
Chapter 13
On the Hadamard Type Fractional
Differential System

Ziqing Gong, Deliang Qian, Changpin Li, and Peng Guo

1 Introduction

In recent decades, the fractional differential equations has been paid more and more
attention, which mostly involve the Riemann–Liouville fractional calculus or the
Caputo one [1–6]. The Hadamard calculus (differentiation and integration) has not
been mentioned so much as other kinds of fractional derivative, even if it has been
presented many years before [7].

In the following, the definitions of the Hadamard derivative and integral are
introduced [8].

Definition 13.1. The Hadamard fractional integral of order α ∈ R+ of function
f (x), ∀x > 1, is defined by:

HD−α
1,x f (x) =

1
Γ (α)

∫ x

1

(
ln

x
t

)α−1
f (t)

dt
t
, (13.1)

where Γ (·) is the Euler Gamma function.

Definition 13.2. The Hadamard derivative of order α ∈ [n − 1,n), n ∈ Z+, of
function f (x) is given as follows:

HDα
1,x f (x) =

1
Γ (n−α)

(
x

d
dx

)n ∫ x

1

(
ln

x
t

)n−α−1
f (t)

dt
t
. (13.2)
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From the above definitions, the differences between Hadamard fractional deriva-
tive and the Riemann–Liouville fractional derivative are obvious, which include two
aspects: firstly, no matter what the definitions of integral or derivative, the kernel in
the Hadamard integral has the form of ln x

t instead of the form of (x− t) which is
involved in the Riemann–Liouville integral; secondly, the Hadamard derivative has
the operator

(
x d

dx

)n
, whose construction is well suited to the case of the half-axis

and is invariant relative to dilation [9], while the Riemann–Liouville derivative has
the operator

(
d
dx

)n
.

Next, some of propositions with the Hadamard calculus are formed as follows.

Proposition 13.1. If 0 < α < 1, the following relations hold

(i) HD−α
1,x (lnx)β−1 =

Γ (β )
Γ (β +α)

(ln x)β+α−1;

(ii) HDα
1,x(lnx)β−1 =

Γ (β )
Γ (β −α)

(lnx)β−α−1.

Proof. Here we only prove (ii), (i) can be proved similar to (ii). Direct calculations
yield

HDα
1,x(lnx)β−1 =

(
x

d
dx

)
· 1

Γ (1−α)

∫ x

1

(
ln

x
t

)−α
(ln t)β−1 dt

t

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)

∫ x

1

(
1− ln t

lnx

)−α( ln t
lnx

)β−1

d
ln t
lnx

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)
B(1−α,β )

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)

Γ (1−α)Γ (β )
Γ (β −α + 1)

=
Γ (β )

Γ (β −α + 1)
· x ·

d
(
(lnx)(β−α)

)

dx

=
Γ (β )

Γ (β −α)
(ln x)(β−α−1).

This completes the proof. ��
The following results are available in [8].

Proposition 13.2. If α ≥ 0 and β = 1, for any j = [α]+1, the following relations
hold

(i) (HDα
1,t1)(x) =

1
Γ (1−α)

(lnx)−α ;

(ii)
(

HDα
1,t(ln t)α− j)(x) = 0.
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Next, we will introduce the weighted space Cγ, ln[a,b], Cn
δ ,γ [a,b] of the function

f on the finite interval [a,b], if γ ∈C(0 ≤ Re(γ)< 1), n− 1 < α ≤ n, then

Cγ, ln[a,b] :=
{

f (x) : ln( x
a )

γ f (x) ∈ C[a,b], || f ||Cγ = ||(ln x
a)

γ f (x)||C
}
,

C0, ln[a,b] = C[a,b],

and

Cn
δ ,γ [a,b] : =

{
g(x) : (δ ng)(x) ∈ Cγ, ln[a,b],

||g||Cγ, ln = ∑n−1
k=0 ||δ kg||C + ||δ ng||Cγ, ln

}
,

δ = x
d
dx

.

Theorem 13.1. Let α > 0, n=−[−α] and 0≤ γ < 1. Let G be an open set in R and
let f : (a,b]×G −→ R be a function such that: f (x,y) ∈ Cγ, ln[a,b] for any y ∈ G,
then the following problem

HDα
a,t(x) = f (x,y(x)),(α > 0), (13.3)

HDα−k
a,t (a+) = bk,bk ∈ R,(k = 1, . . . ,n,n =−[−α]), (13.4)

satisfies the following Volterra integral equation:

y(x)=
n

∑
j=1

b j

Γ (α − j+ 1)

(
ln

t
a

)α− j
+

1
Γ (α)

∫ x

a

(
ln

x
t

)α−1
f [t,y(t)]

dt
t
,(x > a > 0),

(13.5)
i.e., y(x) ∈ Cn−α ,ln[a,b] satisfies the relations (13.3)–(13.4) if and only if it satisfies
the Volterra integral equation (13.5).

In particular, if 0 < α ≤ 1, the problem (13.3)–(13.4) is equivalent to the
following equation:

y(x) =
b

Γ (α)

(
ln

t
a

)α−1
+

1
Γ (α)

∫ x

a

(
ln

x
t

)α−1
f [t,y(t)]

dt
t
, (x > a > 0). (13.6)

2 The Generalized Gronwall Inequality

The Gronwall inequality, which plays a very important role in classical differential
systems, has been generalized by Ye and Gao [10] which is used to fractional
differential equations with Riemann–Liouville derivative. In this paper we further
generalize the inequality. We firstly recall the classical Gronwall inequality which
can be found in [11].
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Theorem 13.2. If

x(t)≤ h(t)+
∫ t

t0
k(s)x(s)ds, t ∈ [t0,T ),

where all the functions involved are continuous on [t0,T ), T ≤ ∞, and k(t)≥ 0, then
x(t) satisfies

x(t)≤ h(t)+
∫ t

t0
h(s)k(s)exp

[∫ t

s
k(u)du

]
ds, t ∈ [t0,T ).

If, in addition, h(t) is nondecreasing, then

x(t)≤ h(t)exp

(∫ t

t0
k(s)ds

)
, t ∈ [t0,T ).

The generalized Gronwall inequality corresponding to the Riemann–Liouville
type fractional differential system is introduced as follows which is presented in Ye
and Gao [10].

Theorem 13.3. Suppose α > 0, a(t) is a nonnegative function and locally inte-
grable on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing,
continuous function defined on 0 ≤ t < T , g(t)≤ M (constant), and suppose u(t) is
nonnegative and locally integrable on 0 ≤ t < T with

u(t)≤ a(t)+ g(t)
∫ t

0
(t − s)α−1u(s)ds,

on the interval. Then

u(t)≤ a(t)+
∫ t

0

[
∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)
(t − s)nα−1a(s)

]
ds, 0 ≤ t < T.

This inequality can be used to estimate the bound of the Lyapunov exponents
for both the Riemann–Liouville fractional differential systems and the Caputo ones
[5]. In the following, we derive another inequality which can be regarded as a
modification of Theorem 3.

Theorem 13.4. Suppose α > 0, a(t) and u(t) are nonnegative functions and locally
integrable on 1 ≤ t < T (≤ +∞), and g(t) is a nonnegative, nondecreasing,
continuous function defined on 1 ≤ t < T , g(t) ≤ M (constant). If the following
inequality

u(t)≤ a(t)+ g(t)
∫ t

1

(
ln

t
s

)α−1
u(s)

ds
s
, 1 ≤ t < T, (13.7)
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holds. Then

u(t)≤ a(t)+
∫ t

1

[
∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1
a(s)

]
ds
s
, 1 ≤ t < T. (13.8)

Proof. Let

Bφ(t) = g(t)
∫ t

1

(
ln

t
s

)nα−1

φ(s)
ds
s
.

Then
u(t)≤ a(t)+Bu(t).

Iterating the inequality, one has

u(t)≤
n−1

∑
k=0

Bka(t)+Bnu(t).

In the following, we prove

Bnu(t)≤
∫ t

1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1
u(s)

ds
s
, (13.9)

and Bnu(t)→+∞ for each t ∈ (1,T ).
Obviously, (13.9) holds when n = 1. Suppose it holds for n = k. Let n = k+ 1,

then one has

Bk+1u(t) = B
(
Bku(t)

)
≤g(t)

∫ t

1

(
ln

t
s

)α−1
[∫ s

1

(g(t)Γ (α))n

Γ (nα)

(
ln

s
τ

)kα−1
u(τ)

dτ
τ

]
ds
s
.

Under the condition that g(t) is nondecreasing, one obtains

Bk+1u(t)≤ (g(t))k+1
∫ t

1

(
ln

t
s

)α−1
[∫ s

1

(Γ (α))n

Γ (nα)

(
ln

s
τ

)kα−1
u(τ)

dτ
τ

]
ds
s
.

By interchanging the order of integration, we get

Bk+1u(t)≤ (g(t))k+1
∫ t

1

[∫ t

τ

(Γ (α))k

Γ (kα)

(
ln

t
s

)α−1(
ln

s
τ

)kα−1 ds
s

]
u(τ)

dτ
τ

=

∫ t

1

(g(t)Γ (α))k+1

Γ ((k+ 1)α)

(
ln

t
s

)(k+1)α−1
u(s)

ds
s
,
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where the integral

∫ t

τ

(
ln

t
s

)α−1(
ln

s
τ

)kα−1 ds
s

=
(

ln
t
τ

)kα+α−1 ∫ 1

0
(1− z)α−1zkα−1dz

=
(

ln
t
τ

)(k+1)α−1
B(kα,α)

=
Γ (α)Γ (kα)

Γ ((k+ 1)α)

(
ln

t
τ

)(k+1)α−1
,

is obtained, where lns = lnτ + z ln t
τ is used.

Therefore, (13.9) is true.
Moreover, since

Bnu(t)≤
∫ t

1

(MΓ (α))n

Γ (nα)

(
ln

t
s

)nα−1
u(s)

ds
s

→ 0,

as n →+∞, for t ∈ [1,T ).
Hence this completes the proof. ��

Corollary 13.1. Let g(t) = b > 0 in (13.7). The inequality (13.7) turns into the
following form

u(t)≤ a(t)+ b
∫ t

1

(
ln

t
s

)α−1
u(s)

ds
s
.

Furthermore

u(t)≤ a(t)+
∫ t

1

[
∞

∑
n=1

(bΓ (α))n

Γ (nα)

(
ln

t
s

)nα−1
a(s)

]
ds
s
, (1 ≤ t < T ).

Corollary 13.2. Under the assumption of Theorem 4, suppose that a(t) is a
nondecreasing function on [1,T ). Then

u(t)≤ a(t)Eα ,1(g(t)Γ (α)(ln t)α),

where Eα ,1 is the Mittag-leffler function defined by

Eα ,1 =
∞

∑
k=0

zk

Γ (kα + 1)
.
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Proof. The assumptions imply

u(t)≤ a(t)

[
1+

∫ t

1

∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1 ds
s

]

= a(t)
∞

∑
n=0

(g(t)Γ (α) ln t)n

Γ (nα + 1)

= a(t)Eα(g(t)Γ (α)(ln t)α).

This ends the proof. ��

3 The Dependence of Solution on Parameters

As far as we are concerned, there have been some papers dedicated to study the
dependence of the solution on the order and the initial condition to the fractional
differential equation with Riemann–Liouville type and Caputo type derivative, while
quite few papers are contributed to the Hadamard type fractional differential system.
In this section, we study the dependence of the solution on the order and the initial
condition of the fractional differential equation with Hadamard fractional derivative.

Now we consider the following fractional system:

HDα
1,ty(t) = f (t,y(t)), (13.10)

HDα−1
1,t y(t)|t=1 = η , (13.11)

where 0 < α < 1,1 ≤ t < T ≤+∞, f : [1,T )×R → R.
The existence and uniqueness of the initial value problem (13.10)–(13.11) have

been studied in [8], in which the dependence of a solution on initial conditions has
also been considered. Here, we investigate the dependence on both the initial value
conditions and the derivative order.

Obviously, the problem (13.10)–(13.11) can be changed into the Volterra integral
equation.

y(t) =
η

Γ (α)
(ln t)α−1 +

1
Γ (α)

∫ t

1
(ln t)α−1 f (τ,y(τ))

dτ
τ
. (13.12)

In effect, the Volterra equation (13.12) is equivalent to the initial value problem
(13.10)–(13.11).

Theorem 13.5. Let α > 0 and δ > 0 such that 0 < α − δ < α ≤ 1. Also let the
function f be continuous and satisfy the Lipschitz condition with respect to the
second variable:

| f (t,y)− f (t,z)| ≤ L|y− z|,
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for a constant L independent of t,y,z in R. For 1 ≤ t ≤ h < T , assume that y and z
are the solutions of the initial value problems (13.10)–(13.11) and

HDα−δ
1,t z(t) = f (t,z(t)), (13.13)

HDα−δ−1
1,t z(t)|t=1 = η̄ , (13.14)

respectively. Then, the following relation holds for 1 < t ≤ h:

|z(t)− y(t)| ≤ A(t)+
∫ t

1

[
∞

∑
n=1

(
L

Γ (α)
Γ (α − δ )

)n (ln t
s )

n(α−δ )−1

Γ (n(α − δ ))
A(s)

]
ds
s
,

where

A(t) =

∣∣∣∣ η̄
Γ (α−δ )

(ln t)α−δ−1− η
Γ (α)

(ln t)α−1

∣∣∣∣+
∣∣∣∣∣

(ln t)α−δ

(α − δ )Γ (α)
− (ln t)α

Γ (α+1)

∣∣∣∣∣ · ‖ f‖

+

∣∣∣∣∣
(ln t)α−δ

α − δ

[
1

Γ (α − δ )
− 1

Γ (α)

]∣∣∣∣∣ · ‖ f‖,

and
‖ f‖= max

1≤t≤h
| f (t,y)|.

Proof. The solutions of the initial value problem (13.10)–(13.11) and (13.13)–
(13.14) are as follows:

y(t) =
η

Γ (α)
(ln t)α−1 +

1
Γ (α)

∫ t

1
(ln t)α−1 f (τ,y(τ))

dτ
τ
,

and

z(t) =
η̄

Γ (α − δ )
(ln t)α−δ−1 +

1
Γ (α − δ )

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
.

So we have

|z(t)−y(t)| ≤
∣∣∣∣ η̄
Γ (α −δ )

(lnt)α−δ−1 − η
Γ (α)

(lnt)α−1
∣∣∣∣

+

∣∣∣∣ 1
Γ (α−δ )

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ

∣∣∣∣

+

∣∣∣∣ 1
Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,y(τ))

dτ
τ

∣∣∣∣

+

∣∣∣∣ 1
Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,y(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(lnt)α−1 f (τ,y(τ))

dτ
τ

∣∣∣∣
≤ A(t)+

1
Γ (α)

∫ t

1
(lnt)α−δ−1L|z(τ)−y(τ)|dτ

τ
,
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where

A(t) =

∣∣∣∣ η̄
Γ (α−δ )

(lnt)α−δ−1− η
Γ (α)

(ln t)α−1
∣∣∣∣+
∣∣∣∣∣

(lnt)α−δ

(α−δ )Γ (α)
− (ln t)α

Γ (α+1)

∣∣∣∣∣ · ‖ f ‖

+

∣∣∣∣∣
(ln t)α−δ

α −δ

[
1

Γ (α −δ )
− 1

Γ (α)

]∣∣∣∣∣ · ‖ f ‖.

Applying Theorem 1 to the above inequality yields:

|z(t)−y(t)| ≤ A(t)+
∫ t

1

[
∞

∑
n=1

(
L

Γ (α)
Γ (α −δ )

)n (ln t
s )

n(α−δ )−1

Γ (n(α −δ ))
A(s)

]
ds
s
.

The proof is finished. ��
Next, we give an example to discuss the approximate solution of the Hadamard

fractional differential equation.

HD1−δ
1,t x(t) = x(t), (13.15)

HD−δ
1,t x(t)|t=1 = 1, (13.16)

where 1 ≤ t < T ≤+∞, δ ∈ R+ is small enough.
For the above question, we need not get its asymptotic solution. We can find its

approximate solution quickly in the other way. Now we consider the simple problem
as follows:

HD1
1,t y(t) = y(t), (13.17)

HD0
1,ty(t)|t=1 = 1. (13.18)

Combining the corresponding evaluation and Theorem 5, one has

A(t) =

∣∣∣∣ 1
Γ (1−δ )

(lnt)−δ −1

∣∣∣∣+
∣∣∣∣∣
(ln t)1−δ

1−δ
− ln t

∣∣∣∣∣ · ‖x‖+
∣∣∣∣∣
(lnt)1−δ

1−δ

[
1

Γ (1−δ )
−1

]∣∣∣∣∣ · ‖y‖.

When δ −→ 0 and t ∈ [1,T ), we get A(t)−→ 0.
Actually, δ −→ 0 and t ∈ [1,T ), one has

|x(t)− y(t)|= |elnt − (lnt)δ e(lnt)1−δ | −→ 0.

The example shows that the Hadamard differential equation is dependent on both
the initial value conditions and the order of derivative.
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4 Estimation of the Bound of the Lyapunov Exponents

Recently, Li, Chen and Li, Xia have obtained the bound of the Lyapunov exponents
of the discrete-time system, the ordinary differential system respectively. For
details, see [12, 13]. Also, Li, et al. firstly introduced the Lyapunov exponents for
the fractional differential systems with Riemann–Liouville derivative and Caputo
derivative, and determined the bounds of their Lyapunov exponents [5]. In this
paper, we use the modified Gronwall inequality to derive the bound of the Lyapunov
exponents of the fractional differential system with Hadamard derivative.

Theorem 13.6. The following fractional differential system with Hadamard deriva-
tive

⎧⎪⎨
⎪⎩

HDα
t0,t x(t) = f (x, t),

(x, t) ∈ Ω × (t0,+∞)⊂ Rn × (t0,+∞), α ∈ (0,1), t0 > 0,

HDα−1
t0,t x(t)|t=t0 = x0,

(13.19)

has its first variation equation

⎧⎪⎨
⎪⎩

HDα
t0,tΦ(t) = fx(x, t)Φ(t),

(x, t) ∈ Ω × (t0,+∞)⊂ Rn × (t0,+∞), α ∈ (0,1), t0 > 0,

Φ(t0) = I,

(13.20)

where I is an identity matrix and

Φ(t) =
∂
∂ s

φ(t;x0 + sΦ(t))|s=0 = Dxφ(t0;x0),

φ(t0;x0) is the fundamental solution to the system.

Proof. The proof is similar to that in [5], we omit the details here. ��
Definition 13.3. Let uk(t), k = 1,2, . . . ,n be the eigenvalues of Φ(t) of system
(13.20), which satisfy |u1(t)| ≤ |u2(t)| ≤ · · · ≤ |un(t)|. Then the Lyapunov exponents
lk of the trajectory x(t) solving (13.20) are defined by:

lk = lim
t→∞

sup
1
t

ln |uk(t)|, k = 1,2, . . . ,n.

These exponents lk, k = 1,2, . . . ,n, are real numbers. The existence of the
limit for the classical differential system was established [14]. For the fractional
differential system, it still holds. Obviously, Φ is not invertible when u1(t) = 0,
which implies l1 =−∞. But this case does not happen in general. Hence, we always
assume that u1(t) is not (identically) equal to zero. Therefore, Φ is always supposed
to be invertible.
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Next, we estimate the bound of the Lyapunov exponents for the fractional
differential systems with Hadamard derivative. But firstly, let’s take a look at the
following lemma [15].

Lemma 13.1. If 0 < α < 2, β is an arbitrary complex number, u is an arbitrary
real number such that πα

2 < u < min{π ,πα}, then for an arbitrary integer p ≥ 1
the following expansion holds

Eα ,β (z) =
1
α

z(1−β )/αez1/α −
p

∑
k=1

z−k

Γ (β − kα)
+O(|z|−1−p), |z| → ∞, |arg(z)| ≤ u.

By Lemma 1, we can directly obtain the asymptotic expansion of the Mittag-
Leffler function

Eα ,α(K(ln t)α)≈ eK
1
α

α
K

1
α −1(ln t)1−αt, t →+∞,

where K is a positive constant.
Integrating system (13.19) gives

Φ(t) =

(
ln t

t0

)α−1

Γ (α)
I +

1
Γ (α)

∫ t

t0

(
ln

t
τ

)α−1
fx(x,τ)Φ(τ)

dτ
τ
.

Taking the matrix norm of both sides of the above equation leads to

‖Φ(t)‖ ≤
(

ln t
t0

)α−1

Γ (α)
+

M
Γ (α)

∫ t

t0

(
ln

t
τ

)α−1
‖Φ(τ)‖dτ

τ
,

where the constant M is assumed the bound of ‖ fx(x, t)‖.
Applying Corollary 2 to the above integral inequality brings about

‖Φ(t)‖ ≤
(

ln
t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α)
.

By the fact that the spectral radius of a given matrix is not bigger than its norm, we
have

|un(t)| ≤ ‖Φ(t)‖ ≤
(

ln
t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α)
.

Using the definition of the Lyapunov exponents and applying Lemma 1, one gets
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ln = lim
t→+∞

sup
1
t

ln |un(t)| ≤ lim
t→+∞

sup
1
t

ln‖Φ(t)‖

≤ lim
t→+∞

sup
1
t

ln

((
ln

t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α))

= lim
t→+∞

sup
1
t

ln

⎛
⎝eK

1
α

α
K

1
α −1

(
ln

t
t0

)1−α t
t0

⎞
⎠

= 0.

So the Lyapunov exponents of systems (13.19) satisfy

−∞ < l1 ≤ ·· · ≤ ln ≤ 0.

Therefore we eventually derive the upper bound of the Lyapunov exponents for
the fractional differential systems with Hadamard derivative and the upper bound is
zero, which means that generally the fractional differential system with Hadamard
derivative has no chaotic attractor in the sense of the definition 3. We do not know
whether or not such a system is chaotic in the other sense. Such a problem is still
open. We hope the studies in this respect will appear elsewhere.
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