
10
KERNEL DESIGN ISSUES

In this chapter, we present some basic issues that should be considered during the
design and the development of a hard real-time kernel for critical control applica-
tions. For educational purposes, we illustrate the structure and the main components
of a small real-time kernel, called DICK (DIdactic C Kernel), mostly written in C
language, which is able to handle periodic and aperiodic tasks with explicit time con-
straints. The problem of time predictable intertask communication is also discussed,
and a particular communication mechanism for exchanging state messages among pe-
riodic tasks is illustrated. Finally, we show how the runtime overhead of the kernel
can be evaluated and taken into account in the schedulability analysis.

10.1 STRUCTURE OF A REAL-TIME KERNEL

A kernel represents the innermost part of any operating system that is in direct con-
nection with the hardware of the physical machine. A kernel usually provides the
following basic activities:

Process management,

Interrupt handling, and

Process synchronization.

Process management is the primary service that an operating system has to provide.
It includes various supporting functions, such as process creation and termination, job
scheduling, dispatching, context switching, and other related activities.

G.C. Buttazzo,
 , Real-Time Systems Series 24, DOI 10.1007/978- - -0 - _ ,

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications 1 4614 676 1

349
10

 Springer Science+Business Media, LLC 2011©

350 Chapter 10

The objective of the interrupt handling mechanism is to provide service to the inter-
rupt requests that may be generated by any peripheral device, such as the keyboard,
serial ports, analog-to-digital converters, or any specific sensor interface. The service
provided by the kernel to an interrupt request consists in the execution of a dedicated
routine (driver) that will transfer data from the device to the main memory (or vice
versa). In classical operating systems, application tasks can always be preempted by
drivers, at any time. In real-time systems, however, this approach may introduce un-
predictable delays in the execution of critical tasks, causing some hard deadline to be
missed. For this reason, in a real-time system, the interrupt handling mechanism has
to be integrated with the scheduling mechanism, so that a driver can be scheduled as
any other task in the system and a guarantee of feasibility can be achieved even in the
presence of interrupt requests.

Another important role of the kernel is to provide a basic mechanism for supporting
process synchronization and communication. In classical operating systems this is
done by semaphores, which represent an efficient solution to the problem of synchro-
nization, as well as to the one of mutual exclusion. As discussed in Chapter 7, however,
semaphores are prone to priority inversion, which introduces unbounded blocking on
tasks’ execution and prevents a guarantee for hard real-time tasks. As a consequence,
in order to achieve predictability, a real-time kernel has to provide special types of
semaphores that support a resource access protocol (such as Priority Inheritance, Pri-
ority Ceiling, or Stack Resource Policy) for avoiding unbounded priority inversion.
Other kernel activities involve the initialization of internal data structures (such as
queues, tables, task control blocks, global variables, semaphores, and so on) and spe-
cific services to higher levels of the operating system.

In the rest of this chapter, we describe the structure of a small real-time kernel, called
DICK (DIdactic C Kernel). Rather than showing all implementation details, we
focus on the main features and mechanisms that are necessary to handle tasks with
explicit time constraints.

DICK is designed under the assumption that all tasks are resident in main memory
when it receives control of the processor. This is not a restrictive assumption, as this
is the typical solution adopted in kernels for real-time embedded applications.

The various functions developed in DICK are organized according to the hierarchical
structure illustrated in Figure 10.1. Those low-level activities that directly interact
with the physical machine are realized in assembly language. Nevertheless, for the
sake of clarity, all kernel activities are described in pseudo C.

The structure of DICK can be logically divided into four layers:

Kernel Design Issues 351

termination

list management

Processor

Service layer

(assembly code)

Machine layer

List management

system calls

dispatchingscheduling

mechanisms

creation

kernel

services
utility

switch
context

synchronization
communication

handling
interrupt

handling
timer

management

Figure 10.1 Hierarchical structure of DICK.

Machine layer. This layer directly interacts with the hardware of the physical
machine; hence, it is written in assembly language. The primitives realized at
this level mainly deal with activities such as context switch, interrupt handling,
and timer handling. These primitives are not visible at the user level.

List management layer. To keep track of the status of the various tasks, the
kernel has to manage a number of lists, where tasks having the same state are
enqueued. This layer provides the basic primitives for inserting and removing a
task to and from a list.

Processor management layer. The mechanisms developed in this layer only
concerns scheduling and dispatching operations.

Service layer. This layer provides all services visible at the user level as a set of
system calls. Typical services concern task creation, task abortion, suspension of
periodic instances, activation and suspension of aperiodic instances, and system
inquiry operations.

10.2 PROCESS STATES

In this section, we describe the possible states in which a task can be during its execu-
tion and how a transition from a state to another can be performed.

In any kernel that supports the execution of concurrent activities on a single processor,
where semaphores are used for synchronization and mutual exclusion, there are at
least three states in which a task can enter:

352 Chapter 10

RUN

TIMER

terminateactivate
dispatch

preemption

resume

signal wait

IDLE

WAIT

READY

end_cycle

Figure 10.2 Minimum state transition diagram of a real-time kernel.

Running. A task enters this state as it starts executing on the processor.

Ready. This is the state of those tasks that are ready to execute but cannot be
executed because the processor is assigned to another task. All tasks that are in
this condition are maintained in a queue, called the ready queue.

Waiting. A task enters this state when it executes a synchronization primitive to
wait for an event. When using semaphores, this operation is a wait primitive on a
locked semaphore. In this case, the task is inserted in a queue associated with the
semaphore. The task at the head of this queue is resumed when the semaphore is
unlocked by another task that executed a signal on that semaphore. When a task
is resumed, it is inserted in the ready queue.

In a real-time kernel that supports the execution of periodic tasks, another state must
be considered, the IDLE state. A periodic job enters this state when it completes its
execution and has to wait for the beginning of the next period. In order to be awakened
by the timer, a periodic job must notify the end of its cycle by executing a specific
system call, end cycle, which puts the job in the IDLE state and assigns the processor
to another ready job. At the right time, each periodic job in the IDLE state will be
awakened by the kernel and inserted in the ready queue. This operation is carried out
by a routine activated by a timer, which verifies, at each tick, whether some job has to
be awakened. The state transition diagram relative to the four states described above
is shown in Figure 10.2.

Additional states can be introduced by other kernel services. For example, a delay
primitive, which suspends a job for a given interval of time, puts the job in a sleeping
state (DELAY), until it is awakened by the timer after the elapsed interval.

Kernel Design Issues 353

Another state, found in many operating systems, is the RECEIVE state, introduced by
the classical message passing mechanism. A job enters this state when it executes a
receive primitive on an empty channel. The job exits this state when a send primitive
is executed by another job on the same channel.

In real-time systems that support dynamic creation and termination of hard periodic
tasks, a new state needs to be introduced for preserving the bandwidth assigned to the
guaranteed tasks. This problem arises when a periodic task τk is aborted (for example,
with a kill operation), and its utilization factor Uk cannot be immediately subtracted
from the total processor load, since the task could already have delayed the execution
of other tasks. In order to keep the guarantee test consistent, the utilization factor U k

can be subtracted only at the end of the current period of τ k.

For example, consider the set of three periodic tasks illustrated in Figure 10.3, which
are scheduled by the Rate-Monotonic algorithm. Computation times are 1, 4, and 4,
and periods are 4, 8, and 16, respectively. Since periods are harmonic and the total
utilization factor is U = 1, the task set is schedulable by RM (remember that U lub = 1
when periods are harmonic).

1

0 4 62 8 161412

τ

τ 2

τ 3

10

Figure 10.3 Feasible schedule of three periodic tasks under RM.

Now suppose that task τ2 (with utilization factor U2 = 0.5) is aborted at time t = 4
and that, at the same time, a new task τnew , having the same characteristics of τ2,
is created. If the total load of the processor is decremented by 0.5 at time t = 4,
task τnew would be guaranteed, having the same utilization factor as τ 2. However, as
shown in Figure 10.4, τ3 would miss its deadline. This happens because the effects of
τ2 execution on the schedule protract until the end of each period.

As a consequence, to keep the guarantee test consistent, the utilization factor of an
aborted task can be subtracted from the total load only at the end of the current period.
In the interval of time between the abort operation and the end of its period, τ 2 is

354 Chapter 10

1

newτ

killed2τ

3τ

22

τ

10 12 14 16 18 242082 640

2τ

time overflow

Figure 10.4 The effects of τ2 do not cancel at the time it is aborted, but protract till the
end of its period.

1

killed2τ

newτ

3τ

24

τ

10 12 14 16 18 20 2282 640

2τ zombie

Figure 10.5 The new task set is schedulable when τnew is activated at the end of the
period of τ2.

said to be in a ZOMBIE state, since it does not exist in the system, but it continues to
occupy processor bandwidth. Figure 10.5 shows that the task set is schedulable when
the activation of τnew is delayed until the end of the current period of τ2.

A more complete state transition diagram including the states described above (DE-
LAY, RECEIVE, and ZOMBIE) is illustrated in Figure 10.6. Note that at the end of its
last period, a periodic task (aborted or terminated) leaves the system completely and
all its data structures are deallocated.

In order to simplify the description of DICK, the rest of this chapter only describes the
essential functions of the kernel. In particular, the message passing mechanism and
the delay primitive are not considered here; as a consequence, the states RECEIVE

Kernel Design Issues 355

send

dispatching

FREE

RUN

RECEIVE

delay

TIMER

resume

receive

terminateactivate

signal wait

READY

preemption

IDLE

DELAY

WAIT

ZOMBIE

end_cycle

Figure 10.6 State transition diagram including RECEIVE, DELAY, and ZOMBIE states.

and DELAY are not present. However, these services can easily be developed on top
of the kernel, as an additional layer of the operating system.

In DICK, activation and suspension of aperiodic tasks are handled by two primitives,
activate and sleep, which introduce another state, called SLEEP. An aperiodic task
enters the SLEEP state by executing the sleep primitive. A task exits the SLEEP state
and goes to the READY state only when an explicit activation is performed by another
task.

Task creation and activation are separated in DICK. The creation primitive (create)
allocates and initializes all data structures needed by the kernel to handle the task;
however, the task is not inserted in the ready queue, but it is left in the SLEEP state,
until an explicit activation is performed. This is mainly done for reducing the runtime
overhead of the activation primitive. The state transition diagram used in DICK is
illustrated in Figure 10.7.

356 Chapter 10

READY

FREE

RUN

TIMER

terminate

signal wait

IDLE

preemption

WAIT

create
SLEEP

activate
sleep

resume

dispatching

ZOMBIE

end_cycle

Figure 10.7 State transition diagram in DICK.

10.3 DATA STRUCTURES

In any operating system, the information about a task are stored in a data structure, the
Task Control Block (TCB). In particular, a TCB contains all the parameters specified
by the programmer at creation time, plus other temporary information necessary to the
kernel for managing the task. In a real-time system, the typical fields of a TCB are
shown in Figure 10.8 and contain the following information:

An identifier; that is, a character string used by the system to refer the task in
messages to the user;

The memory address corresponding to the first instruction of the task;

The task type (periodic, aperiodic, or sporadic);

The task criticality (hard, soft, or non-real-time);

The priority (or value), which represents the importance of the task with respect
to the other tasks of the application;

The current state (ready, running, idle, waiting, and so on);

The worst-case execution time;

Kernel Design Issues 357

The task period;

The relative deadline, specified by the user;

The absolute deadline, computed by the kernel at the arrival time;

The task utilization factor (only for periodic tasks);

A pointer to the process stack, where the context is stored;

A pointer to a directed acyclic graph, if there are precedence constraints;

A pointer to a list of shared resources, if a resource access protocol is provided
by the kernel.

priority

precedence pointer

utilization factor

absolute deadline

task address

task type

task identifier

context pointer

relative deadline

period

computation time

criticalness

state

resource pointer

Task Control Block

pointer to the next TCB

Figure 10.8 Structure of the Task Control Block.

In addition, other fields are necessary for specific features of the kernel. For exam-
ple, if aperiodic tasks are handled by one or more server mechanisms, a field can be

358 Chapter 10

0

6

5

2

1

0

4

3

ready

vdes

7

Figure 10.9 Implementation of the ready queue as a list of Task Control Blocks.

used to store the identifier of the server associated with the task, or, if the scheduling
mechanism supports tolerant deadlines, a field can store the tolerance value for that
task.

Finally, since a TCB has to be inserted in the lists handled by the kernel, an additional
field has to be reserved for the pointer to the next element of the list.

In DICK, a TCB is an element of the vdes[MAXPROC] array, whose size is equal to
the maximum number of tasks handled by the kernel. Using this approach, each TCB
can be identified by a unique index, corresponding to its position in the vdes array.
Hence, any queue of tasks can be accessed by an integer variable containing the index
of the TCB at the head of the queue. Figure 10.9 shows a possible configuration of the
ready queue within the vdes array.

Similarly, the information concerning a semaphore is stored in a Semaphore Control
Block (SCB), which contains at least the following three fields (see also Figure 10.10):

A counter, which represents the value of the semaphore;

A queue, for enqueueing the tasks blocked on the semaphore;

A pointer to the next SCB, to form a list of free semaphores.

Kernel Design Issues 359

Semaphore Control Block

counter

semaphore queue

pointer to the next SCB

Figure 10.10 Semaphore Control Block.

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to the maxi-
mum number of semaphores handled by the kernel. According to this approach, tasks,
semaphores, and queues can be accessed by an integer number that represents the
index of the corresponding control block. For the sake of clarity, however, tasks,
semaphores and queues are defined as three different types.

typedef int queue; /* head index */

typedef int sem; /* semaphore index */

typedef int proc; /* process index */

typedef int cab; /* cab buffer index */

typedef char* pointer; /* memory pointer */

360 Chapter 10

struct tcb {
char name[MAXLEN+1]; /* task name */

proc (*addr)(); /* first instruction address */

int type; /* task type */

int state; /* task state */

long dline; /* absolute deadline */

int period; /* task period */

int prt; /* task priority */

int wcet; /* worst-case execution time */

float util; /* task utilization factor */

int *context; /* pointer to the context */

proc next; /* pointer to the next tcb */

proc prev; /* pointer to previous tcb */

};

struct scb {
int count; /* semaphore counter */

queue qsem; /* semaphore queue */

sem next; /* pointer to the next */

};

struct tcb vdes[MAXPROC]; /* tcb array */

struct scb vsem[MAXSEM]; /* scb array */

proc pexe; /* task in execution */

queue ready; /* ready queue */

queue idle; /* idle queue */

queue zombie; /* zombie queue */

queue freetcb; /* queue of free tcb’s */

queue freesem; /* queue of free semaphores */

float util fact; /* utilization factor */

Kernel Design Issues 361

tick lifetime

1 ms 50 days
5 ms 8 months
10 ms 16 months
50 ms 7 years

Table 10.1 System lifetime for some typical tick values.

10.4 MISCELLANEOUS

10.4.1 TIME MANAGEMENT

To generate a time reference, a timer circuit is programmed to interrupt the processor
at a fixed rate, and the internal system time is represented by an integer variable, which
is reset at system initialization and is incremented at each timer interrupt. The interval
of time with which the timer is programmed to interrupt defines the unit of time in the
system; that is, the minimum interval of time handled by the kernel (time resolution).
The unit of time in the system is also called a system tick.

In DICK, the system time is represented by a long integer variable, called sys clock,
whereas the value of the tick is stored in a float variable called time unit. At any
time, sys clock contains the number of interrupts generated by the timer since sys-
tem initialization.

unsigned long sys clock; /* system time */

float time unit; /* unit of time (ms) */

If Q denotes the system tick and n is the value stored in sys clock, the actual time
elapsed since system initialization is t = nQ. The maximum time that can be rep-
resented in the kernel (the system lifetime) depends on the value of the system tick.
Considering that sys clock is an unsigned long represented on 32 bits, Table 10.1
shows the values of the system lifetime for some tick values.

The value to be assigned to the tick depends on the specific application. In general,
small values of the tick improve system responsiveness and allow handling periodic
activities with high activation rates. On the other hand, a very small tick causes a large
runtime overhead due to the timer handling routine and reduces the system lifetime.

362 Chapter 10

Typical values used for the time resolution can vary from 1 to 50 milliseconds. To
have a strict control on task deadlines and periodic activations, all time parameters
specified on the tasks should be multiple of the system tick. If the tick can be selected
by the user, the best possible tick value is equal to the greatest common divisor of all
the task periods.

The timer interrupt handling routine has a crucial role in a real-time system. Other than
updating the value of the internal time, it has to check for possible deadline misses
on hard tasks, due to some incorrect prediction on the worst-case execution times.
Other activities that can be carried out by the timer interrupt handling routine concern
lifetime monitoring, activation of periodic tasks that are in idle state, awakening tasks
suspended by a delay primitive, checking for deadlock conditions, and terminating
tasks in zombie state.

In DICK, the timer interrupt handling routine increments the value of the sys clock
variable, checks the system lifetime, checks for possible deadline misses on hard tasks,
awakes idle periodic tasks at the beginning of their next period and, at their deadlines,
deallocates all data structures of the tasks in zombie state. In particular, at each timer
interrupt, the corresponding handling routine

saves the context of the task in execution;

increments the system time;

generates a timing error, if the current time is greater than the system lifetime;

generates a time-overflow error, if the current time is greater than some hard
deadline;

awakens those idle tasks, if any, that have to begin a new period;

calls the scheduler, if at least a task has been awakened;

removes all zombie tasks for which their deadline is expired;

loads the context of the current task; and

returns from interrupt.

The runtime overhead introduced by the execution of the timer routine is proportional
to its interrupt rate. In Section 10.7 we see how this overhead can be evaluated and
taken into account in the schedulability analysis.

Kernel Design Issues 363

t

0

max priority min priority

2550

MAXDLINEMAXDLINE - 255

Figure 10.11 Mapping NRT priorities into deadlines.

10.4.2 TASK CLASSES AND SCHEDULING
ALGORITHM

Real-world control applications usually consist of computational activities having dif-
ferent characteristics. For example, tasks may be periodic, aperiodic, time-driven, and
event-driven and may have different levels of criticality. To simplify the description of
the kernel, only two classes of tasks are considered in DICK:

HARD tasks, having a critical deadline, and

non-real-time (NRT) tasks, having a fixed priority.

HARD tasks can be activated periodically or aperiodically depending on how an in-
stance is terminated. If the instance is terminated with the primitive end cycle, the task
is put in the idle state and automatically activated by the timer at the beginning of its
next period; if the instance is terminated with the primitive end aperiodic, the task is
put in the sleep state, from where it can be resumed only by explicit activation. HARD
tasks are scheduled using the Earliest Deadline First (EDF) algorithm, whereas NRT
tasks are executed in background based on their priority.

In order to integrate the scheduling of these classes of tasks and avoid the use of two
scheduling queues, priorities of NRT tasks are transformed into deadlines so that they
are always greater than HARD deadlines. The rule for mapping NRT priorities into
deadlines is shown in Figure 10.11 and is such that

dNRT
i = MAXDLINE − PRT LEV + Pi,

where MAXDLINE is the maximum value of the variable sys clock (2 31 − 1),
PRT LEV is the number of priority levels handled by the kernel, and P i is the priority
of the task, in the range [0, PRT LEV-1] (0 being the highest priority). Such a priority
mapping slightly reduces system lifetime but greatly simplifies task management and
queue operations.

364 Chapter 10

10.4.3 GLOBAL CONSTANTS

In order to clarify the description of the source code, a number of global constants
are defined here. Typically, they define the maximum size of the main kernel data
structures, such as the maximum number of processes and semaphores, the maximum
length of a process name, the number of priority levels, the maximum deadline, and so
on. Other global constants encode process classes, states, and error messages. They
are listed below:

#define MAXLEN 12 /* max string length */

#define MAXPROC 32 /* max number of tasks */

#define MAXSEM 32 /* max No of semaphores */

#define MAXDLINE 0x7FFFFFFF /* max deadline */

#define PRT LEV 255 /* priority levels */

#define NIL -1 /* null pointer */

#define TRUE 1

#define FALSE 0

#define LIFETIME MAXDLINE - PRT LEV

/*---*/

/* Task types */

/*---*/

#define HARD 1 /* critical task */

#define NRT 2 /* non real-time task */

/*---*/

/* Task states */

/*---*/

#define FREE 0 /* TCB not allocated */

#define READY 1 /* ready state */

#define EXE 2 /* running state */

#define SLEEP 3 /* sleep state */

#define IDLE 4 /* idle state */

#define WAIT 5 /* wait state */

#define ZOMBIE 6 /* zombie state */

Kernel Design Issues 365

/*---*/

/* Error messages */

/*---*/

#define OK 0 /* no error */

#define TIME OVERFLOW -1 /* missed deadline */

#define TIME EXPIRED -2 /* lifetime reached */

#define NO GUARANTEE -3 /* task not schedulable */

#define NO TCB -4 /* too many tasks */

#define NO SEM -5 /* too many semaphores */

10.4.4 INITIALIZATION

The real-time environment supported by DICK starts when the ini system primitive
is executed within a sequential C program. After this function is executed, the main
program becomes a NRT task in which new concurrent tasks can be created.

The most important activities performed by ini system concern

initializing all queues in the kernel;

setting all interrupt vectors;

preparing the TCB associated with the main process; and

setting the timer period to the system tick.

366 Chapter 10

void ini system(float tick)

{
proc i;

time unit = tick;

<enable the timer to interrupt every time unit>

<initialize the interrupt vector table>

/* initialize the list of free TCBs and semaphores */

for (i=0; i<MAXPROC-1; i++) vdes[i].next = i+1;

vdes[MAXPROC-1].next = NIL;

for (i=0; i<MAXSEM-1; i++) vsem[i].next = i+1;

vsem[MAXSEM-1].next = NIL;

ready = NIL;

idle = NIL;

zombie = NIL;

freetcb = 0;

freesem = 0;

util fact = 0;

<initialize the TCB of the main process>

pexe = <main index>;

}

10.5 KERNEL PRIMITIVES

The structure of DICK is logically divided in a number of hierarchical layers, as il-
lustrated in Figure 10.1. The lowest layer includes all interrupt handling drivers and
the routines for saving and loading a task context. The next layer contains the func-
tions for list manipulation (insertion, extraction, and so on) and the basic mechanisms
for task management (dispatching and scheduling). All kernel services visible from
the user are implemented at a higher level. They concern task creation, activation,
suspension, termination, synchronization, and status inquiry.

Kernel Design Issues 367

10.5.1 LOW-LEVEL PRIMITIVES

Basically, the low-level primitives implement the mechanism for saving and loading
the context of a task; that is, the values of the processor registers.

/*---*/

/* save context -- of the task in execution */

/*---*/

void save context(void)
{
int *pc; /* pointer to context of pexe */

<disable interrupts>

pc = vdes[pexe].context;

pc[0] = <register 0> /* save register 0 */

pc[1] = <register 1> /* save register 1 */

pc[2] = <register 2> /* save register 2 */

...

pc[n] = <register n> /* save register n */

}

368 Chapter 10

/*---*/

/* load context -- of the task to be executed */

/*---*/

void load context(void)
{
int *pc; /* pointer to context of pexe */

pc = vdes[pexe].context;

<register 0> = pc[0]; /* load register 0 */

<register 1> = pc[1]; /* load register 1 */

...

<register n> = pc[n]; /* load register n */

<enable interrupts>

<return from interrupt>

}

10.5.2 LIST MANAGEMENT

Since tasks are scheduled based on EDF, all queues in the kernel are ordered by de-
creasing deadlines. In this way, the task with the earliest deadline can be simply ex-
tracted from the head of a queue, whereas an insertion operation requires in the worst
case a scan of all elements on the list. All lists are implemented with bidirectional
pointers (next and prev). The insert function is called with two parameters: the index
of the task to be inserted and the pointer of the queue. It uses two auxiliary pointers, p
and q, whose meaning is illustrated in Figure 10.12.

Kernel Design Issues 369

head index

lastfirst

NIL

NIL

p

new

q

Figure 10.12 Inserting a TCB in a queue.

/*---*/

/* insert -- a task in a queue based on its deadline */

/*---*/

void insert(proc i, queue *que)

{
long dl; /* deadline of the task to be inserted */

int p; /* pointer to the previous TCB */

int q; /* pointer to the next TCB */

p = NIL;

q = *que;

dl = vdes[i].dline;

/* find the element before the insertion point */

while ((q != NIL) && (dl >= vdes[q].dline)) {
p = q;

q = vdes[q].next;

}
if (p != NIL) vdes[p].next = i;

else *que = i;

if (q != NIL) vdes[q].prev = i;

vdes[i].next = q;

vdes[i].prev = p;

}

370 Chapter 10

head index

lastfirst

NIL

NIL

remove
to

p q

Figure 10.13 Extracting a TCB from a queue.

The major advantage of using bidirectional pointers is in the implementation of the
extraction operation, which can be realized in one step without scanning the whole
queue. Figure 10.13 illustrates the extraction of a generic element, whereas Fig-
ure 10.14 shows the extraction of the element at the head of the queue.

/*---*/

/* extract -- a task from a queue */

/*---*/

proc extract(proc i, queue *que)

{
int p, q; /* auxiliary pointers */

p = vdes[i].prev;

q = vdes[i].next;

if (p == NIL) *que = q; /* first element */

else vdes[p].next = vdes[i].next;

if (q != NIL) vdes[q].prev = vdes[i].prev;

return(i);

}

Kernel Design Issues 371

head index

lastfirst

NIL

NIL

second

q

Figure 10.14 Extracting the TCB at the head of a queue.

/*---*/

/* getfirst -- extracts the task at the head of a queue */

/*---*/

proc getfirst(queue *que)

{
int q; /* pointer to the first element */

q = *que;

if (q == NIL) return(NIL);

*que = vdes[q].next;

vdes[*que].prev = NIL;

return(q);

}

Finally, to simplify the code reading of the next levels, two more functions are defined:
firstdline and empty. The former returns the deadline of the task at the head of the
queue, while the latter returns TRUE if a queue is empty, FALSE otherwise.

372 Chapter 10

/*---*/

/* firstdline -- returns the deadline of the first task */

/*---*/

long firstdline(queue *que)

{
return(vdes[que].dline);

}

/*---*/

/* empty -- returns TRUE if a queue is empty */

/*---*/

int empty(queue *que)

{
if (que == NIL)

return(TRUE);

else

return(FALSE);

}

10.5.3 SCHEDULING MECHANISM

The scheduling mechanism in DICK is realized through the functions schedule and
dispatch. The schedule primitive verifies whether the running task is the one with the
earliest deadline. If so, there is no action, otherwise the running task is inserted in the
ready queue and the first ready task is dispatched. The dispatch primitive just assigns
the processor to the first ready task.

Kernel Design Issues 373

/*---*/

/* schedule -- selects the task with the earliest deadline */

/*---*/

void schedule(void)
{

if (firstdline(ready) < vdes[pexe].dline) {
vdes[pexe].state = READY;

insert(pexe, &ready);

dispatch();

}
}

/*---*/

/* dispatch -- assigns the cpu to the first ready task */

/*---*/

void dispatch(void)
{

pexe = getfirst(&ready);

vdes[pexe].state = RUN;

}

The timer interrupt handling routine is called wake up and performs the activities de-
scribed in Section 10.4.1. In summary, it increments the sys clock variable, checks for
the system lifetime and possible deadline misses, removes those tasks in zombie state
whose deadlines are expired, and, finally, resumes those periodic tasks in idle state at
the beginning of their next period. Note that if at least a task has been resumed, the
scheduler is invoked and a preemption takes place.

374 Chapter 10

/*---*/

/* wake up -- timer interrupt handling routine */

/*---*/

void wake up(void)
{
proc p;

int count = 0;

save context();

sys clock++;

if (sys clock >= LIFETIME) abort(TIME EXPIRED);

if (vdes[pexe].type == HARD)

if (sys clock > vdes[pexe].dline)

abort(TIME OVERFLOW);

while (!empty(zombie) &&

(firstdline(zombie) <= sys clock)) {
p = getfirst(&zombie);

util fact = util fact - vdes[p].util;

vdes[p].state = FREE;

insert(p, &freetcb);

}
while (!empty(idle) && (firstdline(idle) <= sys clock)) {

p = getfirst(&idle);

vdes[p].dline += (long)vdes[p].period;

vdes[p].state = READY;

insert(p, &ready);

count++;

}
if (count > 0) schedule();

load context();

}

Kernel Design Issues 375

10.5.4 TASK MANAGEMENT

It concerns creation, activation, suspension, and termination of tasks. The create prim-
itive allocates and initializes all data structures needed by a task and puts the task in
SLEEP. A guarantee is performed for HARD tasks.

/*---*/

/* create -- creates a task and puts it in sleep state */

/*---*/

proc create(
char name[MAXLEN+1], /* task name */

proc (*addr)(), /* task address */

int type, /* type (HARD, NRT) */

float period, /* period or priority */

float wcet) /* execution time */

{
proc p;

<disable cpu interrupts>

p = getfirst(&freetcb);

if (p == NIL) abort(NO TCB);

if (vdes[p].type == HARD)

if (!guarantee(p)) return(NO GUARANTEE);

vdes[p].name = name;

vdes[p].addr = addr;

vdes[p].type = type;

vdes[p].state = SLEEP;

vdes[p].period = (int)(period / time unit);

vdes[p].wcet = (int)(wcet / time unit);

vdes[p].util = wcet / period;

vdes[p].prt = (int)period;

vdes[p].dline = MAX LONG + (long)(period - PRT LEV);

<initialize process stack>

<enable cpu interrupts>

return(p);

}

376 Chapter 10

/*---*/

/* guarantee -- guarantees the feasibility of a hard task */

/*---*/

int guarantee(proc p)

{
util fact = util fact + vdes[p].util;

if (util fact > 1.0) {
util fact = util fact - vdes[p].util;

return(FALSE);

}
else return(TRUE);

}

The system call activate inserts a task in the ready queue, performing the transition
SLEEP–READY. If the task is HARD, its absolute deadline is set equal to the current
time plus its period. Then the scheduler is invoked to select the task with the earliest
deadline.

/*---*/

/* activate -- inserts a task in the ready queue */

/*---*/

int activate(proc p)

{
save context();

if (vdes[p].type == HARD)

vdes[p].dline = sys clock + (long)vdes[p].period;

vdes[p].state = READY;

insert(p, &ready);

schedule();

load context();

}

Kernel Design Issues 377

The transition RUN–SLEEP is performed by the sleep system call. The running task is
suspended in the sleep state, and the first ready task is dispatched for execution. Note
that this primitive acts on the calling task, which can be periodic or aperiodic. For
example, the sleep primitive can be used at the end of a cycle to terminate an aperiodic
instance.

/*---*/

/* sleep -- suspends itself in a sleep state */

/*---*/

void sleep(void)
{

save context();

vdes[pexe].state = SLEEP;

dispatch();

load context();

}

The primitive for terminating a periodic instance is a bit more complex than its ape-
riodic counterpart, since the kernel has to be informed on the time at which the timer
has to resume the job. This operation is performed by the primitive end cycle, which
puts the running task into the idle queue. Since it is assumed that deadlines are at the
end of the periods, the next activation time of any idle periodic instance coincides with
its current absolute deadline.

In the particular case in which a periodic job finishes exactly at the end of its period,
the job is inserted not in the idle queue but directly in the ready queue, and its deadline
is set to the end of the next period.

378 Chapter 10

/*---*/

/* end cycle -- inserts a task in the idle queue */

/*---*/

void end cycle(void)
{
long dl;

save context();

dl = vdes[pexe].dline;

if (sys clock < dl) {
vdes[pexe].state = IDLE;

insert(pexe, &idle);

}
else {

dl = dl + (long)vdes[pexe].period;

vdes[pexe].dline = dl;

vdes[pexe].state = READY;

insert(pexe, &ready);

}
dispatch();

load context();

}

A typical example of periodic task is shown in the following code:

proc cycle()

{
while (TRUE) {

<periodic code>

end cycle();

}
}

Kernel Design Issues 379

There are two primitives for terminating a process: the first, called end process, di-
rectly operates on the calling task; the other one, called kill, terminates the task passed
as a formal parameter. Note that if the task is HARD, it is not immediately removed
from the system but put in ZOMBIE state. In this case, the complete removal will be
done by the timer routine at the end of the current period:

/*---*/

/* end process -- terminates the running task */

/*---*/

void end process(void)
{

<disable cpu interrupts>

if (vdes[pexe].type == HARD)

insert(pexe, &zombie);

else {
vdes[pexe].state = FREE;

insert(pexe, &freetcb);

}
dispatch();

load context();

}

380 Chapter 10

/*---*/

/* kill -- terminates a task */

/*---*/

void kill(proc p)

{
<disable cpu interrupts>

if (pexe == p) {
end process();

return;

}
if (vdes[p].state == READY) extract(p, &ready);

if (vdes[p].state == IDLE) extract(p, &idle);

if (vdes[p].type == HARD)

insert(p, &zombie);

else {
vdes[p].state = FREE;

insert(p, &freetcb);

}
<enable cpu interrupts>

}

10.5.5 SEMAPHORES

In DICK, synchronization and mutual exclusion are handled by semaphores. Four
primitives are provided to the user to allocate a new semaphore (newsem), deallocate
a semaphore (delsem), wait for an event (wait), and signal an event (signal).

The newsem primitive allocates a free semaphore control block and initializes the
counter field to the value passed as a parameter. For example, s1 = newsem(0) de-
fines a semaphore for synchronization, whereas s2 = newsem(1)defines a semaphore
for mutual exclusion. The delsem primitive just deallocates the semaphore control
block, inserting it in the list of free semaphores.

Kernel Design Issues 381

/*---*/

/* newsem -- allocates and initializes a semaphore */

/*---*/

sem newsem(int n)

{
sem s;

<disable cpu interrupts>

s = freesem; /* first free semaphore index */

if (s == NIL) abort(NO SEM);

freesem = vsem[s].next; /* update the freesem list */

vsem[s].count = n; /* initialize counter */

vsem[s].qsem = NIL; /* initialize sem. queue */

<enable cpu interrupts>

return(s);

}

/*---*/

/* delsem -- deallocates a semaphore */

/*---*/

void delsem(sem s)

{
<disable cpu interrupts>

vsem[s].next = freesem; /* inserts s at the head */

freesem = s; /* of the freesem list */

<enable cpu interrupts>

}

The wait primitive is used by a task to wait for an event associated with a semaphore.
If the semaphore counter is positive, it is decremented, and the task continues its exe-
cution; if the counter is less than or equal to zero, the task is blocked, and it is inserted
in the semaphore queue. In this case, the first ready task is assigned to the processor
by the dispatch primitive.

382 Chapter 10

To ensure the consistency of the kernel data structures, all semaphore system calls
are executed with cpu interrupts disabled. Note that semaphore queues are ordered
by decreasing absolute deadlines, so that, when more tasks are blocked, the first task
awakened will be the one with the earliest deadline.

/*---*/

/* wait -- waits for an event */

/*---*/

void wait(sem s)

{
<disable cpu interrupts>

if (vsem[s].count > 0) vsem[s].count --;

else {
save context();

vdes[pexe].state = WAIT;

insert(pexe, &vsem[s].qsem);

dispatch();

load context();

}
<enable cpu interrupts>

}

The signal primitive is used by a task to signal an event associated with a semaphore.
If no tasks are blocked on that semaphore (that is, if the semaphore queue is empty),
the counter is incremented, and the task continues its execution. If there are blocked
tasks, the task with the earliest deadline is extracted from the semaphore queue and
is inserted in the ready queue. Since a task has been awakened, a context switch
may occur; hence, the context of the running task is saved, a task is selected by the
scheduler and a new context is loaded.

Kernel Design Issues 383

/*---*/

/* signal -- signals an event */

/*---*/

void signal(sem s)

{
proc p;

<disable cpu interrupts>

if (!empty(vsem[s].qsem)) {
p = getfirst(&vsem[s].qsem);

vdes[p].state = READY;

insert(p, &ready);

save context();

schedule();

load context();

}
else vsem[s].count++;

<enable cpu interrupts>

}

It is worth observing that classical semaphores are prone to the priority inversion phe-
nomenon, which introduces unbounded delays during tasks’ execution and prevents
any form of guarantee on hard tasks (this problem is discussed in Chapter 7). As a
consequence, this type of semaphores should be used only by non-real-time tasks, for
which no guarantee is performed. Real-time tasks, instead, should rely on more pre-
dictable mechanisms, based on time-bounded resource access protocols (such as Stack
Resource Policy) or on asynchronous communication buffers. In DICK, the communi-
cation among hard tasks occurs through an asynchronous buffering mechanism, which
is described in Section 10.6.

10.5.6 STATUS INQUIRY

DICK also provides some primitives for inquiring the kernel about internal variables
and task parameters. For example, the following primitives can be used to get the
system time, the state, the deadline, and the period of a desired task.

384 Chapter 10

/*---*/

/* get time -- returns the system time in milliseconds */

/*---*/

float get time(void)
{

return(time unit * sys clock);

}

/*---*/

/* get state -- returns the state of a task */

/*---*/

int get state(proc p)

{
return(vdes[p].state);

}

/*---*/

/* get dline -- returns the deadline of a task */

/*---*/

long get dline(proc p)

{
return(vdes[p].dline);

}

/*---*/

/* get period -- returns the period of a task */

/*---*/

float get period(proc p)

{
return(vdes[p].period);

}

Kernel Design Issues 385

10.6 INTERTASK COMMUNICATION MECHANISMS

Intertask communication is a critical issue in real-time systems, even in a uniprocessor
environment. In fact, the use of shared resources for implementing message passing
schemes may cause priority inversion and unbounded blocking on tasks’ execution.
This would prevent any guarantee on the task set and would lead to a highly unpre-
dictable timing behavior.

In this section, we discuss problems and solutions related to the most typical commu-
nication semantics used in operating systems: the synchronous and the asynchronous
model.

In the pure synchronous communication model, whenever two tasks want to commu-
nicate they must be synchronized for a message transfer to take place. This synchro-
nization is called a rendez-vous. Thus, if the sender starts first, it must wait until the
recipient receives the message; on the other hand, if the recipient starts first, it must
wait until the sender produces its message.

In a dynamic real-time system, synchronous communication schemes easily lead to
unpredictable behavior, due to the difficulty of estimating the maximum blocking time
for a process rendez-vous. In a static real-time environment, the problem can be solved
off-line by transforming all synchronous interactions into precedence constraints. Ac-
cording to this approach, each task is decomposed into a number of subtasks that
contain communication primitives not inside their code but only at their boundary.
In particular, each subtask can receive messages only at the beginning of its execution
and can send messages only at the end. Then a precedence relation is imposed between
all adjacent subtasks deriving from the same father task and between all subtasks com-
municating through a send-receive pair. An example of such a task decomposition is
illustrated in Figure 10.15.

In a pure asynchronous scheme, communicating tasks do not have to wait for each
other. The sender just deposits its message into a channel and continues its execution,
independently of the recipient condition. Similarly, assuming that at least a message
has been deposited into the channel, the receiver can directly access the message with-
out synchronizing with the sender.

Asynchronous communication schemes are more suitable for dynamic real-time sys-
tems. In fact, if no unbounded delays are introduced during tasks’ communication,
timing constraints can easily be guaranteed without increasing the complexity of the
system (for example, overconstraining the task set with additional precedence rela-

386 Chapter 10

2-b

receive(mes, A)

1

(a)

send(mes, A)

τ

subtask

1-bτ

τ
subtask

1-a
subtask

2-aτ

subtask

τ 2

τ

receive

send

(b)

A

Figure 10.15 Decomposition of communicating tasks (a) into subtasks with precedence
constraints (b).

Mailbox

Producer Consumer

Figure 10.16 The mailbox scheme.

tions). Remember that having simple online guarantee tests (that is, with polynomial
time complexity) is crucial for dynamic systems.

In most commercial real-time operating systems, the asynchronous communication
scheme is implemented through a mailbox mechanism, illustrated in Figure 10.16. A
mailbox is a shared memory buffer capable of containing a fixed number of messages
that are typically kept in a FIFO queue. The maximum number of messages that at
any instant can be held in a mailbox represents its capacity.

Two basic operations are provided on a mailbox – namely, send and receive. A
send(MX, mes) operation causes the message mes to be inserted in the queue of mail-
box MX . If at least a message is contained on mailbox MX , a receive(MX, mes)
operation extracts the first message from its queue. Note that, if the kernel provides
the necessary support, more than two tasks can share a mailbox, and channels with
multiple senders and/or multiple receivers can be realized. As long as it is guaran-
teed that a mailbox is never empty and never full, sender(s) and receiver(s) are never
blocked.

Kernel Design Issues 387

Unfortunately, a mailbox provides only a partial solution to the problem of asyn-
chronous communication, since it has a bounded capacity. Unless sender and receiver
have particular arrival patterns, it is not possible to guarantee that the mailbox queue
is never empty or never full. If the queue is full, the sender must be delayed until some
message is received. If the queue is empty, the receiver must wait until some message
is inserted.

For example, consider two periodic tasks, τ1 and τ2, with periods T1 and T2, that
exchange messages through a mailbox having a capacity of n. Let τ 1 be the sender
and τ2 the receiver. If T1 < T2, the sender inserts in the mailbox more messages than
the receiver can extract; thus, after a certain interval of time the queue becomes full
and the sender must be delayed. From this time on, the sender has to wait for the
receiver, so it synchronizes with its period (T2). Vice versa, if T1 > T2, the receiver
reads faster than the sender can write; thus, after a while the queue becomes empty and
the receiver must wait. From this time on, the receiver synchronizes with the period
of the sender (T1). In conclusion, if T1
= T2, sooner or later both tasks will run at the
lowest rate, and the task with the shortest period will miss its deadline.

An alternative approach to asynchronous communication is provided by cyclic asyn-
chronous buffers, which are described in the next section.

10.6.1 CYCLIC ASYNCHRONOUS BUFFERS

Cyclic Asynchronous Buffers, or CABs, represent a particular mechanism purposely
designed for the cooperation among periodic activities, such as control loops and sen-
sory acquisition tasks. This approach was first proposed by Clark [Cla89] for imple-
menting a robotic application based on hierarchical servo-loops, and it is used in the
HARTIK system [But93, BDN93] as a basic communication support among periodic
hard tasks.

A CAB provides a one-to-many communication channel, which at any instant contains
the latest message or data inserted in it. A message is not consumed (that is, extracted)
by a receiving process but is maintained into the CAB structure until a new message
is overwritten. As a consequence, once the first message has been put in a CAB, a
task can never be blocked during a receive operation. Similarly, since a new message
overwrites the old one, a sender can never be blocked.

Note that using such a semantics, a message can be read more than once if the receiver
is faster than the sender, while messages can be lost if the sender is faster than the
receiver. However, this is not a problem in many control applications, where tasks

388 Chapter 10

are interested only in fresh sensory data rather than in the complete message history
produced by a sensory acquisition task.

CABs can be created and initialized by the open cab primitive, which requires speci-
fying the CAB name, the dimension of the message, and the number of messages that
the CAB may contain simultaneously. The delete cab primitive removes a CAB from
the system and releases the memory space used by the buffers.

To insert a message in a CAB, a task must first reserve a buffer from the CAB memory
space, then copy the message into the buffer, and finally put the buffer into the CAB
structure, where it becomes the most recent message. This is done according to the
following scheme:

buf pointer = reserve(cab id);

<copy message in *buf pointer>

putmes(buf pointer, cab id);

Similarly, to get a message from a CAB, a task has to get the pointer to the most recent
message, use the data, and release the pointer. This is done according to the following
scheme:

mes pointer = getmes(cab id);

<use message>

unget(mes pointer, cab id);

Note that more tasks can simultaneously access the same buffer in a CAB for reading.
On the other hand, if a task P reserves a CAB for writing while another task Q is
using that CAB, a new buffer is created, so that P can write its message without
interfering with Q. As P finishes writing, its message becomes the most recent one in
that CAB. The maximum number of buffers that can be created in a CAB is specified
as a parameter in the open cab primitive. To avoid blocking, this number must be
equal to the number of tasks that use the CAB plus one.

Kernel Design Issues 389

10.6.2 CAB IMPLEMENTATION

The data structure used to implement a CAB is shown in Figure 10.17. A CAB con-
trol block must store the maximum number of buffers (max buf), their dimension
(dim buf), a pointer to a list of free buffers (free), and a pointer to the most recent
buffer (mrb). Each buffer in the CAB can be implemented as a data structure with
three fields: a pointer (next) to maintain a list of free buffers, a counter (use) that
stores the current number of tasks accessing that buffer, and a memory area (data) for
storing the message.

The code of the four CAB primitives is shown below. Note that the main purpose of
the putmes primitive is to update the pointer to the most recent buffer (MRB). Before
doing that, however, it deallocates the old MRB if no tasks are accessing that buffer.
Similarly, the unget primitive decrements the number of tasks accessing that buffer
and deallocates the buffer only if no task is accessing it and it is not the MRB.

empty

NIL
useuse use

empty
most

recent

next

p

reading task

free

max_buf

mrb

dim_buf

use

data

next

buffer

Figure 10.17 CAB data structure.

390 Chapter 10

/*---*/

/* reserve -- reserves a buffer in a CAB */

/*---*/

pointer reserve(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.free; /* get a free buffer */

c.free = p.next; /* update the free list */

return(p);

<enable cpu interrupts>

}

/*---*/

/* putmes -- puts a message in a CAB */

/*---*/

void putmes(cab c, pointer p)

{
<disable cpu interrupts>

if (c.mrb.use == 0) { /* if not accessed, */

c.mrb.next = c.free; /* deallocate the mrb */

c.free = c.mrb;

}
c.mrb = p; /* update the mrb */

<enable cpu interrupts>

}

Kernel Design Issues 391

/*---*/

/* getmes -- gets a pointer to the most recent buffer */

/*---*/

pointer getmes(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.mrb; /* get the pointer to mrb */

p.use = p.use + 1; /* increment the counter */

return(p);

<enable cpu interrupts>

}

/*---*/

/* unget -- deallocates a buffer only if it is not accessed */

/* and it is not the most recent buffer */

/*---*/

void unget(cab c, pointer p)

{
<disable cpu interrupts>

p.use = p.use - 1;

if ((p.use == 0) && (p != c.mrb)) {
p.next = c.free;

c.free = p;

}
<enable cpu interrupts>

}

392 Chapter 10

2

timer interrupts

J 1

σ

J

δQ

Figure 10.18 Effects of the overhead on tasks’ execution.

10.7 SYSTEM OVERHEAD

The overhead of an operating system represents the time used by the processor for han-
dling all kernel mechanisms, such as enqueueing tasks, performing context switches,
updating the internal data structures, sending messages to communication channels,
servicing the interrupt requests, and so on. The time required to perform these opera-
tions is usually much smaller than the execution times of the application tasks; hence,
it can be neglected in the schedulability analysis and in the resulting guarantee test.
In some cases, however, when application tasks have small execution times and tight
timing constraints, the activities performed by the kernel may not be so negligible
and may create a significant interference on tasks’ execution. In these situations, pre-
dictability can be achieved only by considering the effects of the runtime overhead in
the schedulability analysis.

The context switch time is one of the most significant overhead factors in any operat-
ing system. It is an intrinsic limit of the kernel that does not depend on the specific
scheduling algorithm, nor on the structure of the application tasks. For a real-time
system, another important overhead factor is the time needed by the processor to ex-
ecute the timer interrupt handling routine. If Q is the system tick (that is, the period
of the interrupt requests from the timer) and σ is the worst-case execution time of the
corresponding driver, the timer overhead can be computed as the utilization factor U t

of an equivalent periodic task:

Ut =
σ

Q
.

Figure 10.18 illustrates the execution intervals (σ) due to the timer routine and the
execution intervals (δ) necessary for a context switch. The effects of the timer routine
on the schedulability of a periodic task set can be taken into account by adding the
factor Ut to the total utilization of the task set. This is the same as reducing the least

Kernel Design Issues 393

lub

net

U

U

σ
lubU

Q

Figure 10.19 Net utilization bound as a function of the tick value.

upper bound of the utilization factor U lub by Ut, so that the net bound becomes

Unet = Ulub − Ut = Ulub −
σ

Q
= Ulub

(
Q− σ/Ulub

Q

)
.

From this result we can note that to obtain Unet > 0, the system tick Q must always be
greater than (σ/Ulub). The plot of Unet as a function of Q is illustrated in Figure 10.19.
To have an idea of the degradation caused by the timer overhead, consider a system
based on the EDF algorithm (Ulub = 1) and suppose that the timer interrupt handling
routine has an execution time of σ = 100μs. In this system, a 10 ms tick would cause a
net utilization bound Unet = 0.99; a 1 ms tick would decrease the net utilization bound
to Unet = 0.9; whereas a 200μs tick would degrade the net bound to Unet = 0.5. This
means that, if the greatest common divisor among the task periods is 200μs, a task set
with utilization factor U = 0.6 cannot be guaranteed under this system.

The overhead due to other kernel mechanisms can be taken into account as an addi-
tional term on tasks’ execution times. In particular, the time needed for explicit context
switches (that is, the ones triggered by system calls) can be considered in the execution
time of the kernel primitives; thus, it will be charged to the worst-case execution time
of the calling task. Similarly, the overhead associated with implicit context switches
(that is, the ones triggered by the kernel) can be charged to the preempted tasks.

In this case, the schedulability analysis requires a correct estimation of the total num-
ber of preemptions that each task may experience. In general, for a given scheduling

394 Chapter 10

algorithm, this number can be estimated off-line as a function of tasks’ timing con-
straints. If Ni is the maximum number of preemptions that a periodic task τ i may
experience in each period, and δ is the time needed to perform a context switch, the
total utilization factor (overhead included) of a periodic task set can be computed as

Utot =
n∑

i=1

Ci + δNi

Ti
+ Ut =

n∑
i=1

Ci

Ti
+

(
δ

n∑
i=1

Ni

Ti
+ Ut

)
.

Hence, we can write
Utot = Up + Uov,

where Up is the utilization factor of the periodic task set and Uov is a correction factor
that considers the effects of the timer handling routine and the preemption overhead
due to intrinsic context switches (explicit context switches are already considered in
the Ci’s terms):

Uov = Ut + δ

n∑
i=1

Ni

Ti
.

Finally, notice that an upper bound for the number of preemptions N i on a task τi can
be computed as

Ni =
i−1∑
k=1

⌊
Ti

Tk

⌋
.

However, this bound is too pessimistic, and better bounds can be found for particular
scheduling algorithms.

10.7.1 ACCOUNTING FOR INTERRUPT

Two basic approaches can be used to handle interrupts coming from external devices.
One method consists of associating an aperiodic or sporadic task to each source of in-
terrupt. This task is responsible for handling the device and is subject to the scheduling
algorithm as any other task in the system. With this method, the cost for handling the
interrupt is automatically taken into account by the guarantee mechanism, but the task
may not start immediately, due to the presence of higher-priority hard tasks. This
method cannot be used for those devices that require immediate service for avoiding
data loss.

Another approach allows interrupt handling routines to preempt the current task and
execute immediately at the highest priority. This method minimizes the interrupt la-
tency, but the interrupt handling cost has to be explicitly considered in the guarantee
of the hard tasks.

Kernel Design Issues 395

Jeffay and Stone [JS93] found a schedulability condition for a set of n hard tasks and
m interrupt handlers. In their work, the analysis is carried out by assuming a discrete
time, with a resolution equal to a tick. As a consequence, every event in the system
occurs at a time that is a multiple of the tick. In their model, there is a set I of m
handlers, characterized by a worst-case execution time C H

i and a minimum separation
time T H

i , just as sporadic tasks. The difference is that interrupt handlers always have
a priority higher than the application tasks.

The upper bound, f(l), for the interrupt handling cost in any time interval of length l
can be computed by the following recurrent relation [JS93]:

f(0) = 0

f(l) =

{
f(l − 1) + 1 if

∑m
i=1

⌈
l

T H
i

⌉
CH

i > f(l − 1)
f(l − 1) otherwise.

(10.1)

In the particular case in which all the interrupt handlers start at time t = 0, function
f(l) is exactly equal to the amount of time spent by processor in executing interrupt
handlers in the interval [0, l].

Theorem 10.1 (Jeffay-Stone) A set T of n periodic or sporadic tasks and a set I of
m interrupt handlers is schedulable by EDF if and only if for all L, L ≥ 0,

n∑
i=1

⌊
L

Ti

⌋
Ci ≤ L− f(L). (10.2)

The proof of Theorem 10.1 is very similar to the one presented for Theorem 4.5. The
only difference is that, in any interval of length L, the amount of time that the processor
can dedicate to the execution of application tasks is equal to L− f(L).

It is worth noting that Equation (10.2) can be checked only for a set of points equal
to release times less than the hyperperiod, and the complexity of the computation is
pseudo-polynomial.

	10 KERNEL DESIGN ISSUES
	10.1 STRUCTURE OF A REAL-TIME KERNEL
	10.2 PROCESS STATES
	10.3 DATA STRUCTURES
	10.4 MISCELLANEOUS
	10.4.1 TIME MANAGEMENT
	10.4.2 TASK CLASSES AND SCHEDULING ALGORITHM
	10.4.3 GLOBAL CONSTANTS
	10.4.4 INITIALIZATION

	10.5 KERNEL PRIMITIVES
	10.5.1 LOW-LEVEL PRIMITIVES
	10.5.2 LIST MANAGEMENT
	10.5.3 SCHEDULING MECHANISM
	10.5.4 TASK MANAGEMENT
	10.5.5 SEMAPHORES
	10.5.6 STATUS INQUIRY

	10.6 INTERTASK COMMUNICATION MECHANISMS
	10.6.1 CYCLIC ASYNCHRONOUS BUFFERS
	10.6.2 CAB IMPLEMENTATION

	10.7 SYSTEM OVERHEAD
	10.7.1 ACCOUNTING FOR INTERRUPT

