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1 Introduction

The need to handle the computational intensity of fractional order differintegration
operators was an obstacle in between useful applications and theory. Rapid growth
in the technology of fast computation platforms has made it possible to offer
versatile design and simulation tools, from which the field of control engineering
has benefited remarkably.

In [1–3], fundamental issues regarding the fractional calculus, fractional dif-
ferential equations, and a viewpoint from the systems and control engineering
are elaborated, and several exemplar cases are taken into consideration. One such
application area focuses on PID control with derivative and integral actions having
fractional orders, i.e., PIλ Dμ control is implemented. In the literature, several
applications of PIλ Dμ controllers have been reported. The early notion of the
scheme is reported by [3, 4]. In [5] and [6], tuning of the controller parameters is
considered when the plant under control is a fractional order one. Ziegler–Nichols
type tuning rules are derived in [7], and rules for industrial applications are designed
in [8]. The application of fractional order PID controllers in chemical reaction
systems is reported in [9], and the issues regarding the frequency domain are
considered in [10]. Tuning based on genetic algorithms is considered in [11], where
the best parameter configuration is coded appropriately and a search algorithm is
executed to find a parameter set that meets the performance specifications. A similar
approach exploiting the particle swarm optimization for finding a good set of
gains and differintegration orders isin [12]. Clearly, the cited volume of works
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demonstrates that the interest to PID control is growing also in the direction of
fractional order versions. Unsurprisingly, the reason for this is the widespread use
of the variants of PID controller and the confidence of the engineers in industry.

The idea of approximating the fractional order operators has been considered
in [13], where a fractional order integrator is generalized by a neural network
observing some history of the input and the output. The fundamental advancement
introduced here is to generalize a PID controller using a neural structure with a
similar network structure.

This chapter is organized as follows: Sect. 2 briefly gives the definitions of widely
used fractional differintegration formulas and basics of fractional calculus; Sect. 3
describes the Levenberg–Marquardt training scheme and neural network structure;
Sect. 4 presents a set of simulation studies, and the concluding remarks are given in
Sect. 5 at the end of the chapter.

2 Fundamental Issues in Fractional Order Systems
and Control

Let Dβ denote the differintegration operator of order β , where β ∈ ℜ. For positive
values of β , the operator is a differentiator whereas the negative values of β
correspond to integrators. This representation lets Dβ to be a differintegration
operator whose functionality depends upon the numerical value of β . With n being
an integer and n−1 ≤ β < n, Riemann–Liouville definition of the β -fold fractional
differintegration is defined by (2.1) where Caputo’s definition for which is in (2.2).

Dβ f (t) =
1

Γ(n−β)

(
d
dt

)n t∫
0

f (τ)
(t − τ)β−n+1

dτ (2.1)

Dβ f (t) =
1

Γ(n−β)

t∫
0

f (n)(τ)
(t − τ)β−n+1

dτ (2.2)

where Γ(β ) = ∫∞
0 e−t tβ−1dt is the well-known Gamma function. In both definitions,

we assumed the lower terminal zero and the integrals start from zero. Considering
ak, bk ∈ ℜ and αk, βk ∈ ℜ+, one can define the following differential equation:

(anDαn + an−1Dαn−1 + · · ·+ a0Dα0)y(t) = (bmDβm + bm−1Dβm−1 + · · ·+ b0Dβ0)u(t)

(2.3)

and with the assumption that all initial conditions are zero, obtain the transfer
function given by (2.4).

Y (s)
U(s)

=
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(2.4)
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Denoting frequency by ω and substituting s = jω in (2.4), one can exploit the
techniques of frequency domain. A significant difference in the Bode magnitude
plot is to observe that the asymptotes can have any slope other that the integer
multiples of 20 dB per decade, and this is a substantially important flexibility for
modeling and identification research. When the state space models are taken into
consideration, we have

Dβ x = Ax+Bu

y = Cx+Du (2.5)

and we obtain the transfer function via taking the Laplace transform in the usual
sense, i.e.,

H(s) = C
(

sβ I−A
)−1

B+D (2.6)

For the state space representation in (2.5), if λi is an eigenvalue of the matrix A, the
condition

|arg(λi)|> β
π
2

(2.7)

is required for stability. It is possible to apply the same condition for the transfer
function representation in (2.4), where λis denotes the roots of the expression in the
denominator.

The implementation issues are closely related to the numerical realization of the
operators defined in (2.1) and (2.2). There are several approaches in the literature
and Crone is the most frequently used scheme in approximating the fractional order
differintegration operators [1]. More explicitly, the algorithm determines a number
of poles and zeros and approximates the magnitude plot over a predefined range
of the frequency spectrum. In (2.8), the expression used in Crone approximation
is given and the approximation accuracy is depicted for N = 3 and 9 in Fig. 2.1.
According to the approximates shown, it is clearly seen that the accuracy is
improved as N gets larger, yet the price paid for this is the complexity and the
technique presented next is a remedy to handle the difficulties stemming from the
implementation issues.

sβ ≈ K
∏N

k=1 1+ s/wpk

∏N
k=1 1+ s/wzk

(2.8)

The PIλ Dμ controller with the operator described above has the transfer function
given by (2.9), where E(s) is the error entering the controller and U(s) stands for
the output.

U(s)
E(s)

= Kp +
Ki

sλ +Kdsμ (2.9)

In Fig. 2.2, it is illustrated that the classical PID controller variants correspond to
a subset in the λ –μ coordinate system, and there are infinitely many parameter
configurations that may lead to different performance indications.
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Fig. 2.2 Continuous values
of the differintegration orders
λ and μ enables to obtain
infinitely many configurations
of PIλ Dμ controller where the
variants of the classical PID
controller correspond to a
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3 Neural Network-Based Modeling and Levenberg–Marquardt
Training Scheme

In this work, we consider the feedforward neural network structure shown in
Fig. 2.3, where there are m inputs, R neurons in the first hidden layer, and Q hidden
layer in the second hidden layer. Since the neural structure is aimed to imitate a
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Fig. 2.3 Feedforward neural
network structure with R
neurons in the first, Q neurons
in the second hidden layer y

em

e1

PIλ Dμ controller, the model has a single output. The hidden layers have hyperbolic
tangent-type nonlinear activation while the output layer neuron is linear.

The powerful mapping capabilities of neural networks have made them useful
tools of modeling research especially when the entity to be used is in the form of
raw data. This particular property is mainly because of the fact that real systems
have many variables, the variables involved in the modeling process are typically
noisy, and the underlying physical phenomenon is sometimes nonlinear. Due to
the inextricably intertwined nature of the describing differential (or difference)
equations, which are not known precisely, it becomes a tedious task to see the
relationship between the variables involved. In such cases, black box models such as
neural networks, fuzzy logic, or the methods adapted from the artificial intelligence
come into the picture as tools representing the input/output behavior accurately.
In what follows, we describe briefly the Levenberg–Marquardt training scheme for
adjusting the parameters of a neural structure [14]. Since the algorithm is a soft
transition in between the Newton’s method and the standard gradient descent, it
very quickly locates the global minimum (if achievable) of the cost hypersurface,
which is denoted by J in (2.10).

J =
1
2

P

∑
p=1

(dp − yp(e,φ ))2 (2.10)

where yp denotes the response of the single output neural network, and dp stands for
the corresponding target output. In (2.10), φ is the set of all adjustable parameters
of the neural structure (weights and the biases), and u is the vector of inputs which
are selected according to the following procedure:

φ(t + 1) = φ(t)− (
μI+Φ(t)TΦ(t)

)−1 Φ(t)TF(t) (2.11)

where μ is the regularization parameter, F(t) = [ f1 f2 . . . fP]
T is the vector of errors

described as fi = di − yi(e,φ)i = 1,2, . . .,P, where P is the number of training pairs
and Φ is the Jacobian given explicitly by (2.12)

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂φ1

∂ f1

∂φ2
· · · ∂ f1

∂φH

∂ f2

∂φ1

∂ f2

∂φ2
· · · ∂ f2

∂φH
...

...
. . .

...

∂ fP

∂φ1

∂ fP

∂φ2
· · · ∂ fP

∂φH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)
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where there are H adjustable parameters within the vector φ . In the application of
the tuning law in (2.11), if μ is large, the algorithm behaves more like the gradient
descent; conversely, if μ is small, the prescribed updates are more like the Gauss–
Newton updates. The algorithm removes the problem of rank deficiency in (2.11)
and improves the performance of gradient descent significantly.

4 Simulation Studies

The first stage of emulating the response of a PIλ Dμ controller is to select a
representative set of inputs to be applied to the PIλ Dμ controller and to collect the
response. We have set N = 9 and follow the procedure described below.

For n = 1 to #experiments
Set a random Kp ∈ (0,2)
Set a random Kd ∈ (0,1)
Set a random Ki ∈ (0,1)
Set a random μ ∈ (0,1)
Set a random λ ∈ (0,1)
Apply u(t) and obtain y(t) for t ∈ [0,3]
Store u(t), y(t), Kp, Kd , Ki, μ , λ

End

A total of 200 experiments with step size 1 ms have been carried out to obtain
the data to be used for training data. Once the set of all responses are collected, a
matrix is formed, a generic row of which has the following structure:

[y(k),y(k− 1), · · · ,y(k− d),Kp(k),Kd(k),Ki(k),λ (k),μ(k)] (2.13)

where k is the time index indicating y(k) = y(kT) and T = 1ms, and there are d+6
columns in each row and the delay depth d is a user-defined parameter. Denote the
matrix, whose generic row is shown above, by Ω. In order to obtain the training
data set, we downsample the matrix Ω by selecting the first row of every 100
consecutive row blocks. This significantly reduces the computational load of the
training scheme, and according to the given procedure, 60,000 pairs of training
data are generated and a neural network having m = 16 inputs is constructed. In
Fig. 2.4, the evolution for the training data is shown with that obtained for the
checking data, which is obtained by running 15 experiments and the same procedure
of downsampling.

At 128th epoch, the best set network parameters is obtained, and after this time
the checking error for the neural model starts increasing and the training scheme
stops the parameter tuning when J = 0.01778. In what follows, we discuss the
performance of the neural model as a PIλ Dμ controller.
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Fig. 2.4 Feedforward neural network structure with R neurons in the first, Q neurons in the second
hidden layer

As an illustrative example, we consider the following control problem, which is
simple yet our goal is to compare the responses of two controllers, namely, PIλ Dμ

controller and its neural network-based approximate. The plant dynamics is given
below:

Y (s)
U(s)

=
1

s(s+ 1)
(2.14)

where Y is the plant output and U is the control input. We choose Kp = 2.5,
Kd = 0.9, Ki = 0.1, μ = 0.02, λ = 0.7 and apply a step command that rises when
t = 1s. The command signal, the response obtained with the PIλ Dμ controller
exploiting the above parameters, and the result obtained with the trained neural
network emulator are shown on the top row of Fig. 2.5, where the response of PIλ Dμ

controller is obtained using the toolbox described in [15]. For a better comparison,
the bottom row depicts the difference in between the plant responses obtained for
both controllers individually. Clearly the results suggest that the neural network-
based controller is able to imitate the PIλ Dμ controller to a very good extent as the
two responses are very close to each other.

A better comparison is to consider the control signals that are produced by
the PIλ Dμ controller (uFracPID) and the neural network controller (uNNPID). The
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Fig. 2.5 For the first example, system response and the difference in between the two responses
obtained with the PIλ Dμ controller and its neural network-based substitute

results are seen in Fig. 2.6, where the two control signals are shown together on
the top subplot, whereas the difference between them is illustrated in the bottom
subplot. Clearly the two control signals are very close to each other; furthermore, the
signal generated by the neural network is smoother than its alternative when t = 1.
This particular example demonstrates that the neural network-based realization can
be a good candidate for replacing the PIλ Dμ controller.

Define the following relative error as given in (2.15), where T denotes the final
time. For the results seen above, we obtain erel = 0.1091, which is an acceptably
small value indicating the similarity of the two control signals seen in Fig. 2.6.

erel :=

1
T

T∫
0
|uFracPID − uNNPID|dt

1
T

T∫
0
|uFracPID|dt

(2.15)

In Table 2.1, we summarize a number of test cases with corresponding relative
error values. The data presented in the table indicate that the proposed controller is
able to perform well for a wide range of controller gains and for small values of λ
and μ . However, for another control problem, the proposed scheme may perform
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Fig. 2.6 The control signals generated by the PIλ Dμ controller and its neural network-based
substitute. The bottom row shows the difference between the two signals

Table 2.1 Performance of the proposed controller for a number of different
parameter configurations

Kp Ki Kd μ λ erel.

1.3000 0.9000 0.7000 0.0200 0.0900 0.0897
2.1000 0.9000 0.1000 0.0200 0.3900 0.0938
1.7000 0.7000 0.4000 0.0200 0.0900 0.0965
2.5000 0.7000 0.1000 0.0200 0.3900 0.0982
2.5000 0.7000 0.1000 0.0200 0.6900 0.0991
1.7000 0.3000 1.0000 0.0200 0.0900 0.1005
0.9000 0.9000 0.7000 0.0200 0.0900 0.1014
2.5000 0.9000 0.1000 0.0200 0.6900 0.1018
1.3000 0.7000 0.4000 0.0200 0.0900 0.1028
1.7000 0.1000 1.0000 0.0200 0.0900 0.1035
2.1000 0.9000 0.1000 0.0200 0.6900 0.1038
1.3000 0.7000 1.0000 0.0200 0.0900 0.1052
1.3000 0.9000 0.4000 0.0200 0.0900 0.1073
1.7000 0.5000 0.7000 0.0200 0.0900 0.1081
1.3000 0.9000 1.0000 0.0200 0.0900 0.1090
0.9000 0.9000 1.0000 0.0200 0.0900 0.1094
0.9000 0.7000 0.7000 0.0200 0.0900 0.1108
2.1000 0.7000 0.1000 0.0200 0.9900 0.1112
1.7000 0.5000 1.0000 0.0200 0.0900 0.1113



28 M.Ö. Efe

better for larger values of differintegration orders. To see this, as a second example,
we consider the following plant dynamics:

x(0.1)1 = x2

x(0.4)1 = x3

x(0.8)3 = f (x1,x2,x3)+Δ(x1,x2,x3, t)+ g(t)x4+ ξ (t)

x(0.5)4 = u (2.16)

where Δ(x1,x2,x3) and ξ (t) are uncertainties and disturbance terms that are not
available to the designer. In the above equation, we have

f (x1,x2,x3) =−0.5x1 − 0.5x3
2− 0.5x3|x3| (2.17)

g(t) = 1+ 0.1sin
(πt

3

)
(2.18)

Δ(x1,x2,x3, t) = (−0.05+ 0.25sin(5πt))x1 +(−0.03+ 0.3cos(5πt))x3
2

+(−0.05+ 0.25sin(7πt))x3|x3| (2.19)

ξ (t) = 0.2sin(4πt) (2.20)

The plant considered is a nonlinear one having four states, disturbance terms, and
uncertainties. The time-varying gain multiplying the state x4 in (2.14) makes the
problem further complicated, and we compare the neural network substitute of the
PIλ Dμ controller given by

U(s)
E(s)

= 2+
0.7
s0.9 + 0.6s0.75 (2.21)

The results are illustrated in Figs. 2.7 and 2.8. The responses of the system for
both controllers are depicted in Fig. 2.7, where we see that the two responses are
very close to each other. The similarity in the fluctuations around the setpoint is
another result to emphasize. The outputs of the controllers are analyzed in Fig. 2.8,
where we see that the PIλ Dμ controller generates a very large magnitude spike
when the step change in the command signal occurs, whereas the neural network-
based substitute produces a smoother control signal, and this is reflected as a slight
difference in between the plant responses to controllers being compared. The two
controllers produce similar signals when the plant output is forced to lie around
unity, which is seen in the middle subplot of Fig. 2.8, and the difference between the
two control signals is seen to be bounded by 0.05 during this period. The value of
erel for this case is equal to 20.3283, which seems large but noticing the peak in the
top subplot of Fig. 2.8; this could be seen tolerable as the PIλ Dμ controller requests
high magnitude control signals when there is a step change in the command.
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Fig. 2.7 For the second example, system response and the difference in between the two responses
obtained with the PIλ Dμ controller and its neural network-based substitute

A last issue to consider here is the possibility of increasing the performance
obtained by the chosen neural network structure, which is 16-25-10-1. One can
argue that the neural network could be realized as a single hidden layer one, or
with two hidden layers with less number of neurons in each. In obtaining the neural
model, whose results are discussed, many trials have been performed, and it is seen
that the approximation performance could be increased if there are more neurons
in the hidden layers. In a similar fashion, a better map could be constructed if
earlier values of the incoming error signal are taken into consideration. This enlarges
the network size and makes it more intense computationally to train the model.
Depending on the problem in hand, the goal of this chapter is to demonstrate that a
fractional order PIλ Dμ control could be replicated to a certain extent using neural
network models, and the findings of the chapter support these claims thoroughly.

5 Conclusions

This chapter discusses the use of standard neural network models for imitating the
behavior of a PIλ Dμ controller, whose parameters are provided explicitly as the
inputs to the neural network. The motivation in focusing this has been the difficulty
of realizing fractional order controllers requiring high orders of approximation for
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Fig. 2.8 The control signals generated by the PIλ Dμ controller and its neural network-based
substitute. The top row illustrates the two signals when the step change occurs. The middle row
depicts the closeness of the two signals when t > 5 s, and the bottom row shows the difference in
between the two signals

accuracy. The method followed here is to collect a set of data and to optimize the
set of parameters to obtain an emulator of the PIλ Dμ controller. Aside from the
parameters of the PIλ Dμ controller, the neural model observed some history of
the input and outputs a value approximating the response of the PIλ Dμ controller.
Several exemplar cases are presented, and it is seen that the use of neural network
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models is a practical alternative in realizing the PIλ Dμ controllers. Furthermore, the
developed neural model allows modifying the controller parameters online as those
parameters are supplied as eternal inputs to the network.
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