
Chapter 21
Numerical Solution of a Two-Dimensional
Anomalous Diffusion Problem

Necati Özdemir and Derya Avcı

1 Introduction

In the last decade, there has been a considerable interest to the applications of
fractional calculus such that many processes in the nature have been successfully
modeled by a set of axioms, definitions, and methods of fractional calculus (see
[1–4]). One of these processes is anomalous diffusion which is a phenomenon
occurs in complex and nonhomogeneous mediums. The phenomenon of anoma-
lous diffusion may be based on generalized diffusion equation which contains
fractional order space and/or time derivatives [5]. Turski et al. [6] presented the
occurrence of the anomalous diffusion from the physical point of view and also
explained the effects of fractional derivatives in space and/or time to diffusion
propagation. Agrawal [7] represented an analytical technique using eigenfunctions
for a fractional diffusion-wave system and therefore provided that this formulation
could be applied to all those systems for which the existence of eigenmodes
is guaranteed. Agrawal [8] also formulated a general solution using finite sine
transform technique for a fractional diffusion-wave equation in a bounded domain
whose fractional term was described in sense of Caputo. Herzallah et al. [9]
researched the solution of a fractional diffusion wave model which is more accurate
and provides the existence, uniqueness, and continuation of the solution. Huang and
Liu [10] considered a sort of generalized diffusion equation which is defined as a
space-time fractional diffusion equation in sense of Caputo and Riemann-Liouville
operators. In addition, Huang and Liu [11] found the fundamental solution of the
space-time fractional advection-dispersion equation with Riesz–Feller derivative.
Langlands [12] proposed a modified fractional diffusion equation on an infinite
domain and therefore found the solution as an infinite series of Fox functions.
Sokolov et al. [13] analyzed different types of distributed-order fractional diffusion
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equations and investigated the effects of different classes of such equations. Saichev
and Zaslavsky [14] presented the solutions of a symmetrized fractional diffusion
equation with a source term applying a method similar to separation of variables.
Mainardi et al. [15] researched the fundamental solution of a Cauchy problem for
the space-time fractional diffusion equation obtained from the standard diffusion
equation by replacing the second-order space derivative by a fractional Riesz or
Riesz–Feller derivative, and the first-order time derivative by a fractional Caputo
derivative. Gorenflo and Mainardi [16, 17] analyzed a space-fractional (or Levy–
Feller) diffusion process governed by a generalized diffusion equation which
generates all Levy stable probability distributions and also approximated these
processes by random walk models, discreted space and time based on Gr ünwald-
Letnikov (GL) approximation. Özdemir et al. [18] presented the numerical solution
of a diffusion-wave problem in polar coordinates using GL approximation. Özdemir
and Karadeniz [19] also applied GL formula to find the numerical results for a
diffusion problem in cylindrical coordinates. Povstenko [20–23] researched the
solutions of axial-symmetric fractional diffusion-wave equations in cylindrical and
spherical coordinates.

In addition, numerical schemes are fine research topics in fractional calculus.
Because the analytical solutions of the fractional differential equations are usually
obtained in terms of Green and Fox functions which are difficult to calculate explic-
itly. For this reason, there are many research related to numerical approximation of
space or space-time fractional diffusion equations. Shen and Liu [24] investigated
the error analysis of the numerical solution of a space fractional diffusion equation
obtained using an explicit finite difference method. Liu et al. [25] formulated
the numerical solution of a space-time fractional advection-dispersion equation in
terms of Caputo and RL derivatives using an implicit and an explicit difference
methods. Lin et al. [26] considered a nonlinear fractional diffusion equation in terms
of generalized Riesz fractional derivative and applied an explicit finite-difference
method to find numerical solutions. Özdemir et al. [27] researched the numerical
solutions of a two-dimensional space-time fractional diffusion equation in terms
of Caputo and Riesz derivatives. Ciesielski and Leszczynski [28] proposed a new
numerical method for the spatial derivative called Riesz–Feller operator, and hence
found the numerical solutions to a fractional partial differential equation which
describe an initial-boundary value problem in one-dimensional space. Ciesielski
and Leszczynski [29] also presented the numerical solutions of a boundary value
problem for an equation with the Riesz–Feller derivative. Liu et al. [30] presented a
random walk model for approximating a Levy–Feller advection-dispersion process
and proposed an explicit finite difference approximation for Levy–Feller advection-
dispersion process, resulting from the GL discretization of fractional derivatives.
Zhang et al. [31] considered the Levy–Feller diffusion equation and investigated
their probabilistic interpretation and numerical analysis in a bounded spatial
domain. Moreover, Machado [32] presented a probabilistic interpretation to the
fractional-order derivatives.

The plan of this work as follows. In this work, we consider a two-dimensional
anomalous diffusion problem in terms of Caputo and Riesz–Feller derivatives.
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For this purpose, we give some basic definitions necessary for our formulations in
Sect. 2. In Sect. 3, we formulate our considerations and find the analytical solution
of the problem. We apply GL definition to find the numerical solution in Sect. 4. In
Sect. 5, we choose an example and therefore show the effectiveness of the numerical
approximation for our problem. Finally, we conclude our work in Sect. 6.

2 Mathematical Background

In this work, we consider an anomalous diffusion equation in two-dimensional
space. We define our problem in terms of Caputo time and Riesz–Feller fractional
derivatives. Therefore, let we remind the well-known definitions and origins of these
operators.

Originally, Riesz introduced the pseudo-differential operator xIα
0 whose symbol

is |κ |−α , well defined for any positive α with the exclusion of odd integer numbers,
then was called Riesz Potential. The Riesz fractional derivative xDα

0 =− xIα
0 defined

by analytical continuation can be represented as follows:

xDα
0 = −|κ |α

= −(κ2) α
2

= −
(
− d2

dx2

) α
2

. (21.1)

In addition, Feller [33] generalized the Riesz fractional derivative to include the
skewness parameter θ of the strictly stable densities. Feller showed that the pseudo-
differential operator Dα

θ is as the inverse to the Feller potential, which is a linear
combination of two Riemann–Liouville (or Weyl) integrals:

xIα
+ f (x) =

1
Γ (α)

x∫

−∞

(x− ξ )α−1 f (ξ )dξ , (21.2)

xIα
− f (x) =

1
Γ (α)

+∞∫

x

(ξ − x)α−1 f (ξ )dξ , (21.3)

where α > 0. By these definitions, the Feller potential can be defined as follows:

xIα
θ f (x) = c+ (α,θ )x Iα

+ f (x)+ c− (α,θ )x Iα
− f (x) , (21.4)

where the real parameters α and θ are always restricted as follows:

0 < α ≤ 2, α �= 1,

|θ | ≤ min{α,2−α} ,
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and also the coefficients are

c+ (α,θ ) =
sin
(
(α−θ)π

2

)

sin(απ)
,

c− (α,θ ) =
sin
(
(α+θ)π

2

)

sin(απ)
. (21.5)

Using the Feller potential, Mainardi and Gorenflo [16] defined the Riesz–Feller
derivative

∂ α f (x)

∂ |x|αθ
=−xI−α

θ f (x) =−[c+ (α,θ )x Dα
+ f (x)+ c− (α,θ )x Dα

− f (x)
]
,

where xDα± f (x) are Weyl fractional derivatives defined as follows:

xDα
± f (x) =

{± d
dx

[
xI1−α
± f (x)

]
, 0 < α < 1,

d2

dx2

[
xI2−α
± f (x)

]
, 1 < α ≤ 2.

(21.6)

The Caputo fractional derivative is defined as follows:

∂ β u(t)

∂ tβ =
1

Γ (n−β )

t∫

0

(t − τ)n−β−1
(

d
dτ

)n

u(τ)dτ, (21.7)

where 0 < β ≤ n,n ∈ Z. Now, we can formulate our problem after these
preliminaries.

3 Formulation of the Main Problem

Let us consider the following space-time fractional anomalous diffusion problem:

∂ β u(x,y, t)

∂ tβ =
∂ α u(x,y, t)

∂ |x|αθ1

+
∂ μu(x,y, t)

∂ |y|μθ2

, (21.8)

u(x,y,0) = u0 (x,y) , (21.9)

lim
x,y→±∞

u(x,y, t) = 0, (21.10)

where x,y ∈ R; β ,α,μ are real parameters restricted as 0 < β ≤ 1, 0 <
α < 1, 1 < μ ≤ 2; the skewness parameters θ1 (θ1 ≤ min{α,1−α}) and θ2

(θ2 ≤ min{μ ,2− μ}) are measures of the asymmetry of the probability distribution
of a real-valued random variable among the x and y coordinate axes. Note that
many simplistic mathematical models are defined under the Gaussian (normal)
distribution; i.e., the skewness parameter is zero. However, in reality, random
variables may not distribute symmetrically. Therefore, the behavior of such
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anomalous diffusion problem differs with the changing of θ1 and θ2 parameters.
We first assume that the solution and the initial condition functions can be expanded
into the complex Fourier series, respectively:

u(x,y, t) =
∞

∑
n=1

∞

∑
m=1

unm (t)einxeimy, (21.11)

u0 (x,y) =
∞

∑
n=1

∞

∑
m=1

u0nmeinxeimy, (21.12)

where i2 = −1. Under these assumptions, we calculate the fractional derivative
terms in the right-hand side of (21.8), respectively, as follows: We start with the
calculation of ∂ α u(x,y,t)

∂ |x|αθ1

term which dependent on x variable and 0 < α < 1. Let us

remind the definition:

∂ α u(x,y, t)

∂ |x|αθ1

=−[c+ (α,θ1)−∞ Dα
x u(x,y, t)+ c− (α,θ1)x Dα

+∞u(x,y, t)
]
, (21.13)

where

−∞Dα
x u(x,y, t) =

∂
∂x

⎛

⎝ 1
Γ (1−α)

x∫

−∞

u(ξ ,y, t)
(x− ξ )α dξ

⎞

⎠ (21.14)

and

xDα
+∞u(x,y, t) =− ∂

∂x

⎛

⎝ 1
Γ (1−α)

∞∫

x

u(ξ ,y, t)
(ξ − x)α dξ

⎞

⎠ (21.15)

are the left- and the right-side Weyl fractional derivatives. Now, substituting (21.11)
into (21.14), we have

−∞Dα
x u(x,y, t) =

∂
∂x

(
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy
∫ x

−∞

einξ

(x− ξ )α dξ

)

=
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy d
dx

⎛

⎝einx

∞∫

0

e−inr

rα dr

⎞

⎠

=
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy d
dx

(
einx (in)α−1 Γ (1−α)

)

=
∞

∑
n=1

∞

∑
m=1

(in)α unm (t)eimyeinx

and with the similar manipulations,

xDα
+∞u(x,y, t) =

∞

∑
n=1

∞

∑
m=1

(−in)α unm (t)eimyeinx.
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Hence, for 0 < α < 1,

∂ α u(x,y, t)

∂ |x|αθ1

=−
∞

∑
n=1

∞

∑
m=1

nα {c+ (α,θ1)(i)
α + c− (α,θ1) (−i)α}unm (t)eimyeinx.

(21.16)
Now, we obtain a similar computation of ∂ μ u(x,y,t)

∂ |y|μθ2

for the case of 1 < μ ≤ 2.

Therefore, we get

−∞Dμ
y u(x,y, t) =

∂ 2

∂y2

⎛

⎝ 1
Γ (2− μ)

y∫

−∞

u(x,η , t)
(y−η)μ−1 dη

⎞

⎠

=
∂ 2

∂y2

⎛

⎝ 1
Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx

y∫

−∞

eimη

(y−η)μ−1 dη

⎞

⎠

=
1

Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx d2

dy2

⎛

⎝eimy

∞∫

0

e−imk

kμ−1 dk

⎞

⎠

=
1

Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx d2

dy2

(
eimy (im)μ−2 Γ (2− μ)

)

=
∞

∑
n=1

∞

∑
m=1

(im)μ unm (t)einxeimy

and

yDμ
+∞u(x,y, t) =

∞

∑
n=1

∞

∑
m=1

(−im)μ unm (t)einxeimy.

Hence, we obtain

∂ μ u(x,y, t)

∂ |y|μθ2

=
∞

−∑
n=1

∞

∑
m=1

{
c+ (μ ,θ2)(im)μ + c− (μ ,θ2)(−im)μ}unm (t)eimyeinx.

(21.17)
Consequently, substituting (21.16) and (21.17) into (21.8) we take the following
time fractional differential equation

∂ β unm (t)

∂ tβ = −{nα [c+ (α,θ1) (i)
α + c− (α,θ1) (−i)α]

+ mμ [c+ (μ ,θ2) (i)
μ + c− (μ ,θ2) (−i)μ]}unm (t) . (21.18)

Therefore, we reduce the (21.8) to a fractional differential equation with one
fractional term. To find the unm (t), we apply Laplace transform to (21.18) and obtain

sβ unm (s)− sβ−1unm (0)+Aunm (s) = 0 (21.19)
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where

A=nα [c+ (α,θ1) (i)
α +c− (α,θ1)(−i)α]+mμ [c+ (μ ,θ2)(i)

μ + c− (μ ,θ2)(−i)μ].

(21.20)

Using inverse Laplace transform, (21.19) reduces to

unm (t) = unm (0)Eβ ,1

(
−Atβ

)
, (21.21)

where Eβ ,1(.) is a well-known Mittag–Leffler function. The Fourier coefficients of
the (21.12) can be found by

u0nm =
1

(2π)2

π∫

−π

π∫

−π

u0 (x,y)e−inxe−imydxdy. (21.22)

After some manipulations, we take unm (0) = u0nm and also unm (t) = u0nmEβ ,1(−Atβ). Now, we can rewrite the solution series after these computations:

u(x,y, t) =
∞

∑
n=1

∞

∑
m=1

u0nm (0)Eβ ,1

(
−Atβ

)
einxeimy. (21.23)

4 Grünwald–Letnikov Approximation for Numerical Solution

In this section, we show the numerical solution of the problem by applying GL
approximation for Caputo derivative. Let us first give the relation between the left
RL and Caputo definitions:

aDβ
t u(t) = C

a Dβ
t u(t)+

m−1

∑
r=0

dr

dtr u(t) |
t=a

(t − a)r−β

Γ (r−β + 1)
,

where m ∈ N, m − 1 < β ≤ m, a ∈ R. Note that under the assumption∣∣
∣
∣ lim
a→−∞

dr

dtr u(t) |
x=a

∣∣
∣
∣< ∞ for r = 0,1, ...,m− 1, we have

−∞Dβ
x u(t) = C

−∞Dβ
x u(t) .

It is also valid for the upper limit case and similar assumption as follows:

xDβ
+∞u(t) = C

x Dβ
+∞u(t) .

We remind that the order of Caputo derivative is 0 < β ≤ 1, the lower limit of
derivative a = 0, and so we obtain

C
0 Dβ

x u(t) = 0Dβ
x u(t) − u(0)

t−β

Γ (1−β )
.
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It is well known that if a function has suitable properties, i.e., it has first-order
continuous derivatives and its second-order derivative is integrable, the β -order
derivatives of function in both RL and GL senses are the same. By this property,
we discretize the RL operator applying GL definition to (21.18), and therefore we
take the approximation of Caputo derivative as

C
0 Dβ

t unm (t)≈ 1

hβ

M

∑
r=0

w(β )
r unm (hM− rh)− unm (0)

(hM)−β

Γ (1−β )
, (21.24)

where M = t
h represents the number of sub-time intervals, h is step size, and w(β )

r

are the coefficients of GL formula:

wβ
0 = 1, wβ

r =
(

1− β+1
r

)
wβ
(r−1) . (21.25)

Substituting (21.24) into (21.18) and after some arranging, we get

unm (hM) =
1

(
1

hβ w(β )
0 +A

)

{

unm (0)
(hM)−β

Γ (1−β )
− 1

hβ

M

∑
r=1

w(β )
r unm (hM− rh)

}

,

(21.26)
where A is given by (21.20).

5 Numerical Example

In this section, we consider the following initial condition:

u(x,y,0) = sinh(x+ y).

In Fig. 21.1, we first validate the efficiency of numerical method by comparison of
analytical and numerical solutions for x = π

5 , y = π
4 , t = 5, h= 0.01 and n=m = 10.

It is clear from the figure that the analytical solution is in a good agreement with the
numerical solution. Figure 21.2 shows the behavior of problem under the variations
of μ values for x= π

5 , y= π
4 , t = 5, h= 0.01, β = 1, α = 0.3 and θ1 = 0.3. Similarly,

Fig. 21.3 shows the response of the problem for variable order of α for t = 5, β =
0.5, μ = 1.5 and θ2 = 0.5. Figure 21.4 indicates changing behaviors of problem
with respect to the variations of α, β , and μ parameters for x = π

5 , y = π
4 , t = 5. In

Fig. 21.5, we get the three-dimensional surface of the problem (21.8) with respect
to x and t for y = π

4 , β = 0.7, α = 0.5,θ1 = 0.5 and μ = 1.8,θ2 = 0.1. Finally, we
obtain the surface of the problem (21.8) with respect to x and y for β = 0.7, α = 0.5,
θ1 = 0.5, and μ = 1.8, θ2 = 0.1 and h = 0.01 in Fig. 21.6.
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6 Conclusions

In this chapter, we have defined a two-dimensional anomalous diffusion problem
with time and space fractional derivative terms. These have been described in the
sense of Caputo and Riesz–Feller operators, respectively. We have purposed to find
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the exact and the numerical solutions of the problem under some assumptions.
Therefore, we use Laplace and Fourier transforms for analytical solution and
also prefer to apply GL definition. However, we first reduce the main problem
to a fractional differential equation with time fractional term. By this way, we
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have obtained numerical results more easily. Finally, we apply the formulations
to an example. After that we present some figures under different considerations
about variations of parameters. In addition, we deduce from the comparison of the
analytical and the numerical solutions that the GL approximation can be applied
successfully to such type of anomalous diffusion problems.
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27. Özdemir N, AvcıD, İskender BB (2011) The Numerical Solutions of a Two-Dimensional
Space-Time Riesz-Caputo Fractional Diffusion Equation. An International Journal of Opti-
mization and Control: Theories and Applications. 1(1):17–26

28. Ciesielski M, Leszczynski J (2006) Numerical treatment of an initial-boundary value problem
for fractional partial differential equations. Signal Proces 86:2619–2631

29. Ciesielski M, Leszczynski J (2006) Numerical solutions to boundary value problem for
anomalous diffusion equation with Riesz-Feller fractional operator. J Theoret Appl Mech
44:393-403

30. Liu Q, Liu F, Turner I, Anh V (2007) Approximation of the Levy-Feller advection-dispersion
process by random walk and finite difference method. Comput Phys 222:57–70

31. Zhang H, Liu F, Anh V (2007) Numerical approximation of Levy-Feller diffusion equation and
its probability interpretation. J Comput Appl Math 206:1098–1115

32. Machado JAT (2003) A probabilistic interpretation of the fractional-order differentiation. Fract
Cal Appl Anal 6:73–80

33. Feller W (1952) On a generalization of Marcel Riesz’ potentials and the semi-groups generated
by them. Meddeladen Lund Universitets Matematiska Seminarium, Tome suppl.dedie a
M. Riesz, Lund, 73–81


	Chapter 21 Numerical Solution of a Two-Dimensional Anomalous Diffusion Problem
	1 Introduction
	2 Mathematical Background
	3 Formulation of the Main Problem
	4 Grünwald–Letnikov Approximation for Numerical Solution
	5 Numerical Example
	6 Conclusions
	References


