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    71.1   The Endoplasmic Reticulum: Protein Folding 
and Quality Control 

 ER-resident chaperones are among the fi rst proteins that interact with a nascent 
polypeptide chain. For instance, BiP/Grp78, an Hsp70 orthologue, detects and binds 
unfolded hydrophobic regions of a nascent polypeptide chain in an ATP-dependent 
process (Hendershot et al.  1995  ) . ER-resident J-domain co-chaperones, ERdj1 and 
ERdj2, regulate the interaction between BiP/Grp78 and the nascent peptide (Blond-
Elguindi et al.  1993  ) . 

 The initial step of ER glycoprotein modifi cation involves attachment of a 
Glc3Man9GlcNAc2-core glycan onto a nascent polypeptide chain that is further 
processed by activities of Glucosidase I and II (Aebi et al.  2009  ) . On removal of 
glucose residues, the monoglycosylated N-glycan becomes a substrate for 
ER-resident lectins, calreticulin (CRT) and calnexin (CNX). CRT and CNX both 
require Ca 2+  for their activities; CNX is ER membrane-bound, while CRT is soluble 
in the ER lumen (Wada et al.  1991 ; Peterson et al.  1995  ) . Both lectins promote pro-
tein folding by stabilizing folding sequences, preventing aggregation of unfolded 
proteins, and facilitating disulfi de-bond formation through association with ER 
oxidoreductase, ERp57, a protein disulfi de isomerase (PDI) homologue (Oliver 
et al.  1999 ; Ellgaard  2004  ) . 
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 Glycoproteins that fail to fold correctly are subject to a quality control process 
(Trombetta and Parodi  2003  ) . A key quality control sensor of the ER is UGGT1, 
which recognizes structural formation of misfolded proteins and alters their glyco-
sylation stage to regenerate monoglycosylated glycans, which subsequently renews 
binding to CNX and CRT and reentrance into the ER protein-folding cycle 
(Trombetta and Helenius  2000  ) . This cycle continues until the native conformation 
of the protein is achieved, or failing this, until the protein is targeted for disposal by 
endoplasmic reticulum-associated degradation (ERAD) (Lippincott-Schwartz et al. 
 1988  ) . Some ER-retained proteins can also be modifi ed by mannosidases, which 
may act as a timer for glycoprotein degradation and thus prevent glycoproteins from 
becoming permanently trapped in the reglucosylation/folding cycle (Fagioli and 
Sitia  2001  ) .  

    71.2   Recognition Misfolded Proteins in the ER 

 The complete mechanism for recognizing misfolded ER proteins is poorly under-
stood. One step in directing glycoprotein substrates to the ERAD machinery is the 
formation of the Man 

7
  N-glycan with a 1,6-linked mannose (Hosokawa et al.  2010a  ) . 

Various ER-resident enzymes are able to trim mannose residues, such as ER man-
nosidase I, a member of the glycosyl hydrolase 47 family, which also includes the 
ER degradation enhancing  a -mannosidase-like proteins 1–3 (EDEM1–3) and Golgi 
mannosidases (Aebi et al.  2009  ) . EDEM1 enhances ERAD through its ability to 
extract misfolded glycoproteins from the CNX/CRT cycle (Molinari et al.  2003 ; 
Oda et al.  2003  ) . EDEM1 and EDEM3 also trim mannose residues from N-glycan 
(Hirao et al.  2006 ; Hosokawa et al.  2010b  ) . By contrast, EDEM2 has no enzymatic 
activity, but still increases turnover of misfolded proteins in the ER and likely plays 
nonenzymatic roles in ERAD (Mast et al.  2005  ) . The mammalian PDI orthologue, 
ERdj5, is a cochaperone of EDEM1 and BiP/Grp78. ERdj5 recognizes misfolded 
proteins and reduces disulfi de bonds via its reductase activity, which is important 
for protein dislocation (Ushioda et al.  2008  ) .  

    71.3   From Quality Control to Dislocation for ERAD 

 How are misfolded proteins targeted for dislocation from the ER to the cytosol? 
OS-9 and XTP3-B are ER lectin-like proteins that contain mannose 6-phosphate 
receptor homology domains and N-linked glycosylation sites. OS-9 and XTP3-B 
may recognize and transfer misfolded proteins to an ER membrane-bound disloca-
tion complex (Christianson et al.  2008 ; Hosokawa et al.  2008 ; Bernasconi et al. 
 2010  ) . OS-9 interacts further with the ER-luminal Hsp90 homologue, 94 kDa 
glucose-regulated protein (Grp94), to deliver ERAD substrates to the dislocation 
complex. The complex contains the E3 ubiquitin ligase (HRD), the membrane adaptor 
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protein (Sel1L), and a membrane-embedded pore that forms the dislocation channel 
(Christianson et al.  2008 ; Hosokawa et al.  2008 ; Mueller et al.  2008  ) . Sel1L is a 
type I transmembrane glycoprotein, which interacts with the ERAD components 
HRD1, Derlin1, and Derlin2 as well as with the cytoplasmic protein p97/VCP 
(valosin-containing protein) (Lilley and Ploegh  2005  ) . OS-9 and XTP3-B associate 
with the HRD1-Sel1L ubiquitin ligase complex and XTP3-B is able to recognize 
both glycosylated and nonglycosylated ERAD substrates and facilitate their degra-
dation (Hosokawa et al.  2008  ) . Additional proteins and regulatory steps are likely to 
be involved in determining how misfolded proteins are selected for ERAD and 
delivered to the ER dislocation channel.  

    71.4   Cytosolic Events of ERAD 

 The dislocation and translocation of an ERAD substrate from the ER to cytosol 
requires activity of AAA-ATPases such as p97/VCP (Ye et al.  2001 ; Jarosch et al. 
 2002  ) . p97/VCP forms homohexamers, which associate with the cofactors Ufd1 
(ubiquitin fusion degradation 1) and Npl4 (nuclear protein localization 4) to extract 
substrates from the ER membrane (Bays et al.  2001 ; Ye et al.  2001 ; Braun et al. 
 2002  )  using energy provided by ATP hydrolysis (Zhang et al.  2000  ) . 

 ERAD substrates are further ubiquitinated once in the cytosol through a process 
that requires three cytosolic enzymes. E1 activates ubiquitin in an ATP-dependent 
manner; E2 then conjugates activated ubiquitin through a thiol-ester bond to its 
essential cysteine residue, and the E3 ligase transfers ubiquitin onto one or more 
lysine residues or the N-terminus of the target proteins (Weissman  2001  ) . The E4 
ubiquitin-chain-extension enzyme is also shown to be involved in the ERAD degra-
dation pathway (Richly et al.  2005  ) . 

 The ubiquitinated substrate is ultimately degraded by the proteasome. The 26S 
proteasome is a large cytosolic protease complex, consisting of a 20S core particle 
that is capped by the 19S regulatory particle (Finley  2009  ) . Four heptameric rings, 
two outer  a  subunits, and two inner  b  subunits form a barrel-shaped structure with 
proteolytic activity in the central cavity (Groll et al.  1997  ) . The core particle entrance 
is very narrow and requires partial unfolding of the substrate for entrance (Finley 
 2009  ) . The regulatory particle contains ATPase subunits and plays an important role 
in substrate recognition, unfolding, and translocation of target proteins into the core 
particle (Finley  2009  ) . Proteins that target polyubiquitinated substrates to the pro-
teasome include: Rad23 (radiation sensitive 23); Dsk2 (dominant suppressor of 
Kar1); Rpn10 (regulatory particle non-ATPase10); and Rpn13 (Finley  2009  ) . Before 
proteolysis, proteasome-associated deubiquitin (DUBs) enzymes cleave and shorten 
the ubiquitin chain of target proteins resulting in the insertion of the substrate into 
the proteasome. Human proteasomes have three distinct DUB’s, RPN11, UCH37 
and USP14, which are associated with the regulatory particle (Finley  2009  ) . 
Deubiquitin hydrolases remove the polyubiquitin chain, and ubiquitin proteins are 
recycled. Additionally, cytosolic N-glycanase removes oligosaccharides from 
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ERAD substrates to allow translocation into the proteasome (Blom et al.  2004 ; 
Misaghi et al.  2004  ) . N-glycanase interacts with other ERAD components and 
Rad23 (Suzuki et al.  2001  ) . The regulatory particle then unfolds the substrate and 
translocates it to the core particle for degradation.  

    71.5   ERAD in Retinitis Pigmentosa 

 In retinitis pigmentosa arising from the P23H rhodopsin (Rho) mutation, P23H Rho 
proteins are misfolded in the ER/Golgi and associate with CNX, BiP/Grp78 and 
Grp94 (Fig.  71.1a ) (Anukanth and Khorana  1994 ; Noorwez et al.  2009  ) . Recent 
studies implicate ERAD in the removal of misfolded P23H Rho. EDEM1 recog-
nizes mutant Rho in the ER lumen and targets it for ERAD (Fig.  71.1b ) (Kang and 
Ryoo  2009 ; Kosmaoglou et al.  2009  ) . The complete mechanism of how mutant 

  Fig. 71.1    Model of P23H rhodopsin clearance in photoreceptors by ERAD ( a ). Misfolded P23H 
rhodopsin (Rho) is a glycoprotein that interacts with calnexin (CNX) during folding. ( b ) Misfolded 
P23H Rho is trapped in the quality control/folding cycle and becomes a target for ER  a -mannosi-
dase I. After removal of mannose residues, mutant Rho is recognized by EDEM1. ( c ) Once associ-
ated to EDEM1, P23H Rho may be further demannosylated and modifi ed by other ER-resident 
chaperones, which also promote the delivery of P23H Rho to the membrane-bound dislocation 
channel. ( d ) p97/VCP extracts P23H Rho through the channel into the cytosol, where it will be 
degraded by the proteasome or form aggregates       
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Rho is dislocated from the ER membrane to the cytosol is unknown, but the 
AAA-ATPase p97/VCP is one factor in the dislocation and delivery of P23H Rho to 
the proteasome (Fig.  71.1d ) (Griciuc et al.  2010a,   b  ) . In vitro studies have shown 
that misfolded P23H Rho is ubiquitinated and targeted for proteasomal degradation 
(Sung et al.  1991 ; Illing et al.  2002 ; Saliba et al.  2002  ) . Many other ERAD compo-
nents are likely to be involved in the identifi cation and delivery of P23H Rho to 
ERAD (Fig.  71.1c ).       
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