
6
DYNAMIC PRIORITY SERVERS

6.1 INTRODUCTION

In this chapter1 we discuss the problem of scheduling soft aperiodic tasks and hard
periodic tasks under dynamic priority assignments. In particular, different service
methods are introduced, the objective of which is to reduce the average response time
of aperiodic requests without compromising the schedulability of hard periodic tasks.
Periodic tasks are scheduled by the Earliest Deadline First (EDF) algorithm.

With respect to fixed-priority assignments, dynamic scheduling algorithms are char-
acterized by higher schedulability bounds, which allow the processor to be better
utilized, increase the size of aperiodic servers, and enhance aperiodic responsive-
ness. Consider, for example, a set of two periodic tasks with the same utilization
U1 = U2 = 0.3, so that Up = 0.6. If priorities are assigned to periodic tasks
based on RM and aperiodic requests are served by a Sporadic Server, the maximum
server size that guarantees periodic schedulability is given by Equation (5.24) and
is Umax

SS = 2/P − 1, where P = (U1 + 1)(U2 + 1) = 1.69. Hence, we have
Umax

SS
 0.18. On the other hand, if periodic tasks are scheduled by EDF, the proces-
sor utilization bound goes up to 1.0, so the maximum server size can be increased up
to Us = 1− Up = 0.4.

For the sake of clarity, all properties of the algorithms presented in this chapter are
proven under the following assumptions:

1Part of this chapter is taken from the paper “Scheduling Aperiodic Tasks in Dynamic Priority Systems”
by M. Spuri and G. Buttazzo, published in Real-Time Systems, 10(2), March 1996.

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1

161
6

 Springer Science+Business Media, LLC 2011©

162 Chapter 6

All periodic tasks τi : i = 1, . . . , n have hard deadlines and their schedulability
must be guaranteed off line.

All aperiodic tasks Ji : i = 1, . . . , m do not have deadlines and must be sched-
uled as soon as possible, but without jeopardizing the schedulability of the peri-
odic tasks.

Each periodic task τi has a period Ti, a computation time Ci, and a relative
deadline Di equal to its period.

All periodic tasks are simultaneously activated at time t = 0.

Each aperiodic task has a known computation time but an unknown arrival time.

Some of the assumptions listed above can easily be relaxed to handle periodic tasks
with arbitrary phasing and relative deadlines different from their periods. Shared re-
sources can also be included in the model assuming an access protocol like the Stack
Resource Policy [Bak91]. In this case, the schedulability analysis has to be conse-
quently modified to take into account the blocking factors due to the mutually ex-
clusive access to resources. For some algorithms, the possibility of handling firm
aperiodic tasks is also discussed.

The rest of the chapter is organized as follows. In the next two sections, we discuss
how two fixed-priority service algorithms – namely, the Priority Exchange and the
Sporadic Server algorithms – can be extended to work under the EDF priority assign-
ment. Then, we introduce three new aperiodic service algorithms, based on dynamic
deadline assignments, that greatly improve the performance of the previous fixed-
priority extensions. One of these algorithms, the EDL server, is shown to be optimal,
in the sense that it minimizes the average response time of aperiodic requests.

6.2 DYNAMIC PRIORITY EXCHANGE SERVER

The Dynamic Priority Exchange (DPE) server is an aperiodic service technique pro-
posed by Spuri and Buttazzo [SB94, SB96] that can be viewed as an extension of the
Priority Exchange server [LSS87], adapted to work with a deadline-based scheduling
algorithm. The main idea of the algorithm is to let the server trade its runtime with the
runtime of lower-priority periodic tasks (under EDF this means a longer deadline) in
case there are no aperiodic requests pending. In this way, the server runtime is only
exchanged with periodic tasks but never wasted (unless there are idle times). It is sim-
ply preserved, even if at a lower priority, and it can be later reclaimed when aperiodic
requests enter the system.

Dynamic priority servers 163

The algorithm is defined as follows:

The DPE server has a specified period Ts and a capacity Cs.

At the beginning of each period, the server’s aperiodic capacity is set to C d
S ,

where d is the deadline of the current server period.

Each deadline d associated to the instances (completed or not) of the ith periodic
task has an aperiodic capacity, C d

Si
, initially set to 0.

Aperiodic capacities (those greater than 0) receive priorities according to their
deadlines and the EDF algorithm, like all the periodic task instances (ties are
broken in favor of capacities; that is, aperiodic requests).

Whenever the highest-priority entity in the system is an aperiodic capacity of C
units of time the following happens:

– if there are aperiodic requests in the system, these are served until they
complete or the capacity is exhausted (each request consumes a capacity
equal to its execution time);

– if there are no aperiodic requests pending, the periodic task having the short-
est deadline is executed; a capacity equal to the length of the execution is
added to the aperiodic capacity of the task deadline and is subtracted from
C (that is, the deadlines of the highest-priority capacity and the periodic
task are exchanged);

– if neither aperiodic requests nor periodic task instances are pending, there is
an idle time and the capacity C is consumed until, at most, it is exhausted.

An example of schedule produced by the DPE algorithm is illustrated in Figure 6.1.
Two periodic tasks, τ1 and τ2, with periods T1 = 8 and T2 = 12 and worst-case
execution times C1 = 2 and C2 = 3, and a DPE server with period Ts = 6 and
capacity Cs = 3, are present in the system.

At time t = 0, the aperiodic capacities C8
S1

(with deadline 8) and C12
S2

(with deadline
12) are set to 0, while the server capacity (with deadline 6) is set to Cs = C6

S = 3.
Since no aperiodic requests are pending, the two first periodic instances of τ 1 and τ2

are executed and Cs is consumed in the first three units of time. In the same interval,
two units of time are accumulated in C 8

S1
and one unit in C12

S2
.

At time t = 3, C8
S1

is the highest-priority entity in the system. Again, since no aperi-
odic requests are pending, τ2 keeps executing and the two units of C 8

S1
are consumed

and accumulated in C12
S2

. In the following three units of time the processor is idle and

164 Chapter 6

14

24

16 23 241

3

1680

3

21

1260 18 24

3 7

22208 19151312111097 17654320 18

τ 2

τ 1

DPE

Figure 6.1 Dynamic Priority Exchange server example.

C12
S2

is completely consumed. Note that at time t = 6 the server capacity Cs = C12
S is

set at value 3 and is preserved until time t = 8, when it becomes the highest-priority
entity in the system (ties among aperiodic capacities are assumed to be broken in a
FIFO order). At time t = 8, two units of C 12

S are exchanged with C16
S1

, while the third
unit of the server is consumed since the processor is idle.

At time t = 14, an aperiodic request, J1, of seven units of time enters the system.
Since C18

S = 2, the first two units of J1 are served with deadline 18, while the next
two units are served with deadline 24, using the capacity C 24

S2
. Finally, the last three

units are also served with deadline 24 because at time t = 18 the server capacity C 24
S

is set to 3.

6.2.1 SCHEDULABILITY ANALYSIS

The schedulability condition for a set of periodic tasks scheduled together with a DPE
server is now analyzed. Intuitively, the server behaves like any other periodic task.
The difference is that it can trade its runtime with the runtime of lower-priority tasks.
When a certain amount of time is traded, one or more lower-priority tasks are run at a
higher-priority level, and their lower-priority time is preserved for possible aperiodic
requests. This run-time exchange, however, does not affect schedulability; thus, the
periodic task set can be guaranteed using the classical Liu and Layland condition:

Up + Us ≤ 1,

where Up is the utilization factor of the periodic tasks and Us is the utilization factor
of the DPE server.

Dynamic priority servers 165

1

6

2

3

8765430 1 10 18 19 20 21 22 239 12

8

DPE

120 18 24

3

160

11

24

3

1716151413

τ 2

τ

24

Figure 6.2 DPE server schedulability.

In order to prove this result, given a schedule σ produced using the DPE algorithm,
consider a schedule σ ′ built in the following way:

Replace the DPE server with a periodic task τs with period Ts and worst-case
execution time Cs, so that in σ′ τs executes whenever the server capacity is con-
sumed in σ.

The execution of periodic instances during deadline exchanges is postponed until
the capacity decreases.

All other executions of periodic instances are left as in σ.

Note that from the definition of the DPE algorithm, at any time, at most one aperiodic
capacity decreases in σ, so σ ′ is well defined. Also observe that, in each feasible
schedule produced by the DPE algorithm, all the aperiodic capacities are exhausted
before their respective deadlines.

Figure 6.2 shows the schedule σ ′ obtained from the schedule σ of Figure 6.1. Note that
all the periodic executions corresponding to increasing aperiodic capacities have been
moved to the corresponding intervals in which the same capacities decrease. Also note
that the schedule σ′ does not depend on the aperiodic requests but depends only on the
characteristics of the server and on the periodic task set. Based on this observation,
the following theorem can be proved:

Theorem 6.1 (Spuri, Buttazzo) Given a set of periodic tasks with processor utiliza-
tion Up and a DPE server with processor utilization Us, the whole set is schedulable
by EDF if and only if

Up + Us ≤ 1.

166 Chapter 6

Proof. For any aperiodic load, all the schedules produced by the DPE algorithm have
a unique corresponding EDF schedule σ ′, built according to the definition given above.
Moreover, the task set in σ ′ is periodic with a processor utilization U = Up + Us.
Hence, σ′ is feasible if and only if Up + Us ≤ 1. Now we show that σ is feasible if
and only if σ′ is feasible.

Observe that in each schedule σ the completion time of a periodic instance is always
less than or equal to the completion time of the corresponding instance in the schedule
σ′. Hence, if σ′ is feasible, then also σ is feasible; that is, the periodic task set is
schedulable with the DPE algorithm. Vice versa, observing that σ ′ is a particular
schedule produced by the DPE algorithm when there are enough aperiodic requests, if
σ is feasible, then σ′ will also be feasible; hence, the theorem holds.

6.2.2 RECLAIMING SPARE TIME

In hard real-time systems, the guarantee test of critical tasks is done by performing a
worst-case schedulability analysis; that is, assuming the maximum execution time for
all task instances. However, when such a peak load is not reached because the actual
execution times are less than the worst-case values, it is not always obvious how to
reclaim the spare time efficiently.

Using a DPE server, the spare time unused by periodic tasks can be easily reclaimed
for servicing aperiodic requests. Whenever a periodic task completes, it is sufficient to
add its spare time to the corresponding aperiodic capacity. An example of reclaiming
mechanism is shown in Figure 6.3.

As it can be seen from the capacity plot, at the completion time of the first two periodic
instances, the corresponding aperiodic capacities (C 8

S1
and C12

S2
) are incremented by

an amount equal to the spare time saved. Thanks to this reclaiming mechanism, the
first aperiodic request can receive immediate service for all the seven units of time
required, completing at time t = 11. Without reclaiming, the request would complete
at time t = 12.

Note that reclaiming the spare time of periodic tasks as aperiodic capacities does not
affect the schedulability of the system. In fact, any spare time is already “allocated”
to a priority level corresponding to its deadline when the task set has been guaranteed.
Hence, the spare time can be used safely if requested with the same deadline.

Dynamic priority servers 167

18

DPE

3

1260

7

24

7

3

1680 24

171615141312119

τ 1

τ 2

1087 186543210 2019 21 22 23 24

3

Figure 6.3 DPE server resource reclaiming.

6.3 DYNAMIC SPORADIC SERVER

The Dynamic Sporadic Server2 (DSS) is an aperiodic service strategy proposed by
Spuri and Buttazzo [SB94, SB96] that extends the Sporadic Server [SSL89] to work
under a dynamic EDF scheduler. Similarly to other servers, DSS is characterized by a
period Ts and a capacity Cs, which is preserved for possible aperiodic requests. Unlike
other server algorithms, however, the capacity is not replenished at its full value at the
beginning of each server period but only when it has been consumed. The times at
which the replenishments occur are chosen according to a replenishment rule, which
allows the system to achieve full processor utilization.

The main difference between the classical SS and its dynamic version consists in the
way the priority is assigned to the server. Whereas SS has a fixed priority chosen
according to the RM algorithm (that is, according to its period T s), DSS has a dy-
namic priority assigned through a suitable deadline. The deadline assignment and the
capacity replenishment are defined by the following rules:

When the server is created, its capacity Cs is initialized at its maximum value.

The next replenishment time RT and the current server deadline d s are set as
soon as Cs > 0 and there is an aperiodic request pending. If tA is such a time,
then RT = ds = tA + Ts.

The replenishment amount RA to be done at time RT is computed when the last
aperiodic request is completed or Cs has been exhausted. If tI is such a time,
then RA is set equal to the capacity consumed within the interval [tA, tI].

2A similar algorithm called Deadline Sporadic Server has been independently developed by Ghazalie
and Baker in [GB95].

168 Chapter 6

1

0

19

8

76543210 18 212010 22 23 249

3

DSS

+3+2 +1

8 11

2

12

24

630 249 12 14

12

16

2
120 24

1716151413

aperiodic
requests

τ 2

τ

+1

Figure 6.4 Dynamic Sporadic Server example.

Figure 6.4 illustrates an EDF schedule obtained on a task set consisting of two periodic
tasks with periods T1 = 8, T2 = 12 and execution times C1 = 2, C2 = 3, and a DSS
with period Ts = 6 and capacity Cs = 3.

At time t = 0, the server capacity is initialized at its full value Cs = 3. Since
there are no aperiodic requests pending, the processor is assigned to task τ 1, which
has the earliest deadline. At time t = 3, an aperiodic request with execution time 2
arrives and, since Cs > 0, the first replenishment time and the server deadline are
set to RT1 = ds = 3 + Ts = 9. Being ds the earliest deadline, DSS becomes the
highest-priority task in the system and the request is serviced until completion. At
time t = 5, the request is completed and no other aperiodic requests are pending;
hence, a replenishment of two units of time is scheduled to occur at time RT 1 = 9.

At time t = 6, a second aperiodic requests arrives. Being Cs > 0, the next replenish-
ment time and the new server deadline are set to RT2 = ds = 6 + Ts = 12. Again,
the server becomes the highest-priority task in the system (we assume that ties among
tasks are always resolved in favor of the server) and the request receives immediate
service. This time, however, the capacity has only one unit of time available, and it
gets exhausted at time t = 7. Consequently, a replenishment of one unit of time is
scheduled for RT2 = 12, and the aperiodic request is delayed until t = 9, when Cs

becomes again greater than zero. At time t = 9, the next replenishment time and the
new deadline of the server are set to RT3 = ds = 9 + Ts = 15. As before, DSS be-
comes the highest-priority task; thus, the aperiodic request receives immediate service
and finishes at time t = 10. A replenishment of one unit is then scheduled to occur at
time RT3 = 15.

Dynamic priority servers 169

t 2t1

Figure 6.5 Computational demand of a periodic task in [t1, t2].

Note that as long as the server capacity is greater than zero, all pending aperiodic
requests are executed with the same deadline. In Figure 6.4 this happens at time t =
14, when the last two aperiodic requests are serviced with the same deadline d s = 20.

6.3.1 SCHEDULABILITY ANALYSIS

To prove the schedulability bound for the Dynamic Sporadic Server, we first show that
the server behaves like a periodic task with period Ts and execution time Cs.

Given a periodic task τi, we first note that in any generic interval [t1, t2] such that τi

is released at t1, the computation time scheduled by EDF with deadline less than or
equal to t2 is such that (see Figure 6.5)

Ci(t1, t2) ≤
⌊

t2 − t1
Ti

⌋
Ci.

The following Lemma shows that the same property is true for DSS.

Lemma 6.1 In each interval of time [t1, t2], such that t1 is the time at which DSS
becomes ready (that is, an aperiodic request arrives and no other aperiodic requests
are being served), the maximum aperiodic time executed by DSS in [t 1, t2] satisfies the
following relation:

Cape ≤
⌊

t2 − t1
Ts

⌋
Cs.

Proof. Since replenishments are always equal to the time consumed, the server
capacity is at any time less than or equal to its initial value. Also, the replenishment
policy establishes that the consumed capacity cannot be reclaimed before T s units of
time after the instant at which the server has become ready. This means that, from the
time t1 at which the server becomes ready, at most Cs time can be consumed in each
subsequent interval of time of length Ts; hence, the thesis follows.

170 Chapter 6

Given that DSS behaves like a periodic task, the following theorem states that a full
processor utilization is still achieved.

Theorem 6.2 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-
lization Up and a Dynamic Sporadic Server with processor utilization Us, the whole
set is schedulable if and only if

Up + Us ≤ 1.

Proof. If. Assume Up + Us ≤ 1 and suppose there is an overflow at time t. The
overflow is preceded by a period of continuous utilization of the processor. Further-
more, from a certain point t ′ on (t′ < t), only instances of tasks ready at t′ or later
and having deadlines less than or equal to t are run (the server may be one of these
tasks). Let C be the total execution time demanded by these instances. Since there is
an overflow at time t, we must have t− t′ < C. We also know that

C ≤
n∑

i=1

⌊
t− t′

Ti

⌋
Ci + Cape

≤
n∑

i=1

⌊
t− t′

Ti

⌋
Ci +

⌊
t− t′

Ts

⌋
Cs

≤
n∑

i=1

t− t′

Ti
Ci +

t− t′

Ts
Cs

≤ (t− t′)(Up + Us).

Thus, it follows that
Up + Us > 1,

a contradiction.

Only If. Since DSS behaves as a periodic task with period Ts and execution time
Cs, the server utilization factor is Us = Cs/Ts and the total utilization factor of the
processor is Up + Us. Hence, if the whole task set is schedulable, from the EDF
schedulability bound [LL73] we can conclude that U p + Us ≤ 1.

Dynamic priority servers 171

6.4 TOTAL BANDWIDTH SERVER

Looking at the characteristics of the Sporadic Server algorithm, it can be easily seen
that, when the server has a long period, the execution of the aperiodic requests can be
delayed significantly. This is due to the fact that when the period is long, the server is
always scheduled with a far deadline. And this is regardless of the aperiodic execution
times.

There are two possible approaches to reduce the aperiodic response times. The first
is, of course, to use a Sporadic Server with a shorter period. This solution, however,
increases the run-time overhead of the algorithm because, to keep the server utilization
constant, the capacity has to be reduced proportionally, but this causes more frequent
replenishments and increases the number of context switches with the periodic tasks.

A second approach, less obvious, is to assign a possible earlier deadline to each ape-
riodic request. The assignment must be done in such a way that the overall processor
utilization of the aperiodic load never exceeds a specified maximum value U s. This is
the main idea behind the Total Bandwidth Server (TBS), a simple and efficient aperi-
odic service mechanism proposed by Spuri and Buttazzo [SB94, SB96]. The name of
the server comes from the fact that, each time an aperiodic request enters the system,
the total bandwidth of the server is immediately assigned to it, whenever possible.

In particular, when the kth aperiodic request arrives at time t = rk, it receives a
deadline

dk = max(rk, dk−1) +
Ck

Us
,

where Ck is the execution time of the request and Us is the server utilization factor
(that is, its bandwidth). By definition d0 = 0. Note that in the deadline assignment
rule the bandwidth allocated to previous aperiodic requests is considered through the
deadline dk−1.

Once the deadline is assigned, the request is inserted into the ready queue of the sys-
tem and scheduled by EDF as any other periodic instance. As a consequence, the
implementation overhead of this algorithm is practically negligible.

Figure 6.6 shows an example of an EDF schedule produced by two periodic tasks with
periods T1 = 6, T2 = 8 and execution times C1 = 3, C2 = 2, and a TBS with
utilization Us = 1 − Up = 0.25. The first aperiodic request arrives at time t = 3 and
is serviced with deadline d1 = r1 + C1/Us = 3 + 1/0.25 = 7. Being d1 the earliest
deadline in the system, the aperiodic request is executed immediately. Similarly, the
second request, which arrives at time t = 9, receives a deadline d2 = r2 + C2/Us =
17, but it is not serviced immediately, since at time t = 9 there is an active periodic

172 Chapter 6

17

requests

16

3

15 23 249

dd 2

240

21

186 12

0 2416

22207 19141312111085 643210 18

aperiodic
2 1d 11

τ 1

τ 2

8

Figure 6.6 Total Bandwidth Server example.

task, τ2, with a shorter deadline, equal to 16. Finally, the third aperiodic request
arrives at time t = 14 and gets a deadline d3 = max(r3, d2) + C3/Us = 21. It does
not receive immediate service, since at time t = 14 task τ1 is active and has an earlier
deadline (18).

6.4.1 SCHEDULABILITY ANALYSIS

In order to derive a schedulability test for a set of periodic tasks scheduled by EDF in
the presence of a TBS, we first show that the aperiodic load executed by TBS cannot
exceed the utilization factor Us defined for the server.

Lemma 6.2 In each interval of time [t1, t2], if Cape is the total execution time de-
manded by aperiodic requests arrived at t1 or later and served with deadlines less
than or equal to t2, then

Cape ≤ (t2 − t1)Us.

Proof. By definition
Cape =

∑
t1≤rk,dk≤t2

Ck.

Given the deadline assignment rule of the TBS, there must exist two aperiodic requests
with indexes k1 and k2 such that

∑
t1≤rk,dk≤t2

Ck =
k2∑

k=k1

Ck.

Dynamic priority servers 173

It follows that

Cape =
k2∑

k=k1

Ck

=
k2∑

k=k1

[dk −max(rk, dk−1)]Us

≤ [dk2 −max(rk1 , dk1−1)]Us

≤ (t2 − t1)Us.

The main result on TBS schedulability can now be proved.

Theorem 6.3 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-
lization Up and a TBS with processor utilization Us, the whole set is schedulable by
EDF if and only if

Up + Us ≤ 1.

Proof. If. Assume Up + Us ≤ 1 and suppose there is an overflow at time t. The
overflow is preceded by a period of continuous utilization of the processor. Further-
more, from a certain point t ′ on (t′ < t), only instances of tasks ready at t′ or later
and having deadlines less than or equal to t are run. Let C be the total execution time
demanded by these instances. Since there is an overflow at time t, we must have

t− t′ < C.

We also know that

C ≤
n∑

i=1

⌊
t− t′

Ti

⌋
Ci + Cape

≤
n∑

i=1

t− t′

Ti
Ci + (t− t′)Us

≤ (t− t′)(Up + Us).

Thus, it follows that
Up + Us > 1,

174 Chapter 6

a contradiction.

Only If. If an aperiodic request enters the system periodically, with period T s and
execution time Cs = TsUs, the server behaves exactly as a periodic task with period
Ts and execution time Cs, and the total utilization factor of the processor is Up + Us.
Hence, if the whole task set is schedulable, from the EDF schedulability bound [LL73]
we can conclude that Up + Us ≤ 1.

6.5 EARLIEST DEADLINE LATE SERVER

The Total Bandwidth Server is able to provide good aperiodic responsiveness with ex-
treme simplicity. However, a better performance can still be achieved through more
complex algorithms. For example, looking at the schedule in Figure 6.6, we could
argue that the second and the third aperiodic requests may be served as soon as they
arrive, without compromising the schedulability of the system. This is possible be-
cause, when the requests arrive, the active periodic instances have enough slack time
(laxity) to be safely preempted.

Using the available slack of periodic tasks for advancing the execution of aperiodic re-
quests is the basic principle adopted by the EDL server [SB94, SB96]. This aperiodic
service algorithm can be viewed as a dynamic version of the Slack Stealing algorithm
[LRT92].

The definition of the EDL server makes use of some results presented by Chetto and
Chetto [CC89]. In this paper, two complementary versions of EDF – namely, EDS and
EDL – are proposed. Under EDS the active tasks are processed as soon as possible,
whereas under EDL they are processed as late as possible. An important property of
EDL is that in any interval [0, t] it guarantees the maximum available idle time. In the
original paper, this result is used to build an acceptance test for aperiodic tasks with
hard deadlines, while here it is used to build an optimal server mechanism for soft
aperiodic activities.

To simplify the description of the EDL server, ωA
J (t) denotes the following availability

function, defined for a scheduling algorithm A and a task set J :

ωA
J (t) =

{
1 if the processor is idle at t
0 otherwise.

Dynamic priority servers 175

1

160 248

ω(t)

EDL

0 54321 19187 20 21 22 23 246 10 178 161514131211

τ

2

0 24186 12

τ

9

Figure 6.7 Availability function under EDL.

The integral of ωA
J (t) on an interval of time [t1, t2] is denoted by ΩA

J (t1, t2) and gives
the total idle time in the specified interval. The function ω EDL

J for the task set of
Figure 6.6 is depicted in Figure 6.7.

The result of optimality addressed above is stated by Chetto and Chetto [CC89] in
Theorem 2, which we recall here.

Theorem 6.4 (Chetto and Chetto) Let J be any aperiodic task set and A any pre-
emptive scheduling algorithm. For any instant t,

ΩEDL
J (0, t) ≥ ΩA

J (0, t).

This result allows to develop an optimal server using the idle times of an EDL sched-
uler. In particular, given a periodic task set J , the function ω A

J , which is periodic with
hyperperiod H = lcm(T1, . . . , Tn), can be represented by means of two arrays. The
first, E = (e0, e1, . . . , ep), represents the times at which idle times occur, while the
second, D = (Δ0, Δ1, . . . , Δp), represents the lengths of these idle times. The two
arrays for the example in Figure 6.7 are shown in Table 6.1. Note that idle times occur
only after the release of a periodic task instance.

i 0 1 2 3
ei 0 8 12 18
Δi 3 1 1 1

Table 6.1 Idle times under EDL.

176 Chapter 6

(t)

0 16 248

0 24186

ω

16

EDL

1714

1

23 249

τ 2

τ

21 22206 1913121110875 1543210 18

12

(a)

requests

16

0

21 22 23 249

18 24

19

6 12

0 2416

200 8 171514131211107 18654321

aperiodic

τ 1

τ 2

8

(b)

Figure 6.8 a. Idle times available at time t = 8 under EDL. b. Schedule of the aperiodic
request with the EDL server.

The basic idea behind the EDL server is to use the idle times of an EDL schedule to
execute aperiodic requests as soon as possible. When there are no aperiodic activities
in the system, periodic tasks are scheduled according to the EDF algorithm. Whenever
a new aperiodic request enters the system (and no previous aperiodic is still active) the
idle times of an EDL scheduler applied to the current periodic task set are computed
and then used to schedule the aperiodic requests pending. Figure 6.8 shows an example
of the EDL service mechanism.

Here, an aperiodic request with an execution time of 4 units arrives at time t = 8.
The idle times of an EDL schedule are recomputed using the current periodic tasks, as
shown in Figure 6.8a. The request is then scheduled according to the computed idle
times (Figure 6.8b). Notice that the server automatically allocates a bandwidth 1−U p

Dynamic priority servers 177

to aperiodic requests. The response times achieved by this method are optimal, so they
cannot be reduced further.

The procedure to compute the idle times of the EDL schedule is described in Chetto
and Chetto [CC89] and is not reported here. However, it is interesting to observe that
not all the idle times have to be recomputed, but only those preceding the deadline of
the current active periodic task with the longest deadline.

The worst-case complexity of the algorithm is O(Nn), where n is the number of
periodic tasks and N is the number of distinct periodic requests that occur in the
hyperperiod. In the worst case, N can be very large and, hence, the algorithm may
be of little practical interest. As for the Slack Stealer, the EDL server will be used to
provide a lower bound to the aperiodic response times and to build a nearly optimal
implementable algorithm, as described in the next section.

6.5.1 EDL SERVER PROPERTIES

The schedulability analysis of the EDL server is quite straightforward. In fact, all
aperiodic activities are executed using the idle times of a particular EDF schedule;
thus, the feasibility of the periodic task set cannot be compromised. This is stated in
the following theorem:

Theorem 6.5 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-
lization Up and the corresponding EDL server (whose behavior strictly depends on
the characteristics of the periodic task set), the whole set is schedulable if and only if

Up ≤ 1.

Proof. If. Since the condition (Up ≤ 1) is sufficient for guaranteeing the schedulabil-
ity of a periodic task set under EDF, it is also sufficient under EDL, which is a partic-
ular implementation of EDF. The algorithm schedules the periodic tasks according to
one or the other implementation, depending on the particular sequence of aperiodic re-
quests. When aperiodic requests are pending, they are scheduled during precomputed
idle times of the periodic tasks. In both cases the timeliness of the periodic task set is
unaffected and no deadline is missed.

Only If. If a periodic task set is schedulable with an EDL server, it will be also schedu-
lable without the EDL server, and hence (Up ≤ 1).

178 Chapter 6

We finally show that the EDL server is optimal; that is, the response times of the
aperiodic requests under the EDL algorithm are the best achievable.

Lemma 6.3 Let A be any online preemptive algorithm, τ a periodic task set, and
Ji an aperiodic request. If f A

τ∪{Ji}(Ji) is the finishing time of Ji when τ ∪ {Ji} is
scheduled by A, then

fEDL server
τ∪{Ji} (Ji) ≤ fA

τ∪{Ji}(Ji).

Proof. Suppose Ji arrives at time t, and let τ(t) be the set of the current active
periodic instances (ready but not yet completed) and the future periodic instances.
The new task Ji is scheduled together with the tasks in τ(t). In particular, consider
the schedule σ of τ ∪ {Ji} under A. Let A′ be another algorithm that schedules the
tasks in τ(t) at the same time as in σ, and σ ′ be the corresponding schedule. Ji is
executed during some idle periods of σ ′. Applying Theorem 6.4 with the origin of the
time axis translated to t (this can be done since A is online), we know that for each
t′ ≥ t

ΩEDL
τ(t)(t, t

′) ≥ ΩA′
τ(t)(t, t

′).

Recall that when there are aperiodic requests, the EDL server allocates the executions
exactly during the idle times of EDL. Being

ΩEDL
τ(t)(t, f

EDL server
τ∪{Ji} (Ji)) ≥ ΩA′

τ(t)(t, f
EDL server
τ∪{Ji} (Ji))

it follows that
fEDL

τ∪{Ji}(Ji) ≤ fA
τ∪{Ji}(Ji).

That is, under the EDL server, Ji is never completed later than under the A algorithm.

6.6 IMPROVED PRIORITY EXCHANGE SERVER

Although optimal, the EDL server has too much overhead to be considered practical.
However, its main idea can be usefully adopted to develop a less complex algorithm
that still maintains a nearly optimal behavior.

The heavy computation of the idle times can be avoided by using the mechanism of
priority exchanges. With this mechanism, in fact, the system can easily keep track of
the time advanced to periodic tasks and possibly reclaim it at the right priority level.

Dynamic priority servers 179

The idle times of the EDL algorithm can be precomputed off-line and the server can
use them to schedule aperiodic requests, when there are any, or to advance the exe-
cution of periodic tasks. In the latter case, the idle time advanced can be saved as
aperiodic capacity at the priority levels of the periodic tasks executed.

The idea described above is used by the algorithm called Improved Priority Exchange
(IPE) [SB94, SB96]. In particular, the DPE server is modified using the idle times of
an EDL scheduler. There are two main advantages in this approach. First, a far more
efficient replenishment policy is achieved for the server. Second, the resulting server
is no longer periodic, and it can always run at the highest priority in the system. The
IPE server is thus defined in the following way:

The IPE server has an aperiodic capacity, initially set to 0.

At each instant t = ei + kH , with 0 ≤ i ≤ p and k ≥ 0, a replenishment of Δi

units of time is scheduled for the server capacity; that is, at time t = e0 the server
will receive Δ0 units of time (the two arrays E and D have been defined in the
previous section).

The server priority is always the highest in the system, regardless of any other
deadline.

All other rules of IPE (aperiodic requests and periodic instances executions, ex-
change and consumption of capacities) are the same as for a DPE server.

The same task set of Figure 6.8 is scheduled with an IPE server in Figure 6.9.

Note that the server replenishments are set according to the function ω EDL
τ , illustrated

in Figure 6.7.

When the aperiodic request arrives at time t = 8, one unit of time is immediately
allocated to it by the server. However, other two units are available at the priority
level corresponding to the deadline 12, due to previous deadline exchanges, and are
allocated right after the first one. The last one is allocated later, at time t = 12,
when the server receives a further unit of time. In this situation, the optimality of the
response time is kept. As we will show later, there are only rare situations in which
the optimal EDL server performs slightly better than IPE. That is, IPE almost always
exhibits a nearly optimal behavior.

180 Chapter 6

2

6

τ

12 18

3

0 24

(t)

6 1716151413121110987543210 18 19 20 21 22 23

3

20

EDL

120 18 24842 6 16 221410

+3
+3

3

IPE
4

+1 +1 +1

1τ

ω

24

Figure 6.9 Improved Priority Exchange server example.

6.6.1 SCHEDULABILITY ANALYSIS

In order to analyze the schedulability of an IPE server, it is useful to define a trans-
formation among schedules similar to that defined for the DPE server. In particular,
given a schedule σ produced by the IPE algorithm, we build the schedule σ ′ in the
following way:

Each execution of periodic instances during deadline exchanges (that is, increase
in the corresponding aperiodic capacity) is postponed until the capacity decreases.

All other executions of periodic instances are left as in σ.

In this case, the server is not substituted with another task. Again σ ′ is well defined
and is invariant; that is, it does not depend on σ but only on the periodic task set.
Moreover, σ′ is the schedule produced by EDL applied to the periodic task set (com-
pare Figure 6.7 with Figure 6.9). The optimal schedulability is stated by the following
theorem:

Theorem 6.6 (Spuri, Buttazzo) Given a set of n periodic tasks with processor uti-
lization Up and the corresponding IPE server (the parameters of the server depend on
the periodic task set), the whole set is schedulable if and only if

Up ≤ 1

(the server automatically allocates the bandwidth 1− Up to aperiodic requests).

Dynamic priority servers 181

Proof. If. The condition is sufficient for the schedulability of the periodic task set
under EDF, thus even under EDL, which is a particular implementation of EDF. Now,
observe that in each schedule produced by the IPE algorithm the completion times of
the periodic instances are never greater than the completion times of the corresponding
instances in σ′, which is the schedule of the periodic task set under EDL. That is, no
periodic instance can miss its deadline. The thesis follows.

Only If. Trivial, since the condition is necessary even for the periodic task set only.

6.6.2 REMARKS

The reclaiming of unused periodic execution time can be done in the same way as for
the DPE server. When a periodic task completes, its spare time is added to the corre-
sponding aperiodic capacity. Again, this behavior does not affect the schedulability of
the system. The reason is of course the same as for the DPE server.

To implement the IPE server, the two arrays E and D must be precomputed before
the system is run. The replenishments of the server capacity are no longer peri-
odic, but this does not change the complexity, which is comparable with that of DPE.
What can change dramatically is the memory requirement. In fact, if the periods
of periodic tasks are not harmonically related, we could have a huge hyperperiod
H = lcm(T1, . . . , Tn), which would require a great memory space to store the two
arrays E andD.

6.7 IMPROVING TBS

The deadline assignment rule used by the TBS algorithm is a simple and efficient
technique for servicing aperiodic requests in a hard real-time periodic environment.
At the cost of a slightly higher complexity, such a rule can be modified to enhance
aperiodic responsiveness. The key idea is to shorten the deadline assigned by the TBS
as much as possible, still maintaining the periodic tasks schedulable [BS99].

If dk is the deadline assigned to an aperiodic request by the TBS, a new deadline d ′
k

can be set at the estimated worst-case finishing time fk of that request, scheduled by
EDF with deadline dk. The following lemma shows that setting the new deadline d ′

k

at the current estimated worst-case finishing time does not jeopardize schedulability:

182 Chapter 6

Lemma 6.4 Let σ be a feasible schedule of task set T , in which an aperiodic job Jk is
assigned a deadline dk, and let fk be the finishing time of Jk in σ. If dk is substituted
with d′k = fk, then the new schedule σ’ produced by EDF is still feasible.

Proof. Since σ remains feasible after dk is substituted with d′
k = fk and all other

deadlines are unchanged, the optimality of EDF [Der74] guarantees that σ’ is also
feasible.

The process of shortening the deadline can be applied recursively to each new dead-
line, until no further improvement is possible, given that the schedulability of the
periodic task set must be preserved. If ds

k is the deadline assigned to the aperiodic
request Jk at step s and f s

k is the corresponding finishing time in the current EDF
schedule (achieved with ds

k), the new deadline ds+1
k is set at time fs

k . At each step, the
schedulability of the task set is guaranteed by Lemma 6.4.

The algorithm stops either when ds
k = ds−1

k or after a maximum number of steps
defined by the system designer for bounding the complexity. Note that the exact eval-
uation of f s

k would require the development of the entire schedule up to the finishing
time of request Jk, scheduled with ds

k. However, there is no need to evaluate the exact
value of f s

k to shorten the deadline. Rather, the following upper bound can be used:

f̃s
k = t + Ca

k + Ip(t, ds
k), (6.1)

where t is the current time (corresponding to the release time rk of request Jk or to
the completion time of the previous request), C a

k is the worst-case computation time
required by Jk, and Ip(t, ds

k) is the interference on Jk due to the periodic instances in
the interval [t, ds

k). f̃s
k is an upper bound for f s

k because it identifies the time at which
Jk and all the periodic instances with deadline less than ds

k end to execute. Hence,
fs

k ≤ f̃s
k .

The periodic interference Ip(t, ds
k) in Equation (6.1) can be expressed as the sum of

two terms, Ia(t, ds
k) and If (t, ds

k), where Ia(t, ds
k) is the interference due to the cur-

rently active periodic instances with deadlines less than ds
k , and If (t, ds

k) is the future
interference due to the periodic instances activated after time t with deadline before
ds

k. Hence,

Ia(t, ds
k) =

∑
τi active, di<ds

k

ci(t) (6.2)

and

If (t, ds
k) =

n∑
i=1

max
(

0,

⌈
ds

k − next ri(t)
Ti

⌉
− 1

)
Ci, (6.3)

Dynamic priority servers 183

where next ri(t) identifies the time greater than t at which the next periodic instance
of task τi will be activated. If periodic tasks are synchronously activated at time zero,
then

next ri(t) =
⌈

t

Ti

⌉
Ti. (6.4)

Since Ia and If can be computed in O(n), the overall complexity of the deadline
assignment algorithm is O(Nn), where N is the maximum number of steps performed
by the algorithm to shorten the initial deadline assigned by the TB server. We now
show that f̃s

k is the real worst-case finishing time if it coincides with the deadline ds
k.

Lemma 6.5 In any feasible schedule, f̃s
k = fs

k only if f̃s
k = ds

k.

Proof. Assume that there exists a feasible schedule σ where f̃s
k = ds

k, but f̃s
k > fs

k .
Since f̃s

k is the time at which Jk and all the periodic instances with deadline less than
ds

k end to execute, f̃s
k > fs

k would imply that f̃s
k coincides with the end of a periodic

instance having deadline less than f̃s
k = ds

k, meaning that this instance would miss its
deadline. This is a contradiction; hence, the lemma follows.

6.7.1 AN EXAMPLE

The following example illustrates the deadline approximation algorithm. The task set
consists of two periodic tasks, τ1 and τ2, with periods 3 and 4, and computation times
1 and 2, respectively. A single aperiodic job Jk arrives at time t = 2, requiring 2 units
of computation time. The periodic utilization factor is Up = 5/6, leaving a bandwidth
of Us = 1/6 for the aperiodic tasks.

When the aperiodic request arrives at time t = 2, it receives a deadline d0
k = rk +

Ca
k/Us = 14, according to the TBS algorithm. The schedule produced by EDF using

this deadline assignment is shown in Figure 6.10.

By applying Equations (6.2) and (6.3) we have

Ia(2, 14) = c2(2) = 1
If (2, 14) = 3C1 + 2C2 = 7,

and, by Equation (6.1), we obtain

d1
k = f̃0

k = t + Ca
k + Ia + If = 12.

184 Chapter 6

τ

2012 14 16 1820 4 6 8 10

2τ

J k

1

2

Figure 6.10 Schedule produced by EDF with d0k = 14.

step ds
k fs

k

0 14 12
1 12 9
2 9 8
3 8 6
4 6 5
5 5 5

Table 6.2 Deadlines and finishing times computed by the algorithm.

In this case, it can easily be verified that the aperiodic task actually terminates at
t = 12. This happens because the periodic tasks do not leave any idle time to the
aperiodic task, which is thus compelled to execute at the end. Table 6.2 shows the
subsequent deadlines evaluated at each step of the algorithm. In this example, six
steps are necessary to find the shortest deadline for the aperiodic request.

The schedule produced by EDF using the shortest deadline d ∗
k = d5

k = 5 is shown in
Figure 6.11. Notice that at t = 19 the first idle time is reached, showing that the whole
task set is schedulable.

6.7.2 OPTIMALITY

As far as the average case execution time of tasks is equal to the worst-case one, our
deadline assignment method achieves optimality, yielding the minimum response time
for each aperiodic task. Under this assumption, the following theorem holds.

Dynamic priority servers 185

τ

1086420 2018161412

1

2τ

kJ
2

Figure 6.11 Schedule produced by EDF with d∗k = 5.

Theorem 6.7 (Buttazzo, Sensini) Let σ be a feasible schedule produced by EDF for
a task set T and let fk be the finishing time of an aperiodic request Jk, scheduled in
σ with deadline dk . If fk = dk, then fk = f∗

k , where f∗
k is the minimum finishing time

achievable by any other feasible schedule.

Proof. Assume fk = dk, and let r0 be the earliest request such that interval [r0, dk] is
fully utilized by Jk and by tasks with deadline less than dk. Hence, in σ, dk represents
the time at which Jk and all instances with deadline less than dk end to execute.

We show that any schedule σ ′ in which Jk finishes at f ′
k < dk is not feasible. In

fact, since [r0, dk] is fully utilized and f ′
k < dk , in σ′ dk must be the finishing time

of some periodic instance3 with deadline less than dk. As a consequence, σ ′ is not
feasible. Thus, the theorem follows.

6.8 PERFORMANCE EVALUATION

The algorithms described in this chapter have been simulated on a synthetic workload
in order to compare the average response times achieved on soft aperiodic activities.
For completeness, a dynamic version of the Polling Server has also been compared
with the other algorithms.

The plots shown in Figure 6.12 have been obtained with a set of ten periodic tasks with
periods ranging from 100 and 1000 units of time and utilization factor U p = 0.65.

3Time dk cannot be the finishing time of an aperiodic task, since we assume that aperiodic requests are
served on a FCFS basis.

186 Chapter 6

The aperiodic load was varied across the range of processor utilization unused by
the periodic tasks, and in particular from 3% to 33%. The interarrival times for the
aperiodic tasks were modeled using a Poisson arrival pattern, with average T a, whereas
the aperiodic computation times were modeled using an exponential distribution.

The processor utilization of the servers was set to all the utilization left by the periodic
tasks; that is, Us = 1 − Up. The period of the periodic servers – namely Polling,
DPE, and DSS – was set equal to the average aperiodic interarrival time (T a) and,
consequently, the capacity was set to Cs = TaUs.

In Figure 6.12, the performance of the algorithms is shown as a function of the aperi-
odic load. The load was varied by changing the average aperiodic service time, while
the average interarrival time was set at the value of Ta = 100. Note that the data
plotted for each algorithm represent the ratio of the average aperiodic response time
relative to the response time of background service. In this way, an average response
time equivalent to background service has a value of 1.0 on the graph. A value less
than 1.0 corresponds to an improvement in the average aperiodic response time over
background service. The lower the response time curve lies on these graphs, the better
the algorithm is for improving aperiodic responsiveness.

The EDL server is not reported in the graph since it has basically the same behavior
as IPE for almost any load conditions. In particular, simulations showed that for small
and medium periodic loads the two algorithms do not have significant differences in
their performance. However, even for a high periodic load, the difference is so small
that it can be reasonably considered negligible for any practical application.

Although IPE and EDL have very similar performance, they differ significantly in their
implementation complexity. As mentioned in previous sections, the EDL algorithm
needs to recompute the server parameters quite frequently (namely, when an aperiodic
request enters the system and all previous aperiodics have been completely serviced).
This overhead can be too expensive in terms of CPU time to use the algorithm in
practical applications. On the other hand, in the IPE algorithm the parameters of the
server can be computed off-line, and used at run-time to replenish the server capacity.

As shown in the graph, the TBS and IPE algorithms can provide a significant reduc-
tion in average aperiodic response time compared to background or polling aperiodic
service, whereas the performance of the DPE and DSS algorithms depends on the ape-
riodic load. For low aperiodic load, DPE and DSS perform as well as TBS and IPE,
but as the aperiodic load increases, their performance tends to be similar to that one
shown by the Polling Server.

Dynamic priority servers 187

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 65% Mean Aperiodic Interarrival Time = 100

Polling
DSS
DPE
TBS
IPE

Figure 6.12 Performance of dynamic server algorithms.

Note that in all graphs, TBS and IPE have about the same responsiveness when the
aperiodic load is low, and they exhibit a slightly different behavior for heavy aperiodic
loads.

All algorithms perform much better when the aperiodic load is generated by a large
number of small tasks rather than a small number of long activities. Moreover, note
that as the interarrival time Ta increases, and the tasks’ execution time becomes longer,
the IPE algorithm shows its superiority with respect to the others, which tend to have
about the same performance, instead.

The proposed algorithms have been compared with different periodic loads U p as well.
For very low periodic loads all aperiodic service algorithms show a behavior similar
to background service. As the periodic load increases, their performance improves
substantially with respect to background service. In particular, DPE and DSS have
a comparable performance, which tends to approach that of the Polling Server for
high periodic loads. On the other hand, TBS and IPE outperform all other algorithms
in all situations. The improvement is particularly significant with medium and high
workloads. With a very high workload, TBS is no more able to achieve the same good

188 Chapter 6

0

10

20

30

40

50

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Average aperiodic load

Periodic load = 0.9

Background
TB(0)
TB(3)
TB(7)

TB*
M/M/1

Figure 6.13 Performance results for Up = 0.9.

performance of IPE, even though it is much better than the other algorithms. More
extensive simulation results are reported by Spuri and Buttazzo [SB94, SB96].

Simulations have also been conducted to test the performance of the different dead-
line assignment rules for the Total Bandwidth approach. In Figure 6.13, TB* denotes
the optimal algorithm, whereas TB(i) denotes the version of the algorithm that stops
iteration after at most i steps from the TBS deadline. Thus, TB(0) coincides with the
standard TBS algorithm. In order to show the improvement achieved by the algo-
rithm for each deadline update, the performance of TB* is compared with the one of
TB(0), TB(3), and TB(7) that were tested for different periodic and aperiodic loads.
To provide a reference term, the response times for background service and for a
M/M/1 model are also shown. The plots show the results obtained with a periodic
load Up = 0.9. The average response time is plotted with respect to the average task
length. Thus, a value of 5 on the y-axis actually means an average response time five
times longer than the task computation time.

Dynamic priority servers 189

6.9 THE CONSTANT BANDWIDTH SERVER

In this section we present a novel service mechanism, called the Constant Bandwidth
Server (CBS), which efficiently implements a bandwidth reservation strategy. As the
DSS, the Constant Bandwidth Server guarantees that, if Us is the fraction of processor
time assigned to a server (i.e., its bandwidth), its contribution to the total utilization
factor is no greater than Us, even in the presence of overloads. Note that this prop-
erty is not valid for a TBS, whose actual contribution is limited to U s only under the
assumption that all the served jobs execute no more than the declared WCET. With
respect to the DSS, however, the CBS shows a much better performance, comparable
with the one achievable by a TBS.

The basic idea behind the CBS mechanism can be explained as follows: when a new
job enters the system, it is assigned a suitable scheduling deadline (to keep its de-
mand within the reserved bandwidth) and it is inserted in the EDF ready queue. If
the job tries to execute more than expected, its deadline is postponed (i.e., its priority
is decreased) to reduce the interference on the other tasks. Note that by postponing
the deadline, the task remains eligible for execution. In this way, the CBS behaves as
a work conserving algorithm, exploiting the available slack in an efficient (deadline-
based) way, thus providing better responsiveness with respect to non-work conserving
algorithms and to other reservation approaches that schedule the extra portions of jobs
in background, as proposed by Mercer, Savage, and Tokuda [MST93, MST94a].

If a subset of tasks is handled by a single server, all the tasks in that subset will share
the same bandwidth, so there is no isolation among them. Nevertheless, all the other
tasks in the system are protected against overruns occurring in the subset.

In order not to miss any hard deadline, the deadline assignment rules adopted by the
server must be carefully designed. The next section precisely defines the CBS al-
gorithm, and formally proves its correctness for any (known or unknown) execution
request and arrival pattern.

6.9.1 DEFINITION OF CBS

The CBS can be defined as follows:

A CBS is characterized by a budget cs and by an ordered pair (Qs, Ts), where Qs

is the maximum budget and Ts is the period of the server. The ratio Us = Qs/Ts

is denoted as the server bandwidth. At each instant, a fixed deadline d s,k is
associated with the server. At the beginning ds,0 = 0.

190 Chapter 6

Each served job Ji,j is assigned a dynamic deadline di,j equal to the current
server deadline ds,k.

Whenever a served job executes, the budget cs is decreased by the same amount.

When cs = 0, the server budget is recharged at the maximum value Q s and a new
server deadline is generated as ds,k+1 = ds,k + Ts. Note that there are no finite
intervals of time in which the budget is equal to zero.

A CBS is said to be active at time t if there are pending jobs (remember the
budget cs is always greater than 0); that is, if there exists a served job J i,j such
that ri,j ≤ t < fi,j . A CBS is said to be idle at time t if it is not active.

When a job Ji,j arrives and the server is active the request is enqueued in a queue
of pending jobs according to a given (arbitrary) discipline (e.g., FIFO).

When a job Ji,j arrives and the server is idle, if cs ≥ (ds,k − ri,j)Us the server
generates a new deadline ds,k+1 = ri,j + Ts and cs is recharged at the maximum
value Qs, otherwise the job is served with the last server deadline ds,k using the
current budget.

When a job finishes, the next pending job, if any, is served using the current
budget and deadline. If there are no pending jobs, the server becomes idle.

At any instant, a job is assigned the last deadline generated by the server.

6.9.2 SCHEDULING EXAMPLE

H2,1H1,1 H1,2 H2,2

τ1 (4,7)
HARD

τ2
SOFT

CBS
(3,8)

t

t

1 2 3 4 5 7 8 9 t10 11 13 14 15 16 17 19 20 21 22 23

d2

6 12 18

r1 r2

c2=3c1=4
d1

Figure 6.14 An example of CBS scheduling.

Dynamic priority servers 191

Figure 6.14 illustrates an example in which a hard periodic task, τ 1, with computation
time C1 = 4 and period T1 = 7, is scheduled together with a soft task, τ2, served
by a CBS having a budget Qs = 3 and a period Ts = 8. The first job of τ2 (J2,1),
requiring 4 units of execution time, arrives at time r1 = 3, when the server is idle.
Being cs ≥ (d0 − r1)Us, the job is assigned a deadline d1 = r1 + Ts = 11 and cs is
recharged at Qs = 3. At time t = 7, the budget is exhausted, so a new deadline d2 =
d1+Ts = 19 is generated and cs is replenished. Since the server deadline is postponed,
τ1 becomes the task with the earliest deadline and executes until completion. Then,
τ2 resumes and job J2,1 (having deadline d2 = 19) is finished at time t = 12, leaving
a budget cs = 2. The second job of task τ2 arrives at time r2 = 13 and requires
3 units of time. Since cs < (d2 − r2)Us, the last server deadline d2 can be used
to serve job J2,2. At time t = 15, the server budget is exhausted, so a new server
deadline d3 = d2 + Ts = 27 is generated and cs is replenished at Qs. For this reason,
τ1 becomes the highest priority task and executes until time t = 19, when job J 1,3

finishes and τ2 can execute, finishing job J2,2 at time t = 20 leaving a budget cs = 2.

It is worth noting that under a CBS a job Jj is assigned an absolute time-varying dead-
line dj that can be postponed if the task requires more than the reserved bandwidth.
Thus, each job Jj can be thought as consisting of a number of chunks H j,k, each
characterized by a release time aj,k and a fixed deadline dj,k. An example of chunks
produced by a CBS is shown in Figure 6.14. To simplify the notation, we will indicate
all the chunks generated by the server with an increasing index k (in the example of
Figure 6.14, H1,1 = H1, H1,2 = H2, H2,1 = H3, and so on).

6.9.3 FORMAL DEFINITION

In order to provide a formal definition of the CBS, let ak and dk be the release time
and the deadline of the kth chunk generated by the server, and let c and n be the actual
server budget and the number of pending requests in the server queue (including the
request currently being served). These variables are initialized as follows:

d0 = 0, c = 0, n = 0, k = 0.

Using this notation, the server behavior can be described by the algorithm shown in
Figure 6.15.

192 Chapter 6

When job Jj arrives at time rj

enqueue the request in the server queue;
n = n + 1;
if (n == 1) /* (the server is idle) */

if (rj + (c / Qs) * Ts >= dk)
/*---------------Rule 1---------------*/
k = k + 1;
ak = rj;
dk = ak + Ts;
c = Qs;

else
/*---------------Rule 2---------------*/
k = k + 1;
ak = rj;
dk = dk−1;
/* c remains unchanged */

When job Jj terminates
dequeue Jj from the server queue;
n = n - 1;
if (n != 0) serve the next job in the queue with deadline dk;

When job Jj executes for a time unit
c = c - 1;

When (c == 0)
/*---------------Rule 3---------------*/
k = k + 1;
ak = actual time();
dk = dk−1 + Ts;
c = Qs;

Figure 6.15 The CBS algorithm.

6.9.4 CBS PROPERTIES

The proposed CBS service mechanism presents some interesting properties that make
it suitable for supporting applications with highly variable computation times (e.g.,
continuous media applications). The most important one, the isolation property, is
formally expressed by the following theorem and lemma. See the original work by
Abeni and Buttazzo [AB98] for the proof.

Theorem 6.8 The CPU utilization of a CBS S with parameters (Qs, Ts) is Us = Qs

Ts
,

independently from the computation times and the arrival pattern of the served jobs.

Dynamic priority servers 193

The following lemma provides a simple guarantee test for verifying the feasibility of
a task set consisting of hard and soft tasks.

Lemma 6.6 Given a set of n periodic hard tasks with processor utilization Up and a
set of m CBSs with processor utilization Us =

∑m
i=1 Usi , the whole set is schedulable

by EDF if and only if
Up + Us ≤ 1.

The isolation property allows us to use a bandwidth reservation strategy to allocate
a fraction of the CPU time to soft tasks whose computation time cannot be easily
bounded. The most important consequence of this result is that soft tasks can be
scheduled together with hard tasks without affecting the a priori guarantee, even in the
case in which the execution times of the soft tasks are not known or the soft requests
exceed the expected load.

In addition to the isolation property, the CBS has the following characteristics.

The CBS behaves as a plain EDF algorithm if the served task τi has parameters
(Ci, Ti) such that Ci ≤ Qs and Ti = Ts. This is formally stated by the following
lemma.

Lemma 6.7 A hard task τi with parameters (Ci, Ti) is schedulable by a CBS
with parameters Qs ≥ Ci and Ts = Ti if and only if τi is schedulable with EDF.

Proof. For any job of a hard task we have that r i,j+1 − ri,j ≥ Ti and ci,j ≤ Qs.
Hence, by definition of the CBS, each hard job is assigned a deadline d i,j = ri,j+
Ti and it is scheduled with a budget Qs ≥ Ci. Moreover, since ci,j ≤ Qs, each
job finishes no later than the budget is exhausted; hence the deadline assigned to
a job is never postponed and is exactly the same as the one used by EDF.

The CBS automatically reclaims any spare time caused by early completions.
This is due to the fact that whenever the budget is exhausted, it is always imme-
diately replenished at its full value and the server deadline is postponed. In this
way, the server remains eligible and the budget can be exploited by the pending
requests with the current deadline. This is the main difference with respect to the
processor capacity reserves proposed by Mercer et al. [MST93, MST94a].

Knowing the statistical distribution of the computation time of a task served by a
CBS, it is possible to perform a QoS guarantee based on probabilistic deadlines
(expressed in terms of probability for each served job to meet a deadline). Such
a statistical analysis is presented by Abeni and Buttazzo [AB98, AB04].

194 Chapter 6

6.9.5 SIMULATION RESULTS

This section shows how the CBS can be efficiently used as a service mechanism for
improving responsiveness of soft aperiodic requests. Its performance has been tested
against that of TBS and DSS, by measuring the mean tardiness experienced by soft
tasks:

Ei,j = max{0, fi,j − di,j} (6.5)

where fi,j is the finishing time of job Ji,j .

Such a metric was selected because in many soft real-time applications (e.g., multi-
media) meeting all soft deadlines is either impossible or very inefficient; hence, the
system should be designed to guarantee all the hard tasks and minimize the mean time
that soft tasks execute after their deadlines.

All the simulations presented in this section have been conducted on a hybrid task
set consisting of 5 periodic hard tasks with fixed parameters and 5 soft tasks with
variable execution times and interarrival times. The execution times of the periodic
hard tasks were randomly generated in order to achieve a desired processor utilization
factor Uhard. The execution and interarrival times of the soft tasks were uniformly
distributed in order to obtain a mean soft load Usoft =

∑
i

ci,j

ri,j+1−ri,j
with Usoft

going from 0 to 1− Uhard.

The first experiment compares the mean tardiness experienced by soft tasks when
they are served by a CBS, a TBS, and a DSS. In this test, the utilization factor of
periodic hard tasks was Uhard = 0.5. The simulation results are illustrated in Figure
6.16, which shows that the performance of the DSS is dramatically worse than the one
achieved by the CBS and TBS. The main reason for such different behavior between
DSS and CBS is that while the DSS becomes idle until the next replenishing time (that
occurs at the server’s deadline), the CBS remains eligible by increasing its deadline
and replenishing the budget immediately. The TBS does not suffer from this problem;
however, its correct behavior relies on the exact knowledge of WCETs, so it cannot be
used for supporting applications with highly variable computation times.

Figures 6.17 illustrates the results of a similar experiment repeated with Uhard = 0.7.
As we can see, TBS slightly outperforms CBS, but does not protect hard tasks from
transient overruns that may occur in the soft activities. Note that since the CBS auto-
matically reclaims any available idle time coming from early completions, for a fair
comparison an explicit reclaiming mechanism has also been added in the simulation
of the TBS, as described by Spuri, Buttazzo, and Sensini [SBS95].

Dynamic priority servers 195

0

100

200

300

400

500

600

700

800

900

0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5

A
ve

ra
ge

 s
of

t t
ar

di
ne

ss

Average soft load

Hard task load = 0.5

DSS
CBS
TBS

Figure 6.16 First experiment: performance of TBS, CBS and DSS.

0

10

20

30

40

50

60

70

80

0.28 0.282 0.284 0.286 0.288 0.29 0.292 0.294 0.296 0.298 0.3

A
ve

ra
ge

 s
of

t t
ar

di
ne

ss

Average soft load

Hard task load = 0.7

CBS
TBS

Figure 6.17 Second experiment: CBS against TBS.

196 Chapter 6

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
of

t t
ar

di
ne

ss

Computation times variance

Hard task load = 0.6

TBS
CBS

Figure 6.18 Third experiment: CBS against TBS with variable execution times.

The advantage of the CBS over the TBS can be appreciated when WCET i >> ci,j .
In this case, in fact, the TBS can cause an underutilization of the processor, due to
its worst-case assumptions. This fact can be observed in Figure 6.18, which shows
the results of a fourth experiment in which Uhard = 0.6, Usoft = 0.4, the interarrival
times are fixed, and the execution times of the soft tasks are uniformly distributed with
an increasing variance. As shown in the graph, the CBS performs better than the TBS
when tasks’ execution times have a high variance. Additional experiments on the CBS
are presented in the original work by Abeni and Buttazzo [AB98].

6.9.6 DIMENSIONING CBS PARAMETERS

This section presents a statistical study to evaluate the effects of the CBS parameters
(Qs, Ts) on task response times, and proposes a technique to compute the parameters
that minimize the average response time of the served tasks [BB06].

The worst-case response time Ri of a job with computation time Ci served by a CBS
with bandwidth Us is a function of the server budget Qs. For the sake of clarity, Ri is
first derived by neglecting the overhead, and then modified to take the overhead into
account.

Dynamic priority servers 197

From the CBS analysis, we know that, if the task set is feasible, that is, if the total
processor utilization is less than 1, then the served job can never miss the current
server deadline. Hence, the maximum response time R i occurs when the other tasks
in the system create the maximum interference on the server. If the computation time
Ci of the served job is exactly a multiple of the server budget Q s, then the job finishes
at the server deadline; that is,

Ri =
Ci

Qs
Ts =

Ci

Us
. (6.6)

More generally, if the computation time C i of the job is not multiple of the budget Qs,
the last portion of the job will not finish at the server deadline, but it will finish at most
Δi units before the deadline, as shown in Figure 6.19, where

Δi =
⌈

Ci

Qs

⌉
Qs − Ci. (6.7)

t

t

Ji

di di

Δi

Qs

Figure 6.19 Worst-case finishing time of a job served by a CBS.

Hence, the response time of the job becomes

Ri =
⌈

Ci

Qs

⌉
Ts −Δi

=
⌈

Ci

Qs

⌉
Ts −

(⌈
Ci

Qs

⌉
Qs − Ci

)

= Ci +
⌈

Ci

Qs

⌉
(Ts −Qs). (6.8)

Figure 6.20 illustrates the worst-case response time of a CBS as a function of the
budget.

198 Chapter 6

Ri

QsCi
Ci

2
Ci

3
Ci

4

Ci

Us

2 Ci

Us

Figure 6.20 Worst-case response time of a CBS as a function of the budget.

From the graph shown in Figure 6.20 it is clear that for a given job with constant exe-
cution time Ci, the minimum worst-case response time is Ci/Us and can be achieved
when Ci is a perfect multiple of Qs. In practice, however, task execution time varies,
inducing response time fluctuations due to the bandwidth enforcement mechanism
achieved through deadline postponements. From Figure 6.20 it is also clear that such
fluctuations would be reduced by making the budget very small compared to the av-
erage execution time, so that the server would approximate the ideal fluid server. Un-
fortunately, however, a small budget (which means a short server period) causes the
job to be split in many small chunks, increasing the runtime overhead. As a conse-
quence, to properly set the server granularity T s, the runtime overhead must be taken
into account in the analysis.

TAKING OVERHEADS INTO ACCOUNT

Whenever the budget is exhausted, the server deadline is postponed, so the served job
can be preempted by other tasks with earliest deadline. If ε denotes the time needed for
a context switch, then the overhead introduced by the CBS can be taken into account
by subtracting such a time from the server budget. Hence, Equation (6.8) can be
modified as follows:

Ri = Ci +
⌈

Ci

Qs − ε

⌉
(Ts −Qs + ε)

= Ci +
⌈

Ci

TsUs − ε

⌉
(Ts − TsUs + ε). (6.9)

Dynamic priority servers 199

40

50

60

70

80

90

100

110

0 20 40 60 80 100 120

W
or

st
-c

as
e

re
sp

on
se

 ti
m

e

Server period

without overhead
with overhead

Figure 6.21 Worst-case response time of a CBS as a function of the period.

Figure 6.21 illustrates the worst-case response time of a CBS as a function of the
period, with and without overhead. Equation (6.9) has been plotted for C i = 10,
Us = 0.25, and ε = 0.2. As is clear from the plot, the overhead prevents using
small values of the period; hence, it is interesting to find the value of the server period
that minimizes the response time. Note that for computing the probability distribution
function of the response time, we actually need to express the response time as a
function of the job execution time Ci.

Figure 6.22 illustrates the worst-case response time of a CBS as a function of the job
execution time. As shown in Figure 6.22, the response time R i can be upper bounded
by the following linear function

Rub
i = Ts −Qs + ε +

Ts

Qs − ε
Ci (6.10)

and lower bounded by

Rlb
i =

Ts

Qs − ε
Ci. (6.11)

200 Chapter 6

Qs − ε

Ts −Qs + ε

Ts

2Ts −Qs + ε

2Ts

3Ts −Qs + ε

3Ts

4Ts −Qs + ε

Ci

Ri

Figure 6.22 Worst-case response time of a CBS as a function of the job execution time.

We now consider the problem of selecting the best CBS parameters, such that the
average task response time Ri is minimized. For this purpose we suppose to have
the probability density function (p.d.f.) fC(c) of the task execution time, and the
respective cumulative distribution function (c.d.f.) FC(c), representing the probability
that the execution time is smaller than or equal to c. That is,

FC(c) =
∫ c

0

fC(x)dx. (6.12)

Since the minimization of the average Ri can in general be too complex, we con-
sider the problem of minimizing its linear upper bound R ub

i . In this case, the average
response time Ravg

i is computed as follows:

Ravg
i =

∫ +∞

0

(
Ts −Qs + ε +

Ts

Qs − ε
x

)
fC(x)dx

= Ts −Qs + ε +
Ts

Qs − ε
Cavg

= Ts(1 − Us) + ε +
Ts

TsUs − ε
Cavg (6.13)

Dynamic priority servers 201

Hence, the period Ts that minimizes the average response time Ravg
i can be computed

by simple functional analysis. Thus, we have

dRavg
i

dTs
= 1− Us −

ε

(TsUs − ε)2
Cavg, (6.14)

which is equal to zero when

Ts =
1
Us

(
ε +

√
εCavg

1− Us

)
. (6.15)

6.10 SUMMARY

The experimental simulations have established that from a performance point of view,
IPE, EDL, and TB* show the best results for reducing aperiodic responsiveness. Al-
though optimal, however, EDL is far from being practical, due to the overall complex-
ity. On the other hand, IPE and TB* achieve a comparable performance with much
less computational overhead. Moreover, both EDL and IPE may require significant
memory space when task periods are not harmonically related.

The Total Bandwidth algorithm also shows a good performance, sometimes compara-
ble to that of the nearly optimal IPE. Observing that its implementation complexity is
among the simplest, the TBS algorithm could be a good candidate for practical sys-
tems. In addition, the TBS deadline assignment rule can be tuned to enhance aperiodic
responsiveness up to the optimal TB* behavior. Compared to IPE and EDL, TB* does
not require large memory space, and the optimal deadline can be computed in O(Nn)
complexity, N being the maximum number of steps that have to be done for each task
to shorten its initial deadline (assigned by the TBS rule). As for the EDL server, this
is a pseudo-polynomial complexity since in the worst case N can be large.

One major problem of the TBS and TB* algorithms is that they do not use a server
budget for controlling aperiodic execution, but rely on the knowledge of the worst-
case computation time specified by each job at its arrival. When such a knowledge is
not available, not reliable, or too pessimistic (due to highly variable execution times),
then hard tasks are not protected from transient overruns occurring in the soft tasks
and could miss their deadlines. The CBS algorithm can be efficiently used in these
situations, since it has a performance comparable to the one of the TBS and also
provides temporal isolation, by limiting the bandwidth requirements of the served
tasks to the value Us specified at design time.

202 Chapter 6

complexity
implementationmemory

requirement
computational

complexityperformance

BKG

DPE

EDL

IPE

poorgoodexcellent

TBS

DSS

CBS

TB*

Figure 6.23 Evaluation summary of dynamic-priority servers.

Figure 6.23 provides a qualitative evaluation of the algorithms presented in this chapter
in terms of performance, computational complexity, memory requirement, and imple-
mentation complexity.

Exercises

6.1 Compute the maximum processor utilization that can be assigned to a Dynamic
Sporadic Server to guarantee the following periodic tasks, under EDF:

Ci Ti

τ1 2 6
τ2 3 9

Dynamic priority servers 203

6.2 Together with the periodic tasks illustrated in Exercise 6.1, schedule the follow-
ing aperiodic tasks with a Dynamic Sporadic Server with Cs = 2 and Ts = 6.

ai Ci

J1 1 3
J2 5 1
J3 15 1

6.3 Solve the same scheduling problem described in Exercise 6.2 with a Total
Bandwidth Server having utilization Us = 1/3.

6.4 Solve the same scheduling problem described in Exercise 6.2 with a Constant
Bandwidth Server with Cs = 2 and Ts = 6.

6.5 Solve the same scheduling problem described in Exercise 6.2 with an Improved
Total Bandwidth Server with Us = 1/3, which performs only one shortening
step.

6.6 Solve the same scheduling problem described in Exercise 6.2 with the optimal
Total Bandwidth Server (TB*).

6.7 Consider the following set of periodic tasks:

Ci Ti

τ1 4 10
τ2 4 12

After defining two Total Bandwidth Servers, TB1 and TB2, with utilization
factors Us1 = 1/10 and Us2 = 1/6, construct the EDF schedule in the case in
which two aperiodic requests J1(a1 = 1, C1 = 1) and J2(a2 = 9, C2 = 1) are
served by TB1, and two aperiodic requests J3(a3 = 2, C3 = 1) and J4(a4 = 6,
C4 = 2) are served by TB2.

6.8 A control application consists of two periodic tasks with computation times
C1 = 8, C2 = 6 ms, and periods T1 = 20, T2 = 30 ms. Moreover, the system
includes two interrupt handling routines, with computation times of 1.0 and
1.4 ms each. Considering a context switch cost of 20 μs, compute the CBS
parameters that minimize the average response time of the interrupts.

	6 DYNAMIC PRIORITY SERVERS
	6.1 INTRODUCTION
	6.2 DYNAMIC PRIORITY EXCHANGE SERVER
	6.2.1 SCHEDULABILITY ANALYSIS
	6.2.2 RECLAIMING SPARE TIME

	6.3 DYNAMIC SPORADIC SERVER
	6.3.1 SCHEDULABILITY ANALYSIS

	6.4 TOTAL BANDWIDTH SERVER
	6.4.1 SCHEDULABILITY ANALYSIS

	6.5 EARLIEST DEADLINE LATE SERVER
	6.5.1 EDL SERVER PROPERTIES

	6.6 IMPROVED PRIORITY EXCHANGE SERVER
	6.6.1 SCHEDULABILITY ANALYSIS
	6.6.2 REMARKS

	6.7 IMPROVING TBS
	6.7.1 AN EXAMPLE
	6.7.2 OPTIMALITY

	6.8 PERFORMANCE EVALUATION
	6.9 THE CONSTANT BANDWIDTH SERVER
	6.9.1 DEFINITION OF CBS
	6.9.2 SCHEDULING EXAMPLE
	6.9.3 FORMAL DEFINITION
	6.9.4 CBS PROPERTIES
	6.9.5 SIMULATION RESULTS
	6.9.6 DIMENSIONING CBS PARAMETERS
	TAKING OVERHEADS INTO ACCOUNT

	6.10 SUMMARY
	Exercises

