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  Abstract 

 Drought, cold, high-salinity and heat are major abiotic stresses that 
severely reduce the yield of food crops worldwide. Traditional plant breed-
ing approaches to improve abiotic stress tolerance of crops had limited 
success due to multigenic nature of stress tolerance. In the last decade, 
molecular techniques have been used to understand the mechanisms by 
which plants perceive environmental signals and further their transmis-
sion to cellular machinery to activate adaptive responses. This knowledge 
is critical for the development of rational breeding and transgenic strate-
gies to impart stress tolerance in crops. Studies on physiological and 
molecular mechanisms of abiotic stress tolerance have led to characterisa-
tion of a number of genes associated with stress adaptation. Techniques 
like microarrays have proven to be invaluable in generating a list of stress-
related genes. Some of these genes are specifi c for a particular stress while 
others are shared between various stresses. Interestingly, a number of 
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genes are shared in abiotic and biotic stress responses. This highlights the 
complexity of stress response and adaptation in plants. There is a whole 
cascade of genes involved in abiotic stress tolerance; starting from stress 
perception to transcriptional activation of downstream genes leading to 
stress adaptation and tolerance. A number of these genes have been dis-
covered but we still do not have the complete list with all interactions. 
There is also signifi cant number of genes with unknown functions found 
to be regulated by abiotic stresses. Understanding the function of these 
genes and their interaction with other known genes to effect stress adapta-
tion is required. 

 The recent discovery that microRNAs regulate gene expression adds 
another layer of complexity to our understanding of abiotic stress tolerance. 
Signifi cant amount of work will be needed to identify microRNAs associ-
ated with abiotic stress response, and understand their interaction with each 
other and their mechanism of regulating abiotic stress response. The prom-
ising side is the development of next-generation sequencing techniques 
that has allowed deep sequencing of mRNAs and microRNAs associated 
with abiotic stress response. A complete understanding on physiological 
and molecular mechanisms especially signalling cascades in response to 
abiotic stresses in tolerant plants will help to manipulate susceptible crop 
plants and increase agricultural productivity in the near future.  
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    1   Introduction 

 The major abiotic stresses (drought, high salinity, 
cold, and heat) negatively infl uence the survival, 
biomass production and yields of staple food 
crops up to 70% (Vorasoot et al.  2003 ; Kaur 
et al.  2008 ; Thakur et al.  2010  )  hence, threaten 
the food security worldwide. Dehydration stress 
imparted by drought, salinity and temperature 
severity is the most prevalent abiotic stress that 
limits plant growth and productivity (Vorasoot 
et al.  2003 ; Jaleel et al.  2009 ; Thakur et al. 
 2010  ) . Since tolerance to this stress is multi-
genic and quantitative in nature (Collins et al. 
 2008  ) , a massive challenge exists to understand 
the key molecular mechanisms for advanced 
selective breeding purposes. Traditional plant-
breeding approaches have been marginally suc-
cessful in improving the tolerances to these 

stresses (Flowers and Yeo  1995 ; Flowers et al. 
 2000  ) . The molecular mechanisms underlying 
abiotic stress tolerances in plants are being 
unravelled with various high throughput 
sequencing and functional genomics tools in 
particular to advance the understanding of stress 
signal perception and transduction of the associ-
ated molecular regulatory networks (Heidarvand 
and Amiri  2010 ; Ray et al.  2010 ; Sanchez et al. 
 2011  ) . Understanding the mechanisms by which 
plants perceive environmental signals and fur-
ther their transmission to cellular machinery to 
activate adaptive responses is of critical impor-
tance for the development of rational breeding 
and transgenic strategies to impart stress toler-
ance in crops. Ultimately, marrying the physio-
logical, biochemical and gene regulatory 
network knowledge will be essential to develop 
or select for stress-tolerant and high-yielding 
food crop cultivars.  
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    2   Physiological and Molecular 
Mechanisms of Abiotic Stress 
Tolerance 

    2.1   Ion Transport and Homeostasis 

 The effect of salinity on plant growth limitation 
is proposed to be due to the osmotic effect from 
the ion imbalance in the earlier phase and a direct 
effect of the ions themselves in the latter phase of 
low to moderate stress (Munns and Tester  2008  ) . 
At high salinity levels, salt-sensitive species lack 
the ability to control Na +  transport, where ionic 
effects dominate the osmotic effect. For normal 
metabolic reactions, plant cells need to maintain 
high K +  (100–200 mM) and low Na +  (less than 
10–20 mM) levels (Flowers and Dalmond  1992 ; 
Carden et al.  2003  ) . Therefore, tolerance to salin-
ity stress must involve maintaining or quickly re-
establishing both osmotic and ionic homeostasis 
(Munns and Tester  2008  ) . 

 In general, plants employ one or both of the 
following to survive high salinity environments to 
ensure internal osmotic and ionic homeostasis; 
(1) avoidance – to keep sensitive plant tissues 
away from regions of concentrated salt ions and 
(2) tolerance – to exclude ions from roots or com-
partmentalise ions away from the cytoplasm of 
physiologically active cells (Silva et al.  2010  ) . 
Indeed, effi cient exclusion of excess Na +  ions 
from the cytoplasm and accumulation of Na +  ions 
within vacuoles are the main adaptive tolerance 
mechanisms to salinity stress (Munns and Tester 
 2008  ) . Exclusion is typically carried out by trans-
membrane transport proteins that exclude Na +  
from the cytosol in exchange for H + , a secondary 
transport process which is energy-dependent and 
driven by the proton motive force generated by 
the plasma membrane H + -ATPase. Likewise, 
compartmentalisation is generally carried out 
by vacuolar membrane H + -ATPase and H + -
pyrophosphatase proteins (Rodríguez-Rosales 
et al.  2009 ; Ye et al.  2009 ; Leidi et al.  2010 ; 
Pasapula et al.  2011  ) . By increasing the cellular 
levels of proteins (such as vacuolar antiporter pro-
teins), number of abiotic stress-tolerant transgenic 
plants have been produced to control the transport 

functions.  AtSOS  from  Arabidopsis  has been 
shown to encode plasma membrane Na + /H +  anti-
porter ( NHX ) with signifi cant sequence similarity 
to the respective antiporter from bacteria and 
fungi (Shi et al.  2000  ) . Overexpression of the vac-
uolar Na + /H +  antiporter ( NHX1 ) or the  Arabidopsis 
thaliana vacuolar H   +   -translocating pyrophos-
phatase  ( AVP1 ) gene energized the pumping of 
Na +  into the vacuole and increased both accumu-
lation and tolerance to Na +  (Gaxiola et al.  2001 ; 
Pasapula et al.  2011  ) . More effi cient sequestration 
of these ions to the vacuole may improve tissue 
tolerance to salinity by reducing the cytosolic Na +  
concentrations. The importance of Na +  sequestra-
tion in salt tolerance has been further demon-
strated in transgenic plants overexpressing 
 AtNHX1  (Leidi et al.  2010 ; Silva et al.  2010  ) .  

    2.2   Osmotic Adjustments 
and Controlling Factors 

 Intracellular water lost from the cell due to salt, 
drought and cold, leads to cellular dehydration. 
To prevent this and protect the cellular proteins, 
plants accumulate many organic compounds such 
as amino acids (proline), quaternary and other 
amines (glycine betaine and polyamines), a variety 
of sugars (mainly fructose and sucrose), sugar 
alcohols, complex sugars (like trehalose and 
fructans) and organic acids (oxalate, malate) 
(Valliyodan and Nguyen  2006  ) . These metabo-
lites with osmolytic function are also known as 
compatible solutes or osmoprotectants and may 
accumulate to high levels without disturbing the 
intracellular biochemistry (Ford  1984  ) . By reduc-
ing the water potential within the cell, water loss 
is prevented and osmotic adjustment is facilitated 
(Delauney and Verma  1993  ) . 

 Transgenic studies have been carried out for 
developing tolerant genotypes through manipula-
tion of enzymes that synthesize specifi c osmo-
lytes (Chen and Murata  2008 ; Szabados and 
Savoure  2010  ) . The success of these studies on 
imparting stress tolerance has varied since the 
function of the targeted osmolytes is not restricted 
to osmotic adjustment, but also confers osmopro-
tection (Krishnan et al.  2008  ) . In several studies, 



4 N. Mantri et al.

accumulation of osmolytes provided protection 
through scavenging of reactive oxygen species 
(ROS) and chaperone-like activities in maintain-
ing protein structures and functions (Bohnert and 
Shen  1999 ; Krishnan et al.  2008  ) . Pleiotropic 
effects such as necrosis and growth retardation 
were also observed due to disturbances in endog-
enous pathways of primary metabolisms. Patade 
et al. (in press) reported differential osmotic 
adjustment in sugarcane where salt-stressed plants 
appeared to use salt as an osmoticum and PEG 
stressed plants relied on accumulation of sugars. 

 A substantial number of transgenic studies have 
been performed to overexpress genes encoding 
osmoprotectants such as glycine-betaine (Bensen 
et al.  2008 ; Chen and Murata  2008  )  and proline 
(Delauney and Verma  1993 ; Verdoy et al.  2006 ; 
Szabados and Savoure  2010  ) . Also, a number of 
sugars and sugar alcohols (mannitol, trehalose, 
myo-inositol and sorbitol) have been targeted for 
the engineering of compatible-solute overproduc-
tion, thereby protecting the membrane and protein 
complexes during stress (Gao et al.  2000 ; 
Suprasanna et al.  2005  ) . In particular, there is a 
growing body of research on trehalose metabolism 
as a means of engineering stress tolerance in crops 
(Suprasanna  2003  ) . In transgenic tomato, trehalose 
overproduction using the yeast  trehalose-6-phos-
phate synthase gene  led to signifi cant tolerance to 
salinity, drought and oxidative stress (Cortina and 
Culianez-Macia  2005  ) . Similarly, transgenic plants 
engineered for the overexpression of polyamines 
exhibited increased tolerance to multiple abiotic 
stresses such as heavy metal, salinity, drought, low 
and high temperature and fungal disease resistance 
(Capell et al.  2004 ; Prabhavathi and Rajam  2007  ) . 

 Aside from osmotolerance, osmolyte accumu-
lation also plays a vital role in the maintenance of 
cellular activities. For example, proline accumu-
lation through overexpression of the  P5CS  gene 
in  Medicago truncatula  resulted in enhanced 
osmotolerance and also aided in maintaining 
nitrogen-fi xing activity under osmotic stress 
(Verdoy et al.  2006  ) . In order to minimize possi-
ble negative pleiotropic effects such as those pre-
viously mentioned, engineering of pathways for 
overproduction of compatible solutes should be 
through stress-inducible and/or tissue specifi c 
regulation (Su and Wu  2004  ) .  

    2.3   Cold Acclimation 

 Plants survive freezing temperatures either 
through avoidance, primarily by super cooling of 
tissue water, or through freezing tolerance. 
Several plant species have the ability to increase 
freezing tolerance (FT) in response to low non-
freezing temperatures (below 10°C) within a 
short photoperiod, a phenomenon known as cold 
acclimation (Thomashow  2010  ) . The level of FT 
obtained through cold acclimation is not static 
but can vary seasonally and is rapidly lost upon 
return to a warm non-acclimating temperature. 
FT can be induced by osmotic stresses (Li et al. 
 2002  )  as well as treatment with abscisic acid (Li 
et al.  2003  ) . Programmed dehydration is charac-
teristic of overwintering tissues and at least partly 
contributes to FT (Welling et al.  2004  ) . Further, 
cellular changes related to accumulation of stor-
age proteins, sugars and starch are triggered by 
alteration of source–sink relationships after 
growth cessation in response to low temperature 
exposure (Zhu and Coleman  2001  ) . The essential 
accumulation of sugars for cold acclimation was 
demonstrated by the inability of an  Arabidopsis  
sucrose synthase mutant to cold acclimate 
(Uemura et al.  2003  ) . The high abundance of 
sugars in cold acclimated plants suggests a role in 
osmoregulation, whereas less abundant sugars 
might have a role in cryoprotection or as signal-
ling molecules (Stitt and Hurry  2002  ) . 

 Recent progress has been made in elucidating 
the physiological and molecular mechanisms 
underpinning freezing tolerance. FT is a geneti-
cally complex trait, refl ected by large number of 
genes that are affected by low temperature, thus 
estimated to be up to 25% of the entire transcrip-
tome (Krebs et al.  2002  ) . Altered expression of 
specifi c cold responsive -COR  genes results in 
various physiological and biochemical changes 
during the process of cold acclimation, and the 
combined effect of the gene products is mani-
fested in the level of FT obtained (Chinnusamy 
et al.  2006 ; Novillo et al.  2007 ; Thomashow 
 2010  ) . The activation of  COR  genes is controlled 
by a set of signalling pathways triggered by expo-
sure to the LT stimulus (Chinnusamy et al.  2006  ) . 
The  A. thaliana  CBF (C-repeat binding factor) 
cold response pathway is most likely the best 
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understood regulatory pathway involved in cold 
acclimation. This occurs through a rapid cold 
induction of CBF transcription factors, followed 
by expression of the regulon genes, which imparts 
freezing tolerance (Thomashow  2010  ) . Specif-
ically, in  Arabidopsis , three CBF genes,  CBF1  
( DREB1b ),  CBF2  ( DREB1c ) and  CBF3  
( DREB1a ), were induced within 15 min of low 
temperature exposure (Gilmour et al.  1998 ; Liu 
et al.  1998  ) . These CBFs encodes closely related 
members of the AP2/ERF (Apetala2/Ethylene-
responsive element binding factor), a family of 
transcription factors (Riechmann et al.  2000  )  that 
binds to CRT/DRE (C-repeat/dehydration respon-
sive element) DNA regulatory elements found in 
the promoters of CBF-targeted genes (Stockinger 
et al.  1997 ; Liu et al.  1998  ) . The CBF proteins 
induce the expression of many CBF regulon 
genes (Maruyama et al.  2004 ; Vogel et al.  2005  ) . 
This leads to an increase in freezing tolerance 
(Jaglo-Ottosen et al.  1998 ; Liu et al.  1998  )  
through the accumulation of low molecular 
weight cryoprotective metabolites, such as 
raffi nose, sucrose and proline (Cook et al.  2004 ; 
Kaplan et al.  2004  ) , along with the production of 
cryoprotective polypeptides, such as COR15a 
(Steponkus et al.  1998  ) . 

 Cytoskeletal reorganization serves as a link 
between membrane rigidifi cation and Ca 2+  infl ux 
in the early stages of cold acclimation, and is 
needed for the development of maximum FT 
(Orvar et al.  2000 ; Sangwan et al.  2002  ) . Low-
temperature-induced changes in cytosolic calcium 
correlate with the expression of cold-responsive 
genes and the development of FT. In  Arabidopsis , 
the increase in cytosolic calcium comes from rapid 
cold-induced release of calcium from both extra-
cellular and vacuolar stores (Knight et al.  1996  ) . 
Following the cold stimulus, the Ca 2+  homeostasis 
in cells is restored to resting levels by active Ca 2+  
transporters. A connection between the calcium 
spikes and cold-regulated gene expression has 
been demonstrated to involve induction of DREB 
genes (Shinozaki and Yamaguchi-Shinozaki 
 1996  ) . Overexpression of  CBF1 , a  DREB1A  
homolog, enhanced freezing-stress tolerance and 
increased the expression of cold regulated genes 
( cor15a ,  cor6.6 , and  cor47 ) (Jaglo-Ottosen et al. 
 1998  ) . Overexpression of  DREB1A  also enhanced 

drought and salt tolerance in transgenic plants, 
demonstrating the cross-stress protective function 
of this gene family (Kasuga et al.  1999  ) . 

 In  Arabidopsis , the rapid infl ux of calcium into 
the cytosol is required for normal cold induction 
of the CBF target genes  KIN1  and  KIN2  (Knight 
et al.  1996 ; Tahtiharju et al.  1997  ) . Accumulation 
of dehydrins, proteins which accumulate in vege-
tative tissues during dehydration stresses, was 
linked to the development of FT both in herba-
ceous and woody plants (Peng et al.  2008 ; Xu 
et al.  2008  ) . Recently, a close link between the up-
regulation of low temperature-associated proteins 
and vernalization fulfi lment in wheat ( Triticum 
aestivum ) was reported (Sarhadi et al.  2010  ) .  

    2.4   Antioxidant Defence for Abiotic 
Stress Tolerance 

 Reactive Oxygen Species (ROS) such as singlet 
oxygen, hydrogen peroxide molecules, superox-
ide and hydroxyl radicals are constantly produced 
in chloroplasts, mitochondria and peroxisomes by 
aerobic processes (Apel and Hirt  2004  ) . Thought 
to be integral to downstream defense/tolerance 
responses, the elevated levels of ROS are often 
associated with exposure to biotic (e.g. pathogens 
or pests) and abiotic (e.g. high light, UV radia-
tion, temperature extremes, heavy metals, air pol-
lutants, drought stress, salt stress, mechanical/
physical stress) factors (Neill et al.  2002 ; Imlay 
 2003 ; Einset et al.  2007  ) . Overproduction of ROS 
leads to oxidative damage such as lipid peroxida-
tion of cell membranes (Imlay  2003  )  or even 
cell death (Jones  2000  ) . In order to control ROS 
levels and protect cells from oxidative injury, 
plants possess both enzymes and non-enzymatic 
metabolites that may play a signifi cant role in 
ROS signalling in plants (Vranova et al.  2002  ) . 

 The harmful effects of ROS are prevented 
by the presence of lipid soluble antioxidants 
( a -tocopherol and carotenoids), water-soluble 
reductants (glutathione and ascorbate) and antioxi-
dant enzymes such as catalase (CAT, EC 1.11.1.6), 
ascorbate peroxidase (APX, EC 1.11.1.11) and 
superoxide dismutase (SOD, EC 1.15.1.1) present 
in plant cells (Desikan et al.  2004  ) . In response to 
stress, some of the osmolytes accumulate in plant 
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cells, besides a role in scavenging of free radicals 
and protecting enzymes (Krishnan et al.  2008  ) . 
The ability to activate protective mechanisms, such 
as an increase in the activity of scavenging 
enzymes, is vital for oxidative stress tolerance. 
Transgenic improvements for abiotic stress toler-
ances have been achieved through detoxifi cation 
strategies by overexpressing the enzymes involved 
in oxidative protection. For example, salt or ther-
mal stress treatment inhibited the growth of wild 
tobacco and caused increased lipid peroxidation, 
while overexpression of tobacco glutathione-S-
transferase (GST) and glutathione peroxidase 
(GPX) reduced oxidative damage in the stressed 
transgenic seedlings (Roxas et al.  2000  ) . 
Furthermore, overexpression of  CuZn  superoxide 
dismutase (SOD) and ascorbate peroxidase (APX) 
in transgenic sweet potato enhanced tolerance and 
recovery from drought stress. This was due to a 
considerable increase in expression of antioxidant 
enzymes that reduced the levels of malondialde-
hyde and electrolyte leakage (Lu et al.  2010  ) . 
Likewise,  Arabidopsis  transformed with antisense 
barley 2-cystein peroxiredoxin sequence resulted 
in high expression of APX and monodehydroascor-
bate reductase (MDHAR; Baier et al.  2000  ) . 

 Overexpression of an alternative oxidase 
(AOX) gene reduced oxidative stress in trans-
genic  Arabidopsis  under cold exposure (Sugie 
et al.  2006  ) . Vitamin E was shown to be another 
participant in the protective mechanism against 
oxidative stress since Vitamin-E defi cient 
 Arabidopsis  mutants were chilling sensitive. This 
was proposed to be because of a defective export 
of photoassimilate (Zhu et al.  2007  ) .  

    2.5   Signal Transduction in Response 
to Abiotic Stresses: Specifi city 
and Cross-Talk 

 Abiotic stresses are complex stimuli (ionic imbal-
ance and osmotic stress), perceived by multiple 
primary sensors that cause alteration in the expres-
sion of many genes. The cascade of molecular 
responses ranges from stress perception, to signal 
transduction to cytoplasm and nucleus, to gene 
expression and fi nally metabolic changes leading 

to stress tolerance. Rapid increase in cytosolic 
Ca 2+  levels in response to the various environ-
mental stress stimuli are controlled by four major 
families of calcium-binding proteins; calmodu-
lins, calmodulin-like proteins, calcineurin B-like 
proteins and calcium-dependent protein kinases 
(CDPKs) (Snedden and Fromm  2001 ; Luan et al. 
 2002 ; Sanders et al.  2002  ) . Following the Ca 2+  
infl ux, signals are proposed to be mediated by 
combinations of phosphorylation/dephosphoryla-
tion cascades and is thought to be controlled by 
members of the Ca 2+ -dependent protein kinase 
(CDPK) gene family (Zhang et al.  2005  ) . 
Members of the CDPK family are also reported to 
activate ABA/stress responsive gene expression. 
Altered expression of  Oryza sativa CDPK  
( OsCDPK ) has been correlated with tolerance to 
cold, salt and drought stress (Saijo et al.  2000  ) . 

 Plants demonstrate both, stress-specifi c as well 
as shared responses that protect them from sev-
eral environmental stresses (Mantri et al.  2010b  ) . 
Plants respond to stress by regulating gene expres-
sion leading to both common and distinctive 
changes in transcript levels of stress responsive 
genes (Shinozaki and Yamaguchi-Shinozaki 
 2000  ) . Indeed, overlap has been reported in gene 
expression induced by different stresses (Chen 
et al.  2002 ; Mantri et al.  2007 ; Seki et al.  2009  ) . 
Plants universally appear to suffer from osmotic 
and oxidative stress under salt, drought and cold 
stress (Beck et al.  2007 ; Munns and Tester  2008  ) . 
However, prevention of the osmotic stress is per-
formed by stress-specifi c and general tolerance 
mechanisms. For example, in salt stress, osmotic 
adjustment maintains osmotic homeostasis while 
endurance through the period of freezing-induced 
osmotic stress relies on avoidance or interruption 
of ice nuclei formation (   Pearce  2001  ) . 

 Chen et al.  (  2002  )  identifi ed groups of tran-
scription factors regulated either singly i.e., abi-
otic stress (class I) or by both, biotic and abiotic 
stresses (class II) in  Arabidopsis . Among the 
class I group, ~20 genes were preferentially 
induced by abiotic stresses such as salinity, 
osmotic, cold and jasmonic acid treatments. 
These transcription factors include DRE/CRT 
binding factors activated by cold stress, CCA1 
and Athb-8 (regulated by hormones, Baima et al. 
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 2001  ) , Myb proteins as well as bZIP/HD-ZIPs 
and AP2/EREBP domain proteins (Kizis et al. 
 2001  ) . Further, Seki et al.  (  2002  )  employed a 
full-length cDNA microarray, containing 7,000 
independent  Arabidopsis  cDNAs to identify cold, 
drought and salinity-induced target genes and 
stress-related transcription factor family mem-
bers such as DREB, ERF, WRKY, MYB, bZIP, 
helix-loop-helix and NAC. ABA is not only 
involved in drought-specifi c responses but also 
there is a cross-talk in cold and salinity stress 
responses (Seki et al.  2002  ) . 

    2.5.1   Cross Talk Between Biotic 
and Abiotic Stress Signalling 

 Plants have developed various methods to deal 
with biotic and abiotic stresses. Traditionally, the 
molecular mechanisms associated with tolerance 
to each stress have been studied independently. 
Therefore, the knowledge of signalling pathways 
that are shared during biotic and abiotic stress 
responses remain rudimentary. In a recent study in 
chickpea, plant responses to fungal infection 
( Ascochyta blight ) were found to be more similar 
to high-salinity stress than drought and cold 
stresses (Mantri et al.  2010a  ) . Supporting this, 
abscisic acid-induced myb1 ( SlAIM1 ) gene from 
tomato ( Solanum lycopersicum ) encoding an 
R2R3MYB transcription factor was induced by 
pathogens, plant hormones, salinity and oxidative 
stress (Abuqamar et al.  2009  ) . Further, silencing 
the  SlAIM1  by RNA interference led to an 
increased susceptibility to the necrotrophic fungus 
 Botrytis cinerea , and increased sensitivity to salt 
and oxidative stress. Also an ectopic expression of 
 SlAIM1  led to high salinity and oxidative stress 
tolerance (Abuqamar et al.  2009  ) . This  suggested 
that  SlAIM1  regulates a transmembrane ion fl ux, 
an indication of an early response to  abiotic stress 
and pathogen infection, perhaps preceding hyper-
sensitive cell death and necrosis. 

 Misregulation of ion fl uxes can result in 
impaired plant tolerance to necrotrophic infection 
or abiotic stress (Abuqamar et al.  2009  ) . Emerging 
evidence suggests that hormone signalling path-
ways like those controlled by jasmonic acid, 
abscisic acid, ethylene, and salicylic acid are cen-
tral to the crosstalk between abiotic and biotic 

stress responses (Fujita et al.  2006  ) . Recent studies 
have indicated several transcription factors and 
kinases are important candidates leading to cross-
talk in stress signalling pathways. Mitogen-
activated protein kinases (MAPKs) have been 
shown to be involved in developmental, hor-
monal, abiotic, and biotic stress signalling 
(Colcombet and Hirt  2008 ; Rodriguez et al.  2010  ) . 
The activation of components of MAPK cascades 
by more than one type of stress, suggests that 
MAPK cascades serve as crossroads for numer-
ous abiotic and biotic stress signalling pathways. 
Furthermore, as the  Arabidopsis  genome is 
reported to have around 20 MAPKs, 10 MAPKKs 
and 60 MAPKKKs, the signals recognized by the 
60 MAPKKKs have to be transferred via 10 
MAPKKs to 20 MAPKs, offering great chances 
for crosstalk between different stress signals. 

 Spatial and temporal expression patterns 
based on cell biological analysis combined with 
biochemical characterization of the signalling 
components, mainly identifi cation of signalling 
complexes, is necessary to establish specifi city or 
crosstalk of the signalling pathways (Chinnusamy 
et al.  2004  ) . In the coming years, with the further 
development and incorporation of “omics” tools 
and computational approaches, deeper under-
standing of the signalling pathways, specifi city 
and cross talk should be targeted. Currently, only 
a limited number of pathways and their compo-
nents have been unravelled. In nature, however, 
plants face and respond to an overabundance 
of stimuli (including biotic as well as abiotic) 
simultaneously.    

    3   Involvement of Other Novel 
Genes Like MicroRNA in Plant 
Stress Tolerance 

 Discovery and functional association of microR-
NAs (miRNAs) have led to a large new research 
area in the previously unsuspected world of 
 non-coding RNAs (Lee et al.  1993 ; Reinhart et al. 
 2002  ) . The miRNAs are endogenous, small 
21–24 nucleotide, single stranded, non-protein 
coding RNAs that have recently emerged as impor-
tant regulators of gene expression (Bartel  2004  ) . 
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These regulate target gene expression by catalyzing 
posttranscriptional gene silencing (Palatnik et al. 
 2003  )  or translation repression (Chen  2004  ) . 
Targets of miRNA comprises transcription fac-
tors or other regulatory proteins that function in 
plant development or signal transduction. 
Recently, research on micro-RNAs (miRNAs) 
have suggested an association between miRNAs 
and plant stress responses (Patade and Suprasanna 
 2010  ) . However, the relationship between micro-
RNAs and stress response is just beginning to be 
explored. Several miRNAs are either up- or 
down-regulated by abiotic stresses, suggesting to 
be involved in stress-responsive gene expression 
and stress adaptation affecting a variety of cellu-
lar and physiological processes (Sunkar and Zhu 
 2004 ; Shukla et al.  2008  ) . 

 Sunkar and Zhu  (  2004  )  identifi ed novel and 
abiotic stress-regulated miRNAs and reported dif-
ferential expression of some of the identifi ed miR-
NAs in  Arabidopsis  seedlings exposed to 
dehydration, salinity, or cold stress. In order to 
unravel function of microRNA, Zhao et al.  (  2007  )  
studied transcript expression profi les of miRNAs 
in rice ( O. sativa ) under drought stress. The 
drought-induced expression of  miR -169g and 
 miR 393 was validated by microarray expression 
profi ling and confi rmed greater expression of  miR -
169g in roots rather than shoots. Sequence analy-
sis revealed occurrence of two proximate DREs 
(dehydration-responsive element) in the upstream 
of the  MiR -169g, suggesting transcript expression 
regulation of  miR -169g by CBF/DREBs. 

 Sunkar et al.  (  2006  )  provided evidence on 
involvement of miRNA in oxidative stress 
responses by targeting cytosolic and chloroplas-
tic superoxide dismutases that detoxify superox-
ide radicals. Transcript expression of  miR 398 in 
response to oxidative stress was down-regulated, 
leading to posttranscriptional accumulation of 
the SOD mRNA and thus oxidative stress toler-
ance. Moreover, transgenic  Arabidopsis  plants 
overexpressing a  miR 398-resistant form of SOD 
accumulated more mRNA than plants overex-
pressing a regular form and were consequently 
much more tolerant to high light, heavy metals 
and other oxidative stresses.  Arabidopsis  have 
been shown to trigger the accumulation of 

 miR159  in response to ABA, drought stress, and 
gibberellic acid (GA) treatment and the miRNA 
was predicted to target four MYB transcription 
factors (Reyes and Chua  2007  ) . Recently, Patade 
and Suprasanna  (  2010  )  characterized transcript 
expression of mature  miR159  in response to 
short- and long-term salt and PEG-induced 
osmotic stress in sugarcane. A change in mature 
transcript levels of  miR159  was not detected in 
response to long-term (15 days) NaCl or iso-
osmotic (−0.7 MPa) PEG stress. However, short-
term (up to 24 h) salt or PEG stresses increased 
transcript level of the mature miRNA as com-
pared to the control. The early induction of the 
gene under the short treatments supports its 
involvement in the regulation of genes involved 
in stress perception and/or signalling. 

 Zhou et al.  (  2008  )  developed a computational 
transcriptome-based approach to annotate stress-
inducible miRNAs in plants. Interestingly, the 
promoter analysis of the miRNA genes revealed 
the presence of many known stress-responsive 
cis-regulatory elements. Continued efforts are 
needed to identify the complete set of miRNAs 
and other small RNAs that are fundamental to 
the stress regulation pathways. The identifi cation 
and functional validation of stress-regulated small 
RNAs including miRNAs will help in designing 
new strategies for improving stress  tolerance 
(Sunkar et al.  2006 ; Katiyar-Agarwal et al.  2007  ) .  

    4   Strategies for Improving 
Abiotic Stress Tolerance 

 Many strategies undertaken for improving abi-
otic stress tolerance in a particular genetic back-
ground have included screening of diverse genetic 
resources, wide crossing and subsequent recur-
rent backcrossing; identifi cation and selection of 
the major conditioning genes through linkage 
mapping and quantitative trait loci (QTL) analy-
sis; the production and screening of mutant popu-
lations and the transgenic introduction of novel 
genes (Fig.  1.1 ). Although some success has been 
achieved in introducing tolerance traits into crop 
varieties from wild relatives (i.e. barley; Forster 
et al.  2000  and tomato; Foolad et al.  2001  ) , in 
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  Fig. 1.1    Integrated components in the development of improved germplasm for abiotic stress tolerance       

general there has been very little success reported 
in achieving high abiotic tolerance into elite ger-
mplasm (Flowers  2004  ) .  

 As previously mentioned, breeding for, or 
induction of, abiotic stress tolerance traits is 
almost always limited by the genetic complexity 
of the underpinning mechanisms as well as poten-
tial interaction among genetic determinants. Also, 
differential selection of a particular stress may be 
affected by additional environmental factors, 
plant development stage, poor or irreproducible 
selection techniques, and the logistical constraints 
of physiological screening of large breeding pop-
ulations on a fi eld scale (Flowers et al.  2000  ) . In 
this regard, the identifi cation of discrete chromo-
somal regions that have a major effect on the spe-
cifi c tolerance trait through quantitative trait loci 
(QTL) mapping and marker-assisted selection 
remains a valuable option for many breeding 
 programs (Cushman  2009 ; Cuartero et al.  2010  ) . 
This is particularly so when whole genome 
knowledge is lacking and no candidate tolerance 
genes are known. 

 For accurate selection of the related phenotype, 
reliable and realistic screening techniques are 
required. However, uniformity and reliability of 
fi eld-based screening may suffer from heterogene-
ity in the stress across the site (i.e. boron or salin-
ity level) as well as the potential compounding 
environmental factors (i.e. disease, rainfall, tem-
perature). Also, when the starting material is 
genetically wide, heterogeneity among the genetic 
backgrounds may also impact on the ability to 
accurately select the most superior or different tol-
erances. As an alternative, cellular-based mutant 
induction and subsequent selection initially under 
controlled in vitro conditions offers a method to 
quickly screen large populations with homoge-
neous backgrounds for novel fortuitous changes 
related to tolerance. Subsequent fi eld screening 
then ensures adequate performance of the toler-
ance trait under the external potentially mitigating 
factors previously mentioned. Unsurprisingly, this 
method has generated great interest in selecting 
for abiotic stress tolerances in several crop species 
(Suprasanna et al.  2008  ) . 
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    4.1   Transgenic Approaches 
for Engineering Tolerance 

 Many genes linked to different pathways and 
processes such as stress perception and signal-
ling, contributing to molecular, biochemical, 
 cellular, physiological and morphological adap-
tations are differentially regulated in response to 
plant stress (Munns and Tester  2008  ) . Stress 
responsive genes include those that alleviate the 
effect of the stress and lead to adjustment of the 
cellular environment and plant tolerance. The 
gene products are classifi ed into three major 
groups: those encoding products that directly 
protect plant cells against stress, those that are 
involved in signalling cascades and in transcrip-
tional control and those that are involved in water 
and ion uptake and transport. 

 Engineering metabolic and stress-signalling 
pathways to produce stress-tolerant crops is one 
of the major interests of agricultural research. 
Genetic transformation with stress-inducible 
genes has been employed to gain an understand-
ing of their functional role in the tolerance 
response and ultimately to improve the tolerance 
trait in the target genotype (Zhang et al.  2004 , 
Cuartero et al.  2010  ) . To date, by far, majority of 
these studies have been limited to single-gene 
transfers within known multigenic pathways and 
mostly those involved in signalling and regula-
tory pathways, or effector genes that code for 
enzymes catalysing the synthesis of structural 

and functional defendants (Wang et al.  2003 ; 
Chinnusamy et al.  2005 ; Jewell et al.  2010  ) . 
When selecting for success of the transformation 
experiment, a common prime consideration is 
whether the transgenic plants express a higher 
level of the transgene (i.e. an osmoprotectant or a 
protein) only under the stress conditions (Zhu 
 2001  ) . In general, specifi c inducible promoters 
are used rather than constitutive promoters since 
the tolerance/stress-induced mechanisms may be 
energy and nucleic acid greedy and divert essen-
tial resources away from normal growth pro-
cesses (Su et al.  1998  ) . 

 As examples, transgenic rice plants developed 
with choline oxidase ( codA ),  d -pyrroline-5-cor-
boxylate synthase ( P5CS ), LEA protein group 3 
( HVA1 ), alcohol dehydrogenase ( ADH ) and pyru-
vate decarboxylase ( PDC ) genes exhibited drought 
tolerance (Datta  2002 ; Soren et al.  2010  ) . Potato 
and rice (Yeo et al.  2000  and Garg et al.  2002 , 
respectively) transformed with trehalose synthesis 
genes displayed tolerance to drought (in case of 
potato), and salt, drought, and low-temperature 
stress (in case of rice). Tobacco plants transformed 
with ectoine biosynthesis genes from the halo-
philic bacterium  Halomonas elongate  showed 
enhanced salt tolerance. Also transformation with 
genes for sorbitol (Sheveleva et al.  1997  )  or man-
nitol (Shen et al.  1997  )  resulted in an increased 
accumulation of these osmolytes and tolerance to 
high salinity (Table  1.1 ). Overexpression of genes 
encoding the enzymes pyrroline-5-carboxylate 

   Table 1.1    Some examples of osmoprotectant genes used in transgenic studies for engineering abiotic tolerance   

 Osmoprotectants  Gene source  Gene  Crop species engineered  References 

 Proline  Moth bean 
  Arabidopsis thaliana  

  P5CS  
  ProDH  

 Tobacco 
  Arabidopsis  

 Kishor et al.  (  1995  )  
 Nanjo et al. ( 1999 ) 

 Glycine betaine   E. coli  
  Arthrobacter  

 Spinach 
 Spinach, Beet 
 Spinach, Beet 

  Arthrobacter 
globiformis  

  CDH + BADH  
  COX  

  CMO  
  CMO  +  BADH  
  CMO  +  BADH  + 
 PEAMT  
  codA  

 Tobacco 
  Arabidopsis , 
 Brassica napus , Tobacco 
 Tobacco 
 Tobacco 
 Tobacco 

 Tomato 

 Holmstrom et al. ( 2000 ) 
 Huang et al. ( 2000 ) 

 Nuccio et al. ( 1998 ) 
 Nuccio et al. ( 2000 ) 
 McNeil et al. ( 2001 ) 

 Park et al. ( 2004 ) 

 Ectoine   Halomonas    ectA  +  ectB  +  ectC   Tobacco  Nakayama et al. ( 2000 )    
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(P5C) synthetase (P5CS) and P5C reductase 
(P5CR) resulted in proline overproduction and 
enhanced abiotic stress tolerance (Szabados and 
Savoure  2010  ) .  P5CS  overexpression in trans-
genic tobacco dramatically elevated free proline 
(Kishor et al.  1995  )  with improved germination 
and growth of seedlings under salt stress. 
Transgenic petunia plants transformed with 
 Arabidopsis P5CS  gene showed resistance to 
drought conditions for longer duration than con-
trol plants (Yamada et al.  2005  ) .  

 The enhancement of glycine betaine (GB) 
synthesis in transgenic plants using genes that 
encode for enzymes (choline monooxygenase, 
betaine aldehyde dehydrogenase and choline oxi-
dase) in GB biosynthesis is another strategy to 
achieve enhanced tolerance to drought, salt and 
chilling stress (Rontein et al.  2002 ; Chen and 
Murata  2008  ) . Transgenic rice plants expressing 
the  codA  ( choline oxidase ) gene recovered from 
an initial growth inhibition under salt and low-
temperature stress, and grew normally than the 
wild type (Sakamoto et al.  1998  ) . Several other 
plants that have been genetically engineered for 
obtaining salt, drought, freezing and heat toler-
ance through GBS accumulation include;  A. thal-
iana ,  Brassica napus ,  Brassica juncea ,  Gossypium 
hirsutum ,  Lycopersicon esculentum ,  Nicotiana 
tabacum ,  Solanum tuberosum  and  Zea mays  
(Chen and Murata  2008  ) . 

 Trehalose is a non-reducing disaccharide and 
an effective osmoprotectant (Goddijn and van 
Dunn  1999  ) . Transgenic plants overexpressing 
trehalose biosynthetic genes showed increased 
tolerance to different abiotic stress conditions 
(Penna  2003 ; Almeida et al.  2007  ) . A stress-induc-
ible promoter has been utilised to overexpress 
 Escherichia coli  trehalose biosynthesis genes 
( otsA  and  otsB)  as a fusion gene (TPSP) in rice, to 
confer tolerance to different abiotic stresses (Garg 
et al.  2002  ) . The TPSP fusion gene is dually 
advantageous as both the genes can be simultane-
ously introduced into the rice genome leading to 
increased catalytic effi ciency for trehalose syn-
thesis (Jang et al.  2003 ; Almeida et al.  2007  ) . 

 Research on genetic engineering efforts with 
other osmolytes such as mannitol, fructans, 
ononitol, proline, glycinebetaine and ectoine 

have also shown promise for generating tolerant 
genotypes (Suprasanna et al.  2005  ) . To avoid 
overproduction of compatible solutes burdening 
the plant’s metabolic machinery and potentially 
diminishing pleiotropic effects, engineering for 
overproduction should be done under stress-
inducible and/or tissue specifi c regulation. 
In addition, production of the osmolytes should 
be targeted to the chloroplast by placing a signal 
sequence in front of the engineered enzymes 
(Shen et al.  1997  ) . 

 As previously stated, abiotic stress generates 
an increase in reactive oxygen species that may 
be deleterious to normal cellular functions. 
Therefore, several oxidative-stress-related genes 
have been employed in developing transgenic 
plants tolerant to various stresses (Hussain et al. 
 2008  ) . For example, transgenic tobacco plants 
overexpressing chloroplastic Cu/Zn-SOD showed 
increased resistance to oxidative stress caused by 
salt exposure (Tanaka et al.  1999 ; Bartel  2001  ) . 
Transgenic alfalfa ( Medicago sativa ) plants 
expressing Mn-SOD had reduced injury from 
water-defi cit stress, as determined by chlorophyll 
fl uorescence, electrolyte leakage and regrowth 
(McKersie et al.  1996  ) . Simultaneous expression 
of genes encoding three antioxidant enzymes: 
copper zinc superoxide dismutase, ascorbate per-
oxidase and dehydroascorbate reductase in the 
chloroplasts of tobacco plants conferred enhanced 
tolerance to oxidative stresses caused by paraquat 
and salt (Lee et al.  2007  ) . Similarly, overexpres-
sion of  AtNDPK2  effi ciently modulated oxidative 
stress caused by various environmental stresses 
in sweet potato through enhanced antioxidant 
enzyme activities such as peroxidase, ascorbate 
peroxidase and catalase (Kim et al.  2010  ) . Thus it 
seems promising to target detoxifi cation path-
ways as an approach for obtaining plants with 
multiple stress-tolerance traits. 

 Transgenic manipulation of detoxifi cation 
pathways through overexpressing genes involved 
in oxidative protection, such as glutathione per-
oxidase, superoxide dismutase, ascorbate peroxi-
dases and glutathione reductases is an area of 
current interest. Constitutive expression of the 
 Nicotiana PK1  gene (regulatory protein NPK1) 
enhanced freezing, heat and salinity tolerance in 
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transgenic maize plants (Shou et al.  2004b  ) . In a 
further study, Shou et al.  (  2004a  )  expressed a 
tobacco MAPKKK (NPK1) constitutively in 
maize resulting in enhanced drought tolerance. 
The transgenic maize plants maintained signifi -
cantly higher photosynthesis rates, suggesting, 
NPK1 induced a mechanism that protected photo-
synthesis machinery from dehydration damage. 

 Under salt stress, tolerant plant cells must 
maintain high K +  (100–200 mM) and lower Na +  
(less than 1 mM) levels for normal metabolic 
function. An important strategy for achieving 
greater tolerance to salinity stress is to help plants 
to re-establish homeostasis under stressful envi-
ronments, restoring both ionic and osmotic 
homeostasis. This strategy continues to be a 
major approach to improve salt tolerance in plants 
through genetic engineering, where the target is 
to achieve Na +  excretion, or vacuolar storage. A 
number of abiotic stress-tolerant transgenic plants 
have been produced by increasing the cellular 
levels of proteins (such as vacuolar antiporter 
proteins) that control the transport functions. For 
example,  AtSOS  from  Arabidopsis  has been 
shown to encode a plasma membrane Na + /H +  
antiporter (NHX) with signifi cant sequence simi-
larity to the respective antiporter from bacteria 
and fungi (Shi et al.  2000  ) . Constitutive expres-
sion of vacuolar Na + /H +  antiporter ( NHX1 ) or 
 AVP1  ( A. thaliana  vacuolar H + -translocating 
pyrophosphatase) gene energized the pumping of 
Na +  into the vacuole, and increased both accumu-
lation and Na +  tolerance in  Arabidopsis  (Gaxiola 
et al.  2001  ) . Thus more effi cient sequestration of 
these ions to the vacuole could improve tissue 
tolerance to salinity by reducing the cytosolic 
Na +  concentrations. The importance of Na +  
sequestration in salt tolerance has been further 
demonstrated in transgenic tomato plants overex-
pressing the  AtNHX1  gene (Zhang and Blumwald 
 2001  ) . Also, a vacuolar chloride channel gene, 
 AtCLCd , involved in cation detoxifi cation has 
been cloned as well as overexpressed in 
 Arabidopsis  and shown to confer salt tolerance. 
Up-regulation of the  Salt Overly Sensitive 1  
( SOS1 ) gene in  Arabidopsis  resulted in a greater 
proton motive force necessary for elevated Na + /
H +  antiporter activities (Shi et al.  2000  ) . 

 Apart from the single gene approach, tolerance 
towards multiple stresses may be achieved by tar-
geting a stress inducible signal transduction mol-
ecule and/or transcription factor (Chinnusamy 
et al.  2005  ) . The transcription factors play an 
important role in the acquisition of stress toler-
ance, which ultimately contribute to agricultural 
and environmental practices (Century et al. 
 2008  ) . A large number of transcription factors are 
involved in the plant response to abiotic stress 
(Vincour and Altman  2005  ) . Most of these falls 
into several large transcription factor families, 
such as AP2/ERF, bZIP, NAC, MYB, MYC, 
Cys2His2 zinc-fi nger and WRKY. Accordingly, 
overexpression of the functionally conserved 
 At-DBF2  gene resulted in wide and high levels of 
multiple stress tolerances in  Arabidopsis  (Lee 
et al.  1999  ) . Salt stress-tolerant tobacco plants 
were produced by overexpressing the calcineu-
rin, a Ca 2+ /calmodulin-dependent protein phos-
phatase gene, formally identifi ed as being 
involved in salt-stress signal transduction in yeast 
(Pardo et al.  1998 ; Grover et al.  1999  ) . 

 Some stress responsive genes may share the 
same transcription factors, as indicated by the 
signifi cant overlap of the gene expression profi les 
that are induced in response to drought and cold 
stress (Seki et al.  2001 ; Chen and Murata  2002 ; 
Mantri et al.  2007  ) . The activation of stress-
induced genes has been possible in transgenic 
plants by overexpressing one or more transcrip-
tion factors that recognize regulatory elements of 
these genes. In  Arabidopsis , the transcription fac-
tor DREB1A specifi cally interacts with the DRE 
and induces expression of stress tolerance genes 
(Shinozaki and Yamaguchi-Shinozaki  1997  ) . 
CaMV 35S promoter-driven overexpression of 
DREB1A cDNA in transgenic  Arabidopsis  plants 
provided tolerance to salt, freezing and drought 
stress through strong constitutive expression of 
the stress inducible genes (Liu et al.  1998  ) . 

 The transcription factors involved in the ABA-
dependent (such as  NAC, AREB / ABF , and  MYB ) 
and –independent ( AP2 / ERF  gene) stress response 
pathways regulate cascade of downstream genes 
and events that enhance tolerance to drought 
stress. Transforming crops with such transcription 
factor genes should be more meaningful in the 
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development of drought tolerance (Zhang et al. 
 2004 ; Ashraf  2010  ) . Overexpressing  Arabidopsis 
CBF1  ( CRT / DRE ) cDNA in tomato improved 
 tolerance to salt, chilling and drought stress; 
 however, the plants exhibited a dwarf phenotype 
as well as reduced fruit set and seed number (Hsieh 
et al.  2002  ) . Overexpression of Alfi n1 (transcrip-
tional regulator) in alfalfa plants exhibited salinity 
tolerance through regulated endogenous  MsPRP2  
(NaCl-inducible gene) mRNA levels (Winicov 
and Bastola  1999  ) .  

    4.2   The Future of Transgenic 
Approaches 

 The current plant genetic engineering approach 
for developing salt stress-tolerant transgenic 
plants includes altering the expression levels of 
native genes or incorporating alien genes for 
osmolytes, ion transporters, transcription factors 
and other signalling molecules. The advent of 
global transcription profi ling has demonstrated 
that large numbers of other genes are also up- and 
down-regulated simultaneously in response to 
salt stress. This second category of genes encode 
proteins related to the regulation of transcrip-
tional and translational machineries with distinct 
roles in mediating the salt stress response. 
Particularly, coordinated induction and action of 
the transcript of several RNA binding proteins, 
ribosomal genes, helicases, cyclophilins, F-box 
proteins, dynamin-like proteins, translation initi-
ation and elongation factors seems to be impor-
tant in salt stress tolerance. The functionality of 
these genes at the cellular level should also be 
investigated to assess aptness for targeted trans-
genic approaches (Sahi et al.  2006  ) . 

 The evaluation of genetically engineered salt-
tolerant transgenic lines needs critical, careful, 
and thorough experimentation (Flowers  2004  ) . 
The fourth or fi fth generation genotypes should 
be evaluated along with parental (wild-type) lines 
under controlled saline and non-saline treatment 
conditions. Validation should not stop at the labo-
ratory or green house level, since quantitative 
measures of growth are required throughout the 
plant life cycle in fi eld conditions.   

    5   Conclusions and Future 
Perspective    

 In the last decade, signifi cant progress has been 
made in our understanding of the complex mech-
anisms governing abiotic stress tolerance in crop 
plants. However, we are still far from pinning the 
exact battery of gene activation responsible for 
tolerance to a particular abiotic stress condition. 
This situation is complicated when one considers 
plants have to simultaneously cope with numer-
ous biotic stresses along with various abiotic 
stresses. Our struggle to understand these com-
plex mechanisms is ongoing and recent develop-
ment of new tools for high-throughput genotyping 
and phenotyping gives us a new ray of hope. 
A complete understanding on physiological and 
molecular mechanisms especially signalling cas-
cades in response to abiotic stresses in tolerant 
plants will help to manipulate susceptible crop 
plants and increase agricultural productivity in 
the near future.      
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