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EDITOR’S NOTE

Sadly, Dr. Mark A. Smith passed away during the production of this book. Please
read the full “in memoriam” located on page xxxi in the front of the book. His innovative
thinking and contributions to the scientific community will be greatly missed.

Abstract: Mitochondria have been long known as “gatekeepers of life and death”. Indeed,
these dynamic organelles are the master coordinators of energy metabolism, being
responsible for the generation of the majority of cellular ATP. Notably, mitochondria
are also one of the primary producers of intracellular reactive oxygen species which
are the main inducer of oxidative damage. Neurons, as metabolically active cells
with high energy demands, are predominantly dependent on mitochondrial function,
as reflected by the observation that mitochondrial defects are key features of chronic
neurodegenerative diseases. Indeed, morphologic, biochemical and molecular genetic
studies posit that mitochondria constitute a convergence point for neurodegeneration.
Moreover, recent findings convey that neurons are particularly reliant on the dynamic
properties of mitochondria, further emphasizing the critical role of mitochondria in
neuronal functions. This chapter highlights how mitochondrial pathobiology might
contributetoneurodegenerationin Alzheimer’s, Parkinson’s and Huntington’s diseases.
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INTRODUCTION

The prevalence of neurodegenerative diseases is rising dramatically due to the increase in
life expectancy and demographic changes in the population, representing one of the major health
problems. The etiology of most neurodegenerative disorders is complex and multifactorial,
involving genetic predisposition, environmental and endogenous factors.!> Nevertheless,
mitochondria have emerged as a pivotal “convergence point” for neurodegeneration.**

Mitochondria are ubiquitous and dynamic organelles involved in many crucial cellular
processes in eukaryotic organisms and are considered “gatekeepers of life and death”. These
organelles have as major functions, the production of over 90% of cellular ATP through the
tricarboxylic acid cycle (TCA) cycle and oxidative phosphorylation, regulation of intracellular
calcium (Ca?*) and redox signaling and the arbitration of apoptosis.*®* Hence, mitochondria
possess a notorious significance for neuronal function and survival, since neurons are cells
with extremely high energy demands, mitochondrial oxidative phosphorylation being
essential for neurons to meet their high energy requirements. That said, neurons are very
vulnerable to bioenergetic crisis if there is dysfunction of mitochondrial machinery.>!°
Dysfunctional mitochondrial energy metabolism culminates in ATP production and Ca*
buffering impairment and exacerbated generation of reactive oxygen species (ROS), including
hydrogen peroxide (H,0,), hydroxyl radical (OH) and superoxide anion (O,*).” ROS, in
turn, cause cell membrane damage via lipid peroxidation and accelerates the high mutation
rate of mitochondrial DNA (mtDNA).!" Additionally, accumulation of mtDNA mutations
enhances oxidative damage, induces energy crisis and exacerbates ROS generation, in
a vicious cycle."" Additionally, the brain is especially prone to oxidative stress-induced
damage as a consequence of its high levels of polyunsaturated fatty acids, high oxygen
consumption, high content in transition metals and poor antioxidant defenses.'

Perturbations in dynamic properties of mitochondria, which include fission, fusion,
motility and turnover, can lead to distinctive defects in neurons and are recognized as
playing a critical role in neurodegeneration.'* As a matter of fact, mitochondrial dynamics
orchestrate a variety of vital functions required for accurate neuronal function, including
maintenance of mitochondrial DNA,'*! involvement inapoptosis, ¢ formation and function
of synapses and dendritic spines and proper distribution of mitochondria.!’?!

Since mitochondria play a critical role in the regulation of both cell survival
and death, mitochondrial dysfunction has been posited to take a center stage in age
related-neurodegenerative diseases. Herein, we summarize the current knowledge
pertaining to the involvement of mitochondrial malfunction in the onset and progression of
neurodegenerative diseases, namely Alzheimer’s disease (AD), Parkinson’s disease (PD) and
Huntington’s disease (HD). The insights from in vitro, in vivo and human studies could help to
unveil the pathogenic mechanisms underlying mitochondrial dysfunction and to develop new
and more effective therapeutic strategies to prevent and/or treat neurodegenerative diseases.

MITOCHONDRIAL DYSFUNCTION IN THE LIMELIGHT
OF NEURODEGENERATIVE DISEASES
Alzheimer’s Disease

AD is the most common form of dementia among people age 65 and older, affecting
more than 35 million people worldwide.?? Clinically, AD is characterized by a progressive
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cognitive deterioration, together with impairments in behavior, language and visuospatial
skills, culminating in the premature death of the subject.?> Neuropathologically, AD has
as main hallmarks selective neuronal and synaptic loss, deposition of extracellular senile
plaques mainly composed of amyloid-p (Af) peptide and the presence of intracellular
neurofibrillary tangles containing hyperphosphorylated tau protein.*>

Since the etiology of AD is complex and multifactorial, several hypotheses have
been proposed over the last decades to answer one of the most intriguing questions of
the actuality: What is the “culprit” of AD development? With the purpose of explaining
many of the biochemical, genetic and pathological features of sporadic AD, Swerdlow
and Khan presented the “mitochondrial cascade hypothesis”.?® According to this
hypothesis: (1) inheritance determines mitochondrial baseline function and durability;
(2) mitochondrial durability influences how mitochondria change with age; and (3) when
mitochondrial alterations reach a threshold, AD histopathology and symptoms ensue.?’
Thus, mitochondrial-dependent pathogenic mechanisms are drawing increasing attention
for their significant involvement on AD etiopathogenesis.

Energy Hypometabolism, Oxidative Stress and Mitochondrial Dysfunction

It is conceivable that mitochondrial abnormalities that occur in AD result from the
complex nature and genesis of oxidative damage in the disease. Indeed, AD patients
present reduced metabolic activity, which is believed to be a consequence of oxidative
damage to vital mitochondrial components.”®*!' Positron emission tomography imaging
studies revealed impaired brain glucose in AD patients, which precedes neuropsychological
impairment and atrophy.**3* Cerebral glucose utilization is reduced by 45% and cerebral
blood flow (CBF) by approximately 20%, in the early stages of AD. However, in the
later stages of the disease, metabolic and physiological abnormalities aggravate, resulting
in 55-65% reductions in CBF.** This decrease in the cerebral glucose metabolism is
correlated with the altered expression and decreased activity of mitochondrial energy
related proteins, including pyruvate dehydrogenase (PDH), isocitrate dehydrogenase and
a-ketoglutarate dehydrogenase, also documented in postmortem AD brain and fibroblasts
from AD patients.***’ Furthermore, Bubber and collaborators®’ found that all changes
in TCA cycle activities (specifically that of PDH complex) correlated with the clinical
state, suggesting a coordinated mitochondrial alteration. Moreover, these enzymes are
known to be highly susceptible to oxidative modification and are altered by exposure to
a range of pro-oxidants.*®

Accumulating data from in vitro, in vivo and human studies argue that mitochondrial
dysfunction and bioenergetics failure are early events implicated in AD pathogenesis.
Indeed, impairment in the respiratory chain complexes I, Il and IV activities was found in
platelets and lymphocytes from AD patients and postmortem AD brain tissue.*-*? In vitro
studies performed in pheochromocytoma cells (PC12) also demonstrated that exposure to
AB40and Af,s ;s potentiated mitochondrial dysfunction characterized by the inhibition of
complexes I, IIT and IV of the mitochondrial respiratory chain.** More recently, Fattoretti
and collaborators,* in order to establish a link between AD and mitochondrial dysfunction,
investigated succinic dehydrogenase (SDH) (mitochondrial respiratory complex II) activity
in mitochondria of hippocampal CA1 pyramidal neurons obtained from 3xTg-AD mice.
The authors observed a decreased density (number of mitochondria/um?® of cytoplasm)
of SDH-positive mitochondria in 3xTg-AD mice. Data from our laboratory also revealed
that AD fibroblasts present high levels of oxidative stress and apoptotic markers when
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compared with young and age-matched controls.* Moreover, AD-type changes could
be generated in control fibroblasts using N-methylprotoporphyrin to inhibit cytochrome
¢ oxidase (COX) assembly, which indicates that the observed oxidative damage was
associated with mitochondrial dysfunction.** Additionally, the effects promoted by the
N-methylprotoporphyrine were reversed or attenuated by lipoic acid and N-acetyl cysteine.*
Accordingly, de la Monte and Wands* examined postmortem brain tissue from AD
patients with different degrees of severity and found that the severity of AD was related to
impairments in mitochondrial gene expression, namely in complex IV, increased levels of
p53and molecular indexes of oxidative stress, including NOS and NADPH-oxidase. Thus,
mitochondrial malfunction exacerbates oxidative stress and oxidative damage marked by
high levels of lipid, protein and nucleic acid oxidation is increased in vulnerable neurons
in AD.*75! Overall, these findings suggest that mitochondria are important in oxidative
damage that occurs in AD and that antioxidant therapies may be promising.

Mitochondrial DNA Mutations

mtDNA mutations have also been implicated in mitochondrial dysfunction in the
pathogenesis of AD. For instance, 20 point mutations in the mitochondrial-encoded
cytochrome ¢ oxidase subunits I, II and III genes have been detected in AD patients.>
Qiu and collaborators* also identified two missense mutations in the mtDNA of COX in
a patient with AD. Further, a high aggregate burden of somatic mtDNA mutations was
observed in postmortem brain tissue from AD patients.**

Mitochondria, Amyloid-f3 Protein Precursor and Af3 Peptide

Mitochondria were found to be the target both for amyloid-f3 protein precursor
(ABPP) that accumulates in the mitochondrial import channels and for Af that interacts
with several proteins inside mitochondria and leads to mitochondrial dysfunction. For
instance, Ap was found to impair cellular respiration, energy production and mitochondrial
electron chain complexes activity in human neuroblastoma cells.® Moreover, cultured
neurons isolated from transgenic mice that overexpress a mutant form of ABPP and
Ap-binding alcohol dehydrogenase (ABAD) (Tg mABPP/ABAD) display spontaneous
generation of H,0, and O,~, decreased ATP, release of cytochrome ¢ and induction of
caspase 3-like activity followed by DNA fragmentation and loss of cell viability.’” A
prominent role for mitochondrial O, in mediating the effects of Af on neuronal function
was reported by Massaad and collaborators.*® In fact, it was previously reported that Ap
enters into mitochondria, compromising their integrity through the inactivation of the
manganese superoxide dismutase 2 (SOD-2) and, consequently by increasing mitochondrial
superoxide anion levels.” Moreover, some studies demonstrate that genetic reduction
of SOD-2 in AD model mice can intensify AD symptoms and lead to increased plaque
deposition.®¢> Conversely, the overexpression of SOD-2 reduces hippocampal O, and
prevents memory deficits in Tg2576 mouse model of AD.*® Recently, strong evidence
for a direct link between free radicals of specific mitochondrial origin and AD-associated
vascular and neuronal pathology has been reported.®® Since SOD-2 is the main O,
scavenger in mitochondria, these authors showed that its overexpression culminates in
the reduction of mitochondrial superoxide and amelioration of CBF deficits and axonal
transport deficits typically exhibited by Tg2576 mice.* The reduction of mitochondrial
superoxide also resulted in a concomitant reduction of phosphorylation of endothelial
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nitric oxide synthase at serine 1177, as well as phosphorylation of tau at serine 262.%
Thus, one conclusion from this study is that mitochondrial superoxide is a key player
in AD-related vascular and neuronal dysfunction, working as a downstream effector of
AB, possibly affecting AB processing.®

Furthermore, generation of ROS is associated with dysfunction at the level of COX?’
(Fig. 1). Similarly, Crouch and colleagues® also found that A, 4, can disrupt mitochondrial
COX activity in a sequence- and conformation-dependent manner. In an in vitro study,
designed to explore the effect of the ABPP Swedish double mutation (K670M/N671L)
on oxidative stress-induced cell death mechanisms in PC12 cells, increased activity of
caspase 3 due to an enhanced activation of both intrinsic and extrinsic apoptotic pathways,
including activation of INK pathway was observed.® Moreover, apoptosis was attenuated
by SP600125, a JNK inhibitor, through protection of mitochondrial dysfunction and
reduction of caspase 9 activity.® These findings corroborate the hypothesis that the
massive neurodegeneration that develops at an early age in familial AD patients could
be a result of an increased vulnerability of neurons through the activation of different
apoptotic pathways as a consequence of elevated levels of oxidative stress.

In addition, mitochondrial dysfunction was also linked to the accumulation of
full-length and carboxy-terminally truncated ABPP across mitochondrial import channels
in brain tissue from AD patients.®® The authors observed that this accumulation of ABPP
inhibited the entrance of nuclear-encoded COX subunits IV and Vb proteins, which was
associated with decreased cytochrome ¢ oxidase activity and increased H,0, levels.
Similarly, Anandatheerthavarada etal reported an accumulation of full-length ABPP in the
mitochondrial compartment in a transmembrane-arrested form that impaired mitochondrial
functionality and energy metabolism.®” Also, a progressive accumulation of AR monomers
and oligomers was detected within the mitochondria of both transgenic mice overexpressing
mutant ABPP and postmortem brains from AD patients.+¢68% More recently, Pavlov
and coworkers’ demonstrated that ABPP is a substrate for the mitochondrial y-secretase
and that ABPP intracellular domain (AICD) is produced inside mitochondria, providing
a mechanistic view of the mitochondria-associated ABPP metabolism where AICD, P3
peptide and potentially Ap are produced locally and may contribute to mitochondrial
dysfunction in AD. Additionally, lijima-Ando et al”' reported that mislocalization of
mitochondria underlies the pathogenic effects of A4, in a transgenic Drosophila model.
Indeed, the authors found that in this Af,.4, model, brain mitochondria were reduced in
axons and dendrites and accumulated in the soma without severe mitochondrial damage
orneurodegeneration.”! Notably, perturbations in mitochondrial transport in neurons were
sufficient to disrupt protein kinase A (PKA) signaling and induce late-onset behavioral
deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes
to AP,.4-induced neuronal dysfunction.” A direct link between Af-induced toxicity
and mitochondrial dysfunction in AD pathology has been suggested by the interaction
between mitochondrial Af and ABAD.”>” Moreover, this interaction was found to
induce mitochondrial failure via changes in mitochondrial membrane permeability and
a reduction in the activities of enzymes involved in mitochondrial respiration.”” More
recently, Hansson-Petersen et al” showed that Af} peptide is imported into mitochondria
viathe translocase of the outer membrane import machinery and localized to mitochondrial
cristae. Thus, it has been proposed that Ap species transport to mitochondria cause
mitochondrial dysfunction and oxidative damage and consequently damage neurons both
structurally and functionally .67 Previous studies from our laboratory also reported
anincreased susceptibility to mitochondrial permeability transition pore (mPTP) induction
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promoted by A peptides.”>’¢ In accordance, it provided a plausible mechanism underlying
Ap-induced mitochondrial dysfunction, in which Af interacts with cyclophilin D, a
critical molecule involved in mPTP formation and cell death.”” Du et al”” further showed
that the interaction of cyclophilin D with mitochondrial Ap potentiates mitochondrial,
neuronal and synaptic stress. Conversely, cyclophilin D ablation protects neurons from
Ap-induced mPTP formation and the resultant mitochondrial and cellular stresses. Along
those same lines, cyclophilin D deficiency substantially improves learning and memory
and synaptic function in an AD mouse model and alleviates Ap-mediated reduction of
long-term potentiation.”” Another study reported that the presequence protease (PreP) is
responsible for the degradation of the accumulated A in mitochondria, further supporting
the association of Ap with mitochondria and mitochondrial dysfunction in AD.”

However, another key role of mitochondria in AD pathogenesis and the close
interrelationship of this organelle and the two main pathological features of the disease
were recently highlighted. Rhein et al” demonstrated that AB and tau synergistically
impair mitochondrial function and energy homeostasis in 3xTg-AD mice. Accordingly,
a previous study demonstrated that transgenic mice overexpressing the P301L mutant
human tau protein present alterations of metabolism-related proteins including
mitochondrial respiratory chain complexes, antioxidant enzymes and synaptic proteins
that are associated with increased oxidative stress.’ Moreover, mitochondria prepared
from these transgenic mice displayed increased vulnerability toward A insult, which
reinforce a possible synergistic action of tau and Af pathology on the mitochondria.*
The authors also suggest that tau pathology involves a mitochondrial and oxidative stress
disorder possibly distinct from that caused by Ap.%

Omi/HtrA2, a mitochondrial serine protease with chaperone activity, has also been
suggested to participate in AD-associated mitochondrial dysfunction. The first evidence
for the involvement of Omi/Htr2 in AD was provided by Gray et al®! that indentified Omi/
HtrA2 asapresenilin-1 (PS1)-interacting factor ina yeast two-hybrid screen. Consistently,
a following study demonstrated that the C-terminus of PS1 peptide interacts with Omi/
HtrA2 and stimulates Omi/HtrA2 protease activity.®?> Additionally, it was observed that
AP also interacts with Omi/HtrA2, which results in delayed aggregation of the A,
peptide, indicating that besides its protease activity, Omi/HtrA2 also performs a chaperone
function role in the metabolism of intracellular A in AD.*# Mitochondrial ABPP was
shown to be a direct cleavage target of Omi/HtrA2,* proposing that the regulation of Omi/
HtrA2 protease activity may be a therapeutic target in AD by preventing mitochondrial
dysfunction caused by ABPP accumulation. More recently, it was also reported that
Omi/HtrA2 interacts with PS in active y-secretase complexes located to mitochondria.’¢
Moreover, the authors found reduced AICD production in mitochondria isolated from
Omi/HtrA2 knockout mouse embryonic fibroblasts, indicating a significant role of Omi/
HtrA2 on y-secretase activity.® Overall, these findings suggest the interactions between
mitochondrial Omi/HtrA2 and A, PS, or ABPP are possible links to Omi/HtrA2 in AD.
These findings may contribute to a better understanding of the biochemical pathways
underlying mitochondrial dysfunction in AD and may help the development of novel
mitochondrial-targeted therapeutic strategies.

Mitochondrial Dynamics in Alzheimer’s Disease

Ultrastructural alterations in mitochondrial morphology such as reduced size and
broken internal membrane cristae were also documented in brains from AD patients.%’
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One reasonable explanation for these observations could be the increased mitochondrial
autophagy found in AD.®% Another consequence of AB on mitochondria is the induction
of dynamic changes, including mitochondrial fission/fusion perturbations. Wang and
collaborators® reported abnormal mitochondrial fission and fusion in fibroblasts from
sporadic AD patients, marked by lower levels of dynamin-related protein 1 (Drp1), akey
regulator of mitochondrial fission. The authors also observed that AD fibroblasts display
elongated mitochondria which form collapsed perinuclear networks.”**! Accordingly,
ABPP overexpression in M17 neuroblastoma cells resulted in predominantly fragmented
mitochondria, decreased Drpl and optic atrophy protein 1 (OPA1) levels and a defect in
neuronal differentiation.”? Moreover, reduced expression levels of Drp1, OPA 1, mitofusin
(Mfn)1 and 2 and increased mitochondria fission protein 1 (Fisl) levels were found in
hippocampal tissues from AD patients compared with age-matched controls.”® These
results suggest that AD is characterized by mitochondrial fission/fusion imbalance and
consequently mitochondrial fragmentation and abnormal distribution, which potentiates
mitochondrial and neuronal dysfunction in this neurodegenerative disease.

Synaptic Defects in Mitochondria in Alzheimer’s Disease

Synaptic defects and disruption of axonal transport have also been documented in
AD pathobiology.***” Indeed, a previous study reported that a brief exposure of cultured
hippocampal neurons to soluble A} molecules resulted in rapid and severe impairment of
mitochondrial transport, independent of cell death and other drastic alterations of cellular
structures.”® Similarly, it was reported that soluble oligomers of A are responsible for an
abnormal axonal transport of mitochondria in primary hippocampal neurons, most likely
contributing to an abnormal mitochondrial distribution.” More recently, it was proposed
that mitochondrial localization to dendritic spines may be important for the trafficking of
the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARS),
major ionotropic glutamate receptors involved in excitatory synaptic transmission, and
AB disruption of mitochondrial trafficking could contribute to AMPAR removal and
trafficking defects leading to synaptic inhibition.!%

Parkinson’s Disease

PD, the most frequent movement disorder, affects approximately 2% of individuals
over 65 years of age and is clinically characterized by three phenotypic aspects: resting
tremor, bradykinesia and rigidity. PD is caused by a progressive and massive loss of
the dopaminergic neurons within the substantia nigra pars compacta (SNc) and the
consequent depletion of the neurotransmitter dopamine (DA) in the striatum, which is
required for normal motor function. One of the pathological hallmarks of PD and related
synucleinopathies is the presence of intracellular inclusions called Lewy bodies, which
are constituted of aggregates of the presynaptic soluble protein called a-synuclein.!*-1%
The majority of PD cases are sporadic with unknown cause; however, mutations in
several genes have been linked to familial form of PD.'™ Nonetheless, mitochondrial
dysfunction is emerging as a key mechanism underlying the pathogenesis of both sporadic
and familial forms of PD.!%6.17

In early 1990s, it was reported for the first time that there is reduced activity of
the mitochondrial respiratory complex I (NADH-quinone oxidoreductase) in the SNc
of PD patients.'”® In accordance, subsequent studies also reported an impairment of
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mitochondrial complex I activity in the substantianigra,'” platelets,!'*"!'* lymphocytes,!4!13
and skeletal muscle tissue''®!’” from PD patients. More recently, in highly purified
mitochondria, there is a PD-specific complex I deficit in the frontal cortex.!'® Meanwhile,
SNc appears to be more susceptible to complex I activity impairment than other brain
regions, possibly due to the exacerbated ROS generated within dopaminergic neurons as
a result of DA metabolism and iron content.'"® Consistently, cybrids containing mtDNA
from PD patients present a significant impairment in complex I activity associated
with increased oxidative stress levels,' suggesting mtDNA encoded defects in PD.
Moreover, Lewy bodies within these cybrids also react positively with cytochrome c
antibodies, suggesting a mitochondrial origin.'*' The use of specific complex I inhibitors,
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydrodropyridine (MPTP), rotenone and
6-hydroxydopamine (6-OHDA) which causes degeneration of the nigral dopaminergic
neurons and PD symptoms in in vivo models, further emphasizes the involvement
of mitochondria in the etiology of PD.!?>!* Furthermore, a proteomic analysis of
mitochondria-enriched fractions from postmortem PD SNc revealed differential expression
of multiple mitochondrial proteins in PD brain as compared to control, including
complex I subunits.'” Moreover, in vitro incubation of isolated rat brain mitochondria
with recombinant human a-synuclein was shown to potentiate a dose-dependent loss of
mitochondrial transmembrane potential (AWm) and phosphorylation capacity'* (Fig. 1).
However, a-synuclein did not affect the activities of respiratory chain complexes,
suggesting that the former may impair mitochondrial bioenergetics by direct effect
on mitochondrial membranes.!?® Finally, mortalin, a mitochondrial stress protein, is
substantially decreased in PD brains and cellular models of PD,!'* being shown that the
manipulation of mortalin levels in dopaminergic neurons resulted in significant alteration
in sensitivity to PD phenotypes via pathways involving mitochondrial and proteasomal
function as well as oxidative stress.'?

Evidence from the literature also posits a role for mutations in genes encoding both
mitochondrially targeted proteins and proteins involved in mitochondrial function and/
or oxidative stress responses in PD.!?” Indeed, mitochondrial DNA haplotype analysis
revealed that certain haplogroups reduced the risk for PD, which indicated that mtDNA
may contribute to PD etiology.'”® Moreover, Swerdlow and collaborators'* reported
maternally inherited mutations in mtDNA in one family with PD. Using a novel
single-molecule PCR approach to quantify the total burden of mtDNA molecules with
deletions, it was also shown that a high proportion of individual pigmented neurons in
the aged human SNc contain very high levels of mtDNA deletions.'*® The fraction of
mtDNA deletions is significantly higher in COX-deficient neurons than in COX-positive
neurons, suggesting that mtDNA deletions may be directly responsible for impaired
cellular respiration.'* More recently, Ekstrand and collaborators'! created conditional
knockout “MitoPark” mice, which have a disrupted mitochondrial transcription factor
A (Tfam) gene in dopaminergic neurons. These knockout mice have reduced mtDNA
expression and respiratory chain deficiency in midbrain dopaminergic neurons, which lead
to a Parkinsonism phenotype with adult onset and characterized by slowly progressive
impairment of motor function accompanied by the formation of intraneuronal inclusions
and dopamine nerve cell death.'!

Familial forms of PD are associated with mutations in leucine-rich repeat kinase
2 (LRRK2), a-synuclein, parkin, DJ1 and PTEN-induced putative kinase 1 (PINK1),
these proteins being associated with the mitochondrial outer membrane and involved
in ROS production or defense'*? (Fig. 1). HtrA2 is another protein that is mutated
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Mitochondrion

- Decline in respiratory chain complex activity
- Increased ROS levels
- Decreased ATP levels

- mtDNA mutations

Figure 1. Involvement of mitochondrial abnormalities in Alzheimer’s (AD), Parkinson’s (PD) and
Huntington’s (HD) diseases. Impairment of the activity of respiratory chain complex IV by amyloid-p
peptide (Ap), leading to the exacerbation of reactive oxygen species (ROS) generation and ATP levels
depletion, is one prominent feature of AD. Mitochondrial DNA (mtDNA) mutations also play a role in
the pathogenesis of AD. Concerning PD, there is an extensively documented impairment of mitochondrial
complex I activity. Indeed, the use of pharmacological inhibitors of complex I, including rotenone and
1-methyl-4-phenyl-1,2,3,6-tetrahydrodropyridine (MPTP), causes degeneration of the nigral dopaminergic
neurons and PD symptoms in in vivo models. In addition, the familial forms of PD are associated with
mutations in leucine-rich repeat kinase 2 (LRRK?2), a-synuclein, parkin, DJ1 and PTEN-induced putative
kinase 1 (PINKI1), these proteins being associated with the mitochondrial outer membrane (OM) and
involved in ROS production or defense. Also, HtrA2, which is localized in the intermembrane space
(IMS) of mitochondria is mutated in familial PD. In HD, mutant huntingtin (Htt) induces a decline of
mitochondrial respiration, particularly affecting mitochondrial respiratory complex II activity and ATP
synthesis. The use of 3-nitropropionic acid (3-NP), a selective inhibitor of succinate dehydrogenase and
complex II, was shown to recapitulate HD-like symptoms in several vertebrate models. Furthermore,
mutant Htt is a causative factor of mtDNA damage in HD, suggesting that mtDNA damage is an early
biomarker for HD-associated neurodegeneration. ADP- adenosine diphosphate; Cyt c- cytochrome c;
IM- inner membrane; NAD"- oxidized nicotinamide adenine dinucleotide; NADH- reduced nicotinamide
adenine dinucleotide; H*- proton.

in familial PD and localizes in the intermembrane space of mitochondria.’*? In
vitro cell culture studies showed that mutant PINK1 or PINK1 knock-down induce
mitochondrial respiration, ATP synthesis and proteasome function impairment and
increased o-synuclein aggregation.'** Additionally, it was reported that HtrA2 loss
results in transcriptional upregulation of nuclear genes characteristic of the integrated
stress response, including the transcription factor C/EBP homologous protein (CHOP),
selectively in the brain.!** HtrA2 loss also induces accumulation of unfolded proteins in
the mitochondria, defective mitochondrial respiration and enhanced ROS production,
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which contribute to the induction of CHOP expression and neuronal cell death.'*
Previous studies also showed that the overexpression of a-synuclein in cell culture
and in transgenic mice impairs mitochondrial function and increases the susceptibility
to mPTP induction.!3>13¢ In contrast, a-synuclein-null mice are resistant to respiratory
chain inhibitors implicating an involvement of mitochondria in a-synuclein-mediated
toxicity.!3713% Recently, compelling evidence demonstrated that both PINKI1 and
Parkin mediate the degradation of damaged mitochondria via selective autophagy
(mitophagy),'3*'#? the voltage-dependent anion channel 1 emerging as a target of
PINK 1/Parkin-mediated mitophagy.'** Indeed, it was suggested that Parkin, together
with PINK 1, modulates mitochondrial trafficking, especially to the perinuclear region,
a subcellular area associated with autophagy. In this way, mutations in either Parkin or
PINK1 could culminate in altering mitochondrial turnover which, in turn, may cause
the accumulation of defective mitochondria and, ultimately, neurodegeneration. In fact,
Geislerand collaborators'* demonstrated that PINK 1 mutations compromise the selective
degradation of depolarized mitochondria, mainly due to the decreased physical binding
activity of PD-linked PINK 1 mutations to Parkin. Thus, PINK1 mutations abrogate
autophagy of impaired mitochondria upstream of Parkin. In addition to compromised
PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to failure in Parkin
mitochondrial translocation, resulting in the accumulation of damaged mitochondria,
contributing to the pathogenesis of PD.!#

Moreover, the PINK1/Parkin pathway also regulates the mitochondrial integrity
and morphology via the fission/fusion machinery. Genetic studies in Drosophila also
demonstrated that the PINK1/Parkin pathway promotes mitochondrial fission and that
the loss of mitochondrial and tissue integrity in PINK1 and parkin mutants derives from
reduced mitochondrial fission.'*® Accordingly, the PINK1/parkin pathway promotes
mitochondrial fission and/or inhibits fusion by negatively regulating Mfn and OPAL1
function and/or positively regulating drpl in Drosophila.'*® Moreover, Lutz and
collaborators'*” demonstrated that Parkin- or PINK 1-deficient SH-SY5Y cells showed a
significant increase in the percentage of cells with truncated or fragmented mitochondria
along with a decrease in cellular ATP production. The mitochondrial phenotype could
morphologically and functionally be prevented by the enhanced expression of Mfn2,
OPA1, or dominant negative Drp1, suggesting that a decrease in mitochondrial fusion or
an increase in fission is associated with a loss of parkin or PINK1 function.'*” Notably,
genetic manipulations and treatment with the small molecule mitochondrial division
inhibitor (mdivi-1), which inhibits Drpl, both structural and functional mitochondrial
defects induced by mutant PINK 1 were attenuated, highlighting a potential therapeutic
strategy for PD.!48

Huntington’s Disease

HD is an autosomal dominant neurological disorder caused by an abnormal
polyglutamine (polyQ) expansion within a single gene, huntingtin (Htt), leading to the
progressive loss of striatal and cortical neurons and consequent decline of cognitive
and motor functions.'* Several lines of evidence indicate that the expression of mutant
Htt is associated with mitochondrial dysfunction, in both HD patients and mouse
transgenic HD models'? (Fig. 1). A pronounced decrease in glucose metabolism and
a corresponding increase in lactate were documented in affected brain regions of
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HD patients, which suggest a bioenergetic defect.!’! In addition, impaired activity of
mitochondrial respiratory complexes II, [Il and IV was found in postmortem brain of HD
patients.'>? Similarly, striatal cells from mtHtt mice exhibit impairment of mitochondrial
respiration and ATP synthesis.!>* Conversely, it was observed that the expression of
complex II subunits in striatal neurons expressing mutant Htt exon 1 restores complex
II respiratory activity and protects against cell death.'s! Panov and collaborators!** also
observed that mitochondria isolated from lymphocytes of HD patients have lowered
buffering capacity and their AWm depolarizes earlier at lower Ca?* concentrations,
proposing that mitochondrial Ca** abnormalities occur early in HD pathogenesis and
may be a direct effect of mutant Htt on the organelle. To further emphasize the role of
mitochondrial respiratory chain inhibition in HD pathogenesis, it has been shown that
the use of 3-nitropropionic acid (3-NP), a selective inhibitor of SDH and complex II,
recapitulates the loss of medium spiny neurons in the substantia nigra and HD-like
symptoms in several vertebrate models.!*>!¢ Additionally, humans exposed to 3-NP
also exhibit similar motor dysfunction to that found in HD patients.!**!>® Evidence from
the literature also demonstrated that HD patients had higher frequencies of mtDNA
deletions in lymphocytes in comparison to the controls, which suggest that CAG repeats
instability and mutant Htt are causative factors in mtDNA damage.'** More recently,
Acevedo-Torres and coworkers!'® suggested that mtDNA damage is an early biomarker
for HD-associated neurodegeneration, supporting the hypothesis that mtDNA lesions
might contribute to HD pathogenesis.

Ultrastructral changes in mitochondria were also reported in HD, raising the possibility
for interplay between HD and mitochondrial dynamics.'®! In fact, in rat cortical neurons
it was demonstrated that 3-NP exposure leads to fragmentation and condensation of
mitochondria, which can be prevented by antioxidant treatment.'®* Accordingly, Wang
and collaborators'® found that mitochondria in HeLa cells over-expressing a mutant
Htt with a 74 glutamine repeat (Htt74Q) show fragmentation of mitochondria, reduced
mitochondrial fusion, reduced ATP and increased cell death. On the other hand, expression
of either dominant-negative Drpl or Mfn2 restores ATP levels and attenuates cell
death.'®® Additionally, mutant Htt was shown to promote a mitochondrial morphologic
alteration from an elongated to a round phenotype, which correlates with a blockage in
mitochondrial movement. 64163

Overall, mitochondrial impairment plays a key role in HD pathogenesis, such that
expression of mtHtt culminates in abnormal mitochondrial ultrastructure, impaired Ca**
buffering, bioenergetic defects and mtDNA deletions and damage.

CONCLUSION

Altogether, we highlighted here the clear role of mitochondrial abnormalities, including
disturbances in mitochondrial machinery, dynamics and turnover in the onset and/or
progression of neurodegenerative diseases, including AD, PD and HD. Mitochondrial
disturbances provide a common target for combating the various abnormalities
caused by the specific protein substrates of the genetic mutations, the resulting energy
imbalance and the increased ROS. That said, it will be important to dissect all the
key mitochondrial-dependent pathogenic mechanisms underlying neurodegeneration,
which can be useful to develop new therapeutic interventions to prevent and/or mitigate
age-related neurodegenerative diseases.
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