Heat Waves

@ Springer



Applied Mathematical Sciences
Volume 177

Editors

S.S. Antman

Department of Mathematics

and

Institute for Physical Science and Technology
University of Maryland

College Park, MD 20742-4015

USA

ssa@math.umd.edu

P. Holmes

Department of Mechanical and Aerospace Engineering
Princeton University

215 Fine Hall

Princeton, NJ 08544

pholmes @math.princeton.edu

L. Sirovich

Laboratory of Applied Mathematics
Department of Biomathematical Sciences
Mount Sinai School of Medicine

New York, NY 10029-6574

Isirovich @rockefeller.edu

K. Sreenivasan

Department of Physics

New York University

70 Washington Square South
New York City, NY 10012
katepalli.sreenivasan @nyu.edu

Advisors

L. Greengard J. Keener J. Keller

R. Laubenbacher B.J. Matkowsky A. Mielke
C.S. Peskin A. Stevens A. Stuart

For further volumes:
http://www.springer.com/series/34


ssa@math.umd.edu
pholmes@math.princeton.edu
lsirovich@rockefeller.edu
katepalli.sreenivasan@nyu.edu
http://www.springer.com/series/34




Brian Straughan

Heat Waves

@ Springer



Brian Straughan

Department of Mathematical Sciences
Durham University

South Road

DHI1 3LE Durham

United Kingdom

brian.straughan @durham.ac.uk

ISSN 0066-5452

ISBN 978-1-4614-0492-7 e-ISBN 978-1-4614-0493-4
DOI 10.1007/978-1-4614-0493-4

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011932675

(© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


brian.straughan@durham.ac.uk
www.springer.com

To
Cole and Caleb






Preface

This book is devoted to an account of theories of heat conduction where
the temperature may travel as a wave with a finite speed. This area of non-
classical diffusion is very topical in the research literature. With the advent
of micro-scale technology there is increasing evidence that thermal motion
is via a wave mechanism as opposed to by diffusion. We survey many of
the theories which have been proposed as candidates to describe thermal
motion as a wave. These theories are linked to solid mechanics (elasticity)
and also to fluid mechanics.

Wave motion in the form of acceleration waves and of shock waves is
discussed. An exposition of numerical work in the area of thermal waves is
also included. Analytical methods for establishing uniqueness, continuous
dependence, growth, spatial decay and other results are described.

Two important chapters are the final two. These focus firstly on where
nanofluids and heat transfer are relevant. Hyperbolic temperature equa-
tions have been linked to the recent and “hot” area of nanofluids. The final
chapter investigates applications of “heat wave - like” ideas to other areas,
particularly those in mathematical biology are also investigated.

I should like to thank a referee for several pointed remarks and sug-
gestions for rewriting which have substantially helped with this book. My
early work on heat waves was influenced greatly by discussions with the late
Dario Graffi of the University of Bologna. I have benefitted over the years
by many discussions on heat waves with several people and I would espe-
cially like to thank Stan Chirita, Christo Christov, Ivan Christov, Michele
Ciarletta, Mauro Fabrizio, Franca Franchi, Pedro Jordan, Kenneth Lindsay,
Angelo Morro, Larry Payne, Ramon Quintanilla and Jaime Mufioz Rivera.
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In particular, I would like to thank Mauro Fabrizio and Ivan Christov for
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Graffi. It is a pleasure to thank Achi Dosanjh of Springer for her advice
with editorial matters.
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1

Introduction

1.1 Heat waves in a rigid conductor

1.1.1 Second sound

First sound is the classical mechanism which allows us to hear, i.e. a
disturbance of pressure (or density) which propagates through a continuous
medium such as air or water. Second sound is a more recent phenomenon
involving the propagation of heat as a temperature wave. The classical the-
ory of heat propagation is via diffusion where a temperature field diffuses
through a continuous body. However, experiments in the late 1960’s and
early 1970’s showed that a thermal disturbance could travel as a wave and
this has acted as an impulse to much subsequent theoretical work in this
area. As (Caviglia et al., 1992) remark thermal pulse propagation has been
experimentally observed under accurate conditions in solid helium (He® and
He?) by (Ackerman and Overton, 1969) (see also the references therein),
in sodium fluoride, (Jackson et al., 1970), (McNelly et al., 1970), (Hardy
and Jaswal, 1971), in bismuth, (Narayanamurti and Dynes, 1972), and in
sodium iodide and in lithium fluoride, see (McNelly et al., 1970). This as-
pect of second sound is a low temperature phenomenon, the experiments
just cited having been performed in the 1-20°K range.

In addition to a thermal wave, the experiments of (McNelly et al., 1970)
and of (Jackson et al., 1970) showed that second sound was also important
in thermoelasticity. They employed a very pure crystal of sodium fluoride
and evaporated manganin heaters and lead detectors onto opposing faces
of the crystal and were thereby able to transmit heat pulses through their

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 1
DOI 10.1007/978-1-4614-0493-4_1, (© Springer Science+Business Media, LLC 2011



2 1. Introduction

sample. These careful experiments revealed the existence of three distinct
waves. There was a longitudinal elastic wave which travels fastest, a trans-
verse elastic wave, and also a thermal wave. When the temperature was
below 8°K, three distinct waves were observed, the fastest being the lon-
gitudinal one, the transverse one next fastest, while the thermal wave was
slowest.

Within fluid mechanics, the effect of temperature upon wave propaga-
tion of a disturbance has a long history. As (Lindsay and Straughan, 1978)
remark, a critical review of the early literature in this field is provided
by (Truesdell, 1953). (Stokes, 1851) investigated the behaviour of distur-
bances in a perfect fluid when the fluid is subject to radiation effects.
(Kirchoff, 1868) and Langevin (see (Biquard, 1936)) studied the behaviour
of disturbances in a fluid taking heat conduction and viscosity into account.
They obtained a fourth order characteristic equation for the wavespeed,
with that of (Kirchoff, 1868) being for an equation of state appropriate
to a perfect gas whereas Langevin adopted an arbitrary equation of state.
(Rayleigh, 1896), eq. (247.18), also obtained disturbance solutions for a
heat conducting fluid without viscosity, his characteristic equation like-
wise being fourth order. For the physics literature on temperature waves
in low temperature Helium IT one might consult e.g. (Peshkov, 1944) or
(Donnelly, 2009). Undoubtedly the article of (Truesdell, 1953) and the
experiments described above inspired much theoretical work on the prop-
agation of a thermal wave (heat wave). Much of this work is described
in the reviews of (Chandrasekharaiah, 1986), (Chandrasekharaiah, 1998),
(Dreyer and Struchtrup, 1993), (Hetnarski and Ignaczak, 1999), (Joseph
and Preziosi, 1989; Joseph and Preziosi, 1990) and (Jou et al., 2010a).
The paper of (Green and Naghdi, 1991) brought a new way of thinking to
the area of heat wave propagation and their article has influenced many
subsequent developments.

A lot of the recent interest in second sound is due to discoveries that it
may have relevance in mundane areas other than low temperature physics.
For example, (Mitra et al., 1995), (Vedavarz et al., 1992) suggest thermal re-
laxation effects may be important in biological tissues, (Lebon and Dauby,
1990) remark that second sound should be detectable in any material, in
addition second sound may be used to dry sand, (Meyer, 2006), it may
be important in nanofluids, (Vadasz et al., 2005), in cooling or heating in
stars, (Herrera and Faleén, 1995), (Falcén, 2001), in eryovulcanology in one
of Saturn’s moons, (Bargmann et al., 2008b), in phase changes, (Miranville
and Quintanilla, 2009), (Liu et al., 2009), in nuclear reactor technology,
(Espinosa-Paredes and Espinosa-Martinez, 2009), in skin burns, (Dai et al.,
2008), in the medical technique of radiofrequency heating, (Lépez Molina
et al., 2008), (Tung et al., 2009), and this technique is important as a
surgical procedure in the elimination of cardiac arrhythmias, tumours, in
heating of the cornea, or in the treatment of gastroesophageal reflux dis-
ease. Additionally, the mathematical theories derived to describe second
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sound, especially that of (Cattaneo, 1948), have been adapted to study
biological problems such as chemotaxis, (Dolak and Hillen, 2003), (Hillen
and Levine, 2003), (Wang and Hillen, 2008), the spread of the hantavirus,
(Abramson et al., 2001), (Barbera et al., 2008), to traffic flow, (Jordan,
2005b), (Bellomo and Dogbé, 2008), and to the control of fish stocks, (Niwa,
1998).

This book looks at a variety of issues connected with heat waves and,
in particular, we do include accounts of the contemporary issues just
mentioned.

To understand the ideas we begin with some simple examples.

Let us consider the classical diffusion equation on x € R, ¢ > 0, i.e.

00 0%0

— =D=——,

ot ox?
As initial data we can consider either a point source, # = N at z =0, or a
finite distribution of 6 at t = 0, i.e.

0(x,0) = No(z), (1.2)

z€eR, t>0. (1.1)

0(z,0) = f(z), zeR. (1.3)

In (1.2) §(x) is the Dirac delta function and we are thinking of f as having a
finite support, i.e. f vanishes outside a finite region. One may solve equation
(1.1) together with (1.2) or (1.3) by using a Fourier transform, see e.g.
(Sneddon, 1995). Then for the initial data condition (1.2) we obtain

N
0(x,t) = oo e " /APty 5, (1.4)

whereas with (1.3) one may show that

ot = = [ e ew| 5L a9

For both solutions (1.4) or (1.5) we see that as soon as t > 0, 6 # 0 every-
where. Thus, we can think of # as having an infinite speed of propagation.
This is thought of as being an undesirable effect and, therefore, we seek to
find a method whereby 6 will propagate with a finite speed of propagation.
In sections 1.2 - 1.12 we present a variety of models which have been stud-
ied widely in the literature to attempt to overcome the problem of infinite
speed of propagation.

At this juncture we simply present three simple ways to help understand
the process. As a first step we might argue that the diffusion coefficient
D in (1.1) should depend on temperature, as it does in real life. Hence,
recollect equation (1.1) arises from the two equations

00 dq 00

=—— and q(z,t) = _Da_:c(
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10

0 2 4 6 8 1'0X 12

Figure 1.1. 0 profile as ¢ increases for solution (1.8). The curves are for
t = 1,2,3,4,5, moving downward at x = 0. Only the right hand part of 0 is
shown, the left hand part being a mirror image in the §—axis. The solution starts
as a point height 60 at t = 0, z = 0. The values of N and h are N = 60,h = 1.

The function ¢ is the one-dimensional heat flux. We now suppose D is a
linear function of 0, i.e. D = h#, for h a constant. Then, instead of equation
(1.1) we find equations (1.6) lead to

00 0 00

—=h—(0— ). 1.

ot 8:6( 8:v> (17)
One may show that if equation (1.7) is posed on the domain {z € R} x
{t > 0} then the solution with the initial condition (1.2) is

N2/331/3 1 71562

(1.8)
Thus, 0 starts at t = 0 with # = N at x = 0 and spreads out as t increases,
keeping 6 > 0, and the edge where 8 = 0 is at time ¢,

/3 B1/3N1/332/3
T1/6

Clearly, 6 is moving with a finite wavespeed, as may be seen from figure
1.1. We see from figure 1.1 that the solution flattens out as t increases but
the temperature is moving with a finite wavespeed.

Another procedure might be to say (1.6)s is too restrictive and to argue
that ¢ should not be proportional to 0, at the same time, but there should
be a slight time lag. Thus, we might replace (1.6)2 by

gz, t+7) = —D%(m,t). (1.9)
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Rather than use (1.9) we expand the left hand side using Taylor series and
retain only the first two terms, to find
0 00
Ta—‘j(m ) +q(e,t) = ~D(@,t). (1.10)
If we now combine this equation with equation (1.6); then instead of the
classical diffusion equation (1.1) we find 6 satisfies

%0 00 0%0
"oz o Vo
A solution to equation (1.11) travels with a finite speed of propagation as
is shown below.

An alternative (third) way is to again argue (1.6)2 does not adequately
describe the situation, and argue that ¢(z, t) is not only not proportional to
00/0z at time t, but instead argue that it depends on the history of 90/0x
over some previous time interval, say (0, ¢). Then we replace equation (1.6)2
by, for example,

(1.11)

t
q(z,t) = _g/o e~ (t=9)/7 %(x,s) ds. (1.12)

This expression means that ¢ depends more on the recent history of 96/0x
since the dependence decays exponentially as one goes further into the past.
When one combines equation (1.6); with equation (1.12), then we again
arrive at equation (1.11).

To see why (1.11) removes the infinite speed of propagation issue, we
consider equation (1.11) on the domain { € R} x {t > 0} with the initial
conditions

0,0 = f2),  So(2,0) = g(a) (1.13)

where f and g are non-zero only on a finite interval (z1,z2), say. The
solution of (1.11) together with the initial conditions (1.13) may be found
by writing the equation as a hyperbolic system. Thus, we put w = 0;,v = 6,
and equation (1.11) is equivalent to

1
_)\2 T - 207
Vo b 2w (1.14)

vy — w, =0,

with A2 = D/7. This is in the classical form of a hyperbolic system

ou; i g Ou;
ot "y

(5 ) (0

+0;=0

where
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At
r =M+ 11 N / T =M+ 2o
v
N
VAN
r=M+x1, NT = =+ 2o
/ N
/ AN
x
Z1 Z2

Figure 1.2. Characteristics for equation (1.15)

(Hyperbolic systems are studied in general in the books of (Dafermos, 2010)
and of (Whitham, 1974).) The determinant equation |a—cI| = 0 yields ¢ =
+A = £4/D/7. This yields the characteristics dz/dt = ¢, i.e. dx/dt = +\.
We follow the classical procedure and multiply by the left eigenvectors of
a to arrive at the characteristic equations

d 1 d
—(w—A)+-w=0 on —z:/\,
dt T dt
(1.15)
d( +)\)+1 0 o de A
—(w+ M)+ —w= n — =-)\.
dt T dt

The characteristic system (1.15) may now be integrated (numerically) to
find @ and 6; for increasing ¢. The solution moves with a finite wavespeed
because it is contained between the limiting characteristics © = At + xo,
x = —At + 1 as shown in figure 1.2.

One may, in fact, derive the exact solution to (1.11) by introducing the
variables T = t/27 and y = 2/2v/7D. Then equation (1.11) transforms to

Orr + 207 =0y, . (1.16)

The initial conditions (1.13) must also be transformed and we denote these
by

00

0(y, T =0) = F(y), T

(y, T =0) =G(y), (1.17)
where F, G denote the functions equivalent to f and g. Then, as (Cattaneo,
1948), p. 96, shows, the exact solution to (1.16), (1.17) is

e—T y+T
0(y,T) = T{F(y—i—T) +Fy—T) —l—/_T I(S,y,T)ds}. (1.18)
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The function I is given by
I(s,y,T) ={G( U{(s—y)* - 17
) =60+ Oy M6 =T
—2TF(s \Il{s— —T},

where V¥ is defined by
U(X) = Jo(VX), (1.20)

with Jp being the Bessel function of zeroth order.

Solution (1.18) shows how the function 6 is limited to the domain within
the characteristics, but also displays dissipation due to the exponentially
decaying in time term.

1.1.2 Notation, definitions

Standard indicial notation is used throughout this book together with the
Einstein summation convention for repeated indices. Standard vector or
tensor notation is also employed where appropriate. For example, we write

ou Ou; Ou;
Uy = 3_3; = ’LL7I ’U,Lt = _8t Z’L = Z 8:1;1
ou; 3 ou
ujmd_u]az—zjaz i=1,20r 3.
x

In the case where a repeated index sums over a range different from 1 to 3
this will be pointed out in the text. Note that

wjn;; =(u-V)u  and  wu;; =divu.

As indicated above, a subscript ¢ denotes partial differentiation with respect
to time. When a superposed dot is used it either means partial differentia-
tion with respect to time, or when dealing with nonlinear fluid theories the
material derivative will often be used. The material derivative is given by,

0 Ofi +u 0 fZ

ot Oz

where u; in the equation above is the velomty field. For linear theories we
may use a superposed dot to denote 9/9t. The exact use will be made clear
in the text.

The letter Q will denote a fixed, bounded region of 3-space with bound-
ary, I', sufficiently smooth to allow applications of the divergence theorem.
The symbols || - || and (-, -) will denote, respectively, the L? norm on €, and
the inner product on L2(2), i.e.

fi=

/ F2av = ||fIF and (f.9)= | fgav.
Q Q
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We sometimes have recourse to use the norm on LP(), 1 < p < oo, and

then we write
1/p
151, = ([ 17wae)
Q

We introduce the ideas of stability and instability in the context of a
nonlinear damped wave equation (which would be defined with suitable
boundary conditions), which is placed into context as an equation for
temperature wave propagation in section 1.2,

2u u
?9? + H% — V(k(u)Vu) =0, (1.21)
where p is a positive constant and « is a known nonlinear function, where
x € O C R?, and where A = 9?/92% + §%/0y* + 8?/02? is the Laplace
operator.

We introduce notation in the context of a steady solution to (1.21),

namely a solution @ satisfying

V(k(@)Va) = 0. (1.22)

(We could equally deal with the stability of a time-dependent solution, but
many of the problems encountered here are for stationary solutions and at
this juncture it is as well to keep the ideas as simple as possible.) Let w
be a perturbation to (1.22), i.e. put u = @ + w(x, t). Then, it is seen from
(1.21) and (1.22) that w satisfies the system
9w ow
o TR {V[r(@+w)V(a+w)] = V[s(@)Va]} =0.  (1.23)
To discuss linearized instability we linearize (1.23) which means we keep
only the terms which are linear in w. From a Taylor series expansion of s
we have
k(14 w) = k(@) + wr' (@) + O(w?). (1.24)
Then, using (1.22), (1.24) in (1.23) we derive the linearized equation
satisfied by w, namely
0? 0
a—tf + “8_15 — V[wk (@) Vi + #(a) V] = 0. (1.25)
Since (1.25) is a linear equation we may introduce an exponential time
dependence in w so that w = e?*s(x). Then (1.25) yields

0%s + pos — V[sk' (@) Vu + r(a)Vs| = 0. (1.26)
We say that the steady solution @ to (1.22) is linearly unstable if
Re(o) > 0,

where Re(c) denotes the real part of 0. Equation (1.26) (together with
appropriate boundary conditions) is an eigenvalue problem for o. For many
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of the problems discussed in this book the eigenvalues may be ordered so
that

Re(o1) > Re(o2) > ...

For linear instability we then need only ensure Re(oy) > 0.

Let wo(x) = w(x,0) be the initial data function associated to the solution
w of equation (1.23). The steady solution @ to (1.22) is nonlinearly stable
if and only if for each € > 0 there is a § = d(¢) such that

[woll <6 = [lw(t)]| <e (1.27)
and there exists v with 0 < v < oo such that
ol <5 = Jim [lw(n)]| = 0. (1.28)

If v = oo, we say the solution is unconditionally nonlinearly stable (or
simply refer to it as being asymptotically stable), otherwise for v < oo the
solution is conditionally (nonlinearly) stable. For nonlinear stability prob-
lems it is an important goal to derive parameter regions for unconditional
nonlinear stability, or at least conditional stability with a finite initial data
threshold (i.e. finite, non-vanishing, radius of attraction). It is important
to realise that the linearization as in (1.25) and (1.26) can only yield linear
instability. It tells us nothing whatsoever about stability. There are many
equations for which nonlinear solutions will become unstable well before
the linear instability analysis predicts this. Also, when an analysis is per-
formed with v < oo in (1.28) this yields conditional nonlinear stability, i.e.
nonlinear stability for only a restricted class of initial data.

We have only defined stability with respect to the L?() norm in (1.27)
and (1.28). However, sometimes it is convenient to use an analogous defini-
tion with respect to some other norm or positive-definite solution measure.
It will be clear in the text when this is the case. When we refer to con-
tinuous dependence on the initial data we mean a phenomenon like (1.27).
Thus, a solution w to equation (1.23) depends continuously on the initial
data if a chain of inequalities like (1.27) holds.

Throughout the book we make frequent use of inequalities. In particular,
we often use the Cauchy-Schwarz inequality for two functions f and g, i.e.

/Qfgd:vg (/Q f2dx) 1/2(/Qg2dx) 1/27 (1.29)

or what is the same in L? norm and inner product notation,

(f;9) < 11 lgll- (1.30)

The arithmetic-geometric mean inequality (with a constant weight o > 0)
is, for a,b € R,
1

ab < %a2+%b2, (1.31)
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and this is easily seen to hold since

2

a

— —+Vab| >0.

(- va) =

Another inequality we frequently have recourse to is Young’s inequality,

which for a,b € R we may write as
alP b|?

PN

p

1
-+
q p

1
~=1, pqg>1. (1.32)
q

1.1.3  Owverview

In the remainder of the current chapter we present eleven ways in which
heat may travel as a wave in a rigid heat conductor. The next chapter
reviews models which couple some of the theories discussed in the rigid
body case to the situation of a deformable elastic body. This thus presents
theories appropriate to thermal wave propagation in thermoelasticity, both
from a nonlinear and a linear viewpoint. Chapter 3 reviews where some of
the ideas discussed in the rigid heat conductor case are coupled to fluid me-
chanics theories. The focus is on nonlinear theories, and both inviscid fluids
(gases) and viscous fluids are considered. Chapter 4 analyses the propaga-
tion of an acceleration wave in a rigid heat conductor, in thermoelasticity,
and in fluid mechanical theories, in each case employing a theory capable
of allowing heat to travel as a wave. Some new results are included in this
book, such as those in section 4.3 on acceleration waves in a rigid body
with microtemperatures, those in sections 4.4 and 4.7 dealing with type II
thermoelasticity or a type III fluid, respectively, or those for the nonlinear
theories of fluid mechanics in section 6.8. The next chapter investigates
thermal shock waves in a rigid heat conductor and also in a thermoelastic
body, always employing a theory where a thermal wave may propagate.
The development of an acceleration wave into a shock wave is also anal-
ysed and a brief review is given of some of the (considerable) numerical
work which has been performed. Chapter 6 focusses on qualitative results
for second sound theories for a rigid heat conductor, in thermoelasticity,
and also in fluid mechanics. The following chapter reviews work on spatial
decay in a rigid heat conductor and also in thermoelasticity. Again, results
appropriate to second sound theories are emphasized. Special attention is
given to recent work in thermoelasticity when the elastic coefficients are
not positive - definite but merely satisfy conditions of strong ellipticity. The
penultimate chapter, chapter 8, concentrates on heat transfer in nanofluids,
thermal convection in nanofluids, and convection in fluid mechanical theo-
ries which allow heat to travel as a wave. Finally, in chapter 9, we report
on recent work specifically using the hyperbolic - like theories which are
discussed earlier in the book. In addition to specific areas in continuum me-
chanics, we review work on convection in stars, heat transfer in a moon of
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a planet, hyperbolic motion of traffic flow, and hyperbolic theories which
have been employed in biology. These include population dynamics, the
motion of a school of fish, spread of viruses, chemically driven movement
of cells, the medical technique of radiofrequency heating of human tissue,
and flash burns of human skin.

1.2 Maxwell-Cattaneo theory

The paper by (Cattaneo, 1948) is one which has had a major influence on
virtually every paper on thermal waves. (Cattaneo, 1948) begins with the
classical diffusion equation for heat, for example in one space dimension,

o7} 020
— =D— R,t 1.
5 922 reR,t>0, (1.33)
with the initial data
0(x,0) = f(x), r € R. (1.34)

(Cattaneo, 1948) observes that the well known solution to this equation is
given by (1.5). He further observes that the solution (1.5) essentially has
an infinite speed of propagation, for example, f might be 0 outside a finite
set but (1.5) implies 0 # 0 Vz € R for ¢ > 0.

If 6§ denotes the temperature of a rigid solid, p its density, c its specific
heat, and k its thermal conductivity, then (Cattaneo, 1948) notes that
equation (1.33) arises from the energy balance law

a0 dq
- _ 1.
pear = "5 (1.35)
together with the Fourier law of heat conduction,
00
=—k—. 1.36
q pe (1.36)

In equations (1.35) and (1.36), ¢ is the heat flux. In equation (1.33) we
would take D = k/pc. In order to obtain a finite speed of propagation,
(Cattaneo, 1948) employs a very interesting argument essentially based on
statistical mechanics for a gas. He argues that ¢ in (1.36) may be replaced
by the relation

06 N 020
oz a0t
The coefficient o is given in equation (17) of (Cattaneo, 1948). To derive a

further relation (Cattaneo, 1948) differentiates (1.37) with respect to ¢ to
obtain

qg=—k (1.37)

dq 520 80

ot~ "ozor T Tonor
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and then forms the relation

dg . ,00 , 90
O TR e T e

To bring this into line with modern terminology we put 7 = o/k(> 0) and
write as

(1.38)

Tot T4 T s T T ra2

The coefficient 7 may be calculated from equations (12), (14) and (17)
of (Cattaneo, 1948) and is a ratio of statistical mechanical averages over
molecular velocities and positions.

At this point (Cattaneo, 1948) argues that one may discard the last term
in (1.39) due to its smallness by comparison to the other terms. However,
if we retain it the resulting system of equations is (1.35) and (1.39) which
may be combined to yield the equation for the temperature

2 2 2 4
20,06 k09 o 98 (1.40)
otz ot  pc 0r2  pck Ox20t?
This equation has some similarity to the equations derived for dual and
triple phase lag theories in section 1.5.

To return to the mainstream argument of (Cattaneo, 1948), on page 93 he
argues that the last term in equation (1.39) may be discarded. His famous
system of equations is then derived from equations (1.35) and (1.39) as

(1.39)

o2 _ %
@4_ e _k%
"ot 7= ox

(Cattaneo, 1948) observes that eliminating ¢ leads to the damped wave
equation
0% 00  k 0%
=7 1.42
"o + ot pc 0x2 (142)
In addition, (Cattaneo, 1948) derives a three-dimensional version of system
(1.41) and studies acceleration waves in his system, cf. chapter 4, section
4.1.
A way to derive equation (1.41) which is often used in the current lit-
erature is to argue to replace the Fourier law (1.36) by a delay equation

gz, t+71) = —k%(m,t) . (1.43)

In other words, the heat flux does not depend instantaneously on the tem-
perature gradient at a point; there is a short time lag before the effect is
felt. One then expands the left hand side of equation (1.43) using a Taylor
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series so that

q(z,t +7) =q(z,t) + T%(I, t) + O(1%). (1.44)
The O(72) terms are neglected and then employing equation (1.43) one may
arrive at equation (1.41). However, care must be taken with this approach
since (Jordan et al., 2008) show that if one combines the energy balance
law (1.41); together with equation (1.43) with no approximation then the
resulting delay equation displays a lack of continuous dependence on the
initial data, i.e. an instability. (For interest, we point out that (Quintanilla,
2008b) and (Quintanilla and Jordan, 2009) show that well posedness may
be recovered if one combines the equation (1.43) with a two-temperature en-
ergy balance equation. The two-temperature theory is explained in section

1.7.)
The Cattaneo system (1.41) and its three-dimensional equivalent,
pc@ _ 9q;
3t a _8171' ’
9g; P 90 (1.45)
T 3t %= 8:01 ’

have been the subject of immenense study in the literature. If one wishes
to study a fully nonlinear equivalent of (1.41) or (1.45) then the coeffi-
cients will, in general, cease to be constants. This was shown by (Coleman
et al., 1982) and subsequently analysed by (Franchi, 1985), (Coleman et al.,
1986), (Morro and Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and
Newman, 1988). An appealing way to see why non constant coefficients
may arise was given by Dario Graffi in (Graffi, 1984), see (Franchi and
Straughan, 1994a). If g denotes temperature gradient then (Graffi, 1984)
noted that for 6 constant, thermodynamics requires

¢:9; < 0. (1.46)
In one space dimension if g = Gy sin wt then equation (1.41)2 becomes
Tq: + q = —kGy sin wt
which has solution
q = A(sin wt — Tw cos wt)

for

kGo

A= oo
T20w2 +1

< 0.
This leads to

q9 = AGowt(sin wt — 7w cos wt). (1.47)
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Equation (1.47) is not compatible with inequality (1.46) since gg may be
positive. This leads (Graffi, 1984) to suggest replacing inequality (1.46) by

q(afq +g) <0
for a suitable o and then setting
q = —k(abq; + g).

Note that the Cattaneo equation (1.41)s still holds, but 7 must be a
function of 6. The above arguments are deduced rigorously using internal
variables in continuum thermodynamics by (Franchi, 1985).

(Morro and Ruggeri, 1988) derive a nonlinear temperature dependent
system akin to (1.45) which has form

F(0)gix + (1L +T(0)0:)q; = —k0;
00(9)916 = —Gii
in which the functions F,I" and cq take the forms
F =k(A9™* 4+ BO"?),
I'= k(5407 + (5 —n)BO"™),  cog=eb?

(1.48)

for suitable constants A, B,n and €;. Notably F' is a nonlinear function
of 6 which replaces the constant relaxation time 7 in equation (1.45)s.
Another notable difference with equation (1.45)s is the presence of the
T'(0)0; term multiplying ¢; in (1.48);. Acceleration waves and shock waves
are considered in a nonlinear system not dissimilar to (1.48) by (Morro and
Ruggeri, 1987).

It is worth observing that the thermodynamic development of (Coleman
et al., 1982) leads to the conclusion that the internal energy, e, and entropy,
7, are not simply functions of temperature, §. They must also depend on
the heat flux, ¢;, cf. also (Franchi, 1985), (Coleman et al., 1986), (Morro and
Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and Newman, 1988).
(Ruggeri, 2001) addresses carefully the question of the thermal inertia, i.e.
the 7¢; term, such that 7 depends on temperature. He provides a physical
explanation for the meaning of the thermal inertia by a development based
on a mixture of simple fluids, see also (Ruggeri, 2010), (Gouin and Ruggeri,
2008), (Ruggeri and Simié¢, 2005).

A recent interesting derivation of the Maxwell-Cattaneo equation is due
to (Ostoja-Starzewski, 2009).

1.3 Guyer-Krumhansl theory

A generalization of equation (1.45)s which accounts for space correla-
tion, being based on the Boltzmann equation, was derived by (Guyer and
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Krumhansl, 1964; Guyer and Krumhansl, 1966a; Guyer and Krumhansl,
1966b). This equation may be written

Tqit + @i = —kb; + TAG + 27k ki (1.49)

Here 7 = TTNCE /5 where Ty is a relaxation time and ¢, is the mean speed
of the phonons. Equation (1.49) is derived by (Lebon and Dauby, 1990) by
means of a variational argument in the context of extended thermodynam-
ics. Another derivation based on hidden variables is presented by (Morro
et al., 1990). A recent derivation using a generalized Coleman & Noll prin-
ciple may be found in (Cimmelli et al., 2010b), cf. also (Triani et al., 2010).
(Morro et al., 1990) allow the coefficients 7 and 27 in equation (1.49) to
be more general and they replace them by p and v. In general, the coeffi-
cients in (Morro et al., 1990), 7, k, 4 and v depend on temperature 6 and
are related to a Helmholtz free energy function 1 of form

U= W(0) + S fOAA,

where A is a hidden variable which coincides with V@ in stationary ho-
mogeneous conditions. (Morro et al., 1990) also refer to the generalization
of equations (1.45) as a generalized Maxwell-Cattaneo system, which has
form

pcot — QZ,l (150)
T+ = —qi — kO i + pAG + v ki -

In the general case, the coefficients in (1.50) are functions of temperature

6, although in their subsequent analysis, (Morro et al., 1990) study a lin-

earized form for which ¢, 7, k, 4 and v are constants. From a mathematical

point of view, the extra derivatives in (1.50)2 usually lead to a greater

degree of stabilization in a heat wave problem.

In the case where (1.50) is linearized about a constant thermodynamic
state, constant temperature, the coefficients are constants and then we may
take the divergence of equation (1.50)2 and eliminate ¢; ; to derive a single
equation for 0 of form

Tett + 915 = kA6l + (/,L + Z/)Aot 5 (151)
where k = k/pc. In one space dimension this is

0%0 00 30 020

Tor U ame = "o

This equation should be contrasted with equation (1.42) which arises from
Maxwell-Cattaneo theory.
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1.4 High order relaxation dynamics

(Alvarez-Ramirez et al., 2006; Alvarez-Ramirez et al., 2008) are two inter-
esting contributions which deal with extension of the Cattaneo equations
(1.41) or (1.45). (Alvarez-Ramirez et al., 2006) observe that one may take
the Laplace transform of equation (1.41) and generalize the class of fluxes
in transform space. They deal with diffusion in general rather than sim-
ply diffusion of temperature. But we here describe their work in terms of
heat transport. If F'(s) denotes the Laplace transform of f(t), cf. (Sneddon,
1995), then

F(s) = /0 T et

Thus, denote by Q(s) and ©(s) the Laplace transforms of ¢ and 6, in ¢ (with
the x variable still present). Then transforming equation (1.41)s, results in
the equation for suitably normalized initial data,

(sT+1)Q(s,2) = —kO.(s,x).

(Alvarez-Ramirez et al., 2006) observe that this equation may be rewritten
as

Q(s,z) = —kF1(s;7)0,(s, x), (1.53)
where the function Fj has form
1
Fl(S,T)— TS—|—1' (154)

(Alvarez-Ramirez et al., 2006) propose extending equation (1.53) to one
with a more general class of functions F'(s), so they put

Q(s,x) = —kF(s)O,(s,x), (1.55)

where, in particular, F' is a rational function of form

b s™ + by 1™ L+ L+ by

F =
(5) §" 4+ ap_18" L+ ...+ ag

(1.56)
for coefficients bg, ..., bm,ag, ..., 0,1, with m < n.

(Alvarez-Ramirez et al., 2006) note that (1.56) leads to a system of equa-
tions in the time domain (rather than the Laplace domain) which contains
higher derivatives than that of the classical diffusion equation. For example,
their equivalent of the Cattaneo system (1.41) has form

00
oS

¢ _ L
S= == (C— kb)),
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The higher order systems which result have much in common with those
which arise from approximation of phase-lag models, as discussed in section
1.5.

(Alvarez-Ramirez et al., 2006) discuss various applications of their theory,
for example to electrical circuits, and interestingly investigate a fractal
version of equation (1.54) of form

1

F(5§T):m7

for 0 <y < 1.

(Alvarez-Ramirez et al., 2008) develops a Lattice-Boltzmann scheme ap-
propriate to Cattaneo’s equation. They show that this approach has some
distinct advantages over other schemes. For example, in numerical approx-
imation of solutions the computer codes are inherently parallelizable. They
extend naturally to higher dimensions provided one chooses a suitable lat-
tice framework. They also discuss their Lattice-Boltzmann approach to the
higher order model of (Alvarez-Ramirez et al., 2006) where F'(s) has a form
like (1.56). Several numerical results are presented in (Alvarez-Ramirez
et al., 2008).

1.5 Phase lag models

There has been much recent interest in developing theories of heat prop-
agation which extend the phase lag heat flux law given in (1.43) and, in
particular, which consider extensions of the Taylor series for the heat flux as
given in equation (1.44). Much of this stems from the work of (Tzou, 1995b;
Tzou, 1995a), and we cite in particular, (Han et al., 2006), (Jou and Cri-
ado-Sancho, 1998), (Quintanilla, 2002a), (Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2007; Quintanilla and Racke, 2008), (Serdyukov,
2001), (Serdyukov et al., 2003) and the references therein. The key would
appear to be the assertion that equation (1.43) be replaced by an equation
of form

Gi(x,t 4+ 74) = —K0;(x,t +7), (1.57)

where 7, and 7 will have (in general) different values. Various truncations of
the Taylor series expansion are considered. For example, (1.57) is replaced
by

qi (Xa t) + qui,t(xv t) = _’{9,1' (X7 t) - HT&,it (X7 t)a (158)

(Han et al., 2006), (Jou and Criado-Sancho, 1998), (Serdyukov, 2001),
(Serdyukov et al., 2003), (Quintanilla and Racke, 2006a), section 4.
Combined with the energy equation for a rigid heat conductor,

peol = —qi, (1.59)
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equation (1.58) yields (for peg = ¢, constant)
ey + eyl = KA + KTAO, . (1.60)

Let us observe that equation (1.60) is equivalent to equation (1.52) ob-
tained in section 1.3 from the Guyer-Krumhansl equations. Thus, one may
assert that in a precise linear sense the Guyer-Krumhansl model and one
form of the approximate dual phase lag model lead to the same equations.
(Quintanilla, 2002a), (Quintanilla and Racke, 2006a) and (Serdyukov et al.,
2003) consider adding a further term in the expansion of ¢;(t + 7;) to the
left of (1.58) so that
2

-
qi(x,t) + 74qi 1 (x,t) + qui,tt(x, t) = —k0;(x,t) — K70 i1 (x,t).  (1.61)

Together with (1.59) this leads to the hyperbolic equation

CT2

quttt + Cqutt + cé’t = kA0 + IiTAet . (162)

A very interesting derivation of equation (1.62) for gas flow through a
package of heat conducting plates is given by (Serdyukov et al., 2003).
These writers use a Cattaneo theory for the plates and a Newton cooling -
like law for the gas, of form

pC(T@tt + 9,5) = FLAH — 51(9 — 99),
pgcqti = B2(6 — 0y),
where 6 and 6, are the temperatures of the plates and gas, respectively.
(Quintanilla and Racke, 2006a; Quintanilla and Racke, 2007) consider a
further extension to (1.61) of form

2

T
qi (X7 t) + qui,t(xa t) + ?q%‘,tt (X7 t)
, (1.63)

= —k0 ;(x,t) — K70 ;. (x, 1) — %H,itt(x,t).

They show that this together with equation (1.59) leads to the following
equation for the temperature field 6,

°1g KT?
Tﬂm + Cqutt + 6915 = kA6l + K,TAot + TAGtt . (164)

(Quintanilla and Racke, 2006a) note that if one employs the approxima-
tion to (1.57) of form
KT?
qi(%,t) + 74qi ¢ (X, 1) = —KO ;(x,t) — K70 4 (%, ) — T@ym(x, t) (1.65)

together with the energy equation (1.59) then one derives the temperature
equation

2
Tl + 0 = KAD + KTAG, + %Aett . (1.66)
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In a pertinent article (Jordan et al., 2008) argue that the dual phase lag
equation (1.57) is equivalent to a single lag model like that of (1.43). We
recall that (Jordan et al., 2008) show that if one does not employ a Taylor
expansion in the equation (1.43) then a non-well posed problem arises.
They infer that the dual phase lag model equation (1.57) also has this
behaviour. This does draw attention to the important point that there is a
major distinction between a true phase lag model and the approximations
which arise through the use of Taylor expansions.

(Quintanilla and Racke, 2008) observe that (Roy Choudhuri, 2007)
proposes an extension to the phase lag equation (1.57) of the form

G(x,t+74) = =K, (x,t+7) — Ko (x, t+ Ty) (1.67)

where 7, T, 7, are positive constants, and « is a thermal displacement vari-
able defined by a; = 6. They refer to this as a three phase lag theory. By
using Taylor expansions in equation (1.67), (Quintanilla and Racke, 2008)
show that coupled with the energy balance law (1.59) one may derive two
further temperature equations of form

cOp + Tyl = K*AO + (K™ Ty + K)AOy + KTABy (1.68)

and

T2C
cly + chettt + qTGtttt = Kk*AfO + (H*Tv + H)Aot + kTAOy . (169)

(Quintanilla and Racke, 2008) show how equations (1.68) and (1.69) may
be related to equations derived earlier in this section from the dual phase
lag theory and also how they may be related to linearized versions of type
IT and type III equations of Green & Naghdi which are discussed in sections
1.10, 1.11.

(Quintanilla, 2009) studies a well posed problem for a three dual phase
lag model for heat transfer.

1.6 Heat flux history models

The models for producing thermal waves which travel with a finite
wavespeed have so far, in some sense, all been based on a time delay be-
tween the heat flux q and the gradient of temperature field V@, or have
involved Taylor expansions which lead to the introduction of a thermal re-
laxation time. Our aim in this section is to introduce the beautiful model
of (Gurtin and Pipkin, 1968) in which they do not employ simply a delay,
but allow the heat flux to depend on the past history of the temperature
gradient. Before doing this we briefly discuss a simple example motivated
by the work of (Abramson et al., 2001). (Abramson et al., 2001) consider
a nonlinear version of the classical diffusion equation (1.33) but allow the
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diffusion term to be spread over the history from a fixed time to the current
time. Thus, they consider the equation

) t 62
8—1; = D/0 ot — s)a—;(x,s)ds +k f(u),

for a nonlinear function f(u). We restrict attention to the case where f =0
so in terms of 6,

oLl ¢ 0%
i D/o ot — s)@(:c, s)ds. (1.70)
This, in general, leads to a finite speed of propagation. In particular, as
(Abramson et al., 2001) observe, the choice ¢(t) = ae™** reduces equation
(1.70) to

%6 00 020

— — = Da—. 1.71

o "ot T V02 (L.71)
This is the same as the equation for € obtained using the Cattaneo theory
in section 1.2, equation (1.42). Thus, having a heat flux q which depends
on the history of the temperature gradient V6 will, in general, lead to a
finite speed of propagation of a thermal disturbance. (Gurtin and Pipkin,
1968) developed a nonlinear theory along similar lines which we now briefly
describe.

1.6.1  Gurtin - Pipkin theory

To recount the theory of (Gurtin and Pipkin, 1968) we need a little of
their notation. Let f be a real function, i.e. f: R — R, then introduce the
history of f, ft, and the summed history of f up to time ¢, ft, by

fi(s) = f(t —s) and fi(s) = /OS f(a)da = /ti fla)da. (1.72)

An influence function A is a continuous, monotone decreasing function with
s2h(s) integrable in s on [0, 00) and then (Gurtin and Pipkin, 1968) define
[l £l to be the norm of a scalar or vector valued function f on [0, 00), given
by

I711? = / L F(5)2h(s) ds.

They then let H be the set of all measureable real-valued functions f on
[0, 00) with || f|] < oo and let H be the equivalent set when f is a real vector-
valued function. Further, H™ is the cone in H of essentially strictly positive
functions and H'T is the cone in HT of essentially strictly monotone in-
creasing functions. (Gurtin and Pipkin, 1968) then introduce a smooth
scalar valued functional on R x H™ x H and define their Helmholtz free
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energy functional 1 (t) by
P(t) = (6,6, 8")

where g is shown to amount to the temperature gradient of 6.

(Gurtin and Pipkin, 1968) postulate for a stationary rigid heat conductor,
an energy balance law

€= —qi;+T (1.73)

and an entropy inequality of form

qi r
> = —.
CRORE

With the free energy (Helmholtz) satisfying ¢ = € — 6n and g = V6 be-
ing the temperature gradient, (Gurtin and Pipkin, 1968) give constitutive
equations of form

U(t) =0(0,0",g"),
n=N(0,0"8"),
g = Qi(0,0",g"),
where N and Q; are functionals on RT x H++ x H.
By using thermodynamic arguments (Gurtin and Pipkin, 1968) deter-

mine precise forms for N and @Q); in terms of the functional V. In fact, they
show

n=—-DyV(0,0" g"),
q=—0Jg9(0,0",&"),
where Dy is the partial derivative of ¥ with respect to 6, and
Jg¥ - v =§0(v)

is the partial Frechet derivative of ¥ with respect to gf. (Gurtin and Pip-
kin, 1968) remark that this was the first ever theory where the heat flux
was determined by the functional for the free energy. (Gurtin and Pipkin,
1968) show some important results regarding what is essentially a thermal
conductivity tensor and investigate material symmetry properties. They
also determine the wavespeeds of an acceleration wave, what they term a
temperature-rate wave, and they show that such a wave has a finite speed.
Complete determination of the amplitude of such a temperature-rate wave
in the one-dimensional case is achieved by (Chen, 1969a), while (Chen,
1969b) determines the wavespeed and amplitude in detail for a curved
wave.

(Gurtin and Pipkin, 1968) also develop a linearized version of their
theory. They show that the internal energy € in that case has form

e=b+cl— /0 B'(5)0"(s)ds.
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They also show that the heat flux and energy balance equations reduce to
gir = —a(0)0,; — /OOO a'(s)0;(t — s)ds (1.74)

and
e = ¢ty + 5(0)0 + /OOO B'(s)0(t — s)(s)ds. (1.75)

The heat flux itself has equation

qi(t) = — /OOO a(s) ;(t — s)ds. (1.76)

(Gurtin and Pipkin, 1968) also note that the choice a(s) = koe™ 7 reduces
equation (1.76) to the Maxwell-Cattaneo equation (1.41)s.

Further interesting results for the class of rigid linear heat conductors
with memory as outlined above are established by (Fabrizio et al., 1998)
and by (Gentili and Giorgi, 1993). (Morro, 2006) derives general jump
relations for discontinuous derivative solutions to the equations for heat
conductors with memory. He derives further thermodynamic restrictions
on the coefficients and analyses in depth the behaviour of singular surface
temperature-rate waves.

1.6.2  Graffi - Fabrizio theory

We commence with a very brief description of work of (Graffi, 1936a) in
a generalized theory of Maxwell’s equations in electromagnetism which in-
volves memory terms. That this might have relevance to temperature waves
is explained by (Fabrizio, 2011), as we detail below.

(Graffi, 1936a) proposes a generalization of Maxwell’s equations which
involve memory terms. In fact, in the medium outside an antenna, (Graffi,
1936a) begins with Faraday’s law

0B

E = —curlE, (177)

where E is the electric field and B is the magnetic induction. He also writes
Ampere’s law with the electric displacement correction of Maxwell, namely

oD .
curlH = v + ], (1.78)

where H is the magnetic field, j is the current density, and D is the electric

displacement current.
For the current density (Graffi, 1936a) proposes

j=oE+ /0 B(t — s)E(s)ds, (1.79)
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where o is the electrical conductivity and the § term represents the his-
tory dependence of the current on the electric field. (Graffi, 1936a) notes
that certain materials display dielectric hysteresis and so proposes the
dependence of D upon E as

D=¢E+ /Ot ~(t, s)E(s)ds. (1.80)

Here € is the usual electric permittivity and the v term represents the
history dependence on the electric field. It is worth observing that a basis for
equations like (1.80) and the analogous one involving B and H is discussed
in detail in a thermodynamic context in the book of (Fabrizio and Morro,
2003).

(Graffi, 1936a) observes that defining the functions A and « by

At) =9t t)+o and a=7/(ts)+B(t—s)
then equations (1.78) - (1.80) lead to the equation

OE !
curl H = €5 + AE + / a(t, s)E(s)ds. (1.81)
0
Furthermore, if B = pH where p is the magnetic permeability, then
equation (1.77) becomes
OH
1E = —p——-. 1.82
cur 5t (1.82)
Equations (1.81) and (1.82) are Graffi’s system for the electric and magnetic
fields E and H.

(Graffi, 1936a) establishes a general uniqueness theorem for equations
(1.81) and (1.82) on an unbounded domain. We observe that if a = 0, i.e.
if v/(t,s) = —p(t — s), then (1.81) is very like the Cattaneo law, equation
(1.45)5. To see that o = 0 is not meaningless we may select the realistic
and frequently made choices

7(t7 S) =7 6_6(t_5)7 6 = 60 6_6(t_5)7
which lead to

a=7"+p=(8—0d) e,

and so when 8 = 7d then a = 0. We further mention that (Graffi, 1928a;
Graffi, 1928b; Graffi, 1999a) also employs equations like (1.80) in elasticity,
and a nonlinear version of (1.80) is used by him, (Graffi, 1936b; Graffi,
1999¢), in an inspiring paper where he explains the Luxemburg effect.
(Graffi, 1936a) explains that (Cisotti, 1911) derives an analogue of
(1.81) and (1.82) but with the generalization of history dependence in the
B = B(H) relationship. However, we note that while (Cisotti, 1911) has a
relation like (1.80) and its analogue involving B and H, he does not derive
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a system like equations (1.81) and (1.82). (Cisotti, 1911) concentrates on
deriving an expression for the energy density.

The relevance of this section on the topic of heat waves is observed
by (Fabrizio, 2011). (Fabrizio, 2011) notes that one could replace E by g
and curl H by —kV# in equation (1.81), with « = 0, to, in fact, obtain Cat-
taneo’s equation. Furthermore, one could adapt the argument of (Fabrizio,
2011) to propose that instead of (1.81) one write for the heat flux

t
Tqt + G +/ a(t, s)qi(x,s)ds = —kV6. (1.83)
0

Then, with the energy balance equation (1.45)1, one has

a0 8qi

Of course, with @ = 0 equations (1.83), (1.84) reduce to the Cattaneo
system, equations (1.45). We shall refer to the system of equations (1.83)
and (1.84) as the Graffi - Fabrizio system.

It is of interest to observe that eliminating ¢; between (1.83) and (1.84)
leads to the following equation for the temperature field 0(x,t),

¢
k
T + 6, + / a(t, s)ls(s) = — A0. (1.85)
0 pc

In the case where a = ag e~“(*~%) one may then find 6 satisfies the equation

k k
T@m + (1 + WT)ett + (CYQ + w)@t = E AGt + u;—c A6. (186)

1.7 Two temperature model

(Chen and Gurtin, 1968) develop another interesting theory in a rigid body
which allows transient behaviour of a heat wave. In this theory they intro-
duce a conductive temperature, ¢, and a thermodynamic temperature, 6.
Their nonlinear development assumes that the internal energy, €, entropy, 7,
heat flux, ¢;, and thermodynamic temperature depend on the constitutive

variables ¢, ¢, ¢ mn, i.e.

€ =€, O ms bmn) N =10 Pm; P mn)
0 =000, 0m,0mn) @ = ¢i(&, Dm, Dmn)-
They have the balance of energy equation
€= —qiitrT
and the entropy inequality
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By using the two above relations (Chen and Gurtin, 1968) deduce that
Y =e—nb =1(0), n=n(0), e=¢€(0),

and
o

They also deduce various relations involving ¢; and derive a reduced entropy
inequality. Material symmetry is exploited and a fully nonlinear theory is
developed.

(Chen and Gurtin, 1968) also derive a linearized theory, linearized about
a fixed reference temperature ¢o. With ¢ = d¢/06 the basic equations then
become

cty = —Gii
¢ = —ko,, (1.87)
0= ¢ - G/A¢7

for constants k,a. A uniqueness theorem is established and (Chen and
Gurtin, 1968) further investigate wave motion for their theory.

We have already mentioned in section 1.2 the developments by
(Quintanilla, 2008b) and by (Quintanilla and Jordan, 2009) involving equa-
tion (1.87) and time lags. It is instructive to recall them at this point.
(Jordan et al., 2008) showed that the phase lag constitutive theory

qi(x,t+7) = —k0 ;(x,t)

coupled with the classical balance of energy equation leads to an improp-
erly posed problem. However, (Quintanilla, 2008b) and (Quintanilla and
Jordan, 2009) study what amounts to (1.87) but with the equation (1.87)
replaced by

qi(x, t+71) = —koi(x,1).

The analyses of (Quintanilla, 2008b) and (Quintanilla and Jordan, 2009)
show that this is now a well posed problem.

1.8  Green-Laws theory

The starting point of (Green and Laws, 1972) is to postulate a new entropy
inequality. Suppose B is a rigid body and let P C B be any sub-body which
has boundary 9P. (Green and Laws, 1972) assert that

d pr qin;
— pndV—/—dV—l—jg —dA >0
dt P P ¢ oP d)

where p, 1,7, q; are density, entropy, external heat supply, and heat flux. In
addition, n; is the unit outward normal to OP. The quantity ¢ is a new
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function which is specified by a constitutive equation. (Green and Laws,
1972) require that ¢ = 6, the temperature, in equilibrium. The pointwise
version of the above entropy inequality may be written as

P — pr + o — q;’ >0, (1.88)

where 1 = 9n/0t.
For a rigid body the balance of energy equation is

pE~+ qii = pr (1.89)
where € is the internal energy function. Using the Helmholtz free energy

function ¢ = € — n¢ the inequality (1.88) may be transformed to

—p(¢ +nd) — % > 0. (1.90)

As constitutive theory (Green and Laws, 1972) suppose that

Y,n,¢ and ¢
are functions of the variables
0,0, and 6.
Inequality (1.90) is now expanded using this constitutive theory to obtain

— p(wo +ne)0 — p(v; + 1dy)0

— p(ve, +nd0,)0.; — % (0., + 030, + d9,.0,i1) > O.

(Green and Laws, 1972) now argue that the linearity of 0, 91 and 6 ; in
inequality (1.91) allow them to select these quantities arbitrarily, balancing
the energy equation (1.89) by a suitable choice of r. Since they may be
selected arbitrarily, keeping other quantities fixed, inequality (1.91) may
be violated unless the coefficients of these terms vanish. Thus (Green and
Laws, 1972) deduce that

op 09 _

(1.91)

== =0, 1.92

20 " o6 (1.92)
oY 0¢ q 0

p(aoﬁi +778971_) + iy i 0, (1.93)
96 06

qi 20,1 + g 90 0. (1.94)

In addition, there remains the residual entropy inequality

—p(tbo + o) — %¢09,i > 0. (1.95)
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From (1.94) (Green and Laws, 1972) deduce that for ¢; # 0,

¢
00 ; =0
and so one must have
¢ = ¢(6,9). (1.96)

The function ¢ so defined is often referred to as a generalized temperature.
(Green and Laws, 1972) then deduce that

i X (1.97)
b4
and then further,
94 _ 9q;
20; 00,
Thus, if g; satisfies a linear relation in 6 ,., say
q; = —m-j(6‘7 9.)9)]‘ N (198)

then necessarily the conduction tensor k;; is symmetric.
(Green and Laws, 1972) define (thermal) equilibrium in the rigid body
to be when 6 = 0 and 6 ; = 0. They require

¢lp =10

where | denotes thermal equilibrium and they then deduce that

0

901 _1,

00 |
(Green and Laws, 1972) derive further results in equilibrium, in particular

o o
= —— i = O7 = O
e=—-25.  ale 90,
and
(94| | 94
00|p 00|k

is a positive semi-definite tensor.
(Green and Laws, 1972) show that their energy equation in a linearized

theory becomes
’ . [0g; . o,
)| 0 0+ — 0,; =

plos) i+l |+ { 2 o} = g
This is effectively a damped linear wave equation, and so permits the
passage of a thermal wave.

A fully nonlinear acceleration wave theory for the (Green and Laws,
1972) model was developed by (Lindsay and Straughan, 1976).

0 i —pr. (1.99)

+p(éne.,)
E E
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A further development of the ideas of allowing higher derivatives of 6 to
be present in the constitutive theory is due to (Batra, 1974; Batra, 1975)
and also (Meixner, 1974). They based their work on the analysis of (Miiller,
1971a; Miiller, 1971b).

1.9 Temperature dependent conductivity

We recall that the classical diffusion equation (1.33)

00 0%0

— =D,

ot Ox?
leads to what is essentially infinite speed of propagation. In terms of energy

balance and heat flux we see that this equation is equivalent to equations
(1.35) and (1.36), i.e.

reR,t>0,

Y 90
pea =~

- =—k—, 1.100
ot~ oz 1T "oa (1.100)
with D = k/pc.

One effective way to achieve a finite speed of propagation for 6 is to
allow D to depend on the temperature 6 itself. Since in reality the thermal
conductivity k£ does depend on temperature this is realistic. Thus, with

D = D(0), equations (1.100) lead to

% _ (%(D(e)%) _ (1.101)

The solution to this equation when D = Dy0™ /07", for m, Dy, 6y positive
numbers is conveniently located in (Murray, 2003a), pp. 402-405 (although
Murray applies the equation to the phenomenon of insect dispersal). For
this choice of D we might consider the initial value problem

0 _ Dy 0 (.00
ot oy Ox ox
0(x,0) = No(z),

>7 rzeR,t>0,
(1.102)

where N is the total initial temperature and 6(z) is the Dirac delta function.
(Murray, 2003a) gives the solution to this as

r 1/m
0(x,t) = % [1_<r0)\(t))1 - lel S moA(®),
0, lz| > roA(t),

where A(t) and the constants ro and ¢y are given by

A= (L v NP(m~! +3/2)  m
~\t YT ml(m 1) T 2Dg(m +2)
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with T' being the gamma function, cf. (Sneddon, 1980), p. 21. Clearly,
the temperature 6 “spreads out” with a finite wavespeed, the edge of the
temperature field being located at roA(t).

A common case is a linear thermal conductivity for which m = 1, and

then
é 2
g— 20 (1__*
$1/3 cot?/3

where the constants 6y and ¢, may be calculated from the general solution.

1.10  Type II rigid body

(Green and Naghdi, 1991) do not have a generalized temperature ¢ which
depends on 0 and 6. Instead they state T is an empirical temperature and
then define a positive scalar valued function 6 by

0=0(T,a), 6>0, 00/0T >0,

where the variable « is called a thermal displacement and is defined by

a(x,t) = /t T(x,8)ds + ag . (1.103)

to
We only deal with the case of a rigid body and so there is no need for the
distinction between coordinates X in the reference configuration and x in
the current configuration. (Green and Naghdi, 1991) define the variables
B; and ~; by
_ Oa - or
a 8171 ’ V= 8171 '
The premise of (Green and Naghdi, 1991) is to use a balance of entropy
equation

Bi (1.104)

pi) = ps + p§ — Pi (1.105)

where p,7,s are the density, entropy, and an external supply of entropy.
The vector p; is the entropy flux, p; = ¢;/6, where ¢; is the heat flux. In
addition ¢ is an intrinsic supply of entropy which requires a constitutive
equation and must be determined during a thermodynamic process.

(Green and Naghdi, 1991) introduce a Helmholtz free energy function 1)
and employ a thermal cycle argument to derive a balance of energy equation
from the equation (1.105). Their energy balance equation has form

pth + pnf) + pil s + phE = 0. (1.106)

To define heat flow of type II in a rigid body, (Green and Naghdi, 1991)
specify the constitutive theory that

Y, 0,m,p;  and ¢ (1.107)
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depend on the independent variables
T,Oé,OéJ' = 51 (1108)
They then expand the energy balance law (1.106) as

p(r +007)T + p(ta + n0a)T + p(vs, + 103, )7
+ pi(ifr + Bibla + 0, 8:,5) + pfE = 0.
By requiring this to hold for all heat flows and employing the independent

externally supplied entropy s of equation (1.105) they are then able to
deduce from equation (1.109), since T',~;, 3;; are linear, the relations

00

(1.109)

a5, =0 Yrtnbr =0, pibr+pus =0, (1.110)
and the residual from (1.109) is
p(ta +n0a)T + pififa + pt§ = 0. (1.111)
The first of (1.110) shows 6 cannot depend on «; and so
0 =0(T, o). (1.112)

From (1.110)2,3 we derive expressions for the entropy n and the entropy
flux p; of form

wT wai
- T = i 1.113
o P . ( )

The equation (1.111) then yields the instrinsic entropy supply £ as

€ = g (Vo +100) = i B (1114)
The fully nonlinear equation governing heat flow of type II in a rigid body
is then derived by employing equations (1.112) - (1.114) in the entropy
balance law (1.105). A complete nonlinear acceleration wave analysis for
this was performed by (Jaisaardsuetrong and Straughan, 2007) and details
are given in section 4.2.1 of this book.

(Green and Naghdi, 1991) do not employ their nonlinear theory. Instead,
they investigate special cases leading to linear theories. They consider the
special case

Y=1(0)=cd -0 lnG)—i—%kaﬂayi, 0 =a+ 0T, (1.115)

for a,b,c positive constants. This leads to the linear equation for the
variable « of form

k
chéi = r + Ta Aa, (1.116)

for a supply function r. This is clearly a wave equation and the thermal
displacement then travels as a wave with finite speed with no dissipation.
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This is known as a theory without heat dissipation. The second special case
of (Green and Naghdi, 1991) is where

0=a+bl+d«
(1.117)

1 1 1
V= Shaio - 5an2 — byaT — 5bgT?.
They show that this leads to a wave equation with dissipation, of form

k
%(b2d+b3d) :T+§Aa. (1.118)

1.11 Type III rigid body

The difference between heat flow of type III and heat flow of type II ma-
terials is that the variable v; = T; = & ; is added to the list (1.108). Thus,
(Green and Naghdi, 1991) define heat flow of type III in a rigid body by
stating that

Y,0,n,p; and & (1.119)
depend on the variables
T,a,3; and ;. (1.120)
The list (1.120) can alternatively be thought of as
T, o,a;T; or T, 0,0 ;0.
The energy balance law (1.106) still holds and substitution of the list

(1.120) and expanding the time derivatives leads to the equation

p(Wr +107)T + p(Ya + 00a)T + p(thy, +04,)% + p(Vg,

(1.121)
+00s,)vi + pi(ViOr + Bi0a + 0,750 + 05, 05,:) + pd§ = 0.

(Green and Naghdi, 1991) next employ the fact that T, 5;, vij ,Bi,; appear
linearly in (1.121) and may be selected arbitrarily using the external en-
tropy supply s to balance equation (1.105). In this way they deduce the
relations

00 o0 o o o0
9 _ 99 _, % _, 9%, 99 _ 1.122
i 0 9B 0 i b or ar " ( :
from which it follows that
0= G(T, Oé), w = w(Ta a, 61) (1123)
Then, from (1.122)4,
n=—YT _ BT, a8, (1.124)
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What remains from equation (1.121) is the relation

p(a +10a)T + pihs,vi + pi(Vibr + Bifa) + phE = 0. (1.125)

The (in general genuinely nonlinear) equation of heat flow is then obtained
using (1.123) - (1.125) in the entropy balance equation (1.105) and (Green
and Naghdi, 1991) show this is

P00 — pr + qii — p(Ya +10a)T — phg,vi = 0. (1.126)

I am not aware of where this (fully nonlinear) equation has been studied in
the literature. At this point (Green and Naghdi, 1991) develop a linearized
version of their theory.

(Green and Naghdi, 1991) continue by considering the special case where

— _k d2 b3
O=a+bT+da, =3P - 5

¢ = —(a18; + a27i), nb = by + b3T,

a? — byaT — =T72,

the coefficients a, b, etc. being constants. Then, equation (1.126) may be
shown to reduce to the linear equation
P byt + b3it) = pr + a1Aa + axAd, (1.127)

where r = fs. It is interesting to observe that if we differentiate this equa-
tion with respect to ¢, then an equation of the same form results for the
temperature T'. Thus, the temperature satisfies the same linear equation as
was found from Guyer-Krumhansl theory in section 1.3, equation (1.51),
or from dual phase lag theory in section 1.5, equation (1.60).

It would appear that there may be a lot of potential from equation
(1.126). For example, if we assume

k
Y= 5 i, +G(T, ) (1.128)
for an arbitrary nonlinear function G, then
GT (Tv Oé)
=———1 2 = H(T 1.129
iy = H(Ta) (1.129)
where H is defined as indicated. Suppose also
¢ =—A(T,0)a; — B(T,a)da,; . (1.130)
Then equation (1.126) still remains nonlinear and leads to
kp O
0H, — pG, — pHO,)d 0Hré — — — (a0
(p p pHOo)G + pbHTd — === (aiai) (1.131)

= (AOQZ')’Z' + (Bd,i),i + pr.

This is a damped nonlinear wave equation with the dissipative spatial
damping term (Bd ;) ;.
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1.12  Microtemperatures

In this section we describe a theory for temperature wave propagation in
a rigid heat conductor which allows for variation of thermal properties at
a microstructure level. As we discuss in chapter 8 nanofluids are preva-
lent in the heat transfer industry. These are typically very fine particles
of a metallic oxide held in suspension in a carrier fluid, cf. (Vadasz et al.,
2005). The possibility that the suspension might have a different thermal
microstructure to the carrier fluid should therefore be investigated. How-
ever, nanostructures in solids are also important. Cryogenic liquids are
heavily involved in space research and such liquids must be stored in stain-
less steel vessels known as run-tanks, see (Jordan and Puri, 2001). The
large thermal stresses placed on the solid vessels may be associated with
thermal microstructure effects and hence there is certainly a need for a
well structured theory for a rigid solid which allows for microtemperature
effects.

The theory we describe is based on the type II thermodynamics of (Green
and Naghdi, 1991) and was explicitly developed by (Iesan and Nappa,
2005). For a three-dimensional rigid solid this theory involves four equa-
tions representing the balance of entropy per unit mass, but also the first
entropy moment vector, 7;, ¢ = 1,2 or 3. Thus, the model consists of two
balance equations, namely

an 08
"o = Doy + ps + p€, (1.132)
and
Oni  OSki
P = O +S; — H; + ps; + p&; . (1.133)

In these equations p,s,&,s; and & are the density, the external rate of
supply of entropy per unit mass, the internal rate of production of entropy
per unit mass, the first moment of the external rate of supply of entropy,
and the first moment of the internal rate of production of entropy. The
terms S; and Si; are the entropy flux vector, and the first entropy moment
tensor, while H; is a so called mean entropy flux vector.

(Iesan and Nappa, 2005) assume that at a given point x there is a set
of microcoordinates ¥; and the absolute temperature ' at x may be writ-
ten as a linear combination of a temperature function 6(x,t) and three
microtemperatures T;(x, t) such that

0 (x,t) = 0(x,t) + Ti(x,t)%; . (1.134)

By introducing an internal energy function € and a Helmholtz free energy
function ¢ = e —On—T;n;, (Iesan and Nappa, 2005) propose an energy bal-
ance law and are able to deduce restrictions on the constitutive functions.
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They start by assuming that the functions
¥, n, M4, S, Sij, Hi, & and &
depend on the variables
0, T, 04,855 = X (1.135)

where o and 3; are thermal displacement variables with

t t
a:/ 0(x, s)ds + o, ﬁi:/ T;(x, s)ds + 3.
to

to

Hence &« = a4 = 0 and ,6’1 = Bir = T;. Since the list (1.135) involves
&, a;, B; and B; 5 this is analogous to a type II theory.
The constitutive theory deduced by (Iesan and Nappa, 2005) has form

oy 2 2 2

- : : (1.136)
§= _E<paTj_Hi+p£i)Ti

where 1, H; and &; depend on the list x given by (1.135).

Thus, the governing set of nonlinear equations is (1.132) and (1.133)
together with (1.135) and (1.136).

(TIesan and Nappa, 2005) further develop a linearized theory for a rigid
heat conductor involving microtemperatures. This they do for both a fully
anisotropic theory and an isotropic one.

The anisotropic equations may be written
ad — Kijoij + MijBij = ps, (1.137)
BijBj — DijrsfBr,sj + Mijo; = psi,

where a is a constant and Kjj;, M;j;, B;; and D;j., are constant tensors
which satisfy the symmetries

Kij = Kji;, Bij =Bji, Dijrs = Dygj. (1.138)

The tensor M;; is non-zero but not necessarily symmetric. We shall suppose
B;j and K;; are also positive-definite.
In the isotropic case the relevant equations are

att — KAa + mﬁ'i,i = ps,

) . (1.139)
bBi — de AP — (dy + d3) B 5i + mce; = ps; .

Structural stability and convergence results for a solution to equations
(1.137) are given by (Ciarletta et al., 2010).
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1.13  Exercises
Exercise 1.13.1 Show that using q as given by (1.12) together with
equation (1.6)1 leads to 0 satisfying (1.11).

Exercise 1.13.2 Show that (1.14) defines a hyperbolic system and verify
that the characteristic equations are given by (1.15).

Exercise 1.13.3 Use the Fourier transform,

F(s) = \/% /jo f(x)e % da,

and the inverse transform,

1 e :
T) = — F(s)e"**ds,
fa) == [ P
to show (1.5) is the solution to equation (1.1) together with the initial data
(1.3).

Exercise 1.13.4 From the viscoelastic model
a0 ¢ 020
e :D/O qS(t—s)@(m,s)ds

take ¢(t) = ae™** and show 0(x,t) satisfies the damped wave equation

0%0 06 %0

Suppose (1.140) holds on {x € (0,1)} x {t > 0} with
6(0,1) = 6(1,1) = 0.

Develop a Fourier series solution of form
oo oo
O(z,t) = E bjsink;x e’ + E ajcosk;x e’
Jj=1 j=0

Show that the solution will always decay in time and that j*> > o/ (47%D)
produces oscillatory damped modes.

Exercise 1.13.5 Verify that (1.18) is a solution to (1.16) and (1.17).

Exercise 1.13.6 Let Q be a bounded domain in R? with boundary I'. Con-
sider a solution to the Graffi - Fabrizio system of equations (1.83) and
(1.84) on Q x {t > 0} with 6 prescribed on T, and 0,q; given for t = 0.
Show that a solution to the boundary-initial value problem so defined is

unique, (cf. (Graffi, 1936a)).
Exercise 1.13.7 Heat transport in a bar is governed by the equation

89_D08(980), 1.141)

dz \ Oz

E_G_o(?z
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where 0 is the temperature of the bar. Suppose the temperature is T at the
point x =0 at time t = 0. By differentiation show that

a CC2

solves (1.141) and thereby determine the constant b.

Sketch the curve 0(x,t) and suppose that the total temperature remains
constant to determine the constant a and hence find the solution to (1.141).
(By the total temperature we mean the value of the integral of 6(x,t) over

its x range for a fized t, and this is equal to the constant T'.)

Exercise 1.13.8 The classical diffusion equation

00 020
T Dy 922 (1.143)
has been used to model the heat distribution in a bar. In this equation 8(> 0)
represents the temperature of the bar. However, the solution to equation
(1.143) has a major defect in this context. Explain the defect and suggest a
method to remedy this.
The distribution of heat in a bar has been described by the equation

99 Dy D (1,500
% = g o (9 o )- (1.144)

Suppose the temperature is T at the point x = 0 at time t = 0. By
differentiation show that

a £C2 3

solves (1.144) and thereby determine the constant b.

Sketch the curve 6(x,t) and suppose the total temperature remains con-
stant to determine the constant a and hence find the solution to (1.145).
(The total temperature is as defined in exercise (1.13.7).)

Equation (1.144) is restricted to one spatial dimension whereas in prac-
tice heat travels in more than one - dimension. Suggest a modification of
(1.144) which will apply in the two spatial dimensional case. Do you think
the equation you have suggested is solvable?

Exercise 1.13.9 Professor A proposes that heat in a bar is distributed

according to the equation
00 0 0 \™ 00
S =D {(%) £] (1.146)
together with the inital condition

0(z,0) = Té(z). (1.147)
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You may assume the solution to (1.146), (1.147) is

b 2 Um
O(x,t) = % [1 - <7’0/\(t)) :| ozl < roA(t),
0, |z] > roA(t),

where \(t) and the constants ro and ty are given by

£\ /@™ _ ND(m~' +3/2) . m
(t0> » T R0 T (m 1+ 1) T 2Dg(m +2)°
Sketch this solution.

Professor A has two long bars of different material. He heats bar 1 in the
point x = 0 with temperature T at time t = 0 and supposes it satisfies his
model with m = 1. He heats bar 2 at the same point at time t = 7T > 0,
with this bar satisfying his model with m = 1/2. Which heating effect will
reach an observer a long way away first? (You must explain your reasoning
carefully using the above solution.)

A(t) =
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Interaction with elasticity

2.1 Cattaneo theories

2.1.1 Cattaneo-Lord-Shulman theory

In sections 1.2 - 1.12 we have seen various ways of modifying the classical
diffusion equation in order to allow heat to be transported with a finite
wavespeed. The assumption was that the body would remain rigid. How-
ever, in many cases this is too strong since the body itself deforms or
vibrates. Thus, in this chapter we wish to look at ways of coupling heat
propagation in the case where the body is an elastic solid. This is the
domain of thermoelasticity and, in particular, we shall review theories of
thermoelasticity which allow temperature to travel as a wave with finite
speed.

It would appear that the first attempts to couple elasticity with a way
in which temperature can travel with a finite wavespeed are due to (Lord
and Shulman, 1967) and to (Popov, 1967), as is observed in the short but
very informative review by (Jordan and Puri, 2001). (Jordan and Puri,
2001) also derive a very useful comparison of the classical theory of ther-
moelasticity with two theories capable of allowing temperature to travel
with a finite wavespeed. Extensive reviews of the early literature on ther-
moelasticity with temperature waves are by (Chandrasekharaiah, 1986),
(Chandrasekharaiah, 1998) and by (Hetnarski and Ignaczak, 1999), and
the recent book by (Ignaczak and Ostoja-Starzewski, 2009) concentrates
on thermoelasticity with temperature waves, although the overlap with the
current book is minimal.

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 38
DOI 10.1007/978-1-4614-0493-4_2, (© Springer Science+Business Media, LLC 2011
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To understand the situation we commence, as do (Lord and Shulman,
1967), with the classical theory of linear thermoelasticity. (Lord and Shul-
man, 1967) consider the isotropic case, but it is no more difficult to begin
with the anisotropic situation and this we do now. In terms of the elastic
displacement, u;, and the temperature field, 6, the equations of classical
linear thermoelasticity for an anisotropic and inhomogeneous body may be
written,

pli; = (Cijknur,n),j — (aij0) ; + pfi,

. (2.1)

el = —a;ju; j + (kikbr),i + pr,
where 6 = 6 ; and standard indicial notation is used. Here p, ¢, f; and r are,
respectively, the density, density multiplied by the specific heat, externally
supplied body force, and external supply of heat. The coefficients ¢;;xn (x, t)
are the elastic coefficients, or elasticities, k;;(x,t) denote the components
of the thermal conductivity tensor, and a;;(x,t) are the components of
a coupling tensor connecting the equations of elasticity to those for heat
transport in the solid. We observe immediately that if we set a;; =0, f; =0
and r = 0 then system (2.1) decouples into the two linear equations

pii; = (Cijkntk,n),j (2.2)
and
= (kib1).i - (2.3)

Equation (2.2) represents the standard equations of linear elasticity which
under appropriate conditions on the elasticities c¢; i, allow elastic wave
propagation and define a hyperbolic system, cf. (Knops and Payne, 1971b),
(Knops and Wilkes, 1973). On the other hand, equation (2.3) for ¢ > 0 and
k;r a positive-definite tensor, is the classical parabolic equation for the dif-
fusion of #. Thus, 6 effectively has an infinite wavespeed as we saw in section
1.2. Thus, for the combined system (2.1) we expect a coupled hyperbolic
- parabolic system of partial differential equations with the temperature
field diffusing with infinite wavespeed.

(Lord and Shulman, 1967) proposed combining the Cattaneo approach
(Maxwell-Cattaneo theory of section 1.2) together with the standard devel-
opment of elasticity to derive a Cattaneo - type theory of thermoelasticity
as we now describe. The approach of (Lord and Shulman, 1967) begins with
the full nonlinear equations but they are mainly interested in developing a
linear theory since they begin with ... “small strains and small temperature
changes”. With €,n,t;;,q; and e;; = (u;; + u;;)/2 being the internal en-
ergy, entropy, stress tensor, heat flux and strain tensor for the elastic body,
respectively, (Lord and Shulman, 1967) write the energy balance law as

p97’] = _Qi,i y (24)
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where 7 and € are connected by the equation
pé = pbn + t;jéi5 , (2.5)

superposed dot being the partial time derivative, 9/0t. (Lord and Shulman,
1967) propose the general anisotropic equation for ¢; which generalizes
Cattaneo’s equation (1.45)s, namely,

Aijdj +aq +q = be,z + Bzye VR (26)

where the coefficients A;;,a,b and B;; depend on the material comprising
the elastic body. They are principally interested in deriving an isotropic
version of their theory and so note that in the isotropic case equation (2.6)
may be replaced by

T¢ +qi = —k@)i . (27)

(Lord and Shulman, 1967) call 7 the relaxation time, and they say it “rep-
resents the time-lag needed to establish steady - state heat conduction in
an element of volume when a temperature gradient is suddenly imposed on
that element”.

(Lord and Shulman, 1967) proceed to introduce the Helmholtz free
energy function 1 = ¢(e;;,0) = € — nf and then note

3¢ w oY

—¢— éw—i- 50 9 (2.8)

and
p=é—nb—nf. (2.9)
Equations (2.8) and (2.9) are employed in equation (2.5) to see that

tijéi; =p(é — 6)

=p(t) + nf)
) )
—p(a AP [;g 0+ 9) (2.10)

From equation (2.10) (Lord and Shulman, 1967) infer that the stress tensor
and entropy have the forms
o oY

= tij = :
" 89 J paeij

(2.11)

(Lord and Shulman, 1967) then employ the relation (2.11); in the energy
balance law (2.4) to derive the equation
0?1 0?1
o0 3 0) = qi- 2.12
de;00 7 " gz ) T 0 (2.12)
Let us observe that equations (2.7) and (2.12) (with replacement of ap-
propriate time derivatives) could form the basis for a nonlinear Cattaneo -
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Lord - Shulman theory. (Lord and Shulman, 1967) do not pursue this
line and proceed to combine equations (2.7) and (2.12) linearizing in the
process. In this way they derive the linearized energy balance law

2

—p0thgo(0 + 76) — p ———
pge (0 + 70) — p Der,00

(Lord and Shulman, 1967) then proceed to develop their theory in the
isotropic case and expand about a constant temperature 6y and expand
in terms of the strain invariants of elasticity theory. In this way they pro-
duce their famous system of equations for isotropic thermoelasticity. Their
equation for the displacement wu; is the isotropic equivalent of equation
(2.1); and coupled to the isotropic equation which arises from (2.13) the
Lord-Shulman system of equations is

o . (2.14)
pc(T0 + 0) + (BX + 2p)abo(TEpy + érr) = EAD.

In equations (2.14), ¢ is the specific heat and A, o are the coefficients which
arise in isotropic elasticity, the Lamé moduli, the connection with the elastic
coefficients c¢;;x, being

Cijkh = A0ijOkn + p(0ikdjn + dindjk) -

(Lord and Shulman, 1967) write their equations in non-dimensional form
and then solve a one-dimensional problem which corresponds to zero initial
conditions in a half space with the velocity du/dt experiencing a discontin-
uous input at time ¢ = 0 along the half space boundary, i.e. a displacement
shock problem.

2.1.2  Cattaneo-Fox theory

The first development of a fully nonlinear thermoelastic theory which em-
ploys a Cattaneo equation for the heat flux is that of (Fox, 1969a). Fox
begins with the momentum and continuity equations written in the current
configuration as

pvi =t +pfis

0 (2.15)

where t;; is the symmetric Cauchy stress tensor, a superposed dot denotes
the material derivative, e.g. p = 9p/dt + v;0p/0x;, f; is the externally
supplied body force, and d;; = (vi,; + v;.:)/2, vi(x,t) being the velocity in
the current reference frame. (Fox, 1969a) begins with a balance of energy
equation and an entropy inequality postulated for arbitrary sub-bodies of
an elastic body, and reduces these to pointwise form. In terms of the internal
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energy €, entropy 7, heat flux ¢;, and temperature 6 these are

pé€— pr+ i — tijdi; =0,

0 (2.16)
PO — pr+ gii — qe’ >0,

where r is the externally supplied source of heat. The entropy inequality
(2.16)5 is rewritten in terms of the Helmholtz free energy function ¢ = e—nf
as

g0

p¢ + p?’]é —tijdi; + 0 < 0. (217)
The constitutive theory of (Fox, 1969a) requires that
¥, 1, ti;
depend on the independent variables
Ox;
Fia = a;A =T A and 9,

where z; = x;(X, t) is the mapping of points in the reference configuration
to equivalent points in the current configuration. Upon introducing the
right Cauchy - Green tensor C = FTF (i.e. Cap = x; aw; p) (Fox, 1969a)
notes

Cap = 2d;jx; A B
and rewrites inequality (2.17) in the form

¢ j oy 40,
- an iio— _ 7 . A S . )
p(ao +77)9+ (tzg 2p30,43 l'z,Al'LB)dU g = 0 (2 18)

Using the fact that r and f; may be selected at will it is now deduced from
(2.18) that

n= 72—2} and tij = 2p%; AT;,B m . (2.19)
The residual of the entropy inequality (2.18) is
—qif; > 0, (2.20)
and the energy balance law becomes
0n = —qii + pr. (2.21)

(Fox, 1969a) uses superposed rigid body arguments and requests that the
nonlinear time derivative of ¢; in a Cattaneo law should be an objective
derivative. This leads him to propose the general equation generalizing
Cattaneo’s one,

Gi — wijq; = aq; + B0, (2.22)
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where wi; = (vij; — v;4)/2, ¢ = ¢i,+ + V@i k, and o, depend on 6 and
the scalar invariants ¢;q;,¢;0,; and 6,0 ;. (Fox, 1969a) specializes to the
case where a and 3 are constants and introduces constants 7 and s by
7= —1/a, Kk = f/a so that his equation (2.22) becomes

T(Qi,t +viqi; — wij%‘) =—q; — K0, . (2-23)

Thus, the full nonlinear system of equations derived by (Fox, 1969a) to de-
scribe motion in a thermoelastic body generalizing the (Lord and Shulman,
1967) approach comprise equations (2.15), (2.21) and (2.23).

For easy reference we collect these here recalling the forms for 7 and t;;
given in equations (2.19),

p+ pdi; =0,
. 0 5}
pU; = 28_(/)%’14%’3 _7/1) +pfi,
€ 6CAB (2 24)
_gi(@) _ Y4 '
dt\ 90 oz; "

(4 — wijqj) = —¢ — Kb,
where d/dt denotes the material derivative.

I am not aware of further use of the nonlinear system (2.24) apart
from the solutions derived by (Fox, 1969a) himself. However, (Fox, 1969a)
deserves full credit for producing a nonlinear invariant system of ther-
moelastic equations using a Cattaneo theory. The solutions given by (Fox,
1969a) involve a static deformation where he shows the heat flux decays
exponentially in time, and one where the deformation is

x=2ktY, y=Y, 2= 2.
For this definition he solves his equation for ¢;, (2.24)4, exactly.

2.1.3 Hidden variables

(Caviglia et al., 1992) begin with the idea of introducing an internal vector
variable &;; an internal variable is sometimes also referred to as a hid-
den variable, and an extensive description of such variables may be found
in (Maugin, 1990), (Maugin and Muschik, 1994a; Maugin and Muschik,
1994b). The vector & refers to a current configuration R which has de-
formed from a reference configuration Ry by a mapping x = x(X,t) or
x; = x;(Xa,t). They define the Cauchy stress tensor ¢;;, the second Piola-
Kirchoff stress tensor Yap and the first Piola-Kirchoff stress tensor Sau;,
where Y = JF % (F~1)T, F being the deformation gradient defined by
Fia = 0x;/0X 4 and J = det(F;4). They also introduce the heat flux g¢;,
the Helmholtz free energy 1, the temperature 6, and temperature gradi-
ents g; = 0, and G4 = 0 4 where 0, = 90/0x; whereas 0 4 = 00/0X 4.
In terms of the displacement u; = x; — X;, (Caviglia et al., 1992) have the
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balance of momentum equation

0
i = ——Sa; b; 2.25
pPol X Ai + po ( )

where po is the density in Ry, b; is the body force and a superposed dot
denotes 0/0t holding X fixed.

The thermodynamic procedure of (Caviglia et al., 1992) introduces the
Cauchy-Green right tensor C = FTF and requires the equivalent of the
internal variable &€ referred to the reference configuration, namely = = FT€.
Then, (Caviglia et al., 1992) define their thermoelastic body to be one for
which

t = Ft(C,0,G,E)FT,
q=Fq(C.0,G,5), (2.26)
¢ =9(C,0,G,E),

where t,q,v are the functional forms of the indicated variables. The
entropy inequality

. . 1 .1
—po(¢+n9)+§Y'C_§Q'GZO (2.27)

is posed where 7 is the entropy. (Caviglia et al., 1992) show that inequality
(2.27) leads to the deductions

N o o
Z7 = ——= Y =2p) — 2.2
oG 0, g 90’ Toh (2.28)
and the residual entropy inequality is
poe—gf E+Q-G<O. (2.29)

Then, from the first of (2.28), the Helmholtz free energy function reduces
to the form ¢ = ¢(C, 6, E).
For the internal variable &, (Caviglia et al., 1992) propose that E satisfies
an evolution equation of form
E=-mG—nE (2.30)

where m,n are functions of the variables § and C with n > 0. Upon em-
ploying E as given by (2.30) in the inequality (2.29) they deduce that

v

Q = pomb o . (2.31)
Further, from (2.29), there remains the restriction
50
=2 . (2.32)
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To progress further (Caviglia et al., 1992) require that under stationary
conditions Q satisfies Fourier’s law so that

Q=-KG
for K a positive-definite tensor which depends on # and C. Under stationary
conditions equation (2.30) yields the connection
n
G=——=E
m

and the last two relations lead (Caviglia et al., 1992) to propose the
relationship

n ':
Q= —KE=. (2.33)

Then, from (2.31) they deduce that

A
0= pofhm?
whence
. n
=Y(0,C) + ————=ZEAK 4= 2.34
Y =1(0, )+2p09m2 AKABER, (2.34)

where @[AJ denotes a functional relationship of the indicated variables. Upon
introducing the internal energy € = 1 4 67 one then sees that

31/) (nKAB GE[RKABD: —

pofm?2 00

(Caviglia et al., 1992) then require that e be independent of E and hence
of Q and so

n

K = nK(C
poim? nK(C)

where K denotes the functional form, K also being a positive-definite
tensor.
The constitutive theory of (Caviglia et al., 1992) may be summarized as

~ 0 - o
1 =14(0,C) + 3 K4pEaAZp,

o | 0 0Kps _ _
Yip =2 = 2.36
AB Po 9Can + < 2 9Can RZ2S, ( )
81/1 1.
- = — = — R
n 90 2KRS RES .

The (fully nonlinear) evolution equations for the model then follow from
(2.25), the energy balance equation, equation (2.30), and may then be
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written as,
0
i; = ———SAi b,
poti (9XASA + po
%) . PRI d 5 - (2.37)
o =—L9 4+ —— =—— 0" Kap=
po (892 * 60CAs CAB) o, (om0 KapZn),
EA = —m97A — TLEA,
where
S, = oY 0y 0Crs O0CRrs
Ai = P0 Fix = po 9Cns 0Fia RS —8FiA
and so

Sai = (0arFis +0s5aFir)Yrs = FisYas + FirYRra .

(Caviglia et al., 1992) then develop a linearized version of their theory.
It is, however, important to note that they do this by considering a poten-
tially large deformation from Ry to R followed by a “small” deformation
to a new current configuration R*. In this way they are not simply devel-
oping a linear theory by suitably restricting 1& and K7 they are producing
a linearized theory which allows for linearization about a (nonlinear) state
of pre-stress and possibly non-uniform temperature.

Let X denote the position of a particle in the reference configuration Ry,
let x be its position in R, and let x* be the corresponding position in R*.
(Caviglia et al., 1992) assume that in R the temperature 6 is constant so
that G = 0 and Z = 0. The values of these variables in R* are denoted by
0*, G* and E, with C and C* denoting the values of the Cauchy-Green
right tensor in R and R*. The perturbations to x, 0 and = in R are written
as u,¢ and A, i.e.

3

Then, equations (2.37) are linearized keeping only quantities linear in
w;, ¢, A; and their derivatives, in the equations which result. Full details
are given in (Caviglia et al., 1992), we here only record the equations.
However, we point out that (Caviglia et al., 1992) take F = I so that in
R the right Cauchy-Green tensor satisfies C = I, where 6 is uniform. The
pre-stress in R is maintained through the body force b; and in equilibrium
equation (2.37) is
0

0Xa
The linearization of equations (2.37) relies on the fact that this procedure
is performed about the solution of (2.38). It is important to note that the

steady state deformation given by (2.38) is, in general, not homogeneous
and represents a true nonlinear deformation before linearization.

(FiBYBA) + pob; = 0. (2.38)
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The linearized equations of (Caviglia et al., 1992) are
poiii = [(0sjtkn + Ainjr)ujk — Bind] o
cd + Biji;; = —% Qii s (2.39)
TG + aijq; = — ¢4,
where the coefficients involve quantities evaluated in the configuration R

in which € is uniform and C = I. The quantity ¢;; is the Cauchy pre-stress
tensor, and

9% 9%
Ajikn = 200 =————, Bii = —2p) ———,
jkh Po 8Cijackh J Po 696015 (2 40)
_ 8212} o 1 - n Kﬁl)--
c= pO 692 ) - n ) aZ] - p0m292 1] -

We point out that the coefficients in (2.40) are all evaluated in R.
When the body is isotropic, the coefficients become

Ajjkn = AN0ijokn + p(0ikdjn + dindjn),
tij = adyj, B;; = (30, a;j = %51-3-
where & is a constant and then equations (2.39) become
poii; = (aui ) ; + (Mujj)a + (Huig)g + (nugi)g — (89).
ch+ Bi; = —% Qi s (2.41)
Tqi+ ¢ = —Kd ;.

In equations (2.39) and (2.41) the pre-stress is provided by the body
force in equation (2.38). We could follow the procedure of (Iesan, 1980;
Tesan, 1988) and allow a deformation from Ry to R which is induced by
non-homogeneous boundary conditions in both z; and 6. This would lead
to coefficients which have pre-stress present due to the deformation but
also due to non-uniform temperature in R. The linearized equations which
then arise contain extra terms to those in (2.39) and (2.41).

(Chandrasekharaiah, 1998), p. 722, remarks that the linearized theory
of (Caviglia et al., 1992) closely resembles the Lord - Shulman theory. We
point out that there is a resemblance, but equations (2.39) and (2.41) are
different from those of Lord - Shulman. Firstly, in (2.39) the equations
are for the anisotropic case. However, importantly both sets of equations
(2.39) and (2.41) contain the effects of pre-stress. This is evident in (2.39)
via the tz;, term but also in the equation for g; through the coefficient a;;
which contains the pre-stress via K, see (2.40). In particular, due to the
presence of the Cauchy pre-stress t;; it is not true that, in general, the
elastic coefficients cijxn = dijten + Aijrn would be sign-definite.
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2.2 Green-Lindsay theory

When one develops the classical theory of nonlinear thermoelasticity it
is usual to begin with a constitutive assumption which is equivalent to
requiring

1/)7 1, 4i and SAi (242)
to depend on the variables
XA,pO,G,GﬁA and €AB - (2.43)

Here ¢, n are the Helmholtz free energy function and the entropy function,
¢; is the heat flux vector and S4; is the Piola-Kirchoff stress tensor. The
independent variables are X, the coordinates of a point in the reference
configuration, py the density in the reference configuration, the temper-
ature 0(X,t), the temperature gradient 6 4 = 00/0X 4, and the strain
tensor, eap = (z;,A%i,p — dap)/2, acting at time ¢ but referred to the ref-
erence configuration. The function x = x(X,¢) denotes the map defining
the deformation (motion) of the elastic body.

The above prescription leads to a coupled set of nonlinear partial differ-
ential equations for the displacement u; = x; — X; and the temperature
field 6. The balance of momentum equation which results may be thought of
as yielding a hyperbolic equation but the corresponding balance of energy
equation contains 90/0t as the highest time derivative of 6 and is effec-
tively a parabolic equation. Thus, the system may be thought of as one of
coupled parabolic - hyperbolic type. This has the undesirable feature that
the temperature field essentially travels with infinite speed, cf. section 1.2.
(This argument generalizes the analogous one from linear thermoelastic-
ity as explained in section 2.1.1.) An appealing way to overcome this was
suggested by (Miller, 1971a). His idea is to include 0 in the list of inde-
pendent constitutive variables in (2.43). He develops a complete theory of
thermoelasticity beginning with the balance laws for conservation of mass,
momentum, and energy. In the balances of momentum and energy (Miiller,
1971a) does not include a body force or external supply of heat. The ther-
modynamics of (Miiller, 1971a) is based on his entropy inequality, (Miiller,
1967a),

0P,

piit 5 >0 (2.44)

where ®; is his entropy flux vector, see (Miiller, 1967a). (Miiller, 1971a)
expands inequality (2.44) using the extended constitutive list, and he then
argues that the balance equations which arise must hold in such a way that
he is able to deduce relations between the functions ¥, n, ®;, S4,, and g;.
In this way (Miiller, 1971a) develops a fully nonlinear theory for thermoe-
lasticity which, unlike the classical theory, allows 6 to travel with a finite
wavespeed. (Miiller, 1971a) develops complete expressions for the stress,
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heat flux, and his entropy flux for an isotropic solid and deduces restric-
tions in equilibrium. He also shows the heat conduction tensor must be
symmetric.

We here describe a theory due to (Green and Lindsay, 1972) which also
employs 6 in the constitutive list. (Green and Lindsay, 1972) commence
with the balance laws of mass, momentum, angular momentum, and energy,
which are

po = pdet (x; ),
povi = poFi + Saia,

(2.45)
YAB = YBA where SAi = ERYRA )

po€ = por +Yapéap —Qa,a -

Here p and py denote the density in the current and reference configura-
tions, v; is the velocity, S4; is the Piola-Kirchoff stress tensor, € the internal
energy, @4 the heat flux vector per unit area in the Xx frame but acting
over the corresponding surface at time ¢, and esp (defined by (Green and
Lindsay, 1972) as eap = (2,42, — 04p)) is the strain tensor referred to
the reference configuration. The quantities F and r are an external body
force and an external supply of heat, respectively. The Cauchy stress ten-
sor, t;;, (in the current frame) and the equivalent heat flux vector, ¢;, are
given in terms of Yap and Q4 as

(det zp i) tij = i, a2 BY AR
(detz, i) qi = 24,4Q A .

(Green and Lindsay, 1972) employ a general entropy inequality over any
sub-body, this being based on the entropy inequality of (Green and Laws,
1972). However, they effectively reduce this to the following pointwise
entropy inequality

poit = 2+ (2) Lz (2.46)

This inequality resembles the Clausius-Duhem inequality but the function
¢ is a generalized temperature which will be specified by constitutive the-
ory. If one introduces the Helmholtz free energy function in terms of the
generalized temperature ¢, i.e.

Y=e—no (2.47)

then inequality (2.46) may be rearranged with the aid of the energy
conservation equation (2.45)4, noting ¢ > 0, as

Qada o ¢ (2.48)

—po() +n¢) + Yapéap — =
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(Green and Lindsay, 1972) essentially use as constitutive theory the
assertion that

¢7 m, ¢7 QA and YAB (249)
depend on the independent variables
XA,pO,H,QA,H. and ean. (2.50)

Upon using (2.49) and (2.50) in inequality (2.48) (Green and Lindsay, 1972)
deduce that

— po(Ye +160)0 — po(vy +n)0 — po(te s + 1o 4)0.4
+[YAB—p—20< oY + oY )—%n( 0¢ + 0¢ )}éAB

8€AB 863,4 66,4]3 6€BA

p) . (2.51)
%A |:¢09A + 89%3 0.4+ 0404
1/ 8¢ o ¢ ¢
+ <8635+865R) RSA+8 pA+8X :| - 0-

(Green and Lindsay, 1972) then argue that g, 91,4 ,€AB,€RS. A0 AB ,pP0.A
may be selected independently in inequality (2.51) balancing the momen-
tum and energy equations (2.45)s and (2.45)4 by a suitable choice of F;
and r. In this manner they deduce the relations

/80
C9¢/00°
a W )+@n<ﬂ+ 99 ).

66,4]3 6€BA 8€AB 863,4

Yap =

oY 0¢ Qa
o35 +7355) + 5 % =0, (2.52)
QAﬁwB ‘%’ —0,
6¢ 96 06\
QA 7 QA(BeRS + 6653) B 0

The residual entropy inequality follows from (2.51). However, (Green and
Lindsay, 1972) then restrict attention to the case where the reference body
is homogeneous (i.e. does not depend on X) and then upon use of (2.52)456
one finds

b =(6,0). (2.53)

The residual entropy inequality then has form

—po (1o + )0 — % P90 4 > 0. (2.54)
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Since po is non constant one employs (2.53) in equations (2.52)2 3 to derive
the forms for the stress tensor and heat flux, namely

_po( OV N
YAB B 2 (36,4]3 + 6€BA)
9 (2.55)
96 4
QA: —P0¢ 8¢) .
a6

(Green and Lindsay, 1972) further reduce the energy equation (2.45)4.
One may then show that the full nonlinear system of equations for
thermoelasticity of (Green and Lindsay, 1972) are given by

0S5 4;
pot; = pol; + A ;
0Xa
50 (2.56)
. A ; :
pPod1 = por — ax, P (Vo +n0e)0 — potbe 4 6.4,

where S4; and Q4 are given by equations (2.55) with Sa; = FirYra.

A detailed analysis of acceleration waves, including curved waves, for
system (2.56) is given by (Lindsay and Straughan, 1979).

(Green and Lindsay, 1972) write down expressions for ¢ and ¢ which
are quadratic in the variables 9,9.,971'761'3' to develop a linearized theory
of thermoelasticity from (2.56). They linearize about an initial body with
zero stress and heat flux. The complete system of equations for linearized
thermoelasticity derived by (Green and Lindsay, 1972) for an anisotropic
thermoelastic body then have form

pii; = pF; + (Cijrnturn),j + [aij (0 + afd)]

” . . . r
p(h9 + df — AijUq,5 — blﬁ,l) = g—

0
Here wu; is the displacement about a reference state with positions denoted
by X, p is the density, h,d, b;, cijkn, aij, kij are coefficients which have the
symmetries

J7

. (2.57)
+ (bie + kije,j),i .

Cijkh = Ckhij = Cjikh » Qij = Qji, Kij = kji . (2.58)
(Green, 1972) has shown that the boundary-initial value problem for (2.57)
is unique requiring only symmetry of the elastic coefficients c; ;4. His proof
employs a Lagrange identity technique. Uniqueness and continuous depen-
dence on the initial data for a solution to the boundary-initial value problem
for (2.57) requiring only symmetry of the elastic coefficients ¢;;r, was es-
tablished by (Straughan, 1974). His proof introduced a natural logarithmic
convexity functional into thermoelasticity.
A very interesting study comparing the solutions to the equations of
classical thermoelasticity, Cattaneo-Lord-Shulman theory, cf. section 2.1.1,
and the (Green and Lindsay, 1972) theory is provided by (Jordan and Puri,
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2001). These writers investigate the propagation of a thermal pulse in a
thermoelastic shell employing each of the linearized equations for the three
thermoelastic theories, classical, Lord-Shulman, and Green-Lindsay. Their
numerical results are very revealing. They typically demonstrate that the
classical theory leads to a smooth pulse while that of Lord-Shulman is less
smooth showing discontinuities in derivatives. The theory of (Green and
Lindsay, 1972) leads to strong pulse behaviour displaying distinct jumps.
For the applications they have in mind, such as to the behaviour of stainless
steel run tanks which hold cryogenic liquids for rocket fuel at NASA’s John
C. Stennis Space Center, the strong pulse solution is definitely of interest.

2.3  Green-Naghdi type II theory

(Green and Naghdi, 1993) adopt a different approach to thermoelasticity
to other writers, this approach being based on an extension of the type II
theory of heat propagation in a rigid solid developed by (Green and Naghdi,
1991), see section 1.10. The idea is to define a temperature 6, an empirical
temperature T, and a thermal displacement «, such that 6 depends on T’
and the properties of the material with 8 > 0,96/0T > 0, and

t
a(X,t) = / T(X, s)ds + ap . (2.59)
to

Here ¢ is a “start time” at our disposal and «q is the value of « at t = tg.
(Although (Green and Naghdi, 1993) define 7' and € in this way at the
outset they later show that there is no loss in generality if one identifies T’
with 6.)

As usual, x; = 2;(Xa,t) denotes the motion of a body with positions
X in the reference configuration, x being their counterparts in the current
configuration. (Green and Naghdi, 1993) observe that

a=T (2.60)
and they introduce the variables 54 and ~; as
O oT

- ;= = 2.61

5A 8XA ’ ,7 8:01 CY, ( )

The variables ﬁ and ~ are connected by the equation
Ba = Fary;.

(Green and Naghdi, 1993) define ¢;; to be the Cauchy stress tensor, p; =
qi/0 to be the entropy flux vector, ¥, 7, to be the Helmholtz free energy
and entropy, respectively. Their momentum equation is

p’l')i = Pbi + tjiﬁj (262)
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where p,v;,b; are the density, velocity, and body force. They work with
an entropy balance equation rather than an entropy inequality and this
requires them to introduce an intrinsic supply of entropy ¢ in order to
postulate their entropy balance equation as

P = ps+ p& — pii- (2.63)

Here s is the external supply of entropy given by s = r/6, where r is the
external supply of heat. The balance of energy equation employed by (Green
and Naghdi, 1993) has form

tijdij — pif; — p(tb +nf) — pf& =0, (2.64)

where d;; = (’Ui)j + ’Uj,i)/2.
(Green and Naghdi, 1993) define a classical thermoelastic body to be one
for which

tijvpivwvnae and §

depend on the variables
T, Yi = Tl = O.éyl' y and FiA = Ti,A - (265)

This leads to the usual “hyperbolic-parabolic” system of nonlinear equa-
tions of thermoelasticity. The goal of (Green and Naghdi, 1993) is to
introduce a new class of thermoelasticity equations by requiring

tij7pi7w77779 and 5 (266)

to depend on
T, o A and FiA . (2.67)

(Green and Naghdi, 1993) call this type of thermoelasticity, thermoe-
lasticity of type II. They remark that ... “it involves no dissipation of
energy”’ ... “is perhaps a more natural candidate for its identification as
thermoelasticity than the usual theory”.
(Green and Naghdi, 1993) employ relations (2.66) together with (2.67)
in equation (2.64). They show that one may deduce from this the relations
00 00

93.=0 ;=0 (2.68)

whence
0 =0(T).

They then argue that they may write T' = 6 — 6y and henceforth replace T’
by @ in the ensuing development. Thus,

=190, 04, Fa) =90, 4, Fia).
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They further show that the expanded energy equation leads to the results

_ 9 _ L, L
39, tl]_paFAFAJJ
. (2.69)
pi = —pFia — and £E=0
8a,A

(An equivalent reduction employing the Piola-Kirchoff stress tensor Sa; is
given in section 4.4 where the forms more suitable for an acceleration wave
analysis are derived.) (Green and Naghdi, 1993) then replace F;4 by the
right Cauchy-Green tensor Cyp = F4; F;p to deduce

o o
Cap  0Cpa )’

The complete nonlinear equations of thermoelasticity of type II are then
given in the current frame by equations (2.62) and (2.63) with #, p;, £ and
t;; given by (2.69) and (2.70). For ease of reference these are collected here

as
R NN SV V!
pi; = pb; + 8xj {pEAFB]<aCAB + aCBA)}’

2 (G7) =92+ gz (Fagas)

where b; and s are externally supplied and d/dt denotes the material deriva-
tive. Once a prescription of the functional form of ¥ = ¥(0, . 4, F;4) is
known, equations (2.71) yield a nonlinear system of partial differential
equations for x; and 6.

Linearized forms of the equations for type II thermoelasticity are given in
the isotropic case by (Green and Naghdi, 1993) and in the anisotropic case
by (Quintanilla, 1999; Quintanilla, 2002b). In terms of the displacement w;
and temperature perturbation 6 these may be written for the isotropic case
as

tij = PFiAFBj( (2.70)

(2.71)

poily = pobi — E10; + pAu; + (A + p)ugij ,

) (2.72)
cd = por + KAO + Oy Erii; ;

where pg, E1, k, 0 are constants and p, A are the Lamé coefficients. In the
anisotropic case for a body with a centre of symmetry the respective linear
equations are

pti; = (Cijrnurn) ; — (aij0) ; + pfi,

.. (2.73)

ch = —aij’di’j + (kijaj)yi + pr,

where f;, r are the externally supplied body force and heat supply, p, c are

positive constants, c;jr, are the elastic coefficients, a;; define a coupling
tensor, and k;; defines the thermal conductivity tensor.

A general uniqueness theorem for a solution to equations (2.73) requiring

no definiteness of the elastic coefficients c¢;jx;, is given by (Quintanilla and
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Straughan, 2000). Their proof relies on a logarithmic convexity argument.
These writers also derive a variety of growth estimates for the solution
depending on the elastic coeflicients and the initial energy, see sections 6.2
and 6.3 of this book. Reciprocal theorems and variational principles for
type II linear thermoelasticity are given by (Chirita and Ciarletta, 2010a).

As we mentioned in the introduction, section 1.1, the paper of (Green
and Naghdi, 1991), and their companion papers (Green and Naghdi, 1992;
Green and Naghdi, 1993) on type II and type III thermoelasticity (dis-
cussed in the next section), brought a new way of thinking to the area
of heat wave propagation and their articles have influenced many subse-
quent developments. In fact, work since 1991 in this area has definitely
increased as may be witnessed for example from the papers, and the refer-
ences therein, of (Abd-Alla and Abo-Dahab, 2009), (Alvarez-Ramirez et al.,
2006; Alvarez-Ramirez et al., 2008), (Anile and Romano, 2001), (Bargmann
et al., 2008b), (Bargmann et al., 2008a), (Brusov et al., 2003), (Buishvili
et al., 2002), (Caviglia and Morro, 2005), (Chandrasekharaiah, 1998), (Cai
et al., 2006), (Christov and Jordan, 2005), (Christov, 2008), (Cimmelli
and Frischmuth, 2007), (Ciancio and Quintanilla, 2007), (De Cicco and
Diaco, 2002), (Duhamel, 2001), (Fabrizio et al., 1998), (Fabrizio et al.,
2008), (Fichera, 1992), (Green and Naghdi, 1991; Green and Naghdi, 1992;
Green and Naghdi, 1993; Green and Naghdi, 1995b; Green and Naghdi,
1995a; Green and Naghdi, 1996), (Han et al., 2006), (Hetnarski and Ig-
naczak, 1999), (Horgan and Quintanilla, 2005), (Tesan, 2002; Iesan, 2004;
Tesan, 2008), (Iesan and Nappa, 2005), (Jaisaardsuetrong and Straughan,
2007), (Johnson et al., 1994), (Jordan and Puri, 2001), (Jou and Cri-
ado-Sancho, 1998), (Kalpakides and Maugin, 2004), (Lin and Payne,
2004a), (Linton-Johnson et al., 1994), (Loh et al., 2007), (Messaoudi
and Said-Houari, 2008), (Metzler and Compte, 1999), (Meyer, 2006),
(Mitra et al., 1995), (Morro, 2006), (Payne and Song, 2002; Payne and
Song, 2004b), (Puri and Jordan, 1999b; Puri and Jordan, 1999a; Puri
and Jordan, 2004; Puri and Jordan, 2006), (Puri and Kythe, 1997; Puri
and Kythe, 1998), (Quintanilla, 2001b; Quintanilla, 2002a; Quintanilla,
2007b), (Quintanilla and Racke, 2003; Quintanilla and Racke, 2006a;
Quintanilla and Racke, 2007; Quintanilla and Racke, 2008), (Quintanilla
and Straughan, 2000; Quintanilla and Straughan, 2002; Quintanilla and
Straughan, 2004; Quintanilla and Straughan, 2005b; Quintanilla and
Straughan, 2005a; Quintanilla and Straughan, 2008), (Roy et al., 2009),
(Ruggeri, 2001), (Saleh and Al-Nimr, 2008), (Sanderson et al., 1995),
(Serdyukov, 2001), (Serdyukov et al., 2003), (Shnaid, 2003), (Straughan,
2004; Straughan, 2008), (Su et al., 2005), (Su and Dai, 2006), (Tzou, 1995b;
Tzou, 1995a), (Vadasz, 2005), (Vadasz et al., 2005), (Vedavarz et al., 1992),
(Zhang and Zuazua, 2003).
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2.4 Green-Naghdi type III theory

The theory of type III thermoelasticity was formulated by (Green and
Naghdi, 1992). The development starts very much like that for type II in
section 2.3. Hence, the governing equations are (2.62) and (2.63) with the
energy balance law (2.64) being used to reduce the constitutive theory.
Again, the temperatures # and 7" are introduced as is the thermal displace-
ment «. The difference between type IT and type III is in the constitutive list
(2.67). The theory of type III adds the variable ¢ ; = T'; to the list (2.67).
Thus, a thermoelastic material of type III is defined as one for which

tijvpivwvnae and § (274)
depend on

T, 4,6, and Fig. (2.75)

(In a sense, type III combines the classical theory with that of type II as
the list (2.75) is the union of the lists (2.65) and (2.67).)

(Green and Naghdi, 1992) employ (2.74) and (2.75) in the energy bal-
ance equation (2.64). After expanding the derivatives ¢ and 6 in terms of
the variables (2.75) the expanded energy equation is reduced. (Green and
Naghdi, 1992) deduce that

00 00 00 oY
adﬁi = 07 M = 07 8EA =0 and 80471 =0. (276)
Thus,
0 = 0(T)

and (Green and Naghdi, 1992) show that T may be replaced by 6. Then,
(2.76)4 yields

77[] = ¢(979,A7FiA)' (277)
Further, (Green and Naghdi, 1992) show that
9y 9y

- _ tii =p—DFy4,; 2.78

90 j=P OFiA Aj ( )
but, unlike (2.69) for a type II material they cannot deduce an explicit
expression for p;, nor is £ zero. Instead, the residual of the energy balance
equation yields

oY .
5o Faid; + pf€ = 0. (2.79)

We might think of equation (2.79) as defining the variable &.
To complete the theory of a type III thermoelastic material one needs,
therefore, to specify the functional form of

pi = pi(0, 4,0, Fia), (2.80)

Dl + p



2.5. Thermoelasticity with Voids 57

or equivalently, one needs to specify the heat flux ¢; = 0p;. Clearly, one
can write a general expression for p; as a function of the vector terms
which arise from combinations of a4, & ; and Fj4. I am not aware of where
this has been done, although (Quintanilla and Straughan, 2004) do study
acceleration waves in the complete nonlinear theory.

The nonlinear theory for a thermoelastic body of type III then consists
of equations (2.62) and (2.63) combined with (2.78), (2.79) and an explicit
representation for p; from (2.80). The general equations have form

- 9 aw
B (&b) S_%—l o — 2 8¢F 25
Pai\aa) =P bz~ 07" T 900, A

Linearized forms of the equations for type III thermoelasticity are given
by (Green and Naghdi, 1992) in the isotropic case and by (Quintanilla,
2001c) in the anisotropic case. In the isotropic case they are

poily = pobi — E10; + pAu; + (N + p)ug i,

. : (2.82)
pocé’ + Eleo’ui = po’f" + kAO + K*Af s

where pg, F1, ¢, k, k* are constants, u, A are the Lamé constants, and b;,r
are the externally supplied body force and heat supply. In the anisotropic
case when the body has a centre of symmetry the relevant equations are

pli; = (Cijrntn,n) ; — (aij0) ; + pfi,

. ’ : (2.83)
b = —aijiii j + (kij0 ;)i + (0i0.5).: + pr,

where p, c are positive functions which may depend on X, c;r, are the
elastic coefficients, a;; are coupling coefficients, and k;;, b;; represent the
coefficients of thermal tensors. The terms f; and r represent the body force
and heat supply.

A general uniqueness theorem for a solution to (2.83) requiring only
symmetry of the elastic coefficients ¢;;xp is provided by (Quintanilla and
Straughan, 2000). Their proof employs a Lagrange identity method, see
section 6.4. Non-standard problems for thermoelasticity of type II or type
IIT are considered by (Quintanilla and Straughan, 2005b), see also section
6.6.

2.5 Thermoelasticity with Voids

A class of theories which may be thought of as describing certain properties
of porous media were derived by (Nunziato and Cowin, 1979). The key
idea is to suppose there is an elastic body which has a distribution of voids
throughout. The voids are gaps full of air, water, or some other fluid. This
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theory provides equations for the displacement of the elastic matrix of the
porous medium and the void fraction occupied by the fluid. We believe the
voids theory has a large potential, especially in wave propagation problems.

The theory of an elastic body containing voids essentially generalizes
the classical theory of nonlinear elasticity by adding a function v(X,t) to
describe the void fraction within the body. Here X denotes a point in the
reference configuration of the body. Thus, in addition to the momentum
equation for the motion x; = z;(X, t) as time evolves, one needs to prescribe
an evolution equation for the void fraction v. For a non-isothermal situation
one also needs an energy balance law which effectively serves to determine
the temperature field T'(X, t). The original theory is due to (Nunziato and
Cowin, 1979) and the temperature field development was largely due to D.
Tesan, see details in chapter 1 of (Iesan, 2004). This theory has much in
common with the continuum theory for granular materials, cf. (Massoudi,
2005; Massoudi, 2006a; Massoudi, 2006b).

In this chapter we wish to examine theories of thermoelastic materials
containing voids. Such theories are particularly useful to describe nonlinear
wave motion and account well for the elastic behaviour of the matrix, being
a generalisation of nonlinear elasticity theory. Interestingly, while there are
many studies involving the linearised theory of elastic materials with voids,
see e.g. (Ciarletta and Tesan, 1993) or (Iesan, 2004), analysis of the fully
nonlinear equations is only beginning, see e.g. (Iesan, 2005; Tesan, 2006).

The basic idea of including voids in a continuous body is due to
(Goodman and Cowin, 1972), although they developed constitutive the-
ory appropriate to a fluid. This they claim is more appropriate to flow of
a granular medium. Acceleration waves in the Goodman-Cowin theory of
granular media were studied by (Nunziato and Walsh, 1977; Nunziato and
Walsh, 1978). For a reader interested in the theory of voids I would suggest
first reading the article of (Goodman and Cowin, 1972), and then progress-
ing to the theory of elastic materials with voids as given by (Nunziato and
Cowin, 1979). General descriptions of the theory of elastic materials with
voids and various applications are given in the books of (Ciarletta and
Tesan, 1993) and (Iesan, 2004). Continuous dependence on the coupling
coefficients of the voids theory (a structural stability problem) is studied
by (Chirita et al., 2006).

The potential application area for the theory of elastic materials with
voids is huge. In particular, wave motion in elastic materials with voids has
many applications. (Ciarletta et al., 2007) mention four application areas
of immediate interest. To appreciate the potential uses we briefly describe
these areas. (Ouellette, 2004) is a beautiful and inspiring article which deals
with many applications of acoustic microscopy. We are all aware of optical
microscopy, but the potential uses of acoustic microscopy are enormous.
(Ouellette, 2004) points out that the presence of voids presents a serious
problem for acoustic microscopy, and a study of wave motion in an elastic
material with voids is likely to be very helpful here. She observes that,
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“acoustic microscopy remains a niche technology and is especially sensitive
to variations in the elastic properties of semiconductor materials, such as
air gaps, known as delaminations or voids ...” In particular, (Ouellette,
2004) draws attention to several novel applications of acoustic microscopy
in diagnostic medicine. She notes that one may, “apply a special ultrasound
scanner to deliver pathological assessments of skin tumours or lesions, non-
invasively,” and especially there is, “no need to kill the specimen as is
usually needed in optical microscopy.” (Diebold, 2005) further emphasizes
these and other applications.

Wave motion is important in the production of ceramics, or certainly
in ceramic behaviour. (Saggio-Woyansky et al., 1992) observe that porous
ceramics are either reticulate or foam and are made up of a porous network
which has relatively low mass, low thermal conductivity, and low density,
and (Raiser et al., 1994) report experimental results where microcracking
along grain boundaries in ceramics is caused by compressive waves. Since
reticulate porous ceramics are used for molten metal filters, diesel engine
exhaust filters, as catalyst supports, and industrial hot-gas filters, and both
reticulate and foam porous ceramics are used as light-structure plates, in
gas combustion burners, and in fire - protection and thermal insulation
materials, a study of wave motion in such materials is clearly useful.

A further important application area for elastic materials with voids is
in the production of building materials such as bricks. Modern buildings
are usually made with lighter, thinner bricks, often with many voids in
the building materials. In seismic areas lighter materials are necessary and
much applied research activity is taking place. However, the use of lighter
materials, especially those with voids is creating an environmental problem
because noise transmission through such objects is considerably greater.
Consequently, there is much applied research ongoing in the area of acous-
tic materials with voids, cf. (Garai and Pompoli, 2005), (Maysenholder
et al., 2004), (Wilson, 1997), and any theoretical model for acoustic wave
propagation in an elastic material with voids which yields useful results is
desirable.

2.5.1 Basic theory of elastic materials with voids

To present ideas clearly we begin with the classical theory of thermoelastic-
ity with voids, where the energy balance equation is essentially parabolic,
so temperature is not transported as a wave. The balance equations for
a continuous body containing voids are given by (Goodman and Cowin,
1972). We use the equations as given by (Nunziato and Cowin, 1979) since
these are appropriate for an elastic body.

The key thing is to assume that there is a distribution of voids throughout
the body B. If y(X,t) denotes the density of the elastic matrix, then the
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mass density p(X,t) of B has form
p=vy (2.84)

where 0 < v < 1 is a volume distribution function with v = v(X,t).
Since the density or void distribution in the reference configuration can be
different we also have

Po = Yoo

where pg, 70, Vo are the equivalent functions to p,~y, v, but in the reference
configuration.
The first balance law is the balance of mass

pldet F| = po .

With 74; being the Piola-Kirchoff stress tensor and F;4 = z; 4 as before,
the balance of angular momentum states

aFT = FrT.
The balance of linear momentum has form

Pol; = Tai A+ pofis (2.85)

fi being an external body force. The balance law for the voids distribution
is

poki = haa+ g+ pol, (2.86)

where k is an inertia coeflicient, h4 is a stress vector, g is an intrinsic body
force (giving rise to void creation/extinction inside the body), and ¢ is an
external void body force. Actually, (Nunziato and Cowin, 1979) allow the
inertia coefficient &k to depend on X and/or ¢, but, for simplicity, we follow
(Goodman and Cowin, 1972) and assume it to be constant.

The energy balance in the body may be expressed as

poé = TaiFia +hava — g — qa,a + por, (2.87)
where €,q4 and r are, respectively, the internal energy function, the heat
flux vector, and the externally supplied heat supply function. To under-

stand equation (2.87) we may integrate it over a fixed body B, integrate
by parts, and use the divergence theorem to see that

d .
— poedv+/ (gl./+hA7Al'/)dV = / WAiFiAdV—jé
dt Jp B B OB

where OB is the boundary of B. Employing (2.86) with £ = 0 we may
rewrite the above as

k .
(poe + P% 1)2)dV = / Tai Fs4dV — f qaNadS —|—/ pordV.
B OB B

QANAdS+/ pordV,
B

dt Ji

In this form we recognise the equation as an energy balance equation with
a term added due to the kinetic energy of the voids. In fact, (Iesan, 2004),
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pp- 3-5, shows how one may begin with a conservation of energy law for
an arbitrary sub-body of a continuous medium with voids, and then derive
equations (2.85), (2.86) and (2.87) from the initial energy balance equation.

It is usual in continuum thermodynamics to also introduce an entropy
inequality. We use the Clausius-Duhem inequality

iz - () 0 (2.59)
0), 0

where 7 is the specific entropy function. Observe that the sign of the first
term on the right of (2.88) is different from that of (Nunziato and Cowin,
1979). (One could use a more sophisticated entropy inequality where g4 /6
is replaced by a general entropy flux k, as in (Goodman and Cowin, 1972),
but the above is sufficient for our purpose.)

2.5.2  Thermodynamic restrictions

We consider an elastic body containing voids to be one which has as
constitutive variables the set

Y= {I/Q,V, FiAaeae,A;V,A} (289)

supplemented with . Thus, the constitutive theory assumes

€= E(EJD)7 T Ai :7TA1‘(271./), ga ZQA(E;D);
n=n(X%,v), ha =ha(X,0), g=g(3,0).

This is different from (Nunziato and Cowin, 1979) who regard 7 as the
independent variable rather than 6 and they also assume g4 = 0.

To proceed we introduce the Helmholtz free energy function 1 in the
manner

(2.90)

€=+ 0. (2.91)

Next, (2.87) is employed to remove the terms —ga 4 + por from inequality
(2.88) and then utilize (2.91) to rewrite (2.88) as

qaf A

—po(t) + ) — + maiFia + hav g — gi > 0. (2.92)

The chain rule is used together with (2.90) to expand ¢ and then (2.92)
may be written as

9 . qaba N\
- (PO By +9)l/— 7 (po OF A WAZ)FZA
9P ; oY .
- (Po 20 +P077)9 - (Po A hA)V,A (2.93)

oY oY .
— R — — 0 > 0.
Po 6.4 04— po o V2 0

v
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The next step is to observe that Fia,0, 9 A,V,4 and U appear linearly in
inequality (2.93). We may then follow the procedure of (Coleman and Noll,
1963) and assign an arbitrary value to each of these quantities in turn,
balancing equations (2.85), (2.86) and (2.87) by a suitable choice of the
externally supplied functions f;,¢ and r. We may in this manner violate
inequality (2.93) unless the coefficients of FiA7979,A7D,A and ¥ are each
identically zero. Hence, we deduce that

Y #P(@,0,4),
ha = po 2 7,0

A=pog— =  ha#ha(,0 ), (2.94)
A= 0 gp T T # mai(0,0,4), (2.95)

oY .
N=-2 = n#n(@,0.4),
and further
eF# (0,0 4).

The residual entropy inequality, left over from (2.93), which must hold for
all motions is
- (po g—f + g)l'/ - —q“‘g"“ > 0.

Thus, to specify a material for an elastic body containing voids we have
to postulate a suitable functional form for ¢ = (v, v, Fi4,60,v 4). Such a
form is usually constructed with the aid of experiments. The functions g
and g4 still involve v and this can lead to behaviour almost viscoelastic-
like, see (Nunziato and Cowin, 1979). Other writers, e.g. (Iesan, 2004),
(Ciarletta and Tesan, 1993), omit © from the constitutive list at the outset.
In this manner one deduces that g may be given as a derivative of the
Helmholtz free energy, (Tesan, 2004), p. 7, although some of the possibly
desirable features of viscoelasticity are lost. The wavespeeds of acceleration
waves in this case are derived in (Iesan, 2004), (Ciarletta and Iesan, 1993).

2.5.8 Voids and Green - Lindsay thermoelasticity

In this section we consider a theory of voids as developed by (Nunziato
and Cowin, 1979) but we allow for the possibility of propagation of a
temperature wave, by generalizing the voids theory in the thermodynamic
framework of (Green and Laws, 1972). In addition to allowing us to explic-
itly examine the important effects of temperature this allows us to study
the propagation of a temperature wave in a porous material. In this section
we concentrate on the theory of (Green and Laws, 1972) where a general-
ized temperature ¢(6, 9), 0 being absolute temperature, is introduced. The
theory was originally developed by (Ciarletta and Scarpetta, 1989).
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The current literature increasingly recognises the importance thermal
waves have in the theory of porous media. A very clever way to dry a
saturated porous material via second sound is due to (Meyer, 2006) and
(Johnson et al., 1994) show how second sound may be employed to cal-
culate physical properties of water saturated porous media. Both of these
cover highly important and useful topics. (Kaminski, 1990) reports experi-
mental results for materials with non-homogeneous inner structures which
indicate relaxation times of order 11 — 54 seconds rather than order pi-
coseconds as was previously thought. There is evidence that second sound
may be a key mechanism for heat transfer in some biological tissues as the
experiments of (Mitra et al., 1995) and the work of (Vedavarz et al., 1992)
indicate. Thus, we believe a theory of elastic materials with voids coupled
to a suitable thermodynamic theory capable of admitting second sound
has a place in modern engineering. One has to be careful how the theory
of voids is married to the thermodynamics, however. The incorporation of
time derivatives does present a serious problem. The thermodynamics of
Green and his co-workers were specifically developed to incorporate into
other areas of continuum mechanics and thus we believe these are natural
approaches to use.

In this section we describe a thermo-poroacoustic theory which allows
for nonlinear elastic effects and for the presence of voids, by using the
thermodynamics of (Green and Laws, 1972). This thermodynamics utilises
a generalized temperature ¢(6, 9) rather than just the standard absolute
temperature 6.

The starting point is to commence with the standard balance equations
for an elastic material containing voids, cf. (Nunziato and Cowin, 1979), or
equations (2.85), (2.86), (2.87), and we follow the approach of (Ciarletta
and Scarpetta, 1989), see also (Ciarletta and Straughan, 2007b),

pLi = maia + pk, (2.96)
pkiv =haa+ g+ pl, (2.97)
pé = —qa,a+ TaiTia+hava— g+ pr. (2.98)

Here X 4 denote reference coordinates, z; denote spatial coordinates, a su-
perposed dot denotes material time differentiation holding X fixed, and 4
signifies /90X 4. The variable p is the reference density, and we use p rather
than pg henceforth, for simplicity. Furthermore, v is the void fraction, € is
the specific internal energy, k is the inertia coefficient, F;, £ and r are exter-
nally supplied body force, extrinsic equilibrated body force, and externally
supplied heat. The tensor m4; is the stress per unit area of the X 4—plane
in the reference configuration acting over corresponding surfaces at time ¢
(the Piola-Kirchoff stress tensor), g4 is the heat flux vector, and h4 and g
are a vector and a scalar function arising in the conservation law for void
evolution. (Nunziato and Cowin, 1979) refer to h4 as the equilibrated stress
and they call g the intrinsic equilibrated body force.
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The thermodynamic development commences with the entropy inequal-
ity of (Green and Laws, 1972), and this is

. qA
pn— —|— ( ) > 0. 2.99

¢ ¢ ) a (2.99)
In this inequality n is the specific entropy and ¢(> 0) is a generalised
temperature function which reduces to 6 in the equilibrium state. Next,
introduce the Helmholtz free energy function ¢ by ¥ = € — n¢ and rewrite
inequality (2.99) using the energy equation (2.98) to obtain

—ptb — pén + T a4 — qu,A — g+ hav s > 0. (2.100)
Now, we assume that the constitutive functions
Y, 0, TAi,qa, ha, g (2.101)
depend on the variables
Tia,V,V.4,0,0,0 4. (2.102)

Note that we do not include v in the constitutive list and are so effectively
following the voids approach of (Iesan, 2004), (Ciarletta and Iesan, 1993).
One then expands ¢ and qb in (2.100) to reduce the constitutive equations.
Inequality (2.100) expanded is
iia (mai - W _ 92 ) —i( W gt @)
i, A\ TAq PaiA Pﬁafi Pal/ g Pﬁay
0055 +omg) ~0(0 55 +m %)

a0 """ 5 26 7" 5
: oY 9¢  qa 09 0¢ oY
9"“( 0. M.t e 39) (p"a L P hA)

_aa 00 _4a 90, 4409,

6 P Orian o 0w, AT g 00,

00 00

—_— > 0. .

¢(8 +899)_0 (2.103)

The terms in x; 4B,V 74 and 6 y4 appear linearly and so using the fact
that ¢, and F; may be selected as we like to balance (2.96) — (2.98), we
find

9¢ 99 99 _
s 0, oy 0, 985 = 0. (2.104)
Thus
¢ =p(0,0,v). (2.105)

It is important to observe that the generalized temperature depends on v
in addition to # and 6. Hence, the void fraction v directly influences ¢.
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Furthermore, the linearity of &; 4,7, é, 9.714 and 7 4 in (2.103) then allows
us to deduce that

rai= ol qa=—p b 100
Oxia’ 204/ 06’ (2.106)
hAzpaw 9:—p<8—¢+77%)
.’ ov ov)’
and
o [0
n= _% % . (2.107)

The residual entropy inequality which remains from (2.103) after this
procedure, has form

>y (pg—zj i pn%) - %‘“ (%V,A n %m) > 0. (2.108)

This inequality places a further restriction on all constitutive equations and
motions.

Thus, the complete nonlinear theory of Green - Lindsay thermoelastic-
ity with voids as derived by (Ciarletta and Scarpetta, 1989) consists of
equations (2.96) - (2.98) together with the constitutive equations (2.105)
- (2.107). One needs functional forms for ¢ and ¢ and then 7a;, ha,g,€
and g4 follow and the balance equations (2.96) - (2.98) are, in principle,
determinate.

2.5.4  Voids and type II thermoelasticity

In this section we describe the theory of (De Cicco and Diaco, 2002). These
writers generalize the thermodynamic procedure of (Green and Naghdi,
1993) and use a thermal displacement variable
t
a= | 6(X,s)ds+ ao, (2.109)
to
where X is the spatial coordinate in the reference configuration of the body
with 6 being the absolute temperature. A general procedure for deriving the
equations for a continuous body from a single balance of energy equation is
developed by (Green and Naghdi, 1995b). These writers derive the conser-
vation equations for balance of mass, momentum, and entropy. The work
of (De Cicco and Diaco, 2002), like that of (Green and Naghdi, 1993) starts
with an entropy balance equation. (De Cicco and Diaco, 2002) extend the
(Green and Naghdi, 1993) thermoelasticity theory to include voids in the
manner of (Nunziato and Cowin, 1979). The full nonlinear equations are de-
rived by (De Cicco and Diaco, 2002), although they only utilize a linearized
version. We follow (Ciarletta et al., 2007) and rederive the (De Cicco and
Diaco, 2002) theory referring to a reference configuration and employing a
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first Piola-Kirchoff stress tensor, as opposed to the symmetric stress tensor
formulation of (De Cicco and Diaco, 2002).

It is worth observing that (Green and Naghdi, 1993) write, ... “This
type of theory, ... thermoelasticity type II, since it involves no dissipa-
tion of energy is perhaps a more natural candidate for its identification
as thermoelasticity than the usual theory.” Moreover, (Green and Naghdi,
1993) observe that, ... “This suggests that a full thermoelasticity theory
- along with the usual mechanical aspects - should more logically include
the present type of heat flow (type II) instead of the heat flow by conduc-
tion (classical theory, type I).” (The words in brackets have been added
for clarity.) We would argue that it is beneficial to develop a fully nonlin-
ear acceleration wave analysis for a Green - Naghdi type II thermoelastic
theory of voids.

The starting point in the development of the theory is to consider the
momentum and balance of voids equations for an elastic material containing
voids, see (2.85), (2.86),

pi; = maia+ pF, (2.110)
pkiv =haa+ g+ pl. (2.111)

One needs a balance of energy and from (De Cicco and Diaco, 2002) this
is

PE€=TAiTi A+ hava— g+ psd+ (0D 4) 4. (2.112)

In these equations X 4 denote reference coordinates, x; denote spatial co-
ordinates, a superposed dot denotes material time differentiation and 4
stands for 0/0X 4. The variables p,v, ¢, k, are the reference density, the
void fraction, the specific internal energy, and the inertia coefficient. The
terms F;,¢ and s denote externally supplied body force, extrinsic equi-
librated body force, and externally supplied heat. The tensor m4; is the
stress per unit area of the X 4 —plane in the reference configuration acting
over corresponding surfaces at time ¢ (the Piola-Kirchoff stress tensor), ® 4
is the entropy flux vector, and h4 and g are a vector and a scalar function
arising in the conservation law for void evolution. These are referred to
by (Nunziato and Cowin, 1979) as the equilibrated stress and the intrinsic
equilibrated body force, respectively.

The next step is to use the entropy balance equation, see (Green and
Naghdi, 1993), (De Cicco and Diaco, 2002),

pbn = pOs + phE + (0Pa) 4 — Pab 4 (2.113)

where £ is the internal rate of production of entropy per unit mass, and
7,0 are the specific entropy and the absolute temperature. Introduce the
Helmholtz free energy function ¢p = ¢ — nf and then equation (2.112) is
rewritten with the aid of (2.113) as

P+ pnb = Taiti 4+ hava — gv + Pab 4 — pbE. (2.114)
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The constitutive theory of (De Cicco and Diaco, 2002) writes the functions
Y0, mai, Pa, ha, g, &, (2.115)

as depending on
Ti AV, VA, QL QA (2.116)

The function 7,/) is expanded using the chain rule, and rearranging terms,
recollecting & = 0, equation (2.114) may be written as

. 0 . ) . 0
fCi,A(P Ld —WAi) +1/,A<P_w _hAi) —i—a,A(p v —‘1’,4)
(9.171'1,4 8117,4 80&7,4
. (0 e,
+pa(i —77) —|—I/(p—w +g) + pb¢ = 0.
o ov
We now use the fact that @; 4,7 4, a,d and v appear linearly in (2.117)
and so one derives the forms, cf. (De Cicco and Diaco, 2002), equations

(19),

(2.117)

O o O
WAi:pax_ ) (I)A:paa_a hA:paTa
“A A A (2.118)
L e
I="Pa, "7 780 T " oa’ -

A theory of type II thermoelasticity containing voids is then given by
equations (2.110) - (2.112) with the constitutive theory prescribed by
equations (2.118).

2.5.5 Vouds and type III thermoelasticity

As we have seen in section 2.5.4, (De Cicco and Diaco, 2002) have devel-
oped a theory of thermoelasticity with voids which is a generalization of the
dissipationless theory of thermoelasticity of (Green and Naghdi, 1993). The
latter writers refer to this as thermoelasticity of type II, type I being the
classical theory where the equation governing the temperature field is effec-
tively parabolic as opposed to hyperbolic in type II theory. The theory of a
thermoelastic body with voids corresponding to type I thermoelasticity was
developed by D. Iesan, see e.g. (Iesan, 2004). However, as shown in section
2.4 (Green and Naghdi, 1992) have developed a further theory of ther-
moelasticity which employs the thermal displacement variable a and the
thermodynamics of (Green and Naghdi, 1991; Green and Naghdi, 1995b).
This theory leads to what is essentially a second order in time equation
for the thermal displacement field, but differently from the type II theory
of (Green and Naghdi, 1993) the theory of (Green and Naghdi, 1992) does
have damping and hence dissipation. (Green and Naghdi, 1991; Green and
Naghdi, 1992) refer to this theory as being of type III, cf. section 2.4.
The goal of this section is to develop a type III theory of thermoelasticity,
but allowing for the accommodation of a distribution of voids throughout
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the body. The essential difference between type II and type III thermoelas-
ticity is that the variable & 4 is added to the constitutive list (2.116),
whereas it is absent in section 2.5.4, cf. section 2.4. The presentation
follows (Straughan, 2008), chapter 7.

We commence with the balance laws for a thermoelastic body with voids,
equations (2.85), (2.86) and (2.87). With p denoting the density in the
reference configuration and referring everything to this configuration, we
have the equation of momentum balance

pE; = Tai A+ pfi (2.119)
The equation of voids distribution is
pkiv =haa+ g+ pl. (2.120)
The equation of energy balance is
pE = Taiti A+ hav g — g+ pst — (0pa),a. (2.121)

We let s be the heat supply and pa = ga/6 is the entropy flux vector. We
choose this representation to keep in line with (Green and Naghdi, 1991;
Green and Naghdi, 1992), and observe that py = —®4 where ®4 is the
entropy flux vector of (De Cicco and Diaco, 2002). We follow (Green and
Naghdi, 1992) and postulate an entropy balance equation

P = ps+ p§ — pa,a, (2.122)

where ¢ is the internal rate of production of entropy per unit mass.
The variable 6 is the absolute temperature and «(X,t) is the thermal
displacement.

We next introduce the Helmholtz free energy function ¢ in terms of the
internal energy €, entropy 7 and temperature 6, by 1) = € — nf. Then, from
(2.121) and (2.122) it is a straightforward matter to derive the reduced
energy equation, cf. (Green and Naghdi, 1992), equation (2.5),

P+ pnb = Taidia + hava — g — p€0 — 0 apa. (2.123)

A thermoelastic body of type III which contains a distribution of voids is
defined to be one for which the functions

Y, 1, Tai,pA, ha,g and § (2.124)
depend on the independent variables
Fia =2 A, v,V 4,0, 4,04 - (2.125)

We do not consider the inhomogeneous situation which would also require
inclusion of X4 in the list (2.125), cf. (Iesan, 2004). Observe that we do
not include ¥ in the list (2.125). This follows (Tesan, 2004) and allows us
to determine ¢ from .
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The procedure now is to expand 1 in terms of the variables in the list
(2.125), and recalling & = 6, we obtain from (2.123),

(0¥, — mai)Fsa +v(py + g) + 0.a(phy,a — ha)

. . : : (2.126)
+ a(pva +pn) + pa 4 da + a(pa + pha,a) + p€a = 0.

We observe that EA,Z'/yA,d,dyA,l'/, appear linearly in (2.126). Thus, we

may deduce that the coefficients of these terms in (2.126) must be zero.

The process is akin to that described in Appendix A of (Green and Naghdi,

1992). Thus, we find that

TA; = priA ) g= —ﬁ”/)m ha = pwVvA’

127
n=—bg, Y # P a). (2.127)

Hence, once we prescribe a functional form for the Helmholtz free energy
function 1 we also know the stress tensor, entropy, and the voids functions
ha and g. What remains from (2.126) is

pgd + d,A(pwa,A +pA) =0. (2128)

This leads to further restrictions on constitutive functions. We now also
have that

w = w(%‘,A; v,V A, da a,A)J
pa = pa(®ia,v,va, &, a4, 4), (2.129)

§ - §(Ii,A, v,V.A, da A, d,A)-

Thus, once we have a form for the functional dependence of v on its
variables, and a form for p4, equations (2.119) - (2.121) yield the complete
nonlinear theory of type III thermoelasticity with voids, the function &
being determined by equation (2.128).

2.5.6  Linear voids type III thermoelasticity

One may study acceleration waves in the nonlinear theory of section 2.5.5.
The acceleration waves in this case do not have a separately propagating
temperature wave. The reason is that in some sense type I1I thermoelastic-
ity behaves more like type I thermoelasticity. For acceleration wave motion
in thermoelasticity without voids this is explained in detail by (Quintanilla
and Straughan, 2004), and a similar explanation holds here. Nevertheless,
the extra damping present in the current theory may be useful in practical
problems and with this in mind we now develop the equations for a linear
theory. Let the body have a centre of symmetry although we allow it to
be anisotropic. We denote the displacement in this section as u;. We then
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write ¢ as a quadratic function of the variables in the list (2.129). Thus,

1 aq a9
pY =5 0iAjBULAUB 392 - ?1/2 + Ajabui 4 + Biavui a
" - (2.130)
4 4B v av.p + SaBV acB + %Q,AQ,B ;
where a;4;8, Rap, Tap have the following symmetries,
;AjB = U;BiA, Rap = Rpua, Tap =Tpa.
From (2.127) we now see that
TAi = GiAjBU;,B + Aia0 + Biav, ha = Rapv,p + Sapa,B, (2.131)
pn=a10 —Ajau; 4, g=asv — Bisu;a. '

We also write

pE = g1V + Pad,
pa=—Kapvp— Lapap— Mapa p.

From (2.128) one may use the cyclic thermomechanical process argument
of (Green and Naghdi, 1991), section 9, to infer that Lap, Map, Rap are
non-negative tensor forms, ¢o < 0, ¢1 =0, and Sap = Kap, Tap = Lap.

In this manner, equations (2.119), (2.120) and (2.122) lead to the linear
equations

pli; = (aiajBuj B). A+ (Aiad) 4 + (Biav) a,
pki) = (RABV,B),A =+ (KABOC,B),A + agv — BiAui,A , (2.132)
a1& = Ajat; 4 + po& + (Kapv,p),a+ (Tapap) a+ (Mapd.p).a.

One may study the boundary - initial value problem for (2.132). For ex-
ample, uniqueness and stability are easily investigated either by using an
energy method, or if definiteness of the elastic coeflicients a;4;p is not
imposed, by a logarithmic convexity argument. For the latter one will
be better employing a time integrated version of a as done by (Ames
and Straughan, 1992; Ames and Straughan, 1997) and (Quintanilla and
Straughan, 2000), these articles following the introduction of this method
for the (Green and Laws, 1972), (Green, 1972), version of thermoelastic-
ity in (Straughan, 1974). One may also study one-dimensional waves as in
(Green and Naghdi, 1992) and then (2.132) essentially reduce to

PUtt = QUgy + Aez + BV{E7
pkvit = Rupy + Koz, + asv — Buyg, (2.133)
104 = Autz + ¢2at + Kvgy + Totpy + Mgy,

The damped character of the temperature wave is evident from (2.133) as

is observed in the non voids case by (Green and Naghdi, 1992), page 262.
If the displacement and voids effects are absent from (2.133)3, then we see
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that « satisfies the equation

0% 0a 0%

ot? Otoz? ox?’

This equation clearly does not permit the possibility of undamped thermal
waves, unless M = ¢ = 0. The damping evident in equations (2.133) may
be useful for description of some practical situations.

(Eringen, 1990; Eringen, 2004) develops a voids theory which has a richer
structure than the (Nunziato and Cowin, 1979) model. This is achieved by
incorporating an equation for the spin at each point of the body. Again,
this theory is likely to have rich application in wave propagation problems.
(Straughan, 2008) describes this theory in connection with nonlinear wave
motion in section 7.6. A general study of singular surface propagation in
a continuous body formed of a thermo-microstretch material which has
memory is given by (Iesan and Scalia, 2006).

The theory developed by (Eringen, 1990) includes temperature effects
while (Eringen, 2004) also includes electromagnetic effects which could be
important in wave motion in ceramics, for example. However, we here ig-
nore electromagnetic effects. The basic variables of the theory of (Eringen,
1990; Eringen, 2004) are the displacement w;, microstretch ¢, and the mi-
crorotation vector ¢;. The microstretch theory of (Eringen, 1990; Eringen,
2004) is based on balance laws for these quantities. These are balance of
momentum,

ai

1oJe"
—¢2§+T

potl; = Tai A + pofi (2.134)
and balance of microstretch
jo
2
in which we measure quantities in the current configuration but refer back
to the reference configuration. Thus, m4; is a Piola-Kirchoff stress tensor,
fi is a prescribed body force, jy is the microinertia, m 4 is a microstretch
couple, /£ is a prescribed microstretch source term and T' (denoted by ¢t — s
in (Eringen, 2004)) is the microstretch stress. Here , A denotes 9/0X 4. In
addition to equations (2.134) and (2.135), the Eringen theory has a balance
of spins equation of form

poJ i = maia+ €ajma; + poli, (2.136)

where /; is an applied body couple density, m 4; is the couple stress tensor,
and we have taken the microinertia tensor J;; = Jd;; for simplicity. The
constitutive theory assumes that

po=p=maa+T+ pol, (2.135)

Tai,ma, T and ma; (2.137)
are functions of the variables

EA = Ui, A, (biv ¢i,A7 "2 and P,A- (2138)
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In fact, (Eringen, 2004) combines u; 4 and ¢; into a single strain measure
€iA = Ui, A + €AmiPm-

(Straughan, 2008) addresses some new questions regarding singular
surfaces for the (Eringen, 1990) theory.

A detailed account of many properties of elastic bodies containing voids
may also be found in the book by (Iesan, 2004), chapters 1 to 3.

2.6 Generalized thermoelasticity with
microstructure

2.6.1 Hetnarski-Ignaczak theory

(Ignaczak, 1990) and (Hetnarski and Ignaczak, 1996; Hetnarski and
Ignaczak, 1997; Hetnarski and Ignaczak, 1999) present an interesting ther-
moelastic theory which is capable of describing soliton - like thermoelastic
waves. The wave aspect is further analysed in (Hetnarski and Ignaczak,
2000) where a comparison is made with wave propagation in other ther-
moelastic models. The model described by (Hetnarski and Ignaczak, 1999)
consists of equations for the displacement u;, temperature 6, and an elas-
tic heat flow field b;. In the isotropic case these equations are given
by (Hetnarski and Ignaczak, 1999) as

.. 1
C2ui =fi—€b;+ m Uji5 + KAU; ,
0=r—01u;,;+ A0+ = —bii, (2.139)
) 9,
b, = ——,
“ 0

where 6 is the absolute temperature, (, e are constants, f; and r are body
force and heat supply, v is Poisson’s ratio and x = (1 — 2v)/(2 — 2v). The
constant w is much less than 1 although positive. (Hetnarski and Ignaczak,
1999) show how equations (2.139) lead to soliton - like thermoelastic waves
which move with different wavespeeds.

2.6.2 Micropolar, dipolar, affine microstructure

A type IT thermoelastic theory incorporating micropolar effects was devel-
oped by (Ciarletta, 1999). He concentrates on producing a linear theory.
In addition to the type I thermoelasticity theory of section 2.3 (Ciarletta,
1999) introduces a microrotation vector ¢; which represents spin at a point.
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His basic equations, in the current frame are

potii = tji; + pofi,

pon = pos + Pii (2.140)

Lijg; = mjij + €ijitie + pogi
Equation (2.140), is the balance of linear momentum, po being density, u;
displacement, ¢;; Cauchy stress, and f; body force. Equation (2.140), is the
balance of entropy equation, n being entropy, s entropy supply, ®; entropy
flux, and we observe the intrinsic entropy supply £ is shown by (Ciarletta,
1999) to be zero. In the equation (2.140)3 I;; represents the coeffcients of

inertia, m;; is the couple stress tensor, and g; is the body couple density.
(Ciarletta, 1999) introduces the variables e;; and ;; by

€ij = Uji + €ikPr Kij = @ji (2.141)
and he shows the energy balance law may be written as
poth — tijés; — mijhii; + ponf — ®,0,; =0, (2.142)

where 1 is the Helmholtz free energy and 6 is the temperature.
(Ciarletta, 1999) linearizes about a reference state in which 6§ = Ty, o =

o, Tp and «ap being constants, where « is the thermal displacement. By

introducing a free energy 1 which is quadratic in e;;, ;5,7 and 75, where

T=0—-Ty, m= f:o Tds, he shows the constitutive equations are

tij = Aijrsers + Bijrstirs — DijT + GijpTr
mi; = Brsijers + Cijrsfirs - EUT + Hier,r N
pon = Djjei; + Eijkij +al + b1y,

(I)i = Grsiers + Hrsiﬂrs - sz + KijT,j .

(Ciarletta, 1999) principally works with the isotropic theory for a
body with a centre of symmetry. For this case he shows the governing
evolutionary equations become

potli = (p + K)Au; + (A + p)uj ji + Keirsdsr —mITi + pofi,
I¢z = ")/Ad)l + (Oé + /B)ij,ji + R€jrsUs r — 2Ii¢1 + Pogi , (2143)
aToT = kAT — mToﬁ,iyi + pQS

(Ciarletta, 1999) solves a problem of a concentrated heat source and
proves a continuous dependence result. (Passarella and Zampoli, 2011)
derive reciprocal and variational principles.

(Quintanilla, 2002c) develops a theory for thermoelasticity of type II for
a body which includes an affine microstructure term z;;. He writes that

this determines the homogeneous deformation of the particle with centre
of mass at X. He uses the equation of balance of linear momentum,

pi; =triKk + pfi, (2.144)
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where tx; is here the Piola-Kirchoff stress tensor. His balance of entropy is
pn = pS—+p+ Paa. (2.145)

He also needs an equation for micromotion,
pJrrEir = Srix,L — Sik + pfik (2.146)

where Jg is an inertia tensor, Sp;x is the dipolar stress tensor, S;x is
a second order tensor defined below, and f;x is a source term for the
micromotion. The energy balance equation is

p() + ) — tridi i — SpikEir.n — Sidir + phE — P04 = 0. (2.147)
(Quintanilla, 2002¢) postulates constitutive theory that
Y, trj, SLix, Sik,n, P4 and  §
depend on the variables
Ti K, TiK, Tik,L, 0 and ok,

a being the thermal displacement. He shows that this leads to

o o oY
tszpa‘ ) SKj:Pr, SKiJ:pa. )
(E_],K (EK_] (EzJ,K (2 148)
oY oY '
Py=p — and £=0.

daa’ T 00

Then, a nonlinear theory for thermoelasticity of type II including affine mi-
crostructure consists of the differential equations (2.144) - (2.146) together
with the constitutive equations (2.148).

(Quintanilla, 2002¢) linearizes about a state in which o = ag and 6 = Tp.
He puts T'= 0 — Ty, u; = x; — X, u;a = ria — X;4, and postulates a
Helmholtz free energy function ¢ which is quadratic. In this way he derives
the governing evolution equations

pi; = (Aigrsts, g + Bigrstr.s — B1:T),7 + pfi s
pIx i = (ExiLsjrRUiR,S + MKiLRT.R).L

— (Brsikur,s + Csrixtr,s — XixT) + pfir (2.149)

at = —PBrilik — XikUik + Mrjxruoxr + Krytrg + Tﬁo R,
where 7 = j;to Tds is a thermal displacement. (Quintanilla, 2002¢) in-
troduces an interesting functional to establish uniqueness via logarithmic
convexity without assuming definiteness of the elastic coefficients. He also
establishes an existence theorem using a semigroup approach.

Thermoelasticity theories based on Green-Naghdi type II and type
IIT thermodynamics are also investigated with internal variables in the
interesting article of (Ciancio and Quintanilla, 2007).
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2.0.3 Piezoelectricity and thermoelasticity

Piezoelectricity is an interesting phenomenon. It is basically the ability of
some materials to generate an electric field or an electric potential when a
mechanical stress is applied. Some crystals and especially certain ceramics
exhibit piezoelectric behaviour. In this section we briefly describe some
work which has developed and employed theories for piezoelectricity in a
thermoelastic body when the temperature wave behaviour arises from a
Lord-Shulman, Green-Lindsay, or Green-Naghdi type II approach.

Since ceramics are porous materials it makes sense to develop a piezo-
electric theory for thermoelasticity which also incorporates porosity. This is
what (Ciarletta and Scalia, 1993) did. They derive a thermoeleastic theory
which allows the body to have a distribution of voids. Their thermodynam-
ics is based on the (Green and Laws, 1972) and (Green and Lindsay, 1972) 0
and theory. Let u; denote the displacement and v the void fraction. Then
(Ciarletta and Scalia, 1993) begin with the balance of linear momentum
and balance equation for the voids, i.e.

potl; = tji; + fi,

2.150
poxV =H;; +g+1¢, ( )

where t;;, H; are the Cauchy stress tensor and the equilibrated stress vector,
fi and £ are externally supplied body forces, x is an inertia coefficient, and
g is an intrinsic equilibrated body force. They adopt Maxwell’s equations
in the form

Di; = f, Ei=—¢,, (2.151)

where D, E are the electric displacement field and the electric field, f is
the charge density and ¢ is the electric potential. Their equation of energy
balance is

poé = tijéi; + Hivy — giv — g;.i + EiD; + por, (2.152)

in which € is the internal energy, e;; = (u;; + u;:)/2, g; is the heat flux
and r is the heat supply.

(Ciarletta and Scalia, 1993) employ the entropy inequality of (Green and
Laws, 1972)

with 7 being entropy and ¢ a function depending on the constitutive
variables. They assume there is a constant temperature T in the refer-
ence state and v is the distribution of v in that state. They then put
0 =T —1Ty,(=r—uvy, and define a generalized Helmholtz free energy of
form

1
GZG—(b’I]——DiEi.
Po
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(Ciarletta and Scalia, 1993) define a piezoelectric material to be one for
which

G7tij7Hi7qiagan7Di and ¢
depend on the variables
eij7979797i7Ei7< and <,i'

They then exploit the entropy inequality to show that

oG le. e
tij = pPo 66” ) D —PO 8E Hl = Po 8<11 ’
B 99 - 99
’Wae /ae O ae 06 (2.153)
06 09
9= (ac +”a<)

and b= ¢(C,0,0).
They assume further that in thermodynamic equilibrium ¢ becomes Ty + 6,
ie. ¢((,0,0) =Ty + ¢.

Thus, the full system of nonlinear equations for piezoelectric behaviour
in a thermoelastic body as derived by (Ciarletta and Scalia, 1993) are
equations (2.150), (2.151), and (2.152) together with (2.153).

(Ciarletta and Scalia, 1993) futher develop a linear version of their theory
and establish reciprocity relations and a uniqueness theorem.

The paper of (Iesan, 2008) proceeds along the lines of Green-Naghdi type
IT thermoelasticity to develop a theory of piezoelectricity in a microstretch
continuous body. The idea of microstretch was introduced in section 2.5.6.
As (Iesan, 2008) usefully points out a microstretch continuum is a dipolar
one with a dipolar displacement w;; where u;; = ¢d;; + €;j.¢r. Here ¢ is a
microstretch function (i.e. a porosity function) while ¢; is a microrotation
vector. He remarks that ¢ may be thought of as a breathing motion whereas
¢; represents a rigid microrotation. He also notes that when ¢ is zero one
obtains a Cosserat continuum.

The lucid paper of (Iesan, 2008) employs balance equations for en-
tropy, linear momentum, moment of momentum, energy, microstretch,
and Maxwell’s equations. The full thermodynamic development is given
in (Tesan, 2008). We simply present the relevant equations and constitutive
theory. The form of Maxwell’s equations are

Dii=f,  Ei=-vs, (2.154)

where D;, E; are the electric displacement field and the electric field, f is
the charge density and ¢ is the electric potential. The balance of entropy
equation is

pPo” = pos + po& + ;s (2.155)
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where pg is density, n entropy, ®; entropy flux, s is the external supply of
entropy, and & is the internal rate of production of entropy. The balance of
linear momentum is

potii = pofi +tjij (2.156)
where u; is the elastic displacement, f; is the prescribed body force, and ¢;;
is the Cauchy stress tensor. The balance of moment of momentum equation
is

Iijéj = pogi + €ijitjx +mj; ; (2.157)

where I;; is an inertia tensor, g; is the external body couple, and m;; is the
couple stress tensor. Finally the equation for microstretch balance is

Jod = mii + pol — 0. (2.158)

Here j is a coefficient, 7; is the microstretch stress vector, £ is an extrenally
supplied microstretch body force and o is a function defined in terms of
the electric enthalpy, see below.

(Iesan, 2008) introduces the electric enthalpy function A by

1
A=¢c— 779 - — Dl.EZ (2159)
Po
where € is the internal energy. His constitutive theory for a piezoelectric
thermoelastic body requires that
A,tij,mij,ﬂ'i,a,n,@,g and Dz
depend on the variables
eija ¢j,i7 (b,iv (bv 9 and a,i
where
eij = uj,i —+ 6jik¢k and o= 9,

0 being the temperature. (Iesan, 2008) shows that

S 0A o 0A o — 0A
U—/)Oagbj’i, zg—poaeij, z—pOa 71_;
0A 0A 0A
n=""g" D; = ~POHE, i = P0G, (2.160)
A
a:pog—¢, and £=0.

The fully nonlinear theory of (Iesan, 2008) then consists of equations (2.154)
- (2.158) with the forms (2.160). Once a form for functional dependence of
A is prescribed this yields a complete set of equations.

(Tesan, 2008) further develops a linear theory. He linearizes about a ref-
erence state in which § = Ty and o = «g, Tp and g being constants. He
defines T'=60 — Ty and 7 = j;to T'ds and then proposes a quadratic form
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for A. The complete form for the functions t;;, m;;, 7, 0, ®;,n and D; is
then given in the general anisotropic case by (Iesan, 2008) in his equations
(2.25) For an isotropic and homogeneous body (Iesan, 2008) develops the
linear equations as

poil; = (b + K)Au; + (A + p)ujji + Keijk P, j
+ Xo@i — BoTi + pofi,
[y = YA + (a + B)dj i + Keijrur,j — 266, + pogi
Jod = (a0 — )¢ — Mo A¢p + 11 A7 (2.161)
— Xotj,; + coT + pol,
aF = AT + A — s~ ol — cod + TS

A2A¢ + XAY + v3AT = —f,

where f;, g;, ¢, S are external supplies. (Iesan, 2008) pointedly remarks that
equation (2.161)5 generalizes the classical equation YAy = —f for the
electric potential. Here, the Ay term represents a porosity effect on the
electric potential while the v3 term represents a thermal effect.

(Tesan, 2008) establishes a general uniqueness theorem and a continuous
dependence result for his linear theory. He also obtains the solution for the
problem of a concentrated heat source and for an impulsive body force. He
also derives the solution for the problem of a thick-walled spherical shell
where the shell surfaces are subject to different but constant pressures.

(Walia et al., 2009) study the propagation of Lamb waves in a trans-
versely isotropic thermoelastic piezoelectric plate which is rotating about an
axis orthogonal to the plate. They allow for finite speed thermal wave prop-
agation by using both a Lord-Shulman type theory and a Green-Lindsay
one, with the appropriate modifications to account for piezoelectric effects.
Many numerical results are presented and their theory is applied specifi-
cally to a plate made of PZT-5A piezoelectric thermoelastic material. Other
relevant references are provided by (Walia et al., 2009), see also (Ciarletta
and Scarpetta, 1996).

2.6.4 Other theories

There are several other theories of thermoelasticity which cater for second
sound effects which have been proposed and analysed in the literature. We
briefly mention some.

(Iesan and Quintanilla, 2009) develop a type II thermoelasticity theory
which includes microstretch effects and also allows for microtemperatures.
Within the linearized theory they study uniqueness, existence, and instabil-
ity of solutions. (Green and Naghdi, 1995c¢) present a general development
of their entropy balance thermodynamics to Cosserat continua, Cosserat
surfaces and to Cosserat curves. In (Green and Naghdi, 1995d) they present
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a similar development for the theory of mixtures of interacting continua.
(Caviglia and Morro, 2005) present a general theory for a class of linear
thermoviscoelastic materials and study this in detail when there is varia-
tion in a particular direction, the z-direction say. They also investigate the
energy flux, and problems of reflection and transmission of waves.

Functionally graded elastic bodies are man made and have the property
that elastic coefficients or other coefficients are not constant but change
continuously throughout in a way that the material is designed for a specific
purpose. Within second sound theory functionally graded thermoelastic
bodies have been studied by (Ghosh and Kanoria, 2009) and (Mallik and
Kanoria, 2007). The work of (Ghosh and Kanoria, 2009) is based on a
Green-Lindsay type of thermoelasticity whereas that of (Mallik and Kano-
ria, 2007) proposes equations based on type II thermoelasticity. The effect
of a magnetic field on the response of a thermoelastic body in the context of
second sound theories has also been studied. (Aouadi, 2008) studies mag-
netic field effects within Green-Lindsay thermoelasticity. (Abd-Alla and
Abo-Dahab, 2009) investigate a time-dependent problem with a magnetic
field in type IT thermoelasticity theory. (Sharma and Thakar, 2006) anal-
yse the effect of rotation and a magnetic field for both Lord-Shulman and
Green-Lindsay theories of thermoelasticity.

A thermoelasticity theory based on the two temperature approach, see
section 1.7, was developed by (Chen et al., 1969). A variety of shock wave
problems within the context of this theory were tackled by (Warren and
Chen, 1973). (Puri and Jordan, 2006) also present an in-depth study of
harmonic waves in the two-temperature thermoelastic theory. They inves-
tigate particularly the low and high frequency regimes and present detailed
numerical results for both the elastic and temperature waves. Another
study of wave propagation in the two temperature thermoelasticity theory
is due to (Kumar and Mukhopadhyay, 2010). We also mention the study
of (Othman and Singh, 2007) who study a rotating micropolar thermoe-
lastic body. They present solutions for harmonic waves and compare the
results within theories of classical thermoelasticity, Lord-Shulman theory,
Green-Lindsay theory, type II theory, and a dual phase lag theory.

Analytical results for the solution to thermoelasticity of type III for
a beam are given by (Zelati et al., 2010), while (Liu and Quintanilla,
2010a) establish analyticity results for a type III plate. Energy decay in
a mixed thermoelastic system of type IT and type III is studied by (Liu and
Quintanilla, 2010b).

A novel result for a Timoshenko beam system is established by (Sare
and Racke, 2009), who show that exponential decay of the solution is to be
expected for a Timoshenko system with Fourier’s law, but incorporation of
a Cattaneo - like heat flux law does not lead to exponential decay.
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2.7 Exercises

Exercise 2.7.1 Consider the boundary - initial value problem, P, for equa-
tions (2.132) with w;,v and a prescribed on the boundary T', of a bounded
domain Q C R3. Let (u},v1,1) and (u?,v2,az) be solutions to P for the
same boundary and initial data. Write out the boundary initial value prob-
lem for the difference solution u; = u} —u?,v = v; — V9, = a1 — ay to P.
For appropriate symmetry conditions on the coefficients derive the energy
equation

dlf1 . 1 1 .
E[i/ﬂpuiuidm—l—i/ﬂaiAjBuj,Bui,Adac—f—§/ka1/2dm

1 a 1
+ 2 [ Rapvavpds + Z0)% + £ / Tapa,ac,pde
2 Q 2 2 Q

(2.162)
—|—/ KABozyAl/,de—i—/ BiAuiﬁAde}
Q Q
+ [ Mand ab s~ 62]0] =0,
Q
where || - || is the norm on L?(Q). Use this equation to deduce uniqueness

for appropriate signs on and relations between coefficients.

Exercise 2.7.2 For the Hetnarsky - Ignazcak equations (2.139) with f; =0
and r =0, show that

. 0 w b;0 ;
bibj = — = |b|* = ———=
“’ ot 2 P! 0
Then show that
. 0 w
0+ —=— = |b]*>=—6u;; + A0 —b; ;.
+6t2| | Ui + i

Show further that if Q is a bounded domain in R® with boundary T,

- }f ni0dS = w }f Obin; dS
r r

and so 00/0n =0 on T is consistent with bn; =0 on T
Deduce also that with u; =0 on T,

d 2 d A d
—C—||u||2 = —¢ | 0 de — < (uii)2dz — < Z|vu)2,
0 : dt 2

dt 2 at 2 Jq
where ||-|| is the norm on L*(2). Hence, conclude that with u; = 0,b;n; = 0,
and 00/0n =0 on I,
€-2

A K w
2, A2 R 2 W 2
P = o1 + s P+ [ Vul? + SR + [ 0o

satisfies

F(t) = F(0) for all ¢ > 0.
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Exercise 2.7.3 Prove that a solution to the boundary initial value problem
P for (2.143) is unique.

Hint. Let (2.143) be defined on a bounded spatial domain Q@ C R3, fort > 0.
Let T' be the boundary of Q. On I' suppose u;, ¢; and T are given. Also,
initial values are given for w;, uw; ¢, @i, @i, T and T;. Let (uzl7 %7T1) and
(u2,¢2,T?) be solutions which satisfy P for the same boundary and initial
data. Define the difference solution u; = u} —u?, ¢; = ¢F — 2, T = Ty — Ts.
Integrate in time the equation which arises for T and set T = fti T ds. Show
that one may find

d po . . I 5 A 9
dtUﬂ S+ () [Vl + (B2

I . y 9 a+p 2
wire [ witurda s [ didide + IV + (5 ) ol

a k
2072 + = 2l =2 2,
+ ST+ 1971 = 26l

(Note 7 = T.) Hence, deduce uniqueness when s is suitably restricted (a
restriction which does follow from thermodynamics).
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Interaction with fluids

3.1 Cattaneo theories

Within the field of fluid mechanics modifications of the Navier-Stokes equa-
tions to incorporate finite speed heat transport via a Cattaneo - like theory
have not been as prevalent as they are in solid mechanics. The earliest
approaches to doing this would appear to be those of (Miiller, 1967b), of
(Fox, 1969b) and of (Carrassi and Morro, 1972). Second sound in fluid me-
chanics has been known for a long time through heat waves in Helium II
below the lambda point of about 2.2°K. (Peshkov, 1944) reports results
of experiments on Helium II in which he detects a heat wave. (Peshkov,
1947) further analyses experimental results and relates these to Landau’s
theory. A review of the physics literature on this subject may be found in
(Donnelly, 2009).

(Fox, 1969b) adopts a very general approach at the outset and writes
the constitutive theory for the Helmholtz free energy function, v, stress
tensor, ¢;;, and entropy, 1, as functions of the variables Fj4,0,6; and g,
these being the deformation gradient F;4 = 0x;/0X 4, temperature 6, and
heat flux ¢;. He proposes instead of a Fourier law for the heat flux q, a
general rate-type equation of form

hk(F7 97 9,i7 qis FJ éa é,i7 ql) = 07

where the vector hy is a linear function in each of the variables 1.7‘7 6‘7 9“ and
¢;- In these expressions a superposed dot denotes the material derivative,

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 82
DOI 10.1007/978-1-4614-0493-4_3, (© Springer Science+Business Media, LLC 2011
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e.g.
. Oq; Jq;
%= 3t + UJ aCCj '

He develops a general theory for what he calls a fluid phase, (Fox, 1969b),
section 4. His full theory is totally nonlinear and involves a very general set
of equations for a viscous fluid. However, he also develops a reduced theory
for an inviscid fluid. (Fox, 1969b) stresses the use of an objective derivative
rather than the material derivative ¢; for the heat flux. His inviscid theory
is based on the equations

p+pdii =0,
pU; = pb; —p;,
pon + qii = pr —2p g—? qi(€10,; + €2q:),
Gi — wijq; = €10,; + eaq;,
where & = ¢;¢;, wij = (vij —v;,)/2, and

_ 200 __ %
P=r, 17 "%
The coefficients €; and €5 are, in general, nonlinear functions of the scalar
variables p, 0,6 ;0 ;,¢, and 6 ;q;. The derivative ¢; — w;jq; is an objective
(Jaumann) derivative. (Fox, 1969b) applies his theory to describe a fountain
effect, and shows his theory is consistent with heat travelling as a wave.
(Miiller, 1967b) adopts a different approach. He writes equations for ¢;,
iij and couples these with the balances of mass, energy and momentum.
This is effectively requiring the system of equations to form a hyperbolic
system from the outset. The paper of (Miiller, 1967b) has been very influen-
tial in that he developed the idea of an extended theory of thermodynamics.
Theories of extended thermodynamics are described in detail in the books
of (Miiller and Ruggeri, 1998), (Jou et al., 2010a) and of (Lebon et al.,
2008). We do not pursue this here, although the interested reader might
wish to consult the article of (Muschik, 2007). For a gas, there is a connec-
tion with extended thermodynamics and the early work of (Grad, 1949),
based on kinetic theory. We think it is worth drawing attention to the pa-
per of (Truesdell, 1976) who writes, ... “to claim that the kinetic theory
can bear in any way upon the principle of material frame - indifference is
presently ridiculous.” (Truesdell, 1976) also writes, ... “The kinetic theory
of gases provides little support for continuum mechanics except in very
special flows,” and he writes, ... “He who regards the kinetic theory as pro-
viding the one and only right approach to gas flows should discard all of
continuum mechanics, not just one or another part of it.” Whether one re-
gards an equation like (3.1)4 as a balance law or as a constitutive equation
is a matter of some controversy in the literature. For the case of a balance
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law the material derivative, ¢;, is employed. When (3.1)4 is regarded as
a constitutive equation then an objective derivative is preferred for ¢;.
Fourier’s law, ¢; = —k0;, is a constitutive equation and one viewpoint
is to regard equation (3.1)s as a generalization of Fourier’s law. Then, an
objective derivative for ¢; is natural. (Dauby et al., 2002) write, ...“When
the constitutive equations (like (3.1)4) are used to describe heat transfer
in a moving fluid as in the present work, it is important to recall that
objective time derivatives (Jou et al., 2010a) must be introduced instead
of the partial time derivatives.” (The words in brackets have been added.)
(Carrassi and Morro, 1972) also adopt a different approach. While they are
interested in acoustic waves they do develop a general theory for a viscous
fluid. They have the standard equations for balance of mass, momentum,
and energy, namely

p =+ pdi; =0,
pi = =P+ tjij,
pé = —pdii + tijdij — i -
However, in addition to adopting a relaxation law for ¢; they adopt a similar

relation for the (extra) stress tensor t;;. Thus, (Carrassi and Morro, 1972)
suggest employing the evolution equations

9qi
i =k,
3t+q :

T

and
3tij
ot
The constant 7, is a relaxation time for the stress. The paper of (Carrassi
and Morro, 1972) then focusses on acoustic waves in some detail.

(Morro, 1980) is also interested in describing wave motion in a heat

conducting viscous fluid. His is an inspiring paper which involves the use
of hidden variables. (Morro, 1980) uses the balance equations

Ty

+ tij = 2,LLd1'j + Aéijdrr .

p+ pdi; =0,

P'[)i = tjiyj + Pbi 5 (32)

pé = pr+tijdij — Gii -
However, he works with hidden variables, and these are the vector, alﬂ and
a tensor, afj, in component form; in direct notation the hidden variables
are o' and a?. (These, in certain cases approach the heat flux and stress
tensor, respectively.) The governing equations for a' and & have form

Tlééll + Oél1 = 911'

-2 2
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for constants 71, 72 > 0. (Morro, 1980) shows that thermodynamics requires

o p oY pl O
=22 by = P, Coa=-E2
n 90’ p¢p j = 82 q 7’130411
and the free energy must have form
1
b= W(0.p)+ - | alal + praada? + 22 (a)?
20 7 2
The constitutive theory of (Morro 1980) then becomes
=0 ala
0o+t -—% 2 92 ;o

tij = —pdi; + 2,qu + )\a 70ij 5

1
g = —Koy .

(Morro, 1980) shows how one may develop an acceleration wave analysis in
detail. It is important that he shows the free energy and the entropy depend
on the variable o} which is closely related to the heat flux ¢;. (Morro, 1980)
also considers objective derivatives for o' and a? which are generalizations
of those of (Fox, 1969D).

3.1.1  Cattaneo-Fox theory

(Straughan and Franchi, 1984) adopted a specific form of incompressible
thermoviscous fluid equations which uses a Boussinesq approximation in
the buoyancy term in the momentum equation. They also employed the
Jaumann derivative of (Fox, 1969b) for ¢; in a Cattaneo model. Thus, the
Cattaneo-Fox equations proposed by (Straughan and Franchi, 1984) have
form

1
’L.)l' = _;p,i + klgoﬁ + I/A’UZ‘ y

v;; = 0, (3,3)
6 = i
T(¢i — €ijkwiqr) = —qi — KO, .

Here k = (0,0,1) and w = curlv/2. The quantities g, «,v,7 and & are,
respectively, gravity, the thermal expansion coefficient of the fluid, kine-
matic viscosity, thermal relaxation time, and thermal conductivity of the
fluid. In deriving equation (3.3); one begins with the balance of momentum
equation

pvi =tji; + pfi (3.4)
where ¢;; and f; are the stress tensor and body force, respectively. For
an incompressible, linear viscous fluid ¢;; = —pd;; + 2ud;;, where p is the

dynamic viscosity and d;; is the symmetric part of the velocity gradient,
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namely d;; = (v;; + vj:)/2. We note v = u/p and suppose in the body
force term f = —gk, and p is a linear function of temperature 0, i.e.

p=po(1— a6 —6)), (3.5)

where pg is the value of p when 6 = 6y, and a(> 0) is the thermal expansion
coefficient of the fluid. Then equation (3.4) becomes with p replaced by the
constant po,

PoV; = —p,i + 2/Ldij,j — po(l — 04(9 — 90))91@. (36)

We note 2d;; ; = Aw; since v; ; = 0 and we incorporate the constant terms
po[l + abp)g into p, i.e. redefine

p — p+ pog[l + abplz.

Then upon division by py and replacing po by a constant p, equation (3.6)
yields equation (3.3);.

(Lebon and Cloot, 1984) suggested modifying the Jaumann derivative in
(3.3) and studied a thermal convection problem incorporating the effect of
surface tension.

3.1.2  Cattaneo-Christov theory

(Christov, 2009) is an inspiring piece of work and he has suggested an-
other objective derivative be employed for ¢;. He suggests the following Lie
derivative which is based on very sound physical principles,

9q

¢ — q3Vij + qidrr = 8_1: + 04,5 — Vi + Urrgi - (3.7)

When the fluid is incompressible d,,, = 0 and then instead of equations
(3.3) one may pose the Cattaneo-Christov equations for thermoviscous fluid
motions, namely

1
Uy = ——p,i + kigad + vAv;,
p

v =0, (3.8)
0= —ii
T(qie +viqi; — qjvig) = —qi — K0, .

Uniqueness and structural stability questions for a general Cattaneo-
Christov fluid are presented by (Ciarletta and Straughan, 2010). These
writers allow compressibility but they restrict attention to the case where
the velocity field is a priori known. A uniqueness result for the incompress-
ible heat conducting Cattaneo-Christov model is given by (Tibullo and
Zampoli, 2011).

A general non-isothermal thermodynamic theory for a compressible
gas which is based on the Cattaneo-Christov equations is derived by
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(Straughan, 2010a). He shows how an acceleration wave may propagate
and derives an explicit formula for the wavespeeds. The Cattaneo-Christov
theory has been placed on a sound thermodynamic footing by (Morro,
2010). He derives objective evolution equations for both the heat flux and
the stress which allow the body to deform and are completely compatible
with thermodynamics.

3.1.3  Guyer-Krumhansl model

(Franchi and Straughan, 1994b) suggested modifying equation (3.3)4 by
adding Guyer-Krumhansl terms for ¢;. In this way one derives instead of
(3.3) the system

1
Uy = ——p, + kigad + vAv;
p

vii =0, (3.9)
é = —Qii,
7(¢i — €ijkwiqr) = —qi — K0; + T(AG + 2qx,ki) 5
where the relaxation time 7 is discussed in section 1.3. (Franchi and
Straughan, 1994b) study thermal convection on the basis of these equations.
(Dauby et al., 2002) propose a similar set of equations to (3.9) and in-

vestigate thermal convection also incorporating surface tension effects at a
free surface.

3.1.4  Alternative Guyer-Krumhansl model

In view of the findings of (Straughan, 2010d; Straughan, 2010c¢) on thermal
convection employing the Cattaneo-Christov equatons (3.8), it may be also
worth considering a Guyer - Krumhansl invariant. Then, one would modify
equations (3.8) to

1
v; = —;pyi + kiga + vAv;

Vi =0, (3.10)
6 = i
T(qit + 3G — qjvij) = —qi — K0 + T(Aq + 2qk ki) -

3.1.5  Further Cattaneo type fluid models

(Puri and Kythe, 1997) worked with system (3.3) and solved a problem of
a plate moving in a Maxwell-Cattaneo fluid. This allowed them to simplify
the equations and seek a solution v = (0,0, u(z,t)) with a temperature field
6(x,t), x being the one-dimensional spatial variable. The reduced (linear)
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system of equations they worked with is

ou  0%u
— GO,
ot~ 0a2 "
020 00  9%0
AP— - =—
o "ot T oa?
where )\, P, G are positive constants.

(Puri and Kythe, 1998) analysed a similar class of problem but when the
stress tensor is allowed to have a non-Newtonian form. In this case instead
of equations (3.11) they derived the system

Ju ou 0%u
— —k———=-=+Go
ot otox?  Ox? e,
%0 a0 020
AP— - =—
oz "ot T o
where k is another positive constant, this term representing the viscoelastic
effect.

(Puri and Jordan, 1999b) [see also (Puri and Jordan, 1999a)] analysed a
problem of an oscillating vertical plate which is periodically heated. They
adopted a Maxwell-Cattaneo fluid but also assumed the fluid was of dipolar
type. This led them to study the system of equations

@_283u :82u £26u
ot 'otox? 02 POzt
0%0 20 0%
AP—+P—=—.
ot? ot 0x?
The coefficient ¢3 is a positive dipolar constant.

If we analyse a problem like that of (Puri and Kythe, 1997) but instead
of using equations (3.3) we employ the GMC system (3.9) then we may
arrive at the system of partial differential equations

(3.11)

(3.12)

+ G,
(3.13)

ou
T vAu = G0,
@ _ 9q;
C[)t = "oz, (3.14)
d%q; Jqi 9q;
T otom T om  RAVEITAG
Upon elimination of ¢; ; we find
% —vAu =G0,
1
VI -
Tige T g ~rAd—mAg =0,

where 7y = 7¢ > 0 and 75 = 37¢ > 0.
Thus, equations (3.11), (3.12) and (3.15) represent interaction of a fluid
with an MC or GMC thermodynamic law in a suitable linear sense.
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The simplified systems (3.11), (3.12) or (3.15) are certainly much more
amenable to analysis then the original systems (3.3) or (3.9).

3.2 Green-Laws theory

(Miiller, 1971Db) begins with the equations of balance of mass, balance of
linear momentum, and balance of energy without body force and without
heat supply, namely

p + PV = 07

poi — tji; =0,

PE+ qii = tijvij,
where p,v4, 155, €, ¢; are density, velocity, stress tensor, internal energy, and
heat flux, respectively. He assumes constitutive theory of form

tij = ti;(p,0,0:,0,d.s)

¢ = ¢i(p,0,0.5,0,dys) (3.16)
€= 6(p7 97 9,i7 97 drs)

where 6 is the temperature, d;; = (v;; + v;,;)/2. He exploits his entropy
inequality

pn+ @, >0,

for an entropy flux vector ® which like the entropy, 7, depends on the
constitutive list (3.16). (Miiller, 1971b) derives equations for a viscous fluid
and for an inviscid fluid. He also shows how one may include a body force
and a heat supply and use the classical arguments of Coleman and Noll to
reduce the constitutive theory.

In this section we describe the equations for an inviscid fluid derived using
the thermodynamic arguments of (Green and Laws, 1972). The details may
be found in (Lindsay and Straughan, 1978).

The equations presented by (Lindsay and Straughan, 1978) are conserva-
tion of mass, linear momentum, angular momentum, and energy and have

form
p + PV 5 = 07
poi = pfi+tjij, (3.17)
tij = tji,

pé = pr — qii + lijdi;

where f; and r are the body force and externally supplied heat supply,
respectively.
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The entropy inequality employed is that of (Green and Laws, 1972),

d pr qin;
— pndV—/—dV%—jIé —dS >0 3.18

dt Jy v ¢ ov ¢ (3.18)
where V is any subbody in a continuous body B. The notation 9V denotes
the boundary of V', n is the entropy function and ¢ is a scalar function to

be more precisely identified. In terms of the Helmholtz free energy function

v,
Y =€e—np (3.19)
one may reduce (3.18) to a pointwise form and rewrite it with the aid of

equation (3.17)4 as

—p(¥h +nd) + tijdij — QZT?Z > 0. (3.20)

To describe an inviscid (perfect) fluid (Lindsay and Straughan, 1978)
suppose that the functions

¢ﬂ¢an7qi7tij (321)
depend on the independent variables
paeaéae,i (322)

where 6 is the temperature in the body. For the scalars 1, ¢,n (Lindsay
and Straughan, 1978) show that the list (3.22) may be replaced by

p. 0,6, (3.23)

where A = 6,0 ,/2. The forms (3.21) - (3.22) are now inserted into the
entropy inequality (3.20) and (Lindsay and Straughan, 1978) deduce that

d=0(0,0), ¥ =1(p,0,0,)), (3.24)
oY /00 :
- _ - 6,0, \ .
9600 n(p,0,0,)), (3.25)
G = —Kb,, (3.26)
_ ppOp/ON ;
0
tij = —p&ij — p% 6‘)1‘97j N (328)
B .
p= p2a—f = p(p,0,0,)). (3.29)

What remains of the entropy inequality (3.20) is

o 0b\ - b A
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From this inequality (Lindsay and Straughan, 1978) deduce that in ther-

modynamic equilibrium (for which 6=0, 0 ; =0 and is denoted by FE) the
following relations hold

o 09\ _
(ao + 89> =0, (3.31)

Gian)l, - ()
00 90 ) | g 00 ) | g

K|g > 0. (3.33)

> 0, (3.32)

Thefunction ¢(6, 9) is usually called a generalized temperature. One may
show that the system of equations (3.17) reduces to

p+ pvii =0,

oy
U = pfi — P — 0.:05)
pvi = pfi —p, ( Pax ) ;
pdm0 + (po + ndo + pdne)d + (pox + pdma — K )\
— K)\e,ie,je,ij — KAO — Kppﬁ,i — 2)\K9
+ P2 dnpdis + (pox — K;)0,:0 5d;5 = pr.

(3.34)

Equations (3.34) represent the complete system of equations for thermody-
namic motion in an inviscid fluid when one employs the thermodynamics
of (Green and Laws, 1972).

(Lindsay and Straughan, 1978) develop a detailed analysis of acceler-
ation wave behaviour for a solution to (3.34) including curved waves of
arbitrary shape. Particular solutions are presented for a cylindrical shaped
wave moving into a shear flow or for a spherical wave advancing into a
radial flow.

3.3 Type II fluid

(Green and Naghdi, 1995a) used their thermal displacement variable o and
their entropy balance equation to derive a new class of fluid theories. In
this book we refer to their theories as being of a fluid of type II or type
III. We believe that both of these theories may have application in the
active area of research into heat transfer characteristics of nanofluids, cf.
chapter 8. As we point out in chapter 8 nanofluids typically consist of
a suspension of metals or their oxides, Cu, CuO, Al;Og3, SiOy, TiOs, in
water or a base fluid like ethylene glycol, see e.g. (Hwang et al., 2007),
(Maiga et al., 2005), (Kim et al., 2007). An interesting article of (Vadasz
et al., 2005) suggests that a mechanism for the increased heat transfer
characteristics of a nanofluid may be through a hyperbolic equation for the
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temperature field. In view of the fact that the temperature displacement
field essential to the type II theory of (Green and Naghdi, 1995a) satisfies
what is effectively a hyperbolic equation it may be that the extension of
the Green - Naghdi model developed by (Quintanilla and Straughan, 2008)
which we now describe will be applicable to nanofluids.

(Quintanilla and Straughan, 2008) commence with the reduced energy
balance equation

TyLij — pivi — p( +nf) — pb& = 0, (3.35)

written in the current configuration since we are dealing with a fluid. Here
Tij,pi, ps 0,1, 0 and ¢ are, respectively, the (symmetric) stress tensor, en-
tropy flux vector, density, Helmholtz free energy function, entropy, absolute
temperature, and the internal rate of production of entrotpy. Now, v; de-
notes the velocity field, L;; = v; ;, v = (&) ;, where o = ‘0 0(X, s)ds + ag
is the thermal displacement field. We also require the (Green and Naghdi,
1995a) entropy balance law written in the current configuration

P = ps+ p& — pii, (3.36)

where s is the external rate of supply of entropy per unit mass. Since we
are now developing a fluid theory we also require the balance of mass,

p+pvii =0, (3.37)
and the balance of linear momentum,
pv; = T; 5 + pby, (3.38)

in which b; is an externally supplied body force.

The development of (Quintanilla and Straughan, 2008) is different from
that of (Green and Naghdi, 1995a). To understand this we observe that
(Green and Naghdi, 1995a) commence with the assumption that ¢, n, T;;, p;
and £ depend on the variables p, L;j,0,a; and 7;. However, (Green and
Naghdi, 1995a) p. 293 assume that p; is linear in ~y;, T;; is quadratic in d;;
(dij = (vij +v5:)/2), § is quadratic in d;; and +;, and v has the form

Y= %misi(si + f(p,0) (3.39)

where §; = a; and m is a constant. After this they analyse a class of dis-
sipationless flows by assuming the Reynolds, Peclet and m numbers are
suitably large and this leads to a restricted class of dissipationless flows.
(Quintanilla and Straughan, 2008) develop what is a more general dissipa-
tionless theory from the outset. To do this they omit v; = 0,; = (&), as
a variable in the constitutive theory from the outset. (This corresponds to
the way (Green and Naghdi, 1993) develop their theory of thermoelastic-
ity without energy dissipation, discussed in section 2.3). (Quintanilla and
Straughan, 2008) are thus able to obtain a more complete nonlinear con-
stitutive theory in which a variable such as the entropy flux vector, p;, is



3.3. Type II fluid 93

defined naturally in terms of the Helmholtz free energy rather than having
a preimposed form.

The work of (Quintanilla and Straughan, 2008) begins with the
assumption that

Tij7¢7napi and 5 (340)
are functions of the independent variables
p,Lij,H,aJ-. (341)

Next, write L;; = dij + wij, wij = (vi,j — v5,:)/2, and use (3.41) together
with (3.40) in the energy balance law (3.35) to see that

oY  pr oY o
» 27 B 2 T . i
[Tw +050°5, + 5 ( 8%% + aaﬁjaﬂ)}dw + Tyjwi;
(i p 20 O 7 (0
%(pmtpa ) T 9p(89 + ) (3.42)

o 3¢ _
Oa @i~ 80410[’]) =0

(Quintanilla and Straughan, 2008) deduce from (3.42) that p;,n and ¥
reduce to the forms

— pbé + Wu(

__ oY W B |
b= 80&71' ’ = 89 a'nd dj - ¢(p7 97 a,z)- (343)

They then restrict attention to the situation where & = £(p,0, ;) and
equation (3.42) leaves

2 0Y oY oY
|:/I’U * 6” 8 ty 2 (8@ iOZ)] + 8aja’l) dl] B p6‘§
’ ’ (3.44)
+ Ewi(a—wai — 8—77&04 ) =0.
2 J BOéJ‘ ’ 60471' J
From (3.44) (Quintanilla and Straughan, 2008) show further that
oY oY
= q,, 4
6047ia7j (90[)]‘ % (3 5)
and
o pey — P(D L O
T, = —pby — 5 S+ aa)jaﬂ) (3.46)

where p is a pressure defined by p = p?9vy/0p. From the remainder of
equation (3.44) it follows that £ = 0, in agreement with (Green and Naghdi,
1995a).

In view of the above, the equations for a fluid of type II are given by
the balance equations (3.36) - (3.38) with the constitutive theory (3.43),
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(3.45) and (3.46) together with & = 0. If we recollect these explicitly then
the balances of mass, linear momentum, and entropy become

p+pvii =0,
. 1
pY; = —Pi — 5 [p(¢a,ia,j + @[Joc,ja,i)} g + pb;, (3'47)
d o\ a (oY
“Par (%) =pst ox; (3041-) ’

where d/dt, like the superposed dot, denotes the material derivative.

3.4 Type III fluid

(Green and Naghdi, 1995a) develop a further theory for a thermoviscous
fluid which utilizes their thermal displacement variable «,

t

a(x,t) = / 0(x, s)ds + ag (3.48)
to

where 6 is the temperature field and x refers to the current configura-

tion. They begin with the equations of balance of mass, balance of linear

momentum, and balance of entropy in the form

pt+vip,i + pvii =0, (3.49)
p(vm + Ujvi,j) = Tj@j + pbi7 (350)
p(ne +ving) = —pii + ps + pg. (3.51)

In these equations p,v; and 7 are the density, velocity and entropy. Addi-
tionally 7j; and p; are the (Cauchy) stress tensor and entropy flux vector,
while b;, s are the externally supplied body force and entropy supply, re-
spectively. The variable ¢ is an internal rate of production of entropy per
unit mass.

(Green and Naghdi, 1995a) also employ the reduced energy equation

—p(Y) +18) — pbE — piyi + Tjivi; =0 (3.52)

where a superposed dot denotes the material derivative and v; = 0, =
0c/Ox;. They also define the variable

foJe’
0 =a,; = .
! * 3:01
They then define a thermoviscous fluid to be one for which the Helmholtz
free energy function 1, the entropy, stress tensor, entropy flux vector,
and the internal rate of production of entropy depend on the independent
constitutive variables

(3.53)

pvv’i,jaeaéia’y’i (354)
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ie.

Y =P(p,vij,0,0i,7i)

T;; = Ti(p, vi .0, 0i,7)

n=n(p,vi;,0,0i,7) (3.55)
pi = pi(p,vij,0,0i,7)

& =£&(p,vij,0,0:,7).

Unlike the theory of section 3.3 the constitutive list (3.54) contains the
variable v; = &,; which is in addition to those of (3.41). For this reason we
refer to this as a fluid of type III, by analogy with thermoelasticity of type
IIT as defined in section 2.4.

By manipulating the energy equation (3.52) (Green and Naghdi, 1995a)
are able to reduce the constitutive list and indeed, they demonstrate that
1 does not depend on vy; and v; ;, so

dj = ¢(p797a,i)7 (356)
and additionally

o oy Oy
=57 a; o " a Fai’ (3.57)

while the energy equation assumes the form

<Tz‘j + pdij + pa,j%)dij - (Pi + p;j;)% —pb& =0, (3.58)

where d;; = (v;; +v;,;)/2 and p is a pressure given by

oY
_ 2
p=p e (3.59)

At this point (Green and Naghdi, 1995a) specialize to the situation in
which

P = %a,ia,i + f(p,0) (3.60)

for m > 0 a constant and

K
i = —pmdb; — —
p pm 0o Y
Tij = —p&ij + )\dkkéij + 2/Ldij — 2ma,ia,j (361)

pEh = )\dfZ + 2pd;jdi; + % YiYi

where 6y, k, A and p are constants.
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3.4.1  Type III viscous fluid

We do not in this work adopt equations (3.60) and (3.61). Instead we leave
things more general. We dot not impose a form for ¢ and select

N kK
pi=—p Do, 6 Vi - (3.62)

This is different to equation (3.61); for two reasons. One, the first term is
more general. Secondly, we employ 6 rather than a constant 6y. This we
believe leads to a more natural energy equation which reduces to the classi-
cal energy equation in appropriate circumstances. In (3.62) x may depend
on the variables in the constitutive list. Our viscous theory is completed
by specifying

Ty = —pdi; + Tj ,

. 0
Tij = —povi 8_¢ + Adkkdij + 2pdij (3.63)

&g

K
9=—ii.
pBE g 1Y

The governing equations of motion for a type III fluid are then obtained
upon employment of (3.62) and (3.63) in the conservation laws (3.49) -
(3.51).

3.4.2  Type III inviscid fluid

Since the theme of this book is heat waves it is appropriate to develop a
theory for an inviscid type III fluid. To this end we effectively neglect the
dependence on v; ; in the constitutive list and drop the d;; terms. Thus,
our constitutive theory for an inviscid fluid of type III is

oY Kk
bi = _p(?a,i - 5 Vi s (364)

together with

0
Tij = —pbij — pa 8_1/’ ;
@, (3.65)

K
9:_1'1'7
pog g %Y

where in its fullest generality v has the functional form (3.56) and
depends on the constitutive variables p, 8, o ;,v;.
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The governing equations for an inviscid fluid of type III then become
upon utilizing (3.64) and (3.65) in the evolution equations (3.49) - (3.51)

p+pvii =0, (3.66)
pvi = —p.i — (pajtha ;) j + pbi, (3.67)
. K K
P = (pYa,),i + (5 7) + s+ o3 W% (3.68)
1
::(Pwaﬂ)¢‘+'§(ﬁw%li4—ps. (3.69)

3.5 Green-Naghdi extended theory

(Green and Naghdi, 1996) continue their development for describing the
behaviour of a continuous body which relies on an entropy balance law
rather than an entropy inequality. Again they introduce a quantity 7" which
is the “empirical” temperature and the “thermal displacement variable”

t
a= / T(x,s)ds + ap .
to

In fact, the full theory developed by (Green and Naghdi, 1996) is very gen-
eral. They remark, (Green and Naghdi, 1996), p. 240, that ... “the theory
... leads to a set of differential equations ... which are rather unmanagable
from the point of view of understanding turbulent or other flows.” To pro-
duce a more tractable theory they restrict attention to a reduced version
of their general theory which leaves only one equation as the mechanical
differential equation. Precisely, the theory of (Green and Naghdi, 1996) de-
velops a novel theory for fluids which involves vorticity and spin of vorticity.
This introduces higher spatial gradients into the equations than those of
Navier-Stokes theory and so is likely to be relevant where non-Newtonian
fluid behaviour is expected. They work with two temperatures and are
motivated by attempting to describe turbulence. In this respect, they are
continuing the work of (Marshall and Naghdi, 1989a; Marshall and Naghdi,
1989b).

We simply describe the relevant differential equations for the model of
(Green and Naghdi, 1996). Full details of the continuum thermodynamical
development from the entropy balance law is given in (Green and Naghdi,
1996). The basic equations of (Green and Naghdi, 1996) are the balance
of linear momentum, balance of mass, and balances of entropy for two
temperatures 8y and 07, which they regard as the usual temperature, and
a turbulent temperature, respectively. However, other interpretations may
be given to the different temperatures, see e.g. section 8.4 and (Straughan,
2010b). The balance of linear momentum, balance of mass, and balances
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of entropy as given by (Green and Naghdi, 1996) for their incompressible
fluid may be written

d
p(@i - ﬂ—AUi) = pbi — pi + pAv; — 200 A%,
I

v =0, (3.70)
P = psu + péa — Pl
pir = psT + pér — pi s -

Here a superposed dot denotes the material derivative d/dt = 9/0t +
v;0/0x;. The variables p,v;, b;, p are the density, velocity, body force and
pressure. The coefficient y is the kinematic viscosity of the fluid while py
is another constant reflecting the geometry of the particles and the in-
teraction with the fluid. The appendices to (Bleustein and Green, 1967)
and (Green and Rivlin, 1964) derive an expression for the kinetic energy
of a system of particles as a function of the velocity of the centroid and
the derivative of this velocity. While neither of the articles of (Green and
Rivlin, 1964) nor (Bleustein and Green, 1967) has a direct bearing on the
fluid theory of (Green and Naghdi, 1996), their procedure leads to a kinetic
energy which can be equated to the kinetic energy of the fluid currently
being described. The quantities ng, 7y are the entropies corresponding to
the temperatures 0y and 6. The terms sy, sp, are external supplies of
entropy, £, &1, are intrinsic supplies of entropy which depend on the vari-
ables of the theory, and p, pI are entropy flux vectors. (Green and Naghdi,

1996) assume that the Helmholtz free energy function 1 has form
%ZCH(GH—GH IHGH)—FCT(GT—@T 1n9T), (371)

with cpg,cr positive constants, while the entropies and entropy fluxes
assume the form

NH = CH In 6‘H7 nr = cr In 9T7 (372)
and
H__K_HaeH T__K_TaeT

for positive constants kg, k7, 0, with 8y being some reference temperature.
The instrinsic entropy supply functions are given by

kg 00y 00
Pl = G_ZI 8:0}-1 8_:;{ + 2pdijdi; + ¢, (3.74)
- RT 89'1" (%‘T 2#%
pgTeT - 90 8171 3:61 +4u1dZJHJ + 1 ‘PZ]‘PZ] ¢ (375)

In these equations the variables d;; and P;; are defined by d;; = (v;; +
v5,i)/2, P;j = —Awv;; and ¢ is constant. It is very important to note,
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however, that (Green and Naghdi, 1996) observe that for some purposes ¢
could depend on temperatures, cf. section 8.4, and (Straughan, 2010b).

Thus, the complete system of equations for an incompressible viscous
fluid in the (Green and Naghdi, 1996) extended theory are

dv;
P d:)f pul sz = pb; — ;i + pAv; — 2011 A2v;
v;; = 0,
C d9 s10 HH (99}1 69[{ e (376)
PCH dt = pPsSH H+ 90 a a 15 Wij
RT 897‘ 897‘

Or 0
pCTW = pSTUT 6‘_0 6:51- 6:51-
where d/dt has been employed to denote the material derivative.

(Green and Naghdi, 1996) determine the basic solution to plane Poiseuille
flow for their theory and show that it leads to a flattened profile rather
than the parabolic one of classical Newtonian theory. They also address
a similar basic solution to Poiseuille flow in a pipe. Additionally, (Green
and Naghdi, 1996) address the problem of flow of a circular jet from a
round hole. Finally, (Green and Naghdi, 1996) address two problems where
the solution is time-dependent. All the problems addressed by (Green and
Naghdi, 1996) are in an isothermal situation.

2
+ 4pdi; Pij + 2% PijPij — o,
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Acceleration waves

The general theory of acceleration waves in continuum mechanics is covered
in detail in the research review articles of (Chen, 1973) and (McCarthy,
1972), see also the accounts in the books of (Fabrizio and Morro, 2003),
(TIesan and Scalia, 1996), (Ogden, 1997) and (Straughan, 2008). (Truesdell
and Toupin, 1960) and (Truesdell and Noll, 1992) cover many aspects of
acceleration waves and singular surfaces in general. We now include an
account of some recent studies employing acceleration waves in theories of
heat transport associated with second sound.

4.1 Maxwell-Cattaneo theory

Suppose we have a rigid body occupying R? and the temperature field
and heat flux are governed by the Maxwell - Cattaneo equations when the
thermal conductivity x depends on temperature 6, cf. chapter 1, so the
governing equations are

C9,t = —{Gi,

4.1
Tqi + ¢ = —k(0)0;, (4.1)

where ¢; is the heat flux, and ¢, are positive constants. Recall that
denotes differentiation with respect to z;, e.g. 8, = 00/0x;. An acceler-
ation wave for a solution to equations (4.1) is a surface S across which
0+,0i,G.z+,q.;, suffer at most finite discontinuities, with the functions 6, ¢;
continuous everywhere. Even though the jump across S is in 6 ; and ¢; ¢ we
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call § an acceleration wave. Numerical solutions to the Maxwell - Catta-
neo equations with x a linear function of 6 are presented by (Glass et al.,
1986), (Cramer et al., 2001), (Christov and Jordan, 2010), and for x a more
general function of 6 they are presented by (Reverberi et al., 2008), see sec-
tion 5.3. An analytical solution of the Maxwell - Cattaneo equations with
k constant, for a step input at the boundary, is provided by means of a
Laplace transform technique by (Al-Qahtani and Yilbas, 2010).

To illustrate the basic concepts of acceleration wave analysis, we shall for
now restrict attention to a plane acceleration wave moving in the direction
of the x—axis, with one-dimensional motion.

In one space dimension the heat flux has one component, ¢, and equations
(4.1) become

09,5 = —(Qx,
7q +q = —£(0)0s

where 0; = 00/0t, q, = dq/0x, etc.
For a function h(z,t) we define

(4.2)

ht(x,t) = lirr}S h(z,t) from the right,

h™(z,t) = lin}s h(zx,t) from the left.

In particular, A is the value of h at S approaching from the region which
S is about to enter. The jump of h at S, written as [h], is,
[h]=h" —hT. (4.3)
We take the jump of each of equations (4.2), to find

C[Gt] + [Qx] =0,

o] + K090 = 0, 44)

since x(6) is continuous across S. Next, employ the kinematic condition of
compatibility, sometimes known as the Hadamard relation,

1= (5] + (53] (9

where §/dt denotes the time derivative at the wave. (The Hadamard relation
is discussed in detail in (Chen, 1973), appendix 1, and also in (Truesdell
and Toupin, 1960), section 180.)

Note, since ¢ € C°(R), [g] = 0 and so by using the Hadamard relation

0= 21d] = la + Ve

so that
9] = —V]4a] .- (4.6)
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Similarly,
6. = ~V[6.]. (4.7)
We use equations (4.6) and (4.7) in (4.4) and then obtain

) () - ) 4

We require the amplitudes [0;],[q] to be non-zero and so from (4.8) we
need

—cV 1
‘ K —TV‘ 0
and so
o+
yz - K00) (4.9)
et
Note that V' depends on the value of 6 at the wave (here 67 = 67).
Define the wave amplitudes A(t) and B(t) as
A=10:],  B=lgl, (4.10)
and then observe that from (4.8);
VA=B. (4.11)

To find the equation governing the amplitude A(¢t) (or B(t)) we differ-
entiate equations (4.2) with respect to  and take the jumps of the results
to find

C[etx] = _[sz]
Tlgea] + [g2] = ' (01)[07] — K[0za]

From the definition of [h] we may prove the relation for the jump of a
product of functions g, h,

[gh] = g [h] + 1" [g] + [g][A]. (4.13)

From the Hadamard relation we have that

4]

(4.12)

E[qw] = [QJt] + V[qmw] ) (414)
)

Thus, recalling definitions (4.10) we eliminate [04;] and [g.5] from (4.12) to
find

C(% - V[emm]) =+ [sz] = 07 (416)
0B 1( A2 +
T(ﬁ —V[qm]) 4 B+ k(A2 + 207 A) + K[f50] = 0. (4.17)
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We wish to remove the [0,,] and [g.,] terms from (4.16) and (4.17) using
the wavespeed relation (4.9). Hence, form (4.16)4+X(4.17) to obtain

0A 0B
cﬁ + (A — W) [Orz] + (o) (1 = ATV) + )\TE (4.18)
+ AB + AR/ (A% + 205 A) = 0.
We see that the correct choice of A is
V c

c
= —. 4.1
A= K KT (4.19)

Note that from (4.11) B = ¢V A and so since

7 %R

we find from (4.18)

c cdV  20fK K
2c— —— 2 )A4+ — A% =0. 4.20
c5t+< +V5t+V7') +V7’ ( )

This is the equation governing the evolutionary behaviour of the amplitude
A(t) - the amplitude equation. It is a Bernoulli equation, which may be
written in the form

0A
5T a(t)A + B(t)A? = 0.
It may be solved by the substitution v = 1/A to yield the general solution
A(0
t) = ©) (4.21)

exp{fo s)ds} + fo exp{f n)dn}ds

4.1.1  Wave into equilibrium

Suppose now the region ahead of the wave is such that

6 = constant and k(0) =0, v > 0 (constant).
Then, V' = constant and 6} = 0. Hence, equation (4.20) reduces to
A
‘;t QA+ A% =0, (4.22)

where o« = 1/27, § = v/2¢V 1 are both constant. Then (4.22) is solved to
find

A(0)

A(t) = .
et + gA(O)(eo‘t -1)

(4.23)

From this equation we see that if A(0) > 0 then A(t) decays to zero. If
A(0) < 0 then A(t) will blow-up in a finite time 7, with

1 (AO)(3/0)
T=5! g([IA(O)I(ﬂ/a) = 11) | (4.24)
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Since here A(t) = 6 (t) we see that when A(0) < 0 the temperature
gradient steepens at the wave and 6 (t) blows up. It is believed that a
thermal shock forms, i.e. 6 develops a discontinuity across S at t = 7. (Fu
and Scott, 1991) have investigated this behaviour in elasticity in detail and
very interesting computations of (Christov and Jordan, 2008), (Christov
et al., 2006; Christov et al., 2007) and (Jordan, 2007) follow the acceleration
wave development into a shock in a variety of situations, see also chapter
5, section 5.1, of this book.

4.1.2  Acceleration wave in three dimensions

An acceleration wave for the Maxwell-Cattaneo equations (4.1) is defined as
in section 4.1. Namely, 6 and ¢; are C° everywhere and the first and higher
derivatives of # and ¢; are allowed to have finite discontinuities across a
surface S. For simplicity we suppose now that we are dealing with a wave
moving into an equilibrium region for which

f = constant, ¢; = 0.

Then §* = 0,07 =0.

General compatibility relations for a function (X, t) are needed across
S. These are given in detail in (Truesdell and Toupin, 1960) or in (Chen,
1973). We simply quote those we need. If ¢ is continuous in R?® but its
derivative is discontinuous across S then

[¢;] =n;B,  where B = [n',]. (4.25)

When 1 € C'(R?) then
[¥,:5] = nin,;C, where C' = [n'n’1 ;;]. (4.26)
In (4.25) and (4.26), n; refers to the unit normal to S. Relations (4.25) and
(4.26) are derived from (Chen, 1973), equations (4.13), (4.14). The relation

corresponding to the Hadamard formula (4.5) in three dimensions is, cf.
(Chen, 1973) (4.15),

5 .
5 WI=[]+UnB (4.27)

where 1) = O /0t, Uy is the speed at the point on S with unit normal n;
and B is defined in (4.25).
We being by taking the jump of (4.1) to find
0] = — i,1]
c[0:] (9:.:] (4.28)
Tlgie] = —k[0,i] -

Define the three-dimensional wave amplitudes as

At) = [n'0,],  Bi(t) = [nq4]-
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Then, since g;, 0 € C°(R3) we find using (4.28)

d (5] = (6] + Un[n? q; 5],

0 = 5
) . .
0= —[0]=1[0] + Un[n6 ].
ot
Whence
(i) = —UnBi,  [0] =—-UnA. (4.29)

Using (4.29) in (4.28) we thus see that

—cUnA+n;B; = 0,

4.30
—TUNB1+KRZA:O ( )

From equation (4.30)2 we see that the wave must be longitudinal, i.e. B; =
Bn,;, where

B = [n'n?q; ;). (4.31)

0 ) (5)= ) 12

Since we require A, B non-zero we need

‘—CUN 1

Then we have

. —TUN‘ =0 (4.33)
and so we derive
TcU% = K. (4.34)

Thus, the wavespeed is Uy = /K/7Tc.
To calculate the wave amplitude A(t), noting that B(t) then follows from
(4.32); since,

B = cUnA, (4.35)

we differentiate (4.1) with respect to ¢ and take the jump of the result.
Thus,

clf] = —[di]
T[] + @) = =<' (0)[060.:] — k[0.] .

Since the wave is moving into equilibrium we have Uy =constant and using
the product relation (4.13), equations (4.36) become

clf] = —[diil ,
7] + @] = =<' (0)[0][0.:] — K[0.1] -

(4.36)

(4.37)
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We now wish to derive a Bernoulli equation from (4.37). To this end we

use the Hadamard relation (4.27) to note that

0] = —UnA
and so
o - 1) 0A
200 = — —UnvA = —Un—
517 5ty Un
=[0] + Un|[n;0 ;] .
Further,
5 . _
E[nZGJ] = nz[Gﬂ] + UNTLl [Gyijnj] .
Thus, from the above two equations,
. SA .
0] = = Un~; — Unlnyb.5]
0A oo
= - 2UN§ + U]2V [nznwyij] .
In a similar mannner we find
[¢:] = —UNnB;,
0 .. 0B; . .
57141 = ~Un—= = ldi] + Un[nydisl,
0B; ) .
5t = 57 40am) = ldigna] + Unlaigengna
. 0B
[Gii] = 5 Un|qi,junining]

where B is given by (4.31), and

0B; . 0B;
_UN 5t - [Qz] + UN< 5t - UN[QZ,jknjnk]) )
SO
. 0B;
[4:] = —2Un—~+ UR g rngne] -
We now employ (4.38) - (4.47) in (4.37) to obtain
0A 6B
—20UN§ + g —Un [qi,jknmjnk] + CU]2V [nmjaij] =0,
and
0B 0A
—27Un— + k— — UnB — '(h)A?
TUNét—Ffiét Un UNH()

+ TUIQV[qiyjkTLiTLjTLk] — HUN[TLiTLjGJ'j] =0.

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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Recall B = cUnA and then from (4.48), (4.49), we derive

0A
_CUNg — UN[qiyjkninjnk] + cUIQ\[[nianij] =0, (450)
and
0A
—k— — UnxB — Unr/(0)A?
ot TN n (9) (4.51)

+ TUIQV [qi,jknmjnk] —rkUN [nmj&ij] =0.

Now form (4.50)+A(4.51) for A a positive constant. We use the wavespeed
relation (4.34) and select A = 1/7Uy. This removes the 6 ;; and ¢; ;i terms
and leads to the equation

A
i—t +ad+ BA* =0, (4.52)
where
_Un _K(0F)
a==", B = P (4.53)

Equation (4.52) is the same as (4.22) and the solution is, therefore, (4.23).
The remarks concerning A(t) after (4.23) apply also to A(¢) for (4.52).

4.1.8  More general Maxwell - Cattaneo theory

It has been argued that the basic equations of Maxwell - Cattaneo theory,
equations, (4.1), should have coefficients which in general depend on tem-
perature, in order to be compatible with thermodynamics. Arguments along
these lines may be seen in the work of (Coleman et al., 1982; Coleman et al.,
1986), Dario Graffi in 1984, see (Franchi and Straughan, 1994b), (Morro
and Ruggeri, 1987; Morro and Ruggeri, 1988), (Coleman and Newman,
1988). These writers essentially argue that the internal energy e, entropy 7,
and Helmholtz free energy 1 should depend on ¢;q; where ¢; is the heat flux.
The development of (Morro and Ruggeri, 1987; Morro and Ruggeri, 1988)
employs an appealing use of internal variables, an approach extended to
thermoelasticity by (Caviglia et al., 1992) and to porous media by (Fabrizio
et al., 2008) and by (Straughan, 2008), pp. 351-353.

In one space dimension the generalized model is effectively given
by (Coleman and Newman, 1988) in the form

(co(0) + a'(0)q*)0; + 2a(0)qqr = —qa,
T(0)q +q = —r(0)0, .

(Coleman and Newman, 1988) develop a nonlinear wave analysis for system
(4.54) and fit the wavespeeds predicted to those found experimentally for
NaF and Bi. In this way they are able to make some progress with functional
forms for cg,a, 7 and k.

(4.54)
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(Morro and Ruggeri, 1987) perform a complete acceleration wave analysis
for their model and also analyse thermal shocks. They also investigate the
question of reconciling wavespeeds with thermodynamics. Their model for
heat propagation in solids at low temperatures is

coll = —qi;

. (4.55)
T¢i+(1+T0)q = —r0,,

where cg, k,7,T" are, in general, functions of  and for constants A and B
they suggest 7 and I' may have forms

T = k(A073 + BO"~3),
r= 5(5/19_4 + (- n)f%’"_‘*)

for a suitable constant n.

4.1.4  Dual phase lag theory

We have discussed acceleration wave development in detail for the MC
theory. Since the approximate models arising from the dual phase lag the-
ory of (Tzou, 1995b; Tzou, 1995a), see section 1.5, are in some sense a
generalization of the (Cattaneo, 1948) model we make some comments for
acceleration wave propagation in this area. In fact, (Straughan, 2008), pp.
358-360 includes brief comments on acceleration wave propagation in a
class of dual phase lag models for a fluid.
If the basic model is based on an energy equation of form

Cé = —(ii, (456)
and then expands a dual phase lag model like
gi(x,t+a) = —H(G(x,t+7))97i(x,t+7), (4.57)
then we might consider a Taylor expansion of the type
e 2
agi + g = —(k + 70K + T/{”(G)) 0,;+70,;+ 1 0,). (4.58)

Wave motion could be based on equations (4.56) and (4.58), with if need
be, an o? term on the left of (4.58). While progress is possible with this
class of model, an a priori knowledge of the exact nature of the expansion,
i.e. which terms to retain, would be a distinct advantage.

4.2 Type II rigid heat conductor

A concise and detailed acceleration wave analysis for the (Gurtin and Pip-
kin, 1968) rigid heat conductor model is provided by (Chen, 1969a). The
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analysis of (Chen, 1969a) is for a plane wave propagating in one direc-
tion. (Chen, 1969b) extends his previous analysis to acceleration waves
of arbitrary shape. The Bernoulli equation obtained for the wave ampli-
tude is presented for an arbitrary shaped wave and special attention is
paid to acceleration waves of cylindrical and spherical shape. (Lindsay
and Straughan, 1976) presented an acceleration wave analysis for a one-
dimensional wave in the (Green and Laws, 1972) theory for a rigid
body.

The object of this section is to report on work of (Jaisaardsuetrong and
Straughan, 2007) who perform an analysis of acceleration wave motion in
a (Green and Naghdi, 1991) rigid solid of type II. (Jaisaardsuetrong and
Straughan, 2007) retain the equations of (Green and Naghdi, 1991) in their
full general nonlinearity, and they completely determine the wave speed
and the amplitude of the wave as a function of time. The basic equations
of (Green and Naghdi, 1991) type II theory for a rigid solid are described
in chapter 1, section 1.10. In the interests of clarity we recap the necessary
equations here.

The governing equation is the balance of entropy, namely

Pl = pE + ps — piis (4.59)

where p,7,£ and s are, respectively, density, entropy, internal rate of pro-
duction of entropy per unit mass, external rate of production of entropy
per unit mass, and p; is the entropy flux vector.

For the thermal displacement variable

t

a(x,t) = / T(x,s)ds + ap,
to

there is a temperature function 8 = 0(T, ) = (¢, «) such that 6 > 0 and

00/0T > 0. The functions 7, p; and & are expressed in terms of a Helmholtz

free energy function ¥ = (6, 8;) by

AL
=~ar/ a1 (4.60)
W /0
pi=—p a5,/ aT’ (4.61)
and
_ 9(1 T 77[JT9a
§= 2A¢A99T +3 ( o wa), (4.62)

where 3; and A are defined by
Bi = a, A=a ;= Fib. (4.63)

To study the simplest acceleration wave we set the external supply of
entropy to be zero and so we put s = 0. Then, with the aid of equations
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(4.60) - (4.62), the governing equation (4.59) may be rewritten as
__8@ 6Mi

— = 4.64
3t £+_8Ii7 ( )
where ¥ and pu; have been introduced and are
T (4.65)
O Or

Equation (4.64) represents the general theory of heat flow in a type II
rigid body of (Green and Naghdi, 1991). Special cases follow with the choice
of free energy,

k
P =1c(0—0Inb) + 5,81,31 (4.66)
or, specializing also for the function 6,
k
w:c(9—91n9)+§,6’1ﬂi, 0 =a+bT, (4.67)

where ¢, k,a,b are positive constants. When (4.67) holds then & = 0,
see (Green and Naghdi, 1991).

4.2.1 Acceleration waves in type II theory

We define an acceleration wave for a solution to (4.64) to be a two-
dimensional surface, S, in R?, across which é(x,t), & i(x,t), and a ;;(x,t)
suffer a finite discontinuity, but o € C*(R?), i.e. in the spatial variables.
The jump, [f], of a function f, across S is defined as in (4.3). The jump is
assumed to be even along the wave surface, c¢f. (Chen, 1973), so that [f] is
a function only of .

We take the jump of equation (4.64) using the forms (4.65) for ¥ and
i, noting also the form for ¢ from (4.62) and recalling 6 = 6(T, «), ¢ =
(0, 5;). This leads to the following equation for the wave speed V of S

(l/JTT Yrbrr )

GT 9T2

— 2B, (wm HTTW)V + 2ﬂ +4(Bim)2 Y28 o, (4.68)
Or 02 Or

Hence there is a wave moving in the £n; directions, where n; is the unit
outward normal to &, with speed V given by the solutions to (4.68).
(Jaisaardsuetrong and Straughan, 2007) note that if 1 is given by (4.66)
then equation (4.68) reduces to

k

Orr
——V? 4 k(Bini)— P v+ o 0, (4.69)

GTC
0
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while if ¢ and 6 are given by (4.67) then equation (4.68) becomes
)
b2c’

This implies there are waves moving in opposite directions with speeds

V =+b-1/k0/c.

VZ= (4.70)

4.2.2  Region with no x variation

To make things more transparent (Jaisaardsuetrong and Straughan, 2007)
then restrict attention to the case of a wave moving into a homogeneous
region for which

a,; =0. (4.71)

In this case the wavespeed equation (4.68) reduces to

V?= 2¢A/<% - wTT) . (4.72)

Equation (4.69) becomes
k6

)
69T2

V?= (4.73)

and equation (4.70) remains the same.
We now calculate the amplitudes for a wave entering a homogeneous
region.

4.2.83  Amplitude solution

To determine the wave amplitude A(t) = [&] we differentiate (4.64) with
respect to t and take the jump of the resulting equation. The result is

— Uppla]? = 2Up T[d] — Up[d] — Uold] — 2WA [dck,q]
- aea(3) f )
+2T <1é’;> (o] + Z’; [i:] = 0. (4.74)

The Hadamard relation (4.27) and the wavespeed equation (4.72) are now
employed to remove the [¢/] and [¢& ;] terms. This leads to the amplitude
equation

2‘2—‘? + a1 A — A% = 0. (4.75)
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After some calculation one shows that the coefficients «r; and 3 have forms
10V V20T (r V20r (¢r
= — - — —_— —_ —_—
YTV e \Or /g, 20a \0r )/,

() s, - (%))
n <9T)a 2on \oor ), o), @0

(), ) e ()
7= %0 <9T o\ ) Pr\en ) BT

While a solution to (4.75) is easily found, (Jaisaardsuetrong and
Straughan, 2007) argue that one can understand the physical situation
easier when the free energy satisfies (4.66) or (4.67).

In the case 9 satisfies (4.66), ay and 3 are given by

and

16V 276 0
= 2 0 ) e + —(In6).
o=y Ty l)ra t g (nd)
Ore 20 (In6-0,T
+Tﬁ+9T( ; )T, (4.78)
Or Orr
= 3, (4.79)

(Jaisaardsuetrong and Straughan, 2007) consider the forms for ¢ and 6 in
(4.67), but further assume 7= constant. Then one has

b
=0 =" 4.80
aq ) ﬁ (a ¥ bT) ( )
The Bernoulli equation (4.75) reduces to
0A
— —SA*=0. 4.81
ot 2 ( )
This equation is solved to see that
__ 40
A(t) ; AVt (4.82)
2

Since > 0, we see that if A(0) > 0 then A(¢) blows up in a finite time,
T, where

2(a+0bTT)

7= ba(0)

(Jaisaardsuetrong and Straughan, 2007) note that for equation (4.81) one
has £ = 0 and it is interesting to note that this may always lead to thermal
shock formation.
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From (4.82) it is necessary that A(0) > 0 for blow-up. This is because
in this section the amplitude A(t) is defined as [@&]. In section 4.1.2 the
amplitude was [0;]. Since & = T the amplitude

A(t) = [a] = [T]=T"(t)

for a wave moving into a region with 7'" constant. From the Hadamard
relation (4.5) [T] = —V[T,] and so A(t) = —VT, (t). Thus A(0) > 0
yields consequent blow-up of A(t) corresponding to T, (t) — —oo which is
consistent with a jump in 7' (thermal shock) forming.

4.3 Acceleration waves with microtemperatures

In this section we commence an acceleration wave analysis for the theory
of a rigid body with microtemperatures as described in section 1.12.
An acceleration wave in a rigid solid with microtemperatures is a surface
S such that «, 3; € C*(R?) in the x variables but the second and higher
derivatives possess a finite jump discontinuity across S. It transpires, in
fact, that an acceleration wave analysis is rather involved, more so even than
the analogous analysis in type II thermoelasticity. Hence, to understand this
we begin with the linear equations for an isotropic body. Thus, take the
jump of equations (1.139) to find
ald] = Ko i)+ m[Bi] = 0, (4.83)
b[B:] — da[fi.55] — (di + d3)[B;,5i] + mldv] = 0,
for the supply functions s, s; continuous everywhere. Next, define the wave
amplitudes A and B; by

A= [ninja,ij]J B; = [nrnsﬁi,rs]- (484)

Upon use of the compatibility relations (4.25) and (4.26) together with the

Hadamard relation (4.27) one shows from (4.83)
aV?A — KA =mVBn,,
9 (4.85)

Now write B; as the sum of its components parallel to the unit normal n;
to S, namely By, and its tangential components B}, a = 1,2, i.e.

Bi = B]]ni + Bﬁzfa
where :cza are tangential vectors to S in the directions of surface coordinates
uy and wug. Thus, (4.85) yield
aV?A - KA=mVBy;,

5 (4.86)
[bV — (d1 + do + dg)]B[[ =mVA
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and
(bV? — dy) B} 2, = 0. (4.87)

Equation (4.87) immediately shows that the theory with microtempera-
tures possess a much richer structure than any so far met in this book.
Even in the linear, isotropic theory for a rigid solid the thermal structure
at the microscopic level is leading to the possibility of a transverse wave
with amplitudes B! and B?%, and speed V given by

_&
=7
Equations (4.86) are a system in A, Bjy; which lead to the wavespeed
equation for a longitudinal wave, namely

(aV? - K)(bV? — D) — m?V? =0, (4.89)

where D = dy + da + ds. Thus, if Vi = /K /a denotes the speed of a

thermal wave and Vy;pr = /D/b denotes the speed of a “microthermal
wave” then (4.89) admits a fast wave with speed V5 and a slow wave with
speed V; with

VE <min{VZ, Vizr} < max{V7, Vigp} < V5.

V2 (4.88)

Rather than now proceed immediately to the nonlinear case it is instruc-
tive to first develop an acceleration wave analysis for the anisotropic linear
equations with microtemperatures, namely, equations (1.137). For the sup-
ply functions s, s; in equations (1.139) continuous we define an acceleration
wave as above and take the jumps of equations (1.137) to find

ald] — Kijla i3] + My [Bi5] = 0,
Bij[85] = Dijrs [Br,s5] + Mislé;] = 0.
We again employ the compatibility relations (4.25) and (4.26) together

with the Hadamard relation (4.27), recalling the wave amplitude definitions
(4.84). In this way from (4.90) we obtain

(UXBij — Qij(n)) Bj = Un Mjjn; A,
(aUJQV — Kijninj)A = UNMijTLjBi,

(4.90)

(4.91)

where
Qij(n) = Digjpnane , (4.92)

and Q;; plays a role of a thermal “acoustic tensor”. Equation (4.91) is sim-
ilar to the jump of the momentum equation in thermoelasticity. However,
it is more complicated owing to the B;; term.

In general, we expect a generalized transverse wave from (4.91) and also a
generalized longitudinal wave. A generalized longitudinal wave is one where
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B; = Bn} with n} being the unit vector in the direction of M;;n;. We may
show that a plane generalized longitudinal wave will exist by appealing to
the proof of theorem 2 of (Chadwick and Currie, 1974). Define the matrix

Fij(n) by
Fi;(n) = Qij(n) — U By; .
Then for any unit vector w define the vector field m by
m(w) = M'F(w)Mw — [w - (M 'F(w)Mw)]w. (4.93)

Note that we require M;; to define a non-singular matrix. The vector m is
a continuous function of w and m - w = 0. The set of unit vectors forms
a sphere S in three-space and so m(w) defines a continuous tangent field
on S. Thus m has a zero, see (Chadwick and Currie, 1974), p. 486, and
so there is a unit vector n with m(n) = 0. Then, from (4.93) Mn is an
eigenvector of F(n). Thus we have at least one direction n such that a
generalized longitudinal plane wave propagates. The amplitude B; is in the
direction n* where n* is in the direction Mn. One may thus analyse the
wavespeed and amplitude of a plane wave for (4.91).

To complete this section we briefly investigate the propagation of an ac-
celeration wave in a nonlinear rigid body with microtemperatures. To do
this we employ equations (1.132) and (1.133) with the constitutive theory
(1.136). We suppose for simplicity that the body has a centre of symme-
try. Then we define an acceleration wave S as earlier in this section with
amplitudes given by (4.84). Expanding (1.132) and (1.133), recalling the
centre of symmetry, and taking jumps we find

0 . a5, a8,
pneld] + Pﬁjj[ﬁi,j] —= [ﬁz k] + 30&,]1 o k]
and
8771 8Sk1 . aSkz
[ﬁ]] a,j [O[J] - 69 [ ] aﬁa b [/8(1 bk]

Again employing the compatibility relations (4.25), (4.26) and the
Hadamard relation (4.27) we derive

ISk 877 0Sk
2 , _ _ ]
(pngUN _80471- nmk) A (paﬂi,k o7, )UNnkBl , (4.94)
and
o Oni . on; 0S5; _
< UNaT Q13>BJ = (pa% ~ 30 >UNn]A. (4.95)

One may define

o om; 8Sji
Mw =f 80&73' - 89
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and provided this is invertible one may show there is a generalized plane
longitudinal wave in a direction n with amplitude in the direction Mn. One
may show this generalized longitudinal wave gives rise to a fast wave and
a slow wave whose wavespeeds U, and U% are solutions to the equation

0Sk 2 on;
U — =—n nk) (Qi’ = pUN o~ | Mjanani
( N 80&7:0 P J N aTj J

(4.96)

an 0Sy,
+ U]2V (p m — 8E) MiaMTsnknanrns = Oa

where Q;;(n) is a (nonlinear) thermal “acoustic tensor” defined by

Qia(n) = oy

To the best of my knowledge a theory of acceleration wave propagation
in the microtemperatures theory of section (1.12) has not been presented
before. Obviously there is much more one may do regarding the calculation
of wave amplitudes, studying transverse waves, and other things. It would
appear this has potential to be richer even than the comprehensive the-
ory of acceleration waves in thermoelasticity. In the next section we study
acceleration waves in a thermoelastic body of type II.

4.4 Type II thermoelasticity

In this section we develop an acceleration wave analysis for the thermoelas-
tic theory of type II introduced by (Green and Naghdi, 1993), described in
section 2.3. (Green and Naghdi, 1993) present their equations with a sym-
metric stress tensor in the current configuration. However, when dealing
with acceleration waves we believe it is better to refer everything back to
the reference configuration and so we now present the equations with the
Piola - Kirchoff stress tensor. While there are many studies of wave motion
in the literature which employ the linearized theory of type II thermoelas-
ticity we have not seen an acceleration wave analysis for the fully nonlinear
theory as is presented here.

The (Green and Naghdi, 1993) theory essentially starts with an energy
equation of form

Po€ — pofs +qa,a — Saitia =0, (4.97)

where po,€,0,s,q4,x;,54; are the density, internal energy, temperature,
external entropy supply, heat flux, position vector, and the Piola-Kirchoff
stress tensor, each referred to the reference configuration. Hence, 4 denotes
0/0X a, where X 4 is the position in the reference configuration. Introduc-
ing the entropy flux vector p4 = ga/6 and noting e = ¥y +n0, ¢ and n being
the Helmholtz free energy function and the entropy, (Green and Naghdi,
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1993) deal with a reduced energy equation
po (¥ 4 n0) + pobE + pab a — Saiiia =0, (4.98)
in which £ is an internal supply of entropy per unit mass. Judicious manip-
ulation of this energy equation allows (Green and Naghdi, 1993) to derive
restrictions on the constitutive variables.
To develop an acceleration wave analysis, the key equations of (Green
and Naghdi, 1993) are the balance of linear momentum
poi = pobi + Saia (4.99)
where b; is a body force, and the balance of entropy

po1) — pos — po&§ +pa,a = 0. (4.100)
For type II theory (Green and Naghdi, 1993) show that
Y =90, 5, Fip),
n= n(eua,BaFjB)a (4101)
Sai = Sai(8, 0.8, FiB),

where Fjp = 0z,;/0Xp = x; g. In particular, (Green and Naghdi, 1993)
derive relations equivalent to the following,

o oo
90 ) Az_p08EA7 pa = pOaO«AJ
In developing a nonlinear acceleration wave analysis we take the body force

b; and external entropy supply s to be zero. Hence, we analyse the equa-
tions, where without loss of generality we use u; = x; — X; rather than z;,

£=0. (4.102)

potl; = Sai A,
pon +pa,a=0.

An acceleration wave in a thermoelastic body of type II is a surface
S in R3 for which w;(X,t), a(X,t) € C'(R?) in their spatial variables,
but i, 4 A, Wi aB, &, ¢ o, o ap and their higher derivatives have a jump
discontinuity across S.

Using the fact that 7, S4; and p 4 are derivatives of ¢, and the constitutive
theory in equation (4.101), we expand equations (4.103) and take the jumps
recalling the definition of an acceleration wave, to obtain

.. 05 ai 08 a;
i = 0.4] + o
poliia] = —5 = 10,4] 9Fin

(4.103)

05 ai
[Fjr,al + 6aAR [, Rl , (4.104)

)

and
on sz, O on ..

(G101 + 7 [Fial + 52 [l

_ _9pa [0.4] — Opa

06 N OFR

4.105
[Fir,A) — Opa [, ral - ( )
J i, 30&,3 s
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Upon use of the Hadamard relation (4.27) in three dimensions and the
definition of an acceleration wave we may derive the following relations

[iii] = —Un[is, a]N?, (4.106)
[i;,4] = =UnN"[u; 48], (4.107)
[iii] = UNNANP[u; ap] = UR A, (4.108)
[0.4] = [6,4] = ~UnN"[a ap], (4.109)
(6] = [0] = —Un[c,a]N* = —Un[0,a] N4, (4.110)

=U3NANEBlaap] = U%B (4.111)

where we have introduced the wave amplitudes
A;(t) = N NBlu; ap],  B(t) = N*NP[a 4p], (4.112)

and have recalled that 6§ = a.
We employ (4.106) - (4.111) in the jump equations (4.104) and (4.105)
to derive the following general amplitude equations,

poU%A; = QijA; + BNgN4 05ai _yryn, P54i g, (4.113)
Oa. 00
3 A apA
2B-B N
) ’ 5 (4.114)
PA PA Ui
— _NANp A B A, NuN - N ,
AN g ( aNpgp poUnN ABFiA)
where ();; is the acoustic tensor defined by
0Sai

= NaN 4.115
Qij ANR G ( )

Equations (4.113) and (4.114) are a system of equations in the variables
A, As, A3z and B and give rise to a polynomial equation for the wavespeeds
U%. Tt is possible to make progress in full generality. However, for the
purpose of this section it is likely to be more transparent to consider a wave
moving into a particular region and this we now do. Hence, we consider
an acceleration wave propagating into a static configuration at uniform
deformation and temperature, and we suppose the initial body has a centre
of symmetry. In this region ahead of the wave F; 4 and 6 are constant and
a.a = 0. If we denote quantities evaluated in the region ahead of the
wave by a subscript E then since the body has a centre of symmetry, cf.
(Truesdell and Noll, 1992), p. 358, or (Spencer, 1980), p. 110, it follows
that

0Sai| on

17)
o pa

’ 00

Opa
’ 8EB E

8043 E 80&7,4 E
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Thus, equations (4.113) and (4.114) now reduce to

dS.ai
(Qij = PoURDij)Aj — UnNa =5 B=0, (4.116)
an Opa an
(poanN 80473)3 - poUNNAaEA Ai
dS.ai
= ~UnNa=5" As. (4.117)

where in the last equation (4.102) has been employed.
From (Chen, 1973) equation (4.10) we know that

|vx0|

Nao=F;a
4 VxS "

where n; is the equivalent unit normal to V4 in the current configuration,
and o is the equivalent surface to S in the current configuration. We define
the tensor 3;; by

|Vx0'| 88,41
i = F; 4.118
i = 1oxsi oo )|, (4.118)
and then we may rewrite equation (4.116) as
(Qij(n) — poUR i) A;j — UnBBin; =0, (4.119)

where Q;;(n) is the tensor Q;;(N) but represented now as a function of n
instead of N.

We now use theorem 2 of (Chadwick and Currie, 1974) to infer there is
at least one direction n* such that Bn* is an eigenvector of Q. The wave
is propagating into an equilibrium region at rest and so Q is a constant
matrix and consequently Bn* is fixed. The matrix 3 is also constant and
hence n* represents a fixed direction. Hence, we may study the propagation
of a plane acceleration wave in the direction of n* with its amplitude in
the direction Bn*. In line with the definition in (Chadwick and Currie,
1974) in classical thermoelasticity we refer to these waves as generalized
longitudinal waves.

4.4.1  Wavespeeds

Let now the unit vector in the direction of Bn* be m, so that A = A(t)m
Then equation (4.119) is

0S5 ai
00

(Qij — pOU?\,éij)mjA — UNBNA =0. (4120)



120 4. Acceleration waves

We multiply this equation by m; and then the result together with (4.117)

give
0
0

Uy —Us)(UX —U}) + KUZ = 0. (4.121)

0Sai

Qijmim, —aﬁg)Uzzv 8_UNNAmi 693 (A)
Ai 2 PA B
Nam;—— — NaN,
UnNam 20 poanN-l- ANBE

For a non-zero solution to this we require

Here the quantities U3;, U2 and K are given by

U3, = LU (4.122)
Po

o
N“‘NBaSZ

U= —— (4.123)

and

K=——00 90 (4.124)

Equation (4.121) admits two solutions under suitable conditions on the
wavespeeds and these are attributed to a fast wave (mechanical) and a
slow wave (thermal).

Equation (4.121) possesses real solutions if K > (Ups + Ur)? or if K <
(Uns — Ur)?. The former case is inconsistent with U% > 0 and so we must
have

K < (Uy —Up)2.

From (4.124) K < 0, and then the two wavespeeds UJ(VQ) and UJ(Vl) are such
that

UP? < min{U2,, U2} < max{U%, U2} < U2, (4.125)

The quantities Uy; and Up are the wavespeeds of an acceleration wave
in a purely elastic material, or a thermal wave in a rigid solid of type II,
respectively. Hence, we have a fast wave travelling faster than either of
these two quantities and a slow wave travelling slower. We expect K < 0
to hold in practice.
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4.4.2  Amplitude behaviour

One may proceed to calculate explicitly the amplitude of an arbitrary
shaped wave or even of the plane wave whose speed has been calculated
in section 4.4.1, cf. such calculations in (Lindsay and Straughan, 1978;
Lindsay and Straughan, 1979). However, the differential geometry involved
can obscure the procedure. Hence, we here calculate the amplitude of a
one-dimensional acceleration wave for the type II equations (4.103). In or-
der to see clearly which terms disappear due to the body having a centre
of symmetry we begin by taking 9/0X 4 of each of equations (4.99) and
(4.100) and then take the jump of the non-zero terms. This leads to the
equations,

. 0SB .. 82831' 82531'
i,A] = ——— [0 40 0 )
poliis, a) 90 [&,al + 202 0,40 5] + 200F, 5 0. Buj RAl
0SpBi %S 0°SBi
J J
OF,gOF;p = ATIEE T oa Q@aR RBE.QAL
and
; g on
g 0 40 i ;
ponelct,a) + ponesl0, a0 + po =5 3Fnd0 [Oui rA] + po = AP [ii.04]
2n . 2
— L [Fipb 2 EoF
+po 898}7‘1@ [ Q@ ’A] + po anQaF [ QL jR, A]
8277 . 3 PB
+ po do.qdan [Oé,QOZ,RA] = —m [OZ)QAQB] (4.127)
82PB 8])3
" BFgoa g “ralien] 5 ool
82173 82])3

- 0.4] — - [F .
D690 @0 T Go ok, Fimacan]

We now specialize to the one space dimension case and employ the re-
lation (4.3) for the jump of a product to find from (4.126) and (4.127),

. oS 028 5‘25
polix] =57 laxx] + 505 [Ox]* + 25055 Oxluxx]
05 025 ., 9°8 ) (4.128)
+on [uxxx]+ by [ux x]® + 902 [axx]%,

poneléx] + poneelcex][@] + poner|d]lux x] + ponrtxx]
+ ponrelix][ax] + ponrrlix]uxx] + ponaxax [dx]laxx]  (4.129)
= —2Ppax [axx][dx] — 2PFax [0xx][uxx] — Pax [@xxx],

where u, S, F' denote the one-dimensional counterparts of u;, S4; and F; 4.
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We now employ the Hadamard relation (4.5) to derive the following
expressions,

[UXt] = —UN[UXX] )
. 0A o
liix] = —2Un < + Unluxxx], (4.130)
, §A
[ixx] = o Unluxxx].

The one-dimensional equivalent of equations (4.116) and (4.117) are the
equations

a8
Sp — poUs)A=Ux — B
(Sr = poUN) Nag (4.131)

(PonoUR + Pax)B = ApoUnr -
One now employs (4.130) in (4.128) and (4.129) to derive
5408 68
5t 90 ot
— SpeU% B? +2S4rUNBA — SppA? — Soyax B> =0, (4.132)

0S
—2poUn + (poU% — Sr)[uxxx] + %UN[OZXXX]

0B 0A
—2poneUn — + ponr — + (poneUx + Pax )@x x x]

ot ot
— ponrUnuxxx] — (pomeaUx + ponaxax Un + 2Pgax Un)B?
+ (2p0779FU]2V + 2pFaX)BA — pOT/FFUNA2 =0. (4133)

Now form the combination (4.132)4(B/A)(4.133). Use (4.131) to elim-
inate B from the result. After further use of (4.131) and use of the
constitutive relations (4.102) one may show A(t) satisfies the equation

2
nolpoUx = Sr) 104 | - po _ g (4.134)

200Un |1 + —————
poeN (poneU% + pax)] Ot

where

¢ =porrr + pyUR (Vre){3UR Y re0 + 3V Faxax }
+ 3poterr (U]2V ) (4.135)
Yro

+ poURro(UR — Yrr){¢ooaUR + 3¢oaxax } -
Let us denote by (; the coefficient

B ¢
~ 2p0Un[1+n9(poU% — Sr)/(paneUZ + pax)]

Then we solve equation (4.134) to find
_ A
14+ GtA0)

Q

A(t)
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The amplitude behaviour depends on sgn (3. If ¢; > 0 then A(0) > 0 results
in A(t) decaying to zero. Under the same circumstances A(0) < 0 leads to
|A(t)] — oo as t — —1/(1A(0). This is believed to indicate the beginning
of a thermal shock wave, cf. the calculations of (Fu and Scott, 1991), the
numerical work of (Christov et al., 2006; Christov et al., 2007), and chapter
5, section 5.1, of this book.

4.5 Type III thermoelasticity

As we have seen in chapter 2 (Green and Naghdi, 1992) also develop an-
other thermoelasticity theory based on their 1991 work which they call
type IIT thermoelasticity. This theory would appear to have the potential
for heat transport at finite speed, but there is dissipation in this the-
ory. The linearized isotropic equations are derived in (Green and Naghdi,
1992), equations (3.19), (3.20) and these writers study the behaviour of
one-dimensional waves in the framework of their linearized theory.

(Quintanilla and Straughan, 2004) observe that most of the work prior to
2004 dealing with type II or type III thermoelasticity is analysing the lin-
earized theory. They tackled the nonlinear theory directly and established
a fundamental difference between Green-Naghdi thermoelasticity of type I1
and that of type III. We have seen in section 4.4 that in the theory of type
IT (Green and Naghdi, 1993), a nonlinear acceleration wave analysis allows
both a mechanical and a thermal wave to propagate. However, (Quintanilla
and Straughan, 2004) show that in the theory of type III this is no longer
true. They demonstrate that there is only one wave and they reconcile
this to the fact that it in some ways resembles the situation in classical
thermoelasticity, cf. (Chen, 1973), (Chadwick and Currie, 1974; Chadwick
and Currie, 1975), (Coleman and Gurtin, 1965), (Iesan and Scalia, 1996),
(McCarthy, 1972). As (Quintanilla and Straughan, 2004) remark, they be-
lieve that this is a highly relevant result in placing the Green-Naghdi type
IT and type III theories in the context of “hyperbolic thermoelasticity”.

We now describe the nonlinear acceleration wave analysis of (Quintanilla
and Straughan, 2004) for type III thermoelasticity.

The governing equations of type III thermoelasticity are

poti; = poki + Saia (4.136)
po1 = pos + po€ — pa,a - (4.137)

Here u;, po, Fi, 1, 5,&,pa and S4; are the displacement, density, body force,
entropy, external rate of supply of entropy per unit mass, internal rate of
production of entropy per unit mass, the entropy flux vector, and the Piola
- Kirchoff stress tensor, respectively.

In terms of the absolute temperature # and with the heat flux given by
ga = Opa, the constitutive equations are derived by (Green and Naghdi,
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1992) in terms of a Helmholtz free energy
Y =0, Fia,aa). (4.138)

Here F;4 is the deformation gradient, i.e. F;4 = 0z;/0X 4. Thermodynam-
ics requires, cf. chapter 2,

__

_ 9
__897 SAi

= pPo 9Fin

(4.139)

whence using (4.138)
n= n(eaFjRaa,R)a SAi = SAi(eaFjRaa,R)' (4140)

It is interesting to note that these relations hold for both type II and type
IIT thermoelasticity. For type II theory we saw in section 4.4 that £ = 0. In
type III theory this is not true and we must have

§=¢(0,Fjr,or,0.R).- (4.141)

As observed by (Quintanilla and Straughan, 2004) a fundamental difference
between type II and type III thermoelasticity is due to the forms for the
entropy flux vector. We saw in section 4.4 that for type II theory we may
write p4 as

PA=—pogy— = pa(0, Fir,aR). (4.142)

No such relation is available for type III thermoelasticity. All we may assert
is that p4 has the functional form

PA :pA(e,FjI%OZ,R,o,R)- (4143)

Note, unlike (4.142), equation (4.143) has p4 depending explicitly on 6 g =
é.p.

4.5.1  Fundamental jump relations

To develop an acceleration wave analysis for a type III thermoelastic body
we follow (Quintanilla and Straughan, 2004) and employ the global entropy
balance law of (Green and Naghdi, 1995b), namely

d
— pondv:/po(s+£)dv—/ kda, (4.144)
dt Jp P oP

where k = pa N4, with P being an arbitrary volume in the thermoelastic
body with boundary 9P, and N, is the unit outward normal to 9 P.

We define an acceleration wave in a thermoelastic body of type III to
be a singular surface S across which the displacement w;, the thermal dis-
placement «, and their first derivatives are continuous while the second and
higher derivatives, in general, possess finite discontinuities. The amplitudes
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A;(t) and B(t) of the acceleration wave are defined as
At =i, B()=a] (4.145)

We require the integrated form of the entropy balance law (4.144) evaluated
across S, and this is, cf. (Iesan and Scalia, 1996) p. 30,

[pon)UNn + Nalpa] =0 on S, (4.146)

where Uy is the wavespeed. From equation (4.140) we know n =
10, Fia,c,4) and due to our definition of an acceleration wave 7 is con-
tinuous across S, therefore [pgn] = 0. Thus equation (4.146) reduces to

NA[pA] =0. (4.147)

Unlike type II thermoelasticity where [p4] = 0 holds automatically due
to the form of p4, it is not obviously true for type III theory because of
the representation (4.143). However, 6 is continuous across S, and since
ga = Opa, equation (4.147) now leads to

Nalga] = 0. (4.148)

The presence of 6 g in the constitutive form for ga = qa(0, Fia, . 4,60 4)
means that equation (4.148) is not automatically satisfied.

At this point (Quintanilla and Straughan, 2004) follow (Coleman and
Gurtin, 1965) and restrict attention to one-dimensional waves, and they
generalize the argument of (Coleman and Gurtin, 1965) relating to homoth-
ermal waves. In one dimension equation (4.148) is [g] = 0. A definite heat
conductor is defined, generalizing the definition in (Coleman and Gurtin,
1965), to be one for which ¢(0, F, ax,0x) is a strictly monotone function
of Ox, for fixed 6, F. Then analogous to equation (4.19) of (Coleman and
Gurtin, 1965) one sees that

[a) =q(07, F~,ax,0x) —q(0", F* ok, 0%).

Across an acceleration wave S, by definition 6, F' and ax are continuous.
Therefore, since ¢ is a strictly monotone function of x, if [0x] (= [ax]) #
0 then [¢] # 0. This contradicts the fact that [¢] = 0. Hence we must
have [fx] = 0. Therefore, for type III thermoelasticity, an acceleration
wave in a definite conductor is homothermal, i.e. [&] = 0. Even though
[@] = 0, the higher derivatives need not have zero jumps, cf. the arguments
of (McCarthy, 1972) in classical thermoelasticity. Hence, [a;y] = [0] # 0,
subscript ¢ denoting partial differentiation with respect to time at fixed X.
The amplitudes in one-dimension are

A(t) = [uxx], B(t) = [0xx]. (4.149)
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The equations of motion for zero body force and external entropy supply
are,

poii = S, (4.150)
poTl = po€ — Px (4.151)

where S and p are the stress tensor and entropy flux. By taking the jumps
of (4.150) and (4.151) one derives the wavespeed equation as
2 _ 105
N po OF
A direct relation between A and B is found from the jump of equation
(4.151) as

(4.152)

op on\ _ Op
A(ﬁ — pQUN ﬁ) = —@ B. (4153)

The amplitude equation is found from equation (4.150) and (Quintanilla

and Straughan, 2004) present this as

§A
2p0 57 = GA+ (A% (4.154)

The coefficients ¢; and (2 are given by

_—3p0 8Un Sy (poUnnr —pr)  6%Ser | 67Srg 0% Srax

O=Ty ot Un Do Un U U
Srr (.. uky Sax (poUnnr —pr) okx
+ — (UX - ) 2 - Saxr
Un Un UN Pox Un
and
SFF
_ Skr 4.155
G2 Ux ( )

(Quintanilla and Straughan, 2004) note that the amplitude A(t) follows
from (4.154) and the development of the acceleration wave into possible
shock formation may be studied, cf. (Fu and Scott, 1991) and section 5.1 of
this monograph. Once A(t) is known, the thermal amplitude B follows from
(4.153). Thus, the mechanical wave determines the thermal wave behaviour.
Therefore, acceleration waves in type III thermoelasticity are very different
from those in type II where separate mechanical and thermal waves may
propagate.

4.6 Acceleration waves in a type II fluid

The basic equations for a type II fluid are described in section 3.3. They
consist of the equations of continuity of mass, balance of linear momentum,
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and balance of entropy and are, for zero body force b; and zero entropy
supply s, respectively,

) - 4.1
Prg. 0, (4.156)
8Tji
PU; oz, , (4.157)
) Op;
PI=—g (4.158)

where p and v; are density and velocity, and Tj;,n and p; are the Cauchy
stress tensor, entropy and entropy flux vector, with a superposed dot de-
noting the material time derivative. Upon writing the stress, entropy and
entropy flux vector in terms of the Helmholtz free energy function 1, namely

. POV o9
Tz_] - p‘sz] 9 (80&7' ,_] + — a J ,1) )
_ o o
0 T Toay
Y =1(p,0,0;),

we may expand equations (4.156) - (4.158) to see that the governing
equations for a type II fluid become
6p op v;

tan titray, =0 (4.159)

o5 +ome) =~ 3 [P 7

5 G p —aaﬁja,ﬁ—aa’ia,j)y (4.160)

and

2 2
_p{5_¢+ (aw)}: 0 (v aw) (4.161)
otoo 0x;00 ox; 8(1
These five equations represent a hyperbolic system for the density p,
velocity v; and thermal displacement .

An acceleration wave for a type II fluid is defined to be a two-dimensional
surface S in R? such that v;, p, o, &, and «; are continuous throughout
R3, but their derivatives v;,v; j,p, p.i, &, ¢ ; and «j, along with higher
derivatives, suffer a finite discontinuity (jump) across S.

We now follow (Quintanilla and Straughan, 2008) and consider an ac-
celeration wave moving into an equilibrium region for which ’U;'_ = 0,
p+ = constant, T = constant, and a"; = 0. In addition, we shall suppose
the body possesses a centre of symmeﬁy.

One begins by taking the jumps of equations (4.159) - (4.161) to find

[pe] + plvi,i] =0, (4.162)
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plvie] = —pplp.s] — polb.al, (4.163)
and
—po0[0] — poo,l) = Yoo, lov il - (4.164)
The amplitudes A*, B and C are defined by
A =[in’],  B=[n'pi,  C=lagyn'n], (4.165)

where n’ is the unit normal to S in the + direction. Noting that from the
compatibility equations (4.25), (4.26),

Ainj = [’U)ij]7 Bnl = [p,i]; Cnmj = [a)ij]7

we see that employing the Hadamard relation (4.27) in (4.162) - (4.164)
yields the equations

~VB+ pA'n; =0, (4.166)
—pVA; = —p,Bn; + paVn,;C, (4.167)
—pegVEC + pthpgV B = pwayiayjninj(;’, (4.168)

where V is the wavespeed at S.

It follows from equation (4.167) that we must have A; = An; with A =
[n*n;v’;] so that the acceleration wave S must be a longitudinal wave. Then
(4.166) - (4.168) may be written as (taking the inner product of (4.167)
with nl)

P -V 0 A 0
A —paV Bl=10
0 pu}pGV _pd}()(fvz - pwa,ia,jninj C 0
A non-zero solution of this system requires that
p -V 0
=V pp —paV =0

0 pPpoV  —pthogV? = plha o, n'n?

Expansion of this determinant leads to the wavespeed equation

(VZ = pp)(96V? + Yoo ,n'n? ) + popaV? = 0. (4.169)
Let us observe that Vo = ,/p, is the wavespeed of an acoustic wave

in a classical theory whereas Vi = \/ ~Va o, NN [1ge is the wavespeed
of a thermal wave in the current version of the Green - Naghdi type II
theory, see section 4.2. Precise forms for V2 (and hence V') follow from the
quadratic equation (4.169) provided we specify a form for the Helmholtz
free energy function ¢. One may rearrange the last coefficient in equation
(4.169) as

K =1pops = p°(thpo)*. (4.170)



4.6. Acceleration waves in a type II fluid 129

From this relation (Quintanilla and Straughan, 2008) deduce that ¢, = 0
leads to two distinct waves, a pressure wave with speed V5 and a ther-
mal wave with speed V;. In general, one expects 9,9 # 0, and so (4.169)
demonstrates that we have two connected waves. To clarify this, we rewrite
equation (4.169) in the form
(V2 =V~ V) =
Yoo
It is not unreasonable to expect 1 to be such that 1yg < 0 wherein from
equation (4.171) we may deduce that there are two waves which move with
speeds Vi, and Vi such that

V2 (4.171)

0 < V7 <min{VZ, V&) < max{V? V3} < V7.

We interpret these as a fast wave, speed V7, and a slow wave, speed V.
We know that in low temperature solids the fast wave is a mechanical wave
and the slow one is associated with the thermal field, cf. section 1.1. It is
to be anticipated that Vi7, V will have a similar interpretation here.
(Quintanilla and Straughan, 2008) show how one may calculate an
amplitude equation for a one-dimensional acceleration wave. Let now S
be a one-dimensional acceleration wave moving along the zr—axis. Put
v = (u(x,t),0,0) with p(z,t), a(z,t), and define the one-dimensional
amplitudes by
AW =[] =uy —uf,  B®)=Ilp), C@)=lam). (4.172)

x

The governing equations in one-dimension are

pt + upz + pugy =0,
plus +uty) = —pr — (Pa, Oa)e (4.173)
— p(vor + u(thp)z) = (Pa, )e -
To determine the amplitudes we differentiate equations (4.173) with re-
spect to x and take the jumps of the resulting three equations. Additionally

one uses the one-dimensional version of equations (4.166) and (4.167) in
the forms

pA=VB, and  ppV2C = p(p, — V?)A, (4.174)

and then one eliminates B and C' to derive a Bernoulli equation for A(t).
In fact, one may show

a ‘;—f +bA? =0, (4.175)

where the coefficients a and b are given by

Uy (V- U3)?
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and
P,p? PYpp oo
b=3+ L +3(V?-U3 pee
V2 ( M)(V2¢p9 P? 0

3(V2 B U]2\4)2 2 2
—Vi - WV avae T Vawaw =V 4.177

+ Vipato (PV =00 + pYposa, + Vasa, Yea)  ( )
(V2 - U3)?

W(V%ﬁeee + 360, a.) -
oo

The solution to equation (4.175) is
)= —0
11— (b/a)tA(0) "
If (b/a)A(0) > 0 there is always blow-up of A(t) in a finite time. Once A(t)
is known the other amplitudes B(t) and C(t) then follow from equation
(4.174).
It is of interest to note that as the thermal effects disappear then V2 —

U2, and a and b reduce to forms consistent with that for a classical perfect
fluid, namely,

(4.178)

6A (3 p*(d/dp)(p,/p)
5 A <§+T>-

4.7 Acceleration waves in a type III fluid

In this section we develop an acceleration wave analysis for the inviscid
theory of a type III fluid presented in section 3.4.2.

The basic equations are those of balance of mass, momentum, and en-
tropy as given in (3.49) - (3.51) which for zero body force b; and zero
external entropy supply s may be written

p + pPU i = 0, (4.179)
p’UZ = Tji,j 5 (4180)
pi = —pii + p€. (4.181)

To study acceleration waves in this theory we find it necessary to begin
with the integrated form of (4.181) rather than the local form as given.
If P denotes a volume in the fluid with boundary 9P then the integrated
form is, see (Green and Naghdi, 1991), equation (7.19), see also (Green and
Naghdi, 1977),

d
L pav :/ pEdV — ¢ kdA (4.182)
dt Jp P oP

where k = p;n;, n; being the unit outward normal to OP. The quantities dV
and dA denote the volume and surface area integral elements, respectively.
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At the outset we define an acceleration wave in an inviscid fluid of type
IIT to be surface S in R?® across which v;, p, oy and a; are continuous
but the functions v; ¢, vs j, pt, p,is Ottt 4, ¢ 55 and their higher derivatives
possess a finite discontinuity. As usual, + and — denote the limits on S as
approached from the right and left, and [f] = f~ — f*. We use a “pillbox”
argument on equation (4.182) to see that this equation evaluated across S
yields, cf. the procedure in (Iesan and Scalia, 1996), p. 30,

[V + ni[pi] = 0. (4.183)

Since nn = —0 /00 (see equation (3.57)) and 9 = (p, 0, ;) (see equation
(3.56)) [pn] = 0 and so (4.183) becomes

Further, since ¢; = 0p; and 0 = ¢, we infer from this that

We now follow the article of (Coleman and Gurtin, 1965) in viscoelasticity.
Suppose we consider a one-dimensional wave and the type III fluid is a
definite heat conductor. This means that ¢ (the one-dimensional component
of ¢;) is a strictly monotone function of 8, = ¢, for p,0, «, fixed. Since
the one-dimensional component p of p; is such that p = p(p,0, a,,0,) it
follows that ¢ = q(p, 0, az, 0,). Of course, p,# and a, are continuous across
S. Then, from (4.184) [¢] = 0. But

lq] = qp™,07 0y ,0,) —qlp™, 0%, o, 01). (4.185)

Since ¢ is continuous in its arguments p, #, a, and is a strictly monotone
function of 8, which does have a discontinuity across S it then follows that
since 0 # 0, [q] # 0. This contradicts (4.184). Therefore, we conclude
that an acceleration wave in a type III inviscid fluid which is a definite
heat conductor must be such that [f,] = 0, and so [a] = 0, i.e. the
wave is homothermal (in a sense analogous to the definition in (Coleman
and Gurtin, 1965)). However, even though [oy] = 0 it is still true that
[ae] # 0, with non-zero jumps also for other third and higher derivatives.

The above analysis shows that an acceleration wave for a type III fluid
behaves very differently from one in a type II fluid where we have already
seen both mechanical and thermal waves propagate. The situation is, there-
fore, analogous to that for propagation of an acceleration wave in a type II
or type IIT thermoelastic body as shown earlier in this chapter.

To continue with an acceleration wave analysis we now have a surface
S across which py, pi, Vit, Vi j, e, 0 iee, 05t and o 5, and their higher
derivatives suffer a finite discontinuity but their lower derivatives are
continuous.

We now expand equations (4.179) and (4.180), recalling from (3.65) that

2 ¥

Y
Tij:_péij_Pa,iaTJ7 P=P g,
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with ¥ = ¥(p, 0, ;). Then, remembering the differentiability properties of
p,v; and « across S we see that

[pt] + vilp,i] + plvii] =0,
_op o 0% (4.186)
p[vz,t] + pvj [Uw] = _5p [p,z] - [p,J]O‘,z o —pPQ dpda [P,J] .

If we denote the wavespeed at S by w,, then the Hadamard relation (4.27)
may be used to show

9] = 2] — (o — *) ]
We put U = u, — v*n; at S and define the wave amplitudes B and C; by
B=[n'p,, C' = [vn']. (4.187)
Then using the compatibility relations we have [0;] = —UC", [p] = —UB,

[p.i] = Bn; and [v';] = C"n; so that (4.186) may be rewritten as

—UB+ pC'in; =0,
op oY - 9? . (4.188)
— Bn' i Bn’ i Bn’? =0.
Op mre Oo w e, OpOa ; "
Unlike the situation for a classical fluid, or one of Green-Laws type, cf.
(Lindsay and Straughan, 1978), we are not immediately able to deduce
from (4.188) that S is a longitudinal wave. The type III thermal effects are
playing a strong role.

To calculate the wavespeeds from (4.188) we must write it as a system
in (B,CY,C2%,C%)7, ie.

—pUC" +

5 -U pni - pnz png
Doty a1 Vo 0+ paipa,n’  —pU 0 0 B 0
90 c? 0
a2 + @2ty ].nj + paothpa jnj 0 —pU 0 c?l o
90 ’ ’ o3 0
8_]:) n® + a,3¢a,jnj + pa,?)'@[]pa,jnj 0 0 —pU

Upon requiring (B,C,C?,C3) # (0,0,0,0) and evaluating the 4 x 4
determinant we are able to show that
Ip

p?’U4 — p?’U2 (8—pn§ + n2a72¢a,jnj + pn2a721/1m,jnj)

ap ‘ ‘
— p?’U2 (8—pn% +n1a1a ;0 4 pniaVsa n])

0 . .
- p3U? (6—271% + n3a 3ha ;n? 4+ pnza s nj) = 0. (4.189)

From this equation we deduce that either

U?2=0
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which is a standing wave, or we have a propagating wave with wavespeed
U given by

_op
=5

p
+ E(a,iu}a,j + aﬁjwa,i)ninj :

Of course, equation (4.181) still plays an important role. Recalling the
definitions and differentiability properties at S we see that expanding and
taking jumps (4.181) yields

1
U? + 5(0&71"@/1% + a,jwa,i)nmj

(4.190)

. Opi pi ..
Pplp) = — op [pi] — a_ﬁy_[a,jiy (4.191)
j

In deriving (4.191) we encounter the terms
pnd, PN, @y KYi%i/0%, Piel; Diav,; . ji 5

but these are continuous across S. We next use the expressions for [p] and
[0,i] and then note that if we define

A(t) = [n"nenpa rap),

then one can show [& j;] = —Un;n;A. Thus, (4.191) is a relation between
A and B, namely
Ip; Ipi
B (a_p ni = pn,U) = Unin, A (4.192)

Once we determine the amplitudes B and Cj, then (4.192) yields the
thermal amplitude A.

To determine the amplitudes B and C; we must differentiate equations
(4.179) and (4.180) with respect to ¢ or x; and then use the wavespeed
relation (4.190) together with (4.192) to derive a Bernoulli equation for B
or C;. Once either of these is known the other follows from (4.188) and
then the solution is completed by determining A from (4.192).

Although the ideas of acceleration waves have been under constant de-
velopment for over forty years, they are still being employed with much
effect in the current literature. In fact, the use of acceleration waves
and related analyses have proved extremely useful in recent investiga-
tions of wave motion in various continuous and random media, and in
a variety of thermodynamic states, see e.g. (Chen, 1969a; Chen, 1969b),
(Christov et al., 2006; Christov et al., 2007), (Christov and Jordan, 2008;
Christov and Jordan, 2009), (Ciarletta and Iesan, 1993), (Ciarletta and
Straughan, 2006; Ciarletta and Straughan, 2007b; Ciarletta and Straughan,
2007a), (Ciarletta et al., 2007), (Curro et al., 2009), (Eremeyev, 2005),
(Fabrizio, 1994), (Fabrizio and Morro, 2003), (Franchi, 1985), (Fu and
Scott, 1988; Fu and Scott, 1990; Fu and Scott, 1991), (Gultop, 2006), (Iesan
and Scalia, 2006), (Jordan, 2004; Jordan, 2005a; Jordan, 2005b; Jordan,
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2006; Jordan, 2007; Jordan, 2008b; Jordan, 2008a), (Jordan and Christov,
2005), (Jordan and Feuillade, 2004), (Jordan and Puri, 1999; Jordan and
Puri, 2005), (Jordan and Straughan, 2006), (Kameyama and Sugiyama,
1996), (Lin and Szeri, 2001), (Mariano and Sabatini, 2000), (Marasco,
2009a; Marasco, 2009b), (Marasco and Romano, 2009), (Mentrelli et al.,
2008), (Morro, 1978; Morro, 2006), (Ostoja-Starzewski and Trebicki, 1999;
Ostoja-Starzewski and Trebicki, 2006), (Rai, 2003), (Truesdell and Ra-
jagopal, 1999), (Ruggeri and Sugiyama, 2005), (Sabatini and Augusti,
2001), (Straughan, 1986; Straughan, 2008; Straughan, 2009a), (Sugiyama,
1994), (Valenti et al., 2004), (Weingartner et al., 2006; Weingartner et al.,
2008), (Whitham, 1974).

4.8 Exercises

Exercise 4.8.1 Define an acceleration wave for the equation (in 3-D)
Ju Ju
== == =22
ot * Yo “

A being a constant. Find the wavespeed V. Derive the amplitude equation

for a(t) = [u]. Solve this equation for a wave moving into a region where
ut =« is constant, and A\ = 0. If a(0)/ut > 0 what happens?

Exercise 4.8.2 Determine the wavespeeds of an acceleration wave for the
system

ou ou v 3 3

E—i—u%—kvazzu — v, 1.193)
v v ou 5 4 (4
a—i—v%—i—u%—v —u”.

Find and solve the amplitude equation for an acceleration wave to (4.193)
with u™ = v™ = constant.

Exercise 4.8.3 With the wave amplitude [u;] = a(t) derive an accel-
eration wave analysis for the equation, see (Jordan and Puri, 2005),

gt — Clge = 3B Uy, . (4.194)
Hint. Write equation (4.194) as a special case of Shablovskii’s equation
Ut — (f@'(u)um)z =0.

Use the decomposition uy = —qz,q = —k(u)uz, and define an acceler-
ation wave to be a surface S across which u,q are continuous but their
first and higher derivatives may have a finite discontinuity. Calculate the
wavespeed, V , and find and solve the amplitude equation for an acceleration

wave moving into a region for which u = constant, so that u™ = constant.
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Exercise 4.8.4 With the wave amplitude [u;] = a(t) derive an accelera-
tion wave analysis for the equation, see (Jordan, 2008b),

gt + kg — Cge = 30Uy - (4.195)
Hint. See the hint in exercise 4.8.3.

Exercise 4.8.5 Consider the partial differential equation, see (Jordan,
2006),

Ut + 5ut — Ugpye = —(Elui + GQU?)t . (4196)

Define an acceleration wave for equation (4.196) to be a surface S across
which w,ug, u; are continuous (and continuous everywhere), but higher
derivatives have a finite discontinuity across S. Define a(t) = [uzy] to be
the amplitude of the acceleration wave. Find the wavespeed V and the am-
plitude equation. Solve the amplitude equation. What can you deduce from
its solution?

Exercise 4.8.6 As shown in section 1.8 another alternative to allow a
temperature wave with finite speed was suggested by (Green and Laws,
1972). If we specialize the theory of section 1.8 to one space dimension then
(Green and Laws, 1972) proposed the conservation law for temperature be
replaced by

0 o Oq
5, 00.0) =" (4.197)

where ¢ = —k(6)0,, and ¢ = (6, 9) is a “generalized temperature”.

Find the wavespeed of an acceleration wave to (4.197) and calculate
the solution to the amplitude equation for the amplitude a(t) = [0z, cf.
(Lindsay and Straughan, 1976).

Exercise 4.8.7 (See (Straughan, 2010a).) The Cattaneo - Christov equa-
tions for a compressible fluid, see section 3.1.2, may be written

oT T 04,
pCP( ot +Ui3z-) T (4.198)
0¢; Jq; Ov; ov,
i 0 SV g = —KT 4.1
T( ot " Yiom, Yan T4 axr) t =k (4.199)

Replace equation (4.198) by the energy balance law, cf. equation (3.2)s, with
the heat supply r =0,
., 04
pe + B_,T: — tijdij =0,
where the internal energy € now depends on density, p, and temperature,
T. For an inviscid fluid t;; = —pd;; where the pressure p will have the form
of p = p?0v/dp, ¥ being the Helmholtz free energy function. Show that one
then derives the equations for nonlinear behaviour in a Cattaneo-Christov
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gas
perT + p2TZ/JTpdz'i = —(ii,
(i + Vi Gij — Qi + Vmm@i) + @ = —KT 5,
p+pvi; =0,
PO = =P

(4.200)

Develop an acceleration wave analysis for a solution to system (4.200)
and show the wavespeed U satisfies the quadratic equation

(U? —UZ)U? - Uy) +U?k1 =0 (4.201)
where
2 2
Ky = P (ﬂ’pT)
Yrr

with Ur and Uyp; being the speed of a thermal and a mechanical wave,
respectively, and

_ K U2 _ @
" 1p(0e/OT)’ M op°

Suppose k1 < 0. How do you interpret equation (4.201)7

U7
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Shock waves and numerical solutions

In chapter 4 we have studied the evolutionary behaviour of an accelera-
tion wave in various continuum theories where the temperature field could
propagate as a wave. For example, in the Maxwell-Cattaneo theory of sec-
tion 4.1 we saw that an acceleration wave was a singular surface S such
that the temperature, 6, and the heat flux, ¢; were continuous across S,
but 6,0;,¢.,q,; and higher derivatives possessed a discontinuity across
S. When the wave amplitude of an acceleration wave becomes infinite a
shock wave can form, cf. section 5.1. For the Maxwell-Cattaneo equations,
equations (4.1), a shock wave is a singular surface across which 6 and ¢;
themselves have a finite discontinuity.

The study of thermal shock waves is of much importance in its own right.
There are many applications of such waves. For example, (Yang, 1993) notes
that thermal shock waves are observed in all organisms at the cellular level.
This will in turn result in an accumulation of heat shock proteins in cells.
Also, extreme heat waves have been observed on planetary bodies. (Bryner,
2009) observes that the planet HD80606b, which has four times the mass of
Jupiter and is some 200 light years from Earth, has temperature variations
of over 555°C in only a six hour period. This leads to large shock wave
storms which travel faster than the speed of sound generating increasing
heat and high speed winds.

Thermal shock waves have been studied theoretically for some time. For
example, (Atkin and Fox, 1984) used a discontinuity analysis to study
thermal shock evolution in a model for liquid helium II. They allowed a dis-
continuity in the temperature field and in the superfluid velocity. The same
writers in (Atkin and Fox, 1985) studied thermal shocks in a model for

B. Straughan, Heat Waves, Applied Mathematical Sciences 177, 137
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liquid helium IT when the waves are spherically symmetric. (Shablovskii,
1984; Shablovskii, 1985; Shablovskii, 1987) also analyses thermal shock
waves but employs equations of Maxw