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Preface

This book is devoted to an account of theories of heat conduction where
the temperature may travel as a wave with a finite speed. This area of non-
classical diffusion is very topical in the research literature. With the advent
of micro-scale technology there is increasing evidence that thermal motion
is via a wave mechanism as opposed to by diffusion. We survey many of
the theories which have been proposed as candidates to describe thermal
motion as a wave. These theories are linked to solid mechanics (elasticity)
and also to fluid mechanics.

Wave motion in the form of acceleration waves and of shock waves is
discussed. An exposition of numerical work in the area of thermal waves is
also included. Analytical methods for establishing uniqueness, continuous
dependence, growth, spatial decay and other results are described.

Two important chapters are the final two. These focus firstly on where
nanofluids and heat transfer are relevant. Hyperbolic temperature equa-
tions have been linked to the recent and “hot” area of nanofluids. The final
chapter investigates applications of “heat wave - like” ideas to other areas,
particularly those in mathematical biology are also investigated.

I should like to thank a referee for several pointed remarks and sug-
gestions for rewriting which have substantially helped with this book. My
early work on heat waves was influenced greatly by discussions with the late
Dario Graffi of the University of Bologna. I have benefitted over the years
by many discussions on heat waves with several people and I would espe-
cially like to thank Stan Chirita, Christo Christov, Ivan Christov, Michele
Ciarletta, Mauro Fabrizio, Franca Franchi, Pedro Jordan, Kenneth Lindsay,
Angelo Morro, Larry Payne, Ramon Quintanilla and Jaime Muñoz Rivera.
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In particular, I would like to thank Mauro Fabrizio and Ivan Christov for
helping me locate copies of the paper by Cisotti and also some by Dario
Graffi. It is a pleasure to thank Achi Dosanjh of Springer for her advice
with editorial matters.

This research was in part supported by a grant from the Leverhulme
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1
Introduction

1.1 Heat waves in a rigid conductor

1.1.1 Second sound

First sound is the classical mechanism which allows us to hear, i.e. a
disturbance of pressure (or density) which propagates through a continuous
medium such as air or water. Second sound is a more recent phenomenon
involving the propagation of heat as a temperature wave. The classical the-
ory of heat propagation is via diffusion where a temperature field diffuses
through a continuous body. However, experiments in the late 1960’s and
early 1970’s showed that a thermal disturbance could travel as a wave and
this has acted as an impulse to much subsequent theoretical work in this
area. As (Caviglia et al., 1992) remark thermal pulse propagation has been
experimentally observed under accurate conditions in solid helium (He3 and
He4) by (Ackerman and Overton, 1969) (see also the references therein),
in sodium fluoride, (Jackson et al., 1970), (McNelly et al., 1970), (Hardy
and Jaswal, 1971), in bismuth, (Narayanamurti and Dynes, 1972), and in
sodium iodide and in lithium fluoride, see (McNelly et al., 1970). This as-
pect of second sound is a low temperature phenomenon, the experiments
just cited having been performed in the 1-20◦K range.

In addition to a thermal wave, the experiments of (McNelly et al., 1970)
and of (Jackson et al., 1970) showed that second sound was also important
in thermoelasticity. They employed a very pure crystal of sodium fluoride
and evaporated manganin heaters and lead detectors onto opposing faces
of the crystal and were thereby able to transmit heat pulses through their

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 1
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2 1. Introduction

sample. These careful experiments revealed the existence of three distinct
waves. There was a longitudinal elastic wave which travels fastest, a trans-
verse elastic wave, and also a thermal wave. When the temperature was
below 8◦K, three distinct waves were observed, the fastest being the lon-
gitudinal one, the transverse one next fastest, while the thermal wave was
slowest.

Within fluid mechanics, the effect of temperature upon wave propaga-
tion of a disturbance has a long history. As (Lindsay and Straughan, 1978)
remark, a critical review of the early literature in this field is provided
by (Truesdell, 1953). (Stokes, 1851) investigated the behaviour of distur-
bances in a perfect fluid when the fluid is subject to radiation effects.
(Kirchoff, 1868) and Langevin (see (Biquard, 1936)) studied the behaviour
of disturbances in a fluid taking heat conduction and viscosity into account.
They obtained a fourth order characteristic equation for the wavespeed,
with that of (Kirchoff, 1868) being for an equation of state appropriate
to a perfect gas whereas Langevin adopted an arbitrary equation of state.
(Rayleigh, 1896), eq. (247.18), also obtained disturbance solutions for a
heat conducting fluid without viscosity, his characteristic equation like-
wise being fourth order. For the physics literature on temperature waves
in low temperature Helium II one might consult e.g. (Peshkov, 1944) or
(Donnelly, 2009). Undoubtedly the article of (Truesdell, 1953) and the
experiments described above inspired much theoretical work on the prop-
agation of a thermal wave (heat wave). Much of this work is described
in the reviews of (Chandrasekharaiah, 1986), (Chandrasekharaiah, 1998),
(Dreyer and Struchtrup, 1993), (Hetnarski and Ignaczak, 1999), (Joseph
and Preziosi, 1989; Joseph and Preziosi, 1990) and (Jou et al., 2010a).
The paper of (Green and Naghdi, 1991) brought a new way of thinking to
the area of heat wave propagation and their article has influenced many
subsequent developments.

A lot of the recent interest in second sound is due to discoveries that it
may have relevance in mundane areas other than low temperature physics.
For example, (Mitra et al., 1995), (Vedavarz et al., 1992) suggest thermal re-
laxation effects may be important in biological tissues, (Lebon and Dauby,
1990) remark that second sound should be detectable in any material, in
addition second sound may be used to dry sand, (Meyer, 2006), it may
be important in nanofluids, (Vadasz et al., 2005), in cooling or heating in
stars, (Herrera and Falcón, 1995), (Falcón, 2001), in cryovulcanology in one
of Saturn’s moons, (Bargmann et al., 2008b), in phase changes, (Miranville
and Quintanilla, 2009), (Liu et al., 2009), in nuclear reactor technology,
(Espinosa-Paredes and Espinosa-Martinez, 2009), in skin burns, (Dai et al.,
2008), in the medical technique of radiofrequency heating, (López Molina
et al., 2008), (Tung et al., 2009), and this technique is important as a
surgical procedure in the elimination of cardiac arrhythmias, tumours, in
heating of the cornea, or in the treatment of gastroesophageal reflux dis-
ease. Additionally, the mathematical theories derived to describe second
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sound, especially that of (Cattaneo, 1948), have been adapted to study
biological problems such as chemotaxis, (Dolak and Hillen, 2003), (Hillen
and Levine, 2003), (Wang and Hillen, 2008), the spread of the hantavirus,
(Abramson et al., 2001), (Barbera et al., 2008), to traffic flow, (Jordan,
2005b), (Bellomo and Dogbé, 2008), and to the control of fish stocks, (Niwa,
1998).

This book looks at a variety of issues connected with heat waves and,
in particular, we do include accounts of the contemporary issues just
mentioned.

To understand the ideas we begin with some simple examples.
Let us consider the classical diffusion equation on x ∈ R, t > 0, i.e.

∂θ

∂t
= D

∂2θ

∂x2
, x ∈ R, t > 0. (1.1)

As initial data we can consider either a point source, θ = N at x = 0, or a
finite distribution of θ at t = 0, i.e.

θ(x, 0) = Nδ(x), (1.2)

or

θ(x, 0) = f(x), x ∈ R. (1.3)

In (1.2) δ(x) is the Dirac delta function and we are thinking of f as having a
finite support, i.e. f vanishes outside a finite region. One may solve equation
(1.1) together with (1.2) or (1.3) by using a Fourier transform, see e.g.
(Sneddon, 1995). Then for the initial data condition (1.2) we obtain

θ(x, t) =
N

2
√
πDt

e−x2/4Dt, t > 0, (1.4)

whereas with (1.3) one may show that

θ(x, t) =
1

2
√
πDt

∫ ∞

−∞
f(ξ) exp

[
−(x− ξ)2

4Dt

]
dξ. (1.5)

For both solutions (1.4) or (1.5) we see that as soon as t > 0, θ �= 0 every-
where. Thus, we can think of θ as having an infinite speed of propagation.
This is thought of as being an undesirable effect and, therefore, we seek to
find a method whereby θ will propagate with a finite speed of propagation.
In sections 1.2 - 1.12 we present a variety of models which have been stud-
ied widely in the literature to attempt to overcome the problem of infinite
speed of propagation.

At this juncture we simply present three simple ways to help understand
the process. As a first step we might argue that the diffusion coefficient
D in (1.1) should depend on temperature, as it does in real life. Hence,
recollect equation (1.1) arises from the two equations

∂θ

∂t
= − ∂q

∂x
and q(x, t) = −D∂θ

∂x
(x, t) . (1.6)
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Figure 1.1. θ profile as t increases for solution (1.8). The curves are for
t = 1, 2, 3, 4, 5, moving downward at x = 0. Only the right hand part of θ is
shown, the left hand part being a mirror image in the θ−axis. The solution starts
as a point height 60 at t = 0, x = 0. The values of N and h are N = 60, h = 1.

The function q is the one-dimensional heat flux. We now suppose D is a
linear function of θ, i.e. D = hθ, for h a constant. Then, instead of equation
(1.1) we find equations (1.6) lead to

∂θ

∂t
= h

∂

∂x

(
θ
∂θ

∂x

)
. (1.7)

One may show that if equation (1.7) is posed on the domain {x ∈ R} ×
{t > 0} then the solution with the initial condition (1.2) is

θ(x, t) =
N2/331/3

2h1/3π1/3

1
t1/3

− (6h)−1x
2

t
. (1.8)

Thus, θ starts at t = 0 with θ = N at x = 0 and spreads out as t increases,
keeping θ > 0, and the edge where θ = 0 is at time t,

x = t1/3 h
1/3N1/332/3

π1/6
.

Clearly, θ is moving with a finite wavespeed, as may be seen from figure
1.1. We see from figure 1.1 that the solution flattens out as t increases but
the temperature is moving with a finite wavespeed.

Another procedure might be to say (1.6)2 is too restrictive and to argue
that q should not be proportional to θx at the same time, but there should
be a slight time lag. Thus, we might replace (1.6)2 by

q(x, t+ τ) = −D∂θ

∂x
(x, t) . (1.9)
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Rather than use (1.9) we expand the left hand side using Taylor series and
retain only the first two terms, to find

τ
∂q

∂t
(x, t) + q(x, t) = −D∂θ

∂x
(x, t) . (1.10)

If we now combine this equation with equation (1.6)1 then instead of the
classical diffusion equation (1.1) we find θ satisfies

τ
∂2θ

∂t2
+
∂θ

∂t
= D

∂2θ

∂x2
. (1.11)

A solution to equation (1.11) travels with a finite speed of propagation as
is shown below.

An alternative (third) way is to again argue (1.6)2 does not adequately
describe the situation, and argue that q(x, t) is not only not proportional to
∂θ/∂x at time t, but instead argue that it depends on the history of ∂θ/∂x
over some previous time interval, say (0, t). Then we replace equation (1.6)2
by, for example,

q(x, t) = −D
τ

∫ t

0

e−(t−s)/τ ∂θ

∂x
(x, s) ds. (1.12)

This expression means that q depends more on the recent history of ∂θ/∂x
since the dependence decays exponentially as one goes further into the past.
When one combines equation (1.6)1 with equation (1.12), then we again
arrive at equation (1.11).

To see why (1.11) removes the infinite speed of propagation issue, we
consider equation (1.11) on the domain {x ∈ R} × {t > 0} with the initial
conditions

θ(x, 0) = f(x),
∂θ

∂t
(x, 0) = g(x), (1.13)

where f and g are non-zero only on a finite interval (x1, x2), say. The
solution of (1.11) together with the initial conditions (1.13) may be found
by writing the equation as a hyperbolic system. Thus, we put w = θt, v = θx

and equation (1.11) is equivalent to

wt − λ2vx +
1
τ
w = 0,

vt − wx = 0,
(1.14)

with λ2 = D/τ . This is in the classical form of a hyperbolic system

∂ui

∂t
+ aij

∂uj

∂x
+ bi = 0

where

a =
(

0 −λ2

−1 0

)
, b =

(
1/τ
0

)
.
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Figure 1.2. Characteristics for equation (1.15)

(Hyperbolic systems are studied in general in the books of (Dafermos, 2010)
and of (Whitham, 1974).) The determinant equation |a−cI| = 0 yields c =
±λ = ±

√
D/τ . This yields the characteristics dx/dt = c, i.e. dx/dt = ±λ.

We follow the classical procedure and multiply by the left eigenvectors of
a to arrive at the characteristic equations

d

dt
(w − λv) +

1
τ
w = 0 on

dx

dt
= λ ,

d

dt
(w + λv) +

1
τ
w = 0 on

dx

dt
= −λ .

(1.15)

The characteristic system (1.15) may now be integrated (numerically) to
find θ and θt for increasing t. The solution moves with a finite wavespeed
because it is contained between the limiting characteristics x = λt + x2,
x = −λt+ x1 as shown in figure 1.2.

One may, in fact, derive the exact solution to (1.11) by introducing the
variables T = t/2τ and y = x/2

√
τD. Then equation (1.11) transforms to

θTT + 2θT = θyy . (1.16)

The initial conditions (1.13) must also be transformed and we denote these
by

θ(y, T = 0) = F (y),
∂θ

∂T
(y, T = 0) = G(y), (1.17)

where F,G denote the functions equivalent to f and g. Then, as (Cattaneo,
1948), p. 96, shows, the exact solution to (1.16), (1.17) is

θ(y, T ) =
e−T

2

{
F (y + T ) + F (y − T ) +

∫ y+T

y−T

I(s, y, T )ds
}
. (1.18)
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The function I is given by

I(s, y, T ) =
{
G(s) + F (s)

}
Ψ
{
(s− y)2 − T 2

}
− 2TF (s)Ψ′{(s− y)2 − T 2

}
,

(1.19)

where Ψ is defined by

Ψ(X) = J0(
√
X), (1.20)

with J0 being the Bessel function of zeroth order.
Solution (1.18) shows how the function θ is limited to the domain within

the characteristics, but also displays dissipation due to the exponentially
decaying in time term.

1.1.2 Notation, definitions

Standard indicial notation is used throughout this book together with the
Einstein summation convention for repeated indices. Standard vector or
tensor notation is also employed where appropriate. For example, we write

ux ≡ ∂u

∂x
≡ u,x ui,t ≡

∂ui

∂t
ui,i ≡

∂ui

∂xi
≡

3∑
i=1

∂ui

∂xi

ujui,j ≡ uj
∂ui

∂xj
≡

3∑
j=1

uj
∂ui

∂xj
, i = 1, 2 or 3.

In the case where a repeated index sums over a range different from 1 to 3
this will be pointed out in the text. Note that

ujui,j ≡ (u · ∇)u and ui,i ≡ div u.

As indicated above, a subscript t denotes partial differentiation with respect
to time. When a superposed dot is used it either means partial differentia-
tion with respect to time, or when dealing with nonlinear fluid theories the
material derivative will often be used. The material derivative is given by,

ḟi ≡
∂fi

∂t
+ uj

∂fi

∂xj
,

where ui in the equation above is the velocity field. For linear theories we
may use a superposed dot to denote ∂/∂t. The exact use will be made clear
in the text.

The letter Ω will denote a fixed, bounded region of 3-space with bound-
ary, Γ, sufficiently smooth to allow applications of the divergence theorem.
The symbols ‖ ·‖ and (·, ·) will denote, respectively, the L2 norm on Ω, and
the inner product on L2(Ω), i.e.∫

Ω

f2dV = ‖f‖2 and (f, g) =
∫

Ω

fg dV.
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We sometimes have recourse to use the norm on Lp(Ω), 1 < p < ∞, and
then we write

‖f‖p =
(∫

Ω

|f |pdx
)1/p

.

We introduce the ideas of stability and instability in the context of a
nonlinear damped wave equation (which would be defined with suitable
boundary conditions), which is placed into context as an equation for
temperature wave propagation in section 1.2,

∂2u

∂t2
+ μ

∂u

∂t
−∇(κ(u)∇u) = 0, (1.21)

where μ is a positive constant and κ is a known nonlinear function, where
x ∈ Ω ⊂ R

3, and where Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace
operator.

We introduce notation in the context of a steady solution to (1.21),
namely a solution ū satisfying

∇(κ(ū)∇ū) = 0. (1.22)

(We could equally deal with the stability of a time-dependent solution, but
many of the problems encountered here are for stationary solutions and at
this juncture it is as well to keep the ideas as simple as possible.) Let w
be a perturbation to (1.22), i.e. put u = ū+ w(x, t). Then, it is seen from
(1.21) and (1.22) that w satisfies the system

∂2w

∂t2
+ μ

∂w

∂t
−
{
∇
[
κ(ū+ w)∇(ū + w)

]
−∇

[
κ(ū)∇ū

]}
= 0. (1.23)

To discuss linearized instability we linearize (1.23) which means we keep
only the terms which are linear in w. From a Taylor series expansion of κ
we have

κ(ū+ w) = κ(ū) + wκ′(ū) +O(w2). (1.24)

Then, using (1.22), (1.24) in (1.23) we derive the linearized equation
satisfied by w, namely

∂2w

∂t2
+ μ

∂w

∂t
−∇

[
wκ′(ū)∇ū + κ(ū)∇w

]
= 0. (1.25)

Since (1.25) is a linear equation we may introduce an exponential time
dependence in w so that w = eσts(x). Then (1.25) yields

σ2s+ μσs−∇
[
sκ′(ū)∇ū+ κ(ū)∇s

]
= 0. (1.26)

We say that the steady solution ū to (1.22) is linearly unstable if

Re(σ) > 0,

where Re(σ) denotes the real part of σ. Equation (1.26) (together with
appropriate boundary conditions) is an eigenvalue problem for σ. For many
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of the problems discussed in this book the eigenvalues may be ordered so
that

Re(σ1) > Re(σ2) > . . .

For linear instability we then need only ensure Re(σ1) > 0.
Let w0(x) = w(x, 0) be the initial data function associated to the solution

w of equation (1.23). The steady solution ū to (1.22) is nonlinearly stable
if and only if for each ε > 0 there is a δ = δ(ε) such that

‖w0‖ < δ ⇒ ‖w(t)‖ < ε (1.27)

and there exists γ with 0 < γ ≤ ∞ such that

‖w0‖ < γ ⇒ lim
t→∞ ‖w(t)‖ = 0. (1.28)

If γ = ∞, we say the solution is unconditionally nonlinearly stable (or
simply refer to it as being asymptotically stable), otherwise for γ <∞ the
solution is conditionally (nonlinearly) stable. For nonlinear stability prob-
lems it is an important goal to derive parameter regions for unconditional
nonlinear stability, or at least conditional stability with a finite initial data
threshold (i.e. finite, non-vanishing, radius of attraction). It is important
to realise that the linearization as in (1.25) and (1.26) can only yield linear
instability. It tells us nothing whatsoever about stability. There are many
equations for which nonlinear solutions will become unstable well before
the linear instability analysis predicts this. Also, when an analysis is per-
formed with γ <∞ in (1.28) this yields conditional nonlinear stability, i.e.
nonlinear stability for only a restricted class of initial data.

We have only defined stability with respect to the L2(Ω) norm in (1.27)
and (1.28). However, sometimes it is convenient to use an analogous defini-
tion with respect to some other norm or positive-definite solution measure.
It will be clear in the text when this is the case. When we refer to con-
tinuous dependence on the initial data we mean a phenomenon like (1.27).
Thus, a solution w to equation (1.23) depends continuously on the initial
data if a chain of inequalities like (1.27) holds.

Throughout the book we make frequent use of inequalities. In particular,
we often use the Cauchy-Schwarz inequality for two functions f and g, i.e.

∫
Ω

fg dx ≤
(∫

Ω

f2dx

)1/2(∫
Ω

g2dx

)1/2

, (1.29)

or what is the same in L2 norm and inner product notation,

(f, g) ≤ ‖f‖ ‖g‖. (1.30)

The arithmetic-geometric mean inequality (with a constant weight α > 0)
is, for a, b ∈ R,

ab ≤ 1
2α

a2 +
α

2
b2, (1.31)
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and this is easily seen to hold since
(

a√
α
−
√
αb

)2

≥ 0.

Another inequality we frequently have recourse to is Young’s inequality,
which for a, b ∈ R we may write as

ab ≤ |a|p
p

+
|b|q
q
,

1
p

+
1
q

= 1, p, q ≥ 1. (1.32)

1.1.3 Overview

In the remainder of the current chapter we present eleven ways in which
heat may travel as a wave in a rigid heat conductor. The next chapter
reviews models which couple some of the theories discussed in the rigid
body case to the situation of a deformable elastic body. This thus presents
theories appropriate to thermal wave propagation in thermoelasticity, both
from a nonlinear and a linear viewpoint. Chapter 3 reviews where some of
the ideas discussed in the rigid heat conductor case are coupled to fluid me-
chanics theories. The focus is on nonlinear theories, and both inviscid fluids
(gases) and viscous fluids are considered. Chapter 4 analyses the propaga-
tion of an acceleration wave in a rigid heat conductor, in thermoelasticity,
and in fluid mechanical theories, in each case employing a theory capable
of allowing heat to travel as a wave. Some new results are included in this
book, such as those in section 4.3 on acceleration waves in a rigid body
with microtemperatures, those in sections 4.4 and 4.7 dealing with type II
thermoelasticity or a type III fluid, respectively, or those for the nonlinear
theories of fluid mechanics in section 6.8. The next chapter investigates
thermal shock waves in a rigid heat conductor and also in a thermoelastic
body, always employing a theory where a thermal wave may propagate.
The development of an acceleration wave into a shock wave is also anal-
ysed and a brief review is given of some of the (considerable) numerical
work which has been performed. Chapter 6 focusses on qualitative results
for second sound theories for a rigid heat conductor, in thermoelasticity,
and also in fluid mechanics. The following chapter reviews work on spatial
decay in a rigid heat conductor and also in thermoelasticity. Again, results
appropriate to second sound theories are emphasized. Special attention is
given to recent work in thermoelasticity when the elastic coefficients are
not positive - definite but merely satisfy conditions of strong ellipticity. The
penultimate chapter, chapter 8, concentrates on heat transfer in nanofluids,
thermal convection in nanofluids, and convection in fluid mechanical theo-
ries which allow heat to travel as a wave. Finally, in chapter 9, we report
on recent work specifically using the hyperbolic - like theories which are
discussed earlier in the book. In addition to specific areas in continuum me-
chanics, we review work on convection in stars, heat transfer in a moon of
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a planet, hyperbolic motion of traffic flow, and hyperbolic theories which
have been employed in biology. These include population dynamics, the
motion of a school of fish, spread of viruses, chemically driven movement
of cells, the medical technique of radiofrequency heating of human tissue,
and flash burns of human skin.

1.2 Maxwell-Cattaneo theory

The paper by (Cattaneo, 1948) is one which has had a major influence on
virtually every paper on thermal waves. (Cattaneo, 1948) begins with the
classical diffusion equation for heat, for example in one space dimension,

∂θ

∂t
= D

∂2θ

∂x2
, x ∈ R, t > 0, (1.33)

with the initial data

θ(x, 0) = f(x), x ∈ R. (1.34)

(Cattaneo, 1948) observes that the well known solution to this equation is
given by (1.5). He further observes that the solution (1.5) essentially has
an infinite speed of propagation, for example, f might be 0 outside a finite
set but (1.5) implies θ �= 0 ∀x ∈ R for t > 0.

If θ denotes the temperature of a rigid solid, ρ its density, c its specific
heat, and k its thermal conductivity, then (Cattaneo, 1948) notes that
equation (1.33) arises from the energy balance law

ρc
∂θ

∂t
= − ∂q

∂x
, (1.35)

together with the Fourier law of heat conduction,

q = −k ∂θ
∂x

. (1.36)

In equations (1.35) and (1.36), q is the heat flux. In equation (1.33) we
would take D = k/ρc. In order to obtain a finite speed of propagation,
(Cattaneo, 1948) employs a very interesting argument essentially based on
statistical mechanics for a gas. He argues that q in (1.36) may be replaced
by the relation

q = −k ∂θ
∂x

+ σ
∂2θ

∂x∂t
. (1.37)

The coefficient σ is given in equation (17) of (Cattaneo, 1948). To derive a
further relation (Cattaneo, 1948) differentiates (1.37) with respect to t to
obtain

∂q

∂t
= −k ∂

2θ

∂x∂t
+ σ

∂3θ

∂x∂t2
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and then forms the relation

σ
∂q

∂t
+ kq = −k2 ∂θ

∂x
+ σ2 ∂3θ

∂x∂t2
. (1.38)

To bring this into line with modern terminology we put τ = σ/k(> 0) and
write as

τ
∂q

∂t
+ q = −k ∂θ

∂x
+ τσ

∂3θ

∂x∂t2
. (1.39)

The coefficient τ may be calculated from equations (12), (14) and (17)
of (Cattaneo, 1948) and is a ratio of statistical mechanical averages over
molecular velocities and positions.

At this point (Cattaneo, 1948) argues that one may discard the last term
in (1.39) due to its smallness by comparison to the other terms. However,
if we retain it the resulting system of equations is (1.35) and (1.39) which
may be combined to yield the equation for the temperature

τ
∂2θ

∂t2
+
∂θ

∂t
=

k

ρc

∂2θ

∂x2
− σ2

ρck

∂4θ

∂x2∂t2
. (1.40)

This equation has some similarity to the equations derived for dual and
triple phase lag theories in section 1.5.

To return to the mainstream argument of (Cattaneo, 1948), on page 93 he
argues that the last term in equation (1.39) may be discarded. His famous
system of equations is then derived from equations (1.35) and (1.39) as

ρc
∂θ

∂t
= − ∂q

∂x
,

τ
∂q

∂t
+ q = −k ∂θ

∂x
.

(1.41)

(Cattaneo, 1948) observes that eliminating q leads to the damped wave
equation

τ
∂2θ

∂t2
+
∂θ

∂t
=

k

ρc

∂2θ

∂x2
. (1.42)

In addition, (Cattaneo, 1948) derives a three-dimensional version of system
(1.41) and studies acceleration waves in his system, cf. chapter 4, section
4.1.

A way to derive equation (1.41) which is often used in the current lit-
erature is to argue to replace the Fourier law (1.36) by a delay equation

q(x, t+ τ) = −k ∂θ
∂x

(x, t) . (1.43)

In other words, the heat flux does not depend instantaneously on the tem-
perature gradient at a point; there is a short time lag before the effect is
felt. One then expands the left hand side of equation (1.43) using a Taylor
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series so that

q(x, t + τ) = q(x, t) + τ
∂q

∂t
(x, t) +O(τ2). (1.44)

The O(τ2) terms are neglected and then employing equation (1.43) one may
arrive at equation (1.41). However, care must be taken with this approach
since (Jordan et al., 2008) show that if one combines the energy balance
law (1.41)1 together with equation (1.43) with no approximation then the
resulting delay equation displays a lack of continuous dependence on the
initial data, i.e. an instability. (For interest, we point out that (Quintanilla,
2008b) and (Quintanilla and Jordan, 2009) show that well posedness may
be recovered if one combines the equation (1.43) with a two-temperature en-
ergy balance equation. The two-temperature theory is explained in section
1.7.)

The Cattaneo system (1.41) and its three-dimensional equivalent,

ρc
∂θ

∂t
= − ∂qi

∂xi
,

τ
∂qi
∂t

+ qi = −k ∂θ
∂xi

,

(1.45)

have been the subject of immenense study in the literature. If one wishes
to study a fully nonlinear equivalent of (1.41) or (1.45) then the coeffi-
cients will, in general, cease to be constants. This was shown by (Coleman
et al., 1982) and subsequently analysed by (Franchi, 1985), (Coleman et al.,
1986), (Morro and Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and
Newman, 1988). An appealing way to see why non constant coefficients
may arise was given by Dario Graffi in (Graffi, 1984), see (Franchi and
Straughan, 1994a). If g denotes temperature gradient then (Graffi, 1984)
noted that for θ constant, thermodynamics requires

qigi ≤ 0. (1.46)

In one space dimension if g = G0 sin ωt then equation (1.41)2 becomes

τqt + q = −kG0 sin ωt

which has solution

q = A(sin ωt− τω cos ωt)

for

A = − kG0

τ2ω2 + 1
< 0.

This leads to

qg = AG0ωt(sin ωt− τω cos ωt). (1.47)
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Equation (1.47) is not compatible with inequality (1.46) since qg may be
positive. This leads (Graffi, 1984) to suggest replacing inequality (1.46) by

q(αθqt + g) ≤ 0

for a suitable α and then setting

q = −k(αθqt + g).

Note that the Cattaneo equation (1.41)2 still holds, but τ must be a
function of θ. The above arguments are deduced rigorously using internal
variables in continuum thermodynamics by (Franchi, 1985).

(Morro and Ruggeri, 1988) derive a nonlinear temperature dependent
system akin to (1.45) which has form

F (θ)qi,t + (1 + Γ(θ)θt)qi = −kθ,i

c0(θ)θt = −qi,i
(1.48)

in which the functions F,Γ and c0 take the forms

F = k(Aθ−3 +Bθn−3),

Γ = −k(5Aθ−4 + (5 − n)Bθn−4), c0 = ε1θ
3

for suitable constants A,B, n and ε1. Notably F is a nonlinear function
of θ which replaces the constant relaxation time τ in equation (1.45)2.
Another notable difference with equation (1.45)2 is the presence of the
Γ(θ)θt term multiplying qi in (1.48)1. Acceleration waves and shock waves
are considered in a nonlinear system not dissimilar to (1.48) by (Morro and
Ruggeri, 1987).

It is worth observing that the thermodynamic development of (Coleman
et al., 1982) leads to the conclusion that the internal energy, ε, and entropy,
η, are not simply functions of temperature, θ. They must also depend on
the heat flux, qi, cf. also (Franchi, 1985), (Coleman et al., 1986), (Morro and
Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and Newman, 1988).
(Ruggeri, 2001) addresses carefully the question of the thermal inertia, i.e.
the τ q̇i term, such that τ depends on temperature. He provides a physical
explanation for the meaning of the thermal inertia by a development based
on a mixture of simple fluids, see also (Ruggeri, 2010), (Gouin and Ruggeri,
2008), (Ruggeri and Simić, 2005).

A recent interesting derivation of the Maxwell-Cattaneo equation is due
to (Ostoja-Starzewski, 2009).

1.3 Guyer-Krumhansl theory

A generalization of equation (1.45)2 which accounts for space correla-
tion, being based on the Boltzmann equation, was derived by (Guyer and
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Krumhansl, 1964; Guyer and Krumhansl, 1966a; Guyer and Krumhansl,
1966b). This equation may be written

τqi,t + qi = −kθ,i + τ̂Δqi + 2τ̂ qk,ki. (1.49)

Here τ̂ = ττN c
2
s/5 where τN is a relaxation time and cs is the mean speed

of the phonons. Equation (1.49) is derived by (Lebon and Dauby, 1990) by
means of a variational argument in the context of extended thermodynam-
ics. Another derivation based on hidden variables is presented by (Morro
et al., 1990). A recent derivation using a generalized Coleman & Noll prin-
ciple may be found in (Cimmelli et al., 2010b), cf. also (Triani et al., 2010).
(Morro et al., 1990) allow the coefficients τ̂ and 2τ̂ in equation (1.49) to
be more general and they replace them by μ and ν. In general, the coeffi-
cients in (Morro et al., 1990), τ, k, μ and ν depend on temperature θ and
are related to a Helmholtz free energy function ψ of form

ψ = Ψ(θ) +
1
2
f(θ)Λ.Λ,

where Λ is a hidden variable which coincides with ∇θ in stationary ho-
mogeneous conditions. (Morro et al., 1990) also refer to the generalization
of equations (1.45) as a generalized Maxwell-Cattaneo system, which has
form

ρcθt = −qi,i
τqi,t = −qi − kθ,i + μΔqi + νqk,ki .

(1.50)

In the general case, the coefficients in (1.50) are functions of temperature
θ, although in their subsequent analysis, (Morro et al., 1990) study a lin-
earized form for which c, τ, k, μ and ν are constants. From a mathematical
point of view, the extra derivatives in (1.50)2 usually lead to a greater
degree of stabilization in a heat wave problem.

In the case where (1.50) is linearized about a constant thermodynamic
state, constant temperature, the coefficients are constants and then we may
take the divergence of equation (1.50)2 and eliminate qi,i to derive a single
equation for θ of form

τθtt + θt = κΔθ + (μ+ ν)Δθt , (1.51)

where κ = k/ρc. In one space dimension this is

τ
∂2θ

∂t2
+
∂θ

∂t
− (μ+ ν)

∂3θ

∂x2∂t
= κ

∂2θ

∂x2
. (1.52)

This equation should be contrasted with equation (1.42) which arises from
Maxwell-Cattaneo theory.
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1.4 High order relaxation dynamics

(Alvarez-Ramirez et al., 2006; Alvarez-Ramirez et al., 2008) are two inter-
esting contributions which deal with extension of the Cattaneo equations
(1.41) or (1.45). (Alvarez-Ramirez et al., 2006) observe that one may take
the Laplace transform of equation (1.41)2 and generalize the class of fluxes
in transform space. They deal with diffusion in general rather than sim-
ply diffusion of temperature. But we here describe their work in terms of
heat transport. If F (s) denotes the Laplace transform of f(t), cf. (Sneddon,
1995), then

F (s) =
∫ ∞

0

e−stf(t)dt.

Thus, denote by Q(s) and Θ(s) the Laplace transforms of q and θ, in t (with
the x variable still present). Then transforming equation (1.41)2, results in
the equation for suitably normalized initial data,

(sτ + 1)Q(s, x) = −kΘx(s, x).

(Alvarez-Ramirez et al., 2006) observe that this equation may be rewritten
as

Q(s, x) = −kF1(s; τ)Θx(s, x), (1.53)

where the function F1 has form

F1(s; τ) =
1

τs+ 1
. (1.54)

(Alvarez-Ramirez et al., 2006) propose extending equation (1.53) to one
with a more general class of functions F (s), so they put

Q(s, x) = −kF (s)Θx(s, x), (1.55)

where, in particular, F is a rational function of form

F (s) =
bms

m + bm−1s
m−1 + ...+ b0

sn + an−1sn−1 + ...+ a0
. (1.56)

for coefficients b0, . . . , bm, a0, . . . , an−1, with m ≤ n.
(Alvarez-Ramirez et al., 2006) note that (1.56) leads to a system of equa-

tions in the time domain (rather than the Laplace domain) which contains
higher derivatives than that of the classical diffusion equation. For example,
their equivalent of the Cattaneo system (1.41) has form

∂θ

∂t
= ζ

∂ζ

∂t
= −1

τ
(ζ − kθxx) .
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The higher order systems which result have much in common with those
which arise from approximation of phase-lag models, as discussed in section
1.5.

(Alvarez-Ramirez et al., 2006) discuss various applications of their theory,
for example to electrical circuits, and interestingly investigate a fractal
version of equation (1.54) of form

F (s; τ) =
1

(τs)γ + 1
, for 0 < γ < 1.

(Alvarez-Ramirez et al., 2008) develops a Lattice-Boltzmann scheme ap-
propriate to Cattaneo’s equation. They show that this approach has some
distinct advantages over other schemes. For example, in numerical approx-
imation of solutions the computer codes are inherently parallelizable. They
extend naturally to higher dimensions provided one chooses a suitable lat-
tice framework. They also discuss their Lattice-Boltzmann approach to the
higher order model of (Alvarez-Ramirez et al., 2006) where F (s) has a form
like (1.56). Several numerical results are presented in (Alvarez-Ramirez
et al., 2008).

1.5 Phase lag models

There has been much recent interest in developing theories of heat prop-
agation which extend the phase lag heat flux law given in (1.43) and, in
particular, which consider extensions of the Taylor series for the heat flux as
given in equation (1.44). Much of this stems from the work of (Tzou, 1995b;
Tzou, 1995a), and we cite in particular, (Han et al., 2006), (Jou and Cri-
ado-Sancho, 1998), (Quintanilla, 2002a), (Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2007; Quintanilla and Racke, 2008), (Serdyukov,
2001), (Serdyukov et al., 2003) and the references therein. The key would
appear to be the assertion that equation (1.43) be replaced by an equation
of form

qi(x, t+ τq) = −κθ,i(x, t+ τ), (1.57)

where τq and τ will have (in general) different values. Various truncations of
the Taylor series expansion are considered. For example, (1.57) is replaced
by

qi(x, t) + τqqi,t(x, t) = −κθ,i(x, t) − κτθ,it(x, t), (1.58)

(Han et al., 2006), (Jou and Criado-Sancho, 1998), (Serdyukov, 2001),
(Serdyukov et al., 2003), (Quintanilla and Racke, 2006a), section 4.
Combined with the energy equation for a rigid heat conductor,

ρεθθt = −qi,i, (1.59)
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equation (1.58) yields (for ρεθ = c, constant)

cθt + cτqθtt = κΔθ + κτΔθt . (1.60)

Let us observe that equation (1.60) is equivalent to equation (1.52) ob-
tained in section 1.3 from the Guyer-Krumhansl equations. Thus, one may
assert that in a precise linear sense the Guyer-Krumhansl model and one
form of the approximate dual phase lag model lead to the same equations.
(Quintanilla, 2002a), (Quintanilla and Racke, 2006a) and (Serdyukov et al.,
2003) consider adding a further term in the expansion of qi(t + τq) to the
left of (1.58) so that

qi(x, t) + τqqi,t(x, t) +
τ2
q

2
qi,tt(x, t) = −κθ,i(x, t) − κτθ,it(x, t). (1.61)

Together with (1.59) this leads to the hyperbolic equation

cτ2
q

2
θttt + cτqθtt + cθt = κΔθ + κτΔθt . (1.62)

A very interesting derivation of equation (1.62) for gas flow through a
package of heat conducting plates is given by (Serdyukov et al., 2003).
These writers use a Cattaneo theory for the plates and a Newton cooling -
like law for the gas, of form

ρc(τθtt + θt) = κΔθ − β1(θ − θg),
ρgcgθ

g
t = β2(θ − θg),

where θ and θg are the temperatures of the plates and gas, respectively.
(Quintanilla and Racke, 2006a; Quintanilla and Racke, 2007) consider a

further extension to (1.61) of form

qi(x, t) + τqqi,t(x, t) +
τ2
q

2
qi,tt(x, t)

= −κθ,i(x, t) − κτθ,it(x, t) −
κτ2

2
θ,itt(x, t).

(1.63)

They show that this together with equation (1.59) leads to the following
equation for the temperature field θ,

cτ2
q

2
θttt + cτqθtt + cθt = κΔθ + κτΔθt +

κτ2

2
Δθtt . (1.64)

(Quintanilla and Racke, 2006a) note that if one employs the approxima-
tion to (1.57) of form

qi(x, t) + τqqi,t(x, t) = −κθ,i(x, t) − κτθ,it(x, t) −
κτ2

2
θ,itt(x, t) (1.65)

together with the energy equation (1.59) then one derives the temperature
equation

τqθtt + θt = κΔθ + κτΔθt +
κτ2

2
Δθtt . (1.66)
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In a pertinent article (Jordan et al., 2008) argue that the dual phase lag
equation (1.57) is equivalent to a single lag model like that of (1.43). We
recall that (Jordan et al., 2008) show that if one does not employ a Taylor
expansion in the equation (1.43) then a non-well posed problem arises.
They infer that the dual phase lag model equation (1.57) also has this
behaviour. This does draw attention to the important point that there is a
major distinction between a true phase lag model and the approximations
which arise through the use of Taylor expansions.

(Quintanilla and Racke, 2008) observe that (Roy Choudhuri, 2007)
proposes an extension to the phase lag equation (1.57) of the form

qi(x, t+ τq) = −κθ,i(x, t+ τ) − κ∗α,i(x, t+ τv) (1.67)

where τq, τ, τv are positive constants, and α is a thermal displacement vari-
able defined by αt = θ. They refer to this as a three phase lag theory. By
using Taylor expansions in equation (1.67), (Quintanilla and Racke, 2008)
show that coupled with the energy balance law (1.59) one may derive two
further temperature equations of form

cθtt + τqcθttt = κ∗Δθ + (κ∗τv + κ)Δθt + κτΔθtt , (1.68)

and

cθtt + τqcθttt +
τ2
q c

2
θtttt = κ∗Δθ + (κ∗τv + κ)Δθt + κτΔθtt . (1.69)

(Quintanilla and Racke, 2008) show how equations (1.68) and (1.69) may
be related to equations derived earlier in this section from the dual phase
lag theory and also how they may be related to linearized versions of type
II and type III equations of Green & Naghdi which are discussed in sections
1.10, 1.11.

(Quintanilla, 2009) studies a well posed problem for a three dual phase
lag model for heat transfer.

1.6 Heat flux history models

The models for producing thermal waves which travel with a finite
wavespeed have so far, in some sense, all been based on a time delay be-
tween the heat flux q and the gradient of temperature field ∇θ, or have
involved Taylor expansions which lead to the introduction of a thermal re-
laxation time. Our aim in this section is to introduce the beautiful model
of (Gurtin and Pipkin, 1968) in which they do not employ simply a delay,
but allow the heat flux to depend on the past history of the temperature
gradient. Before doing this we briefly discuss a simple example motivated
by the work of (Abramson et al., 2001). (Abramson et al., 2001) consider
a nonlinear version of the classical diffusion equation (1.33) but allow the
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diffusion term to be spread over the history from a fixed time to the current
time. Thus, they consider the equation

∂u

∂t
= D

∫ t

0

φ(t− s)
∂2u

∂x2
(x, s)ds + k f(u),

for a nonlinear function f(u). We restrict attention to the case where f ≡ 0
so in terms of θ,

∂θ

∂t
= D

∫ t

0

φ(t− s)
∂2θ

∂x2
(x, s)ds . (1.70)

This, in general, leads to a finite speed of propagation. In particular, as
(Abramson et al., 2001) observe, the choice φ(t) = αe−αt reduces equation
(1.70) to

∂2θ

∂t2
+ α

∂θ

∂t
= Dα

∂2θ

∂x2
. (1.71)

This is the same as the equation for θ obtained using the Cattaneo theory
in section 1.2, equation (1.42). Thus, having a heat flux q which depends
on the history of the temperature gradient ∇θ will, in general, lead to a
finite speed of propagation of a thermal disturbance. (Gurtin and Pipkin,
1968) developed a nonlinear theory along similar lines which we now briefly
describe.

1.6.1 Gurtin - Pipkin theory

To recount the theory of (Gurtin and Pipkin, 1968) we need a little of
their notation. Let f be a real function, i.e. f : R → R, then introduce the
history of f , f t, and the summed history of f up to time t, f̄ t, by

f t(s) = f(t− s) and f̄ t(s) =
∫ s

0

f t(a)da =
∫ t

t−s

f(a)da. (1.72)

An influence function h is a continuous, monotone decreasing function with
s2h(s) integrable in s on [0,∞) and then (Gurtin and Pipkin, 1968) define
‖f‖ to be the norm of a scalar or vector valued function f on [0,∞), given
by

‖f‖2 =
∫ ∞

0

|f(s)|2h(s) ds.

They then let H be the set of all measureable real-valued functions f on
[0,∞) with ‖f‖ <∞ and let H be the equivalent set when f is a real vector-
valued function. Further,H+ is the cone in H of essentially strictly positive
functions and H++ is the cone in H+ of essentially strictly monotone in-
creasing functions. (Gurtin and Pipkin, 1968) then introduce a smooth
scalar valued functional on R

+ ×H++ ×H and define their Helmholtz free
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energy functional ψ(t) by

ψ(t) = Ψ(θ, θ̄t, ḡt)

where g is shown to amount to the temperature gradient of θ.
(Gurtin and Pipkin, 1968) postulate for a stationary rigid heat conductor,

an energy balance law

εt = −qi,i + r (1.73)

and an entropy inequality of form

ηt ≥ −
(
qi
θ

)
,i

+
r

θ
.

With the free energy (Helmholtz) satisfying ψ = ε − θη and g = ∇θ be-
ing the temperature gradient, (Gurtin and Pipkin, 1968) give constitutive
equations of form

ψ(t) = Ψ(θ, θ̄t, ḡt),

η = N(θ, θ̄t, ḡt),

qi = Qi(θ, θ̄t, ḡt),

where N and Qi are functionals on R
+ ×H++ × H.

By using thermodynamic arguments (Gurtin and Pipkin, 1968) deter-
mine precise forms for N and Qi in terms of the functional Ψ. In fact, they
show

η = −DθΨ(θ, θ̄t, ḡt),

q = −θJgΨ(θ, θ̄t, ḡt),

where Dθ is the partial derivative of Ψ with respect to θ, and

JgΨ · v = δ2Ψ(vc)

is the partial Frechet derivative of Ψ with respect to ḡt. (Gurtin and Pip-
kin, 1968) remark that this was the first ever theory where the heat flux
was determined by the functional for the free energy. (Gurtin and Pipkin,
1968) show some important results regarding what is essentially a thermal
conductivity tensor and investigate material symmetry properties. They
also determine the wavespeeds of an acceleration wave, what they term a
temperature-rate wave, and they show that such a wave has a finite speed.
Complete determination of the amplitude of such a temperature-rate wave
in the one-dimensional case is achieved by (Chen, 1969a), while (Chen,
1969b) determines the wavespeed and amplitude in detail for a curved
wave.

(Gurtin and Pipkin, 1968) also develop a linearized version of their
theory. They show that the internal energy ε in that case has form

ε = b+ cθ −
∫ ∞

0

β′(s)θ̄t(s)ds.
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They also show that the heat flux and energy balance equations reduce to

qi,t = −a(0)θ,i −
∫ ∞

0

a′(s)θ,i(t− s)ds (1.74)

and

εt = cθt + β(0)θ +
∫ ∞

0

β′(s)θ(t− s)(s)ds. (1.75)

The heat flux itself has equation

qi(t) = −
∫ ∞

0

a(s)θ,i(t− s)ds. (1.76)

(Gurtin and Pipkin, 1968) also note that the choice a(s) = κσe−σs reduces
equation (1.76) to the Maxwell-Cattaneo equation (1.41)2.

Further interesting results for the class of rigid linear heat conductors
with memory as outlined above are established by (Fabrizio et al., 1998)
and by (Gentili and Giorgi, 1993). (Morro, 2006) derives general jump
relations for discontinuous derivative solutions to the equations for heat
conductors with memory. He derives further thermodynamic restrictions
on the coefficients and analyses in depth the behaviour of singular surface
temperature-rate waves.

1.6.2 Graffi - Fabrizio theory

We commence with a very brief description of work of (Graffi, 1936a) in
a generalized theory of Maxwell’s equations in electromagnetism which in-
volves memory terms. That this might have relevance to temperature waves
is explained by (Fabrizio, 2011), as we detail below.

(Graffi, 1936a) proposes a generalization of Maxwell’s equations which
involve memory terms. In fact, in the medium outside an antenna, (Graffi,
1936a) begins with Faraday’s law

∂B
∂t

= −curlE, (1.77)

where E is the electric field and B is the magnetic induction. He also writes
Ampère’s law with the electric displacement correction of Maxwell, namely

curlH =
∂D
∂t

+ j, (1.78)

where H is the magnetic field, j is the current density, and D is the electric
displacement current.

For the current density (Graffi, 1936a) proposes

j = σE +
∫ t

0

β(t− s)E(s)ds, (1.79)
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where σ is the electrical conductivity and the β term represents the his-
tory dependence of the current on the electric field. (Graffi, 1936a) notes
that certain materials display dielectric hysteresis and so proposes the
dependence of D upon E as

D = εE +
∫ t

0

γ(t, s)E(s)ds. (1.80)

Here ε is the usual electric permittivity and the γ term represents the
history dependence on the electric field. It is worth observing that a basis for
equations like (1.80) and the analogous one involving B and H is discussed
in detail in a thermodynamic context in the book of (Fabrizio and Morro,
2003).

(Graffi, 1936a) observes that defining the functions λ and α by

λ(t) = γ(t, t) + σ and α = γ′(t, s) + β(t− s)

then equations (1.78) - (1.80) lead to the equation

curlH = ε
∂E
∂t

+ λE +
∫ t

0

α(t, s)E(s)ds. (1.81)

Furthermore, if B = μH where μ is the magnetic permeability, then
equation (1.77) becomes

curlE = −μ∂H
∂t

. (1.82)

Equations (1.81) and (1.82) are Graffi’s system for the electric and magnetic
fields E and H.

(Graffi, 1936a) establishes a general uniqueness theorem for equations
(1.81) and (1.82) on an unbounded domain. We observe that if α ≡ 0, i.e.
if γ′(t, s) = −β(t − s), then (1.81) is very like the Cattaneo law, equation
(1.45)2. To see that α ≡ 0 is not meaningless we may select the realistic
and frequently made choices

γ(t, s) = γ0 e
−δ(t−s), β = β0 e

−δ(t−s),

which lead to

α = γ′ + β = (β − γ0δ) e−δ(t−s),

and so when β = γ0δ then α ≡ 0. We further mention that (Graffi, 1928a;
Graffi, 1928b; Graffi, 1999a) also employs equations like (1.80) in elasticity,
and a nonlinear version of (1.80) is used by him, (Graffi, 1936b; Graffi,
1999c), in an inspiring paper where he explains the Luxemburg effect.

(Graffi, 1936a) explains that (Cisotti, 1911) derives an analogue of
(1.81) and (1.82) but with the generalization of history dependence in the
B = B(H) relationship. However, we note that while (Cisotti, 1911) has a
relation like (1.80) and its analogue involving B and H, he does not derive
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a system like equations (1.81) and (1.82). (Cisotti, 1911) concentrates on
deriving an expression for the energy density.

The relevance of this section on the topic of heat waves is observed
by (Fabrizio, 2011). (Fabrizio, 2011) notes that one could replace E by q
and curlH by −k∇θ in equation (1.81), with α ≡ 0, to, in fact, obtain Cat-
taneo’s equation. Furthermore, one could adapt the argument of (Fabrizio,
2011) to propose that instead of (1.81) one write for the heat flux

τqi,t + qi +
∫ t

0

α(t, s)qi(x, s)ds = −k∇θ. (1.83)

Then, with the energy balance equation (1.45)1, one has

ρc
∂θ

∂t
= − ∂qi

∂xi
. (1.84)

Of course, with α ≡ 0 equations (1.83), (1.84) reduce to the Cattaneo
system, equations (1.45). We shall refer to the system of equations (1.83)
and (1.84) as the Graffi - Fabrizio system.

It is of interest to observe that eliminating qi between (1.83) and (1.84)
leads to the following equation for the temperature field θ(x, t),

τθtt + θt +
∫ t

0

α(t, s)θs(s) =
k

ρc
Δθ. (1.85)

In the case where α = α0 e
−ω(t−s) one may then find θ satisfies the equation

τθttt + (1 + ωτ)θtt + (α0 + ω)θt =
k

ρc
Δθt +

ωk

ρc
Δθ. (1.86)

1.7 Two temperature model

(Chen and Gurtin, 1968) develop another interesting theory in a rigid body
which allows transient behaviour of a heat wave. In this theory they intro-
duce a conductive temperature, φ, and a thermodynamic temperature, θ.
Their nonlinear development assumes that the internal energy, ε, entropy, η,
heat flux, qi, and thermodynamic temperature depend on the constitutive
variables φ, φ,m, φ,mn, i.e.

ε = ε(φ, φ,m, φ,mn) η = η(φ, φ,m, φ,mn)
θ = θ(φ, φ,m, φ,mn) qi = qi(φ, φ,m, φ,mn).

They have the balance of energy equation

εt = −qi,i + r

and the entropy inequality

ηt ≥ −
(
qi
φ

)
,i

+
r

θ
.
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By using the two above relations (Chen and Gurtin, 1968) deduce that

ψ = ε− ηθ = ψ(θ), η = η(θ), ε = ε(θ),

and

η(θ) = −∂ψ
∂θ

(θ) .

They also deduce various relations involving qi and derive a reduced entropy
inequality. Material symmetry is exploited and a fully nonlinear theory is
developed.

(Chen and Gurtin, 1968) also derive a linearized theory, linearized about
a fixed reference temperature φ0. With c = ∂ε/∂θ the basic equations then
become

cθt = −qi,i ,
qi = −kφ,i ,

θ = φ− aΔφ,
(1.87)

for constants k, a. A uniqueness theorem is established and (Chen and
Gurtin, 1968) further investigate wave motion for their theory.

We have already mentioned in section 1.2 the developments by
(Quintanilla, 2008b) and by (Quintanilla and Jordan, 2009) involving equa-
tion (1.87) and time lags. It is instructive to recall them at this point.
(Jordan et al., 2008) showed that the phase lag constitutive theory

qi(x, t+ τ) = −kθ,i(x, t)

coupled with the classical balance of energy equation leads to an improp-
erly posed problem. However, (Quintanilla, 2008b) and (Quintanilla and
Jordan, 2009) study what amounts to (1.87) but with the equation (1.87)2
replaced by

qi(x, t+ τ) = −kφ,i(x, t).

The analyses of (Quintanilla, 2008b) and (Quintanilla and Jordan, 2009)
show that this is now a well posed problem.

1.8 Green-Laws theory

The starting point of (Green and Laws, 1972) is to postulate a new entropy
inequality. Suppose B is a rigid body and let P ⊂ B be any sub-body which
has boundary ∂P . (Green and Laws, 1972) assert that

d

dt

∫
P
ρη dV −

∫
P

ρr

φ
dV +

∮
∂P

qini

φ
dA ≥ 0

where ρ, η, r, qi are density, entropy, external heat supply, and heat flux. In
addition, ni is the unit outward normal to ∂P . The quantity φ is a new
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function which is specified by a constitutive equation. (Green and Laws,
1972) require that φ = θ, the temperature, in equilibrium. The pointwise
version of the above entropy inequality may be written as

ρφη̇ − ρr + qi,i −
qiφ,i

φ
≥ 0, (1.88)

where η̇ = ∂η/∂t.
For a rigid body the balance of energy equation is

ρε̇+ qi,i = ρr (1.89)

where ε is the internal energy function. Using the Helmholtz free energy
function ψ = ε− ηφ the inequality (1.88) may be transformed to

−ρ(ψ̇ + ηφ̇) − qiφ,i

φ
≥ 0. (1.90)

As constitutive theory (Green and Laws, 1972) suppose that

ψ, η, φ and qi

are functions of the variables

θ, θ̇, and θ,i .

Inequality (1.90) is now expanded using this constitutive theory to obtain

− ρ(ψθ + ηφθ)θ̇ − ρ(ψθ̇ + ηφθ̇)θ̈

− ρ(ψθ,i + ηφθ,i)θ̇,i −
qi
φ

(φθ,i + φθ̇ θ̇,i + φθ,k
θ,ik) ≥ 0.

(1.91)

(Green and Laws, 1972) now argue that the linearity of θ̈, θ̇,i and θ,ik in
inequality (1.91) allow them to select these quantities arbitrarily, balancing
the energy equation (1.89) by a suitable choice of r. Since they may be
selected arbitrarily, keeping other quantities fixed, inequality (1.91) may
be violated unless the coefficients of these terms vanish. Thus (Green and
Laws, 1972) deduce that

∂ψ

∂θ̇
+ η

∂φ

∂θ̇
= 0, (1.92)

ρ

(
∂ψ

∂θ,i
+ η

∂φ

∂θ,i

)
+
qi
φ

∂φ

∂θ̇
= 0, (1.93)

qi
∂φ

∂θ,k
+ qk

∂φ

∂θ,i
= 0. (1.94)

In addition, there remains the residual entropy inequality

−ρ(ψθ + ηφθ)θ̇ −
qi
φ
φθθ,i ≥ 0. (1.95)
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From (1.94) (Green and Laws, 1972) deduce that for qi �= 0,

∂φ

∂θ,i
= 0

and so one must have

φ = φ(θ, θ̇). (1.96)

The function φ so defined is often referred to as a generalized temperature.
(Green and Laws, 1972) then deduce that

qi = −
ρφψθ,i

φθ̇

(1.97)

and then further,

∂qi
∂θ,j

=
∂qj
∂θ,i

.

Thus, if qi satisfies a linear relation in θ,r, say

qi = −κij(θ, θ̇)θ,j , (1.98)

then necessarily the conduction tensor κij is symmetric.
(Green and Laws, 1972) define (thermal) equilibrium in the rigid body

to be when θ̇ = 0 and θ,i = 0. They require

φ|E = θ

where |E denotes thermal equilibrium and they then deduce that

∂φ

∂θ

∣∣∣∣
E

= 1.

(Green and Laws, 1972) derive further results in equilibrium, in particular

η|E = −∂ψ
∂θ

, qi|E = 0,
∂ψ

∂θ,i

∣∣∣∣
E

= 0

and

−
(
∂qi
∂θ,j

∣∣∣∣
E

+
∂qj
∂θ,i

∣∣∣∣
E

)

is a positive semi-definite tensor.
(Green and Laws, 1972) show that their energy equation in a linearized

theory becomes

ρ(φηθ̇)|E θ̈+ρ(φηθ)|E θ̇+
{
∂qi

∂θ̇

∣∣∣∣
E

+ρ(φηθ,i)|E
}
θ̇,i =

∂qi
∂θ,k

∣∣∣∣
E

θ,ik−ρr. (1.99)

This is effectively a damped linear wave equation, and so permits the
passage of a thermal wave.

A fully nonlinear acceleration wave theory for the (Green and Laws,
1972) model was developed by (Lindsay and Straughan, 1976).
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A further development of the ideas of allowing higher derivatives of θ to
be present in the constitutive theory is due to (Batra, 1974; Batra, 1975)
and also (Meixner, 1974). They based their work on the analysis of (Müller,
1971a; Müller, 1971b).

1.9 Temperature dependent conductivity

We recall that the classical diffusion equation (1.33)

∂θ

∂t
= D

∂2θ

∂x2
, x ∈ R, t > 0,

leads to what is essentially infinite speed of propagation. In terms of energy
balance and heat flux we see that this equation is equivalent to equations
(1.35) and (1.36), i.e.

ρc
∂θ

∂t
= − ∂q

∂x
, q = −k ∂θ

∂x
, (1.100)

with D = k/ρc.
One effective way to achieve a finite speed of propagation for θ is to

allow D to depend on the temperature θ itself. Since in reality the thermal
conductivity k does depend on temperature this is realistic. Thus, with
D = D(θ), equations (1.100) lead to

∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
. (1.101)

The solution to this equation when D = D0θ
m/θm

0 , for m,D0, θ0 positive
numbers is conveniently located in (Murray, 2003a), pp. 402–405 (although
Murray applies the equation to the phenomenon of insect dispersal). For
this choice of D we might consider the initial value problem

∂θ

∂t
=
D0

θm
0

∂

∂x

(
θm ∂θ

∂x

)
, x ∈ R, t > 0,

θ(x, 0) = Nδ(x),
(1.102)

whereN is the total initial temperature and δ(x) is the Dirac delta function.
(Murray, 2003a) gives the solution to this as

θ(x, t) =

⎧⎪⎨
⎪⎩

θ0
λ(t)

[
1 −
( x

r0λ(t)

)2
]1/m

, |x| ≤ r0λ(t),

0, |x| > r0λ(t),

where λ(t) and the constants r0 and t0 are given by

λ(t) =
(
t

t0

)1/(2+m)

, r0 =
NΓ(m−1 + 3/2)√
π θ0Γ(m−1 + 1)

, t0 =
r20m

2D0(m+ 2)
,
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with Γ being the gamma function, cf. (Sneddon, 1980), p. 21. Clearly,
the temperature θ “spreads out” with a finite wavespeed, the edge of the
temperature field being located at r0λ(t).

A common case is a linear thermal conductivity for which m = 1, and
then

θ =
θ̂0
t1/3

(
1 − x2

c0t2/3

)

where the constants θ̂0 and c0 may be calculated from the general solution.

1.10 Type II rigid body

(Green and Naghdi, 1991) do not have a generalized temperature φ which
depends on θ and θ̇. Instead they state T is an empirical temperature and
then define a positive scalar valued function θ by

θ = θ(T, α), θ > 0, ∂θ/∂T > 0,

where the variable α is called a thermal displacement and is defined by

α(x, t) =
∫ t

t0

T (x, s)ds+ α0 . (1.103)

We only deal with the case of a rigid body and so there is no need for the
distinction between coordinates X in the reference configuration and x in
the current configuration. (Green and Naghdi, 1991) define the variables
βi and γi by

βi =
∂α

∂xi
, γi =

∂T

∂xi
. (1.104)

The premise of (Green and Naghdi, 1991) is to use a balance of entropy
equation

ρη̇ = ρs+ ρξ − pi,i (1.105)

where ρ, η, s are the density, entropy, and an external supply of entropy.
The vector pi is the entropy flux, pi = qi/θ, where qi is the heat flux. In
addition ξ is an intrinsic supply of entropy which requires a constitutive
equation and must be determined during a thermodynamic process.

(Green and Naghdi, 1991) introduce a Helmholtz free energy function ψ
and employ a thermal cycle argument to derive a balance of energy equation
from the equation (1.105). Their energy balance equation has form

ρψ̇ + ρηθ̇ + piθ,i + ρθξ = 0. (1.106)

To define heat flow of type II in a rigid body, (Green and Naghdi, 1991)
specify the constitutive theory that

ψ, θ, η, pi and ξ (1.107)
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depend on the independent variables

T, α, α,i = βi . (1.108)

They then expand the energy balance law (1.106) as

ρ(ψT + ηθT )Ṫ + ρ(ψα + ηθα)T + ρ(ψβi + ηθβi)γi

+ pi(γiθT + βiθα + θβjβi,j) + ρθξ = 0.
(1.109)

By requiring this to hold for all heat flows and employing the independent
externally supplied entropy s of equation (1.105) they are then able to
deduce from equation (1.109), since Ṫ , γi, βi,j are linear, the relations

∂θ

∂βi
= 0, ψT + ηθT = 0, piθT + ρψβi = 0, (1.110)

and the residual from (1.109) is

ρ(ψα + ηθα)T + piβiθα + ρθξ = 0. (1.111)

The first of (1.110) shows θ cannot depend on α,i and so

θ = θ(T, α). (1.112)

From (1.110)2,3 we derive expressions for the entropy η and the entropy
flux pi of form

η = −ψT

θT
, pi = −ρ

ψα,i

θT
. (1.113)

The equation (1.111) then yields the instrinsic entropy supply ξ as

ξ = −T
θ

(ψα + ηθα) − 1
ρθ
piα,iθα. (1.114)

The fully nonlinear equation governing heat flow of type II in a rigid body
is then derived by employing equations (1.112) - (1.114) in the entropy
balance law (1.105). A complete nonlinear acceleration wave analysis for
this was performed by (Jaisaardsuetrong and Straughan, 2007) and details
are given in section 4.2.1 of this book.

(Green and Naghdi, 1991) do not employ their nonlinear theory. Instead,
they investigate special cases leading to linear theories. They consider the
special case

ψ = ψ(θ) = c(θ − θ ln θ) +
1
2
kα,iα,i , θ = a+ bT, (1.115)

for a, b, c positive constants. This leads to the linear equation for the
variable α of form

cbα̈ = r +
ka

b
Δα, (1.116)

for a supply function r. This is clearly a wave equation and the thermal
displacement then travels as a wave with finite speed with no dissipation.
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This is known as a theory without heat dissipation. The second special case
of (Green and Naghdi, 1991) is where

θ = a+ bT + d1α

ψ =
1
2
kα,iα,i −

1
2
d2α

2 − b2αT − 1
2
b3T

2.
(1.117)

They show that this leads to a wave equation with dissipation, of form

a

b
(b2α̇+ b3α̈) = r +

ka

b
Δα. (1.118)

1.11 Type III rigid body

The difference between heat flow of type III and heat flow of type II ma-
terials is that the variable γi = T,i = α̇,i is added to the list (1.108). Thus,
(Green and Naghdi, 1991) define heat flow of type III in a rigid body by
stating that

ψ, θ, η, pi and ξ (1.119)

depend on the variables

T, α, βi and γi. (1.120)

The list (1.120) can alternatively be thought of as

T, α, α,i T,i or T, α, α,i α̇,i .

The energy balance law (1.106) still holds and substitution of the list
(1.120) and expanding the time derivatives leads to the equation

ρ(ψT + ηθT )Ṫ + ρ(ψα + ηθα)T + ρ(ψγi + ηθγi)γ̇i + ρ(ψβi

+ ηθβi)γi + pi(γiθT + βiθα + θγjγj,i + θβjβj,i) + ρθξ = 0.
(1.121)

(Green and Naghdi, 1991) next employ the fact that Ṫ , γ̇i, γi,j , βi,j appear
linearly in (1.121) and may be selected arbitrarily using the external en-
tropy supply s to balance equation (1.105). In this way they deduce the
relations

∂θ

∂γi
= 0,

∂θ

∂βi
= 0,

∂ψ

∂γi
= 0,

∂ψ

∂T
+ η

∂θ

∂T
= 0, (1.122)

from which it follows that

θ = θ(T, α), ψ = ψ(T, α, βi). (1.123)

Then, from (1.122)4,

η = −ψT

θT
= F (T, α, βi). (1.124)
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What remains from equation (1.121) is the relation

ρ(ψα + ηθα)T + ρψβiγi + pi(γiθT + βiθα) + ρθξ = 0. (1.125)

The (in general genuinely nonlinear) equation of heat flow is then obtained
using (1.123) - (1.125) in the entropy balance equation (1.105) and (Green
and Naghdi, 1991) show this is

ρθη̇ − ρr + qi,i − ρ(ψα + ηθα)T − ρψβiγi = 0. (1.126)

I am not aware of where this (fully nonlinear) equation has been studied in
the literature. At this point (Green and Naghdi, 1991) develop a linearized
version of their theory.

(Green and Naghdi, 1991) continue by considering the special case where

θ = a+ bT + d1α, ψ =
k

2
βiβi −

d2

2
α2 − b2αT − b3

2
T 2,

qi = −(a1βi + a2γi), ηb = b2α+ b3T,

the coefficients a, b, etc. being constants. Then, equation (1.126) may be
shown to reduce to the linear equation

ρa

b
(b2α̇+ b3α̈) = ρr + a1Δα+ a2Δα̇, (1.127)

where r = θs. It is interesting to observe that if we differentiate this equa-
tion with respect to t, then an equation of the same form results for the
temperature T . Thus, the temperature satisfies the same linear equation as
was found from Guyer-Krumhansl theory in section 1.3, equation (1.51),
or from dual phase lag theory in section 1.5, equation (1.60).

It would appear that there may be a lot of potential from equation
(1.126). For example, if we assume

ψ =
k

2
α,iα,i +G(T, α) (1.128)

for an arbitrary nonlinear function G, then

η = −GT (T, α)
θT (T, α)

= H(T, α) (1.129)

where H is defined as indicated. Suppose also

qi = −A(T, α)α,i −B(T, α)α̇,i . (1.130)

Then equation (1.126) still remains nonlinear and leads to

(ρθHα − ρGα − ρHθα)α̇ + ρθHT α̈− kρ

2
∂

∂t
(α,iα,i)

= (Aα,i),i + (Bα̇,i),i + ρr.
(1.131)

This is a damped nonlinear wave equation with the dissipative spatial
damping term (Bα̇,i),i.
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1.12 Microtemperatures

In this section we describe a theory for temperature wave propagation in
a rigid heat conductor which allows for variation of thermal properties at
a microstructure level. As we discuss in chapter 8 nanofluids are preva-
lent in the heat transfer industry. These are typically very fine particles
of a metallic oxide held in suspension in a carrier fluid, cf. (Vadasz et al.,
2005). The possibility that the suspension might have a different thermal
microstructure to the carrier fluid should therefore be investigated. How-
ever, nanostructures in solids are also important. Cryogenic liquids are
heavily involved in space research and such liquids must be stored in stain-
less steel vessels known as run-tanks, see (Jordan and Puri, 2001). The
large thermal stresses placed on the solid vessels may be associated with
thermal microstructure effects and hence there is certainly a need for a
well structured theory for a rigid solid which allows for microtemperature
effects.

The theory we describe is based on the type II thermodynamics of (Green
and Naghdi, 1991) and was explicitly developed by (Iesan and Nappa,
2005). For a three-dimensional rigid solid this theory involves four equa-
tions representing the balance of entropy per unit mass, but also the first
entropy moment vector, ηi, i = 1, 2 or 3. Thus, the model consists of two
balance equations, namely

ρ
∂η

∂t
=
∂Sk

∂xk
+ ρs+ ρξ, (1.132)

and

ρ
∂ηi

∂t
=
∂Ski

∂xk
+ Si −Hi + ρsi + ρξi . (1.133)

In these equations ρ, s, ξ, si and ξi are the density, the external rate of
supply of entropy per unit mass, the internal rate of production of entropy
per unit mass, the first moment of the external rate of supply of entropy,
and the first moment of the internal rate of production of entropy. The
terms Si and Ski are the entropy flux vector, and the first entropy moment
tensor, while Hi is a so called mean entropy flux vector.

(Iesan and Nappa, 2005) assume that at a given point x there is a set
of microcoordinates Σi and the absolute temperature θ′ at x may be writ-
ten as a linear combination of a temperature function θ(x, t) and three
microtemperatures Ti(x, t) such that

θ′(x, t) = θ(x, t) + Ti(x, t)Σi . (1.134)

By introducing an internal energy function ε and a Helmholtz free energy
function ψ = ε−θη−Tiηi, (Iesan and Nappa, 2005) propose an energy bal-
ance law and are able to deduce restrictions on the constitutive functions.
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They start by assuming that the functions

ψ, η, ηi, Si, Sij , Hi, ξ and ξi

depend on the variables

θ, Ti, α,i, βi,j ≡ χ (1.135)

where α and βi are thermal displacement variables with

α =
∫ t

t0

θ(x, s)ds + α0, βi =
∫ t

t0

Ti(x, s)ds+ β0
i .

Hence α̇ = αt = θ and β̇i = βi,t = Ti. Since the list (1.135) involves
α̇, α,i, β̇i and βi,j this is analogous to a type II theory.

The constitutive theory deduced by (Iesan and Nappa, 2005) has form

η = −∂ψ
∂θ

, ηi = − ∂ψ

∂Ti
, Si = ρ

∂ψ

∂α,i
, Sij = ρ

∂ψ

∂βj,i
,

ξ = − 1
ρθ

(
ρ
∂ψ

∂α,i
−Hi + ρξi

)
Ti ,

(1.136)

where ψ,Hi and ξi depend on the list χ given by (1.135).
Thus, the governing set of nonlinear equations is (1.132) and (1.133)

together with (1.135) and (1.136).
(Iesan and Nappa, 2005) further develop a linearized theory for a rigid

heat conductor involving microtemperatures. This they do for both a fully
anisotropic theory and an isotropic one.

The anisotropic equations may be written

aα̈−Kijα,ij +Mij β̇i,j = ρs,

Bij β̈j −Dijrsβr,sj +Mijα̇,j = ρsi ,
(1.137)

where a is a constant and Kij ,Mij , Bij and Dijrs are constant tensors
which satisfy the symmetries

Kij = Kji, Bij = Bji, Dijrs = Drsij . (1.138)

The tensorMij is non-zero but not necessarily symmetric. We shall suppose
Bij and Kij are also positive-definite.

In the isotropic case the relevant equations are

aα̈−KΔα+mβ̇i,i = ρs,

bβ̈i − d2Δβi − (d1 + d3)βj,ji +mα̇,i = ρsi .
(1.139)

Structural stability and convergence results for a solution to equations
(1.137) are given by (Ciarletta et al., 2010).
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1.13 Exercises

Exercise 1.13.1 Show that using q as given by (1.12) together with
equation (1.6)1 leads to θ satisfying (1.11).

Exercise 1.13.2 Show that (1.14) defines a hyperbolic system and verify
that the characteristic equations are given by (1.15).

Exercise 1.13.3 Use the Fourier transform,

F (s) =
1√
2π

∫ ∞

−∞
f(x)e−isxdx,

and the inverse transform,

f(x) =
1√
2π

∫ ∞

−∞
F (s)eisxds,

to show (1.5) is the solution to equation (1.1) together with the initial data
(1.3).

Exercise 1.13.4 From the viscoelastic model

∂θ

∂t
= D

∫ t

0

φ(t− s)
∂2θ

∂x2
(x, s) ds

take φ(t) = αe−αt and show θ(x, t) satisfies the damped wave equation

∂2θ

∂t2
+ α

∂θ

∂t
= Dα

∂2θ

∂x2
. (1.140)

Suppose (1.140) holds on {x ∈ (0, 1)} × {t > 0} with

θ(0, t) = θ(1, t) = 0.

Develop a Fourier series solution of form

θ(x, t) =
∞∑

j=1

bj sin kjx e
σj t +

∞∑
j=0

aj cos kjx e
σjt.

Show that the solution will always decay in time and that j2 > α/(4π2D)
produces oscillatory damped modes.

Exercise 1.13.5 Verify that (1.18) is a solution to (1.16) and (1.17).

Exercise 1.13.6 Let Ω be a bounded domain in R
3 with boundary Γ. Con-

sider a solution to the Graffi - Fabrizio system of equations (1.83) and
(1.84) on Ω × {t > 0} with θ prescribed on Γ, and θ, qi given for t = 0.
Show that a solution to the boundary-initial value problem so defined is
unique, (cf. (Graffi, 1936a)).

Exercise 1.13.7 Heat transport in a bar is governed by the equation

∂θ

∂t
=
D0

θ0

∂

∂x

(
θ
∂θ

∂x

)
, (1.141)
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where θ is the temperature of the bar. Suppose the temperature is T at the
point x = 0 at time t = 0. By differentiation show that

θ(x, t) =
a

t1/3
− b

x2

t
(1.142)

solves (1.141) and thereby determine the constant b.
Sketch the curve θ(x, t) and suppose that the total temperature remains

constant to determine the constant a and hence find the solution to (1.141).
(By the total temperature we mean the value of the integral of θ(x, t) over
its x range for a fixed t, and this is equal to the constant T .)

Exercise 1.13.8 The classical diffusion equation

∂θ

∂t
= D0

∂2θ

∂x2
(1.143)

has been used to model the heat distribution in a bar. In this equation θ(> 0)
represents the temperature of the bar. However, the solution to equation
(1.143) has a major defect in this context. Explain the defect and suggest a
method to remedy this.

The distribution of heat in a bar has been described by the equation

∂θ

∂t
=

D0

θ
1/3
0

∂

∂x

(
θ1/3 ∂θ

∂x

)
. (1.144)

Suppose the temperature is T at the point x = 0 at time t = 0. By
differentiation show that

θ(x, t) =
(

a

t1/7
− b

x2

t

)3

(1.145)

solves (1.144) and thereby determine the constant b.
Sketch the curve θ(x, t) and suppose the total temperature remains con-

stant to determine the constant a and hence find the solution to (1.145).
(The total temperature is as defined in exercise (1.13.7).)

Equation (1.144) is restricted to one spatial dimension whereas in prac-
tice heat travels in more than one - dimension. Suggest a modification of
(1.144) which will apply in the two spatial dimensional case. Do you think
the equation you have suggested is solvable?

Exercise 1.13.9 Professor A proposes that heat in a bar is distributed
according to the equation

∂θ

∂t
= D

∂

∂x

[( θ
θ0

)m ∂θ

∂x

]
(1.146)

together with the inital condition

θ(x, 0) = Tδ(x). (1.147)
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You may assume the solution to (1.146), (1.147) is

θ(x, t) =

⎧⎪⎨
⎪⎩

θ0
λ(t)

[
1 −
( x

r0λ(t)

)2
]1/m

, |x| ≤ r0λ(t),

0, |x| > r0λ(t),

where λ(t) and the constants r0 and t0 are given by

λ(t) =
(
t

t0

)1/(2+m)

, r0 =
NΓ(m−1 + 3/2)√
π θ0Γ(m−1 + 1)

, t0 =
r20m

2D0(m+ 2)
,

Sketch this solution.
Professor A has two long bars of different material. He heats bar 1 in the

point x = 0 with temperature T at time t = 0 and supposes it satisfies his
model with m = 1. He heats bar 2 at the same point at time t = T > 0,
with this bar satisfying his model with m = 1/2. Which heating effect will
reach an observer a long way away first? (You must explain your reasoning
carefully using the above solution.)



2
Interaction with elasticity

2.1 Cattaneo theories

2.1.1 Cattaneo-Lord-Shulman theory

In sections 1.2 - 1.12 we have seen various ways of modifying the classical
diffusion equation in order to allow heat to be transported with a finite
wavespeed. The assumption was that the body would remain rigid. How-
ever, in many cases this is too strong since the body itself deforms or
vibrates. Thus, in this chapter we wish to look at ways of coupling heat
propagation in the case where the body is an elastic solid. This is the
domain of thermoelasticity and, in particular, we shall review theories of
thermoelasticity which allow temperature to travel as a wave with finite
speed.

It would appear that the first attempts to couple elasticity with a way
in which temperature can travel with a finite wavespeed are due to (Lord
and Shulman, 1967) and to (Popov, 1967), as is observed in the short but
very informative review by (Jordan and Puri, 2001). (Jordan and Puri,
2001) also derive a very useful comparison of the classical theory of ther-
moelasticity with two theories capable of allowing temperature to travel
with a finite wavespeed. Extensive reviews of the early literature on ther-
moelasticity with temperature waves are by (Chandrasekharaiah, 1986),
(Chandrasekharaiah, 1998) and by (Hetnarski and Ignaczak, 1999), and
the recent book by (Ignaczak and Ostoja-Starzewski, 2009) concentrates
on thermoelasticity with temperature waves, although the overlap with the
current book is minimal.

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 38
DOI 10.1007/978-1-4614-0493-4 2, c© Springer Science+Business Media, LLC 2011
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To understand the situation we commence, as do (Lord and Shulman,
1967), with the classical theory of linear thermoelasticity. (Lord and Shul-
man, 1967) consider the isotropic case, but it is no more difficult to begin
with the anisotropic situation and this we do now. In terms of the elastic
displacement, ui, and the temperature field, θ, the equations of classical
linear thermoelasticity for an anisotropic and inhomogeneous body may be
written,

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi ,

cθ̇ = −aij u̇i,j + (kikθ,k),i + ρr,
(2.1)

where θ̇ = θ,t and standard indicial notation is used. Here ρ, c, fi and r are,
respectively, the density, density multiplied by the specific heat, externally
supplied body force, and external supply of heat. The coefficients cijkh(x, t)
are the elastic coefficients, or elasticities, kij(x, t) denote the components
of the thermal conductivity tensor, and aij(x, t) are the components of
a coupling tensor connecting the equations of elasticity to those for heat
transport in the solid. We observe immediately that if we set aij ≡ 0, fi = 0
and r = 0 then system (2.1) decouples into the two linear equations

ρüi = (cijkhuk,h),j (2.2)

and

cθ̇ = (kikθ,k),i . (2.3)

Equation (2.2) represents the standard equations of linear elasticity which
under appropriate conditions on the elasticities cijkh allow elastic wave
propagation and define a hyperbolic system, cf. (Knops and Payne, 1971b),
(Knops and Wilkes, 1973). On the other hand, equation (2.3) for c > 0 and
kik a positive-definite tensor, is the classical parabolic equation for the dif-
fusion of θ. Thus, θ effectively has an infinite wavespeed as we saw in section
1.2. Thus, for the combined system (2.1) we expect a coupled hyperbolic
- parabolic system of partial differential equations with the temperature
field diffusing with infinite wavespeed.

(Lord and Shulman, 1967) proposed combining the Cattaneo approach
(Maxwell-Cattaneo theory of section 1.2) together with the standard devel-
opment of elasticity to derive a Cattaneo - type theory of thermoelasticity
as we now describe. The approach of (Lord and Shulman, 1967) begins with
the full nonlinear equations but they are mainly interested in developing a
linear theory since they begin with ... “small strains and small temperature
changes”. With ε, η, tij , qi and eij = (ui,j + uj,i)/2 being the internal en-
ergy, entropy, stress tensor, heat flux and strain tensor for the elastic body,
respectively, (Lord and Shulman, 1967) write the energy balance law as

ρθη̇ = −qi,i , (2.4)
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where η and ε are connected by the equation

ρε̇ = ρθη̇ + tij ėij , (2.5)

superposed dot being the partial time derivative, ∂/∂t. (Lord and Shulman,
1967) propose the general anisotropic equation for qi which generalizes
Cattaneo’s equation (1.45)2, namely,

Aij q̇j + aq̇i + qi = bθ,i +Bijθ,j , (2.6)

where the coefficients Aij , a, b and Bij depend on the material comprising
the elastic body. They are principally interested in deriving an isotropic
version of their theory and so note that in the isotropic case equation (2.6)
may be replaced by

τ q̇i + qi = −kθ,i . (2.7)

(Lord and Shulman, 1967) call τ the relaxation time, and they say it “rep-
resents the time-lag needed to establish steady - state heat conduction in
an element of volume when a temperature gradient is suddenly imposed on
that element”.

(Lord and Shulman, 1967) proceed to introduce the Helmholtz free
energy function ψ = ψ(eij , θ) = ε− ηθ and then note

∂ψ

∂t
= ψ̇ =

∂ψ

∂eij
ėij +

∂ψ

∂θ
θ̇ (2.8)

and

ψ̇ = ε̇− ηθ̇ − η̇θ . (2.9)

Equations (2.8) and (2.9) are employed in equation (2.5) to see that

tij ėij =ρ(ε̇− θη̇)

=ρ(ψ̇ + ηθ̇)

=ρ
( ∂ψ
∂eij

ėij +
∂ψ

∂θ
θ̇ + ηθ̇

)
. (2.10)

From equation (2.10) (Lord and Shulman, 1967) infer that the stress tensor
and entropy have the forms

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂eij
. (2.11)

(Lord and Shulman, 1967) then employ the relation (2.11)1 in the energy
balance law (2.4) to derive the equation

ρθ
( ∂2ψ

∂eij∂θ
ėij +

∂2ψ

∂θ2
θ̇
)

= qi,i . (2.12)

Let us observe that equations (2.7) and (2.12) (with replacement of ap-
propriate time derivatives) could form the basis for a nonlinear Cattaneo -
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Lord - Shulman theory. (Lord and Shulman, 1967) do not pursue this
line and proceed to combine equations (2.7) and (2.12) linearizing in the
process. In this way they derive the linearized energy balance law

−ρθψθθ(θ̇ + τ θ̈) − ρθ
∂2ψ

∂eij∂θ
(ėij + τ ëij) = kΔθ. (2.13)

(Lord and Shulman, 1967) then proceed to develop their theory in the
isotropic case and expand about a constant temperature θ0 and expand
in terms of the strain invariants of elasticity theory. In this way they pro-
duce their famous system of equations for isotropic thermoelasticity. Their
equation for the displacement ui is the isotropic equivalent of equation
(2.1)1 and coupled to the isotropic equation which arises from (2.13) the
Lord-Shulman system of equations is

ρüi = (λ + μ)uj,ij + μΔui − (3λ+ 2μ)αθ,i ,

ρc(τ θ̈ + θ̇) + (3λ+ 2μ)αθ0(τ ërr + ėrr) = kΔθ .
(2.14)

In equations (2.14), c is the specific heat and λ, μ are the coefficients which
arise in isotropic elasticity, the Lamé moduli, the connection with the elastic
coefficients cijkh being

cijkh = λδijδkh + μ(δikδjh + δihδjk) .

(Lord and Shulman, 1967) write their equations in non-dimensional form
and then solve a one-dimensional problem which corresponds to zero initial
conditions in a half space with the velocity ∂u/∂t experiencing a discontin-
uous input at time t = 0 along the half space boundary, i.e. a displacement
shock problem.

2.1.2 Cattaneo-Fox theory

The first development of a fully nonlinear thermoelastic theory which em-
ploys a Cattaneo equation for the heat flux is that of (Fox, 1969a). Fox
begins with the momentum and continuity equations written in the current
configuration as

ρv̇i = tji,j + ρfi ,

ρ̇+ ρdrr = 0,
(2.15)

where tij is the symmetric Cauchy stress tensor, a superposed dot denotes
the material derivative, e.g. ρ̇ = ∂ρ/∂t + vi∂ρ/∂xi, fi is the externally
supplied body force, and dij = (vi,j + vj,i)/2, vi(x, t) being the velocity in
the current reference frame. (Fox, 1969a) begins with a balance of energy
equation and an entropy inequality postulated for arbitrary sub-bodies of
an elastic body, and reduces these to pointwise form. In terms of the internal
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energy ε, entropy η, heat flux qi, and temperature θ these are

ρε̇− ρr + qi,i − tijdij = 0,

ρθη̇ − ρr + qi,i −
qiθ,i

θ
≥ 0,

(2.16)

where r is the externally supplied source of heat. The entropy inequality
(2.16)2 is rewritten in terms of the Helmholtz free energy function ψ = ε−ηθ
as

ρψ̇ + ρηθ̇ − tijdij +
qiθ,i

θ
≤ 0. (2.17)

The constitutive theory of (Fox, 1969a) requires that

ψ, η, tij

depend on the independent variables

FiA =
∂xi

∂XA
= xi,A and θ,

where xi = xi(X, t) is the mapping of points in the reference configuration
to equivalent points in the current configuration. Upon introducing the
right Cauchy - Green tensor C = FTF (i.e. CAB = xi,Axi,B) (Fox, 1969a)
notes

ĊAB = 2dijxi,Axj,B

and rewrites inequality (2.17) in the form

−ρ
(∂ψ
∂θ

+ η
)
θ̇ +
(
tij − 2ρ

∂ψ

∂CAB
xi,Axj,B

)
dij −

qiθ,i

θ
≥ 0. (2.18)

Using the fact that r and fi may be selected at will it is now deduced from
(2.18) that

η = −∂ψ
∂θ

and tij = 2ρxi,Axj,B
∂ψ

∂CAB
. (2.19)

The residual of the entropy inequality (2.18) is

−qiθ,i ≥ 0, (2.20)

and the energy balance law becomes

θη̇ = −qi,i + ρr. (2.21)

(Fox, 1969a) uses superposed rigid body arguments and requests that the
nonlinear time derivative of qi in a Cattaneo law should be an objective
derivative. This leads him to propose the general equation generalizing
Cattaneo’s one,

q̇i − ωijqj = αqi + βθ,i , (2.22)
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where ωij = (vi,j − vj,i)/2, q̇i = qi,t + vkqi,k, and α, β depend on θ and
the scalar invariants qiqi, qiθ,i and θ,iθ,i. (Fox, 1969a) specializes to the
case where α and β are constants and introduces constants τ and κ by
τ = −1/α, κ = β/α so that his equation (2.22) becomes

τ(qi,t + vjqi,j − ωijqj) = −qi − κθ,i . (2.23)

Thus, the full nonlinear system of equations derived by (Fox, 1969a) to de-
scribe motion in a thermoelastic body generalizing the (Lord and Shulman,
1967) approach comprise equations (2.15), (2.21) and (2.23).

For easy reference we collect these here recalling the forms for η and tij
given in equations (2.19),

ρ̇+ ρdii = 0,

ρv̇i = 2
∂

∂xj

(
ρxi,Axj,B

∂ψ

∂CAB

)
+ ρfi ,

−θ d
dt

(∂ψ
∂θ

)
= − ∂qi

∂xi
+ ρr,

τ(q̇i − ωijqj) = −qi − κθ,i ,

(2.24)

where d/dt denotes the material derivative.
I am not aware of further use of the nonlinear system (2.24) apart

from the solutions derived by (Fox, 1969a) himself. However, (Fox, 1969a)
deserves full credit for producing a nonlinear invariant system of ther-
moelastic equations using a Cattaneo theory. The solutions given by (Fox,
1969a) involve a static deformation where he shows the heat flux decays
exponentially in time, and one where the deformation is

x = 2ktY, y = Y, z = Z.

For this definition he solves his equation for qi, (2.24)4, exactly.

2.1.3 Hidden variables

(Caviglia et al., 1992) begin with the idea of introducing an internal vector
variable ξi; an internal variable is sometimes also referred to as a hid-
den variable, and an extensive description of such variables may be found
in (Maugin, 1990), (Maugin and Muschik, 1994a; Maugin and Muschik,
1994b). The vector ξ refers to a current configuration R which has de-
formed from a reference configuration R0 by a mapping x = x(X, t) or
xi = xi(XA, t). They define the Cauchy stress tensor tij , the second Piola-
Kirchoff stress tensor YAB and the first Piola-Kirchoff stress tensor SAi,
where Y = JF−1t(F−1)T , F being the deformation gradient defined by
FiA = ∂xi/∂XA and J = det(FiA). They also introduce the heat flux qi,
the Helmholtz free energy ψ, the temperature θ, and temperature gradi-
ents gi = θ,i and GA = θ,A where θ,i ≡ ∂θ/∂xi whereas θ,A ≡ ∂θ/∂XA.
In terms of the displacement ui = xi −Xi, (Caviglia et al., 1992) have the
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balance of momentum equation

ρ0üi =
∂

∂XA
SAi + ρ0bi (2.25)

where ρ0 is the density in R0, bi is the body force and a superposed dot
denotes ∂/∂t holding X fixed.

The thermodynamic procedure of (Caviglia et al., 1992) introduces the
Cauchy-Green right tensor C = FTF and requires the equivalent of the
internal variable ξ referred to the reference configuration, namely Ξ = FT ξ.
Then, (Caviglia et al., 1992) define their thermoelastic body to be one for
which

t = Ft̃(C, θ,G,Ξ)FT ,

q = Fq̃(C, θ,G,Ξ) ,

ψ = ψ̃(C, θ,G,Ξ) ,

(2.26)

where t̃, q̃, ψ̃ are the functional forms of the indicated variables. The
entropy inequality

−ρ0(ψ̇ + ηθ̇) +
1
2
Y · Ċ− 1

θ
Q ·G ≥ 0 (2.27)

is posed where η is the entropy. (Caviglia et al., 1992) show that inequality
(2.27) leads to the deductions

∂ψ̃

∂G
= 0 , η = −∂ψ̃

∂θ
, Y = 2ρ0

∂ψ̃

∂C
, (2.28)

and the residual entropy inequality is

ρ0θ
∂ψ̃

∂Ξ
· Ξ̇ + Q · G ≤ 0. (2.29)

Then, from the first of (2.28), the Helmholtz free energy function reduces
to the form ψ = ψ(C, θ,Ξ).

For the internal variable ξ, (Caviglia et al., 1992) propose that Ξ satisfies
an evolution equation of form

Ξ̇ = −mG− nΞ (2.30)

where m,n are functions of the variables θ and C with n > 0. Upon em-
ploying Ξ̇ as given by (2.30) in the inequality (2.29) they deduce that

Q = ρ0mθ
∂ψ̃

∂Ξ
. (2.31)

Further, from (2.29), there remains the restriction

Ξ · ∂ψ̃
∂Ξ

≥ 0 . (2.32)
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To progress further (Caviglia et al., 1992) require that under stationary
conditions Q satisfies Fourier’s law so that

Q = −KG

for K a positive-definite tensor which depends on θ and C. Under stationary
conditions equation (2.30) yields the connection

G = − n

m
Ξ

and the last two relations lead (Caviglia et al., 1992) to propose the
relationship

Q =
n

m
KΞ . (2.33)

Then, from (2.31) they deduce that

∂ψ̃

∂Ξ
=

n

ρ0θm2
KΞ

whence

ψ = ψ̂(θ,C) +
n

2ρ0θm2
ΞAKABΞB , (2.34)

where ψ̂ denotes a functional relationship of the indicated variables. Upon
introducing the internal energy ε = ψ + θη one then sees that

ε = ψ̂ − θ
∂ψ̂

∂θ
+

1
2

(
nKAB

ρ0θm2
− θ

∂

∂θ

[nKAB

ρ0θm2

])
ΞAΞB . (2.35)

(Caviglia et al., 1992) then require that ε be independent of Ξ and hence
of Q and so

n

ρoθm2
K = nK̂(C)

where K̂ denotes the functional form, K̂ also being a positive-definite
tensor.

The constitutive theory of (Caviglia et al., 1992) may be summarized as

ψ = ψ̂(θ,C) +
θ

2
K̂ABΞAΞB ,

YAB = 2ρ0
∂ψ̃

∂CAB
+
θ

2
∂K̂RS

∂CAB
ΞRΞS ,

η = −∂ψ̂
∂θ

− 1
2
K̂RSΞRΞS .

(2.36)

The (fully nonlinear) evolution equations for the model then follow from
(2.25), the energy balance equation, equation (2.30), and may then be
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written as,

ρ0üi =
∂

∂XA
SAi + ρ0bi ,

−ρ0θ
(∂2ψ̃

∂θ2
θ̇ +

∂2ψ̃

∂θ∂CAB
ĊAB

)
= − ∂

∂XA

(
ρ0mθ

2K̂ABΞB

)
,

Ξ̇A = −mθ,A − nΞA ,

(2.37)

where

SAi = ρ0
∂ψ

∂FiA
= ρ0

∂ψ

∂CRS

∂CRS

∂FiA
= YRS

∂CRS

∂FiA

and so

SAi = (δARFiS + δSAFiR)YRS = FiSYAS + FiRYRA .

(Caviglia et al., 1992) then develop a linearized version of their theory.
It is, however, important to note that they do this by considering a poten-
tially large deformation from R0 to R followed by a “small” deformation
to a new current configuration R∗. In this way they are not simply devel-
oping a linear theory by suitably restricting ψ̂ and K̂, they are producing
a linearized theory which allows for linearization about a (nonlinear) state
of pre-stress and possibly non-uniform temperature.

Let X denote the position of a particle in the reference configuration R0,
let x be its position in R, and let x∗ be the corresponding position in R∗.
(Caviglia et al., 1992) assume that in R the temperature θ is constant so
that G = 0 and Ξ = 0. The values of these variables in R∗ are denoted by
θ∗, G∗ and Ξ∗, with C and C∗ denoting the values of the Cauchy-Green
right tensor in R and R∗. The perturbations to x, θ and Ξ in R are written
as u, φ and Λ, i.e.

x∗i = xi + ui , θ∗ = θ + φ, Ξ∗
i = Ξi + Λi = Λi .

Then, equations (2.37) are linearized keeping only quantities linear in
ui, φ,Λi and their derivatives, in the equations which result. Full details
are given in (Caviglia et al., 1992), we here only record the equations.
However, we point out that (Caviglia et al., 1992) take F = I so that in
R the right Cauchy-Green tensor satisfies C = I, where θ is uniform. The
pre-stress in R is maintained through the body force bi and in equilibrium
equation (2.37) is

∂

∂XA
(FiBYBA) + ρ0bi = 0. (2.38)

The linearization of equations (2.37) relies on the fact that this procedure
is performed about the solution of (2.38). It is important to note that the
steady state deformation given by (2.38) is, in general, not homogeneous
and represents a true nonlinear deformation before linearization.
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The linearized equations of (Caviglia et al., 1992) are

ρ0üi =
[
(δijtkh +Aihjk)uj,k −Bihφ

]
,h
,

cφ̇+Bij u̇i,j = −1
θ
qi,i ,

τaij q̇i + aijqj = −φ,i ,

(2.39)

where the coefficients involve quantities evaluated in the configuration R
in which θ is uniform and C = I. The quantity tij is the Cauchy pre-stress
tensor, and

Aijkh = 2ρ0
∂2ψ̂

∂Cij∂Ckh
, Bij = −2ρ0

∂2ψ̂

∂θ∂Cij
,

c = −ρ0
∂2ψ̂

∂θ2
, τ =

1
n
, aij =

n

ρ0m2θ2
(K̂−1)ij .

(2.40)

We point out that the coefficients in (2.40) are all evaluated in R.
When the body is isotropic, the coefficients become

Aijkh = λδijδkh + μ(δikδjh + δihδjk),

tij = αδij , Bij = βδij , aij =
1
κ
δij

where κ is a constant and then equations (2.39) become

ρ0üi = (αui,j),j + (λuj,j),i + (μui,j),j + (μuj,i),j − (βφ),i ,

cφ̇+ βu̇i,i = −1
θ
qi,i ,

τ q̇i + qi = −κφ,i .

(2.41)

In equations (2.39) and (2.41) the pre-stress is provided by the body
force in equation (2.38). We could follow the procedure of (Iesan, 1980;
Iesan, 1988) and allow a deformation from R0 to R which is induced by
non-homogeneous boundary conditions in both xi and θ. This would lead
to coefficients which have pre-stress present due to the deformation but
also due to non-uniform temperature in R. The linearized equations which
then arise contain extra terms to those in (2.39) and (2.41).

(Chandrasekharaiah, 1998), p. 722, remarks that the linearized theory
of (Caviglia et al., 1992) closely resembles the Lord - Shulman theory. We
point out that there is a resemblance, but equations (2.39) and (2.41) are
different from those of Lord - Shulman. Firstly, in (2.39) the equations
are for the anisotropic case. However, importantly both sets of equations
(2.39) and (2.41) contain the effects of pre-stress. This is evident in (2.39)
via the tkh term but also in the equation for qi through the coefficient aij

which contains the pre-stress via K̂, see (2.40). In particular, due to the
presence of the Cauchy pre-stress tij it is not true that, in general, the
elastic coefficients cijkh = δijtkh +Aijkh would be sign-definite.
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2.2 Green-Lindsay theory

When one develops the classical theory of nonlinear thermoelasticity it
is usual to begin with a constitutive assumption which is equivalent to
requiring

ψ, η, qi and SAi (2.42)

to depend on the variables

XA, ρ0, θ, θ,A and eAB . (2.43)

Here ψ, η are the Helmholtz free energy function and the entropy function,
qi is the heat flux vector and SAi is the Piola-Kirchoff stress tensor. The
independent variables are X, the coordinates of a point in the reference
configuration, ρ0 the density in the reference configuration, the temper-
ature θ(X, t), the temperature gradient θ,A = ∂θ/∂XA, and the strain
tensor, eAB = (xi,Axi,B − δAB)/2, acting at time t but referred to the ref-
erence configuration. The function x = x(X, t) denotes the map defining
the deformation (motion) of the elastic body.

The above prescription leads to a coupled set of nonlinear partial differ-
ential equations for the displacement ui = xi − Xi and the temperature
field θ. The balance of momentum equation which results may be thought of
as yielding a hyperbolic equation but the corresponding balance of energy
equation contains ∂θ/∂t as the highest time derivative of θ and is effec-
tively a parabolic equation. Thus, the system may be thought of as one of
coupled parabolic - hyperbolic type. This has the undesirable feature that
the temperature field essentially travels with infinite speed, cf. section 1.2.
(This argument generalizes the analogous one from linear thermoelastic-
ity as explained in section 2.1.1.) An appealing way to overcome this was
suggested by (Müller, 1971a). His idea is to include θ̇ in the list of inde-
pendent constitutive variables in (2.43). He develops a complete theory of
thermoelasticity beginning with the balance laws for conservation of mass,
momentum, and energy. In the balances of momentum and energy (Müller,
1971a) does not include a body force or external supply of heat. The ther-
modynamics of (Müller, 1971a) is based on his entropy inequality, (Müller,
1967a),

ρη̇ +
∂Φi

∂xi
≥ 0 (2.44)

where Φi is his entropy flux vector, see (Müller, 1967a). (Müller, 1971a)
expands inequality (2.44) using the extended constitutive list, and he then
argues that the balance equations which arise must hold in such a way that
he is able to deduce relations between the functions ψ, η,Φi, SAi, and qi.
In this way (Müller, 1971a) develops a fully nonlinear theory for thermoe-
lasticity which, unlike the classical theory, allows θ to travel with a finite
wavespeed. (Müller, 1971a) develops complete expressions for the stress,
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heat flux, and his entropy flux for an isotropic solid and deduces restric-
tions in equilibrium. He also shows the heat conduction tensor must be
symmetric.

We here describe a theory due to (Green and Lindsay, 1972) which also
employs θ̇ in the constitutive list. (Green and Lindsay, 1972) commence
with the balance laws of mass, momentum, angular momentum, and energy,
which are

ρ0 = ρ det (xi,A),
ρ0v̇i = ρ0Fi + SAi,A ,

YAB = YBA where SAi = FiRYRA ,

ρ0ε̇ = ρ0r + YAB ėAB −QA,A .

(2.45)

Here ρ and ρ0 denote the density in the current and reference configura-
tions, vi is the velocity, SAi is the Piola-Kirchoff stress tensor, ε the internal
energy, QA the heat flux vector per unit area in the XK frame but acting
over the corresponding surface at time t, and eAB (defined by (Green and
Lindsay, 1972) as eAB = (xi,Axi,B − δAB)) is the strain tensor referred to
the reference configuration. The quantities F and r are an external body
force and an external supply of heat, respectively. The Cauchy stress ten-
sor, tij , (in the current frame) and the equivalent heat flux vector, qi, are
given in terms of YAB and QA as

(det xr,K) tij = xi,Axj,BYAB

(det xr,K) qi = xi,AQA .

(Green and Lindsay, 1972) employ a general entropy inequality over any
sub-body, this being based on the entropy inequality of (Green and Laws,
1972). However, they effectively reduce this to the following pointwise
entropy inequality

ρ0η̇ −
ρ0r

φ
+
(QA

φ

)
,A

≥ 0. (2.46)

This inequality resembles the Clausius-Duhem inequality but the function
φ is a generalized temperature which will be specified by constitutive the-
ory. If one introduces the Helmholtz free energy function in terms of the
generalized temperature φ, i.e.

ψ = ε− ηφ (2.47)

then inequality (2.46) may be rearranged with the aid of the energy
conservation equation (2.45)4, noting φ > 0, as

−ρ0(ψ̇ + ηφ̇) + YAB ėAB − QAφ,A

φ
≥ 0. (2.48)
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(Green and Lindsay, 1972) essentially use as constitutive theory the
assertion that

ψ, η, φ,QA and YAB (2.49)

depend on the independent variables

XA, ρ0, θ, θ,A, θ̇ and eAB . (2.50)

Upon using (2.49) and (2.50) in inequality (2.48) (Green and Lindsay, 1972)
deduce that

− ρ0(ψθ + ηφθ)θ̇ − ρ0(ψθ̇ + ηφθ̇)θ̈ − ρ0(ψθ,A + ηφθ,A)θ̇,A

+
[
YAB − ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)
− ρ0

2
η
( ∂φ

∂eAB
+

∂φ

∂eBA

)]
ėAB

− QA

φ

[
φθθ,A +

∂φ

∂θ,B
θ,BA + φθ̇ θ̇,A

+
1
2

( ∂φ

∂eRS
+

∂φ

∂eSR

)
eRS,A +

∂φ

∂ρ0
ρ,A +

∂φ

∂XA

]
≥ 0.

(2.51)

(Green and Lindsay, 1972) then argue that θ̈, θ̇,A , ėAB , eRS,A , θ,AB , ρ0,A ,
may be selected independently in inequality (2.51) balancing the momen-
tum and energy equations (2.45)2 and (2.45)4 by a suitable choice of Fi

and r. In this manner they deduce the relations

η = −∂ψ/∂θ̇
∂φ/∂θ̇

,

YAB =
ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)
+
ρ0

2
η
( ∂φ

∂eAB
+

∂φ

∂eBA

)
,

ρ0

( ∂ψ

∂θ,A
+ η

∂φ

∂θ,A

)
+
QA

φ
φθ̇ = 0 ,

QA
∂φ

∂θ,B
+QB

∂φ

∂θ,A
= 0 ,

QA
∂φ

∂ρ0
= 0, QA

( ∂φ

∂eRS
+

∂φ

∂eSR

)
= 0 .

(2.52)

The residual entropy inequality follows from (2.51). However, (Green and
Lindsay, 1972) then restrict attention to the case where the reference body
is homogeneous (i.e. does not depend on X) and then upon use of (2.52)4,5,6

one finds

φ = φ(θ, θ̇). (2.53)

The residual entropy inequality then has form

−ρ0

(
ψθ + ηφθ

)
θ̇ − QA

φ
φθθ,A ≥ 0. (2.54)
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Since ρ0 is non constant one employs (2.53) in equations (2.52)2,3 to derive
the forms for the stress tensor and heat flux, namely

YAB =
ρ0

2

( ∂ψ

∂eAB
+

∂ψ

∂eBA

)

QA = −ρ0φ

∂ψ

∂θ,A

∂φ

∂θ̇

.

(2.55)

(Green and Lindsay, 1972) further reduce the energy equation (2.45)4.
One may then show that the full nonlinear system of equations for
thermoelasticity of (Green and Lindsay, 1972) are given by

ρ0ẍi = ρ0Fi +
∂SAi

∂XA
,

ρ0φη̇ = ρ0r −
∂QA

∂XA
− ρ0

(
ψθ + ηφθ

)
θ̇ − ρ0ψθ,A θ̇,A ,

(2.56)

where SAi and QA are given by equations (2.55) with SAi = FiRYRA.
A detailed analysis of acceleration waves, including curved waves, for

system (2.56) is given by (Lindsay and Straughan, 1979).
(Green and Lindsay, 1972) write down expressions for ψ and φ which

are quadratic in the variables θ, θ̇, θ,i, eij to develop a linearized theory
of thermoelasticity from (2.56). They linearize about an initial body with
zero stress and heat flux. The complete system of equations for linearized
thermoelasticity derived by (Green and Lindsay, 1972) for an anisotropic
thermoelastic body then have form

ρüi = ρFi + (cijkhuk,h),j +
[
aij(θ + αθ̇)

]
,j
,

ρ(hθ̈ + dθ̇ − aij u̇i,j − biθ̇,i) =
ρr

θ0
+ (biθ̇ + kijθ,j),i .

(2.57)

Here ui is the displacement about a reference state with positions denoted
by Xi, ρ is the density, h, d, bi, cijkh, aij , kij are coefficients which have the
symmetries

cijkh = ckhij = cjikh , aij = aji , kij = kji . (2.58)

(Green, 1972) has shown that the boundary-initial value problem for (2.57)
is unique requiring only symmetry of the elastic coefficients cijkh. His proof
employs a Lagrange identity technique. Uniqueness and continuous depen-
dence on the initial data for a solution to the boundary-initial value problem
for (2.57) requiring only symmetry of the elastic coefficients cijkh was es-
tablished by (Straughan, 1974). His proof introduced a natural logarithmic
convexity functional into thermoelasticity.

A very interesting study comparing the solutions to the equations of
classical thermoelasticity, Cattaneo-Lord-Shulman theory, cf. section 2.1.1,
and the (Green and Lindsay, 1972) theory is provided by (Jordan and Puri,
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2001). These writers investigate the propagation of a thermal pulse in a
thermoelastic shell employing each of the linearized equations for the three
thermoelastic theories, classical, Lord-Shulman, and Green-Lindsay. Their
numerical results are very revealing. They typically demonstrate that the
classical theory leads to a smooth pulse while that of Lord-Shulman is less
smooth showing discontinuities in derivatives. The theory of (Green and
Lindsay, 1972) leads to strong pulse behaviour displaying distinct jumps.
For the applications they have in mind, such as to the behaviour of stainless
steel run tanks which hold cryogenic liquids for rocket fuel at NASA’s John
C. Stennis Space Center, the strong pulse solution is definitely of interest.

2.3 Green-Naghdi type II theory

(Green and Naghdi, 1993) adopt a different approach to thermoelasticity
to other writers, this approach being based on an extension of the type II
theory of heat propagation in a rigid solid developed by (Green and Naghdi,
1991), see section 1.10. The idea is to define a temperature θ, an empirical
temperature T , and a thermal displacement α, such that θ depends on T
and the properties of the material with θ > 0, ∂θ/∂T > 0, and

α(X, t) =
∫ t

t0

T (X, s)ds+ α0 . (2.59)

Here t0 is a “start time” at our disposal and α0 is the value of α at t = t0.
(Although (Green and Naghdi, 1993) define T and θ in this way at the
outset they later show that there is no loss in generality if one identifies T
with θ.)

As usual, xi = xi(XA, t) denotes the motion of a body with positions
X in the reference configuration, x being their counterparts in the current
configuration. (Green and Naghdi, 1993) observe that

α̇ = T (2.60)

and they introduce the variables βA and γi as

βA =
∂α

∂XA
, γi =

∂T

∂xi
= α̇,i . (2.61)

The variables β̇ and γ are connected by the equation

β̇A = FAiγi .

(Green and Naghdi, 1993) define tij to be the Cauchy stress tensor, pi =
qi/θ to be the entropy flux vector, ψ, η, to be the Helmholtz free energy
and entropy, respectively. Their momentum equation is

ρv̇i = ρbi + tji,j (2.62)
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where ρ, vi, bi are the density, velocity, and body force. They work with
an entropy balance equation rather than an entropy inequality and this
requires them to introduce an intrinsic supply of entropy ξ in order to
postulate their entropy balance equation as

ρη̇ = ρs+ ρξ − pi,i . (2.63)

Here s is the external supply of entropy given by s = r/θ, where r is the
external supply of heat. The balance of energy equation employed by (Green
and Naghdi, 1993) has form

tijdij − piθ,i − ρ(ψ̇ + ηθ̇) − ρθξ = 0, (2.64)

where dij = (vi,j + vj,i)/2.
(Green and Naghdi, 1993) define a classical thermoelastic body to be one

for which

tij , pi, ψ, η, θ and ξ

depend on the variables

T, γi = T,i = α̇,i , and FiA = xi,A . (2.65)

This leads to the usual “hyperbolic-parabolic” system of nonlinear equa-
tions of thermoelasticity. The goal of (Green and Naghdi, 1993) is to
introduce a new class of thermoelasticity equations by requiring

tij , pi, ψ, η, θ and ξ (2.66)

to depend on

T, α,A and FiA . (2.67)

(Green and Naghdi, 1993) call this type of thermoelasticity, thermoe-
lasticity of type II. They remark that ... “it involves no dissipation of
energy” ... “is perhaps a more natural candidate for its identification as
thermoelasticity than the usual theory”.

(Green and Naghdi, 1993) employ relations (2.66) together with (2.67)
in equation (2.64). They show that one may deduce from this the relations

∂θ

∂βA
= 0,

∂θ

∂FiA
= 0 (2.68)

whence

θ = θ(T ).

They then argue that they may write T = θ− θ0 and henceforth replace T
by θ in the ensuing development. Thus,

ψ = ψ(θ, βA, FiA) = ψ(θ, α,A, FiA).
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They further show that the expanded energy equation leads to the results

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂FiA
FAj ,

pi = −ρFiA
∂ψ

∂α,A
and ξ = 0.

(2.69)

(An equivalent reduction employing the Piola-Kirchoff stress tensor SAi is
given in section 4.4 where the forms more suitable for an acceleration wave
analysis are derived.) (Green and Naghdi, 1993) then replace FiA by the
right Cauchy-Green tensor CAB = FAiFiB to deduce

tij = ρFiAFBj

(
∂ψ

∂CAB
+

∂ψ

∂CBA

)
. (2.70)

The complete nonlinear equations of thermoelasticity of type II are then
given in the current frame by equations (2.62) and (2.63) with η, pi, ξ and
tij given by (2.69) and (2.70). For ease of reference these are collected here
as

ρẍi = ρbi +
∂

∂xj

{
ρFiAFBj

( ∂ψ

∂CAB
+

∂ψ

∂CBA

)}
,

−ρ d
dt

(∂ψ
∂θ

)
= ρs+

∂

∂xi

(
ρFiA

∂ψ

∂α,A

)
,

(2.71)

where bi and s are externally supplied and d/dt denotes the material deriva-
tive. Once a prescription of the functional form of ψ = ψ(θ, α,A, FiA) is
known, equations (2.71) yield a nonlinear system of partial differential
equations for xi and θ.

Linearized forms of the equations for type II thermoelasticity are given in
the isotropic case by (Green and Naghdi, 1993) and in the anisotropic case
by (Quintanilla, 1999; Quintanilla, 2002b). In terms of the displacement ui

and temperature perturbation θ these may be written for the isotropic case
as

ρ0üi = ρ0bi − E1θ,i + μΔui + (λ+ μ)uj,ij ,

cθ̈ = ρ0r + κΔθ + θ0E1üi,i ,
(2.72)

where ρ0, E1, κ, θ0 are constants and μ, λ are the Lamé coefficients. In the
anisotropic case for a body with a centre of symmetry the respective linear
equations are

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi,

cθ̈ = −aij üi,j + (kijθ,j),i + ρr,
(2.73)

where fi, r are the externally supplied body force and heat supply, ρ, c are
positive constants, cijkh are the elastic coefficients, aij define a coupling
tensor, and kij defines the thermal conductivity tensor.

A general uniqueness theorem for a solution to equations (2.73) requiring
no definiteness of the elastic coefficients cijkh is given by (Quintanilla and
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Straughan, 2000). Their proof relies on a logarithmic convexity argument.
These writers also derive a variety of growth estimates for the solution
depending on the elastic coefficients and the initial energy, see sections 6.2
and 6.3 of this book. Reciprocal theorems and variational principles for
type II linear thermoelasticity are given by (Chirita and Ciarletta, 2010a).

As we mentioned in the introduction, section 1.1, the paper of (Green
and Naghdi, 1991), and their companion papers (Green and Naghdi, 1992;
Green and Naghdi, 1993) on type II and type III thermoelasticity (dis-
cussed in the next section), brought a new way of thinking to the area
of heat wave propagation and their articles have influenced many subse-
quent developments. In fact, work since 1991 in this area has definitely
increased as may be witnessed for example from the papers, and the refer-
ences therein, of (Abd-Alla and Abo-Dahab, 2009), (Alvarez-Ramirez et al.,
2006; Alvarez-Ramirez et al., 2008), (Anile and Romano, 2001), (Bargmann
et al., 2008b), (Bargmann et al., 2008a), (Brusov et al., 2003), (Buishvili
et al., 2002), (Caviglia and Morro, 2005), (Chandrasekharaiah, 1998), (Cai
et al., 2006), (Christov and Jordan, 2005), (Christov, 2008), (Cimmelli
and Frischmuth, 2007), (Ciancio and Quintanilla, 2007), (De Cicco and
Diaco, 2002), (Duhamel, 2001), (Fabrizio et al., 1998), (Fabrizio et al.,
2008), (Fichera, 1992), (Green and Naghdi, 1991; Green and Naghdi, 1992;
Green and Naghdi, 1993; Green and Naghdi, 1995b; Green and Naghdi,
1995a; Green and Naghdi, 1996), (Han et al., 2006), (Hetnarski and Ig-
naczak, 1999), (Horgan and Quintanilla, 2005), (Iesan, 2002; Iesan, 2004;
Iesan, 2008), (Iesan and Nappa, 2005), (Jaisaardsuetrong and Straughan,
2007), (Johnson et al., 1994), (Jordan and Puri, 2001), (Jou and Cri-
ado-Sancho, 1998), (Kalpakides and Maugin, 2004), (Lin and Payne,
2004a), (Linton-Johnson et al., 1994), (Loh et al., 2007), (Messaoudi
and Said-Houari, 2008), (Metzler and Compte, 1999), (Meyer, 2006),
(Mitra et al., 1995), (Morro, 2006), (Payne and Song, 2002; Payne and
Song, 2004b), (Puri and Jordan, 1999b; Puri and Jordan, 1999a; Puri
and Jordan, 2004; Puri and Jordan, 2006), (Puri and Kythe, 1997; Puri
and Kythe, 1998), (Quintanilla, 2001b; Quintanilla, 2002a; Quintanilla,
2007b), (Quintanilla and Racke, 2003; Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2007; Quintanilla and Racke, 2008), (Quintanilla
and Straughan, 2000; Quintanilla and Straughan, 2002; Quintanilla and
Straughan, 2004; Quintanilla and Straughan, 2005b; Quintanilla and
Straughan, 2005a; Quintanilla and Straughan, 2008), (Roy et al., 2009),
(Ruggeri, 2001), (Saleh and Al-Nimr, 2008), (Sanderson et al., 1995),
(Serdyukov, 2001), (Serdyukov et al., 2003), (Shnaid, 2003), (Straughan,
2004; Straughan, 2008), (Su et al., 2005), (Su and Dai, 2006), (Tzou, 1995b;
Tzou, 1995a), (Vadasz, 2005), (Vadasz et al., 2005), (Vedavarz et al., 1992),
(Zhang and Zuazua, 2003).
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2.4 Green-Naghdi type III theory

The theory of type III thermoelasticity was formulated by (Green and
Naghdi, 1992). The development starts very much like that for type II in
section 2.3. Hence, the governing equations are (2.62) and (2.63) with the
energy balance law (2.64) being used to reduce the constitutive theory.
Again, the temperatures θ and T are introduced as is the thermal displace-
ment α. The difference between type II and type III is in the constitutive list
(2.67). The theory of type III adds the variable α̇,i = T,i to the list (2.67).
Thus, a thermoelastic material of type III is defined as one for which

tij , pi, ψ, η, θ and ξ (2.74)

depend on

T, α,A , α̇,i and FiA . (2.75)

(In a sense, type III combines the classical theory with that of type II as
the list (2.75) is the union of the lists (2.65) and (2.67).)

(Green and Naghdi, 1992) employ (2.74) and (2.75) in the energy bal-
ance equation (2.64). After expanding the derivatives ψ̇ and θ̇ in terms of
the variables (2.75) the expanded energy equation is reduced. (Green and
Naghdi, 1992) deduce that

∂θ

∂α̇,i
= 0,

∂θ

∂α,A
= 0,

∂θ

∂FiA
= 0 and

∂ψ

∂α̇,i
= 0 . (2.76)

Thus,

θ = θ(T )

and (Green and Naghdi, 1992) show that T may be replaced by θ. Then,
(2.76)4 yields

ψ = ψ(θ, θ,A, FiA). (2.77)

Further, (Green and Naghdi, 1992) show that

η = −∂ψ
∂θ

, tij = ρ
∂ψ

∂FiA
FAj (2.78)

but, unlike (2.69) for a type II material they cannot deduce an explicit
expression for pi, nor is ξ zero. Instead, the residual of the energy balance
equation yields

piα̇,i + ρ
∂ψ

∂α,A
FAiα̇,i + ρθξ = 0. (2.79)

We might think of equation (2.79) as defining the variable ξ.
To complete the theory of a type III thermoelastic material one needs,

therefore, to specify the functional form of

pi = pi(θ, α,A, α̇,i, FiA), (2.80)
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or equivalently, one needs to specify the heat flux qi = θpi. Clearly, one
can write a general expression for pi as a function of the vector terms
which arise from combinations of α,A, α̇,i and FiA. I am not aware of where
this has been done, although (Quintanilla and Straughan, 2004) do study
acceleration waves in the complete nonlinear theory.

The nonlinear theory for a thermoelastic body of type III then consists
of equations (2.62) and (2.63) combined with (2.78), (2.79) and an explicit
representation for pi from (2.80). The general equations have form

ρẍi = ρbi +
∂

∂xj

(
ρ
∂ψ

∂FiA
FAj

)
,

−ρ d
dt

(∂ψ
∂θ

)
= ρs− ∂pi

∂xi
− 1
θ
piα̇,i −

ρ

θ

∂ψ

∂α,A
FAiα̇,i .

(2.81)

Linearized forms of the equations for type III thermoelasticity are given
by (Green and Naghdi, 1992) in the isotropic case and by (Quintanilla,
2001c) in the anisotropic case. In the isotropic case they are

ρ0üi = ρ0bi − E1θ,i + μΔui + (λ+ μ)uj,ij ,

ρ0cθ̈ + E1θ0üi = ρ0ṙ + κΔθ̇ + κ∗Δθ ,
(2.82)

where ρ0, E1, c, κ, κ
∗ are constants, μ, λ are the Lamé constants, and bi, r

are the externally supplied body force and heat supply. In the anisotropic
case when the body has a centre of symmetry the relevant equations are

ρüi = (cijkhuk,h),j − (aijθ),j + ρfi ,

cθ̈ = −aij üi,j + (kijθ,j),i + (bij θ̇,j),i + ρr,
(2.83)

where ρ, c are positive functions which may depend on x, cijkh are the
elastic coefficients, aij are coupling coefficients, and kij , bij represent the
coefficients of thermal tensors. The terms fi and r represent the body force
and heat supply.

A general uniqueness theorem for a solution to (2.83) requiring only
symmetry of the elastic coefficients cijkh is provided by (Quintanilla and
Straughan, 2000). Their proof employs a Lagrange identity method, see
section 6.4. Non-standard problems for thermoelasticity of type II or type
III are considered by (Quintanilla and Straughan, 2005b), see also section
6.6.

2.5 Thermoelasticity with Voids

A class of theories which may be thought of as describing certain properties
of porous media were derived by (Nunziato and Cowin, 1979). The key
idea is to suppose there is an elastic body which has a distribution of voids
throughout. The voids are gaps full of air, water, or some other fluid. This
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theory provides equations for the displacement of the elastic matrix of the
porous medium and the void fraction occupied by the fluid. We believe the
voids theory has a large potential, especially in wave propagation problems.

The theory of an elastic body containing voids essentially generalizes
the classical theory of nonlinear elasticity by adding a function ν(X, t) to
describe the void fraction within the body. Here X denotes a point in the
reference configuration of the body. Thus, in addition to the momentum
equation for the motion xi = xi(X, t) as time evolves, one needs to prescribe
an evolution equation for the void fraction ν. For a non-isothermal situation
one also needs an energy balance law which effectively serves to determine
the temperature field T (X, t). The original theory is due to (Nunziato and
Cowin, 1979) and the temperature field development was largely due to D.
Iesan, see details in chapter 1 of (Iesan, 2004). This theory has much in
common with the continuum theory for granular materials, cf. (Massoudi,
2005; Massoudi, 2006a; Massoudi, 2006b).

In this chapter we wish to examine theories of thermoelastic materials
containing voids. Such theories are particularly useful to describe nonlinear
wave motion and account well for the elastic behaviour of the matrix, being
a generalisation of nonlinear elasticity theory. Interestingly, while there are
many studies involving the linearised theory of elastic materials with voids,
see e.g. (Ciarletta and Iesan, 1993) or (Iesan, 2004), analysis of the fully
nonlinear equations is only beginning, see e.g. (Iesan, 2005; Iesan, 2006).

The basic idea of including voids in a continuous body is due to
(Goodman and Cowin, 1972), although they developed constitutive the-
ory appropriate to a fluid. This they claim is more appropriate to flow of
a granular medium. Acceleration waves in the Goodman-Cowin theory of
granular media were studied by (Nunziato and Walsh, 1977; Nunziato and
Walsh, 1978). For a reader interested in the theory of voids I would suggest
first reading the article of (Goodman and Cowin, 1972), and then progress-
ing to the theory of elastic materials with voids as given by (Nunziato and
Cowin, 1979). General descriptions of the theory of elastic materials with
voids and various applications are given in the books of (Ciarletta and
Iesan, 1993) and (Iesan, 2004). Continuous dependence on the coupling
coefficients of the voids theory (a structural stability problem) is studied
by (Chirita et al., 2006).

The potential application area for the theory of elastic materials with
voids is huge. In particular, wave motion in elastic materials with voids has
many applications. (Ciarletta et al., 2007) mention four application areas
of immediate interest. To appreciate the potential uses we briefly describe
these areas. (Ouellette, 2004) is a beautiful and inspiring article which deals
with many applications of acoustic microscopy. We are all aware of optical
microscopy, but the potential uses of acoustic microscopy are enormous.
(Ouellette, 2004) points out that the presence of voids presents a serious
problem for acoustic microscopy, and a study of wave motion in an elastic
material with voids is likely to be very helpful here. She observes that,
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“acoustic microscopy remains a niche technology and is especially sensitive
to variations in the elastic properties of semiconductor materials, such as
air gaps, known as delaminations or voids ...” In particular, (Ouellette,
2004) draws attention to several novel applications of acoustic microscopy
in diagnostic medicine. She notes that one may, “apply a special ultrasound
scanner to deliver pathological assessments of skin tumours or lesions, non-
invasively,” and especially there is, “no need to kill the specimen as is
usually needed in optical microscopy.” (Diebold, 2005) further emphasizes
these and other applications.

Wave motion is important in the production of ceramics, or certainly
in ceramic behaviour. (Saggio-Woyansky et al., 1992) observe that porous
ceramics are either reticulate or foam and are made up of a porous network
which has relatively low mass, low thermal conductivity, and low density,
and (Raiser et al., 1994) report experimental results where microcracking
along grain boundaries in ceramics is caused by compressive waves. Since
reticulate porous ceramics are used for molten metal filters, diesel engine
exhaust filters, as catalyst supports, and industrial hot-gas filters, and both
reticulate and foam porous ceramics are used as light-structure plates, in
gas combustion burners, and in fire - protection and thermal insulation
materials, a study of wave motion in such materials is clearly useful.

A further important application area for elastic materials with voids is
in the production of building materials such as bricks. Modern buildings
are usually made with lighter, thinner bricks, often with many voids in
the building materials. In seismic areas lighter materials are necessary and
much applied research activity is taking place. However, the use of lighter
materials, especially those with voids is creating an environmental problem
because noise transmission through such objects is considerably greater.
Consequently, there is much applied research ongoing in the area of acous-
tic materials with voids, cf. (Garai and Pompoli, 2005), (Maysenhölder
et al., 2004), (Wilson, 1997), and any theoretical model for acoustic wave
propagation in an elastic material with voids which yields useful results is
desirable.

2.5.1 Basic theory of elastic materials with voids

To present ideas clearly we begin with the classical theory of thermoelastic-
ity with voids, where the energy balance equation is essentially parabolic,
so temperature is not transported as a wave. The balance equations for
a continuous body containing voids are given by (Goodman and Cowin,
1972). We use the equations as given by (Nunziato and Cowin, 1979) since
these are appropriate for an elastic body.

The key thing is to assume that there is a distribution of voids throughout
the body B. If γ(X, t) denotes the density of the elastic matrix, then the
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mass density ρ(X, t) of B has form

ρ = νγ (2.84)

where 0 < ν ≤ 1 is a volume distribution function with ν = ν(X, t).
Since the density or void distribution in the reference configuration can be
different we also have

ρ0 = ν0γ0

where ρ0, γ0, ν0 are the equivalent functions to ρ, γ, ν, but in the reference
configuration.

The first balance law is the balance of mass

ρ|detF| = ρ0 .

With πAi being the Piola-Kirchoff stress tensor and FiA = xi,A as before,
the balance of angular momentum states

πFT = FπT .

The balance of linear momentum has form

ρ0ẍi = πAi,A + ρ0fi, (2.85)

fi being an external body force. The balance law for the voids distribution
is

ρ0kν̈ = hA,A + g + ρ0�, (2.86)

where k is an inertia coefficient, hA is a stress vector, g is an intrinsic body
force (giving rise to void creation/extinction inside the body), and � is an
external void body force. Actually, (Nunziato and Cowin, 1979) allow the
inertia coefficient k to depend on X and/or t, but, for simplicity, we follow
(Goodman and Cowin, 1972) and assume it to be constant.

The energy balance in the body may be expressed as

ρ0ε̇ = πAiḞiA + hAν̇,A − gν̇ − qA,A + ρ0r, (2.87)

where ε, qA and r are, respectively, the internal energy function, the heat
flux vector, and the externally supplied heat supply function. To under-
stand equation (2.87) we may integrate it over a fixed body B, integrate
by parts, and use the divergence theorem to see that

d

dt

∫
B

ρ0εdV+
∫

B

(gν̇+hA,Aν̇)dV =
∫

B

πAiḞiAdV−
∮

∂B

qANAdS+
∫

B

ρ0rdV,

where ∂B is the boundary of B. Employing (2.86) with � = 0 we may
rewrite the above as

d

dt

∫
B

(ρ0ε+
ρ0k

2
ν̇2)dV =

∫
B

πAiḞiAdV −
∮

∂B

qANAdS +
∫

B

ρ0rdV.

In this form we recognise the equation as an energy balance equation with
a term added due to the kinetic energy of the voids. In fact, (Iesan, 2004),
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pp. 3–5, shows how one may begin with a conservation of energy law for
an arbitrary sub-body of a continuous medium with voids, and then derive
equations (2.85), (2.86) and (2.87) from the initial energy balance equation.

It is usual in continuum thermodynamics to also introduce an entropy
inequality. We use the Clausius-Duhem inequality

ρ0η̇ ≥ −
(
qA
θ

)
,A

+
ρ0r

θ
, (2.88)

where η is the specific entropy function. Observe that the sign of the first
term on the right of (2.88) is different from that of (Nunziato and Cowin,
1979). (One could use a more sophisticated entropy inequality where qA/θ
is replaced by a general entropy flux k, as in (Goodman and Cowin, 1972),
but the above is sufficient for our purpose.)

2.5.2 Thermodynamic restrictions

We consider an elastic body containing voids to be one which has as
constitutive variables the set

Σ = {ν0, ν, FiA, θ, θ,A, ν,A} (2.89)

supplemented with ν̇. Thus, the constitutive theory assumes

ε = ε(Σ, ν̇), πAi = πAi(Σ, ν̇), qA = qA(Σ, ν̇),
η = η(Σ, ν̇), hA = hA(Σ, ν̇), g = g(Σ, ν̇).

(2.90)

This is different from (Nunziato and Cowin, 1979) who regard η as the
independent variable rather than θ and they also assume qA = 0.

To proceed we introduce the Helmholtz free energy function ψ in the
manner

ε = ψ + ηθ. (2.91)

Next, (2.87) is employed to remove the terms −qA,A + ρ0r from inequality
(2.88) and then utilize (2.91) to rewrite (2.88) as

−ρ0(ψ̇ + ηθ̇) − qAθ,A

θ
+ πAiḞiA + hAν̇,A − gν̇ ≥ 0. (2.92)

The chain rule is used together with (2.90) to expand ψ̇ and then (2.92)
may be written as

−
(
ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
−
(
ρ0

∂ψ

∂FiA
− πAi

)
ḞiA

−
(
ρ0
∂ψ

∂θ
+ ρ0η

)
θ̇ −
(
ρ0

∂ψ

∂ν,A
− hA

)
ν̇,A

− ρ0
∂ψ

∂θ,A
θ̇,A − ρ0

∂ψ

∂ν̇
ν̈ ≥ 0.

(2.93)
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The next step is to observe that ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ appear linearly in
inequality (2.93). We may then follow the procedure of (Coleman and Noll,
1963) and assign an arbitrary value to each of these quantities in turn,
balancing equations (2.85), (2.86) and (2.87) by a suitable choice of the
externally supplied functions fi, � and r. We may in this manner violate
inequality (2.93) unless the coefficients of ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ are each
identically zero. Hence, we deduce that

ψ �= ψ(ν̇, θ,A),

hA = ρ0
∂ψ

∂ν,A
⇒ hA �= hA(ν̇, θ,A), (2.94)

πAi = ρ0
∂ψ

∂FiA
⇒ πAi �= πAi(ν̇, θ,A), (2.95)

η = −∂ψ
∂θ

⇒ η �= η(ν̇, θ,A),

and further

ε �= ε(ν̇, θ,A).

The residual entropy inequality, left over from (2.93), which must hold for
all motions is

−
(
ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
≥ 0.

Thus, to specify a material for an elastic body containing voids we have
to postulate a suitable functional form for ψ = ψ(ν0, ν, FiA, θ, ν,A). Such a
form is usually constructed with the aid of experiments. The functions g
and qA still involve ν̇ and this can lead to behaviour almost viscoelastic-
like, see (Nunziato and Cowin, 1979). Other writers, e.g. (Iesan, 2004),
(Ciarletta and Iesan, 1993), omit ν̇ from the constitutive list at the outset.
In this manner one deduces that g may be given as a derivative of the
Helmholtz free energy, (Iesan, 2004), p. 7, although some of the possibly
desirable features of viscoelasticity are lost. The wavespeeds of acceleration
waves in this case are derived in (Iesan, 2004), (Ciarletta and Iesan, 1993).

2.5.3 Voids and Green - Lindsay thermoelasticity

In this section we consider a theory of voids as developed by (Nunziato
and Cowin, 1979) but we allow for the possibility of propagation of a
temperature wave, by generalizing the voids theory in the thermodynamic
framework of (Green and Laws, 1972). In addition to allowing us to explic-
itly examine the important effects of temperature this allows us to study
the propagation of a temperature wave in a porous material. In this section
we concentrate on the theory of (Green and Laws, 1972) where a general-
ized temperature φ(θ, θ̇), θ being absolute temperature, is introduced. The
theory was originally developed by (Ciarletta and Scarpetta, 1989).
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The current literature increasingly recognises the importance thermal
waves have in the theory of porous media. A very clever way to dry a
saturated porous material via second sound is due to (Meyer, 2006) and
(Johnson et al., 1994) show how second sound may be employed to cal-
culate physical properties of water saturated porous media. Both of these
cover highly important and useful topics. (Kaminski, 1990) reports experi-
mental results for materials with non-homogeneous inner structures which
indicate relaxation times of order 11 – 54 seconds rather than order pi-
coseconds as was previously thought. There is evidence that second sound
may be a key mechanism for heat transfer in some biological tissues as the
experiments of (Mitra et al., 1995) and the work of (Vedavarz et al., 1992)
indicate. Thus, we believe a theory of elastic materials with voids coupled
to a suitable thermodynamic theory capable of admitting second sound
has a place in modern engineering. One has to be careful how the theory
of voids is married to the thermodynamics, however. The incorporation of
time derivatives does present a serious problem. The thermodynamics of
Green and his co-workers were specifically developed to incorporate into
other areas of continuum mechanics and thus we believe these are natural
approaches to use.

In this section we describe a thermo-poroacoustic theory which allows
for nonlinear elastic effects and for the presence of voids, by using the
thermodynamics of (Green and Laws, 1972). This thermodynamics utilises
a generalized temperature φ(θ, θ̇) rather than just the standard absolute
temperature θ.

The starting point is to commence with the standard balance equations
for an elastic material containing voids, cf. (Nunziato and Cowin, 1979), or
equations (2.85), (2.86), (2.87), and we follow the approach of (Ciarletta
and Scarpetta, 1989), see also (Ciarletta and Straughan, 2007b),

ρẍi = πAi,A + ρFi, (2.96)
ρkν̈ = hA,A + g + ρ�, (2.97)
ρε̇ = −qA,A + πAiẋi,A + hAν̇,A − gν̇ + ρr. (2.98)

Here XA denote reference coordinates, xi denote spatial coordinates, a su-
perposed dot denotes material time differentiation holding X fixed, and ,A

signifies ∂/∂XA. The variable ρ is the reference density, and we use ρ rather
than ρ0 henceforth, for simplicity. Furthermore, ν is the void fraction, ε is
the specific internal energy, k is the inertia coefficient, Fi, � and r are exter-
nally supplied body force, extrinsic equilibrated body force, and externally
supplied heat. The tensor πAi is the stress per unit area of the XA−plane
in the reference configuration acting over corresponding surfaces at time t
(the Piola-Kirchoff stress tensor), qA is the heat flux vector, and hA and g
are a vector and a scalar function arising in the conservation law for void
evolution. (Nunziato and Cowin, 1979) refer to hA as the equilibrated stress
and they call g the intrinsic equilibrated body force.
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The thermodynamic development commences with the entropy inequal-
ity of (Green and Laws, 1972), and this is

ρη̇ − ρr

φ
+
(
qA
φ

)
,A

≥ 0. (2.99)

In this inequality η is the specific entropy and φ(> 0) is a generalised
temperature function which reduces to θ in the equilibrium state. Next,
introduce the Helmholtz free energy function ψ by ψ = ε− ηφ and rewrite
inequality (2.99) using the energy equation (2.98) to obtain

−ρψ̇ − ρφ̇η + πAiẋi,A − qAφ,A

φ
− gν̇ + hAν̇,A ≥ 0. (2.100)

Now, we assume that the constitutive functions

ψ, φ, η, πAi, qA, hA, g (2.101)

depend on the variables

xi,A, ν, ν,A, θ, θ̇, θ,A. (2.102)

Note that we do not include ν̇ in the constitutive list and are so effectively
following the voids approach of (Iesan, 2004), (Ciarletta and Iesan, 1993).
One then expands ψ̇ and φ̇ in (2.100) to reduce the constitutive equations.
Inequality (2.100) expanded is

ẋi,A

(
πAi − ρ

∂ψ

∂xi,A
− ρη

∂φ

∂xi,A

)
− ν̇
(
ρ
∂ψ

∂ν
+ g + ρη

∂φ

∂ν

)

− θ̇
(
ρ
∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− θ̈
(
ρ
∂ψ

∂θ̇
+ ρη

∂φ

∂θ̇

)

− θ̇,A

(
ρ
∂ψ

∂θ,A
+ ρη

∂φ

∂θ,A
+
qA
φ

∂φ

∂θ̇

)
− ν̇,A

(
ρη

∂φ

∂ν,A
+ ρ

∂ψ

∂ν,A
− hA

)

− qA
φ
xi,AB

∂φ

∂xi,AB
− qA

φ

∂φ

∂ν,J
ν,JA − qA

φ

∂φ

∂θ,J
θ,JA

− qA
φ

(∂φ
∂ν

ν,A +
∂φ

∂θ
θ,A

)
≥ 0. (2.103)

The terms in xi,AB , ν,JA and θ,JA appear linearly and so using the fact
that �, r and Fi may be selected as we like to balance (2.96) – (2.98), we
find

∂φ

∂xi,A
= 0,

∂φ

∂ν,A
= 0,

∂φ

∂θ,A
= 0. (2.104)

Thus

φ = φ(θ, θ̇, ν). (2.105)

It is important to observe that the generalized temperature depends on ν
in addition to θ and θ̇. Hence, the void fraction ν directly influences φ.
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Furthermore, the linearity of ẋi,A, ν̇, θ̈, θ̇,A and ν̇,A in (2.103) then allows
us to deduce that

πAi = ρ
∂ψ

∂xi,A
, qA = −ρ ∂ψ

∂θ,A

/
1
φ

∂φ

∂θ̇
,

hA = ρ
∂ψ

∂ν,A
, g = −ρ

(
∂ψ

∂ν
+ η

∂φ

∂ν

)
,

(2.106)

and

η = −∂ψ
∂θ̇

/
∂φ

∂θ̇
. (2.107)

The residual entropy inequality which remains from (2.103) after this
procedure, has form

−θ̇
(
ρ
∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− qA

φ

(
∂φ

∂ν
ν,A +

∂φ

∂θ
θ,A

)
≥ 0. (2.108)

This inequality places a further restriction on all constitutive equations and
motions.

Thus, the complete nonlinear theory of Green - Lindsay thermoelastic-
ity with voids as derived by (Ciarletta and Scarpetta, 1989) consists of
equations (2.96) - (2.98) together with the constitutive equations (2.105)
- (2.107). One needs functional forms for ψ and φ and then πAi, hA, g, ε
and qA follow and the balance equations (2.96) - (2.98) are, in principle,
determinate.

2.5.4 Voids and type II thermoelasticity

In this section we describe the theory of (De Cicco and Diaco, 2002). These
writers generalize the thermodynamic procedure of (Green and Naghdi,
1993) and use a thermal displacement variable

α =
∫ t

t0

θ(X, s)ds + α0, (2.109)

where X is the spatial coordinate in the reference configuration of the body
with θ being the absolute temperature. A general procedure for deriving the
equations for a continuous body from a single balance of energy equation is
developed by (Green and Naghdi, 1995b). These writers derive the conser-
vation equations for balance of mass, momentum, and entropy. The work
of (De Cicco and Diaco, 2002), like that of (Green and Naghdi, 1993) starts
with an entropy balance equation. (De Cicco and Diaco, 2002) extend the
(Green and Naghdi, 1993) thermoelasticity theory to include voids in the
manner of (Nunziato and Cowin, 1979). The full nonlinear equations are de-
rived by (De Cicco and Diaco, 2002), although they only utilize a linearized
version. We follow (Ciarletta et al., 2007) and rederive the (De Cicco and
Diaco, 2002) theory referring to a reference configuration and employing a
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first Piola-Kirchoff stress tensor, as opposed to the symmetric stress tensor
formulation of (De Cicco and Diaco, 2002).

It is worth observing that (Green and Naghdi, 1993) write, ... “This
type of theory, ... thermoelasticity type II, since it involves no dissipa-
tion of energy is perhaps a more natural candidate for its identification
as thermoelasticity than the usual theory.” Moreover, (Green and Naghdi,
1993) observe that, ... “This suggests that a full thermoelasticity theory
- along with the usual mechanical aspects - should more logically include
the present type of heat flow (type II) instead of the heat flow by conduc-
tion (classical theory, type I).” (The words in brackets have been added
for clarity.) We would argue that it is beneficial to develop a fully nonlin-
ear acceleration wave analysis for a Green - Naghdi type II thermoelastic
theory of voids.

The starting point in the development of the theory is to consider the
momentum and balance of voids equations for an elastic material containing
voids, see (2.85), (2.86),

ρẍi = πAi,A + ρFi, (2.110)
ρkν̈ = hA,A + g + ρ�. (2.111)

One needs a balance of energy and from (De Cicco and Diaco, 2002) this
is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ + (θΦA),A. (2.112)

In these equations XA denote reference coordinates, xi denote spatial co-
ordinates, a superposed dot denotes material time differentiation and ,A

stands for ∂/∂XA. The variables ρ, ν, ε, k, are the reference density, the
void fraction, the specific internal energy, and the inertia coefficient. The
terms Fi, � and s denote externally supplied body force, extrinsic equi-
librated body force, and externally supplied heat. The tensor πAi is the
stress per unit area of the XA−plane in the reference configuration acting
over corresponding surfaces at time t (the Piola-Kirchoff stress tensor), ΦA

is the entropy flux vector, and hA and g are a vector and a scalar function
arising in the conservation law for void evolution. These are referred to
by (Nunziato and Cowin, 1979) as the equilibrated stress and the intrinsic
equilibrated body force, respectively.

The next step is to use the entropy balance equation, see (Green and
Naghdi, 1993), (De Cicco and Diaco, 2002),

ρθη̇ = ρθs+ ρθξ + (θΦA),A − ΦAθ,A (2.113)

where ξ is the internal rate of production of entropy per unit mass, and
η, θ are the specific entropy and the absolute temperature. Introduce the
Helmholtz free energy function ψ = ε − ηθ and then equation (2.112) is
rewritten with the aid of (2.113) as

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ + ΦAθ,A − ρθξ. (2.114)
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The constitutive theory of (De Cicco and Diaco, 2002) writes the functions

ψ, η, πAi,ΦA, hA, g, ξ, (2.115)

as depending on

xi,A, ν, ν,A, α̇, α,A. (2.116)

The function ψ̇ is expanded using the chain rule, and rearranging terms,
recollecting α̇ = θ, equation (2.114) may be written as

ẋi,A

(
ρ
∂ψ

∂xi,A
− πAi

)
+ ν̇,A

(
ρ
∂ψ

∂ν,A
− hAi

)
+ α̇,A

(
ρ
∂ψ

∂α,A
− ΦA

)

+ ρα̈
(∂ψ
∂α̇

− η
)

+ ν̇
(
ρ
∂ψ

∂ν
+ g
)

+ ρθξ = 0.
(2.117)

We now use the fact that ẋi,A, ν̇,A, α̇,A, α̈ and ν̇ appear linearly in (2.117)
and so one derives the forms, cf. (De Cicco and Diaco, 2002), equations
(19),

πAi = ρ
∂ψ

∂xi,A
, ΦA = ρ

∂ψ

∂α,A
, hA = ρ

∂ψ

∂ν,A
,

g = −ρ∂ψ
∂ν

, η = −∂ψ
∂θ

= −∂ψ
∂α̇

, ξ = 0.
(2.118)

A theory of type II thermoelasticity containing voids is then given by
equations (2.110) - (2.112) with the constitutive theory prescribed by
equations (2.118).

2.5.5 Voids and type III thermoelasticity

As we have seen in section 2.5.4, (De Cicco and Diaco, 2002) have devel-
oped a theory of thermoelasticity with voids which is a generalization of the
dissipationless theory of thermoelasticity of (Green and Naghdi, 1993). The
latter writers refer to this as thermoelasticity of type II, type I being the
classical theory where the equation governing the temperature field is effec-
tively parabolic as opposed to hyperbolic in type II theory. The theory of a
thermoelastic body with voids corresponding to type I thermoelasticity was
developed by D. Iesan, see e.g. (Iesan, 2004). However, as shown in section
2.4 (Green and Naghdi, 1992) have developed a further theory of ther-
moelasticity which employs the thermal displacement variable α and the
thermodynamics of (Green and Naghdi, 1991; Green and Naghdi, 1995b).
This theory leads to what is essentially a second order in time equation
for the thermal displacement field, but differently from the type II theory
of (Green and Naghdi, 1993) the theory of (Green and Naghdi, 1992) does
have damping and hence dissipation. (Green and Naghdi, 1991; Green and
Naghdi, 1992) refer to this theory as being of type III, cf. section 2.4.

The goal of this section is to develop a type III theory of thermoelasticity,
but allowing for the accommodation of a distribution of voids throughout
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the body. The essential difference between type II and type III thermoelas-
ticity is that the variable α̇,A is added to the constitutive list (2.116),
whereas it is absent in section 2.5.4, cf. section 2.4. The presentation
follows (Straughan, 2008), chapter 7.

We commence with the balance laws for a thermoelastic body with voids,
equations (2.85), (2.86) and (2.87). With ρ denoting the density in the
reference configuration and referring everything to this configuration, we
have the equation of momentum balance

ρẍi = πAi,A + ρfi. (2.119)

The equation of voids distribution is

ρkν̈ = hA,A + g + ρ�. (2.120)

The equation of energy balance is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ − (θpA),A. (2.121)

We let s be the heat supply and pA = qA/θ is the entropy flux vector. We
choose this representation to keep in line with (Green and Naghdi, 1991;
Green and Naghdi, 1992), and observe that pA = −ΦA where ΦA is the
entropy flux vector of (De Cicco and Diaco, 2002). We follow (Green and
Naghdi, 1992) and postulate an entropy balance equation

ρη̇ = ρs+ ρξ − pA,A, (2.122)

where ξ is the internal rate of production of entropy per unit mass.
The variable θ is the absolute temperature and α(X, t) is the thermal
displacement.

We next introduce the Helmholtz free energy function ψ in terms of the
internal energy ε, entropy η and temperature θ, by ψ = ε− ηθ. Then, from
(2.121) and (2.122) it is a straightforward matter to derive the reduced
energy equation, cf. (Green and Naghdi, 1992), equation (2.5),

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ − ρξθ − θ,ApA. (2.123)

A thermoelastic body of type III which contains a distribution of voids is
defined to be one for which the functions

ψ, η, πAi, pA, hA, g and ξ (2.124)

depend on the independent variables

FiA = xi,A, ν, ν,A, α̇, α,A, α̇,A . (2.125)

We do not consider the inhomogeneous situation which would also require
inclusion of XA in the list (2.125), cf. (Iesan, 2004). Observe that we do
not include ν̇ in the list (2.125). This follows (Iesan, 2004) and allows us
to determine g from ψ.
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The procedure now is to expand ψ in terms of the variables in the list
(2.125), and recalling α̇ = θ, we obtain from (2.123),

(ρψFiA − πAi)ḞiA + ν̇(ρψν + g) + ν̇,A(ρψν,A − hA)
+ α̈(ρψα̇ + ρη) + ρψα̇,A α̈,A + α̇,A(pA + ρψα,A) + ρξα̇ = 0.

(2.126)

We observe that ḞiA, ν̇,A, α̈, α̈,A, ν̇, appear linearly in (2.126). Thus, we
may deduce that the coefficients of these terms in (2.126) must be zero.
The process is akin to that described in Appendix A of (Green and Naghdi,
1992). Thus, we find that

πAi = ρψFiA , g = −ρψν , hA = ρψν,A,

η = −ψα̇, ψ �= ψ(α̇,A).
(2.127)

Hence, once we prescribe a functional form for the Helmholtz free energy
function ψ we also know the stress tensor, entropy, and the voids functions
hA and g. What remains from (2.126) is

ρξα̇+ α̇,A(ρψα,A + pA) = 0. (2.128)

This leads to further restrictions on constitutive functions. We now also
have that

ψ = ψ(xi,A, ν, ν,A, α̇, α,A),
pA = pA(xi,A, ν, ν,A, α̇, α,A, α̇,A),
ξ = ξ(xi,A, ν, ν,A, α̇, α,A, α̇,A).

(2.129)

Thus, once we have a form for the functional dependence of ψ on its
variables, and a form for pA, equations (2.119) - (2.121) yield the complete
nonlinear theory of type III thermoelasticity with voids, the function ξ
being determined by equation (2.128).

2.5.6 Linear voids type III thermoelasticity

One may study acceleration waves in the nonlinear theory of section 2.5.5.
The acceleration waves in this case do not have a separately propagating
temperature wave. The reason is that in some sense type III thermoelastic-
ity behaves more like type I thermoelasticity. For acceleration wave motion
in thermoelasticity without voids this is explained in detail by (Quintanilla
and Straughan, 2004), and a similar explanation holds here. Nevertheless,
the extra damping present in the current theory may be useful in practical
problems and with this in mind we now develop the equations for a linear
theory. Let the body have a centre of symmetry although we allow it to
be anisotropic. We denote the displacement in this section as ui. We then
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write ψ as a quadratic function of the variables in the list (2.129). Thus,

ρψ =
1
2
aiAjBui,Auj,B − a1

2
θ2 − a2

2
ν2 +AiAθui,A +BiAνui,A

+
RAB

2
ν,Aν,B + SABν,Aα,B +

TAB

2
α,Aα,B ,

(2.130)

where aiAjB , RAB, TAB have the following symmetries,

aiAjB = ajBiA, RAB = RBA, TAB = TBA.

From (2.127) we now see that

πAi = aiAjBuj,B +AiAθ +BiAν, hA = RABν,B + SABα,B,

ρη = a1θ −AiAui,A , g = a2ν −BiAui,A .
(2.131)

We also write

ρξ = φ1ν + φ2α̇,

pA = −KABν,B − LABα,B −MABα̇,B .

From (2.128) one may use the cyclic thermomechanical process argument
of (Green and Naghdi, 1991), section 9, to infer that LAB,MAB, RAB are
non-negative tensor forms, φ2 ≤ 0, φ1 = 0, and SAB = KAB, TAB = LAB.

In this manner, equations (2.119), (2.120) and (2.122) lead to the linear
equations

ρüi = (aiAjBuj,B),A + (AiAθ),A + (BiAν),A,

ρkν̈ = (RABν,B),A + (KABα,B),A + a2ν −BiAui,A , (2.132)
a1α̈ = AiAu̇i,A + φ2α̇+ (KABν,B),A + (TABα,B),A + (MABα̇,B),A .

One may study the boundary - initial value problem for (2.132). For ex-
ample, uniqueness and stability are easily investigated either by using an
energy method, or if definiteness of the elastic coefficients aiAjB is not
imposed, by a logarithmic convexity argument. For the latter one will
be better employing a time integrated version of α as done by (Ames
and Straughan, 1992; Ames and Straughan, 1997) and (Quintanilla and
Straughan, 2000), these articles following the introduction of this method
for the (Green and Laws, 1972), (Green, 1972), version of thermoelastic-
ity in (Straughan, 1974). One may also study one-dimensional waves as in
(Green and Naghdi, 1992) and then (2.132) essentially reduce to

ρutt = auxx +Aθx + Bνx,

ρkνtt = Rνxx +Kαxx + a2ν −Bux,

a1αtt = Autx + φ2αt +Kνxx + Tαxx +Mαtxx.

(2.133)

The damped character of the temperature wave is evident from (2.133) as
is observed in the non voids case by (Green and Naghdi, 1992), page 262.
If the displacement and voids effects are absent from (2.133)3, then we see
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that α satisfies the equation

a1
∂2α

∂t2
−M

∂3α

∂t∂x2
= φ2

∂α

∂t
+ T

∂2α

∂x2
.

This equation clearly does not permit the possibility of undamped thermal
waves, unless M = φ2 = 0. The damping evident in equations (2.133) may
be useful for description of some practical situations.

(Eringen, 1990; Eringen, 2004) develops a voids theory which has a richer
structure than the (Nunziato and Cowin, 1979) model. This is achieved by
incorporating an equation for the spin at each point of the body. Again,
this theory is likely to have rich application in wave propagation problems.
(Straughan, 2008) describes this theory in connection with nonlinear wave
motion in section 7.6. A general study of singular surface propagation in
a continuous body formed of a thermo-microstretch material which has
memory is given by (Iesan and Scalia, 2006).

The theory developed by (Eringen, 1990) includes temperature effects
while (Eringen, 2004) also includes electromagnetic effects which could be
important in wave motion in ceramics, for example. However, we here ig-
nore electromagnetic effects. The basic variables of the theory of (Eringen,
1990; Eringen, 2004) are the displacement ui, microstretch ϕ, and the mi-
crorotation vector φi. The microstretch theory of (Eringen, 1990; Eringen,
2004) is based on balance laws for these quantities. These are balance of
momentum,

ρ0üi = πAi,A + ρ0fi (2.134)

and balance of microstretch

ρ0
j0
2
ϕ̈ = mA,A + T + ρ0�, (2.135)

in which we measure quantities in the current configuration but refer back
to the reference configuration. Thus, πAi is a Piola-Kirchoff stress tensor,
fi is a prescribed body force, j0 is the microinertia, mA is a microstretch
couple, � is a prescribed microstretch source term and T (denoted by t− s
in (Eringen, 2004)) is the microstretch stress. Here , A denotes ∂/∂XA. In
addition to equations (2.134) and (2.135), the Eringen theory has a balance
of spins equation of form

ρ0Jφ̈i = mAi,A + εiAjπAj + ρ0�i, (2.136)

where �i is an applied body couple density, mAi is the couple stress tensor,
and we have taken the microinertia tensor Jik = Jδik for simplicity. The
constitutive theory assumes that

πAi,mA, T and mAi (2.137)

are functions of the variables

FiA = ui,A, φi, φi,A, ϕ and ϕ,A. (2.138)
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In fact, (Eringen, 2004) combines ui,A and φi into a single strain measure
eiA = ui,A + εAmiφm.

(Straughan, 2008) addresses some new questions regarding singular
surfaces for the (Eringen, 1990) theory.

A detailed account of many properties of elastic bodies containing voids
may also be found in the book by (Iesan, 2004), chapters 1 to 3.

2.6 Generalized thermoelasticity with
microstructure

2.6.1 Hetnarski-Ignaczak theory

(Ignaczak, 1990) and (Hetnarski and Ignaczak, 1996; Hetnarski and
Ignaczak, 1997; Hetnarski and Ignaczak, 1999) present an interesting ther-
moelastic theory which is capable of describing soliton - like thermoelastic
waves. The wave aspect is further analysed in (Hetnarski and Ignaczak,
2000) where a comparison is made with wave propagation in other ther-
moelastic models. The model described by (Hetnarski and Ignaczak, 1999)
consists of equations for the displacement ui, temperature θ, and an elas-
tic heat flow field bi. In the isotropic case these equations are given
by (Hetnarski and Ignaczak, 1999) as

ζ2üi = fi − εθ,i +
1

2(1 − ν)
uj,ij + κΔui ,

θ̇ = r − θu̇i,i + Δθ +
biθ,i

θ
− bi,i ,

ωḃi = −θ,i

θ
,

(2.139)

where θ is the absolute temperature, ζ, ε are constants, fi and r are body
force and heat supply, ν is Poisson’s ratio and κ = (1 − 2ν)/(2 − 2ν). The
constant ω is much less than 1 although positive. (Hetnarski and Ignaczak,
1999) show how equations (2.139) lead to soliton - like thermoelastic waves
which move with different wavespeeds.

2.6.2 Micropolar, dipolar, affine microstructure

A type II thermoelastic theory incorporating micropolar effects was devel-
oped by (Ciarletta, 1999). He concentrates on producing a linear theory.
In addition to the type II thermoelasticity theory of section 2.3 (Ciarletta,
1999) introduces a microrotation vector φi which represents spin at a point.
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His basic equations, in the current frame are

ρ0üi = tji,j + ρ0fi ,

ρ0η̇ = ρ0s+ Φi,i ,

Iij φ̈j = mji,j + εijktjk + ρ0gi .

(2.140)

Equation (2.140)1 is the balance of linear momentum, ρ0 being density, ui

displacement, tij Cauchy stress, and fi body force. Equation (2.140)2 is the
balance of entropy equation, η being entropy, s entropy supply, Φi entropy
flux, and we observe the intrinsic entropy supply ξ is shown by (Ciarletta,
1999) to be zero. In the equation (2.140)3 Iij represents the coeffcients of
inertia, mij is the couple stress tensor, and gi is the body couple density.
(Ciarletta, 1999) introduces the variables eij and κij by

eij = uj,i + εjikφk , κij = φj,i , (2.141)

and he shows the energy balance law may be written as

ρ0ψ̇ − tij ėij −mij κ̇ij + ρ0ηθ̇ − Φiθ,i = 0, (2.142)

where ψ is the Helmholtz free energy and θ is the temperature.
(Ciarletta, 1999) linearizes about a reference state in which θ = T0, α =

α0, T0 and α0 being constants, where α is the thermal displacement. By
introducing a free energy ψ which is quadratic in eij , κij , T and τ,i, where
T = θ − T0, τ =

∫ t

t0
Tds, he shows the constitutive equations are

tij = Aijrsers +Bijrsκrs −DijT +Gijrτ,r ,

mij = Brsijers + Cijrsκrs − EijT +Hijrτ,r ,

ρ0η = Dijeij + Eijκij + aT + biτ,i ,

Φi = Grsiers +Hrsiκrs − biT +Kijτ,j .

(Ciarletta, 1999) principally works with the isotropic theory for a
body with a centre of symmetry. For this case he shows the governing
evolutionary equations become

ρ0üi = (μ+ κ)Δui + (λ+ μ)uj,ji + κεirsφs,r −mT,i + ρ0fi ,

Iφ̈i = γΔφi + (α+ β)φj,ji + κεirsus,r − 2κφi + ρ0gi ,

aT0T̈ = kΔT −mT0üi,i + ρ0ṡ.

(2.143)

(Ciarletta, 1999) solves a problem of a concentrated heat source and
proves a continuous dependence result. (Passarella and Zampoli, 2011)
derive reciprocal and variational principles.

(Quintanilla, 2002c) develops a theory for thermoelasticity of type II for
a body which includes an affine microstructure term xiK . He writes that
this determines the homogeneous deformation of the particle with centre
of mass at X. He uses the equation of balance of linear momentum,

ρẍi = tKi,K + ρfi , (2.144)
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where tKi is here the Piola-Kirchoff stress tensor. His balance of entropy is

ρη̇ = ρS + ρξ + ΦA,A . (2.145)

He also needs an equation for micromotion,

ρJKLẍiL = SLiK,L − SiK + ρfiK , (2.146)

where JKL is an inertia tensor, SLiK is the dipolar stress tensor, SiK is
a second order tensor defined below, and fiK is a source term for the
micromotion. The energy balance equation is

ρ(ψ̇ + θ̇η) − tKiẋi,K − SLiK ẋiK,L − SiK ẋiK + ρθξ − ΦAθ,A = 0. (2.147)

(Quintanilla, 2002c) postulates constitutive theory that

ψ, tKj , SLiK , SiK , η,ΦA and ξ

depend on the variables

xi,K , xiK , xiK,L, θ and α,K ,

α being the thermal displacement. He shows that this leads to

tKj = ρ
∂ψ

∂xj,K
, SKj = ρ

∂ψ

∂xKj
, SKiJ = ρ

∂ψ

∂xiJ,K
,

ΦA = ρ
∂ψ

∂α,A
, η = −∂ψ

∂θ
and ξ = 0.

(2.148)

Then, a nonlinear theory for thermoelasticity of type II including affine mi-
crostructure consists of the differential equations (2.144) - (2.146) together
with the constitutive equations (2.148).

(Quintanilla, 2002c) linearizes about a state in which α = α0 and θ = T0.
He puts T = θ − T0, ui = xi − Xi, uiA = xiA − XiA, and postulates a
Helmholtz free energy function ψ which is quadratic. In this way he derives
the governing evolution equations

ρüi = (AiJRsus,R +BiJrSur,S − βJiT ),J + ρfi ,

ρJKLüiL = (EKiLSjRujR,S +MKiLRτ,R),L

− (BrSiKur,S + CSriKur,S − χiKT ) + ρfiK ,

aτ̈ = −βKiu̇i,K − χiK u̇iK +MLjKI ujL,KI +KIJ τ,IJ +
ρ

T0
R ,

(2.149)

where τ =
∫ t

t0
Tds is a thermal displacement. (Quintanilla, 2002c) in-

troduces an interesting functional to establish uniqueness via logarithmic
convexity without assuming definiteness of the elastic coefficients. He also
establishes an existence theorem using a semigroup approach.

Thermoelasticity theories based on Green-Naghdi type II and type
III thermodynamics are also investigated with internal variables in the
interesting article of (Ciancio and Quintanilla, 2007).
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2.6.3 Piezoelectricity and thermoelasticity

Piezoelectricity is an interesting phenomenon. It is basically the ability of
some materials to generate an electric field or an electric potential when a
mechanical stress is applied. Some crystals and especially certain ceramics
exhibit piezoelectric behaviour. In this section we briefly describe some
work which has developed and employed theories for piezoelectricity in a
thermoelastic body when the temperature wave behaviour arises from a
Lord-Shulman, Green-Lindsay, or Green-Naghdi type II approach.

Since ceramics are porous materials it makes sense to develop a piezo-
electric theory for thermoelasticity which also incorporates porosity. This is
what (Ciarletta and Scalia, 1993) did. They derive a thermoeleastic theory
which allows the body to have a distribution of voids. Their thermodynam-
ics is based on the (Green and Laws, 1972) and (Green and Lindsay, 1972) θ
and θ̇ theory. Let ui denote the displacement and ν the void fraction. Then
(Ciarletta and Scalia, 1993) begin with the balance of linear momentum
and balance equation for the voids, i.e.

ρ0üi = tji,j + fi,

ρ0χν̈ = Hi,i + g + � ,
(2.150)

where tij , Hi are the Cauchy stress tensor and the equilibrated stress vector,
fi and � are externally supplied body forces, χ is an inertia coefficient, and
g is an intrinsic equilibrated body force. They adopt Maxwell’s equations
in the form

Di,i = f, Ei = −φ,i , (2.151)

where D,E are the electric displacement field and the electric field, f is
the charge density and φ is the electric potential. Their equation of energy
balance is

ρ0ε̇ = tij ėij +Hiν̇,i − gν̇ − qi,i + EiḊi + ρ0r, (2.152)

in which ε is the internal energy, eij = (ui,j + uj,i)/2, qi is the heat flux
and r is the heat supply.

(Ciarletta and Scalia, 1993) employ the entropy inequality of (Green and
Laws, 1972)

ρ0η̇ ≥ ρ0r

φ
−
(
qi
φ

)
,i

,

with η being entropy and φ a function depending on the constitutive
variables. They assume there is a constant temperature T0 in the refer-
ence state and ν0 is the distribution of ν in that state. They then put
θ = T − T0, ζ = ν − ν0, and define a generalized Helmholtz free energy of
form

G = ε− φη − 1
ρ0
DiEi .
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(Ciarletta and Scalia, 1993) define a piezoelectric material to be one for
which

G, tij , Hi, qi, g, η,Di and φ

depend on the variables

eij , θ, θ̇, θ,i , Ei, ζ and ζ,i .

They then exploit the entropy inequality to show that

tij = ρ0
∂G

∂eij
, Di = −ρ0

∂G

∂Ei
, Hi = ρ0

∂G

∂ζ,i
,

qi = ρ0φ
∂G

∂θ,i

/
∂φ

∂θ̇
, η = −∂G

∂θ̇

/
∂φ

∂θ̇
,

g = −ρ0

(∂G
∂ζ

+ η
∂φ

∂ζ

)

and φ = φ(ζ, θ, θ̇).

(2.153)

They assume further that in thermodynamic equilibrium φ becomes T0 +θ,
i.e. φ(ζ, θ, 0) = T0 + φ.

Thus, the full system of nonlinear equations for piezoelectric behaviour
in a thermoelastic body as derived by (Ciarletta and Scalia, 1993) are
equations (2.150), (2.151), and (2.152) together with (2.153).

(Ciarletta and Scalia, 1993) futher develop a linear version of their theory
and establish reciprocity relations and a uniqueness theorem.

The paper of (Iesan, 2008) proceeds along the lines of Green-Naghdi type
II thermoelasticity to develop a theory of piezoelectricity in a microstretch
continuous body. The idea of microstretch was introduced in section 2.5.6.
As (Iesan, 2008) usefully points out a microstretch continuum is a dipolar
one with a dipolar displacement uij where uij = φδij + εijkφk. Here φ is a
microstretch function (i.e. a porosity function) while φi is a microrotation
vector. He remarks that φ may be thought of as a breathing motion whereas
φi represents a rigid microrotation. He also notes that when φ is zero one
obtains a Cosserat continuum.

The lucid paper of (Iesan, 2008) employs balance equations for en-
tropy, linear momentum, moment of momentum, energy, microstretch,
and Maxwell’s equations. The full thermodynamic development is given
in (Iesan, 2008). We simply present the relevant equations and constitutive
theory. The form of Maxwell’s equations are

Di,i = f, Ei = −ψ,i , (2.154)

where Di, Ei are the electric displacement field and the electric field, f is
the charge density and ψ is the electric potential. The balance of entropy
equation is

ρ0η̇ = ρ0s+ ρ0ξ + Φi,i (2.155)
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where ρ0 is density, η entropy, Φi entropy flux, s is the external supply of
entropy, and ξ is the internal rate of production of entropy. The balance of
linear momentum is

ρ0üi = ρ0fi + tji,j (2.156)

where ui is the elastic displacement, fi is the prescribed body force, and tij
is the Cauchy stress tensor. The balance of moment of momentum equation
is

Iij φ̈j = ρ0gi + εijktjk +mji,j (2.157)

where Iij is an inertia tensor, gi is the external body couple, and mij is the
couple stress tensor. Finally the equation for microstretch balance is

j0φ̈ = πi,i + ρ0�− σ. (2.158)

Here j0 is a coefficient, πi is the microstretch stress vector, � is an extrenally
supplied microstretch body force and σ is a function defined in terms of
the electric enthalpy, see below.

(Iesan, 2008) introduces the electric enthalpy function A by

A = ε− ηθ − 1
ρ0
DiEi (2.159)

where ε is the internal energy. His constitutive theory for a piezoelectric
thermoelastic body requires that

A, tij ,mij , πi, σ, η,Φ, ξ and Di

depend on the variables

eij , φj,i, φ,i, φ, θ and α,i

where

eij = uj,i + εjikφk and α̇ = θ,

θ being the temperature. (Iesan, 2008) shows that

mij = ρ0
∂A

∂φj,i
, tij = ρ0

∂A

∂eij
, Φi = ρ0

∂A

∂α,i
,

η = −∂A
∂θ

, Di = −ρ0
∂A

∂Ei
, πi = ρ0

∂A

∂φ,i
,

σ = ρ0
∂A

∂φ
, and ξ = 0.

(2.160)

The fully nonlinear theory of (Iesan, 2008) then consists of equations (2.154)
- (2.158) with the forms (2.160). Once a form for functional dependence of
A is prescribed this yields a complete set of equations.

(Iesan, 2008) further develops a linear theory. He linearizes about a ref-
erence state in which θ = T0 and α = α0, T0 and α0 being constants. He
defines T = θ − T0 and τ =

∫ t

t0
Tds and then proposes a quadratic form
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for A. The complete form for the functions tij ,mij , πi, σ,Φi, η and Di is
then given in the general anisotropic case by (Iesan, 2008) in his equations
(2.25) For an isotropic and homogeneous body (Iesan, 2008) develops the
linear equations as

ρ0üi = (μ+ κ)Δui + (λ+ μ)uj,ji + κεijkφk,j

+ λ0φ,i − β0τ̇,i + ρ0fi ,

Iφ̈i = γΔφi + (α+ β)φj,ji + κεijkuk,j − 2κφ,i + ρ0gi ,

j0φ̈ = (a0Δ − ξ0)φ− λ2Δψ + ν1Δτ

− λ0uj,j + c0τ̇ + ρ0� ,

aτ̈ = kΔτ + ν1Δφ− ν3Δψ − β0u̇i,i − c0φ̇+
ρ0

T0
S ,

λ2Δφ+ χΔψ + ν3Δτ = −f,

(2.161)

where fi, gi, �, S are external supplies. (Iesan, 2008) pointedly remarks that
equation (2.161)5 generalizes the classical equation χΔψ = −f for the
electric potential. Here, the λ2 term represents a porosity effect on the
electric potential while the ν3 term represents a thermal effect.

(Iesan, 2008) establishes a general uniqueness theorem and a continuous
dependence result for his linear theory. He also obtains the solution for the
problem of a concentrated heat source and for an impulsive body force. He
also derives the solution for the problem of a thick-walled spherical shell
where the shell surfaces are subject to different but constant pressures.

(Walia et al., 2009) study the propagation of Lamb waves in a trans-
versely isotropic thermoelastic piezoelectric plate which is rotating about an
axis orthogonal to the plate. They allow for finite speed thermal wave prop-
agation by using both a Lord-Shulman type theory and a Green-Lindsay
one, with the appropriate modifications to account for piezoelectric effects.
Many numerical results are presented and their theory is applied specifi-
cally to a plate made of PZT-5A piezoelectric thermoelastic material. Other
relevant references are provided by (Walia et al., 2009), see also (Ciarletta
and Scarpetta, 1996).

2.6.4 Other theories

There are several other theories of thermoelasticity which cater for second
sound effects which have been proposed and analysed in the literature. We
briefly mention some.

(Iesan and Quintanilla, 2009) develop a type II thermoelasticity theory
which includes microstretch effects and also allows for microtemperatures.
Within the linearized theory they study uniqueness, existence, and instabil-
ity of solutions. (Green and Naghdi, 1995c) present a general development
of their entropy balance thermodynamics to Cosserat continua, Cosserat
surfaces and to Cosserat curves. In (Green and Naghdi, 1995d) they present
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a similar development for the theory of mixtures of interacting continua.
(Caviglia and Morro, 2005) present a general theory for a class of linear
thermoviscoelastic materials and study this in detail when there is varia-
tion in a particular direction, the z-direction say. They also investigate the
energy flux, and problems of reflection and transmission of waves.

Functionally graded elastic bodies are man made and have the property
that elastic coefficients or other coefficients are not constant but change
continuously throughout in a way that the material is designed for a specific
purpose. Within second sound theory functionally graded thermoelastic
bodies have been studied by (Ghosh and Kanoria, 2009) and (Mallik and
Kanoria, 2007). The work of (Ghosh and Kanoria, 2009) is based on a
Green-Lindsay type of thermoelasticity whereas that of (Mallik and Kano-
ria, 2007) proposes equations based on type II thermoelasticity. The effect
of a magnetic field on the response of a thermoelastic body in the context of
second sound theories has also been studied. (Aouadi, 2008) studies mag-
netic field effects within Green-Lindsay thermoelasticity. (Abd-Alla and
Abo-Dahab, 2009) investigate a time-dependent problem with a magnetic
field in type II thermoelasticity theory. (Sharma and Thakar, 2006) anal-
yse the effect of rotation and a magnetic field for both Lord-Shulman and
Green-Lindsay theories of thermoelasticity.

A thermoelasticity theory based on the two temperature approach, see
section 1.7, was developed by (Chen et al., 1969). A variety of shock wave
problems within the context of this theory were tackled by (Warren and
Chen, 1973). (Puri and Jordan, 2006) also present an in-depth study of
harmonic waves in the two-temperature thermoelastic theory. They inves-
tigate particularly the low and high frequency regimes and present detailed
numerical results for both the elastic and temperature waves. Another
study of wave propagation in the two temperature thermoelasticity theory
is due to (Kumar and Mukhopadhyay, 2010). We also mention the study
of (Othman and Singh, 2007) who study a rotating micropolar thermoe-
lastic body. They present solutions for harmonic waves and compare the
results within theories of classical thermoelasticity, Lord-Shulman theory,
Green-Lindsay theory, type II theory, and a dual phase lag theory.

Analytical results for the solution to thermoelasticity of type III for
a beam are given by (Zelati et al., 2010), while (Liu and Quintanilla,
2010a) establish analyticity results for a type III plate. Energy decay in
a mixed thermoelastic system of type II and type III is studied by (Liu and
Quintanilla, 2010b).

A novel result for a Timoshenko beam system is established by (Sare
and Racke, 2009), who show that exponential decay of the solution is to be
expected for a Timoshenko system with Fourier’s law, but incorporation of
a Cattaneo - like heat flux law does not lead to exponential decay.



80 2. Interaction with elasticity

2.7 Exercises

Exercise 2.7.1 Consider the boundary - initial value problem, P, for equa-
tions (2.132) with ui, ν and α prescribed on the boundary Γ, of a bounded
domain Ω ⊂ R

3. Let (u1
i , ν1, α1) and (u2

i , ν2, α2) be solutions to P for the
same boundary and initial data. Write out the boundary initial value prob-
lem for the difference solution ui = u1

i − u2
i , ν = ν1 − ν2, α = α1 −α2 to P.

For appropriate symmetry conditions on the coefficients derive the energy
equation

d

dt

[
1
2

∫
Ω

ρu̇iu̇i dx+
1
2

∫
Ω

aiAjBuj,Bui,A dx+
1
2

∫
Ω

ρkν̇2dx

+
1
2

∫
Ω

RABν,Aν,Bdx+
a1

2
‖θ‖2 +

1
2

∫
Ω

TABα,Aα,Bdx

+
∫

Ω

KABα,Aν,Bdx+
∫

Ω

BiAui,Aν dx

]

+
∫

Ω

MABθ,Aθ,Bdx− φ2‖θ‖2 = 0,

(2.162)

where ‖ · ‖ is the norm on L2(Ω). Use this equation to deduce uniqueness
for appropriate signs on and relations between coefficients.

Exercise 2.7.2 For the Hetnarsky - Ignazcak equations (2.139) with fi = 0
and r = 0, show that

ωbiḃi =
∂

∂t

ω

2
|b|2 = −biθ,i

θ
.

Then show that

θ̇ +
∂

∂t

ω

2
|b|2 = −θu̇i,i + Δθ − bi,i .

Show further that if Ω is a bounded domain in R
3 with boundary Γ,

−
∮

Γ

niθ,idS = ω

∮
Γ

θḃini dS

and so ∂θ/∂n = 0 on Γ is consistent with bini = 0 on Γ.
Deduce also that with ui = 0 on Γ,

d

dt

ζ2

2
‖u̇‖2 = −ε

∫
Ω

θ,iu̇idx− d

dt

A

2

∫
Ω

(ui,i)2dx− d

dt

κ

2
‖∇u‖2 ,

where ‖·‖ is the norm on L2(Ω). Hence, conclude that with ui = 0, bini = 0,
and ∂θ/∂n = 0 on Γ,

F (t) =
ζ2

2ε
‖u̇‖2 +

A

2ε
‖ui,i‖2 +

κ

2ε
‖∇u‖2 +

ω

2
‖b‖2 +

∫
Ω

θ dx

satisfies

F (t) = F (0) for all t > 0.
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Exercise 2.7.3 Prove that a solution to the boundary initial value problem
P for (2.143) is unique.
Hint. Let (2.143) be defined on a bounded spatial domain Ω ⊂ R

3, for t > 0.
Let Γ be the boundary of Ω. On Γ suppose ui, φi and T are given. Also,
initial values are given for ui, ui,t, φi, φi,t, T and Tt. Let (u1

i , φ
1
i , T

1) and
(u2

i , φ
2
i , T

2) be solutions which satisfy P for the same boundary and initial
data. Define the difference solution ui = u1

i −u2
i , φi = φ1

i −φ2
i , T = T1−T2.

Integrate in time the equation which arises for T and set τ =
∫ t

t0
T ds. Show

that one may find

d

dt

[∫
Ω

ρ0

2
u̇iu̇idx+

(μ+ κ

2

)
‖∇u‖2 +

(μ+ λ

2

)
‖ui,i‖2

− κεirs

∫
Ω

uiφs,rdx +
I

2

∫
Ω

φ̇iφ̇idx+
γ

2
‖∇φ‖2 +

(α+ β

2

)
‖φi,i‖2

+
a

2
‖T ‖2 +

k

T0
‖∇τ‖2

]
= −2κ‖φ‖2.

(Note τ̇ = T .) Hence, deduce uniqueness when κ is suitably restricted (a
restriction which does follow from thermodynamics).
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Interaction with fluids

3.1 Cattaneo theories

Within the field of fluid mechanics modifications of the Navier-Stokes equa-
tions to incorporate finite speed heat transport via a Cattaneo - like theory
have not been as prevalent as they are in solid mechanics. The earliest
approaches to doing this would appear to be those of (Müller, 1967b), of
(Fox, 1969b) and of (Carrassi and Morro, 1972). Second sound in fluid me-
chanics has been known for a long time through heat waves in Helium II
below the lambda point of about 2.2◦K. (Peshkov, 1944) reports results
of experiments on Helium II in which he detects a heat wave. (Peshkov,
1947) further analyses experimental results and relates these to Landau’s
theory. A review of the physics literature on this subject may be found in
(Donnelly, 2009).

(Fox, 1969b) adopts a very general approach at the outset and writes
the constitutive theory for the Helmholtz free energy function, ψ, stress
tensor, tij , and entropy, η, as functions of the variables FiA, θ, θ,i and qi,
these being the deformation gradient FiA = ∂xi/∂XA, temperature θ, and
heat flux qi. He proposes instead of a Fourier law for the heat flux q, a
general rate-type equation of form

hk(F, θ, θ,i, qi, Ḟ, θ̇, θ̇,i, q̇i) = 0,

where the vector hk is a linear function in each of the variables Ḟ, θ̇, θ̇,i, and
q̇i. In these expressions a superposed dot denotes the material derivative,

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 82
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e.g.

q̇i =
∂qi
∂t

+ vj
∂qi
∂xj

.

He develops a general theory for what he calls a fluid phase, (Fox, 1969b),
section 4. His full theory is totally nonlinear and involves a very general set
of equations for a viscous fluid. However, he also develops a reduced theory
for an inviscid fluid. (Fox, 1969b) stresses the use of an objective derivative
rather than the material derivative q̇i for the heat flux. His inviscid theory
is based on the equations

ρ̇+ ρdii = 0 ,
ρv̇i = ρbi − p,i ,

ρθη̇ + qi,i = ρr − 2ρ
∂ψ

∂ξ
qi(ε1θ,i + ε2qi),

q̇i − ωijqj = ε1θ,i + ε2qi ,

(3.1)

where ξ = qiqi, ωij = (vi,j − vj,i)/2, and

p = ρ2 ∂ψ

∂ρ
, η = −∂ψ

∂θ
.

The coefficients ε1 and ε2 are, in general, nonlinear functions of the scalar
variables ρ, θ, θ,iθ,i, ξ, and θ,iqi. The derivative q̇i − ωijqj is an objective
(Jaumann) derivative. (Fox, 1969b) applies his theory to describe a fountain
effect, and shows his theory is consistent with heat travelling as a wave.

(Müller, 1967b) adopts a different approach. He writes equations for q̇i,
ṫij and couples these with the balances of mass, energy and momentum.
This is effectively requiring the system of equations to form a hyperbolic
system from the outset. The paper of (Müller, 1967b) has been very influen-
tial in that he developed the idea of an extended theory of thermodynamics.
Theories of extended thermodynamics are described in detail in the books
of (Müller and Ruggeri, 1998), (Jou et al., 2010a) and of (Lebon et al.,
2008). We do not pursue this here, although the interested reader might
wish to consult the article of (Muschik, 2007). For a gas, there is a connec-
tion with extended thermodynamics and the early work of (Grad, 1949),
based on kinetic theory. We think it is worth drawing attention to the pa-
per of (Truesdell, 1976) who writes, ... “to claim that the kinetic theory
can bear in any way upon the principle of material frame - indifference is
presently ridiculous.” (Truesdell, 1976) also writes, ... “The kinetic theory
of gases provides little support for continuum mechanics except in very
special flows,” and he writes, ...“He who regards the kinetic theory as pro-
viding the one and only right approach to gas flows should discard all of
continuum mechanics, not just one or another part of it.” Whether one re-
gards an equation like (3.1)4 as a balance law or as a constitutive equation
is a matter of some controversy in the literature. For the case of a balance
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law the material derivative, q̇i, is employed. When (3.1)4 is regarded as
a constitutive equation then an objective derivative is preferred for q̇i.
Fourier’s law, qi = −kθ,i, is a constitutive equation and one viewpoint
is to regard equation (3.1)4 as a generalization of Fourier’s law. Then, an
objective derivative for q̇i is natural. (Dauby et al., 2002) write, ...“When
the constitutive equations (like (3.1)4) are used to describe heat transfer
in a moving fluid as in the present work, it is important to recall that
objective time derivatives (Jou et al., 2010a) must be introduced instead
of the partial time derivatives.” (The words in brackets have been added.)
(Carrassi and Morro, 1972) also adopt a different approach. While they are
interested in acoustic waves they do develop a general theory for a viscous
fluid. They have the standard equations for balance of mass, momentum,
and energy, namely

ρ̇+ ρdii = 0,
ρv̇i = −p,i + tji,j ,

ρε̇ = −pdii + tijdij − qi,i .

However, in addition to adopting a relaxation law for qi they adopt a similar
relation for the (extra) stress tensor tij . Thus, (Carrassi and Morro, 1972)
suggest employing the evolution equations

τ
∂qi
∂t

+ qi = −kθ,i ,

and

τv
∂tij
∂t

+ tij = 2μdij + λδijdrr .

The constant τv is a relaxation time for the stress. The paper of (Carrassi
and Morro, 1972) then focusses on acoustic waves in some detail.

(Morro, 1980) is also interested in describing wave motion in a heat
conducting viscous fluid. His is an inspiring paper which involves the use
of hidden variables. (Morro, 1980) uses the balance equations

ρ̇+ ρdii = 0,
ρv̇i = tji,j + ρbi ,

ρε̇ = ρr + tijdij − qi,i .

(3.2)

However, he works with hidden variables, and these are the vector, α1
i , and

a tensor, α2
ij , in component form; in direct notation the hidden variables

are α1 and α2. (These, in certain cases approach the heat flux and stress
tensor, respectively.) The governing equations for α1 and α2 have form

τ1α̇
1
i + α1

i = θ,i

τ2α̇
2
ij + α2

ij = dij
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for constants τ1, τ2 > 0. (Morro, 1980) shows that thermodynamics requires

η = −∂ψ
∂θ

, tij = −ρ2ψρδij +
ρ

τ2

∂ψ

∂α2
ij

, qi = −ρθ
τ1

∂ψ

∂α1
i

,

and the free energy must have form

ψ = Ψ(θ, ρ) +
1
ρ

[
κτ1
2θ

α1
iα

1
i + μτ2α

2
ijα

2
ij +

λτ2
2

(α2
ii)

2

]
.

The constitutive theory of (Morro, 1980) then becomes

η = −Ψθ +
κτ1
2ρθ2

α1
iα

1
i ,

tij = −pδij + 2μα2
ij + λα2

rrδij ,

qi = −κα1
i .

(Morro, 1980) shows how one may develop an acceleration wave analysis in
detail. It is important that he shows the free energy and the entropy depend
on the variable α1

i which is closely related to the heat flux qi. (Morro, 1980)
also considers objective derivatives for α1 and α2 which are generalizations
of those of (Fox, 1969b).

3.1.1 Cattaneo-Fox theory

(Straughan and Franchi, 1984) adopted a specific form of incompressible
thermoviscous fluid equations which uses a Boussinesq approximation in
the buoyancy term in the momentum equation. They also employed the
Jaumann derivative of (Fox, 1969b) for qi in a Cattaneo model. Thus, the
Cattaneo-Fox equations proposed by (Straughan and Franchi, 1984) have
form

v̇i = −1
ρ
p,i + kigαθ + νΔvi ,

vi,i = 0,

θ̇ = −qi,i ,
τ(q̇i − εijkωjqk) = −qi − κθ,i .

(3.3)

Here k = (0, 0, 1) and ω = curlv/2. The quantities g, α, ν, τ and κ are,
respectively, gravity, the thermal expansion coefficient of the fluid, kine-
matic viscosity, thermal relaxation time, and thermal conductivity of the
fluid. In deriving equation (3.3)1 one begins with the balance of momentum
equation

ρv̇i = tji,j + ρfi (3.4)

where tij and fi are the stress tensor and body force, respectively. For
an incompressible, linear viscous fluid tij = −pδij + 2μdij , where μ is the
dynamic viscosity and dij is the symmetric part of the velocity gradient,
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namely dij = (vi,j + vj,i)/2. We note ν = μ/ρ and suppose in the body
force term f = −gk, and ρ is a linear function of temperature θ, i.e.

ρ = ρ0

(
1 − α(θ − θ0)

)
, (3.5)

where ρ0 is the value of ρ when θ = θ0, and α(> 0) is the thermal expansion
coefficient of the fluid. Then equation (3.4) becomes with ρ replaced by the
constant ρ0,

ρ0v̇i = −p,i + 2μdij,j − ρ0

(
1 − α(θ − θ0)

)
gki. (3.6)

We note 2dij,j = Δvi since vj,j = 0 and we incorporate the constant terms
ρ0[1 + αθ0]g into p, i.e. redefine

p→ p+ ρ0g[1 + αθ0]z.

Then upon division by ρ0 and replacing ρ0 by a constant ρ, equation (3.6)
yields equation (3.3)1.

(Lebon and Cloot, 1984) suggested modifying the Jaumann derivative in
(3.3) and studied a thermal convection problem incorporating the effect of
surface tension.

3.1.2 Cattaneo-Christov theory

(Christov, 2009) is an inspiring piece of work and he has suggested an-
other objective derivative be employed for qi. He suggests the following Lie
derivative which is based on very sound physical principles,

q̇i − qjvi,j + qidrr ≡ ∂qi
∂t

+ vjqi,j − qjvi,j + vr,rqi . (3.7)

When the fluid is incompressible drr = 0 and then instead of equations
(3.3) one may pose the Cattaneo-Christov equations for thermoviscous fluid
motions, namely

v̇i = −1
ρ
p,i + kigαθ + νΔvi ,

vi,i = 0,

θ̇ = −qi,i ,
τ(qi,t + vjqi,j − qjvi,j) = −qi − κθ,i .

(3.8)

Uniqueness and structural stability questions for a general Cattaneo-
Christov fluid are presented by (Ciarletta and Straughan, 2010). These
writers allow compressibility but they restrict attention to the case where
the velocity field is a priori known. A uniqueness result for the incompress-
ible heat conducting Cattaneo-Christov model is given by (Tibullo and
Zampoli, 2011).

A general non-isothermal thermodynamic theory for a compressible
gas which is based on the Cattaneo-Christov equations is derived by
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(Straughan, 2010a). He shows how an acceleration wave may propagate
and derives an explicit formula for the wavespeeds. The Cattaneo-Christov
theory has been placed on a sound thermodynamic footing by (Morro,
2010). He derives objective evolution equations for both the heat flux and
the stress which allow the body to deform and are completely compatible
with thermodynamics.

3.1.3 Guyer-Krumhansl model

(Franchi and Straughan, 1994b) suggested modifying equation (3.3)4 by
adding Guyer-Krumhansl terms for qi. In this way one derives instead of
(3.3) the system

v̇i = −1
ρ
p,i + kigαθ + νΔvi ,

vi,i = 0,

θ̇ = −qi,i ,
τ(q̇i − εijkωjqk) = −qi − κθ,i + τ̂ (Δqi + 2qk,ki) ,

(3.9)

where the relaxation time τ̂ is discussed in section 1.3. (Franchi and
Straughan, 1994b) study thermal convection on the basis of these equations.

(Dauby et al., 2002) propose a similar set of equations to (3.9) and in-
vestigate thermal convection also incorporating surface tension effects at a
free surface.

3.1.4 Alternative Guyer-Krumhansl model

In view of the findings of (Straughan, 2010d; Straughan, 2010c) on thermal
convection employing the Cattaneo-Christov equatons (3.8), it may be also
worth considering a Guyer - Krumhansl invariant. Then, one would modify
equations (3.8) to

v̇i = −1
ρ
p,i + kigαθ + νΔvi ,

vi,i = 0,

θ̇ = −qi,i ,
τ(qi,t + vjqi,j − qjvi,j) = −qi − κθ,i + τ̂(Δqi + 2qk,ki) .

(3.10)

3.1.5 Further Cattaneo type fluid models

(Puri and Kythe, 1997) worked with system (3.3) and solved a problem of
a plate moving in a Maxwell-Cattaneo fluid. This allowed them to simplify
the equations and seek a solution v = (0, 0, u(x, t)) with a temperature field
θ(x, t), x being the one-dimensional spatial variable. The reduced (linear)
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system of equations they worked with is

∂u

∂t
=
∂2u

∂x2
+Gθ,

λP
∂2θ

∂t2
+ P

∂θ

∂t
=
∂2θ

∂x2
,

(3.11)

where λ, P,G are positive constants.
(Puri and Kythe, 1998) analysed a similar class of problem but when the

stress tensor is allowed to have a non-Newtonian form. In this case instead
of equations (3.11) they derived the system

∂u

∂t
− k

∂3u

∂t∂x2
=
∂2u

∂x2
+Gθ,

λP
∂2θ

∂t2
+ P

∂θ

∂t
=
∂2θ

∂x2
,

(3.12)

where k is another positive constant, this term representing the viscoelastic
effect.

(Puri and Jordan, 1999b) [see also (Puri and Jordan, 1999a)] analysed a
problem of an oscillating vertical plate which is periodically heated. They
adopted a Maxwell-Cattaneo fluid but also assumed the fluid was of dipolar
type. This led them to study the system of equations

∂u

∂t
− �21

∂3u

∂t∂x2
=
∂2u

∂x2
− �22

∂4u

∂x4
+Gθ,

λP
∂2θ

∂t2
+ P

∂θ

∂t
=
∂2θ

∂x2
.

(3.13)

The coefficient �22 is a positive dipolar constant.
If we analyse a problem like that of (Puri and Kythe, 1997) but instead

of using equations (3.3) we employ the GMC system (3.9) then we may
arrive at the system of partial differential equations

∂u

∂t
− νΔu = Gθ,

c
∂θ

∂t
= − ∂qi

∂xi
,

τ
∂2qi
∂t∂xi

= − ∂qi
∂xi

− κΔθ + 3τ̂ Δ
∂qi
∂xi

.

(3.14)

Upon elimination of qi,i we find

∂u

∂t
− νΔu = Gθ,

τ1
∂2θ

∂t2
+ c

∂θ

∂t
− κΔθ − τ2 Δ

∂θ

∂t
= 0,

(3.15)

where τ1 = τc > 0 and τ2 = 3τ̂ c > 0.
Thus, equations (3.11), (3.12) and (3.15) represent interaction of a fluid

with an MC or GMC thermodynamic law in a suitable linear sense.
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The simplified systems (3.11), (3.12) or (3.15) are certainly much more
amenable to analysis then the original systems (3.3) or (3.9).

3.2 Green-Laws theory

(Müller, 1971b) begins with the equations of balance of mass, balance of
linear momentum, and balance of energy without body force and without
heat supply, namely

ρ̇+ ρvi,i = 0,
ρv̇i − tji,j = 0,
ρε̇+ qi,i = tijvi,j ,

where ρ, vi, tij , ε, qi are density, velocity, stress tensor, internal energy, and
heat flux, respectively. He assumes constitutive theory of form

tij = tij(ρ, θ, θ,i, θ̇, drs)

qi = qi(ρ, θ, θ,i, θ̇, drs)

ε = ε(ρ, θ, θ,i, θ̇, drs)

(3.16)

where θ is the temperature, dij = (vi,j + vj,i)/2. He exploits his entropy
inequality

ρη̇ + Φi,i ≥ 0,

for an entropy flux vector Φ which like the entropy, η, depends on the
constitutive list (3.16). (Müller, 1971b) derives equations for a viscous fluid
and for an inviscid fluid. He also shows how one may include a body force
and a heat supply and use the classical arguments of Coleman and Noll to
reduce the constitutive theory.

In this section we describe the equations for an inviscid fluid derived using
the thermodynamic arguments of (Green and Laws, 1972). The details may
be found in (Lindsay and Straughan, 1978).

The equations presented by (Lindsay and Straughan, 1978) are conserva-
tion of mass, linear momentum, angular momentum, and energy and have
form

ρ̇+ ρvi,i = 0,
ρv̇i = ρfi + tji,j ,

tij = tji ,

ρε̇ = ρr − qi,i + tijdij

(3.17)

where fi and r are the body force and externally supplied heat supply,
respectively.
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The entropy inequality employed is that of (Green and Laws, 1972),

d

dt

∫
V

ρη dV −
∫

V

ρr

φ
dV +

∮
∂V

qini

φ
dS ≥ 0 (3.18)

where V is any subbody in a continuous body B. The notation ∂V denotes
the boundary of V , η is the entropy function and φ is a scalar function to
be more precisely identified. In terms of the Helmholtz free energy function
ψ,

ψ = ε− ηφ (3.19)

one may reduce (3.18) to a pointwise form and rewrite it with the aid of
equation (3.17)4 as

−ρ(ψ̇ + ηφ̇) + tijdij −
qiφ,i

φ
≥ 0. (3.20)

To describe an inviscid (perfect) fluid (Lindsay and Straughan, 1978)
suppose that the functions

ψ, φ, η, qi, tij (3.21)

depend on the independent variables

ρ, θ, θ̇, θ,i (3.22)

where θ is the temperature in the body. For the scalars ψ, φ, η (Lindsay
and Straughan, 1978) show that the list (3.22) may be replaced by

ρ, θ, θ̇, λ (3.23)

where λ = θ,iθ,i/2. The forms (3.21) - (3.22) are now inserted into the
entropy inequality (3.20) and (Lindsay and Straughan, 1978) deduce that

φ = φ(θ, θ̇), ψ = ψ(ρ, θ, θ̇, λ), (3.24)

η = −∂ψ/∂θ̇
∂φ/∂θ̇

= η(ρ, θ, θ̇, λ), (3.25)

qi = −Kθ,i , (3.26)

K =
ρφ∂ψ/∂λ

∂φ/∂θ̇
= K(ρ, θ, θ̇, λ), (3.27)

tij = −pδij − ρ
∂ψ

∂λ
θ,iθ,j , (3.28)

p = ρ2 ∂ψ

∂ρ
= p(ρ, θ, θ̇, λ). (3.29)

What remains of the entropy inequality (3.20) is

−ρ
(
∂ψ

∂θ
+ η

∂φ

∂θ

)
θ̇ + 2K

∂φ

∂θ

λ

φ
≥ 0. (3.30)
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From this inequality (Lindsay and Straughan, 1978) deduce that in ther-
modynamic equilibrium (for which θ̇ = 0, θ,i = 0 and is denoted by E) the
following relations hold

(
∂ψ

∂θ
+ η

∂φ

∂θ

)∣∣∣∣
E

= 0, (3.31)
(
∂η

∂θ̇

∂φ

∂θ̇

)∣∣∣∣
E

−
(
∂η

∂θ̇

)∣∣∣∣
E

≥ 0, (3.32)

K|E ≥ 0. (3.33)

Thefunction φ(θ, θ̇) is usually called a generalized temperature. One may
show that the system of equations (3.17) reduces to

ρ̇+ ρvi,i = 0,

ρv̇i = ρfi − p,i −
(
ρ
∂ψ

∂λ
θ,iθ,j

)
,j
,

ρφηθ̇ θ̈ + (ρψθ + ηφθ + ρφηθ)θ̇ + (ρψλ + ρφηλ −Kθ̇)λ̇
−Kλθ,iθ,jθ,ij −KΔθ −Kρρ,iθ,i − 2λKθ

+ ρ2φηρdii + (ρψλ −Kθ̇)θ,iθ,jdij = ρr.

(3.34)

Equations (3.34) represent the complete system of equations for thermody-
namic motion in an inviscid fluid when one employs the thermodynamics
of (Green and Laws, 1972).

(Lindsay and Straughan, 1978) develop a detailed analysis of acceler-
ation wave behaviour for a solution to (3.34) including curved waves of
arbitrary shape. Particular solutions are presented for a cylindrical shaped
wave moving into a shear flow or for a spherical wave advancing into a
radial flow.

3.3 Type II fluid

(Green and Naghdi, 1995a) used their thermal displacement variable α and
their entropy balance equation to derive a new class of fluid theories. In
this book we refer to their theories as being of a fluid of type II or type
III. We believe that both of these theories may have application in the
active area of research into heat transfer characteristics of nanofluids, cf.
chapter 8. As we point out in chapter 8 nanofluids typically consist of
a suspension of metals or their oxides, Cu, CuO, Al2O3, SiO2, TiO2, in
water or a base fluid like ethylene glycol, see e.g. (Hwang et al., 2007),
(Maiga et al., 2005), (Kim et al., 2007). An interesting article of (Vadasz
et al., 2005) suggests that a mechanism for the increased heat transfer
characteristics of a nanofluid may be through a hyperbolic equation for the
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temperature field. In view of the fact that the temperature displacement
field essential to the type II theory of (Green and Naghdi, 1995a) satisfies
what is effectively a hyperbolic equation it may be that the extension of
the Green - Naghdi model developed by (Quintanilla and Straughan, 2008)
which we now describe will be applicable to nanofluids.

(Quintanilla and Straughan, 2008) commence with the reduced energy
balance equation

TijLij − piγi − ρ(ψ̇ + ηθ̇) − ρθξ = 0, (3.35)

written in the current configuration since we are dealing with a fluid. Here
Tij, pi, ρ, ψ, η, θ and ξ are, respectively, the (symmetric) stress tensor, en-
tropy flux vector, density, Helmholtz free energy function, entropy, absolute
temperature, and the internal rate of production of entropy. Now, vi de-
notes the velocity field, Lij = vi,j , γi = (α̇),i, where α =

∫ t

t0
θ(X, s)ds+α0

is the thermal displacement field. We also require the (Green and Naghdi,
1995a) entropy balance law written in the current configuration

ρη̇ = ρs+ ρξ − pi,i, (3.36)

where s is the external rate of supply of entropy per unit mass. Since we
are now developing a fluid theory we also require the balance of mass,

ρ̇+ ρvi,i = 0, (3.37)

and the balance of linear momentum,

ρv̇i = Tji,j + ρbi, (3.38)

in which bi is an externally supplied body force.
The development of (Quintanilla and Straughan, 2008) is different from

that of (Green and Naghdi, 1995a). To understand this we observe that
(Green and Naghdi, 1995a) commence with the assumption that ψ, η, Tij , pi

and ξ depend on the variables ρ, Lij , θ, α,i and γi. However, (Green and
Naghdi, 1995a) p. 293 assume that pi is linear in γi, Tij is quadratic in dij

(dij = (vi,j + vj,i)/2), ξ is quadratic in dij and γi, and ψ has the form

ψ =
1
2
mδiδi + f(ρ, θ) (3.39)

where δi = α,i and m is a constant. After this they analyse a class of dis-
sipationless flows by assuming the Reynolds, Peclet and m numbers are
suitably large and this leads to a restricted class of dissipationless flows.
(Quintanilla and Straughan, 2008) develop what is a more general dissipa-
tionless theory from the outset. To do this they omit γi = θ,i = (α̇),i as
a variable in the constitutive theory from the outset. (This corresponds to
the way (Green and Naghdi, 1993) develop their theory of thermoelastic-
ity without energy dissipation, discussed in section 2.3). (Quintanilla and
Straughan, 2008) are thus able to obtain a more complete nonlinear con-
stitutive theory in which a variable such as the entropy flux vector, pi, is
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defined naturally in terms of the Helmholtz free energy rather than having
a preimposed form.

The work of (Quintanilla and Straughan, 2008) begins with the
assumption that

Tij , ψ, η, pi and ξ (3.40)

are functions of the independent variables

ρ, Lij , θ, α,i . (3.41)

Next, write Lij = dij + ωij , ωij = (vi,j − vj,i)/2, and use (3.41) together
with (3.40) in the energy balance law (3.35) to see that

[
Tij + δijρ

2 ∂ψ

∂ρ
+
ρ

2

( ∂ψ
∂α,i

α,j +
∂ψ

∂α,j
α,i

)]
dij + Tijωij

− γi

(
pi + ρ

∂ψ

∂α,i

)
− ρ

∂ψ

∂Lij
L̇ij − θ̇ρ

(∂ψ
∂θ

+ η
)

− ρθξ +
ρ

2
ωij

( ∂ψ
∂α,j

α,i −
∂ψ

∂α,i
α,j

)
= 0.

(3.42)

(Quintanilla and Straughan, 2008) deduce from (3.42) that pi, η and ψ
reduce to the forms

pi = − ∂ψ

∂α,i
, η = −∂ψ

∂θ
and ψ = ψ(ρ, θ, α,i). (3.43)

They then restrict attention to the situation where ξ = ξ(ρ, θ, α,i) and
equation (3.42) leaves

[
Tij + δijρ

2 ∂ψ

∂ρ
+
ρ

2

( ∂ψ
∂α,i

α,j +
∂ψ

∂α,j
α,i

)]
dij − ρθξ

+
ρ

2
ωij

( ∂ψ
∂α,j

α,i −
∂ψ

∂α,i
α,j

)
= 0.

(3.44)

From (3.44) (Quintanilla and Straughan, 2008) show further that

∂ψ

∂α,i
α,j =

∂ψ

∂α,j
α,i , (3.45)

and

Tij = −pδij −
ρ

2

( ∂ψ
∂α,i

α,j +
∂ψ

∂α,j
α,i

)
(3.46)

where p is a pressure defined by p = ρ2∂ψ/∂ρ. From the remainder of
equation (3.44) it follows that ξ = 0, in agreement with (Green and Naghdi,
1995a).

In view of the above, the equations for a fluid of type II are given by
the balance equations (3.36) - (3.38) with the constitutive theory (3.43),
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(3.45) and (3.46) together with ξ = 0. If we recollect these explicitly then
the balances of mass, linear momentum, and entropy become

ρ̇+ ρvi,i = 0,

ρv̇i = −p,i −
1
2
[
ρ(ψα,iα,j + ψα,jα,i)

]
,j

+ ρbi,

− ρ
d

dt

(∂ψ
∂θ

)
= ρs+

∂

∂xi

( ∂ψ
∂α,i

)
,

(3.47)

where d/dt, like the superposed dot, denotes the material derivative.

3.4 Type III fluid

(Green and Naghdi, 1995a) develop a further theory for a thermoviscous
fluid which utilizes their thermal displacement variable α,

α(x, t) =
∫ t

t0

θ(x, s)ds + α0 (3.48)

where θ is the temperature field and x refers to the current configura-
tion. They begin with the equations of balance of mass, balance of linear
momentum, and balance of entropy in the form

ρt + viρ,i + ρvi,i = 0, (3.49)
ρ(vi,t + vjvi,j) = Tji,j + ρbi, (3.50)
ρ(ηt + viη,i) = −pi,i + ρs+ ρξ . (3.51)

In these equations ρ, vi and η are the density, velocity and entropy. Addi-
tionally Tji and pi are the (Cauchy) stress tensor and entropy flux vector,
while bi, s are the externally supplied body force and entropy supply, re-
spectively. The variable ξ is an internal rate of production of entropy per
unit mass.

(Green and Naghdi, 1995a) also employ the reduced energy equation

−ρ(ψ̇ + ηθ̇) − ρθξ − piγi + Tjivi,j = 0 (3.52)

where a superposed dot denotes the material derivative and γi = θ,i =
∂α̇/∂xi. They also define the variable

δi = α,i =
∂α

∂xi
. (3.53)

They then define a thermoviscous fluid to be one for which the Helmholtz
free energy function ψ, the entropy, stress tensor, entropy flux vector,
and the internal rate of production of entropy depend on the independent
constitutive variables

ρ, vi,j , θ, δi, γi (3.54)
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i.e.

ψ = ψ(ρ, vi,j , θ, δi, γi)
Tij = Tij(ρ, vi,j , θ, δi, γi)
η = η(ρ, vi,j , θ, δi, γi)
pi = pi(ρ, vi,j , θ, δi, γi)
ξ = ξ(ρ, vi,j , θ, δi, γi).

(3.55)

Unlike the theory of section 3.3 the constitutive list (3.54) contains the
variable γi = α̇,i which is in addition to those of (3.41). For this reason we
refer to this as a fluid of type III, by analogy with thermoelasticity of type
III as defined in section 2.4.

By manipulating the energy equation (3.52) (Green and Naghdi, 1995a)
are able to reduce the constitutive list and indeed, they demonstrate that
ψ does not depend on γi and vi,j , so

ψ = ψ(ρ, θ, α,i), (3.56)

and additionally

η = −∂ψ
∂θ

, α,i
∂ψ

∂α,j
= α,j

∂ψ

∂α,i
, (3.57)

while the energy equation assumes the form

(
Tij + pδij + ρα,j

∂ψ

∂α,i

)
dij −

(
pi + ρ

∂ψ

∂α,i

)
γi − ρθξi = 0, (3.58)

where dij = (vi,j + vj,i)/2 and p is a pressure given by

p = ρ2 ∂ψ

∂ρ
. (3.59)

At this point (Green and Naghdi, 1995a) specialize to the situation in
which

ψ =
m

2
α,iα,i + f(ρ, θ) (3.60)

for m > 0 a constant and

pi = −ρmδi −
κ

θ0
γi

Tij = −pδij + λdkkδij + 2μdij − 2mα,iα,j

ρξθ = λd2
ii + 2μdijdij +

κ

θ0
γiγi ,

(3.61)

where θ0, κ, λ and μ are constants.
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3.4.1 Type III viscous fluid

We do not in this work adopt equations (3.60) and (3.61). Instead we leave
things more general. We dot not impose a form for ψ and select

pi = −ρ ∂ψ

∂α,i
− κ

θ
γi . (3.62)

This is different to equation (3.61)1 for two reasons. One, the first term is
more general. Secondly, we employ θ rather than a constant θ0. This we
believe leads to a more natural energy equation which reduces to the classi-
cal energy equation in appropriate circumstances. In (3.62) κ may depend
on the variables in the constitutive list. Our viscous theory is completed
by specifying

Tij = −pδij + T̂ij ,

T̂ij = −ρα,i
∂ψ

∂α,j
+ λdkkδij + 2μdij ,

ρθξ =
κ

θ
γiγi .

(3.63)

The governing equations of motion for a type III fluid are then obtained
upon employment of (3.62) and (3.63) in the conservation laws (3.49) -
(3.51).

3.4.2 Type III inviscid fluid

Since the theme of this book is heat waves it is appropriate to develop a
theory for an inviscid type III fluid. To this end we effectively neglect the
dependence on vi,j in the constitutive list and drop the dij terms. Thus,
our constitutive theory for an inviscid fluid of type III is

pi = −ρ ∂ψ
∂α,i

− κ

θ
γi , (3.64)

together with

Tij = −pδij − ρα,i
∂ψ

∂α,j
,

ρθξ =
κ

θ
γiγi ,

(3.65)

where in its fullest generality ψ has the functional form (3.56) and κ
depends on the constitutive variables ρ, θ, α,i, γi.
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The governing equations for an inviscid fluid of type III then become
upon utilizing (3.64) and (3.65) in the evolution equations (3.49) - (3.51)

ρ̇+ ρvi,i = 0, (3.66)
ρv̇i = −p,i − (ρα,jψα,i),j + ρbi , (3.67)

ρη̇ = (ρψα,i),i +
(κ
θ
γi

)
,i

+ ρs+
κ

θ2
γiγi , (3.68)

= (ρψα,i),i +
1
θ
(κγi),i + ρs . (3.69)

3.5 Green-Naghdi extended theory

(Green and Naghdi, 1996) continue their development for describing the
behaviour of a continuous body which relies on an entropy balance law
rather than an entropy inequality. Again they introduce a quantity T which
is the “empirical” temperature and the “thermal displacement variable”

α =
∫ t

t0

T (x, s)ds+ α0 .

In fact, the full theory developed by (Green and Naghdi, 1996) is very gen-
eral. They remark, (Green and Naghdi, 1996), p. 240, that ... “the theory
... leads to a set of differential equations ... which are rather unmanagable
from the point of view of understanding turbulent or other flows.” To pro-
duce a more tractable theory they restrict attention to a reduced version
of their general theory which leaves only one equation as the mechanical
differential equation. Precisely, the theory of (Green and Naghdi, 1996) de-
velops a novel theory for fluids which involves vorticity and spin of vorticity.
This introduces higher spatial gradients into the equations than those of
Navier-Stokes theory and so is likely to be relevant where non-Newtonian
fluid behaviour is expected. They work with two temperatures and are
motivated by attempting to describe turbulence. In this respect, they are
continuing the work of (Marshall and Naghdi, 1989a; Marshall and Naghdi,
1989b).

We simply describe the relevant differential equations for the model of
(Green and Naghdi, 1996). Full details of the continuum thermodynamical
development from the entropy balance law is given in (Green and Naghdi,
1996). The basic equations of (Green and Naghdi, 1996) are the balance
of linear momentum, balance of mass, and balances of entropy for two
temperatures θH and θT , which they regard as the usual temperature, and
a turbulent temperature, respectively. However, other interpretations may
be given to the different temperatures, see e.g. section 8.4 and (Straughan,
2010b). The balance of linear momentum, balance of mass, and balances
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of entropy as given by (Green and Naghdi, 1996) for their incompressible
fluid may be written

ρ

(
v̇i −

μ1

μ

d

dt
Δvi

)
= ρbi − p,i + μΔvi − 2μ1Δ2vi,

vi,i = 0,

ρη̇H = ρsH + ρξH − pH
i,i ,

ρη̇T = ρsT + ρξT − pT
i,i .

(3.70)

Here a superposed dot denotes the material derivative d/dt = ∂/∂t +
vi∂/∂xi. The variables ρ, vi, bi, p are the density, velocity, body force and
pressure. The coefficient μ is the kinematic viscosity of the fluid while μ1

is another constant reflecting the geometry of the particles and the in-
teraction with the fluid. The appendices to (Bleustein and Green, 1967)
and (Green and Rivlin, 1964) derive an expression for the kinetic energy
of a system of particles as a function of the velocity of the centroid and
the derivative of this velocity. While neither of the articles of (Green and
Rivlin, 1964) nor (Bleustein and Green, 1967) has a direct bearing on the
fluid theory of (Green and Naghdi, 1996), their procedure leads to a kinetic
energy which can be equated to the kinetic energy of the fluid currently
being described. The quantities ηH , ηT are the entropies corresponding to
the temperatures θH and θT . The terms sH , sT , are external supplies of
entropy, ξH , ξT , are intrinsic supplies of entropy which depend on the vari-
ables of the theory, and pH

i , p
T
i are entropy flux vectors. (Green and Naghdi,

1996) assume that the Helmholtz free energy function ψ has form

ψ = cH(θH − θH ln θH) + cT (θT − θT ln θT ) , (3.71)

with cH , cT positive constants, while the entropies and entropy fluxes
assume the form

ηH = cH ln θH , ηT = cT ln θT , (3.72)

and

pH
i = −κH

θ0

∂θH

∂xi
, pT

i = −κT

θ0

∂θT

∂xi
, (3.73)

for positive constants κH , κT , θ0, with θ0 being some reference temperature.
The instrinsic entropy supply functions are given by

ρξHθH =
κH

θ0

∂θH

∂xi

∂θH

∂xi
+ 2μdijdij + φ, (3.74)

ρξT θT =
κT

θ0

∂θT

∂xi

∂θT

∂xi
+ 4μ1dijPij +

2μ2
1

μ
PijPij − φ. (3.75)

In these equations the variables dij and Pij are defined by dij = (vi,j +
vj,i)/2, Pij = −Δvi,j and φ is constant. It is very important to note,
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however, that (Green and Naghdi, 1996) observe that for some purposes φ
could depend on temperatures, cf. section 8.4, and (Straughan, 2010b).

Thus, the complete system of equations for an incompressible viscous
fluid in the (Green and Naghdi, 1996) extended theory are

ρ
dvi

dt
− ρμ1

μ

d

dt
Δvi = ρbi − p,i + μΔvi − 2μ1Δ2vi ,

vi,i = 0,

ρcH
dθH

dt
= ρsHθH +

κH

θ0

∂θH

∂xi

∂θH

∂xi
+ 2μdijdij + φ,

ρcT
dθT

dt
= ρsT θT +

κT

θ0

∂θT

∂xi

∂θT

∂xi
+ 4μdijPij + 2

μ2
1

μ
PijPij − φ,

(3.76)

where d/dt has been employed to denote the material derivative.
(Green and Naghdi, 1996) determine the basic solution to plane Poiseuille

flow for their theory and show that it leads to a flattened profile rather
than the parabolic one of classical Newtonian theory. They also address
a similar basic solution to Poiseuille flow in a pipe. Additionally, (Green
and Naghdi, 1996) address the problem of flow of a circular jet from a
round hole. Finally, (Green and Naghdi, 1996) address two problems where
the solution is time-dependent. All the problems addressed by (Green and
Naghdi, 1996) are in an isothermal situation.



4
Acceleration waves

The general theory of acceleration waves in continuum mechanics is covered
in detail in the research review articles of (Chen, 1973) and (McCarthy,
1972), see also the accounts in the books of (Fabrizio and Morro, 2003),
(Iesan and Scalia, 1996), (Ogden, 1997) and (Straughan, 2008). (Truesdell
and Toupin, 1960) and (Truesdell and Noll, 1992) cover many aspects of
acceleration waves and singular surfaces in general. We now include an
account of some recent studies employing acceleration waves in theories of
heat transport associated with second sound.

4.1 Maxwell-Cattaneo theory

Suppose we have a rigid body occupying R
3 and the temperature field

and heat flux are governed by the Maxwell - Cattaneo equations when the
thermal conductivity κ depends on temperature θ, cf. chapter 1, so the
governing equations are

cθ,t = −qi,i,
τqi,t + qi = −κ(θ)θ,i ,

(4.1)

where qi is the heat flux, and c, τ are positive constants. Recall that , i
denotes differentiation with respect to xi, e.g. θ,i = ∂θ/∂xi. An acceler-
ation wave for a solution to equations (4.1) is a surface S across which
θ,t, θ,i, qi,t, qi,j , suffer at most finite discontinuities, with the functions θ, qi
continuous everywhere. Even though the jump across S is in θ,t and qi,t we
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call S an acceleration wave. Numerical solutions to the Maxwell - Catta-
neo equations with κ a linear function of θ are presented by (Glass et al.,
1986), (Cramer et al., 2001), (Christov and Jordan, 2010), and for κ a more
general function of θ they are presented by (Reverberi et al., 2008), see sec-
tion 5.3. An analytical solution of the Maxwell - Cattaneo equations with
κ constant, for a step input at the boundary, is provided by means of a
Laplace transform technique by (Al-Qahtani and Yilbas, 2010).

To illustrate the basic concepts of acceleration wave analysis, we shall for
now restrict attention to a plane acceleration wave moving in the direction
of the x−axis, with one-dimensional motion.

In one space dimension the heat flux has one component, q, and equations
(4.1) become

cθt = −qx,
τqt + q = −κ(θ)θx ,

(4.2)

where θt = ∂θ/∂t, qx = ∂q/∂x, etc.
For a function h(x, t) we define

h+(x, t) = lim
x→S

h(x, t) from the right,

h−(x, t) = lim
x→S

h(x, t) from the left.

In particular, h+ is the value of h at S approaching from the region which
S is about to enter. The jump of h at S, written as [h], is,

[h] = h− − h+ . (4.3)

We take the jump of each of equations (4.2), to find

c[θt] + [qx] = 0,

τ [qt] + κ(θ+)[θx] = 0 ,
(4.4)

since κ(θ) is continuous across S. Next, employ the kinematic condition of
compatibility, sometimes known as the Hadamard relation,

δ

δt
[f ] =

[∂f
∂t

]
+ V

[ ∂f
∂X

]
(4.5)

where δ/δt denotes the time derivative at the wave. (The Hadamard relation
is discussed in detail in (Chen, 1973), appendix 1, and also in (Truesdell
and Toupin, 1960), section 180.)

Note, since q ∈ C0(R), [q] = 0 and so by using the Hadamard relation

0 =
δ

δt
[q] = [qt] + V [qx]

so that

[qt] = −V [qx] . (4.6)
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Similarly,

[θt] = −V [θx] . (4.7)

We use equations (4.6) and (4.7) in (4.4) and then obtain(
−cV 1
κ −τV

)(
[θx]
[qx]

)
=
(

0
0

)
(4.8)

We require the amplitudes [θx], [qx] to be non-zero and so from (4.8) we
need ∣∣∣∣−cV 1

κ −τV

∣∣∣∣ = 0

and so

V 2 =
κ(θ+)
cτ

. (4.9)

Note that V depends on the value of θ at the wave (here θ+ = θ−).
Define the wave amplitudes A(t) and B(t) as

A = [θx], B = [qx], (4.10)

and then observe that from (4.8)1

cV A = B. (4.11)

To find the equation governing the amplitude A(t) (or B(t)) we differ-
entiate equations (4.2) with respect to x and take the jumps of the results
to find

c[θtx] = −[qxx]

τ [qtx] + [qx] = −κ′(θ+)[θ2x] − κ[θxx] .
(4.12)

From the definition of [h] we may prove the relation for the jump of a
product of functions g, h,

[gh] = g+[h] + h+[g] + [g][h]. (4.13)

From the Hadamard relation we have that
δ

δt
[qx] = [qxt] + V [qxx] , (4.14)

δ

δt
[θx] = [θxt] + V [θxx] . (4.15)

Thus, recalling definitions (4.10) we eliminate [θtx] and [qtx] from (4.12) to
find

c
(δA
δt

− V [θxx]
)

+ [qxx] = 0, (4.16)

τ
(δB
δt

− V [qxx]
)

+B + κ′(A2 + 2θ+x A) + κ[θxx] = 0. (4.17)
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We wish to remove the [θxx] and [qxx] terms from (4.16) and (4.17) using
the wavespeed relation (4.9). Hence, form (4.16)+λ(4.17) to obtain

c
δA

δt
+ (λκ− cV )[θxx] + [qxx](1 − λτV ) + λτ

δB

δt

+ λB + λκ′(A2 + 2θ+xA) = 0.
(4.18)

We see that the correct choice of λ is

λ =
cV

κ
=
√

c

κτ
. (4.19)

Note that from (4.11) B = cV A and so since

δB

δt
= c
(
A
δV

δt
+ V

δA

δt

)

we find from (4.18)

2c
δA

δt
+
( c
τ

+
c

V

δV

δt
+

2θ+x κ
′

V τ

)
A+

κ′

V τ
A2 = 0. (4.20)

This is the equation governing the evolutionary behaviour of the amplitude
A(t) - the amplitude equation. It is a Bernoulli equation, which may be
written in the form

δA

δt
+ α(t)A + β(t)A2 = 0.

It may be solved by the substitution γ = 1/A to yield the general solution

A(t) =
A(0)

exp{
∫ t

0 α(s)ds} +
∫ t

0 β(s) exp{
∫ t

s α(η)dη}ds
. (4.21)

4.1.1 Wave into equilibrium

Suppose now the region ahead of the wave is such that

θ = constant and κ(θ) = γθ, γ > 0 (constant).

Then, V = constant and θ+x = 0. Hence, equation (4.20) reduces to

δA

δt
+ αA+ βA2 = 0, (4.22)

where α = 1/2τ, β = γ/2cV τ are both constant. Then (4.22) is solved to
find

A(t) =
A(0)

eαt +
β

α
A(0)(eαt − 1)

. (4.23)

From this equation we see that if A(0) > 0 then A(t) decays to zero. If
A(0) < 0 then A(t) will blow-up in a finite time T , with

T =
1
α

log
(

|A(0)|(β/α)
[|A(0)|(β/α) − 1]

)
. (4.24)
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Since here A(t) = θ−x (t) we see that when A(0) < 0 the temperature
gradient steepens at the wave and θ−x (t) blows up. It is believed that a
thermal shock forms, i.e. θ develops a discontinuity across S at t = T . (Fu
and Scott, 1991) have investigated this behaviour in elasticity in detail and
very interesting computations of (Christov and Jordan, 2008), (Christov
et al., 2006; Christov et al., 2007) and (Jordan, 2007) follow the acceleration
wave development into a shock in a variety of situations, see also chapter
5, section 5.1, of this book.

4.1.2 Acceleration wave in three dimensions

An acceleration wave for the Maxwell-Cattaneo equations (4.1) is defined as
in section 4.1. Namely, θ and qi are C0 everywhere and the first and higher
derivatives of θ and qi are allowed to have finite discontinuities across a
surface S. For simplicity we suppose now that we are dealing with a wave
moving into an equilibrium region for which

θ = constant, qi = 0.

Then θ̇+ = 0, θ+,i = 0.
General compatibility relations for a function ψ(X, t) are needed across

S. These are given in detail in (Truesdell and Toupin, 1960) or in (Chen,
1973). We simply quote those we need. If ψ is continuous in R

3 but its
derivative is discontinuous across S then

[ψ,i] = niB, where B = [niψ,i]. (4.25)

When ψ ∈ C1(R3) then

[ψ,ij ] = ninjC, where C = [ninjψ,ij ]. (4.26)

In (4.25) and (4.26), ni refers to the unit normal to S. Relations (4.25) and
(4.26) are derived from (Chen, 1973), equations (4.13), (4.14). The relation
corresponding to the Hadamard formula (4.5) in three dimensions is, cf.
(Chen, 1973) (4.15),

δ

δt
[ψ] = [ψ̇] + UNB (4.27)

where ψ̇ = ∂ψ/∂t, UN is the speed at the point on S with unit normal ni

and B is defined in (4.25).
We being by taking the jump of (4.1) to find

c[θt] = −[qi,i] ,
τ [qi,t] = −κ[θ,i] .

(4.28)

Define the three-dimensional wave amplitudes as

A(t) = [niθ,i], Bi(t) = [njqi,j ] .
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Then, since qi, θ ∈ C0(R3) we find using (4.28)

0 =
δ

δt
[qi] = [q̇i] + UN [njqi,j ],

0 =
δ

δt
[θ] = [θ̇] + UN [njθ,j].

Whence

[q̇i] = −UNBi, [θ̇] = −UNA. (4.29)

Using (4.29) in (4.28) we thus see that

− cUNA+ niBi = 0,
− τUNBi + κniA = 0.

(4.30)

From equation (4.30)2 we see that the wave must be longitudinal, i.e. Bi =
Bni, where

B = [ninjqi,j ]. (4.31)

Then we have (
−cUN 1
κ −τUN

)(
A
B

)
=
(

0
0

)
(4.32)

Since we require A,B non-zero we need∣∣∣∣−cUN 1
κ −τUN

∣∣∣∣ = 0 (4.33)

and so we derive

τcU2
N = κ . (4.34)

Thus, the wavespeed is UN =
√
κ/τc.

To calculate the wave amplitude A(t), noting that B(t) then follows from
(4.32)1 since,

B = cUNA, (4.35)

we differentiate (4.1) with respect to t and take the jump of the result.
Thus,

c[θ̈] = −[q̇i,i] ,

τ [q̈i] + [q̇i] = −κ′(θ)[θ̇θ,i] − κ[θ̇,i] .
(4.36)

Since the wave is moving into equilibrium we have UN =constant and using
the product relation (4.13), equations (4.36) become

c[θ̈] = −[q̇i,i] ,

τ [q̈i] + [q̇i] = −κ′(θ)[θ̇][θ,i] − κ[θ̇,i] .
(4.37)
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We now wish to derive a Bernoulli equation from (4.37). To this end we
use the Hadamard relation (4.27) to note that

[θ̇] = −UNA (4.38)

and so
δ

δt
[θ̇] = − δ

δt
UNA = −UN

δA

δt

=[θ̈] + UN [nj θ̇,j ] . (4.39)

Further,
δ

δt
[niθ,i] = ni[θ̇,i] + UNni[θ,ijn

j ] . (4.40)

Thus, from the above two equations,

[θ̈] = − UN
δA

δt
− UN [nj θ̇,j ]

= − 2UN
δA

δt
+ U2

N [ninjθ,ij ] . (4.41)

In a similar mannner we find

[q̇i] = −UNBi , (4.42)

δ

δt
[q̇i] = −UN

δBi

δt
= [q̈i] + UN [nj q̇i,j ], (4.43)

δBi

δt
=

δ

δt
[qi,jnj ] = [q̇i,jnj ] + UN [qi,jknjnk] , (4.44)

[q̇i,i] =
δB

δt
− UN [qi,jkninjnk] , (4.45)

where B is given by (4.31), and

−UN
δBi

δt
= [q̈i] + UN

(
δBi

δt
− UN [qi,jknjnk]

)
, (4.46)

so

[q̈i] = −2UN
δBi

δt
+ U2

N [qi,jknjnk] . (4.47)

We now employ (4.38) - (4.47) in (4.37) to obtain

−2cUN
δA

δt
+
δB

δt
− UN [qi,jkninjnk] + cU2

N [ninjθ,ij ] = 0 , (4.48)

and

−2τUN
δB

δt
+ κ

δA

δt
− UNB − UNκ

′(θ)A2

+ τU2
N [qi,jkninjnk] − κUN [ninjθ,ij ] = 0 .

(4.49)
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Recall B = cUNA and then from (4.48), (4.49), we derive

−cUN
δA

δt
− UN [qi,jkninjnk] + cU2

N [ninjθ,ij ] = 0 , (4.50)

and

−κδA
δt

− UNB − UNκ
′(θ)A2

+ τU2
N [qi,jkninjnk] − κUN [ninjθ,ij ] = 0 .

(4.51)

Now form (4.50)+λ(4.51) for λ a positive constant. We use the wavespeed
relation (4.34) and select λ = 1/τUN . This removes the θ,ij and qi,jk terms
and leads to the equation

δA

δt
+ αA+ βA2 = 0, (4.52)

where

α =
UN

2
, β =

κ′(θ+)
2c

. (4.53)

Equation (4.52) is the same as (4.22) and the solution is, therefore, (4.23).
The remarks concerning A(t) after (4.23) apply also to A(t) for (4.52).

4.1.3 More general Maxwell - Cattaneo theory

It has been argued that the basic equations of Maxwell - Cattaneo theory,
equations, (4.1), should have coefficients which in general depend on tem-
perature, in order to be compatible with thermodynamics. Arguments along
these lines may be seen in the work of (Coleman et al., 1982; Coleman et al.,
1986), Dario Graffi in 1984, see (Franchi and Straughan, 1994b), (Morro
and Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and Newman,
1988). These writers essentially argue that the internal energy ε, entropy η,
and Helmholtz free energy ψ should depend on qiqi where qi is the heat flux.
The development of (Morro and Ruggeri, 1987; Morro and Ruggeri, 1988)
employs an appealing use of internal variables, an approach extended to
thermoelasticity by (Caviglia et al., 1992) and to porous media by (Fabrizio
et al., 2008) and by (Straughan, 2008), pp. 351–353.

In one space dimension the generalized model is effectively given
by (Coleman and Newman, 1988) in the form(

c0(θ) + a′(θ)q2
)
θt + 2a(θ)qqt = −qx,

τ(θ)qt + q = −κ(θ)θx .
(4.54)

(Coleman and Newman, 1988) develop a nonlinear wave analysis for system
(4.54) and fit the wavespeeds predicted to those found experimentally for
NaF and Bi. In this way they are able to make some progress with functional
forms for c0, a, τ and κ.
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(Morro and Ruggeri, 1987) perform a complete acceleration wave analysis
for their model and also analyse thermal shocks. They also investigate the
question of reconciling wavespeeds with thermodynamics. Their model for
heat propagation in solids at low temperatures is

c0θ̇ = −qi,i ,
T q̇i + (1 + Γθ̇)qi = −κθ,i ,

(4.55)

where c0, κ, T ,Γ are, in general, functions of θ and for constants Ã and B̃
they suggest T and Γ may have forms

T = κ(Ãθ−3 + B̃θn−3),

Γ = κ
(
5Ãθ−4 + (5 − n)B̃θn−4

)
for a suitable constant n.

4.1.4 Dual phase lag theory

We have discussed acceleration wave development in detail for the MC
theory. Since the approximate models arising from the dual phase lag the-
ory of (Tzou, 1995b; Tzou, 1995a), see section 1.5, are in some sense a
generalization of the (Cattaneo, 1948) model we make some comments for
acceleration wave propagation in this area. In fact, (Straughan, 2008), pp.
358–360 includes brief comments on acceleration wave propagation in a
class of dual phase lag models for a fluid.

If the basic model is based on an energy equation of form

cθ̇ = −qi,i , (4.56)

and then expands a dual phase lag model like

qi(x, t+ α) = −κ
(
θ(x, t + τ)

)
θ,i(x, t+ τ), (4.57)

then we might consider a Taylor expansion of the type

αq̇i + qi = −(κ+ τ θ̇κ′ +
τ2θ̇2

2
κ′′(θ)

)
(θ,i + τ θ̇,i +

τ2

2
θ̈,i) . (4.58)

Wave motion could be based on equations (4.56) and (4.58), with if need
be, an α2 term on the left of (4.58). While progress is possible with this
class of model, an a priori knowledge of the exact nature of the expansion,
i.e. which terms to retain, would be a distinct advantage.

4.2 Type II rigid heat conductor

A concise and detailed acceleration wave analysis for the (Gurtin and Pip-
kin, 1968) rigid heat conductor model is provided by (Chen, 1969a). The
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analysis of (Chen, 1969a) is for a plane wave propagating in one direc-
tion. (Chen, 1969b) extends his previous analysis to acceleration waves
of arbitrary shape. The Bernoulli equation obtained for the wave ampli-
tude is presented for an arbitrary shaped wave and special attention is
paid to acceleration waves of cylindrical and spherical shape. (Lindsay
and Straughan, 1976) presented an acceleration wave analysis for a one-
dimensional wave in the (Green and Laws, 1972) theory for a rigid
body.

The object of this section is to report on work of (Jaisaardsuetrong and
Straughan, 2007) who perform an analysis of acceleration wave motion in
a (Green and Naghdi, 1991) rigid solid of type II. (Jaisaardsuetrong and
Straughan, 2007) retain the equations of (Green and Naghdi, 1991) in their
full general nonlinearity, and they completely determine the wave speed
and the amplitude of the wave as a function of time. The basic equations
of (Green and Naghdi, 1991) type II theory for a rigid solid are described
in chapter 1, section 1.10. In the interests of clarity we recap the necessary
equations here.

The governing equation is the balance of entropy, namely

ρη̇ = ρξ + ρs− pi,i, (4.59)

where ρ, η, ξ and s are, respectively, density, entropy, internal rate of pro-
duction of entropy per unit mass, external rate of production of entropy
per unit mass, and pi is the entropy flux vector.

For the thermal displacement variable

α(x, t) =
∫ t

t0

T (x, s)ds+ α0,

there is a temperature function θ = θ(T, α) = θ(α̇, α) such that θ > 0 and
∂θ/∂T > 0. The functions η, pi and ξ are expressed in terms of a Helmholtz
free energy function ψ = ψ(θ, βi) by

η = −∂ψ
∂T

/
∂θ

∂T
, (4.60)

pi = −ρ ∂ψ
∂βi

/
∂θ

∂T
, (4.61)

and

ξ = 2ΛψΛ
θα

θθT
+
T

θ

(
ψT θα

θT
− ψα

)
, (4.62)

where βi and Λ are defined by

βi = α,i, Λ = α,iα,i = βiβi. (4.63)

To study the simplest acceleration wave we set the external supply of
entropy to be zero and so we put s = 0. Then, with the aid of equations
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(4.60) - (4.62), the governing equation (4.59) may be rewritten as

−∂Ψ
∂t

= ξ +
∂μi

∂xi
, (4.64)

where Ψ and μi have been introduced and are

Ψ =
ψT

θT
, μi =

ψβi

θT
. (4.65)

Equation (4.64) represents the general theory of heat flow in a type II
rigid body of (Green and Naghdi, 1991). Special cases follow with the choice
of free energy,

ψ = c(θ − θ ln θ) +
k

2
βiβi (4.66)

or, specializing also for the function θ,

ψ = c(θ − θ ln θ) +
k

2
βiβi, θ = a+ bT, (4.67)

where c, k, a, b are positive constants. When (4.67) holds then ξ = 0,
see (Green and Naghdi, 1991).

4.2.1 Acceleration waves in type II theory

We define an acceleration wave for a solution to (4.64) to be a two-
dimensional surface, S, in R

3, across which α̈(x, t), α̇,i(x, t), and α,ij(x, t)
suffer a finite discontinuity, but α ∈ C1(R3), i.e. in the spatial variables.
The jump, [f ], of a function f , across S is defined as in (4.3). The jump is
assumed to be even along the wave surface, cf. (Chen, 1973), so that [f ] is
a function only of t.

We take the jump of equation (4.64) using the forms (4.65) for Ψ and
μi, noting also the form for ξ from (4.62) and recalling θ = θ(T, α), ψ =
ψ(θ, βi). This leads to the following equation for the wave speed V of S

V 2

(
ψTT

θT
− ψT θTT

θT
2

)

− 2βini

(
2ψTΛ

θT
− θTTψΛ

θT
2

)
V + 2

ψΛ

θT
+ 4(βini)2

ψΛΛ

θT
= 0. (4.68)

Hence there is a wave moving in the ±ni directions, where ni is the unit
outward normal to S, with speed V given by the solutions to (4.68).
(Jaisaardsuetrong and Straughan, 2007) note that if ψ is given by (4.66)
then equation (4.68) reduces to

−θT c

θ
V 2 + k(βini)

θTT

θT
2 V +

k

θT
= 0, (4.69)
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while if ψ and θ are given by (4.67) then equation (4.68) becomes

V 2 =
kθ

b2c
. (4.70)

This implies there are waves moving in opposite directions with speeds
V = ±b−1

√
kθ/c.

4.2.2 Region with no x variation

To make things more transparent (Jaisaardsuetrong and Straughan, 2007)
then restrict attention to the case of a wave moving into a homogeneous
region for which

α,i ≡ 0. (4.71)

In this case the wavespeed equation (4.68) reduces to

V 2 = 2ψΛ

/(
ψΛθTT

θT
− ψTT

)
. (4.72)

Equation (4.69) becomes

V 2 =
kθ

cθT
2 , (4.73)

and equation (4.70) remains the same.
We now calculate the amplitudes for a wave entering a homogeneous

region.

4.2.3 Amplitude solution

To determine the wave amplitude A(t) = [α̈] we differentiate (4.64) with
respect to t and take the jump of the resulting equation. The result is

− ΨTT [α̈]2 − 2ΨTαT [α̈] − ΨT [
...
α ] − Ψα[α̈] − 2ΨΛ[α̇,iα̇,i]

= ξT [α̈] + 2
(
ψΛ

θT

)
T

{
[α̇,iα̇,i] + [α̈α,ii]

}

+ 2T
(
ψΛ

θT

)
α

[α,ii] + 2
ψΛ

θT
[α̇,ii] = 0. (4.74)

The Hadamard relation (4.27) and the wavespeed equation (4.72) are now
employed to remove the [

...
α ] and [α̇,ii] terms. This leads to the amplitude

equation

2
δA

δt
+ α1A− βA2 = 0. (4.75)
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After some calculation one shows that the coefficients α1 and β have forms

α1 = − 1
V

δV

δt
− V 2θTT

ψΛ

(
ψT

θT

)
Tα

− V 2θT

2ψΛ

(
ψT

θT

)
α

− TθT

ψΛ

(
ψΛ

θT

)
α

− V 2θT

2ψΛ

{(
ψT θαT

θθT

)
T

−
(
ψαT

θ

)
T

}
, (4.76)

and

β =
V 2θT

2ψΛ

(
ψT

θT

)
TT

+
θT

ψΛ

(
ψT

θT

)
Λ

+ 2
θT

ψΛ

(
ψΛ

θT

)
T

. (4.77)

While a solution to (4.75) is easily found, (Jaisaardsuetrong and
Straughan, 2007) argue that one can understand the physical situation
easier when the free energy satisfies (4.66) or (4.67).

In the case ψ satisfies (4.66), α1 and β are given by

α1 = − 1
V

δV

δt
+

2Tθ
θT

(ln θ)Tα +
θ

θT
(ln θ)α

+ T
θTα

θT
+

2θ
θT

(
ln θ · θαT

θ

)
T

, (4.78)

β =
θT

θ
− 3

θTT

θT
. (4.79)

(Jaisaardsuetrong and Straughan, 2007) consider the forms for ψ and θ in
(4.67), but further assume T+= constant. Then one has

α1 = 0, β =
b

(a+ bT )
. (4.80)

The Bernoulli equation (4.75) reduces to

δA

δt
− β

2
A2 = 0. (4.81)

This equation is solved to see that

A(t) =
A(0)

1 − A(0)βt
2

. (4.82)

Since β > 0, we see that if A(0) > 0 then A(t) blows up in a finite time,
T , where

T =
2(a+ bT+)

ba(0)
.

(Jaisaardsuetrong and Straughan, 2007) note that for equation (4.81) one
has ξ = 0 and it is interesting to note that this may always lead to thermal
shock formation.
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From (4.82) it is necessary that A(0) > 0 for blow-up. This is because
in this section the amplitude A(t) is defined as [α̈]. In section 4.1.2 the
amplitude was [θx]. Since α̇ = T the amplitude

A(t) = [α̈] = [Ṫ ] = Ṫ−(t)

for a wave moving into a region with T+ constant. From the Hadamard
relation (4.5) [Ṫ ] = −V [Tx] and so A(t) = −V T−

x (t). Thus A(0) > 0
yields consequent blow-up of A(t) corresponding to T−

x (t) → −∞ which is
consistent with a jump in T (thermal shock) forming.

4.3 Acceleration waves with microtemperatures

In this section we commence an acceleration wave analysis for the theory
of a rigid body with microtemperatures as described in section 1.12.

An acceleration wave in a rigid solid with microtemperatures is a surface
S such that α, βi ∈ C1(R3) in the x variables but the second and higher
derivatives possess a finite jump discontinuity across S. It transpires, in
fact, that an acceleration wave analysis is rather involved, more so even than
the analogous analysis in type II thermoelasticity. Hence, to understand this
we begin with the linear equations for an isotropic body. Thus, take the
jump of equations (1.139) to find

a[α̈] −K[α,ii] +m[β̇i,i] = 0,

b[β̈i] − d2[βi,jj ] − (d1 + d3)[βj,ji] +m[α̇,i] = 0,
(4.83)

for the supply functions s, si continuous everywhere. Next, define the wave
amplitudes A and Bi by

A = [ninjα,ij ], Bi = [nrnsβi,rs] . (4.84)

Upon use of the compatibility relations (4.25) and (4.26) together with the
Hadamard relation (4.27) one shows from (4.83)

aV 2A−KA = mV Bini,

bV 2Bi − d2Bi − (d1 + d3)Bjnjni = mV niA.
(4.85)

Now write Bi as the sum of its components parallel to the unit normal ni

to S, namely BII , and its tangential components Bα
⊥, α = 1, 2, i.e.

Bi = BIIni +Bα
⊥x

i
;α

where xi
;α are tangential vectors to S in the directions of surface coordinates

u1 and u2. Thus, (4.85) yield

aV 2A−KA = mV BII ,[
bV 2 − (d1 + d2 + d3)

]
BII = mV A

(4.86)



114 4. Acceleration waves

and

(bV 2 − d2)Bα
⊥x

i
;α = 0. (4.87)

Equation (4.87) immediately shows that the theory with microtempera-
tures possess a much richer structure than any so far met in this book.
Even in the linear, isotropic theory for a rigid solid the thermal structure
at the microscopic level is leading to the possibility of a transverse wave
with amplitudes B1

⊥ and B2
⊥, and speed V given by

V 2 =
d2

b
. (4.88)

Equations (4.86) are a system in A, BII which lead to the wavespeed
equation for a longitudinal wave, namely

(aV 2 −K)(bV 2 −D) −m2V 2 = 0, (4.89)

where D = d1 + d2 + d3. Thus, if VT =
√
K/a denotes the speed of a

thermal wave and VMT =
√
D/b denotes the speed of a “microthermal

wave” then (4.89) admits a fast wave with speed V2 and a slow wave with
speed V1 with

V 2
1 < min{V 2

T , V
2
MT } < max{V 2

T , V
2
MT } < V 2

2 .

Rather than now proceed immediately to the nonlinear case it is instruc-
tive to first develop an acceleration wave analysis for the anisotropic linear
equations with microtemperatures, namely, equations (1.137). For the sup-
ply functions s, si in equations (1.139) continuous we define an acceleration
wave as above and take the jumps of equations (1.137) to find

a[α̈] −Kij [α,ij ] +Mij [β̇i,j ] = 0,

Bij [β̈j ] −Dijrs[βr,sj ] +Mij [α̇,j ] = 0.
(4.90)

We again employ the compatibility relations (4.25) and (4.26) together
with the Hadamard relation (4.27), recalling the wave amplitude definitions
(4.84). In this way from (4.90) we obtain(

U2
NBij −Qij(n)

)
Bj = UNMijnjA,(

aU2
N −Kijninj

)
A = UNMijnjBi,

(4.91)

where

Qij(n) = Diajbnanb , (4.92)

and Qij plays a role of a thermal “acoustic tensor”. Equation (4.91) is sim-
ilar to the jump of the momentum equation in thermoelasticity. However,
it is more complicated owing to the Bij term.

In general, we expect a generalized transverse wave from (4.91) and also a
generalized longitudinal wave. A generalized longitudinal wave is one where
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Bi = Bn∗
i with n∗

i being the unit vector in the direction of Mijnj . We may
show that a plane generalized longitudinal wave will exist by appealing to
the proof of theorem 2 of (Chadwick and Currie, 1974). Define the matrix
Fij(n) by

Fij(n) = Qij(n) − U2
NBij .

Then for any unit vector ω define the vector field m by

m(ω) = M−1F(ω)Mω −
[
ω · (M−1F(ω)Mω)

]
ω . (4.93)

Note that we require Mij to define a non-singular matrix. The vector m is
a continuous function of ω and m · ω = 0. The set of unit vectors forms
a sphere S in three-space and so m(ω) defines a continuous tangent field
on S. Thus m has a zero, see (Chadwick and Currie, 1974), p. 486, and
so there is a unit vector n with m(n) = 0. Then, from (4.93) Mn is an
eigenvector of F(n). Thus we have at least one direction n such that a
generalized longitudinal plane wave propagates. The amplitude Bi is in the
direction n∗ where n∗ is in the direction Mn. One may thus analyse the
wavespeed and amplitude of a plane wave for (4.91).

To complete this section we briefly investigate the propagation of an ac-
celeration wave in a nonlinear rigid body with microtemperatures. To do
this we employ equations (1.132) and (1.133) with the constitutive theory
(1.136). We suppose for simplicity that the body has a centre of symme-
try. Then we define an acceleration wave S as earlier in this section with
amplitudes given by (4.84). Expanding (1.132) and (1.133), recalling the
centre of symmetry, and taking jumps we find

ρηθ[α̈] + ρ
∂η

∂βi,j
[β̇i,j ] =

∂Sk

∂Ti
[β̇i,k] +

∂Sk

∂α,i
[α,ik]

and

ρ
∂ηj

∂Tj
[β̈j ] + ρ

∂ηi

∂α,j
[α̇,j ] =

∂Ski

∂θ
[α̇,k] +

∂Ski

∂βa,b
[βa,bk] .

Again employing the compatibility relations (4.25), (4.26) and the
Hadamard relation (4.27) we derive(

ρηθU
2
N − ∂Sk

∂α,i
nink

)
A =

(
ρ
∂η

∂βi,k
− ∂Sk

∂Ti

)
UNnkBi , (4.94)

and (
ρU2

N

∂ηi

∂Tj
−Qij

)
Bj =

(
ρ
∂ηi

∂α,j
− ∂Sji

∂θ

)
UNnjA . (4.95)

One may define

Mij = ρ
∂ηi

∂α,j
− ∂Sji

∂θ
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and provided this is invertible one may show there is a generalized plane
longitudinal wave in a direction n with amplitude in the direction Mn. One
may show this generalized longitudinal wave gives rise to a fast wave and
a slow wave whose wavespeeds U1

N and U2
N are solutions to the equation(

ρηθU
2
N − ∂Sk

∂α,p
npnk

)(
Qij − ρU2

N

∂ηi

∂Tj

)
Mjanani

+ U2
N

(
ρ

∂η

∂βi,k
− ∂Sk

∂Ti

)
MiaMrsnknanrns = 0,

(4.96)

where Qij(n) is a (nonlinear) thermal “acoustic tensor” defined by

Qia(n) =
∂Ski

∂βa,b
nknb .

To the best of my knowledge a theory of acceleration wave propagation
in the microtemperatures theory of section (1.12) has not been presented
before. Obviously there is much more one may do regarding the calculation
of wave amplitudes, studying transverse waves, and other things. It would
appear this has potential to be richer even than the comprehensive the-
ory of acceleration waves in thermoelasticity. In the next section we study
acceleration waves in a thermoelastic body of type II.

4.4 Type II thermoelasticity

In this section we develop an acceleration wave analysis for the thermoelas-
tic theory of type II introduced by (Green and Naghdi, 1993), described in
section 2.3. (Green and Naghdi, 1993) present their equations with a sym-
metric stress tensor in the current configuration. However, when dealing
with acceleration waves we believe it is better to refer everything back to
the reference configuration and so we now present the equations with the
Piola - Kirchoff stress tensor. While there are many studies of wave motion
in the literature which employ the linearized theory of type II thermoelas-
ticity we have not seen an acceleration wave analysis for the fully nonlinear
theory as is presented here.

The (Green and Naghdi, 1993) theory essentially starts with an energy
equation of form

ρ0ε̇− ρ0θs+ qA,A − SAiẋi,A = 0, (4.97)

where ρ0, ε, θ, s, qA, xi, SAi are the density, internal energy, temperature,
external entropy supply, heat flux, position vector, and the Piola-Kirchoff
stress tensor, each referred to the reference configuration. Hence, ,A denotes
∂/∂XA, where XA is the position in the reference configuration. Introduc-
ing the entropy flux vector pA = qA/θ and noting ε = ψ+ηθ, ψ and η being
the Helmholtz free energy function and the entropy, (Green and Naghdi,
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1993) deal with a reduced energy equation

ρ0(ψ̇ + ηθ̇) + ρ0θξ + pAθ,A − SAiẋi,A = 0, (4.98)

in which ξ is an internal supply of entropy per unit mass. Judicious manip-
ulation of this energy equation allows (Green and Naghdi, 1993) to derive
restrictions on the constitutive variables.

To develop an acceleration wave analysis, the key equations of (Green
and Naghdi, 1993) are the balance of linear momentum

ρ0ẍi = ρ0bi + SAi,A , (4.99)

where bi is a body force, and the balance of entropy

ρ0η̇ − ρ0s− ρ0ξ + pA,A = 0. (4.100)

For type II theory (Green and Naghdi, 1993) show that

ψ = ψ(θ, α,B , FjB),
η = η(θ, α,B , FjB),
SAi = SAi(θ, α,B , FjB),

(4.101)

where FjB = ∂xj/∂XB = xj,B. In particular, (Green and Naghdi, 1993)
derive relations equivalent to the following,

η = −∂ψ
∂θ

, SAi = ρ0
∂ψ

∂FiA
, pA = −ρ0

∂ψ

∂α,A
, ξ = 0. (4.102)

In developing a nonlinear acceleration wave analysis we take the body force
bi and external entropy supply s to be zero. Hence, we analyse the equa-
tions, where without loss of generality we use ui = xi −Xi rather than xi,

ρ0üi = SAi,A ,

ρ0η̇ + pA,A = 0.
(4.103)

An acceleration wave in a thermoelastic body of type II is a surface
S in R

3 for which ui(X, t), α(X, t) ∈ C1(R3) in their spatial variables,
but üi, u̇i,A, ui,AB, α̈, α̇,A, α,AB and their higher derivatives have a jump
discontinuity across S.

Using the fact that η, SAi and pA are derivatives of ψ, and the constitutive
theory in equation (4.101), we expand equations (4.103) and take the jumps
recalling the definition of an acceleration wave, to obtain

ρ0[üi] =
∂SAi

∂θ
[θ,A] +

∂SAi

∂FjR
[FjR,A] +

∂SAi

∂α,R
[α,RA] , (4.104)

and

ρ0

(
∂η

∂θ
[θ̇] +

∂η

∂FiQ
[ḞiQ] +

∂η

∂α,Q
[α̇,Q]

)

= −∂pA

∂θ
[θ,A] − ∂pA

∂FjR
[FjR,A] − ∂pA

∂α,R
[α,RA] .

(4.105)
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Upon use of the Hadamard relation (4.27) in three dimensions and the
definition of an acceleration wave we may derive the following relations

[üi] = −UN [u̇i,A]NA, (4.106)

[u̇i,A] = −UNN
B[ui,AB], (4.107)

[üi] = U2
NN

ANB[ui,AB] = U2
NAi, (4.108)

[θ,A] = [α̇,A] = −UNN
B[α,AB], (4.109)

[α̈] = [θ̇] = −UN [α̇,A]NA = −UN [θ,A]NA, (4.110)

= U2
NN

ANB[α,AB] = U2
NB, (4.111)

where we have introduced the wave amplitudes

Ai(t) = NANB[ui,AB], B(t) = NANB[α,AB], (4.112)

and have recalled that θ = α̇.
We employ (4.106) - (4.111) in the jump equations (4.104) and (4.105)

to derive the following general amplitude equations,

ρ0U
2
NAi = QijAj +BNRNA

∂SAi

∂α,R
− UNNA

∂SAi

∂θ
B , (4.113)

ρ0
∂η

∂θ
U2

NB −B

(
ρ0

∂η

∂α,A
NAUN +NAUN

∂pA

∂θ

)

= −NANB
∂pA

∂α,B
B −Ai

(
NANB

∂pA

∂FiB
− ρ0UNNA

∂η

∂FiA

)
,

(4.114)

where Qij is the acoustic tensor defined by

Qij = NANR
∂SAi

∂FjR
. (4.115)

Equations (4.113) and (4.114) are a system of equations in the variables
A1, A2, A3 and B and give rise to a polynomial equation for the wavespeeds
U2

N . It is possible to make progress in full generality. However, for the
purpose of this section it is likely to be more transparent to consider a wave
moving into a particular region and this we now do. Hence, we consider
an acceleration wave propagating into a static configuration at uniform
deformation and temperature, and we suppose the initial body has a centre
of symmetry. In this region ahead of the wave FiA and θ are constant and
α,A ≡ 0. If we denote quantities evaluated in the region ahead of the
wave by a subscript E then since the body has a centre of symmetry, cf.
(Truesdell and Noll, 1992), p. 358, or (Spencer, 1980), p. 110, it follows
that

∂SAi

∂α,R

∣∣∣∣
E

= 0, ρ0
∂η

∂α,A

∣∣∣∣
E

= 0,
∂pA

∂θ

∣∣∣∣
E

= 0,
∂pA

∂FiB

∣∣∣∣
E

= 0 .
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Thus, equations (4.113) and (4.114) now reduce to

(Qij − ρ0U
2
Nδij)Aj − UNNA

∂SAi

∂θ
B = 0, (4.116)

(
ρ0
∂η

∂θ
U2

N +NANB
∂pA

∂α,B

)
B = ρ0UNNA

∂η

∂FiA
Ai

= −UNNA
∂SAi

∂θ
Ai , (4.117)

where in the last equation (4.102) has been employed.
From (Chen, 1973) equation (4.10) we know that

NA = FiA
|∇xσ|
|∇XS| ni

where ni is the equivalent unit normal to NA in the current configuration,
and σ is the equivalent surface to S in the current configuration. We define
the tensor βij by

βij =
|∇xσ|
|∇XS|

(
∂SAi

∂θ
FjA

)∣∣∣∣
E

(4.118)

and then we may rewrite equation (4.116) as

(Q̃ij(n) − ρ0U
2
Nδij)Aj − UNBβijnj = 0, (4.119)

where Q̃ij(n) is the tensor Qij(N) but represented now as a function of n
instead of N.

We now use theorem 2 of (Chadwick and Currie, 1974) to infer there is
at least one direction n∗ such that βn∗ is an eigenvector of Q. The wave
is propagating into an equilibrium region at rest and so Q is a constant
matrix and consequently βn∗ is fixed. The matrix β is also constant and
hence n∗ represents a fixed direction. Hence, we may study the propagation
of a plane acceleration wave in the direction of n∗ with its amplitude in
the direction βn∗. In line with the definition in (Chadwick and Currie,
1974) in classical thermoelasticity we refer to these waves as generalized
longitudinal waves.

4.4.1 Wavespeeds

Let now the unit vector in the direction of βn∗ be m, so that A = A(t)m.
Then equation (4.119) is

(Q̃ij − ρ0U
2
Nδij)mjA− UNBNA

∂SAi

∂θ
= 0. (4.120)
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We multiply this equation by mi and then the result together with (4.117)
give

⎛
⎜⎝
Q̃ijmimj − ρ0U

2
N −UNNAmi

∂SAi

∂θ

UNNAmi
∂SAi

∂θ
ρ0
∂η

∂θ
U2

N +NANB
∂pA

∂α,B

⎞
⎟⎠
(
A
B

)
=
(

0
0

)

For a non-zero solution to this we require

(U2
N − U2

M )(U2
N − U2

T ) +KU2
N = 0. (4.121)

Here the quantities U2
M , U2

T and K are given by

U2
M =

Q̃ijmimj

ρ0
, (4.122)

U2
T = −

NANB
∂pA

∂α,B

ρ0
∂η

∂θ

, (4.123)

and

K = −
NA

∂SAi

∂θ
NB

∂SBi

∂θ

ρ2
0

∂η

∂θ

. (4.124)

Equation (4.121) admits two solutions under suitable conditions on the
wavespeeds and these are attributed to a fast wave (mechanical) and a
slow wave (thermal).

Equation (4.121) possesses real solutions if K ≥ (UM + UT )2 or if K ≤
(UM − UT )2. The former case is inconsistent with U2

N > 0 and so we must
have

K ≤ (UM − UT )2.

From (4.124) K < 0, and then the two wavespeeds U (2)
N and U (1)

N are such
that

U
(2)2
N < min{U2

M , U2
T } ≤ max{U2

M , U2
T } < U

(1)2
N . (4.125)

The quantities UM and UT are the wavespeeds of an acceleration wave
in a purely elastic material, or a thermal wave in a rigid solid of type II,
respectively. Hence, we have a fast wave travelling faster than either of
these two quantities and a slow wave travelling slower. We expect K < 0
to hold in practice.
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4.4.2 Amplitude behaviour

One may proceed to calculate explicitly the amplitude of an arbitrary
shaped wave or even of the plane wave whose speed has been calculated
in section 4.4.1, cf. such calculations in (Lindsay and Straughan, 1978;
Lindsay and Straughan, 1979). However, the differential geometry involved
can obscure the procedure. Hence, we here calculate the amplitude of a
one-dimensional acceleration wave for the type II equations (4.103). In or-
der to see clearly which terms disappear due to the body having a centre
of symmetry we begin by taking ∂/∂XA of each of equations (4.99) and
(4.100) and then take the jump of the non-zero terms. This leads to the
equations,

ρ0[üi,A] =
∂SBi

∂θ
[α̇,BA] +

∂2SBi

∂θ2
[θ,Aθ,B] +

∂2SBi

∂θ∂FjR
[θ,Buj,RA]

+
∂SBi

∂FjR
[uj,RBA] +

∂2SBi

∂θ∂FjR
[θ,Auj,RB]

+
∂2SBi

∂FrK∂FjR
[ur,KAuj,RB] +

∂2SBi

∂α,Q∂α,R
[α,RBα,QA] ,

(4.126)

and

ρ0ηθ[α̈,A] + ρ0ηθθ[θ,Aθ̇] + ρ0
∂2η

∂FiR∂θ
[θ̇ui,RA] + ρ0

∂η

∂FiQ
[u̇i,QA]

+ ρ0
∂2η

∂θ∂FiQ
[ḞiQθ,A] + ρ0

∂2η

∂FiQ∂FjR
[ḞiQFjR,A]

+ ρ0
∂2η

∂α,Q∂α,R
[α̇,Qα,RA] = − ∂2pB

∂θ∂α,Q
[α,QAθ,B]

− ∂2pB

∂FiQ∂α,R
[α,RAFiQ,B ] − ∂pB

∂α,Q
[α,QBA]

− ∂2pB

∂θ∂α,Q
[α,QBθ,A] − ∂2pB

∂α,Q∂FjR
[FjR,Aα,QB] .

(4.127)

We now specialize to the one space dimension case and employ the re-
lation (4.3) for the jump of a product to find from (4.126) and (4.127),

ρ0[üX ] =
∂S

∂θ
[α̇XX ] +

∂2S

∂θ2
[θX ]2 + 2

∂2S

∂θ∂F
[θX ][uXX ]

+
∂S

∂F
[uXXX ] +

∂2S

∂F 2
[uXX ]2 +

∂2S

∂α2
X

[αXX ]2,
(4.128)

ρ0ηθ[α̈X ] + ρ0ηθθ[α̇X ][α̈] + ρ0ηθF [α̈][uXX ] + ρ0ηF [u̇XX ]
+ ρ0ηFθ[u̇X ][α̇X ] + ρ0ηFF [u̇X ][uXX ] + ρ0ηαXαX [α̇X ][αXX ]
= −2pθαX [αXX ][α̇X ] − 2pFαX [αXX ][uXX ] − pαX [αXXX ],

(4.129)

where u, S, F denote the one-dimensional counterparts of ui, SAi and FiA.
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We now employ the Hadamard relation (4.5) to derive the following
expressions,

[uXt] = −UN [uXX ] ,

[üX ] = −2UN
δA

δt
+ U2

N [uXXX ],

[u̇XX ] =
δA

δt
− UN [uXXX ] .

(4.130)

The one-dimensional equivalent of equations (4.116) and (4.117) are the
equations

(SF − ρ0U
2
N )A = UN

∂S

∂θ
B,

(ρ0ηθU
2
N + pαX )B = Aρ0UNηF .

(4.131)

One now employs (4.130) in (4.128) and (4.129) to derive

−2ρ0UN
δA

δt
− ∂S

∂θ

δB

δt
+ (ρ0U

2
N − SF )[uXXX ] +

∂S

∂θ
UN [αXXX ]

− SθθU
2
NB

2 + 2SθFUNBA− SFFA
2 − SαXαXB

2 = 0, (4.132)

−2ρ0ηθUN
δB

δt
+ ρ0ηF

δA

δt
+ (ρ0ηθU

2
N + pαX )[αXXX ]

− ρ0ηFUN [uXXX ] − (ρ0ηθθU
3
N + ρ0ηαXαXUN + 2pθαXUN )B2

+ (2ρ0ηθFU
2
N + 2pFαX )BA− ρ0ηFFUNA

2 = 0. (4.133)

Now form the combination (4.132)+(B/A)(4.133). Use (4.131) to elim-
inate B from the result. After further use of (4.131) and use of the
constitutive relations (4.102) one may show A(t) satisfies the equation

2ρ0UN

[
1 +

ηθ(ρ0U
2
N − SF )

(ρ0ηθU2
N + pαX )

]
δA

δt
+ ζA2 = 0, (4.134)

where

ζ =ρ0ψFFF + ρ3
0U

2
N(ψFθ)2{3U2

NψFθθ + 3ψFαXαX}

+
3ρ0ψθFF

ψFθ
(U2

N − ψFF )

+ ρ3
0U

2
NψFθ(U2

N − ψFF ){ψθθθU
2
N + 3ψθαXαX} .

(4.135)

Let us denote by ζ1 the coefficient

ζ1 =
ζ

2ρ0UN [1 + ηθ(ρ0U2
N − SF )/(ρ0ηθU2

N + pαX )]
.

Then we solve equation (4.134) to find

A(t) =
A(0)

1 + ζ1tA(0)
.
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The amplitude behaviour depends on sgn ζ1. If ζ1 > 0 then A(0) > 0 results
in A(t) decaying to zero. Under the same circumstances A(0) < 0 leads to
|A(t)| → ∞ as t → −1/ζ1A(0). This is believed to indicate the beginning
of a thermal shock wave, cf. the calculations of (Fu and Scott, 1991), the
numerical work of (Christov et al., 2006; Christov et al., 2007), and chapter
5, section 5.1, of this book.

4.5 Type III thermoelasticity

As we have seen in chapter 2 (Green and Naghdi, 1992) also develop an-
other thermoelasticity theory based on their 1991 work which they call
type III thermoelasticity. This theory would appear to have the potential
for heat transport at finite speed, but there is dissipation in this the-
ory. The linearized isotropic equations are derived in (Green and Naghdi,
1992), equations (3.19), (3.20) and these writers study the behaviour of
one-dimensional waves in the framework of their linearized theory.

(Quintanilla and Straughan, 2004) observe that most of the work prior to
2004 dealing with type II or type III thermoelasticity is analysing the lin-
earized theory. They tackled the nonlinear theory directly and established
a fundamental difference between Green-Naghdi thermoelasticity of type II
and that of type III. We have seen in section 4.4 that in the theory of type
II (Green and Naghdi, 1993), a nonlinear acceleration wave analysis allows
both a mechanical and a thermal wave to propagate. However, (Quintanilla
and Straughan, 2004) show that in the theory of type III this is no longer
true. They demonstrate that there is only one wave and they reconcile
this to the fact that it in some ways resembles the situation in classical
thermoelasticity, cf. (Chen, 1973), (Chadwick and Currie, 1974; Chadwick
and Currie, 1975), (Coleman and Gurtin, 1965), (Iesan and Scalia, 1996),
(McCarthy, 1972). As (Quintanilla and Straughan, 2004) remark, they be-
lieve that this is a highly relevant result in placing the Green-Naghdi type
II and type III theories in the context of “hyperbolic thermoelasticity”.

We now describe the nonlinear acceleration wave analysis of (Quintanilla
and Straughan, 2004) for type III thermoelasticity.

The governing equations of type III thermoelasticity are

ρ0üi = ρ0Fi + SAi,A , (4.136)
ρ0η̇ = ρ0s+ ρ0ξ − pA,A . (4.137)

Here ui, ρ0, Fi, η, s, ξ, pA and SAi are the displacement, density, body force,
entropy, external rate of supply of entropy per unit mass, internal rate of
production of entropy per unit mass, the entropy flux vector, and the Piola
- Kirchoff stress tensor, respectively.

In terms of the absolute temperature θ and with the heat flux given by
qA = θpA, the constitutive equations are derived by (Green and Naghdi,
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1992) in terms of a Helmholtz free energy

ψ = ψ(θ, FiA, α,A) . (4.138)

Here FiA is the deformation gradient, i.e. FiA = ∂xi/∂XA. Thermodynam-
ics requires, cf. chapter 2,

η = −∂ψ
∂θ
, SAi = ρ0

∂ψ

∂FiA
(4.139)

whence using (4.138)

η = η(θ, FjR, α,R), SAi = SAi(θ, FjR, α,R). (4.140)

It is interesting to note that these relations hold for both type II and type
III thermoelasticity. For type II theory we saw in section 4.4 that ξ = 0. In
type III theory this is not true and we must have

ξ = ξ(θ, FjR, α,R, θ,R) . (4.141)

As observed by (Quintanilla and Straughan, 2004) a fundamental difference
between type II and type III thermoelasticity is due to the forms for the
entropy flux vector. We saw in section 4.4 that for type II theory we may
write pA as

pA = −ρ0
∂ψ

∂α,B
= pA(θ, FjR , α,R) . (4.142)

No such relation is available for type III thermoelasticity. All we may assert
is that pA has the functional form

pA = pA(θ, FjR , α,R, θ,R) . (4.143)

Note, unlike (4.142), equation (4.143) has pA depending explicitly on θ,R =
α̇,R.

4.5.1 Fundamental jump relations

To develop an acceleration wave analysis for a type III thermoelastic body
we follow (Quintanilla and Straughan, 2004) and employ the global entropy
balance law of (Green and Naghdi, 1995b), namely

d

dt

∫
P

ρ0η dv =
∫

P

ρ0(s+ ξ)dv −
∫

∂P

k da, (4.144)

where k = pANA, with P being an arbitrary volume in the thermoelastic
body with boundary ∂P, and NA is the unit outward normal to ∂P.

We define an acceleration wave in a thermoelastic body of type III to
be a singular surface S across which the displacement ui, the thermal dis-
placement α, and their first derivatives are continuous while the second and
higher derivatives, in general, possess finite discontinuities. The amplitudes
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Ai(t) and B(t) of the acceleration wave are defined as

Ai(t) = [üi], B(t) = [α̈]. (4.145)

We require the integrated form of the entropy balance law (4.144) evaluated
across S, and this is, cf. (Iesan and Scalia, 1996) p. 30,

[ρ0η]UN +NA[pA] = 0 on S, (4.146)

where UN is the wavespeed. From equation (4.140) we know η =
η(θ, FiA, α,A) and due to our definition of an acceleration wave η is con-
tinuous across S, therefore [ρ0η] = 0. Thus equation (4.146) reduces to

NA[pA] = 0. (4.147)

Unlike type II thermoelasticity where [pA] = 0 holds automatically due
to the form of pA, it is not obviously true for type III theory because of
the representation (4.143). However, θ is continuous across S, and since
qA = θpA, equation (4.147) now leads to

NA[qA] = 0. (4.148)

The presence of θ,R in the constitutive form for qA = qA(θ, FiA, α,A, θ,A)
means that equation (4.148) is not automatically satisfied.

At this point (Quintanilla and Straughan, 2004) follow (Coleman and
Gurtin, 1965) and restrict attention to one-dimensional waves, and they
generalize the argument of (Coleman and Gurtin, 1965) relating to homoth-
ermal waves. In one dimension equation (4.148) is [q] = 0. A definite heat
conductor is defined, generalizing the definition in (Coleman and Gurtin,
1965), to be one for which q(θ, F, αX , θX) is a strictly monotone function
of θX , for fixed θ, F. Then analogous to equation (4.19) of (Coleman and
Gurtin, 1965) one sees that

[q] = q(θ−, F−, α−
X , θ

−
X) − q(θ+, F+, α+

X , θ
+
X).

Across an acceleration wave S, by definition θ, F and αX are continuous.
Therefore, since q is a strictly monotone function of θX , if [θX ] (= [α̇X ]) �=
0 then [q] �= 0. This contradicts the fact that [q] = 0. Hence we must
have [θX ] = 0. Therefore, for type III thermoelasticity, an acceleration
wave in a definite conductor is homothermal, i.e. [α̈] = 0. Even though
[α̈] = 0, the higher derivatives need not have zero jumps, cf. the arguments
of (McCarthy, 1972) in classical thermoelasticity. Hence, [αttt] = [θ̈] �= 0,
subscript t denoting partial differentiation with respect to time at fixed X.

The amplitudes in one-dimension are

A(t) = [uXX ], B(t) = [θXX ]. (4.149)
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The equations of motion for zero body force and external entropy supply
are,

ρ0ü = SX , (4.150)
ρ0η̇ = ρ0ξ − pX , (4.151)

where S and p are the stress tensor and entropy flux. By taking the jumps
of (4.150) and (4.151) one derives the wavespeed equation as

U2
N =

1
ρ0

∂S

∂F
. (4.152)

A direct relation between A and B is found from the jump of equation
(4.151) as

A
( ∂p
∂F

− ρ0UN
∂η

∂F

)
= − ∂p

∂θX
B . (4.153)

The amplitude equation is found from equation (4.150) and (Quintanilla
and Straughan, 2004) present this as

2ρ0
δA

δt
= ζ1A+ ζ2A

2. (4.154)

The coefficients ζ1 and ζ2 are given by

ζ1 =
−3ρ0

UN

δUN

δt
− Sθ

UN

(ρ0UNηF − pF )
pθX

− θ+XSθF

UN
+
θ̇+SFθ

U2
N

+
θ+XSFαX

U2
N

+
SFF

UN

(
u̇+

X − u+
XX

UN

)
+
SαX

U2
N

(ρ0UNηF − pF )
pθX

− α+
XX

UN
SαXF ,

and

ζ2 =
SFF

UN
. (4.155)

(Quintanilla and Straughan, 2004) note that the amplitude A(t) follows
from (4.154) and the development of the acceleration wave into possible
shock formation may be studied, cf. (Fu and Scott, 1991) and section 5.1 of
this monograph. Once A(t) is known, the thermal amplitude B follows from
(4.153). Thus, the mechanical wave determines the thermal wave behaviour.
Therefore, acceleration waves in type III thermoelasticity are very different
from those in type II where separate mechanical and thermal waves may
propagate.

4.6 Acceleration waves in a type II fluid

The basic equations for a type II fluid are described in section 3.3. They
consist of the equations of continuity of mass, balance of linear momentum,
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and balance of entropy and are, for zero body force bi and zero entropy
supply s, respectively,

ρ̇+ ρ
∂vi

∂xi
= 0, (4.156)

ρv̇i =
∂Tji

∂xj
, (4.157)

ρη̇ = − ∂pi

∂xi
, (4.158)

where ρ and vi are density and velocity, and Tji, η and pi are the Cauchy
stress tensor, entropy and entropy flux vector, with a superposed dot de-
noting the material time derivative. Upon writing the stress, entropy and
entropy flux vector in terms of the Helmholtz free energy function ψ, namely

Tij = −pδij −
ρ

2

(
∂ψ

∂α,i
α,j +

∂ψ

∂α,j
α,i

)
,

η = −∂ψ
∂θ

, pi = − ∂ψ

∂α,i
,

ψ = ψ(ρ, θ, α,i),

we may expand equations (4.156) - (4.158) to see that the governing
equations for a type II fluid become

∂ρ

∂t
+

∂ρ

∂xi
vi + ρ

∂vi

∂xi
= 0, (4.159)

ρ
(∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi
− 1

2
∂

∂xj

[
ρ
( ∂ψ
∂α,j

α,i +
∂ψ

∂α,i
α,j

)]
, (4.160)

and

−ρ
{
∂2ψ

∂t∂θ
+ vi

( ∂2ψ

∂xi∂θ

)}
=

∂

∂xi

(
ρ
∂ψ

∂α,i

)
. (4.161)

These five equations represent a hyperbolic system for the density ρ,
velocity vi and thermal displacement α.

An acceleration wave for a type II fluid is defined to be a two-dimensional
surface S in R

3 such that vi, ρ, α, α̇, and α,i are continuous throughout
R

3, but their derivatives v̇i, vi,j , ρ̇, ρ,i, α̈, α̇,i and α,ij , along with higher
derivatives, suffer a finite discontinuity (jump) across S.

We now follow (Quintanilla and Straughan, 2008) and consider an ac-
celeration wave moving into an equilibrium region for which v+

i ≡ 0,
ρ+ ≡ constant, θ+ ≡ constant, and α+

,i ≡ 0. In addition, we shall suppose
the body possesses a centre of symmetry.

One begins by taking the jumps of equations (4.159) - (4.161) to find

[ρt] + ρ[vi,i] = 0, (4.162)
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ρ[vi,t] = −pρ[ρ,i] − pθ[θ,i], (4.163)

and

−ρψθθ[θ̇] − ρψθρ[ρ̇] = ψα,iα,j [α,ji] . (4.164)

The amplitudes Ai, B and C are defined by

Ai = [vi
,jn

j ], B = [niρ,i], C = [α,ijn
inj ], (4.165)

where ni is the unit normal to S in the + direction. Noting that from the
compatibility equations (4.25), (4.26),

Ainj = [vi
,j ], Bni = [ρ,i], Cninj = [α,ij ],

we see that employing the Hadamard relation (4.27) in (4.162) - (4.164)
yields the equations

−V B + ρAini = 0, (4.166)

−ρV Ai = −pρBni + pθV niC, (4.167)

−ρψθθV
2C + ρψρθV B = ρψα,iα,jn

injC, (4.168)

where V is the wavespeed at S.
It follows from equation (4.167) that we must have Ai = Ani with A =

[ninjv
j
,i] so that the acceleration wave S must be a longitudinal wave. Then

(4.166) - (4.168) may be written as (taking the inner product of (4.167)
with ni)⎛

⎝ ρ −V 0
−ρV pρ −pθV

0 ρψρθV −ρψθθV
2 − ρψα,iα,jn

inj

⎞
⎠
⎛
⎝AB
C

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠

A non-zero solution of this system requires that∣∣∣∣∣∣
ρ −V 0

−ρV pρ −pθV
0 ρψρθV −ρψθθV

2 − ρψα,iα,jn
inj

∣∣∣∣∣∣ = 0

Expansion of this determinant leads to the wavespeed equation

(V 2 − pρ)(ψθθV
2 + ψα,iα,jn

inj) + ψρθpθV
2 = 0. (4.169)

Let us observe that V2 = √
pρ is the wavespeed of an acoustic wave

in a classical theory whereas V1 =
√
−ψα,iα,jn

inj/ψθθ is the wavespeed
of a thermal wave in the current version of the Green - Naghdi type II
theory, see section 4.2. Precise forms for V 2 (and hence V ) follow from the
quadratic equation (4.169) provided we specify a form for the Helmholtz
free energy function ψ. One may rearrange the last coefficient in equation
(4.169) as

K = ψρθpθ = ρ2(ψρθ)2. (4.170)
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From this relation (Quintanilla and Straughan, 2008) deduce that ψρθ = 0
leads to two distinct waves, a pressure wave with speed V2 and a ther-
mal wave with speed V1. In general, one expects ψρθ �= 0, and so (4.169)
demonstrates that we have two connected waves. To clarify this, we rewrite
equation (4.169) in the form

(V 2 − V 2
1 )(V 2 − V 2

2 ) = − K

ψθθ
V 2. (4.171)

It is not unreasonable to expect ψ to be such that ψθθ < 0 wherein from
equation (4.171) we may deduce that there are two waves which move with
speeds VL and VU such that

0 < V 2
L < min{V 2

1 , V
2
2 } < max{V 2

1 , V
2
2 } < V 2

U .

We interpret these as a fast wave, speed VU , and a slow wave, speed VL.
We know that in low temperature solids the fast wave is a mechanical wave
and the slow one is associated with the thermal field, cf. section 1.1. It is
to be anticipated that VU , VL will have a similar interpretation here.

(Quintanilla and Straughan, 2008) show how one may calculate an
amplitude equation for a one-dimensional acceleration wave. Let now S
be a one-dimensional acceleration wave moving along the x−axis. Put
v = (u(x, t), 0, 0) with ρ(x, t), α(x, t), and define the one-dimensional
amplitudes by

A(t) = [ux] = u−x − u+
x , B(t) = [ρx], C(t) = [αxx]. (4.172)

The governing equations in one-dimension are

ρt + uρx + ρux = 0,
ρ(ut + uux) = −px − (ρψαxαx)x ,

− ρ
(
ψθt + u(ψθ)x

)
= (ρψαx)x .

(4.173)

To determine the amplitudes we differentiate equations (4.173) with re-
spect to x and take the jumps of the resulting three equations. Additionally
one uses the one-dimensional version of equations (4.166) and (4.167) in
the forms

ρA = V B, and pθV
2C = ρ(pρ − V 2)A, (4.174)

and then one eliminates B and C to derive a Bernoulli equation for A(t).
In fact, one may show

a
δA

δt
+ bA2 = 0, (4.175)

where the coefficients a and b are given by

a = 2
(
U2

M

V 2
− (V 2 − U2

M )2

κV 2

)
, (4.176)
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and

b =3 +
Pρρ

2

V 2
+ 3(V 2 − U2

M )
( ρψρρθ

V 2ψρθ
− ψθθ

ρ2ψρθ

)

+
3(V 2 − U2

M )2

V 4pθψρθ
(ρV 2ψρθθ + ρψραxαx + ψαxαx − V 2ψθθ)

+
(V 2 − U2

M )3

V 4p2
θψρθ

(V 2ψθθθ + 3ψθαxαx) .

(4.177)

The solution to equation (4.175) is

A(t) =
A(0)

1 − (b/a)tA(0)
. (4.178)

If (b/a)A(0) > 0 there is always blow-up of A(t) in a finite time. Once A(t)
is known the other amplitudes B(t) and C(t) then follow from equation
(4.174).

It is of interest to note that as the thermal effects disappear then V 2 →
U2

M and a and b reduce to forms consistent with that for a classical perfect
fluid, namely,

δA

δt
= A2

(
3
2

+
ρ2(d/dρ)(pρ/ρ)

2V 2

)
.

4.7 Acceleration waves in a type III fluid

In this section we develop an acceleration wave analysis for the inviscid
theory of a type III fluid presented in section 3.4.2.

The basic equations are those of balance of mass, momentum, and en-
tropy as given in (3.49) - (3.51) which for zero body force bi and zero
external entropy supply s may be written

ρ̇+ ρvi,i = 0, (4.179)
ρv̇i = Tji,j , (4.180)
ρη̇ = −pi,i + ρξ . (4.181)

To study acceleration waves in this theory we find it necessary to begin
with the integrated form of (4.181) rather than the local form as given.
If P denotes a volume in the fluid with boundary ∂P then the integrated
form is, see (Green and Naghdi, 1991), equation (7.19), see also (Green and
Naghdi, 1977),

d

dt

∫
P
ρη dV =

∫
P
ρξ dV −

∮
∂P

k dA (4.182)

where k = pini, ni being the unit outward normal to ∂P . The quantities dV
and dA denote the volume and surface area integral elements, respectively.
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At the outset we define an acceleration wave in an inviscid fluid of type
III to be surface S in R

3 across which vi, ρ, αt and α,i are continuous
but the functions vi,t, vi,j , ρt, ρ,i, αtt, α,ti, α,ij and their higher derivatives
possess a finite discontinuity. As usual, + and − denote the limits on S as
approached from the right and left, and [f ] = f−− f+. We use a “pillbox”
argument on equation (4.182) to see that this equation evaluated across S
yields, cf. the procedure in (Iesan and Scalia, 1996), p. 30,

[ρη]V + ni[pi] = 0. (4.183)

Since η = −∂ψ/∂θ (see equation (3.57)) and ψ = ψ(ρ, θ, α,i) (see equation
(3.56)) [ρη] = 0 and so (4.183) becomes

ni[pi] = 0.

Further, since qi = θpi and θ = α̇, we infer from this that

ni[qi] = 0. (4.184)

We now follow the article of (Coleman and Gurtin, 1965) in viscoelasticity.
Suppose we consider a one-dimensional wave and the type III fluid is a
definite heat conductor. This means that q (the one-dimensional component
of qi) is a strictly monotone function of θx = α̇x for ρ, θ, αx fixed. Since
the one-dimensional component p of pi is such that p = p(ρ, θ, αx, θx) it
follows that q = q(ρ, θ, αx, θx). Of course, ρ, θ and αx are continuous across
S. Then, from (4.184) [q] = 0. But

[q] = q(ρ−, θ−, α−
x , θ

−
x ) − q(ρ+, θ+, α+

x , θ
+
x ). (4.185)

Since q is continuous in its arguments ρ, θ, αx and is a strictly monotone
function of θx which does have a discontinuity across S it then follows that
since θ−x �= θ+x , [q] �= 0. This contradicts (4.184). Therefore, we conclude
that an acceleration wave in a type III inviscid fluid which is a definite
heat conductor must be such that [θx] = 0, and so [αtt] = 0, i.e. the
wave is homothermal (in a sense analogous to the definition in (Coleman
and Gurtin, 1965)). However, even though [αtt] = 0 it is still true that
[αttt] �= 0, with non-zero jumps also for other third and higher derivatives.

The above analysis shows that an acceleration wave for a type III fluid
behaves very differently from one in a type II fluid where we have already
seen both mechanical and thermal waves propagate. The situation is, there-
fore, analogous to that for propagation of an acceleration wave in a type II
or type III thermoelastic body as shown earlier in this chapter.

To continue with an acceleration wave analysis we now have a surface
S across which ρt, ρ,i, vi,t, vi,j , αttt, α,itt, α,ijt and α,ijk and their higher
derivatives suffer a finite discontinuity but their lower derivatives are
continuous.

We now expand equations (4.179) and (4.180), recalling from (3.65) that

Tij = −pδij − ρα,i
∂ψ

∂α,j
, p = ρ2 ∂ψ

∂ρ
,
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with ψ = ψ(ρ, θ, α,i). Then, remembering the differentiability properties of
ρ, vi and α across S we see that

[ρt] + vi[ρ,i] + ρ[vi,i] = 0,

ρ[vi,t] + ρvj [vi,j ] = −∂p
∂ρ

[ρ,i] − [ρ,j ]α,i
∂ψ

∂α,j
− ρα,i

∂2ψ

∂ρ∂α,j
[ρ,j ] .

(4.186)

If we denote the wavespeed at S by un then the Hadamard relation (4.27)
may be used to show

[ψ̇] =
δ

δt
[ψ] − (unn

k − vk)[ψ,k] .

We put U = un − vknk at S and define the wave amplitudes B and Ci by

B = [niρ,i], Ci = [vi
,jn

j ] . (4.187)

Then using the compatibility relations we have [v̇i] = −UCi, [ρ̇] = −UB,
[ρ,i] = Bni and [vi

,j ] = Cinj so that (4.186) may be rewritten as

− UB + ρCini = 0,

− ρUCi +
∂p

∂ρ
Bni + α,i

∂ψ

∂α,j
Bnj + ρα,i

∂2ψ

∂ρ∂α,j
Bnj = 0.

(4.188)

Unlike the situation for a classical fluid, or one of Green-Laws type, cf.
(Lindsay and Straughan, 1978), we are not immediately able to deduce
from (4.188) that S is a longitudinal wave. The type III thermal effects are
playing a strong role.

To calculate the wavespeeds from (4.188) we must write it as a system
in (B,C1, C2, C3)T , i.e.⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−U ρn1 ρn2 ρn3

∂p

∂ρ
n1 + α,1ψα,jn

j + ρα,1ψρα,jn
j −ρU 0 0

∂p

∂ρ
n2 + α,2ψα,jn

j + ρα,2ψρα,jn
j 0 −ρU 0

∂p

∂ρ
n3 + α,3ψα,jn

j + ρα,3ψρα,jn
j 0 0 −ρU

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
B
C1

C2

C3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠

Upon requiring (B,C1, C2, C3) �= (0, 0, 0, 0) and evaluating the 4 × 4
determinant we are able to show that

ρ3U4 − ρ3U2
(∂p
∂ρ
n2

2 + n2α,2ψα,jn
j + ρn2α,2ψρα,jn

j
)

− ρ3U2
(∂p
∂ρ
n2

1 + n1α,1ψα,jn
j + ρn1α,1ψρα,jn

j
)

− ρ3U2
(∂p
∂ρ
n2

3 + n3α,3ψα,jn
j + ρn3α,3ψρα,jn

j
)

= 0. (4.189)

From this equation we deduce that either

U2 = 0
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which is a standing wave, or we have a propagating wave with wavespeed
U given by

U2 =
∂p

∂ρ
+

1
2
(α,iψα,j + α,jψα,i)ninj

+
ρ

2
(α,iψα,j + α,jψα,i)ninj .

(4.190)

Of course, equation (4.181) still plays an important role. Recalling the
definitions and differentiability properties at S we see that expanding and
taking jumps (4.181) yields

ρηρ[ρ̇] = −∂pi

∂ρ
[ρ,i] −

∂pi

∂γj
[α̇,ji] . (4.191)

In deriving (4.191) we encounter the terms

ρηθ θ̇, ρηα,i α̇,i , κγiγi/θ
2, piθθ,i , piα,jα,ji ,

but these are continuous across S. We next use the expressions for [ρ̇] and
[ρ,i] and then note that if we define

A(t) = [nrnanbα,rab],

then one can show [α̇,ji] = −UninjA. Thus, (4.191) is a relation between
A and B, namely

B
(∂pi

∂ρ
ni − ρηρU

)
= Uninj

∂pi

∂γj
A . (4.192)

Once we determine the amplitudes B and Ci, then (4.192) yields the
thermal amplitude A.

To determine the amplitudes B and Ci we must differentiate equations
(4.179) and (4.180) with respect to t or xi and then use the wavespeed
relation (4.190) together with (4.192) to derive a Bernoulli equation for B
or Ci. Once either of these is known the other follows from (4.188) and
then the solution is completed by determining A from (4.192).

Although the ideas of acceleration waves have been under constant de-
velopment for over forty years, they are still being employed with much
effect in the current literature. In fact, the use of acceleration waves
and related analyses have proved extremely useful in recent investiga-
tions of wave motion in various continuous and random media, and in
a variety of thermodynamic states, see e.g. (Chen, 1969a; Chen, 1969b),
(Christov et al., 2006; Christov et al., 2007), (Christov and Jordan, 2008;
Christov and Jordan, 2009), (Ciarletta and Iesan, 1993), (Ciarletta and
Straughan, 2006; Ciarletta and Straughan, 2007b; Ciarletta and Straughan,
2007a), (Ciarletta et al., 2007), (Curro et al., 2009), (Eremeyev, 2005),
(Fabrizio, 1994), (Fabrizio and Morro, 2003), (Franchi, 1985), (Fu and
Scott, 1988; Fu and Scott, 1990; Fu and Scott, 1991), (Gultop, 2006), (Iesan
and Scalia, 2006), (Jordan, 2004; Jordan, 2005a; Jordan, 2005b; Jordan,
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2006; Jordan, 2007; Jordan, 2008b; Jordan, 2008a), (Jordan and Christov,
2005), (Jordan and Feuillade, 2004), (Jordan and Puri, 1999; Jordan and
Puri, 2005), (Jordan and Straughan, 2006), (Kameyama and Sugiyama,
1996), (Lin and Szeri, 2001), (Mariano and Sabatini, 2000), (Marasco,
2009a; Marasco, 2009b), (Marasco and Romano, 2009), (Mentrelli et al.,
2008), (Morro, 1978; Morro, 2006), (Ostoja-Starzewski and Trebicki, 1999;
Ostoja-Starzewski and Trebicki, 2006), (Rai, 2003), (Truesdell and Ra-
jagopal, 1999), (Ruggeri and Sugiyama, 2005), (Sabatini and Augusti,
2001), (Straughan, 1986; Straughan, 2008; Straughan, 2009a), (Sugiyama,
1994), (Valenti et al., 2004), (Weingartner et al., 2006; Weingartner et al.,
2008), (Whitham, 1974).

4.8 Exercises

Exercise 4.8.1 Define an acceleration wave for the equation (in 3-D)

∂u

∂t
+ u

∂u

∂x
= λu2,

λ being a constant. Find the wavespeed V . Derive the amplitude equation
for a(t) = [ut]. Solve this equation for a wave moving into a region where
u+ = α is constant, and λ = 0. If a(0)/u+ > 0 what happens?

Exercise 4.8.2 Determine the wavespeeds of an acceleration wave for the
system

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂x
= u3 − v3,

∂v

∂t
+ v

∂v

∂x
+ u

∂u

∂x
= v3 − u3.

(4.193)

Find and solve the amplitude equation for an acceleration wave to (4.193)
with u+ = v+ = constant.

Exercise 4.8.3 With the wave amplitude [ux] = a(t) derive an accel-
eration wave analysis for the equation, see (Jordan and Puri, 2005),

utt − c2uxx = 3β(u2ux)x . (4.194)

Hint. Write equation (4.194) as a special case of Shablovskii’s equation

utt −
(
κ(u)ux

)
x

= 0.

Use the decomposition ut = −qx, qt = −κ(u)ux, and define an acceler-
ation wave to be a surface S across which u, q are continuous but their
first and higher derivatives may have a finite discontinuity. Calculate the
wavespeed, V , and find and solve the amplitude equation for an acceleration
wave moving into a region for which u = constant, so that u+ = constant.
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Exercise 4.8.4 With the wave amplitude [ux] = a(t) derive an accelera-
tion wave analysis for the equation, see (Jordan, 2008b),

utt + k1ut − c2uxx = 3β(u2ux)x . (4.195)

Hint. See the hint in exercise 4.8.3.

Exercise 4.8.5 Consider the partial differential equation, see (Jordan,
2006),

utt + δut − uxx = −(ε1u2
x + ε2u

2
t )t . (4.196)

Define an acceleration wave for equation (4.196) to be a surface S across
which u, ut, ux are continuous (and continuous everywhere), but higher
derivatives have a finite discontinuity across S. Define a(t) = [uxx] to be
the amplitude of the acceleration wave. Find the wavespeed V and the am-
plitude equation. Solve the amplitude equation. What can you deduce from
its solution?

Exercise 4.8.6 As shown in section 1.8 another alternative to allow a
temperature wave with finite speed was suggested by (Green and Laws,
1972). If we specialize the theory of section 1.8 to one space dimension then
(Green and Laws, 1972) proposed the conservation law for temperature be
replaced by

∂

∂t
φ(θ, θ̇) = − ∂q

∂x
, (4.197)

where q = −κ(θ)θx, and φ = φ(θ, θ̇) is a “generalized temperature”.
Find the wavespeed of an acceleration wave to (4.197) and calculate

the solution to the amplitude equation for the amplitude a(t) = [θxx], cf.
(Lindsay and Straughan, 1976).

Exercise 4.8.7 (See (Straughan, 2010a).) The Cattaneo - Christov equa-
tions for a compressible fluid, see section 3.1.2, may be written

ρcp

(∂T
∂t

+ vi
∂T

∂xi

)
= − ∂qi

∂xi
, (4.198)

τ
(∂qi
∂t

+ vj
∂qi
∂xj

− qj
∂vi

∂xi
+ qi

∂vr

∂xr

)
+ qi = −κT,i . (4.199)

Replace equation (4.198) by the energy balance law, cf. equation (3.2)3, with
the heat supply r = 0,

ρε̇+
∂qi
∂xi

− tijdij = 0,

where the internal energy ε now depends on density, ρ, and temperature,
T . For an inviscid fluid tij = −pδij where the pressure p will have the form
of p = ρ2∂ψ/∂ρ, ψ being the Helmholtz free energy function. Show that one
then derives the equations for nonlinear behaviour in a Cattaneo-Christov
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gas

ρεT Ṫ + ρ2TψTρdii = −qi,i ,
τ(qi,t + vjqi,j − qjvi,j + vm,mqi) + qi = −κT,i ,

ρ̇+ ρvi,i = 0,
ρv̇i = −p,i .

(4.200)

Develop an acceleration wave analysis for a solution to system (4.200)
and show the wavespeed U satisfies the quadratic equation

(U2 − U2
T )(U2 − U2

M ) + U2κ1 = 0 (4.201)

where

κ1 =
ρ2(ψρT )2

ψTT

with UT and UM being the speed of a thermal and a mechanical wave,
respectively, and

U2
T =

κ

τρ(∂ε/∂T )
, U2

M =
∂p

∂ρ
.

Suppose κ1 < 0. How do you interpret equation (4.201)?



5
Shock waves and numerical solutions

In chapter 4 we have studied the evolutionary behaviour of an accelera-
tion wave in various continuum theories where the temperature field could
propagate as a wave. For example, in the Maxwell-Cattaneo theory of sec-
tion 4.1 we saw that an acceleration wave was a singular surface S such
that the temperature, θ, and the heat flux, qi were continuous across S,
but θ,t, θ,i, qi,t, qi,j and higher derivatives possessed a discontinuity across
S. When the wave amplitude of an acceleration wave becomes infinite a
shock wave can form, cf. section 5.1. For the Maxwell-Cattaneo equations,
equations (4.1), a shock wave is a singular surface across which θ and qi
themselves have a finite discontinuity.

The study of thermal shock waves is of much importance in its own right.
There are many applications of such waves. For example, (Yang, 1993) notes
that thermal shock waves are observed in all organisms at the cellular level.
This will in turn result in an accumulation of heat shock proteins in cells.
Also, extreme heat waves have been observed on planetary bodies. (Bryner,
2009) observes that the planet HD80606b, which has four times the mass of
Jupiter and is some 200 light years from Earth, has temperature variations
of over 555◦C in only a six hour period. This leads to large shock wave
storms which travel faster than the speed of sound generating increasing
heat and high speed winds.

Thermal shock waves have been studied theoretically for some time. For
example, (Atkin and Fox, 1984) used a discontinuity analysis to study
thermal shock evolution in a model for liquid helium II. They allowed a dis-
continuity in the temperature field and in the superfluid velocity. The same
writers in (Atkin and Fox, 1985) studied thermal shocks in a model for

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 137
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liquid helium II when the waves are spherically symmetric. (Shablovskii,
1984; Shablovskii, 1985; Shablovskii, 1987) also analyses thermal shock
waves but employs equations of Maxwell-Cattaneo type. For example,
(Shablovskii, 1984) employs the equations

cTt = −qx ,
γqt + q = −λ(T )Tx

in one space dimension, where T, q are temperature and heat flux, for a
temperature dependent thermal conductivity λ(T ). (Shablovskii, 1984) ar-
gues that for high - intensity heat transfer, or when the properties of the
body are such that one may neglect the dissipation term, then one may
study the temperature field equation

Ttt =
(
κ(T )Tx

)
x

(5.1)

where κ(T ) = λ(T )/cγ, c, γ, constants. A similar deduction is made
in (Shablovskii, 1987) although there c, γ and λ are allowed to be func-
tions of T . (Shablovskii, 1984) studies a characteristic solution (simple
wave) for equation (5.1) and shows that a temperature shock may form.
Thermal shocks in the (Morro and Ruggeri, 1988) generalization of the
Cattaneo equations, equations (1.48), are investigated by (Ruggeri et al.,
1990), (Tarkenton and Cramer, 1994), and (Ruggeri et al., 1996). (Ruggeri
et al., 1996) use a characteristic solution (simple wave) to show how a solu-
tion may steepen in a finite time (or finite distance) to form a discontinuity
which essentially corresponds to a thermal shock.

Interactions of acceleration waves and shock waves are analysed
by (Morro, 1978) and by (Mentrelli et al., 2008), where further appropriate
references may be found.

Numerical analysis of thermal shock evolution or of the development of
a thermal shock is a “hot” topic in the current research literature. Many
numerical methods have been used, mostly on Cattaneo - like systems. For
example, (Glass et al., 1986) employ a MacCormack predictor-corrector
method, (Cramer et al., 2001) uses cellular automata, an angled deriva-
tive method is is used by (McCartin and Causley, 2006), (Reverberi et al.,
2008) use a Hartree hybrid method, (Roy et al., 2009) uses a multiple
scales technique, and (Christov and Jordan, 2010) employ a Godunov ar-
gument. These articles all analyse some form of Cattaneo system. The
Godunov method was also used by (Christov et al., 2006), while (Jordan
and Christov, 2005) and (Jordan, 2007) employed an accurate finite differ-
ence method. (Shen and Zhang, 2003) used a high order characteristics
based TVD scheme on a dual phase lag model, while (Bargmann and
Steinmann, 2006; Bargmann and Steinmann, 2008) and (Bargmann et al.,
2008a) employs a finite element technique on Green-Naghdi type II and
type III models, see section 5.2. Other numerical schemes have been em-
ployed to obtain approximate solutions to hyperbolic models and some of
these are discussed in chapter 9. The area of producing numerical solutions
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for thermal wave problems is one which is gaining impetus and with in-
creasing applications of heat wave theories and the methods used to develop
hyperbolic - like models, there is no doubt there will be much further de-
velopment and analysis of numerical schemes to solve problems involving
finite speed of propagation heat transfer.

5.1 Shock development

A general theory of shock development starting with the equation

∂u

∂t
+ c(u)

∂u

∂x
= 0, x ∈ R, t > 0, (5.2)

with the initial data

u(x, 0) = f(x), (5.3)

is given in detail in (Whitham, 1974). Indeed, a shock wave (where u is
discontinuous) may form for a solution to equation (5.2) even if the initial
data function is a C∞ function (see exercise 5.4.3). The book of (Whitham,
1974) lucidly describes shock formation and related topics in chapters 2 to
4. He then gives a beautiful account of similar work in systems of par-
tial differential equations, including, in particular, the theory of Riemann
invariants in sections 5.3, 5.4, 6.7 and 6.8.

We are primarily interested in thermal shock waves in this chapter and
in the development of an acceleration thermal wave into a thermal shock.
(Shablovskii, 1984) commences with the system of equations

c
∂θ

∂t
= − ∂q

∂x
,

τ
∂q

∂t
+ q = −k(θ)∂θ

∂x

(5.4)

where c, τ are constants, although the thermal conductivity k is a function
of the temperature θ. Here q is the heat flux and the system is considered
in one space dimension. (Shablovskii, 1984) essentially argues that one may
discard the q term and work with the reduced system

c
∂θ

∂t
= − ∂q

∂x
,

τ
∂q

∂t
= −k(θ)∂θ

∂x
.

(5.5)

If we put κ = k/cτ , κ = κ(θ), then one may eliminate q and show θ satisfies
what we call Shablovskii’s equation

∂2θ

∂t2
=

∂

∂x

(
κ(θ)

∂θ

∂x

)
. (5.6)
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Interestingly, (Shablovskii, 1987) continues his investigation by dropping q
from (5.4)2, but in that work he allows c, τ and k to depend on temperature
θ. (Then, or course, one obtains a different equation to (5.6).)

(Shablovskii, 1984) defines the variables R(x, t) and L(x, t) with L =∫ θ

θ0
κ(ξ)dξ. Then equation (5.6) is written as an equivalent system

∂θ

∂t
=
∂R

∂x
,

∂R

∂t
=
∂L

∂x
.

(5.7)

(Shablovskii, 1984) shows how one relates the function R to the heat flux
q. Writing (5.7) as a hyperbolic system of form

∂ui

∂t
+ aij

∂uj

∂x
= 0

we see that the matrix a with components aij is given by

a =
(

0 1
κ 0

)

where u = (θ,R)T . The eigenvalues of a are found to be ±κ and the
corresponding left eigenvectors are (1,±√

κ)T . Then, as (Shablovskii, 1984)
points out one finds the Riemann invariants r, s to be

r = R+
∫ θ

θ0

√
κ′(ξ)dξ, s = R −

∫ θ

θ0

√
κ′(ξ)dξ, (5.8)

where θ0 is a starting temperature, and κ′ = dκ/dθ. The Riemann
invariants satisfy the characteristic equations

dr

dt
= 0 on

dx

dt
=
√
κ′(θ)

ds

dt
= 0 on

dx

dt
= −

√
κ′(θ) .

(Shablovskii, 1984) studies a simple wave for this theory in which r = r0,
where r0 is a constant throughout. It is shown in (Shablovskii, 1984) that
the solution to equation (5.6) may break down in a finite time using simple
wave theory. The breakdown will be in θt, θx and (Shablovskii, 1984) further
studies the thermal shock.

(Ruggeri et al., 1996) begin with the nonlinear equations for heat
transport in a rigid heat conductor

ρεt + qi,i = 0,

(αqi)t + ν,i = −ν
′

κ
qi ,

(5.9)

where ε is the internal energy, and ε, α, ν, κ are functions of temperature θ,
ν′ = dν/dθ. This is a nonlinear Cattaneo-like system of equations similar
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to that derived by (Morro and Ruggeri, 1988), cf. page 14. (Ruggeri et al.,
1996) argue that the coefficient of the qi term in equation (5.9) may be very
small and they neglect this quantity. This leads them to study the system

∂θ

∂t
= − 1

ρcv

∂q

∂x
,

∂q

∂t
= −ν

′

α

∂θ

∂x
+

α′

ρcvα
q
∂q

∂x

(5.10)

where cv is the specific heat of the rigid body. (Ruggeri et al., 1996)
obtain a solution to equations (5.10) which is a simple wave and they
show that a finite time discontinuity may form. They calculate the critical
time of formation. (Ruggeri et al., 1996) apply their results specifically to
discontinuity in temperature formation in a crystal of sodium fluoride.

Blow-up of gradients in thermoelasticity is treated by (Dafermos, 1985)
and by (Dafermos and Hsiao, 1986) and while their analysis is for a model
corresponding to classical nonlinear thermoelasticity, the arguments are
very interesting. (Dafermos, 2006) is another very interesting article dealing
with continuous solutions to the conservation law

∂u

∂t
+

∂

∂x
f(u) = 0

and the equation

∂u

∂t
+

∂

∂x
f(u) = g.

(Dafermos and Hsiao, 1986) derive the Bernoulli equation for the am-
plitude of an acceleration wave in thermoelasticity. However, they are
concerned with showing that solutions to the equations of thermoelasticity
with large initial data generally blow up in a finite time. They specifically
note that the situation is different from isothermal nonlinear elasticity.
They use the Riemann invariants but observe that the “equations now con-
tain coupling terms that depend on T ” (temperature) “and its derivatives.
Therefore, it is no longer possible to establish boundedness or blow-up by
restricting attention on a fixed distinct characteristic”.

(Dafermos, 1985) deals with singularity formation in thermoelastic-
ity. However, his illuminating article contains analysis of several models
which bear resemblance to some of the heat transfer theories discussed in
chapter 1.

(Dafermos, 1985) shows that the Cauchy problem for the equation

ut + uux = μuxx , x ∈ R, t > 0,

with the initial data

u(x, 0) = u0(x), (5.11)
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has a unique C∞ solution for u0 bounded and measureable. He then shows
that the equation

ut + uux = 0 , x ∈ R, t > 0, (5.12)

together with initial data (5.11) behaves very differently. When du0/dx ≥
0 he shows there is a C1 solution, but if du0/dx < 0 there is a local
solution which breaks down at t = −[infx du0/dx]−1. (Dafermos, 1985)
then considers the equation

ut + uux + μu = 0 , x ∈ R, t > 0, (5.13)

together with initial data (5.11). In this case he shows that there is a
global C1 solution provided du0/dx ≥ −μ, with exponential decay in time
of solutions if du0/dx > −μ. When du0/dx < −μ he shows there is a
local C1 solution which breaks down at t = μ−1 log [a/(a+ μ)] where a =
infx du0/dx.

(Dafermos, 1985) observes that, ... “the advantage of the method of char-
acteristics lies in that it yields explicitly the threshold amplitude beyond
which waves break as well as the critical time the first wave breaks. On
the other hand, the method is very special and it may be expected to work
only when the equations are relatively simple”.

(Dafermos, 1985) also shows that if du0/dx and d2u0/dx
2 are in

L2(−∞,∞) and ‖u0x‖ ‖u0xx‖ < 2μ2/25, (‖ · ‖ being the norm on
L2(−∞,∞)), then (5.13) and (5.11) possesses a C1 solution such that
ux and uxx are in L2(−∞,∞) for any t ≥ 0 and they decay to zero in
L2(−∞,∞) as t→ ∞.

(Dafermos, 1985) also considers the “memory” equation

ut + uux +
∫ t

0

a′(t− s)uuxds = 0 , x ∈ R, t > 0, (5.14)

and the partial differential equation

utt + ututx = μutxx . (5.15)

The article of (Dafermos, 1985) also considers thermoviscoelasticity, fading
memory in thermoelasticity, development of singularities in thermoelastic-
ity, the entropy admissibility criterion to address the uniqueness issue, the
Lax admissibility criterion for shock waves, and further criteria known as
the viscosity criterion and the entropy rate admissibility criterion. The
subject of conservation laws in continuum mechanics, hyperbolic equa-
tions, and hyperbolic systems is covered comprehensively in the masterpiece
of (Dafermos, 2010).

(Fu and Scott, 1991) is a highly relevant article for the discussion in this
section. They consider the equations of nonlinear isothermal elasticity in
one space dimension. They assume that the body is an elastic half - space
which is prestrained but is also quiescent. They allow a disturbance on the
boundary which starts with a discontinuity in acceleration, rises smoothly
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and then decays to zero again, touching the boundary once more with a
discontinuity in the acceleration. They solve the equations using Riemann
invariants and find the time (or the point on the boundary) exactly for so-
lution blow - up in acceleration, for a simple wave problem. However, they
also employ an acceleration wave discontinuity analysis, like that described
in chapter 4. Thus, they determine the critical time (or place) where the
acceleration wave amplitude becomes infinite. Their striking result is that
the critical time for acceleration wave blow-up is exactly the same as the
critical time where the Riemann invariant solution becomes discontinuous.
They conclude that, ... “the acceleration wave amplitude predicted by sin-
gular surface theory becomes infinite at precisely the place where simple
wave theory predicts that a shock will first begin to form”.

P. M. Jordan and his co-workers have presented a very interesting se-
ries of papers which employ numerical and analytical methods to study,
mutatis mutandis, the development of a weak discontinuity (an acceler-
ation wave) into a strong discontinuity (a shock wave). While several of
these analyses are not directly applicable to heat wave propagation, typi-
cally arising in acoustic wave propagation in a gas or in a saturated porous
medium, they are so pertinent to the work of the present section that they
are highly relevant. The paper of (Christov and Jordan, 2010) is dealing
with a temperature dependent thermal conductivity Cattaneo model and
is specifically mentioned in section 5.3. The article of (Bargmann et al.,
2008a) deals with a model for heat propagation in Green-Naghdi type II
and type III materials and this is discussed in section 5.2.

We list below the mathematical equations which arise, with very brief
details of the methods employed. We stress that most of these articles
cited below present very interesting comparisons of how a solution with a
disturbance present in the boundary does evolve into a shock wave, and the
critical shock time or critical distance which is obtained from acceleration
wave theory. Of course, the articles deal with other things, especially with
detailed discussion of what the mathematical results mean to the physical
questions being posed.

(Jordan et al., 2000) deals with the equations

∂2u

∂t2
− c2

∂2u

∂x2
+ r

∂u

∂t
= 0 (5.16)

and

∂2u

∂t2
− c2

∂2u

∂x2
− a2 ∂3u

∂x2∂t
= 0 (5.17)

and they develop analytical solutions using Laplace transforms. (Jordan
and Puri, 2005) study the equation

∂2u

∂t2
− c2

∂2u

∂x2
= 3β

∂

∂x

(
u2∂u

∂x

)
(5.18)
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using acceleration wave methods and finite differences. It is interesting that
this is an example of Shablovskii’s equation (5.1). (Jordan and Christov,
2005) analyse the equation

∂2u

∂t2
− c2

∂2u

∂x2
= β

∂2(u2)
∂t2

(5.19)

using acceleration wave theory and finite differences. (Jordan, 2004)
investigates the equation

∂2u

∂t2
− c2

∂2u

∂x2
− k1

∂3u

∂x2∂t
+
∂

∂t

[(∂u
∂x

)2

+ k2

(∂u
∂t

)2
]

= 0 (5.20)

while (Jordan, 2006) deals with the equation

∂2u

∂t2
− c2

∂2u

∂x2
+ k1

∂u

∂t
+
∂

∂t

[
k2

(∂u
∂x

)2

+ k3

(∂u
∂t

)2
]

= 0 . (5.21)

Both of these articles use acceleration wave techniques and travelling wave
analysis. (Christov et al., 2006) analyse the partial differential equations

∂2u

∂t2
− c2

∂2u

∂x2
+ 2

∂u

∂x

∂2u

∂x∂t
+ k1

∂u

∂t

∂2u

∂x2
+ k2

(∂u
∂x

)2 ∂2u

∂x2
= 0 (5.22)

and
∂2u

∂t2
+ k1

∂u

∂t

∂2u

∂t2
− ∂2u

∂x2
= 0 . (5.23)

They employ acceleration wave methods but notably, use a MUSCL-
Hancock numerical scheme which is based on a high resolution Godunov
method. (Jordan, 2008b) studies the equation

∂2u

∂t2
+ k1

∂u

∂t
− ∂2u

∂x2
= k2

∂

∂x

(
u2 ∂u

∂x

)
(5.24)

with finite difference and acceleration wave methods. (Christov and Jordan,
2008) analyse the equation

τ
∂2u

∂t2
+
∂u

∂t
− k1

∂2u

∂x2
+ k2

(
1 − u

k3

)∂u
∂x

= 0 , (5.25)

using a Godunov numerical method and also acceleration wave techniques.
The same equation is studied by means of a Cole-Hopf transformation
by (Jordan, 2010a) who also analyses the same equation without the ∂u/∂t
term. (Christov and Jordan, 2009) investigate the equation

∂2u

∂t2
= c2

∂2u

∂x2
+ c2

∂

∂x

[
β(u2

x)
∂u

∂x

]
− δ

∂u

∂t
(5.26)

with a Godunov numerical technique, but also employ travelling wave and
acceleration wave methods. (Jordan, 2007) analyses a traffic flow equation

∂2u

∂t2
− c2

∂2u

∂x2
= k1

∂u

∂t

(
1 − u

k2

)
(5.27)
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studying acceleration waves, shocks, and using a finite difference numer-
ical technique. This work is further described in section 5.2. The work
of (Christov and Jordan, 2010) concentrates on the equation

τ
∂2u

∂t2
+
∂u

∂t
= k1

∂

∂x

[
(1 + k2u)

∂u

∂x

]
(5.28)

and they analyse acceleration waves, shock waves, and use a Godunov
numerical technique. (Bargmann et al., 2008b) study the equation

(1 + λu)
∂2u

∂t2
− (1 + λu)2

∂2u

∂x2
= λ
(∂u
∂t

)2

. (5.29)

Their work uses travelling waves, acceleration waves, and finite differences
and arises from Green-Naghdi type II and type III theory.

To complete this section we consider the development of an acceleration
wave into a thermal shock wave for two specific examples. One is for Sh-
ablovskii’s equation, (5.6), the other involves the temperature - dependent
thermal conductivity version of the Maxwell - Cattaneo model, cf. section
5.3.

We write Shablovskii’s equation, (5.6), in the form

∂2θ

∂t2
=
∂

∂x

(
κ(θ)

∂θ

∂x

)

=κ(θ)
∂2θ

∂x2
+ κ′(θ)

( ∂θ
∂x

)2

. (5.30)

Equation 5.30 is here defined for x ∈ (0, 1) and t > 0. On the boundary
x = 1 we assume θ = 0, while at x = 0, θ satisfies

θ(0, t) =
[
H(t) −H(t− tw)

]
sin
(πt
tw

)
, (5.31)

where H is the Heaviside function and tw > 0 is a constant. The initial
data we employ are

θ(x, 0) = 0,
∂θ

∂t
(x, 0) = 0.

Thus, the boundary initial value problem under consideration allows us to
study the effect of a disturbance starting at x = 0, t = 0 which propagates
into the spatial domain as t increases. Due to the boundary condition (5.31)
θ is everywhere continuous but its derivatives θx and θt are not. In fact they
suffer a jump at one point in x (starting at x = 0) and the discontinuity
moves along a curve Σ in the (x, t) plane. This is thus an acceleration wave.
(Such problems have been investigated at length in a variety of contexts
by (Jordan and Christov, 2005), (Jordan and Puri, 2005), (Jordan, 2008b;
Jordan, 2010b), (Christov and Jordan, 2010).)
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If we let a(t) = [θx] be the wave amplitude then writing equation (5.30)
as the system

∂θ

∂t
= − ∂q

∂x
∂q

∂t
= −κ∂θ

∂x

and taking jumps of θt, θx, qt, qx, we use the Hadamard relation, (4.5), to
find the speed, V , of a wave is given by V 2 = κ(θ+). Taking the jump of
equation (5.30) yields

[θtt] = κ′[θx]2 + κ[θxx] , (5.32)

since θ+x = 0. Next, using the Hadamard relation, (4.5), we may show

[θtt] = −2V
δa

δt
+ V 2[θxx]

and this in equation (5.32) together with the fact that V 2 = κ allows us to
deduce

−2V
δa

δt
= κ′a2. (5.33)

We consider the case where κ = k1 + k2θ and, in particular, take k1 =
1, k2 = .7, and tw = 1. (These values are chosen so that amplitude blow -
up which occurs at t = t∞, happens such that t∞ < tw.) Since θ+ = 0 the
coefficients in equation (5.33) are constants and this equation may then be
integrated to find

a(t) =
1

(a(0))−1 + (κ′t/2V )
. (5.34)

In the present situation a(0) = θ−x (0) = −π/tw, κ′ = k2, and V = 1 at the
wave. Thus, from (5.34) we find

a(t) = θ−x (t) =
1

(−tw/π) + (k2t/2)
.

This leads to amplitude blow-up at time t∞ = 1/.35π ≈ 0.909456817.
To investigate whether thermal shock formation actually occurs we solve

the boundary initial value problem currently under study numerically. The
acceleration wave analysis yields no information on the solution θ behind
the wave, only information at the wavefront. We employ an explicit finite
difference scheme, as suggested by (Jordan and Christov, 2005), (Jordan
and Puri, 2005) and (Jordan, 2008b). Here we discretize equation (5.30)
with the standard three point approximations for θtt and θxx and a centred
difference for θx. Thus, if θk

m denotes the value of θ at the point (xm, tk),
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Figure 5.1. θ profile as t increases. The curves are for t = .09, .18, . . . , .9, moving
right. Note the steepening of θ−

x .

then we use the finite difference scheme

θk+1
m − 2θk

m + θk−1
m

(Δt)2
= κ(θk

m)
θk

m+1 − 2θk
m + θk

m−1

(Δx)2

+ κ′(θk
m)

(θk
m+1 − θk

m−1)
2

4(Δx)2
.

(5.35)

This yields an explicit scheme for θk+1
m and θ1m, θ

0
m are found from the initial

data θ(x, 0) = 0, θt(x, 0) = 0, by standard means, cf. (Burden and Faires,
2001), pp. 719–721. Of course, the important point with this example is
the boundary data equation (5.31). It is this which induces initial growth
in θx. Even though (5.35) is an explicit scheme, the numerical results are
surprisingly accurate if one chooses Δt and Δx carefully.

One clearly sees from figure 5.1 that the slope |θ−x | increases as t(x)
increases and this strongly indicates the formation of a thermal shock at
t = t∞.

For a second example and also as a check on the numerical scheme we
studied the system of (Christov and Jordan, 2010)

∂θ

∂t
= − ∂q

∂x
∂q

∂t
+

1
τ
q = −(k1 + k2θ)θx .

(Christov and Jordan, 2010) employ the relation τ−1 = k1 and then q may
be eliminated and we find θ satisfies the equation

∂2θ

∂t2
+ k1

∂θ

∂t
=

∂

∂x

(
κ(θ)

∂θ

∂x

)
, (5.36)
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where κ = k1 + k2θ. The boundary and initial conditions are as before,
namely

θ(0, t) =
[
H(t) −H(t− tw)

]
sin
(πt
tw

)
, θ(1, t) = 0,

θ(x, 0) = 0,
∂θ

∂t
(x, 0) = 0.

Defining the wave amplitude a(t) = [θx] one finds the wavespeed of an ac-
celeration wave is given as V 2 = κ(θ+). Then, taking the jump of equation
(5.36) we find, in a manner similar to that leading to (5.33), that a satisfies
the equation

δa

δt
+
k1

2
a+

κ′

2V
a2 = 0.

This is integrated to yield the amplitude

a(t) =
1

ek1t/2(a(0))−1 − (κ′/V k1)(1 − ek1t/2)
. (5.37)

Blow-up of a now occurs if a(0) < 0 and −a(0) > k2
1/k2. The blow-up time

is

t∞ =
2
k1

log
( −κ′a(0)
V k1 − a(0)κ′

)
.

This is in agreement with (Christov and Jordan, 2010). For direct com-
parison with (Christov and Jordan, 2010), see their figure 6, we choose
the same parameter values so that k1 = 1.13018161, k2 = 0.95929815 and
tw = 0.940645282.

We discretize (5.36) with a finite difference technique employing a centred
difference for θt. Thus, we use

θk+1
m − 2θk

m + θk−1
m

(Δt)2
+ k1

(θk+1
m − θk−1

m

2Δt

)

= κ(θk
m)
θk

m+1 − 2θk
m + θk

m−1

(Δx)2
+ κ′(θk

m)
(θk

m+1 − θk
m−1)

2

4(Δx)2
.

(5.38)

The solution is displayed in figure 5.2. (Christov and Jordan, 2010) plot
θ for t = .3, .5, .7 and 0.9. The values chosen in figure 5.2 are different
apart from t = 0.9, but show exactly the same trend of solution develop-
ment. Again, moving right in figure 5.2 we see the steepening of |θ−x | and
this strongly supports thermal shock formation at a value of t∞ ≈ 0.9,
cf. (Christov and Jordan, 2010). Note that figure 5.2 shows the effect of
dissipation present in equation (5.36) since θmax is falling as the wave pro-
gresses. This does not happen in figure 5.1 since the dissipation term k1θt

is not present in Shablovskii’s equation (5.30).
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Figure 5.2. θ profile as t increases. The curves are for t = .09, .18, . . . , .9, moving
right. Note the steepening of θ−
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5.2 Type II and type III thermoelasticity

(Bargmann and Steinmann, 2006; Bargmann and Steinmann, 2008),
(Bargmann et al., 2008a), and (Bargmann et al., 2008b) are notable con-
tributions dealing with aspects of type II and type III thermoelasticity and
heat transfer.

(Bargmann and Steinmann, 2006) and (Bargmann and Steinmann, 2008)
concentrate on developing finite element methods for solving the linearized
equations of thermoelasticity according to Green-Naghdi theory of type II
and type III, cf. sections 2.3 and 2.4, although they do also make compar-
ison with what is found from classical thermelasticity employing Fourier’s
law. (Bargmann and Steinmann, 2006) and (Bargmann and Steinmann,
2008) essentially focus on developing accurate finite element methods for
solving the equations, cf. equations (2.72), (2.73), (2.82), (2.83),

ρüi =
(
Eijkhεkh − 3wK(T − T0)δij

)
,j

+ ρbi ,

ρcα̈ = k1Δα− 3T0wKε̇ii + ρθs,
(5.39)

for type II thermoelasticity, or
ρüi =

(
Eijkhεkh − 3wK(T − T0)δij

)
,j

+ ρbi ,

ρcα̈ = k1Δα+ k2Δα̇− 3T0wKε̇ii + ρθs,
(5.40)

for type III thermoelasticity. In these equations ui, α are elastic displace-
ment and the temperature displacement variables, bi and s are source terms.
The tensor Eijkh represents the elastic coefficients, ρ is the density, w,K
are the thermal expansion coefficient and the bulk modulus, T0 is a refer-
ence temperature, c is specific heat, εij is the strain tensor, and θ and T
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are equivalent functions for the temperature. The coefficients k1 and k2 are
thermal coefficients, the difference between type III and type II being the
presence of the k2 term in (5.40).

(Bargmann and Steinmann, 2006) explain in detail how they approxi-
mate a solution to a boundary initial value problem for equations (5.39) or
equations (5.40). Their approach is to use a Galerkin finite element method
in both space and time using continuous elements in the discretization.
Interestingly, they employ discontinuous Galerkin elements when discretiz-
ing the equations of classical thermoelasticity. They observe that the type
II model requires the introduction of a stabilizing term in the tempera-
ture displacement equation (5.39)2 to suppress numerical oscillations which
otherwise arise.

(Bargmann and Steinmann, 2006) solve numerically the problem of a
thermoelastic wave in one space dimension and particularly model the sit-
uation of a disturbance in NaF, as reported in the experiments of (Jackson
et al., 1970). Their results are very revealing and certainly show they have
successfully modelled numerically thermoelastic wave propagation in a re-
alistic manner with type II and type III thermoelasticity. The numerical
example of (Bargmann and Steinmann, 2008) considers thermoelastic wave
propagation in a two-dimensional plate, in accordance with the experiments
of (Narayanamurti and Dynes, 1972) on Bismuth. They show clearly how
a heat pulse generated in the plate propagates outward.

The articles of (Bargmann and Steinmann, 2006) and (Bargmann and
Steinmann, 2008) represent fundamental contributions to the numerical
modelling of thermoelasticity using Green-Naghdi type II and III theories.
The paper of (Bargmann et al., 2008a) is a very stimulating one addressing
heat propagation on Saturn’s moon Enceladus, and this is discussed further
in section 9.2.1.

(Bargmann et al., 2008b) is another important paper dealing with ther-
mal wave propagation according to Green-Naghdi type II and III theory.
While it mainly concentrates on type III theory, type II and type I (clas-
sical) are discussed as limiting cases. (Bargmann et al., 2008b) models the
siutation where a finite thermal pulse is input into a half space at some
time, t = 0 say. Hence, they analyse the mathematical problem,

θtt − ν2θxx = χθtxx , 0 < x <∞, 0 < t <∞,

θ(0, t) = H(t), θ(∞, t) = 0,
θ(x, 0) = 0, θt(x, 0) = 0,

(5.41)

θ being temperature, H the Heaviside function, ν2, χ positive constants.
Problem (5.41) is solved by a dual integral transform method and then

(Bargmann et al., 2008b) examine closely the small and large time limits.
They show clearly how the temperature pulse evolves. They also analyse a
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nonlinear version of type II theory, especially investigating the problem

(1 + λT )Ttt − (1 + λT )2Txx = λ(Tt)2 , 0 < x < 1, t > 0,
T (0, t) = H(t) sin πt, T (1, t) = 0, t < 1,
T (x, 0) = 0, Tt(x, 0) = 0.

(5.42)

Here T is temperature (related to θ by θ = a + bT ), and λ is a positive
constant. They use acceleration wave theory to show that a temperature
rate wave (temperature acceleration wave for which Tx is discontinuous)
may blow up in a finite time. They also solve (5.42) numerically using
finite differences and graph the evolution of the temperature profile. This
clearly shows temperature shock formation, and by equating this to their
acceleration wave analysis they are able to deduce a value for λ.

(Bargmann et al., 2008b) also analyse travelling waves for equation (5.42)
by setting f(ξ) = 1 + λT (x, t) with ξ = x − vt, v a constant speed.
They are able to obtain an analytical solution in terms of the Lambert
W-function. From this they deduce that the wave amplitude is directly
related to propagation speed, and a thermal shock may form.

(Jordan, 2007) presents an interesting analysis of a hyperbolic equation
which arises from the parabolic Fisher-Kolmogorov equation

ρt − νρxx = γρ
(
1 − ρ

ρs

)
, (5.43)

ν, γ, ρs constants. He notes that (5.43) is equivalent to

ρt + qx = γρ
(
1 − ρ

ρs

)
, (5.44)

and

q = −νρx (5.45)

for a flux q. A Cattaneo modification of (5.45) would write

τqt + q = −νρx . (5.46)

(Jordan, 2007), however, argues that a type II version of (5.45) could be
written

qt = −c2∞ρx (5.47)

where c∞ is a positive constant. (Jordan, 2007) then works with the system
(5.44) and (5.47). This is equivalent to the partial differential equation

ρtt − c2∞ρxx = γρt

(
1 − 2

ρs
ρ
)
. (5.48)

The paper of (Jordan, 2007) produces some very interesting results. He
derives a travelling wave solution and shows how it can produce a “Taylor
shock”. He then shows that a shock wave, where ρ and q have a discontinu-
ity, may be analysed and the solution to the amplitude obtained exactly. It
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is also shown that an acceleration wave behaves as a weaker wave. (Jordan,
2007) also uses a finite difference method to investigate how a sinusoidal
input into equation (5.48) via a boundary will evolve in time. The numer-
ical simulations show shock formation and he compares this to his shock
wave analysis. Various conclusions are drawn by (Jordan, 2007) regarding
application of equation (5.48) as a model in applied mathematics.

Interesting results on travelling waves and on shock propagation for a
hyperbolic Burgers equation and for a hyperbolic kinematic wave equation
have been derived by (Jordan, 2010a).

5.3 Temperature dependent thermal conductivity

The Maxwell-Cattaneo equations with temperature dependent thermal
conductivity have been the subject of much investigation. The relevant
equations have been presented as equations (4.1) and a detailed analysis of
acceleration waves is considered in section 4.1.

In this section we focus on work primarily related to thermal shock waves
and numerical solutions to equations (4.1) when the thermal conductivity
is a linear function of temperature. Thus, the relevant equations are

c
∂θ

∂t
= − ∂qi

∂xi
,

τ
∂qi
∂t

+ qi = −κ(θ)θ,i ,

(5.49)

where

κ(θ) = k(1 + βθ), (5.50)

θ, qi being temperature and heat flux, with c, τ, k, β positive constants.
(Glass et al., 1986) added a source term g(x, t) in one space dimension

to equation (5.49)1 and devised a finite difference MacCormack numerical
method for the solution of system (5.49). They also solved numerically
the analogous parabolic equation. They showed that the hyperbolic system
predicted larger temperatures with a distinct temperature front. (Cramer
et al., 2001) study the same system and analyse numerically the general
evolution of the thermal shock. They allow a square wave heat source and
a sinusoidal heat source input in time. This is a very interesting paper
which investigates the interaction of shock waves with smoother parts of
the temperature distribution.

(Reverberi et al., 2008) also study system (5.49) numerically employing
relation (5.50) but also allowing κ to be an exponential function of tem-
perature, i.e. κ = keβθ. Their paper contains a brief but useful review of
numerical methods used in this area. Their numerical scheme is a Hartree
hybrid finite difference method. They analyse evolution profiles where a
thermal shock forms and also follow shock evolution.
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(Christov and Jordan, 2010) also analyse system (5.49) with the relation
(5.50). After using Rankine-Hugoniot discontinuity relations for the ther-
mal shocks they use a Godunov numerical scheme to accurately capture the
shock wave. This paper also analyses temperature rate acceleration waves
generated by a pulse at the boundary of form

θ(0, t) =
[
H(t) −H(t− tw)

]
sin
(πt
tw

)

for a constant tw > 0. The blow-up time of the acceleration wave is com-
pared to what is found by numerical simulation. (Christov and Jordan,
2010) also develop a detailed analysis of travelling waves for the equation

τ
∂2θ

∂t2
+
∂θ

∂t
= k

∂

∂x

[
(1 + βθ)

∂θ

∂x

]

which arises from (5.49) in one space dimension. They develop an exact
solution via a travelling wave and are able to relate this in a very interesting
way to acceleration wave and shock wave behaviour.

5.4 Exercises

Exercise 5.4.1 Consider the equation

ut + uux = 0, x ∈ R, t > 0, (5.51)

with

u(x, 0) = f(x).

By considering characteristics, show that

u = f(ξ) on x = ξ + ut = ξ + f(ξ)t.

Deduce that

ux =
f ′(ξ)

1 + tf ′(ξ)

and so ux blows up at t = (− infx ∂u0/∂x)−1 where u0(x) ≡ f(x), if u0x <
0.

Develop an acceleration wave analysis for equation (5.51) with the
amplitude a(t) = [ux]. Show that the wavespeed V = u and

δa

δt
+ 2u+

x a+ a2 = 0.

If u+
x = 0 show that

a(t) =
a0

1 + ta0

a0 = a(0), and deduce a(t) → ∞ as t → −1/a0 = −1/u−x (0), provided
u−x (0) < 0. (Here u−x (0) refers to the value when t = 0.)
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Exercise 5.4.2 Consider the equation

ut + uux + μu = 0, x ∈ R, t > 0, (5.52)

with

u(x, 0) = u0(x).

By considering characteristics, show that

u = u0(ξ)e−μt on x = ξ +
u0(ξ)
μ

(
1 − e−μt

)
.

Show that

ux =
u0(ξ)e−μt

{1 + (1 − exp−μt)u′0(ξ)/μ}
and deduce that ux blows up, if u′0(ξ) < −μ < 0, at time

t = − 1
μ

log
(

1 +
μ

u′0(ξ)

)
.

Develop an acceleration wave analysis for equation (5.52) with the am-
plitude a(t) = [ux]. Show that the wavespeed V = u and if u+

x = 0
then

δa

δt
+ μa+ a2 = 0.

Solve this equation to show that

u−x = [ux] = a(t) =
1

eμta(0)−1 + {(eμt − 1)/μ}

and deduce that if u0x < −μ then u−x blows up at

t =
1
μ

log
(

a(0)
μ+ a(0)

)
.

How does this compare with the analysis of solution breakdown for equation
(5.52) by characteristics?

Exercise 5.4.3 Consider the initial-value problem

ut + c(u)ux = 0, t > 0, x ∈ R,

u = f(x), t = 0, x ∈ R,
(5.53)

where c, f are smooth functions. Write down the differential equations that
determine the characteristics of (5.53) and hence show that

u = f(ξ) on x = ξ + F (ξ)t,

where F (ξ) = c(f(ξ)). Show also that if c(u) is a decreasing function in x
then the derivatives of u become discontinuous at a time
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T =
[

−1
F ′(ξ)

]
m

,

where the m indicates the characteristic on which the minimum is achieved.
When c(u) = u2 and f(x) is defined by

f(x) =

⎧⎪⎨
⎪⎩

1, x < 0,
e exp [−1/(1 − x2)], 0 ≤ x ≤ 1,
0, x > 1,

deduce the solution u, determine whether ux and ut become discontinuous,
and if they do find the first time of breakdown. Make a rough sketch of what
is happening.

Exercise 5.4.4 Repeat the analysis of exercise 5.4.3 when c(u) = u2, but
when f(x) is defined by

f(x) =

⎧⎪⎨
⎪⎩

1, x < 0,
1 − 2x2 + x4, 0 ≤ x ≤ 1,
0, x > 1,

deduce the solution u, show that ux and ut become discontinuous, and show
the first time of breakdown is T = 77/2/1728. Make a rough sketch of what
is happening.

Exercise 5.4.5 Find (implicitly) the solution to the partial differential
equation

∂u

∂t
+ u2 ∂u

∂x
= 0, t > 0, x ∈ R,

with

u(x, 0) = f(x) =

⎧⎪⎨
⎪⎩

1, x < 0,
1 − 3x2 + 2x3, 0 ≤ x ≤ 1,
0, x > 1.

Show that ux and ut become discontinuous at time

T =
100

√
10

12(
√

10 − 1)(7
√

10 + 2)
.

Exercise 5.4.6 Draw the characteristics in the (x, t) plane, and determine
the characteristic on which “blow-up” occurs and the first time of blow-up
of ux, ut where u solves:

∂u

∂t
+ u

∂u

∂x
= 0, t > 0, x ∈ R,
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and

u(x.0) = f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x < 0,
1
2 − tanh−1(x − 1

2 )/ log 3 , x ∈ [0, 1],
0, x ∈ (1, 2),
x− 2, x ∈ [2, 3),
1, x ∈ [3, 4),
5 − x, x ∈ [4, 5],
0, x > 5.

Exercise 5.4.7 Consider the system of equations

∂ui

∂t
+ aij

∂uj

∂x
+ bi = 0. (5.54)

What is meant by saying (5.54) is a hyperbolic system?
Consider now the system of equations

ut + ux + 3vx + v = 0, x ∈ R, t > 0,
vt + 3ux + vx + u = 0, x ∈ R, t > 0,

with initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R.

Show that this may be reduced to the form

u(x, t) − v(x, t) = et
[
u0(ξ1) − v0(ξ1)

]
on x = −2t+ ξ1,

u(x, t) + v(x, t) = e−t
[
u0(ξ2) + v0(ξ2)

]
on x = 4t+ ξ2.

Find u, v at x = 3, t = 1, in terms of u0(−1), u0(5), v0(−1) and v0(5).

Exercise 5.4.8 The transmission of electricity along a cable may be
described by the equations

it + vx + i = 0,
vt + ix + v = 0,

where v is voltage and i is current. Write these as a hyperbolic system and
show that they may be reduced to the Riemann invariant form

et(i+ v) = constant, along x = t+ k1,

et(i− v) = constant, along x+ t = k2,

where k1, k2 are constants to be determined by the initial conditions.

Exercise 5.4.9 Consider the system

at + bx = αa, bt + ax = αb, (5.55)

with the initial conditions

a(x, 0) = sinx, b(x, 0) = cosx.
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Write (5.55) as a hyperbolic system and hence solve to show that

a+ b = eαt(sin k1 + cos k1), on x = t+ k1,

a− b = eαt(sin k2 − cos k2), on x = −t+ k2.

Deduce values for a(2π, π), b(2π, π), when α = 2. Deduce also values for
a(3π, 2π), b(3π, 2π), when α = 3.

Exercise 5.4.10 Consider the system of equations

∂u

∂t
+ 3

∂u

∂x
+ 4

∂v

∂x
+ αu = 0,

∂v

∂t
+
∂u

∂x
+ αv = 0,

α constant, with initial data

u(x, 0) = exp(x2), v(x, 0) = sin πx.

Find expressions for u−4v and u+v on suitable characteristics. Use these
to determine u, v at (x, t) = (8, 3).

Exercise 5.4.11 Reduce the system of equations

∂u

∂t
+ 2

∂u

∂x
+
∂v

∂x
+ b1 = 0,

∂v

∂t
+
∂u

∂x
+ 2

∂v

∂x
+ b2 = 0,

to two ordinary differential equations on characteristics. Suppose b1 =
u, b2 = v, and the initial data are

u(x, 0) = ex, v(x, 0) = 1 + x2.

Calculate u, v at (x, t) = (9/2, 3/2).

Exercise 5.4.12 Repeat exercise 5.4.11 with

b1 = u2 + v2, b2 = 2uv,

and calculate a formula for u− v and u+ v on suitable characteristics. In
terms of the initial data functions u0(x), v0(x), calculate u(0, 1), v(0, 1).

Exercise 5.4.13 For the problem

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ R, t > 0,

u = 0, x < 0, u = 1, x > 0,

construct two weak solutions (one which keeps the shock wave for all t and
one which is continuous for t > 0) and hence demonstrate non-uniqueness
of a weak solution.
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Exercise 5.4.14 Let u be a solution to the partial differential equation

(eu + e−u)2
∂u

∂t
+ 4

∂u

∂x
= 0, x ∈ R, t > 0,

with

u(x, 0) =

{
1, x < 0,
0, x > 0.

Find a shock wave solution valid for all t > 0, such that u− ≡ 1, u+ ≡ 0.

Exercise 5.4.15 The equation

∂u

∂t
+ u2 ∂u

∂x
= 0,

is defined together with an initial condition which contains a discontinuity
in u (shock wave). Suppose 0 < u− < u+, and define

λ =
−3u+

x (u− + u+)
(u+ + 2u−)

.

Show that
(i) if [ux] > λ, [u] increases locally in t,
(ii) if [ux] < λ, [u] decreases locally in t.



6
Qualitative estimates

6.1 Decay in time

The generalized Maxwell - Cattaneo equations, known as the GMC
equations, are described in chapter 1, p. 15, and have the form

c
∂T

∂t
= − ∂qi

∂xi
,

τ
∂qi
∂t

= −qi − κ
∂T

∂xi
+ μΔqi + ν

∂2qj
∂xj∂xi

,

(6.1)

where T, qi are the temperature and heat flux fields, and c, τ, κ, μ and ν are
positive constants.

One of the early articles dealing with qualitative results for this system
of equations was that of (Morro et al., 1990). These writers studied decay
in time of the solution, established lower bounds, demonstrated uniqueness
for the MC system (where μ, ν are zero), proved uniqueness and continuous
dependence on the initial data for (6.1), and examined how solutions grow
in the backward in time problem. (Morro et al., 1990) studied equations
(6.1) on a bounded spatial domain, Ω. Further results, including structural
stability results, for equations (6.1) are given by (Franchi and Straughan,
1994a).

A study of continuous dependence on the initial-time geometry, where
perturbations of the initial data set are considered over a time zone, was
given by (Payne and Song, 1997a) when Ω is a domain exterior to a
bounded set Ω0 in R

3. A study of continuous dependence on the initial-time

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 159
DOI 10.1007/978-1-4614-0493-4 6, c© Springer Science+Business Media, LLC 2011
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geometry for a solution to (6.1) when Ω is bounded is given by (Payne and
Song, 1997b) who analysed both the forward in time and backward in time
problems.

(Payne and Song, 1997a) investigated continuous dependence on changes
in the spatial geometry itself, i.e. how the solution behaves when the bound-
ary Γ of Ω is actually changed. The system of partial differential equations
analysed by (Payne and Song, 1997a) is an extended version of (6.1),
namely,

c
∂T

∂t
= − ∂qi

∂xi
+ ζΔT ,

τ
∂qi
∂t

= −qi − κ
∂T

∂xi
+ μΔqi + ν

∂2qj
∂xj∂xi

,

(6.2)

where ζ is a positive constant. The question of continuous dependence of
the solution to (6.1) on changes in the spatial geometry was addressed by
(Lin and Payne, 2004a).

(Payne and Song, 2001) analysed the behaviour of a solution to equations
(6.1) as the relaxation time τ tends to zero. Interesting bounds for a solution
to (6.1) when the initial data are replaced by non-standard data involving
a combination of data at time t = 0 and data at a later time t = T are
provided by (Payne et al., 2005) and by (Payne et al., 2004).

In the remainder of this section we report some results of (Payne and
Song, 2004b) on decay in time for T and qi satisfying equations (6.1). Let
equations (6.1) be defined on the domain Ω × (0,∞) where Ω ⊂ R

3 is a
bounded domain with boundary Γ. The functions T and qi are subject to
initial data

T (x, 0) = T0(x), qi(x, 0) = fi(x), (6.3)

and satisfy boundary data of form

T (x, t) = 0, εijkqjnk = 0, on Γ × (0,∞). (6.4)

The second of (6.4) essentially states that the components of heat flux in
the directions tangential to the unit normal to Γ are zero.

6.1.1 Decay of temperature

To derive a decay bound for the temperature (Payne and Song, 2004b)
eliminate qi from (6.1) and show that T satisfies the equation

( τ

μ+ ν

) ∂2T

∂t2
+

1
(μ+ ν)

∂T

∂t
− κ

c(μ+ ν)
ΔT − Δ

∂T

∂t
= 0, (6.5)
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on Ω × (0,∞). They introduce the variable θ by θ = eatT for a positive
number a to be chosen. Equation (6.5) may be rewritten in terms of θ as

( τ

μ+ ν

) ∂2θ

∂t2
+
(1 − 2aτ
μ+ ν

) ∂θ
∂t

−
[ κ

c(μ+ ν)
− a
]
Δθ

− Δ
∂θ

∂t
+
a(aτ − 1)
(μ+ ν)

θ = 0.
(6.6)

Since T = 0 on Γ, we also know θ = 0 on Γ. (Payne and Song, 2004b)
define the function F (t) by

F (t) =
( τ

μ+ ν

)
‖θt‖2 +

[ κ

c(μ+ ν)
− a
]
‖∇θ‖2 +

a(aτ − 1)
(μ+ ν)

‖θ‖2, (6.7)

where ‖ · ‖ is the norm on L2(Ω). By multiplying equation (6.6) by θt,
integrating over Ω and using the boundary conditions, one shows that

1
2
dF

dt
+ ‖∇θt‖2 +

(1 − 2aτ
μ+ ν

)
‖θt‖2 = 0. (6.8)

If λ1 denotes the first eigenvalue in Poincaré’s inequality for Ω, then (Payne
and Song, 2004b) require

1 − 2aτ
μ+ ν

+ λ1 ≥ 0. (6.9)

Then, from (6.8) they deduce that

dF

dt
≤ 0.

Upon integration in time they find

F (t) ≤ F (0). (6.10)

Now, recall θ = eatT and rewrite inequality (6.10) in terms of T (x, t). The
result is

E(t) ≤ E(0)e−2at, (6.11)

where E(t) is the function defined by

E(t) =
( τ

μ+ ν

)
‖Tt + aT ‖2 +

[ κ

c(μ+ ν)
− a
]
‖∇T ‖2

+
a(aτ − 1)
(μ+ ν)

‖T ‖2 .
(6.12)

In addition to inequality (6.9), the coefficient a is selected now so that

κ > ac(μ+ ν) . (6.13)
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Poincaré’s inequality is again used and a is further restricted in order that
the following inequalities hold for a constant γ > 0,

[ κ

c(μ+ ν)
− a
]
‖∇T ‖2 +

a(aτ − 1)
(ν + μ)

‖T ‖2

≥
{[ κ

c(μ+ ν)
− a
]
λ1 +

a(aτ − 1)
(ν + μ)

}
‖T ‖2

≥ γ‖T ‖2 .

(6.14)

(Payne and Song, 2004b) actually select γ = κλ1/2c(μ+ ν) and pick a to
satisfy inequalities (6.9), (6.13) and (6.14). In this way (Payne and Song,
2004b) show that one may deduce from (6.11),

‖T (t)‖2 ≤ E(0)
e−2at

γ
. (6.15)

They also observe that decay results for ‖Tt‖ and ‖∇T ‖ may be derived
from inequality (6.11).

6.1.2 Decay of heat flux

(Payne and Song, 2004b) also produce decay bounds for the heat flux qi.
To do this they write (6.1)2 as

−τqi,t − qi − κT,i + μ(qi,j − qj,i),j + (μ+ ν)qj,ji = 0.

This equation is multiplied by qi and the result integrated over Ω to see
that with integration by parts

τ

2
d

dt
‖q‖2 = − ‖q‖2 + κ(T, qi,i)

+ μ

∮
Γ

qi(qi,j − qj,i)njdS − μ

∫
Ω

qi,j(qi,j − qj,i)dx

+ (μ+ ν)
∮

Γ

qj,jqinidS − (μ+ ν)‖qi,i‖2 ,

(6.16)

where (·, ·) is the inner product on L2(Ω). By applying equation (6.1)1 on
the boundary Γ, the second last term is rewritten as

+(μ+ ν)
∮

Γ

qj,jqinidS = c(μ+ ν)
∮

Γ

TtqinidS = 0,

where the fact that the integral is zero follows since T = 0 on Γ. The other
boundary term in (6.16) is seen to be zero by appealing to the boundary
condition εijkqjnk = 0. Hence, (6.16) reduces to

τ

2
d

dt
‖q‖2 = − ‖q‖2 + κ(T, qi,i)

− μ

∫
Ω

qi,j(qi,j − qj,i)dx − (μ+ ν)‖qi,i‖2 .
(6.17)
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The second last term in (6.17) is rewritten as

−μ
∫

Ω

qi,j(qi,j − qj,i)dx = −μ
2

∫
Ω

(qi,j − qj,i)(qi,j − qj,i)dx.

Thus, this term may be discarded in (6.17) to find

τ

2
d

dt
‖q‖2 ≤ −‖q‖2 + κ(T, qi,i) − (μ+ ν)‖qi,i‖2 . (6.18)

The arithmetic-geometric mean inequality is used in the form

κ(T, qi,i) ≤
κ2

σ
‖T ‖2 +

σ

4
‖qi,i‖2

to obtain
τ

2
d

dt
‖q‖2 ≤ −‖q‖2 +

κ2

σ
‖T ‖2 +

[σ
4
− (μ+ ν)

]
‖qi,i‖2 .

Pick now σ = 4(μ+ ν) and use estimate (6.15), i.e. ‖T ‖2 ≤ E(0)γ−1e−2at,
and one finds

τ

2
dZ

dt
≤ −Z +

κ2

4(μ+ ν)
E(0)
γ

e−2at ,

where we momentarily define Z(t) = ‖q(t)‖2. Rearranging and using an
integrating factor one finds

d

dt

(
e2t/τZ

)
≤ κ2E(0)

2τ(μ+ ν)γ
exp(−2at+ 2t/τ).

This inequality is integrated and we divide by e2t/τ to derive the (Payne
and Song, 2004b) inequality for qi, namely

‖q(t)‖2 ≤ ‖q(0)‖2e−2t/τ +
κ2E(0)

4γ(μ+ ν)(aτ − 1)
(e−2t/τ − e−2at). (6.19)

(Payne and Song, 2004b) derive further decay estimates for Ω ⊂ R
2

when the boundary condition (6.4)2 is replaced by qi = 0 on Γ. We refer
the reader to (Payne and Song, 2004b) for further details.

6.1.3 Decay with other effects

We have only discussed time decay of the temperature field and heat flux in
a rigid body. However, an increasingly important topic is the question of de-
cay in thermoelastic systems with second sound effects, e.g. Lord-Shulman,
Green-Lindsay, Green-Naghdi type III effects. Additionally, if there is de-
cay, what sort of decay can be expected, e.g. exponential, polynomial in
time, or what?

The question of decay in thermoelasticity was addressed for the classical
theory (type I) in the fundamental articles of (Dafermos, 1968), (Slemrod,
1981), (Racke and Shibata, 1991), (Muñoz Rivera, 1992) and (Lebeau and
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Zuazua, 1999). Recent work has addressed such issues in “hyperbolic” theo-
ries of thermoelasticity, i.e where heat may travel as a wave. Key to the type
of decay found is whether the spatial domain Ω is one-dimensional, or two
or three - dimensional. Often, exponential decay is found in the one dimen-
sional case. For the two and three - dimensional situations the geometry is
important and often only polynomial time decay is witnessed. However, in
addition to thermoelastic effects there are many other physically important
effects to consider. Among these we mention elastic materials containing
voids (a class of porous materials) cf. section 2.6, mixtures of elastic ma-
terials, the effect of microtemperatures. A combination of these effects is
leading to some surprising results. For example, (Casas and Quintanilla,
2005a) note that effects which separately lead to polynomial decay may lead
to exponential decay when present simultaneously. We point out that such
effects in conjunction with type II thermoelasticity might also lead to decay,
the dissipation being provided by friction in the case of voids or mixtures,
for example. It is important to derive the required theory correctly from
full continuum thermodynamic principles, cf. (Green and Naghdi, 1992;
Green and Naghdi, 1993), (Iesan, 2008), (Iesan and Quintanilla, 2009),
(Straughan, 2008), pp. 329–332, and then derive the linearized equations
either by considering a small deformation superimposed on a large one, or
by providing a suitable free energy function.

The following articles address very interesting decay results in ther-
moelasticity, some being for theories appropriate to second sound, others
involving effects like mixtures, voids, microtemperatures, (Alves et al.,
2009), (Casas and Quintanilla, 2005a; Casas and Quintanilla, 2005b),
(Dharmawadane et al., 2010), (Fabrizio et al., 2007), (Iesan and Quin-
tanilla, 2009), (Irmscher and Racke, 2006), (Leseduarte et al., 2010),
(Magaña and Quintanilla, 2006b; Magaña and Quintanilla, 2006a; Magaña
and Quintanilla, 2007), (Messaoudi and Said-Houari, 2008; Messaoudi and
Said-Houari, 2009), (Muñoz Rivera, 1997), (Muñoz Rivera and Qin, 2002),
(Muñoz Rivera and Quintanilla, 2008), (Pamplona et al., 2009), (Passarella
and Zampoli, 2007), (Qin and Muñoz Rivera, 2004), (Quintanilla, 2002a;
Quintanilla, 2003; Quintanilla, 2004; Quintanilla, 2007b; Quintanilla,
2007a), (Quintanilla and Racke, 2003; Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2006b; Quintanilla and Racke, 2007; Quintanilla
and Racke, 2008), (Racke, 2002; Racke, 2003), (Racke and Wang, 2005;
Racke and Wang, 2008), (Reissig and Wang, 2005), (Sare et al., 2008),
(Sun et al., 2006), (Vila Bravo and Muñoz Rivera, 2009), (Wang and Yang,
2006), (Weinmann, 2009), (Yang and Wang, 2006), (Zhang and Zuazua,
2003). We do not give a detailed description of these articles since not
all are dealing with second sound theories. Nevertheless, the methods de-
veloped will undoubtedly prove useful in future analyses of second sound
thermoelastic models and this is an area with potential.

(Sare and Racke, 2009) have recently proved an interesting result for a
system of equations appropriate to a Timoshenko beam. They show that
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one may expect exponential decay of the solution when Fourier’s law is
adopted. However, incorporation of a Cattaneo heat flux equation does not
lead to exponential decay.

Other very interesting decay results in thermoelasticity are those for com-
posite bodies, where one material is touching another. Into this category
comes the interesting work of (Bonfanti et al., 2008), see also (Quintanilla,
2008a). Likewise, the study of boundary effects giving rise to solution decay,
cf. (Lazzari and Nibbi, 2007; Lazzari and Nibbi, 2008), is of much interest.
These classes of problem will be useful in future, especially in connection
with new classes of materials, such as auxetic materials, see e.g. (Lakes,
2008), and functionally graded materials, cf. (Mian and Spencer, 1998).
Studies of decay and stability in auxetic materials are of particular inter-
est, especially since results are beginning to emerge which do not require
positive definiteness of the elastic coefficients, one merely needs strong el-
lipticity, see (Chirita and Ciarletta, 2006), (Chirita, 2007), (Xinchun and
Lakes, 2007).

6.2 Uniqueness in type II thermoelasticity

A striking result of (Knops and Payne, 1970) demonstrated how to develop
a logarithmic convexity technique to achieve uniqueness and continuous
dependence on the initial data for the classical theory of linear thermoe-
lasticity. Their paper involves some ingenious estimates and is based on
showing convexity of the logarithm of the L2 norm of the elastic displace-
ment. Particularly striking is the fact that (Knops and Payne, 1970) do not
require the elasticity tensor to be sign-definite. All they require is that the
elastic coefficients, aijkh, be symmetric in the sense that

aijkh = akhij . (6.20)

The work of (Knops and Payne, 1970) was extended by (Levine, 1970) to
derive uniqueness and continuous depedence for the solution to an abstract
system of differential equations which includes the equations of classical
thermoelasticity as a special case.

Further results using logarithmic convexity in classical thermoelasticity
are due to (Ames and Payne, 1991; Ames and Payne, 1994; Ames and
Payne, 1995). They establish a series of results on continuous dependence
for the backward in time problem, for a unilateral problem, and for the
initial-time geometry problem, respectively.

In this section we describe work of (Quintanilla and Straughan, 2000)
who establish uniqueness for anisotropic linearised thermoelasticity of type
II without requiring any definiteness whatsoever of the elasticity tensor.
They use a novel logarithmic convexity technique.

The relevant equations of anisotropic inhomogeneous thermoelasticity of
type II for a body with a centre of symmetry are, cf. (Quintanilla, 1999;
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Quintanilla, 2002b), see also section 2.3, equations (2.73):

ρüi = (aijkhuk,h),j − (aijθ),j + ρfi , (6.21)

cθ̈ = −aij üi,j + (kikθ,k),i + ρr , (6.22)

where ui, θ are the displacement vector and temperature field, and a super-
posed dot denotes ∂/∂t. The quantities ρ, fi and r are density, body force
and heat supply, while c > 0 is a constant. The tensor aij(x), is a coupling
tensor and the elastic coefficients, aijkh(x), satisfy the symmetry condition
(6.20). No sign-definiteness is required of aijkh.

In this section Ω is a bounded domain in R
3 with boundary Γ smooth

enough to allow applications of the divergence theorem. Again, ( , ) and
‖ · ‖ denote the inner product and norm on L2(Ω). Equations (6.21) and
(6.22) hold on Ω × (0, T ) where T (≤ ∞) is some time. The boundary and
initial conditions we consider are

ui(x, t) = uB
i (x, t), θ(x, t) = θB(x, t), x ∈ Γ, (6.23)

and

ui(x, 0) = gi(x), u̇i(x, 0) = hi(x), x ∈ Ω,

θ(x, 0) = θ0(x), θ̇(x, 0) = ζ(x), x ∈ Ω.
(6.24)

The logarithmic convexity functional of (Quintanilla and Straughan,
2000) does not consist of simply L2 norms of ui and θ. They devise a
“natural” functional which is a combination of the L2 norm of ui and a
weighted H1

0 norm of ψ =
∫ t

0

∫ s

0
θ dq ds.

We suppose the thermal tensor kik is symmetric and positive semi -
definite, in the sense that

kik = kki, kikξiξk ≥ 0, ∀ξi. (6.25)

To consider uniqueness, let (u1
i , θ

1) and (u2
i , θ

2) be two solutions to (6.21),
(6.22), (6.23) and (6.24) for the same boundary and initial data, and for
the same body force and heat supply. Then, the difference solution

ui = u1
i − u2

i , θ = θ1 − θ2, (6.26)

may be shown to satisfy the equations

ρüi = (aijkhuk,h),j − (aijθ),j , (6.27)

cθ̈ = −aij üi,j + (kikθ,k),i . (6.28)

In terms of ui.θ the boundary and initial data are

ui(x, t) = 0, θ(x, t) = 0, x ∈ Γ, (6.29)

and

ui(x, 0) = 0, u̇i(x, 0) = 0, θ(x, 0) = 0, θ̇i(x, 0) = 0, x ∈ Ω. (6.30)
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(Quintanilla and Straughan, 2000) begin by introducing the functions η
and ψ by

η(x, t) =
∫ t

0

θ(x, s) ds, ψ(x, t) =
∫ t

0

∫ s

0

θ(x, q) dq ds. (6.31)

Equation (6.28) is rewritten in terms of either η or ψ as

cη̈ = −aij u̇i,j + (kikη,k),i cψ̈ = −aijui,j + (kikψ,k),i . (6.32)

The basic functional, F (t), of (Quintanilla and Straughan, 2000) is

F (t) = (ρui, ui) + (kikψ,i, ψ,k) . (6.33)

To use F , differentiate to see that

F ′ = 2(ρui, u̇i) + 2(kikψ,i, ψ̇,k) , (6.34)

and after a further differentiation,

F ′′ = 2(ρu̇i, u̇i) + 2(kikψ̇,i, ψ̇,k) + 2(ρui, üi) + 2(kikψ,i, ψ̈,k) . (6.35)

Multiply (6.32)1 by η̇ and integrate over Ω. Add this to equation (6.27)
multiplied by u̇i after integration over Ω. By using the boundary conditions
one may thus derive a conservation of energy law, of form

E(t) = E(0) = 0, (6.36)

where the total “energy”, E(t), is given by

E(t) ≡ 1
2
(ρu̇i, u̇i) +

1
2
c‖θ‖2 +

1
2
(aijkhuk,h, ui,j) +

1
2
(kikη,i, η,k). (6.37)

Multiplication of (6.27) by ui and integration over Ω yields

(ρui, üi) + (aijkhuk,h, ui,j) = (aijθ, ui,j). (6.38)

Also, multiplication of (6.27)2 by ψ̈ and integration over Ω leads to

c‖θ‖2 + (kikψ,k, ψ̈,i) = −(aijui,j , θ). (6.39)

The terms (ρui, üi) and (kikψ,i, ψ̈,k) are substituted in equation (6.35),
adding (6.38) and (6.39) to remove the right hand sides. We then find

F ′′ = 2(ρu̇i, u̇i) + 2(kikψ̇,i, ψ̇,k) − 2(aijkhuk,h, ui,j) − 2c‖θ‖2 . (6.40)

This expression is conveniently rewritten using the energy equation (6.36)
to see that

F ′′ = 4(ρu̇i, u̇i) + 4(kikψ̇,i, ψ̇,k). (6.41)
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This representation of F ′′ is a particularly convenient form to apply the
logarithmic convexity method. Thus, we form FF ′′− (F ′)2 to observe that

FF ′′ − (F ′)2 = 4
[
(ρui, ui) + (kikψ,i, ψ,k)

][
(ρu̇i, u̇i) + (kikψ̇,i, ψ̇,k)

]

− 4
[
(ρui, u̇i) + (kikψ,i, ψ̇,k)

]2

≥ 0,
(6.42)

where the Cauchy-Schwarz inequality has been employed in the last line.
Inequality (6.42) is equivalent to logF (t) being a convex function of time.

From this one then deduces, see e.g. (Payne, 1975), p. 12,

F (t) ≤
[
F (0)

](1−t/T )[
F (T )

]t/T
, t ∈ (0, T ). (6.43)

Hence, F (t) ≡ 0 on [0, T ], and from the expression for F (t), equation (6.33),
it follows that ui ≡ 0 on Ω × [0, T ]. Then, from equation (6.28) θ satisfies
the equation

cθ̈ = (kikθ,k),i .

Multiplication of this equation by θ̇ and integration over Ω together with
an integration by parts leads to

c‖θ̇‖2 + (kikθ,i, θ,k) = 0. (6.44)

It follows from this that θ ≡ 0 on Ω× [0, T ], and so uniqueness of a solution
to the problem comprised of (6.21), (6.22), (6.23) and (6.24) follows.

(Quintanilla and Straughan, 2000) observe that equations (6.21), (6.22)
are invariant under time reversal and so uniqueness holds also in the back-
ward in time problem. In addition, they note that one may modify the
function F in (6.33) to establish continuous dependence on the initial data,
and results of structural stability such as continuous dependence on body
force and heat source. (Quintanilla and Straughan, 2000) also note that
boundary conditions (6.23) could be replaced by mixed boundary condi-
tions involving a combination of (6.23) on part of the boundary together
with prescribed traction and entropy flux on the remainder.

6.3 Growth in type II thermoelasticity

To produce a growth result for a solution to equations (6.21) and (6.22)
(Quintanilla and Straughan, 2000) assume the thermal coefficients kik

satisfy the conditions

kik = kki, kikξiξk ≥ k0ξiξi, ∀ξi, and some k0 > 0. (6.45)

Let now (ui, θ) be a solution to equations (6.21) and (6.22) with fi ≡ r ≡ 0.
Let (ui, θ) satisfy zero boundary conditions as in (6.29). Hence, (ui, θ) sat-



6.3. Growth in type II thermoelasticity 169

isfy equations (6.27) and (6.28) with the initial data being given by (6.24).
The key to a growth result is to find a suitable functional to which log-
arithmic convexity is applicable. (Quintanilla and Straughan, 2000) again
define η and ψ as in (6.31). However, the initial data are now non-zero, and
so we find the differential equations for η and ψ are

cη̈ = −aij u̇i,j + (kikη,k),i + cζ(x) + aijhi,j(x) , (6.46)

and

cψ̈ = −aijui,j+(kikψ,k),i+
[
cζ(x)+aijhi,j(x)

]
t+cθ0(x)+aijgi,j(x) . (6.47)

The data terms are incorporated into the entropy term, (kikη,k),i , by defin-
ing Q1(x) and Q2(x) to be solutions to the generalised Poisson equations

(kikQ1,k),i = cζ(x) + aijhi,j(x), x ∈ Ω,
(kikQ2,k),i = cθ0(x) + aijgi,j(x), x ∈ Ω,

(6.48)

where Qα satisfy the boundary conditions

Qα = 0, x ∈ Γ, α = 1, 2. (6.49)

Existence of the functions Qα is guaranteed by theorems 4.3 and 6.8 of
(Gilbarg and Trudinger, 1977) p. 55 and p. 95. In fact, the positive-
definiteness condition on kij , (6.45), is only required to ensure the existence
of Qα for system (6.48), (6.49). (Quintanilla and Straughan, 2000) define
α and β by

α(x, t) = ψ(x, t) +Q1t+Q2, β(x, t) = η(x, t) +Q1, (6.50)

and in terms of the functions α and β, equations (6.46) and (6.47) may be
written as

cβ̈ = −aij u̇i,j + (kikβ,k),i,

cα̈ = −aijui,j + (kikα,k),i .
(6.51)

(Quintanilla and Straughan, 2000) define the functional G(t) by

G(t) = (ρui, ui) + (kikα,i, α,k) + α1(t+ t0)2 , (6.52)

where α1 and t0 are constants to be selected. The α1 term follows (Knops
and Payne, 1971a).

By differentiation and use of equations (6.27) and (6.51)1 one may show
the identities

(ρui, üi) = −(aijkhuk,h, ui,j) + (aijθ, ui,j), (6.53)

and

c‖θ‖2 = −(kikα,k, α̈,i) − (aijui,j , θ). (6.54)

Equations (6.53) and (6.54) are added to obtain

(ρui, üi) + (kikα̈,i, α,k) = −c‖θ‖2 − (aijkhuk,h, ui,j). (6.55)
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Upon multiplication of (6.27) by u̇i and integration over Ω, followed by
multiplication of (6.51)1 by β̇ and integration over Ω, we derive the identity

E(t) = E(0), (6.56)

where the energy E(t) is defined by

E(t) ≡ 1
2
(ρu̇i, u̇i) +

1
2
c‖θ‖2 +

1
2
(aijkhuk,h, ui,j) +

1
2
(kikβ,i, β,k). (6.57)

(Quintanilla and Straughan, 2000) show that one may differentiate G and
use equations (6.55) and (6.56) to see that

GG′′ − (G′)2 =
{

4
[
(ρui, ui) + (kikα,i, α,k) + α1(t+ t0)2

]

×
[
(ρu̇i, u̇i) + (kikα̇,i, α̇,k) + α1

]

− 4
[
(ρui, u̇i) + (kikα,i, α̇,k) + α1(t+ t0)

]2}

− 2G
[
2E(0) + α1

]
.

(6.58)

The term in braces on the right of (6.58) is non-negative by virtue of the
Cauchy-Schwarz inequality, and so from (6.58) one derives

GG′′ − (G′)2 ≥ −2G
[
2E(0) + α1

]
. (6.59)

From this follows

Theorem 6.3.1 If either (a) E(0) < 0; or (b) E(0) = 0 and G′(0) > 0;
or (c) E(0) > 0 and G′(0) > 2

[
2G(0)E(0)

]1/2
, then G(t) is bounded below

by an increasing exponential function of t.

The proof of this is given in (Quintanilla and Straughan, 2000) and follows
a similar result in (Knops and Payne, 1971a), see also (Payne, 1975), p. 21.

6.4 Uniqueness in type III thermoelasticity

The appropriate linear equations for type III thermoelasticity theory may
be derived from (Green and Naghdi, 1992) and for a body with a centre of
symmetry they are, see e.g. section 2.4, equations (2.83):

ρüi = (aijkhuk,h),j − (aijθ),j + ρfi , (6.60)

cθ̈ = −aij üi,j + (kikθ,k),i + (bik θ̇,k),i + ρr . (6.61)

The tensors kij and bij are always symmetric.
In this section we record a uniqueness result of (Quintanilla and

Straughan, 2000) for a solution to equations (6.60), (6.61). The boundary
and initial data are

ui(x, t) = uB
i (x, t), θ(x, t) = θB(x, t), x ∈ Γ, (6.62)
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and

ui(x, 0) = gi(x), u̇i(x, 0) = hi(x),

θ(x, 0) = θ0(x), θ̇(x, 0) = ζ(x), x ∈ Ω.
(6.63)

The major symmetry condition (6.20) holds, i.e.

aijkh = akhij (6.64)

and kik and bik satisfy

bikξiξk ≥ 0 and kikξiξk ≥ 0, ∀ξi. (6.65)

To establish uniqueness let (u1
i , θ

1) and (u2
i , θ

2) be two solutions to (6.60)
- (6.65) for the same boundary and initial data, and for the same body force
and heat supply. Then, the difference solution (ui, θ) given by

ui = u1
i − u2

i , θ = θ1 − θ2, (6.66)

satisfies the equations

ρüi = (aijkhuk,h),j − (aijθ),j , (6.67)

cθ̈ = −aij üi,j + (kikθ,k),i + (bikθ̇,k),i . (6.68)

The boundary and initial conditions satisfied by the difference solution
(ui, θ) are

ui(x, t) = 0, θ(x, t) = 0, x ∈ Γ, (6.69)

and

ui(x, 0) = 0, u̇i(x, 0) = 0, θ(x, 0) = 0, θ̇i(x, 0) = 0, x ∈ Ω. (6.70)

Define η by η(x, t) =
∫ t

0
θ(x, s)ds and observe equation (6.68) can be

written as

cη̈ = −aij u̇i,j + (kikη,k),i + (bikη̇,k),i . (6.71)

To establish uniqueness (Quintanilla and Straughan, 2000) use a Lagrange
identity method. They consider t ∈ (0, T ) fixed, and form the identities
∫ t

0

(
ρüi(τ), u̇i(2t− τ)

)
dτ +

∫ t

0

(
aijkhuk,h(τ), u̇i,j(2t− τ)

)
dτ

=
∫ t

0

(
aijθ(τ), u̇i,j(2t− τ)

)
dτ,

(6.72)

and∫ t

0

c
(
η̈(τ), η̇(2t− τ)

)
dτ +

∫ t

0

(
kikη,k(τ), η̇,i(2t− τ)

)
dτ

+
∫ t

0

(
bikη̇,k(τ), η̇,i(2t− τ)

)
dτ = −

∫ t

0

(
aij u̇i,j(τ), θ(2t− τ)

)
dτ,

(6.73)
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and∫ t

0

(
ρüi(2t− τ), u̇i(τ)

)
dτ +

∫ t

0

(
aijkhuk,h(2t− τ), u̇i,j(τ)

)
dτ

=
∫ t

0

(
aijθ(2t− τ), u̇i,j(τ)

)
dτ,

(6.74)

and∫ t

0

c
(
η̈(2t− τ), η̇(τ)

)
dτ +

∫ t

0

(
kikη,k(2t− τ), η̇,i(τ)

)
dτ

+
∫ t

0

(
bikη̇,k(2t− τ), η̇,i(τ)

)
dτ = −

∫ t

0

(
aij u̇i,j(2t− τ), θ(τ)

)
dτ.

(6.75)

Equations (6.72) - (6.75) are added and subtracted in the combination
(6.72)-(6.73)+(6.74)-(6.75). (Quintanilla and Straughan, 2000) show that
this yields the identity(

ρu̇i(t), u̇i(t)
)
−
(
aijkhuk,h(t), ui,j(t)

)
− c‖θ(t)‖2 +

(
kikη,k(t), η,i(t)

)
= 0.

(6.76)

An energy equation is derived by multiplying (6.67) by u̇i, and then by
multiplying (6.71) by η̇, and then integrating over Ω, also integrating by
parts. The resulting energy equation is

E(t) = E(0) = 0, (6.77)

where E(t) is defined by

E(t) ≡1
2
‖η̇(t)‖2 +

1
2
(
kikη,i(t), η,k(t)

)
+

1
2
(
ρu̇i(t), u̇i(t)

)

+
1
2
(
aijkhuk,h(t), ui,j(t)

)
+
∫ t

0

(
bikη̇,i, η̇,k

)
ds.

(6.78)

Equations (6.76) and (6.77) are suitably added recalling η̇ = θ to obtain

(
ρu̇i(t), u̇i(t)

)
+
(
kikη,i(t), η,k(t)

)
+
∫ t

0

(
bikθ,i, θ,k

)
ds = 0.

From this identity (Quintanilla and Straughan, 2000) deduce with the aid
of the boundary conditions that ui ≡ 0 on Ω × [0, T ]. Then, from (6.68) θ
satisfies the equation

cθ̈ = (kikθ,k),i + (bik θ̇,k),i . (6.79)

Upon multiplication by θ̇ and integration over Ω we find

1
2
c‖θ̇‖2 +

1
2
(kikθ,i, θ,k) +

∫ t

0

(bik θ̇,i, θ̇,k)ds = 0. (6.80)

It follows from (6.80) that θ ≡ 0 on Ω × [0, T ]. Hence, uniqueness follows.
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(Quintanilla and Straughan, 2000) remark that one could extend the
above analysis to unbounded spatial regions and not impose decay at infin-
ity on ui and θ by using a weighted Lagrange identity technique. The details
involve a combination of their proof and that of (Rionero and Chirita, 1987)
who used a weighted Lagrange identity in classical thermoelasticity. In this
manner one can derive uniqueness and structural stability results for type
III thermoelasticity on unbounded spatial domains without requiring the
imposition of decay constraints at infinity, (Quintanilla, 2002a).

6.5 Uniqueness on an unbounded domain

To investigate uniqueness on an unbounded domain we employ the model
of type III heat flow in a rigid heat conductor as described in section 1.11.
We consider the linear theory as given by equation (1.127) and since we
are considering the uniqueness question we may set r = 0 (as it disappears
in the difference equation anyhow). Thus, we consider a solution u to the
equation

∂2u

∂t2
+ k1

∂u

∂t
= k2Δu+ k3Δ

∂u

∂t
, x ∈ Ω, t > 0. (6.81)

The spatial domain will be specified below, and k1, k2, k3 are positive con-
stants. Let us observe that in type III heat flow theory u corresponds to
the thermal displacement α. We also note, as in section 1.11, that equa-
tion (6.81) arises in Guyer-Krumhansl theory, equation (1.51), and in dual
phase lag theory, equation (1.60). To illustrate the ideas we begin with
Ω ⊂ R

3 being a bounded domain with boundary Γ. On the boundary Γ we
prescribe u, i.e.

u(x, t) = uΓ(x, t), x ∈ Γ, t > 0, (6.82)

while at time t = 0 we give u and ut, so

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), x ∈ Ω, (6.83)

uΓ , u0 and v0 being given functions.
Let the boundary - initial value problem comprised of equation (6.81)

together with the boundary and initial conditions (6.82) and (6.83) be de-
noted by P . To demonstrate uniqueness we suppose there are two solutions
u1(x, t) and u2(x, t) which both satisfy P for the same boundary and initial
data uΓ , u0 and v0. Then, define the difference solution u by

u = u1 − u2
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and one finds u satisfies the boundary - initial value problem

∂2u

∂t2
+ k1

∂u

∂t
= k2Δu + k3Δ

∂u

∂t
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ, t > 0,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ Ω.

(6.84)

Next, multiply equation (6.84)1 by ∂u/∂t and integrate over Ω and use
the boundary conditions to see that

d

dt

[1
2

∫
Ω

u2
t dx+

k2

2

∫
Ω

|∇u|2dx
]
+k1

∫
Ω

u2
t dx+k3

∫
Ω

|∇ut|2dx = 0, (6.85)

where we have used integration by parts and the boundary data. We discard
the two positive terms in equation (6.85) and define

E(t) =
1
2

∫
Ω

u2
t dx+

k2

2

∫
Ω

|∇u|2dx (6.86)

to deduce from equation (6.85) that

dE

dt
≤ 0.

Upon integration this inequality yields

E(t) ≤ E(0) = 0

where E(0) = 0 due to the initial data. Since E is given by (6.86) it follows
that

ut ≡ 0, u,i ≡ 0, in Ω × {t > 0}

and hence u ≡ 0 in Ω × {t > 0}, since u ≡ 0 at t = 0. Therefore, u1 ≡ u2,
and the solution to P is unique.

Next, we consider the case where Ω is unbounded. Let Ω ⊂ R
3 be the

domain exterior to a bounded domain Ω0 ⊂ R
3. The inner boundary of

Ω we denote by Γ. We now wish to consider the uniqueness question for
P but when Ω is the exterior domain just identified. If we assume u and
its derivatives decay sufficiently rapidly as r → ∞, (r =

√
xixi), then

we may still deduce (6.85) and uniqueness follows as above. However, we
are interested in the situation where u is allowed to grow as r → ∞,
and in particular, we allow exponential growth. In this case the energy
method employed above fails and we now consider two alternative methods
of establishing uniqueness.

6.5.1 The Graffi method

Suppose now the origin 0 ∈ Ω0 and let R0 be the first point such that
B(0, R0) ⊃ Ω̄0 where B(0, R0) is the ball centred at 0 of radius R0, and
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Figure 6.1. Geometry for uniqueness proof

Ω̄0 is the closure of Ω. We begin by describing a technique due to (Graffi,
1960), which may also be conveniently found in (Graffi, 1999b).

To establish uniqueness of a solution to P we let u1, u2 be solutions as
above and consider the boundary - initial value problem for the difference
solution u, namely (6.84). To use Graffi’s method we let ΩR be the domain
ΩR = B(0, R) − Ω̄0, for R ≥ R0 and we let ΓR be the outer boundary of
ΩR, as shown in figure 6.1.

We suppose the solution u satsifies the (growth) bounds

|ut| ≤ Keλr, |u,i| ≤ Keλr, |u,it| ≤ Keλr, as r → ∞, (6.87)

r = |x| =
√
xixi, for some positive constants K,λ.

Multiply equation (6.84) by ut and integrate over ΩR for R fixed. Then,
we obtain after integration by parts, since the terms on Γ vanish,

d

dt

[1
2

∫
ΩR

u2
t dx+

k2

2

∫
ΩR

|∇u|2dx
]

+ k1

∫
ΩR

u2
t dx

+ k3

∫
ΩR

|∇ut|2dx = k2

∫
ΓR

utniu,i dS + k3

∫
ΓR

utniu,ti dS,

(6.88)
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where ni is the unit outward normal to ΓR.
Next, employ the arithmetic - geometric mean inequality ab ≤ a2/2α+

αb2/2 for α > 0 on the right hand side of (6.88) and integrate twice in t
over the fixed interval [0, h]. The term which arises on the right involving
|∇u|2 is reduced to an integral over [0, h]×ΓR and we find for β > 0 another
constant at our disposal,

1
2

∫ h

0

∫
ΩR

u2
t dx ds+

k2

2

∫ h

0

∫
ΩR

|∇u|2dx ds

+ k1

∫ h

0

∫ s

0

∫
ΩR

u2
η dx dη ds+ k3

∫ h

0

∫ s

0

∫
ΩR

|∇uη|2dx dη ds

≤ k2αh

2

∫ h

0

∫
ΓR

|∇u|2dS ds

+
( k3

2β
+
k2

2α

) ∫ h

0

∫ s

0

∫
ΓR

u2
η dS dη ds

+
k3β

2

∫ h

0

∫ s

0

∫
ΓR

|∇uη|2 dS dη ds.

(6.89)

We now drop the first term on the left of inequality (6.89) and define the
function F (R) by

F (R) =
k2

2

∫ h

0

∫
ΩR

|∇u|2dx ds+ k1

∫ h

0

∫ s

0

∫
ΩR

u2
η dx dη ds

+ k3

∫ h

0

∫ s

0

∫
ΩR

|∇uη|2dx dη ds.
(6.90)

Then, for a constant A = A(h) we may obtain from (6.89)

F (R) ≤ AF ′(R), (6.91)

where F ′(R) = dF/dR. This inequality is integrated fromR0 to R to obtain

F (R) ≥ exp{(R−R0)/A}F (R0). (6.92)

Now F (R0) is a constant. We employ the bounds (6.87) on F (R) in
inequality (6.92) to obtain

4π
3
R3k4e

2λR ≥ eR/A F (R0) exp(−R0/A), (6.93)

where k4 is a constant depending on K, k1, k2 and k3.
If A−1 > 2λ then we let R → ∞ in (6.93) and obtain a contradiction.

Thus, F must be zero and uniqueness of a solution to P follows, on Ω×[0, h].
However, we may repeat this argument on [h, 2h] etc., to obtain uniqueness
for t > 0.
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6.5.2 The weighted energy method

The next technique we describe to establish uniqueness allowing the so-
lution to grow at infinity is an energy method, but one where a weight
is added to control the growth at infinity. The idea is due to (Rionero
and Galdi, 1976). This is a very versatile technique and expositions of this
method in other contexts may be found in (Galdi and Rionero, 1985) and
in (Flavin and Rionero, 1995).

Let Ω be an exterior domain as defined in section 6.5.1 and suppose
u1, u2 are both solutions to P for the same boundary and initial data so
that the difference solution u satisfies the boundary - initial value problem
(6.84). We again suppose that the difference solution u is subject to the
growth bounds (6.87). In this section we introduce the weight function g,
where

g = e−αr (6.94)

for α > 0 to be selected. (More involved choices may be made depending
on the outcome desired and many of these may be found in (Galdi and
Rionero, 1985).)

The idea is now to multiply equation (6.84)1 by gut and integrate over
Ω. We select α > 2λ so that the integrals converge and one may then show
after some integrations by parts

d

dt

[1
2

∫
Ω

gu2
t dx+

k2

2

∫
Ω

gu,iu,idx
]

+ k1

∫
Ω

gu2
t dx+ k3

∫
Ω

gu,itu,it dx

= −k2

∫
Ω

g,iutu,idx− k3

∫
Ω

g,iutu,itdx

≤ k2α

∫
Ω

g|ut| |u,i| dx+ k3α

∫
Ω

g|ut| |u,it| dx,

(6.95)

where we have used the fact that g,i = −αgxi/r. We now employ the
arithmetic-geometric mean inequality with arbitrary positive constants ζ1
and ζ2 on the right hand side of (6.95) to find after dropping the k1 term
on the left,

d

dt

[1
2

∫
Ω

gu2
t dx+

k2

2

∫
Ω

gu,iu,idx
]

+ k3

∫
Ω

gu,itu,it dx

≤
(k2α

2ζ2
+
k3α

2ζ1

) ∫
Ω

g|ut|2 dx

+
k2αζ2

2

∫
Ω

g|∇u|2dx+
k3αζ1

2

∫
Ω

g|∇ut|2dx.

(6.96)
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Select ζ1 = 2/α and then we have freedom to pick ζ2, for example, and
here choose ζ2 = 1/α. Then, from (6.96) we derive

d

dt

[ ∫
Ω

gu2
t dx+ k2

∫
Ω

gu,iu,idx
]

≤
(
k2 +

k3

2

)
α2

∫
Ω

g|ut|2 dx+ k2

∫
Ω

g|∇u|2dx.
(6.97)

Since we wish to allow λ large and we require α > 2λ, inevitably the
coefficient of gu2

t is the larger of the two coefficients on the right. Thus, if
we define a weighted energy E(t) by

E(t) =
∫

Ω

gu2
tdx+ k2

∫
Ω

g|∇u|2dx

then from inequality (6.97) we may derive

dE

dt
≤ mE,

where m = (k2 + k3/2)α2. Upon integration from 0 to t this inequality
yields

E(t) ≤ emtE(0) = 0, (6.98)

where E(0) = 0 follows from the initial data. Thus, from (6.98) we find
0 ≤ E(t) ≤ 0 for all t > 0 and due to how E(t) is defined and the fact
that u ≡ 0 at t = 0 we see that u ≡ 0 ∀x ∈ Ω, ∀t > 0. Thus, u1 ≡ u2 and
uniqueness of a solution to P follows.

Note, this method allows the growth coefficient λ in (6.87) to be
arbitrarily large.

6.6 Non-standard problems in thermoelasticity

Payne and his co-workers introduced a new class of non-standard prob-
lems which are relevant to many applied mathematical situations. Such
non-standard problems are where the data are not given at time t = 0,
but instead are given as a linear combination at times t = 0 and t = T,
see (Payne and Schaefer, 2002), (Payne et al., 2004), (Ames et al., 2004a;
Ames et al., 2004b). Such problems were originally introduced as a means
to stabilize solutions to the improperly posed problem when the data is
given at t = T and one wishes to compute the solution backward in time,
cf. (Ames et al., 1998), (Ames and Payne, 1999) and the references therein.

In this section we describe work of (Quintanilla and Straughan, 2005b)
who obtain solution estimates in appropriate measures of the solution to
thermoelasticity of type II or type III given data as a linear combination at
t = 0 and t = T. They obtain solution estimates for the displacement,
temperature, and strain, under a variety of conditions on the coupling
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constants. These estimates lead to continuous dependence on appropri-
ate terms on the model and to uniqueness under the stated conditions.
They also show that such problems do not always possess a unique so-
lution, and thereby delimit the class of coupling constants for which the
problems are physically useful. In addition to establishing a priori solu-
tion bounds for a solution to thermoelasticity of type II or III they show
that the time region of (Payne et al., 2004) is sharp by demonstrating that
there is non-uniqueness outside of this region. This result is extended to
type III thermoelasticity. (Quintanilla and Straughan, 2005b) also consider
non-homogeneous boundary conditions in thermoelasticity. (Quintanilla,
2010a) considers a non-standard problem in heat conduction where the
heat flux constitutive equation actually has a delay.

(Quintanilla and Straughan, 2005b) commence with the linear equations
of anisotropic inhomogeneous thermoelasticity of type II or type III . For
a body with a centre of symmetry these are for a material of type II, cf.
(Quintanilla, 2002b), or section 2.3,

ρüi =(aijkhuk,h),j − (aijθ),j + ρfi ,

cθ̈ = − aij üi,j + (kikθ,k),i + ρr ,
(6.99)

where ui, θ are the displacement vector and temperature field, and a su-
perposed dot denotes ∂/∂t. The quantities ρ, fi and r are density, body
force and heat supply, while c > 0 is a constant, and the tensor aij(x), is a
coupling tensor.

The appropriate equations for type III theory for a centrosymmetric body
are,

ρüi =(aijkhuk,h),j − (aijθ),j + ρfi ,

cθ̈ = − aij üi,j + (kikθ,k),i + (bikθ̇,k),i + ρr .
(6.100)

The tensors kij and bij are symmetric.
Again, Ω is a bounded domain in R

3 with boundary Γ smooth enough to
allow applications of the divergence theorem, and ( , ) and ‖·‖ are the inner
product and norm on L2(Ω). Equations (6.99) or (6.100) hold on Ω× (0, T )
for some time T (≤ ∞) and the boundary conditions have form

ui(x, t) = 0, θ(x, t) = 0, x ∈ Γ. (6.101)

Non-homogeneous boundary conditions as also studied in (Quintanilla and
Straughan, 2005b) are considered later.

Instead of initial conditions, the “non-standard” conditions imposed on
the problem are

αui(x, 0) + ui(x, T ) = gi(x), βu̇i(x, 0) + u̇i(x, T ) = hi(x),

αθ(x, 0) + θ(x, T ) = α0(x), βθ̇(x, 0) + θ̇(x, T ) = α1(x).
(6.102)

Here, α, β are given real numbers with gi, hi, α0 and α1 being prescribed
functions.
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As in (Quintanilla and Straughan, 2005b) it is assumed that the elastic
coefficients are symmetric and positive definite, i.e.

aijkh = akhij , aijkhξijξkh ≥ a0ξijξij , (a0 > 0) (6.103)

for all second order tensors ξij . The thermal conductivity kij is positive
definite with bij non-negative, namely,

kijξiξj ≥ k0|ξ|2, bijξiξj ≥ 0. (6.104)

The interaction coefficients aij(x) are assumed to remain bounded together
with their derivatives, so

|aij | ≤ a1, |aij,j | ≤ a1 (6.105)

where a1 is a positive constant. It is further assumed that the functions
ρ, c, fi and r depend on x but not t, and ρ, c > 0.

(Quintanilla and Straughan, 2005b) denote by A(u, v),K(φ, ψ) the
bilinear forms

A(u, v) =
∫

Ω

aijkhui,jvk,hdx, K(φ, ψ) =
∫

Ω

kijφ,iψ,jdx (6.106)

and introduce the operator notation

A(u)i = (aijkhuk,h),j . (6.107)

To obtain estimates for an appropriate energy function (Quintanilla and
Straughan, 2005b) work with a higher derivative “energy-like” function and
so differentiate (6.99)1 or (6.100)1 to derive the partial differential equation

ρui,ttt = (aijkhu̇k,h),j − (aij θ̇),j . (6.108)

The introduction of an extra derivative requires a condition supplementary
to the non-standard ones (6.102). This follows by evaluating (6.99)1 or
(6.100)1 at t = T and at t = 0 and employing (6.102) to see that

üi(T ) = −αüi(0) + Fi, (6.109)

where the data function Fi is given by

Fi = (1 + α)fi +
1
ρ

[
(aijkhgk,h),j − (α0aij),j

]
. (6.110)

(Quintanilla and Straughan, 2005b) also express üi(0) in terms of üi(T ) as

üi(0) = − 1
α
üi(T ) +

Fi

α
. (6.111)

6.6.1 Energy bounds, |α|, |β| > 1.

As (Quintanilla and Straughan, 2005b) observe, (Payne and Schaefer, 2002)
split their analysis of the operator equation utt + Au = F with conditions
αu(0) + u(T ) = g, βut(0) + ut(T ) = h into the cases |α|, |β| > 1, and
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|α|, |β| < 1, and further show that |α| < 1, |β| > 1 or |α| > 1, |β| < 1 does
not define a well posed problem. For type II thermoelasticity (Quintanilla
and Straughan, 2005b) obtain results largely in agreement with this. For
type III thermoelasticity, however, the situation for |α|, |β| < 1 is very
different.

In this section we assume |α|, |β| > 1 and consider type III ther-
moelasticity. The analysis also holds for type II thermoelasticity. We
follow (Quintanilla and Straughan, 2005b) and consider for simplicity the
non-standard conditions (6.102) for the same constants α and β. One could
repeat the analysis here, mutatis mutandis, with the general non-standard
boundary conditions of (6.102)1 and (6.102)2 having α replaced by γ, and
having β replaced by δ, for α, β, γ, δ all different.

(Quintanilla and Straughan, 2005b) begin by multiplying (6.108) by üi

and integrating over Ω, using the boundary conditions to derive

d

dt

[1
2

∫
Ω

ρüiüidx+
1
2
A(u̇, u̇)

]
−
∫

Ω

aij θ̇üi,jdx = 0. (6.112)

They also multiply (6.100)2 by θ̇ and integrate to derive

d

dt

[1
2

∫
Ω

cθ̇2dx+
1
2
K(θ, θ)

]
+
∫

Ω

bij θ̇,iθ̇,jdx

+
∫

Ω

aij θ̇üi,jdx =
∫

Ω

ρrθ̇dx.

(6.113)

Define E1(t) by

E1(t) =
1
2

∫
Ω

ρüiüidx +
1
2
A(u̇, u̇) +

1
2

∫
Ω

cθ̇2dx+
1
2
K(θ, θ), (6.114)

and note that upon addition of (6.112) and (6.113) one obtains

dE1

dt
+
∫

Ω

bij θ̇,iθ̇,jdx =
∫

Ω

ρrθ̇dx. (6.115)

This equation is integrated from 0 to t to find for any 0 ≤ t ≤ T,

E1(t) +
∫ t

0

∫
Ω

bij θ̇,iθ̇,jdx ds =E1(0) +
∫

Ω

ρrθ(x, t)dx

−
∫

Ω

ρrθ(x, 0)dx.
(6.116)

Choosing t = T , from (6.116) one may drop a positive term to see that

E1(T ) ≤ E1(0) +
∫

Ω

ρrθ(x, T )dx −
∫

Ω

ρrθ(x, 0)dx. (6.117)

The idea is now to use (6.102) together with (6.109) to remove terms
evaluated at T and replace them with terms evaluated at t = 0. This
procedure yields, after use of the arithmetic-geometric mean inequality on
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the
∫
Ω ρrθ(x, 0)dx term, the Poincaré inequality, and inequalities (6.104),

1
2

∫
Ω

ρFiFidx+
1
2
α2

∫
Ω

ρüi(0)üi(0)dx− α

∫
Ω

ρFiüi(0)dx

+
1
2
A(h, h) +

1
2
β2A(u̇(0), u̇(0)) − βA(h, u̇(0))

+
1
2

∫
Ω

cα2
1dx+

1
2
β2

∫
Ω

c
[
θ̇(0)

]2
dx− β

∫
Ω

cα1θ̇(0)dx

+
1
2
K(α0, α0) +

1
2
α2K(θ(0), θ(0)) − αK(α0, θ(0))

≤ 1
2

∫
Ω

ρüi(0)üi(0)dx+
1
2
A(u̇(0), u̇(0)) +

1
2

∫
Ω

c
[
θ̇(0)

]2
dx

+
1
2
K(θ(0), θ(0)) +

∫
Ω

ρrα0dx+
(1 + α)2

2γ1

∫
Ω

ρ2r2dx

+
γ1

2k0λ1
K(θ(0), θ(0)),

(6.118)

where the explicit dependence on x in terms evaluated at t = 0 has been
suppressed.

Next we use the arithmetic-geometric mean inequality, for arbitrary con-
stants γ2, γ3, γ4, γ5 at our disposal, on the third, sixth, ninth and twelth
terms. As an example, we write

α

∫
Ω

ρFiüi(0)dx ≤ α2

2γ2

∫
Ω

ρFiFidx+
γ2

2

∫
Ω

ρüi(0)ρüi(0)dx.

Then one shows from (6.118)

1
2
(α2 − γ2 − 1)

∫
Ω

ρüi(0)üi(0)dx+
1
2
(β2 − γ3 − 1)A(u̇(0), u̇(0))

+
1
2
(β2 − γ4 − 1)

∫
Ω

c
[
θ̇(0)

]2
dx+

1
2
(α2 − γ5 − 1 − γ1/2λ1k0)K(θ(0), θ(0))

≤
( α2

2γ2
− 1

2

) ∫
Ω

ρFiFidx+
( β2

2γ3
− 1

2

)
A(h, h)

+
( β2

2γ4
− 1

2

) ∫
Ω

cα2
1dx+

( α2

2γ5
− 1

2

)
K(α0, α0)

+
∫

Ω

ρrα0dx+
(1 + α)2

2γ1
‖ρr‖2. (6.119)

Since |α| > 1, |β| > 1, the numbers γ1, γ2, γ3, γ4, γ5 are selected small
enough that

α2 − γ2 − 1 > 0, β2 − γ3 − 1 > 0,

β2 − γ4 − 1 > 0, α2 − γ5 − 1 − γ1

2λ1k0
> 0.
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Thus, the coefficients of the terms on the left of (6.119) are positive. In this
way we determine computable constants k1, . . . , k6 such that

E1(0) ≤k1

∫
Ω

ρFiFidx+ k2A(h, h) + k3

∫
Ω

cα2
1dx

+ k4K(α0, α0) + k5

∫
Ω

ρrα0dx+ k6‖ρr‖2 ≡ A0,

(6.120)

where A0 is defined as indicated and is a data term.
At this point we return to (6.116) and drop the bij term to derive

E1(t) ≤ E1(0) +
∫

Ω

ρrθ(t)dx −
∫

Ω

ρrθ(0)dx. (6.121)

The second term on the right is estimated with the arithmetic-geometric
mean inequality for arbitrary γ6, γ7 > 0 to derive∫

Ω

ρrθ(t)dx ≤ 1
2γ6

‖ρr‖2 +
γ6

2
‖θ‖2

≤ 1
2γ6

‖ρr‖2 +
γ6

2λ1k0
K(θ, θ)

with a similar calculation for −
∫
Ω
ρrθ(0)dx. Pick γ6 < λ1k0 and then from

(6.121) one may determine constants k7 and k8 such that

E1(t) ≤ k7E1(0) + k8‖ρr‖2. (6.122)

Estimate (6.120) is employed in inequality (6.122) to obtain

E1(t) ≤c1
∫

Ω

ρFiFidx+ c2A(h, h) + c3

∫
Ω

cα2
1dx

+ c4K(α0, α0) + c5

∫
Ω

ρrα0dx+ c6‖ρr‖2 = B0,

(6.123)

for computable constants c1, . . . , c6. The term B0 is data and so inequality
(6.123) is an a-priori bound for the function E1(t) for 0 ≤ t ≤ T.

(Quintanilla and Straughan, 2005b) note that (6.123) also yields an es-
timate for ‖θ(t)‖2 and ‖∇θ(t)‖2 by using (6.104) together with Poincaré’s
inequality. To estimate ‖u(t)‖ and ‖∇u(t)‖ multiply (6.99)1 by u̇i and
integrate over Ω to see that

dU

dt
=
∫

Ω

ρfiu̇idx+
∫

Ω

aij u̇i,jθ dx, (6.124)

where the function U(t) is given by

U(t) =
1
2

∫
Ω

ρu̇iu̇idx+
1
2
A(u, u). (6.125)

Integrating (6.124) we see that, for any 0 ≤ t ≤ T,

U(t) = U(0)+
∫

Ω

ρfiui(t)dx−
∫

Ω

ρfiui(0)dx+
∫ t

0

∫
Ω

aij u̇i,jθ dx ds. (6.126)
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Evaluate this equation at t = T and use the non-standard conditions
(6.102), the bounds (6.105) and the arithmetic-geometric mean inequality
to obtain

1
2

∫
Ω

ρ(hi − βu̇i(0))(hi − βu̇i(0))dx+
1
2
A(g − u(0), g − u(0))

≤ 1
2

∫
Ω

ρu̇i(0)u̇i(0)dx+
1
2
A(u(0), u(0)) +

∫
Ω

ρfigidx

−
∫

Ω

ρfi(1 + α)ui(0)dx +
a1

2

∫ T

0

(‖∇u̇‖2 + ‖θ‖2)ds.

(6.127)

As in (Quintanilla and Straughan, 2005b) the terms on the left are ex-
panded and the arithmetic-geometric mean inequality is employed on the
u̇i(0)hi and u(0)g terms, for arbitrary positive constants δ1 and δ2. Then
use the arithmetic-geometric mean inequality in the following manner, for
δ3 > 0 at our disposal,

−
∫

Ω

ρ(1 + α)fiui(0)dx ≤ (1 + α)2

2δ3
‖ρf‖2 +

δ3
2
‖u(0)‖2

≤ (1 + α)2

2δ3
‖ρf‖2 +

δ3
2a0λ1

A(u(0), u(0)),

where restrictions (6.103) and Poincaré’s inequality have been employed.
With the aid of this inequality one thus shows from inequality (6.121)

1
2
(β2−δ1 − 1)

∫
Ω

ρu̇i(0)u̇i(0)dx+
1
2

(
α2 − δ2 − 1 − δ3

2a0λ1

)
A(u(0), u(0))

≤1
2
(1 + β2/δ1)‖ρ1/2h‖2 +

1
2
(1 + α2/δ2)A(g, g) +

∫
Ω

ρfigidx

+
(1 + α)2

2δ3
‖ρf‖2 +

a1

2a0

∫ T

0

A(u̇, u̇)ds

+
a1

2λ1k0

∫ T

0

K(θ, θ)ds. (6.128)

The last two terms are bounded by a piece of E1(T ). Then, selecting β2 >
1+δ1, α2 > 1+δ2+δ3/2a0λ1 one calculates computable constants d1, . . . , d4

such that

U(0) ≤d1‖ρ1/2h‖2 + d2A(g, g) + d3

∫
Ω

ρfigidx+ d4‖ρf‖2 + E1(T )

≤d1‖ρ1/2h‖2 + d2A(g, g)

+ d3

∫
Ω

ρfigidx+ d4‖ρf‖2 +B0 = C0, (6.129)

where C0 is defined as indicated and is a data term.
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From equation (6.126) we estimate

U(t) ≤U(0) +
1

2ζ1
‖ρf‖2 +

ζ1
2λ1a0

A(u, u) +
1

2ζ2
‖ρf‖2

+
ζ2

2λ1a0
A(u(0), u(0)) +

a1

2a0

∫ t

0

A(u̇, u̇)ds+
a1

2λ1k0

∫ t

0

K(θ, θ)ds,

for constants ζ1, ζ2 > 0 at our disposal. The number ζ1 is chosen so small
that ζ1 < λ1a0 and we bound the A(u(0), u(0)) term by U(0), then bound
the last two terms by E1(t), to find

U(t) ≤ ζ3U(0) + ζ3‖ρf‖2 + ζ4E1(t). (6.130)

E1(t) is estimated using (6.123), U(0) is bounded by means of (6.129) and
then from (6.130) we find for computable constants �1, . . . , �10,

U(t) ≤�1
∫

Ω

ρFiFidx+ �2A(h, h) + �3

∫
Ω

cα2
1dx+ �4K(α0, α0)

+ �5

∫
Ω

ρrα0dx+ �6‖ρr‖2 + �7‖ρ1/2h‖2 + �8A(g, g)

+ �9

∫
Ω

ρfigidx+ �10‖ρf‖2 ≡ D0.

(6.131)

The term D0 is defined as shown. It is important to note that D0 involves
only data and thus inequality (6.131) is an a priori bound for U(t). From
this inequality we obtain an a priori bound for either ‖u(t)‖2 or ‖∇u(t)‖2.

6.6.2 Energy bounds, |α|, |β| < 1.

When |α|, |β| < 1 (Quintanilla and Straughan, 2005b) are able to progress
only with type II thermoelasticity.

They observe that equations (6.99) are invariant under time reversal,
t→ −t. They rewrite the non-standard conditions (6.102), to place the co-
efficients α, β etc. in front of the terms involving T , e.g. ui(0)+(1/α)ui(T ) =
gi/α. In this manner, this is essentially the problem of the previous subsec-
tion but with 0 and T reversed. The roles of 0 and T are interchanged and
E1(0) is bounded by E1(T ). Then use the fact that 1/|α| > 1, 1/|β| > 1 to
bound E1(T ) by data. In this way one finds a bound for E1(t) in terms of
data for all 0 ≤ t ≤ T.

To handle U (Quintanilla and Straughan, 2005b) write

U(0) = U(T )−
∫

Ω

ρfiui(T )dx+
∫

Ω

ρfiui(0)dx−
∫ T

0

∫
Ω

aij u̇i,jθ dx ds.

They then eliminate the quantities at t = 0 in favour of those at t = T. In
this way they derive a bound of form U(T ) ≤ data. This in turn leads to
a bound U(0) ≤ data. Then from (6.126) they derive an estimate of form
U(t) ≤ data, 0 ≤ t ≤ T.
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(Quintanilla and Straughan, 2005b) observe that when |α| < 1, |β| < 1 in
type III theory they were unable to find a suitable bound. Since (Payne and
Schaefer, 2002), (Payne et al., 2005) did find bounds for a wave equation
with dissipation, they investigated why things break down. (Payne and
Schaefer, 2002) establish an a priori bound for a solution to the equation

utt + aut +Au = 0

for A a densely defined symmetric linear operator and a > 0 constant.
They require the restriction |α|, |β| < e−aT . If one inspects their (clever)
proof carefully, it hinges on being able to bound the dissipation func-
tion

∫ T

t
‖us(s)‖2ds by

∫ T

t
E(s)ds where in their case E(s) = ‖us‖2/2 +

(Au(s), u(s)), the norm and inner product being on an appropriate func-
tion space. For type III thermoelasticity if one works with E1(t) then one
encounters a dissipation of form

∫ T

t

∫
Ω

bij θ̇,iθ̇,j dx ds (6.132)

whereas the θ part in E1 essentially involves ‖θ̇‖2 and ‖∇θ‖2. This prevents
(Quintanilla and Straughan, 2005b) from bounding the dissipation term in
(6.132) by

∫ T

t E1ds since the function in (6.132) is effectively
∫ T

t ‖∇θ̇‖2ds.
Thus, the analogue of the (Payne and Schaefer, 2002) proof, in going from
equation (6.4) to inequality (6.5) of their paper, breaks down.

(Quintanilla and Straughan, 2005b) further observe that one cannot
expect to find a bound for E1(t) for |α|, |β| < e−aT in type III thermoe-
lasticity, (where a is a constant related to the first eigenfunction in the
membrane problem). They show that there is non-uniqueness in this range
and hence one cannot expect such a bound to hold.

6.6.3 Non-homogeneous boundary conditions

(Quintanilla and Straughan, 2005b) show that the analysis of the non-
standard problems required ui = 0 and θ = 0 on the spatial boundary,
Γ, but this may be overcome. If one requires inhomogeneous boundary
conditions of the form

ui(x, t) = uB
i (x, t), θ(x, t) = θB(x, t), x ∈ Γ, (6.133)

the procedure is as follows.
Let ui, θ be a solution to (6.99) or (6.100) with conditions (6.102), but

with the zero boundary conditions replaced by (6.133). To derive estimates
for suitable norms of ui and θ in the inhomogeneous problem one introduces
functions vi, ψ which solve the system

ρv̈i = A(v)i − (aijψ),j + ρfi

cψ̈ = −aij v̈i,j + (kijψ,j),i + (bijψ̇,j),i + ρr
(6.134)
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in Ω × (0, T ], with boundary conditions

vi(x, t) = uB
i (x, t), ψ(x, t) = θB(x, t), x ∈ Γ. (6.135)

The functions vi, ψ satisfy standard initial conditions

vi(x, 0) = ki(x), v̇i(x, 0) = k̃i(x),

ψ(x, 0) = �(x), ψ̇(x, 0) = �̃(x).
(6.136)

Next, introduce the difference functions wi = ui − vi, φ = θ − ψ. By
calculation wi, φ solves the problem

ρẅi = A(w)i − (aijφ),j

cφ̈ = −aijẅi,j + (kijφ,j),i + (bij φ̇,j),i

in Ω × (0, T ) with wi = φ = 0 on Γ, and the non-standard conditions

αwi(x, 0) + wi(x, T ) = gi(x) − αki(x) − vi(x, T )

βẇi(x, 0) + ẇi(x, T ) = hi(x) − βk̃i(x) − v̇i(x, T )
αφ(x, 0) + φ(x, T ) = α0(x) − α�(x) − ψ(x, T )

βφ̇(x, 0) + φ̇(x, T ) = α1(x) − β�̃(x) − ψ̇(x, T ).

To obtain an estimate for ui, (Quintanilla and Straughan, 2005b) let ‖u‖
be a suitable norm for ui, e.g. in L2(Ω) or

√
A(u, u), then from the triangle

inequality

‖u(t)‖ ≤ ‖w(t)‖ + ‖v(t)‖.

The quantity ‖v(t)‖ is known and ‖w(t)‖ may be found in terms of the data
functions gi, hi, α0, α1, ki, k̃i, �, �̃ and the functions vi(T ) and ψ(T ). Since
these solve a standard boundary-initial value problem they are known and
so we can find bounds for ‖u(t)‖. Likewise ‖u̇(t)‖, ‖θ(t)‖, ‖θ̇(t)‖ may be
estimated in terms of data. The boundary data uB

i and θB are involved in
the bounds through the functions v(t), v(T ), etc.

6.7 Explosive instabilities in heat transfer

6.7.1 Third order theory

In this section we describe a result of (Quintanilla and Straughan, 2002)
which focusses on a theory of (Ghaleb and El-Deen Mohamedein, 1989)
who derive a third order in time theory for heat propagation.

Exponential growth and connected results for the linearised (Ghaleb and
El-Deen Mohamedein, 1989) theory are given by (Franchi and Straughan,
1994a) and by (Quintanilla, 1997). (Payne and Song, 2006) study an inter-
esting class of problems for the (Ghaleb and El-Deen Mohamedein, 1989)
theory in in that they consider the temperature T and its time derivative
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Tt prescribed at time t = 0 but also prescribe the value of Tt at a later time
t = t1. They derive interesting bounds for the solution and also investigate
decay in the spatial variable.

(Quintanilla and Straughan, 2002) concentrate on a nonlinear equation
arising from the (Ghaleb and El-Deen Mohamedein, 1989) theory. They
argue that the thermal conductivity is a function of temperature and they
include this effect. This then leads to a nonlinear theory of heat conduc-
tion. They observe that the inclusion of temperature - dependent thermal
conductivity has disastrous consequences in that it predicts blow-up of the
temperature field in finite time for certain parameters.

The theory of (Ghaleb and El-Deen Mohamedein, 1989) is based on three
equations which govern the behaviour of the temperature field, T, the heat
flux, qi, and the entropy, which they denote by s. They have an entropy
production equation

ρ
∂s

∂t
= − 1

T0

∂qi
∂xi

, (6.137)

in which ρ, T0 are positive constants. For the heat flux they propose the
following law,

h
∂qi
∂t

+
1
T0

qi = −K ∂T

∂xi
− j

∂2T

∂xi∂t
, (6.138)

in which h and j are positive constants. (Quintanilla and Straughan,
2002) allow the thermal conductivity K be a function of temperature,
K = K(T ) > 0. In fact, in reality K does depend on T . In addition to
equations (6.137), (6.138) (Ghaleb and El-Deen Mohamedein, 1989) have
the following constitutive equation for the entropy,

ρs = âT − �
∂T

∂t
, (6.139)

in which â and � are positive constants.
(Quintanilla and Straughan, 2002) eliminate the variables s and qi to

obtain a single equation for T which has form

�T0
∂3T

∂t3
+
( �
h
− âT0

)∂2T

∂t2
− â

h

∂T

∂t
= − j

h
Δ
∂T

∂t
− 1
h

(
K(T )T,i

)
,i
. (6.140)

Let us set K(T ) = K f(T ) where K is a positive constant and

f(T ) = 1 + γ′T ε (6.141)

for positive constants γ′ and ε. (Quintanilla and Straughan, 2002) non-
dimensionalise equation (6.140) with the variables

t′ = t/T0h, x′i = xi/(KT0h/â)1/2, uT0 = T,

α = �/âT0h, β = j/KT0h, a = γ′T0ε,
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where u is the non-dimensional temperature. Then, equation (6.140) is
transformed to

α
∂3u

∂t3
− (1 − α)

∂2u

∂t2
− ∂u

∂t
= −βΔ

∂u

∂t
−
[
f(u)u,i

]
,i
, (6.142)

where f(u) is given by

f(u) = 1 + auε. (6.143)

(Quintanilla and Straughan, 2002) consider the situation where u ≥ 0, and
also

0 < α < 1. (6.144)

As usual Ω is a bounded domain in three-space, with boundary Γ. Equa-
tion (6.142) is defined on Ω × (0, T ) for some time T . The function u
is assumed zero on the boundary Γ and initial values are prescribed for
u(x, 0), u̇(x, 0), and ü(x, 0). In other words, u satisfies the boundary-initial
value problem P defined by equation (6.142) with the boundary and initial
conditions,

u(x, t) = 0, x ∈ Γ, (6.145)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x),

∂2u

∂t2
(x, 0) = a0(x), (6.146)

for prescribed functions u0, v0 and a0.
Throughout, as usual, ‖ · ‖ and ( , ) are the norm and inner product on

L2(Ω).

6.7.2 Nonexistence of a solution

We report on work of (Quintanilla and Straughan, 2002) who establish an
upper bound for the interval of existence of a solution to P . (Quintanilla
and Straughan, 2002) remark that there are many blow-up results for first
and second order in time partial differential equations occurring in the
physical literature but they have not seen such an example for a third order
derivative in time equation. In connection with this (Goldstein, 1985) shows
that the abstract equation

dnu

dtn
= Au, n ≥ 3, (6.147)

is well posed if and only if A is a bounded linear operator. We note that
equation (6.142) possesses the Δut term and so the linearised version does
not come into the category of the theory of (Goldstein, 1985). In an inter-
esting article, (Dreher et al., 2009) consider the abstract operator equation

b0ut + b1utt + · · · + bj
∂j+1u

∂tj+1
= c0Au+ c1Aut + · · · + cmA

∂mu

∂tm
, (6.148)
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with A being an appropriate operator in a suitable Banach space. (A has
to possess a sequence of real eigenvalues λk such that 0 > λk → −∞ as
k → ∞.) They show that the initial value problem for (6.148) is not well -
posed if j + 1 −m ≥ 3.

The proof of global nonexistence given in (Quintanilla and Straughan,
2002) begins by multiplying equation (6.142) by u and integrating over Ω.
They define

G(t) = ‖u(t)‖2 and K(t) = ‖ut(t)‖2. (6.149)

Then one shows

G′′′ − μG′′ = 3K ′ − 2μK +
1
α

d

dt
(G+ β‖∇u‖2) +

2
α

(f∇u,∇u), (6.150)

where μ = (1 − α)/α > 0 and superscript prime denotes differentiation
with respect to t. Upon use of an integrating factor and an integration one
may find

G′′ =3K +
1
α

(G+ β‖∇u‖2) +
∫ t

0

eμ(t−s)

[
μK +

μ

α
(G+ β‖∇u‖2)

]
ds

+
2
α

∫ t

0

eμ(t−s) (fu,i, u,i)ds

+
(
G′′(0) − 3K(0)− 1

α
G(0) − β

α
‖∇u0‖2

)
eμt .

(6.151)
The function F (t) is defined by

F (t) =
∫ t

0

‖u(s)‖2ds. (6.152)

It is supposed the initial data are such that

G′′(0) − 3K(0)− 1
α
G(0) − β

α
‖∇u0‖2 ≥ 0 . (6.153)

The Poincaré inequality ‖∇u‖2 ≥ λ1‖u‖2, is next used on the nonlinear
term involving f, and using the definition of f , one may use Hölder’s
inequality and then discard some non-negative terms on the right of
inequality (6.151) to obtain

F ′′′ ≥ k̃

∫ t

0

eμ(t−s)‖u‖2+εds . (6.154)

Here the constant k̃ is given by k̃ = 8aλ1/αm
ε/2(2 + ε)2 , where m is the

volume of Ω.
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By using Hölder’s inequality one may show
∫ t

0

‖u‖2ds ≤
(
ε

2μ

)ε/(2+ε)

[1 − e−2μt/ε]
(∫ t

0

eμ(t−s)‖u‖2+εds

)2/(2+ε)

≤
(
ε

2μ

)ε/(2+ε)(∫ t

0

eμ(t−s)‖u‖2+εds

)2/(2+ε)

. (6.155)

Upon using (6.155) in inequality (6.154) one may show

F ′′′ ≥ kF 1+ε/2 , (6.156)

where now k is the constant k = (2μ/ε)ε/2 k̃ .
It is assumed that ‖u0‖2 > 0 and thus F ′(0) > 0. Inequality (6.156) is

multiplied by F ′ and one finds

(F ′F ′′)′ ≥ (F ′′)2 +
( 2k

4 + ε

) d

dt
F 2+ε/2. (6.157)

After dropping the (F ′′)2 term and integrating in time we find

F ′F ′′ ≥ F ′(0)F ′′(0) +
( 2k

4 + ε

)
F 2+ε/2.

Now multiply by F ′ and integrate from 0 to t to find

(F ′)3 ≥
[
F ′(0)

]3
+ 3F ′(0)F ′′(0)F + ζF 3+ε/2 , (6.158)

where the constant ζ is given by

ζ =
12k

[(4 + ε)(6 + ε)]
.

One now starts with inequality (6.158) and argues that u exists for all time.
Separate variables and integrate to find

t ≤
∫ F (t)

0

dF

(α1 + β1F + ζF 3+ε/2)1/3

≤
∫ ∞

0

dF

(α1 + β1F + ζF 3+ε/2)1/3
<∞,

(6.159)

where we have put α1 =
[
F ′(0)

]3 and β1 = 3F ′(0)F ′′(0). Inequality (6.159)
leads to a contradiction and so the solution cannot exist in a classical sense
for all time. One sees that an upper bound for the interval of existence is
given by

Tu =
∫ ∞

0

dF

(α1 + β1F + ζF 3+ε/2)1/3
.

Thus, nonexistence of a solution to P has been established provided
‖u0‖2 > 0 and

2(u0, a0) ≥ ‖v0‖2 +
1
α
‖u0‖2 +

β

α
‖∇u0‖2.
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As noted in (Quintanilla and Straughan, 2002), the expected behaviour is
blow-up in a finite time T with T ≤ Tu.

6.8 Qualitative results for fluids

As we observed in chapter 3, section 3.1 a viscous fluid model incorporat-
ing the Maxwell-Cattaneo law employing Fox’s derivative for the heat flux
was presented by (Straughan and Franchi, 1984). Their equations may be
written

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
+ biT + νΔvi,

∂vi

∂xi
= 0,

c
(∂T
∂t

+ vi
∂T

∂xi

)
= − ∂qi

∂xi
,

τ
(∂qi
∂t

+ vj
∂qi
∂xj

− εijkωjqk

)
= −qi − κT,i ,

(6.160)

where without loss of generality for the class of problems of concern here we
have taken the density to be 1, and bi is a body force vector (in (Straughan
and Franchi, 1984) bi = αgki, α, g being thermal expansion coefficient and
gravity, and k = (0, 0, 1)). Here vi, T and p are the velocity, temperature
and pressure, c, ν, τ are positive constants, and ω = curlv/2.

If one works with the generalized Maxwell-Cattaneo equations, or equiv-
alently the Guyer-Krumhansl equations, again employing Fox’s derivative,
then the corresponding system of equations is, cf. (Franchi and Straughan,
1994b) and section 3.1, specifically section 3.1.3,

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
+ biT + νΔvi,

∂vi

∂xi
= 0,

c
(∂T
∂t

+ vi
∂T

∂xi

)
= − ∂qi

∂xi
,

τ
(∂qi
∂t

+ vj
∂qi
∂xj

− εijkωjqk

)
= −qi − κT,i + τ̃ (Δqi + 2qk,ki) ,

(6.161)

where c and τ̃ are further positive constants.
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6.8.1 Decay for a solution to (6.160)?

Suppose we consider the system of equations (6.160) defined on a bounded
domain Ω ⊂ R

3 with on the boundary Γ,

vi = 0, T = TB, εijknjqk = 0 on Γ, (6.162)

for TB > 0 a constant. We may replace T in (6.160)3 and (6.160)4 by
θ = T − TB and then absorb TB into the pressure in equation (6.160)1.
This allows us to replace equations (6.160) by the system

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
+ biθ + νΔvi,

∂vi

∂xi
= 0,

c
(∂θ
∂t

+ vi
∂θ

∂xi

)
= − ∂qi

∂xi
,

τ
(∂qi
∂t

+ vj
∂qi
∂xj

− εijkωjqk

)
= −qi − κθ,i .

(6.163)

These equations hold in Ω × {t > 0} and on the boundary Γ we now have

vi = 0, θ = 0, εijknjqk = 0 on Γ. (6.164)

Then, multiplying each of (6.163)1, (6.163)3, (6.163)4 in turn by vi, θ
and qi and integrating over Ω we find

d

dt

1
2
‖v‖2 = (θ, vibi) − ν‖∇v‖2, (6.165)

d

dt

c

2
‖θ‖2 = −(qi,i, θ), (6.166)

d

dt

τ

2
‖q‖2 = −‖q‖2 − κ(θ,i, qi). (6.167)

Thus, from (6.166) and (6.167), upon use of the boundary conditions and
an integration by parts we see that

d

dt

cκ

2
‖θ‖2 +

τ

2
‖q‖2 = −‖q‖2. (6.168)

Hence,

cκ

2
‖θ(t)‖2 +

τ

2
‖q(t)‖2 +

∫ t

0

‖q(s)‖2ds =
cκ

2
‖θ(0)‖2 +

τ

2
‖q(0)‖2. (6.169)

From this we may deduce ‖q(t)‖2 ∈ L1(0,∞) which suggests possible decay
of qi although it does not prove it. We also deduce ‖θ(t)‖2 is bounded for
all t. From equation (6.165) we may use Poincaré’s inequality and the
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arithmetic-geometric mean inequality to find

d

dt
‖v‖2 + λ1ν‖v‖2 ≤ ‖θ‖2

μ
,

where μ = λ1ν/|b|2. Given ‖θ(t)‖2 is bounded, from this inequality we
may easily deduce ‖v(t)‖ is bounded. However, I have not seen how to
show ‖v(t)‖, ‖q(t)‖ and ‖θ(t)‖ decay, if they do. The nonlinear system
(6.160) appears difficult to treat.

If instead we work with the equivalent of (6.161) then instead of system
(6.163) we have

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
+ biθ + νΔvi,

∂vi

∂xi
= 0,

c
(∂θ
∂t

+ vi
∂θ

∂xi

)
= − ∂qi

∂xi
,

τ
(∂qi
∂t

+ vj
∂qi
∂xj

− εijkωjqk

)
= −qi − κθ,i + τ̃Δqi + 2τ̃ qk,ki .

(6.170)

The boundary equations are again (6.164).
To derive the equivalent of equation (6.167) we write the last two terms

in (6.170)4 as

3τ̃ qk,ik + τ̃(qi,j − qj,i),j .

Then, upon multiplication of (6.170)4 by qi and integration over Ω we find

τ

2
d

dt
‖q‖2 = − ‖q‖2 + κ(θ, qi,i) + τ̃

∮
Γ

njqi(qi,j − qj,i)dS

+ 3τ̃
∮

Γ

niqiqk,kdS − τ̃

∫
Ω

qi,j(qi,j − qj,i)dx

− 3τ̃
∫

Ω

(qi,i)2dx.

(6.171)

Since εijknjqk = 0 on Γ we have
∮
Γ
njqi(qi,j − qj,i)dS = 0. Also, using

(6.170)3, ∮
Γ

niqiqk,kdS = −c
∮

Γ

niqiθ,tdS − c

∮
Γ

niqivrθ,rdS = 0

since θ = 0 and vi = 0 on Γ. Whence, (6.171) leads to

τ

2
d

dt
‖q‖2 = − ‖q‖2 + κ(θ, qi,i)

− τ̃

∫
Ω

qi,j(qi,j − qj,i)dx− 3τ̃‖qi,i‖2.
(6.172)
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Equation (6.166) still holds here and so we may derive the following
equation, using (6.172)

d

dt

(cκ
2
‖θ‖2 +

τ

2
‖q‖2

)
= − ‖q‖2 − τ̃

∫
Ω

qi,j(qi,j − qj,i)dx

− 3τ̃‖qi,i‖2.

(6.173)

From this equation we deduce that ‖q(t)‖2, ‖q[i,j]‖2 and ‖qi,i‖2 are L1(0,∞)
where q[i,j] = (qi,j − qj,i)/2. Furthermore,

cκ

2
‖θ(t)‖2 +

τ

2
‖q(t)‖2 ≤ cκ

2
‖θ(0)‖2 +

τ

2
‖q(0)‖2 . (6.174)

Use the arithmetic-geometric mean inequality on the (θ, qi,i) term in
(6.171) and then for a constant β > 0 we find

τ

2
d

dt
‖q‖2 ≤− ‖q‖2 +

κ

2β
‖θ‖2 +

(κβ
2

− 3τ̃
)
‖qi,i‖2

− τ̃

∫
Ω

qi,j(qi,j − qj,i)dx.
(6.175)

Pick β ≥ 6τ̃/κ and from (6.175) we see that

d

dt
‖q‖2 ≤ κ

τβ
‖θ(t)‖2 ≤ κ

τβ
‖θ(0)‖2 +

1
cβ

‖q(0)‖2 <∞. (6.176)

Thus we have shown ‖q(t)‖2 ∈ L1(0,∞) and d‖q‖2/dt ≤ K < ∞ and so
‖q(t)‖ → 0 as t→ ∞.

For the GMC fluid system of equations with Fox’s derivative, we have
decay of qi but we only have bounds for vi and θ. It is easy to derive decay,
continuous dependence and uniqueness results for the linearized systems
(3.11), (3.12), (3.15), but such results for the fully nonlinear systems (6.160)
or (6.161) would appear substantially more difficult.

For the Cattaneo - Christov equations given in section 3.1.2, or the Guyer
- Krumhansl extension given in section 3.1.4, we are unaware of general
qualitative results on the complete nonlinear systems.

6.9 Exercises

Exercise 6.9.1 (See (Quintanilla, 2002d), and also (Ames and Straughan,
1997), p. 26, and (Russo, 1987).) Consider the following boundary - initial
value problem for equation (1.127) for type III heat flow in a rigid solid,

∂2u

∂t2
+ k1

∂u

∂t
= k2Δu+ k3Δ

∂u

∂t
, t > 0,x ∈ Ω

u(x, t) = g(x, t), t > 0,x ∈ Γ

u(x, 0) = h(x),
∂u

∂t
(x, 0) = j(x), x ∈ Ω,

(6.177)
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where Ω is a domain exterior to a bounded domain Ω0 ⊂ R
3, and Γ is the

boundary of Ω0.
By using a weighted energy method with a suitable weight show the

solution u is unique when u satisfies the following growth conditions

|ut|, |u,i|, |u,it| ≤ K exp(λr2),

as r → ∞. (Note, this result is optimal in the sense that the growth
condition cannot be increased to exp(λr2+ε).)

Exercise 6.9.2 Let Ω be a bounded domain with boundary Γ smooth
enough to apply the divergence theorem. Consider the Green - Lindsay lin-
earized equations of thermoelasticity, equations (2.57), with bi = 0 and
redefine the thermal conductivity term kij to be kij/ρ. (If ρ = ρ(x) then the
method outlined below needs to be trivially modified.) Then the displacement
ui and temperature θ satisfy the equations

ρüi = ρFi + (cijkhuk,h),j +
[
aij(θ + αθ̇)

]
,j
,

hθ̈ + dθ̇ − aij u̇i,j = R+ (kijθ,j),i

(6.178)

where R = r/θ0. Consider equations (6.178) defined on Ω×{t > 0} together
with the boundary conditions

ui(x, t) = gi(x, t), θ(x, t) = θΓ(x, t), x ∈ Γ, t > 0, (6.179)

and the initial data

ui(x, 0) = hi(x), u̇i(x, 0) = ji(x), x ∈ Ω,

θ(x, 0) = θ0(x), θ̇(x, 0) = θ1(x), x ∈ Ω.
(6.180)

Let the boundary - initial value problem comprised of equations (6.178)
- (6.180) be denoted by P. The symmetries on the coefficients are as in
(2.58).

Prove uniqueness of a solution to P with the assumptions

αd− h ≥ 0, α > 0, h > 0, kijξiξj ≥ 0, cijkhξijξkh ≥ 0,

for all ξi, ξij , where the coefficients may depend on x.
Hint. Let (u1

i , θ
1) and (u2

i , θ
2) be solutions to P for the same functions Fi

and R, and for the same boundary data, gi, θΓ, and initial data, hi, ji, θ0
and θ1. Show the difference solution ui = u1

i − u2
i , θ = θ1 − θ2, satisfies the

boundary - initial value problem,

ρüi = (cijkhuk,h),j +
[
aij(θ + αθ̇)

]
,j
,

hθ̈ + dθ̇ − aij u̇i,j = (kijθ,j),i , in Ω × {t > 0},
ui(x, t) = 0, θ(x, t) = 0, x ∈ Γ, t > 0,
ui(x, 0) = 0, u̇i(x, 0) = 0, x ∈ Ω,

θ(x, 0) = 0, θ̇(x, 0) = 0, x ∈ Ω.

(6.181)
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Multiply equation (6.181)1 by ui and integrate over Ω, and multiply equation
(6.181)2 by θ + αθ̇ and integrate over Ω. Show that the energy E(t) is
conserved, i.e.

E(t) = E(0) ∀t > 0,

where

E(t) =
1
2

∫
Ω

αh
(
θ̇ +

1
α
θ
)2

dx+
1
2

∫
Ω

(
d− h

α

)
θ2dx

+
1
2

∫
Ω

αkijθ,iθ,jdx+
1
2

∫
Ω

ρu̇iu̇idx

+
1
2

∫
Ω

cijkhui,juk,hdx+
∫ t

0

∫
Ω

kijθ,iθ,j dx ds

+
∫ t

0

∫
Ω

(dα − h)θ̇2 dx ds.

Hence, deduce that a solution to P is unique.

Exercise 6.9.3 (See (Straughan, 1974)). Consider the uniqueness ques-
tion for the Green - Lindsay thermoelasticity problem as posed in exercise
6.9.2, but when the definiteness condition on the cijkh is removed. Instead
assume

αd− h > 0, α > 0, h > 0, kijξiξj ≥ k0ξiξi ,

for all ξi, for a constant k0 > 0 and cijkh = ckhij (no definiteness).
Show that the function

F (t) =
∫

Ω

ρuiui dx+ α

∫
Ω

kijη,iη,j dx

+
∫ t

0

∫
Ω

(αmθ2 + kijη,iη,j) dx ds
(6.182)

is a logarithmically convex function of t, where

η(x, t) =
∫ t

0

θ(x, s)ds, m = d− h

α
.

Hence, deduce the solution to P is unique, where P is the boundary - initial
value problem (6.178) - (6.180) but now with the restrictions of this question
as stated above
Hint. Let φ = θ + αθ̇ and show that equation (6.181)2 is equivalent to

h

α
φ̇+mθ̇ − aij u̇i,j = (kijθ,j),i . (6.183)

Use the initial data and integrate equation (6.183) in time to show

h

α
φ+mθ − aijui,j = (kijη,j),i . (6.184)
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Multiply (6.181)1 by ui and integrate over Ω. Multiply (6.184) by φ and
integrate over Ω. Add the resulting equations and expand to see that∫

Ω

ρuiüi dx+
∫

Ω

kijη,jθ,i dx

+ α

∫
Ω

kijη,iη̈,j dx+
∫

Ω

mαθθ̇ dx

= −
∫

Ω

mθ2dx−
∫

Ω

h

α
φ2dx−

∫
Ω

cijkhui,juk,hdx.

(6.185)

Calculate F ′′(t) and use (6.185) to see that

F ′′ =2
∫

Ω

ρu̇iu̇i dx+ 2α
∫

Ω

kijθ,jθ,i dx

− 2
∫

Ω

mθ2dx− 2
∫

Ω

cijkhui,juk,hdx − 2
∫

Ω

h

α
φ2 dx.

(6.186)

Next, multiply equation (6.181)1 by u̇i and integrate over Ω. Add this to
equation (6.183) multiplied by φ and integrated over Ω. Integrate the result
from 0 to t in time and show that

4E(t) + 4
∫ t

0

∫
Ω

kijθ,iθ,j dx ds+ 4
∫ t

0

∫
Ω

mαθ̇2 dx ds = 4E(0), (6.187)

where E(t) is the energy function,

E(t) =
1
2

[∫
Ω

h

α
φ2dx+

∫
Ω

αkijθ,iθ,jdx+
∫

Ω

mθ2dx

+
∫

Ω

cijkhui,juk,hdx+
∫

Ω

ρu̇iu̇idx

]
.

Next, use the initial data to see E(0) = 0 and then substitute in (6.186)
using (6.187) to derive

F ′′ =4
∫

Ω

ρu̇iu̇idx + 4α
∫

Ω

kijθ,iθ,jdx

+ 4
∫ t

0

∫
Ω

kijθ,iθ,j dx ds+ 4
∫ t

0

∫
Ω

mαθ̇2 dx ds.

(6.188)

Show by differentiating (6.182) that

F ′ =2
∫

Ω

ρuiu̇idx+ 2α
∫

Ω

kijη,iθ,jdx

+
∫

Ω

mαθ2dx +
∫

Ω

kijη,iη,jdx

= 2
∫

Ω

ρuiu̇idx+ 2α
∫

Ω

kijη,iθ,jdx

+ 2
∫ t

0

∫
Ω

mαθθ̇ dx ds+ 2
∫ t

0

∫
Ω

kijθ,iη,j dx ds. (6.189)
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Now, form the expression FF ′′−(F ′)2 using (6.182), (6.188) and (6.189)
and show

FF ′′ − (F ′)2 ≥ 0 (6.190)

by means of the Cauchy-Schwarz inequality.
Deduce that the solution to P is unique from the inequality (6.190).

Exercise 6.9.4 Let Ω be a domain exterior to a bounded domain Ω0 ⊂ R
3

with inner boundary Γ. Suppose (ui, θ) satisfy the Green-Lindsay equations
of thermoelasticity as in (6.178) - (6.180) but where Ω is now the exterior
region.

Suppose

αd− h > 0, α > 0, h > 0, ρ > 0, kijξiξj ≥ k0ξiξi ,

cijkhξijξkh ≥ a0ξijξkh ,

for positive constants k0, a0. Let the corresponding boundary - initial value
problem be denoted by P. Show that a solution to P is unique employing
the Graffi method of section 6.5.1 provided

|uk,h|, |u̇i|, |θ|, |θ̇|, |θ,i| ≤ Keλr

for some K,λ > 0.
Hint. Multiply equation (6.181) by u̇i and integrate over ΩR and multiply
equation (6.181) by φ = θ + αθ̇ and integrate over ΩR. Show that

d

dt

[
1
2

∫
ΩR

ρu̇iu̇i dx +
1
2

∫
ΩR

cijkhui,juk,h dx+
1
2

∫
ΩR

αkijθ,iθ,j dx

+
1
2

∫
ΩR

h

α
φ2 dx+

1
2

∫
ΩR

(
d− h

α

)
θ2 dx

]

+
∫

ΩR

kijθ,iθ,j dx+
∫

ΩR

(dα− h)θ̇2 dx

=
∫

ΓR

cijkhuk,hu̇inj dS +
∫

ΓR

aijφu̇inj dS +
∫

ΓR

kijθ,jφni dS

≤a1

∫
ΓR

cijkhui,juk,h dS + a2

∫
ΓR

ρu̇iu̇i dS + a3

∫
ΓR

θ2 dS

+ a4

∫
ΓR

θ̇2 dS + a5

∫
ΓR

kijθ,iθ,j dS

for suitable constants a1, . . . , a5. Integrate this inequality twice over a fixed
time interval [0, �] and select a suitable function F (R) to use the Graffi
method with.

Exercise 6.9.5 Let Ω be a domain exterior to a bounded domain Ω0 ⊂ R
3

with inner boundary Γ. Suppose (ui, θ) satisfy the Green-Lindsay equations
of thermoelasticity as in (6.178) - (6.180) but where Ω is now the exterior
region.
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Suppose

αd− h > 0, α > 0, h > 0, ρ > 0, kijξiξj ≥ k0ξiξi ,

cijkhξijξkh ≥ a0ξijξkh .

Let the corresponding boundary - initial value problem be denoted by P.
Show that a solution to P is unique employing the weighted energy method
of section 6.5.2 provided

|uk,h|, |u̇i|, |θ|, |θ̇|, |θ,i| ≤ Keλr

for some K,λ > 0.

Exercise 6.9.6 Let Ω be the domain exterior to a bounded domain Ω0 ⊂
R

3. Let Γ be the inner boundary of Ω. Use the Graffi method of section 6.5.1
to show that a solution to the linear equations of type III thermoelasticity,
equations (2.83), is unique provided

ρ > 0, c > 0, kijξiξj ≥ k0ξiξi ,

cijkhξijξkh ≥ c0ξijξkh , bijξiξj ≥ b0ξiξi

and

|uk,h|, |u̇i|, |θ|, |η,i|, |θ,i| ≤ keλr,

as r → ∞, for k, λ > 0, where η =
∫ t

0
θ ds.

Hint. Let the boundary - initial value problem for (2.83) on the exterior
domain Ω be denoted by P. Suppose (u1

i , θ
1), (u2

i , θ
2) are two solutions to

P for the same boundary and initial data. Define the difference solution
ui = u1

i − u2
i , θ − θ1 − θ2 and find the boundary - initial value problem for

this solution. Define η(x, t) =
∫ t

0 θ(x, s)ds for the difference solution and
show from (2.83) that η satisfies the equation

cη̈ = −aij u̇i,j + (kijη,j),i + (bijθ,j),i .

Show that

d

dt

[
1
2

∫
ΩR

ρu̇iu̇i dx+
1
2

∫
ΩR

cijkhui,juk,h dx

]

=
∫

ΩR

aijθu̇i,j dx−
∫

ΓR

aijθu̇inj dS +
∫

ΓR

cijkhuk,hu̇inj dS

and

d

dt

[
1
2

∫
ΩR

cθ2 dx+
1
2

∫
ΩR

kijη,iη,j dx

]
+
∫

ΩR

bijθ,iθ,j dx

= −
∫

ΩR

aijθu̇i,j dx+
∫

ΓR

kijη,jθni dS +
∫

ΓR

bijθ,jθni dS.

Then proceed from these two equations.
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Exercise 6.9.7 Let Ω be the domain exterior to a bounded domain Ω0 ⊂
R

3. Let Γ be the inner boundary of Ω. Use the weighted energy method
of section 6.5.2 to show that a solution to the linear equations of type III
thermoelasticity, equations (2.83), is unique provided

ρ > 0, c > 0, kijξiξj ≥ k0ξiξi ,

cijkhξijξkh ≥ c0ξijξkh , bijξiξj ≥ b0ξiξi

and

|uk,h|, |u̇i|, |θ|, |η,i|, |θ,i| ≤ keλr,

as r → ∞, for k, λ > 0, where η =
∫ t

0 θ ds.

Exercise 6.9.8 (See (Ciarletta and Straughan, 2010)). For a compressible
fluid the Cattaneo - Christov equations, see section 3.1.2, are

ρcp

(∂T
∂t

+ vi
∂T

∂xi

)
= −∂Qi

∂xi
,

τ(
∂Qi

∂t
+ vj

∂Qi

∂xj
−Qj

∂vi

∂xj
+
∂vm

∂xm
Qi

)
+Qi = −κ ∂T

∂xi
.

(6.191)

Suppose equations (6.191) are defined on a bounded domain Ω for t >
0, and the velocity v is given. Suppose the temperature T is prescribed
on the boundary Γ of Ω and T and Qi are prescribed at t = 0. Suppose
further vini = 0 on Γ × {t > 0}. Consider the difference solution θ =
T 1−T 2, qi = Q1

i −Q2
i , where (T 1, Q1

i ) and (T 2, Q2
i ) are solutions to (6.191)

for the same boundary and initial data. By deriving a differential inequality
for the function

1
2
‖θ‖2 +

τ

2
‖q‖2 ,

‖ · ‖ being the norm on L2(Ω), show that the solution is unique if |vi,i| and
|vi,j | are bounded in Ω̄ × [0, T ], for some number T <∞.



7
Spatial decay

The topic of how a solution to a problem in continuum mechanics decays
in space, including those equations which involve second sound, has been
one of immense interest over the last few years. The first articles to deal
with spatial decay in thermoelasticity would appear to be those of (Chirita,
1995a; Chirita, 1995b), (Chirita, 1997) and (Horgan and Payne, 1997). It
would appear that the first articles dealing with spatial decay in second
sound theories were those of (Quintanilla, 1996), who derived estimates for
a solution to a damped wave equation, (Payne and Song, 1996), who es-
tablished spatial decay bounds for a generalized Maxwell-Cattaneo theory
(Guyer-Krumhansl model), and (Chirita and Quintanilla, 1996), who ob-
tained spatial decay for a suitable functional measure of a solution to the
Green-Lindsay equations of thermoelasticity.

The area of spatial decay estimates is still at the forefront of research
in elasticity, thermoelasticity, and thermoelastic theories admitting heat
waves. In particular, with the advent of auxetic materials where Poisson’s
ratio may be negative there has been a surge of interest in spatial de-
cay in elasticity requiring only strong ellipticity of the elastic coefficients
as opposed to requiring positive definiteness. This aspect is discussed in
section 7.5.

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 202
DOI 10.1007/978-1-4614-0493-4 7, c© Springer Science+Business Media, LLC 2011
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Figure 7.1. Spatial cylinder domain

7.1 Generalized Maxwell - Cattaneo theory

Spatial decay estimates for the generalized Maxwell - Cattaneo equations,
see section 1.3, have been provided by (Payne and Song, 1996; Payne and
Song, 2004a; Payne and Song, 2005) and by (Lin and Payne, 2004a). Here
we review the results of (Payne and Song, 2005).

The basic equations are the GMC equations (or Guyer-Krumhansl
equations) given in section 1.3, namely

c
∂T

∂t
= − ∂qi

∂xi
,

τ
∂qi
∂t

= −qi − κ
∂T

∂xi
+ μΔqi + ν

∂2qj
∂xi∂xj

,

(7.1)

where T, qi are temperature and heat flux, c, τ, κ, μ and ν are positive
constants.

Let D be a domain in R
2, with boundary ∂D, and then we consider the

semi-infinite cylinder R ⊂ R
3 which is formed by the domain D running

from z = 0 to z = ∞. The domain D×{z} we denote by Dz and Rz is the
domain D × (z,∞), as shown in figure 7.1

We denote the boundary of R by ∂R. Observe that ∂R is composed of
D(z = 0) together with the curved boundary of the cylinder which we
denote by ∂Rc, and the limit boundary of D as z → ∞.

The initial conditions of (Payne and Song, 2005) are

T (x, 0) = 0, qi(x, 0) = 0, in R× {t = 0}, (7.2)

whereas the boundary conditions may be of two types. Either

T (x, t) = 0, εijkqjnk = 0, on ∂Rc × {t > 0}, (7.3)
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together with

T (x1, x2, 0, t) = g(x1, x2, t), on D × {t > 0},
qα(x1, x2, 0, t) = fα(x1, x2, t), on D × {t > 0},

(7.4)

where ni is the unit outward normal to ∂Rc, α = 1, 2, and g and fα are
prescribed functions. Alternatively,

qi(x, t) = 0, on ∂Rc × {t > 0}, (7.5)

together with

qi(x1, x2, 0, t) = fi(x1, x2, t), on D × {t > 0}, (7.6)

where fi, i = 1, 2, 3, are given functions.

7.1.1 Temperature spatial decay

To establish a spatial decay estimate for the temperature under the bound-
ary conditions (7.3) and (7.4) (Payne and Song, 2005) remove qi from (7.1)
to find that T satisfies the equation

( τ

μ+ ν

)∂2T

∂t2
+

1
(μ+ ν)

∂T

∂t
= rΔT + Δ

∂T

∂t
, in R× {t > 0},

where r = κ/[c(μ+ν)]. They make use of a solution measure over the cross
section Dz, namely,

E(z, t) =
∫ t

0

∫
Dz

(Ts + rT )2dAds, (7.7)

where dA denotes the integration element on Dz. After some calculation
they show

∂2E

∂z2
−
( τ

μ+ ν

) ∂E
∂t

≥ 2λ1E + 2a
∫ t

0

∫
Dz

Ts(Ts + rT )dAds, (7.8)

where λ1 is the first eigenvalue in the problem

∂2w

∂xα∂xα
+ λw = 0, xα ∈ D, w = 0 on ∂D,

and a = (1− rτ)/(μ+ ν). Regardless of the sign of a, they then show that
one may deduce from (7.8),

∂2E

∂z2
−
( τ

μ+ ν

) ∂E
∂t

≥ 2λ̃E, (7.9)

where λ̃ = λ1 for a ≥ 0 and λ̃ = λ1 − a when a < 0.
(Payne and Song, 2005) put β = 2(μ+ν)λ̃/τ and show that the function

P = Eeβt satisfies from (7.9),

∂2P

∂z2
− k

∂P

∂t
≥ 0, (7.10)
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for k = τ/(μ + ν). They then compare P to the following solution χ(z, t)
which solves the one-dimensional heat equation,

χ(z, t) =
( k

t+ t0

)
exp
(

−kz2

4(t+ t0)

)
. (7.11)

ProvidedM and t0 are constants selected so that P (0, t) ≤Mχ(0, t) (Payne
and Song, 2005) show that

P (z, t) ≤Mχ(z, t), z ≥ 0, t > 0.

From this estimate they are able to deduce that

E(z, t) ≤ E(0, t) exp
[

−kz2

4(t+ t0)

]
, (7.12)

where E(0, t) is the data term

E(0, t) =
∫ t

0

ds

∫
D

(gs + rg)2dA.

Inequality (7.12) is the spatial decay estimate for the temperature T .

7.1.2 Spatial decay of heat flux

To derive an estimate for the spatial decay of the heat flux under the
boundary conditions (7.3) and (7.4), (Payne and Song, 2005) employ the
weighted volume measure

F (z, t) =
∫ t

0

ds

∫
Rz

(ξ − z)2qiqidAdξ . (7.13)

After much calculation (Payne and Song, 2005) show that for the constant
Γ = 4c2μ(2 + ν/μ)2, F satisfies the inequality

∂2F

∂z2
− k

∂F

∂t
≥ −ΓE(0, t)

∫ ∞

z

exp
[ −kξ2
4(t+ t0)

]
dξ . (7.14)

From this inequality (Payne and Song, 2005) use a comparison argument
to show that

F (z, t) ≤
[
F (0, t) + 2ΓE(0, t)t

(t+ t0)
k2z

]
exp
( −kz2

4(t+ t0)

)
. (7.15)

Inequality (7.15) is not an a priori spatial decay estimate becuase F (0, t)
is not in terms of boundary data on the cylinder end D. In fact, bounding
F (0, t) in terms of known boundary data is not easy. Nevertheless (Payne
and Song, 2005) show that

F (0, t) ≤ K
√
π

√
t+ t0
k

E(0, t) + 4
√

2μG(0, t) , (7.16)
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where K = 8c2[(μ + ν)2 + (2μ + ν)2] and G(0, t) is an explicit function
involving the data terms fα, g, ∂g/∂xα and ∂g/∂t.

When estimate (7.16) is employed in (7.15) this yields an a priori spatial
decay estimate for a functional of the heat flux qi.

7.1.3 Spatial decay with heat flux prescribed

(Payne and Song, 2005) also derive spatial decay estimates for both the
temperature field T and the heat flux qi when the heat flux boundary
conditions (7.5) and (7.6) are considered. These estimates are somewhat
complicated and we refer to the original article for complete details.
Nevertheless, we point out that the solution measures involved are

φ(z, t) =
∫ t

0

(t− s)ds
∫

Rz

(ξ − z)4
(∂T
∂s

)2

dAdξ

and

ψ(z, t) =
∫ t

0

(t− s)ds
∫

Rz

(ξ − z)2qiqi dAdξ .

7.2 MC theory backward in time

The Maxwell - Cattaneo equations involve temperature T and heat flux
qi, see section 1.2. If one eliminates the heat flux then the temperature
satisfies a damped wave equation of form

τ
∂2T

∂t2
+
∂T

∂t
= ΔT. (7.17)

Spatial decay results for T were derived by (Quintanilla, 1996).
We here recollect some interesting results of (Ames and Payne, 1998)

who dealt with the equation (7.17), but backward in time. The backward
in time problem may be regarded as a forward in time problem by reversing
time and then we study the equation

τ
∂2T

∂t2
− ∂T

∂t
= ΔT. (7.18)

This equation is here studied on the cylinder R × {t > 0}, the region
defined in section 7.1. For τ very small, equation (7.18) may be regarded
as a regularization to the backward heat equation Tt + ΔT = 0 which is
well known to yield an improperly posed problem.

(Ames and Payne, 1998) actually deal with (7.18) in a cylinder R in
R

N . Here we restrict attention to R
3. Thus, they consider equation (7.18)
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defined on the domain R× {t > 0} with the boundary and initial data

T (x, t) = g1(x1, x2, x3, t) on ∂Rc × {t > 0},
T (x1, x2, 0, t) = g0(x1, x2, t) on D × {t > 0},
T (x, 0) = f0(x), Tt(x, 0) = h0(x),

(7.19)

where x = (x1, x2, x3) = (x1, x2, z).
In fact, (Ames and Payne, 1998) consider two solutions T1 and T2 which

satisfy (7.18) and (7.19) for the same functions g1, f0 and h0, but allow
different g0. Defining the function

w = T1 − T2,

this leads to w satisfying the equation and conditions

Δw +
∂w

∂t
− τ

∂2w

∂t2
= 0, in R× {t > 0},

w = 0, on ∂Rc × {t > 0},
w(x1, x2, 0, t) = g(x1, x2, t), on D × {t > 0},
w(x, 0) = 0, wt(x, 0) = 0.

(7.20)

The analysis of (Ames and Payne, 1998) is interesting and begins by
showing the function Φ(z, t) given by

Φ =
∫ t

0

e−γη/τ dη

∫
Dz

w,zw,ηdA

is non-positive for γ > 2. To do this they show Φ satisfies the following
differential inequalities,

Φ,z ∓ τ1/2Φ,t ≥ ±
√
γ(γ − 2)

τ
Φ, (7.21)

where we refer to the upper (lower) signs as (7.21)1 and (7.21)2. They first
integrate (7.21)1 along characteristics of form

t+
√
τ z = constant,

to conclude Φ ≤ 0. They then integrate (7.21)2 along characteristics of
form

t−
√
τ z = constant,

to find that

−Φ(z, t) ≤ −Φ(0, t0) exp
{
−
√
γ(γ − 2)

τ
z
}
, (7.22)

for a suitable number t0.
Inequality (7.22) is a spatial decay estimate. However, it remains to be

shown that Φ(0, t0) can be bounded in terms of the data function g. In
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fact, this is tricky but (Ames and Payne, 1998) show that one may derive
an inequality of form

−Φ(0, t) ≤2
τ

∫
R

e−γt/τv2
,s dx +

2τ
γ

∫ t

0

e−γs/τ ds

∫
R

v,isv,isdx

+
2

(γ − 2)

∫ t

0

e−γs/τ ds

∫
R

[
(γ − 1)v,η − τv,ηη

]2
dx.

(7.23)

The function v may be selected, one such choice being

v(x1, x2, x3, t) = g(x1, x2, t)e−δz

for δ > 0 a constant to be chosen optimally.
In addition to the spatial decay bound (7.22) combined with (7.23),

(Ames and Payne, 1998) also derive an either/or Saint-Venant result for a
solution w and also relax the assumption of w(x, 0) = 0, wt(x, 0) = 0, to
allow non-zero initial data values.

7.3 Green-Lindsay thermoelasticity

The linear equations according to the theory of thermoelasticity derived
by (Green and Lindsay, 1972), see section 2.2, may be written

ρüi = (cijkhuk,h),j + [aij(θ + αθ̇)],j ,

hθ̈ + dθ̇ − aij u̇i,j − biθ̇,i − (biθ̇),i = (kijθ,j),i ,
(7.24)

where ui and θ are the displacement and temperature, respectively. We
follow the analysis of (Payne and Song, 2002) who adopt the conditions
given below on the coefficients. The symmetry conditions,

cijkh = ckhij , aij = aji , kij = kji ,

and for all arbitrary tensors ξij and vectors ξi, the bounds

0 < c0ξijξij ≤ cijkhξijξkh ≤ c1ξijξij ,

0 < k0ξiξi ≤ kijξiξj ,

and

0 < k33(x) ≤ k1, 0 < ρ0 ≤ ρ(x), 0 ≤ h0 ≤ h(x),
0 < α0 ≤ α(x) ≤ α1, −d0 ≤ d(x),

for all x ∈ R, R being a domain as defined in section 7.1, with |aij |, |aij,k|,
|∇α| and |b| being bounded.

The domain R is as in section 7.1 with the notation there in use here.
In fact, a Saint-Venant type of result for (7.24) was given by (Chirita and
Quintanilla, 1996). These writers chose the body to have a centre of sym-
metry and so bi = 0, and their domain R was bounded, but in some ways
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more general. We here report on the results derived by (Payne and Song,
2002) on solution bounds. In fact, the results of (Payne and Song, 2002) de-
pend strongly on the boundary conditions imposed on the lateral boundary
∂Rc.

7.3.1 Dirichlet boundary conditions

The first conditions of (Payne and Song, 2002) involve initial conditions,

ui(x, 0) = 0, u̇i(x, 0) = 0, θ(x, 0) = 0, θ̇(x, 0) = 0, x ∈ R, (7.25)

together with the boundary conditions on the lateral wall of the cylinder
∂Rc,

ui = 0, θ = 0, on ∂Rc × {t > 0}, (7.26)

and the conditions on the end of the cylinder, D,

ui(x1, x2, 0, t) = fi(x1, x2, t), θ(x1, x2, 0, t) = g(x1, x2, t), (7.27)

with fi and g being prescribed functions. For each t, the functions ui, θ
and their first derivatives are assumed to decay uniformly in x1 and x2 as
x3 = z → ∞.

The solution measure of (Payne and Song, 2002) under the above initial
and boundary conditions is of form

E(z, t) =
∫ ∞

z

∫
Dξ

[
ρu̇iu̇i + cijkhui,juk,h + α(hθ̇2 + kijθ,iθ,j)

]
dAdξ.

After extensive computation and clever use of inequalities (Payne and
Song, 2002) show that E satisfies the partial differential inequality, for
constants K1 and K2,

∂E

∂t
≤ −K1

∂E

∂z
+K2E. (7.28)

Inequality (7.28) is then rearranged after multiplication by e−K2t as

∂

∂t
(e−K2tE) +K1

∂

∂z
(e−K2tE) ≤ 0. (7.29)

Inequality (7.29) is next integrated along the characteristic z−z0 = K1(t−
t0), so that for z > z0 ≥ 0, t > t0 ≥ 0,

E(z, t) ≤ eK2(t−t0)E(z0, t0). (7.30)

(Payne and Song, 2002) then show that if (z, t) lie on a line z = K1t+ z0,
for z0 ≥ 0, E(z, t) ≡ 0, whereas for z < K1t inequality (7.30) is a bound
for E(z, t) provided E(z0, t0) can be estimated. The estimation of E(z0, t0)
is non-trivial. Nevertheless, (Payne and Song, 2002) are able to derive an
estimate for E(0, t) in terms of data. This bound is very technical but has
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the form

E(0, t) ≤ Q

1 − ε
eδt/(1−ε)

for Q, δ, ε completely computable in terms of data. Combined with inequal-
ity (7.30) this yields an a priori bound for the function E(z, t) of form

E(z, t) ≤ Q

1 − ε
eδt/(1−ε) eK2(t−t0) . (7.31)

7.3.2 Neumann boundary conditions

(Payne and Song, 2002) also investigate the situation where the initial
conditions are those of (7.25) but the lateral boundary conditions (7.26)
and end conditions (7.27) are replaced by conditions on the stress tensor
and heat flux vector. Then, define the stress tensor σij and heat flux vector
qi by

σij = cijkhekh + aij(θ + αθ̇),

qi = −biθ̇ − kijθ,j ,

ekh =
1
2
(uk,h + uh,k) ,

and (Payne and Song, 2002) replace the boundary conditions (7.26) and
(7.27) by

σijnj = 0, qini = 0 on ∂Rc × {t > 0}, (7.32)

and

σi3(x1, x2, 0, t) = f̃i(x1, x2, t),
q3(x1, x2, 0, t) = g̃(x1, x2, t),

(7.33)

with f̃i and g̃ being prescribed functions. The functions ui, θ and their first
derivatives are again required to decay uniformly in x1 and x2 as z → ∞.

The solution measure adopted by (Payne and Song, 2002) for Neumann
boundary conditions has form

Φ(z, t) =
∫ t

0

∫
Rz

{
ρu̇iu̇i + cijkhuk,hui,j + α(hθ̇2 + kijθ,iθ,j)

}
dAdz ds.

After much involved computation and bounding of terms (Payne and Song,
2002) show that for constants M1,M2 and M3, the function Φ satisfies the
partial differential inequality

∂Φ
∂t

≤ −M1
∂Φ
∂z

+ (M2 +M3t)Φ. (7.34)
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After multiplication by a suitable integrating factor this inequality is
rewritten as

∂

∂t

[
Φe−(M2t+M3t2/2)

]
+M1

∂

∂z

[
Φe−(M2t+M3t2/2)

]
≤ 0. (7.35)

(Payne and Song, 2002) then integrate inequality (7.35) along the char-
acteristic z − z0 = M1(t − t0) with z > z0 ≥ 0. They deduce
that

Φ(z, t) ≤ Φ(z0, t0) exp
[
M2(t− t0) +M3

( t2 − t20
2

)]

and conclude that if z ≥M1t then Φ(z, t) ≡ 0 whereas when z < M1t

Φ(z, t) ≤ Φ(0, t0) exp
[
M2(t− t0) +M3

( t2 − t20
2

)]
. (7.36)

Since Φ(0, t0) is not directly in terms of data it is necessary to bound this
term. This (Payne and Song, 2002) do by showing

∂Φ(0, t)
∂t

≤ 2Q̃(t) + 2(R5 + κt)Φ(0, t)

for data terms Q̃, R5 and κ. Upon integration this yields the bound

Φ(0, t) ≤ 2
∫ t

0

Q̃(s) exp
[
2R5(t− s) + κ(t2 − s2)

]
ds. (7.37)

Inequality (7.36) employed in conjunction with the bound (7.37) yields the
desired explicit bound for the function Φ(z, t).

7.4 Type III thermoelasticity

We turn now to estimates of spatial decay type for the Green-Naghdi
theories of thermoelasticity. For type II theory without dissipation, see sec-
tion 2.3, interesting spatial decay bounds have been developed by (Nappa,
1998).

In this section we report a spatial decay result for thermoelasticity of
type III, see section 2.4, produced by (Quintanilla, 2001a). The linear equa-
tions of type III thermoelasticity for an anisotropic body with a centre of
symmetry are, cf. section 2.4,

ρüi = (cijkhuk,h),j − (aijθ),j ,

cθ̈ = −aij üi,j + (bij θ̇,i),j + (kijθ,i),j

(7.38)

where ui, θ are displacement and temperature, respectively. The terms
cijkh, bij and kij are symmetric, cijkh being symmetric in the sense of the
major symmetry in that cijkh = ckhij .
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(Quintanilla, 2001a) considers equations (7.38) on the domainR×{t > 0}
together with the initial conditions

ui(x, 0) = 0, ui,t(x, 0) = 0, θ(x, 0) = 0, θ,t(x, 0) = 0, (7.39)

and the boundary conditions

ui = 0, θ = 0, on ∂Rc × {t > 0}. (7.40)

The notation for R,D is as in section 7.1. (Quintanilla, 2001a) introduces
two solution measures, namely E0(z, t) and E1(z, t) which are defined by

E0(z, t) = −
∫ t

0

∫
Dz

[τi1ui,ss + (k1jθ,j + b1j θ̇,j)θs]dAds (7.41)

and

E1(z, t) =
∫ ∞

z

E0(ξ, t) dξ. (7.42)

(Quintanilla, 2001a) also requires the restriction

lim
z→∞ E0(z, t) = 0.

In (7.41), τij is the function given by τij = cijkhu̇k,h − aij θ̇.
The decay estimate of (Quintanilla, 2001a) proceeds by showing that the

function E1 satisfies the differential inequality

∂E1

∂t
≤ −β1

∂E1

∂z
+ β2

∂2E1

∂z2
, (7.43)

for constants β1, β2. Then for the constant a = β1/2β2 he shows the
function F1(z, t) = e−azE1(z, t) satisfies the inequality

∂F1

∂t
+ a2β2F1 ≤ β2

∂2F1

∂z2
. (7.44)

The transformation v(z, t) = exp(a2β2t)F1(z, t) leads to v satisfying the
inequality

∂2v

∂z2
− 1
β2

∂v

∂t
≥ 0 , (7.45)

for z ≥ 0, t ≥ 0, where v(z, 0) = 0 and with v(z, t) → 0 as z → ∞. To
bound v (Quintanilla, 2001a) appeals to a comparison result comparing v
to the solution w to the differential equation

∂2w

∂z2
− 1
β2

∂w

∂t
= 0

with initial value w(z, 0) = 0 and boundary values

w(0, t) = exp(a2β2t)E1(0, t) = g(t) and w(z, t) → 0 as z → ∞.
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He gives this solution as

w(z, t) =
z√

4πβ2

∫ t

0

g(s)
(t− s)3/2

exp
[

−z2

4β2(t− s)

]
ds .

In this way (Quintanilla, 2001a) is able to bound v directly in terms of w
and he deduces that

E1(z, t) ≤
exp(az − z2/4tβ2)

z

√
4tβ2 exp(−a2β2t)

× sup
0≤s≤t

[
exp(a2β2s)E1(0, s)

]
.

(7.46)

Inequality (7.46) is the decay estimate for E1(z, t) for type III thermoelas-
ticity. An explicit bound for E1(0, s) is not given in (Quintanilla, 2001a),
although he gives references as to how such a bound may be derived.

Further spatial decay results in type III thermoelasticity may be found
in (Quintanilla, 2010b).

7.5 Strong ellipticity in thermoelasticity

In recent years the use of auxetic materials, see (Lakes, 2008), has be-
come increasingly important. These are typically foam like structures and
for linear elasticity, the elasticity tensor does not define a positive-definite
quadratic form. Very interesting stability results for an isotropic body with
only strong ellipticity are given by (Xinchun and Lakes, 2007), see also
(Lakes and Wojciechowski, 2008).

For the spatial decay problem (Chirita and Ciarletta, 2003a) have relaxed
the condition of positive-definiteness of the elasticity tensor in isotropic
thermoelasticity. (Chirita, 2007) has also derived spatial decay results in lin-
earized anisotropic thermoelastodynamics requiring only strong ellipticity.
Both of these articles were for the equations of classical thermoelasticity, i.e.
without any second sound effects. Further very interesting articles dealing
with strong ellipticity are those of (Chirita, 2006; Chirita, 2009), (Chirita
et al., 2007), (Chirita and Danescu, 2008), (Chirita and Ciarletta, 2008;
Chirita and Ciarletta, 2010b; Chirita and Ciarletta, 2010c), (Passarella
and Zampoli, 2010), (Tibullo and Vaccaro, 2008), and (Chirita and Ghiba,
2010b; Chirita and Ghiba, 2010a).

A very interesting article of (Chirita and Ciarletta, 2006) derives beauti-
ful spatial decay bounds for the equations of static linear elasticity requiring
only strong ellipticity of the elastic coefficients. We here generalize their re-
sults to include temperature, albeit in a thermostatic configuration. Since
we are in the realms of stationary thermoelasticity, our results apply, for
example, to the stationary equations of Green and Naghdi thermoelasticity
of type II or of type III.
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The notation of R,D,Dz etc., is as in section 7.1. The basic equations
of stationary thermoelasticity we consider are

cijkhuk,hj + aijθ,j = 0,
kijθ,ji = 0.

(7.47)

In these equations ui, θ are displacement and temperature and the coeffi-
cients cijkh, aij and kij are assumed constant. (It is not difficult to allow
them to depend on x1 and x2, but we follow (Chirita and Ciarletta, 2006)
and maintain them constant.) These coefficients satisfy the symmetries

cijkh = ckhij = cjikh and kij = kji . (7.48)

We suppose cijkh are strongly elliptic, i.e.

cijkhξiξkηjηh > 0, ∀ξi, ηi �= 0.

Also, aij are bounded and kij is positive-definite, so k33 > 0, and

kijξiξj ≥ k0ξiξi , k0 > 0 .

As noted by (Chirita and Ciarletta, 2006), if we consider an isotropic
body then

cijkh = λδijδkh + μ(δikδjh + δihδjk).

Positive-definiteness of the tensor cijkh requires

μ > 0, 3λ+ 2μ > 0,

whereas strong ellipticity only needs

μ > 0, λ+ 2μ > 0.

The boundary conditions considered are

ui = 0, θ = 0, on ∂Rc × {t > 0}, (7.49)
ui(x1, x2, 0) = gi(x1, x2), θ(x1, x2, 0) = θ0(x1, x2), on D. (7.50)

(Chirita and Ciarletta, 2006) note that strong ellipticity shows

ci3k3ξiξk > 0, ∀ξi �= 0,

and

ciαkβξiξkηαηβ > 0, ∀ξi, ηα �= 0.

Throughout this section a repeated Roman index sums from 1 to 3 whereas
a repeated Greek index sums from 1 to 2. Hence ξi stands for a vector in
3 - dimensions whereas ηα denotes a vector in 2 - dimensions (e.g. in a
crosss section Dz). (Chirita and Ciarletta, 2006) also denote by km, kM

and k̂m, k̂M the minimum and maximum eigenvalues of the tensors ci3k3
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and cα3β3, so that

kmξiξi ≤ ci3k3ξiξk ≤ kMξiξi , (7.51)

k̂mηαηα ≤ cα3β3ηαηβ ≤ k̂Mηαηα . (7.52)

To commence with a decay estimate we define the function F by

F (z) =
∫

Dz

k33θ
2dA. (7.53)

By differentiation

F ′′(z) = 2
∫

Dz

k33θθzzdA+ 2
∫

Dz

k33θ
2
zdA. (7.54)

Employing equation (7.47)2,

k33θzz = −k3αθ,3α − kα3θ,3α − kαβθ,αβ

and so using this in (7.54) we find

F ′′(z) =2
∫

Dz

k33θ
2
zdA− 2

∫
Dz

k3αθθ,3αdA

− 2
∫

Dz

kα3θθ,3αdA− 2
∫

Dz

kαβθθ,αβdA

=2
∫

Dz

k33θ
2
zdA+ 2

∫
Dz

k3αθ,αθ,3dA

+ 2
∫

Dz

kα3θ,αθ,3dA+ 2
∫

Dz

kαβθ,αθ,βdA,

where in deriving the last line we have integrated by parts in xα and used
the boundary conditions on ∂D (on ∂Rc). Then,

F ′′(z) =2
∫

Dz

kijθ,iθ,jdA ≥ 2k0

∫
Dz

θ,iθ,idA (7.55)

≥2k0λ1

∫
Dz

θ2dA, (7.56)

where the last line follows on using Poincaré’s inequality on Dz, i.e. for
functions φ = 0 on ∂Dz,∫

Dz

φ,αφ,αdA ≥ λ1

∫
Dz

φ2dA.

To proceed we now follow (Chirita and Ciarletta, 2006) and look at
particular classes of elastic coefficients cijkh.

7.5.1 Monoclinic materials

We now consider a class of monoclinic materials with x1Ox2 as a plane
of elastic symmetry. As (Chirita and Ciarletta, 2006) observe this includes
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various systems in elasticity more general than isotropic. The class is those
for which

cα333 = 0 and c3αβγ = 0. (7.57)

Next, introduce the (Chirita and Ciarletta, 2006) measure I(z) by

I(z) =
∫

Dz

(cα3β3uαuβ + δc3333u
2
3)dA, (7.58)

where δ > 0 is a constant at our disposal. The following analysis sim-
ply follows that of (Chirita and Ciarletta, 2006), mutatis mutandis. By
differentiation,

I ′′ =2
∫

Dz

(cα3β3uα,3uβ,3 + δc3333u
2
3,3)dA

+ 2
∫

Dz

(cα3β3uαuβ,33 + δc3333u3u
2
3,33)dA. (7.59)

Now, from equations (7.47)1,

cα3β3uβ,33 = −cαβμλuμ,λβ − cαβ33u3,3β − cα33λu3,3λ − aαjθ,j ,

and

c3333u3,33 = −c3α3βu3,βα − c3α3λuλ,3α − c33βαuβ,3α − a3jθ,j .

We now substitute the last two equations in (7.59) and then integrate by
parts in xα and rearrange the cijkh terms as in (Chirita and Ciarletta,
2006) to find

I ′′ = I1 + I2 − 2
∫

Dz

aαjθ,juαdA− 2δ
∫

Dz

a3ju3θ,jdA, (7.60)

where I1 and I2 are given by

I1 = 2
∫

Dz

(δc3333u2
3,3 + fαβu3,3uα,β + cαβλμuα,βuλ,μ)dA,

and

I2 = 2
∫

Dz

(cα3β3uα,3uβ,3 + δfαβu3,αuβ,3 + δcα3β3u3,αu3,β)dA,

where fαβ is given by

fαβ = c3α3β + cαβ33 .

The idea is now to derive conditions such that

I1 ≥ c1

∫
Dz

uα,βuα,βdA and I2 ≥ c2

∫
Dz

u3,αu3,αdA,

for positive constants c1 and c2. To do this one employs the arithmetic-
geomteric mean inequality on the middle terms of both I1 and I2. Thus,
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for positive constants μ and ε to be selected we have

2fαβu3,3uα,β ≥− μu2
3,3 −

1
μ

(fαβuα,β)2

≥− μu2
3,3 −

1
μ

(fαβfαβ)uγ,ζuγ,ζ , (7.61)

where the Cauchy-Schwarz inequality has also been used, and

2δfαβu3,αuβ,3 ≥− δ

ε
fαβuβ,3fαζuζ,3 − εδu3,αu3,α

≥− δ

ε
fμλfμλuα,3uα,3 − εδu3,αu3,α . (7.62)

We next need inequality (3.12) of (Chirita and Ciarletta, 2006), namely,
∫

Dz

cαβλμuα,βuλ,μdA ≥ γ0

∫
Dz

uα,βuα,βdA. (7.63)

Upon using (7.61) and (7.63) in the expression for I1, we obtain

I1 ≥ (2δc3333 − μ)
∫

Dz

u2
3,3dA+

(
2γ0 −

fμλfμλ

μ

)∫
Dz

uα,βuα,βdA . (7.64)

Similarly, we employ (7.62) in the expression for I2, together with inequality
(7.52), to deduce

I2 ≥
(
2k̂m−δ

ε
fμλfμλ

) ∫
Dz

uα,3uα,3dA+(2k̂m−ε)δ
∫

Dz

u3,αu3,αdA . (7.65)

The coefficients of the integrals on the right of (7.64) and (7.65) are required
to be positive. This means choosing δ so that

δ >
fμλfμλ

4c3333γ0
and δ <

4k̂2
m

fμλfμλ
.

This is possible, as (Chirita and Ciarletta, 2006) observe if we are in the
class of strongly elliptic materials such that

fαβfαβ < 4k̂m
√
γ0c3333 .

Next, we use (7.64) and (7.65) in equation (7.60) recalling the restrictions
on δ to deduce that for constants c1 > 0, c2 > 0,

I ′′ ≥c1
∫

Dz

uα,βuα,βdA+ c2

∫
Dz

u3,αu3,αdA

− 2
∫

Dz

aαjuαθ,jdA− 2δ
∫

Dz

a3ju3θ,jdA.

(7.66)
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Let |a| = maxi,j |aij |, then with the aid of the arithmetic-geometric mean
inequality we derive from (7.66), for other constants ε and δ > 0,

I ′′ ≥c1
∫

Dz

uα,βuα,βdA+ c2

∫
Dz

u3,αu3,αdA− a

ε

∫
Dz

θ,iθ,idA

− εa

∫
Dz

uαuαdA− δγa

∫
Dz

u2
3dA− δa

γ

∫
Dz

θ,iθ,idA

≥
(c1λ1 − εa

k̂M

) ∫
Dz

cα3β3uαuβdA+
(c2λ1 − δγa

δc3333

) ∫
Dz

δc3333u
2
3dA

−
(a
ε

+
δa

γ

) ∫
Dz

θ,iθ,idA (7.67)

where λ1 is the constant for Poincaré’s inequality on Dz.
Next, we use (7.55) and for a constant ω > 0 we form

I ′′ + ωF ′′ ≥γ1

∫
Dz

cα3β3uαuβdA+ γ2δ

∫
Dz

c3333u
2
3dA

+ γ3

∫
Dz

θ,iθ,idA (7.68)

where

γ1 =
c1λ1 − εa

k̂M

, γ2 =
c2λ1 − δγa

δc3333
, γ3 = 2ωk0 −

a

ε
− δa

γ
.

We pick ε, γ small enough that

c1λ1

a
> ε and

c2λ1

δa
> γ

and then pick ω large enough that

ω >
a

2k0ε
+

δa

2k0γ
.

This ensures γ1, γ2, γ3 > 0. Next, use the inequality∫
Dz

θ,iθ,idA ≥ 2k0λ1

k33

∫
Dz

k33θ
2dA =

2k0λ1

k33
F .

Put

γ2
4 = min

{
γ1, γ2,

2k0λ1γ3

k33ω

}
.

Then, from inequality (7.68) we find

I ′′ + ωF ′′ ≥ γ2
4(I + ωF ). (7.69)

Let us define H(z) by

H(z) = I + ωF,
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then after multiplying by an integrating factor, inequality (7.69) may be
written as

d

dz

[
(H ′ + γ4H)e−γ4z

]
≥ 0. (7.70)

We require

lim
z→∞ H(z)e−γ4z = 0 and lim

z→∞H ′(z)e−γ4z = 0.

Then integrating (7.70) from z to ∞ we obtain

H ′ + γ4H ≤ 0.

Upon integration from 0 to z this yields

H(z) ≤ e−γ4zH(0). (7.71)

If we recollect the data (7.50) then inequality (7.71) yields the spatial decay
estimate∫

Dz

(cα3β3uαuβ + δc3333u
2
3)dA + ω

∫
Dz

k33θ
2dA

≤ e−γ4z

[∫
Dz

(cα3β3gαgβ + δc3333g
2
3)dA + ω

∫
Dz

k33θ
2
0dA

]
.

(7.72)

(Chirita and Ciarletta, 2006) show how one may specialize the above
result to the case of isotropic materials. They further analyse the decay
rate for particular metals.

7.5.2 Triclinic materials

We now again follow (Chirita and Ciarletta, 2006) and consider a class of
triclinic materials for which

cα333 �= 0 or cαβγ3 �= 0. (7.73)

While (Chirita and Ciarletta, 2006) restrict attention to isothermal sta-
tionary elasticity we consider the equivalent thermal problem defined by
equations (7.47).

Again, the analysis herein parallels the analysis of (Chirita and Ciarletta,
2006) for the isothermal problem. We start with the function J(z) given
by

J(z) =
∫

Dz

ci3k3uiukdA. (7.74)

Upon differentiation,

J ′′ = 2
∫

Dz

ci3k3ui,3uk,3dA+ 2
∫

Dz

ci3k3uiuk,33dA. (7.75)
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Now use the differential equation (7.47)1 to see that

ci3k3uk,33 = −ciαkβuk,βα − ciαk3uk,3α − ci3kβuk,3β − aijθ,j .

We use this expression in (7.75) and integrate by parts to find

J ′′ =2
∫

Dz

ci3k3ui,3uk,3dA+ 2
∫

Dz

ciαkβuk,βui,αdA

+ 2
∫

Dz

gikαui,αuk,3dA− 2
∫

Dz

aijuiθ,jdA ,

(7.76)

where

gikα = ciαk3 + ci3kα .

We next use the inequalities

ci3k3ui,3uk,3 ≥ kmui,3ui,3

and ∫
Dz

ciαkβuk,βui,αdA ≥ γ0

∫
Dz

ui,αui,αdA

in (7.76) and further use the arithmetic-geometric mean inequality on the
gikα and aij terms, for arbitrary μ, ε > 0. With m2 = grkβgrkβ we may
derive from (7.76),

J ′′ ≥(2km − ε)
∫

Dz

ui,3ui,3dA+ (2γ0 −m2ε)
∫

Dz

ui,αui,αdA

− a

μ

∫
Dz

uiuidA− aμ

∫
Dz

θ,iθ,idA .

(7.77)

We require the coefficients of the first two terms on the right of (7.77) to
be positive, so ε < 2km and ε < 2γ0/m

2, which is valid provided we restrict
attention to the class of coefficients for which

4γ0k
2
m > m2.

Recall inequality (7.55), then form J ′′ + ωF ′′ to find

J ′′ + ωF ′′ ≥(2km − ε)
∫

Dz

ui,3ui,3dA+ δ1

∫
Dz

uiuidA

+ δ2

∫
Dz

θ,iθ,idA ,

(7.78)

where

δ1 = (2γ0 −m2ε)λ1 −
a

μ
, δ2 = 2ωk0 − aμ,

and where also Poincaré’s inequality has been employed. We now pick μ
such that δ1 > 0 and then select ω so large that δ2 > 0. Hence, from
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inequality (7.78) we may see that

J ′′ + ωF ′′ ≥ δ1
kM

∫
Dz

ci3k3uiukdA+ δ2

∫
Dz

θ,iθ,idA . (7.79)

With the aid of Poincaré’s inequality the last term may be bounded below
as ∫

Dz

θ,iθ,idA ≥ λ1

ωk33
ω

∫
Dz

k33θ
2dA .

Then, setting

δ23 = min
{ δ1
kM

,
δ2λ1

ωk33

}

and putting G = J + ωF , we obtain from (7.79)

G′′ ≥ δ23G. (7.80)

This inequality may be integrated as (7.69) to obtain

G(z) ≤ e−δ3zG(0). (7.81)

Upon insertion of the data terms in G(0) into (7.81), this inequality yields
a spatial decay estimate in the measure G(z).

(Chirita and Ciarletta, 2006) also derive some estimates for cross-
sectional measures involving the stress and displacement. They specifically
analyse transversely isotropic materials under the strong ellipticity condi-
tion, and especially investigate how sharp their decay estimates may be.
They also specifically apply their results to the material which constitutes
a cortical bone. One may be able to include thermal effects in this case,
but we do not do this here.

Other spatial decay estimates in continuum mechanics which illustrate
the importance of this area overall have appeared frequently, for exam-
ple, (Ames et al., 2001), (Ames et al., 1993), (Ames and Payne, 1998),
(Amick, 1977; Amick, 1978), (Aouadi, 2009), (Chirita, 1995a; Chirita,
1995b; Chirita, 1997; Chirita, 2007), (Chirita and Ciarletta, 1999; Chirita
and Ciarletta, 2003b; Chirita and Ciarletta, 2003a; Chirita and Ciar-
letta, 2006), (Chirita and Danescu, 2000), (Chirita and Quintanilla, 1996),
(Chirita et al., 2001), (Fabrizio and Morro, 2003), pp. 366–373, (Flavin and
Rionero, 1995), chapter 7, (Horgan and Knowles, 1983), (Horgan, 1989;
Horgan, 1996), (Horgan and Payne, 1997),(Horgan and Quintanilla, 2005),
(Ignaczak, 1998; Ignaczak, 2000; Ignaczak, 2002), (Iovane and Passarella,
2004a; Iovane and Passarella, 2004b), (Knops and Payne, 2005), (Lin and
Lin, 2008), (Lin and Payne, 2004a; Lin and Payne, 2004b), (Mielke, 1992),
(Nappa, 1998), (Payne and Song, 1996; Payne and Song, 1997b; Payne and
Song, 1997a; Payne and Song, 2002; Payne and Song, 2004a; Payne and
Song, 2005; Payne and Song, 2006; Payne and Song, 2007b; Payne and
Song, 2007a; Payne and Song, 2008), (Quintanilla, 1996; Quintanilla, 1999;
Quintanilla, 2001a).



8
Thermal convection in nanofluids

8.1 Heat transfer enhancement in nanofluids

Nanofluids consist of a suspension of very small metallic like particles sus-
pended in a carrier fluid. Typically these fluids are manufactured by using
a suspension of copper, Cu, copper oxide, CuO, or aluminium oxide, Al2O3,
in water or ethylene glycol, cf. (Vadasz et al., 2005), (Kwak and Kim, 2005),
(Wong and Kurma, 2008), or by creating a suspension of carbon nanotubes
in an appropriate oil, cf. (Vadasz et al., 2005).

The use of nanofluids in heat transfer devices is very appealing and they
appear to have highly desirable properties for greatly increasing heat trans-
fer by comparison with ordinary fluids. It is well known that the thermal
conductivities of metals like copper, or oxides such as CuO,Al2O3, are much
greater than those of a typical carrier fluid. The resulting suspension is be-
lieved to have a greatly increased thermal conductivity due to the presence
of metallic like particles, cf. (Kwak and Kim, 2005), (Hwang et al., 2007),
(Masoumi et al., 2009), (Xuan et al., 2003), (Wong and Kurma, 2008),
(Xuan and Roetzel, 2000), (Kim et al., 2007), (Putra et al., 2003), and this
may have a pronounced effect on heat transfer.

The very interesting article of (Vadasz et al., 2005), questions the basis on
which the increased thermal conductivity of a nanofluid suspension relies.
They point out that experimental measurements on the thermal conduc-
tivity usually employ theory which is based on the classical law of Fourier
heat conduction. However, they assert that key factors underlying thermal
properties of nanofluids are ballistic as opposed to diffusive. They argue

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 222
DOI 10.1007/978-1-4614-0493-4 8, c© Springer Science+Business Media, LLC 2011
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that thermal wave effects should be taken into account when interpreting
experimental results. In particular, (Vadasz et al., 2005), propose six pos-
sible reasons for the increased effective thermal conductivity of a nanofluid
and these may be summarized as,

a) hyperbolic or phase - lagging thermal wave effects;
b) thermal resonance because of the combination of hyperbolic thermal

waves combined with an amplified periodic signal which may arise from a
mobile phone or a short wavelength radio wave;

c) particle driven, or thermally driven, fluid convection;
d) convection due to electro-phoresis;
e) hyperbolic thermal convection;
f) any combination of a) - e).
(Vadasz et al., 2005) analyse in detail the experimental methods used

to determine the effective thermal conductivity of a nanofluid suspension.
They use a Cattaneo theory to analyse heat transfer in a slab and in this
way are able to make a direct comparison with the experiments by employ-
ing both the Cattaneo and Fourier theories of heat flow. Their results are
highly interesting and they conclude that they “cannot confirm the validity
of either one of the models as the correct one.” However, they also deduce
that, “the apparent thermal conductivity evaluated via the Fourier con-
duction constitutive relationship could indeed produce results that show
substantial apparent enhancement of the effective thermal conductivity of
the nano-fluid suspension if the actual conduction process is governed by
a hyperbolic thermal conduction process.” They do conclude that further
investigation is necessary before a definite conclusion may be reached as to
why an anomalous thermal conductivity enhancement is observed.

In view of the very interesting results and conclusions of (Vadasz et al.,
2005) we believe it is worth presenting some recent work on models to
describe the behaviour of a nanofluid. We also review and extend recent
work on hyperbolic thermal convection in a fluid or fluid-saturated porous
medium, thereby directly incorporating possibility e) provided by (Vadasz
et al., 2005).

(Vadasz, 2006) and (Buongiorno, 2006) investigate theroretically heat
transfer in a nanofluid. (Tzou, 2008) also produces a model and investigates
in some detail instability of thermal convection in his model. (Savino and
Paterna, 2008) likewise produce and analyse a model which allows the fluid
to be compressible. (Kuznetsov and Nield, 2010b; Kuznetsov and Nield,
2010a) develop a theory and analysis for thermal convection in a nanofluid
which saturates a porous medium. The implication is likely that the pore
size is considerably larger than the nanoparticle size.
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8.2 The Tzou model

(Tzou, 2008) develops an interesting model to describe thermal convection
in a nanofluid suspension. He uses an incompressible fluid with a Boussi-
nesq approximation and his theory involves differential equations for the
velocity in the suspension, vi, the pressure, p, the temperature, T , and the
concentration of nanoparticles, φ(x, t). In keeping with the style of this
book we now describe the model of (Tzou, 2008) but use notation consis-
tent with elsewhere in this volume. There is the equation of continuity of
mass,

vi,i = 0, (8.1)

the momentum balance equation,

ρ0(vi,t + vjvi,j) = −p,i + μΔvi − ρgki, (8.2)

the energy balance law,

ρ0cF (T,t + viT,i) = −qi,i + hSJ
S
i,i , (8.3)

and an equation describing the conservation of nanoparticles,

ρS(φ,t + viφ,i) = −JS
i,i . (8.4)

In these equations F or S refer to (bulk) fluid or (nanoparticle) solid com-
ponents, ρ is the density at a point x, ρ0 is the constant fluid density at a
reference temperature T0, μ is the dynamic viscosity of the bulk fluid, g is
gravity, k = (0, 0, 1), cF or cS denote the specific heat (at constant pres-
sure) of the fluid or solid particles, qi is the heat flux, hS is the enthalpy of
the solid, ρS is the solid density, and JS is a flux vector which is associated
to the nanoparticle density. In fact, (Tzou, 2008) assumes

JS
i = −ρSDBφ,i − ρS

DT

TB
T,i , (8.5)

where TB is a constant (bulk fluid temperature) and Tzou treats DB and
DT as constants. ((Tzou, 2008) does remark that DB and DT may depend
on temperature and particle concentration and we return to this below.)

The theory of (Tzou, 2008) writes the heat flux as

qi = −kT,i + hSJ
S
i , (8.6)

where k is the thermal conductivity of the bulk fluid.
To simplify equation (8.2) (Tzou, 2008) adopts a Boussinesq approxima-

tion and writes

ρ =φρS + (1 − φ)ρF

=φρS + ρ0(1 − φ)
[
1 − α(T − T0)

]
, (8.7)

where α is the thermal expansion coefficient of the fluid. He further writes

hS,i = cST,i , (8.8)
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cf. (Lighthill, 1963), p. 8, for a treatment of enthalpy in a fluid. Then the
energy balance equation (8.3) may be rewritten with the aid of (8.6) as

ρ0cF (T,t+viT,i) = kΔT − (hSJ
S
i ),i + hSJ

S
i,i

= kΔT − hS,iJ
S
i

= kΔT + hS,iρSDBφ,i + hS,iρS
DB

TB
T,i

= kΔT + ρScSDBφ,iT,i +
ρScSDT

TB
T,iT,i , (8.9)

where equation (8.8) has been employed.
Using the above relations one may rewrite equations (8.1) - (8.4)

explicitly as

vi,i = 0,

vi,t + vjvi,j = − 1
ρ0
p,i +

μ

ρ0
Δvi

− gki

{
φ
ρS

ρ0
+ (1 − φ)

(
1 − α[T − T0]

)}
,

T,t + viT,i = κΔT + k1φ,iT,i + k2T,iT,i ,

φ,t + viφ,i = DBΔφ+
DT

TB
ΔT,

(8.10)

where the constants k1 and k2 have form

k1 =
ρScSDB

ρ0cF
, k2 =

ρSDT cS
ρ0cFTB

,

and κ is the thermal diffusivity of the fluid given by κ = k/ρ0cF .
(Tzou, 2008) remarks that the DBΔφ term in equation (8.10)4 repre-

sents diffusion of nanofluid particles due to Brownian motion whereas the
(DT /TB)ΔT term is thermophoresis due to particle movement along a tem-
perature gradient. It is worth remarking that the latter term is essentially
a Soret effect. As (Tzou, 2008) remarks, the k1 and k2 terms in (8.10)3
represent nonlinear contributions due to particle/temperature interactions.
Let us observe that equations (8.10) are a coupled system of six nonlinear
partial differential equations for the six variables vi, p, T and φ.

Tzou non-dimensionalizes his equations and determines a basic solution
for non-convective fluid motion in a layer z ∈ (0, d), (x, y) ∈ R

2, with
boundary conditions of no slip and the temperature and nanoparticle con-
centration prescribed on the boundaries z = 0 and z = d. In particular, he
has

φ = φL, T = TL, at z = 0; φ = φU , T = TU at z = d, (8.11)

for φL, TL, φU , TU constants. He seeks a basic solution for which v̄i ≡ 0,
φ̄ = φ̄(z) and T̄ = T̄ (z). Once these are known the pressure p̄ follows
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from equation (8.10)2. To determine the basic solution Tzou observes that
equation (8.10)4 integrates to yield

φ̄+
DT

TBDB
T̄ = c1z + c2 (8.12)

where the constants c1 and c2 are determined by use of the boundary
conditions. Inserting φ̄(z) as given by (8.12) into equation (8.10)3 yields
the following equation for T̄

κT̄zz + k1c1T̄z = 0. (8.13)

The basic temperature is found by integrating equation (8.13) twice (with
an integrating factor) and this yields T̄ (z) as a nonlinear function of z
(involving z and exponentials of z). Once T̄ is known, φ̄ follows from (8.12).

It is interesting to note that T̄ , φ̄ are nonlinear functions of z which is
very different from the classical Bénard problem.

(Tzou, 2008) then introduces perturbations ui, π, θ, φ to v̄i, p̄, T̄ , φ̄ and
derives linearized equations for the perturbation variables. His goal is to
determine an instability threshold where thermal convection will begin. In
fact, (Tzou, 2008) derives the following non-dimensional linearized system
of equations for ui, π, θ, φ,

ui,i = 0,
ui,t = −π,i + PrΔui − kiRaPr(φU − 1)θ

− (φL − φU )
{
H [Rρ − 1 + α(TU − TL)]

}
kiφ

+RaPrki(T̄ φ+ φ̄θ),

θ,t = u3 + Δθ − 1
Le

φ,z −
(

1 + 2RN

Le

)
θ,z ,

φ,t = u3 +NBT Δφ+NTT Δθ,

(8.14)

where Ra is a Rayleigh number and Pr,RN , Rρ, H, Le,NBT , NTT are other
non-dimensional parameters defined in (Tzou, 2008).

Tzou analyses equations (8.14) and finds an Ra, a2 (wavenumber) bound-
ary. However, he is interested in an overall qualitative behaviour and makes
several approximations. His approach is standard and seeks solutions of the
form

ui = ui(x)eσt, π = π(x)eσt, θ = θ(x)eσt, φ = φ(x)eσt,

where these represent Fourier modes in what is really an infinite Fourier
series for each of ui, π, θ and φ. (Tzou, 2008) looks for stationary convection,
i.e. where σ = 0. A more complete analysis should allow σ to be complex.
Oscillatory convection might well be the dominant mechanism. With odd
derivatives, as are present in (8.14)3, oscillatory convection cannot be ruled
out. Indeed, in the next section, section 8.3, we find oscillatory convection
is present for another theory pertaining to nanofluid behaviour. (Tzou,
2008) also allows φU , φL → 0 so Le→ ∞ so that he can seek solutions like
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Θ(z) =
∑∞

m=1Am sinmπz. A more general numerical procedure would not
require this. In this way Tzou uses a weighted residual method to find his
Ra, a2 boundary. Tzou also concentrates on the lowest mode m = 1. With
a system as complicated as (8.14) care must be taken. Critical instability
thresholds in other linearized hydrodynamic stability problems are found
with m > 1, cf. (Webber, 2007; Webber, 2008), (Chen, 1993). Nevertheless,
(Tzou, 2008) demonstrates that the nanofluid model leads to a dramatic
lowering of the critical Rayleigh number threshold as compared to what
one finds with a standard linearly viscous fluid when no nanoparticles are
present. This does indicate convection occurs more easily in a nanofluid
and heat transfer is, therefore, facilitated.

8.2.1 Coefficient dependence on nanoparticles

Even though Tzou treats the coefficients DB and DT in equation (8.5) as
constants he does point out that they really have the forms

DB = α1T, DT = α2φ, (8.15)

where specific forms for the coefficients α1, α2 are given in (Tzou, 2008),
equation (5). In the penultimate paragraph of (Tzou, 2008) he does write
that, ... “it remains worthwhile to reinstate the volume - fraction dependent
thermal properties in the analysis and reexamine the drastic reductions of
Rac obtained in this work.”

If one adopts expressions (8.15) then from equation (8.10)3 one finds T̄ , φ̄
satisfy the equation

κT̄zz + k̃1T̄ T̄,zφ̄,z + k̃2φ̄(T̄,z)2 = 0, (8.16)

where

k̃1 =
ρscsα1

ρ0cF
, k̃2 =

ρscsα2

ρ0cFTB
.

Let us observe that

k̃1 = k̃2
α1TB

α2
. (8.17)

On the other hand from equation (8.10)4,

α1
d

dz

(
T̄
dφ̄

dz

)
+
α2

TB

d

dz

(
φ̄
dT̄

dz

)
= 0. (8.18)

If the normal component of the flux Js is zero on the boundaries z = 0, d,
i.e. Js

i ni = 0 there, then equation (8.18) integrates to find

α1TB

α2
T̄ φ̄,z + φ̄T̄,z = 0. (8.19)
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Thus,

k̃2α1TB

α2
T̄ φ̄,z + k̃2φ̄T̄,z = 0

and using (8.17)

k̃1T̄ φ̄,z + k̃2φ̄T̄,z = 0. (8.20)

Upon insertion of equation (8.20) into equation (8.16) we find

κT̄zz = 0

which leads to T̄ (z) being a linear function of z, as in the standard Bénard
problem. The function φ̄(z) may then be found from (8.19). One may then
use T̄ and φ̄ and derive equations for ui, π, θ, φ to perform a linearized in-
stability analysis. By using a numerical method such as the Chebyshev tau
one, cf. (Dongarra et al., 1996), one may then analyse whether oscillatory
convection occurs by using the full, exact system of linear equations. It will
also be possible to look for possible interchange of modes as parameters are
varied to see if the lowest fundamental mode is indeed the one responsible
for convective overturning, according to linear theory.

8.3 Convection with Cattaneo theories

The theories of viscous fluid motion coupled with heat transfer via a Cat-
taneo - like law were introduced in section 3.1. In view of that fact that
(Vadasz et al., 2005) pointed out, see section 8.1, that hyperbolic thermal
convection may be a mechanism which induces an effective increased ther-
mal conductivity in a nanofluid, we deem it useful to include an account
of such thermal convection using a linear viscous fluid coupled with suit-
able Cattaneo laws for heat transfer. We commence with the work which
historically initiated this area.

8.3.1 Cattaneo - Fox law

The (Cattaneo, 1948) law was introduced in thermal convection in fluid
mechanics by (Straughan and Franchi, 1984), and later work followed
by (Lebon and Cloot, 1984), (Franchi and Straughan, 1994b) and (Dauby
et al., 2002). These writers all used a Jaumann - like derivative to modify
the rate of change of the heat flux.

(Straughan and Franchi, 1984) used an invariant form of derivative sug-
gested by (Fox, 1969b) in the Cattaneo law and concentrated on two free
surfaces. They showed oscillatory convection was possible for large enough
Prandtl number provided the non-dimensional form of the relaxation time τ
exceeded 0.0338. However, they did not investigate when stationary convec-
tion or oscillatory convection is preferred. (Straughan, 2009b) investigates
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thermal convection by employing the equations of (Straughan and Franchi,
1984), but he uses boundary conditions appropriate to two fixed surfaces.
We now describe and elaborate this work.

Assume an incompressible Newtonian fluid is contained in the layer be-
tween the planes z = 0, d. The relevant equations for non-isothermal flow
employing a Cattaneo - Fox law are given by (Straughan and Franchi, 1984)
(see also section 3.1) as

∂vi

∂t
+ vj

∂vi

∂xj
= − 1

ρ

∂p

∂xi
+ νΔvi + gi[1 − α(T − TR)],

∂vi

∂xi
= 0,

∂T

∂t
+ vi

∂T

∂xi
= − ∂Qi

∂xi
,

τ
(∂Qi

∂t
+ vj

∂Qi

∂xj
− εijkωjQk

)
= −Qi − κT,i

(8.21)

where standard notation is employed. Here vi, T,Qi and p are the veloc-
ity, temperature, heat flux and pressure, ω = curlv/2, g = (0, 0,−g) the
gravity vector, TR is a reference temperature, and τ is a constant with the
dimensions of time.

The boundary conditions are

vi = 0, z = 0, d, T = TL, z = 0, T = TU , z = d, (8.22)

with TL > TU , both constants. We are interested in the instability of the
conduction solution

v̄i = 0, T̄ = −βz + TL, q̄i = (0, 0, κβ) (8.23)

where β is the temperature gradient,

β =
TL − TU

d
.

Introduce perturbations (ui, θ, π, qi) to (v̄i, T̄ , p̄, q̄i) and then from
equations (8.21) one derives the linearized perturbation equations as

∂ui

∂t
= − 1

ρ

∂π

∂xi
+ νΔui + gαθki,

∂ui

∂xi
= 0,

∂θ

∂t
= βw − ∂qi

∂xi
,

τ
∂qi
∂t

=
1
2
τκβ
(∂ui

∂z
− ∂w

∂xi

)
− qi − κθ,i ,

(8.24)
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where k = (0, 0, 1), w = u3. These equations are written in non-dimensional
form using the length, time, pressure, heat flux, and temperature scales

d,
d2

ν
,
νU

d
,
κT �

d
, T � = U

√
βν

ακg
.

The Rayleigh, Prandtl and Cattaneo numbers are written as (cf. (Straughan
and Franchi, 1984), (Straughan, 2009b)),

Ra = R2 =
gαβd4

νκ
, Pr =

ν

κ
, C =

τκ

2d2
,

and in these papers an instability analysis is performed in terms of these
quantities. (Papanicolaou et al., 2011) introduce another non-dimensional
parameter, Sg, by

Sg =
τν

d2
.

(Papanicolaou et al., 2011) argue that Sg is the more pertinent parameter
when considering thermal convection in viscous fluids, and we employ this
quantity here. Equations (8.24) are rewritten in the non-dimensional form

ui,t = −π,i +Rθki + Δui ,

ui,i = 0,
P rθ,t = Rw − qi,i ,

Sg qi,t =
SgR

2Pr
(ui,z − w,i) − qi − θ,i .

(8.25)

To study instability and hence find a convection threshold we take
curl curl of equation (8.25)1 and retain the w component. Introducing the
variable ξ = qi,i we then reduce system (8.25) to solving

Δ2w +RΔ∗θ = σΔw,
Prσθ = Rw − ξ,

σSgξ = −SgR
2Pr

Δw − ξ − Δθ,

(8.26)

where Δ∗ = ∂2/∂x2 + ∂2∂y2, and a time dependence like eσt has been
introduced. Supposing w, θ, ξ satisfy a plane tiling form f(x, y) with
Δ∗f = −a2f , where a is a wavenumber, cf. (Chandrasekhar, 1981), p.
43-52, (Straughan, 2004), p. 51, then we solve equations (8.26) numerically
in the form

ΔW − χ = 0,

Δχ−Ra2Θ = σχ,

ΔΘ + Ξ +
SgR

2Pr
χ = −SgΞσ,

RW − Ξ = σPrΘ,

(8.27)
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Figure 8.1. Critical values of Ra vs. Sg, Cattaneo-Fox model.

where W,Θ and Ξ are the z−parts of w, θ, ξ (e.g. w = W (z)f(x, y)), and
χ is defined as ΔW . The boundary conditions for two fixed surfaces follow
from equations (8.22) and take the form

W = DW = Θ = 0, z = 0, 1, (8.28)

where D = d/dz.
The Chebyshev tau D2 numerical method is used to solve (8.27) subject

to the boundary conditions (8.28) in (Straughan, 2009b).
(Straughan, 2009b), table 1, gives instability values with Prandtl number

equal to 6. We present Ra and a2 at criticality for values of Sg varying from
0 to 1.2 in table 8.1. We also include figures of the instability thresholds,
see figure 8.1.

It is seen that the stationary convection behaviour witnessed asymp-
totically by (Straughan and Franchi, 1984) for small Sg, persists for two
fixed surfaces. As Sg increases (Sg small) the critical Rayleigh number Ra
likewise increases. However, at Sg = SgT = 0.18602568, we witness a strik-
ing transition. For Sg > SgT , a Hopf bifurcation occurs and convection
switches from stationary convection to one where oscillatory convection is
dominant. The critical Rayleigh number then begins to rapidly decrease
as seen in figure 8.1. Also, the wave number increases and this means the
transition is accompanied by a switch from a larger to a narrower convec-
tion cell, see table 8.1. Mathematically, the transition is manifest by the
lowest critical Rayleigh number value switching from one eigenvalue σ(1)

to another σ(2).
The dramatic reduction of Ra accompanied by the switch to a narrower

convection cell is interesting. In view of the remarks of (Vadasz et al., 2005),
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Table 8.1. Critical values of Ra and a against Sg.

Sg a Ra σ1

0 3.12 1707.765 0
1.2 × 10−3 3.12 1711.180 0
6 × 10−3 3.11 1724.935 0
1.2 × 10−2 3.09 1742.393 0
2.4 × 10−2 3.07 1778.194 0
4.8 × 10−2 3.03 1853.544 0
7.2 × 10−2 2.98 1934.276 0
9.6 × 10−2 2.94 2020.868 0
0.12 2.89 2113.893 0
0.144 2.84 2213.969 0
0.168 2.80 2321.775 0
0.174 2.78 2350.027 0
0.18 2.77 2378.814 0
0.1812 2.77 2384.638 0
0.1824 2.77 2390.490 0
0.1836 2.76 2396.367 0
0.1848 2.76 2402.252 0
0.18602568 2.760 2408.291 0
0.18602568 4.994 2408.291 ±3.932125
0.1872 4.99 2391.625 ±3.9375
0.1884 4.99 2374.830 ±3.9492
0.1896 4.99 2358.267 ±3.9604
0.1908 4.99 2341.932 ±3.9711
0.1920 4.99 2325.822 ±3.9814
0.1980 4.99 2248.468 ±4.0266
0.204 4.98 2176.066 ±4.0484
0.21 4.98 2108.164 ±4.0775
0.216 4.97 2044.356 ±4.0866
0.24 4.96 1823.474 ±4.1194
0.36 4.92 1183.489 ±3.8889
0.48 4.90 876.008 ±3.5737
0.6 4.89 695.403 ±3.3032
1.2 4.87 342.568 ±2.4797

see section 8.1, it will be interesting to observe if this effect is measurable
in thermal convection in a nanofluid suspension.
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8.3.2 Cattaneo - Christov law

In the previous section we employed a Cattaneo - Fox model. However, such
models which use Jaumann derivatives for the heat flux can lead to instabil-
ity when heating from above. (Christov, 2009) has recently proposed a Lie
derivative form of invariant time derivative for the heat flux when dealing
with a Cattaneo type theory for a fluid. This derivative has been employed
in thermal convection studies by (Papanicolaou et al., 2009; Papanicolaou
et al., 2011) and by (Straughan, 2010d; Straughan, 2010c). We now report
on the work of (Straughan, 2010d) and investigate Christov’s theory in the
context of thermal convection of a layer of linearly viscous, incompressible
fluid heated from below. We point out that the paper of (Papanicolaou
et al., 2011) is an appealing one which studies thermal convection in a
two-dimensional domain, solving the two-dimensional eigenvalue problem
rather than by assuming a normal mode form in the x, y directions.

The basic equations are given in section 3.1.2, but we repeat them here for
clarity. They consist of the balance of mass, balance of linear momentum,
balance of energy, together with an equation relating the heat flux to the
temperature gradient, namely the (Christov, 2009) reformulation of the
(Cattaneo, 1948) equation. The system of equations is then

∂vi

∂t
+ vj

∂vi

∂xj
= −1

ρ

∂p

∂xi
+ αgkiT + νΔvi , (8.29)

∂vi

∂xi
= 0, (8.30)

ρcp

(∂T
∂t

+ vi
∂T

∂xi

)
= −∂Qi

∂xi
, (8.31)

τ
(∂Qi

∂t
+ vj

∂Qi

∂xj
−Qj

∂vi

∂xj

)
= −Qi − κ

∂T

∂xi
, (8.32)

in which vi, p, T,Qi are the velocity, pressure, temperature and heat flux.
The quantity ρ is the (constant) density, ν is the kinematic viscosity, g is
the gravity, k = (0, 0, 1), α is the thermal expansion coefficient, and cp is
the specific heat at constant pressure. The Boussinesq approximation has
been employed in the body force term. In Christov’s equation (8.32), κ is
the thermal conductivity and τ is a (constant) relaxation coefficient.

Since we are studying thermal convection the fluid occupies the horizon-
tal layer (x, y) ∈ R

2, z ∈ (0, d) and equations (8.29) - (8.32) hold in the
domain R

2 × (0, d) × {t > 0}. The relevant boundary conditions are those
of no-slip and temperatures prescribed, so

vi = 0 on z = 0, d,
T = TL, z = 0, T = TU , z = d,

(8.33)

where TL, TU are constants with TL > TU .
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The conduction (steady) solution is

v̄i ≡ 0, T̄ = −βz + TL , Q̄ = (0, 0, κβ), (8.34)

with β being the temperature gradient, β = (TL − TU )/d.
To determine a threshold for thermal convection we investigate the

instability of the steady solution (8.34) and so introduce perturbations
(ui, θ, π, qi) such that vi = v̄i + ui, T = T̄ + θ, p = p̄ + π, Qi = Q̄i + qi.
Equations for (ui, θ, π, qi) are derived from (8.29) - (8.32) and are then
non-dimensionalized with the length, time and velocity scales L, T and U
given by L = d, T = d2/ν, U = ν/d. The temperature, pressure, and heat
flux scales T �, P,Q∗ are

T � = U

√
βν

αgk
, P =

ρνU

d
, Q∗ =

kT �

d
,

and we put k = κ/ρcp. The Prandtl number, Pr, the Rayleigh number,
Ra = R2, and the non-dimensional number Sg are similar to those in
section 8.3.1, namely

Pr =
ρνU

d
, Sg =

τν

d2
, R =

√
αgd4β

νk
.

Then, the fully nonlinear, non-dimensional equations for (ui, θ, π, qi) are,
cf. (Straughan, 2010d)

ui,t + ujui,j = −π,i +Rkiθ + Δui,

ui,i = 0,
P r(θt + uiθ,i) = Rw − qi,i,

Sg(qi,t + ujqi,j − qjui,j) = −qi +
SgR

Pr
ui,z − θ,i .

(8.35)

An analysis of the instability of the steady solution (8.34) discards the
nonlinear terms in equations (8.35). Then an exponential time dependence
is proposed, i.e.

ui(x, t) = eσtui(x), θ(x, t) = eσtθ(x),

qi(x, t) = eσtqi(x), π(x, t) = eσtπ(x).

This leads to the linearized equations

σui = −π,i +Rkiθ + Δui,

ui,i = 0,
σPrθ = Rw − qi,i,

σSgqi = −qi +
SgR

Pr
ui,z − θ,i .

(8.36)
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Next eliminate the pressure and then define Q = qi,i so that from (8.36)
one obtains the equations

σΔw = RΔ∗θ + Δ2w

σPrθ = Rw −Q

σSgQ = −Q− Δθ ,
(8.37)

with Δ∗ = ∂2/∂x2 + ∂2/∂y2 being the horizontal Laplacian.
For stationary convection, σ = 0, and then one derives from equations

(8.37) the single equation for w,

Δ3w = R2Δ∗w. (8.38)

For two free surfaces this yields the classical instability threshold

Ra = R2 =
27π4

4
, a2

c =
π2

2
,

whereas for two fixed surfaces

Ra = R2 = 1707.762, ac = 3.117,

cf. Chandrasekhar (Chandrasekhar, 1981).
(Straughan, 2010d) solves equations (8.37) numerically for the case of two

rigid surfaces z = 0, d, without assuming σ ∈ R. In this way he investigates
the Cattaneo effect upon oscillatory convection. He does, however, also
analyse the case of two free surfaces. The solutions are supposed to have a
spatial dependence in (x, y) commensurate with a plane tiling periodicity,
cf. Chandrasekhar (Chandrasekhar, 1981), Straughan (Straughan, 2004),
p. 51, so that on z = 0, 1,

w = θ = wzz = 0.

The Laplace operator is equivalent to Δ = D2 − a2, where D = ∂/∂z and
a is a wavenumber arising from a spatial dependence like Δ∗f = −a2f, cf.
Straughan (Straughan, 2004), p. 51.

(Straughan, 2010d) follows Chandrasekhar’s method and puts σ = iσ1

and eliminates Q and θ to find a single equation for W . By taking W (z) =
sinnπz, he shows that the critical wavenumber for oscillatory convection is

a2
c = π2

(
1 +

A1

Sg

)1/2

, (8.39)

where A1 = (1 + Pr)/π2Pr, while the corresponding critical value of R2

for oscillatory convection is

R2 =
[SgPr(π2 + a2

c) + 1 + Pr](π2 + a2
c)

Sg2a2
c

. (8.40)

(Straughan, 2010d) observes that for fixed Prandtl number, as Sg → 0,

a2
c ∼ π2

√
A1

Sg
.
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Likewise, as Sg → 0,

R2 ∼ (1 + Pr)
Sg2

.

Thus, for Sg small R2 is very large and one finds stationary convection
is the dominant mechanism with Ra = 27π4/4. However, equation (8.40)
may be rearranged as

R2 =
Prπ2

[
Sg
{
1 +
(
1 +

A1

Sg

)1/2}
+A1

][
1 +
(
1 +

A1

Sg

)1/2
]

Sg2
(
1 +

A1

Sg

)1/2
.

One then sees that as Sg increases one finds eventually R2 is less than
27π4/4 and a2

c jumps from π2/2 to the value given by (8.39), an a2 value
such that a2 ≥ π2. (Straughan, 2010d) concludes that there is a transition
value of Sg = SgT such that once Sg exceeds this threshold stationary con-
vection is not the observed mechanism and oscillatory convection prevails.
We here compute SgT = 0.2669184 for the two fixed surface situation, with
Pr=6.

(Straughan, 2010d) solves equations (8.37) numerically by a D2 Cheby-
shev tau method. Further output is computed here.

Figure 8.2 shows critical values for the solution of equations (8.37) when
two fixed surfaces are employed. The eigenvalue σ is written as σ = σr+iσ1,
and all values are critical values for instability, i.e. they represent

min
a2

R2(a2) when σr = 0,

i.e. the linear instability threshold. The Prandtl number has value 6.
From figure 8.2 one observes that for values of Sg below a transition

value SgT = 0.2669184, stationary convection is the mechanism by which
thermal convection starts. The wavenumber a = 3.12 in this region, as seen
in table 8.2. Once Sg increases beyond SgT there is a bifurcation and the
dominant eigenvalue changes. Convection is then by oscillatory convection,
σ1 �= 0, with a different, and larger wavenumber, as seen in figure 8.2 and
table 8.2. (Straughan, 2010d) notes that this implies that the convection
cells become narrower. As Sg increases further the convection cells continue
to become narrower and the Rayleigh number decreases.

(Straughan, 2010d) concludes that the (Christov, 2009) model coupled
with the Cattaneo one (see section 3.1.2) leads to a very interesting ef-
fect in thermal convection. For very small Sg convection is by stationary
convection only and the convection cells have a fixed aspect ratio. As Sg
increases a threshold is reached and convection then switches to oscillatory
convection (Hopf bifurcation) with narrower cells. Further increase in Sg
leads to further narrowing of the convection cells and lowering of the crit-
ical Rayleigh number which means thermal convection occurs more easily.
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Table 8.2. Critical values of Ra and a against Sg.

Sg a Ra σ1

0 − 0.2669184 3.12 1707.765 0
0.2669184 4.874 1707.765 ±2.306
0.2676 4.872 1703.071 ±2.309
0.2688 4.872 1694.871 ±2.319
0.2700 4.872 1686.750 ±2.329
0.2712 4.872 1678.706 ±2.338
0.2724 4.872 1670.738 ±2.347
0.2736 4.870 1662.845 ±2.353
0.2748 4.870 1655.025 ±2.362
0.276 4.870 1647.279 ±2.371
0.288 4.866 1573.612 ±2.439
0.300 4.862 1506.229 ±2.492
0.312 4.860 1444.362 ±2.534
0.324 4.856 1387.362 ±2.564
0.336 4.854 1334.679 ±2.587
0.348 4.850 1285.840 ±2.603
0.360 4.848 1240.441 ±2.615
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Figure 8.2. Critical values of Ra vs. Sg, Cattaneo-Christov model.

He deduces that the properly invariant heat flux law of (Christov, 2009)
leads to an important effect in the field of thermal convection.
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8.3.3 Cattaneo theories and porous materials

(Straughan, 2010c) has investigated analogous thermal convection prob-
lems to those of sections 8.3.1 and 8.3.2 in a porous medium of Darcy type.
Apart from the fact that such analysis might prove valuable in a practi-
cal convection situation in a star or planet, the Darcy equations are lower
order than Navier-Stokes and so one is able to proceed in greater detail
analytically without having to resort to numerical solution of the relevant
equations.

For thermal convection in a porous medium the basic equations for bal-
ances of linear momentum, mass, and energy, are given by (Straughan,
2010c) as

∂vi

∂t
= −1

ρ

∂p

∂xi
+ αgkiT − μ

ρK
vi ,

∂vi

∂xi
= 0,

1
M

∂T

∂t
+ vi

∂T

∂xi
= −∂Qi

∂xi
.

(8.41)

Here vi, p, T are the velocity, pressure and temperature fields, ρ, α, g, μ and
K are density, thermal expansion coefficient, gravity, dynamic viscosity
and permeability, respectively. The quantity Qi is the heat flux vector,
k = (0, 0, 1), (8.41)1 represents Darcy’s law, and M = (ρ0cp)f/(ρ0c)m,
where (ρ0c)m = φ(ρ0cp)f + (1 − φ)(ρ0c)s, φ being the porosity, and the f
and s denote fluid and solid, respectively.

One may write separate energy balance and heat flux equations for the
solid and fluid parts of the porous medium and then combine them to arrive
at either the Cattaneo - Fox equation in a porous medium,

τ
∂Qi

∂t
+ τf

(
vj
∂Qi

∂xj
− 1

2
Qj

∂vi

∂xj
+

1
2
Qj

∂vj

∂xi

)
= −Qi − κ

∂T

∂xi
, (8.42)

or the analogous Cattaneo-Christov equation

τ
∂Qi

∂t
+ τf

(
vj
∂Qi

∂xj
−Qj

∂vi

∂xj

)
= −Qi − κ

∂T

∂xi
. (8.43)

Details of the derivation may be found in (Straughan, 2010c) and we note
τ = φτf +(1−φ)τs, τf and τs being relaxation times for the fluid and solid,
respectively.

The saturated porous medium is assumed to occupy the horizontal layer
{(x, y) ∈ R

2, z ∈ (0, d)} with the partial differential equations holding in
the domain R

2 × (0, d)×{t > 0}. The appropriate boundary conditions for
Darcy’s law are

w ≡ v3 = 0 on z = 0, d,
T = TL, z = 0, T = TU , z = d,

(8.44)
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TL > TU . The steady solution for either heat flux law is

v̄i ≡ 0, T̄ = −βz + TL , Q̄ = (0, 0, κβ), (8.45)

where β is the temperature gradient, β = (TL − TU )/d.
In terms of the Darcy number, Da, the Rayleigh number, Ra = R2, and

the number Sg, introduced as

Da =
K

d2
, Sg =

τμ

ρd2
, R =

√
αgd2βKρ

μκ
,

the linearized, non-dimensional equations which arise for perturbations
(ui, θ, π, qi) to the steady solution (v̄i, T̄ , p̄, Q̄i) are, for Cattaneo-Fox,

ui,t = −π,i +Rkiθ − ui,

ui,i = 0,
P r

MDa
θt = Rw − qi,i,

Sg

Da
qi,t =

SgR

2Pr
τ̂(ui,z − w,i) − qi − θ,i ,

(8.46)

or Cattaneo-Christov,

ui,t = −π,i +Rkiθ − ui,

ui,i = 0,
P r

MDa
θt = Rw − qi,i,

Sg

Da
qi,t =

SgR

Pr
τ̂ui,z − qi − θ,i ,

(8.47)

where τ̂ = τf/τ .
(Straughan, 2010c) shows that Cattaneo - Fox theory for stationary

convection leads to the equation

Δ2w = −R2Δ∗
(Sgτ̂

2Pr
Δw + w

)
. (8.48)

He shows further that this then yields

R2 =
2PrΛ2

a2(2Pr − Sgτ̂Λ)
(8.49)

where Λ = n2π2 +a2. He notes that equation (8.49) leads to some interest-
ing possibilities including R2 switching to negative values, which does not
contradict physics since one replaces R2 by Ra and interprets it as heating
from above. (Straughan, 2010c) concentrates on the case n = 1 in equation
(8.49). He shows that the critical value of a2, a2

c , at which R2 achieves a
minimum is when

a2
c =

π2(2Pr − Sgτ̂π2)
(2Pr + π2Sgτ̂)

.
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This yields a critical Rayleigh number of the form

Ra = R2 =
8Prπ2

(2Pr − Sgτ̂π2)
. (8.50)

For oscillatory convection he finds

R2 =

Λ2Da

Sg
+

Λ
M

(Pr
Da

+
Pr

Sg

)

a2
( Sg
Da

+
ΛSgτ̂
2Pr

) . (8.51)

He takes τ̂ = 1 and restricts attention to the case of M = 1. It is necessary
to analyse equation (8.51). To this end it is useful to note that one expects
Sg to be small and Da to be likewise small. For example, for water a typical
value of Pr = 6, whereas for sand K takes a value in the range 2 × 10−7

to 1.8 × 10−6 cm2, see Nield & Bejan (Nield and Bejan, 2006). For a 3cm
layer d = 3cm and this yields a value of Da = d2/K in the range 2 × 10−6

to 2× 10−5. Thus, for practical values one finds the critical value of R2 by
allowing a2 → ∞, and so

Raosc =
2DaPr
Sg2

. (8.52)

(Straughan, 2010c) deduces that with the Cattaneo-Fox model in porous
convection one finds the Rayleigh number threshold is the smaller of (8.50)
and (8.52). He shows that for Sg < SgT , Ra = 8π2Pr/(2Pr − Sgπ2),
whereas for Sg > SgT , Ra = 2DaPr/Sg2. The transition Cattaneo number
is given by

SgT =
2Pr

√
Da√

Daπ2 +
√

8Pr π
. (8.53)

For Sg small one finds stationary convection, but once Sg exceeds SgT the
convection mechanism switches to one of oscillatory convection and the cell
structure breaks down.

(Straughan, 2010c) also considers the Cattaneo-Christov theory. He
shows that stationary convection reduces to

ac = π, R2
stat = 4π2. (8.54)

For the oscillatory case he derives

a2
c = π

√
π2 + (Pr/DaM)(Sg/Da+ 1) (8.55)

and with M = 1,

R2
osc =

2Da2π2

Sg2
+

2πDa2

Sg2

√
π2 +

Pr

Da

(
1 +

Sg

Da

)
+
DaPr

Sg2
+
Pr

Sg
. (8.56)

(Straughan, 2010c) deduces from equations (8.54) and (8.56) that when
Sg < SgT one finds R2 = 4π2 with a2 = π2. However, if Sg > SgT ,
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R2 has the value given by (8.56) with a2 given by (8.55). Thus, at SgT

the convection changes from stationary convection to oscillatory convection
and the wave number increases discontinuously which means the convection
cells switch to a narrower hexagonal shape. The transition depends on Pr
and Da and further details are given in (Straughan, 2010c) .

8.4 Green - Naghdi model

We now describe work of (Straughan, 2010b) who adapts the Green-Naghdi
theory explained in section 3.5 to be applicable to a nanofluid. (Straughan,
2010b) points out that this theory accounts for a non-Newtonian behaviour
of a nanofluid suspension.

The work of (Straughan, 2010b) modifies the entropy flux vectors
of (Green and Naghdi, 1996). He replaces H by F and T by S and then
equations (3.73) of section 3.5 are modified to

pF
i = −kF

θF

∂θF

∂xi
, pS

i = −kS

θS

∂θS

∂xi
, (8.57)

while the equations for the intrinsic entropy supply functions ξF and ξS
become

ρξF θF =
kF

θF

∂θF

∂xi

∂θF

∂xi
+ 2μDijDij + φ,

ρξSθS =
kS

θS

∂θS

∂xi

∂θS

∂xi
+ 4μ1DijPij +

2μ2
1

μ
PijPij − φ,

(8.58)

where kF and kS are thermal conductivities. While (Green and Naghdi,
1996), see section 3.5 take φ constant (Straughan, 2010b) assumes

φ = −h(θF − θS) (8.59)

for h > 0 constant.
(Straughan, 2010b) assumes the body force term is gravity with ρ

depending on θF , θS so that

ρbi = −gkiρ0

[
1 − αF (θF − θ0F ) + αS(θS − θ0S)

]
(8.60)

where g is gravity, k = (0, 0, 1), αF , αS are the thermal expansion coeffi-
cients of the fluid and solid, respectively, and θ0F , θ

0
S are reference (constant)

temperatures, ρ0 being a constant. He also considers another relation which
questions whether the solid particles really do contribute to the buoyancy
in equation (8.60). This is,

ρbi = −gki

[
ρSφ+ (1 − φ)ρ0

F (θF − θ0F )
]

(8.61)

where φ is the volume fraction of particles in the suspension.
The system of equations considered by (Straughan, 2010b) consists of the

momentum and conservation of mass equations together with the entropy
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balance equations and these are,

v̇i −
μ1

μ

d

dt
Δvi = − 1

ρ0
p,i + αF gkiθF − αSgkiθS + νΔvi − 2ν1Δ2vi , (8.62)

vi,i = 0, (8.63)

ρcF θ̇F = ρsF θF + 2μDijDij + kF ΔθF − h(θF − θS), (8.64)

ρcS θ̇S = ρsSθS + kSΔθS + 4μ1DijPij +
2μ2

1

μ
PijPij + h(θF − θS), (8.65)

where ν = μ/ρ0, ν1 = μ1/ρ0, and p absorbs the constant terms which arise
from (8.60).

The objective of the article of (Straughan, 2010b) is to present a
theory for nanofluid behaviour which allows the suspension to exhibit
non-Newtonian characteristics, but he also wishes to investigate thermal
convection. Thus, suppose the fluid occupies the horizontal layer {(x, y) ∈
R

2}×{z ∈ (0, d)} with gravity acting downward. The basic equations (8.62)
- (8.65) thus hold on the domain {(x, y) ∈ R

2} × {z ∈ (0, d)} × {t > 0}.
The boundaries are assumed fixed with the temperatures maintained at
constants TL, TU , TL > TU , so that

θF = θS = TL, z = 0, θF = θS = TU , z = d. (8.66)

The steady (conduction) solution whose instability is investigated is then

v̄i = 0, θ̄F = θ̄S = −βz + TL , (8.67)

where β is the temperature gradient, β = (TL − TU )/d, and the steady
pressure p̄(z) is then determined from equation (8.62).

Instability is analysed by letting (ui, π, θF , θS) be perturbations to the
basic state (v̄i, p̄, θ̄F , θ̄S), so that vi = v̄i + ui, p = p̄ + π, θF = θ̄F + θF ,
θS = θ̄S + θS .

Employing the non-dimensional variables

xi = x∗i d, t = t∗
d2

ν
, U =

ν

d
, P =

ν2ρ0

d
,

H =
hd2

ρ0cFκF
, κF =

kF

ρ0cF
, κS =

kS

ρ0cS
,

κF

κS
=
kF cS
kScF

,

μ̂ =
μ1

μd2
, a1 = 2

√
Pr

αF g

dcF
√
β
, b1 =

4μ1U
√
κFαF g

ρ0cSd2κS

√
βν

,

b2 =
2μ2

1U
√
κFαF g

μd4κS

√
βν

, Pr =
νF

κF
,

with the Rayleigh number Ra = R2 defined by

R2 =
αF gd

4β

νκF
, (8.68)
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(Straughan, 2010b) derives the full system of non-dimensional equations
for the perturbations, where ∗s are discarded,

ui,t + ujui,j − μ̂Δui,t − μ̂ujΔui,j = −π,i +RkiθF − αS

αF
RkiθS

+ Δui − 2μ̂Δ2ui,

ui,i = 0,
P r(θF,t + ujθF,j) = Rw + ΔθF −H(θF − θS) + a1dijdij ,

κF

κS
Pr(θS,t + ujθS,j) =

κF

κS
Rw + ΔθS +

kF

kS
H(θF − θS)

+ b1dijpij + b2pijpij .

(8.69)

To investigate instability (Straughan, 2010b) linearizes equations (8.69)
and then puts

ui = eσtui(x), π = eσtπ(x), θF = eσtθF (x), θS = eσtθS(x).

After eliminating π from the linearized version one finds the system of
equations

σ(μ̂Δ2w − Δw) = −RΔ∗θF +
αS

αF
RΔ∗θS − Δ2w + 2μ̂Δ3w,

σPrθF = Rw + ΔθF −H(θF − θS),

σ
κF

κS
PrθS =

κF

κS
Rw + ΔθS +

kF

kS
H(θF − θS),

(8.70)

where Δ∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian.
The boundary conditions are those of two fixed surfaces at constant

temperatures, so that

w = wz = 0, θF = θS = 0, on z = 0, d. (8.71)

However, (Straughan, 2010b) observes that due to the higher order terms
in the Green-Naghdi momentum equation we require an extra boundary
condition. He follows (Green and Naghdi, 1996), equation (74). Introduce
their tensor M1

ij = −p1δij + μ1Nij where p1 is an arbitrary scalar and
Nij = εirsus,rj, i.e. ∂/∂xj of (curlu)i. Then the couple at the walls m1

i is
m1

i = M1
ijnj where n = (0, 0, 1) at z = 1, n = (0, 0,−1) at z = 0. The

couple in the horizontal directions x, y is supposed zero. Thus,

e1 ·m1 = 0, e2 ·m1 = 0,

e1, e2 being standard basis vectors. By writing u = (u, v, w) one finds the
equations

wyz − vzz = 0, wxz − uzz = 0, on z = 0, 1. (8.72)
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But in the whole fluid domain ux + vy + wz = 0, and (Straughan, 2010b)
shows this together with (8.72) yields the boundary condition

wzzz + Δ∗wz = 0. (8.73)

One next puts w = W (z)f(x, y), θF = ΘF (z)f(x, y), θS = ΘS(z)f(x, y),
where f is a plane tiling function such that

Δ∗f + a2f = 0,

a being a wavenumber.
Then, with D = d/dz, equations (8.70) reduce to

2μ̂(D2 − a2)3W − (D2 − a2)2W +Ra2ΘF − αRa2ΘS

= σ
[
μ̂(D2 − a2)2W − (D2 − a2)W

]
,

(D2 − a2)ΘF −H(ΘF − ΘS) +RW = σPrΘF ,

(D2 − a2)ΘS + kH(ΘF − ΘS) + κRW = σκPrΘS ,

(8.74)

where α = αS/αF , k = kF /kS , κ = κF /κS. The boundary conditions are

W = Wz = 0, Wzzz − a2Wz = 0, ΘF = 0, ΘS = 0, on z = 0, 1. (8.75)

The system (8.74) and (8.75) is solved numerically by a D2 Chebyshev tau
method in (Straughan, 2010b). Details of the numerical method are given
there.

(Straughan, 2010b) reports numerical results for the thermal convection
instability analysis just outlined. He employed four sets of nanofluid sus-
pensions. These are those where the fluid was either water or ethylene
glycol and where the particles are CuO or Al2O3. Values of α = αS/αF ,
k = kF /kS, κ = kF cS/kScF and Pr were obtained from (Chandrasekhar,
1981), p. 66, (Dow, 2009), (Accuratus, 2009), and (EngineeringToolbox,
2009).

The numerical routine of (Straughan, 2010b) calculates the minimum
value of a where instability will commence, i.e. that value of Ra for which
σr = 0 where σ = σr + iσ1. For all of the parameter values he investigated
σ was found to be real at the instability transition. Thus, instability is
by stationary convection and for the range of parameter values analysed,
overstability is not witnessed.

(Straughan, 2010b) observes that the Rayleigh number (8.68) is based
on the fluid properties only. Since it is well known that the thermal conduc-
tivity of a nanofluid may be considerably higher than that of the solvent,
cf. (Kwak and Kim, 2005), (Hwang et al., 2007), (Masoumi et al., 2009),
(Xuan et al., 2003), (Wong and Kurma, 2008), (Xuan and Roetzel, 2000),
(Kim et al., 2007), (Putra et al., 2003), and in addition the recent work
of (Kwak and Kim, 2005), and also (Masoumi et al., 2009), shows that the
effective viscosity of the nanofluid may also be significantly different from
that of the base fluid, he gives consideration to a Rayleigh number which
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might more accurately reflect the effective properties of the nanofluid sus-
pension itself. In fact, (Straughan, 2010b) considers two other definitions
of Rayleigh number, one which explicitly depends on the particle concen-
tration φ and another which accounts for the viscosity correction given
by (Hwang et al., 2007). These are denoted by Ra(J)

N , where J denotes the
percentage by volume of particles, and by Ra1.

(Straughan, 2010b) presents numerical values for the H2O - CuO case,
noting that the other combinations yield similar outcomes. He finds that
if one uses the nanofluid Rayleigh numbers Ra(4)

N , Ra(2)
N , or Ra1 then for

small μ̂ values we may certainly obtain a large reduction in the Rayleigh
number as compared to that for a classical Newtonian fluid with no parti-
cles, i.e. Ra ≈ 1707. This is completely in line with the findings of (Tzou,
2008), although we stress that the Green-Naghdi model incorporates non-
Newtonian effects in the nanofluid due to the presence of very small metallic
oxide particles. The reduction of the Rayleigh number, very significantly
in some cases, e.g. Ra(2)

N when H = 0.1, μ̂ = 10−4, drops from 1707 to 277
which means convective motion occurs much more easily in the nanofluid
suspension. This, in turn, means heat transfer occurs more readily and this
agrees with the perceived use of a nanofluid in a heat transfer device.



9
Other applications

In this chapter we examine further applications where thermal wave prop-
agation is likely to be important, or we include applications of the ideas
used in deriving the thermal wave models. This chapter is split into four
sub-headings. The first two deal with applications of the various heat prop-
agation theories presented earlier in this book. The second two sub-chapters
deal with applications of the mathematical ideas which were used to develop
a theory of finite speed heat propagation, but are applied to other problems
in real life. These classes of problem are in traffic flow and in biological /
medical contexts. It is worth observing that in twelve of the fourteen sub-
sections the key idea involves essentially the model of Cattaneo. Thus, one
should not underestimate the influence the paper of (Cattaneo, 1948) has
in the field reported in this book.

9.1 Applications in continuum mechanics

9.1.1 Nanoscale heat transport

Modern technology is employing and inventing devices which are increas-
ingly smaller. As (Pilgrim et al., 2004) write, ... “there is a growing demand
for greater understanding of thermal transport in nanoscale devices.” When
discussing finite speed heat transport and mathematical models for this
phenomenon (Pilgrim et al., 2004) also write, ... the “hyperbolic descrip-
tion will become increasingly important as device dimensions move even
further into the deep sub-micron regime.”

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 246
DOI 10.1007/978-1-4614-0493-4 9, c© Springer Science+Business Media, LLC 2011
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In fact, (Pilgrim et al., 2004) analyse two possible mechanisms of heat
transport at the nanoscale such as will be required in semiconductor de-
vices. They apply their results explicitly to samples of gallium arsenide,
GaAs. They investigate a microscopic Monte Carlo Model, and they anal-
yse a Cattaneo model with a heat source. The second of these is of interest
here.

If one begins with the Cattaneo system with a heat source g(x, t) then
the energy balance and Cattaneo equations may be written as, cf. equations
(1.45), section 1.2,

ρc
∂T

∂t
= − ∂qi

∂xi
+ g,

τ
∂qi
∂t

+ qi = −κ ∂T
∂xi

.

In keeping with (Pilgrim et al., 2004), κ = κ(T ), so the thermal conduc-
tivity depends on temperature, T . The heat flux qi may be eliminated and
then one derives the equation

τρc
∂2T

∂t2
+ ρc

∂T

∂t
=

∂

∂xi

(
κ
∂T

∂xi

)
+ g + τ

∂g

∂t
. (9.1)

In equation (9.1) ρ and c are the density and specific heat of the solid
under consideration and τ is the relaxation time. To identify this equa-
tion with equation (6) of (Pilgrim et al., 2004) we put τρc = κ/σ2 and
k/σ2 = τ so that k is the thermal diffusivity of the solid. (Pilgrim et al.,
2004) identify σ with the thermal wavespeed, and they estimate σ ≈ 5000
m s−1 for GaAs with τ the order of 10−12s. They take Laplace transforms
of equation (9.1) to solve for the temperature in the transform space, using
s as the t−Laplace transform variable. They find numerical (and analyt-
ical) solutions of the inverse transform for an appropriate choice of κ(T ).
(Pilgrim et al., 2004) analyse their results for two samples of GaAs, these
being pieces measuring 500×500×100 microns (micron=μm=10−6m) and
0.05×0.05×0.01 microns, respectively. A heat pulse is input into the sample
and its transient behaviour studied according to their mathematical model.
For the larger sample they find the thermal behaviour to be very close to
that obtained by using an analogous parabolic heat transfer equation. How-
ever, for the smaller sample they find a rapid temperature increase between
0.01 and 1 picoseconds (picosecond = 10−12s) after input and this temper-
ature reaches a maximum which decays (cools) to a steady state. They
conclude that in the latter situation the hyperbolic solution is leading to
different behaviour.

9.1.2 Heat transport in nanowires

A very recent area of research relevant to the present section was reported
by (Hochbaum et al., 2008) and by (Boukai et al., 2008), and involves the
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possible production of electricity from from heat which is normally lost to
the environment. As (Majumdar and Yang, 2008) report, approximately
90 per cent of the world’s power is created by using fossil fuel, but this
operation works at only 30 to 40 per cent efficiency, leading to a massive
loss of heat. (Majumdar and Yang, 2008) grew from a silicon wafer a forest
of silicon nanowires some 20-300 nm in diameter, see (Hochbaum et al.,
2008). They have been able to increase dramatically the ZT value of the
nanomaterial by a factor of 60, to 0.6, and this is yielding the exciting pos-
sibility of generating electricity from waste heat. The number ZT is given
by ZT= S2T/ρ̂κ, where S is the thermoelectric power, T is the absolute
temperature, ρ̂ is the electrical resistivity, and κ is the thermal conductiv-
ity. Normally such high ZT values are found only in materials composed
of much rarer elements than silicon. (Boukai et al., 2008) have reported
similar findings for silicon nanowires which have cross - sectional areas 10
nm × 20 nm and 20 nm × 20 nm. They indicate that the improved ther-
moelectric efficiency is due to phonon effects, and the same results may be
expected from other types of semiconductor nanomaterials.

In connection with the above results, very interesting theoretical studies
of temperature wave propagation along possible models for nanowires have
begun by (Jou and Sellitto, 2009),(Jou et al., 2009), (Jou et al., 2010b),
(Jou et al., 2011), (Cimmelli et al., 2010a), and by (Sellitto et al., 2011).
(Jou et al., 2010b) investigate the interesting phenomenon of heat slip in a
Guyer-Krumhansl system appropriate to heat transport in nanomaterials.
Furthermore, a recent interesting study by (Jou et al., 2011) shows that
the roughness of the wall can play a major role on the speed of a heat wave
in an nanowire. (Majumdar and Yang, 2008) report that the roughness of
the nanowires is an important factor in the thermoelectric efficiency.

9.1.3 Heat transport in thin films

There are various examples where heat transport in a thin film of material
is believed to be ballistic rather than diffusive. We give a brief exposition
of two.

(Lor and Chu, 1999) observe that since high temperature superconduc-
tors have been discovered several electronic devices employ a thin film of
such a superconductor which is deposited on a substrate such as a layer of
a metallic oxide or sapphire. In fact, (Lor and Chu, 1999) employ a Catta-
neo theory to model heat transfer in such a scenario and present numerical
results for a thin film of the high - temperature superconductor Yttrium
barium copper oxide, a crystalline chemical compound with the formula
YBa2Cu3O7, written by (Lor and Chu, 1999) as YBaCuO. This thin film
is deposited on a substrate of magnesium oxide, MgO, Strontium titanate,
SrTiO3, Lanthanum aluminate, LaAlO3 or sapphire. Interestingly, (Lor and
Chu, 1999) estimate the relaxation time τ in a Cattaneo theory for the
superconductor YBaCuO to have values of 300 picoseconds (ps=10−12s)
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when the temperature T is 4◦K, 0.6 ps when T = 50◦K and 0.4 ps when
T = 77◦K.

(Lor and Chu, 1999) develop a mathematical model for heat transport
through a two layer system, x ∈ (0, x1) ≡ X1, the superconducting thin
film, x ∈ (x1, x2) ≡ X2, the substrate. A heat flux is input at x = 0 at time
t = tp, so that q = q0(1 −H(t− tp)), where q0 is a constant and H is the
Heaviside function. The boundary temperature at x = x2 is fixed at a value
T0. The equations of (Lor and Chu, 1999) for each region X1, X2 are both
of Cattaneo type and if the temperature and heat flux in each layer are
denoted by T1, q1, and T2, q2, then the equations are, cf. equations (1.45),
section 1.2,

∂T1

∂t
= − 1

k1α1

∂q1
∂x

,

τ1
∂q1
∂t

+ 2q1 = −k1
∂T1

∂x
,

(9.2)

in X1, t > 0, and

∂T2

∂t
= − 1

k2α2

∂q2
∂x

,

τ2
∂q2
∂t

+ 2q2 = −k2
∂T2

∂x
,

(9.3)

in X2, t > 0, for suitable constants k1, α1, τ1, k2, α2, τ2.
An important issue for (Lor and Chu, 1999) is what is the correct condi-

tion at the interface between the domains X1 and X2, i.e. at x = x1. They
take either

q1 = q2 and T1 = T2 at x = x1,

for what they call a perfect contact interface, or

q1 = q2 = κ(T 4
1 − T 4

2 ), at x = x1, (9.4)

for an interface with thermal resistance. The coefficient κ is a constant.
(Lor and Chu, 1999) take as initial condition T constant with q = 0

throughout their thin - layer - substrate configuration and they solve the
resulting boundary - initial value problem numerically by a finite difference
Godunov method. A variety of numerical results are presented for the su-
perconductor YBaCuO for each of the substrates MgO, LaAlO3, SrTiO3

and sapphire. Comparison is made with an analogous parabolic model and
the perfect contact and thermal resistance interface conditions are seen to
lead to very different results. In particular, the thermal resistance condition
is seen to have an effect of prolonging the hyperbolic thermal wave.

(Niu and Dai, 2009) discuss another situation of heat transfer through
a layered system, the layers being metallic in nature and with more or
less equal thicknesses. They particularly apply their model to a gold layer
connected to a chromium one. (Niu and Dai, 2009) contains a useful brief
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review of such topics over approximately the last twenty years. They note
that one has to consider temperatures and heat fluxes for the electrons in
the layers, and for the rest of the lattice. They denote the electron and lat-
tice temperatures in a layer by Te and T�, respectively, with corresponding
heat fluxes qe and q�. When no deformation of the metal is accounted for
they note that a successful model for heat transport in a metal film has
been derived by (Chen and Beraun, 2001; Chen and Beraun, 2003), (Chen
et al., 2002b) and (Chen et al., 2002a). This model is a generalization of
the Cattaneo one, cf. equations (1.45), section 1.2, and suggests employing
the equations

ce
∂Te

∂t
= −∇qe −G(Te − T�) + S,

τe
∂qe

∂t
+ qe = −ke∇Te,

(9.5)

and

c�
∂T�

∂t
= −∇q� +G(Te − T�),

τ�
∂q�

∂t
+ q� = −k�∇T� .

(9.6)

In these equations ce, c�, ke, k� are constants, τe is the electron relaxation
time of free electrons in the metal, τ� is the lattice relaxation time in phonon
collisions, S is a heat source due to laser heating, and the G terms represent
electron - lattice interactions.

(Niu and Dai, 2009) generalize the above equations to allow for defor-
mation within each film of a two layer structure. They specifically study
heat transport through a two-film scenario in two-space dimensions, x, y,
the films, denoted by L1 and L2, being contained by the boundaries
x = 0, x = Lx/2, and x = Lx/2, x = Lx, the horizontal extent of the
two layer film being y ∈ (0, Ly). (Niu and Dai, 2009) write down equa-
tions of form (9.5) and (9.6) for each film L1 and L2, adding a term to the
lattice equations (9.6)1 of the form ζ(m)(∂/∂t)(u(m)

α,α) where u(m)
α denotes

the components of displacement, α = 1, 2, in each layer, m = 1, 2, and
u

(m)
α,α =

∑2
α=1 ∂u

(m)
α /∂xα. They couple their system of four equations in

each layer to momentum equations for u(m)
α , cf. (Tzou et al., 2002). These

equations correspond to those of linear elastodynamics with a nonlinear
temperature - temperature gradient contribution which is referred to as a
hot electron - blast effect.

(Niu and Dai, 2009) focusses on developing an efficient numerical method
for solving their equations in the two layer domain. Explicit calculations are
performed for parameters which correspond to a Gold - Chromium layer
situation. Extensive numerical results are presented.

(Ignaczak, 2009) also considers an interesting model for heat transfer in
thin metal films.
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Use of temperature waves to measure the thermal diffusivity of a low di-
electric constant thin film is analysed by (Morikawa and Hashimoto, 2005).
Further employment of temperature waves in the analysis of relaxation
transitions and thermal diffusivity in polymers is due to (Hashimoto et al.,
1997) and to (Polikarpov and Slutsker, 1997).

9.1.4 Reactor fuel rods

(Espinosa-Paredes and Espinosa-Martinez, 2009) develop a model for heat
transport in a nuclear fuel rod in a light water reactor. They explain that
an understanding of the heat transfer mechanism to the coolant in the
reactor is absolutely essential. They deal with a situation where they have
cylindrical fuel rods surrounded by a small gap which is filled with an inert
gas and this is then surrounded by a concentric cylindrical layer of cladding.

They introduce a series of assumptions and then write their mathemat-
ical model. This is based on Cattaneo’s equations, (1.45), section 1.2, in a
cylindrical geometry. Thus, they have the equations

ρcp
∂T

∂t
=

1
r

∂

∂r
(rqr) + s(t),

τ
∂qr
∂t

+ qr = −k∂T
∂r

,

(9.7)

holding in r ∈ (r0, rc�) for t > 0. Here T is the temperature in the fuel
rod, qr is the heat flux in the radial direction, r is the radial coordinate, r0
being the centre of the cylinder, and s(t) is a heat source. The boundary
conditions of (Espinosa-Paredes and Espinosa-Martinez, 2009) are

− k
∂T

∂r
= H∞(T − Tm), r = rc�

∂T

∂r
= 0, r = r0.

Here H∞ is a heat transfer coefficient and Tm is a temperature outside the
cladding. (Espinosa-Paredes and Espinosa-Martinez, 2009) give a precise
form for s(t) which is based on the reactor power and they give details of
how they calculate this explicitly. For initial conditions, it is assumed the
temperature is known initially, i.e.

T (r, 0) = T0(r).

(Espinosa-Paredes and Espinosa-Martinez, 2009) employ a control vol-
ume numerical technique to solve equations (9.7) subject to their boundary
and initial conditions. Many detailed numerical results are presented choos-
ing appropriate parameter values from the nuclear reactor industry. They
deduce that employing a Cattaneo theory shows the heat fluxes on the sur-
face of the cladding will be substantially different over a long period of time,
and they deduce that a propagative heat mechanism can be important.
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(Gabaraev et al., 2003) note that accidental coolant loss can lead to sig-
nificant temperature rise in a nuclear reactor core. This can be followed
by a change from film to nucleate boiling due to the passage of a travel-
ling temperature wave. These writers develop and analyse a mathematical
model for this situation.

9.1.5 Phase changes

The idea of a material changing phase is an important one in real life. We
can think of water changing to ice, an example of a fluid to solid transition,
water changing to steam, an example of a fluid to vapour transition, or one
may think of a fluid to gas transition. However, there are many other phase
transitions of interest in modern technology, such as those in thermoelastic
solids, or those in shape memory alloys. While traditionally many of the
processes associated with phase transition have been regarded as parabolic
this has recently been a rich area for studying analogous processes by the-
ories which allow for finite speed of propagation, i.e. are more “hyperbolic”
- like. A good review of this area is given in the introduction of (Galenko
and Jou, 2005) and a similar useful review of some of the mathematical
literature on the subject is given in the introduction of (Jiang, 2009).

The theory of phase tansitions is interesting in that it has employed
Cattaneo-like approaches to study finite speed of solute transport, as op-
posed to classical parabolic diffusion, finite speed of the “phase field” itself,
and finite speed of heat propagation. One way to investigate a phase transi-
tion is to employ a moving front approach. This has some connection with
acceleration waves and shock waves in that one studies a moving discontinu-
ity surface. This is appealing because one can incorporate thermodynamics
naturally. A lucid description of this may be found in (Berezovski and
Maugin, 2005) where they treat a moving phase transition front in ther-
moelasticity. They solve their equations numerically and make detailed
predictions on the phase change.

Another approach to phase change is to assume that the transition is
not abrupt but takes place with a finite interfacial thickness. This has led
to the idea of a phase field in the context of a phase transition. However,
before introducing this concept we point out that in the field of phase
transitions the idea of a solute concentration moving with a finite speed
of propagation has been proposed for some time, see e.g. (Galenko and
Danilov, 1997), (Sobolev, 1997), and the references therein. For example,
(Galenko and Danilov, 1997) study a solidifcation process and introduce
conditions at a liquid-solid interface. In the liquid and solid phases they
write that the liquid and solid temperatures TL, TS and the concentration
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of solute in the liquid, CL, satisfy the equations,

∂TL

∂t
= aLΔTL ,

∂TS

∂t
= aSΔTS ,

τ
∂2CL

∂t2
+
∂CL

∂t
= DΔCL .

(9.8)

Hence, while the heat transport is parabolic they are using a Cattaneo
- like theory for solute transport. (Galenko and Jou, 2005) allow also
the possibility of finite speed heat transport (and, in fact, finite speed
phase field transport) and consider estimates for the relaxation times τT
for heat, τD for solute concentration. They give values which suggest
10−13s < τT < 10−11s for metallic systems with 10−11s < τD < 10−7s in a
binary alloy system. While these values are for entirely different materials
it does suggest “hyperbolic” solute transport cannot be entirely neglected
in phase transition.

(Auriault et al., 2007) consider diffusion in a composite material. They
introduce the solute balance equation

∂c

∂t
= −Ji,i ,

c being a solute concentration and Ji the solute flux. To incorporate finite
speed of propagation they suggest for J the equation

A
∂Ji

∂t
+ Ji = −Dc,i .

Together these equations lead to the equation for c

A
∂2c

∂t2
+
∂c

∂t
=

∂

∂xi

(
D
∂c

∂xi

)
. (9.9)

They estimate the diffusion coefficient and consider where their equation
may be valid. They also analyse memory effects in composite materials.
Their calculations do not support the use of equation (9.9) for solute trans-
port in general. The propagation values suggested by (Galenko and Jou,
2005) do contrast with the work of (Auriault et al., 2007).

An interesting approach to hyperbolic diffusion is given by (Malysiak
et al., 2007). They analyse hyperbolic diffusion in the context of what they
call a ball and chain problem. Their mathematical results are compared
to electrophysiological data and they estimate the diffusion coefficient for
their model employing the diffusion coeffcient for a single aminoacid in
water.

For a diffuse interface transition a phase field Φ is introduced, cf.
(Galenko, 2001), (Galenko and Jou, 2005). This quantity has a fixed nu-
merical value in a particular phase, e.g. Φ = −1 for an unstable liquid phase
with Φ = +1 in the liquid phase, (Galenko and Jou, 2005). Between these
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extremes lies the diffuse interface region where Φ changes smoothly, albeit
steeply, from -1 to 1. As (Galenko and Jou, 2005) remark one may find nu-
merical solutions and then locate an interface where Φ = 0. (Galenko, 2001)
writes a nonlinear parabolic equation for Φ but couples this to a Cattaneo-
like equation for the solute flux. In this way he obtains an equation for the
solute concentration which has second derivatives in both time and space.
He places this within the context of other models. (Galenko and Jou, 2005)
develop a model where the energy density, e, solute concentration, X , and
the phase field, Φ, satisfy equations of the form

τT
∂2e

∂t2
+
∂e

∂t
= − ∂

∂xi

[
Mee

∂

∂xi

(∂η
∂e

+ ε2eΔe
)]
,

τD
∂2X

∂t2
+
∂X

∂t
= − ∂

∂xi

[
MXX

∂

∂xi

( ∂η
∂X

+ ε2XΔX
)]
,

τΦ
∂2Φ
∂t2

+
∂Φ
∂t

= MΦ

( ∂η
∂Φ

+ ε2ΦΔΦ
)
.

(9.10)

Here η is the entropy, Mee,MXX ,MΦ, ε
2
e, ε

2
X , ε

2
Φ are appropriate functions,

and τT , τD, τΦ are relaxation times for temperature, solute concentration,
and the phase field Φ. The phase field itself satisfies a hyperbolic-like
equation (9.10)3.

Finite speed of heat transport has been also introduced into phase transi-
tions, see e.g. (Colli and Recupero, 2002), (Bonetti, 2002b; Bonetti, 2002a),
(Jiang, 2009), and the references therein. Interestingly, (Liu et al., 2009)
suggest that one is better using the theory of (Coleman et al., 1982) (which
generalizes that of Cattaneo, see page 13 of this book) rather than simply
the model of (Cattaneo, 1948).

Certainly, the field of phase transitions where solute concentration, phase
field, and heat transport are described by finite speed of propagation
(hyperbolic-like) models is an area of much research. Various combinations
of these models such as hyperbolic phase field - parabolic heat transport,
hyperbolic phase field - hyperbolic heat transport, have been studied in-
tensely recently. Studies of existence, attractors, uniqueness, long time
behaviour of solutions, stability and related issues may be found in e.g.
(Gatti et al., 2005), (Bonetti et al., 2007), (Grasselli et al., 2007), (Wu
et al., 2007), (Jiang, 2009), (Miranville and Quintanilla, 2009), and the
many references therein. An interesting application of a hyperbolic solute
equation is to drug release in the human body. Here, the experimental
results necessitate a hyperbolic model, cf. (Ferreira and de Oliveira, 2010).

Another interesting development of phase transitions is to incorporate
finite speed of heat transport by means of Green-Naghdi type III thermo-
dynamics. This has been done by (Miranville and Quintanilla, 2010), who
investigate existence and uniqueness of solutions and dissipative properties,
as well as spatial decay in a cylinder.
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9.2 Stellar, planetary heat propagation

9.2.1 Cryovolcanism on Enceladus

I find the article by (Bargmann et al., 2008a) to be a beautiful and ex-
tremely interesting paper dealing with a possible explanation for some of
the findings on Enceladus, which is a moon of the planet Saturn. (Bargmann
et al., 2008a) give precise details of Enceladus and its interesting properties
which make it an object of intense study in our solar system. They note
that observations from the Cassini spacecraft have shown the occurrence
of active volcanoes on Enceladus. In fact, since Enceladus has a mean sur-
face temperature of 77◦K they refer to the phenomenon of volcanism as
cryovolcanism. (Bargmann et al., 2008a) also note that volcanic eruptions
have been observed on four bodies in the solar system, the Earth, Jupiter’s
moon Io, Neptune’s moon Triton, and Saturn’s moon Enceladus.

(Bargmann et al., 2008a) observe that volcanoes on Enceladus erupt
water rather than magma, and no evidence has been found of ammonia
and/or methane which is also found in the eruptions of other cryovolcanoes
on other icy moons. They are particularly interested in trying to explain
a warm spot which is centred on Enceladus’ south pole. Since the erup-
tions on Enceladus occur under very cold conditions (Bargmann et al.,
2008a) argue that this is a very good place to model heat transfer using
the Green-Naghdi model of thermoelasticity of type III, see section 2.4.
To me personally, their arguments are very convincing. They argue that
type III thermoelasticity is the best because it incorporates both classical
thermoelasticity and thermoelasticity of type II. They also argue that the
model should include energy dissipation due to the experiences of volcanoes
on Earth and this is further argument for type III theory.

(Bargmann et al., 2008a) use a finite element method to simulate the
temperature field in the vicinity of a volcanic vent on Enceladus. The sur-
face temperature is computed using a radiation balance accounting for solar
radiation, black-body radiation from the ice surface, and geothermal heat-
ing from below. They derive their appropriate form of equations for type
III thermoelasticity, and these are

ρüi = (Eijkhekh),j − 3
[
Kω(T )(T − T0)

]
,i

+ bi ,

and

ρc(T )Ṫ = (k1α,i),i + (k2T,i),i + ρr − 3T0ω(T )Kėii ,

where ui, T are the elastic displacements and temperature field, eij being
the strain. (Bargmann et al., 2008a) carefully estimate the temperature
dependent functions k(T ), ω(T ) and c(T ) for the situation appropriate to
Enceladus, and they pay particular attention to the forms for the ther-
mal coeffcients k1 and k2. For k2 they use known fits for ice whereas for
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k1, which is intrinsic to type III thermoelasticity, they produce various
plausible arguments but vary this coefficient to see the effect of variation.

The numerical results of (Bargmann et al., 2008a) are carefully presented
together with their conclusions. They particularly note that observations
on the surface of Enceladus show “stripes” which are probably caused by
cryomagma being distributed during the volcanic eruptions. Their compu-
tations with type III theory thermoelasticity do allow them to predict the
occurrence of such stripes. In fact, they write, ... “Therefore, with all due
caution arising from our simplified model and the data uncertainties, it
seems that non-classical heat transport in ice at cryogenic temperatures
may play a role in explaining the observed temperature distribution in the
vicinity of the volcanically active troughs in Enceladus’ south polar region.”
The paper of (Bargmann et al., 2008a) is a particularly appealing use of
Green-Naghdi type III thermoelasticity to a problem of real interest.

9.2.2 Thermohaline convection

(Herrera and Falcón, 1995) discuss the possibility of heat transported as
a wave being responsible for convective overturning in certain stars. They
draw an analogy with thermohaline instability whereby a layer of warm
salty water can overlie a layer of cooler fresh water, but when the salty
layer cools it becomes less dense and tends to fall under gravity creating
a convective overturning instability. (Herrera and Falcón, 1995) discuss
applying a Cattaneo model of heat transport to this situation. They argue
that in a close binary system star a helium rich outer layer may form and
this may lead to an instability not dissimilar to a thermohaline one due
to helium burning which creates a carbon enriched outer layer which has
higher molecular weight than the stellar material below.

(Herrera and Falcón, 1995) also suggest similar instability mechanisms
may be present in neutron stars, in radio pulsars, and in the collapsed
core of a supernovae progenitor. (Falcón, 2001) continues this investigation,
in particular, looking at cooling in white dwarfs and neutron stars. He
argues that the superfluid interior of a neutron star promotes heat wave
propagation and he employs a Cattaneo theory to estimate the cooling time.
He shows that Cattaneo theory increases the cooling time, although he
stresses that numerical values of the relaxation time are currently uncertain.

(Straughan, 2011) develops and analyses linear instability of a model for
thermohaline instability in a porous layer employing a Cattaneo-Christov
equation, cf. section 3.1.2, for the heat flux. He derives the following equa-
tions for balance of linear momentum, mass, salt concentration, energy, and
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a Cattaneo-Christov equation, for a fluid saturated porous medium,

p,i = − μ

K
vi + ρ0αgTki − ρ0αSgCki ,

vi,i = 0,
φC,t + viC,i = φkCΔC,
1
M

T,t + viT,i = −Qi,i ,

τQi,t + τf (vjQi,j −Qjvi,j) = −Qi − κT,i .

(9.11)

Here, vi, T, C,Qi, p are velocity, temperature, salt concentration, heat flux,
and pressure, μ,K, ρ0, α, g, αS , φ, kC and κ are dynamic viscosity, per-
meability, a reference density, thermal expansion coefficient of the fluid,
gravity, salt expansion coefficient, porosity, salt diffusivity, and thermal
diffusivity. The coefficients M and τ are given by

M =
(ρ0cp)f

φ(ρ0cp)f + (1 − φ)(ρ0c)S
,

τ = φτf + (1 − φ)τs

where f, s denote fluid and solid parts in the saturated porous layer, and
τf and τs are relaxation times for the fluid and solid, respectively.

Equations (9.11)4,5 are derived by writing a Cattaneo system for the
solid skeleton and a Cattaneo-Christov system for the saturating fluid and
combining, cf. section 8.3.3.

(Straughan, 2011) employs the boundary conditions

T = TL, C = CL, z = 0; T = TU , C = CU , z = d;

where TL, TU , CL, CU are constants with TL > TU , CL > CU , so interest
is in the situation of heating and simultaneously salting the porous layer
from below. The steady solution is

v̄i = 0, C̄ = −βsz + CL , βs =
CL − CU

d
,

T̄ = −βz + TL , β =
TL − TU

d
, Q̄3 = κβ,

with the steady pressure p̄(z) found from (9.11)1.
Perturbations ui, π, θ, qi and ϕ to the steady values v̄i, p̄, T̄ , Q̄i, C̄ are

introduced and from equations (9.11) one derives the nonlinear perturba-
tion equations, see (Straughan, 2011). These are non-dimensionalized and
linearized and then one finds the linearized perturbation equations to be

π,i = −ui +Rθki −Rsϕki,

ui,i = 0,
εLe ϕ,t = Rsw + Δϕ,
θ,t = Rw − qi,i ,

2MCa qi,t = 2CfRui,z − qi − θ,i .

(9.12)
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These are solved in (Straughan, 2011) with the boundary conditions

uini = 0, θ = ϕ = 0, on z = 0, 1.

In equations (9.12), R2, R2
s, ε, Le, Ca and Cf are non-dimensional parame-

ters,

R2 =
αgβKd2

(μ/ρ0)κ
, R2

s =
αsgβsKd

2

(μ/ρ0)φkC

ε = φM, Le =
Ud

φkC
Cf =

κτf
2d2

Ca =
κτ

2d2
.

In fact, R2 is the Rayleigh number, R2
s is the salt Rayleigh number, Le is

the Lewis number, Cf is the fluid Cattaneo number, and Ca is the Cattaneo
number.

The instability surface in R2, R2
s, C(= 2MCa) space is determined

in (Straughan, 2011). It is an interesting surface which is formed by eigen-
values changing places as the Cattaneo number increases. The instabilities
may be stationary or oscillatory, depending on the parameter values, R2

s

and Ca.

9.3 Traffic flow

Traffic flow on a one lane highway (road) is explained in (Whitham, 1974),
pp. 68–80. Reviews of mathematical models for traffic flow under various
conditions may be found in e.g. (Bellomo et al., 2002a), (Bellomo et al.,
2002b), (Darbha et al., 2008). In this section we include a brief exposition of
work of (Jordan, 2005b) who uses a mathematical technique not dissimilar
to that explained in section 1.2 in connection with the Cattaneo equation
to derive a hyperbolic - like model for traffic flow on a one lane highway.

Let ρ(x, t) be the density of traffic at a point x on a single lane highway
at time t and let q(x, t) be the corresponding “flux” of cars across x at time
t. Then, one may show ρ, q satisfy a conservation law, cf. (Whitham, 1974),
pp. 68–80, of form

∂ρ

∂t
+
∂q

∂x
= 0. (9.13)

(Jordan, 2005a) begins by discussing a “constitutive equation” for the flux
q in terms of ρ and ρx. He writes

q(x, t) = ρ(x, t)
{
vm

(
1 − ρ(x, t)

ρs

)}
− ν

∂ρ

∂x
(x, t) . (9.14)

In equation (9.14) ρs is a saturation value for the density of traffic (0 <
ρ < ρs), vm is the maximum speed of a vehicle when ρ → 0, and ν > 0 is
a constant. However, (Jordan, 2005b) argues that the flux at time t ought
not to depend directly on ρ, ρx at the same time. He argues that a driver
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will not react instantaneously to a change ahead and proposes instead that
there be a delay in response time in equation (9.14). Thus, (Jordan, 2005b)
suggests employing the constitutive equation

q(x, t+ τ) = ρ(x, t)
{
vm

(
1 − ρ(x, t)

ρs

)}
− ν

∂ρ

∂x
(x, t) , (9.15)

where τ > 0 is a response time with τ << tc, the time tc being a
characteristic time for the traffic flow.

In order not to be dealing with a differential - delay equation (Jordan,
2005b) then expands q in (9.15) in a Taylor series to write

τ
∂q

∂t
+ q(x, t) = ρ(x, t)

{
vm

(
1 − ρ(x, t)

ρs

)}
− ν

∂ρ

∂x
(x, t) , (9.16)

where terms O(τ2) have been neglected. By combining equations (9.13)
and (9.16), (Jordan, 2005b) then arrives at the following partial differential
equation for ρ(x, t),

τ
∂2ρ

∂t2
+
∂ρ

∂t
− ν

∂2ρ

∂x2
+ vm

(
1 − 2ρ

ρs

)
∂ρ

∂x
= 0. (9.17)

(Jordan, 2005b) also notes that equation (9.17) was briefly introduced
by (Lighthill and Whitham, 1955) in their influential paper.

(Jordan, 2005b) analyses equation (9.17) in detail. He first shows that
one may derive an explicit solution in travelling wave form, ρ(x, t) = f(ξ) =
f(x− vt) for a constant v > 0, the propagation velocity. He shows that one
may solve for f explicitly so that

f(ξ) =
1
2

{
(ρ1 + ρ2) + (ρ2 − ρ1) tanh

(2ξ
�

)}

where ρ1 and ρ2 are limits of f as ξ → ∓∞, and

� =
4νρs

vm(ρ2 − ρ1)

(
1 − v2τ

ν

)
.

He interprets this as a diffusive soliton and shows this has a shock thickness
given by �. He shows that for this solution to be valid one must have

τ < τ∗ =
ν

[vm(1 − ρ̃)]2
,

with ρ̃ = (ρ1 + ρ2)/ρs. This threshold τ∗ is important in his interpretation
for traffic flow.

(Jordan, 2005b) also develops a shock wave and an acceleration wave
analysis for a solution to equation (9.17). A shock wave is defined to be a
singular surface across which ρ has a finite jump whereas an acceleration
wave is one where ρ is continuous but ρx has a finite jump. (Jordan, 2005b)
shows that the shock amplitude satisfies a Bernoulli equation whereas the
amplitude of the acceleration wave satisfies a linear equation. He solves for
the amplitudes explicitly.
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(Jordan, 2005b) provides a detailed explanation of the findings from his
travelling wave, shock wave, and acceleration wave analysis in terms of
traffic flow. For example, he shows that breakdown of the travelling wave
solution corresponds to τ exceeding τ∗, i.e. the driver’s reaction time is
too slow and a collision will occur. He also indentifies another threshold
time τ• ≤ τ which is based on the initial values of ρ. This threshold is also
interpreted in terms of traffic flow and the potential for a collision to occur.

This section has considered a hyperbolic model for traffic flow and con-
gestion (crowding) caused by vehicles. There are other interesting areas of
crowding which may be modelled by suitable hyperbolic models. For exam-
ple (Bellomo and Dogbé, 2008) discuss in detail strategies for examining
crowds of people. They also discuss the modelling of the motion of swarms
such as a swarm of bees, or a flock of birds.

9.4 Applications in biology

9.4.1 Population dynamics

(Mendez and Camacho, 1997) develop and investigate a model for a pop-
ulation, such as an animal population. They begin by observing that a
reaction - diffusion equation has been used to model population growth,
such as Fisher’s equation where the growth term is a logistic one, i.e. if
n(x, t) denotes the population at time t and position x, then

∂n

∂t
= D

∂2n

∂x2
+ λn(1 − n). (9.18)

However, they oberserve that, ... “it is well known that an animal’s motion
during a small time period has a tendency to proceed in the same direction
as it did in the immediate period before”. Therefore, they infer that there
is memory in the animal’s motion whereas equation (9.18) does not contain
any memory effect.

To incorporate memory (Mendez and Camacho, 1997) employ a random
walk argument to derive a conservation law for n of form

∂n

∂t
+
∂J

∂x
= 0, (9.19)

where J(x, t) is the flux. They derive a Cattaneo equation for J , namely,

τ
∂J

∂t
+ J = −D∂n

∂x
= 0, (9.20)

However, they argue that the population should have a source term
(production of animals) added and so instead of (9.19) they write

∂n

∂t
+
∂J

∂x
= F (n), (9.21)
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where F is the source. By combining equation (9.20) and (9.21), (Mendez
and Camacho, 1997) derive the following equation for the population n,

τ
∂2n

∂t2
+
∂n

∂t
= D

∂2n

∂x2
+ F (n) + τ

∂F

∂t
(n). (9.22)

(Mendez and Camacho, 1997) also derive equation (9.22) by what they
call a phenomenological derivation which uses a delay between J(x, t + τ)
and ∂n/∂x(x, t). In addition they include a derivation by using extended
thermodynamic arguments of (Jou et al., 2010a). (Mendez and Camacho,
1997) study travelling waves for their equation (9.22) and further analyse
the flux term using arguments from non-equilibrium thermodyanamics.

9.4.2 Migration of a school of fish

In this section we describe a model for the behaviour of a large but highly
organised school of fish. (A school of fish is a highly organised group of
fish which synchronises their swimming, as opposed to a shoal which is a
more loosely organised group.) The model was derived by (Niwa, 1998) in a
very inspiring article. As (Niwa, 1998) points out, certain fish schools such
as mackerel, can swim enormous distances but do so in a highly organised
manner so that the school itself often behaves like a continuous body rather
than a group of individuals. He argues that one of the reasons for this is that
water temperature has a very strong effect on fish behaviour. Fish control
their body temperature by moving from one place to another and (Niwa,
1998) quotes research where fish migration is performed in order to maxi-
mize comfort by sensing changes in water temperature. In order to account
for this in a mathematical model, (Niwa, 1998) argues that fish must pos-
sess a memory mechanism for sensing temperature gradients. They need
to be able to sense temperature gradients of the order of 0.01 to 0.1◦C /
100m and so a memory record of the thermal environment is essential.

(Niwa, 1998) employs a non-trivial but very clever statistical argument
to calculate the position of a school of fish taking into account the positions
of individuals and incorporating thermal memory effects. If P (x, t) is the
probability distribution that a school of fish is at position x at time t, and
j(x, t) is the associated probability current density then (Niwa, 1998) shows
that P satisfies a conservation equation of form

∂P

∂t
+
∂ji
∂xi

= 0. (9.23)

He further derives a Cattaneo - like equation for the function j of form

τ
∂ji
∂t

+ ji = −D ∂P

∂xi
− ∂W (x)

∂xi
P, (9.24)

where D is a diffusion coefficient given explicitly in terms of an average of
the velocity in the school in equation (61) of (Niwa, 1998). The function
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W (x) is also calculated explicitly and given by (Niwa, 1998) in his equation
(69).

By combining equations (9.23) and (9.24), (Niwa, 1998) derives the fol-
lowing differential equation for the probability distribution of fish in the
school

τ
∂2P

∂t2
+
∂P

∂t
= DΔP + τ

∂

∂xi

(∂W
∂xi

P
)
. (9.25)

(Niwa, 1998) includes further analysis of his model.

9.4.3 Spread of the Hantavirus

The Hantavirus, originally named after the Hanta river in Korea, is a
virus transmitted by rodents through excreta or bites, and may be a cause
of serious illness. In 1993 a new species, responsible for the Hantavirus
cardiopulmonary syndrome (HPC), was discovered to be due to the Sin
Nombre virus. Since both viruses can be fatal, their spread is of grave
concern; see e.g. (Schmaljohn and Hjelle, 1997), (Mills and Childs, 1998),
(Mills et al., 1999). Mathematical models to explain how they propagate
include the recent proposals by (Abramson and Kenkre, 2002), (Abramson
et al., 2003), (Allen et al., 2003), (Sauvage et al., 2003), and (Allen et al.,
2006). We are particularly interested in the hyperbolic model developed
by (Barbera et al., 2008) since it uses a wave - like process to describe
virus transmission.

According to the last named writers, the model of (Abramson and
Kenkre, 2002) involves equations in one space dimension for populations,
S(x, t), I(x, t), of susceptible and infected mice, respectively. For a total
mouse population M(x, t) = S + I, these equations are

∂S

∂t
+
∂J (S)

∂x
= bM − cS − SM

K
− aSI,

∂I

∂t
+
∂J (I)

∂x
= −cI − IM

K
+ aSI,

(9.26)

where a, b, c, respectively, are the rate of infection, the birth rate, and the
death rate for the mice. The function K(x, t) represents the capacity of the
medium to maintaining the population of mice, e.g. accessibility of food,
shelter, etc., while J (S) and J (I) are fluxes for the susceptible and infected
populations. Substitution in equations (9.26) of the constitutive equations

J (S) = −D∂S
∂x

, J (I) = −D∂I

∂x
, (9.27)
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where D is the diffusion coefficient for the mice, leads to the parabolic
reaction - diffusion system

∂S

∂t
= D

∂2S

∂x2
+ bM − cS − SM

K
− aSI,

∂I

∂t
= D

∂2I

∂x2
− cI − IM

K
+ aSI.

(Barbera et al., 2008) proposed replacing equations (9.27) by using argu-
ments of extended thermodynamics to obtain a hyperbolic system. Instead
of the variables S and I, consider the total flux J = J (S) + J (I), and
combine equations (9.27) into the single equation

J = −D∂M
∂x

. (9.28)

Equations (9.26) now may be equivalently written in terms of M and I, as

∂M

∂t
+
∂J

∂x
=
(
b− c− M

K

)
≡ h(M),

∂I

∂t
+
∂J (I)

∂x
=
[(
a− 1

K

)
M − aI − c

]
I ≡ g(M, I),

(9.29)

where h and g are the indicated functions. (Barbera et al., 2008) now
appeal to extended thermodynamics to establish equations for J and J (I).
The same equations may be derived under the assumption that due to the
reaction slight time delays occur in J and J (I). Equations (9.27) and (9.28)
are replaced by

J(x, t+ τ1) = −D∂M
∂x

(x, t),

J (I)(x, t+ τ2) = −D∂I

∂x
(x, t).

(9.30)

We approximate the left hand sides by a first order Taylor series expansion
(cf. section 1.2, equation (1.44)) in which terms of order O(τ2

1 ), O(τ2
2 ) are

discarded. Equations (9.30) become reduced to the system of equations

∂J

∂t
+

1
τ1
J = −D

τ1

∂M

∂x
,

∂J (I)

∂t
+

1
τ2
J (I) = −D

τ2

∂I

∂x
.

(9.31)

On substituting γ′ = D/τ1 and μ′ = D/τ2 in equations (9.29) and (9.31),
we recover equations (4) and (8) of (Barbera et al., 2008) which, these
writers observe, is a hyperbolic system with characteristic speeds

λ = ±
√
γ′ , λ = ±

√
μ′ .
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Moreover, the system possesses four equilibrium (steady state) solutions,

P1 ≡ (0, 0, 0, 0), P2 ≡ (K(b− c), 0, 0, 0),

P3 ≡ (K(b− c),K(b− c) − b

a
, 0, 0), P4 ≡ (0,− c

a
, 0, 0).

But P4 is meaningless, while P3 requires K > Kc = b/a(b−c). A linearized
instability analysis performed around the steady states demonstrates that
the threshold Kc dictates stability. In fact, (Barbera et al., 2008) establish
that

K < Kc =⇒ P2 stable, P3 meaningless,
K > Kc =⇒ P2 unstable, P3 stable.

These writers for the same system also investigate travelling waves,
analyse their stability, and construct numerical solutions to examine the
evolution of solutions from state P2 to P3, and from P1 to P3. Detailed
numerical results are presented for various carrying capacities K(x, t), and
confirm that this particular hyperbolic model for the propagation of the
Hantavirus deserves exploration.

9.4.4 Chemotaxis

The term chemotaxis frequently occurs in biology and refers to the phe-
nomenon of chemically directed movement. Consider, for example, a species
with a densely crowded population. In a diffusion process, the population
will spread outward in space. By contrast, chemotaxis (or more properly,
chemoattraction), is the opposite effect in which the species is attracted
towards a high chemical concentration. For illustration (Murray, 2003a),
p. 405, cites the example of the species in which female members exude a
chemical to attract males.

A much studied chemotaxis process in mathematical biology is that of the
formation of amoebae into a slime mold. A mathematical theory, developed
by (Keller and Segel, 1970), is described in (Lin and Segel, 1974) p. 22, and
also (Murray, 2003a), section 11.4. (Keller and Segel, 1971a) formulated
other models for chemotaxis, and subsequently (Keller and Segel, 1971b)
studied the effects of travelling waves.

The basic biological process of the slime mold amoebae in (Lin and Segel,
1974), p. 22. explains how amoebae feed on bacteria and when their food
supply is abundant they propagate by division into two. Whenever, how-
ever, the food supply becomes scarce, an interphase period begins in which
the amoebae move in a weak and random manner. In this phase the amoe-
bae are effectively spread evenly over their environment. After some hours
the amoebae begin to group together in a striking manner and form a many
celled slug which can contain approximately 200,000 cells. This slug some-
time later stops moving around and erects a stalk which contains spores.
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These spores eventually re-emerge as amoebae and the life cycle of the
slime mold amoebae begins afresh.

To describe the above process in terms of a mathematical model, (Keller
and Segel, 1970) use a coupled system of reaction - diffusion partial differen-
tial equations into which is incorporated the chemotaxis effect. The general
procedure behind diffusion models in biology is aptly explained in (Murray,
2003a), chapter 11. Basically, the idea is that one writes equations for func-
tions ci, i = 1, . . . , N, say, which represent a species population(s), and
possibly chemicals they feed on, absorb, or emit. The general form of a dif-
fusion equation in a domain Ω (in biology the spatial domain Ω is usually
a subset of R

2 or R
1), is

∂

∂t

∫
Ω

ci(x, t) dx = −
∫

Γ

J(i) · n dA+
∫

Ω

fi dx. (9.32)

Here Γ is the boundary of Ω, n is the unit outward normal to Γ, J(i) is
a flux vector associated with the i−th equation, and fi is a source term.
By using the divergence theorem to write (9.32) as an equation over Ω and
reducing to point form, this equation assumes the form

∂ci
∂t

+ ∇ · J(i) = fi, i = 1, . . . , N, (9.33)

holding typically in Ω×(0,∞). Such a procedure of deriving diffusion equa-
tions is familiar in continuum mechanics. In the same spirit as is necessary
in continuum mechanics, in mathematical biology one needs to specify the
domain Ω, the conditions on Γ, and the fluxes J(i) and source terms fi.
This is where an intimate knowledge of the biological process is essen-
tial. (Murray, 2003a), page xi, writes, ... “mathematical biology is ... the
most exciting modern application of mathematics ... the use of esoteric
mathematics arrogantly applied to biological problems by mathematicians
who know little about the real biology, together with unsubstantiated
claims as to how important such theories are, does little to promote the
interdisciplinary involvement which is so essential.”

Most research based on the (Keller and Segel, 1970) theory would ap-
pear to have focussed on use of a simplified theory which uses equations
for the concentrations of cell density of Dictyostelium discoideum and the
chemoattractant it secretes, namely cAMP. For this scenario (Keller and
Segel, 1970) produce the following coupled system of partial differential
equations

∂a

∂t
= −∇(D1∇ρ) + ∇(D2∇a),

∂ρ

∂t
= DρΔρ− k(ρ)ρ+ af(ρ).

(9.34)
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(Keller and Segel, 1970) adopt the form

k(ρ) =
η0k2K

1 +Kρ
,

for η0,K constants. (Murray, 2003a), p. 407, uses D2 constant and gives
various forms for the chemotaxis coefficient D1, such as

D1 = χ0a, D1 =
χ0a

ρ
, or D1 =

χ0Ka

(K + ρ)2
,

where χ0 and K are positive constants.
Thresholds for decay of a solution to the steady state are derived from

the full nonlinear equations (9.34) by (Payne and Straughan, 2009).
In this book our interest centres on a Cattaneo - like modification to a

chemotaxis system like (9.34) as derived by (Dolak and Hillen, 2003). In
fact, we write equations (9.34) as

∂a

∂t
= −∇J ,

J = −D∇a+ a(1 − a)∇ρ,
∂ρ

∂t
= Δρ+ αa− ρ,

(9.35)

where J is a flux and to identify with (9.34) one takes Dρ ≡ 1,K(ρ) ≡
1, f(ρ) ≡ α,D2 ≡ D and D1 = a(1−a). For α,D constant this corresponds
to a “parabolic” version of the (Dolak and Hillen, 2003) system.

However, (Dolak and Hillen, 2003) are interested in a modification of
(9.35) in which J is replaced by τJt + J in equations (9.35). This may be
accounted for by employing a delay argument such as that leading to equa-
tion (1.44), for example. Thus, the (non-dimensional) system of chemotaxis
equations studied by (Dolak and Hillen, 2003) has form

∂a

∂t
= −∇J ,

τ
∂J
∂t

+ J = −D∇a+ a(1 − a)∇ρ,
∂ρ

∂t
= Δρ+ αa− ρ.

(9.36)

This is thus a sort of hyperbolic in a and parabolic in ρ system of equations.
(Dolak and Hillen, 2003) adopt flux conditions such that

∂ρ

∂n
= 0,

∂J
∂n

= 0

on the boundary of their domain. They take realistic values for the co-
efficients τ,D and α and perform numerical simulations on a square
spatial domain. Their results are very interesting and show clearly how
cell aggregation may be achieved.
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(Dolak and Hillen, 2003) also employ a Cattaneo-like modification to a
system for the bacterium Salmonella typhimurium. Full details of models
for Salmonella typhimurium are contained in (Murray, 2003b), pp. 281–
306, where the equations studied are parabolic - like. If u denotes the
(non-dimensional) cell density and S the concentration of aspartate which
the cells produce then the Cattaneo - chemotaxis system governing u and
S derived by (Dolak and Hillen, 2003) is

∂u

∂t
= −∇J + ρ u

(
1 − u

c

)
,

τ
∂J
∂t

+ J = −D∇u+
αu

(1 + βS)2
∇S ,

∂S

∂t
= ΔS +

cu

1 + γu
− S.

(9.37)

(Dolak and Hillen, 2003) estimate values for the parametrs using data
and solve (9.37) numerically on a square spatial domain employing zero-
flux boundary conditions on S and J. Their numerical simulations clearly
display the ring patterns formed during aggregation of cells.

Finite time blow up results for hyperbolic chemotaxis models are given
by (Hillen and Levine, 2003), and (Wang and Hillen, 2008) study shock
formation in a chemotaxis model.

9.4.5 Radiofrequency heating

(Mitra et al., 1995) report experiments on heat transfer in processed meat
and conclude that a hyperbolic model of heat transfer is appropriate.
(Saidane et al., 2005) also consider wave - like heat transfer in biologi-
cal tissues. (López Molina et al., 2008) and (Tung et al., 2009) specifically
develop models for incorporating finite speed of propagation heat transfer
in medical procedures.

(López Molina et al., 2008) treat a (Cattaneo, 1948) model coupled to
the energy equation with a heat source, namely

τ
∂qi
∂t

+ qi = −kT,i ,

ρc
∂T

∂t
= −qi,i + S(x, t),

(9.38)

where T, qi, ρ, c, τ, k are temperature, heat flux, density, specific heat, re-
laxation time, thermal conductivity, and S(x, t) is a heat source. They put
κ = k/ρc and combine equations (9.38) into a single equation for T . The
heat source they use is S(r, t) = Pr0H(t)/4πr4, where r is the radial coor-
dinate in a spherical coordinate system, P and r0 are constants and H(t)
is the Heaviside function. By considering only variation in r the equation
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they employ is

τ
∂2T

∂t2
(r, t) +

∂T

∂t
(r, t) =κ

[∂2T

∂r2
(r, t) +

2
r

∂T

∂r
(r, t)

]

+
Pκr0
4πkr4

[
H(t) + τδ(t)

] (9.39)

where δ(t) is the Dirac delta function. (López Molina et al., 2008) solve
the problem of heat flow according to equation (9.39) outside a sphere of
radius r0 together with the initial conditions

T (r, 0) = T0 ,
∂T

∂t
(r, 0) = 0 r > r0. (9.40)

The boundary conditions they use are

lim
r→∞ T (r, t) = T0 , ∀t > 0, (9.41)

and they assume the thermal conductivity of the electrode (inside r ≤ r0)
is much greater than that of the surrounding tissue which leads them to
propose

τTtt(r0, t) + Tt(r0, t) =
3k
ρc0r0

∂T

∂r
(r0, t). (9.42)

(López Molina et al., 2008) employ a Laplace transform method to solve
(9.39)-(9.42) analytically. They evaluate their solutions using realistic val-
ues of an electrode used in radiofrequency heating in cardiac tissue and
realistic values for the cardiac material. They compare their solutions with
equivalent ones using a Fourier heat conduction model. The Cattaneo -
like equation (9.39) leads to higher initial temperatures, but also to a cusp
temperature profile with distance from the electrode. These temperature
spikes travel through the cardiac tissue. (López Molina et al., 2008) point
out that their spherical electrode is not a realistic shape and the electrical
conductivity of the tissue should be considered as a function of temper-
ature. As they wished to obtain an analytical solution such complexities
had, of necessity, to be avoided.

(Tung et al., 2009) consider a similar model to that of (López Molina
et al., 2008). They derive results for a one-space dimensional model applied
to laser heating of the cornea. The laser beam falls on the entire surface of
a biological tissue and heat propagation in a direction orthogonal to this
surface is studied. A comparison is made with results of a similar model
employing a Fourier heat transfer law. Notable differences are found, in
particular, the hyperbolic model predicts a distinct temperature wave pulse
in time as opposed to the smoothly decaying solution obtained from the
Fourier model.

(Tung et al., 2009) also consider radiofrequency heating of a biological
tissue. Their model is essentially that of (López Molina et al., 2008). They
observe that radiofrequency heating is a surgical procedure employed in ar-
eas such as elimination of cardiac arrhythmias, destroying tumours, heating
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of the cornea, or treatment of gastroesophageal reflux disease. Again, they
find a distinct travelling temperature pulse.

9.4.6 Skin burns

A one space dimensional model for skin burnt by “flash” heating was de-
veloped by (Torvi and Dale, 1994). They allowed for three skin layers, the
epidermis, dermis, and sub-cutaneous layers. By flash heating we envisage
skin burnt by flash fires which arise through combustible chemicals ignit-
ing rapidly, gas leaks, or such as petrochemical fires. The work of (Torvi
and Dale, 1994) used a finite element method on a parabolic equation for
the skin temperature T . J. Liu and his co-workers suggested employing a
Cattaneo-like model for skin burns, see (Liu et al., 1995), (Liu et al., 1999),
(Liu, 2000). (Liu, 2000) shows how the temperature equation may be de-
rived, in general, from an energy balance, but essentially the equation he
uses is based on a Cattaneo model with a chosen heat source, S(x, t). In
fact, with qi being heat flux, τ relaxation time, ρ, c, k density, specific heat,
and thermal conductivity of skin, the model of (Liu et al., 1995), (Liu et al.,
1999), (Liu, 2000) relies on the equations

τ
∂qi
∂t

+ qi = −kT,i ,

ρc
∂T

∂t
= − ∂qi

∂xi
+ S,

(9.43)

where S has the specific form

S(x, t) = WbCb(Tb − T ) +Qm +Qr. (9.44)

In equation (9.44) Wb, Cb and Tb are blood perfusion rate, specific heat
of blood, and the blood temperature in the blood vessels enclosed in the
affected skin. Thus, the model of Liu and his co-workers does take account
of the fact that many blood vessels are passing through the skin layers.
The terms Qm and Qr are a metabolic rate of tissue and a spatial heating
term, respectively. (Liu et al., 1999) and (Liu, 2000) put Qr = 0 in order
to study only surface burning of skin. They suppose there is a steady state
skin temperature Ti before burning takes place and they work with the
variable θ = T − Ti.

For constant Qm, (Liu, 2000) shows equations (9.43) and (9.44) lead to
the equation for the difference temperature θ in the skin

τ

κ

∂2θ

∂t2
+
(ρc+ τWbCb

k

) ∂θ
∂t

=
∂2θ

∂x2
+
( ∂
∂x

ln k
) ∂θ
∂x

− WbCb

k
θ , (9.45)

where κ = k/ρc.
(Liu, 2000) considers skin burning by solving (9.45) numerically with θ

given at x = 0, θ = θ∗, and θ = 0 deep into the body, i.e. at x = L for
some L large. As initial conditions he chooses θ and θt equal to 0 so that
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heating is by the function θ∗ only. (Liu, 2000) considers four specific heating
functions θ∗ = θ(0, t). These are θ∗ = 5◦C, which corresponds to heating
the skin by a hot plate, θ∗ = 5◦C for 0 ≤ t ≤ 5s, then θ∗ = 0◦C thereafter.
He writes that this function will be appropriate for such as eye surgery with
laser heating, or flash burns due to heating over a short time, or possibly
burns through an atomic explosion. He also considers linear and exponential
heating, θ∗ = (0.1◦C)t and θ∗ = 5[1 − exp(−0.1t)]◦C, which represents
controlled skin heating, or sinusoidal heating, θ∗ = 5 sin(0.2πt)◦C. The last
form of heating might model heating due to repeated irradiation or laser
heating.

(Liu, 2000) presents several numerical results for the various skin heating
mechanisms proposed. He concludes that the Cattaneo-like model can have
a big effect on the temperature in skin even a very long time after the
heating period. He shows that the classical model based on Fourier’s law
leads to rapid temperature drop with skin depth. However, with the thermal
wave model a much longer depth of penetration from the thermal wave is
found.

Models which account specifically for the temperature of blood in the
blood vessels in skin and the flow rate of blood therein have been pro-
posed and analysed by (Dai et al., 2008) and by (Zhang, 2009). The model
of (Dai et al., 2008) is a highly non-trivial extension of the model just
described. Thus, (Dai et al., 2008) essentially employ equations (9.43) to-
gether with equation (9.44) for S with the internal heat source terms zero.
They employ these equations in each of the three layers epidermis, der-
mis and sub-cutaneous with continuity of temperature and heat flux across
the interfaces. However, (Dai et al., 2008) allow for rectangular vascular
structures in the sub-cutaneous zone. They have a precise rule for defining
how the blood vessels change cross sectional area, decreasing in area as the
outer skin layer (epidermis) is approached. The blood temperature in the
blood vessels (arteries and veins) is calculated using ordinary differential
equations. The equations connecting heat transfer between the blood vessel
and surrounding tissue have form

∂Tm
b

∂n
= B(Tm

w − Tm
b )

where b, w denote blood and wall, and m = 1, 2, 3 depending on which
blood vessel is chosen. On the outer skin surface (Dai et al., 2008) have the
condition

−k∂T
∂z

= h(Ta − T ) + εσ(T 4
a − T 4),

h, ε, σ being constants with Ta the ambient heating.
The model of (Dai et al., 2008) is solved numerically by a three-

dimensional finite difference method which is unconditionally stable.
Extensive numerical results are provided by (Dai et al., 2008). They con-
clude that the solution to their model exhibits time delay when compared
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to an analogous parabolic approach and their model also yields a lower
tissue temperature.

(Zhang, 2009) employs a dual phase lag model to describe skin burns and
writes equations for the blood flow. His model also includes the velocity
of blood in the equations for blood flow. It is interesting to ask whether
one might need an objective derivative when including the blood velocity
and hence require something like a Cattaneo-Christov model, cf. section
3.1.2. (Zhang, 2009) includes an interesting account of phase lag times for
blood and for biological (skin) tissue. He notes that the phase lag times
significantly increase as the blood vessel diameter increases.

9.5 Exercises

Exercise 9.5.1 Define equations (9.5) and (9.6) on Ω × {t > 0} where Ω
is a bounded domain in R

3 with boundary Γ. Suppose Te and T� are given
on Γ × {t > 0} and Te, T�,qe and q� are given at t = 0. Show that the
solution to this boundary - initial value problem is unique.
Hint. Denote the boundary - initial value problem above by P. Let
T 2

e ,Q
2
e, T

2
� ,Q

2
� and T 1

e ,Q
1
e, T

1
� ,Q

1
� be two solutions to P for the same

boundary data T e
B(x, t) and T �

B(x, t) and for the same initial data
T e

0 , T
�
0 ,Q

e
0,Q

�
0. Define the difference solution θe = T e

1 − T e
2 , θ� = T �

1 − T �
2 ,

qe = Qe
1−Qe

2,q� = Q�
1−Q�

2. Show that if ‖·‖ denotes the norm on L2(Ω),
then

d

dt

(ce
2
‖θe‖2+

τe
2ke

‖qe‖2 +
c�
2
‖θ�‖2 +

τ�
2k�

‖q�‖2
)

= − 1
ke

‖qe‖2 − 1
k�

‖q�‖2 −G‖θe − θ�‖2.

Hence deduce uniqueness.

Exercise 9.5.2 (See (Jordan, 2005b)). For equation (9.17) define an ac-
celeration wave to be one for which ρ is continuous everywhere and ρt, ρx

and higher derivatives are discontinuous across a surface S. By taking
the jumps of equations (9.13) and (9.16) show the wavespeeed V satisfies
V 2 = ν/τ . Take the jump of equation (9.17) and show that a(t) = [ρx]
satisfies a linear ordinary differential equation in t. What can you deduce
from this?

Exercise 9.5.3 Consider the global balance laws,

d

dt

∫
V

cαdV = −
∫

∂V

Jα · n dS +
∫

V

fα dV, α = 1, . . . , N, (9.46)

where cα are the concentrations of the αth biological species, there being
N such species. Here V is a bounded domain in R

m, m = 1, 2 or 3, with
boundary ∂V. Define the terms Jα,n and fα and explain the meaning of
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the three terms in equation (9.46). Introduce a suitable set of constitutive
equations for Jα, with a brief justification, and show how (9.46) may be
reduced to the pointwise system of partial differential equations,

∂cα
∂t

=
∂

∂xr

(
Drs

∂cα
∂xs

)
+ fα(cβ , xk, t), α = 1, . . . , N.

Exercise 9.5.4 (See (Keller and Segel, 1971b).) To model the wavelike
motion of a bacterium such as Escherichia coli in a substrate in a capillary
tube (Keller and Segel, 1971b) developed a chemotaxis model and analysed a
travelling wave. They introduce the following simplified mathematical model
which consists of the system of partial differential equations,

∂a

∂t
=μ

∂2a

∂x2
− ∂

∂x

(
χ
∂ρ

∂x

)
,

∂ρ

∂t
=D

∂2ρ

∂x2
− k(ρ)a,

(9.47)

where a is the density of a biological species at (x, t) and ρ is the density
of attractant. Explain the role of each of the terms in (9.47).

Define what is meant by a travelling chemotactic wave for system (9.47).
Assume a, ρ satisfy the boundary conditions

a→ 0, |z| → ∞, a′ → 0, |z| → ∞,

ρ→ 0, z → −∞, χρ′ → 0, z → ∞,

where z = x−ct, c being a wavespeed. Show that (9.47) reduce to the system

− ca = μa′ − χρ′,

ρ′ = −D
c
ρ′′ +

k(ρ)
c

a .

Now assume D = 0, and μ, k are constant and take

χ = χ0
a

ρ

for χ0 constant.
Replace the boundary condition χρ′ → 0, z → ∞, by the condition ρ →

1, z → ∞, and verify that

a

ρ
− β

α
= −β

α
ρα,

where α = (χ0/μ) − 1 and β = c2/kμ. (Find da/dρ = a′/ρ′ and
solve the equation for a/ρ which arises.)

Finally, assume α > 0 and show that for a constant K

ρ(z) =
1

(1 +Ke−cz/μ)α
, (9.48)
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and

a =
Kc2α

kμ

e−cz/μ

(1 +Ke−cz/μ)1+α
. (9.49)

Exercise 9.5.5 Write system (9.47) in the form

∂a

∂t
= −∂J

∂x
,

J = −μ∂a
∂x

+ χ
∂ρ

∂x
,

∂ρ

∂t
= D

∂2ρ

∂x2
− k(ρ)a.

(9.50)

Generalize this with a Cattaneo like substitution
∂a

∂t
= −∂J

∂x
,

τ
∂J

∂t
+ J = −μ∂a

∂x
+ χ

∂ρ

∂x
,

∂ρ

∂t
= D

∂2ρ

∂x2
− k(ρ)a,

(9.51)

and show this leads to the equations

τ
∂2a

∂t2
+
∂a

∂t
= μ

∂2a

∂x2
− ∂

∂x

(
χ
∂ρ

∂x

)
,

∂ρ

∂t
= D

∂2ρ

∂x2
− k(ρ)a.

(9.52)

Develop a travelling chemotactic wave analysis for system (9.52).
Assume a, ρ satisfy the boundary conditions

a→ 0, |z| → ∞, a′ → 0, |z| → ∞,

ρ→ 0, z → −∞, χρ′ → 0, z → ∞,

where z = x−ct, c being a wavespeed. Show that (9.52) reduce to the system

τa′ − ca = μa′ − χρ′,

ρ′ = −D
c
ρ′′ +

k(ρ)
c

a .

Now assume D = 0, and μ, k are constant and take

χ = χ0
a

ρ

for χ0 constant.
Replace the boundary condition χρ′ → 0, z → ∞, by the condition ρ →

1, z → ∞, and verify that

a

ρ
− β

α
= −β

α
ρα,
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where now

α =
χ0

(μ− τ)
− 1, and β =

c2

k(μ− τ)
.

If μ > τ , assume α > 0 and show that (9.48) and (9.49) continue to
hold.
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with temperature waves, 62
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Heat flow, 187

explosive instabilities, 187
nanoscale, 246
nanowires, 247
nonexistence, 189
phase change, 252
radio frequency heating, 267
reactor fuel rods, 251
semiconductors, 246–248
skin burns, 269
thin films, 248
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Cauchy-Schwarz inequality, 9
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Cattaneo-Christov theory, 233
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definition, 8
Green-Naghdi fluid, 241
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Maxwell-Cattaneo equation, 12
acceleration waves, 100
backward in time, 206
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three dimensions, 13
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Microtemperatures, 33
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Tzou model, 224

Numerical solutions, 137
type II thermoelasticity, 149
type III thermoelasticity, 149

Phase change, 252
hyperbolic, 252
solute transport, 252

Phase field, 253
Phase lag, 17

three lags, 19
two lags, 17

Population dynamics, 260
Porous media, 238

Cattaneo-Christov theory, 239
Cattaneo-Fox theory, 239
thermal convection, 238

Radiofrequency heating, 267
Rigid body, 11

Green-Laws theory, 25
Müller theory, 27
type II theory, 29
type III theory, 31

Second sound, 1
heat wave, 1
Helium II, 2
low temperature, 1
sodium fluoride, 1
solid helium, 1

Shablovskii’s equation, 140
Riemann invariants, 140

Shock waves, 137
liquid helium II, 137
Maxwell-Cattaneo theory, 137
numerical solutions, 138
Shablovskii’s equation, 140
temperature dependent thermal

conductivity, 152
temperature waves, 137
thermal shock, 139
thermal shock development, 139

Skin flash burns, 269
Spatial decay, 202

Generalized Maxwell-Cattaneo
theory, 203

Green-Lindsay thermoelasticity,
208

heat flux, 205
monoclinic materials, 215
stationary thermoelasticity, 213
strong ellipticity, 213
temperature, 204
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Spatial decay (cont.)
triclinic materials, 219
type III thermoelasticity, 211

Stability, 9
Cattaneo-Christov theory, 233
Cattaneo-Fox theory, 228
conditional, 9
definition, 9
Green-Naghdi fluid, 241
nanofluids, 224, 227, 228
porous media, 238
strong ellipticity, 213

Strong ellipticity, 213
elastic coefficients, 213
monoclinic materials, 215
stability, 213
triclinic materials, 219

Thermal convection, 222
Cattaneo-Christov model, 233
Cattaneo-Fox model, 228
Green-Naghdi theory, 241
porous material, 238
Tzou model, 224, 227

Thermal displacement, 52, 97
Thermoelasticity, 38

anisotropic linear equations, 54
Cattaneo-Fox equations, 43
Cattaneo-Fox theory, 41
Cattaneo-Lord-Shulman theory, 38
Cosserat theory, 78
cryovolcanism on Enceladus, 255
functionally graded materials, 79
gradient blow-up, 141
Green-Lindsay equations, 51
Green-Lindsay theory, 48
growth in type II, 168
Hetnarski-Ignaczak theory, 72
hidden variables, 43
isotropic equations, 41
isotropic linear equations, 54
linear anisotropic equations, 51, 57
linear equations, 47

linear isotropic equations, 57
linear voids type III theory, 69
logarithmic convexity, 165
Micropolar, dipolar, affine

microstructure, 72
non-standard problems, 178
nonlinear equations, 46
objective derivative, 42
piezoelectricity, 75
Piola-Kirchoff tensor, 116, 123
pre-stress, 47
two temperatures, 79
type II equations, 54, 117
type II theory, 52, 116
type III equations, 57, 123
type III theory, 56
uniqueness, 165, 170
voids and Green-Lindsay theory, 62
voids and type II theory, 65
voids and type theory, 67
with voids, 57

Thermohaline convection stars, 256
Two temperature theory, 24
Type II theory, 29

rigid body, 29
Type II thermoelasticity, 52

entropy flux vector, 124
Type II thermoelasticity equations,

117
Type III theory, 31

rigid body, 31
Type III thermoelasticity, 56

Unconditional stability, 9
definition, 9

Uniqueness, 165
bounded domain, 173
Graffi method, 174
Lagrange identity method, 171
type II thermoelasticity, 165
type III thermoeleasticity, 170
unbounded domain, 174, 177
weighted energy method, 177
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