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APERIODIC TASK SCHEDULING

3.1 INTRODUCTION

This chapter presents a variety of algorithms for scheduling real-time aperiodic tasks
on a single machine environment. Each algorithm represents a solution for a particular
scheduling problem, which is expressed through a set of assumptions on the task set
and by an optimality criterion to be used on the schedule. The restrictions made on
the task set are aimed at simplifying the algorithm in terms of time complexity. When
no restrictions are applied on the application tasks, the complexity can be reduced by
employing heuristic approaches, which do not guarantee to find the optimal solution
to a problem but can still guarantee a feasible schedule in a wide range of situations.

Although the algorithms described in this chapter are presented for scheduling aperi-
odic tasks on uniprocessor systems, many of them can be extended to work on multi-
processor or distributed architectures and deal with more complex task models.

To facilitate the description of the scheduling problems presented in this chapter we
introduce a systematic notation that could serve as a basis for a classification scheme.
Such a notation, proposed by Graham et al. [GLLK79], classifies all algorithms using
three fields α | β | γ, having the following meaning:

The first field α describes the machine environment on which the task set has to
be scheduled (uniprocessor, multiprocessor, distributed architecture, and so on).

The second field β describes task and resource characteristics (preemptive, inde-
pendent versus precedence constrained, synchronous activations, and so on).
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54 Chapter 3

The third field γ indicates the optimality criterion (performance measure) to be
followed in the schedule.

For example:

1 | prec | Lmax denotes the problem of scheduling a set of tasks with precedence
constraints on a uniprocessor machine in order to minimize the maximum late-
ness. If no additional constraints are indicated in the second field, preemption is
allowed at any time, and tasks can have arbitrary arrivals.

3 | no preem |
∑

fi denotes the problem of scheduling a set of tasks on a
three-processor machine. Preemption is not allowed and the objective is to min-
imize the sum of the finishing times. Since no other constraints are indicated in
the second field, tasks do not have precedence nor resource constraints but have
arbitrary arrival times.

2 | sync |
∑

Latei denotes the problem of scheduling a set of tasks on a two-
processor machine. Tasks have synchronous arrival times and do not have other
constraints. The objective is to minimize the number of late tasks.

3.2 JACKSON’S ALGORITHM

The problem considered by this algorithm is 1 | sync | Lmax. That is, a set J of n
aperiodic tasks has to be scheduled on a single processor, minimizing the maximum
lateness. All tasks consist of a single job, have synchronous arrival times, but can have
different computation times and deadlines. No other constraints are considered, hence
tasks must be independent; that is, cannot have precedence relations and cannot share
resources in exclusive mode.

Notice that, since all tasks arrive at the same time, preemption is not an issue in this
problem. In fact, preemption is effective only when tasks may arrive dynamically and
newly arriving tasks have higher priority than currently executing tasks.

Without loss of generality, we assume that all tasks are activated at time t = 0, so
that each job Ji can be completely characterized by two parameters: a computation
time Ci and a relative deadline Di (which, in this case, is also equal to the absolute
deadline). Thus, the task set J can be denoted as

J = {Ji(Ci, Di), i = 1, . . . , n}.
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A simple algorithm that solves this problem was found by Jackson in 1955. It is called
Earliest Due Date (EDD) and can be expressed by the following rule [Jac55]:

Theorem 3.1 (Jackson’s rule) Given a set of n independent tasks, any algorithm that
executes the tasks in order of nondecreasing deadlines is optimal with respect to min-
imizing the maximum lateness.

Proof. Jackson’s theorem can be proved by a simple interchange argument. Let σ be
a schedule produced by any algorithm A. If A is different than EDD, then there exist
two tasks Ja and Jb, with da ≤ db, such that Jb immediately precedes Ja in σ. Now,
let σ′ be a schedule obtained from σ by exchanging Ja with Jb, so that Ja immediately
precedes Jb in σ′.

As illustrated in Figure 3.1, interchanging the position of Ja and Jb in σ cannot in-
crease the maximum lateness. In fact, the maximum lateness between Ja and Jb in σ
is Lmax(a, b) = fa− da, whereas the maximum lateness between Ja and Jb in σ′ can
be written as L′

max(a, b) = max(L′
a, L′

b). Two cases must be considered:

2. If L′
a ≤ L′

b, then L′
max(a, b) = f ′

b − db = fa − db, and, since da < db, we have
L′

max(a, b) < Lmax(a, b).

Since, in both cases, L′
max(a, b) < Lmax(a, b), we can conclude that interchanging Ja

and Jb in σ cannot increase the maximum lateness of the task set. By a finite number
of such transpositions, σ can be transformed in σEDD and, since in each transposition
the maximum lateness cannot increase, σEDD is optimal.

The complexity required by Jackson’s algorithm to build the optimal schedule is due
to the procedure that sorts the tasks by increasing deadlines. Hence, if the task set
consists of n tasks, the complexity of the EDD algorithm is O(n log n).

1. If L′
a ≥ L′

b, then L′
max(a, b) =f ′

a−da, and, since f ′
a < fa, we have L′

max(a, b)<
Lmax(a, b).
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Figure 3.1 Optimality of Jackson’s algorithm.

3.2.1 EXAMPLES

EXAMPLE 1

Consider a set of five tasks, simultaneously activated at time t = 0, whose parame-
ters (worst-case computation times and deadlines) are indicated in the table shown in
Figure 3.2. The schedule of the tasks produced by the EDD algorithm is also depicted
in Figure 3.2. The maximum lateness is equal to −1 and it is due to task J 4, which
completes a unit of time before its deadline. Since the maximum lateness is negative,
we can conclude that all tasks have been executed within their deadlines.

Note that the optimality of the EDD algorithm cannot guarantee the feasibility of the
schedule for any task set. It only guarantees that if a feasible schedule exists for a task
set, then EDD will find it.

EXAMPLE 2

Figure 3.3 illustrates an example in which the task set cannot be feasibly scheduled.
Still, however, EDD produces the optimal schedule that minimizes the maximum late-
ness. Note that since J4 misses its deadline, the maximum lateness is greater than zero
(Lmax = L4 = 2).
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Figure 3.2 A feasible schedule produced by Jackson’s algorithm.
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3.2.2 GUARANTEE

To guarantee that a set of tasks can be feasibly scheduled by the EDD algorithm, we
need to show that, in the worst case, all tasks can complete before their deadlines. This
means that we have to show that for each task, the worst-case finishing time f i is less
than or equal to its deadline di:

∀i = 1, . . . , n fi ≤ di.

If tasks have hard timing requirements, such a schedulability analysis must be done
before actual tasks’ execution. Without loss of generality, we can assume that tasks
J1, J2, . . . , Jn are listed by increasing deadlines, so that J1 is the task with the earliest
deadline. In this case, the worst-case finishing time of task J i can be easily computed
as

fi =
i∑

k=1

Ck.

Therefore, if the task set consists of n tasks, the guarantee test can be performed by
verifying the following n conditions:

∀i = 1, . . . , n

i∑
k=1

Ck ≤ di. (3.1)

3.3 HORN’S ALGORITHM

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks can
be activated dynamically during execution), then preemption becomes an important
factor. In general, a scheduling problem in which preemption is allowed is always
easier than its non-preemptive counterpart. In a non-preemptive scheduling algorithm,
the scheduler must ensure that a newly arriving task will never need to interrupt a
currently executing task in order to meet its own deadline. This guarantee requires a
considerable amount of searching. If preemption is allowed, however, this searching is
unnecessary, since a task can be interrupted if a more important task arrives [WR91].

In 1974, Horn found an elegant solution to the problem of scheduling a set of n in-
dependent tasks on a uniprocessor system, when tasks may have dynamic arrivals and
preemption is allowed (1 | preem | Lmax).

The algorithm, called Earliest Deadline First (EDF), can be expressed by the follow-
ing theorem [Hor74]:
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Theorem 3.2 (Horn) Given a set of n independent tasks with arbitrary arrival times,
any algorithm that at any instant executes the task with the earliest absolute deadline
among all the ready tasks is optimal with respect to minimizing the maximum lateness.

This result can be proved by an interchange argument similar to the one used by Jack-
son. The formal proof of the EDF optimality was given by Dertouzos in 1974 [Der74]
and it is illustrated below. The complexity of the algorithm is O(n) per task, if the
ready queue is implemented as a list, or O(n log n) per task, if the ready queue is
implemented as a heap.

3.3.1 EDF OPTIMALITY

The original proof provided by Dertouzos [Der74] shows that EDF is optimal in the
sense of feasibility. This means that if there exists a feasible schedule for a task set
J , then EDF is able to find it. The proof can easily be extended to show that EDF
also minimizes the maximum lateness. This is more general because an algorithm
that minimizes the maximum lateness is also optimal in the sense of feasibility. The
contrary is not true.

Using the same approach proposed by Dertouzos, let σ be the schedule produced by
a generic algorithm A and let σEDF be the schedule obtained by the EDF algorithm.
Since preemption is allowed, each task can be executed in disjointed time intervals.
Without loss of generality, the schedule σ can be divided into time slices of one unit
of time each. To simplify the formulation of the proof, let us define the following
abbreviations:

σ(t) identifies the task executing in the slice [t, t + 1).1

E(t) identifies the ready task that, at time t, has the earliest deadline.

tE(t) is the time (≥ t) at which the next slice of task E(t) begins its execution
in the current schedule.

If σ 
= σEDF , then in σ there exists a time t such that σ(t) 
= E(t). As illustrated
in Figure 3.4, the basic idea used in the proof is that interchanging the position of
σ(t) and E(t) cannot increase the maximum lateness. If the schedule σ starts at time
t = 0 and D is the latest deadline of the task set (D = max

i
{di}) then σEDF can be

obtained from σ by at most D transpositions.

1[a,b) denotes an interval of values x such that a ≤ x < b.
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Algorithm: interchange
{

for (t=0 to D-1) {
if (σ(t) 
= E(t)) {

σ(tE) = σ(t);
σ(t) = E(t);

}
}

}

Figure 3.5 Transformation algorithm used by Dertouzos to prove the optimality of EDF.

The algorithm used by Dertouzos to transform any schedule σ into an EDF schedule
is illustrated in Figure 3.5. For each time slice t, the algorithm verifies whether the
task σ(t) scheduled in the slice t is the one with the earliest deadline, E(t). If it is,
nothing is done, otherwise a transposition takes place and the slices at t and tE are
exchanged (see Figure 3.4). In particular, the slice of task E(t) is anticipated at time t,
while the slice of task σ(t) is postponed at time tE . Using the same argument adopted
in the proof of Jackson’s theorem, it is easy to show that after each transposition the
maximum lateness cannot increase; therefore, EDF is optimal.

By applying the interchange algorithm to the schedule shown in Figure 3.4a, the first
transposition occurs at time t = 4. At this time, in fact, the CPU is assigned to J4,
but the task with the earliest deadline is J2, which is scheduled at time tE = 6. As a
consequence, the two slices in gray are exchanged and the resulting schedule is shown
in Figure 3.4b. The algorithm examines all slices, until t = D, performing a slice
exchange when necessary.

To show that a transposition preserves the schedulability, note that at any instant each
slice in σ can be either anticipated or postponed up to tE . If a slice is anticipated, the
feasibility of that task is obviously preserved. If a slice of J i is postponed at tE and σ
is feasible, it must be (tE + 1) ≤ dE , being dE the earliest deadline. Since dE ≤ di

for any i, then we have tE + 1 ≤ di, which guarantees the schedulability of the slice
postponed at tE .
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3.3.2 EXAMPLE

An example of schedule produced by the EDF algorithm on a set of five tasks is shown
in Figure 3.6. At time t = 0, tasks J1 and J2 arrive and, since d1 < d2, the processor
is assigned to J1, which completes at time t = 1. At time t = 2, when J2 is executing,
task J3 arrives and preempts J2, being d3 < d2. Note that, at time t = 3, the arrival
of J4 does not interrupt the execution of J3, because d3 < d4. As J3 is completed, the
processor is assigned to J2, which resumes and executes until completion. Then J4

starts at t = 5, but, at time t = 6, it is preempted by J5, which has an earlier deadline.
Task J4 resumes at time t = 8, when J5 is completed. Notice that all tasks meet their
deadlines and the maximum lateness is Lmax = L2 = 0.
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Figure 3.6 Example of EDF schedule.

3.3.3 GUARANTEE

When tasks have dynamic activations and the arrival times are not known a priori, the
guarantee test has to be done dynamically, whenever a new task enters the system.
Let J be the current set of active tasks, which have been previously guaranteed, and
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let Jnew be a newly arrived task. In order to accept Jnew in the system we have to
guarantee that the new task set J ′ = J ∪ {Jnew} is also schedulable.

Following the same approach used in EDD, to guarantee that the set J ′ is feasibly
schedulable by EDF, we need to show that, in the worst case, all tasks in J ′ will
complete before their deadlines. This means that we have to show that, for each task,
the worst-case finishing time fi is less than or equal to its deadline di.

Without loss of generality, we can assume that all tasks in J ′ (including Jnew) are
ordered by increasing deadlines, so that J1 is the task with the earliest deadline. More-
over, since tasks are preemptable, when Jnew arrives at time t some tasks could have
been partially executed. Thus, let ci(t) be the remaining worst-case execution time of
task Ji (notice that ci(t) has an initial value equal to Ci and can be updated whenever
Ji is preempted). Hence, at time t, the worst-case finishing time of task J i can be
easily computed as

fi =
i∑

k=1

ck(t).

Thus, the schedulability can be guaranteed by the following conditions:

∀i = 1, . . . , n
i∑

k=1

ck(t) ≤ di. (3.2)

Noting that fi = fi−1 + ci(t) (where f0 = 0 by definition), the dynamic guarantee
test can be performed in O(n) by executing the algorithm shown in Figure 3.7.

3.4 NON-PREEMPTIVE SCHEDULING

When preemption is not allowed and tasks can have arbitrary arrivals, the problem
of minimizing the maximum lateness and the problem of finding a feasible schedule
become NP-hard [GLLK79, LRKB77, KIM78]. Figure 3.8 illustrates an example
that shows that EDF is no longer optimal if tasks cannot be preempted during their
execution. In fact, although a feasible schedule exists for that task set (see Figure 3.8a),
EDF does not produce a feasible schedule (see Figure 3.8b), since J 2 executes one
unit of time after its deadline. This happens because EDF immediately assigns the
processor to task J1; thus, when J2 arrives at time t = 1, J1 cannot be preempted. J2

can start only at time t = 4, after J1 completion, but it is too late to meet its deadline.

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor re-
mains idle in the interval [0, 1) although J1 is ready to execute. If arrival times are not
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Algorithm: EDF guarantee(J , Jnew)
{
J ′ = J ∪ {Jnew}; /* ordered by deadline */

t = current time();

f0 = 0;

for (each Ji ∈ J ′) {
fi = fi−1 + ci(t);
if (fi > di) return(UNFEASIBLE);

}
return(FEASIBLE);

}

Figure 3.7 EDF guarantee algorithm.
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known a priori, then no online algorithm can decide whether to stay idle at time 0 or
execute task J1. A scheduling algorithm that does not permit the processor to be idle
when there are active jobs is called a non-idle algorithm. By restricting to the case of
non-idle scheduling algorithms, Jeffay, Stanat, and Martel [JSM91] proved that EDF
is still optimal in a non-preemptive task model.

When arrival times are known a priori, non-preemptive scheduling problems are usu-
ally treated by branch-and-bound algorithms that perform well in the average case
but degrade to exponential complexity in the worst case. The structure of the search
space is a search tree, represented in Figure 3.9, where the root is an empty schedule,
an intermediate vertex is a partial schedule, and a terminal vertex (leaf) is a com-
plete schedule. Since not all leaves correspond to feasible schedules, the goal of the
scheduling algorithm is to search for a leaf that corresponds to a feasible schedule.

At each step of the search, the partial schedule associated with a vertex is extended by
inserting a new task. If n is the total number of tasks in the set, the length of a path
from the root to a leaf (tree depth) is also n, whereas the total number of leaves is n!
(n factorial). An optimal algorithm, in the worst case, may make an exhaustive search
to find the optimal schedule in such a tree, and this may require to analyze n paths of
length n!, with a complexity of O(n · n!). Clearly, this approach is computationally
intractable and cannot be used in practical systems when the number of tasks is high.

In this section, two scheduling approaches are presented, whose objective is to limit
the search space and reduce the computational complexity of the algorithm. The first
algorithm uses additional information to prune the tree and reduce the complexity in
the average case. The second algorithm adopts suitable heuristics to follow promis-
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ing paths on the tree and build a complete schedule in polynomial time. Heuristic
algorithms may produce a feasible schedule in polynomial time; however, they do not
guarantee to find it, since they do not explore all possible solutions.

3.4.1 BRATLEY’S ALGORITHM
(1 | NO PREEM | FEASIBLE)

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to solve the
problem of finding a feasible schedule of a set of non-preemptive tasks with arbitrary
arrival times. The algorithm starts with an empty schedule and, at each step of the
search, visits a new vertex and adds a task in the partial schedule. With respect to the
exhaustive search, Bratley’s algorithm uses a pruning technique to determine when
a current search can be reasonably abandoned. In particular, a branch is abandoned
when

the addition of any node to the current path causes a missed deadline;

a feasible schedule is found at the current path.

To better understand the pruning technique adopted by the algorithm, consider the task
set shown in Figure 3.10, which also illustrates the paths analyzed in the tree space.

To follow the evolution of the algorithm, the numbers inside each node of the tree indi-
cate which task is being scheduled in that path, whereas the numbers beside the nodes
represent the time at which the indicated task completes its execution. Whenever the
addition of any node to the current path causes a missed deadline, the corresponding
branch is abandoned and the task causing the timing fault is labeled with a (†).

In the example, the first task considered for extending the empty schedule is J 1, whose
index is written in the first node of the leftmost branch of the tree. Since J 1 arrives at
t = 4 and requires two units of processing time, its worst-case finishing time is f1 = 6,
indicated beside the correspondent node. Before expanding the branch, however, the
pruning mechanism checks whether the addition of any node to the current path may
cause a timing fault, and it discovers that task J2 would miss its deadline, if added. As
a consequence, the search on this branch is abandoned and a considerable amount of
computation is avoided.

In the average case, pruning techniques are very effective for reducing the search
space. Nevertheless, the worst-case complexity of the algorithm is still O(n · n!).
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Figure 3.10 Example of search performed by Bratley’s algorithm.

For this reason, Bratley’s algorithm can only be used in off-line mode, when all task
parameters (including the arrival times) are known in advance. This can be the case
of a time-triggered system, where tasks are activated at predefined instants by a timer
process.

As in most off-line real-time systems, the resulting schedule produced by Bratley’s
algorithm can be stored in a data structure, called task activation list. Then, at run
time, a dispatcher simply extracts the next task from the activation list and puts it in
execution.



68 Chapter 3

3.4.2 THE SPRING ALGORITHM

Here we describe the scheduling algorithm adopted in the Spring kernel [SR87, SR91],
a hard real-time kernel designed at the University of Massachusetts at Amherst by
Stankovic and Ramamritham to support critical control applications in dynamic en-
vironments. The objective of the algorithm is to find a feasible schedule when tasks
have different types of constraints, such as precedence relations, resource constraints,
arbitrary arrivals, non-preemptive properties, and importance levels. The Spring algo-
rithm is used in a distributed computer architecture and can also be extended to include
fault-tolerance requirements.

Clearly, this problem is NP -hard and finding a feasible schedule would be too expen-
sive in terms of computation time, especially for dynamic systems. In order to make
the algorithm computationally tractable even in the worst case, the search is driven by
a heuristic function H, which actively directs the scheduling to a plausible path. On
each level of the search, function H is applied to each of the tasks that remain to be
scheduled. The task with the smallest value determined by the heuristic function H is
selected to extend the current schedule.

The heuristic function is a very flexible mechanism to easily define and modify the
scheduling policy of the kernel. For example, if H = a i (arrival time) the algorithm
behaves as First Come First Served, if H = Ci (computation time) it works as Shortest
Job First, whereas if H = di (deadline) the algorithm is equivalent to Earliest Deadline
First.

To consider resource constraints in the scheduling algorithm, each task J i has to de-
clare a binary array of resources Ri = [R1(i), . . . , Rr(i)], where Rk(i) = 0 if Ji

does not use resource Rk, and Rk(i) = 1 if Ji uses Rk in exclusive mode. Given a
partial schedule, the algorithm determines, for each resource R k, the earliest time the
resource is available. This time is denoted as EATk (Earliest Available Time). Thus,
the earliest start time that a task Ji can begin the execution without blocking on shared
resources is

Test(i) = max[ai, max
k

(EATk)],

where ai is the arrival time of Ji. Once Test is calculated for all the tasks, a possible
search strategy is to select the task with the smallest value of Test. Composed heuristic
functions can also be used to integrate relevant information on the tasks, such as

H = d + W · C
H = d + W · Test,
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Figure 3.11 Example of heuristic functions that can be adopted in the Spring algorithm.

where W is a weight that can be adjusted for different application environments. Fig-
ure 3.11 shows some possible heuristic functions that can be used in Spring to direct
the search process.

In order to handle precedence constraints, another factor E, called eligibility, is added
to the heuristic function. A task becomes eligible to execute (E i = 1) only when
all its ancestors in the precedence graph are completed. If a task is not eligible, then
Ei =∞; hence, it cannot be selected for extending a partial schedule.

While extending a partial schedule, the algorithm determines whether the current
schedule is strongly feasible; that is, also feasible by extending it with any of the re-
maining tasks. If a partial schedule is found not to be strongly feasible, the algorithm
stops the search process and announces that the task set is not schedulable, otherwise
the search continues until a complete feasible schedule is met. Since a feasible sched-
ule is reached through n nodes and each partial schedule requires the evaluation of
most n heuristic functions, the complexity of the Spring algorithm is O(n 2).

Backtracking can be used to continue the search after a failure. In this case, the al-
gorithm returns to the previous partial schedule and extends it by the task with the
second smallest heuristic value. To restrict the overhead of backtracking, however, the
maximum number of possible backtracks must be limited. Another method to reduce
the complexity is to restrict the number of evaluations of the heuristic function. Due
to that, if a partial schedule is found to be strongly feasible, the heuristic function is
applied not to all the remaining tasks but only to the k remaining tasks with the earliest
deadlines. Given that only k tasks are considered at each step, the complexity becomes
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O(kn). If the value of k is constant (and small, compared to the task set size), then
the complexity becomes linearly proportional to the number of tasks.

A disadvantage of the heuristic scheduling approach is that it is not optimal. This
means that, if there is a feasible schedule, the Spring algorithm may not find it.

3.5 SCHEDULING WITH PRECEDENCE
CONSTRAINTS

The problem of finding an optimal schedule for a set of tasks with precedence re-
lations is in general NP -hard. However, optimal algorithms that solve the problem
in polynomial time can be found under particular assumptions on the tasks. In this
section we present two algorithms that minimize the maximum lateness by assuming
synchronous activations and preemptive scheduling, respectively.

3.5.1 LATEST DEADLINE FIRST
(1 | PREC, SY NC | LMAX )

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the maximum
lateness of a set of tasks with precedence relations and simultaneous arrival times. The
algorithm is called Latest Deadline First (LDF) and can be executed in polynomial
time with respect to the number of tasks in the set.

Given a set J of n tasks and a directed acyclic graph (DAG) describing their prece-
dence relations, LDF builds the scheduling queue from tail to head: among the tasks
without successors or whose successors have been all selected, LDF selects the task
with the latest deadline to be scheduled last. This procedure is repeated until all tasks
in the set are selected. At run time, tasks are extracted from the head of the queue,
so that the first task inserted in the queue will be executed last, whereas the last task
inserted in the queue will be executed first.

The correctness of this rule is proved as follows: Let J be the complete set of tasks
to be scheduled, let Γ ⊆ J be the subset of tasks without successors, and let J l be the
task in Γ with the latest deadline dl. If σ is any schedule that does not follow the EDL
rule, then the last scheduled task, say Jk, will not be the one with the latest deadline;
thus dk ≤ dl. Since Jl is scheduled before Jk, let us partition Γ into four subsets, so
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that Γ = A∪ {Jl} ∪B ∪ {Jk}. Clearly, in σ the maximum lateness for Γ is greater or
equal to Lk = f − dk, where f =

∑n
i=1 Ci is the finishing time of task Jk.

We show that moving Jl to the end of the schedule cannot increase the maximum
lateness in Γ, which proves the optimality of LDF. To do that, let σ ∗ be the schedule
obtained from σ after moving task J l to the end of the queue and shifting all other
tasks to the left. The two schedules σ and σ∗ are depicted in Figure 3.12. Clearly, in
σ∗ the maximum lateness for Γ is given by

L∗
max(Γ) = max[L∗

max(A), L∗
max(B), L∗

k, L∗
l ].

Each argument of the max function is no greater than Lmax(Γ). In fact,

L∗
max(A) = Lmax(A) ≤ Lmax(Γ) because A is not moved;

L∗
max(B) ≤ Lmax(B) ≤ Lmax(Γ) because B starts earlier in σ∗;

L∗
k ≤ Lk ≤ Lmax(Γ) because task Jk starts earlier in σ∗;

L∗
l = f − dl ≤ f − dk ≤ Lmax(Γ) because dk ≤ dl.

Γ

A
t

B

A B
t

f

*
kσ

J l J k

J lJ

d ld k

d k d l

σ

Figure 3.12 Proof of LDF optimality.

Since L∗
max(Γ) ≤ Lmax(Γ), moving Jl to the end of the schedule does not increase

the maximum lateness in Γ. This means that scheduling last the task J l with the latest
deadline minimizes the maximum lateness in Γ. Then, removing this task from J and
repeating the argument for the remaining n − 1 tasks in the set J − {J l}, LDF can
find the second-to-last task in the schedule, and so on. The complexity of the LDF
algorithm is O(n2), since for each of the n steps it needs to visit the precedence graph
to find the subset Γ with no successors.
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Consider the example depicted in Figure 3.13, which shows the parameters of six tasks
together with their precedence graph. The numbers beside each node of the graph indi-
cate task deadlines. Figure 3.13 also shows the schedule produced by EDF to highlight
the differences between the two approaches. The EDF schedule is constructed by se-
lecting the task with the earliest deadline among the current eligible tasks. Notice that
EDF is not optimal under precedence constraints, since it achieves a greater Lmax

with respect to LDF.
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Figure 3.13 Comparison between schedules produced by LDF and EDF on a set of tasks
with precedence constraints.
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3.5.2 EDF WITH PRECEDENCE CONSTRAINTS
(1 | PREC, PREEM | LMAX )

The problem of scheduling a set of n tasks with precedence constraints and dynamic
activations can be solved in polynomial time complexity only if tasks are preemptable.
In 1990, Chetto, Silly, and Bouchentouf [CSB90] presented an algorithm that solves
this problem in elegant fashion. The basic idea of their approach is to transform a set
J of dependent tasks into a set J ∗ of independent tasks by an adequate modification
of timing parameters. Then, tasks are scheduled by the Earliest Deadline First (EDF)
algorithm. The transformation algorithm ensures that J is schedulable and the prece-
dence constraints are obeyed if and only if J ∗ is schedulable. Basically, all release
times and deadlines are modified so that each task cannot start before its predecessors
and cannot preempt their successors.

MODIFICATION OF THE RELEASE TIMES

The rule for modifying tasks’ release times is based on the following observation.
Given two tasks Ja and Jb, such that Ja → Jb (that is, Ja is an immediate predecessor
of Jb), then in any valid schedule that meets precedence constraints the following
conditions must be satisfied (see Figure 3.14):

sb ≥ rb (that is, Jb must start the execution not earlier than its release
time);

sb ≥ ra + Ca (that is, Jb must start the execution not earlier than the minimum
finishing time of Ja).

>s b Caar +

brb

b

s

d bd a
s brr a

Ca

Cb

J a

J b

>

Figure 3.14 If Ja → Jb, then the release time of Jb can be replaced by max(rb, ra +
Ca).
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Therefore, the release time rb of Jb can be replaced by the maximum between rb and
(ra + Ca) without changing the problem. Let r∗

b be the new release time of Jb. Then,

r∗b = max(rb, ra + Ca).

The algorithm that modifies the release times can be implemented in O(n 2) and can
be described as follows:

1. For any initial node of the precedence graph, set r ∗
i = ri.

2. Select a task Ji such that its release time has not been modified but the release
times of all immediate predecessors Jh have been modified. If no such task exists,
exit.

3. Set r∗i = max[ri, max(r∗h + Ch : Jh → Ji)].

4. Return to step 2.

MODIFICATION OF THE DEADLINES

The rule for modifying tasks’ deadlines is based on the following observation. Given
two tasks Ja and Jb, such that Ja → Jb (that is, Ja is an immediate predecessor of
Jb), then in any feasible schedule that meets the precedence constraints the following
conditions must be satisfied (see Figure 3.15):

fa ≤ da (that is, Ja must finish the execution within its deadline);

fa ≤ db − Cb (that is, Ja must finish the execution not later than the maximum
start time of Jb).

b - bCf da <

d aa

r

f J a

J b

ar b

Ca

Cb

f a d a d b

<

Figure 3.15 If Ja → Jb, then the deadline of Ja can be replaced by min(da, db − Cb).
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Therefore, the deadline da of Ja can be replaced by the minimum between da and
(db − Cb) without changing the problem. Let d∗

a be the new deadline of Ja. Then,

d∗a = min(da, db − Cb).

The algorithm that modifies the deadlines can be implemented in O(n 2) and can be
described as follows:

1. For any terminal node of the precedence graph, set d ∗
i = di.

2. Select a task Ji such that its deadline has not been modified but the deadlines of
all immediate successors Jk have been modified. If no such task exists, exit.

3. Set d∗
i = min[di, min(d∗k − Ck : Ji → Jk)].

4. Return to step 2.

PROOF OF OPTIMALITY

The transformation algorithm ensures that if a feasible schedule exists for the modified
task set J ∗ under EDF, then the original task set J is also schedulable; that is, all tasks
in J meet both precedence and timing constraints. In fact, if J ∗ is schedulable, all
modified tasks start at or after time r∗i and are completed at or before time d∗

i . Since
r∗i ≥ ri and d∗

i ≤ di, the schedulability of J ∗ implies that J is also schedulable.

To show that precedence relations in J are not violated, consider the example illus-
trated in Figure 3.16, where J1 must precede J2 (i.e., J1 → J2), but J2 arrives before
J1 and has an earlier deadline. Clearly, if the two tasks are executed under EDF, their
precedence relation cannot be met. However, if we apply the transformation algorithm,
the time constraints are modified as follows:

{
r∗1 = r1

r∗2 = max(r2, r1 + C1)

{
d∗1 = min(d1, d2 − C2)
d∗2 = d2

This means that, since r∗2 > r∗1 , J2 cannot start before J1. Moreover, J2 cannot
preempt J1 because d∗

1 < d∗2 and, based on EDF, the processor is assigned to the task
with the earliest deadline. Hence, the precedence relation is respected.

In general, for any pair of tasks such that J i ≺ Jj , we have r∗i ≤ r∗j and d∗
i ≤ d∗j . This

means that, if Ji is in execution, then all successors of Ji cannot start before ri because
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Figure 3.16 The transformation algorithm preserves the timing and the precedence con-
straints.

r∗i ≤ r∗j . Moreover, they cannot preempt J i because d∗
i ≤ d∗j and, according to EDF,

the processor is assigned to the ready task having the earliest deadline. Therefore,
both timing and precedence constraints specified for task set J are guaranteed by the
schedulability of the modified set J ∗.

3.6 SUMMARY

The scheduling algorithms described in this chapter for handling real-time tasks with
aperiodic arrivals can be compared in terms of assumptions on the task set and com-
putational complexity. Figure 3.17 summarizes the main characteristics of such al-
gorithms and can be used for selecting the most appropriate scheduling policy for a
particular problem.
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Figure 3.17 Scheduling algorithms for aperiodic tasks.

Exercises

3.1 Check whether the Earliest Due Date (EDD) algorithm produces a feasible
schedule for the following task set (all tasks are synchronous and start at time
t = 0):

J1 J2 J3 J4

Ci 4 5 2 3
Di 9 16 5 10

3.2 Write an algorithm for finding the maximum lateness of a task set scheduled
by the EDD algorithm.

3.3 Draw the full scheduling tree for the following set of non-preemptive tasks and
mark the branches that are pruned by the Bratley’s algorithm.

J1 J2 J3 J4

ai 0 4 2 6
Ci 6 2 4 2
Di 18 8 9 10

3.4 On the scheduling tree developed in the previous exercise find the path pro-
duced by the Spring algorithm using the following heuristic function: H =
a + C + D. Then find a heuristic function that produces a feasible schedule.
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3.5 Given seven tasks, A, B, C, D, E, F , and G, construct the precedence graph
from the following precedence relations:

A→ C
B → C B → D
C → E C → F
D → F D → G

Then, assuming that all tasks arrive at time t = 0, have deadline D = 25, and
computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their arrival times
and deadlines to schedule them by EDF.
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