
13
SOLUTIONS TO THE EXERCISES

SOLUTIONS FOR CHAPTER 1

1.1 Fast computing tends to minimize the average response time of computation
activities, whereas real-time computing is required to guarantee the timing con-
straints of each task.

1.2 The main limitations of the current real-time kernels are mainly due to the fact
that they are developed to minimize runtime overhead (hence functionality)
rather than offering support for a predictable execution. For example, short in-
terrupt latency is good for servicing I/O devices, but introduces unpredictable
delays in task execution for the high priority given to the interrupt handlers.
Scheduling is mostly based on fixed priority, and explicit timing constraints
cannot be specified on tasks. No specific support is usually provided for peri-
odic tasks and no aperiodic service mechanism is available for handling event-
driven activities. Access to shared resources is often realized through classical
semaphores, which are efficient, but prone to priority inversion if no protocol
is implemented for entering critical sections. Finally, no temporal protection
or resource reservation mechanism is usually available in current real-time ker-
nels for coping with transient overload conditions, so a task executing too much
may introduce unbounded delays on the other tasks.

1.3 A real-time kernel should allow the user to specify explicit timing constraints
on application tasks and support a predictable execution of real-time activi-
ties with specific real-time mechanisms, including scheduling, resource man-
agement, synchronization, communication, and interrupt handling. In critical

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1

4
13

57

 Springer Science+Business Media, LLC 2011©

458 Chapter 13

real-time systems, predictability is more important than high performance, and
often an increased functionality can only be reached at the expense of a higher
runtime overhead. Other important features that a real-time system should have
include maintainability, fault-tolerance, and overload management.

1.4 Three approaches can be used. The first one is to disable all external interrupts,
letting application tasks access peripheral devices through polling. This solu-
tion gives great programming flexibility and reduces unbounded delays caused
by the driver execution, but it characterized by a low processor efficiency on
I/O operations, due to the busy wait.

A second solution is to disable interrupts and handle I/O devices by polling
through a dedicated periodic kernel routine, whose load can be taken into ac-
count through a specific utilization factor. As in the previous solution, the
major problem of this approach is due to the busy wait, but the advantage is
that all hardware details can be encapsulated into a kernel routine and do not
need to be known to the application tasks. An additional overhead is due to the
extra communication required among application tasks and the kernel routine
for exchanging I/O data.

A third approach is to enable interrupts but limit the execution of interrupt
handlers as much as possible. In this solution, the interrupt handler activates a
device handler, which is a dedicated task that is scheduled (and guaranteed) by
the kernel as any other application task. This solution is efficient and minimizes
the interference caused by interrupts.

1.5 The restrictions that should be used in a programming language to permit
the analysis of real-time applications should limit the variability of execution
times. Hence, a programmer should avoid using dynamic data structures, re-
cursion, and all high level constructs that make execution time unpredictable.
Possible language extensions should be aimed at facilitating the estimation of
worst-case execution times. For example, a language could allow the program-
mer to specify the maximum number of iterations in each loop construct, and
the probability of taking a branch in conditional statements.

SOLUTIONS FOR CHAPTER 2

2.1 A schedule is formally defined as a step function σ : R+ → N such that
∀t ∈ R+, ∃t1, t2 such that t ∈ [t1, t2) and ∀t′ ∈ [t1, t2) σ(t) = σ(t′). For any
k > 0, σ(t) = k, means that task Jk is executing at time t, while σ(t) = 0

Solutions to the exercises 459

means that the CPU is idle. A schedule is said to be preemptive if the running
task can be arbitrarily suspended at any time to assign the CPU to another task
according to a predefined scheduling policy. In a preemptive schedule, tasks
may be executed in disjointed interval of times. In a non-preemptive schedule,
a running task cannot be interrupted and therefore it proceeds until completion.

2.2 A periodic task consists of an infinite sequence of identical jobs that are regu-
larly activated at a constant rate. If φi is the activation time of the first job of
task τi, the activation time of the kth job is given by φ i +(k−1)Ti, where Ti is
the task period. Aperiodic tasks also consist of an infinite sequence of identical
jobs; however, their activations are not regular. An aperiodic task where con-
secutive jobs are separated by a minimum interarrival time is called a sporadic
task. The most important timing parameters defined for a real-time task are

the arrival time (or release time); that is, the time at which a task becomes
ready for execution;

the computation time; that is, the time needed by the processor for exe-
cuting the task without interruption;

the absolute deadline; that is, the time before which a task should be
completed to avoid damage to the system;

the finishing time; that is, the time at which a task finishes its execution;

the response time; that is, the difference between the finishing time and
the release time: Ri = fi − ri;

2.3 A real-time application consisting of tasks with precedence relations is shown
in Section 2.2.2.

2.4 A static scheduler is one in which scheduling decisions are based on fixed pa-
rameters, assigned to tasks before their activation. In a dynamic scheduler,
scheduling decisions are based on dynamic parameters that may change dur-
ing system evolution. A scheduler is said to be off-line if it is pre-computed
(before task activation) and stored in a table. In an online scheduler, schedul-
ing decisions are taken at runtime when a new task enters the system or when
a running task terminates. An algorithm is said to be optimal if it minimizes
some given cost function defined over the task set. A common optimality cri-
terion for real-time system is related to feasibility. Then, a scheduler is optimal
whenever it can find a feasible schedule, if one exists. Heuristic schedulers use
a heuristic function to search for a feasible schedule; hence it is not guaranteed
that a feasible solution is found.

2.5 An example of domino effect is shown in Figure 2.15.

460 Chapter 13

SOLUTIONS FOR CHAPTER 3

3.1 To check whether the EDD algorithm produces a feasible schedule, tasks must
be ordered with increasing deadlines, as shown in Table 13.1:

J ′
1 J ′

2 J ′
3 J ′

4

C′
i 2 4 3 5

D′
i 5 9 10 16

Table 13.1 Task set ordered by deadline.

Then applying Equation (3.1) we have

f ′
1 = C′

1 = 2
f ′
2 = f ′

1 + C′
2 = 6

f ′
3 = f ′

2 + C′
3 = 9

f ′
4 = f ′

3 + C′
4 = 14

Since each finishing time is less than the corresponding deadline, the task set
is schedulable by EDD.

3.2 The algorithm for finding the maximum lateness of a task set scheduled by the
EDD algorithm is shown in Figure 13.1.

3.3 The scheduling tree constructed by the Bratley’s algorithm for the following
set of non-preemptive tasks is illustrated in Figure 13.2.

J1 J2 J3 J4

ai 0 4 2 6
Ci 6 2 4 2
Di 18 8 9 10

Table 13.2 Task set parameters for the Bratley’s algorithm.

3.4 The schedule found by the Spring algorithm on the scheduling tree developed
in the previous exercise with the heuristic function H = a + C + D is {J2, J4,
J3, J1}, which is unfeasible, since J3 and J4 miss their deadlines. Noted that
the feasible solution is found with H = a + d.

Solutions to the exercises 461

Algorithm: EDD Lmax(J)
{

Lmax = −Dn;

f0 = 0;

for (each Ji ∈ J) {
fi = fi−1 + Ci;

Li = fi + Di;

if (Li > Lmax) Lmax = Li;

}
return(Lmax);

}

Figure 13.1 Algorithm for finding the maximum lateness of a task set scheduled by EDD.

1 3

2

1 4

1

14 10

8

66

16

6

2
8

4

41
812

33

2

2

4

2

Figure 13.2 Scheduling tree constructed by the Bratley’s algorithm for the task set shown
in Table 13.2.

3.5 The precedence graph is shown in Figure 13.3.

By applying the transformation algorithm by Chetto and Chetto, we get the
parameters shown in Table 13.3.

So the schedule produced by EDF will be {B, A, D, C, E, F , G}.

462 Chapter 13

A B

C D

E F G

Figure 13.3 Precedence graph for Exercise 3.5.

Ci ri r∗i di d∗i
A 2 0 0 25 20
B 3 0 0 25 15
C 3 0 3 25 23
D 5 0 3 25 20
E 1 0 6 25 25
F 2 0 8 25 25
G 5 0 8 25 25

Table 13.3 Task set parameters modified by the Chetto and Chetto’s algorithm.

SOLUTIONS FOR CHAPTER 4

4.1 The processor utilization factor of the task set is

U =
2
6

+
2
8

+
2
12

= 0.75

and considering that for three tasks the utilization least upper bound is

Ulub(3) = 3(21/3 − 1) 0.78

from the Liu and Layland test, since U ≤ U lub, we can conclude that the task
set is schedulable by RM, as shown in Figure 13.4.

Solutions to the exercises 463

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.4 Schedule produced by Rate Monotonic for the task set of Exercise 4.1.

4.2 The processor utilization factor of the task set is

U =
3
5

+
1
8

+
1
10

= 0.825,

which is greater than Ulub(3). Hence, we cannot verify the feasibility with the
Liu and Layland test. Using the Hyperbolic Bound, we have the following:

n∏
i=1

(Ui + 1) = 1.98,

which is less than 2. Hence, we can conclude that the task set is schedulable
by RM, as shown in Figure 13.5.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.5 Schedule produced by Rate Monotonic for the task set of Exercise 4.2.

4.3 Applying the Liu and Layland test we have

U =
1
4

+
2
6

+
3
10

= 0.88 > 0.78,

so we cannot conclude anything. With the Hyperbolic Bound we have

n∏
i=1

(Ui + 1) = 2.16 > 2

464 Chapter 13

so we cannot conclude anything. Applying the Response Time Analysis we
have to compute the response times and verify that they are less than or equal
to the relative deadlines (which in this case are equal to periods). Hence, we
have the following:

R1 = C1 = 1

So τ1 does not miss its deadline. For τ2 we have

R
(0)
2 =

2∑
j=1

Cj = C1 + C2 = 3

R
(1)
2 = C2 +

⌈
R

(0)
2

T1

⌉
C1 = 2 +

⌈
3
4

⌉
1 = 3.

So R2 = 3, meaning that τ2 does not miss its deadline. For τ3 we have

R
(0)
3 =

3∑
j=1

Cj = C1 + C2 + C3 = 6

R
(1)
3 = C3 +

⌈
R

(0)
3

T1

⌉
C1 +

⌈
R

(0)
3

T2

⌉
C2 = 2 +

⌈
6
4

⌉
1 +

⌈
6
6

⌉
2 = 7

R
(2)
3 = 2 +

⌈
7
4

⌉
1 +

⌈
7
6

⌉
2 = 9

R
(3)
3 = 2 +

⌈
9
4

⌉
1 +

⌈
9
6

⌉
2 = 10

R
(4)
3 = 2 +

⌈
10
4

⌉
1 +

⌈
10
6

⌉
2 = 10.

So R3 = 10, meaning that τ3 does not miss its deadline. Hence, we can
conclude that the task set is schedulable by RM, as shown in Figure 13.6.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.6 Schedule produced by Rate Monotonic for the task set of Exercise 4.3.

Solutions to the exercises 465

4.4 Applying the Response Time Analysis, we can easily verify that R3 = 10 (see
the solution of the previous exercise); hence the task set is not schedulable by
RM.

4.5 Since

U =
1
4

+
2
6

+
3
8

= 0.96 < 1

the task set is schedulable by EDF, as shown in Figure 13.7.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.7 Schedule produced by EDF for the task set of Exercise 4.5.

4.6 Applying the processor demand criterion, we have to verify that

∀L ∈ D
n∑

i=1

⌊
L + Ti −Di

Ti

⌋
Ci ≤ L.

where
D = {dk | dk ≤ min(L∗, H)}.

For the specific example, we have

U =
2
6

+
2
8

+
4
12

=
11
12

L∗ =
∑n

i=1(Ti −Di)Ui

1− U
= 32

H = lcm(6, 8, 12) = 24.

Hence, the set of checking points is given by D = {4, 5, 8, 11, 12, 17, 20, 23}.
Since the demand in these intervals is {2, 4, 8, 10, 12, 14, 20, 22}we can con-
clude that the task set is schedulable by EDF. The resulting schedule is shown
in Figure 13.8.

4.7 Applying the Response Time Analysis, we have to start by computing the re-
sponse time of task τ2, which is the one with the shortest relative deadline, and
hence the highest priority:

R2 = C2 = 2.

466 Chapter 13

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.8 Schedule produced by EDF for the task set of Exercise 4.6.

So τ2 does not miss its deadline. For τ1 we have

R
(0)
1 =

2∑
j=1

Cj = C1 + C2 = 4

R
(1)
1 = C1 +

⌈
R

(0)
1

T2

⌉
C2 = 2 +

⌈
4
8

⌉
2 = 4

So R1 = 4, meaning that τ1 does not miss its deadline. For τ3 we have

R
(0)
3 =

3∑
j=1

Cj = C1 + C2 + C3 = 8

R
(1)
3 = C3 +

⌈
R

(0)
3

T2

⌉
C2 +

⌈
R

(0)
3

T1

⌉
C1 = 4 +

⌈
8
8

⌉
2 +

⌈
8
6

⌉
2 = 10

And since R
(1)
3 > D3, we can conclude that the task set is not schedulable by

DM. The resulting schedule is shown in Figure 13.9.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 13.9 Schedule produced by Deadline Monotonic for the task set of Exercise 4.7.

Solutions to the exercises 467

SOLUTIONS FOR CHAPTER 5

5.1 The maximum Sporadic Server size can be computed by Equation (5.24):

Umax
SS =

2− P

P

where

P =
n∏

i=1

(Ui + 1) =
7
6
· 9
7

=
3
2
.

Hence substituting the value of P into Equation (5.24) we have

Umax
SS =

1
3
.

To enhance aperiodic responsiveness, the server must run at the highest priority,
and this can be achieved by setting its period to Ts = T1 = 6. Then, assuming
Us = Umax

SS , its capacity will be Cs = UsTs = 2.

5.2 The maximum Deferrable Server size can be computed by Equation (5.15).
Hence:

Umax
DS =

2− P

2P − 1
.

And substituting the value of P = 3/2 into Equation (5.15) we have

Umax
DS =

1
4
.

Hence, by setting Us = Umax
DS and Ts = T1 = 6, the capacity will be Cs =

UsTs = 6/4 = 1.5.

5.3 Following the same steps reported in Exercise 5.1, we know that the maximum
utilization that can be assigned to a Polling Server to guarantee the periodic
task set is

Umax
PS =

2− P

P
=

1
3
.

So, by setting Ts = 6 (intermediate priority) and Cs = 2, we satisfy the con-
straints. The resulting schedule is illustrated in Figure 13.10.

468 Chapter 13

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

3 1 1

ape

PS

Figure 13.10 Schedule produced by Rate Monotonic and Polling Server for the task set
of Exercise 5.3.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

3 1 1

ape

SS +2 +2 +1

Figure 13.11 Schedule produced by Rate Monotonic and Sporadic Server for the task set
of Exercise 5.4.

5.4 A Sporadic Server can be guaranteed with the same method used for the Polling
Server. So, using the same parameters computed before (C s = 2 and Ts = 6)
we have the schedule shown in Figure 13.11.

5.5 Applying Equation (5.15) to the considered task set, we see that the maximum
utilization that can be assigned to a Deferrable Server to guarantee the periodic
task set is Usmax = 1/4. So, by setting Ts = 4 (maximum priority) and
Cs = 1, we satisfy the constraints. The resulting schedule is illustrated in
Figure 13.12.

Solutions to the exercises 469

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

DS

3 1 1

ape

Figure 13.12 Schedule produced by Rate Monotonic and Deferrable Server for the task
set of Exercise 5.5.

5.6 The resulting schedule is illustrated in Figure 13.13.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

2

ape

SS

1 2

+2 +1 +1+1

Figure 13.13 Schedule produced by Rate Monotonic and Sporadic Server for the task set
of Exercise 5.6.

470 Chapter 13

SOLUTIONS FOR CHAPTER 6

6.1 For any dynamic server we must have Up + Us ≤ 1; hence, considering that
Up = 2/3, the maximum server utilization that can be assigned to a Dynamic
Sporadic Server is

Us = 1− Up = 1/3.

6.2 The deadlines computed by the server for the aperiodic jobs result: d 1 = a1 +
Ts = 7, d2 = d1 + Ts = 13, and d3 = a3 + Ts = 21. The resulting schedule
produced by EDF + DSS is illustrated in Figure 13.14.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

ape

3 1 1

DSS +2 +2 +1

d3d2d1

Figure 13.14 Schedule produced by EDF + DDS for the task set of Exercise 6.2.

6.3 The deadlines computed by the server for the aperiodic jobs are d 1 = a1 +
C1/Us = 10, d2 = d1 + C2/Us = 13, and d3 = a3 + C3/Us = 18. The
resulting schedule produced by EDF + TBS is illustrated in Figure 13.15.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3 1 1TBS d1 d3d2

Figure 13.15 Schedule produced by EDF + TBS for the task set of Exercise 6.3.

Solutions to the exercises 471

6.4 The events handled by the CBS are

time event action

t = 1 arrival cs = Qs, ds = a1 + Ts = 7
t = 4 cs = 0 cs = Qs, ds = ds + Ts = 13
t = 5 arrival enqueue request
t = 11 cs = 0 cs = Qs, ds = ds + Ts = 19
t = 15 arrival cs = Qs, ds = a3 + Ts = 21

The resulting schedule produced by EDF + CBS is illustrated in Figure 13.16.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

ape

3 1 1

CBS

d2d1 d3

Figure 13.16 Schedule produced by EDF + CBS for the task set of Exercise 6.4.

6.5 The deadlines computed by the server are

d
(0)
1 = a1 + C1/Us = 10

d
(1)
1 = f

(0)
1 = 8

d
(0)
2 = d

(0)
2 + C2/Us = 13

d
(1)
2 = f

(0)
2 = 11

d
(0)
3 = a3 + C3/Us = 18

d
(1)
3 = f

(0)
3 = 16.

The resulting schedule produced by EDF + TB(1) is illustrated in Figure 13.17.

472 Chapter 13

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3 1TB(1) d1 d2 d31

Figure 13.17 Schedule produced by EDF + TB(1) for the task set of Exercise 6.5.

6.6 The deadlines computed by the server are

d
(0)
1 = a1 + C1/Us = 10

d
(1)
1 = f

(0)
1 = 8

d
(2)
1 = f

(1)
1 = 5

d
(3)
1 = f

(2)
1 = 4

d
(0)
2 = d

(0)
2 + C2/Us = 13

d
(1)
2 = f

(0)
2 = 11

d
(2)
2 = f

(1)
2 = 9

d
(3)
2 = f

(2)
2 = 6

d
(0)
3 = a3 + C3/Us = 18

d
(1)
3 = f

(0)
3 = 16.

The resulting schedule produced by EDF + TB* is illustrated in Figure 13.18.

6.7 The resulting schedule is illustrated in Figure 13.19.

Solutions to the exercises 473

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU = 1/3

3TB* d31d1 d21

Figure 13.18 Schedule produced by EDF + TB* for the task set of Exercise 6.6.

τ 1

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

0 2 4 6 8 10 12 14 16 18 20 22 24

sU

sU

TBS2

1TBS1

= 1/10

= 1/6

d11 d2

21 d1 d2

Figure 13.19 Schedule produced by EDF+TB1+TB2 for the task set of Exercise 6.7.

6.8 First of all, the utilization of the periodic task set is

Up =
8
20

+
6
30

=
3
5

= 0.6;

hence, the largest utilization that can be assigned to a CBS is Us = 1 − Up =
0.4. Then, converting all times in microseconds and substituting the values in
Equation (6.15) we obtain

Cavg = 1200 μs

Ts =
10
4

(
20 +

√
20 · 1200

0.6

)
= 550μs

Qs = TsUs = 220μs.

474 Chapter 13

SOLUTIONS FOR CHAPTER 7

7.1 Applying Equation (7.19), we can verify that

∀i, 1 ≤ i ≤ n,

i∑
k=1

Ck

Tk
+

Bi

Ti
≤ i(21/i − 1).

So we have

C1 + B1

T1
=

9
10

< 1

C1

T1
+

C2 + B2

T2
=

4
10

+
6
15

= 0.8 < 0.83

C1

T1
+

C2

T2
+

C3

T3
=

4
10

+
3
15

+
4
20

= 0.8 > 0.78.

Being condition (7.19) only sufficient, we cannot conclude anything about fea-
sibility. By applying the response time analysis we have to verify that

∀i, 1 ≤ i ≤ n, Ri ≤ Di

where

Ri = Ci + Bi +
i−1∑
k=1

⌈
Ri

Tk

⌉
Ck.

So we have

R1 = C1 + B1 = 9 < 10

R
(0)
2 = C1 + C2 + B2 = 10

R
(1)
2 = C2 + B2 +

⌈
10
10

⌉
4 = 10 < 15

R
(0)
3 = C1 + C2 + C3 = 11

R
(1)
3 = C3 +

⌈
11
10

⌉
4 +

⌈
11
15

⌉
3 = 15

R
(2)
3 = C3 +

⌈
15
10

⌉
4 +

⌈
15
15

⌉
3 = 15 < 20.

Hence, we can conclude that the task set is schedulable by RM.

Solutions to the exercises 475

7.2 Using the Priority Inheritance Protocol, a task τ i can be blocked at most for
one critical section by each lower priority task. Moreover, a critical section
can block τi only if it belongs to a task with lower priority and it is shared
with τi (direct blocking) or with higher priority tasks (push-through blocking).
Finally, we have to consider that two critical sections cannot block a task if they
are protected by the same semaphore or they belong to the same task. Hence,
if Zi,k denotes the longest critical section of τi guarded by semaphore Sk, we
have the following:

Task τ1 can only experience direct blocking (since there are no tasks with
higher priority), and the set of critical sections that can potentially block
it is {Z2A, Z3A, Z3C}. It can be blocked at most for the duration of two
critical sections in this set. Thus, the maximum blocking time is given
by the sum of the two longest critical sections in this set. In this case,
however, note that the longest critical sections are Z3A and Z3C , which
belong to the same task; hence they cannot be selected together. Hence,
the maximum blocking time for τ1 is B1 = (δ2A − 1) + (δ3C − 1) =
2 + 5 = 7.

Task τ2 can experience direct blocking on Z3A and Z3B and push-through
blocking on Z3A and Z3C . Hence, the set of critical sections that can
potentially block τ2 is {Z3A, Z3B , Z3C}. It can be blocked at most for the
duration of one critical section in this set. Thus, the maximum blocking
time is given by the longest critical section in this set, that is Z3C . Hence,
we have B2 = δ3C − 1 = 5.

Task τ3 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 3 = 0.

7.3 Using the Priority Ceiling Protocol, a task τi can be blocked at most for one
critical section during its execution. The set of critical sections that can poten-
tially block τi is the same as that computed for the Priority Inheritance Protocol.
Hence, if Zi,k denotes the longest critical section of τi guarded by semaphore
Sk, we have the following:

The set of critical sections that can block τ1 is {Z2A, Z3A, Z3C}. Hence,
the maximum blocking time for τ1 is B1 = δ3C − 1 = 5.

The set of critical sections that can block τ2 is {Z3A, Z3B , Z3C}. Hence,
the maximum blocking time for τ2 is B2 = δ3C − 1 = 5.

Task τ3 cannot be blocked, because it is the task with the lowest priority
(it can only be preempted by higher priority tasks). Hence, B 3 = 0.

476 Chapter 13

7.4 The maximum blocking time for τ2 is given by a push-through blocking on
Z3C . For this to happen, τ3 must start first and must enter its critical section
Z3C . Then, τ1 must preempt τ3, so that τ3 can inherit the highest priority to
prevent τ2 from executing. The situation is illustrated in Figure 13.20.

τ 1

τ 2

τ 3

WC

P1

A B

A

C C

C

A B

Figure 13.20 Schedule produced by RM + PIP for the task set of Exercise 7.2.

7.5 To compute the maximum blocking time under the Priority Inheritance Proto-
col we reason as follows.

The set of critical sections that can potentially block τ1 is {Z2C , Z3B ,
Z3E , Z4A, Z4C , Z4E}. Among these, we have to select the three longest
ones, one for each lower priority task. Note that, if we select Z2C and
Z3E , we cannot select Z4E (which is the longest of τ4) because resource
E has already been selected for τ3, and we cannot select Z4C for the same
reason. So, we have to select Z4A. Hence, the maximum blocking time
for τ1 is B1 = (δ2C − 1) + (δ3E − 1) + (δ4A − 1) = 26.

Task τ2 can experience direct blocking on Z4C and push-through block-
ing on Z3B , Z3E , Z4A, Z4C , and Z4E . Hence, the set of critical sections
that can potentially block τ2 is {Z3B , Z3E , Z4A, Z4C , Z4E}. It can be
blocked at most for the duration of two critical sections in this set. Thus,
we have B2 = (δ3E − 1) + (δ4C − 1) = 21. Note that Z3E and Z4E

cannot block τ2 together.

Task τ3 can experience direct blocking on Z4E and push-through block-
ing on Z4A, Z4C , and Z4E . Hence, the set of critical sections that can
block τ3 is {Z4A, Z4C , Z4E}. It can be blocked at most for the duration
of one critical section in this set. Thus, we have B3 = δ4E − 1 = 10.

Task τ4 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 4 = 0.

Solutions to the exercises 477

7.6 The sets of critical sections that can cause blocking under the Priority Ceiling
Protocol are the same as those derived in the previous exercise for the Priority
Inheritance Protocol. The only difference is that under the Priority Ceiling
Protocol each task can only be blocked for the duration of a single critical
section. Hence, we have the following:

The set of critical sections that can potentially block τ1 is {Z2C , Z3B ,
Z3E , Z4A, Z4C , Z4E}. Hence, the maximum blocking time for τ1 is
B1 = δ3E − 1 = 13

The set of critical sections that can potentially block τ2 is {Z3B, Z3E ,
Z4A, Z4C , Z4E}. Hence, the maximum blocking time for τ2 is B2 =
δ3E − 1 = 13.

The set of critical sections that can potentially block τ3 is {Z4A, Z4C ,
Z4E}. Hence, the maximum blocking time for τ3 is B3 = δ4E − 1 = 10.

Task τ4 cannot be blocked, because it is the task with the lowest priority (it
can only be preempted by higher priority tasks). Hence, we have B 4 = 0.

7.7 The maximum blocking time for τ2 is given by a push-through blocking on C4

and E3. This means that for this to happen, τ4 must start first and must enter
its critical section C4. Then, τ3 must preempt τ4, entering E3. Now, when τ1

arrives, it experiences a chained blocking when entering C 1 and E1, which are
both locked. The situation is illustrated in Figure 13.21.

τ 1

τ 2

τ 3

τ 4

P1

WE

P1

WC

C

E

C

C

E

E

C

Figure 13.21 Schedule produced by RM + PIP for the task set of Exercise 7.7.

7.8 If tasks are assigned decreasing preemption levels as π1 = 3, π2 = 2, and
π3 = 1, the resource ceilings have the values shown in Table 13.4.

478 Chapter 13

CR(3) CR(2) CR(1) CR(0)
A 0 1 2 3
B 0 0 0 2
C - 0 2 3

Table 13.4 SRP resource ceilings resulting for Exercise 7.8.

SOLUTIONS FOR CHAPTER 8

8.1 We first note that the task set is feasible in fully preemptive mode, in fact

R1 = C1 = 2 ≤ D1

R
(0)
2 = C1 + C2 = 4

R
(1)
2 = C2 +

⌈
4
T1

⌉
C1 = 4 ≤ D2

R
(0)
3 = C1 + C2 + C3 = 8

R
(1)
3 = C3 +

⌈
8
T1

⌉
C1 +

⌈
8
T2

⌉
C2 = 10

R
(2)
3 = C3 +

⌈
10
T1

⌉
C1 +

⌈
10
T2

⌉
C2 = 12

R
(3)
3 = C3 +

⌈
12
T1

⌉
C1 +

⌈
12
T2

⌉
C2 = 12 ≤ D2

Hence, by the result of Theorem 8.1, the feasibility of the task set in non-
preemptive mode can be verified by just checking the first job of each task,
when activated at its critical instant. The critical instant for task τi occurs when
τi is activated together with all higher priority tasks, and one unit after the
longest lower priority task.

Using Equation (8.1), the blocking times result to be B1 = 3, B2 = 3, B3 = 0,
and tasks response times can be computed as Ri = Si + Ci, where Si is given

Solutions to the exercises 479

by Equation (8.8). So we have

S1 = B1 = 3
R1 = S1 + C1 = 3 + 2 = 5 ≤ D1

S
(0)
2 = B2 + C1 = 5

S
(1)
2 = B2 +

(⌊
5
T1

⌋
+ 1

)
C1 = 5

R2 = S2 + C2 = 7 > D2.

Hence, the task set is not schedulable by non-preemptive RM, since τ2 misses
its deadline.

8.2 We first note that the task set is not feasible in fully preemptive mode, since

R
(0)
3 = C1 + C2 + C3 = 9

R
(1)
3 = C3 +

⌈
9
T1

⌉
C1 +

⌈
9
T2

⌉
C2 = 12

R
(2)
3 = C3 +

⌈
12
T1

⌉
C1 +

⌈
12
T2

⌉
C2 = 15 > D3.

Therefore, the response time of a task τi cannot be restricted to its first job, but
has to be extended up to job Ki = �Li

Ti
�, where Li is the longest Level-i Active

Period. Using Equations (8.1), (8.2), and (8.3), we get the following results:

Bi Li Ki

τ1 2 5 1
τ2 2 8 1
τ3 1 37 3
τ4 0 38 1

For task τ1 we have

s1,1 = B1 = 2
f1,1 = s1,1 + C1 = 2 + 3 = 5
R1 = f1,1 = 5 ≤ D1.

480 Chapter 13

For task τ2 we have

s
(0)
2,1 = B2 + C1 = 5

s
(1)
2,1 = B2 +

(⌊
5
T1

⌋
+ 1

)
C1 = 5

f2,1 = s2,1 + C2 = 5 + 2 = 7
R2 = f2,1 = 7 ≤ D2.

For task τ3, the response time must be checked in the first three jobs.

For k = 1:

s
(0)
3,1 = B3 + C2 + C1 = 7

s
(1)
3,1 = B3 +

(⌊
7
T1

⌋
+ 1

)
C1 +

(⌊
7
T2

⌋
+ 1

)
C2 = 7

f3,1 = s3,1 + C3 = 7 + 3 = 10
R3,1 = f3,1 = 10.

For k = 2:

s
(0)
3,2 = B3 + C3 + C1 + C2 = 10

s
(1)
3,2 = B3 + C3 +

(⌊
10
T1

⌋
+ 1

)
C1 +

(⌊
10
T2

⌋
+ 1

)
C2 = 16

s
(2)
3,2 = B3 + C3 +

(⌊
16
T1

⌋
+ 1

)
C1 +

(⌊
16
T2

⌋
+ 1

)
C2 = 19

s
(3)
3,2 = B3 + C3 +

(⌊
19
T1

⌋
+ 1

)
C1 +

(⌊
19
T2

⌋
+ 1

)
C2 = 22

s
(4)
3,2 = B3 + C3 +

(⌊
22
T1

⌋
+ 1

)
C1 +

(⌊
22
T2

⌋
+ 1

)
C2 = 22

f3,2 = s3,2 + C3 = 22 + 3 = 25
R3,2 = f3,2 − T3 = 25− 14 = 11.

Solutions to the exercises 481

For k = 3:

s
(0)
3,3 = B3 + 2C3 + C1 + C2 = 13

s
(1)
3,3 = B3 + 2C3 +

(⌊
13
T1

⌋
+ 1

)
C1 +

(⌊
13
T2

⌋
+ 1

)
C2 = 19

s
(2)
3,3 = B3 + 2C3 +

(⌊
19
T1

⌋
+ 1

)
C1 +

(⌊
19
T2

⌋
+ 1

)
C2 = 25

s
(3)
3,3 = B3 + 2C3 +

(⌊
25
T1

⌋
+ 1

)
C1 +

(⌊
25
T2

⌋
+ 1

)
C2 = 28

s
(4)
3,3 = B3 + 2C3 +

(⌊
28
T1

⌋
+ 1

)
C1 +

(⌊
28
T2

⌋
+ 1

)
C2 = 31

s
(5)
3,3 = B3 + 2C3 +

(⌊
31
T1

⌋
+ 1

)
C1 +

(⌊
31
T2

⌋
+ 1

)
C2 = 31

f3,3 = s3,3 + C3 = 31 + 3 = 34
R3,3 = f3,3 − 2T3 = 34− 28 = 6.

Hence for τ3 we have that R3 = max{R3,1, R3,2, R3,3} = 11 ≤ D3. For τ4,
it can be easily verified that R4 = L4 = 38 ≤ D4. Hence, we conclude that
the task set is schedulable by non-preemptive RM.

8.3 Using the Liu and Layland test, the blocking tolerance of each task can be
computed by Equation (8.20), where U lub = 1, since tasks are scheduled by
EDF:

βi =

⎢⎢⎢⎣Ti

⎛
⎝1−

∑
h:Ph≥Pi

Ch

Th

⎞
⎠
⎥⎥⎥⎦ .

and, according to Theorem (8.2), Q i results to be:

Qi = min{Qi−1, βi−1 + 1}

where Q1 =∞ and β1 = D1 − C1. Hence, we have

Ui

∑i
h=1 Uh βi Qi

τ1 1/4 1/4 6 ∞
τ2 1/5 9/20 5 7
τ3 1/6 37/60 11 6
τ4 1/12 42/60 18 6
τ5 1/30 44/60 24 6

482 Chapter 13

Note that, being Qi ≥ Ci for all i’s, all tasks can execute non preemptively.

8.4 Under Rate Monotonic, using the Liu and Layland test, the blocking tolerance
of each task can be computed by Equation (8.20):

βi = Ti

(
Ulub(i)−

i∑
h=1

Ch

Th

)
.

And, according to Theorem (8.2), Q i results to be:

Qi = min{Qi−1, βi−1 + 1}

where Q1 =∞ and β1 = D1 − C1. Hence, we have

Ulub(i)
∑i

h=1 Uh βi Qi

τ1 1.0 1/4 6 ∞
τ2 0.828 9/20 3 7
τ3 0.780 37/60 4 4
τ4 0.757 42/60 3 4
τ5 0.743 44/60 0 4

Hence, to make the task set schedulable under RM, one preemption point must
be inserted in τ3 and τ4.

8.5 First of all, from the task structures, the following parameters can be derived:

Ci Ti Ui qmax
i qlast

i Bi

τ1 6 24 1/4 3 0 7
τ2 10 40 1/4 4 4 7
τ3 18 120 3/20 8 5 5
τ4 15 150 1/10 6 6 0

We note that since the total utilization is U = 0.75, the task set is schedulable
under Rate Monotonic in fully preemptive mode (in fact U lub(4) = 0.757).
Hence, the worst-case response time of each task can be computed considering
the first job under the critical instant, using Equations (8.32) and (8.33).

For task τ1 we have

R1 = B1 + C1 = 7 + 6 = 13.

Solutions to the exercises 483

For task τ2 we have

S
(0)
2 = B2 + C1 + C2 − qlast

2 = 7 + 6 + 10− 4 = 19

S
(1)
2 = B2 + C2 − qlast

2 +
(⌊

19
T1

⌋
+ 1

)
C1 = 19

R2 = S2 + qlast
2 = 19 + 4 = 23.

For task τ3 we have:

S
(0)
3 = B3 + C1 + C2 + C3 − qlast

3 = 5 + 6 + 10 + 18 − 5 = 34

S
(1)
3 = B3 + C3 − qlast

3 +

(⌊
34

T1

⌋
+ 1

)
C1 +

(⌊
34

T2

⌋
+ 1

)
C2 = 40

S
(2)
3 = B3 + C3 − qlast

3 +

(⌊
40

T1

⌋
+ 1

)
C1 +

(⌊
40

T2

⌋
+ 1

)
C2 = 50

S
(3)
3 = B3 + C3 − qlast

3 +

(⌊
50

T1

⌋
+ 1

)
C1 +

(⌊
50

T2

⌋
+ 1

)
C2 = 56

S
(4)
3 = B3 + C3 − qlast

3 +

(⌊
56

T1

⌋
+ 1

)
C1 +

(⌊
56

T2

⌋
+ 1

)
C2 = 56

R3 = S3 + qlast
3 = 56 + 5 = 61

For task τ4 we have

S
(0)
4 = B4 + C1 + C2 + C3 + C4 − qlast

4 = 6 + 10 + 18 + 15 − 6 = 43

S
(1)
4 = B4 + C4 − qlast

4 +

(⌊
43

T1

⌋
+1

)
C1 +

(⌊
43

T2

⌋
+1

)
C2 +

(⌊
43

T3

⌋
+1

)
C3 = 59

S
(2)
4 = B4 + C4 − qlast

4 +

(⌊
59

T1

⌋
+1

)
C1 +

(⌊
59

T2

⌋
+1

)
C2 +

(⌊
59

T3

⌋
+1

)
C3 = 65

S
(3)
4 = B4 + C4 − qlast

4 +

(⌊
65

T1

⌋
+1

)
C1 +

(⌊
65

T2

⌋
+1

)
C2 +

(⌊
65

T3

⌋
+1

)
C3 = 65

R4 = S4 + qlast
4 = 65 + 6 = 71.

484 Chapter 13

SOLUTIONS FOR CHAPTER 9

9.1 Applying the definition of instantaneous load we have

time ρ1(t) ρ2(t) ρ(t)
t = 0 0 5/10 = 0.5 0.5
t = 1 0 4/9 = 0.444 0.444
t = 2 0 3/8 = 0.375 0.375
t = 3 3/5 = 0.6 (3+2)/7 = 0.714 0.714
t = 4 2/4 = 0.5 (2+2)/6 = 0.667 0.667
t = 5 1/3 = 0.333 (1+2)/5 = 0.6 0.6
t = 6 0 2/4 = 0.5 0.5
t = 7 0 1/3 = 0.333 0.333
t = 8 0 0 0

9.2 Checking condition (9.24), necessary for the schedulability of the task set, we
have

n∑
i=1

Ci(Si − 1)
TiSi

=
2
5

+
2 · 3
6 · 4 +

4 · 4
8 · 5 =

21
20

> 1.

Hence, we conclude that the task set is not schedulable by EDF.

9.3 From the service intervals provided by the server, it is clear that the longest
service delay occurs when a task is ready at time t = 2, since it has to wait
for 3 units of time. Then, the service will be provided according to the supply
function illustrated in Figure 13.22.

From the graph, it is easy to see that the associated bounded delay function has
parameters α = 0.4 and Δ = 3.5.

9.4 By applying Equation (9.33) to the tasks we have

U1 = U10 − (U0 − Ud)
E1

E0
= 0.6− (1.4− 1.0)

1
4

= 0.5

U2 = U20 − (U0 − Ud)
E2

E0
= 0.8− (1.4− 1.0)

3
4

= 0.5.

Solutions to the exercises 485

20 6 8 95 15 16 181210

Z(t)

Δ

t

t

Figure 13.22 Supply function and bounded delay function of the server.

Hence,

T ′
1 =

C1

U1
=

9
0.5

= 18

T ′
2 =

C2

U2
=

16
0.5

= 32.

9.5 By applying Equation (9.42) to the tasks we have

T ′
1 = T10

U0

Ud
= 15 · 1.4 = 21

T ′
2 = T20

U0

Ud
= 20 · 1.4 = 28.

	13 SOLUTIONS TO THE EXERCISES
	SOLUTIONS FOR CHAPTER 1
	SOLUTIONS FOR CHAPTER 2
	SOLUTIONS FOR CHAPTER 3
	SOLUTIONS FOR CHAPTER 4
	SOLUTIONS FOR CHAPTER 5
	SOLUTIONS FOR CHAPTER 6
	SOLUTIONS FOR CHAPTER 7
	SOLUTIONS FOR CHAPTER 8
	SOLUTIONS FOR CHAPTER 9

