will be one in four hundred. By changing the fitness distribution pp(ϕ) from a
uniform this fraction can be made much smaller.

16.4.5 Numerical Simulations

The analytical results are of limited use, as they are exact only for infinitely old
papers. To see what happens with finitely old papers, one has to do numerical
simulations. Figure 16.10 shows the results from such simulations (with α = 0.1,
β = 0.05, and uniform between 0 and 1 fitness distribution), i.e., distributions of
citations to papers published within a single year, 22 years after publication. Results
are compared with actual citation data for Physical Review D papers published
in 1975 (as of 1997) [11]. Prediction of the cumulative advantage [20] (AKA
preferential attachment [21]) model is also shown. As we mentioned earlier, that
model leads to exponential distribution of citations to papers of same age, and thus
cannot account for highly-skewed distribution empirically observed.

16.4.6 Aging of Scientific Literature

Scientific papers tend to get less frequently cited as time passes since their
publication. There are two ways to look at the age distribution of citations. One
can take all papers cited during a particular year, and study the distribution
of their ages. In Bibliometrics this is called synchronous distribution [30]. One
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can take all the papers published during a particular distant year, and study the
distribution of the citations to these papers with regard to time difference between
citation and publication. Synchronous distribution is steeper than the distribution
of citation to papers published during the same year (see Figs. 16.2 and 16.3 in
[30]). For example, if one looks at a synchronous distribution, then 10-year-old
papers appear to be cited three times less than 2-year-old papers. However, when
one looks at the distribution of citations to papers published during the same year
the number of citations 10 years after publication is only 1.3 times less than 2
years after publication. The apparent discrepancy is resolved by noting that the
number of published scientific papers had grown 2.3 times during 8 years. When
one plots not total number of citations to papers published in a given year, but
the ratio of this number to the annual total of citations than resulting distribution
(it is called diachronous distribution [30]) is symmetrical to the synchronous
distribution.

Recently, Redner [36] who analyzed a century worth of citation data from
Physical Review had found that the synchronous distribution (he calls it citations
from) is exponential, and the distribution of citations to papers published during
the same year (he calls it citations to) is a power law with an exponent close
to 1. If one were to construct a diachronous distribution using Redner’s data, – it
would be a product of a power law and an exponential function. Such distribution is
difficult to tell from an exponential one. Thus, Redner’s data may be consistent with
synchronous and diachronous distributions being symmetric.

The predictions of the mathematical theory of citing are as follows. First, we
consider the model without fitness. The average number of citations a paper receives
during the kth year since its publication, Ck, is:

Ck = λ0λ k−1, (16.74)

and thus, decreases exponentially with time. This is in qualitative agreement with
Nakamoto’s [30] empirical finding. Note, however, that the exponential decay is
empirically observed after the second year, with average number of the second-
year citations being higher than the first year. This can be understood as a mere
consequence of the fact that it takes about a year for a submitted paper to get
published.

Let us now investigate the effect of fitness on literature aging. Obviously, (16.74)
will be replaced with:

Ck =

1∫
0

dφλ0(φ)λ k−1(φ). (16.75)
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Table 16.5 The number of years, after which the decrease in average citing
rate will change from a power law to an exponential, kc, computed using
(16.77), as a function of α
α 0.3 0.25 0.2 0.15 0.1 0.05
kc 9 14 26 68 392 59,861

Substituting (16.54) and (16.55) into (16.75) and performing integration we get:

Ck =
αNref

〈φ〉p

(
1−α
〈φ〉r

)k−1 1
k+ 1

. (16.76)

The average rate of citing decays with paper’s age as a power law with an
exponential cut-off. This is in agreement with Redner’s data (See Fig. 7 of [36]),
though it contradicts the older work [30], which found exponential decay of citing
with time.

In our model, the transition from hyperbolic to exponential distribution occurs
after about

kc =−1/ ln((1−α)/〈ϕ〉r) (16.77)

years. The values of kc for different values of α are given in Table 16.5. The values
of kc for α ≤ 0.2 do not contradict the data reported by Redner [36].

We have derived literature aging from a realistic model of scientist’s referencing
behavior. Stochastic models had been used previously to study literature aging, but
they were of artificial type. Glänzel and Schoepflin [31] used a modified cumulative
advantage model, where the rate of citing is proportional to the product of the
number of accumulated citations and some factor, which decays with age. Burrell
[42], who modeled citation process as a non-homogeneous Poisson process had to
postulate some obsolescence distribution function. In both these cases, aging was
inserted by hand. In contrast, in our model, literature ages naturally.

16.4.7 Sleeping Beauties in Science

Figure 16.11 shows two distinct citation histories. The paper, whose citation history
is shown by the squares, is an ordinary paper. It merely followed some trend. When
10 years later that trend got out of fashion the paper got forgotten. The paper, whose
citation history is depicted by the triangles, reported an important but premature
[43] discovery, significance of which was not immediately realized by scientific
peers. Only 10 years after its publication did the paper get recognition, and got
cited widely and increasingly. Such papers are called “Sleeping Beauties” [44].
Surely, the reader has realized that both citation histories are merely the outcomes
of numerical simulations of the MMRCS.
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Fig. 16.11 Two distinct
citation histories: an ordinary
paper (squares) and a
“Sleeping Beauty” (triangles)
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16.4.8 Relation to Self-Organized Criticality

Three out of twelve high-profile papers misprints in citing which we studied in
Sect. 16.1 (see papers 10, 11, and 12 in Tables 16.1 and 16.2) advance the science of
SOC [39]. Interestingly this science itself is directly related to the theory of citing.
We model scientific citing as a random branching process. In its mean-field version,
SOC can also be described as a branching process [45]. Here the sand grains, which
are moved during the original toppling, are equivalent to sons. These displaced
grains can cause further toppling, resulting in the motion of more grains, which
are equivalent to grandsons, and so on. The total number of displaced grains is
the size of the avalanche and is equivalent to the total offspring in the case of a
branching process. The distribution of offspring sizes is equivalent to the distribution
of avalanches in SOC.

Bak [46] himself had emphasized the major role of chance in works of Nature:
one sand grain falls, – nothing happens; another one (identical) falls, – and causes
an avalanche. Applying these ideas to biological evolution, Bak and Sneppen [47]
argued that no cataclysmic external event was necessary to cause a mass extinction
of dinosaurs. It could have been caused by one of many minor external events.
Similarly, in the model of random-citing scientists: one paper goes unnoticed, but
another one (identical in merit), causes an avalanche of citations. Therefore apart
from explanations of 1/ f noise, avalanches in sandpiles, and extinction of dinosaurs,
the highly cited Science of self-organized criticality can also account for its own
success.
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16.5 Discussion

The conclusion of this study that a scientific paper can become famous due to
ordinary law of chances independently of its content may seem shocking to some
people. Here we present more facts to convince them.

Look at the following example. The writings of J. Lacan (10,000 citations) and
G. Deleuze (8,000 citations) were exposed by Sokal and Bricmont [48] as nonsense.
At the same time, the work of the true scientists is far less cited: A. Sokal – 2,700
citations, J. Bricmont – 1,000 citations.

Additional support for the plausibility of this conclusion gives us the statistics of
the very misprints in citations the present study grew from. Few citation slips repeat
dozens of times, while most appear just once (see Fig. 16.1). Can one misprint be
more seminal than the other?

More support comes from the studies of popularity of other elements of culture.
A noteworthy case where prominence is reached by pure chance is the statistics
of baby-names. Hahn and Bentley [49] observed that their frequency distribution
follows a power law, and proposed a copying mechanism that can explain this obser-
vation. For example, during the year 2000 34,448 new-born American babies were
named Jacob, while only 174 were named Samson [50]. This means that the name
“Jacob” is 200 times more popular than the name “Samson.” Is it intrinsically better?

A blind test was administered offering unlabeled paintings, some of which were
famous masterpieces of Modern art while others were produced by the author of
the test [51]. Results indicate that people cannot tell great art from chaff when
the name of a great artist is detached from it. One may wonder if a similar test
with famous scientific articles would lead to similar results. In fact there is one
forgotten experiment though not with scientific articles, but with a scientific lecture.
Naftulin, Ware, and Donnelly [52] programmed an actor to teach on a subject he
knew nothing. They presented him to a scientific audience as Dr. Myron Fox, an
authority on application of mathematics to human behavior (we would like to note
that in practice the degree of authority of a scientist is determined by the number
of citations to his papers). He read a lecture and answered questions and nobody
suspected anything wrong. Afterward the attendees were asked to rate the lecturer
and he got high grades. They indicated that they learned a lot from the lecture and
one of respondents even indicated that he had read Dr. Fox’s articles.

To conclude let us emphasize that the Random-citing model is used not to ridicule
the scientists, but because it can be exactly solved using available mathematical
methods, while yielding a better match with data than any existing model. This
is similar to the random-phase approximation in the theory of an electron gas.
Of course, the latter did not arouse as much protest, as the model of random-citing
scientists, – but this is only because electrons do not have a voice. What is an
electron? – Just a green trace on the screen of an oscilloscope. Meanwhile, within
itself, electron is very complex and is as inexhaustible as the universe. When an
electron is annihilated in a lepton collider, the whole universe dies with it. And as
for the random-phase approximation: Of course, it accounts for the experimental
facts – but so does the model of random-citing scientists.
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Appendix A: Theory of Branching Processes

Let us consider a model where in each generation, p(0) percent of the adult males
have no sons, p(1) have one son and so on. The problem is best tackled using the
method of generating functions [34], which are defined as:

f (z) =
∞

∑
n=0

p(n)zn. (16.78)

These functions have many useful properties, including that the generating function
for the number of grandsons is f2(z) = f ( f (z)). To prove this, notice that if we start
with two individuals instead of one, and both of them have offspring probabilities
described by f (z), their combined offspring has generating function ( f (z))2. This
can be verified by observing that the nth term in the expansion of ( f (z))2 is

equal to
n
∑

m=0
p(n−m)p(m), which is indeed the probability that the combined

offspring of two people is n. Similarly one can show that the generating function of
combined offspring of n people is ( f (z))n . The generating function for the number
of grandsons is thus:

f2(z) =
∞

∑
n=0

p(n)( f (z))n = f ( f (z)).

In a similar way one can show that the generating function for the number of grand-
grandsons is f3(z) = f ( f2(z)) and in general:

fk(z) = f ( fk−1(z)). (16.79)

The probability of extinction, pext, can be computed using the self-consistency
equation:

pext =
∞

∑
n=0

p(n)pn
ext = f (pext). (16.80)

The fate of families depends on the average number of sons λ = ∑np(n) =
[ f ′(z)]z=1. When λ < 1, (16.80) has only one solution, pext = 1, that is all families
get extinct (this is called subcritical branching process). When λ > 1, there is
a solution where pext < 1, and only some of the families get extinct, while
others continue to exist forever (this is called supercritical branching process).
The intermediate case, λ = 1, is critical branching process, where all families get
extinct, like in a subcritical process, though some of them only after very long time.

For a subcritical branching process we will also be interested in the probability
distribution, P(n), of total offspring, which is the sum of the numbers of sons,
grandsons, grand-grandsons, and so on (to be precise we include the original
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individual in this sum just for mathematical convenience). We define the correspond-
ing generating function [54]:

g(z) =
∞

∑
n=1

p(n)zn. (16.81)

Using an obvious self-consistency condition (similar to the one in (16.80)) we get:

zf (g) = g. (16.82)

We can solve this equation using Lagrange expansion (see [53]), which is as follows.
Let z = F(g) and F(0) = 0 where F ′(0) �= 0, then:

Φ(g(z)) =
∞

∑
n=0

1
n!

dn−1

dgn−1

(
Φ′(g)

(
g

F(g)

)n)∣∣
g=0 zn. (16.83)

Substituting F(g) = g/F(g) (see (16.82)) and Φ(g) = g into (16.83) we get:

g =
∞

∑
n=1

zn

n!

[
dn−1

dωn−1 ( f (ω))n
]

ω=0
. (16.84)

Using (16.81) we get:

P(n) =
1
n!

[
dn−1

dωn−1 ( f (ω))n
]

ω=0
. (16.85)

Theory of branching processes can help to understand scientific citation process.
The first-year citations correspond to sons. Second year citations, which are copies
of the first year citations, correspond to grandsons, and so on.

Appendix B

Let us consider the case when λ �= λ0, i.e., a branching process were the generating
function for the first generation is different from the one for subsequent generations.
One can show that the generating function for the total offspring is:

g̃(z) = z f0( f (z)). (16.86)

In the case λ = λ0 we have f (z) = f0(z) and because of (16.82) g̃(z) = g(z). We can
compute f0(g(z)) by substituting f0 for Φ in (16.83)

f0(g(z)) =
∞

∑
n=0

1
n!

dn−1

dgn−1 ( f ′0(g)( f (g))n)
∣∣
g=0 zn. (16.87)
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After substituting (16.40) and (16.41) into (16.87) and the result into (16.86) we get

P̃(n) =
λ0((n− 1)λ +λ0)

n−2

(n− 1)!
(16.88)

The large n asymptotic of (16.88) is

P̃(n) ∝
λ0

λ
exp

(
λ0

λ
− 1+λ −λ0

)
P(n), (16.89)

where P(n) is given by (16.43). We see that having different first generation
offspring probabilities does not change the functional form of the large-n asymp-
totic, but merely modifies the numerical pre-factor. After substituting α ≈ 0.1 and
Nref ≈ 20 into (16.38) and (16.39) and the result into (16.89) we get P̃(n)≈ 2.3P(n).

Appendix C

Let us investigate the fitness distribution

pp(φ) = (θ + 1)(1−φ)θ . (16.90)

After substituting (16.90) into (16.57) we get:

pr(φ) =
α(θ − 1)(θ + 2)φ(1−φ)θ

1− ((1−α)/〈φ〉r)φ . (16.91)

After substituting this into (16.58) we get:

1 = α(θ + 1)(θ + 2)

( 〈φ〉r
1−α

)2 1∫
0

(1−φ)θ dx
〈φ〉r
1−α +φ

−α(θ + 2)
〈φ〉r
1−α

. (16.92)

As acceptable values of 〈ϕ〉r are limited to the interval between 1−α and 1, it is
clear that when α is small the equality in (16.92) can only be attained when the
integral is large. This requires 〈φ〉r/(1−α) being close to 1. And this will only
help if θ is small. In such case the integral in (16.92) can be approximated as

1∫
〈φ 〉r
1−α

φθ dx
φ

=
1
θ

(
1−

( 〈φ〉r
1−α

− 1

)θ
)
.
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Substituting this into (16.92) and replacing in the rest of it 〈φ〉r/(1−α) with unity
we can solve the resulting equation to get:

〈φ〉r
1−α

− 1≈
(

α− θ
θ+2

α(θ + 1)

) 1
θ

. (16.93)

For example, when α = 0.1 and θ = 0.1 we get from (16.93) that 〈φ〉r/(1−α)−1≈
6× 10−4. However (16.93) gives a real solution only when

α ≥ θ
θ + 2

. (16.94)

The R.H.S. of (16.91) has a maximum for all values of ϕ when 〈ϕ〉r = 1−α . After
substituting this into (16.91) and integrating we get that the maximum possible

value of
1∫
0

pr(ϕ)dϕ is α((θ +2)/θ ). We again get a problem when the condition of

(16.94) is violated. Remember, however, that when we derived (16.57) from (16.56)
we divided by 1−(1−α)ϕ/〈ϕ〉r, which, in the case 〈ϕ〉r = 1−α , is zero for ϕ = 1.
Thus, (16.57) is correct for all values of ϕ , except for 1. The solution of (16.56) in
the case when the condition of (16.94) is violated is:

pr(φ) = α(θ + 1)(θ + 2)φ(1−φ)θ−1+

(
1−α

θ + 2
θ

)
δ (φ − 1). (16.95)
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Chapter 17
TTLed Random Walks for Collaborative
Monitoring in Mobile and Social Networks

Yaniv Altshuler, Shlomi Dolev, and Yuval Elovici

Abstract Complex network and complex systems research has been proven to
have great implications in practice in many scopes including Social Networks,
Biology, Disease Propagation, and Information Security. One can use complex
network theory to optimize resource locations and optimize actions. Randomly
constructed graphs and probabilistic arguments lead to important conclusions with a
possible great social and financial influence. Security in online social networks has
recently become a major issue for network designers and operators. Being “open”
in their nature and offering users the ability to compose and share information, such
networks may involuntarily be used as an infection platform by viruses and other
kinds of malicious software. This is specifically true for mobile social networks,
that allow their users to download millions of applications created by various
individual programers, some of which may be malicious or flawed. In order to detect
that an application is malicious, monitoring its operation in a real environment
for a significant period of time is often required. As the computation and power
resources of mobile devices are very limited, a single device can monitor only
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a limited number of potentially malicious applications locally. In this work, we
propose an efficient collaborative monitoring scheme that harnesses the collective
resources of many mobile devices, generating a “vaccination”-like effect in the
network. We suggest a new local information flooding algorithm called Time-to-
Live Probabilistic Propagation (TPP). The algorithm is implemented in any mobile
device, periodically monitors one or more applications and reports its conclusions
to a small number of other mobile devices, who then propagate this information
onward, whereas each message has a predefined “Time-to-Live” (TTL) counter.
The algorithm is analyzed, and is shown to outperform the existing state of the
art information propagation algorithms, in terms of convergence time as well
as network overhead. We then show both analytically and experimentally that
implementing the proposed algorithm significantly reduces the number of infected
mobile devices. Finally, we analytically prove that the algorithm is tolerant to the
presence of adversarial agents that inject false information into the system.

17.1 Introduction

The market share of Smart-phones is rapidly increasing and is expected to increase
even faster with the introduction of 4th generation mobile networks, reaching from
350 million in 2009 to one billion by 2012 [13]. Companies that are distributing
new mobile device operating systems had created a variety of marketplaces that
motivate individuals and other companies to introduce new applications (such as
Apple’s App Store Google’s Android Market, Nokia’s Ovi Store, and others). The
main assumption behind these marketplaces is that users will prefer a mobile device
based on an operating system with larger marketplace offerings. It is expected that
in the future, various communities will develop additional alternative marketplaces
that will not be regulated. These marketplaces will allow mobile users to download
from a variety of millions of new applications. An example for such a marketplace
is GetJar, offering 60,000 downloadable applications for over 2,000 mobile devices,
counting a total of over 900 million downloads by August 2010 [27]. The content
of most marketplaces is currently not verified by their operators, and thus some
applications may be malicious or contain faulty code segments. Downloading a
malicious application from the marketplace is not the only way that a mobile
device may be infected by a malicious code. This may also happen as a result of
a malicious code that manages to exploit a vulnerability in the operating systems
and applications or through one of the mobile phone communication channels such
as Bluetooth, Wi-Fi, etc. [19,30,32,37,58]. The number of currently active malware
variants is estimated to be above 370 [31], most of which are introduced as a result
of an infected application installation. McAfee’s Mobile Security Report for 2008
states that nearly 14% of global mobile users were directly infected or have known
someone who had been infected by a mobile virus (this number had increased in
the followed year) [1, 2]. In many cases, in order to detect that an application is
malicious, monitoring its operation in a real environment for a significant period
of time is required. The data that results from this monitoring is being processed
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using advanced machine learning algorithms in order to assess the maliciousness
of the application. For a variety of local monitoring techniques for mobile phone
applications, see [33, 36, 45–47, 49].

In recent years, most of the prominent security and privacy threats for commu-
nication networks have relied on the use of collaborative methods (e.g., Botnets).
The danger stemming from such threats is expected to significantly increase in the
near future, as argued in [37, 65] and others. The amount of resources a single unit
may allocate in order to defend from such threats without interfering with its routine
work is very limited. Therefore, the development of efficient “collaborative defense
infrastructures” is strongly required.

In this work, we propose such a collaborative application monitoring infrastruc-
ture, providing high efficiency, scalability and fault tolerance for known adversarial
and Byzantine attacks.

The efficiency of the proposed algorithm stems from the generation of an implicit
collaboration between a group of random walking agents who are released from
different sources in the network (and at different times). This technique is new,
as most related works discussing random walkers did not take into consideration
that agents may be released collaboratively from different sources (e.g., [20, 21]).
Hence, the analysis of such systems was limited to the probabilistic analysis of the
movements of the agents.

We present a simple collaborative monitoring algorithm, called TPP – Time-
to-Live Probability Propagation. The algorithm uses a “Time-to-Live” counter
for each message, defining the number of time a message may be forwarded
before it is deleted, that is logarithmic in the number of the network’s devices, n.
A successful completion of the mission using these short living messages is then
proved (Theorem 17.2). In fact, the upper bounds for the algorithm’s completion
time and overall number of messages are O(logn) and O(n logn), respectively
(Corollaries 17.1 and 17.2). The benefit factor of participating in the proposed
collaborative scheme is shown to monotonically increase with the size of the
network, n. Specifically, we show that by sending O(lnn) messages, the number
of applications a device has to monitor locally is reduced by a factor of O(lnn) (see
Corollary 17.2).

In addition, the algorithm is shown to be partially fault tolerant to the presence
of Byzantine devices, that are capable of distributing messages concerning benign
applications.1 (see Theorem 17.5 in Sect. 17.6 discussing devices who distribute
false messages).

Furthermore, we show that in addition to providing a mechanism for defending
against adversarial abuse, the efforts the algorithm requires for overcoming such
attacks grow asymptotically slower than the efforts required in order to increase the
strength of such attacks, making the algorithm highly scalable (see more details in
Sect. 17.6 and specifically an illustration that appears in Fig. 17.8).

1We assume that interference in the messages’ content, or generation of messages using false
identity are impossible, due to, say, the use of cryptographic means.
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The rest of this work is organized as follows: A related work section and
a comparison to state-of-the-art techniques is presented in Sect. 17.2, in which
it is shown that in many cases the TPP algorithm achieves a completion time
which is equal to the completion time of the fastest single-source information
propagation algorithm (i.e., flooding), and does so using significantly lower number
of messages. The formal definition of the problem appears in Sect. 17.3, and the TPP
collaborative algorithm and its performance analysis are discussed in Sect. 17.4.2.
Experimental results are presented in Sect. 17.5, whereas the algorithm’s robustness
with regards to attacks by adversaries is discussed in Sect. 17.6. Conclusions and
suggestions for future research appear in Sect. 17.7.

17.2 Related Work

Flooding a network with messages intended for a large number of nodes is
arguably the simplest form of information dissemination in communication net-
works (specifically when previous knowledge about the network topology is limited
or unavailable). Since the problem of finding the minimum energy transmission
scheme for broadcasting a set of messages in a given network is known to be
NP-Complete [12], flooding optimization often relies on approximation algorithms.
For example, in [29, 57] messages are forwarded according to a set of predefined
probabilistic rules, whereas [53] discusses a deterministic algorithm, approximating
the connected dominating set of each node. Alternative information propagation
techniques simulate various epidemic models [25, 55, 56, 63].

In this work, we apply a different approach – instead of a probabilistic forwarding
of messages, we assign a TTL value for each message, in order to guide the flooding
process. The analysis of the algorithm is done by modeling the messages as agents
practicing random walk in a random graph overlay of the network. The optimal
value of this TTL is shown, guaranteeing a fast completion of the task, while
minimizing the overall number of messages sent. The use of a TTL dependent
algorithm was discussed in [3] (demonstrating O(log2 n) completion time) and [44]
(where no analytic result concerning the completion time was demonstrated).

In addition, the algorithm’s efficiency is further improved by selecting the TTL
value in a way which focuses the collaborative efforts toward threats of high
penetration probabilities. This approach is inspired in part by the observation made
in [65] regarding a critical phase transition point of threats’ penetration rates,
defining the epidemic potential of the threat.

17.2.1 Flooding Algorithms

The simplest information propagation technique is of course the flooding algorithm.
It is well known that the basic flooding algorithm, assuming a single source of
information, guarantees completion in a worse case cost of O(n2) messages (O(|E|)
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in expanders, and O(n× log(n)) in random graphs G(n, p)), and time equals to the
graph’s diameter, which in the case of a random graph G(n, p) equals O( logn

log(n×p))≈
O(logn) [16, 22, 34]. We later show that the TPP algorithm discussed in this work
achieves in many cases the same completion time, with a lower cost of O(n logn)
messages (Corollaries 17.1 and 17.2).

There are various methods used to improve the efficiency of the basic flooding
algorithm. One example is a probabilistic forwarding of the messages in order to
reduce the overall cost of the propagation process, optionally combined with a
mechanism for recognizing and reducing repetitions of packets transitions by the
same device [50]. Other methods may include area based methods [50] or neighbor-
hood knowledge methods [42, 51, 59, 60]. In many of these works, completion time
is traded for a reduced overall cost, which results in a similar cost as the TPP algo-
rithmproposed in this work (namely, O(n logn)), but with a significantly higher com-
pletion time. Additional details on various flooding algorithms can be found in [66].

An extremely efficient flooding algorithm, in terms of completion time, is the net-
work coded flooding algorithm, discussed in [17]. In this work, dedicated to G(n, p)
random graphs, a message is forwarded by any receiving vertex k

d(v) times, where
k is a parameter which depends on the network’s topology [24]. Using this method,
the algorithm achieves a completion time of approximately O( n3

|E|2 ). This algorithm,

however,is still outperformed by the TPP algorithm. Specifically, the TPP algorithm
would perform faster in graphs with average degree of less than O

(√ n
lnn

)
.

17.2.2 Epidemic Algorithms

An alternative approach to be mentioned in this scope is the use of epidemic
algorithms [9, 55, 63]. There exist a variety of epidemic algorithms, starting with
the basic epidemic protocol [18, 28], through neighborhood epidemics [25] and
up to hierarchical epidemics [56]. In general, all the various epidemic variants
have a trade-off between number of messages sent, completion time, and previous
knowledge required for the protocols (concerning the structure of the network).
However, the most efficient results of such approaches are still outperformed by
the TPP algorithm.

17.2.3 Distributed Coverage Algorithms

A different approach for a collaborative assimilation of an important piece of
information throughout the network is the use of cooperative exploration algorithms
(in either known or unknown environments), guaranteeing that all (or a large enough
portion) of the graph is being “explored” by agents carrying the alerting messages.
Planar networks can be sampled into R2, and then be collaboratively explored by a
decentralized group of myopic agents (see additional swarm coverage examples in
[5, 11, 38, 40, 52, 54, 61, 67]).
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In [62], a swarm of ant-like robots is used for repeatedly covering an unknown
area, using a real time search method called node counting. Using this method, the
agents are analytically shown to cover the network efficiently. Another algorithm
to be mentioned in this scope is the LRTA* algorithm [41], that was shown in [39]
to guarantee coverage time of O(n2) in degree bounded undirected planar graphs.
Interestingly, in such graphs, the random walk algorithm is also known to require at
most O(n2) time (and at least Ω(n(logn)2)) [35].

In [64], a collaborative algorithm that guarantees coverage of regions in the Z2

grid, in O(n1.5) time, using extremely simple and myopic “ant like” mobile agents
and using no direct communication by the agents is discussed. In [4] this algorithm
was later shown to guarantee (under some limitations) coverage of dynamically
expanding domains (namely, domains in which explored vertices may become
“unexplored” after a certain time of being exposed to an unexplored neighbor) in
O(n2.5 logn) time.

17.2.4 Summary

Tables 17.1 and 17.2 compare the performance of the TPP algorithm (in terms of
convergence time and overall message overhead) to the main leading works in this
field. Each table examines a different set of assumptions concerning the network. In
each table, the algorithm displaying the best result is marked using the “�” sign.

As previously discussed, the efficiency of the TPP algorithm is derived from the
fact that participating devices form a collaborative infrastructure, tuned to focus on
threats of high penetration rates. As the TPP algorithm uses random elements, it
also requires approximately O(ln2 n) random bits by each device.

Another interesting approach with respect to decentralized information pro-
liferation is the population problem, discussed for example in [6], in which a
consensus among a decentralized group of n units is generated in O(n logn) time,
with tolerance to the presence of O(

√
n) Byzantine agents. Additional information

on population protocols can be found in [8].

17.3 The Collaborative Application Monitoring Problem

Given a mobile network of n devices, let us denote the network’s devices by V =
{v1,v2, . . . ,vn}. Note that the network’s topology may be dynamic.2 Each device
may occasionally visit the marketplace, having access to N new downloadable

2This will later come into effect when messages will be sent between the network’s members, at
which case the selection of “an arbitrary network member” can be assumed to be purely random.
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Table 17.1 Performance comparison of TPP and available state of the art algorithms

Time Messages

TPP In most cases O(lnn)
and at most O( n

lnn )
O(n lnn)

Flooding O(Graph’s diameter) O(|E|)
Network coded flooding [17] using

G(n, p) overlay
O
(
n−1 · p−2

)
O(n)

Neighborhood Epidemics [25] using
G(n, p) overlay

O(nc)
for some constant c

O(c ·n)
for some constant c

Hierarchical Epidemics [56] using
α-tree overlay

O(lnn) O(α ×n lnn)
for branching factor α

LRTA* [41]
in planar degree bounded graphs

O(n2) O(n2)

SWEEP [64] in the Z2 grid O(n1.5) O(n1.5)

Table 17.2 Performance comparison for random G(n, p) graphs, with p < O((n lnn)−0.5)

Time Messages

TPP In most cases O(lnn) �
and at most O( n

lnn )
O(n lnn)

Flooding O(lnn) � O(n2 p)
Network coded flooding O

(
n−1 · p−2

)
O(n)�

Neighborhood epidemics O(nc)
for some constant c

O(c ·n) �
for some constant c

Hierarchical epidemics
using α-tree overlay

O(lnn) � O(α ·n lnn)
for branching factor α

The “�” sign marks the algorithm with the best performance

applications every month. We assume that downloading of applications is done
independently, namely – that the probability that a user downloads application a1

and the probability that the same user downloads application a2 are uncorrelated.
For some malicious application ai, let pai denote the application’s penetration

probability – the probability that given some arbitrary device v, it is unaware of the
maliciousness of ai. The penetration probability of every new malicious application
is 1. Our goal is to verify that at the end of the month, the penetration probability of
all malicious applications released during this month are lower than a penetration
threshold pMAX, resulting in a “vaccination” of the network with regards to these
applications. Formally, for some small ε we require that

∀Malicious application ai Prob(pai > pMAX)< ε

The reason behind the use of the threshold pMAX is increasing the efficiency
of the collaborative system, defending against dominant threats. Given additional
available resources, the parameter pMAX can be decreased, resulting in a tighter
defense grid (traded for increased convergence time and messages overhead).
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We assume that any device v can send a message of some short content to
any other device u. In addition, we assume that at the initialization phase of the
algorithm each device is given a list containing the addresses of some X random
network members. This can be implemented either by the network operator, or by
distributively constructing and maintaining a random network overlay.

We assume that each device can locally monitor applications that are installed
on it (as discussed for example in [7, 46]). However, this process is assumed to be
expensive (in terms of the device’s battery), and should therefore be executed as
few times as possible. The result of an application monitoring process is a non-

deterministic boolean value : {true, f alse}.
False-positive and false-negative error rates are denoted as

P(Monitoring(ai) = true | Aiis not malicious) = E+

P(Monitoring(ai) = false | Aiis malicious) = E−

We assume that the monitoring algorithm is calibrated in such way that E+ ≈ 0.

As we rely on the propagation of information concerning the maliciousness of
applications, our system might be abused by injection of inaccurate data. This may
be the result of a deliberate attack, aimed for “framing” a benign application (either
as a direct attack against a competitive application, or as a more general attempt for
undermining the system’s reliability), or simply as a consequence of a false-positive
result of the monitoring function. Therefore, in order for a device v to classify an
application ai as malicious, one of the following must hold:

• Device v had monitored ai and found it to be malicious.
• Device v had received at least ρ alerts concerning ai from different sources (for

some decision threshold ρ).

In addition, note that the information passed between the devices concerns only
applications discovered to be malicious. Namely, when an application is found to
be benign, no message concerning this is generated. This is important not only for
preserving a low message overhead of the algorithm but also to prevent malicious
applications from displaying a normative behavior for a given period of time,
after which they initiate their malicious properties. In such cases, soon after an
application exits its “dormant” stage, it will be detected and subsequently reported,
generating a “vaccination reaction” throughout the network.

17.4 Algorithm, Correctness, and Analysis

We shall now present the TPP algorithm. The algorithm is executed by each device
separately and asynchronously, where no supervised or hierarchical allocation of
tasks, as well as no shared memory are required. Table 17.3 presents the main
notations used in the presentation and analysis of the proposed algorithm.
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Table 17.3 Main notations used throughout this work

n The number of devices participating in the TPP algorithm
X The number of alert messages generated and sent upon the discovery of a malicious

application
pN The ratio X

n
pMAX Penetration threshold – the maximal percentage of non-vaccinated devices allowed

by the network operator
E− False negative error rate of the local monitoring mechanism
T Delay time between each two consecutive local monitoring processes
N Number of new applications introduced to the network each month
pai The penetration probability of application ai

1− ε Confidence level of the correctness of the convergence time estimation
α The polynomial confidence level lnn ε−1

ζT,N,PM ,E− The vaccination factor, defined as T×N
pMAX(1−E−)

timeout The Time-To-Live counter assigned to alert messages
ρ Decision threshold – the number of alerts a device must receive in order to classify

an application as malicious
CS Cost of sending a single message
CM Cost of locally monitoring a single application

17.4.1 Overview of the Results

The TPP algorithm is analytically shown to guarantee a successful completion
of the monitoring mission (Theorem 17.2). The performance of the algorithm is
then analyzed, and is shown to be superior compared to existing results in this
domain (in terms of completion time and messages overhead). Upper bounds for
the algorithm’s completion time for the overall number of messages required are
presented in Observation 1. Approximation of these bounds are given in Theorems
17.3 and 17.4. More explicit approximations of the bounds for sparsely connected
networks (see Definition 17.1) are presented in Corollaries 17.1 and 17.2.

17.4.2 TPP: A Collaborative Monitoring Algorithm

The TPP algorithm conceptually relies on the fact that in order to “vaccinate”
a network with regards to malicious applications, it is enough that only a small
number of devices will monitor this application. This way, although the application
monitoring process is relatively expensive (in terms of battery and CPU resources),
the amortized cost of monitoring each malicious application is kept to a minimum.
A detailed implementation of the TPP algorithm appears in Algorithm 11.

At its initialization (lines 1 through 6), all the applications installed on the device
are added to a list of suspected applications. In addition, an empty list of known
malicious applications is created. Once an application is determined as malicious,
it is added to the known malicious application list. In case this application was
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Algorithm 11 TTL Probabilistic Propagation
1: Initialization :
2: Let A(v) be the list of installed applications
3: Let Ȧ(v) be the list of suspected applications
4: Let Ã(v) be the list containing known malicious applications
5: Initialize Ȧ(v)← A(v)
6: Initialize Ã(v)← /0

7: Interrupt upon encountering a new application ai :
8: Ȧ(v)← Ȧ(v)∪{ai}
9: If ai ∈ Ã(v) then

10: Ȧ(v)← Ȧ(v)\{ai}
11: Issue an alert to the user concerning ai

12: End if

13: Interrupt receives malicious application ai notice, for the j-th time :
14: If j ≥ ρ then
15: Ȧ(v)← Ȧ(v)\{ai}
16: Ã(v)← Ã(v)∪{ai}
17: If ai ∈ A(v) then
18: Issue an alert to the user concerning ai

19: End if
20: End if
21: Decrease TTL of report by 1
22: Forward report to a random network member

23: Execute every T time-steps :
24: Select a random application ai from Ȧ(v) for monitoring
25: If ai is found to be malicious then
26: Issue an alert to the user concerning ai

27: Ã(v)← Ã(v)∪{ai}
28: Ȧ(v)← Ȧ(v)\{ai}
29: Report ai to X random network members
30: Set TTL = timeout

31: End if

also in the suspected application list (namely, it is installed on the device, but has
not been monitored yet), it is deleted from that list. Once a new application is
encountered it is compared to the known malicious application list, and if found, an
alert is sent to the user (alternatively, the application can be chosen to be uninstalled
automatically). This feature resembles the long-term memory of the immune system
in living organisms. If the new application is not yet known to be malicious, the
application is added to the suspected application list.

Once executed, a periodic selection of an arbitrary application from the list
of suspected applications is done, once every T steps (lines 23 through 31). The
selected application is then monitored for a given period of time, in order to discover
whether it is of malicious properties (see details about such monitoring in Sect.
17.3). If the application is found to be malicious, it is removed from the list of
suspected applications and added to the known malicious application list (lines 28
and 27). In addition, an appropriate alert is produced and later sent to X random
devices. The alert message is also assigned a specific TTL value (lines 29 and 30).
Once a network device receives such an alert message it automatically forward it to
one arbitrary device, while decreasing the value of TTL by 1. Once TTL reaches
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zero, the forwarding process of this message stops (lines 21 and 22). In case a
monitored application displays no malicious properties, it is still kept in the list
of suspicious applications, for future arbitrary inspections.

A device may also classify an application as malicious as a result of receiving
an alert message concerning this application (lines 14 through 20). In order to
protect benign applications from being “framed” (reported as being malicious by
adversaries abusing the vaccination system), a device classifies an application as
malicious only after it receives at least ρ messages concerning it, from different
sources (for a pre-defined decision threshold ρ). Note that when a device v receives
an alert message concerning application ai, it still forward this message (assuming
that TTL> 0), even when v has not yet classified ai as malicious (for example, when
the number of alert messages received is still smaller than ρ). When the ρ-th alerting
message concerning an application is received, the device adds the application to its
known malicious application list and removes it from the suspected application list
if needed. The selection of the optimal value of ρ is discussed in Sect. 17.6. The
values of T , ρ , and TTL, as well as the number of generated alert messages can be
determined by the network operators, or be changed from time to time according to
the (known or estimated) values of n and N, and the penetration threshold pMAX.
Selecting an optimal value for TTL is discussed in Sect. 17.4.

17.4.3 Optimal Parameters for Guaranteeing
Successful Monitoring

17.4.3.1 Outline of Analysis

In order to analyze the algorithm’s behavior, we shall model the movements of the
notification messages between the network’s devices as random walking agents,
traveling in a random graph G(n, p). Taking into account the fact that the messages
have limited lifespan (namely, TTL), a relation between the size of the graph and
the lifespan of the agents is produced. Having the value of TTL that guarantees
a coverage of the graph, the algorithm’s completion time, as well as the overall
number of messages sent, can then be calculated.

While analyzing the performance of the TPP algorithm we imagine a directed
Erdös-Renyi random graph G(V,E)∼G(n, pN), where pN = X

n . The graph’s vertices
V denote the network’s devices, and the graph’s edges E represent message
forwarding connections. Notice that as G is a random graph, it can be used for the
analysis of the performance of the TPP algorithm, although the message forwarding
connections of the TPP algorithm are dynamic. In addition, although the identity of
the “neighbors” of a vertex v in the real network overlay may change from time to
time (as the overlay graph can be dynamic), it can still be modeled by static selection
of X random neighbors of v.



518 Y. Altshuler et al.

Observing some malicious application ai, every once in a while some device
which ai is installed on randomly selects it for monitoring. With probability (1−E−)
the device discovers that ai is malicious and issues alerts to X network’s members.
We look at these reports as the system’s “agents,” and are interested in finding:

• The time it takes the graph to be explored by the agents. Namely, the time after
which every device was visited by at least ρ agents (and is now immune to ai).

• The total number of messages sent during this process.
• The minimal TTL which guarantees a successful vaccination of the network.

Note also that agents have a limited lifespan, equals to timeout. As the graph is a
random graph, the location of the devices in which ai is installed is also random.
Therefore, as they are the sources of the agents, we can assume that the initial
locations of the agents are uniformly and randomly distributed along the vertices
of V . In compliance with the instruction of the TPP algorithm, the movement of the
agents is done according to the random walk algorithm.

Application ai is installed on n× pai devices, each of which monitors a new
application every T time steps. Upon selecting a new application to monitor,
the probability that such a device will select ai is 1

N . The probability that upon
monitoring ai the device will find it to be malicious is (1−E−), in which case it will
generate n× pN alerting messages. The expected number of new agents created at
time t, denoted as k̂(t), therefore, equals

k̂(t) =
n2× pai× pN

T ×N
(1−E−)

and the accumulated number of agents which have been generated in a period of t
time-steps is therefore kt = ∑i≤t k̂(i).

The value of timeout (the assigned TTL) is selected in such a way that
the complete coverage of the graph, and therefore its vaccination against ai, is
guaranteed (in probability greater than 1−ε). We now artificially divide the mission
to two phases, the first containing the generation of agents and the second discussing
the coverage of the graph. Note that this division ignores the activity of the agents
created in the second phase. Note also that the fact that the agents are working in
different times (and in fact, some agents may already vanish while others have not
even been generated yet) is immaterial. The purpose of this technique is to ease the
analysis of the flow of the vaccination process.

Denoting the completion time by TVac we therefore have

TVac ≤ TGeneration +TPropagation

It is easy to see that TPropagation 	 timeout. We now artificially set

{
timeout = λ × (TGeneration + timeout)

TGeneration = (1−λ ) × (TGeneration + timeout)
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From this we can see that

TGeneration =
(1−λ )

λ
× timeout

We later demonstrate an upper bound for timeout, based on the number of agents
created in t ≤ TGeneration (ignoring the activity of the agents created between t =
TGeneration and t = TGeneration + timeout).

We now examine the case of λ = 0.5 (which we show to be the optimal selection
for λ , in the paper’s Appendix). In this case, we can now write: TVac ≤ 2× timeout.

Let us denote the number of agents created in the first TGeneration time-steps by
k = kTGeneration . We now find the time it takes those k agents to completely cover the
graph G, and from this, derive the value of timeout.

Recalling that upon the detection of a malicious application, devices are required
to send notification messages to exactly X random network neighbors. We can
still use a random graph G(n, p) for analyzing the algorithm’s behavior. Since our
bounds are probabilistic, we can state that the following “bad event” occurs with
very low probability (e.g., 2−ω(n)). Event Elow degree, defined as the existence of
some vertex v ∈ V with deg(v) < n×pN

2 . Using the Chernoff bound on G we get:

Prob[deg(v)< n×pN
2 ]< e−

n×pN
8 . Applying union bound on all vertices we get

Prob[Elow degree]< n× e−
n×pN

8 < 2−ω(n)

Similarly,

Prob[Ehigh degree]< 2−ω(n)

From now on we assume that Elow degree and Ehigh degree do not occur, and condi-
tion all probabilities over this assumption. In the private case of ∀v ∈V , deg(v) =
pN×n, every analysis that is based on the expected number of neighbors shall hold.

In order to continue analyzing the execution process of the TPP algorithm we
note that as the initial placement of the agents is random, their movement is random
and the graph G is random, we can see that the placement of the agents after every-
step is purely random over the nodes. Using these observation, the number of agents
residing in adjacent vertices from some vertex v can be produced:

Lemma 17.1. Let v ∈ V be an arbitrary vertex of G. Let N1(v, t) be the number of
agents which reside on one of Neighbor(v) (adjacent vertices to v) after step t:

∀t ≥ 0 : E[N1(v, t)]≥ pN× k
2

In other words, the expected number of agents who reside in distance 1 from v
after every step is at least pN×k

2 .

Proof. Upon our assumption, in G(n, pN) the number of incoming neighbors for
some vertex v is at least 1

2 pN×n. In addition, for every u ∈V (G), Prob[some agent
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resides on u] = k
n . In addition, for every u ∈ V such that (u,v) ∈ E we also know

that deg(u)≤ 3
2 pN×n. Combining the above together, we get ∀t ≥ 0 : E[N1(v, t)]≥

pN×n×k
2n ≥ 1

2 pN× k. "#
Lemma 17.2. For any vertex v ∈ V, the probability of v being notified at the next

time-step that ai is malicious is at least 1− e−
k

2n .

Proof. The probability that an agent located on a vertex u such that (u,v) ∈ E will
move to v at the next time-step is 1

pN×n . The number of agents that are located in

adjacent vertices to v is k
2 pN . Therefore, the probability that v will not be reported

about ai at the next time-step is (1− 1
pN×n )

1
2 pN×k. Using the well known inequality

(1− x)< e−x for x < 1, we can bound this probability from above by:

(
e
− 1

pN×n

) 1
2 pN×k

≤ e−
k

2n

Therefore, the probability that v will be notified on the next time-step is at least

1− e−
k

2n . "#
Interestingly, this fact holds for any positive pN (the density parameter of G).
Let us denote by ρ-coverage of a graph the process the result of which is that

every vertex in the graph was visited by some agent at least ρ times.

Theorem 17.1. The time it takes k random walkers to complete a ρ-coverage of G
in probability greater than 1− ε (denoted as T(n)) can be bounded as follows:

T (n)≤ 2
(
ρ− ln ε

n

)
1− e−

k
2n

Proof. Lemma 17.2 states the probability that some vertex v∈V will be reported of
ai at the next time-step. This is in fact a Bernoulli trial with:

psuccess = 1− e−
k

2n

Now we bound the probability of failing this trial (not notifying vertex v enough
times) after m steps. Let Xv(m) denote the number of times that a notification
message had arrived to v after m steps, and let Fv(m) denote the event that v was
not notified enough times after m steps (i.e., Xv(m) < ρ). We additionally denote
by F(m) the event that one of the vertices of G is not notified enough times after m
steps (i.e.,

⋃
v∈V (G) Fv(m)). We use the Chernoff bound

P[Xv(m)< (1− δ )psuccessm]< e−δ 2 mpsuccess
2
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in which we set δ = 1− ρ
mpsuccess

. We can then see that

P[Xv(m)< ρ ]< e
−
(

1− ρ
mpsuccess

)2 mpsuccess
2

namely: P[Fv(m)]< eρ−mpsuccess
2 . Applying the union bound we get

P[e1∪ e2∪ . . .∪ en]≤ P[e1]+P[e2]+ . . .+P[en]

on all n vertices of G. Therefore we can bound the probability of failure on any
vertex v (using Lemma 17.2) as follows:

Pr[F(m)]≤ neρ−mpsuccess
2 ≤ neρ−

m

(
1−e
− k

2n

)

2 ≤ ε

and the rest is implied. "#
We now show how to select a value of timeout that guarantees a successful

vaccination process:

Theorem 17.2. For every values of timeout that satisfies the following expression,
the TPP algorithm is guaranteed to achieve successful vaccination for any penetra-
tion threshold pMAX, in probability greater than 1− ε:

2
(
ρ− ln ε

n

)
timeout

(
1− e−timeout× n×pMAX×pN

2T×N (1−E−)
) = 1

Proof. Recalling the expected number of agents generated at each time step, the
expected number of agents k that appears in Theorem 17.1 equals

E[k] = ∑
i≤TGeneration

n2× pai× pN

T ×N
(1−E−)

A successful termination of TPP means that the penetration probability of (any)
malicious application is decreased below the threshold pMAX. Until this is achieved,
we can therefore assume that this probability never decreases below pMAX:

∀t < TGeneration : pai ≥ pMAX

Therefore, we can lower bound the number of agents as follows:

k≥ timeout× n2× pMAX× pN

T ×N
(1−E−)
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Assigning timeout = m into Theorem 17.1, successful vaccination is guaranteed for

timeout =
2(ρ− ln ε

n )

1− e−
k

2n

≤ 2
(
ρ− ln ε

n

)
1− e

− n×pMAX×pN
2T×N×timeout−1 (1−E−)

and the rest is implied. "#

17.4.4 Number of Messages and Time Required for Vaccination

From the value of timeout stated in Theorem 17.2, the vaccination time TVac as
well as the overall cost of the TPP algorithm can now be extracted. The cost of
the algorithm is measured as a combination of the overall number of messages sent
during its execution and the total number of monitoring activities performed. Let us
denote the cost of sending a single message by CS and the cost of executing a single
local monitoring process by CM .

Observation 1. For any timeout = τ which satisfies Theorem 17.2, the time and
cost of the TPP algorithm can be expressed as:

TVac = O(τ) , M = O

(
k× τ×CS +

k
X

CM

)

= O

(
pMAX× pN

n−2T ×N
× (1−E−)×

(
τ2×CS +

τ
n× pN

×CM

))

Let us assume that ε is polynomial in 1
n , namely: ε = n−α s.t. α ∈ Z

+.
Using the bound (1− x)< e−x for x < 1 we can see that when assuming3 that:

timeout× n× pMAX× pN

2T×N
(1−E−)< 1

Theorem 17.2 can be written as:

ρ +(α + 1) lnn≥ timeout2× n× pMAX× pN× (1−E−)
4T×N

3The intuition behind this assumption is as follows: we aspire that the number of messages each
device is asked to send upon discovering a new malicious application is kept to a minimum. As the
value of PN is required to be greater than lnn

n in order to guarantee connectivity [23], it is safe to
assume that PN =O

( lnn
n

)
. Notice that under some assumptions, a connected pseudo-random graph

can still be generated, such that pN =O( 1
n ) (see for example [21]). However, as we are interested in

demonstrating the result for any random graph G(n, p), this lower bound of pN is still mentioned.
In addition, we later show that timeout ≈O(logn). It is also safe to assume that N ≈ Ω(lnn) and
that PMAX ≈ O

( 1
lnn

)
. This assumption is later discussed in great details.
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and therefore:

timeout≤
√

4T ×N (ρ +(α + 1) lnn)
n× pMAX× pN× (1−E−)

Assigning this approximation of timeout into the above assumption yields:

√
2T ×N

n× pMAX× pN(1−E−)
× 2(ρ +(α + 1) lnn)<

2T ×N
n× pMAX× pN(1−E−)

obtaining the following sparse connectivity assumption:

Definition 17.1. Let a network be called sparsely connected when:

pN <
T ×N

n× pMAX× (ρ +(α + 1) lnn)(1−E−)

We can now obtain the algorithm’s completion time and cost:

Theorem 17.3. Under the sparse connectivity assumption, the completion time of
the TPP algorithm is:

TVac ≤ 4

√
T ×N (ρ +(α + 1) lnn)

n× pMAX× pN× (1−E−)

Theorem 17.4. Under the sparse connectivity assumption, the overall cost of the
TPP algorithm (messages sending and monitoring costs) is:

M ≤ k× timeout×CS +
k
X
×CM ≤

≤ 4n(ρ +(α + 1) lnn)CS + 2CM

√
n(ρ +(α + 1) lnn)× pMAX× (1−E−)

pN×T ×N

Proof. When the vaccination process is completed, no new messages concerning the
malicious application are sent. The above is received by assigning the approximated
value of timeout into Observation 1. "#
Definition 17.2. Let the vaccination factor ζT,N,PM ,E− be defined as:

ζT,N,PM ,E− 	 T ×N
pMAX(1−E−)

Using the sparse connectivity assumption as an upper bound for pN and lnn
n as

a lower bound for pN which guarantees connectivity [16], the following corollaries
can now be produced:
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Corollary 17.1. The completion time of the TPP algorithm is

TVac = O

(
ρ + lnn+

T ×N
pMAX× (1−E−)× lnn

)

Proof. Assigning the upper bound for pN into Theorem 17.3 immediately yields
O(ρ+ lnn). When assigning the lower bound of pN =

ln(n)
n the following expression

is received:

TVac ≤ 4

√
T ×N× (ρ +(α + 1) lnn)

ln(n)× pMAX(1−E−)

However, using the sparse connectivity we see that

lnn
n

<
T ×N

n× pMAX× (ρ +(α + 1) lnn)(1−E−)

which in turn implies that

ρ +(α + 1) lnn <
T ×N

ln(n)× pMAX(1−E−)

Combining the two yields

TVac = O

(
T ×N

lnn× pMAX× (1−E−)

)

Note that although O
(

T×N
pMAX(1−E−)

)
is allegedly independent of n, by assigning the

connectivity lower bound PN > lnn
n into the sparse connectivity assumption, we can

see nevertheless that

ζT,N,PM ,E− =
T ×N

pMAX(1−E−)
= Ω(ρ lnn+ ln2 n)

"#
For similar arguments, the vaccination’s cost can be approximated as:

Corollary 17.2. The overall cost of the TPP algorithm (messages sending and
monitoring costs) is:

M = O

(
k× timeout×CS +

k
X
×CM

)

= O
(
(nρ + n lnn)CS +

( n
lnn

+ n(ρ + lnn)ζ−1
T,N,PM ,E−

)
CM

)
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In networks of E− < 1− o(1), provided that4 ρ = O(lnn), and remembering
that in this case ζT,N,PM ,E− = Ω(ln2 n) we can see that the dominant components of
Corollary 17.2 become:

M = O
(

n lnnCS +
n

lnn
CM

)

17.4.5 Messages Propagation Among Network Members

In order for a vaccination algorithm which relies on the propagation of valuable
information concerning possible threats in the networks to be implemented, the
network’s devices must have a way of passing relevant information between them.
Specifically, the proposed algorithm requires that any network member can perform
the following two actions:

• Send a notification message concerning a malicious application to X random
network members.

• Forward a received notification message to a single random network member.

Those two commands can be generalized to the requirement that any network
member must be able to send upon request a message of some content to a list of
(up to X) random network members. The trivial implementation of this feature of
the algorithm would use a central server, which will be in charge of storing the
network’s devices who have registered into the vaccination service. Upon request,
the server would be able to provide a list (of any required length) of random
network’s members. This could either be done one time during the registration of a
new device to the service, or be refreshed on a periodic basic.

However, as we would like to decrease the dependency of the system on
a centralized component to the minimum, we would prefer this service to be
implemented in a decentralized fashion. The implementation of this aspect of the
algorithm depends on the specific model of the network. For example, suppose the
network is a mobile network, in which each member has a unique address which
is its 7-digit phone number, and in which all of the network’s node take part in the
vaccination efforts. In this example, upon the request to forward a message to a
random network member, a device can simply select a random 7-digit number as
the message’s destination. In case this random number is inactive, the sender will
receive an appropriate notification from the network, and will select another number,
until successfully guessing an active number.

When a previous knowledge of the addresses of the members of the vaccination
service is unavailable, a virtual network overlay in the form of a random graph
G(n, p) (of neighbors probability p = X

n ) can gradually be generated, to be used
for messages forwarding (as new devices are joining the service, they are given a

4See Sect. 17.6 for more details.
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list of X random network’s members). One example for such an implementation
is the use of “random scouts,” to be sent by any device joining the service, and
returning with a list of X random network members. In addition, each device
will periodically execute an additional service, designed for estimating the current
number of members in the service. When the value of this number is significantly
higher than its number in the previous scouting process, the device will refresh its
neighbors list by re-running the scouting algorithm. This can be implemented for
example using an approach similar to the one described in [21], which enables the
generation of an expander of requested properties from an unknown network, using
only O(n logn) short (log4 n length) random walks. Another implementation can
be based on the approach of [20], that uses a probabilistic group communication
service. Yet another possible implementation can be found at [15].

Note that one may suggest that entire vaccination mechanism can be imple-
mented by a centralized server, receiving all the alerts that are generated by the
network’s units, and upon the detection of a malware, forward this information to
all the members of the network. It is important to note that we would like to refrain
from implementing the entire system in one central server for three main reasons.
First, such an implementation would make the server a single point of failure, that
when compromised, great amount of damage can be caused. Second, implementing
the system in the form of a single server that collects all the alerts that are produced
by the units significantly increases the chance of a “framing attack” (causing a
benign application to deliberately be reported as a malicious one – see Sect. 17.6
for more details), creating total havoc in the system, and subsequently resulting
in the abandonment of the system as a reliable solution for defending against
network attacks. This problem is prevented in the proposed system architecture as
the ability of a group of collaborating adversaries to cause damage is highly limited.
Third, the purpose of this chapter is to propose a vaccination algorithm that can be
implemented apart from in mobile networks also in other networks, including social
based services, where the implementation of a centralized server may be hard, or
even impossible.

17.5 Experimental Results

We have implemented the TPP algorithm in a simulated environment and tested
its performance in various scenarios. Due to space considerations, we hereby
describe one example, concerning a network of n = 1,000 devices, having access
to N = 100 applications, one of which was malicious.5 We assume that each device
downloads 30 random applications, monitors one application every week, and can

5Note that the number of malicious applications does not influence the completion time of
algorithm, as monitoring and notification is done in parallel. The number of message, however,
grows linearly with the number of malicious applications.
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Fig. 17.1 An experimental result of a network of n = 1,000 members, with N = 100 applications,
penetration threshold of pMAX = 0.01, pN = 0.01 and 100 adversaries that try to mislead at least
5% of the network into believing that some benign application is malicious. Notice how changes
in the decision threshold ρ dramatically effect the adversaries’ success probability, with almost no
effect on the completion time

send notification messages to 10 random network members (namely, pN = 0.01).
We require that upon completion, at least 990 network members must be aware of
the malicious application (namely, pMAX = 0.01), with ε = 0.001. In addition, we
assume that among the network members there are 100 adversaries, trying to deceive
at least 50 network devices to believe that some benign application is malicious.

Figure 17.1 shows the time (in days) and messages required in order to complete
this mission, as a function of the decision threshold ρ . We can see that whereas
the adversaries succeed in probability 1 for ρ < 3, they fail in probability 1 for any
ρ ≥ 3. Note the extremely efficient performance of the algorithm, with completion
time of ∼260 days using only five messages and at most 30 monitored applications
per user. The same scenario would have resulted in 100 messages per user using the
conventional flooding algorithm, or alternatively, in 700 days and 100 monitored
applications per user using a non-collaborative scheme. Figure 17.2 demonstrates
the decrease in completion time and message requirement as a result of increasing
the penetration threshold pMAX. Figure 17.3 demonstrates the evolution in the
malicious application’s penetration probability throughout the vaccination process.
An interesting phenomenon is demonstrated in Fig. 17.4, where the number of
adversarial devices is gradually increased, and their success in deceiving 5% of the
network’s members is studied. It can be seen that as the deception rate increases
linearly, the success to generate a successful attack displays a phase transition –
growing rapidly from “a very low attack success probability” to “very high attack
success probability” with the increase of only 20% in the number of adversaries.

Many viruses, trojans or other malicious applications contain an integral part
in charge of proliferating them throughout the network. We would therefore like
to integrate this property into the analysis of our TPP vaccination algorithm.
For this, we use a variation of the SIR (Susceptible – Infectious – Recovered)
epidemic model. According to the SIR model, once becoming infected, a network
device can infect other devices until it is “cured” (namely, receives the relevant
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Fig. 17.2 The effect of decreasing the penetration threshold pMAX on the algorithm’s completion
time and number of messages (ρ = 1)
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Fig. 17.3 The penetration probability of the malicious application, as a function of the time, with
ρ = 1 (on the left) and ρ = 20 (on the right)
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Fig. 17.4 An illustration of the phase transition that is displayed when observing the influence of
the number of adversaries over their probability to successfully generate an attack. Note how an
increase of 20% in the number of adversaries increases the probability to deceive a large enough
portion of the network from less than 0.2 to approximately 0.8

vaccinated information). Once vaccinated, the device is immune to reinfections of
this particular threat. This epidemic model can be represented as follows:

• Infectious(t)	 I(t) = I(t− dt)+ (DI−DR)× dt
• Recovered(t)	 R(t) = R(t− dt)+DR× dt
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• Susceptible(t)	 S(t) = S(t− dt)−DI× dt
• New recoveries 	 DR = 1

n I× pR

• New infections 	 DI = 1
n I× 1

n S× rI

In addition, at any given time, an infected device has a certain possibility of
suffering from other symptoms of the infection (such as malicious OS crash, identity
theft through key-loggers, etc.). As we would later be interested in the overall
number of possible compromised devices, we would like to add this to our model,
as follows:

• Infected undmg(t)	 IuD(t) = IuD(t− dt)+ (DI−DuR−DD)× dt
• Damaged(t)	 D(t) = D(t− dt)+DD× dt
• New undmg recoveries 	 DuR = 1

n IuD× pR

• New damages 	 DD = 1
n IuD× pD

This model is initialized by the following values:

• pD 	 Damage probability
• pR 	 Recovery probability
• rI 	 Infection rate
• S(0) = n− I0

• D(0) = 0
• R(0) = 0
• IuD(0) = I(0) = I0

Let us denote the maximal level of infectious units throughout the evolution of
the epidemic by Î. A graphic illustration of this model is presented in Fig. 17.5.

Similar to many biological systems, devices infected with malicious applications
can self-cure [20,46]. In addition, devices can be cured by receiving assistance from
other network’s devices (by receiving maliciousness notification messages from
enough members of the network). Therefore, pR is derived from the TPP algorithm’s
performance, and will be discussed in the following sections.

The infection rate rI is a configurable parameter of the system, denoting the
spreading speed of the threat. The value of rI is provided by the operators or the
monitors of the network, and can be changed in response to a detection of new
threats. A larger value of rI would cause the vaccination system to require a larger
number of messages for its operation, while a lower value of rI would allow the
system to guarantee a proper vaccination using less messages. As to the initial

number of infectious members, I0, we can assume that it is equal to the initial
penetration probability multiplied by the number of network’s devices.

The effect of the TPP vaccination algorithm on an epidemically spreading
network threat is illustrated in Fig. 17.5.
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Fig. 17.5 An illustration of the effect of the TPP vaccination algorithm on an epidemically
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17.6 Avoiding Benign Applications “Frame” Through
Adversarial Use of the TPP Vaccination Algorithm

As mentioned in previous sections, the TPP algorithm is fault tolerant to the
presence of adversarial devices which try to compromise the system’s integrity
by causing a large enough portion of the network to consider (one or more)
benign applications as malicious. This aspect of the algorithm is crucial, as it is a
collaborative algorithm which relies on the participation of as many network devices
as possible – devices who should be guaranteed that the efficient collaborative
monitoring will not be accompanied with erroneous results. In the TPP algorithm,
this fault tolerance is being provided by the introduction of the ρ “decision
threshold” into the decision system. Namely, the fact that an application is being
marked as malicious only when at least ρ relevant messages (from different origins)
are being received. Relying on the common agreement of several devices as a
tool for overcoming system noise (which can be either coincidental or intentional)
is often used in swarm based systems. For example, a similar mechanism called
“threshold cryptography” is used for enabling the collaborative use of cryptographic
tasks (see for example [26, 48].

Definition 17.3. Let us denote by PAttack(T TL,ρ , k
n ,ε) the probability that a “fram-

ing attack” done by a group of k organized adversaries will successfully convince at
least ε× n of the network’s devices that some benign application ai is malicious.

A trivial example is the use of very large values for TTL, which allow a group of
k adversaries to convince the entire network that any given application is malicious,
provided that k > ρ , namely

∀k ≥ 1, ∀ρ ≤ k, ∀ε < 1, lim
T T L→∞

PAttack

(
T T L,ρ ,

k
n
,ε
)
= 1
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Theorem 17.5. The probability that k attackers will be able to make at least an
ε portion of the network’s devices treat some benign application ai as malicious,
using the TPP algorithm with a decision threshold ρ is

PAttack

(
T TL,ρ ,

k
n
,ε
)
≤ 1−Φ

(
√

n× ε− P̃√
P̃(1− P̃)

)

where

P̃ = e

(
ρ−TT L×

(
1−e−

k×pN
2

))
×

⎛
⎝T T L×

(
1− e−

k×pN
2

)
ρ

⎞
⎠

ρ

and where Φ(x) is the cumulative normal distribution function, defined as

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2 t2

dt

and also provided that

ρ > T T L
(

1− e−
k×pN

2

)
Proof. We use Lemma 17.2 to calculate the probability that a device v ∈ V will
be reported of some malicious application ai by a message sent by one of the k
adversaries at the next time-step. This is yet again a Bernoulli trial with

ps = 1− e−
(k×n×pN)

2n = 1− e−
k×pN

2

Denoting as Xv(t) the number of times a notification message had arrived to v
after t steps, using Chernoff bound

P[Xv(t)> (1+ δ )t× ps]<

(
eδ

(1+ δ )(1+δ )

)t×ps

in which we set δ = ρ
t×ps
− 1. We can therefore see that

P̃ 	 PAttack

(
T T L,ρ ,

k
n
,n−1

)
= P[Xv(T T L)> ρ ]< e(ρ−TT L×ps)×

(
TT L× ps

ρ

)ρ

It is important to note that the Chernoff bounds requires that δ > 0. This is
immediately translated to the following requirement, necessary for the validity of
this Theorem

ρ > T T L
(

1− e−
k×pN

2

)
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Fig. 17.6 An illustration of Theorem 17.5 – an upper bound for the success probability of a
collaborative “framing attack” as a function of the number of adversarial devices. In this example,
a changing number of adversaries are required to deceive at least 100 devices to think that some
benign application is in fact malicious. Notice the phase transition point around 485 adversarial
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Fig. 17.7 An illustration of Theorem 17.5 – the influence of the deception threshold ε (namely, the
size of the network portion which is needed to be deceived in order for an attack to be considered
successful) on the number of adversarial devices required for a successful attack

As we want to bound the probability that at least εn of the devices are deceived,
we shall use the above as a success probability of a second Bernoulli trial. As
n is large, the number of deceived devices can be approximated using normal
distribution, as follows:

PAttack

(
T T L,ρ ,

k
n
,ε
)
≤ 1−Φ

(
ε× n− n× P̃√

n× P̃(1− P̃)

)

and the rest is implied. "#
Theorem 17.5 is illustrated in Figs. 17.6–17.8.Figure 17.6 presents the execution

of the vaccination algorithm in a network of 1,000,000 devices, where each device
is connected to 50 neighbors. In this example, the network operators require that
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Fig. 17.8 An illustration of Theorem 17.5 – the influence of the value of decision threshold ρ on
the number of adversarial devices required for a successful attack. Note how as the adversaries
increase their numbers, all that has to be done in order to prevent them from launching successful
attacks is simply to slightly increase the value of the decision threshold ρ . This feature of
the TPP algorithm makes it economically favorable for networks operators. From experimental
observations it can be seen that the resources required in order to defend a network against attacks
of growing scales (both convergence time and number of messages) converge asymptotically,
whereas the resources required in order to launch stronger attacks grow approximately linearly

the number of devices that may be deceived as a result of an adversarial attack
would be at most 100. With the decision threshold ρ properly calibrated according
to Theorem 17.5, it is shown that as long as the number of adversaries is below
480 the adversaries cannot launch a successful attack. However, as the number of
adversaries increases, such an attack quickly becomes a feasible option. Specifically,
by increasing the number of adversaries by 3% (from 480 to 494) the probability
of a successful attack rises from 0 to 1. In this case, in order to compensate this
change in adversaries numbers, all the devices operating the TPP algorithm have to
do is simply increase the value of ρ by 1. Figure 17.8 shows how each such small
increase in the value of the decision threshold ρ requires the adversaries to invest
a lot of effort and increase their numbers by approximately 7%. Although severely
preventing the adversaries attempts to launch successful attacks, the effect of such
changes in the value of ρ on the “normative” devices of the network is very small,
as can be observed in Fig. 17.1.

Note that in the proof of Theorem 17.5 we assumed that the adversarial devices
may decide to send a false message concerning an application’s maliciousness, but
they must do so using the definitions of the TPP algorithm. Namely, each device may
send at most pN × n messages, and send these messages to random destinations.
If adversarial devices had been allowed flexibility in those constraints as well, a
small group of adversarial devices could have sent an infinitely large number of
false messages, that would have been propagated throughout the network, resulting
in a successful attack (similarly to the case where T T L→ ∞). Alternatively, had
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adversarial devices been allowed to chose the destination of the pN × n messages
they send, they could have all send them to the same destination v, thus guaranteeing
that v would be deceived. More generically, a group of k = ı× ρ of adversarial
devices could have send their messages to i× pN×n different devices, guaranteeing
their deception.

Definition 17.4. Let us denote by PAttack−Destination
(
T T L,ρ , k

n ,ε
)

the attack success
probability when adversarial devices are allowed to control the destination of the
messages they produce.

The following Corollary can be drawn:

Corollary 17.3. The probability that k attackers that can control the destination
of the pN × n messages they produce will be able to make at least an ε portion of
the network’s devices treat some benign application ai as malicious, using the TPP
algorithm with a decision threshold ρ is:

PAttack−Destination

(
T T L,ρ ,

k
n
,ε
)
≤ PAttack

(
TT L− 1,ρ ,

k
n
,ε− k

ρ
× pN

)

17.7 Conclusions and Future Work

In this work, we have presented the TPP TTL-based propagation algorithm,
capable of guaranteeing the collaborative vaccination of mobile network users
against malicious applications. The performance of the algorithm was analyzed
and shown to be superior compared to state of the art in this field, guaranteeing
fast collaborative detection of attack attempts, and do so using a lower network
overhead.

The algorithm was also shown to be capable of overcoming the presence
of adversarial devices who try to inject messages of false information into the
network. The challenge of filtering out false information which is injected into
a collaborative information propagation networks resembles the known “faulty
processors” problem. For example, the following work discusses the challenge of
synchronizing the clock of a communication network of size n when n

3 faulty
processors are present [10]. Another interesting work in this scope is the work of
[14] which discusses a collaborative fault tolerant “acknowledgment propagation”
algorithm, for reporting on the receipt (or lack of) of sent messages.

It should be noted that during the analysis of the fault tolerance of the algorithm,
we assumed that although an attacker can send reports of benign applications, or
alternatively – refuse to forward messages passed through it, the basic parameters
of the algorithm are still preserved. Namely, adversarial devices are not allowed
to send more than X messages or generate messages with TTL values higher than
the value allowed by the network operator. The exact implementation details of a
cryptographic protocol of these properties, however, is out of the scope of this work,
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Future versions of the work should investigate the generalization of the propaga-
tion mechanism, allowing the number of alert messages generated to be dynamically
calibrated in order to further decrease the algorithm’s overhead (for example, as
a function of the number of alerts already received concerning the application).
Alternatively, upon forwarding a message, devices might be requested to send more
than a single copy of the message they received.

Another interesting topic to investigate is the use of the mechanism proposed in
this work as an infrastructure for other security related problems. One example can
be the problem of collaboratively coping with malicious beacons in hostile wireless
environment, as discussed in [43]. Most of the existing localization protocols
for sensor networks are vulnerable in hostile environments, requiring for the
enhancement of the security of location discovery. The work of [43] presents voting-
based methods to tolerate malicious attacks against range-based location discovery
in sensor networks. This problem seems to benefit from the use a mechanism which
is fault tolerant to the injection of false information, such as the algorithm we
propose in this work.
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