
4
PERIODIC TASK SCHEDULING

4.1 INTRODUCTION

In many real-time control applications, periodic activities represent the major compu-
tational demand in the system. Periodic tasks typically arise from sensory data ac-
quisition, low-level servoing, control loops, action planning, and system monitoring.
Such activities need to be cyclically executed at specific rates, which can be derived
from the application requirements. Some specific examples of real-time applications
are illustrated in Chapter 11.

When a control application consists of several concurrent periodic tasks with indi-
vidual timing constraints, the operating system has to guarantee that each periodic
instance is regularly activated at its proper rate and is completed within its deadline
(which, in general, could be different than its period).

In this chapter, four basic algorithms for handling periodic tasks are described in detail:
Timeline Scheduling, Rate Monotonic, Earliest Deadline First, and Deadline Mono-
tonic. Schedulability analysis is performed for each algorithm in order to derive a
guarantee test for generic task sets. To facilitate the description of the scheduling
results presented in this chapter, the following notation is introduced:

Γ denotes a set of periodic tasks;

τi denotes a generic periodic task;

τi,j denotes the jth instance of task τi;

ri,j denotes the release time of the jth instance of task τi;

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1

79
4

 Springer Science+Business Media, LLC 2011©

80 Chapter 4

Φi denotes the phase of task τi; that is, the release time of its first instance
(Φi = ri,1);

Di denotes the relative deadline of task τi;

di,j denotes the absolute deadline of the jth instance of task τ i (di,j = Φi +
(j − 1)Ti + Di).

si,j denotes the start time of the jth instance of task τi; that is, the time at
which it starts executing.

fi,j denotes the finishing time of the jth instance of task τ i; that is, the time
at which it completes the execution.

Moreover, in order to simplify the schedulability analysis, the following hypotheses
are assumed on the tasks:

A1. The instances of a periodic task τi are regularly activated at a constant
rate. The interval Ti between two consecutive activations is the period
of the task.

A2. All instances of a periodic task τi have the same worst-case execution
time Ci.

A3. All instances of a periodic task τi have the same relative deadline Di,
which is equal to the period Ti.

A4. All tasks in Γ are independent; that is, there are no precedence relations
and no resource constraints.

In addition, the following assumptions are implicitly made:

A5. No task can suspend itself, for example on I/O operations.

A6. All tasks are released as soon as they arrive.

A7. All overheads in the kernel are assumed to be zero.

Notice that assumptions A1 and A2 are not restrictive because in many control ap-
plications each periodic activity requires the execution of the same routine at regular
intervals; therefore, both Ti and Ci are constant for every instance. On the other hand,
assumptions A3 and A4 could be too tight for practical applications.

Periodic Task Scheduling 81

The four assumptions are initially considered to derive some important results on pe-
riodic task scheduling, then such results are extended to deal with more realistic cases,
in which assumptions A3 and A4 are relaxed. In particular, the problem of scheduling
a set of tasks under resource constraints is considered in detail in Chapter 7.

In those cases in which the assumptions A1, A2, A3, and A4 hold, a periodic task τ i

can be completely characterized by the following three parameters: its phase Φ i, its
period Ti and its worst-case computation time Ci. Thus, a set of periodic tasks can be
denoted by

Γ = {τi(Φi, Ti, Ci), i = 1, . . . , n}.
The release time ri,k and the absolute deadline di,k of the generic kth instance can
then be computed as

ri,k = Φi + (k − 1)Ti

di,k = ri,k + Ti = Φi + kTi.

Other parameters that are typically defined on a periodic task are described below.

Hyperperiod. It is the minimum interval of time after which the schedule repeats
itself. If H is the length of such an interval, then the schedule in [0, H] is the
same as that in [kK, (k + 1)K] for any integer k > 0. For a set of periodic
tasks synchronously activated at time t = 0, the hyperperiod is given by the least
common multiple of the periods:

H = lcm(T1, . . . , Tn).

Job response time. It is the time (measured from the release time) at which the
job is terminated:

Ri,k = fi,k − ri,k.

Task response time. It is the maximum response time among all the jobs:

Ri = max
k

Ri,k.

Critical instant of a task. It is the arrival time that produces the largest task
response time.

Critical time zone of a task. It is the interval between the critical instant and the
response time of the corresponding request of the task.

Relative Start Time Jitter of a task. It is the maximum deviation of the start
time of two consecutive instances:

RRJi = max
k
|(si,k − ri,k)− (si,k−1 − ri,k−1)|.

82 Chapter 4

Absolute Start Time Jitter of a task. It is the maximum deviation of the start
time among all instances:

ARJi = max
k

(si,k − ri,k)−min
k

(si,k − ri,k).

Relative Finishing Jitter of a task. It is the maximum deviation of the finishing
time of two consecutive instances:

RFJi = max
k
|(fi,k − ri,k)− (fi,k−1 − ri,k−1)|.

Absolute Finishing Jitter of a task. It is the maximum deviation of the finishing
time among all instances:

AFJi = max
k

(fi,k − ri,k)−min
k

(fi,k − ri,k).

In this context, a periodic task τi is said to be feasible if all its instances finish within
their deadlines. A task set Γ is said to be schedulable (or feasible) if all tasks in Γ are
feasible.

4.1.1 PROCESSOR UTILIZATION FACTOR

Given a set Γ of n periodic tasks, the processor utilization factor U is the fraction
of processor time spent in the execution of the task set [LL73]. Since C i/Ti is the
fraction of processor time spent in executing task τ i, the utilization factor for n tasks
is given by

U =
n∑

i=1

Ci

Ti
.

The processor utilization factor provides a measure of the computational load on the
CPU due to the periodic task set. Although the CPU utilization can be improved by
increasing tasks’ computation times or by decreasing their periods, there exists a max-
imum value of U below which Γ is schedulable and above which Γ is not schedulable.
Such a limit depends on the task set (that is, on the particular relations among tasks’
periods) and on the algorithm used to schedule the tasks. Let Uub(Γ, A) be the upper
bound of the processor utilization factor for a task set Γ under a given algorithm A.
When U = Uub(Γ, A), the set Γ is said to fully utilize the processor. In this situation,
Γ is schedulable by A, but an increase in the computation time in any of the tasks will
make the set infeasible.

Figure 4.1 shows an example of two tasks (where τ1 has higher priority than τ2) in
which Uub = 5/6 0.833. In fact, if any execution time is increased by epsilon, the

Periodic Task Scheduling 83

τ 1

τ 2

0 181262 4 8 10 14 16 20

Figure 4.1 A task set with Uub = 5/6.

τ 1

τ 2

0 181262 4 8 10 14 16 20

Figure 4.2 A task set with Uub = 0.9.

task set becomes infeasible, since the first job of τ2 misses its deadline. Figure 4.2
shows another example in which Uub = 0.9. Notice that setting T1 = 4 and T2 = 8,
Uub becomes 1.0.

For a given algorithm A, the least upper bound U lub(A) of the processor utilization
factor is the minimum of the utilization factors over all task sets that fully utilize the
processor:

Ulub(A) = min
Γ

Uub(Γ, A).

Figure 4.3 graphically illustrates the meaning of U lub for a scheduling algorithm A.
The task sets Γi shown in the figure differ for the number of tasks and for the con-
figuration of their periods. When scheduled by the algorithm A, each task set Γ i

fully utilizes the processor when its utilization factor U i (varied by changing tasks’
computation times) reaches a particular upper bound Uubi . If Ui ≤ Uubi , then Γi is
schedulable, else Γi is not schedulable. Notice that each task set may have a different
upper bound. Since Ulub(A) is the minimum of all upper bounds, any task set having
a processor utilization factor below Ulub(A) is certainly schedulable by A.

Ulub defines an important characteristic of a scheduling algorithm useful for easily
verifying the schedulability of a task set. In fact, any task set whose processor utiliza-
tion factor is less than or equal to this bound is schedulable by the algorithm. On the
other hand, when Ulub < U ≤ 1.0, the schedulability can be achieved only if the task
periods are suitably related.

84 Chapter 4

Γ

mub

U

U

U

U

U

10

NOYES

U

2

Γ

1

2

Γ3

4Γ

mΓ

U

U

ub

U
4ub

ub3

U

U
1ub

lub

?

Figure 4.3 Meaning of the least upper bound of the processor utilization factor.

If the utilization factor of a task set is greater than 1.0, the task set cannot be scheduled
by any algorithm. To show this result, let H be the hyperperiod of the task set. If
U > 1, we also have UH > H , which can be written as

n∑
i=1

H

Ti
Ci > H.

The factor (H/Ti) represents the (integer) number of times τ i is executed in the hyper-
period, whereas the quantity (H/Ti)Ci is the total computation time requested by τi

in the hyperperiod. Hence, the sum on the left hand side represents the total computa-
tional demand requested by the task set in [0, H). Clearly, if the total demand exceeds
the available processor time, there is no feasible schedule for the task set.

4.2 TIMELINE SCHEDULING

Timeline Scheduling (TS), also known as a Cyclic Executive, is one of the most used
approaches to handle periodic tasks in defense military systems and traffic control
systems. The method consists of dividing the temporal axis into slots of equal length,
in which one or more tasks can be allocated for execution, in such a way to respect
the frequencies derived from the application requirements. A timer synchronizes the
activation of the tasks at the beginning of each time slot. In order to illustrate this
method, consider the following example, in which three tasks, A, B and C, need to
be executed with a frequency of 40, 20 and 10 Hz, respectively. By analyzing the

Periodic Task Scheduling 85

Major Cycle

Minor Cycle

0 25 50 75 100 125 150 t

task B

task A

task C

Figure 4.4 Example of timeline scheduling.

task periods (TA = 25 ms, TB = 50 ms, TC = 100 ms), it is easy to verify that the
optimal length for the time slot is 25 ms, which is the Greatest Common Divisor of the
periods. Hence, to meet the required frequencies, task A needs to be executed in every
time slot, task B every two slots, and task C every four slots. A possible scheduling
solution for this task set is illustrated in Figure 4.4.

The duration of the time slot is also called a Minor Cycle, whereas the minimum
interval of time after which the schedule repeats itself (the hyperperiod) is also called
a Major Cycle. In general, the major cycle is equal to the least common multiple of
all the periods (in the example, it is equal to 100 ms). In order to guarantee a priori
that a schedule is feasible on a particular processor, it is sufficient to know the task
worst-case execution times and verify that the sum of the executions within each time
slot is less than or equal to the minor cycle. In the example shown in Figure 4.4, if
CA, CB and CC denote the execution times of the tasks, it is sufficient to verify that

{
CA + CB ≤ 25ms
CA + CC ≤ 25ms

The main advantage of timeline scheduling is its simplicity. The method can be imple-
mented by programming a timer to interrupt with a period equal to the minor cycle and
by writing a main program that calls the tasks in the order given in the major cycle,
inserting a time synchronization point at the beginning of each minor cycle. Since the
task sequence is not decided by a scheduling algorithm in the kernel, but it is triggered
by the calls made by the main program, there are no context switches, so the runtime
overhead is very low. Moreover, the sequence of tasks in the schedule is always the
same, can be easily visualized, and it is not affected by jitter (i.e., task start times and
response times are not subject to large variations).

In spite of these advantages, timeline scheduling has some problems. For example, it
is very fragile during overload conditions. If a task does not terminate at the minor
cycle boundary, it can either be continued or aborted. In both cases, however, the

86 Chapter 4

system may run into a critical situation. In fact, if the failing task is left in execution,
it can cause a domino effect on the other tasks, breaking the entire schedule (timeline
break). On the other hand, if the failing task is aborted while updating some shared
data, the system may be left in an inconsistent state, jeopardizing the correct system
behavior.

Another big problem of the timeline scheduling technique is its sensitivity to appli-
cation changes. If updating a task requires an increase of its computation time or
its activation frequency, the entire scheduling sequence may need to be reconstructed
from scratch. Considering the previous example, if task B is updated to B’ and the
code change is such that CA + CB′ > 25ms, then task B’ must be split in two or
more pieces to be allocated in the available intervals of the timeline. Changing the
task frequencies may cause even more radical changes in the schedule. For example,
if the frequency of task B changes from 20 Hz to 25 Hz (that is TB changes from 50 to
40 ms), the previous schedule is not valid any more, because the new Minor Cycle is
equal to 5 ms and the new Major Cycle is equal to 200 ms. Note that after this change,
since the Minor cycle is much shorter than before, all the tasks may need to be split
into small pieces to fit in the new time slots.

Finally, another limitation of the timeline scheduling is that it is difficult to handle ape-
riodic activities efficiently without changing the task sequence. The problems outlined
above can be solved by using priority-based scheduling algorithms.

4.3 RATE MONOTONIC SCHEDULING

The Rate Monotonic (RM) scheduling algorithm is a simple rule that assigns priorities
to tasks according to their request rates. Specifically, tasks with higher request rates
(that is, with shorter periods) will have higher priorities. Since periods are constant,
RM is a fixed-priority assignment: a priority Pi is assigned to the task before execu-
tion and does not change over time. Moreover, RM is intrinsically preemptive: the
currently executing task is preempted by a newly arrived task with shorter period.

In 1973, Liu and Layland [LL73] showed that RM is optimal among all fixed-priority
assignments in the sense that no other fixed-priority algorithms can schedule a task set
that cannot be scheduled by RM. Liu and Layland also derived the least upper bound
of the processor utilization factor for a generic set of n periodic tasks. These issues
are discussed in detail in the following subsections.

Periodic Task Scheduling 87

n

(a)

t

t

t

(b)

τ

τ

iτ

n

i+ 3 C

τ

nC

i+ 2 C

n

i

C

t

Figure 4.5 a. The response time of task τn is delayed by the interference of τi with higher
priority. b. The interference may increase advancing the release time of τi.

4.3.1 OPTIMALITY

In order to prove the optimality of the RM algorithm, we first show that a critical in-
stant for any task occurs whenever the task is released simultaneously with all higher-
priority tasks. Let Γ = {τ1, τ2, . . . , τn} be the set of periodic tasks ordered by in-
creasing periods, with τn being the task with the longest period. According to RM, τn

will also be the task with the lowest priority.

As shown in Figure 4.5a, the response time of task τn is delayed by the interference
of τi with higher priority. Moreover, from Figure 4.5b, it is clear that advancing the
release time of τi may increase the completion time of τn. As a consequence, the
response time of τn is largest when it is released simultaneously with τi. Repeating
the argument for all τi, i = 2, . . . , n− 1, we prove that the worst response time of a
task occurs when it is released simultaneously with all higher-priority tasks.

A first consequence of this result is that task schedulability can easily be checked at
their critical instants. Specifically, if all tasks are feasible at their critical instants, then
the task set is schedulable in any other condition. Based on this result, the optimality
of RM is justified by showing that if a task set is schedulable by an arbitrary priority
assignment, then it is also schedulable by RM.

Consider a set of two periodic tasks τ1 and τ2, with T1 < T2. If priorities are not
assigned according to RM, then task τ2 will receive the highest priority. This situation

88 Chapter 4

1 tτ

2τ
t

Figure 4.6 Tasks scheduled by an algorithm different from RM.

is depicted in Figure 4.6, from which it is easy to see that, at critical instants, the
schedule is feasible if the following inequality is satisfied:

C1 + C2 ≤ T1. (4.1)

On the other hand, if priorities are assigned according to RM, task T 1 will receive
the highest priority. In this situation, illustrated in Figure 4.7, in order to guarantee a
feasible schedule two cases must be considered. Let F = �T2/T1� be the number1 of
periods of τ1 entirely contained in T2.

Case 1. The computation time of τ1 (synchronously activated with τ2) is short
enough that all its requests are completed before the second request of
τ2. That is, C1 < T2 − FT1.

In this case, from Figure 4.7a, we can see that the task set is schedulable if

(F + 1)C1 + C2 ≤ T2. (4.2)

We now show that inequality (4.1) implies (4.2). In fact, by multiplying both sides of
(4.1) by F we obtain

FC1 + FC2 ≤ FT1,

and, since F ≥ 1, we can write

FC1 + C2 ≤ FC1 + FC2 ≤ FT1.

Adding C1 to each member we get

(F + 1)C1 + C2 ≤ FT1 + C1.

Since we assumed that C1 < T2 − FT1, we have

(F + 1)C1 + C2 ≤ FT1 + C1 < T2,

which satisfies (4.2).
1�x� denotes the largest integer smaller than or equal to x, whereas �x� denotes the smallest integer

greater than or equal to x.

Periodic Task Scheduling 89

>

1F T

1F T

2

1

2

tcase (b)

T 1- F T2C

T

T

2

case (a) 1

τ

τ

2τ

1τ

< T1C 1- F T2

t

t

t

Figure 4.7 Schedule produced by RM in two different conditions.

Case 2. The computation time of τ1 (synchronously activated with τ2) is long
enough to overlap with the second request of τ2.
That is, C1 ≥ T2 − FT1.

In this case, from Figure 4.7b, we can see that the task set is schedulable if

FC1 + C2 ≤ FT1. (4.3)

Again, inequality (4.1) implies (4.3). In fact, by multiplying both sides of (4.1) by F
we obtain

FC1 + FC2 ≤ FT1,

and, since F ≥ 1, we can write

FC1 + C2 ≤ FC1 + FC2 ≤ FT1,

which satisfies (4.3).

Basically, it has been shown that, given two periodic tasks τ1 and τ2, with T1 < T2, if
the schedule is feasible by an arbitrary priority assignment, then it is also feasible by
RM. That is, RM is optimal. This result can easily be extended to a set of n periodic
tasks. We now show how to compute the least upper bound U lub of the processor
utilization factor for the RM algorithm. The bound is first determined for two tasks
and then extended for an arbitrary number of tasks.

90 Chapter 4

4.3.2 CALCULATION OF ULUB FOR TWO TASKS

Consider a set of two periodic tasks τ1 and τ2, with T1 < T2. In order to compute
Ulub for RM, we have to

assign priorities to tasks according to RM, so that τ1 is the task with the highest
priority;

compute the upper bound Uub for the task set by inflating computation times to
fully utilize the processor; and

minimize the upper bound Uub with respect to all the other task parameters.

As before, let F = �T2/T1� be the number of periods of τ1 entirely contained in
T2. Without loss of generality, the computation time C2 is adjusted to fully utilize the
processor. Again two cases must be considered.

Case 1. The computation time of τ1 (synchronously activated with τ2) is short
enough that all its requests are completed before the second request of
τ2. That is, C1 ≤ T2 − FT1.

In this situation, as depicted in Figure 4.8, the largest possible value of C 2 is

C2 = T2 − C1(F + 1),

and the corresponding upper bound Uub is

Uub =
C1

T1
+

C2

T2
=

C1

T1
+

T2 − C1(F + 1)
T2

=

= 1 +
C1

T1
− C1

T2
(F + 1) =

= 1 +
C1

T2

[
T2

T1
− (F + 1)

]
.

Since the quantity in square brackets is negative, Uub is monotonically decreasing in
C1, and, being C1 ≤ T2 − FT1, the minimum of Uub occurs for

C1 = T2 − FT1.

Periodic Task Scheduling 91

1

 0 1

τ 2

T 2F T

- F T

τ

1C1 < T2case (a)

Figure 4.8 The second request of τ2 is released when τ1 is idle.

Case 2. The computation time of τ1 (synchronously activated with τ2) is long
enough to overlap with the second request of τ2.
That is, C1 ≥ T2 − FT1.

In this situation, depicted in Figure 4.9, the largest possible value of C 2 is

C2 = (T1 − C1)F,

and the corresponding upper bound Uub is

Uub =
C1

T1
+

C2

T2
=

C1

T1
+

(T1 − C1)F
T2

=

=
T1

T2
F +

C1

T1
− C1

T2
F =

=
T1

T2
F +

C1

T2

[
T2

T1
− F

]
. (4.4)

Since the quantity in square brackets is positive, Uub is monotonically increasing in
C1 and, being C1 ≥ T2 − FT1, the minimum of Uub occurs for

C1 = T2 − FT1.

In both cases, the minimum value of Uub occurs for

C1 = T2 − T1F.

92 Chapter 4

1

C

2

τ 2

F T1

- F T 11

τ

> T2case (b)

T 0

Figure 4.9 The second request of τ2 is released when τ1 is active.

Hence, using the minimum value of C1, from equation (4.4) we have

U =
T1

T2
F +

C1

T2

(
T2

T1
− F

)
=

=
T1

T2
F +

(T2 − T1F)
T2

(
T2

T1
− F

)
=

=
T1

T2

[
F +

(
T2

T1
− F

)(
T2

T1
− F

)]
. (4.5)

To simplify the notation, let G = T2/T1 − F . Thus,

U =
T1

T2
(F + G2) =

(F + G2)
T2/T1

=

=
(F + G2)

(T2/T1 − F) + F
=

F + G2

F + G
=

=
(F + G)− (G−G2)

F + G
= 1− G(1 −G)

F + G
. (4.6)

Since 0 ≤ G < 1, the term G(1 − G) is nonnegative. Hence, U is monotonically
increasing with F . As a consequence, the minimum of U occurs for the minimum
value of F ; namely, F = 1. Thus,

U =
1 + G2

1 + G
. (4.7)

Periodic Task Scheduling 93

Minimizing U over G we have

dU

dG
=

2G(1 + G)− (1 + G2)
(1 + G)2

=

=
G2 + 2G− 1

(1 + G)2
,

and dU/dG = 0 for G2 + 2G− 1 = 0, which has two solutions:{
G1 = −1−

√
2

G2 = −1 +
√

2.

Since 0 ≤ G < 1, the negative solution G = G1 is discarded. Thus, from equation
(4.7), the least upper bound of U is given for G = G2:

Ulub =
1 + (

√
2− 1)2

1 + (
√

2− 1)
=

4− 2
√

2√
2

= 2(
√

2− 1).

That is,
Ulub = 2(21/2 − 1) 0.83. (4.8)

Notice that, if T2 is a multiple of T1, G = 0 and the processor utilization factor be-
comes 1. In general, the utilization factor for two tasks can be computed as a function
of the ratio k = T2/T1. For a given F , from equation (4.5) we can write

U =
F + (k − F)2

k
= k − 2F +

F (F + 1)
k

.

Minimizing U over k we have

dU

dk
= 1− F (F + 1)

k2
,

and dU/dk = 0 for k∗ =
√

F (F + 1). Hence, for a given F , the minimum value of
U is

U∗ = 2(
√

F (F + 1)− F).

Table 4.1 shows some values of k∗ and U ∗ as a function of F , whereas Figure 4.10
shows the upper bound of U as a function of k.

94 Chapter 4

F k∗ U∗

1
√

2 0.828
2
√

6 0.899
3
√

12 0.928
4
√

20 0.944
5
√

30 0.954

Table 4.1 Values of k∗i and U∗
i as a function of F .

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

U
pp

er
 B

ou
nd

 o
f P

ro
ce

ss
or

 U
til

iz
at

io
n

k

Figure 4.10 Upper bound of the processor utilization factor as a function of the ratio
k = T2/T1.

Periodic Task Scheduling 95

4.3.3 CALCULATION OF ULUB FOR N TASKS

From the previous computation, the conditions that allow to compute the least upper
bound of the processor utilization factor are⎧⎨

⎩
F = 1
C1 = T2 − FT1

C2 = (T1 − C1)F,

which can be rewritten as ⎧⎨
⎩

T1 < T2 < 2T1

C1 = T2 − T1

C2 = 2T1 − T2.

Generalizing for an arbitrary set of n tasks, the worst conditions for the schedulability
of a task set that fully utilizes the processor are⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T1 < Tn < 2T1

C1 = T2 − T1

C2 = T3 − T2

. . .
Cn−1 = Tn − Tn−1

Cn = T1 − (C1 + C2 + . . . + Cn−1) = 2T1 − Tn.

Thus, the processor utilization factor becomes

U =
T2 − T1

T1
+

T3 − T2

T2
+ . . . +

Tn − Tn−1

Tn−1
+

2T1 − Tn

Tn
.

Defining

Ri =
Ti+1

Ti

and noting that

R1R2 . . . Rn−1 =
Tn

T1
,

the utilization factor may be written as

U =
n−1∑
i=1

Ri +
2

R1R2 . . . Rn−1
− n.

To minimize U over Ri, i = 1, . . . , n− 1, we have

∂U

∂Rk
= 1− 2

R2
i (
∏n−1

i�=k Ri)
.

96 Chapter 4

n Ulub

1 1.000
2 0.828
3 0.780
4 0.757
5 0.743

n Ulub

6 0.735
7 0.729
8 0.724
9 0.721

10 0.718

Table 4.2 Values of Ulub as a function of n.

Thus, defining P = R1R2 . . . Rn−1, U is minimum when⎧⎪⎪⎨
⎪⎪⎩

R1P = 2
R2P = 2
. . .
Rn−1P = 2.

That is, when all Ri have the same value:

R1 = R2 = . . . = Rn−1 = 21/n.

Substituting this value in U we obtain

Ulub = (n− 1)21/n +
2

2(1−1/n)
− n =

= n21/n − 21/n + 21/n − n =
= n(21/n − 1).

Therefore, for an arbitrary set of periodic tasks, the least upper bound of the processor
utilization factor under the Rate Monotonic scheduling algorithm is

Ulub = n(21/n − 1). (4.9)

This bound decreases with n, and values for some n are shown in Table 4.2.

For high values of n, the least upper bound converges to

Ulub = ln 2 0.69.

In fact, with the substitution y = (21/n − 1), we obtain n = ln 2
ln(y+1) , and hence

lim
n→∞

n(21/n − 1) = (ln 2) lim
y→0

y

ln(y + 1)

Periodic Task Scheduling 97

and since (by the Hospital’s rule)

lim
y→0

y

ln(y + 1)
= lim

y→0

1
1/(y + 1)

= lim
y→0

(y + 1) = 1,

we have that
lim

n→∞
Ulub(n) = ln 2.

4.3.4 HYPERBOLIC BOUND FOR RM

The feasibility analysis of the RM algorithm can also be performed using a different
approach, called the Hyperbolic Bound [BBB01, BBB03]. The test has the same
complexity as the original Liu and Layland bound but it is less pessimistic, as it accepts
task sets that would be rejected using the original approach. Instead of minimizing
the processor utilization with respect to task periods, the feasibility condition can be
manipulated in order to find a tighter sufficient schedulability test as a function of the
individual task utilizations.

The following theorem provides a sufficient condition for testing the schedulability of
a task set under the RM algorithm.

Theorem 4.1 Let Γ = {τ1, . . . , τn} be a set of n periodic tasks, where each task τi

is characterized by a processor utilization Ui. Then, Γ is schedulable with the RM
algorithm if

n∏
i=1

(Ui + 1) ≤ 2. (4.10)

Proof. Without loss of generality, we may assume that tasks are ordered by increasing
periods, so that τ1 is the task with the highest priority and τn is the task with the
lowest priority. In [LL73], as well as in [DG00], it has been shown that the worst-case
scenario for a set on n periodic tasks occurs when all the tasks start simultaneously
(e.g., at time t = 0) and periods are such that

∀i = 2, . . . , n T1 < Ti < 2T1.

Moreover, the total utilization factor is minimized when computation times have the
following relations: ⎧⎪⎪⎨

⎪⎪⎩
C1 = T2 − T1

C2 = T3 − T2

· · ·
Cn−1 = Tn − Tn−1

(4.11)

98 Chapter 4

and the schedulability condition is given by:

n∑
i=1

Ci ≤ T1. (4.12)

From Equations (4.11), the schedulability condition can also be written as

Cn ≤ 2T1 − Tn (4.13)

Now, defining

Ri =
Ti+1

Ti
and Ui =

Ci

Ti
.

Equations (4.11) can be written as follows:⎧⎪⎪⎨
⎪⎪⎩

U1 = R1 − 1
U2 = R2 − 1
. . .
Un−1 = Rn−1 − 1.

(4.14)

Now we notice that:
n−1∏
i=1

Ri =
T2

T1

T3

T2
· · · Tn

Tn−1
=

Tn

T1
.

If we divide both sides of the feasibility condition (4.13) by T n, we get:

Un ≤
2T1

Tn
− 1.

Hence, the feasibility condition for a task set that fully utilizes the processor can be
written as

Un + 1 ≤ 2∏n−1
i=1 Ri

.

Since Ri = Ui + 1 for all i = 1, . . . , n− 1, we have

(Un + 1)
n−1∏
i=1

(Ui + 1) ≤ 2

and finally
n∏

i=1

(Ui + 1) ≤ 2,

which proves the theorem.

Periodic Task Scheduling 99

The new test can be compared with the Liu and Layland one in the task utilization
space, denoted as the U-space. Here, the Liu and Layland bound for RM is represented
by a n-dimensional plane that intersects each axis in U lub(n) = n(21/n − 1). All
points below the RM surface represent periodic task sets that are feasible by RM. The
new bound expressed by equation (4.10) is represented by a n-dimensional hyperbolic
surface tangent to the RM plane and intersecting the axes for U i = 1 (this is the reason
why it is referred to as the hyperbolic bound). Figure 4.11 illustrates such bounds for
n = 2. Notice that the asymptotes of the hyperbole are at U i = −1. From the plots,
we can clearly see that the feasibility region below the H-bound is larger than that
below the LL-bound, and the gain is given by the dark gray area.

U2

U1Ulub(2)

Ulub(2)

1

1

H-bound

EDF-bound

LL-bound

Figure 4.11 Schedulability bounds for RM and EDF in the utilization space.

It has been shown [BBB03] that the hyperbolic bound is tight, meaning that, if not
satisfied, it is always possible to construct an unfeasible task set with those utiliza-
tions. Hence, the hyperbolic bound is the best possible test that can be found using the
individual utilization factors Ui as a task set knowledge.

Moreover, the gain (in terms of schedulability) achieved by the hyperbolic test over
the classical Liu and Layland test increases as a function of the number of tasks, and
tends to

√
2 for n tending to infinity.

100 Chapter 4

4.4 EARLIEST DEADLINE FIRST

The Earliest Deadline First (EDF) algorithm is a dynamic scheduling rule that selects
tasks according to their absolute deadlines. Specifically, tasks with earlier deadlines
will be executed at higher priorities. Since the absolute deadline of a periodic task
depends on the current jth instance as

di,j = Φi + (j − 1)Ti + Di,

EDF is a dynamic priority assignment. Moreover, it is typically executed in preemp-
tive mode, thus the currently executing task is preempted whenever another periodic
instance with earlier deadline becomes active.

Note that EDF does not make any specific assumption on the periodicity of the tasks;
hence, it can be used for scheduling periodic as well as aperiodic tasks. For the same
reason, the optimality of EDF, proved in Chapter 3 for aperiodic tasks, also holds for
periodic tasks.

4.4.1 SCHEDULABILITY ANALYSIS

Under the assumptions A1, A2, A3, and A4, the schedulability of a periodic task set
handled by EDF can be verified through the processor utilization factor. In this case,
however, the least upper bound is one; therefore, tasks may utilize the processor up
to 100% and still be schedulable. In particular, the following theorem holds [LL73,
SBS95]:

Theorem 4.2 A set of periodic tasks is schedulable with EDF if and only if

n∑
i=1

Ci

Ti
≤ 1.

Proof. Only if. We show that a task set cannot be scheduled if U > 1. In fact, by
defining T = T1T2 . . . Tn, the total demand of computation time requested by all tasks
in T can be calculated as

n∑
i=1

T

Ti
Ci = UT.

If U > 1, that is, if the total demand UT exceeds the available processor time T , there
is clearly no feasible schedule for the task set.

Periodic Task Scheduling 101

1

idle

k

τ i

τ ov

τ m

τ

2tt

deadline miss

Figure 4.12 Interval of continuous utilization in an EDF schedule before a deadline miss.

If. We show the sufficiency by contradiction. Assume that the condition U < 1 is
satisfied and yet the task set is not schedulable. Let t2 be the first instant at which
a deadline is missed and let [t1, t2] be the longest interval of continuous utilization,
before t2, such that only instances with deadline less than or equal to t2 are executed
in [t1, t2] (see Figure 4.12 for explanation). Note that t1 must be the release time of
some periodic instance. Let Cp(t1, t2) be the total computation time demanded by
periodic tasks in [t1, t2], which can be computed as

Cp(t1, t2) =
∑

rk≥t1,dk≤t2

Ck =
n∑

i=1

⌊
t2 − t1

Ti

⌋
Ci. (4.15)

Now, observe that

Cp(t1, t2) =
n∑

i=1

⌊
t2 − t1

Ti

⌋
Ci ≤

n∑
i=1

t2 − t1
Ti

Ci = (t2 − t1)U.

Since a deadline is missed at t2, Cp(t1, t2) must be greater than the available processor
time (t2 − t1); thus, we must have

(t2 − t1) < Cp(t1, t2) ≤ (t2 − t1)U.

That is, U > 1, which is a contradiction.

102 Chapter 4

1

(a)

(b)

EDF

τ

15

τ 2

τ 1

τ 2

20 25 305 100 35

0 7 14 21 28 35

15

time overflow

20 25 305 100 35

0 7 14 21 28 35

RM

Figure 4.13 Schedule produced by RM (a) and EDF (b) on the same set of periodic tasks.

4.4.2 AN EXAMPLE

Consider the periodic task set illustrated in Figure 4.13, for which the processor uti-
lization factor is

U =
2
5

+
4
7

=
34
35
 0.97.

This means that 97 percent of the processor time is used to execute the periodic tasks,
whereas the CPU is idle in the remaining 3 percent. Being U > 2(

√
2−1) 0.83, the

schedulability of the task set cannot be guaranteed under RM, whereas it is guaranteed
under EDF. Indeed, as shown in Figure 4.13a, RM generates a deadline miss at time
t = 7, whereas EDF completes all tasks within their deadlines (see Figure 4.13b).
Another important difference between RM and EDF concerns the number of preemp-
tions occurring in the schedule. As shown in Figure 4.13, under RM every instance of
task τ2 is preempted, for a total number of five preemptions in the interval T = T 1T2.
Under EDF, the same task is preempted only once in the same interval. The smaller
number of preemptions in EDF is a direct consequence of the dynamic priority assign-
ment, which at any instant privileges the task with the earliest deadline, independently
of tasks’ periods.

Periodic Task Scheduling 103

4.5 DEADLINE MONOTONIC

The algorithms and the schedulability bounds illustrated in the previous sections rely
on the assumptions A1, A2, A3, and A4 presented at the beginning of this chapter. In
particular, assumption A3 imposes a relative deadline equal to the period, allowing an
instance to be executed anywhere within its period. This condition could not always
be desired in real-time applications. For example, relaxing assumption A3 would
provide a more flexible process model, which could be adopted to handle tasks with
jitter constraints or activities with short response times compared to their periods.

The Deadline Monotonic (DM) priority assignment weakens the “period equals dead-
line” constraint within a static priority scheduling scheme. This algorithm was first
proposed in 1982 by Leung and Whitehead [LW82] as an extension of Rate Mono-
tonic, where tasks can have relative deadlines less than or equal to their period (i.e.,
constrained deadlines). Specifically, each periodic task τ i is characterized by four
parameters:

A phase Φi;

A worst-case computation time Ci (constant for each instance);

A relative deadline Di (constant for each instance);

A period Ti.

These parameters are illustrated in Figure 4.14 and have the following relationships:⎧⎨
⎩

Ci ≤ Di ≤ Ti

ri,k = Φi + (k − 1)Ti

di,k = ri,k + Di.

i

τ

d

Ci

iT

iD

i

Figure 4.14 Task parameters in Deadline-Monotonic scheduling.

104 Chapter 4

According to the DM algorithm, each task is assigned a fixed priority P i inversely
proportional to its relative deadline Di. Thus, at any instant, the task with the shortest
relative deadline is executed. Since relative deadlines are constant, DM is a static
priority assignment. As RM, DM is normally used in a fully preemptive mode; that is,
the currently executing task is preempted by a newly arrived task with shorter relative
deadline.

The Deadline-Monotonic priority assignment is optimal 2, meaning that, if a task set is
schedulable by some fixed priority assignment, then it is also schedulable by DM.

4.5.1 SCHEDULABILITY ANALYSIS

The feasibility of a task set with constrained deadlines could be guaranteed using the
utilization based test, by reducing tasks’ periods to relative deadlines:

n∑
i=1

Ci

Di
≤ n(21/n − 1).

However, such a test would be quite pessimistic, since the workload on the processor
would be overestimated. A less pessimistic schedulability test can be derived by noting
that

the worst-case processor demand occurs when all tasks are released simultane-
ously; that is, at their critical instants;

for each task τi, the sum of its processing time and the interference (preemption)
imposed by higher priority tasks must be less than or equal to D i.

Assuming that tasks are ordered by increasing relative deadlines, so that

i < j ⇐⇒ Di < Dj,

such a test can be expressed as follows:

∀i : 1 ≤ i ≤ n Ci + Ii ≤ Di, (4.16)

where Ii is a measure of the interference on τi, which can be computed as the sum of
the processing times of all higher-priority tasks released before D i:

Ii =
i−1∑
j=1

⌈
Di

Tj

⌉
Cj .

2The proof of DM optimality is similar to the one done for RM and it can be found in [LW82].

Periodic Task Scheduling 105

kτ

τ i

d iif

Figure 4.15 More accurate calculation of the interference on τi by higher priority tasks.

Note that this test is sufficient but not necessary for guaranteeing the schedulability of
the task set. This is due to the fact that Ii is calculated by assuming that each higher-
priority task τj exactly interferes �Di

Tj
� times on τi. However, as shown in Figure 4.15,

the actual interference can be smaller than Ii, since τi may terminate earlier.

To find a sufficient and necessary schedulability test for DM, the exact interleaving of
higher-priority tasks must be evaluated for each process. In general, this procedure is
quite costly since, for each task τi, it requires the construction of the schedule until
Di. Audsley et al. [ABRW92, ABR+93] proposed an efficient method for evalu-
ating the exact interference on periodic tasks and derived a sufficient and necessary
schedulability test for DM, called Response Time Analysis.

4.5.2 RESPONSE TIME ANALYSIS

According to the method proposed by Audsley at al., the longest response time R i of a
periodic task τi is computed, at the critical instant, as the sum of its computation time
and the interference Ii of the higher priority tasks:

Ri = Ci + Ii,

where

Ii =
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj .

Hence,

Ri = Ci +
i−1∑
j=1

⌈
Ri

Tj

⌉
Cj . (4.17)

No simple solution exists for this equation since Ri appears on both sides. Thus, the
worst-case response time of task τi is given by the smallest value of Ri that satisfies
Equation (4.17). Note, however, that only a subset of points in the interval [0, D i] need

106 Chapter 4

Ci Ti Di

τ1 1 4 3
τ2 1 5 4
τ3 2 6 5
τ4 1 11 10

Table 4.3 A set of periodic tasks with deadlines less than periods.

to be examined for feasibility. In fact, the interference on τ i only increases when there
is a release of a higher-priority task.

To simplify the notation, let R
(k)
i be the k-th estimate of Ri and let I

(k)
i be the inter-

ference on task τi in the interval [0, R
(k)
i]:

I
(k)
i =

i−1∑
j=1

⌈
R

(k)
i

Tj

⌉
Cj . (4.18)

Then the calculation of Ri is performed as follows:

1. Iteration starts with R
(0)
i =

∑i
j=1 Cj , which is the first point in time that τi could

possibly complete.

2. The actual interference I k
i in the interval [0, R

(k)
i] is computed by equation (4.18).

3. If I
(k)
i + Ci = R

(k)
i , then R

(k)
i is the actual worst-case response time of task τi;

that is, Ri = R
(k)
i . Otherwise, the next estimate is given by

R
(k+1)
i = I

(k)
i + Ci,

and the iteration continues from step 2.

Once Ri is calculated, the feasibility of task τi is guaranteed if and only if Ri ≤ Di.

To clarify the schedulability test, consider the set of periodic tasks shown in Table 4.3,
simultaneously activated at time t = 0. In order to guarantee τ4, we have to calcu-
late R4 and verify that R4 ≤ D4. The schedule produced by DM is illustrated in
Figure 4.16, and the iteration steps are shown below.

Periodic Task Scheduling 107

0

1

2

3

4

5

6

7

8

9

11

10

0 2 3 4 5 6 7 8 9 10 11 121

R 4

τ 4

τ 2

τ 3

τ 1

t
2 3 4 5 6 7 8 9 10 11 1210

Figure 4.16 Example of schedule produced by DM and response time experienced by τ4
as a function of the considered interval.

108 Chapter 4

Step 0: R
(0)
4 =

∑4
i=1 Ci = 5, but I

(0)
4 = 5 and I

(0)
4 + C4 > R

(0)
4

hence τ4 does not finish at R
(0)
4 .

Step 1: R
(1)
4 = I

(0)
4 + C4 = 6, but I

(1)
4 = 6 and I

(1)
4 + C4 > R

(1)
4

hence τ4 does not finish at R
(1)
4 .

Step 2: R
(2)
4 = I

(1)
4 + C4 = 7, but I

(2)
4 = 8 and I

(2)
4 + C4 > R

(2)
4

hence τ4 does not finish at R
(2)
4 .

Step 3: R
(3)
4 = I

(2)
4 + C4 = 9, but I

(3)
4 = 9 and I

(3)
4 + C4 > R

(3)
4

hence τ4 does not finish at R
(3)
4 .

Step 4: R
(4)
4 = I

(3)
4 + C4 = 10, but I

(4)
4 = 9 and I

(4)
4 + C4 = R

(4)
4

hence τ4 finishes at R4 = R
(4)
4 = 10.

Since R4 ≤ D4, τ4 is schedulable within its deadline. If Ri ≤ Di for all tasks, we
conclude that the task set is schedulable by DM. Such a schedulability test can be
performed by the algorithm illustrated in Figure 4.17.

DM guarantee (Γ) {
for (each τi ∈ Γ) {

Ii =
∑i−1

k=1 Ck;

do {
Ri = Ii + Ci;

if (Ri > Di) return(UNSCHEDULABLE);

Ii =
∑i−1

k=1

⌈
Ri

Tk

⌉
Ck;

} while (Ii + Ci > Ri);

}
return(SCHEDULABLE);

}

Figure 4.17 Algorithm for testing the schedulability of a periodic task set Γ under Dead-
line Monotonic.

Periodic Task Scheduling 109

Note that the algorithm in Figure 4.17 has a pseudo-polynomial complexity. In fact,
the guarantee of the entire task set requires O(nN) steps, where n is the number of
tasks and N is the number of iterations in the inner loop, which does not depend
directly on n, but on the period relations.

4.5.3 WORKLOAD ANALYSIS

Another necessary and sufficient test for checking the schedulability of fixed priority
systems with constrained deadlines was proposed by Lehoczky, Sha, and Ding [LSD89].
The test is based on the concept of Level-i workload, defined as follows.

Definition 4.1 The Level-i workload Wi(t) is the cumulative computation time re-
quested in the interval (0, t] by task τi and all the tasks with priority higher than Pi.

For a set of synchronous periodic tasks, the Level-i workload can be computed as
follows:

Wi(t) = Ci +
∑

h:Ph>Pi

⌈
t

Th

⌉
Ch. (4.19)

Then, the test can be expressed by the following theorem:

Theorem 4.3 (Lehoczky, Sha, Ding, 1989) A set of fully preemptive periodic tasks
can be scheduled by a fixed priority algorithm if and only if

∀i = 1, . . . , n ∃t ∈ (0, Di] : Wi(t) ≤ t. (4.20)

Later, Bini and Buttazzo [BB04] restricted the number of points in which condition
(4.20) has to be checked to the following Testing Set:

T Si
def= Pi−1(Di) (4.21)

where Pi(t) is defined by the following recurrent expression:{
P0(t) = {t}
Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t).

(4.22)

Thus, the schedulability test can be expressed by the following theorem:

110 Chapter 4

Theorem 4.4 (Bini and Buttazzo, 2004) A set of fully preemptive periodic tasks can
be scheduled by a fixed priority algorithm if and only if

∀i = 1, . . . , n ∃t ∈ T Si : Wi(t) ≤ t. (4.23)

An advantage of Equation (4.23) is that it can be formulated as the union of a set
of simpler conditions, leading to a more efficient guarantee test, named the Hyper-
planes test [BB04]. The test has still a pseudo-polynomial complexity, but runs much
quicker than the response time analysis in the average case. Moreover, a novel fea-
ture of this test is that it can be tuned using a parameter to balance acceptance ratio
versus complexity. Such a tunability property is important in those cases in which
the performance of a polynomial time test is not sufficient for achieving high proces-
sor utilization, and the overhead introduced by exact tests is too high for an online
admission control.

Another advantage of this formulation is that Equation (4.23) can be manipulated to
describe the feasibility region of the task set in a desired space of design parameters,
so enabling sensitivity analysis [BDNB08], which determines how to change task set
parameters when the schedule is infeasible.

4.6 EDF WITH CONSTRAINED DEADLINES

Under EDF, the analysis of periodic tasks with deadlines less than or equal to periods
can be performed using the processor demand criterion. This method has been de-
scribed by Baruah, Rosier, and Howell in [BRH90] and later used by Jeffay and Stone
[JS93] to account for interrupt handling costs under EDF.

4.6.1 THE PROCESSOR DEMAND APPROACH

In general, the processor demand of a task τ i in an interval [t1, t2] is the amount of
processing time gi(t1, t2) requested by those instances of τi activated in [t1, t2] that
must be completed in [t1, t2]. That is,

gi(t1, t2) =
∑

ri,k≥t1,di,k≤t2

Ci.

Periodic Task Scheduling 111

iτ

t21t

Figure 4.18 The instances in dark gray are those contributing to the processor demand in
[t1, t2].

For the whole task set, the processor demand in [t1, t2] is given by

g(t1, t2) =
n∑

i=1

gi(t1, t2).

Then, the feasibility of a task set is guaranteed if and only if in any interval of time the
processor demand does not exceed the available time; that is, if and only if

∀t1, t2 g(t1, t2) ≤ (t2 − t1).

Referring to Figure 4.18, the number of instances of task τ i that contribute to the
demand in [t1, t2] can be expressed as

ηi(t1, t2) = max

{
0,

⌊
t2 + Ti −Di − Φi

Ti

⌋
−
⌈

t1 − Φi

Ti

⌉}

and the processor demand in [t1, t2] can be computed as

g(t1, t2) =
n∑

i=1

ηi(t1, t2)Ci. (4.24)

If relatives deadlines are no larger than periods and periodic tasks are simultaneously
activated at time t = 0 (i.e., Φi = 0 for all the tasks), then the number of instances
contributing to the demand in an interval [0, L] can be expressed as:

ηi(0, L) =
⌊

L + Ti −Di

Ti

⌋
.

Thus, the processor demand in [0, L] can be computed as

g(0, L) =
n∑

i=1

⌊
L + Ti −Di

Ti

⌋
Ci.

Function g(0, L) is also referred to as Demand Bound Function:

dbf(t) def=
n∑

i=1

⌊
t + Ti −Di

Ti

⌋
Ci. (4.25)

112 Chapter 4

Therefore, a synchronous set of periodic tasks with relative deadlines less than or equal
to periods is schedulable by EDF if and only if

∀t > 0 dbf(t) ≤ t. (4.26)

It is worth observing that, for the special case of tasks with relative deadlines equal
to periods, the test based on the processor demand criterion is equivalent to the one
based on the processor utilization. This result is formally expressed by the following
theorem [JS93].

Theorem 4.5 (Jeffay and Stone, 1993) A set of periodic tasks with relative deadlines
equal to periods is schedulable by EDF if and only if

∀L > 0
n∑

i=1

⌊
L

Ti

⌋
Ci ≤ L. (4.27)

Proof. The theorem is proved by showing that equation (4.27) is equivalent to the
classical Liu and Layland’s condition

U =
n∑

i=1

Ci

Ti
≤ 1. (4.28)

(4.28)⇒ (4.27). If U ≤ 1, then for all L, L ≥ 0,

L ≥ UL =
n∑

i=1

(
L

Ti

)
Ci ≥

n∑
i=1

⌊
L

Ti

⌋
Ci.

To demonstrate (4.28)⇐ (4.27) we show that ¬(4.28)⇒¬(4.27). That is, we assume
U > 1 and prove that there exist an L ≥ 0 for which (4.27) does not hold. If U > 1,
then for L = H = lcm(T1, . . . , Tn),

H < HU =
n∑

i=1

(
H

Ti

)
Ci =

n∑
i=1

⌊
H

Ti

⌋
Ci.

4.6.2 REDUCING TEST INTERVALS

In this section we show that the feasibility test expressed by condition (4.26) can be
simplified by reducing the number of intervals in which it has to be verified. We first
observe that

Periodic Task Scheduling 113

1. if tasks are periodic and are simultaneously activated at time t = 0, then the
schedule repeats itself every hyperperiod H ; thus condition (4.26) needs to be
verified only for values of L less than or equal to H .

2. g(0, L) is a step function whose value increases when L crosses a deadline dk

and remains constant until the next deadline dk+1. This means that if condition
g(0, L) < L holds for L = dk, then it also holds for all L such that dk ≤ L <
dk+1. As a consequence, condition (4.26) needs to be verified only for values of
L equal to absolute deadlines.

The number of testing points can be reduced further by noting that⌊
L + Ti −Di

Ti

⌋
≤

(
L + Ti −Di

Ti

)
.

and defining

G(0, L) =
n∑

i=1

L + Ti −Di

Ti
Ci =

n∑
i=1

Ti −Di

Ti
Ci +

L

Ti
Ci

we have that
∀L > 0, g(0, L) ≤ G(0, L),

where

G(0, L) =
n∑

i=1

(Ti −Di)Ui + LU.

From Figure 4.19, we can note that G(0, L) is a function of L increasing as a straight
line with slope U . Hence, if U < 1, there exists an L = L∗ for which G(0, L) = L.
Clearly, for all L ≥ L∗, we have that g(0, L) ≤ G(0, L) ≤ L, meaning that the
schedulability of the task set is guaranteed. As a consequence, there is no need to
verify condition (4.26) for values of L ≥ L∗.

The value of L∗ is the time at which G(0, L∗) = L∗; that is,

n∑
i=1

(Ti −Di)Ui + L∗U = L∗,

which gives

L∗ =
∑n

i=1(Ti −Di)Ui

1− U
.

Considering that the task set must be tested at least until the largest relative dead-
line Dmax, the results of the previous observations can be combined in the following
theorem.

114 Chapter 4

Theorem 4.6 A set of synchronous periodic tasks with relative deadlines less than or
equal to periods can be scheduled by EDF if and only if U < 1 and

∀t ∈ D dbf(t) ≤ t. (4.29)

where
D = {dk | dk ≤ min[H, max(Dmax, L∗)]}

and

L∗ =
∑n

i=1(Ti −Di)Ui

1− U
.

EXAMPLE

To illustrate the processor demand criterion, consider the task set shown in Table 4.4,
where three periodic tasks with deadlines less than periods need to be guaranteed under
EDF. From the specified parameters it is easy to compute that

U =
2
6

+
2
8

+
3
9

=
11
12

L∗ =
∑n

i=1(Ti −Di)Ui

1− U
= 25

H = lcm(6, 8, 9) = 72.

L*

g(0,L)

G(0,L)

L

y = L

Figure 4.19 Maximum value of L for which the processor demand test has to be verified.

Periodic Task Scheduling 115

Ci Di Ti

τ1 2 4 6
τ2 2 5 8
τ3 3 7 9

Table 4.4 A task set with relative deadlines less than periods.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 4.20 Schedule produced by EDF for the task set shown in Table 4.4.

L g(0, L) result

4 2 OK
5 4 OK
7 7 OK

10 9 OK
13 11 OK
16 16 OK
21 18 OK
22 20 OK

Table 4.5 Testing intervals for the processor demand criterion.

Hence, condition (4.29) has to be tested for any deadline less than 25, and the set
of checking points is given by D = {4, 5, 7, 10, 13, 16, 21, 22}. Table 4.5 shows the
results of the test and Figure 4.20 illustrates the schedule produced by EDF for the
task set.

116 Chapter 4

4.7 COMPARISON BETWEEN RM AND EDF

In conclusion, the problem of scheduling a set of independent and preemptable peri-
odic tasks has been solved both under fixed and dynamic priority assignments.

The major advantage of the fixed priority approach is that it is simpler to implement.
In fact, if the ready queue is implemented as a multi-level queue with P priority levels
(where P is the number of different priorities in the system), both task insertion and
extraction can be achieved in O(1). On the other hand, in a deadline driven scheduler,
the best solution for the ready queue is to implement it as a heap (i.e., a balanced
binary tree), where task management requires an O(log n) complexity.

Except for such an implementation issue, which becomes relevant only for very large
task sets (consisting of hundreds of tasks), or for very slow processors, a dynamic
priority scheme has many advantages with respect to a fixed priority algorithm. A
detailed comparison between RM and EDF has been presented by Buttazzo [But03,
But05].

In terms of schedulability analysis, an exact guarantee test for RM requires a pseudo-
polynomial complexity, even in the simple case of independent tasks with relative
deadlines equal to periods, whereas it can be performed in O(n) for EDF. In the gen-
eral case in which deadlines can be less than or equal to periods, the schedulability
analysis becomes pseudo-polynomial for both algorithms. Under fixed-priority as-
signments, the feasibility of the task set can be tested using the response time analysis,
whereas under dynamic priority assignments it can be tested using the processor de-
mand criterion.

As for the processor utilization, EDF is able to exploit the full processor bandwidth,
whereas the RM algorithm can only guarantee feasibility for task sets with utilization
less than 69%, in the worst case. In the average case, a statistical study performed by
Lehoczky, Sha, and Ding [LSD89] showed that for task sets with randomly generated
parameters the RM algorithm is able to feasibly schedule task sets with a processor
utilization up to about 88%. However, this is only a statistical result and cannot be
taken as an absolute bound for performing a precise guarantee test.

In spite of the extra computation needed by EDF for updating the absolute deadline
at each job activation, EDF introduces less runtime overhead than RM, when context
switches are taken into account. In fact, to enforce the fixed priority order, the number
of preemptions that typically occur under RM is much higher than under EDF.

Periodic Task Scheduling 117

An interesting property of EDF during permanent overloads is that it automatically
performs a period rescaling, so tasks start behaving as they were executing at a lower
rate. This property has been proved by Cervin in his PhD dissertation [Cer03] and it
is formally stated in the following theorem.

Theorem 4.7 (Cervin) Assume a set of n periodic tasks, where each task is described
by a fixed period Ti, a fixed execution time Ci, a relative deadline Di, and a release
offset Φi. If U > 1 and tasks are scheduled by EDF, then, in stationarity, the average
period Ti of each task τi is given by Ti = TiU .

Note that under fixed priority scheduling, a permanent overload condition causes a
complete blocking of the lower priority tasks.

As discussed later in the book, another major advantage of dynamic scheduling with
respect to fixed priority scheduling is a better responsiveness in handling aperiodic
tasks. This property comes from the higher processor utilization bound of EDF. In fact,
the lower schedulability bound of RM limits the maximum utilization (U s = Cs/Ts)
that can be assigned to a server for guaranteeing the feasibility of the periodic task set.
As a consequence, the spare processor utilization that cannot be assigned to the server
is wasted as a background execution. This problem does not occur under EDF, where,
if Up is the processor utilization of the periodic tasks, the full remaining fraction 1−U p

can always be allocated to the server for aperiodic execution.

Exercises

4.1 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 2 6
τ2 2 8
τ3 2 12

118 Chapter 4

4.2 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 3 5
τ2 1 8
τ3 1 10

4.3 Verify the schedulability and construct the schedule according to the RM algo-
rithm for the following set of periodic tasks:

Ci Ti

τ1 1 4
τ2 2 6
τ3 3 10

4.4 Verify the schedulability under RM of the following task set:

Ci Ti

τ1 1 4
τ2 2 6
τ3 3 8

4.5 Verify the schedulability under EDF of the task set shown in Exercise 4.4, and
then construct the corresponding schedule.

4.6 Verify the schedulability under EDF and construct the schedule of the following
task set:

Ci Di Ti

τ1 2 5 6
τ2 2 4 8
τ3 4 8 12

4.7 Verify the schedulability of the task set described in Exercise 4.6 using the
Deadline-Monotonic algorithm. Then construct the schedule.

	4 PERIODIC TASK SCHEDULING
	4.1 INTRODUCTION
	4.1.1 PROCESSOR UTILIZATION FACTOR

	4.2 TIMELINE SCHEDULING
	4.3 RATE MONOTONIC SCHEDULING
	4.3.1 OPTIMALITY
	4.3.2 CALCULATION OF ULUB FOR TWO TASKS
	4.3.3 CALCULATION OF ULUB FOR N TASKS
	4.3.4 HYPERBOLIC BOUND FOR RM

	4.4 EARLIEST DEADLINE FIRST
	4.4.1 SCHEDULABILITY ANALYSIS
	4.4.2 AN EXAMPLE

	4.5 DEADLINE MONOTONIC
	4.5.1 SCHEDULABILITY ANALYSIS
	4.5.2 RESPONSE TIME ANALYSIS
	4.5.3 WORKLOAD ANALYSIS

	4.6 EDF WITH CONSTRAINED DEADLINES
	4.6.1 THE PROCESSOR DEMAND APPROACH
	4.6.2 REDUCING TEST INTERVALS
	EXAMPLE

	4.7 COMPARISON BETWEEN RM AND EDF
	Exercises

