
8
LIMITED PREEMPTIVE

SCHEDULING

8.1 INTRODUCTION

The question whether preemptive systems are better than non-preemptive systems has
been debated for a long time, but only partial answers have been provided in the real-
time literature and some issues still remain open to discussion. In fact, each approach
has advantages and disadvantages, and no one dominates the other when both pre-
dictability and efficiency have to be taken into account in the system design. This
chapter presents and compares some existing approaches for reducing preemptions
and describes an efficient method for minimizing preemption costs by removing un-
necessary preemptions while preserving system schedulability.

Preemption is a key factor in real-time scheduling algorithms, since it allows the op-
erating system to immediately allocate the processor to incoming tasks with higher
priority. In fully preemptive systems, the running task can be interrupted at any time
by another task with higher priority, and be resumed to continue when all higher pri-
ority tasks have completed. In other systems, preemption may be disabled for certain
intervals of time during the execution of critical operations (e.g., interrupt service rou-
tines, critical sections, and so on.). In other situations, preemption can be completely
forbidden to avoid unpredictable interference among tasks and achieve a higher degree
of predictability (although higher blocking times).

The question to enable or disable preemption during task execution has been inves-
tigated by many authors with several points of view and it has not a trivial answer.
A general disadvantage of the non-preemptive discipline is that it introduces an ad-
ditional blocking factor in higher priority tasks, thus reducing schedulability. On the
other hand, however, there are several advantages to be considered when adopting a
non-preemptive scheduler.

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1 8

251

 Springer Science+Business Media, LLC 2011©

252 Chapter 8

In particular, the following issues have to be taken into account when comparing the
two approaches:

In many practical situations, such as I/O scheduling or communication in a shared
medium, either preemption is impossible or prohibitively expensive.

Preemption destroys program locality, increasing the runtime overhead due to
cache misses and pre-fetch mechanisms. As a consequence, worst-case execution
times (WCETs) are more difficult to characterize and predict [LHS+98, RM06,
RM08, RM09].

The mutual exclusion problem is trivial in non-preemptive scheduling, which
naturally guarantees the exclusive access to shared resources. On the contrary,
to avoid unbounded priority inversion, preemptive scheduling requires the im-
plementation of specific concurrency control protocols for accessing shared re-
sources, as those presented in Chapter 7, which introduce additional overhead
and complexity.

In control applications, the input-output delay and jitter are minimized for all
tasks when using a non-preemptive scheduling discipline, since the interval be-
tween start time and finishing time is always equal to the task computation time
[BC07]. This simplifies control techniques for delay compensation at design
time.

Non-preemptive execution allows using stack sharing techniques [Bak91] to save
memory space in small embedded systems with stringent memory constraints
[GAGB01].

In summary, arbitrary preemptions can introduce a significant runtime overhead and
may cause high fluctuations in task execution times, so degrading system predictabil-
ity. In particular, at least four different types of costs need to be taken into account at
each preemption:

1. Scheduling cost. It is the time taken by the scheduling algorithm to suspend the
running task, insert it into the ready queue, switch the context, and dispatch the
new incoming task.

2. Pipeline cost. It accounts for the time taken to flush the processor pipeline when
the task is interrupted and the time taken to refill the pipeline when the task is
resumed.

3. Cache-related cost. It is the time taken to reload the cache lines evicted by the
preempting task. This time depends on the specific point in which preemption
occurs and on the number of preemptions experienced by the task [AG08, GA07].

Limited Preemptive Scheduling 253

Bui et al. [BCSM08] showed that on a PowerPC MPC7410 with 2 MByte two-
way associative L2 cache the WCET increment due to cache interference can be
as large as 33% of the WCET measured in non-preemptive mode.

4. Bus-related cost. It is the extra bus interference for accessing the RAM due to
the additional cache misses caused by preemption.

The cumulative execution overhead due to the combination of these effects is referred
to as Architecture related cost. Unfortunately, this cost is characterized by a high
variance and depends on the specific point in the task code when preemption takes
place [AG08, GA07, LDS07].

The total increase of the worst-case execution time of a task τ i is also a function of
the total number of preemptions experienced by τ i, which in turn depends on the task
set parameters, on the activation pattern of higher priority tasks, and on the specific
scheduling algorithm. Such a circular dependency of WCET and number of preemp-
tions makes the problem not easy to be solved. Figure 8.1(a) shows a simple example
in which neglecting preemption cost task τ2 experiences a single preemption. How-
ever, when taking preemption cost into account, τ2’s WCET becomes higher, and
hence τ2 experiences additional preemptions, which in turn increase its WCET. In
Figure 8.1(b) the architecture related cost due to preemption is represented by dark
gray areas.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

(a) Schedule without preemption cost.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

(b) Schedule with preemption cost.

Figure 8.1 Task τ2 experiences a single preemption when preemption cost is neglected,
and two preemptions when preemption cost is taken into account.

254 Chapter 8

Some methods for estimating the number of preemptions have been proposed [ERC95,
YS07], but they are restricted to the fully preemptive case and do not consider such a
circular dependency.

Often, preemption is considered a prerequisite to meet timing requirement in real-time
system design; however, in most cases, a fully preemptive scheduler produces many
unnecessary preemptions. Figure 8.2(a) illustrates an example in which, under fully
preemptive scheduling, task τ5 is preempted four times. As a consequence, the WCET
of τ5 is substantially inflated by the architecture related cost (represented by dark gray
areas), causing a response time equal to R5 = 18. However, as shown in Figure 8.2(b),
only one preemption is really necessary to guarantee the schedulability of the task set,
reducing the WCET of τ5 from 14 to 11 units of time, and its response time from 18
to 13 units.

To reduce the runtime overhead due to preemptions and still preserve the schedulabil-
ity of the task set, the following approaches have been proposed in the literature.

Preemption Thresholds. According to this approach, proposed by Wang and Sak-
sena [WS99], a task is allowed to disable preemption up to a specified priority
level, which is called preemption threshold. Thus, each task is assigned a reg-
ular priority and a preemption threshold, and the preemption is allowed to take
place only when the priority of the arriving task is higher than the threshold of
the running task.

Deferred Preemptions. According to this method, each task τ i specifies the
longest interval qi that can be executed non-preemptively. Depending on how
non-preemptive regions are implemented, this model can come in two slightly
different flavors:

1. Floating model. In this model, non-preemptive regions are defined by the
programmer by inserting specific primitives in the task code that disable
and enable preemption. Since the start time of each region is not specified
in the model, non-preemptive regions cannot be identified off-line and, for
the sake of the analysis, are considered to be “floating” in the code, with a
duration δi,k ≤ qi.

2. Activation-triggered model. In this model, non-preemptive regions are trig-
gered by the arrival of a higher priority task and enforced by a timer to last
for qi units of time (unless the task finishes earlier), after which preemption
is enabled. Once a timer is set at time t, additional activations arriving be-
fore the timeout (t + qi) do not postpone the preemption any further. After
the timeout, a new high-priority arrival can trigger another non-preemptive
region.

Limited Preemptive Scheduling 255

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

τ5

(a) τ5 is preempted 4 times.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

τ4

τ5

(b) Only one preemption is really necessary for τ5.

Figure 8.2 Fully preemptive scheduling can generate several preemptions (a) although
only a few of them are really necessary to guarantee the schedulability of the task set (b).

Task splitting. According to this approach, investigated by Burns [Bur94], a task
implicitly executes in non-preemptive mode and preemption is allowed only at
predefined locations inside the task code, called preemption points. In this way, a
task is divided into a number of non-preemptive chunks (also called subjobs). If
a higher priority task arrives between two preemption points of the running task,
preemption is postponed until the next preemption point. This approach is also
referred to as Cooperative scheduling, because tasks cooperate to offer suitable
preemption points to improve schedulability.

256 Chapter 8

To better understand the different limited preemptive approaches, the task set reported
in Table 8.1 will be used as a common example throughout this chapter.

Ci Ti Di

τ1 1 6 4
τ2 3 10 8
τ3 6 18 12

Table 8.1 Parameters of a sample task set with relative deadlines less than periods.

Figure 8.3 illustrates the schedule produced by Deadline Monotonic (in fully preemp-
tive mode) on the task set of Table 8.1. Notice that the task set is not schedulable,
since task τ3 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Figure 8.3 Schedule produced by Deadline Monotonic (in fully preemptive mode) on the
task set of Table 8.1.

8.1.1 TERMINOLOGY AND NOTATION

Throughout this chapter, a set of n periodic or sporadic real-time tasks will be consid-
ered to be scheduled on a single processor. Each task τ i is characterized by a worst-
case execution time (WCET) Ci, a relative deadline Di, and a period (or minimum
inter-arrival time) Ti. A constrained deadline model is adopted, so D i is assumed to
be less than or equal to Ti. For scheduling purposes, each task is assigned a fixed
priority Pi, used to select the running task among those tasks ready to execute. A
higher value of Pi corresponds to a higher priority. Note that task activation times
are not known a priori and the actual execution time of a task can be less than or
equal to its worst-case value Ci. Tasks are indexed by decreasing priority, that is,
∀i | 1 ≤ i < n : Pi > Pi+1. Additional terminology will be introduced below for
each specific method.

Limited Preemptive Scheduling 257

8.2 NON-PREEMPTIVE SCHEDULING

The most effective way to reduce preemption cost is to disable preemptions com-
pletely. In this condition, however, each task τ i can experience a blocking time Bi

equal to the longest computation time among the tasks with lower priority. That is,

Bi = max
j:Pj<Pi

{Cj − 1} (8.1)

where the maximum of an empty set is assumed to be zero. Note that one unit of
time must be subtracted from Cj to consider that to block τi, the blocking task must
start at least one unit before the critical instant. Such a blocking term introduces an
additional delay before task execution, which could jeopardize schedulability. High
priority tasks are those that are most affected by such a blocking delay, since the
maximum in Equation (8.1) is computed over a larger set of tasks. Figure 8.4 illustrates
the schedule generated by Deadline Monotonic on the task set of Table 8.1 when
preemptions are disabled. With respect to the schedule shown in Figure 8.3, note that
τ3 is now able to complete before its deadline, but the task set is still not schedulable,
since now τ1 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Figure 8.4 Schedule produced by non-preemptive Deadline Monotonic on the task set of
Table 8.1.

Unfortunately, under non-preemptive scheduling, the least upper bounds of both RM
and EDF drop to zero! This means that there are task sets with arbitrary low utilization
that cannot be scheduled by RM and EDF when preemptions are disabled. For exam-
ple, the task set illustrated in Figure 8.5(a) is not feasible under non-preemptive Rate
Monotonic scheduling (as well as under non-preemptive EDF), since C 2 > T1, but its
utilization can be set arbitrarily low by reducing C1 and increasing T2. The same task
set is clearly feasible when preemption is enabled, as shown in Figure 8.5(b).

258 Chapter 8

deadline miss

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

C1C1

C2

T1

T2

(a) Non-preemptive case.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

C1

C2

T1

T2

(b) Preemptive case.

Figure 8.5 A task set with low utilization that is unfeasible under non-preemptive Rate
Monotonic scheduling, and feasible when preemption is enabled.

8.2.1 FEASIBILITY ANALYSIS

The feasibility analysis of non-preemptive task sets is more complex than under fully
preemptive scheduling. Bril et al. [BLV09] showed that in non-preemptive scheduling
the largest response time of a task does not necessarily occur in the first job, after
the critical instant. An example of such a situation is illustrated in Figure 8.6, where
the worst-case response time of τ3 occurs in its second instance. Such a scheduling
anomaly, identified as self-pushing phenomenon, occurs because the high priority jobs
activated during the non-preemptive execution of τ i’s first instance are pushed ahead
to successive jobs, which then may experience a higher interference.

The presence of the self-pushing phenomenon in non-preemptive scheduling implies
that the response time analysis for a task τi cannot be limited to its first job, activated
at the critical instant, as done in preemptive scheduling, but it must be performed for
multiple jobs, until the processor finishes executing tasks with priority higher than or
equal to Pi. Hence, the response time of a task τi needs to be computed within the
longest Level-i Active Period, defined as follows [BLV09]:

Limited Preemptive Scheduling 259

deadline miss

(Ci, Ti)

τ1 (3,8)

τ2 (3,9)

τ3 (3,12)

τ4 (2,100)

Figure 8.6 An example of self-pushing phenomenon occurring on task τ3.

Definition 8.1 The Level-i pending workload W p
i (t) at time t is the amount of pro-

cessing that still needs to be performed at time t due to jobs with priority higher than
or equal to Pi released strictly before t.

Definition 8.2 A Level-i Active Period Li is an interval [a, b) such that the Level-i
pending workload W p

i (t) is positive for all t ∈ (a, b) and null in a and b.

The longest Level-i Active Period can be computed by the following recurrent relation:

⎧⎪⎨
⎪⎩

L
(0)
i = Bi + Ci

L
(s)
i = Bi +

∑
h:Ph≥Pi

⌈
L

(s−1)
i

Th

⌉
Ch.

(8.2)

In particular, Li is the smallest value for which L
(s)
i = L

(s−1)
i .

This means that the response time of task τi must be computed for all jobs τi,k, with
k ∈ [1, Ki], where

Ki =
⌈

Li

Ti

⌉
. (8.3)

For a generic job τi,k, the start time si,k can then be computed considering the blocking
time Bi, the computation time of the preceding (k−1) jobs and the interference of the
tasks with priority higher than Pi.

260 Chapter 8

Hence, si,k can be computed with the following recurrent relation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s
(0)
i,k = Bi +

∑
h:Ph>Pi

Ch

s
(�)
i,k = Bi + (k − 1)Ci +

∑
h:Ph>Pi

(⌊
s
(�−1)
i,k

Th

⌋
+ 1

)
Ch.

(8.4)

Since, once started, the task cannot be preempted, the finishing time f i,k can be com-
puted as

fi,k = si,k + Ci. (8.5)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.6)

Once the response time of each task is computed, the task set is feasible if and only if

∀i = 1, . . . , n Ri ≤ Di. (8.7)

Yao, Buttazzo, and Bertogna [YBB10a] showed that the analysis of non-preemptive
tasks can be reduced to a single job, under specific (but not too restrictive) conditions.

Theorem 8.1 (Yao, Buttazzo, and Bertogna, 2010) The worst-case response time of
a non-preemptive task occurs in the first job if the task is activated at its critical instant
and the following two conditions are both satisfied:

1. the task set is feasible under preemptive scheduling;

2. relative deadlines are less than or equal to periods.

Under these conditions, the longest relative start time S i of task τi is equal to si,1 and
can be computed from Equation (8.4) for k = 1:

Si = Bi +
∑

h:Ph>Pi

(⌊
Si

Th

⌋
+ 1

)
Ch. (8.8)

Hence, the response time Ri is simply:

Ri = Si + Ci. (8.9)

Limited Preemptive Scheduling 261

8.3 PREEMPTION THRESHOLDS

According to this model, proposed by Wang and Saksena [WS99], each task τ i is
assigned a nominal priority Pi (used to enqueue the task into the ready queue and to
preempt) and a preemption threshold θi ≥ Pi (used for task execution). Then, τi can
be preempted by τh only if Ph > θi. Figure 8.7 illustrates how the threshold is used to
raise the priority of a task τi during the execution of its k-th job. At the activation time
ri,k , the priority of τi is set to its nominal value Pi, so it can preempt all the tasks τj

with threshold θj < Pi. The nominal priority is maintained as long as the task is kept
in the ready queue. During this interval, τ i can be delayed by all tasks τh with priority
Ph > Pi. When all such tasks complete (at time si,k), τi is dispatched for execution
and its priority is raised at its threshold level θi until the task terminates (at time fi,k).
During this interval, τi can be preempted by all tasks τh with priority Ph > θi. Note
that when τi is preempted its priority is kept to its threshold level.

τi

θi

Pi

ri,k si,k fi,k di,k ri,k+1

delayed by Ph > Pi preempted by Ph > θi

Figure 8.7 Example of task executing under preemption threshold.

Preemption threshold can be considered as a trade-off between fully preemptive and
fully non-preemptive scheduling. Indeed, if each threshold priority is set equal to
the task nominal priority, the scheduler behaves like the fully preemptive scheduler;
whereas, if all thresholds are set to the maximum priority, the scheduler runs in non-
preemptive fashion. Wang and Saksena also showed that by appropriately setting the
thresholds, the system can achieve a higher utilization efficiency compared with fully
preemptive and fully non-preemptive scheduling. For example, assigning the preemp-
tion thresholds shown in Table 8.2, the task set of Table 8.1 results to be schedulable
by Deadline Monotonic, as illustrated in Figure 8.8. 1

1Note that the task set is not schedulable under sporadic activations; in fact, τ2 misses its deadline if τ1
and τ2 are activated one unit of time after τ3.

262 Chapter 8

Pi θi

τ1 3 3
τ2 2 3
τ3 1 2

Table 8.2 Preemption thresholds assigned to the tasks of Table 8.1.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Figure 8.8 Schedule produced by preemption thresholds for the task set in Table 8.1.

Note that at t = 6, τ1 can preempt τ3 since P1 > θ3. However, at t = 10, τ2 cannot
preempt τ3, being P2 = θ3. Similarly, at t = 12, τ1 cannot preempt τ2, being P1 = θ2.

8.3.1 FEASIBILITY ANALYSIS

Under fixed priorities, the feasibility analysis of a task set with preemption thresholds
can be performed by the feasibility test derived by Wang and Saksena [WS99], and
later refined by Regehr [Reg02]. First of all, a task τ i can be blocked only by lower
priority tasks that cannot be preempted by it; that is, by tasks having a priority P j < Pi

and a threshold θj ≥ Pi. Hence, a task τi can experience a blocking time equal to the
longest computation time among the tasks with priority lower than P i and threshold
higher than or equal to Pi. That is,

Bi = max
j
{Cj − 1 | Pj < Pi ≤ θj} (8.10)

where the maximum of an empty set is assumed to be zero. Then, the response time
Ri of task τi is computed by considering the blocking time B i, the interference before
its start time (due to the tasks with priority higher than P i), and the interference after
its start time (due to tasks with priority higher than θ i), as depicted in Figure 8.7. The
analysis must be carried out within the longest Level-i active period L i, defined by the
following recurrent relation:

Limited Preemptive Scheduling 263

Li = Bi +
∑

h:Ph≥Pi

⌈
Li

Th

⌉
Ch. (8.11)

This means that the response time of task τi must be computed for all the jobs τi,k

(k = 1, 2, . . .) within the longest Level-i active period. That is, for all k ∈ [1, K i],
where

Ki =
⌈

Li

Ti

⌉
. (8.12)

For a generic job τi,k, the start time si,k can be computed considering the blocking
time Bi, the computation time of the preceding (k − 1) jobs, and the interference of
the tasks with priority higher than Pi. Hence, si,k can be computed with the following
recurrent relation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
s
(0)
i,k = Bi +

∑
h:Ph>Pi

Ch

s
(�)
i,k = Bi + (k − 1)Ci +

∑
h:Ph>Pi

(⌊
s
(�−1)
i,k

Th

⌋
+ 1

)
Ch.

(8.13)

For the same job τi,k , the finishing time fi,k can be computed by summing to the start
time si,k the computation time of job τi,k , and the interference of the tasks that can
preempt τi,k (those with priority higher than θi). That is,⎧⎪⎪⎨

⎪⎪⎩
f

(0)
i,k = si,k + Ci

f
(�)
i,k = si,k + Ci +

∑
h:Ph>θi

(⌈
f

(�−1)
i,k

Th

⌉
−
(⌊

si,k

Th

⌋
+ 1

))
Ch.

(8.14)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.15)

Once the response time of each task is computed, the task set is feasible if

∀i = 1, . . . , n Ri ≤ Di. (8.16)

The feasibility analysis under preemption thresholds can also be simplified under the
conditions of Theorem 8.1. In this case, we have that the worst-case start time is

Si = Bi +
∑

h:Ph>Pi

(⌊
Si

Th

⌋
+ 1

)
Ch (8.17)

and the worst-case response time of task τi can be computed as

Ri = Si + Ci +
∑

h:Ph>θi

(⌈
Ri

Th

⌉
−
(⌊

Si

Th

⌋
+ 1

))
Ch. (8.18)

264 Chapter 8

8.3.2 SELECTING PREEMPTION THRESHOLDS

The example illustrated in Figure 8.8 shows that a task set unfeasible under both pre-
emptive and non-preemptive scheduling can be feasible under preemption thresholds,
for a suitable setting of threshold levels. The algorithm presented in Figure 8.9 was
proposed by Wang and Saksena [WS99] and allows assigning a set of thresholds to
achieve a feasible schedule, if one exists. Threshold assignment is started from the
lowest priority task to the highest priority one, since the schedulability analysis only
depends on the thresholds of tasks with lower priority than the current task. While
searching the optimal preemption threshold for a specific task, the algorithm stops at
the minimum preemption threshold that makes it schedulable. The algorithm assumes
that tasks are ordered by decreasing priorities, τ1 being the highest priority task.

Algorithm: Assign Minimum Preemption Thresholds
Input: A task set T with {Ci, Ti, Di, Pi}, ∀τi ∈ T
Output: Task set feasibility and θi, ∀τi ∈ T
// Assumes tasks are ordered by decreasing priorities

(1) begin
(2) for (i := n to 1) do // from the lowest priority task

(3) θi := Pi;

(4) Compute Ri by Equation (8.15);

(5) while (Ri > Di) do // while not schedulable

(6) θi := θi + 1; // increase threshold

(7) if (θi > P1) then // system infeasible

(8) return (INFEASIBLE);

(9) end
(10) Compute Ri by Equation (8.15);

(11) end
(12) end
(13) return (FEASIBLE);

(14) end

Figure 8.9 Algorithm for assigning the minimum preemption thresholds.

Limited Preemptive Scheduling 265

Note that the algorithm is optimal in the sense that if a preemption threshold assign-
ment exists that can make the system schedulable, the algorithm will always find an
assignment that ensures schedulability.

Given a task set that is feasible under preemptive scheduling, another interesting prob-
lem is to determine the thresholds that limit preemption as much as possible, without
jeopardizing the schedulability of the task set. The algorithm shown in Figure 8.10,
proposed by Saksena and Wang [SW00], tries to increase the threshold of each task
up to the level after which the schedule would become infeasible. The algorithm con-
siders one task at the time, starting from the highest priority task.

Algorithm: Assign Maximum Preemption Thresholds
Input: A task set T with {Ci, Ti, Di, Pi}, ∀τi ∈ T
Output: Thresholds θi, ∀τi ∈ T
// Assumes that the task set is preemptively feasible

(1) begin
(2) for (i := 1 to n) do
(3) θi = Pi;

(4) k = i; // priority level k

(5) schedulable := TRUE;

(6) while ((schedulable := TRUE) and (k > 1)) do
(7) k = k − 1; // go to the higher priority level

(8) θi = Pk; // set threshold at that level

(9) Compute Rk by Equation (8.15);

(10) if (Rk > Dk) then // system not schedulable

(11) schedulable := FALSE;

(12) θi = Pk+1; // assign the previous priority level

(13) end
(14) end
(15) end
(16) end

Figure 8.10 Algorithm for assigning the maximum preemption thresholds.

266 Chapter 8

8.4 DEFERRED PREEMPTIONS

According to this method, each task τi defines a maximum interval of time qi in which
it can execute non-preemptively. Depending on the specific implementation, the non-
preemptive interval can start after the invocation of a system call inserted at the begin-
ning of a non-preemptive region (floating model), or can be triggered by the arrival of
a higher priority task (activation-triggered model).

Under the floating model, preemption is resumed by another system call, inserted at
the end of the region (long at most q i units); whereas, under the activation-triggered
model, preemption is enabled by a timer interrupt after exactly q i units (unless the task
completes earlier).

Since, in both cases, the start times of non-preemptive intervals are assumed to be
unknown a priori, non-preemptive regions cannot be identified off-line, and for the
sake of the analysis, they are considered to occur at the worst possible time (in the
sense of schedulability).

For example, considering the same task set of Table 8.1, assigning q 2 = 2 and q3 = 1,
the schedule produced by Deadline Monotonic with deferred preemptions is feasi-
ble, as illustrated in Figure 8.11. Dark regions represent intervals executed in non-
preemptive mode, triggered by the arrival of higher priority tasks.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Figure 8.11 Schedule produced by Deadline Monotonic with deferred preemptions for
the task set reported in Table 8.1, with q2 = 2 and q3 = 1.

Limited Preemptive Scheduling 267

8.4.1 FEASIBILITY ANALYSIS

In the presence of non-preemptive intervals, a task can be blocked when, at its arrival, a
lower priority task is running in non-preemptive mode. Since each task can be blocked
at most once by a single lower priority task, Bi is equal to the longest non-preemptive
interval belonging to tasks with lower priority. In particular, the blocking factor can
be computed as

Bi = max
j:Pj<Pi

{qj − 1}. (8.19)

Note that under the floating model one unit of time must be subtracted from q j to
allow the non-preemptive region to start before τ i. Under the activation-triggered
model, however, there is no need to subtract one unit of time from q j , since the non-
preemptive interval is programmed to be exactly q j from the task arrival time. Then
schedulability can be checked through the response time analysis, by Equation (7.22),
or through the workload analysis, by Equation (7.23). Note that under the floating
model the analysis does not need to be carried out within the longest Level-i active
period. In fact, the worst-case interference on τ i occurs in the first instance assuming
that τi can be preempted an epsilon before its completion.

On the other hand, the analysis is more pessimistic under the activation-triggered
model, where non-preemptive intervals are exactly equal to q i units and can last until
the end of the task. In this case, the analysis does not take advantage of the fact that
τi cannot be preempted when higher periodic tasks arrive q i units (or less) before its
completion. The advantage of such a pessimism, however, is that the analysis can be
limited to the first job of each task.

8.4.2 LONGEST NON-PREEMPTIVE INTERVAL

When using the deferred preemption method, an interesting problem is to find the
longest non-preemptive interval Q i for each task τi that can still preserve the task set
schedulability. More precisely, the problem can be stated as follows:

Given a set of n periodic tasks that is feasible under preemptive scheduling,
find the longest non-preemptive interval of length Q i for each task τi, so
that τi can continue to execute for Qi units of time in non-preemptive mode,
without violating the schedulability of the original task set.

This problem has been first solved under EDF by Baruah [Bar05], and then under fixed
priorities by Yao et al. [YBB09]. The solution is based on the concept of blocking
tolerance βi, for a task τi, defined as follows:

268 Chapter 8

Definition 8.3 The blocking tolerance βi of a task τi is the maximum amount of block-
ing τi can tolerate without missing any of its deadlines.

A simple way to compute the blocking tolerance is from the Liu and Layland test,
which according to Equation (7.19) becomes:

∀i = 1, . . . , n
∑

h:Ph≥Pi

Ch

Th
+

Bi

Ti
≤ Ulub(i)

where Ulub(i) = i(21/i − 1) under RM, and Ulub(i) = 1 under EDF. Isolating the
blocking factor, the test can also be rewritten as follows:

Bi ≤ Ti

⎛
⎝Ulub(i)−

∑
h:Ph≥Pi

Ch

Th

⎞
⎠ .

Hence, considering integer computations, we have:

βi =

⎢⎢⎢⎣Ti

⎛
⎝Ulub(i)−

∑
h:Ph≥Pi

Ch

Th

⎞
⎠
⎥⎥⎥⎦ . (8.20)

A more precise bound for βi can be achieved by using the schedulability test expressed
by Equation (7.23), which leads to the following result:

∃t ∈ T Si : Bi ≤ {t−Wi(t)}.

Bi ≤ max
t∈T Si

{t−Wi(t)}.

βi = max
t∈T Si

{t−Wi(t)}. (8.21)

where set T S i has been defined by equation (4.21).

Given the blocking tolerance, the feasible test can also be expressed as follows:

∀i = 1, . . . , n Bi ≤ βi

and by Equation (8.19), we can write:

Limited Preemptive Scheduling 269

∀i = 1, . . . , n max
j:Pj<Pi

{qj − 1} ≤ βi.

This implies that to achieve feasibility we must have

∀i = 1, . . . , n qi ≤ min
k:Pk>Pi

{βk + 1}

Hence, the longest non-preemptive interval Q i that preserves feasibility for each task
τi is

Qi = min
k:Pk>Pi

{βk + 1}. (8.22)

The Qi terms can also be computed more efficiently, starting from the highest priority
task (τ1) and proceeding with decreasing priority order, according to the following
theorem:

Theorem 8.2 The longest non-preemptive interval Q i of task τi that preserves feasi-
bility can be computed as

Qi = min{Qi−1, βi−1 + 1} (8.23)

where Q1 =∞ and β1 = D1 − C1.

Proof. The theorem can be proved by noting that

min
k:Pk>Pi

{βk + 1} = min{ min
k:Pk>Pi−1

{βk + 1}, βi−1 + 1},

and since from Equation (8.22)

Qi−1 = min
k:Pk>Pi−1

{βk + 1}

we have that
Qi = min{Qi−1, βi−1 + 1},

which proves the theorem.

Note that in order to apply Theorem 8.2, Q i is not constrained to be less than or equal
to Ci, but a value of Qi greater than Ci means that τi can be fully executed in non-
preemptive mode. The algorithm for computing the longest non-preemptive intervals
is illustrated in Figure 8.12.

270 Chapter 8

Algorithm: Compute the Longest Non-Preemptive Intervals
Input: A task set T with {Ci, Ti, Di, Pi}, ∀τi ∈ T
Output: Qi, ∀τi ∈ T
// Assumes T is preemptively feasible and Di ≤ Ti

(1) begin
(2) β1 = D1 − C1;

(3) Q1 =∞;

(4) for (i := 2 to n) do
(5) Qi = min{Qi−1, βi−1 + 1};
(6) Compute βi using Equation (8.20) or (8.21);

(7) end
(8) end

Figure 8.12 Algorithm for computing the longest non-preemptive intervals.

8.5 TASK SPLITTING

According to this model, each task τi is split into mi non-preemptive chunks (subjobs),
obtained by inserting mi − 1 preemption points in the code. Thus, preemptions can
only occur at the subjobs boundaries. All the jobs generated by one task have the
same subjob division. The kth subjob has a worst-case execution time qi,k; hence
Ci =

∑mi

k=1 qi,k.

Among all the parameters describing the subjobs of a task, two values are of particular
importance for achieving a tight schedulability result:{

qmax
i = max

k∈[1,mi]
{qi,k}

qlast
i = qi,mi

(8.24)

In fact, the feasibility of a high priority task τk is affected by the size qmax
j of the

longest subjob of each task τj with priority Pj < Pk . Moreover, the length q last
i

of the final subjob of τi directly affects its response time. In fact, all higher priority
jobs arriving during the execution of τ i’s final subjob do not cause a preemption, since
their execution is postponed at the end of τ i. Therefore, in this model, each task will
be characterized by the following 5-tuple:

{Ci, Di, Ti, q
max
i , qlast

i }.

Limited Preemptive Scheduling 271

For example, consider the same task set of Table 8.1, and suppose that τ 2 is split in two
subjobs of 2 and 1 unit, and τ3 is split in two subjobs of 4 and 2 units. The schedule
produced by Deadline Monotonic with such a splitting is feasible and it is illustrated
in Figure 8.13.

0 2 4 6 8 10 12 14 16 18 20

2+1

4+2

1

τ1

τ2

τ3

Figure 8.13 Schedule produced by Deadline Monotonic for the task set reported in Table
8.1, when τ2 is split in two subjobs of 2 and 1 unit, and τ3 is split in two subjobs of 4 and
2 units, respectively.

8.5.1 FEASIBILITY ANALYSIS

Feasibility analysis for task splitting can be carried out in a very similar way as the
non-preemptive case, with the following differences:

The blocking factor Bi to be considered for each task τi is equal to the length of
longest subjob (instead of the longest task) among those with lower priority:

Bi = max
j:Pj<Pi

{qmax
j − 1}. (8.25)

The last non-preemptive chunk of τ i is equal to qlast
i (instead of Ci).

The response time analysis for a task τi has to consider all the jobs within the longest
Level-i Active Period, which can be computed using the following recurrent relation:

⎧⎪⎨
⎪⎩

L
(0)
i = Bi + Ci

L
(s)
i = Bi +

∑
h:Ph≥Pi

⌈
L

(s−1)
i

Th

⌉
Ch.

(8.26)

272 Chapter 8

In particular, Li is the smallest value for which L
(s)
i = L

(s−1)
i . This means that the

response time of τi must be computed for all jobs τi,k with k ∈ [1, Ki], where

Ki =
⌈

Li

Ti

⌉
. (8.27)

For a generic job τi,k, the start time si,k of the last subjob can be computed considering
the blocking time Bi, the computation time of the preceding (k−1) jobs, those subjobs
preceding the last one (Ci−qlast

i), and the interference of the tasks with priority higher
than Pi. Hence, si,k can be computed with the following recurrent relation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
s
(0)
i,k = Bi + Ci − qlast

i +
∑

h:Ph>Pi

Ch

s
(�)
i,k = Bi + kCi − qlast

i +
∑

h:Ph>Pi

(⌊
s
(�−1)
i,k

Th

⌋
+ 1

)
Ch.

(8.28)

Since, once started, the last subjob cannot be preempted, the finishing time f i,k can be
computed as

fi,k = si,k + qlast
i . (8.29)

Hence, the response time of task τi is given by

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti}. (8.30)

Once the response time of each task is computed, the task set is feasible if

∀i = 1, . . . , n Ri ≤ Di. (8.31)

Assuming that the task set is preemptively feasible, the analysis can be simplified to
the first job of each task, after the critical instant, as shown by Yao et al. [YBB10a].
Hence, the longest relative start time of τi can be computed as the smallest value
satisfying the following recurrent relation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
S

(0)
i = Bi + Ci − qlast

i +
∑

h:Ph>Pi

Ch

S
(�)
i = Bi + Ci − qlast

i +
∑

h:Ph>Pi

(⌊
S

(�−1)
i

Th

⌋
+ 1

)
Ch.

(8.32)

Then, the response time Ri is simply:

Ri = Si + qlast
i . (8.33)

Limited Preemptive Scheduling 273

8.5.2 LONGEST NON-PREEMPTIVE INTERVAL

As done in Section 8.4.2 under deferred preemptions, it is interesting to compute,
also under task splitting, the longest non-preemptive interval Q i for each task τi that
can still preserve the schedulability. It is worth observing that splitting tasks into
subjobs allows achieving a larger Qi, because a task τi cannot be preempted during
the execution of the last q last

i units of time.

If tasks are assumed to be preemptively feasible, for Theorem 8.1 the analysis can be
limited to the first job of each task. In this case, a bound on the blocking tolerance β i

can be achieved using the following schedulability condition [YBB10a]:

∃t ∈ T S∗i : Bi ≤ {t−W ∗
i (t)}, (8.34)

where W ∗
i (t) and the testing set T S∗

i are defined as

W ∗
i (t) = Ci − qlast

i +
∑

h:Ph>Pi

(⌊
t

Th

⌋
+ 1

)
Ch, (8.35)

T S∗i
def= Pi−1(Di − qlast

i) (8.36)

where Pi(t) is given by Equation (4.22).

Rephrasing Equation (8.34), we obtain

Bi ≤ max
t∈T S∗(τi)

{t−W ∗
i (t)}.

βi = max
t∈T S∗(τi)

{t−W ∗
i (t)}. (8.37)

The longest non-preemptive interval Q i that preserves feasibility for each task τi can
then be computed by Theorem 8.2, using the blocking tolerances given by Equa-
tion (8.37). Applying the same substitutions, the algorithm in Figure 8.12 can also
be used under task splitting.

As previously mentioned, the maximum length of the non-preemptive chunk under
task splitting is larger than in the case of deferred preemptions. It is worth pointing
out that the value of Qi for task τi only depends on the βk of the higher priority tasks,
as expressed in Equation (8.22), and the blocking tolerance β i is a function of qlast

i ,
as clear form equations (8.35) and (8.37).

274 Chapter 8

8.6 SELECTING PREEMPTION POINTS

When a task set is not schedulable in non-preemptive mode, there are several ways to
split tasks into subtasks to generate a feasible schedule, if one exists. Moreover, as
already observed in Section 8.1, the runtime overhead introduced by the preemption
mechanism depends on the specific point where the preemption takes place. Hence,
it would be useful to identify the best locations for placing preemption points inside
each task to achieve a feasible schedule, while minimizing the overall preemption cost.
This section illustrates an algorithm [BXM+11] that achieves this goal.

Considering that sections of code exist where preemption is not desirable (e.g., short
loops, critical sections, I/O operations, etc.), each job of τ i is assumed to consist of
a sequence of Ni non-preemptive Basic Blocks (BBs), identified by the programmer
based on the task structure. Preemption is allowed only at basic block boundaries; thus
each task has Ni − 1 Potential Preemption Points (PPPs), one between any two con-
secutive BBs. Critical sections and conditional branches are assumed to be executed
entirely within a basic block. In this way, there is no need for using shared resource
protocols to access critical sections.

The goal of the algorithm is to identify a subset of PPPs that minimizes the overall
preemption cost, while achieving the schedulability of the task set. A PPP selected
by the algorithm is referred to as an Effective Preemption Point (EPP), whereas the
other PPPs are disabled. Therefore, the sequence of basic blocks between any two
consecutive EPPs forms a Non-Preemptive Region (NPR). The following notation is
used to describe the algorithm:

Ni denotes the number of BBs of task τi, determined by the Ni − 1 PPPs defined
by the programmer;

pi denotes the number of NPRs of task τi, determined by the pi−1 EPPs selected
by the algorithm;

δi,k denotes the k-th basic block of task τi;

bi,k denotes the WCET of δi,k without preemption cost; that is, when τi is executed
non-preemptively;

ξi,k denotes the worst-case preemption overhead introduced when τ i is preempted
at the k-th PPP (i.e., between δk and δk+1);

qi,j denotes the WCET of the j-th NPR of τi, including the preemption cost;

qmax
i denotes the maximum NPR length for τi:

qmax
i = max{qi,j}pi

j=1.

Limited Preemptive Scheduling 275

To simplify the notation, the task index is omitted from task parameters whenever the
association with the related task is evident from the context. In the following, we
implicitly refer to a generic task τi, with maximum allowed NPR length Qi = Q. As
shown in the previous sections, Q can be computed by the algorithm in Figure 8.12.
We say that an EPP selection is feasible if the length of each resulting NPR, including
the initial preemption overhead, does not exceed Q.

Figure 8.14 illustrates some of the defined parameters for a task with 6 basic blocks
and 3 NPRs. PPPs are represented by dots between consecutive basic blocks: black
dots are EPPs selected by the algorithm, while white dots are PPPs that are disabled.
Above the task code, the figure also reports the preemption costs ξk for each PPP,
although only the cost for the EPPs is accounted in the q j of the corresponding NPR.

τi

ξ1 ξ2 ξ3 ξ4 ξ5

δ1 δ2 δ3 δ4 δ5 δ6

b1 b2 b3 b4 b5 b6

q1 q2 q3

Figure 8.14 Example of task with 6 BBs split into 3 NPRs. Preemption cost is reported
for each PPPs, but accounted only for the EPPs.

Using the notation introduced above, the non-preemptive WCET of τ i can be ex-
pressed as follows:

CNP
i =

Ni∑
k=1

bi,k.

The goal of the algorithm is to minimize the overall worst-case execution time C i

of each task τi, including the preemption overhead, by properly selecting the EPPs
among all the PPPs specified in the code by the programmer, without compromising
the schedulability of the task set. To compute the preemption overhead, we assume
that each EPP leads to a preemption, and that the cache is invalidated after each context
switch (note that EPP selection is optimal only under these assumptions). Therefore,

Ci = CNP
i +

Ni−1∑
k=1

selected(i,k) · ξi,k

where selected(i,k) = 1 if the k-th PPP of τi is selected by the algorithm to be an
EPP, whereas selected(i,k) = 0, otherwise.

276 Chapter 8

8.6.1 SELECTION ALGORITHM

First of all, it is worth noting that minimizing the number of EPPs does not necessarily
minimize the overall preemption overhead. In fact, there are cases in which inserting
more preemption points, than the minimum number, could be more convenient to take
advantage of points with smaller cost.

Consider, for instance, the task illustrated in Figure 8.15, consisting of 6 basic blocks,
whose total execution time in non preemptive mode is equal to C NP

i = 20. The num-
bers above each PPP in Figure 8.15(a) denote the preemption cost; that is, the over-
head that would be added to C NP

i if a preemption occurred in that location. Assuming
a maximum non-preemptive interval Q = 12, a feasible schedule could be achieved
by inserting a single preemption point at the end of δ 4, as shown in Figure 8.15(b). In
fact,

∑4
k=1 bk = 3+3+3+2 = 11 ≤ Q, and ξ4 +

∑6
k=5 bk = 3+3+6 = 12 ≤ Q,

leading to a feasible schedule. This solution is characterized by a total preemption
overhead of 3 units of time (shown by the gray execution area). However, selecting
two EPPs, one after δ1 and another after δ5, a feasible solution is achieved with a
smaller total overhead ξ1 + ξ5 = 1 + 1 = 2, as shown in Figure 8.15(c). In general,
for tasks with a large number of basic blocks with different preemption cost, finding
the optimal solution is not trivial.

2 3 3 11

τi

CNP
i = 20

Q = 12

δ1 δ2 δ3 δ4 δ5 δ6

(a) Task with 6 basic blocks.

τi

q1 = 11 q2 = 12

Overhead = 3ξ4

δ1 δ2 δ3 δ4 δ5 δ6

(b) Task with a single preemption point.

τi

q1 = 3 q2 = 12 q3 = 7

Overhead = 2ξ1 ξ5

δ1 δ2 δ3 δ4 δ5 δ6

(c) Task with two preemption points.

Figure 8.15 Two solutions for selecting EPPs in a task with Q = 12: the first minimizes
the number of EPPs, while the second minimizes the overall preemption cost.

Limited Preemptive Scheduling 277

For a generic task, the worst-case execution time q of a NPR composed of the consec-
utive basic blocks δj , δj+1, . . . , δk can be expressed as

q = ξj−1 +
k∑

�=j

b�, (8.38)

conventionally setting ξ0 = 0. Note that the preemption overhead is included in q.
Since any NPR of a feasible EPP selection has to meet the condition q ≤ Q, we must
have

ξj−1 +
k∑

�=j

b� ≤ Q. (8.39)

Now, let Ĉk be the WCET of the chunk of code composed of the first k basic blocks
– that is, from the beginning of δ1 until the end of δk – including the preemption
overhead of the EPPs that are contained in the considered chunk. Then, we can express
the following recursive expression:

Ĉk = Ĉj−1 + q = Ĉj−1 + ξj−1 +
k∑

�=j

b�. (8.40)

Note that since δN is the last BB, the worst-case execution time Ci of the whole task
τi is equal to ĈN .

The algorithm for the optimal selection of preemption points is based on the equations
presented above and its pseudo-code is reported in Figure 8.16. The algorithm eval-
uates all the BBs in increasing order, starting from the first one. For each BB δk, the
feasible EPP selection that leads to the smallest possible Ĉk is computed as follows.

For the first BBs, the minimum Ĉk is given by the sum of the BB lengths
∑k

�=1 b�

as long as this sum does not exceed Q. Note that if b1 > Q, there is no feasible PPP
selection, and the algorithm fails. For the following BBs, Ĉk needs to consider the cost
of one or more preemptions as well. Let Prevk be the set of the preceding BBs δj≤k

that satisfy Condition (8.39), i.e., that might belong to the same NPR of δ k. Again, if
ξk−1 +bk > Q, there is no feasible PPP activation, and the algorithm fails. Otherwise,
the minimum Ĉk is given by

Ĉk = min
δj∈Prevk

⎧⎨
⎩Ĉj−1 + ξj−1 +

k∑
�=j

b�

⎫⎬
⎭ . (8.41)

278 Chapter 8

Let δ∗(δk) be the basic block for which the rightmost term of Expression (8.41) is
minimum

δ∗(δk) = min
δj∈Prevk

⎧⎨
⎩Ĉj−1 + ξj−1 +

k∑
�=j

b�

⎫⎬
⎭ . (8.42)

If there are many possible BBs minimizing (8.41), the one with the smallest index is
selected. Let δPrev(δk) be the basic block preceding δ∗(δk), if one exists. The PPP at
the end of δPrev(δk) – or, equivalently, at the beginning of δ ∗(δk) – is meaningful for
the analysis, since it represents the last PPP to activate for minimizing the preemption
overhead of the first k basic blocks.

A feasible placement of EPPs for the whole task can then be derived with a recur-
sive activation of PPPs, starting with the PPP at the end of δPrev(δN), which will
be the last EPP of the considered task. The penultimate EPP will be the one at the
beginning of δPrev(δPrev(δN)), and so on. If the result of this recursive lookup of
function δPrev(k) is δ1, the start of the program has been reached. A feasible place-
ment of EPPs has therefore been detected, with a worst-case execution time, including
preemption overhead, equal to ĈN . This is guaranteed to be the placement that mini-
mizes the preemption overhead of the considered task, as proved in the next theorem.

Theorem 8.3 (Bertogna et al., 2011) The PPP activation pattern detected by proce-
dure SelectEPP(τi, Qi) minimizes the preemption overhead experienced by a task τ i,
without compromising the schedulability.

The feasibility of a given task set is maximized by applying the SelectEPP(τ i, Qi)
procedure to each task τi, starting from τ1 and proceeding in task order. Once the
optimal allocation of EPPs has been computed for a task τ i, the value of the overall
WCET Ci = ĈN can be used for the computation of the maximum allowed NPR
Qi+1 of the next task τi+1, using the technique presented in Section 8.5.

The procedure is repeated until a feasible PPP activation pattern has been produced
for all tasks in the considered set. If the computed Q i+1 is too small to find a feasible
EPP allocation, the only possibility to reach schedulability is by removing tasks from
the system, as no other EPP allocation strategy would produce a feasible schedule.

Limited Preemptive Scheduling 279

Algorithm: SelectEPP(τi, Qi)
Input: {Ci, Ti, Di, Qi} for task τi

Output: The set of EPPs for task τi

(1) begin
(2) Prevk := {δ0}; Ĉ0 := 0; // Initialize variables
(3) for (k := 1 to N) do // For all PPPs
(4) Remove from Prevk all δj violating (8.39);
(5) if (Prevk = ∅) then
(6) return (INFEASIBLE);
(7) end
(8) Compute Ĉk using Equation (8.41);
(9) Store δPrev(δk);
(10) Prevk := Prevk ∪ {δk};
(11) end
(12) δj := δPrev(δN);
(13) while (δj
= ∅) do
(14) Select the PPP at the end of δPrev(δj);
(15) δj ← δPrev(δj);
(16) end
(17) return (FEASIBLE);
(18) end

Figure 8.16 Algorithm for selecting the optimal preemption points.

8.7 ASSESSMENT OF THE APPROACHES

The limited preemption methods presented in this chapter can be compared under
several aspects, such as the following

Implementation complexity.

Predictability in estimating the preemption cost.

Effectiveness in reducing the number of preemptions.

280 Chapter 8

8.7.1 IMPLEMENTATION ISSUES

The preemption threshold mechanism can be implemented by raising the execution
priority of the task, as soon as it starts running. The mechanism can be easily imple-
mented at the application level by calling, at the beginning of the task, a system call
that increases the priority of the task at its threshold level. The mechanism can also
be fully implemented at the operating system level, without modifying the application
tasks. To do that, the kernel has to increase the priority of a task at the level of its
threshold when the task is scheduled for the first time. In this way, at its first acti-
vation, a task is inserted in the ready queue using its nominal priority. Then, when
the task is scheduled for execution, its priority becomes equal to its threshold, until
completion. Note that if a task is preempted, its priority remains at its threshold level.

In deferred preemption (floating model), non-preemptive regions can be implemented
by proper kernel primitives that disable and enable preemption at the beginning and
at the end of the region, respectively. As an alternative, preemption can be disabled
by increasing the priority of the task at its maximum value, and can be enabled by
restoring the nominal task priority. In the activation-triggered mode, non-preemptive
regions can be realized by setting a timer to enforce the maximum interval in which
preemption is disabled. Initially, all tasks can start executing in non-preemptive mode.
When τi is running and a task with priority higher than P i is activated, a timer is set by
the kernel (inside the activation primitive) to interrupt τ i after qi units of time. Until
then, τi continues executing in non-preemptive mode. The interrupt handler associated
to the timer must then call the scheduler to allow the higher priority task to preempt
τi. Note that once a timer has been set other additional activations before the timeout
will not prolong the timeout any further.

Finally, cooperative scheduling does not need special kernel support, but it requires
the programmer to insert in each preemption point a primitive that calls the scheduler,
so enabling pending high-priority tasks to preempt the running task.

8.7.2 PREDICTABILITY

As observed in Section 8.1, the runtime overhead introduced by the preemption mech-
anism depends on the specific point where the preemption takes place. Therefore, a
method that allows predicting where a task is going to be preempted simplifies the
estimation of preemption costs, permitting a tighter estimation of task WCETs.

Unfortunately, under preemption thresholds, the specific preemption points depend on
the actual execution of the running task and on the arrival time of high priority tasks;

Limited Preemptive Scheduling 281

hence, it is practically impossible to predict the exact location where a task is going to
be preempted.

Under deferred preemptions (floating model), the position of non-preemptive regions
is not specified in the model, thus they are considered to be unknown. In the activation-
triggered model, instead, the time at which the running task will be preempted is set
qi units of time after the arrival time of a higher priority task. Hence, the preemption
position depends on the actual execution of the running task and on the arrival time of
the higher priority task. Therefore, it can hardly be predicted off-line.

On the contrary, under cooperative scheduling, the locations where preemptions may
occur are explicitly defined by the programmer at design time; hence, the correspond-
ing overhead can be estimated more precisely by timing analysis tools. Moreover,
through the algorithm presented in Section 8.6.1, it is also possible to select the best
locations for placing the preemption points to minimize the overall preemption cost.

8.7.3 EFFECTIVENESS

Each of the presented methods can be used to limit preemption as much as desired, but
the number of preemptions each task can experience depends of different parameters.

Under preemption thresholds, a task τi can only be preempted by tasks with priority
greater than its threshold θi. Hence, if preemption cost is neglected, an upper bound
νi on the number of preemptions that τ i can experience can be computed by counting
the number of activations of tasks with priority higher than θ i occurring in [0, Ri]; that
is

νi =
∑

h:Ph>θi

⌈
Ri

Th

⌉
.

This is an upper bound because simultaneous activations are counted as if they were
different, although they cause a single preemption.

Under deferred preemption, the number of preemptions occurring on τ i is easier to
determine, because it directly depends on the non-preemptive interval q i specified for
the task. If preemption cost is neglected, we simply have

νi =
⌈

CNP
i

qi

⌉
− 1.

However, if preemption cost is not negligible, the estimation requires an iterative ap-
proach, since the task computation time also depends on the number of preemptions.

282 Chapter 8

Considering a fixed cost ξi for each preemption, then the number of preemptions can
be upper bounded using the following recurrent relation:⎧⎪⎪⎨

⎪⎪⎩
ν0

i =
⌈

CNP
i

qi

⌉
− 1

νs
i =

⌈
CNP

i +ξiν
s−1
i

qi

⌉
− 1

where the iteration process converges when ν s
i = νs−1

i .

Finally, under cooperative scheduling, the number of preemptions can be simply upper
bounded by the number of effective preemption points inserted in the task code.

Simulations experiments with randomly generated task sets have been carried out by
Yao, Buttazzo, and Bertogna [YBB10b] to better evaluate the effectiveness of the con-
sidered algorithms in reducing the number of preemptions. Figures 8.17(a) and 8.17(a)
show the simulation results obtained for a task set of 6 and 12 tasks, respectively, and
report the number of preemptions produced by each method as a function of the load.

Each simulation run was performed on a set of n tasks with total utilization U varying
from 0.5 to 0.95 with step 0.05. Individual utilizations U i were uniformly distributed
in [0,1], using the UUniFast algorithm [BB05]. Each computation time C i was gener-
ated as a random integer uniformly distributed in [10, 50], and then T i was computed
as Ti = Ci/Ui. The relative deadline Di was generated as a random integer in the
range [Ci +0.8 · (Ti−Ci), Ti]. The total simulation time was set to 1 million units of
time. For each point in the graph, the result was computed by taking the average over
1000 runs.

All the task sets have been generated to be preemptive feasible. Under preemption
thresholds (PT), the algorithm proposed by Saksena and Wang [SW00] was used to
find the maximum priority threshold that minimizes the number of preemptions. Un-
der deferred preemptions (DP) and task splitting (TS), the longest non-preemptive re-
gions were computed according to the methods presented in Sections 8.4.2 and 8.5.2,
respectively. Finally, under task splitting, preemption points were inserted from the
end of task code to the beginning.

As expected, fully preemptive scheduling (PR) generates the largest number of pre-
emptions, while DP and TS are both able to achieve a higher reduction. PT has an
intermediate behavior. Note that DP can reduce slightly more preemptions than TS,
since, on the average, each preemption is deferred for a longer interval (always equal
to Qi, except when the preemption occurs near the end of the task).

Limited Preemptive Scheduling 283

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
ge

 N
um

be
r o

f P
re

em
pt

io
ns

PR
PT
TS
DP

(a) Number of tasks: n=6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Total Utilization

A
ve

ra
ge

 N
um

be
r o

f P
re

em
pt

io
ns

PR
PT
TS
DP

(b) Number of tasks: n=12

Figure 8.17 Average number of preemptions with different number of tasks.

284 Chapter 8

However, it is important to consider that TS can achieve a lower and more predictable
preemption cost, since preemption points can be suitably decided off-line with this
purpose. As shown in the figures, PR produces a similar number of preemptions when
the number of tasks increases, whereas all the other methods reduce the number of
preemptions to an even higher degree. This is because, when n is larger, tasks have
smaller individual utilization, and thus can tolerate more blocking from lower priority
tasks.

8.7.4 CONCLUSIONS

The results reported in this chapter can be summarized in Table 8.3, which compares
the three presented methods in terms of the metrics presented above. As discussed
in the previous section, the preemption threshold mechanism can reduce the overall
number of preemptions with a low runtime overhead; however, preemption cost can-
not be easily estimated, since the position of each preemption, as well as the overall
number of preemptions for each task, cannot be determined off-line. Using deferred
preemptions, the number of preemptions for each task can be better estimated, but the
position of each preemption still cannot be determined off-line. Cooperative schedul-
ing is the most predictable mechanism for estimating preemption costs, since both the
number of preemptions and their positions are fixed and known from the task code. Its
implementation, however, requires inserting explicit system calls in the source code
that introduce additional overhead.

Implementation cost Predictability Effectiveness

Preemption Thresholds Low Low Medium

Deferred Preemptions Medium Medium High

Cooperative Scheduling Medium High High

Table 8.3 Evaluation of limited preemption methods.

Limited Preemptive Scheduling 285

Exercises

8.1 Given the task set reported in the table, verify whether it is schedulable by the
Rate-Monotonic algorithm in non-preemptive mode.

Ci Ti Di

τ1 2 6 5
τ2 2 8 6
τ3 4 15 12

8.2 Given the task set reported in the table, verify whether it is schedulable by the
Rate-Monotonic algorithm in non-preemptive mode.

Ci Ti Di

τ1 3 8 6
τ2 3 9 8
τ3 3 14 12
τ4 2 80 80

8.3 Given the task set reported in the table, compute for each task τ i the longest
(floating) non-preemptive region Q i that guarantees the schedulability under
EDF. Perform the computation using the Liu and Layland test.

Ci Ti

τ1 2 8
τ2 2 10
τ3 5 30
τ4 5 60
τ5 3 90

8.4 For the same task set reported in Exercise 8.3, compute for each task τ i the
longest (floating) non-preemptive region Q i that guarantees the schedulability
under Rate Monotonic. Perform the computation using the Liu and Layland
test.

286 Chapter 8

8.5 Compute the worst case response times produced by Rate Monotonic for the
sporadic tasks illustrated below, where areas in light grey represent non-preemptive
regions of code, whereas regions in dark grey are fully preemptable. The num-
ber inside a region denotes the worst-case execution time (WCET) of that por-
tion of code, whereas the number on the right represents the WCET of the
entire task.

Task periods are T1 = 24, T2 = 40, T3 = 120, and T4 = 150. Relative
deadlines are equal to periods.

10
2 4

15
63

3

18
58

6
τ1

τ2

τ3

τ4

	8 LIMITED PREEMPTIVE SCHEDULING
	8.1 INTRODUCTION
	8.1.1 TERMINOLOGY AND NOTATION

	8.2 NON-PREEMPTIVE SCHEDULING
	8.2.1 FEASIBILITY ANALYSIS

	8.3 PREEMPTION THRESHOLDS
	8.3.1 FEASIBILITY ANALYSIS
	8.3.2 SELECTING PREEMPTION THRESHOLDS

	8.4 DEFERRED PREEMPTIONS
	8.4.1 FEASIBILITY ANALYSIS
	8.4.2 LONGEST NON-PREEMPTIVE INTERVAL

	8.5 TASK SPLITTING
	8.5.1 FEASIBILITY ANALYSIS
	8.5.2 LONGEST NON-PREEMPTIVE INTERVAL

	8.6 SELECTING PREEMPTION POINTS
	8.6.1 SELECTION ALGORITHM

	8.7 ASSESSMENT OF THE APPROACHES
	8.7.1 IMPLEMENTATION ISSUES
	8.7.2 PREDICTABILITY
	8.7.3 EFFECTIVENESS
	8.7.4 CONCLUSIONS

	Exercises

