
Chapter 7
Stabilization of Fractional Order
Unified Chaotic Systems via Linear
State Feedback Controller

E.G. Razmjou, A. Ranjbar, Z. Rahmani, R. Ghaderi, and S. Momani

1 Introduction

The real world sometime possesses a fractional order dynamic [17]. Accordingly,
fractional order controllers such as CRONE [13], TID [7], fractional PID controller
[14], and lead-lag compensator [16] have been implemented to improve the
performance and robustness of some closed loop control systems. An application
of fractional algebra is the modeling of the fractional order chaotic systems. This
kind of modeling provides more accuracy, less complexity as well as the possibility
to increase the stability region [17].

Chaos, as an application of the fractional order modeling, is a very interesting
nonlinear phenomenon. High sensitivity to initial conditions is a main character-
istic of chaotic systems. Therefore, these systems are found to be difficult for
synchronization or control [5]. Due to the complexity of these systems, control
and stabilization task of chaotic nonlinear systems have been one of the arising
interests in the control engineering area. In the past decade, great efforts have been
devoted toward the chaos control, including stabilization of unstable equilibrium
points, and more generally, unstable periodic solutions. Particularly, in case of chaos
suppression of known chaotic systems, some useful methods have been developed.
These include time delay feedback control [15], bang–bang control [19], optimal
control [8], intelligent control [22], adaptive control [23], etc.

A unified chaotic system is a chaotic system that depends on a parameter,
e.g., α ∈ [0,1]. If 0 ≤ α < 0.8, the unified chaotic system is reduced to the
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generalized Lorenz chaotic system; the unified chaotic system is altered to the Lü
chaotic system when α = 0.8. For 0.8<α ≤ 1, the unified chaotic system is changed
to the generalized Chen chaotic system.

Chen [3] considered that the parameter of the two unified chaotic systems
is unknown. Hence, an adaptive controller was used to achieve synchronization
based on Lyapunov stability theory. Chen [4] investigated the stabilization and
synchronization of the unified chaotic system via an impulsive control method.
Lu [10] used linear feedback and adaptive control to synchronize identical unified
chaotic systems with only one controller. Ucar [18] used a nonlinear active
controller to synchronize two coupled unified chaotic systems with three control
inputs. Wang [20] proved that the unified chaotic system is equivalent to a passive
system and asymptotically stabilized it at equilibrium points. Wang [21] studied
the synchronization problem of two identical unified chaotic systems using three
different methods. They used a linear feedback controller, a nonlinear feedback
method, and an impulsive controller to synchronize the systems. In [24] based on the
sliding mode theory, synchronization of two identical unified chaotic is discussed.

However, in this chapter, a linear state feedback controller stabilizes a fractional
order unified chaotic system. An advantage of the proposed controller can be seen
when it is used to stabilize a fractional order unified chaotic system, by means
of increasing the stability region. In contrast, the application on the integer order
system is shown to be failed.

The chapter is organized as follows: Sect. 2 includes the basic definition and
preliminaries. A state feedback controller is proposed to stabilize the fractional
order unified chaotic systems in Sect. 3. Results of numerical simulation are given
in Sect. 4, to illustrate the effectiveness of the proposed controller. The chapter will
be closed by a conclusion in Sect. 5.

2 Preliminary Definitions

2.1 Fractional Algebra

Among several definitions of fractional derivatives, the following Caputo-type
definition [1] is more popular with respect the rest [17].

0Dq
t f (t) =

⎧
⎨

⎩

1
Γ(m−q)

∫ t
0

f m(τ)
(t−τ)q+1−m dτ, m− 1 < q ≤ m

dm

dtm f (t) q = m
(7.1)

where m is the first integer number larger than q.

Definition 1. [6] A saddle point of index 2 is a saddle point with one stable
eigenvalue and two unstable ones.
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Definition 2. [2] Assume that a 3D fractional order chaotic system of ẋ = f (x)
displays a chaotic attractor. For every scroll existing in the chaotic attractor, this
system has a saddle point of index 2 encircled by its respective scroll.

Theorem 1. [11] Assume that a 3D chaotic system ẋ = f (x) displays a chaotic
attractor with n scrolls. Suppose Λ is a set of unstable eigenvalues of these n saddle
points. A necessary condition for fractional system Dqx = f (x) to exhibit an n-scroll
chaotic attractor, similar to the chaotic attractor of system ẋ = f (x), to keep the
eigenvalues λ ∈ Λ in the unstable region, satisfies:

q >
2
π

tan−1
( |Im(λ )|

Re(λ )

)

, ∀λ ∈ Λ (7.2)

Otherwise, at least one of these equilibriums becomes asymptotically stable and
then attracts the nearby trajectories.

2.2 The Unified Chaotic System

[9] considered a kind of chaotic system which describes a class of unified form by:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = (25α + 10)(y− x)
dy
dt = (28− 35α)x− xz+(29α − 1)y
dz
dt = xy− 8+α

3 z

(7.3)

where x,y,z are the state variables and α ∈ [0,1] is a “homogeneity” parameter of
the system. [9] calls (7.3) as unified chaotic system due to chaotic behavior for
any α ∈ [0,1]. When 0 ≤ α < 0.8, system (7.3) is called as the generalized Lorenz
chaotic system. For α = 0.8, it is called Lü chaotic system. Similarly, it is called
generalized Chen chaotic system when 0.8 < α ≤ 1. However, let us introduce a
fractional version of dynamic (7.3) as in (7.4). Standard derivatives of (7.3) are
accordingly replaced by the following fractional derivatives:

⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = (25α + 10)(y− x)
dqy
dtq = (28− 35α)x− xz+(29α − 1)y
dqz
dtq = xy− 8+α

3 z

(7.4)

where q with 0 < q ≤ 1 is the fractional order. Chaos in the fractional order unified
system of Chen, Lü, and Lorenz-Like for q = 0.9,0.95,0.99 are shown in [12].
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From (7.4), a generalized scheme of the fractional order unified chaotic system can
be given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = a(y− x)
dqy
dtq = bx− xz+ cy
dqz
dtq = xy− dz

(7.5)

3 State Feedback Control

3.1 Design of the Controller for Fractional Order Chen System

The fractional order Chen system is given as follows [12]:

⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq = (c1 − a1)x− xz+ c1y
dqz
dtq = xy− b1z

(7.6)

To obtain the Chen chaotic behavior, parameters in (7.6) are set to [12]:

a1 = 40, b1 = 3, c1 = 28 (7.7)

The equilibrium points of the Chen system are as follows:

O1 = (0,0,0)

O2 = (6.9282,6.9282,16)

O3 = (−6.9282,−6.9282,16) (7.8)

From (7.6) the Jacobian matrix of the Chen system is achieved by:

J =

⎡

⎣
−a1 a1 0

c1 − a1 − z c1 −x
y x −b1

⎤

⎦ (7.9)

Accordingly, the corresponding eigenvalues of the equilibrium (7.8) are obtained as:

O1 → λ1 =−3, λ2 = 20, λ3 − 32

O2,3 → λ1 =−20.2304, λ2,3 = 2.6152± 13.5268 j (7.10)
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From definition 1, O2,3 are of saddle point of index 2. Therefore, from theorem 1
the fractional order Chen system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)

= 0.8784 (7.11)

Otherwise the system is asymptotically stable. In order to stabilize the fractional
order Chen system, a control input is added into the second state of the system, by
the following:

⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq = (c1 − a1)x− xz+ c1y+ u
dqz
dtq = xy− b1z

(7.12)

A linear state feedback controller is proposed to construct the input signal u as in
the following form:

u =−(c1 − a1)x− k1y (7.13)

Where k1is a constant gain by k1 = 12.7.

Theorem 2. The proposed state feedback controller in (7.13) increases the stability
region of the fractional order Chen system and stabilizes the system at their stable
equilibrium points.

Proof. Using the state feedback controller changes the equilibrium points and the
Jacobian matrix J to:

O′
1 = (0,0,0)

O′
2 = (6.7749,6.7749,15.3)

O′
3 = (−6.7749,−6.7749,15.3) (7.14)

J =

⎡

⎣
−a1 a1 0
−z c1 − k1 −x
y x −b1

⎤

⎦ (7.15)

The corresponding eigenvalues of the equilibrium points in (7.14) are:

O′
1 → λ1 =−3, λ2 = 15.3, λ3 =−40

O′
2,3 → λ1 =−28.0829, λ2,3 = 0.1915± 11.4331 j (7.16)

Similarly, from the definition 1, O′
2,3 are of the saddle point of index 2. Hence, the

fractional order Chen system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)

= 0.9893 (7.17)

Otherwise the system is asymptotically stable. This means that for q < 0.9893 the
fractional order Chen system is asymptotically stable. �
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3.2 Design of the Controller for the Fractional Order Lü System

The fractional order Lü system is also given by [12]:
⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq =−xz+ c1y
dqz
dtq = xy− b1z

(7.18)

The chaos in the Lü dynamic occurs when parameters in (7.18) are set to [12]:

a1 = 35, b1 = 3, c1 = 30 (7.19)

From (7.18) and (7.19), the equilibrium points and the Jacobian matrix of the Lü
system are, respectively, as follows:

O1 = (0,0,0)

O2 = (9.4868,9.4868,30)

O3 = (−9.4868,−9.4868,30) (7.20)

J =

⎡

⎣
−a1 a1 0
−z c1 −x
y x −b1

⎤

⎦ (7.21)

Then the corresponding eigenvalues of the equilibrium points in (7.20) are:

O1 → λ1 =−3, λ2 = 30, λ3 =−35

O2,3 → λ1 =−19.3701, λ2,3 = 5.6851± 17.1149 j (7.22)

From definition 1, O2,3 are of the saddle point of index 2. Thus, the fractional order
Lü system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)

= 0.7958 (7.23)

Otherwise the system is asymptotically stable.
Similar to the previous section, to stabilize the fractional order Lü system, a

controller is applied to the 2ns state, according to:

⎧
⎪⎪⎨

⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq =−xz+ c1y+ u
dqz
dtq = xy− b1z

(7.24)
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The linear state feedback controller u in the following form stabilizes the chaotic
dynamic:

u =−k1y (7.25)

where k1 as a constant gain is set to k1 = 16.5.

Theorem 3. The proposed state feedback controller in (7.25) stabilizes the system
at their stable equilibrium points while increasing the stability region of the
fractional order Lü system.

Proof. The state feedback controller in the fractional order Lü system similar to
(7.24) the equilibrium points and Jacobian matrix are, respectively, achieved by:

O′
1 = (0,0,0)

O′
2 = (6.3639,6.3639,13.5)

O′
3 = (−6.3639,−6.3639,13.5) (7.26)

J =

⎡

⎣
−a1 a1 0
−z c1 − k1 −x
y x −b1

⎤

⎦ (7.27)

Thus, the corresponding eigenvalues of the equilibrium points in (7.26) are:

O′
1 → λ1 =−3, λ2 = 13.5, λ3 =−35

O′
2,3 → λ1 =−24.863, λ2,3 = 0.1815± 10.6767 j (7.28)

Again from the definition 1, O′
2,3 are the saddle points of index 2. Therefore, the

fractional order Lü system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)

= 0.9892 (7.29)

Otherwise the system is asymptotically stable. This means, for q < 0.9892 the
fractional order Lü system is asymptotically stable. �

4 Simulation

A simulation approach has been carried out using SIMULINKTM. Dormand–Prince
solver is used to solve the system of differential equations during the simulation.
Results of the unified chaotic Chen and Lü dynamics are shown for q = 0.96, q =
0.98, q = 1. Initial conditions of the states are selected as (10,15,25). Simulation
results show that the proposed state feedback controller stabilizes the fractional
order unified chaotic systems while the behavior of the equivalent integer one still



92 E.G. Razmjou et al.

0 100 200 300
-20

0

20

0 20 40 60 80 100
-20

0

20

x 1

0 100 200 300
-20

0

20

0 20 40 60 80 100
-20

0

20

x 2
0 100 200 300
0

20

40

q=0.98

0 20 40 60 80 100
0

20

40

x 3

x 1
x 2

x 3

q=0.96

Fig. 7.1 Stabilization of the fractional order Chen system at their stable equilibrium points
(O′

2 and O′
3), via linear state feedback controller for q = 0.96 and q = 0.98
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Fig. 7.2 Chaos behaviour in the integer order Chen system despite of using the state feedback
controller

kept chaotic. Figure 7.1 shows that the fractional order Chen system is stabilized for
q = 0.96 and q = 0.98 with state feedback controller in (7.13). Figure 7.2 shows the
chaotic behavior of an integer order Chen system, despite of using the same state
feedback controller in the system. Similar result is achieved in Fig. 7.3 when the
fractional order Lü system is stabilized by the controller for q = 0.96 and q = 0.98.
In the same way, Fig. 7.4 shows the chaotic behavior of integer order of the Lü
system using the same state feedback controller.
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Fig. 7.3 Stabilization of the fractional order Lü system at their stable equilibrium points
(O′

2 and O′
3), via linear state feedback controller for q = 0.96 and q = 0.98.
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Fig. 7.4 Chaos behaviour in the integer order Lü system despite of using the state feedback
controller

5 Conclusion

Three chaotic Lorenz, Chen, and Lü systems as unified systems will be separately
shown unified by a same dynamic. These systems will separately be excited when
a relevant parameter α is accordingly adjusted. A linear state feedback controller
is gained to stabilize the unified chaotic systems at their stable equilibrium points.
The controller also increases the stability region with respect to their integer order
counterpart. Simulation approach is given to verify the outcome. The approach
signifies the performance as well as the reliability of the proposed state feedback
controller.



94 E.G. Razmjou et al.

References

1. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent.
Geophys J R Astron Soc 13:529–530

2. Cafagna D, Grassi G (2003) New 3-D-scroll attractors in hyperchaotic Chua’s circuit forming
a ring. Int J Bifurc Chaos 13:2889–2903

3. Chen SH, Lu JH (2002) Synchronization of an uncertain unified chaotic system via adaptive
control. Chaos Solitons Fractals 14:643–647

4. Chen S, Yang Q, Wang C. (2004) Impulsive control and synchronization of unified chaotic
systems. Chaos Solitons Fractals 20:751–758

5. Hosseinnia SH, Ghaderi R, Ranjbar A, Abdous F, Momani S (2010) Control of chaos via
fractional-order state feedback controller. In: Baleanu D, Guvenc ZB, Machado JAT (eds) New
trends in nanotechnology and fractional calculus applications. ISBN: 978-90-481-3292-8, DOI
10.1007/978-90-481-3293-5 46, pp 507–514

6. Khalil H (1992) Nonlinear systems. Macmillan, New York
7. Lurie BJ (1994) Tunable TID controller. US patent 5, 371, 670, December 6
8. Luce R, Kernevez JP (1991) Controllability of Lorenz equation. Int Ser Numer Math 97:257
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