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Fractional Euler–Lagrange Differential
Equations via Caputo Derivatives

Ricardo Almeida, Agnieszka B. Malinowska, and Delfim F.M. Torres

1 Introduction

Fractional calculus plays an important role in many different areas, and has proven
to be a truly multidisciplinary subject [20, 26]. It is a mathematical field as old
as the calculus itself. In a letter dated 30th September 1695, Leibniz posed the
following question to L’Hopital: “Can the meaning of derivative be generalized
to derivatives of non-integer order?” Since then, several mathematicians had
investigated Leibniz’s challenge, prominent among them were Liouville, Riemann,
Weyl, and Letnikov. There are many applications of fractional calculus, for example,
in viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduc-
tion, electricity, mechanics, chaos and fractals, and signals and systems [12, 22].

Several methods to solve fractional differential equations are available, using
Laplace and Fourier transforms, truncated Taylor series, and numerical approxi-
mations. In Almeida and Torres [7] a new direct method to find exact solutions
of fractional variational problems is proposed, based on a simple but powerful
idea introduced by Leitmann, that does not involve solving (fractional) differential
equations [32]. By an appropriate coordinate transformation, we rewrite the initial
problem to an equivalent simpler one; knowing the solution for the new equivalent
problem, and since there exists an one-to-one correspondence between the minimiz-
ers (or maximizers) of the new problem with the ones of the original, we determine
the desired solution. For a modern account on Leitmann’s direct method see [25,26].
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The calculus of variations is a field of mathematics that deals with extremizing
functionals [33]. The variational functionals are often formed as definite integrals
involving unknown functions and their derivatives. The fundamental problem
consists to find functions y(x), x ∈ [a,b], that extremize a given functional when
subject to boundary conditions y(a) = ya and y(b) = yb. Since this can be a
hard task, one wishes to study necessary and sufficient optimality conditions.
The simplest example is the following one: what is the shape of the curve y(x),
x ∈ [a,b], joining two fixed points ya and yb, that has the minimum possible length?
The answer is obviously the straight line joining ya and yb. One can obtain it
solving the corresponding Euler–Lagrange necessary optimality condition. If the
boundary condition y(b) = yb is not fixed, that is, if we are only interested in
the minimum length, the answer is the horizontal straight line y(x) = ya, x ∈
[a,b] (free endpoint problem). In this case we need to complement the Euler–
Lagrange equation with an appropriate natural boundary condition. For a general
account on Euler–Lagrange equations and natural boundary conditions, we refer the
readers to [23, 24] and references therein. Another important family of variational
problems is the isoperimetric one [5]. The classical isoperimetric problem consists
to find a continuously differentiable function y = y(x), x ∈ [a,b], satisfying given
boundary conditions y(a) = ya and y(b) = yb, which minimizes (or maximizes) a
functional

I(y) =
∫ b

a
L(x,y(x),y′(x))dx

subject to the constraint

∫ b

a
g(x,y(x),y′(x))dx = l.

The most famous isoperimetric problem can be posed as follows. Amongst all
closed curves with a given length, which one encloses the largest area? The answer,
as we know, is the circle. The general method to solve such problems involves
an Euler–Lagrange equation obtained via the concept of Lagrange multiplier (see,
e.g., [4]).

The fractional calculus of variations is a recent field, initiated in 1997, where
classical variational problems are considered but in presence of some fractional
derivative or fractional integral [31]. In the past few years an increasing of
interest has been put on finding necessary conditions of optimality for variational
problems with Lagrangians involving fractional derivatives [1, 9–11, 16–19, 27, 28],
fractional derivatives and fractional integrals [3, 6, 15], classical and fractional
derivatives [29], as well as fractional difference operators [13, 14]. A good in-
troduction to the subject is given in the monograph of Klimek [21]. Here we
consider unconstrained and constrained fractional variational problems via Caputo
operators.
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2 Preliminaries and Notations

There exist several definitions of fractional derivatives and fractional integrals,
for example, Riemann–Liouville, Caputo, Riesz, Riesz–Caputo, Weyl, Grunwald–
Letnikov, Hadamard, and Chen. Here we review only some basic features of
Caputo’s fractional derivative. For proofs and more on the subject, we refer the
readers to [20, 26].

Let f : [a,b]→ R be an integrable function, α > 0, and Γ be the Euler gamma
function. The left and right Riemann–Liouville fractional integral operators of order
α are defined by1

aIα
x [ f ] := x �→ 1

Γ (α)

∫ x

a
(x− t)α−1 f (t)dt

and

xIα
b [ f ] := x �→ 1

Γ (α)

∫ b

x
(t − x)α−1 f (t)dt,

respectively. The left and right Riemann–Liouville fractional derivative operators of
order α are, respectively, defined by

aDα
x :=

dn

dxn ◦ aIn−α
x

and

xDα
b := (−1)n dn

dxn ◦ xIn−α
b ,

where n = [α] + 1. Interchanging the composition of operators in the definition
of Riemann–Liouville fractional derivatives, we obtain the left and right Caputo
fractional derivatives of order α:

C
a Dα

x := aIn−α
x ◦ dn

dxn

and

C
x Dα

b := xIn−α
b ◦ (−1)n dn

dxn .

1Along the work we use round brackets for the arguments of functions, and square brackets for the
arguments of operators. By definition, an operator receives a function and returns another function.
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Theorem 9.1. Assume that f is of class Cn on [a,b]. Then its left and right Caputo
derivatives are continuous on the closed interval [a,b].

One of the most important results for the proof of necessary optimality con-
ditions, is the integration by parts formula. For Caputo derivatives the following
relations hold.

Theorem 9.2. Let α > 0, and f ,g : [a,b]→ R be Cn functions. Then,

∫ b

a
g(x) ·C

a Dα
x [ f ](x)dx =

∫ b

a
f (x) · xDα

b [g](x)dx

+
n−1

∑
j=0

[
xDα+ j−n

b [g](x) · xDn−1− j
b [ f ](x)

]b

a

and

∫ b

a
g(x) ·C

x Dα
b [ f ](x)dx =

∫ b

a
f (x) · aDα

x [g](x)dx

+
n−1

∑
j=0

[
(−1)n+ j

aDα+ j−n
x [g](x) · aDn−1− j

x [ f ](x)
]b

a ,

where aDk
x = aI−k

x and xDk
b = xI−k

b whenever k < 0.

In the particular case when 0 < α < 1, we get from Theorem 9.2 that

∫ b

a
g(x) ·C

a Dα
x [ f ](x)dx =

∫ b

a
f (x) · xDα

b [g](x)dx+
[

xI1−α
b [g](x) · f (x)

]b
a

and

∫ b

a
g(x) ·C

x Dα
b [ f ](x)dx =

∫ b

a
f (x) · aDα

x [g](x)dx− [
aI1−α

x [g](x) · f (x)
]b

a .

In addition, if f is such that f (a) = f (b) = 0, then

∫ b

a
g(x) ·C

a Dα
x [ f ](x)dx =

∫ b

a
f (x) · xDα

b [g](x)dx

and

∫ b

a
g(x) ·C

x Dα
b [ f ](x)dx =

∫ b

a
f (x) · aDα

x [g](x)dx.

Along the work, we denote by ∂iL, i = 1, . . . ,m (m ∈ N), the partial derivative of
function L : Rm → R with respect to its ith argument. For convenience of notation,
we introduce the operator C

α [·]β defined by
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C
α [y]β := x �→

(
x,y(x), C

a Dα
x [y](x),

C
x Dβ

b [y](x)
)
,

where α,β ∈ (0,1).

3 Euler–Lagrange Equations

The fundamental problem of the fractional calculus of variations is addressed in the
following way: find functions y ∈ E ,

E :=
{

y ∈C1([a,b]) |y(a) = ya and y(b) = yb
}
,

that maximize or minimize the functional

J(y) =
∫ b

a

(
L◦C

α [y]β
)
(x)dx. (9.1)

As usual, the Lagrange function L is assumed to be of class C1 on all its arguments.
We also assume that ∂3L◦C

α [y]β has continuous right Riemann–Liouville fractional
derivative of order α and ∂4L ◦ C

α [y]β has continuous left Riemann–Liouville
fractional derivative of order β for y ∈ E .

In [1] a necessary condition of optimality for such functionals is proved. We
remark that although functional (9.1) contains only Caputo fractional derivatives,
the fractional Euler–Lagrange equation also contains Riemann–Liouville fractional
derivatives.

Theorem 9.3 (Euler–Lagrange equation for (9.1)). If y is a minimizer or a
maximizer of J on E , then y is a solution of the fractional differential equation

(
∂2L◦C

α [y]β
)
(x)+ xDα

b

[
∂3L◦C

α [y]β
]
(x)+ aDβ

x

[
∂4L◦C

α [y]β
]
(x) = 0 (9.2)

for all x ∈ [a,b].

Proof. Given |ε| � 1, consider h ∈V where

V :=
{

h ∈C1([a,b]) |h(a) = 0 and h(b) = 0
}
,

and a variation of function y of type y + εh. Define the real valued function
j(ε) by

j(ε) = J(y+ εh) =
∫ b

a

(
L◦C

α [y+ εh]β
)
(x)dx.
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Since ε = 0 is a minimizer or a maximizer of j, we have j′(0) = 0. Thus,

∫ b

a

[(
∂2L◦C

α [y]β
)
(x) ·h(x)+ (

∂3L◦C
α [y]β

)
(x) ·C

a Dα
x [h](x)

+
(
∂4L◦C

α [y]β
)
(x) ·C

x Dβ
b [h](x)

]
dx = 0.

We obtain equality (9.2) integrating by parts and applying the classical fundamental
lemma of the calculus of variations [33]. �	

We remark that when α → 1, then (9.1) is reduced to a classical functional

J(y) =
∫ b

a
f (x,y(x),y′(x))dx,

and the fractional Euler–Lagrange equation (9.2) gives the standard one:

∂2 f (x,y(x),y′(x))− d
dx

∂3 f (x,y(x),y′(x)) = 0.

Solutions to equation (9.2) are said to be extremals of (9.1).

4 The Isoperimetric Problem

The fractional isoperimetric problem is stated in the following way: find the
minimizers or maximizers of functional J as in (9.1), over all functions y ∈ E
satisfying the fractional integral constraint

I(y) =
∫ b

a

(
g ◦C

α [y]β
)
(x)dx = l.

Similarly as L, g is assumed to be of class C1 with respect to all its arguments, func-
tion ∂3g ◦C

α [y]β is assumed to have continuous right Riemann–Liouville fractional
derivative of order α and ∂4g ◦C

α [y]β continuous left Riemann–Liouville fractional
derivative of order β for y ∈ E . A necessary optimality condition for the fractional
isoperimetric problem is given in [8].

Theorem 9.4. Let y be a minimizer or maximizer of J on E , when restricted to the
set of functions z ∈ E such that I(z) = l. In addition, assume that y is not an extremal
of I. Then, there exists a constant λ such that y is a solution of

(
∂2F ◦C

α [y]β
)
(x)+ xDα

b [∂3F ◦C
α [y]β ](x)+ aDβ

x [∂4F ◦C
α [y]β ](x) = 0 (9.3)

for all x ∈ [a,b], where F = L+λ g.
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Proof. Given h1,h2 ∈V , |ε1| � 1 and |ε2| � 1, consider

j(ε1,ε2) =
∫ b

a

(
L◦C

α [y+ ε1h1 + ε2h2]β
)
(x)dx

and

i(ε1,ε2) =

∫ b

a

(
g ◦C

α [y+ ε1h1 + ε2h2]β
)
(x)dx− l.

Since y is not an extremal for I, there exists a function h2 such that

∂ i
∂ε2

∣∣∣∣
(0,0)


= 0,

and by the implicit function theorem, there exists a C1 function ε2(·), defined in
some neighborhood of zero, such that

i(ε1,ε2(ε1)) = 0.

Applying the Lagrange multiplier rule (see, e.g., [33, Theorem 4.1.1]) there exists a
constant λ such that

∇( j(0,0)+λ i(0,0)) = 0.

Differentiating j and i at (0,0), and integrating by parts, we prove the theorem. �	

Example 9.1. Let y(x) =Eα(xα), x∈ [0,1], where Eα is the Mittag-Leffler function.
Then C

0 Dα
x [y] = y. Consider the following fractional variational problem:

J(y) =
∫ 1

0

(C
0 Dα

x [y](x)
)2

dx −→ extr,

I(y) =
∫ 1

0
y(x)C

0 Dα
x [y](x)dx = l,

y(0) = 1 , y(1) = y1,

with l :=
∫ 1

0
(y(x))2dx and y1 := Eα(1). In this case function F of Theorem 9.4 is

F(x,y,v,w) = v2 +λ y(x)v

and the fractional Euler–Lagrange equation (9.3) is

xDα
1 [2

C
0 Dα

x [y]+λ y](x) = 0.

A solution to this problem is λ =−2 and y(x) = y(x), x ∈ [0,1].
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The case when y is an extremal of I is also included in the results of [8].

Theorem 9.5. If y is a minimizer or a maximizer of J onE , subject to the isoperimetric
constraint I(y) = l, then there exist two constants λ0 and λ , not both zero, such that

(
∂2K ◦C

α [y]β
)
(x)+ xDα

b

[
∂3K ◦C

α [y]β
]
(x)+ aDβ

x

[
∂4K ◦C

α [y]β
]
(x) = 0

for all x ∈ [a,b], where K = λ0L+λ g.

Proof. The same as the proof of Theorem 9.4, but now using the abnormal Lagrange
multiplier rule (see, e.g., [33, Theorem 4.1.3]). �	

5 Transversality Conditions

We now give the natural boundary conditions (also known as transversality
conditions) for problems with the terminal point of integration free as well as yb.

Let

F :=
{
(y,x) ∈C1([a,b])× [a,b] |y(a) = ya

}
.

The type of functional we consider now is

J(y,T ) =
∫ T

a

(
L◦C

α [y]
)
(x)dx, (9.4)

where the operator C
α [·] is defined by

C
α [y] := x �→ (

x,y(x), C
a Dα

x [y](x)
)
.

These problems are investigated in [1] and more general cases in [2].

Theorem 9.6. Suppose that (y,T ) ∈F minimizes or maximizes J defined by (9.4)
on F . Then

(
∂2L◦C

α [y]
)
(x)+ xDα

T

[
∂3L◦C

α [y]
]
(x) = 0 (9.5)

for all x ∈ [a,T ]. Moreover, the following transversality conditions hold:

(
L◦C

α [y]
)
(T ) = 0 , xI1−α

T

[
∂3L◦C

α [y]
]
(T ) = 0.

Proof. The result is obtained by considering variations y+ εh of function y and
variations T +ε�T of T as well, and then applying the Fermat theorem, integration
by parts, Leibniz’s rule, and using the arbitrariness of h and �T . �	
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Transversality conditions for several other situations can be easily obtained.
Some important examples are:

• If T is fixed but y(T ) is free, then besides the Euler–Lagrange equation (9.5) one
obtains the transversality condition

xI1−α
T

[
∂3L◦C

α [y]
]
(T ) = 0.

• If y(T ) is given but T is free, then the transversality condition is

(
L◦C

α [y]
)
(T )− y′(T ) · xI1−α

T

[
∂3L◦C

α [y]
]
(T ) = 0.

• If y(T ) is not given but is restricted to take values on a certain given curve ψ , that
is, y(T ) = ψ(T ), then

(
ψ ′(T )− y′(T )

) · xI1−α
T

[
∂3L◦C

α [y]
]
(T )+

(
L◦C

α [y]
)
(T ) = 0.
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