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Interaction with elasticity

2.1 Cattaneo theories

2.1.1 Cattaneo-Lord-Shulman theory

In sections 1.2 - 1.12 we have seen various ways of modifying the classical
diffusion equation in order to allow heat to be transported with a finite
wavespeed. The assumption was that the body would remain rigid. How-
ever, in many cases this is too strong since the body itself deforms or
vibrates. Thus, in this chapter we wish to look at ways of coupling heat
propagation in the case where the body is an elastic solid. This is the
domain of thermoelasticity and, in particular, we shall review theories of
thermoelasticity which allow temperature to travel as a wave with finite
speed.

It would appear that the first attempts to couple elasticity with a way
in which temperature can travel with a finite wavespeed are due to (Lord
and Shulman, 1967) and to (Popov, 1967), as is observed in the short but
very informative review by (Jordan and Puri, 2001). (Jordan and Puri,
2001) also derive a very useful comparison of the classical theory of ther-
moelasticity with two theories capable of allowing temperature to travel
with a finite wavespeed. Extensive reviews of the early literature on ther-
moelasticity with temperature waves are by (Chandrasekharaiah, 1986),
(Chandrasekharaiah, 1998) and by (Hetnarski and Ignaczak, 1999), and
the recent book by (Ignaczak and Ostoja-Starzewski, 2009) concentrates
on thermoelasticity with temperature waves, although the overlap with the
current book is minimal.
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To understand the situation we commence, as do (Lord and Shulman,
1967), with the classical theory of linear thermoelasticity. (Lord and Shul-
man, 1967) consider the isotropic case, but it is no more difficult to begin
with the anisotropic situation and this we do now. In terms of the elastic
displacement, ui, and the temperature field, θ, the equations of classical
linear thermoelasticity for an anisotropic and inhomogeneous body may be
written,

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi ,

cθ̇ = −aij u̇i,j + (kikθ,k),i + ρr,
(2.1)

where θ̇ = θ,t and standard indicial notation is used. Here ρ, c, fi and r are,
respectively, the density, density multiplied by the specific heat, externally
supplied body force, and external supply of heat. The coefficients cijkh(x, t)
are the elastic coefficients, or elasticities, kij(x, t) denote the components
of the thermal conductivity tensor, and aij(x, t) are the components of
a coupling tensor connecting the equations of elasticity to those for heat
transport in the solid. We observe immediately that if we set aij ≡ 0, fi = 0
and r = 0 then system (2.1) decouples into the two linear equations

ρüi = (cijkhuk,h),j (2.2)

and

cθ̇ = (kikθ,k),i . (2.3)

Equation (2.2) represents the standard equations of linear elasticity which
under appropriate conditions on the elasticities cijkh allow elastic wave
propagation and define a hyperbolic system, cf. (Knops and Payne, 1971b),
(Knops and Wilkes, 1973). On the other hand, equation (2.3) for c > 0 and
kik a positive-definite tensor, is the classical parabolic equation for the dif-
fusion of θ. Thus, θ effectively has an infinite wavespeed as we saw in section
1.2. Thus, for the combined system (2.1) we expect a coupled hyperbolic
- parabolic system of partial differential equations with the temperature
field diffusing with infinite wavespeed.

(Lord and Shulman, 1967) proposed combining the Cattaneo approach
(Maxwell-Cattaneo theory of section 1.2) together with the standard devel-
opment of elasticity to derive a Cattaneo - type theory of thermoelasticity
as we now describe. The approach of (Lord and Shulman, 1967) begins with
the full nonlinear equations but they are mainly interested in developing a
linear theory since they begin with ... “small strains and small temperature
changes”. With ε, η, tij , qi and eij = (ui,j + uj,i)/2 being the internal en-
ergy, entropy, stress tensor, heat flux and strain tensor for the elastic body,
respectively, (Lord and Shulman, 1967) write the energy balance law as

ρθη̇ = −qi,i , (2.4)
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where η and ε are connected by the equation

ρε̇ = ρθη̇ + tij ėij , (2.5)

superposed dot being the partial time derivative, ∂/∂t. (Lord and Shulman,
1967) propose the general anisotropic equation for qi which generalizes
Cattaneo’s equation (1.45)2, namely,

Aij q̇j + aq̇i + qi = bθ,i +Bijθ,j , (2.6)

where the coefficients Aij , a, b and Bij depend on the material comprising
the elastic body. They are principally interested in deriving an isotropic
version of their theory and so note that in the isotropic case equation (2.6)
may be replaced by

τ q̇i + qi = −kθ,i . (2.7)

(Lord and Shulman, 1967) call τ the relaxation time, and they say it “rep-
resents the time-lag needed to establish steady - state heat conduction in
an element of volume when a temperature gradient is suddenly imposed on
that element”.

(Lord and Shulman, 1967) proceed to introduce the Helmholtz free
energy function ψ = ψ(eij , θ) = ε− ηθ and then note

∂ψ

∂t
= ψ̇ =

∂ψ

∂eij
ėij +

∂ψ

∂θ
θ̇ (2.8)

and

ψ̇ = ε̇− ηθ̇ − η̇θ . (2.9)

Equations (2.8) and (2.9) are employed in equation (2.5) to see that

tij ėij =ρ(ε̇− θη̇)

=ρ(ψ̇ + ηθ̇)

=ρ
( ∂ψ

∂eij
ėij +

∂ψ

∂θ
θ̇ + ηθ̇

)
. (2.10)

From equation (2.10) (Lord and Shulman, 1967) infer that the stress tensor
and entropy have the forms

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂eij
. (2.11)

(Lord and Shulman, 1967) then employ the relation (2.11)1 in the energy
balance law (2.4) to derive the equation

ρθ
( ∂2ψ

∂eij∂θ
ėij +

∂2ψ

∂θ2
θ̇
)

= qi,i . (2.12)

Let us observe that equations (2.7) and (2.12) (with replacement of ap-
propriate time derivatives) could form the basis for a nonlinear Cattaneo -
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Lord - Shulman theory. (Lord and Shulman, 1967) do not pursue this
line and proceed to combine equations (2.7) and (2.12) linearizing in the
process. In this way they derive the linearized energy balance law

−ρθψθθ(θ̇ + τ θ̈) − ρθ
∂2ψ

∂eij∂θ
(ėij + τ ëij) = kΔθ. (2.13)

(Lord and Shulman, 1967) then proceed to develop their theory in the
isotropic case and expand about a constant temperature θ0 and expand
in terms of the strain invariants of elasticity theory. In this way they pro-
duce their famous system of equations for isotropic thermoelasticity. Their
equation for the displacement ui is the isotropic equivalent of equation
(2.1)1 and coupled to the isotropic equation which arises from (2.13) the
Lord-Shulman system of equations is

ρüi = (λ + μ)uj,ij + μΔui − (3λ+ 2μ)αθ,i ,

ρc(τ θ̈ + θ̇) + (3λ+ 2μ)αθ0(τ ërr + ėrr) = kΔθ .
(2.14)

In equations (2.14), c is the specific heat and λ, μ are the coefficients which
arise in isotropic elasticity, the Lamé moduli, the connection with the elastic
coefficients cijkh being

cijkh = λδijδkh + μ(δikδjh + δihδjk) .

(Lord and Shulman, 1967) write their equations in non-dimensional form
and then solve a one-dimensional problem which corresponds to zero initial
conditions in a half space with the velocity ∂u/∂t experiencing a discontin-
uous input at time t = 0 along the half space boundary, i.e. a displacement
shock problem.

2.1.2 Cattaneo-Fox theory

The first development of a fully nonlinear thermoelastic theory which em-
ploys a Cattaneo equation for the heat flux is that of (Fox, 1969a). Fox
begins with the momentum and continuity equations written in the current
configuration as

ρv̇i = tji,j + ρfi ,

ρ̇+ ρdrr = 0,
(2.15)

where tij is the symmetric Cauchy stress tensor, a superposed dot denotes
the material derivative, e.g. ρ̇ = ∂ρ/∂t + vi∂ρ/∂xi, fi is the externally
supplied body force, and dij = (vi,j + vj,i)/2, vi(x, t) being the velocity in
the current reference frame. (Fox, 1969a) begins with a balance of energy
equation and an entropy inequality postulated for arbitrary sub-bodies of
an elastic body, and reduces these to pointwise form. In terms of the internal
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energy ε, entropy η, heat flux qi, and temperature θ these are

ρε̇− ρr + qi,i − tijdij = 0,

ρθη̇ − ρr + qi,i − qiθ,i

θ
≥ 0,

(2.16)

where r is the externally supplied source of heat. The entropy inequality
(2.16)2 is rewritten in terms of the Helmholtz free energy function ψ = ε−ηθ
as

ρψ̇ + ρηθ̇ − tijdij +
qiθ,i

θ
≤ 0. (2.17)

The constitutive theory of (Fox, 1969a) requires that

ψ, η, tij

depend on the independent variables

FiA =
∂xi

∂XA
= xi,A and θ,

where xi = xi(X, t) is the mapping of points in the reference configuration
to equivalent points in the current configuration. Upon introducing the
right Cauchy - Green tensor C = FT F (i.e. CAB = xi,Axi,B) (Fox, 1969a)
notes

ĊAB = 2dijxi,Axj,B

and rewrites inequality (2.17) in the form

−ρ
(∂ψ
∂θ

+ η
)
θ̇ +

(
tij − 2ρ

∂ψ

∂CAB
xi,Axj,B

)
dij − qiθ,i

θ
≥ 0. (2.18)

Using the fact that r and fi may be selected at will it is now deduced from
(2.18) that

η = −∂ψ
∂θ

and tij = 2ρxi,Axj,B
∂ψ

∂CAB
. (2.19)

The residual of the entropy inequality (2.18) is

−qiθ,i ≥ 0, (2.20)

and the energy balance law becomes

θη̇ = −qi,i + ρr. (2.21)

(Fox, 1969a) uses superposed rigid body arguments and requests that the
nonlinear time derivative of qi in a Cattaneo law should be an objective
derivative. This leads him to propose the general equation generalizing
Cattaneo’s one,

q̇i − ωijqj = αqi + βθ,i , (2.22)
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where ωij = (vi,j − vj,i)/2, q̇i = qi,t + vkqi,k, and α, β depend on θ and
the scalar invariants qiqi, qiθ,i and θ,iθ,i. (Fox, 1969a) specializes to the
case where α and β are constants and introduces constants τ and κ by
τ = −1/α, κ = β/α so that his equation (2.22) becomes

τ(qi,t + vjqi,j − ωijqj) = −qi − κθ,i . (2.23)

Thus, the full nonlinear system of equations derived by (Fox, 1969a) to de-
scribe motion in a thermoelastic body generalizing the (Lord and Shulman,
1967) approach comprise equations (2.15), (2.21) and (2.23).

For easy reference we collect these here recalling the forms for η and tij
given in equations (2.19),

ρ̇+ ρdii = 0,

ρv̇i = 2
∂

∂xj

(
ρxi,Axj,B

∂ψ

∂CAB

)
+ ρfi ,

−θ d
dt

(∂ψ
∂θ

)
= − ∂qi

∂xi
+ ρr,

τ(q̇i − ωijqj) = −qi − κθ,i ,

(2.24)

where d/dt denotes the material derivative.
I am not aware of further use of the nonlinear system (2.24) apart

from the solutions derived by (Fox, 1969a) himself. However, (Fox, 1969a)
deserves full credit for producing a nonlinear invariant system of ther-
moelastic equations using a Cattaneo theory. The solutions given by (Fox,
1969a) involve a static deformation where he shows the heat flux decays
exponentially in time, and one where the deformation is

x = 2ktY, y = Y, z = Z.

For this definition he solves his equation for qi, (2.24)4, exactly.

2.1.3 Hidden variables

(Caviglia et al., 1992) begin with the idea of introducing an internal vector
variable ξi; an internal variable is sometimes also referred to as a hid-
den variable, and an extensive description of such variables may be found
in (Maugin, 1990), (Maugin and Muschik, 1994a; Maugin and Muschik,
1994b). The vector ξ refers to a current configuration R which has de-
formed from a reference configuration R0 by a mapping x = x(X, t) or
xi = xi(XA, t). They define the Cauchy stress tensor tij , the second Piola-
Kirchoff stress tensor YAB and the first Piola-Kirchoff stress tensor SAi,
where Y = JF−1t(F−1)T , F being the deformation gradient defined by
FiA = ∂xi/∂XA and J = det(FiA). They also introduce the heat flux qi,
the Helmholtz free energy ψ, the temperature θ, and temperature gradi-
ents gi = θ,i and GA = θ,A where θ,i ≡ ∂θ/∂xi whereas θ,A ≡ ∂θ/∂XA.
In terms of the displacement ui = xi −Xi, (Caviglia et al., 1992) have the
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balance of momentum equation

ρ0üi =
∂

∂XA
SAi + ρ0bi (2.25)

where ρ0 is the density in R0, bi is the body force and a superposed dot
denotes ∂/∂t holding X fixed.

The thermodynamic procedure of (Caviglia et al., 1992) introduces the
Cauchy-Green right tensor C = FT F and requires the equivalent of the
internal variable ξ referred to the reference configuration, namely Ξ = FT ξ.
Then, (Caviglia et al., 1992) define their thermoelastic body to be one for
which

t = Ft̃(C, θ,G,Ξ)FT ,

q = Fq̃(C, θ,G,Ξ) ,

ψ = ψ̃(C, θ,G,Ξ) ,

(2.26)

where t̃, q̃, ψ̃ are the functional forms of the indicated variables. The
entropy inequality

−ρ0(ψ̇ + ηθ̇) +
1
2
Y · Ċ− 1

θ
Q ·G ≥ 0 (2.27)

is posed where η is the entropy. (Caviglia et al., 1992) show that inequality
(2.27) leads to the deductions

∂ψ̃

∂G
= 0 , η = −∂ψ̃

∂θ
, Y = 2ρ0

∂ψ̃

∂C
, (2.28)

and the residual entropy inequality is

ρ0θ
∂ψ̃

∂Ξ
· Ξ̇ + Q · G ≤ 0. (2.29)

Then, from the first of (2.28), the Helmholtz free energy function reduces
to the form ψ = ψ(C, θ,Ξ).

For the internal variable ξ, (Caviglia et al., 1992) propose that Ξ satisfies
an evolution equation of form

Ξ̇ = −mG− nΞ (2.30)

where m,n are functions of the variables θ and C with n > 0. Upon em-
ploying Ξ̇ as given by (2.30) in the inequality (2.29) they deduce that

Q = ρ0mθ
∂ψ̃

∂Ξ
. (2.31)

Further, from (2.29), there remains the restriction

Ξ · ∂ψ̃
∂Ξ

≥ 0 . (2.32)
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To progress further (Caviglia et al., 1992) require that under stationary
conditions Q satisfies Fourier’s law so that

Q = −KG

for K a positive-definite tensor which depends on θ and C. Under stationary
conditions equation (2.30) yields the connection

G = − n

m
Ξ

and the last two relations lead (Caviglia et al., 1992) to propose the
relationship

Q =
n

m
KΞ . (2.33)

Then, from (2.31) they deduce that

∂ψ̃

∂Ξ
=

n

ρ0θm2
KΞ

whence

ψ = ψ̂(θ,C) +
n

2ρ0θm2
ΞAKABΞB , (2.34)

where ψ̂ denotes a functional relationship of the indicated variables. Upon
introducing the internal energy ε = ψ + θη one then sees that

ε = ψ̂ − θ
∂ψ̂

∂θ
+

1
2

(
nKAB

ρ0θm2
− θ

∂

∂θ

[nKAB

ρ0θm2

])
ΞAΞB . (2.35)

(Caviglia et al., 1992) then require that ε be independent of Ξ and hence
of Q and so

n

ρoθm2
K = nK̂(C)

where K̂ denotes the functional form, K̂ also being a positive-definite
tensor.

The constitutive theory of (Caviglia et al., 1992) may be summarized as

ψ = ψ̂(θ,C) +
θ

2
K̂ABΞAΞB ,

YAB = 2ρ0
∂ψ̃

∂CAB
+
θ

2
∂K̂RS

∂CAB
ΞRΞS ,

η = −∂ψ̂
∂θ

− 1
2
K̂RSΞRΞS .

(2.36)

The (fully nonlinear) evolution equations for the model then follow from
(2.25), the energy balance equation, equation (2.30), and may then be
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written as,

ρ0üi =
∂

∂XA
SAi + ρ0bi ,

−ρ0θ
(∂2ψ̃

∂θ2
θ̇ +

∂2ψ̃

∂θ∂CAB
ĊAB

)
= − ∂

∂XA

(
ρ0mθ

2K̂ABΞB

)
,

Ξ̇A = −mθ,A − nΞA ,

(2.37)

where

SAi = ρ0
∂ψ

∂FiA
= ρ0

∂ψ

∂CRS

∂CRS

∂FiA
= YRS

∂CRS

∂FiA

and so

SAi = (δARFiS + δSAFiR)YRS = FiSYAS + FiRYRA .

(Caviglia et al., 1992) then develop a linearized version of their theory.
It is, however, important to note that they do this by considering a poten-
tially large deformation from R0 to R followed by a “small” deformation
to a new current configuration R∗. In this way they are not simply devel-
oping a linear theory by suitably restricting ψ̂ and K̂, they are producing
a linearized theory which allows for linearization about a (nonlinear) state
of pre-stress and possibly non-uniform temperature.

Let X denote the position of a particle in the reference configuration R0,
let x be its position in R, and let x∗ be the corresponding position in R∗.
(Caviglia et al., 1992) assume that in R the temperature θ is constant so
that G = 0 and Ξ = 0. The values of these variables in R∗ are denoted by
θ∗, G∗ and Ξ∗, with C and C∗ denoting the values of the Cauchy-Green
right tensor in R and R∗. The perturbations to x, θ and Ξ in R are written
as u, φ and Λ, i.e.

x∗i = xi + ui , θ∗ = θ + φ, Ξ∗
i = Ξi + Λi = Λi .

Then, equations (2.37) are linearized keeping only quantities linear in
ui, φ,Λi and their derivatives, in the equations which result. Full details
are given in (Caviglia et al., 1992), we here only record the equations.
However, we point out that (Caviglia et al., 1992) take F = I so that in
R the right Cauchy-Green tensor satisfies C = I, where θ is uniform. The
pre-stress in R is maintained through the body force bi and in equilibrium
equation (2.37) is

∂

∂XA
(FiBYBA) + ρ0bi = 0. (2.38)

The linearization of equations (2.37) relies on the fact that this procedure
is performed about the solution of (2.38). It is important to note that the
steady state deformation given by (2.38) is, in general, not homogeneous
and represents a true nonlinear deformation before linearization.
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The linearized equations of (Caviglia et al., 1992) are

ρ0üi =
[
(δijtkh +Aihjk)uj,k −Bihφ

]
,h
,

cφ̇+Bij u̇i,j = −1
θ
qi,i ,

τaij q̇i + aijqj = −φ,i ,

(2.39)

where the coefficients involve quantities evaluated in the configuration R
in which θ is uniform and C = I. The quantity tij is the Cauchy pre-stress
tensor, and

Aijkh = 2ρ0
∂2ψ̂

∂Cij∂Ckh
, Bij = −2ρ0

∂2ψ̂

∂θ∂Cij
,

c = −ρ0
∂2ψ̂

∂θ2
, τ =

1
n
, aij =

n

ρ0m2θ2
(K̂−1)ij .

(2.40)

We point out that the coefficients in (2.40) are all evaluated in R.
When the body is isotropic, the coefficients become

Aijkh = λδijδkh + μ(δikδjh + δihδjk),

tij = αδij , Bij = βδij , aij =
1
κ
δij

where κ is a constant and then equations (2.39) become

ρ0üi = (αui,j),j + (λuj,j),i + (μui,j),j + (μuj,i),j − (βφ),i ,

cφ̇+ βu̇i,i = −1
θ
qi,i ,

τ q̇i + qi = −κφ,i .

(2.41)

In equations (2.39) and (2.41) the pre-stress is provided by the body
force in equation (2.38). We could follow the procedure of (Iesan, 1980;
Iesan, 1988) and allow a deformation from R0 to R which is induced by
non-homogeneous boundary conditions in both xi and θ. This would lead
to coefficients which have pre-stress present due to the deformation but
also due to non-uniform temperature in R. The linearized equations which
then arise contain extra terms to those in (2.39) and (2.41).

(Chandrasekharaiah, 1998), p. 722, remarks that the linearized theory
of (Caviglia et al., 1992) closely resembles the Lord - Shulman theory. We
point out that there is a resemblance, but equations (2.39) and (2.41) are
different from those of Lord - Shulman. Firstly, in (2.39) the equations
are for the anisotropic case. However, importantly both sets of equations
(2.39) and (2.41) contain the effects of pre-stress. This is evident in (2.39)
via the tkh term but also in the equation for qi through the coefficient aij

which contains the pre-stress via K̂, see (2.40). In particular, due to the
presence of the Cauchy pre-stress tij it is not true that, in general, the
elastic coefficients cijkh = δijtkh +Aijkh would be sign-definite.
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2.2 Green-Lindsay theory

When one develops the classical theory of nonlinear thermoelasticity it
is usual to begin with a constitutive assumption which is equivalent to
requiring

ψ, η, qi and SAi (2.42)

to depend on the variables

XA, ρ0, θ, θ,A and eAB . (2.43)

Here ψ, η are the Helmholtz free energy function and the entropy function,
qi is the heat flux vector and SAi is the Piola-Kirchoff stress tensor. The
independent variables are X, the coordinates of a point in the reference
configuration, ρ0 the density in the reference configuration, the temper-
ature θ(X, t), the temperature gradient θ,A = ∂θ/∂XA, and the strain
tensor, eAB = (xi,Axi,B − δAB)/2, acting at time t but referred to the ref-
erence configuration. The function x = x(X, t) denotes the map defining
the deformation (motion) of the elastic body.

The above prescription leads to a coupled set of nonlinear partial differ-
ential equations for the displacement ui = xi − Xi and the temperature
field θ. The balance of momentum equation which results may be thought of
as yielding a hyperbolic equation but the corresponding balance of energy
equation contains ∂θ/∂t as the highest time derivative of θ and is effec-
tively a parabolic equation. Thus, the system may be thought of as one of
coupled parabolic - hyperbolic type. This has the undesirable feature that
the temperature field essentially travels with infinite speed, cf. section 1.2.
(This argument generalizes the analogous one from linear thermoelastic-
ity as explained in section 2.1.1.) An appealing way to overcome this was
suggested by (Müller, 1971a). His idea is to include θ̇ in the list of inde-
pendent constitutive variables in (2.43). He develops a complete theory of
thermoelasticity beginning with the balance laws for conservation of mass,
momentum, and energy. In the balances of momentum and energy (Müller,
1971a) does not include a body force or external supply of heat. The ther-
modynamics of (Müller, 1971a) is based on his entropy inequality, (Müller,
1967a),

ρη̇ +
∂Φi

∂xi
≥ 0 (2.44)

where Φi is his entropy flux vector, see (Müller, 1967a). (Müller, 1971a)
expands inequality (2.44) using the extended constitutive list, and he then
argues that the balance equations which arise must hold in such a way that
he is able to deduce relations between the functions ψ, η,Φi, SAi, and qi.
In this way (Müller, 1971a) develops a fully nonlinear theory for thermoe-
lasticity which, unlike the classical theory, allows θ to travel with a finite
wavespeed. (Müller, 1971a) develops complete expressions for the stress,
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heat flux, and his entropy flux for an isotropic solid and deduces restric-
tions in equilibrium. He also shows the heat conduction tensor must be
symmetric.

We here describe a theory due to (Green and Lindsay, 1972) which also
employs θ̇ in the constitutive list. (Green and Lindsay, 1972) commence
with the balance laws of mass, momentum, angular momentum, and energy,
which are

ρ0 = ρ det (xi,A),
ρ0v̇i = ρ0Fi + SAi,A ,

YAB = YBA where SAi = FiRYRA ,

ρ0ε̇ = ρ0r + YAB ėAB −QA,A .

(2.45)

Here ρ and ρ0 denote the density in the current and reference configura-
tions, vi is the velocity, SAi is the Piola-Kirchoff stress tensor, ε the internal
energy, QA the heat flux vector per unit area in the XK frame but acting
over the corresponding surface at time t, and eAB (defined by (Green and
Lindsay, 1972) as eAB = (xi,Axi,B − δAB)) is the strain tensor referred to
the reference configuration. The quantities F and r are an external body
force and an external supply of heat, respectively. The Cauchy stress ten-
sor, tij , (in the current frame) and the equivalent heat flux vector, qi, are
given in terms of YAB and QA as

(det xr,K) tij = xi,Axj,BYAB

(det xr,K) qi = xi,AQA .

(Green and Lindsay, 1972) employ a general entropy inequality over any
sub-body, this being based on the entropy inequality of (Green and Laws,
1972). However, they effectively reduce this to the following pointwise
entropy inequality

ρ0η̇ − ρ0r

φ
+

(QA

φ

)
,A

≥ 0. (2.46)

This inequality resembles the Clausius-Duhem inequality but the function
φ is a generalized temperature which will be specified by constitutive the-
ory. If one introduces the Helmholtz free energy function in terms of the
generalized temperature φ, i.e.

ψ = ε− ηφ (2.47)

then inequality (2.46) may be rearranged with the aid of the energy
conservation equation (2.45)4, noting φ > 0, as

−ρ0(ψ̇ + ηφ̇) + YAB ėAB − QAφ,A

φ
≥ 0. (2.48)
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(Green and Lindsay, 1972) essentially use as constitutive theory the
assertion that

ψ, η, φ,QA and YAB (2.49)

depend on the independent variables

XA, ρ0, θ, θ,A, θ̇ and eAB . (2.50)

Upon using (2.49) and (2.50) in inequality (2.48) (Green and Lindsay, 1972)
deduce that

− ρ0(ψθ + ηφθ)θ̇ − ρ0(ψθ̇ + ηφθ̇)θ̈ − ρ0(ψθ,A + ηφθ,A)θ̇,A

+
[
YAB − ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)
− ρ0

2
η
( ∂φ

∂eAB
+

∂φ

∂eBA

)]
ėAB

− QA

φ

[
φθθ,A +

∂φ

∂θ,B
θ,BA + φθ̇ θ̇,A

+
1
2

( ∂φ

∂eRS
+

∂φ

∂eSR

)
eRS,A +

∂φ

∂ρ0
ρ,A +

∂φ

∂XA

]
≥ 0.

(2.51)

(Green and Lindsay, 1972) then argue that θ̈, θ̇,A , ėAB , eRS,A , θ,AB , ρ0,A ,
may be selected independently in inequality (2.51) balancing the momen-
tum and energy equations (2.45)2 and (2.45)4 by a suitable choice of Fi

and r. In this manner they deduce the relations

η = −∂ψ/∂θ̇
∂φ/∂θ̇

,

YAB =
ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)
+
ρ0

2
η
( ∂φ

∂eAB
+

∂φ

∂eBA

)
,

ρ0

( ∂ψ

∂θ,A
+ η

∂φ

∂θ,A

)
+
QA

φ
φθ̇ = 0 ,

QA
∂φ

∂θ,B
+QB

∂φ

∂θ,A
= 0 ,

QA
∂φ

∂ρ0
= 0, QA

( ∂φ

∂eRS
+

∂φ

∂eSR

)
= 0 .

(2.52)

The residual entropy inequality follows from (2.51). However, (Green and
Lindsay, 1972) then restrict attention to the case where the reference body
is homogeneous (i.e. does not depend on X) and then upon use of (2.52)4,5,6

one finds

φ = φ(θ, θ̇). (2.53)

The residual entropy inequality then has form

−ρ0

(
ψθ + ηφθ

)
θ̇ − QA

φ
φθθ,A ≥ 0. (2.54)
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Since ρ0 is non constant one employs (2.53) in equations (2.52)2,3 to derive
the forms for the stress tensor and heat flux, namely

YAB =
ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)

QA = −ρ0φ

∂ψ

∂θ,A

∂φ

∂θ̇

.

(2.55)

(Green and Lindsay, 1972) further reduce the energy equation (2.45)4.
One may then show that the full nonlinear system of equations for
thermoelasticity of (Green and Lindsay, 1972) are given by

ρ0ẍi = ρ0Fi +
∂SAi

∂XA
,

ρ0φη̇ = ρ0r − ∂QA

∂XA
− ρ0

(
ψθ + ηφθ

)
θ̇ − ρ0ψθ,A θ̇,A ,

(2.56)

where SAi and QA are given by equations (2.55) with SAi = FiRYRA.
A detailed analysis of acceleration waves, including curved waves, for

system (2.56) is given by (Lindsay and Straughan, 1979).
(Green and Lindsay, 1972) write down expressions for ψ and φ which

are quadratic in the variables θ, θ̇, θ,i, eij to develop a linearized theory
of thermoelasticity from (2.56). They linearize about an initial body with
zero stress and heat flux. The complete system of equations for linearized
thermoelasticity derived by (Green and Lindsay, 1972) for an anisotropic
thermoelastic body then have form

ρüi = ρFi + (cijkhuk,h),j +
[
aij(θ + αθ̇)

]
,j
,

ρ(hθ̈ + dθ̇ − aij u̇i,j − biθ̇,i) =
ρr

θ0
+ (biθ̇ + kijθ,j),i .

(2.57)

Here ui is the displacement about a reference state with positions denoted
by Xi, ρ is the density, h, d, bi, cijkh, aij , kij are coefficients which have the
symmetries

cijkh = ckhij = cjikh , aij = aji , kij = kji . (2.58)

(Green, 1972) has shown that the boundary-initial value problem for (2.57)
is unique requiring only symmetry of the elastic coefficients cijkh. His proof
employs a Lagrange identity technique. Uniqueness and continuous depen-
dence on the initial data for a solution to the boundary-initial value problem
for (2.57) requiring only symmetry of the elastic coefficients cijkh was es-
tablished by (Straughan, 1974). His proof introduced a natural logarithmic
convexity functional into thermoelasticity.

A very interesting study comparing the solutions to the equations of
classical thermoelasticity, Cattaneo-Lord-Shulman theory, cf. section 2.1.1,
and the (Green and Lindsay, 1972) theory is provided by (Jordan and Puri,
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2001). These writers investigate the propagation of a thermal pulse in a
thermoelastic shell employing each of the linearized equations for the three
thermoelastic theories, classical, Lord-Shulman, and Green-Lindsay. Their
numerical results are very revealing. They typically demonstrate that the
classical theory leads to a smooth pulse while that of Lord-Shulman is less
smooth showing discontinuities in derivatives. The theory of (Green and
Lindsay, 1972) leads to strong pulse behaviour displaying distinct jumps.
For the applications they have in mind, such as to the behaviour of stainless
steel run tanks which hold cryogenic liquids for rocket fuel at NASA’s John
C. Stennis Space Center, the strong pulse solution is definitely of interest.

2.3 Green-Naghdi type II theory

(Green and Naghdi, 1993) adopt a different approach to thermoelasticity
to other writers, this approach being based on an extension of the type II
theory of heat propagation in a rigid solid developed by (Green and Naghdi,
1991), see section 1.10. The idea is to define a temperature θ, an empirical
temperature T , and a thermal displacement α, such that θ depends on T
and the properties of the material with θ > 0, ∂θ/∂T > 0, and

α(X, t) =
∫ t

t0

T (X, s)ds+ α0 . (2.59)

Here t0 is a “start time” at our disposal and α0 is the value of α at t = t0.
(Although (Green and Naghdi, 1993) define T and θ in this way at the
outset they later show that there is no loss in generality if one identifies T
with θ.)

As usual, xi = xi(XA, t) denotes the motion of a body with positions
X in the reference configuration, x being their counterparts in the current
configuration. (Green and Naghdi, 1993) observe that

α̇ = T (2.60)

and they introduce the variables βA and γi as

βA =
∂α

∂XA
, γi =

∂T

∂xi
= α̇,i . (2.61)

The variables β̇ and γ are connected by the equation

β̇A = FAiγi .

(Green and Naghdi, 1993) define tij to be the Cauchy stress tensor, pi =
qi/θ to be the entropy flux vector, ψ, η, to be the Helmholtz free energy
and entropy, respectively. Their momentum equation is

ρv̇i = ρbi + tji,j (2.62)
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where ρ, vi, bi are the density, velocity, and body force. They work with
an entropy balance equation rather than an entropy inequality and this
requires them to introduce an intrinsic supply of entropy ξ in order to
postulate their entropy balance equation as

ρη̇ = ρs+ ρξ − pi,i . (2.63)

Here s is the external supply of entropy given by s = r/θ, where r is the
external supply of heat. The balance of energy equation employed by (Green
and Naghdi, 1993) has form

tijdij − piθ,i − ρ(ψ̇ + ηθ̇) − ρθξ = 0, (2.64)

where dij = (vi,j + vj,i)/2.
(Green and Naghdi, 1993) define a classical thermoelastic body to be one

for which

tij , pi, ψ, η, θ and ξ

depend on the variables

T, γi = T,i = α̇,i , and FiA = xi,A . (2.65)

This leads to the usual “hyperbolic-parabolic” system of nonlinear equa-
tions of thermoelasticity. The goal of (Green and Naghdi, 1993) is to
introduce a new class of thermoelasticity equations by requiring

tij , pi, ψ, η, θ and ξ (2.66)

to depend on

T, α,A and FiA . (2.67)

(Green and Naghdi, 1993) call this type of thermoelasticity, thermoe-
lasticity of type II. They remark that ... “it involves no dissipation of
energy” ... “is perhaps a more natural candidate for its identification as
thermoelasticity than the usual theory”.

(Green and Naghdi, 1993) employ relations (2.66) together with (2.67)
in equation (2.64). They show that one may deduce from this the relations

∂θ

∂βA
= 0,

∂θ

∂FiA
= 0 (2.68)

whence

θ = θ(T ).

They then argue that they may write T = θ− θ0 and henceforth replace T
by θ in the ensuing development. Thus,

ψ = ψ(θ, βA, FiA) = ψ(θ, α,A, FiA).
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They further show that the expanded energy equation leads to the results

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂FiA
FAj ,

pi = −ρFiA
∂ψ

∂α,A
and ξ = 0.

(2.69)

(An equivalent reduction employing the Piola-Kirchoff stress tensor SAi is
given in section 4.4 where the forms more suitable for an acceleration wave
analysis are derived.) (Green and Naghdi, 1993) then replace FiA by the
right Cauchy-Green tensor CAB = FAiFiB to deduce

tij = ρFiAFBj

(
∂ψ

∂CAB
+

∂ψ

∂CBA

)
. (2.70)

The complete nonlinear equations of thermoelasticity of type II are then
given in the current frame by equations (2.62) and (2.63) with η, pi, ξ and
tij given by (2.69) and (2.70). For ease of reference these are collected here
as

ρẍi = ρbi +
∂

∂xj

{
ρFiAFBj

( ∂ψ

∂CAB
+

∂ψ

∂CBA

)}
,

−ρ d
dt

(∂ψ
∂θ

)
= ρs+

∂

∂xi

(
ρFiA

∂ψ

∂α,A

)
,

(2.71)

where bi and s are externally supplied and d/dt denotes the material deriva-
tive. Once a prescription of the functional form of ψ = ψ(θ, α,A, FiA) is
known, equations (2.71) yield a nonlinear system of partial differential
equations for xi and θ.

Linearized forms of the equations for type II thermoelasticity are given in
the isotropic case by (Green and Naghdi, 1993) and in the anisotropic case
by (Quintanilla, 1999; Quintanilla, 2002b). In terms of the displacement ui

and temperature perturbation θ these may be written for the isotropic case
as

ρ0üi = ρ0bi − E1θ,i + μΔui + (λ+ μ)uj,ij ,

cθ̈ = ρ0r + κΔθ + θ0E1üi,i ,
(2.72)

where ρ0, E1, κ, θ0 are constants and μ, λ are the Lamé coefficients. In the
anisotropic case for a body with a centre of symmetry the respective linear
equations are

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi,

cθ̈ = −aij üi,j + (kijθ,j),i + ρr,
(2.73)

where fi, r are the externally supplied body force and heat supply, ρ, c are
positive constants, cijkh are the elastic coefficients, aij define a coupling
tensor, and kij defines the thermal conductivity tensor.

A general uniqueness theorem for a solution to equations (2.73) requiring
no definiteness of the elastic coefficients cijkh is given by (Quintanilla and
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Straughan, 2000). Their proof relies on a logarithmic convexity argument.
These writers also derive a variety of growth estimates for the solution
depending on the elastic coefficients and the initial energy, see sections 6.2
and 6.3 of this book. Reciprocal theorems and variational principles for
type II linear thermoelasticity are given by (Chirita and Ciarletta, 2010a).

As we mentioned in the introduction, section 1.1, the paper of (Green
and Naghdi, 1991), and their companion papers (Green and Naghdi, 1992;
Green and Naghdi, 1993) on type II and type III thermoelasticity (dis-
cussed in the next section), brought a new way of thinking to the area
of heat wave propagation and their articles have influenced many subse-
quent developments. In fact, work since 1991 in this area has definitely
increased as may be witnessed for example from the papers, and the refer-
ences therein, of (Abd-Alla and Abo-Dahab, 2009), (Alvarez-Ramirez et al.,
2006; Alvarez-Ramirez et al., 2008), (Anile and Romano, 2001), (Bargmann
et al., 2008b), (Bargmann et al., 2008a), (Brusov et al., 2003), (Buishvili
et al., 2002), (Caviglia and Morro, 2005), (Chandrasekharaiah, 1998), (Cai
et al., 2006), (Christov and Jordan, 2005), (Christov, 2008), (Cimmelli
and Frischmuth, 2007), (Ciancio and Quintanilla, 2007), (De Cicco and
Diaco, 2002), (Duhamel, 2001), (Fabrizio et al., 1998), (Fabrizio et al.,
2008), (Fichera, 1992), (Green and Naghdi, 1991; Green and Naghdi, 1992;
Green and Naghdi, 1993; Green and Naghdi, 1995b; Green and Naghdi,
1995a; Green and Naghdi, 1996), (Han et al., 2006), (Hetnarski and Ig-
naczak, 1999), (Horgan and Quintanilla, 2005), (Iesan, 2002; Iesan, 2004;
Iesan, 2008), (Iesan and Nappa, 2005), (Jaisaardsuetrong and Straughan,
2007), (Johnson et al., 1994), (Jordan and Puri, 2001), (Jou and Cri-
ado-Sancho, 1998), (Kalpakides and Maugin, 2004), (Lin and Payne,
2004a), (Linton-Johnson et al., 1994), (Loh et al., 2007), (Messaoudi
and Said-Houari, 2008), (Metzler and Compte, 1999), (Meyer, 2006),
(Mitra et al., 1995), (Morro, 2006), (Payne and Song, 2002; Payne and
Song, 2004b), (Puri and Jordan, 1999b; Puri and Jordan, 1999a; Puri
and Jordan, 2004; Puri and Jordan, 2006), (Puri and Kythe, 1997; Puri
and Kythe, 1998), (Quintanilla, 2001b; Quintanilla, 2002a; Quintanilla,
2007b), (Quintanilla and Racke, 2003; Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2007; Quintanilla and Racke, 2008), (Quintanilla
and Straughan, 2000; Quintanilla and Straughan, 2002; Quintanilla and
Straughan, 2004; Quintanilla and Straughan, 2005b; Quintanilla and
Straughan, 2005a; Quintanilla and Straughan, 2008), (Roy et al., 2009),
(Ruggeri, 2001), (Saleh and Al-Nimr, 2008), (Sanderson et al., 1995),
(Serdyukov, 2001), (Serdyukov et al., 2003), (Shnaid, 2003), (Straughan,
2004; Straughan, 2008), (Su et al., 2005), (Su and Dai, 2006), (Tzou, 1995b;
Tzou, 1995a), (Vadasz, 2005), (Vadasz et al., 2005), (Vedavarz et al., 1992),
(Zhang and Zuazua, 2003).
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2.4 Green-Naghdi type III theory

The theory of type III thermoelasticity was formulated by (Green and
Naghdi, 1992). The development starts very much like that for type II in
section 2.3. Hence, the governing equations are (2.62) and (2.63) with the
energy balance law (2.64) being used to reduce the constitutive theory.
Again, the temperatures θ and T are introduced as is the thermal displace-
ment α. The difference between type II and type III is in the constitutive list
(2.67). The theory of type III adds the variable α̇,i = T,i to the list (2.67).
Thus, a thermoelastic material of type III is defined as one for which

tij , pi, ψ, η, θ and ξ (2.74)

depend on

T, α,A , α̇,i and FiA . (2.75)

(In a sense, type III combines the classical theory with that of type II as
the list (2.75) is the union of the lists (2.65) and (2.67).)

(Green and Naghdi, 1992) employ (2.74) and (2.75) in the energy bal-
ance equation (2.64). After expanding the derivatives ψ̇ and θ̇ in terms of
the variables (2.75) the expanded energy equation is reduced. (Green and
Naghdi, 1992) deduce that

∂θ

∂α̇,i
= 0,

∂θ

∂α,A
= 0,

∂θ

∂FiA
= 0 and

∂ψ

∂α̇,i
= 0 . (2.76)

Thus,

θ = θ(T )

and (Green and Naghdi, 1992) show that T may be replaced by θ. Then,
(2.76)4 yields

ψ = ψ(θ, θ,A, FiA). (2.77)

Further, (Green and Naghdi, 1992) show that

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂FiA
FAj (2.78)

but, unlike (2.69) for a type II material they cannot deduce an explicit
expression for pi, nor is ξ zero. Instead, the residual of the energy balance
equation yields

piα̇,i + ρ
∂ψ

∂α,A
FAiα̇,i + ρθξ = 0. (2.79)

We might think of equation (2.79) as defining the variable ξ.
To complete the theory of a type III thermoelastic material one needs,

therefore, to specify the functional form of

pi = pi(θ, α,A, α̇,i, FiA), (2.80)
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or equivalently, one needs to specify the heat flux qi = θpi. Clearly, one
can write a general expression for pi as a function of the vector terms
which arise from combinations of α,A, α̇,i and FiA. I am not aware of where
this has been done, although (Quintanilla and Straughan, 2004) do study
acceleration waves in the complete nonlinear theory.

The nonlinear theory for a thermoelastic body of type III then consists
of equations (2.62) and (2.63) combined with (2.78), (2.79) and an explicit
representation for pi from (2.80). The general equations have form

ρẍi = ρbi +
∂

∂xj

(
ρ
∂ψ

∂FiA
FAj

)
,

−ρ d
dt

(∂ψ
∂θ

)
= ρs− ∂pi

∂xi
− 1
θ
piα̇,i − ρ

θ

∂ψ

∂α,A
FAiα̇,i .

(2.81)

Linearized forms of the equations for type III thermoelasticity are given
by (Green and Naghdi, 1992) in the isotropic case and by (Quintanilla,
2001c) in the anisotropic case. In the isotropic case they are

ρ0üi = ρ0bi − E1θ,i + μΔui + (λ+ μ)uj,ij ,

ρ0cθ̈ + E1θ0üi = ρ0ṙ + κΔθ̇ + κ∗Δθ ,
(2.82)

where ρ0, E1, c, κ, κ
∗ are constants, μ, λ are the Lamé constants, and bi, r

are the externally supplied body force and heat supply. In the anisotropic
case when the body has a centre of symmetry the relevant equations are

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi ,

cθ̈ = −aij üi,j + (kijθ,j),i + (bij θ̇,j),i + ρr,
(2.83)

where ρ, c are positive functions which may depend on x, cijkh are the
elastic coefficients, aij are coupling coefficients, and kij , bij represent the
coefficients of thermal tensors. The terms fi and r represent the body force
and heat supply.

A general uniqueness theorem for a solution to (2.83) requiring only
symmetry of the elastic coefficients cijkh is provided by (Quintanilla and
Straughan, 2000). Their proof employs a Lagrange identity method, see
section 6.4. Non-standard problems for thermoelasticity of type II or type
III are considered by (Quintanilla and Straughan, 2005b), see also section
6.6.

2.5 Thermoelasticity with Voids

A class of theories which may be thought of as describing certain properties
of porous media were derived by (Nunziato and Cowin, 1979). The key
idea is to suppose there is an elastic body which has a distribution of voids
throughout. The voids are gaps full of air, water, or some other fluid. This
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theory provides equations for the displacement of the elastic matrix of the
porous medium and the void fraction occupied by the fluid. We believe the
voids theory has a large potential, especially in wave propagation problems.

The theory of an elastic body containing voids essentially generalizes
the classical theory of nonlinear elasticity by adding a function ν(X, t) to
describe the void fraction within the body. Here X denotes a point in the
reference configuration of the body. Thus, in addition to the momentum
equation for the motion xi = xi(X, t) as time evolves, one needs to prescribe
an evolution equation for the void fraction ν. For a non-isothermal situation
one also needs an energy balance law which effectively serves to determine
the temperature field T (X, t). The original theory is due to (Nunziato and
Cowin, 1979) and the temperature field development was largely due to D.
Iesan, see details in chapter 1 of (Iesan, 2004). This theory has much in
common with the continuum theory for granular materials, cf. (Massoudi,
2005; Massoudi, 2006a; Massoudi, 2006b).

In this chapter we wish to examine theories of thermoelastic materials
containing voids. Such theories are particularly useful to describe nonlinear
wave motion and account well for the elastic behaviour of the matrix, being
a generalisation of nonlinear elasticity theory. Interestingly, while there are
many studies involving the linearised theory of elastic materials with voids,
see e.g. (Ciarletta and Iesan, 1993) or (Iesan, 2004), analysis of the fully
nonlinear equations is only beginning, see e.g. (Iesan, 2005; Iesan, 2006).

The basic idea of including voids in a continuous body is due to
(Goodman and Cowin, 1972), although they developed constitutive the-
ory appropriate to a fluid. This they claim is more appropriate to flow of
a granular medium. Acceleration waves in the Goodman-Cowin theory of
granular media were studied by (Nunziato and Walsh, 1977; Nunziato and
Walsh, 1978). For a reader interested in the theory of voids I would suggest
first reading the article of (Goodman and Cowin, 1972), and then progress-
ing to the theory of elastic materials with voids as given by (Nunziato and
Cowin, 1979). General descriptions of the theory of elastic materials with
voids and various applications are given in the books of (Ciarletta and
Iesan, 1993) and (Iesan, 2004). Continuous dependence on the coupling
coefficients of the voids theory (a structural stability problem) is studied
by (Chirita et al., 2006).

The potential application area for the theory of elastic materials with
voids is huge. In particular, wave motion in elastic materials with voids has
many applications. (Ciarletta et al., 2007) mention four application areas
of immediate interest. To appreciate the potential uses we briefly describe
these areas. (Ouellette, 2004) is a beautiful and inspiring article which deals
with many applications of acoustic microscopy. We are all aware of optical
microscopy, but the potential uses of acoustic microscopy are enormous.
(Ouellette, 2004) points out that the presence of voids presents a serious
problem for acoustic microscopy, and a study of wave motion in an elastic
material with voids is likely to be very helpful here. She observes that,
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“acoustic microscopy remains a niche technology and is especially sensitive
to variations in the elastic properties of semiconductor materials, such as
air gaps, known as delaminations or voids ...” In particular, (Ouellette,
2004) draws attention to several novel applications of acoustic microscopy
in diagnostic medicine. She notes that one may, “apply a special ultrasound
scanner to deliver pathological assessments of skin tumours or lesions, non-
invasively,” and especially there is, “no need to kill the specimen as is
usually needed in optical microscopy.” (Diebold, 2005) further emphasizes
these and other applications.

Wave motion is important in the production of ceramics, or certainly
in ceramic behaviour. (Saggio-Woyansky et al., 1992) observe that porous
ceramics are either reticulate or foam and are made up of a porous network
which has relatively low mass, low thermal conductivity, and low density,
and (Raiser et al., 1994) report experimental results where microcracking
along grain boundaries in ceramics is caused by compressive waves. Since
reticulate porous ceramics are used for molten metal filters, diesel engine
exhaust filters, as catalyst supports, and industrial hot-gas filters, and both
reticulate and foam porous ceramics are used as light-structure plates, in
gas combustion burners, and in fire - protection and thermal insulation
materials, a study of wave motion in such materials is clearly useful.

A further important application area for elastic materials with voids is
in the production of building materials such as bricks. Modern buildings
are usually made with lighter, thinner bricks, often with many voids in
the building materials. In seismic areas lighter materials are necessary and
much applied research activity is taking place. However, the use of lighter
materials, especially those with voids is creating an environmental problem
because noise transmission through such objects is considerably greater.
Consequently, there is much applied research ongoing in the area of acous-
tic materials with voids, cf. (Garai and Pompoli, 2005), (Maysenhölder
et al., 2004), (Wilson, 1997), and any theoretical model for acoustic wave
propagation in an elastic material with voids which yields useful results is
desirable.

2.5.1 Basic theory of elastic materials with voids

To present ideas clearly we begin with the classical theory of thermoelastic-
ity with voids, where the energy balance equation is essentially parabolic,
so temperature is not transported as a wave. The balance equations for
a continuous body containing voids are given by (Goodman and Cowin,
1972). We use the equations as given by (Nunziato and Cowin, 1979) since
these are appropriate for an elastic body.

The key thing is to assume that there is a distribution of voids throughout
the body B. If γ(X, t) denotes the density of the elastic matrix, then the
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mass density ρ(X, t) of B has form

ρ = νγ (2.84)

where 0 < ν ≤ 1 is a volume distribution function with ν = ν(X, t).
Since the density or void distribution in the reference configuration can be
different we also have

ρ0 = ν0γ0

where ρ0, γ0, ν0 are the equivalent functions to ρ, γ, ν, but in the reference
configuration.

The first balance law is the balance of mass

ρ|detF| = ρ0 .

With πAi being the Piola-Kirchoff stress tensor and FiA = xi,A as before,
the balance of angular momentum states

πFT = FπT .

The balance of linear momentum has form

ρ0ẍi = πAi,A + ρ0fi, (2.85)

fi being an external body force. The balance law for the voids distribution
is

ρ0kν̈ = hA,A + g + ρ0�, (2.86)

where k is an inertia coefficient, hA is a stress vector, g is an intrinsic body
force (giving rise to void creation/extinction inside the body), and � is an
external void body force. Actually, (Nunziato and Cowin, 1979) allow the
inertia coefficient k to depend on X and/or t, but, for simplicity, we follow
(Goodman and Cowin, 1972) and assume it to be constant.

The energy balance in the body may be expressed as

ρ0ε̇ = πAiḞiA + hAν̇,A − gν̇ − qA,A + ρ0r, (2.87)

where ε, qA and r are, respectively, the internal energy function, the heat
flux vector, and the externally supplied heat supply function. To under-
stand equation (2.87) we may integrate it over a fixed body B, integrate
by parts, and use the divergence theorem to see that

d

dt

∫

B

ρ0εdV+
∫

B

(gν̇+hA,Aν̇)dV =
∫

B

πAiḞiAdV−
∮

∂B

qANAdS+
∫

B

ρ0rdV,

where ∂B is the boundary of B. Employing (2.86) with � = 0 we may
rewrite the above as

d

dt

∫

B

(ρ0ε+
ρ0k

2
ν̇2)dV =

∫

B

πAiḞiAdV −
∮

∂B

qANAdS +
∫

B

ρ0rdV.

In this form we recognise the equation as an energy balance equation with
a term added due to the kinetic energy of the voids. In fact, (Iesan, 2004),



2.5. Thermoelasticity with Voids 61

pp. 3–5, shows how one may begin with a conservation of energy law for
an arbitrary sub-body of a continuous medium with voids, and then derive
equations (2.85), (2.86) and (2.87) from the initial energy balance equation.

It is usual in continuum thermodynamics to also introduce an entropy
inequality. We use the Clausius-Duhem inequality

ρ0η̇ ≥ −
(
qA
θ

)

,A

+
ρ0r

θ
, (2.88)

where η is the specific entropy function. Observe that the sign of the first
term on the right of (2.88) is different from that of (Nunziato and Cowin,
1979). (One could use a more sophisticated entropy inequality where qA/θ
is replaced by a general entropy flux k, as in (Goodman and Cowin, 1972),
but the above is sufficient for our purpose.)

2.5.2 Thermodynamic restrictions

We consider an elastic body containing voids to be one which has as
constitutive variables the set

Σ = {ν0, ν, FiA, θ, θ,A, ν,A} (2.89)

supplemented with ν̇. Thus, the constitutive theory assumes

ε = ε(Σ, ν̇), πAi = πAi(Σ, ν̇), qA = qA(Σ, ν̇),
η = η(Σ, ν̇), hA = hA(Σ, ν̇), g = g(Σ, ν̇).

(2.90)

This is different from (Nunziato and Cowin, 1979) who regard η as the
independent variable rather than θ and they also assume qA = 0.

To proceed we introduce the Helmholtz free energy function ψ in the
manner

ε = ψ + ηθ. (2.91)

Next, (2.87) is employed to remove the terms −qA,A + ρ0r from inequality
(2.88) and then utilize (2.91) to rewrite (2.88) as

−ρ0(ψ̇ + ηθ̇) − qAθ,A

θ
+ πAiḞiA + hAν̇,A − gν̇ ≥ 0. (2.92)

The chain rule is used together with (2.90) to expand ψ̇ and then (2.92)
may be written as

−
(
ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
−

(
ρ0

∂ψ

∂FiA
− πAi

)
ḞiA

−
(
ρ0
∂ψ

∂θ
+ ρ0η

)
θ̇ −

(
ρ0

∂ψ

∂ν,A
− hA

)
ν̇,A

− ρ0
∂ψ

∂θ,A
θ̇,A − ρ0

∂ψ

∂ν̇
ν̈ ≥ 0.

(2.93)
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The next step is to observe that ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ appear linearly in
inequality (2.93). We may then follow the procedure of (Coleman and Noll,
1963) and assign an arbitrary value to each of these quantities in turn,
balancing equations (2.85), (2.86) and (2.87) by a suitable choice of the
externally supplied functions fi, � and r. We may in this manner violate
inequality (2.93) unless the coefficients of ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ are each
identically zero. Hence, we deduce that

ψ �= ψ(ν̇, θ,A),

hA = ρ0
∂ψ

∂ν,A
⇒ hA �= hA(ν̇, θ,A), (2.94)

πAi = ρ0
∂ψ

∂FiA
⇒ πAi �= πAi(ν̇, θ,A), (2.95)

η = −∂ψ
∂θ

⇒ η �= η(ν̇, θ,A),

and further

ε �= ε(ν̇, θ,A).

The residual entropy inequality, left over from (2.93), which must hold for
all motions is

−
(
ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
≥ 0.

Thus, to specify a material for an elastic body containing voids we have
to postulate a suitable functional form for ψ = ψ(ν0, ν, FiA, θ, ν,A). Such a
form is usually constructed with the aid of experiments. The functions g
and qA still involve ν̇ and this can lead to behaviour almost viscoelastic-
like, see (Nunziato and Cowin, 1979). Other writers, e.g. (Iesan, 2004),
(Ciarletta and Iesan, 1993), omit ν̇ from the constitutive list at the outset.
In this manner one deduces that g may be given as a derivative of the
Helmholtz free energy, (Iesan, 2004), p. 7, although some of the possibly
desirable features of viscoelasticity are lost. The wavespeeds of acceleration
waves in this case are derived in (Iesan, 2004), (Ciarletta and Iesan, 1993).

2.5.3 Voids and Green - Lindsay thermoelasticity

In this section we consider a theory of voids as developed by (Nunziato
and Cowin, 1979) but we allow for the possibility of propagation of a
temperature wave, by generalizing the voids theory in the thermodynamic
framework of (Green and Laws, 1972). In addition to allowing us to explic-
itly examine the important effects of temperature this allows us to study
the propagation of a temperature wave in a porous material. In this section
we concentrate on the theory of (Green and Laws, 1972) where a general-
ized temperature φ(θ, θ̇), θ being absolute temperature, is introduced. The
theory was originally developed by (Ciarletta and Scarpetta, 1989).
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The current literature increasingly recognises the importance thermal
waves have in the theory of porous media. A very clever way to dry a
saturated porous material via second sound is due to (Meyer, 2006) and
(Johnson et al., 1994) show how second sound may be employed to cal-
culate physical properties of water saturated porous media. Both of these
cover highly important and useful topics. (Kaminski, 1990) reports experi-
mental results for materials with non-homogeneous inner structures which
indicate relaxation times of order 11 – 54 seconds rather than order pi-
coseconds as was previously thought. There is evidence that second sound
may be a key mechanism for heat transfer in some biological tissues as the
experiments of (Mitra et al., 1995) and the work of (Vedavarz et al., 1992)
indicate. Thus, we believe a theory of elastic materials with voids coupled
to a suitable thermodynamic theory capable of admitting second sound
has a place in modern engineering. One has to be careful how the theory
of voids is married to the thermodynamics, however. The incorporation of
time derivatives does present a serious problem. The thermodynamics of
Green and his co-workers were specifically developed to incorporate into
other areas of continuum mechanics and thus we believe these are natural
approaches to use.

In this section we describe a thermo-poroacoustic theory which allows
for nonlinear elastic effects and for the presence of voids, by using the
thermodynamics of (Green and Laws, 1972). This thermodynamics utilises
a generalized temperature φ(θ, θ̇) rather than just the standard absolute
temperature θ.

The starting point is to commence with the standard balance equations
for an elastic material containing voids, cf. (Nunziato and Cowin, 1979), or
equations (2.85), (2.86), (2.87), and we follow the approach of (Ciarletta
and Scarpetta, 1989), see also (Ciarletta and Straughan, 2007b),

ρẍi = πAi,A + ρFi, (2.96)
ρkν̈ = hA,A + g + ρ�, (2.97)
ρε̇ = −qA,A + πAiẋi,A + hAν̇,A − gν̇ + ρr. (2.98)

Here XA denote reference coordinates, xi denote spatial coordinates, a su-
perposed dot denotes material time differentiation holding X fixed, and ,A

signifies ∂/∂XA. The variable ρ is the reference density, and we use ρ rather
than ρ0 henceforth, for simplicity. Furthermore, ν is the void fraction, ε is
the specific internal energy, k is the inertia coefficient, Fi, � and r are exter-
nally supplied body force, extrinsic equilibrated body force, and externally
supplied heat. The tensor πAi is the stress per unit area of the XA−plane
in the reference configuration acting over corresponding surfaces at time t
(the Piola-Kirchoff stress tensor), qA is the heat flux vector, and hA and g
are a vector and a scalar function arising in the conservation law for void
evolution. (Nunziato and Cowin, 1979) refer to hA as the equilibrated stress
and they call g the intrinsic equilibrated body force.
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The thermodynamic development commences with the entropy inequal-
ity of (Green and Laws, 1972), and this is

ρη̇ − ρr

φ
+

(
qA
φ

)

,A

≥ 0. (2.99)

In this inequality η is the specific entropy and φ(> 0) is a generalised
temperature function which reduces to θ in the equilibrium state. Next,
introduce the Helmholtz free energy function ψ by ψ = ε− ηφ and rewrite
inequality (2.99) using the energy equation (2.98) to obtain

−ρψ̇ − ρφ̇η + πAiẋi,A − qAφ,A

φ
− gν̇ + hAν̇,A ≥ 0. (2.100)

Now, we assume that the constitutive functions

ψ, φ, η, πAi, qA, hA, g (2.101)

depend on the variables

xi,A, ν, ν,A, θ, θ̇, θ,A. (2.102)

Note that we do not include ν̇ in the constitutive list and are so effectively
following the voids approach of (Iesan, 2004), (Ciarletta and Iesan, 1993).
One then expands ψ̇ and φ̇ in (2.100) to reduce the constitutive equations.
Inequality (2.100) expanded is

ẋi,A

(
πAi − ρ

∂ψ

∂xi,A
− ρη

∂φ

∂xi,A

)
− ν̇

(
ρ
∂ψ

∂ν
+ g + ρη

∂φ

∂ν

)

− θ̇
(
ρ
∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− θ̈

(
ρ
∂ψ

∂θ̇
+ ρη

∂φ

∂θ̇

)

− θ̇,A

(
ρ
∂ψ

∂θ,A
+ ρη

∂φ

∂θ,A
+
qA
φ

∂φ

∂θ̇

)
− ν̇,A

(
ρη

∂φ

∂ν,A
+ ρ

∂ψ

∂ν,A
− hA

)

− qA
φ
xi,AB

∂φ

∂xi,AB
− qA

φ

∂φ

∂ν,J
ν,JA − qA

φ

∂φ

∂θ,J
θ,JA

− qA
φ

(∂φ
∂ν

ν,A +
∂φ

∂θ
θ,A

)
≥ 0. (2.103)

The terms in xi,AB , ν,JA and θ,JA appear linearly and so using the fact
that �, r and Fi may be selected as we like to balance (2.96) – (2.98), we
find

∂φ

∂xi,A
= 0,

∂φ

∂ν,A
= 0,

∂φ

∂θ,A
= 0. (2.104)

Thus

φ = φ(θ, θ̇, ν). (2.105)

It is important to observe that the generalized temperature depends on ν
in addition to θ and θ̇. Hence, the void fraction ν directly influences φ.
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Furthermore, the linearity of ẋi,A, ν̇, θ̈, θ̇,A and ν̇,A in (2.103) then allows
us to deduce that

πAi = ρ
∂ψ

∂xi,A
, qA = −ρ ∂ψ

∂θ,A

/
1
φ

∂φ

∂θ̇
,

hA = ρ
∂ψ

∂ν,A
, g = −ρ

(
∂ψ

∂ν
+ η

∂φ

∂ν

)
,

(2.106)

and

η = −∂ψ
∂θ̇

/
∂φ

∂θ̇
. (2.107)

The residual entropy inequality which remains from (2.103) after this
procedure, has form

−θ̇
(
ρ
∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− qA

φ

(
∂φ

∂ν
ν,A +

∂φ

∂θ
θ,A

)
≥ 0. (2.108)

This inequality places a further restriction on all constitutive equations and
motions.

Thus, the complete nonlinear theory of Green - Lindsay thermoelastic-
ity with voids as derived by (Ciarletta and Scarpetta, 1989) consists of
equations (2.96) - (2.98) together with the constitutive equations (2.105)
- (2.107). One needs functional forms for ψ and φ and then πAi, hA, g, ε
and qA follow and the balance equations (2.96) - (2.98) are, in principle,
determinate.

2.5.4 Voids and type II thermoelasticity

In this section we describe the theory of (De Cicco and Diaco, 2002). These
writers generalize the thermodynamic procedure of (Green and Naghdi,
1993) and use a thermal displacement variable

α =
∫ t

t0

θ(X, s)ds + α0, (2.109)

where X is the spatial coordinate in the reference configuration of the body
with θ being the absolute temperature. A general procedure for deriving the
equations for a continuous body from a single balance of energy equation is
developed by (Green and Naghdi, 1995b). These writers derive the conser-
vation equations for balance of mass, momentum, and entropy. The work
of (De Cicco and Diaco, 2002), like that of (Green and Naghdi, 1993) starts
with an entropy balance equation. (De Cicco and Diaco, 2002) extend the
(Green and Naghdi, 1993) thermoelasticity theory to include voids in the
manner of (Nunziato and Cowin, 1979). The full nonlinear equations are de-
rived by (De Cicco and Diaco, 2002), although they only utilize a linearized
version. We follow (Ciarletta et al., 2007) and rederive the (De Cicco and
Diaco, 2002) theory referring to a reference configuration and employing a
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first Piola-Kirchoff stress tensor, as opposed to the symmetric stress tensor
formulation of (De Cicco and Diaco, 2002).

It is worth observing that (Green and Naghdi, 1993) write, ... “This
type of theory, ... thermoelasticity type II, since it involves no dissipa-
tion of energy is perhaps a more natural candidate for its identification
as thermoelasticity than the usual theory.” Moreover, (Green and Naghdi,
1993) observe that, ... “This suggests that a full thermoelasticity theory
- along with the usual mechanical aspects - should more logically include
the present type of heat flow (type II) instead of the heat flow by conduc-
tion (classical theory, type I).” (The words in brackets have been added
for clarity.) We would argue that it is beneficial to develop a fully nonlin-
ear acceleration wave analysis for a Green - Naghdi type II thermoelastic
theory of voids.

The starting point in the development of the theory is to consider the
momentum and balance of voids equations for an elastic material containing
voids, see (2.85), (2.86),

ρẍi = πAi,A + ρFi, (2.110)
ρkν̈ = hA,A + g + ρ�. (2.111)

One needs a balance of energy and from (De Cicco and Diaco, 2002) this
is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ + (θΦA),A. (2.112)

In these equations XA denote reference coordinates, xi denote spatial co-
ordinates, a superposed dot denotes material time differentiation and ,A

stands for ∂/∂XA. The variables ρ, ν, ε, k, are the reference density, the
void fraction, the specific internal energy, and the inertia coefficient. The
terms Fi, � and s denote externally supplied body force, extrinsic equi-
librated body force, and externally supplied heat. The tensor πAi is the
stress per unit area of the XA−plane in the reference configuration acting
over corresponding surfaces at time t (the Piola-Kirchoff stress tensor), ΦA

is the entropy flux vector, and hA and g are a vector and a scalar function
arising in the conservation law for void evolution. These are referred to
by (Nunziato and Cowin, 1979) as the equilibrated stress and the intrinsic
equilibrated body force, respectively.

The next step is to use the entropy balance equation, see (Green and
Naghdi, 1993), (De Cicco and Diaco, 2002),

ρθη̇ = ρθs+ ρθξ + (θΦA),A − ΦAθ,A (2.113)

where ξ is the internal rate of production of entropy per unit mass, and
η, θ are the specific entropy and the absolute temperature. Introduce the
Helmholtz free energy function ψ = ε − ηθ and then equation (2.112) is
rewritten with the aid of (2.113) as

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ + ΦAθ,A − ρθξ. (2.114)
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The constitutive theory of (De Cicco and Diaco, 2002) writes the functions

ψ, η, πAi,ΦA, hA, g, ξ, (2.115)

as depending on

xi,A, ν, ν,A, α̇, α,A. (2.116)

The function ψ̇ is expanded using the chain rule, and rearranging terms,
recollecting α̇ = θ, equation (2.114) may be written as

ẋi,A

(
ρ
∂ψ

∂xi,A
− πAi

)
+ ν̇,A

(
ρ
∂ψ

∂ν,A
− hAi

)
+ α̇,A

(
ρ
∂ψ

∂α,A
− ΦA

)

+ ρα̈
(∂ψ
∂α̇

− η
)

+ ν̇
(
ρ
∂ψ

∂ν
+ g

)
+ ρθξ = 0.

(2.117)

We now use the fact that ẋi,A, ν̇,A, α̇,A, α̈ and ν̇ appear linearly in (2.117)
and so one derives the forms, cf. (De Cicco and Diaco, 2002), equations
(19),

πAi = ρ
∂ψ

∂xi,A
, ΦA = ρ

∂ψ

∂α,A
, hA = ρ

∂ψ

∂ν,A
,

g = −ρ∂ψ
∂ν

, η = −∂ψ
∂θ

= −∂ψ
∂α̇

, ξ = 0.
(2.118)

A theory of type II thermoelasticity containing voids is then given by
equations (2.110) - (2.112) with the constitutive theory prescribed by
equations (2.118).

2.5.5 Voids and type III thermoelasticity

As we have seen in section 2.5.4, (De Cicco and Diaco, 2002) have devel-
oped a theory of thermoelasticity with voids which is a generalization of the
dissipationless theory of thermoelasticity of (Green and Naghdi, 1993). The
latter writers refer to this as thermoelasticity of type II, type I being the
classical theory where the equation governing the temperature field is effec-
tively parabolic as opposed to hyperbolic in type II theory. The theory of a
thermoelastic body with voids corresponding to type I thermoelasticity was
developed by D. Iesan, see e.g. (Iesan, 2004). However, as shown in section
2.4 (Green and Naghdi, 1992) have developed a further theory of ther-
moelasticity which employs the thermal displacement variable α and the
thermodynamics of (Green and Naghdi, 1991; Green and Naghdi, 1995b).
This theory leads to what is essentially a second order in time equation
for the thermal displacement field, but differently from the type II theory
of (Green and Naghdi, 1993) the theory of (Green and Naghdi, 1992) does
have damping and hence dissipation. (Green and Naghdi, 1991; Green and
Naghdi, 1992) refer to this theory as being of type III, cf. section 2.4.

The goal of this section is to develop a type III theory of thermoelasticity,
but allowing for the accommodation of a distribution of voids throughout



68 2. Interaction with elasticity

the body. The essential difference between type II and type III thermoelas-
ticity is that the variable α̇,A is added to the constitutive list (2.116),
whereas it is absent in section 2.5.4, cf. section 2.4. The presentation
follows (Straughan, 2008), chapter 7.

We commence with the balance laws for a thermoelastic body with voids,
equations (2.85), (2.86) and (2.87). With ρ denoting the density in the
reference configuration and referring everything to this configuration, we
have the equation of momentum balance

ρẍi = πAi,A + ρfi. (2.119)

The equation of voids distribution is

ρkν̈ = hA,A + g + ρ�. (2.120)

The equation of energy balance is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ − (θpA),A. (2.121)

We let s be the heat supply and pA = qA/θ is the entropy flux vector. We
choose this representation to keep in line with (Green and Naghdi, 1991;
Green and Naghdi, 1992), and observe that pA = −ΦA where ΦA is the
entropy flux vector of (De Cicco and Diaco, 2002). We follow (Green and
Naghdi, 1992) and postulate an entropy balance equation

ρη̇ = ρs+ ρξ − pA,A, (2.122)

where ξ is the internal rate of production of entropy per unit mass.
The variable θ is the absolute temperature and α(X, t) is the thermal
displacement.

We next introduce the Helmholtz free energy function ψ in terms of the
internal energy ε, entropy η and temperature θ, by ψ = ε− ηθ. Then, from
(2.121) and (2.122) it is a straightforward matter to derive the reduced
energy equation, cf. (Green and Naghdi, 1992), equation (2.5),

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ − ρξθ − θ,ApA. (2.123)

A thermoelastic body of type III which contains a distribution of voids is
defined to be one for which the functions

ψ, η, πAi, pA, hA, g and ξ (2.124)

depend on the independent variables

FiA = xi,A, ν, ν,A, α̇, α,A, α̇,A . (2.125)

We do not consider the inhomogeneous situation which would also require
inclusion of XA in the list (2.125), cf. (Iesan, 2004). Observe that we do
not include ν̇ in the list (2.125). This follows (Iesan, 2004) and allows us
to determine g from ψ.
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The procedure now is to expand ψ in terms of the variables in the list
(2.125), and recalling α̇ = θ, we obtain from (2.123),

(ρψFiA − πAi)ḞiA + ν̇(ρψν + g) + ν̇,A(ρψν,A − hA)
+ α̈(ρψα̇ + ρη) + ρψα̇,A α̈,A + α̇,A(pA + ρψα,A) + ρξα̇ = 0.

(2.126)

We observe that ḞiA, ν̇,A, α̈, α̈,A, ν̇, appear linearly in (2.126). Thus, we
may deduce that the coefficients of these terms in (2.126) must be zero.
The process is akin to that described in Appendix A of (Green and Naghdi,
1992). Thus, we find that

πAi = ρψFiA , g = −ρψν , hA = ρψν,A,

η = −ψα̇, ψ �= ψ(α̇,A).
(2.127)

Hence, once we prescribe a functional form for the Helmholtz free energy
function ψ we also know the stress tensor, entropy, and the voids functions
hA and g. What remains from (2.126) is

ρξα̇+ α̇,A(ρψα,A + pA) = 0. (2.128)

This leads to further restrictions on constitutive functions. We now also
have that

ψ = ψ(xi,A, ν, ν,A, α̇, α,A),
pA = pA(xi,A, ν, ν,A, α̇, α,A, α̇,A),
ξ = ξ(xi,A, ν, ν,A, α̇, α,A, α̇,A).

(2.129)

Thus, once we have a form for the functional dependence of ψ on its
variables, and a form for pA, equations (2.119) - (2.121) yield the complete
nonlinear theory of type III thermoelasticity with voids, the function ξ
being determined by equation (2.128).

2.5.6 Linear voids type III thermoelasticity

One may study acceleration waves in the nonlinear theory of section 2.5.5.
The acceleration waves in this case do not have a separately propagating
temperature wave. The reason is that in some sense type III thermoelastic-
ity behaves more like type I thermoelasticity. For acceleration wave motion
in thermoelasticity without voids this is explained in detail by (Quintanilla
and Straughan, 2004), and a similar explanation holds here. Nevertheless,
the extra damping present in the current theory may be useful in practical
problems and with this in mind we now develop the equations for a linear
theory. Let the body have a centre of symmetry although we allow it to
be anisotropic. We denote the displacement in this section as ui. We then
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write ψ as a quadratic function of the variables in the list (2.129). Thus,

ρψ =
1
2
aiAjBui,Auj,B − a1

2
θ2 − a2

2
ν2 +AiAθui,A +BiAνui,A

+
RAB

2
ν,Aν,B + SABν,Aα,B +

TAB

2
α,Aα,B ,

(2.130)

where aiAjB , RAB, TAB have the following symmetries,

aiAjB = ajBiA, RAB = RBA, TAB = TBA.

From (2.127) we now see that

πAi = aiAjBuj,B +AiAθ +BiAν, hA = RABν,B + SABα,B,

ρη = a1θ −AiAui,A , g = a2ν −BiAui,A .
(2.131)

We also write

ρξ = φ1ν + φ2α̇,

pA = −KABν,B − LABα,B −MABα̇,B .

From (2.128) one may use the cyclic thermomechanical process argument
of (Green and Naghdi, 1991), section 9, to infer that LAB,MAB, RAB are
non-negative tensor forms, φ2 ≤ 0, φ1 = 0, and SAB = KAB, TAB = LAB.

In this manner, equations (2.119), (2.120) and (2.122) lead to the linear
equations

ρüi = (aiAjBuj,B),A + (AiAθ),A + (BiAν),A,

ρkν̈ = (RABν,B),A + (KABα,B),A + a2ν −BiAui,A , (2.132)
a1α̈ = AiAu̇i,A + φ2α̇+ (KABν,B),A + (TABα,B),A + (MABα̇,B),A .

One may study the boundary - initial value problem for (2.132). For ex-
ample, uniqueness and stability are easily investigated either by using an
energy method, or if definiteness of the elastic coefficients aiAjB is not
imposed, by a logarithmic convexity argument. For the latter one will
be better employing a time integrated version of α as done by (Ames
and Straughan, 1992; Ames and Straughan, 1997) and (Quintanilla and
Straughan, 2000), these articles following the introduction of this method
for the (Green and Laws, 1972), (Green, 1972), version of thermoelastic-
ity in (Straughan, 1974). One may also study one-dimensional waves as in
(Green and Naghdi, 1992) and then (2.132) essentially reduce to

ρutt = auxx +Aθx + Bνx,

ρkνtt = Rνxx +Kαxx + a2ν −Bux,

a1αtt = Autx + φ2αt +Kνxx + Tαxx +Mαtxx.

(2.133)

The damped character of the temperature wave is evident from (2.133) as
is observed in the non voids case by (Green and Naghdi, 1992), page 262.
If the displacement and voids effects are absent from (2.133)3, then we see
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that α satisfies the equation

a1
∂2α

∂t2
−M

∂3α

∂t∂x2
= φ2

∂α

∂t
+ T

∂2α

∂x2
.

This equation clearly does not permit the possibility of undamped thermal
waves, unless M = φ2 = 0. The damping evident in equations (2.133) may
be useful for description of some practical situations.

(Eringen, 1990; Eringen, 2004) develops a voids theory which has a richer
structure than the (Nunziato and Cowin, 1979) model. This is achieved by
incorporating an equation for the spin at each point of the body. Again,
this theory is likely to have rich application in wave propagation problems.
(Straughan, 2008) describes this theory in connection with nonlinear wave
motion in section 7.6. A general study of singular surface propagation in
a continuous body formed of a thermo-microstretch material which has
memory is given by (Iesan and Scalia, 2006).

The theory developed by (Eringen, 1990) includes temperature effects
while (Eringen, 2004) also includes electromagnetic effects which could be
important in wave motion in ceramics, for example. However, we here ig-
nore electromagnetic effects. The basic variables of the theory of (Eringen,
1990; Eringen, 2004) are the displacement ui, microstretch ϕ, and the mi-
crorotation vector φi. The microstretch theory of (Eringen, 1990; Eringen,
2004) is based on balance laws for these quantities. These are balance of
momentum,

ρ0üi = πAi,A + ρ0fi (2.134)

and balance of microstretch

ρ0
j0
2
ϕ̈ = mA,A + T + ρ0�, (2.135)

in which we measure quantities in the current configuration but refer back
to the reference configuration. Thus, πAi is a Piola-Kirchoff stress tensor,
fi is a prescribed body force, j0 is the microinertia, mA is a microstretch
couple, � is a prescribed microstretch source term and T (denoted by t− s
in (Eringen, 2004)) is the microstretch stress. Here , A denotes ∂/∂XA. In
addition to equations (2.134) and (2.135), the Eringen theory has a balance
of spins equation of form

ρ0Jφ̈i = mAi,A + εiAjπAj + ρ0�i, (2.136)

where �i is an applied body couple density, mAi is the couple stress tensor,
and we have taken the microinertia tensor Jik = Jδik for simplicity. The
constitutive theory assumes that

πAi,mA, T and mAi (2.137)

are functions of the variables

FiA = ui,A, φi, φi,A, ϕ and ϕ,A. (2.138)
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In fact, (Eringen, 2004) combines ui,A and φi into a single strain measure
eiA = ui,A + εAmiφm.

(Straughan, 2008) addresses some new questions regarding singular
surfaces for the (Eringen, 1990) theory.

A detailed account of many properties of elastic bodies containing voids
may also be found in the book by (Iesan, 2004), chapters 1 to 3.

2.6 Generalized thermoelasticity with
microstructure

2.6.1 Hetnarski-Ignaczak theory

(Ignaczak, 1990) and (Hetnarski and Ignaczak, 1996; Hetnarski and
Ignaczak, 1997; Hetnarski and Ignaczak, 1999) present an interesting ther-
moelastic theory which is capable of describing soliton - like thermoelastic
waves. The wave aspect is further analysed in (Hetnarski and Ignaczak,
2000) where a comparison is made with wave propagation in other ther-
moelastic models. The model described by (Hetnarski and Ignaczak, 1999)
consists of equations for the displacement ui, temperature θ, and an elas-
tic heat flow field bi. In the isotropic case these equations are given
by (Hetnarski and Ignaczak, 1999) as

ζ2üi = fi − εθ,i +
1

2(1 − ν)
uj,ij + κΔui ,

θ̇ = r − θu̇i,i + Δθ +
biθ,i

θ
− bi,i ,

ωḃi = −θ,i

θ
,

(2.139)

where θ is the absolute temperature, ζ, ε are constants, fi and r are body
force and heat supply, ν is Poisson’s ratio and κ = (1 − 2ν)/(2 − 2ν). The
constant ω is much less than 1 although positive. (Hetnarski and Ignaczak,
1999) show how equations (2.139) lead to soliton - like thermoelastic waves
which move with different wavespeeds.

2.6.2 Micropolar, dipolar, affine microstructure

A type II thermoelastic theory incorporating micropolar effects was devel-
oped by (Ciarletta, 1999). He concentrates on producing a linear theory.
In addition to the type II thermoelasticity theory of section 2.3 (Ciarletta,
1999) introduces a microrotation vector φi which represents spin at a point.
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His basic equations, in the current frame are

ρ0üi = tji,j + ρ0fi ,

ρ0η̇ = ρ0s+ Φi,i ,

Iij φ̈j = mji,j + εijktjk + ρ0gi .

(2.140)

Equation (2.140)1 is the balance of linear momentum, ρ0 being density, ui

displacement, tij Cauchy stress, and fi body force. Equation (2.140)2 is the
balance of entropy equation, η being entropy, s entropy supply, Φi entropy
flux, and we observe the intrinsic entropy supply ξ is shown by (Ciarletta,
1999) to be zero. In the equation (2.140)3 Iij represents the coeffcients of
inertia, mij is the couple stress tensor, and gi is the body couple density.
(Ciarletta, 1999) introduces the variables eij and κij by

eij = uj,i + εjikφk , κij = φj,i , (2.141)

and he shows the energy balance law may be written as

ρ0ψ̇ − tij ėij −mij κ̇ij + ρ0ηθ̇ − Φiθ,i = 0, (2.142)

where ψ is the Helmholtz free energy and θ is the temperature.
(Ciarletta, 1999) linearizes about a reference state in which θ = T0, α =

α0, T0 and α0 being constants, where α is the thermal displacement. By
introducing a free energy ψ which is quadratic in eij , κij , T and τ,i, where
T = θ − T0, τ =

∫ t

t0
Tds, he shows the constitutive equations are

tij = Aijrsers +Bijrsκrs −DijT +Gijrτ,r ,

mij = Brsijers + Cijrsκrs − EijT +Hijrτ,r ,

ρ0η = Dijeij + Eijκij + aT + biτ,i ,

Φi = Grsiers +Hrsiκrs − biT +Kijτ,j .

(Ciarletta, 1999) principally works with the isotropic theory for a
body with a centre of symmetry. For this case he shows the governing
evolutionary equations become

ρ0üi = (μ+ κ)Δui + (λ+ μ)uj,ji + κεirsφs,r −mT,i + ρ0fi ,

Iφ̈i = γΔφi + (α+ β)φj,ji + κεirsus,r − 2κφi + ρ0gi ,

aT0T̈ = kΔT −mT0üi,i + ρ0ṡ.

(2.143)

(Ciarletta, 1999) solves a problem of a concentrated heat source and
proves a continuous dependence result. (Passarella and Zampoli, 2011)
derive reciprocal and variational principles.

(Quintanilla, 2002c) develops a theory for thermoelasticity of type II for
a body which includes an affine microstructure term xiK . He writes that
this determines the homogeneous deformation of the particle with centre
of mass at X. He uses the equation of balance of linear momentum,

ρẍi = tKi,K + ρfi , (2.144)
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where tKi is here the Piola-Kirchoff stress tensor. His balance of entropy is

ρη̇ = ρS + ρξ + ΦA,A . (2.145)

He also needs an equation for micromotion,

ρJKLẍiL = SLiK,L − SiK + ρfiK , (2.146)

where JKL is an inertia tensor, SLiK is the dipolar stress tensor, SiK is
a second order tensor defined below, and fiK is a source term for the
micromotion. The energy balance equation is

ρ(ψ̇ + θ̇η) − tKiẋi,K − SLiK ẋiK,L − SiK ẋiK + ρθξ − ΦAθ,A = 0. (2.147)

(Quintanilla, 2002c) postulates constitutive theory that

ψ, tKj , SLiK , SiK , η,ΦA and ξ

depend on the variables

xi,K , xiK , xiK,L, θ and α,K ,

α being the thermal displacement. He shows that this leads to

tKj = ρ
∂ψ

∂xj,K
, SKj = ρ

∂ψ

∂xKj
, SKiJ = ρ

∂ψ

∂xiJ,K
,

ΦA = ρ
∂ψ

∂α,A
, η = −∂ψ

∂θ
and ξ = 0.

(2.148)

Then, a nonlinear theory for thermoelasticity of type II including affine mi-
crostructure consists of the differential equations (2.144) - (2.146) together
with the constitutive equations (2.148).

(Quintanilla, 2002c) linearizes about a state in which α = α0 and θ = T0.
He puts T = θ − T0, ui = xi − Xi, uiA = xiA − XiA, and postulates a
Helmholtz free energy function ψ which is quadratic. In this way he derives
the governing evolution equations

ρüi = (AiJRsus,R +BiJrSur,S − βJiT ),J + ρfi ,

ρJKLüiL = (EKiLSjRujR,S +MKiLRτ,R),L

− (BrSiKur,S + CSriKur,S − χiKT ) + ρfiK ,

aτ̈ = −βKiu̇i,K − χiK u̇iK +MLjKI ujL,KI +KIJ τ,IJ +
ρ

T0
R ,

(2.149)

where τ =
∫ t

t0
Tds is a thermal displacement. (Quintanilla, 2002c) in-

troduces an interesting functional to establish uniqueness via logarithmic
convexity without assuming definiteness of the elastic coefficients. He also
establishes an existence theorem using a semigroup approach.

Thermoelasticity theories based on Green-Naghdi type II and type
III thermodynamics are also investigated with internal variables in the
interesting article of (Ciancio and Quintanilla, 2007).
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2.6.3 Piezoelectricity and thermoelasticity

Piezoelectricity is an interesting phenomenon. It is basically the ability of
some materials to generate an electric field or an electric potential when a
mechanical stress is applied. Some crystals and especially certain ceramics
exhibit piezoelectric behaviour. In this section we briefly describe some
work which has developed and employed theories for piezoelectricity in a
thermoelastic body when the temperature wave behaviour arises from a
Lord-Shulman, Green-Lindsay, or Green-Naghdi type II approach.

Since ceramics are porous materials it makes sense to develop a piezo-
electric theory for thermoelasticity which also incorporates porosity. This is
what (Ciarletta and Scalia, 1993) did. They derive a thermoeleastic theory
which allows the body to have a distribution of voids. Their thermodynam-
ics is based on the (Green and Laws, 1972) and (Green and Lindsay, 1972) θ
and θ̇ theory. Let ui denote the displacement and ν the void fraction. Then
(Ciarletta and Scalia, 1993) begin with the balance of linear momentum
and balance equation for the voids, i.e.

ρ0üi = tji,j + fi,

ρ0χν̈ = Hi,i + g + � ,
(2.150)

where tij , Hi are the Cauchy stress tensor and the equilibrated stress vector,
fi and � are externally supplied body forces, χ is an inertia coefficient, and
g is an intrinsic equilibrated body force. They adopt Maxwell’s equations
in the form

Di,i = f, Ei = −φ,i , (2.151)

where D,E are the electric displacement field and the electric field, f is
the charge density and φ is the electric potential. Their equation of energy
balance is

ρ0ε̇ = tij ėij +Hiν̇,i − gν̇ − qi,i + EiḊi + ρ0r, (2.152)

in which ε is the internal energy, eij = (ui,j + uj,i)/2, qi is the heat flux
and r is the heat supply.

(Ciarletta and Scalia, 1993) employ the entropy inequality of (Green and
Laws, 1972)

ρ0η̇ ≥ ρ0r

φ
−

(
qi
φ

)

,i

,

with η being entropy and φ a function depending on the constitutive
variables. They assume there is a constant temperature T0 in the refer-
ence state and ν0 is the distribution of ν in that state. They then put
θ = T − T0, ζ = ν − ν0, and define a generalized Helmholtz free energy of
form

G = ε− φη − 1
ρ0
DiEi .
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(Ciarletta and Scalia, 1993) define a piezoelectric material to be one for
which

G, tij , Hi, qi, g, η,Di and φ

depend on the variables

eij , θ, θ̇, θ,i , Ei, ζ and ζ,i .

They then exploit the entropy inequality to show that

tij = ρ0
∂G

∂eij
, Di = −ρ0

∂G

∂Ei
, Hi = ρ0

∂G

∂ζ,i
,

qi = ρ0φ
∂G

∂θ,i

/
∂φ

∂θ̇
, η = −∂G

∂θ̇

/
∂φ

∂θ̇
,

g = −ρ0

(∂G
∂ζ

+ η
∂φ

∂ζ

)

and φ = φ(ζ, θ, θ̇).

(2.153)

They assume further that in thermodynamic equilibrium φ becomes T0 +θ,
i.e. φ(ζ, θ, 0) = T0 + φ.

Thus, the full system of nonlinear equations for piezoelectric behaviour
in a thermoelastic body as derived by (Ciarletta and Scalia, 1993) are
equations (2.150), (2.151), and (2.152) together with (2.153).

(Ciarletta and Scalia, 1993) futher develop a linear version of their theory
and establish reciprocity relations and a uniqueness theorem.

The paper of (Iesan, 2008) proceeds along the lines of Green-Naghdi type
II thermoelasticity to develop a theory of piezoelectricity in a microstretch
continuous body. The idea of microstretch was introduced in section 2.5.6.
As (Iesan, 2008) usefully points out a microstretch continuum is a dipolar
one with a dipolar displacement uij where uij = φδij + εijkφk. Here φ is a
microstretch function (i.e. a porosity function) while φi is a microrotation
vector. He remarks that φ may be thought of as a breathing motion whereas
φi represents a rigid microrotation. He also notes that when φ is zero one
obtains a Cosserat continuum.

The lucid paper of (Iesan, 2008) employs balance equations for en-
tropy, linear momentum, moment of momentum, energy, microstretch,
and Maxwell’s equations. The full thermodynamic development is given
in (Iesan, 2008). We simply present the relevant equations and constitutive
theory. The form of Maxwell’s equations are

Di,i = f, Ei = −ψ,i , (2.154)

where Di, Ei are the electric displacement field and the electric field, f is
the charge density and ψ is the electric potential. The balance of entropy
equation is

ρ0η̇ = ρ0s+ ρ0ξ + Φi,i (2.155)
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where ρ0 is density, η entropy, Φi entropy flux, s is the external supply of
entropy, and ξ is the internal rate of production of entropy. The balance of
linear momentum is

ρ0üi = ρ0fi + tji,j (2.156)

where ui is the elastic displacement, fi is the prescribed body force, and tij
is the Cauchy stress tensor. The balance of moment of momentum equation
is

Iij φ̈j = ρ0gi + εijktjk +mji,j (2.157)

where Iij is an inertia tensor, gi is the external body couple, and mij is the
couple stress tensor. Finally the equation for microstretch balance is

j0φ̈ = πi,i + ρ0�− σ. (2.158)

Here j0 is a coefficient, πi is the microstretch stress vector, � is an extrenally
supplied microstretch body force and σ is a function defined in terms of
the electric enthalpy, see below.

(Iesan, 2008) introduces the electric enthalpy function A by

A = ε− ηθ − 1
ρ0
DiEi (2.159)

where ε is the internal energy. His constitutive theory for a piezoelectric
thermoelastic body requires that

A, tij ,mij , πi, σ, η,Φ, ξ and Di

depend on the variables

eij , φj,i, φ,i, φ, θ and α,i

where

eij = uj,i + εjikφk and α̇ = θ,

θ being the temperature. (Iesan, 2008) shows that

mij = ρ0
∂A

∂φj,i
, tij = ρ0

∂A

∂eij
, Φi = ρ0

∂A

∂α,i
,

η = −∂A
∂θ

, Di = −ρ0
∂A

∂Ei
, πi = ρ0

∂A

∂φ,i
,

σ = ρ0
∂A

∂φ
, and ξ = 0.

(2.160)

The fully nonlinear theory of (Iesan, 2008) then consists of equations (2.154)
- (2.158) with the forms (2.160). Once a form for functional dependence of
A is prescribed this yields a complete set of equations.

(Iesan, 2008) further develops a linear theory. He linearizes about a ref-
erence state in which θ = T0 and α = α0, T0 and α0 being constants. He
defines T = θ − T0 and τ =

∫ t

t0
Tds and then proposes a quadratic form
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for A. The complete form for the functions tij ,mij , πi, σ,Φi, η and Di is
then given in the general anisotropic case by (Iesan, 2008) in his equations
(2.25) For an isotropic and homogeneous body (Iesan, 2008) develops the
linear equations as

ρ0üi = (μ+ κ)Δui + (λ+ μ)uj,ji + κεijkφk,j

+ λ0φ,i − β0τ̇,i + ρ0fi ,

Iφ̈i = γΔφi + (α+ β)φj,ji + κεijkuk,j − 2κφ,i + ρ0gi ,

j0φ̈ = (a0Δ − ξ0)φ− λ2Δψ + ν1Δτ

− λ0uj,j + c0τ̇ + ρ0� ,

aτ̈ = kΔτ + ν1Δφ− ν3Δψ − β0u̇i,i − c0φ̇+
ρ0

T0
S ,

λ2Δφ+ χΔψ + ν3Δτ = −f,

(2.161)

where fi, gi, �, S are external supplies. (Iesan, 2008) pointedly remarks that
equation (2.161)5 generalizes the classical equation χΔψ = −f for the
electric potential. Here, the λ2 term represents a porosity effect on the
electric potential while the ν3 term represents a thermal effect.

(Iesan, 2008) establishes a general uniqueness theorem and a continuous
dependence result for his linear theory. He also obtains the solution for the
problem of a concentrated heat source and for an impulsive body force. He
also derives the solution for the problem of a thick-walled spherical shell
where the shell surfaces are subject to different but constant pressures.

(Walia et al., 2009) study the propagation of Lamb waves in a trans-
versely isotropic thermoelastic piezoelectric plate which is rotating about an
axis orthogonal to the plate. They allow for finite speed thermal wave prop-
agation by using both a Lord-Shulman type theory and a Green-Lindsay
one, with the appropriate modifications to account for piezoelectric effects.
Many numerical results are presented and their theory is applied specifi-
cally to a plate made of PZT-5A piezoelectric thermoelastic material. Other
relevant references are provided by (Walia et al., 2009), see also (Ciarletta
and Scarpetta, 1996).

2.6.4 Other theories

There are several other theories of thermoelasticity which cater for second
sound effects which have been proposed and analysed in the literature. We
briefly mention some.

(Iesan and Quintanilla, 2009) develop a type II thermoelasticity theory
which includes microstretch effects and also allows for microtemperatures.
Within the linearized theory they study uniqueness, existence, and instabil-
ity of solutions. (Green and Naghdi, 1995c) present a general development
of their entropy balance thermodynamics to Cosserat continua, Cosserat
surfaces and to Cosserat curves. In (Green and Naghdi, 1995d) they present
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a similar development for the theory of mixtures of interacting continua.
(Caviglia and Morro, 2005) present a general theory for a class of linear
thermoviscoelastic materials and study this in detail when there is varia-
tion in a particular direction, the z-direction say. They also investigate the
energy flux, and problems of reflection and transmission of waves.

Functionally graded elastic bodies are man made and have the property
that elastic coefficients or other coefficients are not constant but change
continuously throughout in a way that the material is designed for a specific
purpose. Within second sound theory functionally graded thermoelastic
bodies have been studied by (Ghosh and Kanoria, 2009) and (Mallik and
Kanoria, 2007). The work of (Ghosh and Kanoria, 2009) is based on a
Green-Lindsay type of thermoelasticity whereas that of (Mallik and Kano-
ria, 2007) proposes equations based on type II thermoelasticity. The effect
of a magnetic field on the response of a thermoelastic body in the context of
second sound theories has also been studied. (Aouadi, 2008) studies mag-
netic field effects within Green-Lindsay thermoelasticity. (Abd-Alla and
Abo-Dahab, 2009) investigate a time-dependent problem with a magnetic
field in type II thermoelasticity theory. (Sharma and Thakar, 2006) anal-
yse the effect of rotation and a magnetic field for both Lord-Shulman and
Green-Lindsay theories of thermoelasticity.

A thermoelasticity theory based on the two temperature approach, see
section 1.7, was developed by (Chen et al., 1969). A variety of shock wave
problems within the context of this theory were tackled by (Warren and
Chen, 1973). (Puri and Jordan, 2006) also present an in-depth study of
harmonic waves in the two-temperature thermoelastic theory. They inves-
tigate particularly the low and high frequency regimes and present detailed
numerical results for both the elastic and temperature waves. Another
study of wave propagation in the two temperature thermoelasticity theory
is due to (Kumar and Mukhopadhyay, 2010). We also mention the study
of (Othman and Singh, 2007) who study a rotating micropolar thermoe-
lastic body. They present solutions for harmonic waves and compare the
results within theories of classical thermoelasticity, Lord-Shulman theory,
Green-Lindsay theory, type II theory, and a dual phase lag theory.

Analytical results for the solution to thermoelasticity of type III for
a beam are given by (Zelati et al., 2010), while (Liu and Quintanilla,
2010a) establish analyticity results for a type III plate. Energy decay in
a mixed thermoelastic system of type II and type III is studied by (Liu and
Quintanilla, 2010b).

A novel result for a Timoshenko beam system is established by (Sare
and Racke, 2009), who show that exponential decay of the solution is to be
expected for a Timoshenko system with Fourier’s law, but incorporation of
a Cattaneo - like heat flux law does not lead to exponential decay.
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2.7 Exercises

Exercise 2.7.1 Consider the boundary - initial value problem, P, for equa-
tions (2.132) with ui, ν and α prescribed on the boundary Γ, of a bounded
domain Ω ⊂ R

3. Let (u1
i , ν1, α1) and (u2

i , ν2, α2) be solutions to P for the
same boundary and initial data. Write out the boundary initial value prob-
lem for the difference solution ui = u1

i − u2
i , ν = ν1 − ν2, α = α1 −α2 to P.

For appropriate symmetry conditions on the coefficients derive the energy
equation

d

dt

[
1
2

∫

Ω

ρu̇iu̇i dx+
1
2

∫

Ω

aiAjBuj,Bui,A dx+
1
2

∫

Ω

ρkν̇2dx

+
1
2

∫

Ω

RABν,Aν,Bdx+
a1

2
‖θ‖2 +

1
2

∫

Ω

TABα,Aα,Bdx

+
∫

Ω

KABα,Aν,Bdx+
∫

Ω

BiAui,Aν dx

]

+
∫

Ω

MABθ,Aθ,Bdx− φ2‖θ‖2 = 0,

(2.162)

where ‖ · ‖ is the norm on L2(Ω). Use this equation to deduce uniqueness
for appropriate signs on and relations between coefficients.

Exercise 2.7.2 For the Hetnarsky - Ignazcak equations (2.139) with fi = 0
and r = 0, show that

ωbiḃi =
∂

∂t

ω

2
|b|2 = −biθ,i

θ
.

Then show that

θ̇ +
∂

∂t

ω

2
|b|2 = −θu̇i,i + Δθ − bi,i .

Show further that if Ω is a bounded domain in R
3 with boundary Γ,

−
∮

Γ

niθ,idS = ω

∮

Γ

θḃini dS

and so ∂θ/∂n = 0 on Γ is consistent with bini = 0 on Γ.
Deduce also that with ui = 0 on Γ,

d

dt

ζ2

2
‖u̇‖2 = −ε

∫

Ω

θ,iu̇idx− d

dt

A

2

∫

Ω

(ui,i)2dx− d

dt

κ

2
‖∇u‖2 ,

where ‖·‖ is the norm on L2(Ω). Hence, conclude that with ui = 0, bini = 0,
and ∂θ/∂n = 0 on Γ,

F (t) =
ζ2

2ε
‖u̇‖2 +

A

2ε
‖ui,i‖2 +

κ

2ε
‖∇u‖2 +

ω

2
‖b‖2 +

∫

Ω

θ dx

satisfies

F (t) = F (0) for all t > 0.
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Exercise 2.7.3 Prove that a solution to the boundary initial value problem
P for (2.143) is unique.
Hint. Let (2.143) be defined on a bounded spatial domain Ω ⊂ R

3, for t > 0.
Let Γ be the boundary of Ω. On Γ suppose ui, φi and T are given. Also,
initial values are given for ui, ui,t, φi, φi,t, T and Tt. Let (u1

i , φ
1
i , T

1) and
(u2

i , φ
2
i , T

2) be solutions which satisfy P for the same boundary and initial
data. Define the difference solution ui = u1

i −u2
i , φi = φ1

i −φ2
i , T = T1−T2.

Integrate in time the equation which arises for T and set τ =
∫ t

t0
T ds. Show

that one may find

d

dt

[∫

Ω

ρ0

2
u̇iu̇idx+

(μ+ κ

2

)
‖∇u‖2 +

(μ+ λ

2

)
‖ui,i‖2

− κεirs

∫

Ω

uiφs,rdx +
I

2

∫

Ω

φ̇iφ̇idx+
γ

2
‖∇φ‖2 +

(α+ β

2

)
‖φi,i‖2

+
a

2
‖T ‖2 +

k

T0
‖∇τ‖2

]
= −2κ‖φ‖2.

(Note τ̇ = T .) Hence, deduce uniqueness when κ is suitably restricted (a
restriction which does follow from thermodynamics).
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