
Chapter 24
An Application of Fractional Calculus
to Dielectric Relaxation Processes

M.S. Çavuş and S. Bozdemir

1 Introduction

Fractional calculus, which is the field of mathematical analysis dealing with the
investigation and applications of integrals and derivatives of arbitrary order, has
attracted in recent years a considerable interest in many disciplines. It has been
found that the behavior of many physical systems can be more properly defined
by using the fractional theory. The flexibility of degrees of freedom, which is very
easily obtained in the fractional theory, is one of the most important advantages of
the fractional order modeling. Moreover, in recent years, the use of the fractional
calculus in the analysis of the fractional diffusion equations has been a field of
increasing interest [5, 11, 13–16, 21, 22].

1.1 The Fractional Integral and Riemann–Liouville Fractional
Derivative

According to the Riemann–Liouville approach, the fractional integral of order α > 0
is defined as,

aJ−α
t U(t) =

1
Γ (α)

t∫

a

(t − τ)α−1U(τ)dτ (24.1)

aJ0
t U(t) =U(t) (24.2)
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284 M.S. Çavuş and S. Bozdemir

Moreover, for α,β > 0, t > 0, and υ >−1 (24.1) has the following properties:

J−α
t J−β

t U(t) = J−(α+β )
t U(t) (24.3)

and

J−α
t tυ =

Γ (υ + 1)
Γ (υ + 1+α)

tυ+α (24.4)

Also,

aDp
t U(t) =

(
d
dt

)m+1 ∫ t

a
(t − τ)m−pU(τ)dτ. (24.5)

The expression (24.5) is the most widely known definition of the fractional deriva-
tive and is usually called the Riemann–Liouville fractional derivative definition.
The most important property of the Riemann–Liouville fractional approach is
given by:

aDα
t

(
aJ−α

t U(t)
)
=U(t) (24.6)

The Riemann–Liouville fractional differentiation operator is a left inverse to the
Riemann–Liouville fractional integration operator of the same order α . The detailed
properties of the operator Jα and Dp can be found in [17, 19, 20].

1.2 Adomian Decomposition Method

Adomian decomposition method (ADM) introduced by Adomian in 1980 has
proved to be a very useful tool in the solution of nonlinear functional equations.
The decomposition method consists of finding a solution in the form,

U(x, t) =
∞

∑
n=0

Un(x, t), (24.7)

where the components Un(x, t) will be determined recursively. More information
about ADM can be found in [1].

2 Dielectric Relaxation Processes

Relaxation properties are generally expressed in terms of time-domain response
function f (t) or of the frequency-dependent real and imaginary components of its
Fourier transform [23]:

f̃ (iω) =
∫ ∞

0
e−iωt f (t)dt = φ ′(ω)− iφ ′′(ω). (24.8)
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Classically, relaxation processes are described in terms of the exponential function:

ϕ(t) = exp(−t/τ), t ≥ 0 (24.9)

that is generally referred to as Maxwell–Debye relaxation. However, in many
systems the dynamical behavior shows conspicuous deviations from the ideal
exponential pattern. Therefore, in general the empirical expressions, involving
adjustable parameters, have been widely used in the literature.

Commonly three general relaxation laws are encountered in the experimental
studies of complex systems:

(i) Stretched exponential (KWW) function [24]

f (t) ≈ exp[−(t/τ)α ], 0 < α < 1, t > τ (24.10)

(ii) Exponential–logarithmic function

f (t)≈ exp[−B lnα(t/τ)] (24.11)

(iii) Algebraic decay function

f (t)≈ (t/τ)α (24.12)

where α,τ , and B are the appropriate fitting parameters [18].
By definition, the normalized susceptibility, χ(ω), is connected to the normalized

relaxation function through the relation:

χ(ω) =

∫ ∞

0
e−iωtd(−ϕ(t)) = 1− iω

∫ ∞

0
e−iωtϕ(t)dt, (24.13)

where ϕ(t) = Φ(t)/ϕ(0). A significant amount of experimental data on disordered
systems supports the following empirical expressions for dielectric loss spectra,
namely, the Cole–Cole equation [4],

χ(ω) =
χ0

1+(iωτ)α , 0 < α ≤ 1 (24.14)

the Cole–Davidson equation [6],

χ(ω) =
χ0

(1+ iωτ)β ,0 < β ≤ 1 (24.15)

and the Havriliak–Negami equation [8] considered as a general expression for the
universal relaxation law [10],



286 M.S. Çavuş and S. Bozdemir

χ(ω) =
χ0

(1+(iωτ)α)β , 0 < α andβ ≤ 1. (24.16)

Here, we should point out that the Havriliak–Negami equation is a combination of
the Cole–Cole and Cole–Davidson equations.

3 The Ising Model and Fractional Relaxation

The spin–spin time correlation functions in a one-dimensional Ising model [9] with
Glauber dynamics [7] was studied by Bozdemir [3], and later by Brey and Parados
[2]. The main idea in those studies is the spin time autocorrelation function obtained
in the one-dimensional Ising model with Glauber dynamics which is assumed to be
identical with the dipole correlation function of a molecular chain. Based on this
assumption, the system can be analyzed in the following way: The energy of the
system in the one-dimensional Ising model for a spin configuration σ is

H(σ) =−J∑
i

σiσi+1, (24.17)

where J is a positive coupling constant. The state of the system is specified by
the spin vector σ = {σi}, where σi = ±1 is the spin at site i. The evolution of the
system is described by a Markov process with Glauber dynamics. So, the conditional
probability P1/1(σ , t/σ ′, t ′) of finding the system in the state σ at a time t, provided
that it was given in the state σ ′ at a time t ′, obeys the master equation:

∂P1/1(σ , t/σ ′, t ′)
∂ t

=
∞

∑
i=−∞

[
ωi(Riσ)p1/1(Riσ , t/σ ′, t ′)

−ωi(σ)p1/1(σ , t/σ ′, t ′)
]
, (24.18)

where Riσ is the configuration obtained from σ by flipping the ith spin and ωi(σ)
is the transition rate for the flip. Following the above procedure, the spin–spin–time
correlation function, in the low temperature limit, was found by Brey and Parados
as the following differential equation,

∂ fn

∂ t
=−α fn(t)+

αγ
2
[ fn−1 + fn+1], (24.19)

where n is an integer in the range −∞ < n < ∞, α is a positive constant defining the
time scale of the evolution of the system and γ is a function of temperature T of the
heat bath given as:

γ = tanh
2J

kBT
, (24.20)
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where kB is the Boltzmann’s constant. Equation (24.19), which is a function of time
and position, can be expressed as:

∂ f (x, t)
∂ t

=−α f (x, t)+
αγ
2

[ f (x− 1, t)+ f (x+ 1, t)] . (24.21)

If one takes the Taylor expansion of Equation (24.21) and retains only terms up to
second order, one obtains a diffusion type equation:

∂ f (x, t)
∂ t

= (αγ −α) f (x, t)+
αγ
2

∂ 2 f (x, t)
∂x2 (24.22)

If equation (24.22) is converted to fractional differential equation form, one gets

Dξ
t f (x, t) = (αγ −α) f (x, t)+

αγ
2

∂ 2 f (x, t)
∂x2 , (24.23)

where Dξ
t is the Riemann–Liouville fractional differentiation operator, and the

initial condition for f (x, t) is

f (x,0) = e−|x|. (24.24)

We adopt ADM for solving (24.23). According to this method we assume that

f (x, t) =
∞

∑
n=0

fn(x, t). (24.25)

Now, the fractional differential equation (24.25) can be written as, for υ + ζ = 1,

Dυ
t (D

ξ
t f (x, t)) = (αγ −α)Dυ

t f (x, t)+
αγ
2

Dυ
t

∂ 2 f (x, t)
∂x2 . (24.26)

If we operate on both sides of this relation with integral operator Ω−1
t , we reach to

Ω−1
t Dυ

t

(
Dξ

t f (x, t)
)
= (αγ −α)Ω−1

t (Dυ
t f (x, t))+

αγ
2

Ω−1
t

(
Dυ

t
∂ 2 f (x, t)

∂x2

)

(24.27a)

f (x, t) = (αγ −α)Ω−1
t (Dυ

t f (x, t))+
αγ
2

Ω−1
t

(
Dυ

t
∂ 2 f (x, t)

∂x2

)
. (24.27b)

Moreover, the recursive relations related to the above equation are given in the
following forms:

f (0) = f (x,0) = e−|x|

f (1) = (αγ −α)D−ξ
t f (0)+

αγ
2

D−ξ
t

∂ 2 f (0)
∂x2 =

(
αγ −α +

αγ
2

) e−|x|tξ

Γ(ξ + 1)
.
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f (2) = (αγ −α)D−ξ
t f (1)+

αγ
2

D−ξ
t

∂ 2 f (1)
∂x2 =

(
αγ −α +

αγ
2

)2 e−|x|t2ξ

Γ(2ξ + 1)
.

f (3) = (αγ −α)D−ξ
t f (2)+

αγ
2

D−ξ
t

∂ 2 f (2)
∂x2 =

(
αγ −α +

αγ
2

)3 e−|x|t3ξ

Γ(3ξ + 1)
.

and so on. Therefore, the solution (24.27b) becomes:

f (x, t) =
∞

∑
n=0

(
αγ −α +

αγ
2

)n e−|x|tnξ

Γ (nξ + 1)

= e−|x|Eξ

{
α(−1+ 3γ/2)tξ

}
, 0 < ξ < 1, (24.28)

where Eξ{·} is the Mittag–Leffler function given by:

Ev{Z}=
∞

∑
n=0

Zn

Γ (vn+ 1)
. (24.29)

If we assume that the position of dipoles located between x and x + x0 have a
probability density given by:

f (x) =
1
x0

e(−x/x0), (24.30)

and substitute it into (24.30), integrate over all the space, we can obtain the time-
dependent correlation function:

f (t) =
∫ ∞

0
e(−x/x0)e−|x|Eξ{α(−1+3γ/2)tξ}dx =

Eξ{α(−1+ 3γ/2)tξ}
1+ x0

, (24.31)

where x0 is the average value of x, and 1/2x0 is the average number of dipoles per
unit length.

If equation (24.31) is substituted into (24.13), one obtains

χ(ω) = 1− iω
∫ ∞

0
e−iωt Eξ{α(−1+ 3γ/2)tξ}

1+ x0
dt. (24.32)

From this expression, in the frequency zone, the empiric Cole–Cole type equation
is obtained as:

χ(ω) =
x0

1+(iωτ)ξ , 0 < ξ ≤ 1, (24.33)

where τ = [α(−1+ 3γ/2)]−ξ , χ0 = 1+λ (iωτ)ξ , and λ = 1− 1/(1+ x0).
Moreover, for sufficiently small times, (24.33), which is a Mittag–Leffter type

function, exhibits the same behavior as with the stretched exponential function [12]:
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f (t)≈ 1− (t/τ)ξ

Γ (ξ + 1)
+ . . .≈ exp

[
− (t/τ)ξ

Γ (ξ + 1)

]
, 0 < t � 1, (24.34)

which is known as Kolraush–William–Watts (KWW) function. Also, by using the
asymptotic expansions it can be written as,

f (t)≈ Γ (ξ )sin(πξ )
π

(t/τ)−ξ , t → ∞, (24.35)

which has the same form with that of empirical algebraic decay function (24.12).
When (24.19) is solved by using the eigenfunctions method with appropriate
boundary conditions, which was done by [2],

χ(ω)
α(1−η2)

(1+η2) [(iω +α)2 −α2γ2]

1/2

(24.36)

is obtained, where η = tanJ/KBT . This expression, at low temperature, converts to
a special case of the Cole–Davidson equation:

χ(ω) =
1

(1+ iωτ)1/2
, (24.37)

where τ is the relaxation time [2].

4 Conclusion

In this study, it is shown that fractional solution of the diffusion equation obtained
from the stochastic Ising model, where we used the Adomian decomposition method
for solving the fractional diffusion equation, gives a non-Debye type behavior which
can also be represented by the Mittag–Leffler decay function. Furthermore, we may
say that fractional dynamics in polar dielectric systems are a result of fractional
dipole distribution in the medium. In the fractional approaches, the variable
parameter α , especially used in the forming of the fractional order modeling,
exhibits that the space of physical processes has a fractional form. Therefore, the
irregularity (or chaos) in the nature compels us to use the fractional theory.

We have seen that the fractional order of the differential equations, which is
compatible with most of the experimental results, is generally smaller than that
of the integer order of differential equations. Likely, in the medium, the nearest
neighbor interactions between dipoles or charged particles have not the same
behaviors as that of the linear systems in terms of times and velocities, because
the time (or energy) is fractionally changing in time. The local spaces of charged
particles which have different time and energy intervals should lead to be resulted
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to have fractional order differential equations. Moreover, it may be said that in
the atomic levels (or electronic) the flow of the time is quantized. Therefore, the
interactions between dipoles in questions may also be quantized in time domain.
That is, quantization of the energy may be a result of the time quantization. As a
result of these processes, the order of the differential equations should be changing
during the interaction times.

Acknowledgements We thank our friends Prof. Dr Kerim Kıymaç and Prof. Dr Metin Özdemir
for their reading and correcting the article.
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