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    12    Peritoneal Dialysis Solutions       

         Claus   Peter   Schmitt           

     Introduction 

 PD has traditionally been performed with acidic 
solutions containing glucose as osmotic and lactate 
as buffer agent. These solutions confer marked local 
and systemic toxicity (Fig.  12.1 ). Within few years, 
the peritoneal membrane undergoes profound mor-
phological transformations including progressive 
mesothelial denudation, submesothelial fi brosis, 
hyaline vasculopathy, and neoangiogenesis  [  1  ] . 
Hypervascularization of the peritoneal membrane 
results in increased solute clearance, but also in 
rapid glucose uptake and thus ultrafi ltration loss 
and eventually PD failure  [  2  ] . Peritonitis episodes, 
chronic infl ammation, and a persistently elevated 
calcium   * phosphate product further accelerate 
membrane transformation, which in severe cases 
results in life-threatening, encapsulating peritoneal 
sclerosis. Even though most patients will not 

develop these complications if early transplantation 
is available, they still represent a major clinical 
problem on a global scale as refl ected by the limited 
long-term technique and patient survival  [  3  ] . In 
recent years, PD  solutions with a markedly improved 
biocompatibility profi le have been developed to 
remedy this problem. They which are gradually 
becoming available for routine patient care around 
the globe. These “biocompatible” solutions allow for 
a refi ned and individualized therapy with a signifi -
cantly reduced toxin load. Knowledge of the spe-
cifi c features of each solution is necessary to provide 
a most  effi cient and biocompatible PD regimen.   

     PD Fluid Composition 

 Peritoneal dialysis fl uids are composed of an 
osmotic agent, a buffer substance, and electro-
lytes, which determine their purifi cation and ultra-
fi ltration capacity as well as clinical tolerability. 

     Osmotic Agents 

 The standard osmotic agent is glucose at supra-
physiological concentrations (1,500–4,250 mg/
dL). The high dialysate glucose concentration cre-
ates an osmotic gradient via the peritoneal mem-
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brane to achieve ultrafi ltration. On the other hand, 
the hyperosmolar and hyperglycemic milieu, is 
also a major driving force for the peritoneal mem-
brane transformation and progressive increase in 
peritoneal solute transport rates  [  4  ] . Depending on 
the transporter status, from low to high, 45–88% 
of the intraperitoneal glucose is absorbed within 
4 h. While providing some usually welcome addi-
tional calorie supply, glucose resorption is the 
rate-limiting factor for ultrafi ltration capacity. 

 Moreover, sterilization of the glucose at high 
temperature and a relatively high pH (5.5) as well as 
prolonged storage promotes the generation of 
numerous glucose degradation products (GDP), 
such as formaldehyde, acetaldehyde, 3-deoxyglu-
cosone (3-DG), 3,4-dideoxyglucosone (3,4-DGE), 
and 5-hydroxymethyl furaldehyde (5-HMF). GDP 
impair peritoneal mesothelial cell function  [  5  ] , 
induce pro-angiogenetic factors such as VEGF  [  6  ]  
and impair local host defense mechanisms  [  7  ] . They 
are rapidly absorbed via the peritoneal membrane 
 [  8  ]  and contribute to infl ammation, fi brosis, and 
vasculopathy. GDP are potent precursors for 
advanced glycation endproduct (AGE) formation. 
AGE accumulate in the PD membrane but also in 
the entire body  [  9  ] , and further accelerate the pro-
cess of vascular and tissue aging (Fig.  12.2 ).  

 Based on these deleterious effects of glucose, 
three alternative technological measures have been 
realized to improve PD fl uid biocompatibility: the 
separation of glucose at a very low pH from the 
buffer in double- and triple-chamber bag systems; 
the replacement of glucose by icodextrin, a glucose 
polymer derived from stark; and the replacement 
of glucose by amino acids. All these solutions con-
tain signifi cantly less GDP than conventional dex-
trose-based fl uids (Tables  12.1  and  12.2 )  [  10,   11  ] .    

     Buffer Substances 

  Lactate  has been the only buffer available for PD 
fl uids until recently. It is added to PD solutions at 
concentrations far above the physiological range 
(Table  12.1 ), is rapidly absorbed via the perito-
neal membrane and is metabolized to bicarbonate 
in the liver. The net buffer gain is counterbal-
anced by the simultaneous loss of blood bicar-
bonate into the dialysate  [  12  ] . In vitro and animal 
studies have provided ample evidence that the 
high amounts of lactate, present in conventional 
PD solutions at a low pH, have detrimental effects 
on peritoneal mesothelial cells. Lactate alters 
specifi c cytokine release  [  13  ] , reduces the avail-

  Fig. 12.1    PD fl uid toxicity and associated morphological and functional alterations.  AGE  advanced glycated 
 endproducts;  ROS  reactive oxygen species;  AQP-1  Aquaporin 1;  EPS  encapsulating peritoneal sclerosis;  GDP  glucose 
degardation product       
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ability of antioxidants such as gluthatione  [  14  ]  
and induces neoangiogenesis  [  15  ] . Adjustment to 
a physiological pH markedly improves but does 
not normalize the ex vivo viability and function 
of mesothelial cells  [  16,   17  ] . In patients with 
acute renal failure, especially when in poor tissue 
perfusion states such as shock, lactate acidosis 
and multiorgan dysfunction, lactate inadequately 
buffers metabolic acidosis. This is especially true 
in patients with impaired hepatic metabolism. 

 Dialysis fl uids containing bicarbonate, the 
physiological buffer of the blood, have been 

demonstrated to improve the outcome of patients 
who require acute dialysis  [  18,   19  ] . Bicarbonate-
based PD solutions used to require local manu-
facturing and rapid consumption due to the ready 
dissociation of HCO 

3
  to gaseous CO 

2
   [  20  ] . 

In recent years, advances in foil technology have 
made it possible to produce industrially 
 manufactured, stable PD fl uid bags containing 
either pure bicarbonate or a mixture of bicarbon-
ate and lactate buffer (Table  12.2 ). Superior con-
trol of metabolic acidosis has been demonstrated 
for the pure 34 mmolar bicarbonate solution and 

  Fig. 12.2    Deleterious effects of glucose degradation products (GDP) and advanced glycation endproducts (AGE) in 
PD patients. PD fl uids accelerate the aging process by delivery of glucose degradation products, which act directly and 
indirectly via enhanced generation of AGE on the peritoneum membrane but also systemically       

   Table 12.1    Composition of conventional, single-chamber PD solutions   

 CAPD 2/3/4 17/18/19  Dianeal PD 1, PD2 a , PD4  Gambrosol 10/40 

 Sodium (mmol/L)  134  132  132 
 Chloride (mmol/L)  102.5  102/96/95  96/95 
 Calcium (mmol/L)  1.25/1.75  1.75/1.75/1.25  1.75/1.35 
 Magnesium (mmol/L)  0.5  0.75/0.75/0.25  0.25 
 Glucose (%)  1.5/2.3/4.25  1.36/2.27/3.86  1.5/2.5/4.0 
 Osmolarity (mosmol/L)  356–509  344–486  353–492 
 Lactate (mmol/L)  35  35/40/40  40 
 pH  5.5  5.5  5.5 

 Formaldehyde ( m mol/L) b   5.4 ± 0.4  6.8 ± 0.2  6.4 ± 0.5 

 3,4 DGE ( m mol/L) b   16.2 ± 0.8  11.3 ± 0.5  13.1 ± 1.1 

 Bag size (L)  1.5/2/2.5  1.5/2/2.5/3/5 (APD)  0.5/1/1.5/2/2.5/3 (G40)/4.5/5 

  GDP concentrations taken from Ref.  [  10  ] , for Gambrosol 10/40 from Ref.  [  11  ]  
  a Not available in all countries 
  b At medium glucose concentration  
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the 25/10 mmolar bicarbonate/lactate solution as 
compared to single-chamber, 35 mmolar lactate 
PD fl uid  [  21,   22  ] . Overcorrection to metabolic 
acidosis may occur with very frequent cycles and 
with higher dialysate buffer content  [  23  ] . 
 Pyruvate , a natural radical scavenger with buffer 
capacity, might be an attractive alternative buffer 
agent but thus far has only been investigated in 
experimental settings  [  24  ] .  

     Electrolytes 

 Sodium, chloride, calcium, and magnesium are 
added to the PD solutions to maintain mineral 
homeostasis.  Sodium chloride  balance is closely 
related to the ultrafi ltration rate. Depending on 
dwell time and the relative contribution of free 
water transport via aquaporin-1 in the early phase 
of a dwell, more than 100 mmol of sodium per 
liter ultrafi ltrate can be lost. In infants, the rela-
tively higher ultrafi ltration rates may therefore 
result in reduced total body sodium chloride 
content, hypovolemia, and hypotension. Since the 
losses are isotonic, sodium depletion is commonly 
not associated with hyponatremia; rather, noctur-
nal hypotension and tachycardia may be the fi rst 
symptoms of sodium chloride defi ciency. Sodium 
chloride supplementation is mandatory in these 
patients. Only if dwell time is very short and 
dialysate glucose concentration is high, as for 
example required in severely volume overloaded 
patients, aquaporin-1 mediated free water transport 
predominates. Since the drained dialysate sodium 
mass is low in these cases (“sodium sieving”), rela-
tive body sodium concentrations increase and results 
in third. The third scenario usually affects older 
children and adults who are typically salt and thus 
water overloaded due to poor dietary adherence, 
especially if anuric. In these patients, the comple-
mentary use of icodextrin solution has proven 
benefi cial (see below). Sodium balance, hydration 
status, and blood pressure might also be improved 
by low sodium dialysate solutions, which have 
shown promising results in clinical studies  [  25,   26  ]  
but have not yet been admitted to the market. 

 Optimal  calcium  control, i.e., serum levels in 
the lower normal range, is crucial for bone and 

vascular health. Dialysate calcium concentrations 
range from the physiological 1.25 mmol/L, which 
usually allows for a calcium neutral dialysis, unless 
ultrafi ltration occurs, to 1.75 mmol/L, which results 
in a positive calcium balance. The net dialytic cal-
cium balance can be estimated from the dialysate 
turnover and the difference between PD fl uid and 
effl uent calcium concentrations and the calcium 
losses via the ultrafi ltrate. It adds to the total body 
calcium balance determined by urine losses and 
intestinal absorption from nutrients and phosphate 
binders and modifi ed by vitamin D treatment. 
While calcium balance should be mildly positive to 
meet the mineral requirements of a growing child, 
routine administration of 1.75 millimolar PD fl uid 
will result in calcium overload in most children. 
The use of solutions containing 1.0 mmol/L cal-
cium leads to aggravated secondary hyperparathy-
roidism and have become dispensible with the 
advent of calcium-free phosphate binders  [  27  ] . 
Since  magnesium  accumulates in advanced CKD, 
dialysate magnesium concentrations are low to low 
normal relative to serum concentrations (Tables  12.1  
and  12.2 ). Harmful effects of increased serum 
magnesium levels include altered nerve conduction 
velocity, pruritus, and altered bone and parathyroid 
gland function. On the other hand, hypermag-
nesemia may also slow vascular calcifi cation rate. 
An inverse relationship between serum Mg, hyper-
parathyroidism, and vascular calcifi cation has been 
demonstrated in adult dialysis patients  [  28,   29  ] .   

     PD Fluid Types 

     Conventional PD Solutions 

 Single-chamber PD solutions allow for effi cient 
ultrafi ltration, transperitoneal solute transport, 
and, thus, blood purifi cation. They, however, 
contain high amounts of toxic GDP and expose 
the patient to supraphysiological lactate concen-
trations at an unphysiologically low pH 
(Table  12.1 ). They impair peritoneal mesothelial 
cell function, local host defense  [  13,   14,   30,   31  ] , 
and lead to largely irreversible alterations of PD 
membrane morphology and function within a few 
years of usage  [  1,   2,   15  ] .  
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     Multi-Chamber PD Fluids 

 By separating the glucose at a very low pH in 
double- and triple-chamber bags, formation of 
GDP is markedly reduced. Most, albeit not all, of 
the solutions are buffered at neutral or even phys-
iological pH with lactate, bicarbonate, or a mix-
ture of both. Numerous experimental and clinical 
studies have demonstrated an improved biocom-
patibility profi le of multi-chamber PD solutions. 

 In vitro, multi-chamber PD fl uids improve 
mesothelial cell viability and function, preserve 
innate peritoneal immune defense mechanisms, 
and reduce the synthesis and secretion of cytok-
ines related to infl ammation, fi brosis, and angio-
genesis  [  31–  34  ] . 

 Animal studies confi rmed improved in vivo 
peritoneal host defense  [  35,   36  ] , reduced perito-
neal TGF-ß and VEGF expression, reduced depo-
sition of AGE, preservation of the mesothelial 
cell layer, and markedly reduced fi brosis, vascul-
opathy and neoangiogenesis  [  37  ] . The acute peri-
toneal hyperperfusion observed with conventional 
solutions is largely prevented when perfusion is 
performed with multi-chamber PD fl uid  [  38  ] . 
Finally, multi-chamber fl uids have been associ-
ated with preserved ultrafi ltration capacity in an 
experimental long-term dialysis model  [  39  ] . 

 In humans, effl uent CA125 concentration, a 
surrogate parameter of peritoneal mesothelial 
cell mass increases (Fig.  12.3 ), whereas the 
infl ammation markers IL-6 and hyaluronic acid 
decrease  [  21,   40–  43  ] . The effl uent concentration 
of VEGF, a putative marker of peritoneal neoan-
giogenesis, decreased in some but not all studies 
 [  34,   42,   43  ] . Several prospective randomized tri-
als demonstrate similar solute transport and ultra-
fi ltration capacity in children and adults treated 
with multi-chamber as compared to conventional 
PD solutions  [  8,   21,   23,   44  ] . In case of reduced 
ultrafi ltration rate, this was compensated by 
improved residual renal urine output  [  40,   45  ] . 
Indeed, residual renal function appears to be 
 better preserved with multi-chamber PD fl uids 
 [  46,   47  ] , most likely due to reduced GDP resorp-
tion. GDP are toxic to podocytes and tubular cells 
 [  48  ] . Switch from conventional to low GDP solu-
tions results in a peritoneal washout of AGE 
 [  49,   50  ]  and a 15% decline in systemic AGE 
 levels in children  [  8  ]  and adults  [  41  ] .  

 A relevant clinical benefi t of multi-chamber 
PD fl uids is likely but diffi cult to ascertain. An 
immediate advantage is the reduction of abdomi-
nal discomfort due to reduced infl ow pain and 
intraperitoneal pressure  [  51,   52  ] . Some but not 
all groups observed a reduced overall peritonitis 

  Fig. 12.3    CA125 effl uent concentration in children 
treated with conventional (CPDF) and low GDP solution 
(BicaVera ® ). Twenty-eight children were randomly 
assigned to undergo 12 week treatment periods with low 
GDP solution followed by CPDF or vice versa. CA125 

effl uent concentrations, a marker of peritoneal mesothe-
lial cell mass, increase with low GDP solution ( left ), 
remain low in patients who continue to receive CPDF, and 
decrease in children switched from low GDP fl uid to 
CPDF ( right ) (With permission from Ref.  [  21  ] )       
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incidence in patients treated with PD solutions 
with reduced GDP content, new cyclers, and 
improved connection devices  [  53,   54  ] . Two 
large-scale registries demonstrate signifi cant 
improvement of patient morbidity and mortality 
in adults using multi-chamber as compared to 
conventional fl uids  [  55,   56  ]  (Fig.  12.4 ). These 
promising fi ndings have stimulated large-scale 
randomized comparative trials which are cur-
rently underway.  

 An interesting side note related to triple-
chamber systems is the option to mix a hypoos-
molar solution with 0.75% dextrose, which may 
be used for rehydration of dehydrated children. 

 Taken together, a plethora of benefi cial effects 
has been demonstrated experimentally for low-
GDP multi-chamber PD solutions, and evidence 
for relevant clinical benefi ts is beginning to 
emerge. It should be noted though that the differ-
ent currently available solutions still differ con-
siderably with respect to their GDP contents and 
fi nal pH, obviously due to differences in the man-
ufacturing process. Some manufactures reduced 
total GDP content by 50%, others by more than 
90% compared to single-chamber PD fl uid 
(Table  12.2 )  [  10,   11  ] . The clinical impact of these 
differences has not yet been delineated.  

     Icodextrin Solution 

 Exposure to glucose at high concentrations con-
fers some degree of toxicity to the peritoneum 

even in the absence of GDP. Therefore, a com-
plementary research strategy besides minimiza-
tion of GDP formation has been the search for 
alternative, less toxic osmotic agents. Icodextrin 
is derived from starch and consists of a mixture 
of glucose polymers with an 85% molecular 
weight range of 1.7–45 kD. The GDP content of 
the icodextrin solution is low, lactate concentra-
tion is 40 mmol/L at a pH of 5.5 (Table  12.2 ). 
Although the transperitoneal absorption rate is 
much lower than that of glucose, 40% of the ico-
dextrin molecules are absorbed within 12 h  [  57  ] . 
Icodextrin is metabolized to maltose and its 
derivatives, which accumulate in the human 
body and increase serum osmolality by 
5 mosmol/L  [  58  ] . A clinical impact of chronic 
maltose accumulation has not yet been discerned. 
After icodextrin discontinuation, the plasma 
 levels of its metabolites return to baseline within 
3–7 days  [  57  ] . 

 Unlike the hyperosmolar, crystalloid osmotic 
gradient of glucose solutions, icodextrin solution 
is characterized by iso-osmotic, colloid osmotic 
ultrafi ltration. This type of ultrafi ltration is aqua-
porin-1 independent, i.e., sodium sieving does 
not occur. The ultrafi ltration pattern is delayed as 
compared to glucose-containing PD fl uids, with 
sustained net fl uid withdrawal for more than 12 h 
(Fig.  12.5 ). Icodextrin should therefore be admin-
istered once daily during the long dwell.  

 Once daily administration of icodextrin 
increases sodium removal and improves the daily 
ultrafi ltration rate and hydration status  [  58,   59  ] , 

  Fig. 12.4    Observational 
data on all-cause mortality 
in adult PD patients on low 
GDP solution (n = 1,621) 
and patients on conven-
tional PD solution (CPDF, 
n = 542) suggesting 
improved patient survival 
with the low GDP solution 
( p  < 0.01, With permission 
from Ref.  [  55  ] ) .  This 
association is currently 
validated in prospective 
clinical trials       

 



212 C.P. Schmitt

independent of the prevailing peritoneal trans-
porter status  [  60  ] ; blood pressure and left ven-
tricular mass are improved within 3–6 months 
 [  61,   62  ] . 

 The local and systemic glucose load is signifi -
cantly reduced and the plasma lipid profi le 
improves with icodextrin usage  [  63,   64  ] . In anuric 
APD patients, icodextrin administration during 
the daytime dwell preserves peritoneal membrane 
function as compared to patients receiving con-
ventional, high GDP solution only  [  65  ] . 

 In many centers, icodextrin is combined with 
conventional single-chamber PD solution. 
Whether long-term results are comparable to pre-
scription of pH neutral, low GDP solutions only 
is yet unknown. Twice daily administration of 
icodextrin has been proposed in seriously hyper-
volemic patients  [  66  ] . Caution, however, is man-
datory, since the metabolic impact of the 
additional icodextrin and oligosaccharide load is 
yet unknown. 

 Disadvantages of icodextrin solution concern 
the high lactate concentration and the low pH 
(Table  12.2 ). Allergic skin reactions to icodextrin 
and exfoliative dermatitis have been reported in up 
to 10% of the patients. Discontinuation of icodex-
trin usually is curative. In the past, aseptic peritoni-
tis outbreaks were repeatedly noted with icodextrin 
fl uid; these were mainly due to transient contami-
nation with peptidoglycan, a bacterial membrane 

compound inducing local infl ammation, which 
had escaped endotoxin testing  [  67  ] . The last pub-
lished outbreak occurred in 2006  [  68  ] . The reduced 
GDP content improves peritoneal host defense 
mechanisms in an ex vivo model, but not to a simi-
lar extent as double-chamber PD fl uids  [  36  ] . 

 Glucose-specifi c assays are required to mea-
sure serum glucose levels in patients treated 
with icodextrin since falsely increased plasma 
glucose determinations are obtained when glucose 
dehydrogenase-based (GDH PQQ) or glucose-dye-
oxidoreductase-based methods are used. Total 
alpha-amylase activity is 75% lower in the serum 
of patients treated with icodextrin than in patients 
only treated with glucose solutions and 66% 
lower as compared to healthy subjects, for 
unknown reasons  [  69  ] . This needs to be consid-
ered if a pancreatic disease is suspected. Mild 
increases in serum GOT, GPT, and AP have been 
observed in 1–10% of the patients. 

 In summary, icodextrin solution has important 
advantages over conventional PD solutions with 
respect to sodium removal and ultrafi ltration, 
which are particularly relevant in anuric subjects 
and those with a high peritoneal transporter sta-
tus. In the future, the emergence of a high trans-
porter status, and consequently the need for 
icodextrin treatment, is hoped to decline with the 
administration of biocompatible PD solutions 
from the very beginning.  

  Fig. 12.5    Scheme of icodextrin and glucose-dependent ultrafi ltration kinetics. Icodextrin induces relative slow, AQP-1 
independent, but sustained ultrafi ltration and should be used for a single long dwell       
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     Amino Acid Solutions 

 Amino acids are another alternative to glucose as 
osmotic agent. Amino acid–based PD solutions 
contain very low amounts of GDP  [  70  ]  and allow 
for a phosphate-free amino acid supply. The solu-
tion is only slightly hyperosmolar, similar to 
1.5% glucose solution, and contains 40 mmol/L 
of lactate at a slightly acidic pH of 6.7. 
Experimental studies, however, do not unequivo-
cally support the notion of improved biocompat-
ibility  [  37,   71  ] . Amino acids induce mesothelial 
NO production, a factor involved in neoangio-
genesis  [  72  ] , increase effl uent IL-6 concentra-
tions, a potential surrogate marker of infl ammation 
 [  73  ] , and suppress leukocyte recruitment in rats 
 [  36  ] . Long-term dialysis in rats, however, revealed 
only minor peritoneal changes and preserved 
ultrafi ltration capacity, similar to double-chamber 
PD fl uid  [  37  ] . In children and adults, solute and 
water transport is similar as compared to conven-
tional, high GDP fl uids  [  74,   75  ] . 

 With respect to the nutritional effect of amino 
acid solutions, early studies yielded disappoint-
ing results with no improvement in anthropomet-
ric indices, increased serum nitrogen levels, and 
metabolic acidosis  [  76  ] . More recent stable iso-
tope studies in adult CAPD patients using amino 
acid and glucose PD fl uid exposure at a ratio of 
1:4 yielded increased protein anabolism  [  77  ]  
and a 4% higher protein synthesis rate as com-
pared to patients treated with a double-chamber 
PD solution only. Increases in serum nitrogen 
levels and metabolic acidosis were not observed, 
protein breakdown was not affected  [  78  ] . The 
anabolic effect was most pronounced in malnour-
ished patients. This is in line with clinical obser-
vations in four malnourished patients followed 
over 3 years  [  75  ] . Outcome data from appropri-
ately sized randomized controlled trials, however, 
are not yet available. 

 The limited anabolic effects of the relatively 
expensive solutions, concerns regarding their bio-
compatibility, and the usual achievement of ade-
quate nutrition with enteral feeding thus far have 
prevented wider administration of amino acid–
based PD fl uids in children, although the concept 
is intriguing. The few pediatric reports available 

comprise ten patients or less and suggest good 
clinical tolerance and similar transport kinetics as 
compared to other solutions  [  74,   79–  81  ] .  

     Combination Therapies 

 Different combinations of biocompatible PD 
solutions are feasible, and the concept appears 
intriguing. Icodextrin can be administered 
together with multi-chamber PD fl uids. 
Combination of icodextrin with multi-chamber 
PD and amino acid-based fl uid has been advo-
cated to substantially reduce glucose and GDP 
exposure, e.g., by 40–50% in patients on CAPD. 
While results from prospective, randomized con-
trolled trials are not yet available, observational 
clinical reports suggest that the triple combina-
tion is safe and effective  [  82,   83  ]  and may 
improve metabolic acidosis control  [  84  ] . The 
anecdotally reported overcorrection of metabolic 
acidosis  [  85  ]  may be related to intensive PD pro-
tocols with frequent cycles and could probably 
be mitigated by choosing PD solutions with lower 
buffer content.   

     Perspectives 

 Biocompatible PD fl uids and the new cycler sys-
tems are increasingly used in children with end-
stage renal disease. According to the International 
Pediatric PD Network Registry, 60% of the PD 
children in Europe were treated with multi- 
chamber PD solutions with reduced GDP content 
in 2010, 15% with icodextrin solution (  www.
pedpd.org    ). Lower numbers have been reported for 
Asia (25% and 15%) and North America (10% and 
17%). In face of the increasing scientifi c and clini-
cal evidence of local and systemic benefi ts of these 
solutions, the associated increase in costs should 
be offset by reduced infectious complications 
 [  53,   54  ] , improved long-term preservation of the 
PD membrane  [  37,   39,   65  ] , improved cardiovascu-
lar health  [  61,   65,   66  ] , and ultimately improved 
long-term patient survival (Fig.  12.6 ). Registry 
data support this assumption  [  55,   56  ]  which is cur-
rently being tested in randomized clinical trials.  
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 Future prospects should include the complete 
replacement of glucose by a nontoxic (and thus 
GDP free), nonabsorbable osmotic agent. Several 
such agents are currently under investigation. To 
optimize mineral and acid base balance and thus 
to reduce CKD-MBD and cardiovascular seque-
lae, novel PD systems should furthermore allow 
for a more refi ned, continuous adaptation of elec-
trolyte and buffer supply according to individual 
needs.      
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