
9
HANDLING OVERLOAD

CONDITIONS

9.1 INTRODUCTION

This chapter deals with the problem of scheduling real-time tasks in overload condi-
tions; that is, in those critical situations in which the computational demand requested
by the task set exceeds the processor capacity, and hence not all tasks can complete
within their deadlines.

Overload conditions can occur for different causes, including the following:

Bad system design. If a system is not designed or analyzed under pessimistic
assumptions and worst-case load scenarios, it may work for most typical situ-
ations, but it can collapse in particular peak-load conditions, where too much
computation is requested for the available computational resources.

Simultaneous arrival of events. Even if the system is properly designed, the si-
multaneous arrival of several “unexpected” events could increase the load over
the tolerated threshold.

Malfunctioning of input devices. Sometimes hardware defects in the acquisition
boards or in some sensors could generate anomalous sequences of interrupts,
saturating the processor bandwidth or delaying the application tasks after their
deadlines.

Unpredicted variations of the environmental conditions could generate a compu-
tational demand higher than that manageable by the processor under the specified
timing requirements.

Operating system exceptions. In some cases, anomalous combination of data
could raise exceptions in the kernel, triggering the execution of high-priority han-
dling routines that would delay the execution of application tasks.

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1

287
9

 Springer Science+Business Media, LLC 2011©

288 Chapter 9

9.1.1 LOAD DEFINITIONS

In a real-time system, the definition of computational workload depends on the tempo-
ral characteristics of the computational activities. For non-real-time or soft real-time
tasks, a commonly accepted definition of workload refers to the standard queueing the-
ory, according to which a load ρ, also called traffic intensity, represents the expected
number of job arrivals per mean service time. If C is the mean service time and λ is
the average interarrival rate of the jobs, the average load can be computed as

ρ = λC.

Note that this definition does not take deadlines into account; hence, it is not particu-
larly useful to describe real-time workloads. In a hard real-time environment, a system
is overloaded when, based on worst-case assumptions, there is no feasible schedule for
the current task set, so one or more tasks will miss their deadline.

If the task set consists of n independent preemptable periodic tasks, whose relative
deadlines are equal to their period, then the system load ρ is equivalent to the processor
utilization factor:

ρ = U =
n∑

i=1

Ci

Ti
,

where Ci and Ti are the computation time and the period of task τ i, respectively. In
this case, a load ρ > 1 means that the total computation time requested by the periodic
activities in their hyperperiod exceeds the available time on the processor; therefore,
the task set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system load
varies at each job activation and it is a function of the jobs’ deadlines. In general, the
load in a given interval [ta, tb] can be defined as

ρ(ta, tb) = max
t1,t2∈[ta,tb]

g(t1, t2)
t2 − t1

(9.1)

where g(t1, t2) is the processor demand in the generic interval [t1, t2]. Such a def-
inition, however, is of little practical use for load calculation, since the number of
intervals in which the maximum has to be computed can be very high. Moreover, it is
not clear how large the interval [ta, tb] should be to estimate the overall system load.

A more practical definition that can be used to estimate the current load in dynamic
real-time systems is the instantaneous load ρ(t), proposed by Buttazzo and Stankovic
[BS95].

Handling Overload Conditions 289

According to this method, the load is computed in all intervals from the current time
t and each deadline (di) of the active jobs. Hence, the intervals that need to be con-
sidered for the computation are [t, d1], [t, d2], . . . , [t, dn]. In each interval [t, di], the
partial load ρi(t) due to the first i jobs is

ρi(t) =

∑
dk≤di

ck(t)
(di − t)

, (9.2)

where ck(t) refers to the remaining execution time of job Jk with deadline less than
or equal to di. Hence, the total load at time t is

ρ(t) = max
i

ρi(t). (9.3)

Figure 9.1 shows an example of load calculation, at time t = 3, for a set of three
real-time jobs. Then, Figure 9.2 shows how the load varies as a function of time for
the same set of jobs.

0 2 4 6 81 3 5 7 109

J1

J2

J3

ρ1(t) = 2/3

ρ2(t) = 3/4

ρ3(t) = 4/6

ρ(t) = 3/4
t

Figure 9.1 Instantaneous load at time t = 3 for a set of three real-time jobs.

9.1.2 TERMINOLOGY

When dealing with computational load, it is important to distinguish between overload
and overrun.

Definition 9.1 A computing system is said to experience an overload when the compu-
tation time demanded by the task set in a certain interval of time exceeds the available
processing time in the same interval.

Definition 9.2 A task (or a job) is said to experience an overrun when exceeding its
expected utilization. An overrun may occur either because the next job is activated
before its expected arrival time (activation overrun), or because the job computation
time exceeds its expected value (execution overrun).

290 Chapter 9

t

0 2 4 6 81 3 5 7 109

ρ (t)

0.2

0.4

0.6

0.8

1.0

0.0
0 2 4 6 81 3 5 7 109

J1

J2

J3

Figure 9.2 Instantaneous load as a function of time for a set of three real-time jobs.

Note that while the overload is a condition related to the processor, the overrun is a
condition related to a task (or a single job). A task overrun does not necessarily cause
an overload. However, a large unexpected overrun or a sequence of overruns can cause
very unpredictable effects on the system, if not properly handled. In the following, we
distinguish between two types of overload conditions:

Transient overload: it is an overload condition occurring for a limited duration,
in a system in which the average load is less than or equal to one (ρ ≤ 1), but the
maximum load is greater than one (ρmax > 1).

Permanent overload: it is an overload condition occurring for an unpredictable
duration, in a system in which the average load is higher than one (ρ > 1).

In a real-time computing system, a transient overload can be caused by a sequence of
overruns, or by a bursty arrival of aperiodic requests, whereas a permanent overload
condition typically occurs in periodic task systems when the total processor utilization
exceeds one.

Handling Overload Conditions 291

In the rest of this chapter, the following types of overload conditions will be analyzed:

Transient overloads due to aperiodic jobs. This type of overload is typical of
event-triggered systems consisting of many aperiodic jobs activated by external
events. If the operating system is not designed to cope with excessive event ar-
rivals, the effects of an overload can be unpredictable and cause serious problems
on the controlled system. Experiments carried out by Locke [Loc86] have shown
that EDF can rapidly degrade its performance during overload intervals, and there
are cases in which the arrival of a new task can cause all the previous tasks to miss
their deadlines. Such an undesirable phenomenon, called the Domino Effect, is
depicted in Figure 9.3. Figure 9.3a shows a feasible schedule of a task set exe-
cuted under EDF. However, if at time t0 task J0 is executed, all the previous tasks
miss their deadlines (see Figure 9.3b).

1

(a)

J

J

4

3J

2J

1

J 0

t

J 4

3J

2J

J

0 (b)

Figure 9.3 Feasible schedule with Earliest Deadline First, in normal load condition (a).
Overload with Domino Effect due to the arrival of task J0 (b).

292 Chapter 9

Transient overloads due to task overruns. This type of overload can occur
both in event-triggered and time-triggered systems, and it is due to periodic or
aperiodic tasks that sporadically execute (or are activated) more than expected.
Under Rate Monotonic, an overrun in a task τ i does not affect tasks with higher
priority, but any of the lower priority tasks could miss their deadline. Under EDF,
a task overrun can potentially affect all the other tasks in the system. Figure 9.4
shows an example of execution overrun in an EDF schedule.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

Figure 9.4 Effect of an execution overrun in an EDF schedule.

Permanent overloads in periodic task systems. This type of overload occurs
when the total utilization factor of the periodic task set is greater than one. This
can happen either because the execution requirement of the task set was not cor-
rectly estimated, or some unexpected activation of new periodic tasks, or some
of the current tasks increased their activation rate to react to some change in the
environment. In such a situation, computational activities start accumulating in
the system’s queues (which tend to become longer and longer, if the overload per-
sists), and tasks response times tend to increase indefinitely. Figure 9.5 shows the
effect of a permanent overload condition in a Rate Monotonic schedule, where τ 2

misses its deadline and τ3 can never execute.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

Figure 9.5 Example of a permanent overload under Rate Monotonic: τ2 misses its dead-
line and τ3 can never execute.

Handling Overload Conditions 293

9.2 HANDLING APERIODIC OVERLOADS

In this section we consider event-driven systems where tasks arrive dynamically at
unknown time instants. Each task consists of a single job, which is characterized by
a fixed (known) computation time Ci and a relative deadline Di. As a consequence,
the overload in these systems can only be caused by the excessive number of tasks and
can be detected at task activation times.

9.2.1 PERFORMANCE METRICS

When tasks are activated dynamically and an overload occurs, there are no algorithms
that can guarantee a feasible schedule of the task set. Since one or more tasks will miss
their deadlines, it is preferable that late tasks be the less important ones in order to
achieve graceful degradation. Hence, in overload conditions, distinguishing between
time constraints and importance is crucial for the system. In general, the importance
of a task is not related to its deadline or its period; thus, a task with a long deadline
could be much more important than another one with an earlier deadline. For example,
in a chemical process, monitoring the temperature every ten seconds is certainly more
important than updating the clock picture on the user console every second. This
means that, during a transient overload, is better to skip one or more clock updates
rather than miss the deadline of a temperature reading, since this could have a major
impact on the controlled environment.

In order to specify importance, an additional parameter is usually associated with each
task, its value, that can be used by the system to make scheduling decisions.

The value associated with a task reflects its importance with respect to the other tasks
in the set. The specific assignment depends on the particular application. For instance,
there are situations in which the value is set equal to the task computation time; in
other cases, it is an arbitrary integer number in a given range; in other applications, it
is set equal to the ratio of an arbitrary number (which reflects the importance of the
task) and the task computation time; this ratio is referred to as the value density.

In a real-time system, however, the actual value of a task also depends on the time at
which the task is completed; hence, the task importance can be better described by
an utility function. For example, a non-real-time task, which has no time constraints,
has a low constant value since it always contributes to the system value whenever it
completes its execution. On the contrary, a hard task contributes to a value only if it
completes within its deadline, and since a deadline miss would jeopardize the behav-
ior of the whole system, the value after its deadline can be considered minus infinity

294 Chapter 9

soft

firm

Non real−time

hard

id

v(f)i

v(f)i

f i

v(f)i

v(f)i

f i

f i
id

id
f i

−∞

Figure 9.6 Utility functions that can be associated to a task to describe its importance.

in many situations. A soft task can still give a value to the system if competed af-
ter its deadline, although this value may decrease with time. There are also real-time
activities, so-called firm, that do not jeopardize the system, but give a negligible con-
tribution if completed after their deadline. Figure 9.6 illustrates the utility functions of
four different types of tasks.

Once the importance of each task has been defined, the performance of a scheduling
algorithm can be measured by accumulating the values of the task utility functions
computed at their completion time. Specifically, we define as cumulative value of a
scheduling algorithm A the following quantity:

ΓA =
n∑

i=1

v(fi).

Given this metric, a scheduling algorithm is optimal if it maximizes the cumulative
value achievable on a task set.

Note that if a hard task misses its deadline, the cumulative value achieved by the algo-
rithm is minus infinity, even though all other tasks completed before their deadlines.
For this reason, all activities with hard timing constraints should be guaranteed a pri-
ori by assigning them dedicated resources (including processors). If all hard tasks
are guaranteed a priori, the objective of a real-time scheduling algorithm should be to
guarantee a feasible schedule in normal load conditions and maximize the cumulative
value of soft and firm tasks during transient overloads.

Handling Overload Conditions 295

Given a set of n jobs Ji(Ci, Di, Vi), where Ci is the worst-case computation time,
Di its relative deadline, and Vi the importance value gained by the system when the
task completes within its deadline, the maximum cumulative value achievable on the
task set is clearly equal to the sum of all values Vi; that is, Γmax =

∑n
i=1 Vi. In

overload conditions, this value cannot be achieved, since one or more tasks will miss
their deadlines. Hence, if Γ∗ is the maximum cumulative value that can be achieved
by any algorithm on a task set in overload conditions, the performance of a scheduling
algorithm A can be measured by comparing the cumulative value Γ A obtained by A
with the maximum achievable value Γ∗.

9.2.2 ON-LINE VERSUS CLAIRVOYANT
SCHEDULING

Since dynamic environments require online scheduling, it is important to analyze the
properties and the performance of online scheduling algorithms in overload condi-
tions. Although there exist optimal online algorithms in normal load conditions, it is
easy to show that no optimal on-line algorithms exist in overloads situations. Consider
for example the task set shown in Figure 9.7, consisting of three tasks J 1(10, 11, 10),
J2(6, 7, 6), J3(6, 7, 6).

Without loss of generality, we assume that the importance values associated to the
tasks are proportional to their execution times (V i = Ci) and that tasks are firm, so no
value is accumulated if a task completes after its deadline. If J1 and J2 simultaneously
arrive at time t0 = 0, there is no way to maximize the cumulative value without
knowing the arrival time of J3. In fact, if J3 arrives at time t = 4 or before, the
maximum cumulative value is Γ∗ = 10 and can be achieved by scheduling task J1

(see Figure 9.7a). However, if J3 arrives between time t = 5 and time t = 8, the
maximum cumulative value is Γ∗ = 12, achieved by scheduling task J2 and J3, and
discarding J1 (see Figure 9.7b). Note that if J3 arrives at time t = 9 or later (see
Figure 9.7c), then the maximum cumulative value is Γ∗ = 16 and can be accumulated
by scheduling tasks J1 and J3. Hence, at time t = 0, without knowing the arrival
time of J3, no online algorithm can decide which task to schedule for maximizing the
cumulative value.

What this example shows is that without an a priori knowledge of the task arrival
times, no online algorithm can guarantee the maximum cumulative value Γ ∗. This
value can only be achieved by an ideal clairvoyant scheduling algorithm that knows
the future arrival time of any task. Although the optimal clairvoyant scheduler is a pure
theoretical abstraction, it can be used as a reference model to evaluate the performance
of online scheduling algorithms in overload conditions.

296 Chapter 9

1
J 1

J 2

J 3

0 42 6

0

8

(a)

J 1

J 2

J 3

2

14

4 6 8 10 12 14 16

1612

J

10

10 12 14 16

(c)

J 1

2

J 3

0 2 4 6 8

C = 6

2C = 6

C = 101

2C = 6

3

C = 101

2C = 6

3C = 6

3C = 6

C = 10

(b)

Figure 9.7 No optimal online algorithms exist in overload conditions, since the schedule
that maximizes Γ depends on the knowledge of future arrivals: Γmax = 10 in case (a),
Γmax = 12 in case (b), and Γmax = 16 in case (c).

Handling Overload Conditions 297

9.2.3 COMPETITIVE FACTOR

The cumulative value obtained by a scheduling algorithm on a task set represents a
measure of its performance for that particular task set. To characterize an algorithm
with respect to worst-case conditions, however, the minimum cumulative value that
can be achieved by the algorithm on any task set should be computed. A parameter
that measures the worst-case performance of a scheduling algorithm is the competitive
factor, introduced by Baruah et al. [BKM+92].

Definition 9.3 A scheduling algorithm A has a competitive factor ϕA if and only if it
can guarantee a cumulative value ΓA ≥ ϕAΓ∗, where Γ∗ is the cumulative value
achieved by the optimal clairvoyant scheduler.

From this definition, we note that the competitive factor is a real number ϕA ∈ [0, 1]. If
an algorithm A has a competitive factor ϕA, it means that A can achieve a cumulative
value ΓA at least ϕA times the cumulative value achievable by the optimal clairvoyant
scheduler on any task set.

If the overload has an infinite duration, then no online algorithm can guarantee a com-
petitive factor greater than zero. In real situations, however, overloads are intermittent
and usually have a short duration; hence, it is desirable to use scheduling algorithms
with a high competitive factor.

Unfortunately, without any form of guarantee, the plain EDF algorithm has a zero
competitive factor. To show this result it is sufficient to find an overload situation
in which the cumulative value obtained by EDF can be arbitrarily small with respect
to that one achieved by the clairvoyant scheduler. Consider the example shown in
Figure 9.8, where tasks have a value proportional to their computation time. This is
an overload condition because both tasks cannot be completed within their deadlines.

v = K22J

1J v = K1

ε

Figure 9.8 Situation in which EDF has an arbitrarily small competitive factor.

When task J2 arrives, EDF preempts J1 in favor of J2, which has an earlier deadline,
so it gains a cumulative value of C2. On the other hand, the clairvoyant scheduler
always gains C1 > C2. Since the ratio C2/C1 can be made arbitrarily small, it follows
that the competitive factor of EDF is zero.

298 Chapter 9

An important theoretical result found by Baruah et al. [BKM+92] is that there is an
upper bound on the competitive factor of any on-line algorithm. This is stated by the
following theorem.

Theorem 9.1 (Baruah et al.) In systems where the loading factor is greater than 2
(ρ > 2) and tasks’ values are proportional to their computation times, no online
algorithm can guarantee a competitive factor greater than 0.25.

The proof of this theorem is done by using an adversary argument, in which the on-
line scheduling algorithm is identified as a player and the clairvoyant scheduler as the
adversary. In order to propose worst-case conditions, the adversary dynamically gen-
erates the sequence of tasks depending on the player decisions, to minimize the ratio
ΓA/Γ∗. At the end of the game, the adversary shows its schedule and the two cumula-
tive values are computed. Since the player tries to do his best in worst-case conditions,
the ratio of the cumulative values gives the upper bound of the competitive factor for
any online algorithm.

TASK GENERATION STRATEGY

To create an overload condition and force the hand of the player, the adversary creates
two types of tasks: major tasks, of length Ci, and associated tasks, of length ε
arbitrarily small. These tasks are generated according to the following strategy (see
Figure 9.9):

All tasks have zero laxity; that is, the relative deadline of each task is exactly
equal to its computation time.

After releasing a major task Ji, the adversary releases the next major task Ji+1

at time ε before the deadline of Ji; that is, ri+1 = di − ε.

For each major task Ji, the adversary may also create a sequence of associated
tasks, in the interval [ri, di], such that each subsequent associated task is released
at the deadline of the previous one in the sequence (see Figure 9.9). Note that the
resulting load is ρ = 2. Moreover, any algorithm that schedules any one of the
associated tasks cannot schedule Ji within its deadline.

If the player chooses to abandon Ji in favor of an associated task, the adversary
stops the sequence of associated tasks.

If the player chooses to schedule a major task J i, the sequence of tasks terminates
with the release of Ji+1.

Since the overload must have a finite duration, the sequence continues until the
release of Jm, where m is a positive finite integer.

Handling Overload Conditions 299

ε ε ε

ε ε ε

Ci+1

iC

Major
Tasks

Tasks
Associated

ε

Figure 9.9 Task sequence generated by the adversary.

Note that the sequence of tasks generated by the adversary is constructed in such a
way that the player can schedule at most one task within its deadline (either a major
task or an associated task). Clearly, since task values are equal to their computation
times, the player never abandons a major task for an associated task because it would
accumulate a negligible value; that is, ε. On the other hand, the values of the major
tasks (that is, their computation times) are chosen by the adversary to minimize the
resulting competitive factor. To find the worst-case sequence of values for the major
tasks, let

J0, J1, J2, . . . , Ji, . . . , Jm

be the longest sequence of major tasks that can be generated by the adversary and,
without loss of generality, assume that the first task has a computation time equal to
C0 = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule J0, the sequence terminates with J1. In this
case, the cumulative value gained by the player is C0, whereas the one obtained by the
adversary is (C0 + C1 − ε). Note that this value can be accumulated by the adversary
either by executing all the associated tasks, or by executing J0 and all associated tasks
started after the release of J1. Being ε arbitrarily small, it can be neglected in the
cumulative value. Hence, the ratio among the two cumulative values is

ϕ0 =
C0

C0 + C1
=

1
1 + C1

=
1
k

.

If 1/k is the value of this ratio (k > 0), then C1 = k − 1.

Case 1. If the player decides to schedule J1, the sequence terminates with J2. In this
case, the cumulative value gained by the player is C1, whereas the one obtained by the
adversary is (C0 + C1 + C2). Hence, the ratio among the two cumulative values is

ϕ1 =
C1

C0 + C1 + C2
=

k − 1
k + C2

.

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1
k + C2

≤ 1
k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1
k
.

Thus,

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k

,

and hence

Ci+1 = kCi −
i∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{
C0 = 1
Ci+1 = kCi −

∑i
j=0 Cj .

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑
j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

302 Chapter 9

Hence, Equation (9.4) is equivalent to⎧⎨
⎩

C0 = 1
C1 = k − 1
Ci+2 = k(Ci+1 − Ci).

(9.6)

From this result, we can say that the tightest bound on the competitive factor of an
online algorithm is given by the smallest ratio 1/k (equivalently, the largest k) such
that (9.6) satisfies (9.5). Equation (9.6) is a recurrence relation that can be solved by
standard techniques [Sha85]. The characteristic equation of (9.6) is

x2 − kx + k = 0,

which has roots

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

When k = 4, we have
Ci = d1i2i + d22i, (9.7)

and when k
= 4 we have

Ci = d1(x1)i + d2(x2)i, (9.8)

where values for d1 and d2 can be found from the boundary conditions expressed in
(9.6). We now show that for (k = 4) and (k > 4) C i will diverge, so Equation (9.5)
will not be satisfied, whereas for (k < 4) Ci will satisfy (9.5).

Case (k = 4). In this case, Ci = d1i2i + d22i, and from the boundary conditions, we
find d1 = 0.5 and d2 = 1. Thus,

Ci = (
i

2
+ 1)2i,

which clearly diverges. Hence, for k = 4, Equation (9.5) cannot be satisfied.

Case (k > 4). In this case, Ci = d1(x1)i + d2(x2)i, where

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

From the boundary conditions we find{
C0 = d1 + d2 = 1
C1 = d1x1 + d2x2 = k − 1;

Handling Overload Conditions 303

that is, {
d1 = 1

2 + k−2
2
√

k2−4k

d2 = 1
2 −

k−2
2
√

k2−4k
.

Since (x1 > x2), (x1 > 2), and (d1 > 0), Ci will diverge, and hence, also for k > 4,
Equation (9.5) cannot be satisfied.

Case (k < 4). In this case, since (k2 − 4k < 0), both the roots x1, x2 and the
coefficients d1, d2 are complex conjugates, so they can be represented as follows:{

d1 = sejθ

d2 = se−jθ

{
x1 = rejω

x2 = re−jω ,

where s and r are real numbers, j =
√
−1, and θ and ω are angles such that, −π/2 <

θ < 0, 0 < ω < π/2. Equation (9.8) may therefore be rewritten as

Ci = sejθriejiω + se−jθrie−jiω =
= sri[ej(θ+iω) + e−j(θ+iω)] =
= sri[cos(θ + iω) + j sin(θ + iω) + cos(θ + iω)− j sin(θ + iω)] =
= 2sri cos(θ + iω).

Being ω
= 0, cos(θ + iω) is negative for some i ∈ N, which implies that there exists
a finite m that satisfies (9.5).

Since (9.5) is satisfied for k < 4, the largest k that determines the competitive factor of
an online algorithm is certainly less than 4. Therefore, we can conclude that 1/4 is an
upper bound on the competitive factor that can be achieved by any online scheduling
algorithm in an overloaded environment. Hence, Theorem 9.1 follows.

EXTENSIONS

Theorem 9.1 establishes an upper bound on the competitive factor of online scheduling
algorithms operating in heavy load conditions (ρ > 2). In lighter overload conditions
(1 < ρ ≤ 2), the bound is a little higher, and it is given by the following theorem
[BR91].

Theorem 9.2 (Baruah et al.) In systems with a loading factor ρ, 1 < ρ ≤ 2, and task
values equal to computation times, no online algorithm can guarantee a competitive
factor greater than p, where p satisfies

4[1− (ρ− 1)p]3 = 27p2. (9.9)

304 Chapter 9

load
30 1 2

1

0.25

0.75

0.5

ϕ on

Figure 9.10 Bound of the competitive factor of an on-line scheduling algorithm as a func-
tion of the load.

Note that for ρ = 1 + ε, Equation (9.9) is satisfied for p =
√

4/27
 0.385, whereas,
for ρ = 2, the same equation is satisfied for p = 0.25.

In summary, whenever the system load does not exceed one, the upper bound of the
competitive factor is obviously one. As the load exceeds one, the bound immediately
falls to 0.385, and as the load increases from one to two, it falls from 0.385 to 0.25. For
loads higher than two, the competitive factor limitation remains at 0.25. The bound on
the competitive factor as a function of the load is shown in Figure 9.10.

Baruah et al. [BR91] also showed that when using value density metrics (where the
value density of a task is its value divided by its computation time), the best that an
online algorithm can guarantee in environments with load ρ > 2 is

1
(1 +

√
k)2

,

where k is the important ratio between the highest and the lowest value density task in
the system.

In environments with a loading factor ρ, 1 < ρ ≤ 2, and an importance ratio k, two
cases must be considered. Let q = k(ρ − 1). If q ≥ 1, then no online algorithm can
achieve a competitive factor greater than

1
(1 +

√
q)2

,

whereas, if q < 1, no online algorithm can achieve a competitive factor greater than p,
where p satisfies

4(1− qp)3 = 27p2.

Handling Overload Conditions 305

Before concluding the discussion on the competitive analysis, it is worth pointing
out that all the above bounds are derived under very restrictive assumptions, such
as all tasks have zero laxity, the overload can have an arbitrary (but finite) duration,
and task’s execution time can be arbitrarily small. In most real-world applications,
however, tasks characteristics are much less restrictive; therefore, the 0.25 bound has
only a theoretical validity, and more work is needed to derive other bounds based
on more realistic assumptions on the actual load conditions. An analysis of online
scheduling algorithms under different types of adversaries has been presented by Karp
[Kar92].

9.2.4 TYPICAL SCHEDULING SCHEMES

With respect to the strategy used to predict and handle overloads, most of the schedul-
ing algorithms proposed in the literature can be divided into three main classes, illus-
trated in Figure 9.11:

Best effort. This class includes those algorithms with no prediction for overload
conditions. At its arrival, a new task is always accepted into the ready queue, so
the system performance can only be controlled through a proper priority assign-
ment that takes task values into account.

With acceptance test. This class includes those algorithms with admission con-
trol, performing a guarantee test at every job activation. Whenever a new task
enters the system, a guarantee routine verifies the schedulability of the task set
based on worst-case assumptions. If the task set is found schedulable, the new
task is accepted in the system; otherwise, it is rejected.

Robust. This class includes those algorithms that separate timing constraints
and importance by considering two different policies: one for task acceptance
and one for task rejection. Typically, whenever a new task enters the system, an
acceptance test verifies the schedulability of the new task set based on worst-case
assumptions. If the task set is found schedulable, the new task is accepted in
the ready queue; otherwise, one or more tasks are rejected based on a different
policy, aimed at maximizing the cumulative value of the feasible tasks.

In addition, an algorithm is said to be competitive if it has a competitive factor greater
than zero.

306 Chapter 9

Note that the simple guarantee scheme is able to avoid domino effects by sacrificing
the execution of the newly arrived task. Basically, the acceptance test acts as a filter
that controls the load on the system and always keeps it less than one. Once a task is
accepted, the algorithm guarantees that it will complete by its deadline (assuming that
no task will exceed its estimated worst-case computation time). The acceptance test,
however, does not take task importance into account and, during transient overloads,
always rejects the newly arrived task, regardless of its value. In certain conditions
(such as when tasks have very different importance levels), this scheduling strategy
may exhibit poor performance in terms of cumulative value, whereas a robust algo-
rithm can be much more effective.

RUN

reclaiming
policy

rejection
policy

scheduling
policy

Ready queue

reject queue

Planning
task

RUN

task

Ready queue
Routine

Guarantee accepted

rejected

(a)

task

(b)

RUNReady queue
always accepted

(c)

Figure 9.11 Scheduling schemes for handling overload situations: best effort (a), with
acceptance test (b), and robust (c).

Handling Overload Conditions 307

When the load is controlled by job rejection, a reclaiming mechanism can be used to
take advantage of those tasks that complete before their worst-case finishing time. To
reclaim the spare time, rejected tasks will not be removed, but temporarily parked in a
queue, from which they can be possibly recovered whenever a task completes before
its worst-case finishing time.

In the real-time literature, several scheduling algorithms have been proposed to deal
with transient overloads in event triggered systems. Ramamritham and Stankovic
[RS84] used EDF to dynamically guarantee incoming work via on-line planning.
Locke [Loc86] proposed a best effort algorithm using EDF with a rejection policy
based on tasks value density. Biyabani et. al. [BSR88] extended the work of Ra-
mamritham and Stankovic to tasks with different values, and various policies were
studied to decide which tasks should be dropped when a newly arriving task could not
be guaranteed. Haritsa, Livny, and Carey [HLC91] presented the use of a feedback-
based EDF algorithm for real-time database systems.

In real-time Mach [TWW87] tasks were ordered by EDF and overload was predicted
using a statistical guess. If overload was predicted, tasks with least value were dropped.

Other general results on overload in real-time systems were also derived. For ex-
ample, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor properties
in overload. Thambidurai and Trivedi [TT89] studied transient overloads in fault-
tolerant real-time systems, building and analyzing a stochastic model for such sys-
tems. Schwan and Zhou [SZ92] did online guarantees based on keeping a slot list and
searching for free-time intervals between slots. Once schedulability is determined in
this fashion, tasks are actually dispatched using EDF. If a new task cannot be guaran-
teed, it is discarded.

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called well-
time scheduling, which focuses on reducing the guarantee overhead in heavily loaded
systems by delaying the guarantee. Various properties of the approach were developed
via queueing theoretic arguments, and the results were a multilevel queue (based on
an analytical derivation), similar to that found by Haritsa et al. [HLC91] (based on
simulation).

In the following sections we present two specific examples of scheduling algorithms
for handling overload situations and then compare their performance for different peak
load conditions.

308 Chapter 9

9.2.5 THE RED ALGORITHM

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by But-
tazzo and Stankovic [BS93, BS95] for dealing with firm aperiodic tasks in overloaded
environments. The algorithm synergistically combines many features including grace-
ful degradation in overloads, deadline tolerance, and resource reclaiming. It operates
in normal and overload conditions with excellent performance, and it is able to predict
not only deadline misses but also the size of the overload, its duration, and its overall
impact on the system.

In RED, each task Ji(Ci, Di, Mi, Vi) is characterized by four parameters: a worst-
case execution time (Ci), a relative deadline (Di), a deadline tolerance (Mi), and
an importance value (Vi). The deadline tolerance is the amount of time by which a
task is permitted to be late; that is, the amount of time that a task may execute after
its deadline and still produce a valid result. This parameter can be useful in many
real applications, such as robotics and multimedia systems, where the deadline timing
semantics is more flexible than scheduling theory generally permits.

Deadline tolerances also provide a sort of compensation for the pessimistic evaluation
of the worst-case execution time. For example, without tolerance, a task could be
rejected, although the system could be scheduled within the tolerance levels.

In RED, the primary deadline plus the deadline tolerance provides a sort of secondary
deadline, used to run the acceptance test in overload conditions. Note that having a
tolerance greater than zero is different than having a longer deadline. In fact, tasks are
scheduled based on their primary deadline but accepted based on their secondary dead-
line. In this framework, a schedule is said to be strictly feasible if all tasks complete
before their primary deadline, whereas is said to be tolerant if there exists some task
that executes after its primary deadline but completes within its secondary deadline.

The guarantee test performed in RED is formulated in terms of residual laxity. The
residual laxity Li of a task is defined as the interval between its estimated finishing
time fi and its primary (absolute) deadline di. Each residual laxity can be efficiently
computed using the result of the following lemma.

Lemma 9.1 Given a set J = {J1, J2, . . . , Jn} of active aperiodic tasks ordered by
increasing primary (absolute) deadline, the residual laxity L i of each task Ji at time t
can be computed as

Li = Li−1 + (di − di−1)− ci(t), (9.10)

where L0 = 0, d0 = t (the current time), and ci(t) is the remaining worst-case
computation time of task Ji at time t.

Handling Overload Conditions 309

Proof. By definition, a residual laxity is Li = di − fi. Since tasks are ordered by
increasing deadlines, J1 is executing at time t, and its estimated finishing time is given
by the current time plus its remaining execution time (f1 = t+c1). As a consequence,
L1 is given by

L1 = d1 − f1 = d1 − t− c1.

Any other task Ji, with i > 1, will start as soon as Ji−1 completes and will finish ci

units of time after its start (fi = fi−1 + ci). Hence, we have

Li = di − fi = di − fi−1 − ci = di − (di−1 − Li−1)− ci =
= Li−1 + (di − di−1)− ci,

and the lemma follows.

Note that if the current task set J is schedulable and a new task Ja arrives at time t,
the feasibility test for the new task set J ′ = J ∪ {Ja} requires to compute only the
residual laxity of task Ja and that one of those tasks Ji such that di > da. This is
because the execution of Ja does not influence those tasks having deadline less than
or equal to da, which are scheduled before Ja. It follows that, the acceptance test has
O(n) complexity in the worst case.

To simplify the description of the RED guarantee test, we define the Exceeding time
Ei as the time that task Ji executes after its secondary deadline:1

Ei = max(0,−(Li + Mi)). (9.11)

We also define the Maximum Exceeding Time Emax as the maximum among all Ei’s
in the tasks set; that is, Emax = maxi(Ei). Clearly, a schedule will be strictly feasible
if and only if Li ≥ 0 for all tasks in the set, whereas it will be tolerant if and only if
there exists some Li < 0, but Emax = 0.

By this approach we can identify which tasks will miss their deadlines and compute
the amount of processing time required above the capacity of the system – the max-
imum exceeding time. This global view allows planning an action to recover from
the overload condition. Many recovering strategies can be used to solve this problem.
The simplest one is to reject the least-value task that can remove the overload situ-
ation. In general, we assume that, whenever an overload is detected, some rejection
policy will search for a subset J ∗ of least-value tasks that will be rejected to maximize
the cumulative value of the remaining subset. The RED acceptance test is shown in
Figure 9.12.

1If Mi = 0, the Exceeding Time is also called the Tardiness.

310 Chapter 9

Algorithm: RED Acceptance Test
Input: A task set J with {Ci, Di, Vi, Mi}, ∀Ji ∈ J
Output: A schedulable task set
// Assumes deadlines are ordered by decreasing values

(1) begin
(2) E = 0; // Maximum Exceeding Time
(3) L0 = 0;
(4) d0 = current time();

(5) J ′ = J ∪ {Jnew};
(6) k = <position of Jnew in the task set J ′>;

(7) for (each task J ′
i such that i ≥ k) do

(8) Li = Li−1 + (di − di−1)− ci;

(9) if (Li + Mi < −E) then // compute Emax

(10) E = −(Li + Mi);
(11) end
(12) end

(13) if (E > 0) then
(14) <select a set J∗ of least-value tasks to be rejected>;
(15) <reject all task in J∗>;
(16) end
(17) end

Figure 9.12 The RED acceptance test.

A simple rejection strategy consists in removing the task with the smallest value that
resolves the overload. To quickly identify the task to be rejected, we can keep track of
the First Exceeding Task, denoted as JFET , which is the task with the earliest primary
deadline that misses its secondary deadline. The FET index can be easily determined
within the for loop in which residual each laxity is computed. Note that in order to
resolve the overload, the task to be rejected must have a residual computation time
greater than or equal to the maximum exceeding time and a primary deadline less than
dFET . Hence, the rejection strategy can be expressed as follows:

Reject the task Jr with the least value, such that

(r ≤ FET) and (cr(t) ≥ Emax)

Handling Overload Conditions 311

To better understand the rejection strategy, consider the example illustrated in Figure
9.13, where secondary deadlines are drawn with dashed arrows. As can be easily
verified, before the arrival of J1 the task set {J2, J3, J4, J5} is strictly feasible.

 0 2 6 8 10 12 14 4 1816 20

Vi L Ei i

8

2 4 3

1 0

3 2 1

6 1 0

10 −1 0

J

J 3

J 2

J 1

J 4

6

Figure 9.13 Example of overload in a task set with deadline tolerances.

At time t = 4, when J1 arrives, an overload occurs because both J3 and J5 would ter-
minate after their secondary deadline. The least value task able to resolve the overload
is J2. In fact, J5, that has the smallest value, cannot be rejected because, having a long
primary deadline, it would not advance the execution of J 3. Also, rejecting J3 would
not solve the overload, since its residual computation time is not sufficient to advance
the completion of J5 before the deadline.

A more efficient rejection strategy could consider rejecting more than one task to
minimize the cumulative value of the rejected tasks. For example, rejecting J 3 and
J5 is better than rejecting J2. However, minimizing the value of the rejected tasks
requires a combinatorial search that would be too expensive to be performed online
for large task sets.

To take advantage of early completions and reduce the pessimism of the acceptance
test, some algorithms use an online reclaiming mechanism that exploits the saved time
to possibly recover previously rejected tasks. For example, in RED, a rejected task
is not removed from the system, but it is temporarily parked in a Reject Queue, with
the hope that it can be recovered due to some early completion. If δ is the time saved
by the running task, then all the residual laxities will increase by δ, and some of the
rejected tasks may be recovered based on their value.

312 Chapter 9

9.2.6 DOV ER: A COMPETITIVE ALGORITHM

Koren and Shasha [KS92] found an online scheduling algorithm, called D over, which
has been proved to be optimal, in the sense that it gives the best competitive factor
achievable by any online algorithm (that is, 0.25).

As long as no overload is detected, Dover behaves like EDF. An overload is detected
when a ready task reaches its Latest Start Time (LST); that is, the time at which the
task’s remaining computation time is equal to the time remaining until its deadline. At
this time, some task must be abandoned: either the task that reached its LST or some
other task.

In Dover, the set of ready tasks is partitioned in two disjoint sets: privileged tasks and
waiting tasks. Whenever a task is preempted it becomes a privileged task. However,
whenever some task is scheduled as the result of a LST , all the ready tasks (whether
preempted or never executed) become waiting tasks.

When an overload is detected because a task Jz reaches its LST , then the value of
Jz is compared against the total value Vpriv of all the privileged tasks (including the
value vcurr of the currently running task). If

vz > (1 +
√

k)(vcurr + Vpriv)

(where k is ratio of the highest value density and the lowest value density task in the
system), then Jz is executed; otherwise, it is abandoned. If Jz is executed, all the
privileged tasks become waiting tasks. Task Jz can in turn be abandoned in favor of
another task Jx that reaches its LST , but only if

vx > (1 +
√

k)vz .

It is worth observing that having the best competitive factor among all online algo-
rithms does not mean having the best performance in any load condition. In fact,
in order to guarantee the best competitive factor, D over may reject tasks with values
higher than the current task but not higher than the threshold that guarantees optimal-
ity. In other words, to cope with worst-case sequences, D over does not take advantage
of lucky sequences and may reject more value than it is necessary. In Section 9.2.7,
the performance of Dover is tested for random task sets and compared with the one of
other scheduling algorithms.

Handling Overload Conditions 313

9.2.7 PERFORMANCE EVALUATION

In this section, the performance of the scheduling algorithms described above is tested
through simulation using a synthetic workload. Each plot on the graphs represents the
average of a set of 100 independent simulations, the duration of each is chosen to be
300,000 time units long. The algorithms are executed on task sets consisting of 100
aperiodic tasks, whose parameters are generated as follows. The worst-case execution
time Ci is chosen as a random variable with uniform distribution between 50 and 350
time units. The interarrival time Ti is modeled as a random variable with a Poisson
distribution with average value equal to T i = NCi/ρ, where N is the total number of
tasks and ρ is the average load. The laxity of a task is computed as a random value
with uniform distribution from 150 and 1850 time units, and the relative deadline is
computed as the sum of its worst-case execution time and its laxity. The task value
is generated as a random variable with uniform distribution ranging from 150 to 1850
time units, as for the laxity.

The first experiment illustrates the effectiveness of the guaranteed (GED) and robust
scheduling paradigm (RED) with respect to the best-effort scheme, under the EDF
priority assignment. In particular, it shows how the pessimistic assumptions made in
the guarantee test affect the performance of the algorithms and how much a reclaiming
mechanism can compensate for this degradation. In order to test these effects, tasks
were generated with actual execution times less than their worst-case values. The
specific parameter varied in the simulations was the average Unused Computation
Time Ratio, defined as

β = 1− Actual Computation Time
Worst-Case Computation Time

.

Note that if ρn is the nominal load estimated based on the worst-case computation
times, the actual load ρ is given by

ρ = ρn(1− β).

In the graphs shown in Figure 9.14, the task set was generated with a nominal load
ρn = 3, while β was varied from 0.125 to 0.875. As a consequence, the actual mean
load changed from a value of 2.635 to a value of 0.375, thus ranging over very different
actual load conditions. The performance was measured by computing the Hit Value
Ratio (HVR); that is, the ratio of the cumulative value achieved by an algorithm and
the total value of the task set. Hence, HV R = 1 means that all the tasks completed
within their deadlines and no tasks were rejected.

314 Chapter 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
it

va
lu

e
ra

tio

Average unused computation time ratio (beta)

Nominal load = 3

RED
GED
EDF

Figure 9.14 Performance of various EDF scheduling schemes: best-effort (EDF), guar-
anteed (GED) and robust (RED).

For small values of β, that is, when tasks execute for almost their maximum com-
putation time, the guaranteed (GED) and robust (RED) versions are able to obtain a
significant improvement compared to the plain EDF scheme. Increasing the unused
computation time, however, the actual load falls down and the plain EDF performs
better and better, reaching the optimality in underload conditions. Note that as the
system becomes underloaded (β
 0.7) GED becomes less effective than EDF. This
is due to the fact that GED performs a worst-case analysis, thus rejecting tasks that
still have some chance to execute within their deadline. This phenomenon does not
appear on RED, because the reclaiming mechanism implemented in the robust scheme
is able to recover the rejected tasks whenever possible.

In the second experiment, Dover is compared against two robust algorithms: RED
(Robust Earliest Deadline) and RHD (Robust High Density). In RHD, the task with the
highest value density (vi/Ci) is scheduled first, regardless of its deadline. Performance
results are shown in Figure 9.15.

Handling Overload Conditions 315

0.7

0.75

0.8

0.85

0.9

0.95

1

0.4 0.6 0.8 1 1.2 1.4 1.6

H
it

va
lu

e
ra

tio

Average load

RED
RHD

D_OVER

Figure 9.15 Performance of Dover against RED and RHD.

Note that in underload conditions Dover and RED exhibit optimal behavior (HV R =
1), whereas RHD is not able to achieve the total cumulative value, since it does not take
deadlines into account. However, for high load conditions (ρ > 1.5), RHD performs
even better than RED and Dover.

In particular, for random task sets, Dover is less effective than RED and RHD for two
reasons: first, it does not have a reclaiming mechanism for recovering rejected tasks in
the case of early completions; second, the threshold value used in the rejection policy
is set to reach the best competitive factor in a worst-case scenario. But this means
that for random sequences Dover may reject tasks that could increase the cumulative
value, if executed.

In conclusion, we can say that in overload conditions no online algorithm can achieve
optimal performance in terms of cumulative value. Competitive algorithms are de-
signed to guarantee a minimum performance in any load condition, but they cannot
guarantee the best performance for all possible scenarios. For random task sets, robust
scheduling schemes appear to be more appropriate.

316 Chapter 9

9.3 HANDLING OVERRUNS

This section presents some methodology for handling transient overload conditions
caused by tasks that execute more than expected or are activated more frequently than
expected. This could happen either because some task parameter was incorrectly es-
timated, or because the system was intentionally designed under less pessimistic as-
sumptions for achieving a higher average utilization.

If not properly handled, task overruns can cause serious problems in the real-time sys-
tem, jeopardizing the guarantee performed for the critical tasks and causing an abrupt
performance degradation. An example of negative effects of an execution overrun in
EDF was already illustrated in Figure 9.4.

To prevent an overrun to introducing unbounded delays on tasks’ execution, the system
could either decide to abort the current job experiencing the overrun or let it continue
with a lower priority. The first solution is not safe, because the job could be in a
critical section when aborted, thus leaving a shared resource with inconsistent data
(very dangerous). The second solution is much more flexible, since the degree of
interference caused by the overrun on the other tasks can be tuned acting on the priority
assigned to the “faulty” task for executing the remaining computation. A general
technique for implementing such a solution is the resource reservation approach.

9.3.1 RESOURCE RESERVATION

Resource reservation is a general technique used in real-time systems for limiting the
effects of overruns in tasks with variable computation times [MST93, MST94b, AB98,
AB04]. According to this method, each task is assigned a fraction of the processor
bandwidth, just enough to satisfy its timing constraints. The kernel, however, must
prevent each task from consuming more than the requested amount to protect the other
tasks in the systems (temporal protection). In this way, a task receiving a fraction U i of
the total processor bandwidth behaves as it were executing alone on a slower processor
with a speed equal to Ui times the full speed. The advantage of this method is that
each task can be guaranteed in isolation, independently of the behavior of the other
tasks.

A simple and effective mechanism for implementing resource reservation in a real-
time system is to reserve each task τi a specified amount of CPU time Qi in every
interval Pi. Such a general approach can also be applied to other resources different
than the CPU, but in this context we will mainly focus on the CPU, because CPU
scheduling is the topic of this book.

Handling Overload Conditions 317

Some authors [RJMO98] tend to distinguish between hard and soft reservations. Ac-
cording to such a taxonomy, a hard reservation allows the reserved task to execute at
most for Qi units of time every Pi, whereas a soft reservation guarantees that the task
executes at least for Qi time units every Pi, allowing it to execute more if there is
some idle time available.

A resource reservation technique for fixed priority scheduling was first presented by
Mercer, Savage, and Tokuda [MST94a]. According to this method, a task τ i is first
assigned a pair (Qi, Pi) (denoted as a CPU capacity reserve) and then it is enabled
to execute as a real-time task for Qi units of time every Pi. When the task consumes
its reserved quantum Qi, it is blocked until the next period, if the reservation is hard,
or it is scheduled in background as a non-real-time task, if the reservation is soft. If
the task is not finished, it is assigned another time quantum Q i at the beginning of the
next period and it is scheduled as a real-time task until the budget expires, and so on.

In this way, a task is reshaped so that it behaves like a periodic real-time task with
known parameters (Qi, Pi) and can be properly scheduled by a classical real-time
scheduler.

Although such a method is essential for achieving predictability in the presence of
tasks with variable execution times, the overall system’s performance becomes quite
dependent from a correct resource allocation. For example, if the CPU bandwidth
allocated to a task is much less than its average requested value, the task may slow
down too much, degrading the system’s performance. On the other hand, if the allo-
cated bandwidth is much greater than the actual needs, the system will run with low
efficiency, wasting the available resources.

A simple kernel mechanism to enforce temporal protection under EDF scheduling is
the Constant Bandwidth Server (CBS) [AB98, AB04], described in Chapter 6. To
properly implement temporal protection, however, each task τ i with variable com-
putation time should be handled by a dedicated CBS with bandwidth U si , so that it
cannot interfere with the rest of the tasks for more than U si . Figure 9.16 illustrates
an example in which two tasks (τ1 and τ2) are served by two dedicated CBSs with
bandwidth Us1 = 0.15 and Us2 = 0.1, a group of two tasks (τ3, τ4) is handled by a
single CBS with bandwidth Us3 = 0.25, and three hard periodic tasks (τ5, τ6, τ7) are
directly scheduled by EDF, without server intercession, since their execution times are
not subject to large variations. In this example the total processor bandwidth is shared
among the tasks as shown in Figure 9.17.

318 Chapter 9

CBS 1
τ 1

τ 3

τ 4
CBS 3

τ 2 CBS 2

τ 5

τ 6

τ 7

CPU

Us1 = 0.15

Us2 = 0.1

Us3 = 0.25

EDF

Figure 9.16 Achieving temporal protection using the CBS mechanism.

Us2 = 0.1

Us3 = 0.25

Us1

HARD
tasks

= 0.15

Figure 9.17 Bandwidth allocation for a set of task.

The properties of the CBS guarantee that the set of hard periodic tasks (with utilization
Up) is schedulable by EDF if and only if

Up + Us1 + Us2 + Us3 ≤ 1. (9.12)

Note that if condition (9.12) holds, the set of hard periodic tasks is always guaranteed
to use 50% of the processor, independently of the execution times of the other tasks.
Also observe that τ3 and τ4 are not isolated with respect to each other (i.e., one can
steals processor time from the other), but they cannot interfere with the other tasks for
more than one-fourth of the total processor bandwidth.

The CBS version presented in this book is meant for handling soft reservations. In
fact, when the budget is exhausted, it is always replenished at its full value and the
server deadline is postponed (i.e., the server is always active). As a consequence, a
served task can execute more than Qs in each period Ps, if there are no other tasks
in the system. However, the CBS can be easily modified to enforce hard reservations,
just by postponing the budget replenishment to the server deadline.

Handling Overload Conditions 319

9.3.2 SCHEDULABILITY ANALYSIS

Although a reservation is typically implemented using a server characterized by a
budget Qk and a period Tk, there are cases in which temporal isolation can be achieved
by executing tasks in a static partition of disjoint time slots.

To characterize a bandwidth reservation independently on the specific implementation,
Mok et al. [MFC01] introduced the concept of bounded delay partition that describes
a reservation by two parameters: a bandwidth αk and a delay Δk. The bandwidth
αk measures the fraction of resource that is assigned to the served tasks, whereas the
delay Δk represents the longest interval of time in which the resource is not available.
In general, the minimum service provided by a resource can be precisely described
by its supply function [LB03, SL03], representing the minimum amount of time the
resource can provide in a given interval of time.

Definition 9.4 Given a reservation, the supply function Zk(t) is the minimum amount
of time provided by the reservation in every time interval of length t ≥ 0.

The supply function can be defined for many kinds of reservations, as static time
partitions [MFC01, FM02], periodic servers [LB03, SL03], or periodic servers with
arbitrary deadline [EAL07]. Consider, for example, that processing time is provided
only in the intervals illustrated in Figure 9.18, with a period of 12 units. In this case,
the minimum service occurs when the resource is requested at the beginning of the
longest idle interval; hence, the supply function is the one depicted in Figure 9.19.

0 3 12 18 21 24156 9

Figure 9.18 A reservation implemented by a static partition of intervals.

For this example we have αk = 0.5 and Δk = 3. Once the bandwidth and the delay
are computed, the supply function of a resource reservation can be lower bounded by
the following supply bound function:

sbfk(t) def= max{0, αk(t−Δk)}. (9.13)

represented by the dashed line in Figure 9.19. The advantage of using such a lower
bound instead of the exact Zk(t) is that a reservation can be expressed with just two
parameters.

320 Chapter 9

0

Zk(t)

t

Δk

αk

Figure 9.19 A reservation implemented by a static partition of intervals.

In general, for a given supply function Zk(t), the bandwidth αk and the delay Δk can
be formally defined as follows:

αk = lim
t→∞

Zk(t)
t

(9.14)

Δk = sup
t≥0

{
t− Zk(t)

αk

}
. (9.15)

If a reservation is implemented using a periodic server with unspecified priority that
allocates a budget Qk every period Tk, then the supply function is the one illustrated
in Figure 9.20, where

αk = Qk/Tk (9.16)

Δk = 2(Tk −Qk). (9.17)

It is worth observing that reservations with smaller delays are able to serve tasks with
shorter deadlines, providing better responsiveness. However, small delays can only
be achieved with servers with a small period, condition for which the context switch
overhead cannot be neglected. If σ is the runtime overhead due to a context switch
(subtracted from the budget every period), then the effective bandwidth of reservation
is

αeff
k =

Q− σ

Tk
= αk

(
1− σ

Qk

)
.

Handling Overload Conditions 321

0

Q

2Q

3Q

Q

Z(t)

tΔ

α

2(P − Q)

Figure 9.20 A reservation implemented by a static partition of intervals.

Expressing Qk and Tk as a function of αk and Δk we have

Qk =
αkΔk

2(1− αk)

Pk =
Δk

2(1− αk)
.

Hence,

αeff
k = αk +

2σ(1− αk)
Δk

. (9.18)

Within a reservation, the schedulability analysis of a task set under fixed priorities can
be performed by extending Theorem 4.4 as follows [BBL09]:

Theorem 9.3 A set of preemptive periodic tasks with relative deadlines less than or
equal to periods can be scheduled by a fixed priority algorithm, under a reservation
characterized by a supply function Zk(t), if and only if

∀i = 1, . . . , n ∃t ∈ T Si : Wi(t) ≤ Zk(t). (9.19)

where Wi(t) is defined by Equation (4.19) and T S i by Equation (4.21).

Similarly, the schedulability analysis of a task set under EDF can be performed by
extending Theorem 4.6 as follows [BBL09]:

322 Chapter 9

Theorem 9.4 A set of preemptive periodic tasks with relative deadlines less than or
equal to periods can be scheduled by EDF, under a reservation characterized by a
supply function Zk(t), if and only if U < αk and

∀t > 0 dbf(t) ≤ Zk(t). (9.20)

In the specific case in which Zk(t) is lower bounded by the supply bound function,
the test become only sufficient and the set of testing points can be better restricted as
stated in the following theorem [BFB09]:

Theorem 9.5 A set of preemptive periodic tasks with relative deadlines less than or
equal to periods can be scheduled by EDF, under a reservation characterized by a
supply function Zk(t) = max[0, αk(t−Δk)], if U < αk and

∀t ∈ D dbf(t) ≤ max[0, αk(t−Δk)]. (9.21)

where
D = {dk | dk ≤ min[H, max(Dmax, L∗)]}

and

L∗ =
αkΔk +

∑n
i=1(Ti −Di)Ui

αk − U
.

9.3.3 HANDLING WRONG RESERVATIONS

As already mentioned, under resource reservations, the system performance heavily
depends on a correct bandwidth allocation to the various activities. In fact, if the
bandwidth is under allocated, the activities within that reservation will progress more
slowly than expected, whereas an over-allocated bandwidth may waste the available
resources. This problem can be solved by using capacity sharing mechanisms that can
transfer unused budgets to the reservations that need more bandwidth.

Capacity sharing algorithms have been developed both under fixed priority servers
[BB02, BBB04] and dynamic priority servers [CBS00]. For example, the CASH algo-
rithm [CBT05] extends CBS to include a slack reclamation. When a server becomes
idle with residual budget, the slack is inserted in a queue of spare budgets (CASH
queue) ordered by server deadlines. Whenever a new server is scheduled for execu-
tion, it first uses any CASH budget whose deadline is less than or equal to its own.

The bandwidth inheritance (BWI) algorithm [LLA01] applies the idea of priority in-
heritance to CPU resources in CBS, allowing a blocking low-priority process to steal

Handling Overload Conditions 323

resources from a blocked higher priority process. IRIS [MLBC04] enhances CBS
with fairer slack reclaiming, so slack is not reclaimed until all current jobs have been
serviced and the processor is idle. BACKSLASH [LB05] is another algorithm that
enhances the efficiency of the reclaiming mechanism under EDF.

Wrong reservations can also be handled through feedback scheduling. If the operating
system is able to monitor the actual execution time e i,k of each task instance, the actual
maximum computation time of a task τi can be estimated (in a moving window) as

Ĉi = max
k
{ei,k}

and the actual requested bandwidth as Ûi = Ĉi/Ti. Hence, Ûi can be used as a refer-
ence value in a feedback loop to adapt the reservation bandwidth allocated to the task
according to the actual needs. If more reservations are adapted online, we must ensure
that the overall allocated bandwidth does not exceed the processor utilization; hence,
a form of global feedback adaptation is required to prevent an overload condition.
Similar approaches to achieve adaptive reservations have been proposed by Abeni and
Buttazzo [AB01] and by Palopoli et al. [PALW02].

9.3.4 RESOURCE SHARING

When critical sections are used by tasks handled within a reservation server, an ad-
ditional problem occurs when the server budget is exhausted inside a region. In this
case, the served task cannot continue the execution to prevent other tasks from miss-
ing their deadlines; thus an extra delay is added to the blocked tasks to wait until the
next budget replenishment. Figure 9.21 illustrates a situation in which a high priority
task τ1 shares a resource with another task τ2 handled by a reservation server (e.g., a
Sporadic Server) with budget Qk = 4 and period Tk = 10. At time t = 3, τ1 pre-
empts τ2 within its critical section, and at time t = 4 it blocks on the locked resource.
When τ2 resumes, however, the residual budget is not sufficient to finish the critical
section, and τ2 must be suspended until the budget will be replenished at time t = 10,
so introducing an extra delay [5,10] in the execution of τ 1. Two solutions have been
proposed in the literature to prevent such an extra delay.

SOLUTION 1: BUDGET CHECK

When a task wants to enter a critical section, the current server budget is checked
before granting the access to the resource; if the budget is sufficient, the task enters
the critical section, otherwise the access to the resource is postponed until the next
budget replenishment.

324 Chapter 9

server
budget

8 10 12 146 16 180 2 4 20 22

normal execution

critical section

τ1

served
task τ2

Figure 9.21 Example of extra blocking introduced when the budget is exhausted inside a
critical section.

served
task

server
budget

8 10 12 146 16 180 2 4 20 22

normal execution

critical section

τ1

Figure 9.22 Example of budget check to allow resource sharing within reservations.

This mechanism is used in the SIRAP protocol, proposed by Behnam et al. [BSNN07,
NSBS09] to share resources among reservations. An example of such a strategy is
illustrated in Figure 9.22. In the example, since at time t = 2 the budget is Q k = 2
and the critical section is 4 units long, the resource is not granted and τ 2 is suspended
until time t = 10, when the budget is recharged. In this case, τ1 is able to execute im-
mediately, while τ2 experiences a longer delay with respect to the absence of protocol.

Handling Overload Conditions 325

SOLUTION 2: BUDGET OVERRUN

The second approach consists in entering a critical section without performing any
budget check. When the budget is exhausted inside a resource, the server is allowed to
consume some extra budget until the end of the critical section. In this case, the max-
imum extra budget must be estimated off-line and taken into account in the schedu-
lability analysis. An example of such a strategy is illustrated in Figure 9.23. In this
example, at time t = 5, when the budget is exhausted inside the resource, τ 2 is allowed
to continue the execution until the end of the critical section, consuming 2 extra units
of budget. In the worst case, the extra budget to be taken into account is equal to the
longest critical section of the served task.

served
task

server
budget

8 10 12 14 16 180 2 4 20 22

normal execution

critical section

τ1

Figure 9.23 Example of budget overrun to allow resource sharing within reservations.

This approach was first proposed by Abeni and Buttazzo under EDF, using a Constant
Bandwidth Server (CBS) [AB04]. Then, it was analyzed under fixed priority systems
by Davis and Burns [DB06] and later extended under EDF by Behnam et al. [BSNN08,
BNSS10]. Davis and Burns proposed two versions of this mechanism:

1. overrun with payback, where the server pays back in the next execution instant,
in that the next budget replenishment is decreased by the overrun value;

2. overrun without payback, where no further action is taken after the overrun.

Note that the first solution (budget check) does not affect the execution of tasks in
other reservations, but penalizes the response time of the served task. On the contrary,
the second solution (budget overrun) does not increase the response time of the served
task at the cost of a greater bandwidth requirement for the reservation.

326 Chapter 9

9.4 HANDLING PERMANENT OVERLOADS

This section presents some methodologies for handling permanent overload conditions
occurring in periodic task systems when the total processor utilization exceeds one.
Basically, there are three methods to reduce the load:

Job skipping. This method reduces the total load by properly skipping (i.e.,
aborting) some job execution in the periodic tasks, in such a way that a minimum
number of jobs per task is guaranteed to execute within their timing constraints.

Period adaptation. According to this approach, the load is reduced by enlarging
task periods to suitable values, so that the total workload can be kept below a
desired threshold.

Service adaptation. According to this method, the load is reduced by decreasing
the computational requirements of the tasks, trading predictability with quality of
service.

9.4.1 JOB SKIPPING

The computational load of a set of periodic tasks can be reduced by properly skipping
a few jobs in the task set, in such a way that the remaining jobs can be scheduled within
their deadlines. This approach is suitable for real-time applications characterized by
soft or firm deadlines, such as those typically found in multimedia systems, where
skipping a video frame once in a while is better than processing it with a long delay.
Even in certain control applications, the sporadic skip of some job can be tolerated
when the controlled systems is characterized by a high inertia.

To understand how job skipping can make an overloaded system schedulable, consider
the following example, consisting of two tasks, with computation times C 1 = 2 and
C2 = 8 and periods T1 = 4 and T2 = 12. Since the processor utilization factor is
Up = 14/12 > 1, the system is under a permanent overload, and the tasks cannot be
scheduled within their deadlines. Nevertheless, Figure 9.24 shows that skipping a job
every three in task τ1 the overload can be resolved and all the remaining jobs can be
scheduled within their deadlines.

In order to control the overall system load, it is important to derive the relation between
the number of skips (i.e., the number of aborted jobs per task) and the total computa-
tional demand. In 1995, Koren and Shasha [KS95] proposed a new task model (known
as the firm periodic model) suited to be handled by this technique.

Handling Overload Conditions 327

 0 2 6 8 10 12 14 4 1816 20 22 24 26

 0 2 6 8 10 12 14 4 1816 20 22 24 26

τ 1

τ 2

skipskip

Figure 9.24 The overload condition resolved by skipping one job every three in task τ1.

According to this model, each periodic task τ i is characterized by the following pa-
rameters:

τi(Ci, Ti, Di, Si)

where Ci is the worst-case computation time, Ti its period, Di its relative deadline
(assumed to be equal to the period), and S i a skip parameter, 2 ≤ Si ≤ ∞, expressing
the minimum distance between two consecutive skips. For example, if S i = 5 the
task can skip one instance every five. When Si = ∞ no skips are allowed and τi is
equivalent to a hard periodic task. The skip parameter can be viewed as a Quality of
Service (QoS) metric (the higher S, the better the quality of service).

Using the terminology introduced by Koren and Shasha [KS95], every job of a peri-
odic task can be red or blue: a red job must be completed within its deadline, whereas
a blue job can be aborted at any time. To meet the constraint imposed by the skip
parameter Si, each scheduling algorithm must have the following characteristics:

if a blue job is skipped, then the next Si − 1 jobs must be red.

if a blue job completes successfully, the next job is also blue.

The authors showed that making optimal use of skips is NP-hard and presented two
algorithms (one working under Rate Monotonic and one under EDF) that exploit skips
to schedule slightly overloaded systems. In general, these algorithms are not optimal,
but they become optimal under a particular condition, called the deeply-red condition.

Definition 9.5 A system is deeply-red if all tasks are synchronously activated and the
first Si − 1 instances of every task τi are red.

Koren and Shasha showed that the worst case for a periodic skippable task set occurs
when tasks are deeply-red. For this reason, all the results shown in this section are
proved under this condition. This means that if a task set is schedulable under the
deeply-red condition, it is also schedulable in any other situation.

328 Chapter 9

SCHEDULABILITY ANALYSIS

The feasibility analysis of a set of firm tasks can be performed through the Processor
Demand Criterion [BRH90] illustrated in Chapter 4, under the deeply-red condition,
and assuming that in the worst case all blue jobs are aborted. In this worst-case sce-
nario, the processor demand of τi due to the red jobs in an interval [0, L] can be
obtained as the difference between the demand of all the jobs and the demand of the
blue jobs:

gskip
i (0, L) =

(⌊
L

Ti

⌋
−
⌊

L

TiSi

⌋)
Ci. (9.22)

Hence, the feasibility of the task set can be verified through the following test:

Sufficient condition

A set of firm periodic tasks is schedulable by EDF if

∀L ≥ 0
n∑

i=1

(⌊
L

Ti

⌋
−
⌊

L

TiSi

⌋)
Ci ≤ L (9.23)

A necessary condition can be easily derived by observing that a schedule is certainly
infeasible when the utilization factor due to the red jobs is greater than one. That is,

Necessary condition

Necessary condition for the schedulability of a set of firm periodic tasks is that

n∑
i=1

Ci(Si − 1)
TiSi

≤ 1 (9.24)

EXAMPLE

To better clarify the concepts mentioned above, consider the task set shown in Fig-
ure 9.25 and the corresponding feasible schedule, obtained by EDF. Note that the
processor utilization factor is greater than 1 (Up = 1.25), but both conditions (9.23)
and (9.24) are satisfied.

Handling Overload Conditions 329

Task Task1 Task2 Task3

Computation 1 2 5
Period 3 4 12

Skip Parameter 4 3 ∞
Up 1.25

240

1

12

skip

skip skip

skip

15

4 8 16 2012 240

12 2118 27240 963

3τ

2τ

τ

Figure 9.25 A schedulable set of firm periodic tasks.

SKIPS AND BANDWIDTH SAVING

If skips are permitted in the periodic task set, the spare time saved by rejecting the blue
instances can be reallocated for other purposes. For example, for scheduling slightly
overloaded systems or for advancing the execution of soft aperiodic requests.

Unfortunately, the spare time has a “granular” distribution and cannot be reclaimed at
any time. Nevertheless, it can be shown that skipping blue instances still produces a
bandwidth saving in the periodic schedule. Caccamo and Buttazzo [CB97] identified
the amount of bandwidth saved by skips using a simple parameter, the equivalent
utilization factor U skip

p , which can be defined as

Uskip
p = max

L≥0

{∑
i gskip

i (0, L)
L

}
(9.25)

where gskip
i (0, L) is given in Equation (9.22).

Using this definition, the schedulability of a deeply-red skippable task set can be also
verified using the following theorem ([CB97]):

Theorem 9.6 A set Γ of deeply-red skippable periodic tasks is schedulable by EDF if

Uskip
p ≤ 1.

330 Chapter 9

Note that the U skip
p factor represents the net bandwidth really used by periodic tasks,

under the deeply-red condition. It is easy to show that U skip
p ≤ Up. In fact, according

to Equation (9.25) (setting Si =∞), Up can also be defined as

Up = max
L≥0

⎧⎨
⎩
∑

i

⌊
L
Ti

⌋
Ci

L

⎫⎬
⎭ .

Thus, U skip
p ≤ Up because(⌊

L

Ti

⌋
−
⌊

L

TiSi

⌋)
≤

⌊
L

Ti

⌋
.

The bandwidth saved by skips can easily be exploited by an aperiodic server to ad-
vance the execution of aperiodic tasks. The following theorem ([CB97]) provides a
sufficient condition for guaranteeing a hybrid (periodic and aperiodic) task set.

Theorem 9.7 Given a set of periodic tasks that allow skip with equivalent utilization
Uskip

p and a set of soft aperiodic tasks handled by a server with utilization factor Us,
the hybrid set is schedulable by EDF if

Uskip
p + Us ≤ 1. (9.26)

The fact that the condition of Theorem 9.7 is not necessary is a direct consequence
of the “granular” distribution of the spare time produced by skips. In fact, a fraction
of this spare time is uniformly distributed along the schedule and can be used as an
additional free bandwidth (Up−Uskip

p) available for aperiodic service. The remaining
portion is discontinuous, and creates a kind of “holes” in the schedule, which can only
be used in specific situations. Whenever an aperiodic request falls into some hole, it
can exploit a bandwidth greater than 1− U skip

p . Indeed, it is easy to find examples of
feasible task sets with a server bandwidth Us > 1 − Uskip

p . The following theorem
([CB97]) gives a maximum bandwidth U max

s above which the schedule is certainly
not feasible.

Theorem 9.8 Given a set Γ of n periodic tasks that allow skips and an aperiodic
server with bandwidth Us, a necessary condition for the feasibility of Γ is

Us ≤ Umax
s

where

Umax
s = 1− Up +

n∑
i=1

Ci

TiSi
. (9.27)

Handling Overload Conditions 331

EXAMPLE

Consider the periodic task set shown in Table 9.1. The equivalent utilization factor
of the periodic task set is U skip

p = 4/5, while Umax
s = 0.27, leaving a bandwidth of

Us = 1 − Uskip
p = 1/5 for the aperiodic tasks. Three aperiodic jobs J1, J2, and J3

are released at times t1 = 0, t2 = 6, and t3 = 18; moreover, they have computation
times Cape

1 = 1, Cape
2 = 2, and Cape

3 = 1, respectively.

Task Task1 Task2

Computation 2 2
Period 3 5

Skip Parameter 2 ∞
Up 1.07

Uskip
p 0.8

1− Uskip
p 0.2

Umax
s 0.27

Table 9.1 A schedulable task set.

0 3 6 9 12 15 18 21 24 27

0 5 15 20 2510

skip skip skip skip

0 5 6 16 18 2311

τ1

τ2

CBS
Us =1/5

Figure 9.26 Schedule produced by EDF+CBS for the task set shown in Table 9.1.

Supposing aperiodic activities are scheduled by a CBS server with budget Q s = 1
and period T s = 5, Figure 9.26 shows the resulting schedule under EDF+CBS. Note
that J2 has a deadline postponement (according to CBS rules) at time t = 10 with
new server deadline ds

new = ds
old + T s = 11 + 5 = 16. According to the sufficient

schedulability test provided by Theorem 9.7, the task set is schedulable when the CBS
is assigned a bandwidth Us = 1 − Uskip

p . However, this task set is also schedulable
with a bandwidth Us = 0.25, greater than 1−U skip

p but less than Umax
s , although this

is not generally true.

332 Chapter 9

9.4.2 PERIOD ADAPTATION

There are several real-time applications in which timing constraints are not rigid, but
depend on the system state. For example, in a flight control system, the sampling
rate of the altimeters is a function of the current altitude of the aircraft: the lower the
altitude, the higher the sampling frequency. A similar need arises in mobile robots
operating in unknown environments, where trajectories are planned based on the cur-
rent sensory information. If a robot is equipped with proximity sensors, to maintain
a desired performance, the acquisition rate of the sensors must increase whenever the
robot is approaching an obstacle.

The possibility of varying tasks’ rates also increases the flexibility of the system in
handling overload conditions, providing a more general admission control mechanism.
For example, whenever a new task cannot be guaranteed, instead of rejecting the task,
the system can reduce the utilizations of the other tasks (by increasing their periods in
a controlled fashion) to decrease the total load and accommodate the new request.

In the real-time literature, several approaches exist for dealing with an overload through
a period adaptation. For example, Kuo and Mok [KM91] propose a load scaling tech-
nique to gracefully degrade the workload of a system by adjusting the periods of pro-
cesses. In this work, tasks are assumed to be equally important and the objective
is to minimize the number of fundamental frequencies to improve schedulability un-
der static priority assignments. Nakajima and Tezuka [NT94] show how a real-time
system can be used to support an adaptive application: whenever a deadline miss is
detected, the period of the failed task is increased. Seto et al. [SLSS96] change tasks’
periods within a specified range to minimize a performance index defined over the
task set. This approach is effective at a design stage to optimize the performance of a
discrete control system, but cannot be used for online load adjustment. Lee, Rajkumar
and Mercer [LRM96] propose a number of policies to dynamically adjust the tasks’
rates in overload conditions. Abdelzaher, Atkins, and Shin [AAS97] present a model
for QoS negotiation to meet both predictability and graceful degradation requirements
during overloads. In this model, the QoS is specified as a set of negotiation options in
terms of rewards and rejection penalties. Nakajima [Nak98] shows how a multimedia
activity can adapt its requirements during transient overloads by scaling down its rate
or its computational demand. However, it is not clear how the QoS can be increased
when the system is underloaded. Beccari et al. [BCRZ99] propose several policies for
handling overload through period adjustment. The authors, however, do not address
the problem of increasing the task rates when the processor is not fully utilized.

Handling Overload Conditions 333

Although these approaches may lead to interesting results in specific applications, a
more general framework can be used to avoid a proliferation of policies and treat
different applications in a uniform fashion.

The elastic model presented in this section (originally proposed by Buttazzo, Abeni,
and Lipari [BAL98] and later extended by Buttazzo, Lipari, Caccamo, and Abeni
[BLCA02]), provides a novel theoretical framework for flexible workload manage-
ment in real-time applications.

EXAMPLES

To better understand the idea behind the elastic model, consider a set of three periodic
tasks, with computation times C1 = 10, C2 = 10, and C3 = 15 and periods T1 = 20,
T2 = 40, and T3 = 70. Clearly, the task set is schedulable by EDF because

Up =
10
20

+
10
40

+
15
70

= 0.964 < 1.

To allow a certain degree of flexibility, suppose that tasks are allowed to run with
periods ranging within two values, reported in Table 9.2.

Timin Timax

τ1 20 25
τ2 40 50
τ3 35 80

Table 9.2 Period ranges for the task set considered in the example.

Now, suppose that a new task τ4, with computation time C4 = 5 and period T4 = 30,
enters the system at time t. The total processor utilization of the new task set is

Up =
10
20

+
10
40

+
15
70

+
5
30

= 1.131 > 1.

In a rigid scheduling framework, τ4 should be rejected to preserve the timing behavior
of the previously guaranteed tasks. However, τ4 can be accepted if the periods of the
other tasks can be increased in such a way that the total utilization is less than one. For
example, if T1 can be increased up to 23, the total utilization becomes Up = 0.989,
and hence τ4 can be accepted.

334 Chapter 9

As another example, if tasks are allowed to change their frequency and τ 3 reduces its
period to 50, no feasible schedule exists, since the utilization would be greater than 1:

Up =
10
20

+
10
40

+
15
50

= 1.05 > 1.

Note that a feasible schedule exists for T1 = 22, T2 = 45, and T3 = 50. Hence, the
system can accept the higher request rate of τ3 by slightly decreasing the rates of τ1

and τ2. Task τ3 can even run with a period T3 = 40, since a feasible schedule exists
with periods T1 and T2 within their range. In fact, when T1 = 24, T2 = 50, and
T3 = 40, Up = 0.992. Finally, note that if τ3 requires to run at its minimum period
(T3 = 35), there is no feasible schedule with periods T1 and T2 within their range,
hence the request of τ3 to execute with a period T3 = 35 must be rejected.

Clearly, for a given value of T3, there can be many different period configurations
that lead to a feasible schedule; thus one of the possible feasible configurations must
be selected. The elastic approach provides an efficient way for quickly selecting a
feasible period configuration among all the possible solutions.

THE ELASTIC MODEL

The basic idea behind the elastic model is to consider each task as flexible as a spring
with a given rigidity coefficient and length constraints. In particular, the utilization of
a task is treated as an elastic parameter, whose value can be modified by changing the
period within a specified range.

Each task is characterized by four parameters: a computation time C i, a nominal pe-
riod Ti0 (considered as the minimum period), a maximum period T imax , and an elastic
coefficient Ei ≥ 0, which specifies the flexibility of the task to vary its utilization for
adapting the system to a new feasible rate configuration. The greater E i, the more
elastic the task. Thus, an elastic task is denoted as

τi(Ci, Ti0 , Timax , Ei).

In the following, Ti will denote the actual period of task τi, which is constrained to be
in the range [Ti0 , Timax]. Any task can vary its period according to its needs within
the specified range. Any variation, however, is subject to an elastic guarantee and is
accepted only if there is a feasible schedule in which all the other periods are within
their range.

Under the elastic model, given a set of n periodic tasks with utilization Up > Umax,
the objective of the guarantee is to compress tasks’ utilization factors to achieve a new
desired utilization Ud ≤ Umax such that all the periods are within their ranges.

Handling Overload Conditions 335

The following definitions are also used in this section:

Uimin = Ci/Timax

Umin =
n∑

i=1

Uimin

Ui0 = Ci/Ti0

U0 =
n∑

i=1

Ui0

Clearly, a solution can always be found if Umin ≤ Ud; hence, this condition has to be
verified a priori.

It is worth noting that the elastic model is more general than the classical Liu and
Layland’s task model, so it does not prevent a user from defining hard real-time tasks.
In fact, a task having Timax = Ti0 is equivalent to a hard real-time task with fixed
period, independently of its elastic coefficient. A task with E i = 0 can arbitrarily vary
its period within its specified range, but it cannot be varied by the system during load
reconfigurations.

To understand how an elastic guarantee is performed in this model, it is convenient to
compare an elastic task τi with a linear spring Si characterized by a rigidity coefficient
ki, a nominal length xi0 , and a minimum length ximin . In the following, xi will denote
the actual length of spring Si, which is constrained to be greater than or equal to x imin .

In this comparison, the length xi of the spring is equivalent to the task’s utilization
factor Ui = Ci/Ti, and the rigidity coefficient ki is equivalent to the inverse of the
task’s elasticity (ki = 1/Ei). Hence, a set of n periodic tasks with total utilization
factor Up =

∑n
i=1 Ui can be viewed as a sequence of n springs with total length

L =
∑n

i=1 xi.

In the linear spring system, this is equivalent to compressing the springs so that the
new total length Ld is less than or equal to a given maximum length Lmax. More
formally, in the spring system the problem can be stated as follows.

Given a set of n springs with known rigidity and length constraints, if the
total length L0 =

∑n
i=1 xi0 > Lmax, find a set of new lengths xi such that

xi ≥ ximin and
∑n

i=1 xi = Ld, where Ld is any arbitrary desired length
such that Ld < Lmax.

336 Chapter 9

(a)

(b)

dL Lmax L0

Lmax L0

10x 20x 30x 40x

2x 3x 4x1x

1k 2k 3k 4k

3k 4kk 21k

F

L

L

Figure 9.27 A linear spring system: (a) the total length is L0 when springs are uncom-
pressed; (b) the total length is Ld < L0 when springs are compressed by a force F .

For the sake of clarity, we first solve the problem for a spring system without length
constraints (i.e., ximin = 0), then we show how the solution can be modified by
introducing length constraints, and finally we show how the solution can be adapted
to the case of a task set.

SPRINGS WITH NO LENGTH CONSTRAINTS

Consider a set Γ of n springs with nominal length xi0 and rigidity coefficient ki po-
sitioned one after the other, as depicted in Figure 9.27. Let L 0 be the total length of
the array; that is, the sum of the nominal lengths: L0 =

∑n
i=1 xi0 . If the array is

compressed so that its total length is equal to a desired length Ld (0 < Ld < L0), the
first problem we want to solve is to find the new length x i of each spring, assuming
that for all i, 0 < xi < xi0 (i.e., ximin = 0).

Being Ld the total length of the compressed array of springs, we have

Ld =
n∑

i=1

xi. (9.28)

If F is the force that keeps a spring in its compressed state, then for the equilibrium of
the system, it must be

∀i F = ki(xi0 − xi),

from which we derive

∀i xi = xi0 −
F

ki
. (9.29)

Handling Overload Conditions 337

By summing equations (9.29) we have

Ld = L0 − F

n∑
i=1

1
ki

.

Thus, force F can be expressed as

F = Kp(L0 − Ld), (9.30)

where

Kp =
1∑n

i=1
1
ki

. (9.31)

Substituting expression (9.30) into Equation (9.29) we finally achieve

∀i xi = xi0 − (L0 − Ld)
Kp

ki
. (9.32)

Equation (9.32) allows us to compute how each spring has to be compressed in order
to have a desired total length Ld.

For a set of elastic tasks, Equation (9.32) can be translated as follows:

∀i Ui = Ui0 − (U0 − Ud)
Ei

E0
. (9.33)

where Ei = 1/ki and E0 =
∑n

i=1 Ei.

INTRODUCING LENGTH CONSTRAINTS

If each spring has a length constraint, in the sense that its length cannot be less than a
minimum value ximin , then the problem of finding the values x i requires an iterative
solution. In fact, if during compression one or more springs reach their minimum
length, the additional compression force will only deform the remaining springs. Such
a situation is depicted in Figure 9.28.

Thus, at each instant, the set Γ can be divided into two subsets: a set Γf of fixed springs
having minimum length, and a set Γv of variable springs that can still be compressed.
Applying Equations (9.32) to the set Γv of variable springs, we have

∀Si ∈ Γv xi = xi0 − (Lv0 − Ld + Lf)
Kv

ki
(9.34)

where
Lv0 =

∑
Si∈Γv

xi0 (9.35)

338 Chapter 9

(a)

(b)

L0

x 40x 30x 20x 10

x 1−min x 3−min x 4−minx 2−min

L0Ld Lmax

x 1 x 2 x 4x 3

L

L

F

Figure 9.28 Springs with minimum length constraints (a); during compression, spring S2
reaches its minimum length and cannot be compressed any further (b).

Lf =
∑

Si∈Γf

ximin (9.36)

Kv =
1∑

Si∈Γv

1
ki

. (9.37)

Whenever there exists some spring for which Equation (9.34) gives x i < ximin , the
length of that spring has to be fixed at its minimum value, sets Γf and Γv must be
updated, and Equations (9.34), (9.35), (9.36) and (9.37) recomputed for the new set
Γv. If there is a feasible solution, that is, if Ld ≥ Lmin =

∑n
i=1 ximin , the iterative

process ends when each value computed by Equations (9.34) is greater than or equal
to its corresponding minimum ximin .

COMPRESSING TASKS’ UTILIZATIONS

When dealing with a set of elastic tasks, Equations (9.34), (9.35), (9.36) and (9.37)
can be rewritten by substituting all length parameters with the corresponding utiliza-
tion factors, and the rigidity coefficients ki and Kv with the corresponding elastic
coefficients Ei and Ev . Similarly, at each instant, the set Γ can be divided into two
subsets: a set Γf of fixed tasks having minimum utilization, and a set Γv of variable
tasks that can still be compressed. Let Ui0 = Ci/Ti0 be the nominal utilization of task
τi, U0 =

∑n
i=1 Ui0 be the nominal utilization of the task set, Uv0 be the sum of the

nominal utilizations of tasks in Γv, and Uf be the total utilization factor of tasks in Γf .
Then, to achieve a desired utilization Ud < U0 each task has to be compressed up to

Handling Overload Conditions 339

the following utilization:

∀τi ∈ Γv Ui = Ui0 − (Uv0 − Ud + Uf)
Ei

Ev
(9.38)

where
Uv0 =

∑
τi∈Γv

Ui0 (9.39)

Uf =
∑

τi∈Γf

Uimin (9.40)

Ev =
∑

τi∈Γv

Ei. (9.41)

If there are tasks for which Ui < Uimin , then the period of those tasks has to be fixed
at its maximum value Timax (so that Ui = Uimin), sets Γf and Γv must be updated
(hence, Uf and Ev recomputed), and Equation (9.38) applied again to the tasks in Γ v .
If there is a feasible solution, that is, if the desired utilization Ud is greater than or
equal to the minimum possible utilization Umin =

∑n
i=1

Ci

Timax
, the iterative process

ends when each value computed by Equation (9.38) is greater than or equal to its
corresponding minimum Uimin . The algorithm2 for compressing a set Γ of n elastic
tasks up to a desired utilization Ud is shown in Figure 9.29.

DECOMPRESSION

All tasks’ utilizations that have been compressed to cope with an overload situation
can return toward their nominal values when the overload is over. Let Γ c be the subset
of compressed tasks (that is, the set of tasks with Ti > Ti0), let Γa be the set of
remaining tasks in Γ (that is, the set of tasks with Ti = Ti0), and let Ud be the current
processor utilization of Γ. Whenever a task in Γa voluntarily increases its period, all
tasks in Γc can expand their utilizations according to their elastic coefficients, so that
the processor utilization is kept at the value of Ud.

Now, let Uc be the total utilization of Γc, let Ua be the total utilization of Γa after
some task has increased its period, and let Uc0 be the total utilization of tasks in Γc at
their nominal periods. It can easily be seen that if Uc0 + Ua ≤ Ulub, all tasks in Γc

can return to their nominal periods. On the other hand, if U c0 + Ua > Ulub, then the
release operation of the tasks in Γc can be viewed as a compression, where Γf = Γa

and Γv = Γc. Hence, it can still be performed by using Equations (9.38), (9.40) and
(9.41) and the algorithm presented in Figure 9.29.

2The actual implementation of the algorithm contains more checks on tasks’ variables, which are not
shown here in order to simplify its description.

340 Chapter 9

Algorithm: Elastic compression(Γ, Ud)
Input: A task set Γ and a desired utilization Ud < 1
Output: A task set with modified periods such that Up = Ud

begin

(1) Umin :=
∑n

i=1 Ci/Timax ;
(2) if (Ud < Umin) return(INFEASIBLE);
(3) for (i := 1 to n) Ui0 := Ci/Ti0 ;

(4) do
(5) Uf := 0; Uv0 := 0; Ev := 0;
(6) for (i := 1 to n) do
(7) if ((Ei == 0) or (Ti == Timax)) then
(8) Uf := Uf + Uimin ;
(9) else
(10) Ev := Ev + Ei;
(11) Uv0 := Uv0 + Ui0 ;
(12) end
(13) end

(14) ok := 1;
(15) for (each τi ∈ Γv) do
(16) if ((Ei > 0) and (Ti < Timax)) then
(17) Ui := Ui0 − (Uv0 − Ud + Uf)Ei/Ev;
(18) Ti := Ci/Ui;
(19) if (Ti > Timax) then
(20) Ti := Timax ;
(21) ok := 0;
(22) end
(23) end
(24) end

(25) while (ok == 0);
(26) return(FEASIBLE);

end

Figure 9.29 Algorithm for compressing a set of elastic tasks.

Handling Overload Conditions 341

9.4.3 IMPLEMENTATION ISSUES

The elastic compression algorithm can be efficiently implemented on top of a real-
time kernel as a routine (elastic manager) that is activated every time a new task is
created, terminated, or there is a request for a period change. When activated, the
elastic manager computes the new periods according to the compression algorithm
and modifies them atomically.

To avoid any deadline miss during the transition phase, it is crucial to ensure that all
the periods are modified at opportune time instants, according to the following rule
[BLCA02]:

The period of a task τi can be increased at any time, but can only be reduced at
the next job activation.

Figure 9.30 shows an example in which τ1 misses its deadline when its period is
reduced at time t = 15 (i.e., before its next activation time (t = 20). Note that
the task set utilization is Up = 29/30 before compression, and U ′

p = 28/30 after
compression. This means that although the system is schedulable by EDF in both
steady state conditions, some deadline can be missed if a period is reduced too early.

τ 1

τ 2

 0 10 20

 0 6 12 18

15

 3 9 15

t = 14

Figure 9.30 A task can miss its deadline if a period is reduced at an arbitrary time instant.

An earlier instant at which a period can be safely reduced without causing any deadline
miss in the transition phase has been computed by Buttazzo et al. [BLCA02] and later
improved by Guangming [Gua09].

342 Chapter 9

PERIOD RESCALING

If the elastic coefficients are set equal to task nominal utilizations, elastic compression
has the effect of a simple rescaling, where all the periods are increased by the same
percentage. In order to work correctly, however, period rescaling must be uniformly
applied to all the tasks, without restrictions on the maximum period. This means
having Uf = 0 and Uv0 = U0. Under this assumption, by setting Ei = Ui0 , Equation
(9.38) becomes:

∀i Ui = Ui0 − (U0 − Ud)
Ui0

U0
=

Ui0

U0
[U0 − (U0 − Ud)] =

Ui0

U0
Ud

from which we have

Ti = Ti0

U0

Ud
. (9.42)

This means that in overload situations (U0 > 1) the compression algorithm causes all
task periods to be increased by a common scale factor

η =
U0

Ud
.

Note that after compression is performed, the total processor utilization becomes

U =
n∑

i=1

Ci

ηTi0

=
1
η
U0 =

Ud

U0
U0 = Ud

as desired.

If a maximum period needs to be defined for some task, an online guarantee test can
easily be performed before compression to check whether all the new periods are less
than or equal to the maximum value. This can be done in O(n) by testing whether

∀i = 1, . . . , n ηTi0 ≤ T max
i .

By deciding to apply period rescaling, we lose the freedom of choosing the elastic
coefficients, since they must be set equal to task nominal utilizations. However, this
technique has the advantage of leaving the task periods ordered as in the nominal
configuration, which simplifies the compression algorithm in the presence of resource
constraints and enables its usage in fixed priority systems, where priorities are typi-
cally assigned based on periods.

Handling Overload Conditions 343

CONCLUDING REMARKS

The elastic model offers a flexible way to handle overload conditions. In fact, when-
ever a new task cannot be guaranteed by the system, instead of rejecting the task, the
system can try to reduce the utilizations of the other tasks (by increasing their periods
in a controlled fashion) to decrease the total load and accommodate the new request.
As soon as a transient overload condition is over (because a task terminates or vol-
untarily increases its period) all the compressed tasks may expand up to their original
utilization, eventually recovering their nominal periods.

The major advantage of the elastic method is that the policy for selecting a solution is
implicitly encoded in the elastic coefficients provided by the user (e.g., based on task
importance). Each task is varied based on its elastic status and a feasible configuration
is found, if one exists. This is very useful for supporting both multimedia systems and
control applications, in which the execution rates of some computational activities
have to be dynamically tuned as a function of the current system state. Furthermore,
the elastic mechanism can easily be implemented on top of classical real-time kernels,
and can be used under fixed or dynamic priority scheduling algorithms.

It is worth observing that the elastic approach is not limited to task scheduling. Rather,
it represents a general resource allocation methodology that can be applied whenever
a resource has to be allocated to objects whose constraints allow a certain degree of
flexibility. For example, in a distributed system, dynamic changes in node transmis-
sion rates over the network could be efficiently handled by assigning each channel
an elastic bandwidth, which could be tuned based on the actual network traffic. An
application of the elastic model to the network has been proposed by Pedreiras et al.
[PGBA02].

Another interesting application of the elastic approach is to automatically adapt task
rates to the current load, without specifying worst-case execution times. If the system
is able to monitor the actual execution time of each job, such data can be used to
compute the actual processor utilization. If this is less than one, task rates can be
increased according to elastic coefficients to fully utilize the processor. On the other
hand, if the actual processor utilization is a little greater than one and some deadline
misses are detected, task rates can be reduced to bring the processor utilization to a
desired safe value.

The elastic model has also been extended to deal with resource constraints [BLCA02],
thus allowing tasks to interact through shared memory buffers. In order to estimate
maximum blocking times due to mutual exclusion and analyze task schedulability,
critical sections are assumed to be accessed through the Stack Resource Policy [Bak91].

344 Chapter 9

9.4.4 SERVICE ADAPTATION

A third method for coping with a permanent overload condition is to reduce the load
by decreasing the task computation times. This can be done only if the tasks have been
originally designed to trade performance with computational requirements. When
tasks use some incremental algorithm to produce approximated results, the precision
of results is related to the number of iterations, and thus with the computation time.
In this case, an overload condition can be handled by reducing the quality of results,
aborting the remaining computation if the quality of the current results is acceptable.

The concept of imprecise and approximate computation has emerged as a new ap-
proach to increasing flexibility in dynamic scheduling by trading computation accu-
racy with timing requirements. If processing time is not enough to produce high-
quality results within the deadlines, there could be enough time for producing ap-
proximate results with a lower quality. This concept has been formalized by many
authors [LNL87, LLN87, LLS+91, SLC91, LSL+94, Nat95] and specific techniques
have been developed for designing programs that can produce partial results.

In a real-time system that supports imprecise computation, every task τ i is decom-
posed into a mandatory subtask Mi and an optional subtask Oi. The mandatory sub-
task is the portion of the computation that must be done in order to produce a result
of acceptable quality, whereas the optional subtask refines this result [SLCG89]. Both
subtasks have the same arrival time ai and the same deadline di as the original task τi;
however, Oi becomes ready for execution when M i is completed. If Ci is the worst-
case computation time associated with the task, subtasks Mi and Oi have computation
times mi and oi, such that mi + oi = Ci. In order to guarantee a minimum level
of performance, Mi must be completed within its deadline, whereas Oi can be left
incomplete, if necessary, at the expense of the quality of the result produced by the
task.

It is worth noting that the task model used in traditional real-time systems is a special
case of the one adopted for imprecise computation. In fact, a hard task corresponds to
a task with no optional part (oi = 0), whereas a soft task is equivalent to a task with
no mandatory part (mi = 0).

In systems that support imprecise computation, the error ε i in the result produced by
τi (or simply the error of τi) is defined as the length of the portion of O i discarded in
the schedule. If σi is the total processor time assigned to Oi by the scheduler, the error
of task τi is equal to

εi = oi − σi.

Handling Overload Conditions 345

The average error ε on the task set is defined as

ε =
n∑

i=1

wiεi,

where wi is the relative importance of τi in the task set. An error εi > 0 means that a
portion of subtask Oi has been discarded in the schedule at the expense of the quality
of the result produced by task τi, but for the benefit of other mandatory subtasks that
can complete within their deadlines.

In this model, a schedule is said to be feasible if every mandatory subtask M i is com-
pleted within its deadline. A schedule is said to be precise if the average error ε on
the task set is zero. In a precise schedule, all mandatory and optional subtasks are
completed within their deadlines.

As an illustrative example, let us consider a set of jobs {J1, . . . , Jn} shown in Fig-
ure 9.31a. Note that this task set cannot be precisely scheduled; however, a feasible
schedule with an average error of ε = 4 can be found, and it is shown in Figure 9.31b.
In fact, all mandatory subtasks finish within their deadlines, whereas not all optional
subtasks are able to complete. In particular, a time unit of execution is subtracted from
O1, two units from O3, and one unit from O5. Hence, assuming that all tasks have an
importance value equal to one (wi = 1), the average error on the task set is ε = 4.

For a set of periodic tasks, the problem of deciding the best level of quality com-
patible with a given load condition can be solved by associating each optional part
of a task a reward function Ri(σi), which indicates the reward accrued by the task
when it receives σi units of service beyond its mandatory portion. This problem has
been addressed by Aydin et al. [AMMA01], who presented an optimal algorithm that
maximizes the weighted average of the rewards over the task set.

Note that in the absence of a reward function, the problem can easily be solved by
using a compression algorithm like the elastic approach. In fact, once, the new task
utilizations U ′

i are computed, the new computation times C ′
i that lead to a given desired

load can easily be computed from the periods as

C′
i = TiU

′
i .

Finally, if an algorithm cannot be executed in an incremental fashion or it cannot be
aborted at any time, a task can be provided with multiple versions, each characterized
by a different quality of performance and execution time. Then, the value C ′

i can be
used to select the task version having the computation time closer to, but smaller than
C′

i .

346 Chapter 9

t

2

15

10

7

6

12

4

0

6

3

(b)

20

2

20

1

10 12 14 16 18

1J

6

J 2

J 4

J

82

1

J

t

t

t

J 5

J

J

4

2

J 3

J 4

0

5

a

1

t

4 2 2

4 3

5 2

3

8 5 3

id C m oi i i

3

i

(a)

Figure 9.31 An example of an imprecise schedule.

Handling Overload Conditions 347

Exercises

9.1 For the set of two aperiodic jobs reported in the table, compute the instanta-
neous load for all instants in [0,8].

ri Ci Di

J1 3 3 5
J2 0 5 10

9.2 Verify the schedulability under EDF of the set of skippable tasks illustrated in
the table:

Ci Ti Si

τ1 2 5 ∞
τ2 2 6 4
τ3 4 8 5

9.3 A resource reservation mechanism achieves temporal isolation by providing
service using the following periodic time partition, in every window of 10 units:
{[0,2], [5,6], [8,9]}. This means that the service is only provided in the three
intervals indicated in the set and repeats every 10 units. Illustrate the resulting
supply function Z(t) and compute the (α, Δ) parameters of the corresponding
bounded delay function.

9.4 Consider the set of elastic tasks illustrated in the table, to be scheduled by EDF:

Ci T min
i T max

i Ei

τ1 9 15 30 1
τ2 16 20 40 3

Since the task set is not feasible with the minimum periods, compute the new
periods T ′

i that make the task set feasible with a total utilization Ud = 1.

9.5 Considering the same periodic task set of the previous exercise, compute the
new periods T ′

i resulting by applying a period rescaling (hence, not using the
elastic coefficients).

	9 HANDLING OVERLOAD CONDITIONS
	9.1 INTRODUCTION
	9.1.1 LOAD DEFINITIONS
	9.1.2 TERMINOLOGY

	9.2 HANDLING APERIODIC OVERLOADS
	9.2.1 PERFORMANCE METRICS
	9.2.2 ON-LINE VERSUS CLAIRVOYANT SCHEDULING
	9.2.3 COMPETITIVE FACTOR
	TASK GENERATION STRATEGY
	PROOF OF THE BOUND
	EXTENSIONS

	9.2.4 TYPICAL SCHEDULING SCHEMES
	9.2.5 THE RED ALGORITHM
	9.2.6 DOVER: A COMPETITIVE ALGORITHM
	9.2.7 PERFORMANCE EVALUATION

	9.3 HANDLING OVERRUNS
	9.3.1 RESOURCE RESERVATION
	9.3.2 SCHEDULABILITY ANALYSIS
	9.3.3 HANDLING WRONG RESERVATIONS
	9.3.4 RESOURCE SHARING
	SOLUTION 1: BUDGET CHECK
	SOLUTION 2: BUDGET OVERRUN

	9.4 HANDLING PERMANENT OVERLOADS
	9.4.1 JOB SKIPPING
	SCHEDULABILITY ANALYSIS
	Sufficient condition
	Necessary condition

	EXAMPLE
	SKIPS AND BANDWIDTH SAVING
	EXAMPLE

	9.4.2 PERIOD ADAPTATION
	EXAMPLES
	THE ELASTIC MODEL
	SPRINGS WITH NO LENGTH CONSTRAINTS
	INTRODUCING LENGTH CONSTRAINTS
	COMPRESSING TASKS’ UTILIZATIONS
	DECOMPRESSION

	9.4.3 IMPLEMENTATION ISSUES
	PERIOD RESCALING
	CONCLUDING REMARKS

	9.4.4 SERVICE ADAPTATION

	Exercises

