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Fractional Variational Calculus
for Non-differentiable Functions
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1 Introduction

The fractional calculus (FC) is one of the most interdisciplinary fields of
mathematics, with many applications in physics and engineering. The history of FC
goes back more than three centuries, when in 1695 the derivative of order α = 1/2
was described by Leibniz. Since then, many different forms of fractional operators
were introduced: the Grunwald–Letnikov, Riemann–Liouville, Riesz, and Caputo
fractional derivatives [23, 34, 38]) and the more recent notions see [11, 19, 24, 25].
Fractional calculus is nowadays the realm of physicists and mathematicians, who
investigate the usefulness of such non-integer order derivatives and integrals in
different areas of physics and mathematics (see, e.g., [10, 18, 23]). It is a successful
tool for describing complex quantum field dynamical systems, dissipation, and
long-range phenomena that cannot be well illustrated using ordinary differential
and integral operators (see, e.g., [15, 18, 24, 36]). Applications of FC are found in
classical and quantum mechanics, field theories, variational calculus, and optimal
control (see, e.g., [14, 17, 20]).

The calculus of variations is an old branch of optimization theory that has many
applications both in physics and geometry. Apart from a few examples known since
ancient times such as Queen Dido’s problem (reported in The Aeneid by Virgil), the
problem of finding optimal curves and surfaces has been posed first by physicists
such as Newton, Huygens, and Galileo. Their contemporary mathematicians,
starting with the Bernoulli brothers and Leibniz, followed by Euler and Lagrange,
invented the calculus of variations of a functional in order to solve those problems.
Fractional calculus of variations (FCV) unifies the calculus of variations and the
fractional calculus, by inserting fractional derivatives into the variational integrals.
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This occurs naturally in many problems of physics or mechanics, in order to
provide more accurate models of physical phenomena. The FCV started in 1996
with the work of Riewe [36]. Riewe formulated the problem of the calculus of
variations with fractional derivatives and obtained the respective Euler–Lagrange
equations, combining both conservative and nonconservative cases. Nowadays
the FCV is a subject under strong research. Different definitions for fractional
derivatives and integrals are used, depending on the purpose under study. Investiga-
tions cover problems depending on Riemann–Liouville fractional derivatives (see,
e.g., [6, 15, 16, 32]), the Caputo fractional derivative (see, e.g., [1, 7, 28, 30]), the
symmetric fractional derivative (see, e.g., [24]), the Jumarie fractional derivative
(see, e.g., [4, 5, 19–22, 27]), and others [2, 11, 14]. For applications of the FCV
we refer the readers to [15, 20, 24, 35]. Although the literature of FCV is already
vast, much remains to be done.

In this paper we study problems of FCV which are defined in terms of the
Jumarie fractional derivatives and integrals. The Euler–Lagrange equations for such
problems with and without constraints were recently shown in [4]. Here we develop
further the theory by proving necessary optimality conditions for more general
problems of FCV with a Lagrangian that may also depend on the unspecified end-
points y(a), y(b). More precisely, the problem under our study: to extremize a
functional which is defined in terms of the Jumarie fractional operators and having
no constraint on y(a) and/or y(b). The novelty is the dependence of the integrand L
on the a priori unknown final values y(a), y(b). The new natural boundary conditions
(8.5)–(8.6) have important implications in economics (see [12] and the references
therein).

The paper is organized as follows. Section 2 presents the necessary definitions
and concepts of Jumarie’s fractional calculus. Our results are formulated, proved,
and illustrated through examples in Sect. 3. Main results of the paper include
necessary optimality conditions with the generalized natural boundary conditions
(Theorem 8.1) that become sufficient under appropriate convexity assumptions
(Theorem 8.2). We finish with Sect. 4 by providing conclusions.

2 Fractional Calculus

For an introduction to the classical fractional calculus we refer the readers to [11,
23, 34, 38]. In this section we briefly review the main notions and results from the
recent fractional calculus proposed by Jumarie [19–21].

Definition 8.1. Let f : [a,b]→R be a continuous function. The Jumarie fractional
derivative of f is defined by

f (α)(t) :=
1

Γ (−α)

∫ t

0
(t − τ)−α−1( f (τ)− f (a))dτ, α < 0,
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where Γ (z) =
∫ ∞

0 tz−1e−t dt. For positive α , one will set

f (α)(t) = ( f (α−1)(t))′ =
1

Γ (1−α)

d
dt

∫ t

0
(t − τ)−α( f (τ)− f (a))dτ,

for 0 < α < 1, and

f (α)(t) := ( f (α−n)(t))(n), n ≤ α < n+ 1, n ≥ 1.

The Jumarie fractional derivative has the following property:

• The αth derivative of a constant is zero.
• Assume that 0 < α ≤ 1, then the Laplace transform of f (α) is

L{ f (α)(t)}= sαL{ f (t)}− sα−1 f (0).

• (g(t) f (t))(α) = g(α)(t) f (t)+ g(t) f (α)(t), 0 < α < 1.

Example 8.1. Let f (t) = tγ . Then f (α)(x) = Γ (γ + 1)Γ−1(γ + 1−α)tγ−α , where
0 < α < 1 and γ > 0.

Example 8.2. The solution of the fractional differential equation

x(α)(t) = c, x(0) = x0, c = constant,

is

x(t) =
c

α!
tα + x0,

with the notation α! := Γ (1+α).

The integral with respect to (dt)α is defined as the solution of the fractional
differential equation

dy = f (x)(dx)α , x ≥ 0, y(0) = y0, 0 < α ≤ 1, (8.1)

which is provided by the following result.

Lemma 8.1. Let f (t) denote a continuous function. The solution of the (8.1) is
defined by the equality

∫ t

0
f (τ)(dτ)α = α

∫ t

0
(t − τ)α−1 f (τ)dτ, 0 < α ≤ 1.

Example 8.3. Let f (t) = 1. Then
∫ t

0(dτ)α = tα , 0 < α ≤ 1.

Example 8.4. The solution of the fractional differential equation

x(α)(t) = f (t), x(0) = x0
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is

x(t) = x0 +Γ −1(α)
∫ t

0
(t − τ)α−1 f (τ)dτ.

One can easily generalize the previous definitions and results for functions with a
domain [a,b]:

f (α)(t) =
1

Γ (1−α)

d
dt

∫ t

a
(t − τ)−α( f (τ)− f (a))dτ

and ∫ t

a
f (τ)(dτ)α = α

∫ t

a
(t − τ)α−1 f (τ)dτ.

For the discussion to follow, we will need the following formula of integration
by parts:

∫ b

a
u(α)(t)v(t)(dt)α = α![u(t)v(t)]ba −

∫ b

a
u(t)v(α)(t)(dt)α , (8.2)

where α! := Γ (1+α).

3 Main Results

Let us consider the functional defined by

J (y) =
∫ b

a
L(x,y(x),y(α)(x),y(a),y(b))(dx)α ,

where L(·, ·, ·, ·, ·) ∈C1([a,b]×R
4;R) and x → ∂3L(t) has continuous α-derivative.

The fractional problem of the calculus of variations under consideration has the
form

J (y)−→ extr

(y(a) = ya), (y(b) = yb),

y(·) ∈C0. (8.3)

Using parentheses around the end-point conditions means that the conditions may
or may not be present.

Along the work we denote by ∂iL, i = 1, . . . ,5, the partial derivative of function
L(·, ·, ·, ·, ·) with respect to its ith argument.

The following lemma will be needed in the next subsection.
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Lemma 8.2. Let g be a continuous function and assume that

∫ b

a
g(x)h(x)(dx)α = 0

for every continuous function h satisfying h(a) = h(b) = 0. Then g ≡ 0.

Proof. Can be done in a similar way as the proof of the standard fundamental lemma
of the calculus of variations (see, e.g., [40]).

3.1 Necessary Conditions

Next theorem gives necessary optimality conditions for the problem (8.3).

Theorem 8.1. Let y be an extremizer to problem (8.3). Then, y satisfies the
fractional Euler–Lagrange equation

∂2L(x,y(x),y(α)(x),y(a),y(b)) =
dα

dxα ∂3L(x,y(x),y(α)(x),y(a),y(b)), (8.4)

for all x ∈ [a,b]. Moreover, if y(a) is not specified, then;

∫ b

a
∂4L(x,y(x),y(α)(x),y(a),y(b))(dx)α = α!∂3L(a,y(a),y(α)(a),y(a),y(b)),

(8.5)
if y(b) is not specified, then;

∫ b

a
∂5L(x,y(x),y(α)(x),y(a),y(b))(dx)α =−α!∂3L(b,y(b),y(α)(b),y(a),y(b)).

(8.6)

Proof. Suppose that y is an extremizer of J and consider the value of J at a
nearby function ỹ = y+ εh, where ε ∈ R is a small parameter and h is an arbitrary
continuous function. We do not require h(a) = 0 or h(b) = 0 in case y(a) or
y(b), respectively, is free (it is possible that both are free). Let j(ε) = J (y+ εh).
Then a necessary condition for y to be an extremizer is given by j′(0) = 0.
Hence,

∫ b

a

[
∂2L(·)h(x)+ ∂3L(·)h(α)(x)+ ∂4L(·)h(a)+ ∂5L(·)h(b)

]
(dx)α = 0 , (8.7)

where (·) =
(

x,y(x),y(α)(x),y(a),y(b)
)
. Using integration by parts (8.2) to the

second term we get



102 A.B. Malinowska

∫ b

a

[
∂2L(·)− dα

dxα ∂3L(·)
]
(dx)α + α!∂3L(·)|x=b h(b)−α!∂3L(·)|x=a h(a)

+
∫ b

a

[
∂4L(·)h(a)+ ∂5L(·)h(b)

]
(dx)α = 0. (8.8)

We first consider functions h such that h(a) = h(b) = 0. Then, by the Lemma 8.2
we deduce that

∂2L(·) = dα

dxα ∂3L(·),

for all x ∈ [a,b]. Therefore, in order for y to be an extremizer to the problem (8.3),
y must be a solution of the fractional Euler–Lagrange equation (8.4). But if y is a
solution of (8.4), the first integral in expression (8.8) vanishes, and then condition
(8.7) takes the form

h(b)

[∫ b

a
∂5L(·)(dx)α +α!∂3L(·)|x=b

]
+ h(a)

[∫ b

a
∂4L(·)dx−α!∂3L(·)|x=a

]
= 0.

If y(a) = ya and y(b) = yb are given in the formulation of problem (8.3), then the
latter equation is trivially satisfied since h(a) = h(b) = 0. When y(b) is free, then
(8.6) holds, when y(a) is free, then (8.5) holds, since h(a) or h(b) is, respectively,
arbitrary.

In the case L does not depend on y(a) and y(b), by Theorem 8.1 we obtain the
following result.

Corollary 8.1. [4, Theorem 1] Let y be an extremizer to problem

J (y) =
∫ b

a
L(x,y(x),y(α)(x))(dx)α −→ extr.

Then, y satisfies the fractional Euler–Lagrange equation

∂2L(x,y(x),y(α)(x)) =
dα

dxα ∂3L(x,y(x),y(α)(x)),

for all x ∈ [a,b]. Moreover, if y(a) is not specified, then;

∂3L(a,y(a),y(α)(a)) = 0,

if y(b) is not specified, then;

∂3L(b,y(b),y(α)(b)) = 0.
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Observe that if α goes to 1, then the operators dα

dxα , (dx)α could be replaced with
d
dx and dx. Thus, in this case we obtain the corresponding result in the classical
context of the calculus of variations (see [29, Corollary 1], [12, Theorem 2.1]).

Corollary 8.2. [29, Corollary 1] If y is a local extremizer for

J (y) =
∫ b

a
L(x,y(x),y′(x),y(a),y(b))dx −→ extr

(y(a) = ya), (y(b) = yb),

then
d
dx

∂3L(x,y(x),y′(x),y(a),y(b)) = ∂2L(x,y(x),y′(x),y(a),y(b)),

for all x ∈ [a,b]. Moreover, if y(a) is free, then;

∂3L(a,y(a),y′(a),y(a),y(b)) =
∫ b

a
∂5L(x,y(x),y′(x),y(a),y(b))dx;

and if y(b) is free, then,

∂3L(b,y(b),y′(b),y(a),y(b)) =−
∫ b

a
∂6L(x,y(x),y′(x),y(a),y(b))dx.

3.2 Sufficient Conditions

In this section we prove sufficient conditions for optimality. Similarly to what
happens in the classical calculus of variations, some conditions of convexity
(concavity) are in order.

Definition 8.2. Given a function L, we say that L(x,y,z, t,u) is jointly convex
(concave) in (y,z, t,u), if ∂iL , i = 2, . . . ,5, exist and are continuous and verify the
following condition:

L(x,y+ y1,z+ z1, t + t1,u+ u1)−L(x,y,z, t,u)

≥ (≤)∂2L(·)y1 + ∂3L(·)z1 + ∂4L(·)t1 + ∂5L(·)u1,

where (·) = (x,y,z, t,u), for all (x,y,z, t,u), (x,y + y1,z + z1, t + t1,u + u1) ∈
[a,b]×R

4.

Theorem 8.2. Let L(x,y,z, t,u) be a jointly convex (concave) in (y,z, t,u). If y0

satisfies conditions (8.4)–(8.6), then y0 is a global minimizer (maximizer) to
problem (8.3).

Proof. We shall give the proof for the convex case. Since L is jointly convex in
(y,z, t,u) for any continuous function y0 + h, we have



104 A.B. Malinowska

J (y0 + h)−J (y0) =

∫ b

a

[
L(x,y0(x)+ h(x),y(α)

0 (x)+ h(α)(x),y0(a)+ h(a),y0(b)

+ h(b))−L(x,y0(x),y
(α)
0 (x),y0(a),y0(b))

]
(dx)α

≥
∫ b

a

[
∂2L(·)h(x)+ ∂3L(·)h(α)(x)+ ∂4L(·)h(a)

+ ∂5L(·)h(b)
]
(dx)α ,

where (·) =
(

x,y0(x),y
(α)
0 (x),y0(a),y0(b)

)
. We can now proceed analogously to the

proof of Theorem 8.1. As the result we get

J (y0 + h)−J (y0)≥
∫ b

a

[
∂2L(·)− dα

dxα ∂3L(·)
]
(dx)α

h(b)

[∫ b

a
∂5L(·)(dx)α+α!∂3L(·)|x=b

]
+h(a)

[∫ b

a
∂4L(·)dx−α!∂3L(·)|x=a

]
= 0,

since y0 satisfies conditions (8.4)–(8.6). Therefore, we obtain J (y0 + h)≥J (y0).

3.3 Examples

We shall provide examples in order to illustrate our main results.

Example 8.5. Consider the following problem

J (y) =
∫ 1

0

{[
xα

Γ (α + 1)
(y(α))2 − 2xαy(α)

]2

+(y(0)− 1)2+(y(1)− 2)2

}
(dx)α −→ extr.

The Euler–Lagrange equation associated to this problem is

dα

dxα

(
2

[
xα

Γ (α + 1)
(y(α))2 − 2xαy(α)

]
·
[

2xα

Γ (α + 1)
y(α)− 2xα

])
= 0. (8.9)

Let y = xα + b, where b ∈ R. Since y(α) = Γ (α + 1), it follows that y is a solution
of (8.9). In order to determine b we use the generalized natural boundary conditions
(8.5)–(8.6), which can be written for this problem as,

∫ 1

0
(y(0)− 1)(dx)α = 0,

∫ 1

0
(y(1)− 2)(dx)α = 0.
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Hence, ỹ = xα +1 is a candidate solution. We remark that the ỹ is not differentiable
in [0,1].

Example 8.6. Consider the following problem:

J (y) =
∫ 1

0

[
(y(α)(x))2 + γy2(0) + λ (y(1)− 1)2](dx)α −→ min, (8.10)

where γ,λ ∈ R
+. For this problem, the fractional Euler–Lagrange equation and the

generalized natural boundary conditions (see Theorem 8.1) are given, respectively,
as

2
dα

dxα y(α)(x) = 0, (8.11)

∫ 1

0
γy(0)(dx)α = α!y(α)(0), (8.12)

∫ 1

0
λ (y(1)− 1)(dx)α =−α!y(α)(1). (8.13)

Solving (8.11)–(8.13) we obtain that

ȳ(x) =
γλ α!

γλ +(α!)2(λ + γ)
xα +

(α!)2λ
γλ +(α!)2(λ + γ)

is a candidate for minimizer. Observe that problem (8.10) satisfies assumptions of
Theorem 8.2. Therefore ȳ is a global minimizer to this problem. We note that when
α goes to 1 problem (8.10) tends to

K(y) =
∫ 1

0

[
(y′(x))2 + γy2(0)+λ (y(1)− 1)2

]
dx −→ min .

with the solution

y(x) =
γλ

γλ +λ + γ
x+

λ
γλ +λ + γ

.

4 Conclusion

In recent years fractional calculus has played an important role in various fields such
as physics, chemistry, biology, economics, modeling, identification, control theory
and signal processing (see, e.g., [3, 9, 13, 25, 26, 33, 37]). The fractional operators
are non-local, therefore they are suitable for constructing models possessing
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memory. This gives several possible applications of the FCV, e.g., in describing
non-local properties of physical systems in mechanics (see, e.g., [10, 24, 35])
or electrodynamics (see, e.g., [8, 39]). The Jumarie fractional derivative is quite
suitable to describe dynamics evolving in a space which exhibit coarse-grained
phenomenon. When the point in this space is not infinitely thin but rather has a
thickness, then it would be better to replace dx by (dx)α , 0 < α < 1, where α
characterizes the grade of the phenomenon. The fractal feature of the space is
transported on time, and so both space and time are fractal. Thus, the increment
of time of the dynamics of the system is not dx but (dx)α . In this note we
generalize some previous results of the FCV (which are defined in terms of the
Jumarie fractional derivatives and integrals) by proving optimality conditions for
problems of FCV with a Lagrangian density depending on the free end-points.
The advantage of using the Jumarie fractional derivative lies in the fact that this
derivative is defined for continuous functions, non-differentiable (see, Example 8.5).
Note that the integrand in problem (8.3) depends upon the a priori unknown final
values y(a) and y(b). The present paper indicates how such problems may be
solved.
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