
5
FIXED-PRIORITY SERVERS

5.1 INTRODUCTION

The scheduling algorithms treated in the previous chapters deal with homogeneous
sets of tasks, where all computational activities are either aperiodic or periodic. Many
real-time control applications, however, require both types of processes, which may
also differ for their criticality. Typically, periodic tasks are time-driven and execute
critical control activities with hard timing constraints aimed at guaranteeing regular
activation rates. Aperiodic tasks are usually event-driven and may have hard, soft, or
non-real-time requirements depending on the specific application.

When dealing with hybrid task sets, the main objective of the kernel is to guarantee the
schedulability of all critical tasks in worst-case conditions and provide good average
response times for soft and non-real-time activities. Off-line guarantee of event-driven
aperiodic tasks with critical timing constraints can be done only by making proper
assumptions on the environment; that is, by assuming a maximum arrival rate for
each critical event. This implies that aperiodic tasks associated with critical events are
characterized by a minimum interarrival time between consecutive instances, which
bounds the aperiodic load. Aperiodic tasks characterized by a minimum interarrival
time are called sporadic. They are guaranteed under peak-load situations by assuming
their maximum arrival rate.

If the maximum arrival rate of some event cannot be bounded a priori, the associated
aperiodic task cannot be guaranteed off-line, although an online guarantee of individ-
ual aperiodic requests can still be done. Aperiodic tasks requiring online guarantee
on individual instances are called firm. Whenever a firm aperiodic request enters the
system, an acceptance test can be executed by the kernel to verify whether the request

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1 5

119

 Springer Science+Business Media, LLC 2011©

120 Chapter 5

can be served within its deadline. If such a guarantee cannot be done, the request is
rejected.

In the next sections, we present a number of scheduling algorithms for handling hybrid
task sets consisting of a subset of hard periodic tasks and a subset of soft aperiodic
tasks. All algorithms presented in this chapter rely on the following assumptions:

Periodic tasks are scheduled based on a fixed-priority assignment; namely, the
Rate-Monotonic (RM) algorithm;

All periodic tasks start simultaneously at time t = 0 and their relative deadlines
are equal to their periods.

Arrival times of aperiodic requests are unknown.

When not explicitly specified, the minimum interarrival time of a sporadic task is
assumed to be equal to its deadline.

All tasks are fully preemptable.

Aperiodic scheduling under dynamic priority assignment is discussed in the next chap-
ter.

5.2 BACKGROUND SCHEDULING

The simplest method to handle a set of soft aperiodic activities in the presence of
periodic tasks is to schedule them in background; that is, when there are not periodic
instances ready to execute. The major problem with this technique is that, for high
periodic loads, the response time of aperiodic requests can be too long for certain
applications. For this reason, background scheduling can be adopted only when the
aperiodic activities do not have stringent timing constraints and the periodic load is
not high.

Figure 5.1 illustrates an example in which two periodic tasks are scheduled by RM,
while two aperiodic tasks are executed in background. Since the processor utiliza-
tion factor of the periodic task set (U = 0.73) is less than the least upper bound for
two tasks (Ulub(2) 0.83), the periodic tasks are schedulable by RM. Note that the
guarantee test does not change in the presence of aperiodic requests, since background
scheduling does not influence the execution of periodic tasks.

Fixed-Priority Servers 121

1

0 2412 14 16 18 20 2282 64

τ 2

2aperiodic
requests

1

τ

10

Figure 5.1 Example of background scheduling of aperiodic requests under Rate Mono-
tonic.

CPU

Periodic Tasks

Low-Priority Queue

High-Priority Queue

FCFS

RM

Aperiodic Tasks

Figure 5.2 Scheduling queues required for background scheduling.

The major advantage of background scheduling is its simplicity. As shown in Fig-
ure 5.2, two queues are needed to implement the scheduling mechanism: one (with
a higher priority) dedicated to periodic tasks and the other (with a lower priority) re-
served for aperiodic requests. The two queueing strategies are independent and can be
realized by different algorithms, such as RM for periodic tasks and First Come First
Served (FCFS) for aperiodic requests. Tasks are taken from the aperiodic queue only
when the periodic queue is empty. The activation of a new periodic instance causes
any aperiodic tasks to be immediately preempted.

5.3 POLLING SERVER

The average response time of aperiodic tasks can be improved with respect to back-
ground scheduling through the use of a server; that is, a periodic task whose purpose
is to service aperiodic requests as soon as possible. Like any periodic task, a server
is characterized by a period Ts and a computation time Cs, called server capacity, or
server budget. In general, the server is scheduled with the same algorithm used for

122 Chapter 5

6

1

4

T

1

2

Server

= 5

s

C

aperiodic
requests

C s

1

i

s

τ

2τ

T i

= 2C

2 1 2 1

2

20

τ 2

0 4 62 8 24221816141210

τ

240 4 62 8 20 2216 18141210

1

Figure 5.3 Example of a Polling Server scheduled by RM.

the periodic tasks, and, once active, it serves the aperiodic requests within the limit of
its budget. The ordering of aperiodic requests does not depend on the scheduling al-
gorithm used for periodic tasks, and it can be done by arrival time, computation time,
deadline, or any other parameter.

The Polling Server (PS) is an algorithm based on such an approach. At regular in-
tervals equal to the period Ts, PS becomes active and serves the pending aperiodic
requests within the limit of its capacity Cs. If no aperiodic requests are pending, PS
suspends itself until the beginning of its next period, and the budget originally allo-
cated for aperiodic service is discharged and given periodic tasks [LSS87, SSL89].
Note that if an aperiodic request arrives just after the server has suspended, it must
wait until the beginning of the next period, when the server capacity is replenished at
its full value.

Figure 5.3 illustrates an example of aperiodic service obtained through a Polling Server
scheduled by RM. The aperiodic requests are reported on the third row, whereas the
fourth row shows the server capacity as a function of time. Numbers beside the arrows
indicate the computation times associated with the requests.

In the example shown in Figure 5.3, the Polling Server has a period T s = 5 and a
capacity Cs = 2, so it runs with an intermediate priority with respect to the other

Fixed-Priority Servers 123

periodic tasks. At time t = 0, the processor is assigned to task τ1, which is the
highest-priority task according to RM. At time t = 1, τ1 completes its execution and
the processor is assigned to PS. However, since no aperiodic requests are pending, the
server suspends itself and its capacity is used by periodic tasks. As a consequence, the
request arriving at time t = 2 cannot receive immediate service but must wait until the
beginning of the second server period (t = 5). At this time, the capacity is replenished
at its full value (Cs = 2) and used to serve the aperiodic task until completion. Note
that, since the capacity has been totally consumed, no other aperiodic requests can be
served in this period; thus, the server becomes idle.

The second aperiodic request receives the same treatment. However, note that since
the second request only uses half of the server capacity, the remaining half is discarded
because no other aperiodic tasks are pending. Also note that, at time t = 16, the third
aperiodic request is preempted by task τ1, and the server capacity is preserved.

5.3.1 SCHEDULABILITY ANALYSIS

We first consider the problem of guaranteeing a set of hard periodic tasks in the pres-
ence of soft aperiodic tasks handled by a Polling Server. Then we show how to derive
a schedulability test for firm aperiodic requests.

The schedulability of periodic tasks can be guaranteed by evaluating the interference
introduced by the Polling Server on periodic execution. In the worst case, such an
interference is the same as the one introduced by an equivalent periodic task having
a period equal to Ts and a computation time equal to Cs. In fact, independently of
the number of aperiodic tasks handled by the server, a maximum time equal to C s is
dedicated to aperiodic requests at each server period. As a consequence, the processor
utilization factor of the Polling Server is Us = Cs/Ts, and hence the schedulability of
a periodic set with n tasks and utilization Up can be guaranteed if

Up + Us ≤ Ulub(n + 1).

If periodic tasks (including the server) are scheduled by RM, the schedulability test
becomes

n∑
i=1

Ci

Ti
+

Cs

Ts
≤ (n + 1)[21/(n+1) − 1].

Note that more Polling Servers can be created and execute concurrently on different
aperiodic task sets. For example, a high-priority server could be reserved for a subset
of important aperiodic tasks, whereas a lower-priority server could be used to handle
less important requests. In general, in the presence of m servers, a set of n periodic

124 Chapter 5

τ 1

τ 2

C 1

C 2

C s

T s0

PS

T n

C 2

C 1

C s

T 2

C n

T 1

τ n

Figure 5.4 Worst-case scenario for n periodic tasks and a Polling Server (PS) with the
highest priority.

tasks is schedulable by RM if

Up +
m∑

j=1

Usj ≤ Ulub(n + m).

A more precise schedulability test can be derived using the same technique adopted
for the Liu and Layland bound, by assuming that PS is the highest-priority task in the
system. To simplify the computation, the worst-case relations among the tasks are first
determined, and then the lower bound is computed against the worst-case model.

Consider a set of n periodic tasks, τ1, . . . , τn, ordered by increasing periods, and a
PS server with a highest priority. The worst-case scenario for a set of periodic tasks
that fully utilize the processor is the one illustrated in Figure 5.4, where tasks are
characterized by the following parameters:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cs = T1 − Ts

C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = Ts − Cs −
∑n−1

i=1 Ci = 2Ts − Tn.

Fixed-Priority Servers 125

The resulting utilization is then

U =
Cs

Ts
+

C1

T1
+ . . . +

Cn

Tn
=

= Us +
T2 − T1

T1
+ . . . +

Tn − Tn−1

Tn−1
+

2Ts − Tn

Tn
=

= Us +
T2

T1
+ . . . +

Tn

Tn−1
+
(

2Ts

T1

)
T1

Tn
− n.

Defining ⎧⎪⎨
⎪⎩

Rs = T1/Ts

Ri = Ti+1/Ti

K = 2Ts/T1 = 2/Rs

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U = Us +
n−1∑
i=1

Ri +
K

R1R2 . . . Rn−1
− n.

Following the approach used for RM, we minimize U over R i, i = 1, . . . , n − 1.
Hence,

∂U

∂Ri
= 1− K

R2
i (
∏n−1

j �=i Rj)
.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when⎧⎪⎪⎨
⎪⎪⎩

R1P = K
R2P = K

. . .
Rn−1P = K;

that is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = K1/n.

Substituting this value in U we obtain

Ulub − Us = (n− 1)K1/n +
K

K(1−1/n)
− n =

= nK1/n −K1/n + K1/n − n =
= n(K1/n − 1);

126 Chapter 5

that is,
Ulub = Us + n(K1/n − 1). (5.1)

Now, noting that

Us =
Cs

Ts
=

T1 − Ts

Ts
= Rs − 1

we have
Rs = (Us + 1).

Thus, K can be rewritten as

K =
2

Rs
=

2
Us + 1

,

and finally

Ulub = Us + n

[(
2

Us + 1

)1/n

− 1

]
. (5.2)

Taking the limit of Equation (5.1) as n → ∞, we find the worst-case bound as a
function of Us to be given by

lim
n→∞

Ulub = Us + ln(K) = Us + ln
(

2
Us + 1

)
. (5.3)

Thus, given a set of n periodic tasks and a Polling Server with utilization factors U p

and Us, respectively, the schedulability of the periodic task set is guaranteed under
RM if

Up + Us ≤ Us + n
(
K1/n − 1

)
;

that is, if

Up ≤ n

[(
2

Us + 1

)1/n

− 1

]
. (5.4)

A plot of Equation (5.3) as a function of Us is shown in Figure 5.5. For comparison,
the RM bound is also reported in the plot. Note that the schedulability test expressed
in Equation (5.4) is also valid for all servers that behave like a periodic task.

Using the Hyperbolic Bound, the guarantee test for a task set in the presence of a
Polling Server can be performed as follows:

n∏
i=1

(Ui + 1) ≤ 2
Us + 1

. (5.5)

Fixed-Priority Servers 127

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

Le
as

t U
pp

er
 B

ou
nd

Server Utilization factor Us

PS bound
RM bound

Figure 5.5 Schedulability bound for periodic tasks and PS as a function of the server
utilization factor Us.

Finally, the response time of a periodic task τi in the presence of a Polling Server at the
highest priority can be found as the smallest integer satisfying the following recurrent
relation:

Ri = Ci +
⌈

Ri

Ts

⌉
Cs +

i−1∑
j=1

⌈
Ri

Tj

⌉
Cj . (5.6)

5.3.2 DIMENSIONING A POLLING SERVER

Given a set of periodic tasks, how can we compute the server parameters (C s and Ts)
that can guarantee a feasible schedule? First of all, we need to compute the maxi-
mum server utilization U max

s that guarantees the feasibility of the task set. Since the
response time is not easy to manipulate, due to the ceiling functions, we can derive
Umax

s from the hyperbolic test of Equation (5.5), which is tighter than the utilization
test of Equation (5.4). If we define

P
def=

n∏
i=1

(Ui + 1), (5.7)

for the schedulability of the task set, from Equation (5.5), it must be

P ≤ 2
Us + 1

;

128 Chapter 5

that is

Us ≤
2− P

P
.

Hence,

Umax
s =

2− P

P
. (5.8)

Thus, Us must be set to be less than or equal to U max
s . For a given Us, however, there

is an infinite number of pairs (Cs, Ts) leading to the same utilization, so how can we
select the pair that enhances aperiodic responsiveness? A simple solution is to assign
the server the highest priority; that is, the smallest period, under Rate Monotonic.
However, it is not useful to set Ts < T1, since a smaller Ts implies a smaller Cs,
which would cause higher fragmentation (i.e., higher runtime overhead) in aperiodic
execution. Hence, assuming that priority ties between periodic tasks and the server are
broken in favor of the server, then the highest priority of the server can be achieved by
setting Ts = T1, and then Cs = UsTs.

5.3.3 APERIODIC GUARANTEE

This section shows how to estimate the response time of an aperiodic job handled
by a Polling Server, in order to possibly perform an online guarantee of firm aperiodic
requests characterized by a deadline. To do that, consider the case of a single aperiodic
job Ja, arrived at time ra, with computation time Ca and deadline Da. Since, in the
worst case, the job can wait for at most one period before receiving service, if C a ≤ Cs

the request is certainly completed within two server periods. Thus, it is guaranteed if

2Ts ≤ Da.

For arbitrary computation times, the aperiodic request is certainly completed in �C a/Cs�
server periods; hence, it is guaranteed if

Ts +
⌈

Ca

Cs

⌉
Ts ≤ Da.

This schedulability test is only sufficient because it does not consider when the server
executes within its period.

Fixed-Priority Servers 129

Cs

Δa

ra fa da

δa

Ra

FaTs

next(ra)

Figure 5.6 Response time of an aperiodic job scheduled by a Polling Server with the
highest priority.

A sufficient and necessary schedulability test can be derived for the case in which the
PS has the highest priority among the periodic tasks; that is, the shortest period. In
this case, in fact, it always executes at the beginning of its periods; thus the finishing
time of the aperiodic request can be estimated precisely. As shown in Figure 5.6, by
defining

Fa
def=

⌈
Ca

Cs

⌉
− 1

next(ra) def=
⌈

ra

Ts

⌉
Ts

the initial delay of request Ja is given by Δa = nexta(ra) − ra. Then, since FaCs

is the total budget consumed by Ja in Fa server periods, the residual execution to be
done in the next server period is

δa = Ca − FaCs.

As a consequence, the response time Ra can be computed as

Ra = Δa + FaTs + δa,

which can be also written as:

Ra = Δa + Ca + Fa(Ts − Cs). (5.9)

Note that the term Fa(Ts − Cs) in Equation (5.9), represents the delay introduced by
the Fa inactive server intervals, each of size (Ts − Cs).

Then, the schedulability of the aperiodic job can be guaranteed if and only if R a ≤ Da.

130 Chapter 5

5.4 DEFERRABLE SERVER

The Deferrable Server (DS) algorithm is a service technique introduced by Lehoczky,
Sha, and Strosnider [LSS87, SLS95] to improve the average response time of aperiodic
requests with respect to polling service. As the Polling Server, the DS algorithm
creates a periodic task (usually having a high priority) for servicing aperiodic requests.
However, unlike polling, DS preserves its capacity if no requests are pending upon the
invocation of the server. The capacity is maintained until the end of the period, so
that aperiodic requests can be serviced at the same server’s priority at anytime, as long
as the capacity has not been exhausted. At the beginning of any server period, the
capacity is replenished at its full value.

The DS algorithm is illustrated in Figure 5.7 using the same task set and the same
server parameters (Cs = 2, Ts = 5) considered in Figure 5.3. At time t = 1, when
τ1 is completed, no aperiodic requests are pending; hence, the processor is assigned to
task τ2. However, the DS capacity is not used for periodic tasks, but it is preserved for
future aperiodic arrivals. Thus, when the first aperiodic request arrives at time t = 2,
it receives immediate service. Since the capacity of the server is exhausted at time
t = 4, no other requests can be serviced before the next period. At time t = 5, C s is
replenished at its full value and preserved until the next arrival. The second request
arrives at time t = 8, but it is not served immediately because τ1 is active and has a
higher priority.

Thus, DS provides much better aperiodic responsiveness than polling, since it pre-
serves the capacity until it is needed. Shorter response times can be achieved by cre-
ating a Deferrable Server having the highest priority among the periodic tasks. An
example of high-priority DS is illustrated in Figure 5.8. Note that the second aperi-
odic request preempts task τ1, being Cs > 0 and Ts < T1, and it entirely consumes
the capacity at time t = 10. When the third request arrives at time t = 11, the capacity
is zero; hence, its service is delayed until the beginning of the next server period. The
fourth request receives the same treatment because it arrives at time t = 16, when C s

is exhausted.

5.4.1 SCHEDULABILITY ANALYSIS

Any schedulability analysis related to the Rate-Monotonic algorithm has been done
on the implicit assumption that a periodic task cannot suspend itself, but must execute
whenever it is the highest-priority task ready to run (assumption A5 in Section 4.1).
It is easy to see that the Deferrable Server violates this basic assumption. In fact,
the schedule illustrated in Figure 5.8 shows that DS does not execute at time t = 0,

Fixed-Priority Servers 131

i

2 1 2 1

2

1210 14

0

16

sT = 5

τ 1

τ 2

64

C

2 8 20 22 241816

s = 2

Server
1τ

2τ

T i

12

6

41

2

1410

s

aperiodic
requests

C

40 62 8 20 22 2418

C

1

Figure 5.7 Example of a Deferrable Server scheduled by RM.

i

241816141210

2

1

2 1 2

20 228

τ

2

3

8

10 = 6

τ 1

0

2

T

4 62 8 20 22

2
s

18

1τ

2τ

T i

s

Server

= 2C

241614

aperiodic
requests

C s

0 4 6

C

1210

1

Figure 5.8 Example of high-priority Deferrable Server.

132 Chapter 5

1

0 4 62 8 20181612

201816141210
C s

14

2

(b)

DS

aperiodic requests

2

1

overflow

10

86

20

4

0 4 62 8 16 18141210

τ 2

τ

0

(a)

τ 2

time

Figure 5.9 DS is not equivalent to a periodic task. In fact, the periodic set {τ1, τ2} is
schedulable by RM (a); however, if we replace τ1 with DS, τ2 misses its deadline (b).

although it is the highest-priority task ready to run, but it defers its execution until time
t = 5, which is the arrival time of the first aperiodic request.

If a periodic task defers its execution when it could execute immediately, then a lower-
priority task could miss its deadline even if the task set was schedulable. Figure 5.9
illustrates this phenomenon by comparing the execution of a periodic task to the one
of a Deferrable Server with the same period and execution time.

The periodic task set considered in this example consists of two tasks, τ1 and τ2,
having the same computation time (C1 = C2 = 2) and different periods (T1 = 4,
T2 = 5). As shown in Figure 5.9a, the two tasks are schedulable by RM. However,
if τ1 is replaced with a Deferrable Server having the same period and execution time,
the low-priority task τ2 can miss its deadline depending on the sequence of aperiodic
arrivals. Figure 5.9b shows a particular sequence of aperiodic requests that cause
τ2 to miss its deadline at time t = 15. This happens because, at time t = 8, DS
does not execute (as a normal periodic task would do) but preserves its capacity for
future requests. This deferred execution, followed by the servicing of two consecutive

Fixed-Priority Servers 133

aperiodic requests in the interval [10, 14], prevents task τ2 from executing during this
interval, causing its deadline to be missed.

Such an invasive behavior of the Deferrable Server results in a lower schedulability
bound for the periodic task set. The calculation of the least upper bound of the proces-
sor utilization factor in the presence of Deferrable Server is shown in the next section.

CALCULATION OF ULUB FOR RM+DS

The schedulability bound for a set of periodic tasks with a Deferrable Server is derived
under the same basic assumptions used in Chapter 4 to compute U lub for RM. To
simplify the computation of the bound for n tasks, we first determine the worst-case
relations among the tasks, and then we derive the lower bound against the worst-case
model [LSS87].

Consider a set of n periodic tasks, τ1, . . . , τn, ordered by increasing periods, and a De-
ferrable Server with a higher priority. The worst-case condition for the periodic tasks,
as derived for the RM analysis, is such that T1 < Tn < 2T1. In the presence of a DS,
however, the derivation of the worst-case is more complex and requires the analysis of
three different cases, as discussed by Strosnider, Lehoczky, and Sha [SLS95]. For the
sake of clarity, here we analyze one case only, the most general, in which DS may ex-
ecute three times within the period of the highest-priority periodic task. This happens
when DS defers its service at the end of its period and also executes at the beginning of
the next period. In this situation, depicted in Figure 5.10, the full processor utilization
is achieved by the following tasks’ parameters:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cs = T1 − (Ts + Cs) = T1−Ts

2
C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = Ts − Cs −
∑n−1

i=1 Ci = 3Ts+T1−2Tn

2 .

Hence, the resulting utilization is

U =
Cs

Ts
+

C1

T1
+ . . . +

Cn

Tn
=

= Us +
T2 − T1

T1
+ . . . +

Tn − Tn−1

Tn−1
+

3Ts + T1 − 2Tn

2Tn
=

= Us +
T2

T1
+ . . . +

Tn

Tn−1
+
(

3Ts

2T1
+

1
2

)
T1

Tn
− n.

134 Chapter 5

1

2

DS

1

C

τ

nT

sC

n

2

s

C

1C

2τ

C T

1

s

C

sCsC

T C

2T

nτ

+0

Figure 5.10 Worst-case task relations for a Deferrable Server.

Defining ⎧⎪⎨
⎪⎩

Rs = T1/Ts

Ri = Ti+1/Ti

K = 1
2 (3Ts/T1 + 1)

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U = Us +
n−1∑
i=1

Ri +
K

R1R2 . . . Rn−1
− n.

Following the approach used for RM, we minimize U over R i, i = 1, . . . , n − 1.
Hence,

∂U

∂Ri
= 1− K

R2
i (
∏n−1

j �=i Rj)
.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when⎧⎪⎪⎨
⎪⎪⎩

R1P = K
R2P = K

. . .
Rn−1P = K;

that is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = K1/n.

Fixed-Priority Servers 135

Substituting this value in U we obtain

Ulub − Us = (n− 1)K1/n +
K

K(1−1/n)
− n =

= nK1/n −K1/n + K1/n − n =
= n(K1/n − 1);

that is,
Ulub = Us + n(K1/n − 1). (5.10)

Now, noting that

Us =
Cs

Ts
=

T1 − Ts

2Ts
=

Rs − 1
2

we have
Rs = (2Us + 1).

Thus, K can be rewritten as

K =
(

3
2Rs

+
1
2

)
=

Us + 2
2Us + 1

,

and finally

Ulub = Us + n

[(
Us + 2
2Us + 1

)1/n

− 1

]
. (5.11)

Taking the limit as n → ∞, we find the worst-case bound as a function of U s to be
given by

lim
n→∞

Ulub = Us + ln
(

Us + 2
2Us + 1

)
. (5.12)

A plot of Equation (5.12) as a function of U s is shown in Figure 5.11. For comparison,
the RM bound is also reported in the plot. Notice that for U s < 0.4 the presence of
DS worsens the RM bound, whereas for Us > 0.4 the RM bound is improved.

Deriving Equation (5.12) with respect to Us, we can find the absolute minimum value
of Ulub:

∂Ulub

∂Us
= 1 +

(2Us + 1)
(Us + 2)

(2Us + 1)− 2(Us + 2)
(2Us + 1)2

=
2U2

s + 5Us − 1
(Us + 2)(2Us + 1)

.

The value of Us that minimizes the above expression is

U∗
s =

√
33− 5

4
 0.186,

so the minimum value of Ulub is U∗
lub 0.652.

136 Chapter 5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

Le
as

t U
pp

er
 B

ou
nd

Server Utilization factor Us

DS bound
RM bound

Figure 5.11 Schedulability bound for periodic tasks and DS as a function of the server
utilization factor Us.

In summary, given a set of n periodic tasks with utilization Up and a Deferrable Server
with utilization Us, respectively, the schedulability of the periodic task set is guaran-
teed under RM if

Up ≤ n
(
K1/n − 1

)
. (5.13)

where

K =
Us + 2
2Us + 1

,

Using the Hyperbolic Bound, the guarantee test for a task set in the presence of a
Deferrable Server can be performed as follows:

n∏
i=1

(Ui + 1) ≤ Us + 2
2Us + 1

. (5.14)

Fixed-Priority Servers 137

5.4.2 DIMENSIONING A DEFERRABLE SERVER

Following the same procedure described in Section 5.3.2, the maximum utilization
Umax

s for a Deferrable Server can easily be computed from Equation (5.14), which
can be written, defining P as in Equation (5.7), as:

P ≤ Us + 2
2Us + 1

;

that is,

Us ≤
2− P

2P − 1
.

Hence,

Umax
s =

2− P

2P − 1
. (5.15)

Then, Ts can be set equal to the smallest period T1, so that DS is executed by RM with
the highest priority (assuming that priority ties are broken in favor of the server), and
finally Cs = UsTs.

5.4.3 APERIODIC GUARANTEE

The online guarantee of a firm aperiodic job can be performed by estimating its worst-
case response time in the case of a DS with the highest priority. Since DS preserves its
execution time, let cs(t) be the value of its capacity at time t, and let Ja an aperiodic
job with computation time Ca and relative deadline Da, arriving at time t = ra, when
no other aperiodic requests are pending. Then, if next(ra) = �ra/Ts�Ts is the next
server activation after time ra, the two cases illustrated in Figure 5.12 can occur:

1. Case (a): cs(t) ≤ next(ra) − ra. In this case, the capacity is completely dis-
charged within the current period and a portion C 0 = cs(t) of Ja is executed in
the current server period.

2. Case (b): cs(t) > next(ra) − ra. In this case, the period ends before the server
capacity is completely discharged; thus a portion C0 = next(ra) − ra of Ja is
executed in the current server period.

In general, the portion C0 executed in the current server period is equal to

C0 = min{cs(t), next(ra)− ra}.

138 Chapter 5

(a) (b)

CsCs

C0 C0

cs(t)cs(t)

ra ranext(ra) next(ra)

Figure 5.12 Execution of Ja in the first server period.

Cs

Δa

cs(t)

ra fa

Ra

da

δaFaTs

next(ra)

Figure 5.13 Response time of an aperiodic job scheduled by a Deferrable Server with the
highest priority.

Using the same notation introduced for Polling Server, we define:⎧⎪⎨
⎪⎩

Δa = next(ra)− ra

Fa =
⌈

Ca−C0
Cs

⌉
− 1

δa = Ca − C0 − FaCs.

Hence, as depicted in Figure 5.13, the response time Ra of job Ja can be computed as

Ra = Δa + FaTs + δa,

which can be also written as:

Ra = Δa + Ca − C0 + Fa(Ts − Cs). (5.16)

Note that the term Fa(Ts −Cs) in Equation (5.16) represents the delay introduced by
the Fa inactive server intervals, each of size (Ts − Cs).

Then, the schedulability of the aperiodic job can be guaranteed if and only if R a ≤ Da.

Fixed-Priority Servers 139

5.5 PRIORITY EXCHANGE

The Priority Exchange (PE) algorithm is a scheduling scheme introduced by Lehoczky,
Sha, and Strosnider [LSS87] for servicing a set of soft aperiodic requests along with
a set of hard periodic tasks. With respect to DS, PE has a slightly worse performance
in terms of aperiodic responsiveness but provides a better schedulability bound for the
periodic task set.

Like DS, the PE algorithm uses a periodic server (usually at a high priority) for ser-
vicing aperiodic requests. However, it differs from DS in the manner in which the
capacity is preserved. Unlike DS, PE preserves its high-priority capacity by exchang-
ing it for the execution time of a lower-priority periodic task.

At the beginning of each server period, the capacity is replenished at its full value. If
aperiodic requests are pending and the server is the ready task with the highest priority,
then the requests are serviced using the available capacity; otherwise C s is exchanged
for the execution time of the active periodic task with the highest priority.

When a priority exchange occurs between a periodic task and a PE server, the periodic
task executes at the priority level of the server while the server accumulates a capacity
at the priority level of the periodic task. Thus, the periodic task advances its execution,
and the server capacity is not lost but preserved at a lower priority. If no aperiodic re-
quests arrive to use the capacity, priority exchange continues with other lower-priority
tasks until either the capacity is used for aperiodic service or it is degraded to the pri-
ority level of background processing. Since the objective of the PE algorithm is to
provide high responsiveness to aperiodic requests, all priority ties are broken in favor
of aperiodic tasks.

Figure 5.14 illustrates an example of aperiodic scheduling using the PE algorithm. In
this example, the PE server is created with a period Ts = 5 and a capacity Cs = 1.
Since the aperiodic time managed by the PE algorithm can be exchanged with all
periodic tasks, the capacity accumulated at each priority level as a function of time is
represented in overlapping with the schedule of the corresponding periodic task. In
particular, the first timeline of Figure 5.14 shows the aperiodic requests arriving in the
system, the second timeline visualizes the capacity available at PE’s priority, whereas
the third and the fourth ones show the capacities accumulated at the corresponding
priority levels as a consequence of the priority exchange mechanism.

At time t = 0, the PE server is brought at its full capacity, but no aperiodic requests
are pending, so Cs is exchanged with the execution time of task τ1. As a result, τ1

advances its execution and the server accumulates one unit of time at the priority level

140 Chapter 5

s

Server

1

sC

sT = 5

= 1

2

1

11

requests
aperiodic

2τ
1τ

8 20

4 10

C i T i

τ 2

τ 1

200 4 62 8 18

C

16141210

1

Figure 5.14 Example of aperiodic service under a PE server.

of τ1. At time t = 4, τ1 completes and τ2 begins to execute. Again, since no aperiodic
tasks are pending, another exchange takes place between τ 1 and τ2. At time t = 5, the
capacity is replenished at the server priority, and it is used to execute the first aperiodic
request. At time t = 10, Cs is replenished at the highest priority, but it is degraded
to the priority level of τ1 for lack of aperiodic tasks. At time t = 12, the capacity
accumulated at the priority level of τ1 is used to execute the second aperiodic request.
At time t = 15, a new high-priority replenishment takes place, but the capacity is
exchanged with the execution time of τ2. Finally, at time t = 18, the remaining
capacity accumulated at the priority level of τ2 is gradually discarded because no tasks
are active.

Note that the capacity overlapped to the schedule of a periodic task indicates, at any
instant, the amount of time by which the execution of that task is advanced with respect
to the case where there is no exchange.

Another example of aperiodic scheduling under the PE algorithm is depicted in Fig-
ure 5.15. Here, at time t = 5, the capacity of the server immediately degrades down
to the lowest-priority level of τ2, since no aperiodic requests are pending and τ1 is
idle. At time t = 11, when request J1 arrives, it is interesting to observe that the
first unit of computation time is immediately executed by using the capacity accumu-
lated at the priority level of τ1. Then, since the remaining capacity is available at the

Fixed-Priority Servers 141

iTi

s

τ

C

1

2

1τ

2

Server

T

s

1

2

1

12 s = 5

= 1

20

102 C

40 62 8 201816141210

τ 2

τ 1

aperiodic
requests

C

1

Figure 5.15 Example of aperiodic service under a PE server.

lowest-priority level and τ1 is still active, J1 is preempted by τ1 and is resumed at time
t = 13, when τ1 completes.

5.5.1 SCHEDULABILITY ANALYSIS

Considering that, in the worst case, a PE server behaves as a periodic task, the schedu-
lability bound for a set of periodic tasks running along with a Priority Exchange server
is the same as the one derived for the Polling Server. Hence, assuming that PE is the
highest-priority task in the system, we have

Ulub = Us + n
(
K1/n − 1

)
. (5.17)

where

K =
2

Us + 1
.

Thus, given a set of n periodic tasks and a Priority Exchange server with utilization
factors Up and Us, respectively, the schedulability of the periodic task set is guaranteed
under RM if

Up ≤ n

[(
2

Us + 1

)1/n

− 1

]
. (5.18)

142 Chapter 5

5.5.2 PE VERSUS DS

The DS and the PE algorithms represent two alternative techniques for enhancing ape-
riodic responsiveness over traditional background and polling approaches. Here, these
techniques are compared in terms of performance, schedulability bound, and imple-
mentation complexity, in order to help a system designer select the most appropriate
method for a particular real-time application.

The DS algorithm is much simpler to implement than the PE algorithm, because it
always maintains its capacity at the original priority level and never exchanges its
execution time with lower-priority tasks, as does the PE algorithm. The additional
work required by PE to manage and track priority exchanges increases the overhead
of PE with respect to DS, especially when the number of periodic tasks is large. On the
other hand, DS does pay a schedulability penalty for its simplicity in terms of a lower
utilization bound. This means that, for a given periodic load U p, the maximum size
of a DS server that can still guarantee the periodic tasks is smaller than the maximum
size of a PE server.

The maximum utilizations for DS and PE, as a function of task utilizations, have been
derived in Equations (5.15) and (5.8), respectively (since PE, like PS, behaves as a
periodic task in terms of utilization). Hence, the following:

Umax
DS =

2− P

2P − 1
(5.19)

Umax
PE =

2− P

P
(5.20)

where

P =
n∏

i=1

(Ui + 1).

Note that if all the n periodic tasks have the same utilization U i = Up/n, the P factor
can be expressed as a function of Up as

P =
(

Up

n
+ 1

)n

.

Note that the case in which all periodic tasks have the same utilization represents the
worst-case scenario for the task set, as clear from Figure 4.11, since the hyperbole is
tangent to the linear Liu and Layland bound.

A plot of the maximum server utilizations as a function of Up (and for a large number
of tasks) is shown in Figure 5.16. Note that when Up = 0.6, the maximum utilization

Fixed-Priority Servers 143

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ax

im
um

 S
er

ve
r

U
til

iz
at

io
n

Periodic Utilization factor Up

PE
DS

Figure 5.16 Maximum server utilization as a function of the periodic load.

for PE is 10%, whereas DS utilization cannot be greater than 7%. If instead U p = 0.3,
PE can have 48% utilization, while DS cannot go over 38%. The performance of the
two algorithms in terms of average aperiodic response times is shown in Section 5.9.

As far as firm aperiodic tasks are concerned, the schedulability analysis under PE is
much more complex than under DS. This is due to the fact that, in general, when an
aperiodic request is handled by the PE algorithm, the server capacity can be distributed
among n+1 priority levels. Hence, calculating the finishing time of the request might
require the construction of the schedule for all the periodic tasks up to the aperiodic
deadline.

5.6 SPORADIC SERVER

The Sporadic Server (SS) algorithm is another technique, proposed by Sprunt, Sha,
and Lehoczky [SSL89], which allows the enhancement of the average response time
of aperiodic tasks without degrading the utilization bound of the periodic task set.

The SS algorithm creates a high-priority task for servicing aperiodic requests and, like
DS, preserves the server capacity at its high-priority level until an aperiodic request
occurs. However, SS differs from DS in the way it replenishes its capacity. Whereas
DS and PE periodically replenish their capacity to full value at the beginning of each

144 Chapter 5

server period, SS replenishes its capacity only after it has been consumed by aperiodic
task execution.

In order to simplify the description of the replenishment method used by SS, the fol-
lowing terms are defined:

Pexe It denotes the priority level of the task that is currently executing.

Ps It denotes the priority level associated with SS.

Active SS is said to be active when Pexe ≥ Ps.

Idle SS is said to be idle when Pexe < Ps.

RT It denotes the replenishment time at which the SS capacity will be re-
plenished.

RA It denotes the replenishment amount that will be added to the capacity
at time RT.

Using this terminology, the capacity Cs consumed by aperiodic requests is replenished
according to the following rule:

The replenishment time RT is set as soon as SS becomes active and Cs > 0.
Let tA be such a time. The value of RT is set equal to tA plus the server period
(RT = tA + Ts).

The replenishment amount RA to be done at time RT is computed when SS be-
comes idle or Cs has been exhausted. Let tI be such a time. The value of RA is
set equal to the capacity consumed within the interval [tA, tI].

An example of medium-priority SS is shown in Figure 5.17. To facilitate the under-
standing of the replenishment rule, the intervals in which SS is active are also shown.
At time t = 0, the highest-priority task τ1 is scheduled, and SS becomes active. Since
Cs > 0, a replenishment is set at time RT1 = t + Ts = 10. At time t = 1, τ1 com-
pletes, and since no aperiodic requests are pending, SS becomes idle. Note that no
replenishment takes place at time RT1 = 10 (RA1 = 0) because no capacity has been
consumed in the interval [0, 1]. At time t = 4, the first aperiodic request J1 arrives,
and since Cs > 0, SS becomes active and the request receives immediate service. As
a consequence, a replenishment is set at RT2 = t + Ts = 14. Then, J1 is preempted

Fixed-Priority Servers 145

1

144 62 8 20 2218161210

C s

aperiodic
requests

2τ

T i
Server

1
C s

sT

= 5

= 10

5

154

τ

iC

1

3

5
+2

+2

SS active

22

0

τ

τ 2

1

Figure 5.17 Example of a medium-priority Sporadic Server.

by τ1 at t = 5, is resumed at t = 6 and is completed at t = 7. At this time, the replen-
ishment amount to be done at RT2 is set equal to the capacity consumed in [4, 7]; that
is, RA2 = 2.

Note that during preemption intervals SS stays active. This allows performing a single
replenishment, even if SS provides a discontinuous service for aperiodic requests.

At time t = 8, SS becomes active again and a new replenishment is set at RT3 =
t + Ts = 18. At t = 11, SS becomes idle and the replenishment amount to be done at
RT3 is set to RA3 = 2.

Figure 5.18 illustrates another example of aperiodic service in which SS is the highest-
priority task. Here, the first aperiodic request arrives at time t = 2 and consumes the
whole server capacity. Hence, a replenishment amount RA1 = 2 is set at RT1 = 10.
The second request arrives when Cs = 0. In this case, the replenishment time RT2 is
set as soon as the capacity becomes greater than zero. Since this occurs at time t = 10,

146 Chapter 5

aperiodic
requests

1

C s

1240 1062 8 20 22181614

Server
i

C
τ

s

sT154

10
= 2

= 8

T

2

τ

2 2

2

1

+2 +2

C i

1

τ

τ 2

3

Figure 5.18 Example of a high-priority Sporadic Server.

the next replenishment is set at time RT2 = 18. The corresponding replenishment
amount is established when J2 completes and is equal to RA2 = 2.

5.6.1 SCHEDULABILITY ANALYSIS

The Sporadic Server violates one of the basic assumptions governing the execution
of a standard periodic task. This assumption requires that once a periodic task is the
highest-priority task that is ready to execute, it must execute. Like DS, in fact, SS
defers its execution and preserves its capacity when no aperiodic requests are pend-
ing. However, we show that the replenishment rule used in SS compensates for any
deferred execution and, from a scheduling point of view, SS can be treated as a normal
periodic task with a period Ts and an execution time Cs. In particular, the following
theorem holds [SSL89]:

Theorem 5.1 (Sprunt, Sha, Lehoczky) A periodic task set that is schedulable with a
task τi is also schedulable if τi is replaced by a Sporadic Server with the same period
and execution time.

Fixed-Priority Servers 147

Proof. The theorem is proved by showing that for any type of service, SS exhibits
an execution behavior equivalent to one or more periodic tasks. Let t A be the time at
which Cs is full and SS becomes active, and let tI be the time at which SS becomes
idle, such that [tA, tI] is a continuous interval during which SS remains active. The
execution behavior of the server in the interval [tA, tI] can be described by one of the
following three cases (see Figure 5.19):

1. No capacity is consumed.

2. The server capacity is totally consumed.

3. The server capacity is partially consumed.

Case 1. If no requests arrive in [tA, tI], SS preserves its capacity and no replen-
ishments can be performed before time tI +Ts. This means that at most
Cs units of aperiodic time can be executed in [tA, tI + Ts]. Hence, the
SS behavior is identical to a periodic task τs(Cs, Ts) whose release time
is delayed from tA to tI . As proved in Chapter 4 for RM, delaying the
release of a periodic task cannot increase the response time of the other
periodic tasks; therefore, this case does not jeopardize schedulability.

Case 2. If Cs is totally consumed in [tA, tI], a replenishment of Cs units of time
will occur at time tA + Ts. Hence, SS behaves like a periodic task with
period Ts and execution time Cs released at time tA.

Case 3. If Cs is partially consumed in [tA, tI], a replenishment will occur at time
tA +Ts, and the remaining capacity is preserved for future requests. Let
CR be the capacity consumed in [tA, tI]. In this case, the behavior of
the server is equivalent to two periodic tasks, τx and τy , with periods
Tx = Ty = Ts, and execution times Cx = CR and Cy = Cs − CR,
such that τx is released at tA and τy is delayed until tI . As in Case 1,
the delay of τy has no schedulability effects.

Since in any servicing situation SS can be represented by one or more periodic tasks
with period Ts and total execution time equal to Cs, the contribution of SS in terms of
processor utilization is equal to Us = Cs/Ts. Hence, from a schedulability point of
view, SS can be replaced by a periodic task having the same utilization factor.

Since SS behaves like a normal periodic task, the periodic task set can be guaranteed
by the same schedulability test derived for the Polling Server. Hence, a set Γ of n

148 Chapter 5

A

sT

sT

SS active

SS active

s

A

t

ItAt

Itt

s

+ sTItIt

C

s

T

(c)

(a)

(b)

+At sT

A +

C

t sT

- RCsC

sC

SS active

Figure 5.19 Possible SS behavior during active intervals: a. Cs is not consumed; b. Cs

is totally consumed; c. Cs is partially consumed.

Fixed-Priority Servers 149

periodic tasks with utilization factor Up scheduled along with a Sporadic Server with
utilization Us is schedulable under RM if

Up ≤ n

[(
2

Us + 1

)1/n

− 1

]
. (5.21)

For large n, Γ is schedulable if

Up ≤ ln
(

2
Us + 1

)
(5.22)

Using the Hyperbolic Bound, a periodic task set with utilization Up is schedulable
under RM+SS if

P
def=

n∏
i=1

(Ui + 1) ≤
(

2
Us + 1

)
. (5.23)

And the maximum server size that preserves schedulability is

Umax
SS =

2− P

P
. (5.24)

As far as firm aperiodic tasks are concerned, the schedulability analysis under SS is
not simple because, in general, the server capacity can be fragmented in a lot of small
pieces of different size, available at different times according to the replenishment
rule. As a consequence, calculating the finishing time of an aperiodic request requires
keeping track of all the replenishments that will occur until the task deadline.

5.7 SLACK STEALING

The Slack Stealing algorithm is another aperiodic service technique, proposed by
Lehoczky and Ramos-Thuel [LRT92], which offers substantial improvements in re-
sponse time over the previous service methods (PE, DS, and SS). Unlike these meth-
ods, the Slack Stealing algorithm does not create a periodic server for aperiodic task
service. Rather it creates a passive task, referred to as the Slack Stealer, which attempts
to make time for servicing aperiodic tasks by “stealing” all the processing time it can
from the periodic tasks without causing their deadlines to be missed. This is equiva-
lent to stealing slack from the periodic tasks. We recall that if c i(t) is the remaining
computation time at time t, the slack of a task τi is

slacki(t) = di − t− ci(t).

The main idea behind slack stealing is that, typically, there is no benefit in early com-
pletion of the periodic tasks. Hence, when an aperiodic request arrives, the Slack

150 Chapter 5

1

(a)

3

20

τ

0 4 62 8 1816141210

aperiodic
requests

20

τ 2

0 4 62 8 16 18141210

τ 1

τ 2

(b)

Figure 5.20 Example of Slack Stealer behavior: a. when no aperiodic requests are pend-
ing; b. when an aperiodic request of three units arrives at time t = 8.

Stealer steals all the available slack from periodic tasks and uses it to execute aperi-
odic requests as soon as possible. If no aperiodic requests are pending, periodic tasks
are normally scheduled by RM. Similar algorithms based on slack stealing have been
proposed by other authors [RTL93, DTB93, TLS95].

Figure 5.20 shows the behavior of the Slack Stealer on a set of two periodic tasks,
τ1 and τ2, with periods T1 = 4, T2 = 5 and execution times C1 = 1, C2 = 2. In
particular, Figure 5.20a shows the schedule produced by RM when no aperiodic tasks
are processed, whereas Figure 5.20b illustrates the case in which an aperiodic request
of three units arrives at time t = 8 and receives immediate service. In this case, a slack
of three units is obtained by delaying the third instance of τ 1 and τ2.

Note that in the example of Figure 5.20, no other server algorithms (PS, DS, PE, or
SS) can schedule the aperiodic requests at the highest priority and still guarantee the
periodic tasks. For example, since U1 = 1/4 and U2 = 2/5, the P factor for the task
set is P = 7/4; hence, the maximum server utilization, according to Equation (5.24)
is

Umax
SS =

2
P
− 1 =

1
7
 0.14.

Fixed-Priority Servers 151

1

5

3

1

7
+2

+2

+2

τ

106

τ 2

earliest
slack

0 42 8 2018161412

1210 1614 18 200 4 62 8

A(0, t)

Figure 5.21 Slack function at time s = 0 for the periodic task set considered in the
previous example.

This means that, even with Cs = 1, the shortest server period that can be set with
this utilization factor is Ts = �Cs/Us� = 7, which is greater than both task periods.
Thus, the execution of the server would be equivalent to a background service, and the
aperiodic request would be completed at time 15.

5.7.1 SCHEDULABILITY ANALYSIS

In order to schedule an aperiodic request Ja(ra, Ca) according to the Slack Stealing
algorithm, we need to determine the earliest time t such that at least Ca units of slack
are available in [ra, t]. The computation of the slack is carried out through the use of
a slack function A(s, t), which returns the maximum amount of computation time that
can be assigned to aperiodic requests in the interval [s, t] without compromising the
schedulability of periodic tasks.

Figure 5.21 shows the slack function at time s = 0 for the periodic task set considered
in the previous example. For a given s, A(s, t) is a non-decreasing step function
defined over the hyperperiod, with jump points corresponding to the beginning of the
intervals where the slack is available. As s varies, the slack function needs to be
recomputed, and this requires a relatively large amount of calculation, especially for
long hyperperiods. Figure 5.22 shows how the slack function A(s, t) changes at time
s = 6 for the same periodic task set.

152 Chapter 5

1

earliest
slack

5

3

1

7

+2

+2

+2

τ

8

τ 2

0 4 62 201816141210

1210 14 160 4 62 8 2018

A(6, t)

Figure 5.22 Slack function at time s = 6 for the periodic task set considered in the
previous example.

According to the original algorithm proposed by Lehoczky and Ramos-Thuel [LRT92],
the slack function at time s = 0 is precomputed and stored in a table. During runtime,
the actual function A(s, t) is then computed by updating A(0, t) based on the peri-
odic execution time, the aperiodic service time, and the idle time. The complexity for
computing the current slack from the table is O(n), where n is the number of periodic
tasks; however, depending on the periods of the tasks, the size of the table can be too
large for practical implementations.

A dynamic method for computing slack has been proposed by Davis, Tindell, and
Burns [DTB93]. According to this algorithm, the available slack is computed when-
ever an aperiodic requests enters the system. This method is more complex than the
previous static approach, but it requires much less memory and allows handling of
periodic tasks with release jitter or synchronization requirements. Finally, a more ef-
ficient algorithm for computing the slack function has been proposed by Tia, Liu, and
Shankar [TLS95].

The Slack Stealing algorithm has also been extended by Ramos-Thuel and Lehoczky
[RTL93] to guarantee firm aperiodic tasks.

Fixed-Priority Servers 153

5.8 NON-EXISTENCE OF OPTIMAL SERVERS

The Slack Stealer always advances all available slack as much as possible and uses
it to execute the pending aperiodic tasks. For this reason, it originally was consid-
ered an optimal algorithm; that is, capable of minimizing the response time of every
aperiodic request. Unfortunately, the Slack Stealer is not optimal because to mini-
mize the response time of an aperiodic request, it is sometimes necessary to schedule
it at a later time even if slack is available at the current time. Indeed, Tia, Liu, and
Shankar [TLS95] proved that, if periodic tasks are scheduled using a fixed-priority
assignment, no algorithm can minimize the response time of every aperiodic request
and still guarantee the schedulability of the periodic tasks.

Theorem 5.2 (Tia, Liu, Shankar) For any set of periodic tasks ordered on a given
fixed-priority scheme and aperiodic requests ordered according to a given aperiodic
queueing discipline, no valid algorithm exists that minimizes the response time of every
soft aperiodic request.

Proof. Consider a set of three periodic tasks with C1 = C2 = C3 = 1 and T1 = 3,
T2 = 4 and T3 = 6, whose priorities are assigned based on the RM algorithm. Fig-
ure 5.23a shows the schedule of these tasks when no aperiodic requests are processed.

Now consider the case in which an aperiodic request J1, with Ca1 = 1, arrives at time
t = 2. At this point, any algorithm has two choices:

1. Do not schedule J1 at time t = 2. In this case, the response time of J1 will be
greater than 1 and, thus, it will not be the minimum.

2. Schedule J1 at time t = 2. In this case, assume that another request J2, with
Ca2 = 1, arrives at time t = 3. Since no slack time is available in the interval
[3, 6], J2 can start only at t = 6 and finish at t = 7. This situation is shown in
Figure 5.23b.

However, the response time of J2 achieved in case 2 is not the minimum. In fact, if J1

were scheduled at time t = 3, another unit of slack would have been available at time
t = 4; thus, J2 would have been completed at time t = 5. This situation is illustrated
in Figure 5.23c.

The above example shows that it is not possible for any algorithm to minimize the
response times of J1 and J2 simultaneously. If J1 is scheduled immediately, then J2

154 Chapter 5

3

(b)

11

3

5 12111098764

τ

3210

1τ

2τ

5 12111098763 4210

1τ

2τ

1211109875 643

τ

τ

210

1τ

2τ

3

(c)

11

(a)

Figure 5.23 No algorithm can minimize the response time of every aperiodic request. If
J1 is minimized, J2 is not (b). On the other hand, if J2 is minimized, J1 is not (c).

Fixed-Priority Servers 155

will not be minimized. On the other hand, if J1 is delayed to minimize J2, then J1

will suffer. Hence, there is no optimal algorithm that can minimize the response time
of any aperiodic request.

Note that Theorem 5.2 applies both to clairvoyant and online algorithms since the
example is applicable regardless of whether the algorithm has a priori knowledge of
the aperiodic requests. The same example can be used to prove another important
result on the minimization of the average response time.

Theorem 5.3 (Tia, Liu, Shankar) For any set of periodic tasks ordered on a given
fixed-priority scheme and aperiodic requests ordered according to a given aperiodic
queueing discipline, no online valid algorithm exists that minimizes the average re-
sponse time of the soft aperiodic requests.

Proof. From the example illustrated in Figure 5.23 it is easy to see that, if there is only
request J1 in each hyperperiod, then scheduling J1 as soon as possible will yield the
minimum average response time. On the other hand, if J 1 and J2 are present in each
hyperperiod, then scheduling each aperiodic request as soon as possible will not yield
the minimum average response time. This means that, without a priori knowledge of
the aperiodic requests’ arrival, an online algorithm will not know when to schedule
the requests.

5.9 PERFORMANCE EVALUATION

The performance of the various algorithms described in this chapter has been com-
pared in terms of average response times on soft aperiodic tasks. Simulation experi-
ments have been conducted using a set of ten periodic tasks with periods ranging from
54 to 1200 units of time and utilization factor Up = 0.69. The aperiodic load was
varied across the unused processor bandwidth. The interarrival times for the aperiodic
tasks were modeled using a Poisson arrival pattern with average interarrival time of
18 units of time, whereas the computation times of aperiodic requests were modeled
using an exponential distribution. Periods for PS, DS, PE, and SS were set to handle
aperiodic requests at the highest priority in the system (priority ties were broken in
favor of aperiodic tasks). Finally, the server capacities were set to the maximum value
for which the periodic tasks were schedulable.

156 Chapter 5

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

A
ve

ra
ge

 r
es

po
ns

e
tim

e
w

ith
 r

es
pe

ct
 to

 B
ac

kg
ro

un
d

Average aperiodic load

Up = 0.69, U(server) = 24.8%, U(DS) = 23.9%

Polling
SS
DS
PE

Figure 5.24 Performance results of PS, DS, PE, and SS.

In the plots shown in Figure 5.24, the average aperiodic response time of each algo-
rithm is presented relative to the response time of background aperiodic service. This
means that a value of 1.0 in the graph is equivalent to the average response time of
background service, while an improvement over background service corresponds to a
value less than 1.0. The lower the response time curve lies on the graph, the better the
algorithm is for improving aperiodic responsiveness.

As shown from the graphs, DS, PE, and SS provide a substantial reduction in the
average aperiodic response time compared to background and polling service. In par-
ticular, a better performance is achieved with short and frequent requests. This can be
explained by considering that, in most of the cases, short tasks do not use the whole
server capacity and can finish within the current server period. On the other hand, long
tasks protract their completion because they consume the whole server capacity and
have to wait for replenishments.

Note that average response times achieved by SS are slightly higher than those ob-
tained by DS and PE. This is mainly due to the different replenishment rule used by
the algorithms. In DS and PE, the capacity is always replenished at its full value at
the beginning of every server period, while in SS it is replenished T s units of time
after consumption. Thus, on the average, when the capacity is exhausted, waiting for
replenishment in SS is longer than waiting in DS or in PE.

Fixed-Priority Servers 157

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Average aperiodic load

Up = 0.69

Background
Polling

SS
Slack Stealer

Figure 5.25 Performance of the Slack Stealer with respect to background, PS, and SS.

Figure 5.25 shows the performance of the Slack Stealing algorithm with respect to
background service, Polling, and SS. The performance of DS and PE is not shown
because it is very similar to the one of SS. Unlike the previous figure, in this graph
the average response times are not reported relative to background, but are directly
expressed in time units. As we can see, the Slack Stealing algorithm outperforms
all the other scheduling algorithms over the entire range of aperiodic load. However,
the largest performance gain of the Slack Stealer over the other algorithms occurs at
high aperiodic loads, when the system reaches the upper limit as imposed by the total
resource utilization.

Other simulation results can be found in Lehoczky, Sha, and Strosnider [LSS87] for
Polling, PE, and DS, in Sprunt, Sha, and Lehoczky [SSL89] for SS, and in Lehoczky
and Ramos-Thuel [LRT92] for the Slack Stealing algorithm.

5.10 SUMMARY

The algorithms presented in this chapter can be compared not only in terms of per-
formance but also in terms of computational complexity, memory requirement, and
implementation complexity. In order to select the most appropriate service method

158 Chapter 5

Stealer
Slack

Background

Server

poorgood

Polling

Service

memory

Server

complexity
implementation

requirement
computational
complexityperformance

Server
Sporadic

Priority
Exchange

Deferrable

excellent

Figure 5.26 Evaluation summary of fixed-priority servers.

for handling soft aperiodic requests in a hard real-time environment, all these factors
should be considered. Figure 5.26 provides a qualitative evaluation of the algorithms
presented in this chapter.

Exercises

5.1 Compute the best parameters that can be assigned to a Sporadic Server to guar-
antee the following periodic tasks under RM, while enhancing aperiodic re-
sponsiveness as much as possible:

Ci Ti

τ1 1 6
τ2 2 7

5.2 Compute the best parameters that can be assigned to a Deferrable Server to
guarantee the task set described in Exercise 5.1.

Fixed-Priority Servers 159

5.3 Consider two periodic tasks with computation times C1 = 1, C2 = 2 and
periods T1 = 5, T2 = 8, handled by Rate Monotonic. Show the schedule
produced by a Polling Server, having maximum utilization and intermediate
priority, on the following aperiodic jobs:

ai Ci

J1 2 3
J2 7 1
J3 17 1

5.4 Solve the same scheduling problem described in Exercise 5.3, with a Sporadic
Server having maximum utilization and intermediate priority.

5.5 Solve the same scheduling problem described in Exercise 5.3, with a Deferrable
Server having maximum utilization and highest priority.

5.6 Using a Sporadic Server with capacity Cs = 2 and period Ts = 5, schedule the
following tasks:

periodic tasks
Ci Ti

τ1 1 4
τ2 2 6

aperiodic tasks
ai Ci

J1 2 2
J2 5 1
J3 10 2

	5 FIXED-PRIORITY SERVERS
	5.1 INTRODUCTION
	5.2 BACKGROUND SCHEDULING
	5.3 POLLING SERVER
	5.3.1 SCHEDULABILITY ANALYSIS
	5.3.2 DIMENSIONING A POLLING SERVER
	5.3.3 APERIODIC GUARANTEE

	5.4 DEFERRABLE SERVER
	5.4.1 SCHEDULABILITY ANALYSIS
	CALCULATION OF ULUB FOR RM+DS

	5.4.2 DIMENSIONING A DEFERRABLE SERVER
	5.4.3 APERIODIC GUARANTEE

	5.5 PRIORITY EXCHANGE
	5.5.1 SCHEDULABILITY ANALYSIS
	5.5.2 PE VERSUS DS

	5.6 SPORADIC SERVER
	5.6.1 SCHEDULABILITY ANALYSIS

	5.7 SLACK STEALING
	5.7.1 SCHEDULABILITY ANALYSIS

	5.8 NON-EXISTENCE OF OPTIMAL SERVERS
	5.9 PERFORMANCE EVALUATION
	5.10 SUMMARY
	Exercises

