3

APERIODIC TASK SCHEDULING

3.1 INTRODUCTION

This chapter presents a variety of algorithms for scheduling real-time aperiodic tasks on a single machine environment. Each algorithm represents a solution for a particular scheduling problem, which is expressed through a set of assumptions on the task set and by an optimality criterion to be used on the schedule. The restrictions made on the task set are aimed at simplifying the algorithm in terms of time complexity. When no restrictions are applied on the application tasks, the complexity can be reduced by employing heuristic approaches, which do not guarantee to find the optimal solution to a problem but can still guarantee a feasible schedule in a wide range of situations.

Although the algorithms described in this chapter are presented for scheduling aperiodic tasks on uniprocessor systems, many of them can be extended to work on multiprocessor or distributed architectures and deal with more complex task models.

To facilitate the description of the scheduling problems presented in this chapter we introduce a systematic notation that could serve as a basis for a classification scheme. Such a notation, proposed by Graham et al. [GLLK79], classifies all algorithms using three fields $\alpha \mid \beta \mid \gamma$, having the following meaning:

- The first field α describes the machine environment on which the task set has to be scheduled (uniprocessor, multiprocessor, distributed architecture, and so on).
- The second field β describes task and resource characteristics (preemptive, independent versus precedence constrained, synchronous activations, and so on).

• The third field γ indicates the optimality criterion (performance measure) to be followed in the schedule.

For example:

- 1 | prec | L_{max} denotes the problem of scheduling a set of tasks with precedence constraints on a uniprocessor machine in order to minimize the maximum lateness. If no additional constraints are indicated in the second field, preemption is allowed at any time, and tasks can have arbitrary arrivals.
- 3 | *no_preem* | $\sum f_i$ denotes the problem of scheduling a set of tasks on a three-processor machine. Preemption is not allowed and the objective is to minimize the sum of the finishing times. Since no other constraints are indicated in the second field, tasks do not have precedence nor resource constraints but have arbitrary arrival times.
- $2 \mid sync \mid \sum Late_i$ denotes the problem of scheduling a set of tasks on a twoprocessor machine. Tasks have synchronous arrival times and do not have other constraints. The objective is to minimize the number of late tasks.

3.2 JACKSON'S ALGORITHM

The problem considered by this algorithm is $1 | sync | L_{max}$. That is, a set \mathcal{J} of n aperiodic tasks has to be scheduled on a single processor, minimizing the maximum lateness. All tasks consist of a single job, have synchronous arrival times, but can have different computation times and deadlines. No other constraints are considered, hence tasks must be independent; that is, cannot have precedence relations and cannot share resources in exclusive mode.

Notice that, since all tasks arrive at the same time, preemption is not an issue in this problem. In fact, preemption is effective only when tasks may arrive dynamically and newly arriving tasks have higher priority than currently executing tasks.

Without loss of generality, we assume that all tasks are activated at time t = 0, so that each job J_i can be completely characterized by two parameters: a computation time C_i and a relative deadline D_i (which, in this case, is also equal to the absolute deadline). Thus, the task set \mathcal{J} can be denoted as

$$\mathcal{J} = \{J_i(C_i, D_i), i = 1, \dots, n\}.$$

A simple algorithm that solves this problem was found by Jackson in 1955. It is called *Earliest Due Date* (EDD) and can be expressed by the following rule [Jac55]:

Theorem 3.1 (Jackson's rule) Given a set of n independent tasks, any algorithm that executes the tasks in order of nondecreasing deadlines is optimal with respect to minimizing the maximum lateness.

Proof. Jackson's theorem can be proved by a simple interchange argument. Let σ be a schedule produced by any algorithm A. If A is different than EDD, then there exist two tasks J_a and J_b , with $d_a \leq d_b$, such that J_b immediately precedes J_a in σ . Now, let σ' be a schedule obtained from σ by exchanging J_a with J_b , so that J_a immediately precedes J_b in σ' .

As illustrated in Figure 3.1, interchanging the position of J_a and J_b in σ cannot increase the maximum lateness. In fact, the maximum lateness between J_a and J_b in σ is $L_{max}(a,b) = f_a - d_a$, whereas the maximum lateness between J_a and J_b in σ' can be written as $L'_{max}(a,b) = max(L'_a,L'_b)$. Two cases must be considered:

- 1. If $L'_a \ge L'_b$, then $L'_{max}(a, b) = f'_a d_a$, and, since $f'_a < f_a$, we have $L'_{max}(a, b) < L_{max}(a, b)$.
- 2. If $L'_a \leq L'_b$, then $L'_{max}(a, b) = f'_b d_b = f_a d_b$, and, since $d_a < d_b$, we have $L'_{max}(a, b) < L_{max}(a, b)$.

Since, in both cases, $L'_{max}(a, b) < L_{max}(a, b)$, we can conclude that interchanging J_a and J_b in σ cannot increase the maximum lateness of the task set. By a finite number of such transpositions, σ can be transformed in σ_{EDD} and, since in each transposition the maximum lateness cannot increase, σ_{EDD} is optimal.

The complexity required by Jackson's algorithm to build the optimal schedule is due to the procedure that sorts the tasks by increasing deadlines. Hence, if the task set consists of n tasks, the complexity of the EDD algorithm is $O(n \log n)$.

Figure 3.1 Optimality of Jackson's algorithm.

3.2.1 EXAMPLES

EXAMPLE 1

Consider a set of five tasks, simultaneously activated at time t = 0, whose parameters (worst-case computation times and deadlines) are indicated in the table shown in Figure 3.2. The schedule of the tasks produced by the EDD algorithm is also depicted in Figure 3.2. The maximum lateness is equal to -1 and it is due to task J_4 , which completes a unit of time before its deadline. Since the maximum lateness is negative, we can conclude that all tasks have been executed within their deadlines.

Note that the optimality of the EDD algorithm cannot guarantee the feasibility of the schedule for any task set. It only guarantees that if a feasible schedule exists for a task set, then EDD will find it.

EXAMPLE 2

Figure 3.3 illustrates an example in which the task set cannot be feasibly scheduled. Still, however, EDD produces the optimal schedule that minimizes the maximum lateness. Note that since J_4 misses its deadline, the maximum lateness is greater than zero $(L_{max} = L_4 = 2)$.

Figure 3.2 A feasible schedule produced by Jackson's algorithm.

	J 1	J 2	J ₃	J 4	J 5
Ci	1	2	1	4	2
d i	2	5	4	8	6

Figure 3.3 An infeasible schedule produced by Jackson's algorithm.

3.2.2 GUARANTEE

To guarantee that a set of tasks can be feasibly scheduled by the EDD algorithm, we need to show that, in the worst case, all tasks can complete before their deadlines. This means that we have to show that for each task, the worst-case finishing time f_i is less than or equal to its deadline d_i :

$$\forall i = 1, \dots, n \quad f_i \leq d_i.$$

If tasks have hard timing requirements, such a schedulability analysis must be done before actual tasks' execution. Without loss of generality, we can assume that tasks J_1, J_2, \ldots, J_n are listed by increasing deadlines, so that J_1 is the task with the earliest deadline. In this case, the worst-case finishing time of task J_i can be easily computed as

$$f_i = \sum_{k=1}^i C_k.$$

Therefore, if the task set consists of n tasks, the guarantee test can be performed by verifying the following n conditions:

$$\forall i = 1, \dots, n \qquad \sum_{k=1}^{i} C_k \le d_i. \tag{3.1}$$

3.3 HORN'S ALGORITHM

If tasks are not synchronous but can have arbitrary arrival times (that is, tasks can be activated dynamically during execution), then preemption becomes an important factor. In general, a scheduling problem in which preemption is allowed is always easier than its non-preemptive counterpart. In a non-preemptive scheduling algorithm, the scheduler must ensure that a newly arriving task will never need to interrupt a currently executing task in order to meet its own deadline. This guarantee requires a considerable amount of searching. If preemption is allowed, however, this searching is unnecessary, since a task can be interrupted if a more important task arrives [WR91].

In 1974, Horn found an elegant solution to the problem of scheduling a set of n independent tasks on a uniprocessor system, when tasks may have dynamic arrivals and preemption is allowed $(1 \mid preem \mid L_{max})$.

The algorithm, called *Earliest Deadline First* (EDF), can be expressed by the following theorem [Hor74]:

Theorem 3.2 (Horn) Given a set of *n* independent tasks with arbitrary arrival times, any algorithm that at any instant executes the task with the earliest absolute deadline among all the ready tasks is optimal with respect to minimizing the maximum lateness.

This result can be proved by an interchange argument similar to the one used by Jackson. The formal proof of the EDF optimality was given by Dertouzos in 1974 [Der74] and it is illustrated below. The complexity of the algorithm is O(n) per task, if the ready queue is implemented as a list, or $O(n \log n)$ per task, if the ready queue is implemented as a heap.

3.3.1 EDF OPTIMALITY

The original proof provided by Dertouzos [Der74] shows that EDF is optimal in the sense of feasibility. This means that if there exists a feasible schedule for a task set \mathcal{J} , then EDF is able to find it. The proof can easily be extended to show that EDF also minimizes the maximum lateness. This is more general because an algorithm that minimizes the maximum lateness is also optimal in the sense of feasibility. The contrary is not true.

Using the same approach proposed by Dertouzos, let σ be the schedule produced by a generic algorithm A and let σ_{EDF} be the schedule obtained by the EDF algorithm. Since preemption is allowed, each task can be executed in disjointed time intervals. Without loss of generality, the schedule σ can be divided into *time slices* of one unit of time each. To simplify the formulation of the proof, let us define the following abbreviations:

- $\sigma(t)$ identifies the task executing in the slice [t, t+1).¹
- E(t) identifies the ready task that, at time t, has the earliest deadline.
- $t_E(t)$ is the time ($\geq t$) at which the next slice of task E(t) begins its execution in the current schedule.

If $\sigma \neq \sigma_{EDF}$, then in σ there exists a time t such that $\sigma(t) \neq E(t)$. As illustrated in Figure 3.4, the basic idea used in the proof is that interchanging the position of $\sigma(t)$ and E(t) cannot increase the maximum lateness. If the schedule σ starts at time t = 0 and D is the latest deadline of the task set $(D = \max_{i} \{d_i\})$ then σ_{EDF} can be obtained from σ by at most D transpositions.

¹[a,b) denotes an interval of values x such that $a \le x < b$.

Figure 3.4 Proof of the optimality of the EDF algorithm. a. schedule σ at time t = 4. b. new schedule obtained after a transposition.

Figure 3.5 Transformation algorithm used by Dertouzos to prove the optimality of EDF.

The algorithm used by Dertouzos to transform any schedule σ into an EDF schedule is illustrated in Figure 3.5. For each time slice t, the algorithm verifies whether the task $\sigma(t)$ scheduled in the slice t is the one with the earliest deadline, E(t). If it is, nothing is done, otherwise a transposition takes place and the slices at t and t_E are exchanged (see Figure 3.4). In particular, the slice of task E(t) is anticipated at time t, while the slice of task $\sigma(t)$ is postponed at time t_E . Using the same argument adopted in the proof of Jackson's theorem, it is easy to show that after each transposition the maximum lateness cannot increase; therefore, EDF is optimal.

By applying the interchange algorithm to the schedule shown in Figure 3.4a, the first transposition occurs at time t = 4. At this time, in fact, the CPU is assigned to J_4 , but the task with the earliest deadline is J_2 , which is scheduled at time $t_E = 6$. As a consequence, the two slices in gray are exchanged and the resulting schedule is shown in Figure 3.4b. The algorithm examines all slices, until t = D, performing a slice exchange when necessary.

To show that a transposition preserves the schedulability, note that at any instant each slice in σ can be either anticipated or postponed up to t_E . If a slice is anticipated, the feasibility of that task is obviously preserved. If a slice of J_i is postponed at t_E and σ is feasible, it must be $(t_E + 1) \leq d_E$, being d_E the earliest deadline. Since $d_E \leq d_i$ for any *i*, then we have $t_E + 1 \leq d_i$, which guarantees the schedulability of the slice postponed at t_E .

3.3.2 EXAMPLE

An example of schedule produced by the EDF algorithm on a set of five tasks is shown in Figure 3.6. At time t = 0, tasks J_1 and J_2 arrive and, since $d_1 < d_2$, the processor is assigned to J_1 , which completes at time t = 1. At time t = 2, when J_2 is executing, task J_3 arrives and preempts J_2 , being $d_3 < d_2$. Note that, at time t = 3, the arrival of J_4 does not interrupt the execution of J_3 , because $d_3 < d_4$. As J_3 is completed, the processor is assigned to J_2 , which resumes and executes until completion. Then J_4 starts at t = 5, but, at time t = 6, it is preempted by J_5 , which has an earlier deadline. Task J_4 resumes at time t = 8, when J_5 is completed. Notice that all tasks meet their deadlines and the maximum lateness is $L_{max} = L_2 = 0$.

	J 1	J 2	J ₃	J ₄	J 5
a _i	0	0	2	3	6
Ci	1	2	2	2	2
d _i	2	5	4	10	9

Figure 3.6 Example of EDF schedule.

3.3.3 GUARANTEE

When tasks have dynamic activations and the arrival times are not known a priori, the guarantee test has to be done dynamically, whenever a new task enters the system. Let \mathcal{J} be the current set of active tasks, which have been previously guaranteed, and

let J_{new} be a newly arrived task. In order to accept J_{new} in the system we have to guarantee that the new task set $\mathcal{J}' = \mathcal{J} \cup \{J_{new}\}$ is also schedulable.

Following the same approach used in EDD, to guarantee that the set \mathcal{J}' is feasibly schedulable by EDF, we need to show that, in the worst case, all tasks in \mathcal{J}' will complete before their deadlines. This means that we have to show that, for each task, the worst-case finishing time f_i is less than or equal to its deadline d_i .

Without loss of generality, we can assume that all tasks in \mathcal{J}' (including J_{new}) are ordered by increasing deadlines, so that J_1 is the task with the earliest deadline. Moreover, since tasks are preemptable, when J_{new} arrives at time t some tasks could have been partially executed. Thus, let $c_i(t)$ be the remaining worst-case execution time of task J_i (notice that $c_i(t)$ has an initial value equal to C_i and can be updated whenever J_i is preempted). Hence, at time t, the worst-case finishing time of task J_i can be easily computed as

$$f_i = \sum_{k=1}^i c_k(t).$$

Thus, the schedulability can be guaranteed by the following conditions:

$$\forall i = 1, \dots, n \qquad \sum_{k=1}^{i} c_k(t) \le d_i. \tag{3.2}$$

Noting that $f_i = f_{i-1} + c_i(t)$ (where $f_0 = 0$ by definition), the dynamic guarantee test can be performed in O(n) by executing the algorithm shown in Figure 3.7.

3.4 NON-PREEMPTIVE SCHEDULING

When preemption is not allowed and tasks can have arbitrary arrivals, the problem of minimizing the maximum lateness and the problem of finding a feasible schedule become NP-hard [GLLK79, LRKB77, KIM78]. Figure 3.8 illustrates an example that shows that EDF is no longer optimal if tasks cannot be preempted during their execution. In fact, although a feasible schedule exists for that task set (see Figure 3.8a), EDF does not produce a feasible schedule (see Figure 3.8b), since J_2 executes one unit of time after its deadline. This happens because EDF immediately assigns the processor to task J_1 ; thus, when J_2 arrives at time t = 1, J_1 cannot be preempted. J_2 can start only at time t = 4, after J_1 completion, but it is too late to meet its deadline.

Notice, however, that in the optimal schedule shown in Figure 3.8a the processor remains idle in the interval [0, 1) although J_1 is ready to execute. If arrival times are not

```
Algorithm: EDF_guarantee(\mathcal{J}, J_{new})

{

\mathcal{J}' = \mathcal{J} \cup \{J_{new}\}; /* ordered by deadline */

t = current_time();

f_0 = 0;

for (each J_i \in \mathcal{J}') {

f_i = f_{i-1} + c_i(t);

if (f_i > d_i) return(UNFEASIBLE);

}

return(FEASIBLE);

}
```


Figure 3.8 EDF is not optimal in a non-preemptive model. In fact, although there exists a feasible schedule (a), the schedule produced by EDF (b) is infeasible.

Figure 3.9 Search tree for producing a non-preemptive schedule.

known a priori, then no online algorithm can decide whether to stay idle at time 0 or execute task J_1 . A scheduling algorithm that does not permit the processor to be idle when there are active jobs is called a *non-idle* algorithm. By restricting to the case of non-idle scheduling algorithms, Jeffay, Stanat, and Martel [JSM91] proved that EDF is still optimal in a non-preemptive task model.

When arrival times are known a priori, non-preemptive scheduling problems are usually treated by branch-and-bound algorithms that perform well in the average case but degrade to exponential complexity in the worst case. The structure of the search space is a search tree, represented in Figure 3.9, where the root is an *empty schedule*, an intermediate vertex is a *partial schedule*, and a terminal vertex (*leaf*) is a *complete schedule*. Since not all leaves correspond to feasible schedules, the goal of the scheduling algorithm is to search for a leaf that corresponds to a feasible schedule.

At each step of the search, the partial schedule associated with a vertex is extended by inserting a new task. If n is the total number of tasks in the set, the length of a path from the root to a leaf (*tree depth*) is also n, whereas the total number of leaves is n! (n factorial). An optimal algorithm, in the worst case, may make an exhaustive search to find the optimal schedule in such a tree, and this may require to analyze n paths of length n!, with a complexity of $O(n \cdot n!)$. Clearly, this approach is computationally intractable and cannot be used in practical systems when the number of tasks is high.

In this section, two scheduling approaches are presented, whose objective is to limit the search space and reduce the computational complexity of the algorithm. The first algorithm uses additional information to prune the tree and reduce the complexity in the average case. The second algorithm adopts suitable heuristics to follow promising paths on the tree and build a complete schedule in polynomial time. Heuristic algorithms may produce a feasible schedule in polynomial time; however, they do not guarantee to find it, since they do not explore all possible solutions.

3.4.1 BRATLEY'S ALGORITHM

 $(1 \mid NO_PREEM \mid FEASIBLE)$

The following algorithm was proposed by Bratley et al. in 1971 [BFR71] to solve the problem of finding a feasible schedule of a set of non-preemptive tasks with arbitrary arrival times. The algorithm starts with an empty schedule and, at each step of the search, visits a new vertex and adds a task in the partial schedule. With respect to the exhaustive search, Bratley's algorithm uses a pruning technique to determine when a current search can be reasonably abandoned. In particular, a branch is abandoned when

- the addition of any node to the current path causes a missed deadline;
- a feasible schedule is found at the current path.

To better understand the pruning technique adopted by the algorithm, consider the task set shown in Figure 3.10, which also illustrates the paths analyzed in the tree space.

To follow the evolution of the algorithm, the numbers inside each node of the tree indicate which task is being scheduled in that path, whereas the numbers beside the nodes represent the time at which the indicated task completes its execution. Whenever the addition of any node to the current path causes a missed deadline, the corresponding branch is abandoned and the task causing the timing fault is labeled with a ([†]).

In the example, the first task considered for extending the empty schedule is J_1 , whose index is written in the first node of the leftmost branch of the tree. Since J_1 arrives at t = 4 and requires two units of processing time, its worst-case finishing time is $f_1 = 6$, indicated beside the correspondent node. Before expanding the branch, however, the pruning mechanism checks whether the addition of any node to the current path may cause a timing fault, and it discovers that task J_2 would miss its deadline, if added. As a consequence, the search on this branch is abandoned and a considerable amount of computation is avoided.

In the average case, pruning techniques are very effective for reducing the search space. Nevertheless, the worst-case complexity of the algorithm is still $O(n \cdot n!)$.

Figure 3.10 Example of search performed by Bratley's algorithm.

For this reason, Bratley's algorithm can only be used in off-line mode, when all task parameters (including the arrival times) are known in advance. This can be the case of a time-triggered system, where tasks are activated at predefined instants by a timer process.

As in most off-line real-time systems, the resulting schedule produced by Bratley's algorithm can be stored in a data structure, called *task activation list*. Then, at run time, a dispatcher simply extracts the next task from the activation list and puts it in execution.

3.4.2 THE SPRING ALGORITHM

Here we describe the scheduling algorithm adopted in the *Spring* kernel [SR87, SR91], a hard real-time kernel designed at the University of Massachusetts at Amherst by Stankovic and Ramamritham to support critical control applications in dynamic environments. The objective of the algorithm is to find a feasible schedule when tasks have different types of constraints, such as precedence relations, resource constraints, arbitrary arrivals, non-preemptive properties, and importance levels. The Spring algorithm is used in a distributed computer architecture and can also be extended to include fault-tolerance requirements.

Clearly, this problem is NP-hard and finding a feasible schedule would be too expensive in terms of computation time, especially for dynamic systems. In order to make the algorithm computationally tractable even in the worst case, the search is driven by a *heuristic function* H, which actively directs the scheduling to a plausible path. On each level of the search, function H is applied to each of the tasks that remain to be scheduled. The task with the smallest value determined by the heuristic function H is selected to extend the current schedule.

The heuristic function is a very flexible mechanism to easily define and modify the scheduling policy of the kernel. For example, if $H = a_i$ (arrival time) the algorithm behaves as First Come First Served, if $H = C_i$ (computation time) it works as Shortest Job First, whereas if $H = d_i$ (deadline) the algorithm is equivalent to Earliest Deadline First.

To consider resource constraints in the scheduling algorithm, each task J_i has to declare a binary array of resources $R_i = [R_1(i), \ldots, R_r(i)]$, where $R_k(i) = 0$ if J_i does not use resource R_k , and $R_k(i) = 1$ if J_i uses R_k in exclusive mode. Given a partial schedule, the algorithm determines, for each resource R_k , the earliest time the resource is available. This time is denoted as EAT_k (Earliest Available Time). Thus, the earliest start time that a task J_i can begin the execution without blocking on shared resources is

$$T_{est}(i) = \max[a_i, \max_k(EAT_k)],$$

where a_i is the arrival time of J_i . Once T_{est} is calculated for all the tasks, a possible search strategy is to select the task with the smallest value of T_{est} . Composed heuristic functions can also be used to integrate relevant information on the tasks, such as

$$H = d + W \cdot C$$
$$H = d + W \cdot T_{est}$$

H = a	First Come First Served (FCFS)
H = C	Shortest Job First (SJF)
H = d	Earliest Deadline First (EDF)
$H = T_{est}$	Earliest Start Time First (ESTF)
H = d + w C	EDF + SJF
$H = d + w T_{est}$	EDF + ESTF

Figure 3.11 Example of heuristic functions that can be adopted in the Spring algorithm.

where W is a weight that can be adjusted for different application environments. Figure 3.11 shows some possible heuristic functions that can be used in Spring to direct the search process.

In order to handle precedence constraints, another factor E, called *eligibility*, is added to the heuristic function. A task becomes eligible to execute ($E_i = 1$) only when all its ancestors in the precedence graph are completed. If a task is not eligible, then $E_i = \infty$; hence, it cannot be selected for extending a partial schedule.

While extending a partial schedule, the algorithm determines whether the current schedule is *strongly feasible*; that is, also feasible by extending it with any of the remaining tasks. If a partial schedule is found not to be strongly feasible, the algorithm stops the search process and announces that the task set is not schedulable, otherwise the search continues until a complete feasible schedule is met. Since a feasible schedule is reached through n nodes and each partial schedule requires the evaluation of most n heuristic functions, the complexity of the Spring algorithm is $O(n^2)$.

Backtracking can be used to continue the search after a failure. In this case, the algorithm returns to the previous partial schedule and extends it by the task with the second smallest heuristic value. To restrict the overhead of backtracking, however, the maximum number of possible backtracks must be limited. Another method to reduce the complexity is to restrict the number of evaluations of the heuristic function. Due to that, if a partial schedule is found to be strongly feasible, the heuristic function is applied not to all the remaining tasks but only to the k remaining tasks with the earliest deadlines. Given that only k tasks are considered at each step, the complexity becomes

O(kn). If the value of k is constant (and small, compared to the task set size), then the complexity becomes linearly proportional to the number of tasks.

A disadvantage of the heuristic scheduling approach is that it is not optimal. This means that, if there is a feasible schedule, the Spring algorithm may not find it.

3.5 SCHEDULING WITH PRECEDENCE CONSTRAINTS

The problem of finding an optimal schedule for a set of tasks with precedence relations is in general *NP*-hard. However, optimal algorithms that solve the problem in polynomial time can be found under particular assumptions on the tasks. In this section we present two algorithms that minimize the maximum lateness by assuming synchronous activations and preemptive scheduling, respectively.

3.5.1 LATEST DEADLINE FIRST

 $(1 \mid PREC, SYNC \mid L_{MAX})$

In 1973, Lawler [Law73] presented an optimal algorithm that minimizes the maximum lateness of a set of tasks with precedence relations and simultaneous arrival times. The algorithm is called *Latest Deadline First* (LDF) and can be executed in polynomial time with respect to the number of tasks in the set.

Given a set \mathcal{J} of *n* tasks and a directed acyclic graph (DAG) describing their precedence relations, LDF builds the scheduling queue from tail to head: among the tasks without successors or whose successors have been all selected, LDF selects the task with the latest deadline to be scheduled last. This procedure is repeated until all tasks in the set are selected. At run time, tasks are extracted from the head of the queue, so that the first task inserted in the queue will be executed last, whereas the last task inserted in the queue will be executed first.

The correctness of this rule is proved as follows: Let \mathcal{J} be the complete set of tasks to be scheduled, let $\Gamma \subseteq \mathcal{J}$ be the subset of tasks without successors, and let J_l be the task in Γ with the latest deadline d_l . If σ is any schedule that does not follow the EDL rule, then the last scheduled task, say J_k , will not be the one with the latest deadline; thus $d_k \leq d_l$. Since J_l is scheduled before J_k , let us partition Γ into four subsets, so that $\Gamma = A \cup \{J_l\} \cup B \cup \{J_k\}$. Clearly, in σ the maximum lateness for Γ is greater or equal to $L_k = f - d_k$, where $f = \sum_{i=1}^n C_i$ is the finishing time of task J_k .

We show that moving J_l to the end of the schedule cannot increase the maximum lateness in Γ , which proves the optimality of LDF. To do that, let σ^* be the schedule obtained from σ after moving task J_l to the end of the queue and shifting all other tasks to the left. The two schedules σ and σ^* are depicted in Figure 3.12. Clearly, in σ^* the maximum lateness for Γ is given by

$$L_{max}^{*}(\Gamma) = \max[L_{max}^{*}(A), \ L_{max}^{*}(B), \ L_{k}^{*}, \ L_{l}^{*}].$$

Each argument of the max function is no greater than $L_{max}(\Gamma)$. In fact,

- $L^*_{max}(A) = L_{max}(A) \le L_{max}(\Gamma)$ because A is not moved;
- $L^*_{max}(B) \leq L_{max}(B) \leq L_{max}(\Gamma)$ because B starts earlier in σ^* ;
- $L_k^* \leq L_k \leq L_{max}(\Gamma)$ because task J_k starts earlier in σ^* ;
- $L_l^* = f d_l \le f d_k \le L_{max}(\Gamma)$ because $d_k \le d_l$.

Figure 3.12 Proof of LDF optimality.

Since $L_{max}^*(\Gamma) \leq L_{max}(\Gamma)$, moving J_l to the end of the schedule does not increase the maximum lateness in Γ . This means that scheduling last the task J_l with the latest deadline minimizes the maximum lateness in Γ . Then, removing this task from \mathcal{J} and repeating the argument for the remaining n-1 tasks in the set $\mathcal{J} - \{J_l\}$, LDF can find the second-to-last task in the schedule, and so on. The complexity of the LDF algorithm is $O(n^2)$, since for each of the n steps it needs to visit the precedence graph to find the subset Γ with no successors. Consider the example depicted in Figure 3.13, which shows the parameters of six tasks together with their precedence graph. The numbers beside each node of the graph indicate task deadlines. Figure 3.13 also shows the schedule produced by EDF to highlight the differences between the two approaches. The EDF schedule is constructed by selecting the task with the earliest deadline among the current eligible tasks. Notice that EDF is not optimal under precedence constraints, since it achieves a greater L_{max} with respect to LDF.

Figure 3.13 Comparison between schedules produced by LDF and EDF on a set of tasks with precedence constraints.

3.5.2 EDF WITH PRECEDENCE CONSTRAINTS

 $(1 \mid PREC, PREEM \mid L_{MAX})$

The problem of scheduling a set of n tasks with precedence constraints and dynamic activations can be solved in polynomial time complexity only if tasks are preemptable. In 1990, Chetto, Silly, and Bouchentouf [CSB90] presented an algorithm that solves this problem in elegant fashion. The basic idea of their approach is to transform a set \mathcal{J} of dependent tasks into a set \mathcal{J}^* of independent tasks by an adequate modification of timing parameters. Then, tasks are scheduled by the Earliest Deadline First (EDF) algorithm. The transformation algorithm ensures that \mathcal{J} is schedulable and the precedence constraints are obeyed if and only if \mathcal{J}^* is schedulable. Basically, all release times and deadlines are modified so that each task cannot start before its predecessors and cannot preempt their successors.

MODIFICATION OF THE RELEASE TIMES

The rule for modifying tasks' release times is based on the following observation. Given two tasks J_a and J_b , such that $J_a \rightarrow J_b$ (that is, J_a is an immediate predecessor of J_b), then in any valid schedule that meets precedence constraints the following conditions must be satisfied (see Figure 3.14):

- $s_b \ge r_b$ (that is, J_b must start the execution not earlier than its release time);
- $s_b \ge r_a + C_a$ (that is, J_b must start the execution not earlier than the minimum finishing time of J_a).

Figure 3.14 If $J_a \to J_b$, then the release time of J_b can be replaced by $\max(r_b, r_a + C_a)$.

Therefore, the release time r_b of J_b can be replaced by the maximum between r_b and $(r_a + C_a)$ without changing the problem. Let r_b^* be the new release time of J_b . Then,

$$r_b^* = \max(r_b, r_a + C_a)$$

The algorithm that modifies the release times can be implemented in $O(n^2)$ and can be described as follows:

- 1. For any initial node of the precedence graph, set $r_i^* = r_i$.
- 2. Select a task J_i such that its release time has not been modified but the release times of all immediate predecessors J_h have been modified. If no such task exists, exit.
- 3. Set $r_i^* = \max[r_i, \max(r_h^* + C_h : J_h \to J_i)].$
- 4. Return to step 2.

MODIFICATION OF THE DEADLINES

The rule for modifying tasks' deadlines is based on the following observation. Given two tasks J_a and J_b , such that $J_a \rightarrow J_b$ (that is, J_a is an immediate predecessor of J_b), then in any feasible schedule that meets the precedence constraints the following conditions must be satisfied (see Figure 3.15):

 $f_a \leq d_a$ (that is, J_a must finish the execution within its deadline);

 $f_a \leq d_b - C_b$ (that is, J_a must finish the execution not later than the maximum start time of J_b).

Figure 3.15 If $J_a \to J_b$, then the deadline of J_a can be replaced by $\min(d_a, d_b - C_b)$.

Therefore, the deadline d_a of J_a can be replaced by the minimum between d_a and $(d_b - C_b)$ without changing the problem. Let d_a^* be the new deadline of J_a . Then,

$$d_a^* = \min(d_a, d_b - C_b)$$

The algorithm that modifies the deadlines can be implemented in $O(n^2)$ and can be described as follows:

- 1. For any terminal node of the precedence graph, set $d_i^* = d_i$.
- 2. Select a task J_i such that its deadline has not been modified but the deadlines of all immediate successors J_k have been modified. If no such task exists, exit.
- 3. Set $d_i^* = \min[d_i, \min(d_k^* C_k : J_i \to J_k)].$
- 4. Return to step 2.

PROOF OF OPTIMALITY

The transformation algorithm ensures that if a feasible schedule exists for the modified task set \mathcal{J}^* under EDF, then the original task set \mathcal{J} is also schedulable; that is, all tasks in \mathcal{J} meet both precedence and timing constraints. In fact, if \mathcal{J}^* is schedulable, all modified tasks start at or after time r_i^* and are completed at or before time d_i^* . Since $r_i^* \geq r_i$ and $d_i^* \leq d_i$, the schedulability of \mathcal{J}^* implies that \mathcal{J} is also schedulable.

To show that precedence relations in \mathcal{J} are not violated, consider the example illustrated in Figure 3.16, where J_1 must precede J_2 (i.e., $J_1 \rightarrow J_2$), but J_2 arrives before J_1 and has an earlier deadline. Clearly, if the two tasks are executed under EDF, their precedence relation cannot be met. However, if we apply the transformation algorithm, the time constraints are modified as follows:

$$\begin{cases} r_1^* = r_1 \\ r_2^* = \max(r_2, r_1 + C_1) \end{cases} \begin{cases} d_1^* = \min(d_1, d_2 - C_2) \\ d_2^* = d_2 \end{cases}$$

This means that, since $r_2^* > r_1^*$, J_2 cannot start before J_1 . Moreover, J_2 cannot preempt J_1 because $d_1^* < d_2^*$ and, based on EDF, the processor is assigned to the task with the earliest deadline. Hence, the precedence relation is respected.

In general, for any pair of tasks such that $J_i \prec J_j$, we have $r_i^* \leq r_j^*$ and $d_i^* \leq d_j^*$. This means that, if J_i is in execution, then all successors of J_i cannot start before r_i because

Figure 3.16 The transformation algorithm preserves the timing and the precedence constraints.

 $r_i^* \leq r_j^*$. Moreover, they cannot preempt J_i because $d_i^* \leq d_j^*$ and, according to EDF, the processor is assigned to the ready task having the earliest deadline. Therefore, both timing and precedence constraints specified for task set \mathcal{J} are guaranteed by the schedulability of the modified set \mathcal{J}^* .

3.6 SUMMARY

The scheduling algorithms described in this chapter for handling real-time tasks with aperiodic arrivals can be compared in terms of assumptions on the task set and computational complexity. Figure 3.17 summarizes the main characteristics of such algorithms and can be used for selecting the most appropriate scheduling policy for a particular problem.

	sync. activation	preemptive async. activation	non-preemptive async. activation
independent	EDD (Jackson '55) O(n logn) Optimal	EDF (Horn '74) $O(n^2)$ Optimal	<i>Tree search</i> (Bratley '71) <i>O</i> (<i>n n</i> !) Optimal
precedence constraints	LDF (Lawler '73) $O(n^2)$ Optimal	EDF * (Chetto et al. '90) $O(n^2)$ Optimal	Spring (Stankovic & Ramamritham '87) $O(n^2)$ Heuristic

Figure 3.17 Scheduling algorithms for aperiodic tasks.

Exercises

3.1 Check whether the Earliest Due Date (EDD) algorithm produces a feasible schedule for the following task set (all tasks are synchronous and start at time t = 0):

	J_1	J_2	J_3	J_4
C_i	4	5	2	3
D_i	9	16	5	10

- 3.2 Write an algorithm for finding the maximum lateness of a task set scheduled by the EDD algorithm.
- 3.3 Draw the full scheduling tree for the following set of non-preemptive tasks and mark the branches that are pruned by the Bratley's algorithm.

	J_1	J_2	J_3	J_4
a_i	0	4	2	6
C_i	6	2	4	2
D_i	18	8	9	10

3.4 On the scheduling tree developed in the previous exercise find the path produced by the Spring algorithm using the following heuristic function: H = a + C + D. Then find a heuristic function that produces a feasible schedule. 3.5 Given seven tasks, *A*, *B*, *C*, *D*, *E*, *F*, and *G*, construct the precedence graph from the following precedence relations:

$$\begin{array}{ll} A \to C \\ B \to C \\ C \to E \\ D \to F \end{array} \begin{array}{ll} B \to D \\ C \to F \\ D \to G \end{array}$$

Then, assuming that all tasks arrive at time t = 0, have deadline D = 25, and computation times 2, 3, 3, 5, 1, 2, 5, respectively, modify their arrival times and deadlines to schedule them by EDF.