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Preface

Fractional calculus is as old as the classical one and it started to be intensively
studied and applied in many branches of science and engineering.

The fractional dynamics is growing faster during the few decades together with
the fractional control theory which certified the fractional calculus as being a
fundamental tool in describing the dynamics of complex systems.

This book is based on the 3rd conference on Nonlinear Science and Complexity
(NSC), Ankara, Turkey, July 27–31, 2010. Due to the impact of topics on a very
wide spectrum of problems in science and engineering, this conference provided a
place to exchange recent developments, discoveries and progresses on nonlinear
science and complexity. This conference is the continuation of the first 2006
Conference on Nonlinear Science and Complexity, Beijing, China, and the second
2008 conference on Nonlinear Science and Complexity held in Porto, Portugal.

This book it is entitled “Fractional Dynamics and Control” and it collects the
recent development in nonlinear dynamics, nonlinear vibration and control. The
aim of this book provides a fast exchange idea in nonlinear dynamical systems and
control. One can learn the recent developments, including analytical, numerical and
experimental results in such area.

The editors hope that this collection of papers may be fruitful for scholars,
researchers and advanced technical members of industrial laboratory facilities, for
developing new tools and products.

The editors thank to the Rector and to the President of the Board of Trustee of
Cankaya University as well as to the Scientific and Technological Research Council
of Turkey for the financial support needed to hold the discussions and debates.

Dumitru Baleanu
José António Tenreiro Machado

Albert C. J. Luo
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12 A Fractional Order Dynamical Trajectory Approach
for Optimization Problem with HPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Fırat Evirgen and Necati Özdemir
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Fractional Control



Chapter 1
A Formulation and Numerical Scheme
for Fractional Optimal Control of Cylindrical
Structures Subjected to General Initial
Conditions

Md. Mehedi Hasan, X.W. Tangpong, and O.P. Agrawal

1 Introduction

Many processes in physics and engineering systems can be modeled more accurately
by fractional derivatives (FDs) or fractional integrals (FIs) than traditional integer
order derivatives or integrals [1]. Miller and Ross [2] mentioned that almost
every field of science and engineering has the application of FDs. Applica-
tions include biomechanics [3], behaviors of viscoelastic materials [4–7], control
[8–11], electrochemical processes [12, 13], dielectric polarization [14], colored
noise [15] and chaos [16], etc. Some other applications of Fractional Calculus
(FC) can be found in [1, 17–21]. Optimal control problems have found applications
in many different fields, including engineering, science, and economics. As the
demand for more accurate and high-precision systems increases, the demand to
develop formulation and numerical scheme of Fractional Optimal Control Problems
(FOCPs) also increases.

Optimal control problem requires the minimization of a functional over an
admissible set of control functions subject to dynamic constraints on the state and
control variables [22]. A FOCP is an optimal control problem in which either
the performance index or the differential equations governing the dynamics of
the system or both contain at least one fractional order derivative term [23].
The applications of FOCPs have been increasing in many fields, and therefore,
there is a critical need for developing solution techniques for those problems.
The formulation and solution scheme for FOCPs was first established by Agrawal
[24] where he applied Fractional Variational Calculus (FVC) to deterministic and
stochastic analysis of FOCPs. Later, Agrawal [25] presented a general formulation
and solution scheme for FOCPs in the Riemann–Liouville (RL) sense that was based
on variational virtual work coupled with the Lagrange multiplier technique. Since

M.M. Hasan • X.W. Tangpong (�) • O.P. Agrawal
Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
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Caputo Fractional Derivative (CFD) seems more natural and allows incorporating
the usual initial conditions, it becomes a popular choice for researchers. Agrawal
and Tangpong and Agrawal [1, 23] formulated FOCPs in terms of CFDs instead
of RL derivatives and an iterative numerical scheme was applied to solve the
problem numerically. Using the definitions of the FOCPs, Frederico and Torres
[26–28] formulated a Noether-type theorem in the general context of the fractional
optimal control (FOC) in the sense of CFDs. Agrawal and Baleanu [29] used an
approximated method to approximate the FDs of the system which led to a set of
algebraic equations that can be solved by using numerical techniques. Baleanu et al.
[30] proposed a different solution scheme, where a modified Grünwald–Letnikov
(GL) definition was used to derive a central difference formula. Based on the
expansion formula for FDs, Jelicic and Petrovacki [31] proposed a new solution
scheme. Using the eigenfunction expansion-based scheme, Agrawal [32] solved the
FOCP in a one-dimensional distributed system. Later Ozdemir et al. [33] formulated
FOCPs of a two-dimensional distributed system by using the same eigenfunction
expansion approach.

FOCPs of a distributed system have recently been presented in polar coordinates.
Ozdemir et al. [34] presented a formulation of axial symmetric FOCPs where the
FDs were expressed in terms of RL definition, and the GL definition was used to find
the numerical solution. Based on the eigenfunction expansion scheme, FOCPs of
a three-dimensional distributed system were investigated in cylindrical coordinate
by Ozdemir et al. [35] where FDs were defined in the RL sense and the GL
approximation scheme was used. Fractional diffusion problems were discussed in
polar coordinates [36] and in cylinder and spherical coordinates [37, 38]; however,
these works [36–38] did not discuss FOCPs.

In this chapter, we present a general formulation and numerical solution scheme
for FOCPs in cylindrical coordinates and use a solid cylinder case and a hollow
cylinder case as examples to demonstrate the method. FDs are defined in the Caputo
sense and the separation of variable method is used to decouple the equations.
The eigenfunction approach is adopted to eliminate the space parameter and it is
indicated by the combination of state and control functions. For numerical solutions,
the FD differential equations are converted into Volterra-type integral equations and
the time domain is discretized into several segments. The formulation derived here is
used to solve problems with different derivative orders and the calculation converges
toward the analytical solution for integer order problems as the order approaches 1.

2 A General Formulation of a Fractional Optimal
Control Problem

For the ease of understanding of the FOCPs problems that are to be discussed in
Sect. 3, this section briefly describes the general formulation of FOCPs. A descrip-
tion in more details can be found in [23, 39]. The FOCP under consideration can
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be defined as follows. Find the optimal control f (t) that minimizes the performance
index

J( f ) =
∫ 1

0
F(w, f , t)dt (1.1)

subject to the dynamic constraints

C
0 Dα

t w = G(w, f , t) (1.2)

and the initial conditions
w(0) = w0, (1.3)

where w(t) and f (t) are the state and control variables, respectively, F and G
are two arbitrary functions, and w0 represents the initial condition of the state
variable. Equation (1.1) may also include additional terms containing state variable
at the end points. When α = 1, the above problem reduces to a standard optimal
control problem. The integration limits are taken from 0 to 1 for a normalized case.
C
0 Dα

t denotes the left CFD of order α , and we consider α to be in the range of
(0, 1). The conditions considered here are for simplicity in discussions to follow.
After combining (1.1) and (1.2) using a Lagrange multiplier technique, applying
integration by parts and setting the coefficients of δλ , δw, and δ f to zero, the
following equations are obtained:

C
0 Dα

t w = G(w, f , t), (1.4)

C
t Dα

1 λ =
∂F
∂w

+

(
∂G
∂w

)T

λ , (1.5)

∂F
∂ f

+

(
∂G
∂ f

)T

λ = 0, (1.6)

w(0) = w0 and λ (1) = 0, (1.7)

where λ is the Lagrange multiplier also known as the co-state or adjoint variable.
C
t Dα

1 in (1.5) denotes the right CFD of order α . The details of the derivations of
(1.4)–(1.7) are given in [24]. Equations (1.4)–(1.6) represent the Euler–Lagrange
equations for the FOCP. These equations give the necessary conditions for the
optimality of the FOCP considered here. Since (1.4) contains the LCFD and
(1.5) contains the RCFD, the solution of such optimal control problems requires
knowledge of not only forward derivatives but also that of backward derivatives to
account for all end conditions. In classical optimal control theories, such issue is
either not discussed or not clearly stated largely because the backward derivative of
order 1 turns to be the negative of the forward derivative of order 1. In the limit of
α → 1, (1.4)–(1.6) reduce to those obtained using the standard methods for classical
optimal control problems.
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3 Formulation of FOC of Cylinder Structures
with Axial Symmetry

The FOCP in consideration is as follows: find the control f (r,θ ,z, t) that minimizes
the cost functional

J( f ) =
1
2

∫ 1

0

∫ L

0

∫ 2π

0

∫ R

0
[Q′w2(r,z,θ , t)+R′ f 2(r,z,θ , t)]rdrdθdzdt (1.8)

subject to the system dynamic constraints

∂ α w
∂ tα = β

(
∂ 2w(r,z,θ , t)

∂ r2 +
1
r

∂w(r,z,θ , t)
∂ r

+
1
r2

∂ 2w(r,z,θ , t)
∂θ 2 +

∂ 2w(r,z,θ , t)
∂ z2

)

+ f (r,z,θ , t) (1.9)

For an axisymmetric case, there is no variations in θ , and therefore, (1.8) and (1.9)
become

J( f ) =
1
2

∫ 1

0

∫ R

0

∫ L

0
[Q′w2(r,z, t)+R′ f 2(r,z, t)]rdrdzdt, (1.10)

∂ α w
∂ tα = β

(
∂ 2w(r,z, t)

∂ r2 +
1
r

∂w(r,z, t)
∂ r

+
∂ 2w(r,z, t)

∂ z2

)
+ f (r,z, t) (1.11)

where ∂ α w
∂ tα is the partial Caputo derivative of order α and 0 < α < 1. Q′ and R′ are

the two arbitrary functions that may depend on time. R and L and are respectively
the cylinder’s radius and length. For convenience, the upper limit of time t is taken
as 1. The initial condition is represented by

w(r,z,0) = w0(r,z). (1.12)

Two cases of cylindrical structures – solid and hollow – are discussed next.

3.1 Solid Cylinder

The boundary conditions for FOC of a solid cylinder are considered as

w(0,z, t) = w(R,z, t) = w(r,0, t) = w(r,L, t) = 0, t > 0. (1.13)
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The eigenfunction approach is used here to decouple the equations and the state and
the control functions are found to be

w(r,z, t) =
n

∑
i=1

m

∑
j=1

qij(t)J0

(
u j

r
R

)
sin
(

iπ
z
L

)
, (1.14)

f (r,z, t) =
n

∑
i=1

m

∑
j=1

pij(t)J0

(
u j

r
R

)
sin
(

iπ
z
L

)
, (1.15)

where J0(u j
r
R) and sin(iπ z

L ) are the eigenfunctions in the radial direction and the
axial direction respectively. The total numbers of eigenfunctions, n and m, are
determined by convergence studies. J0 is the zero-order Bessel function of the first
kind and u j are the roots of this Bessel function. qij(t) and pij(t) are the state and
control eigencoordinates. Substituting (1.14) and (1.15) into (1.10), we obtain the
cost function

J =
R2L

8

∫ 1

0

n

∑
i=1

m

∑
j=1

J1
2(u j)[Q

′qij
2(t)+R′pij

2(t)]dt. (1.16)

By substituting (1.14) and (1.15) into (1.11) and equating the coefficients of
J0(u j

r
R )sin(iπ z

L ), we obtain

C
0 Dα

t qij(t) =−β

((u j

R

)2
+

(
iπ
L

)2
)

qij(t)+ pij(t). (1.17)

From (1.4)–(1.7), (1.16) and (1.17), we further obtain

C
t Dα

1 pij(t) =−Q′

R′
qij(t)−β

((u j

R

)2
+

(
iπ
L

)2
)

pij. (1.18)

Substituting (1.14) into (1.12), and then multiplying the equation by rJ0(u j
r
R)

sin(iπ z
L ) on both sides and integrating it, we find the initial condition of the

eigencoordinates

qij(0) =
4
∫ L

0

∫ R
0 rw0(r,z)J0

(
u j

r
R

)
sin
(
iπ z

L

)
drdz

R2LJ1
2(u j)

, (1.19)

where J1 is the first-order Bessel function of the first kind. A numerical scheme that
can be used to solve (1.17) and (1.18) is given in Sect. 4.

3.2 Hollow Cylinder

The boundary conditions of a hollow cylinder is considered as

w(a,z, t) = w(R,z, t) = 0, t > 0. (1.20)
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Using the eigenfunction approach, the state function and the control function are
found to be

w(r,z, t) =
n

∑
i=1

m

∑
j=1

qij(t)u0(λ jr)sin
(

iπ
z
L

)
, (1.21)

f (r,z, t) =
n

∑
i=1

m

∑
j=1

pij(t)u0(λ jr)sin
(

iπ
z
L

)
, (1.22)

where

u0(λ jr) = Y0(λ ja)J0(λ jr)− J0(λ ja)Y0(λ jr) (1.23)

is the eigenfunction in the radial direction, and sin(iπ z
L ) is the eigenfunction in the

axial direction. J0 and Y0 are the zero-order Bessel function of the first kind and the
second kind, respectively, and λ j is the root of the characteristic equation for the
eigenfunctions in the radial direction. Substituting (1.21) and (1.22) into (1.10), we
obtain the cost function

J =
L
4

∫ 1

0

n

∑
i=1

m

∑
j=1

(Q′qij
2 +R′pij

2)

(∫ R

α
u2

0(λ jr)rdr

)
dt. (1.24)

By substituting (1.21) and (1.22) into (1.11) and equating the coefficients of
u0(λ jr)sin(iπ z

L ), we obtain

C
0 Dα

t qij(t) =−β

((
λ j

R

)2

+

(
iπ
L

)2
)

qij(t)+ pij(t). (1.25)

From (1.4)–(1.7), (1.24) and (1.25), we obtain

C
t Dα

1 pij(t) =−Q′

R′
qij(t)−β

((
λ j

R

)2

+

(
iπ
L

)2
)

pij. (1.26)

Substituting (1.21) into (1.12), and then multiplying the equation by ru0(λ jr)
on both sides and integrate from a to R, we find the initial condition of the
eigencoordinates

qij(0) =
2
∫ L

0

(∫ R
0 rw0(r)u0(λ jr)dr

)
sin
(
iπ z

L

)
dz

L
∫ b

a ru2
0(λ jr)dr

. (1.27)

A numerical scheme that can be used to solve (1.25) and (1.26) is presented in the
following section.



1 A Formulation and Numerical Scheme for Fractional Optimal Control... 9

4 Numerical Algorithm

For the ease of discussions to follow, this section briefly describes the numerical
algorithm for the FOCPs, similar to that presented in [23, 25]. FOCPs expressed in
a generic form are as follows.

C
0 Dα

t w =−Aw+Bf , (1.28)
C
t Dα

1 f =−Cw−Df , (1.29)

w(0) = w0, (1.30)

f (1) = 0. (1.31)

Equations (1.28) and (1.29) can be expressed in the Volterra integral form as follows.

w(t) = w0 +
1
�(α)

∫ t

0
(t− τ)(α−1)(Bf (τ)−Aw(τ))dτ, (1.32)

f (t) =− 1
�(α)

∫ 1

τ
(τ− t)(α−1)(D f (τ)+Cw(τ))dτ. (1.33)

After discretizing the time domain into N segments and taking linear approxima-
tions of w(t) and f (t) between two successive temporal nodes, (1.32) reduces to

w(ti) = w0−A
i

∑
j=0

aijw(t j)+B
i

∑
j=0

aij f (t j), i = 1,2, . . . ,N. (1.34)

where the coefficients aij are defined as

aij = d1

⎧⎨
⎩

(i− 1)β − iβ +β iα if j = 0,
(k+ 1)β +(k− 1)β − 2kβ if 1≤ j ≤ i− 1,
1 if j = i.

(1.35)

Here, d1 = hα

�(α+2) , β = (α + 1) and k = i− j. Following the same approach, the

value of f (t) at node i becomes

f (ti) =−C
N

∑
j=1

bijw(t j)−D
i

∑
j=1

bij f (t j), i = 0,1, . . . ,N− 1, (1.36)

where

bij = d1

⎧⎨
⎩

1 if j = i,
(k+ 1)β +(k− 1)β − 2kβ if i+ 1≤ j ≤ N− 1,
(M− 1)β −Mβ +β Mα if j = N.
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Here, M = N− i and k = j− i. Equations (1.34) and (1.36) represent a set of 2N
linear algebraic equations which can be solved using a standard linear algebraic
equations solver.

5 Numerical Results and Discussions

5.1 Solid Cylinder

For FOC of a solid cylinder with axial symmetry, the initial condition was taken as

w0(r,z) = r(r−R)
[
1− cos

(
2π

z
L

)]
. (1.37)

For simplicity, we considered Q′ = R′ = L = 1 and R = 1. For simulation purposes,
we discretized the spatial dimensions and the time domain into several segments
and took different values of α . The number of eigenfunctions in the radial and
axial directions were determined through convergence studies. It was found that
the results converged with m = n = 5, where m is the number of eigenfunctions in
the radial direction and n is the number of eigenfunctions in the axial direction. All
simulation results presented in Figs. 1.1–1.8 were generated based on these values
of m and n.

Figures 1.1 and 1.2 demonstrate the state and control variables as functions of
time, and they both converge as the time steps are reduced. The convergence studies
of the number of eigenfunctions and time steps need to be conducted before other
parameter studies, and the convergence criterion varies with the specific problem.
Figures 1.3 and 1.4 show changes of the state and control variables as functions
of time for various orders of α and also compare the numerical results with the
analytical results when α = 1. In the limit of α = 1, the numerical solutions recover

Fig. 1.1 Convergence
of the state variable
w(r = 0.5, z = 0.25, t) for
different number of time
segments for α = 0.8

0 0.2 0.4 0.6 0.8 1
-0.25

-0.15

-0.05

0.05

Time (t)

w
(r

,z
,t
) N=50

N=40
N=20
N=10
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Fig. 1.2 Convergence
of the control variable
f (r = 0.5, z = 0.25, t) for
different number of time
segments for α = 0.8
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Fig. 1.3 State variable
w(r = 0.5, z = 0.25, t) for
different values of α with
N = 50
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Fig. 1.4 Control variable
w(r = 0.5, z = 0.25, t) for
different values of α with
N = 50
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α=0.80
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Fig. 1.5 State variable
w(r, z = 0.25, t) for N = 50
and α = 0.90
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Fig. 1.6 Control variable
f (r, z = 0.25, t) for N = 50
and α = 0.90
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Fig. 1.7 State variable
w(r = 0.5, z, t) for N = 50
and α = 0.9 0
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Fig. 1.8 Control variable
f (r = 0.5, z, t) for N = 50
and α = 0.90
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1

0

0.1

0.2
-2

5

15
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Length(z)Time(t)
f(

r,
z,

t)

the analytical solutions of the integer order optimal control problem. The agreement
of analytical results with the numerical results when α = 1 validates the numerical
algorithm. Figures 1.5 and 1.6 are the surface plots of the state and control variables
in the radial direction. In both figures, the state and control variables initially have
different values across the radial dimension due to the initial conditions; as the time
progresses, each variable reaches the same value across the radius. The phenomenon
shown in Fig. 1.5 is typical of a diffusion process. Figures 1.7 and 1.8 are the three-
dimensional responses of the solid cylinder in longitudinal direction. Similar to
the phenomena shown in Figs. 1.5 and 1.6, both the state and control variables
approaches the same value across the length as the time progresses, representing a
diffusion process. The dynamics constraint equation (1.11) becomes a heat diffusion
equation when α = 1; when α = 0.9, the dynamics governed by (1.11) is close to
a diffusion process, but not exactly the same as the integer order derivative case.
For such dynamic problems, the fractional order differential equation can give more
accurate results than the integer order differential equation.

5.2 Hollow Cylinder

For FOC of a hollow cylinder with axial symmetry, three cases of initial conditions
have been considered.

Case1:

w0(r,z) = (r− a)(r−R)sin
(

π
z
L

)
. (1.38)

Case 2:

w0(r,z) = (r− a)(r−R)sin
(

3π
z
L

)
. (1.39)

Case 3:

w0(r,z) = (r− a)(r−R)sin
(

π
z
L

)
+(r− a)(r−R)sin

(
3π

z
L

)
. (1.40)
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Fig. 1.9 State variable w(r = 0.75, z, t) and control variable f (r = 0.75, z, t) for N = 100 and
α = 0.90
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Fig. 1.10 State variable w(r = 0.75, z, t) and control variable f (r = 0.75, z, t) for N = 100 and
α = 0.90

The inner radius of the cylinder α = 0.5, and R = L = 1. The initial condition of
Case 3 is a linear combination of the initial conditions of Cases 1 and 2. Similar
to the solid cylinder problem discussed in Sect. 5.1, convergence studies of the
number of eigenfunctions in the radial and axial directions were first conducted for
each case and all parameter studies were based on the values of m = n = 5, where
m is the number of eigenfunctions in the radial direction and n is the number of
eigenfunctions in the axial direction. Both the state variable and the control variable
converge as the time step decreases, similar to the results depicted in Figs. 1.1 and
1.2. As the order of derivative α approaches 1, the results recover the analytical
solutions, similar to the results shown in Figs. 1.3 and 1.4. Hence, the figures similar
to Figs. 1.1–1.4 are not repeated here.

Figure 1.9 depicts responses of the state and the control as functions of time for
Case 1, Fig. 1.10 presents the same responses for Case 2 and Fig. 1.11 for Case
3, all at the same location on the hollow cylinder. A notable observation has been
made that the responses of Case 3 can be obtained by taking linear combination
of the responses of Cases 1 and 2. This has an important implication in that for a
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Fig. 1.11 State variable w(r = 0.75, z, t) control variable f (r = 0.75, z, t) for N = 100 and
α = 0.90

general form of initial condition, whether it is a periodic function or nonperiodic
function, we can take Fourier transform of the function, find the response for each
Fourier component using the method discussed above, and then apply superposition
to obtain the response for the given initial condition. Hence, the method outlined in
this chapter applies to FOCPs subjected to general form of initial conditions.

6 Conclusions

A general formulation and numerical scheme for FOC of a distributed system in
cylindrical coordinate system are presented. Naturally, an axisymmetric problem
arises for such a problem and a solid cylinder and a hollow cylinder, each with
axial symmetry, are discussed as examples. Partial fractional time derivatives are
defined in the Caputo sense and the performance index of the FOCP is defined as a
function of both state and control variables. The separation of variable method and
the eigenfunction approach is used to decouple the equations and define the problem
in terms of the state and control variables. A few parameter studies are discussed
including convergence of the state and control variables with respect to the number
of segments in the time domain, and convergence of the number of eigenfunctions
in the radial direction, as well as in the axial direction. The numerical results of
the state and the control variables recover the analytical solutions as the order α
approaches 1, and such agreement therefore validates the formulation and numerical
scheme presented. When considering an initial condition, that is linear combination
of two functions, the results also turn to be linear combination of the results of
problems that consider the individual functions as initial conditions. Therefore, the
method outlined in this chapter will apply to FOCPs subjected to general form of
initial conditions.
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Chapter 2
Neural Network-Assisted PI�D� Control

Mehmet Önder Efe

1 Introduction

The need to handle the computational intensity of fractional order differintegration
operators was an obstacle in between useful applications and theory. Rapid growth
in the technology of fast computation platforms has made it possible to offer
versatile design and simulation tools, from which the field of control engineering
has benefited remarkably.

In [1–3], fundamental issues regarding the fractional calculus, fractional dif-
ferential equations, and a viewpoint from the systems and control engineering
are elaborated, and several exemplar cases are taken into consideration. One such
application area focuses on PID control with derivative and integral actions having
fractional orders, i.e., PIλ Dμ control is implemented. In the literature, several
applications of PIλ Dμ controllers have been reported. The early notion of the
scheme is reported by [3, 4]. In [5] and [6], tuning of the controller parameters is
considered when the plant under control is a fractional order one. Ziegler–Nichols
type tuning rules are derived in [7], and rules for industrial applications are designed
in [8]. The application of fractional order PID controllers in chemical reaction
systems is reported in [9], and the issues regarding the frequency domain are
considered in [10]. Tuning based on genetic algorithms is considered in [11], where
the best parameter configuration is coded appropriately and a search algorithm is
executed to find a parameter set that meets the performance specifications. A similar
approach exploiting the particle swarm optimization for finding a good set of
gains and differintegration orders isin [12]. Clearly, the cited volume of works
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demonstrates that the interest to PID control is growing also in the direction of
fractional order versions. Unsurprisingly, the reason for this is the widespread use
of the variants of PID controller and the confidence of the engineers in industry.

The idea of approximating the fractional order operators has been considered
in [13], where a fractional order integrator is generalized by a neural network
observing some history of the input and the output. The fundamental advancement
introduced here is to generalize a PID controller using a neural structure with a
similar network structure.

This chapter is organized as follows: Sect. 2 briefly gives the definitions of widely
used fractional differintegration formulas and basics of fractional calculus; Sect. 3
describes the Levenberg–Marquardt training scheme and neural network structure;
Sect. 4 presents a set of simulation studies, and the concluding remarks are given in
Sect. 5 at the end of the chapter.

2 Fundamental Issues in Fractional Order Systems
and Control

Let Dβ denote the differintegration operator of order β , where β ∈ℜ. For positive
values of β , the operator is a differentiator whereas the negative values of β
correspond to integrators. This representation lets Dβ to be a differintegration
operator whose functionality depends upon the numerical value of β . With n being
an integer and n−1≤ β < n, Riemann–Liouville definition of the β -fold fractional
differintegration is defined by (2.1) where Caputo’s definition for which is in (2.2).

Dβ f (t) =
1

Γ(n−β)

(
d
dt

)n t∫

0

f (τ)
(t− τ)β−n+1

dτ (2.1)

Dβ f (t) =
1

Γ(n−β)

t∫

0

f (n)(τ)
(t− τ)β−n+1

dτ (2.2)

where Γ(β ) = ∫∞
0 e−t tβ−1dt is the well-known Gamma function. In both definitions,

we assumed the lower terminal zero and the integrals start from zero. Considering
ak, bk ∈ℜ and αk, βk ∈ℜ+, one can define the following differential equation:

(anDαn + an−1Dαn−1 + · · ·+ a0Dα0)y(t) = (bmDβm + bm−1Dβm−1 + · · ·+ b0Dβ0)u(t)

(2.3)

and with the assumption that all initial conditions are zero, obtain the transfer
function given by (2.4).

Y (s)
U(s)

=
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(2.4)
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Denoting frequency by ω and substituting s = jω in (2.4), one can exploit the
techniques of frequency domain. A significant difference in the Bode magnitude
plot is to observe that the asymptotes can have any slope other that the integer
multiples of 20 dB per decade, and this is a substantially important flexibility for
modeling and identification research. When the state space models are taken into
consideration, we have

Dβ x = Ax+Bu

y = Cx+Du (2.5)

and we obtain the transfer function via taking the Laplace transform in the usual
sense, i.e.,

H(s) = C
(

sβ I−A
)−1

B+D (2.6)

For the state space representation in (2.5), if λi is an eigenvalue of the matrix A, the
condition

|arg(λi)|> β
π
2

(2.7)

is required for stability. It is possible to apply the same condition for the transfer
function representation in (2.4), where λis denotes the roots of the expression in the
denominator.

The implementation issues are closely related to the numerical realization of the
operators defined in (2.1) and (2.2). There are several approaches in the literature
and Crone is the most frequently used scheme in approximating the fractional order
differintegration operators [1]. More explicitly, the algorithm determines a number
of poles and zeros and approximates the magnitude plot over a predefined range
of the frequency spectrum. In (2.8), the expression used in Crone approximation
is given and the approximation accuracy is depicted for N = 3 and 9 in Fig. 2.1.
According to the approximates shown, it is clearly seen that the accuracy is
improved as N gets larger, yet the price paid for this is the complexity and the
technique presented next is a remedy to handle the difficulties stemming from the
implementation issues.

sβ ≈ K
∏N

k=1 1+ s/wpk

∏N
k=1 1+ s/wzk

(2.8)

The PIλ Dμ controller with the operator described above has the transfer function
given by (2.9), where E(s) is the error entering the controller and U(s) stands for
the output.

U(s)
E(s)

= Kp +
Ki

sλ +Kdsμ (2.9)

In Fig. 2.2, it is illustrated that the classical PID controller variants correspond to
a subset in the λ –μ coordinate system, and there are infinitely many parameter
configurations that may lead to different performance indications.
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Left column: N = 3, Right column: N = 9

Fig. 2.2 Continuous values
of the differintegration orders
λ and μ enables to obtain
infinitely many configurations
of PIλ Dμ controller where the
variants of the classical PID
controller correspond to a
subset of the domain
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3 Neural Network-Based Modeling and Levenberg–Marquardt
Training Scheme

In this work, we consider the feedforward neural network structure shown in
Fig. 2.3, where there are m inputs, R neurons in the first hidden layer, and Q hidden
layer in the second hidden layer. Since the neural structure is aimed to imitate a
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Fig. 2.3 Feedforward neural
network structure with R
neurons in the first, Q neurons
in the second hidden layer y

em

e1

PIλ Dμ controller, the model has a single output. The hidden layers have hyperbolic
tangent-type nonlinear activation while the output layer neuron is linear.

The powerful mapping capabilities of neural networks have made them useful
tools of modeling research especially when the entity to be used is in the form of
raw data. This particular property is mainly because of the fact that real systems
have many variables, the variables involved in the modeling process are typically
noisy, and the underlying physical phenomenon is sometimes nonlinear. Due to
the inextricably intertwined nature of the describing differential (or difference)
equations, which are not known precisely, it becomes a tedious task to see the
relationship between the variables involved. In such cases, black box models such as
neural networks, fuzzy logic, or the methods adapted from the artificial intelligence
come into the picture as tools representing the input/output behavior accurately.
In what follows, we describe briefly the Levenberg–Marquardt training scheme for
adjusting the parameters of a neural structure [14]. Since the algorithm is a soft
transition in between the Newton’s method and the standard gradient descent, it
very quickly locates the global minimum (if achievable) of the cost hypersurface,
which is denoted by J in (2.10).

J =
1
2

P

∑
p=1

(dp− yp(e,φ ))2 (2.10)

where yp denotes the response of the single output neural network, and dp stands for
the corresponding target output. In (2.10), φ is the set of all adjustable parameters
of the neural structure (weights and the biases), and u is the vector of inputs which
are selected according to the following procedure:

φ(t + 1) = φ(t)− (μI+Φ(t)TΦ(t)
)−1 Φ(t)TF(t) (2.11)

where μ is the regularization parameter, F(t) = [ f1 f2 . . . fP]
T is the vector of errors

described as fi = di− yi(e,φ)i = 1,2, . . .,P, where P is the number of training pairs
and Φ is the Jacobian given explicitly by (2.12)

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂φ1

∂ f1

∂φ2
· · · ∂ f1

∂φH

∂ f2

∂φ1

∂ f2

∂φ2
· · · ∂ f2

∂φH
...

...
. . .

...

∂ fP

∂φ1

∂ fP

∂φ2
· · · ∂ fP

∂φH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)
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where there are H adjustable parameters within the vector φ . In the application of
the tuning law in (2.11), if μ is large, the algorithm behaves more like the gradient
descent; conversely, if μ is small, the prescribed updates are more like the Gauss–
Newton updates. The algorithm removes the problem of rank deficiency in (2.11)
and improves the performance of gradient descent significantly.

4 Simulation Studies

The first stage of emulating the response of a PIλ Dμ controller is to select a
representative set of inputs to be applied to the PIλ Dμ controller and to collect the
response. We have set N = 9 and follow the procedure described below.

For n = 1 to #experiments
Set a random Kp ∈ (0,2)
Set a random Kd ∈ (0,1)
Set a random Ki ∈ (0,1)
Set a random μ ∈ (0,1)
Set a random λ ∈ (0,1)
Apply u(t) and obtain y(t) for t ∈ [0,3]
Store u(t), y(t), Kp, Kd , Ki, μ , λ

End

A total of 200 experiments with step size 1 ms have been carried out to obtain
the data to be used for training data. Once the set of all responses are collected, a
matrix is formed, a generic row of which has the following structure:

[y(k),y(k− 1), · · · ,y(k− d),Kp(k),Kd(k),Ki(k),λ (k),μ(k)] (2.13)

where k is the time index indicating y(k) = y(kT) and T = 1ms, and there are d+6
columns in each row and the delay depth d is a user-defined parameter. Denote the
matrix, whose generic row is shown above, by Ω. In order to obtain the training
data set, we downsample the matrix Ω by selecting the first row of every 100
consecutive row blocks. This significantly reduces the computational load of the
training scheme, and according to the given procedure, 60,000 pairs of training
data are generated and a neural network having m = 16 inputs is constructed. In
Fig. 2.4, the evolution for the training data is shown with that obtained for the
checking data, which is obtained by running 15 experiments and the same procedure
of downsampling.

At 128th epoch, the best set network parameters is obtained, and after this time
the checking error for the neural model starts increasing and the training scheme
stops the parameter tuning when J = 0.01778. In what follows, we discuss the
performance of the neural model as a PIλ Dμ controller.
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Fig. 2.4 Feedforward neural network structure with R neurons in the first, Q neurons in the second
hidden layer

As an illustrative example, we consider the following control problem, which is
simple yet our goal is to compare the responses of two controllers, namely, PIλ Dμ

controller and its neural network-based approximate. The plant dynamics is given
below:

Y (s)
U(s)

=
1

s(s+ 1)
(2.14)

where Y is the plant output and U is the control input. We choose Kp = 2.5,
Kd = 0.9, Ki = 0.1, μ = 0.02, λ = 0.7 and apply a step command that rises when
t = 1s. The command signal, the response obtained with the PIλ Dμ controller
exploiting the above parameters, and the result obtained with the trained neural
network emulator are shown on the top row of Fig. 2.5, where the response of PIλ Dμ

controller is obtained using the toolbox described in [15]. For a better comparison,
the bottom row depicts the difference in between the plant responses obtained for
both controllers individually. Clearly the results suggest that the neural network-
based controller is able to imitate the PIλ Dμ controller to a very good extent as the
two responses are very close to each other.

A better comparison is to consider the control signals that are produced by
the PIλ Dμ controller (uFracPID) and the neural network controller (uNNPID). The
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Fig. 2.5 For the first example, system response and the difference in between the two responses
obtained with the PIλ Dμ controller and its neural network-based substitute

results are seen in Fig. 2.6, where the two control signals are shown together on
the top subplot, whereas the difference between them is illustrated in the bottom
subplot. Clearly the two control signals are very close to each other; furthermore, the
signal generated by the neural network is smoother than its alternative when t = 1.
This particular example demonstrates that the neural network-based realization can
be a good candidate for replacing the PIλ Dμ controller.

Define the following relative error as given in (2.15), where T denotes the final
time. For the results seen above, we obtain erel = 0.1091, which is an acceptably
small value indicating the similarity of the two control signals seen in Fig. 2.6.

erel :=

1
T

T∫
0
|uFracPID− uNNPID|dt

1
T

T∫
0
|uFracPID|dt

(2.15)

In Table 2.1, we summarize a number of test cases with corresponding relative
error values. The data presented in the table indicate that the proposed controller is
able to perform well for a wide range of controller gains and for small values of λ
and μ . However, for another control problem, the proposed scheme may perform
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Fig. 2.6 The control signals generated by the PIλ Dμ controller and its neural network-based
substitute. The bottom row shows the difference between the two signals

Table 2.1 Performance of the proposed controller for a number of different
parameter configurations

Kp Ki Kd μ λ erel.

1.3000 0.9000 0.7000 0.0200 0.0900 0.0897
2.1000 0.9000 0.1000 0.0200 0.3900 0.0938
1.7000 0.7000 0.4000 0.0200 0.0900 0.0965
2.5000 0.7000 0.1000 0.0200 0.3900 0.0982
2.5000 0.7000 0.1000 0.0200 0.6900 0.0991
1.7000 0.3000 1.0000 0.0200 0.0900 0.1005
0.9000 0.9000 0.7000 0.0200 0.0900 0.1014
2.5000 0.9000 0.1000 0.0200 0.6900 0.1018
1.3000 0.7000 0.4000 0.0200 0.0900 0.1028
1.7000 0.1000 1.0000 0.0200 0.0900 0.1035
2.1000 0.9000 0.1000 0.0200 0.6900 0.1038
1.3000 0.7000 1.0000 0.0200 0.0900 0.1052
1.3000 0.9000 0.4000 0.0200 0.0900 0.1073
1.7000 0.5000 0.7000 0.0200 0.0900 0.1081
1.3000 0.9000 1.0000 0.0200 0.0900 0.1090
0.9000 0.9000 1.0000 0.0200 0.0900 0.1094
0.9000 0.7000 0.7000 0.0200 0.0900 0.1108
2.1000 0.7000 0.1000 0.0200 0.9900 0.1112
1.7000 0.5000 1.0000 0.0200 0.0900 0.1113
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better for larger values of differintegration orders. To see this, as a second example,
we consider the following plant dynamics:

x(0.1)1 = x2

x(0.4)1 = x3

x(0.8)3 = f (x1,x2,x3)+Δ(x1,x2,x3, t)+ g(t)x4+ ξ (t)

x(0.5)4 = u (2.16)

where Δ(x1,x2,x3) and ξ (t) are uncertainties and disturbance terms that are not
available to the designer. In the above equation, we have

f (x1,x2,x3) =−0.5x1− 0.5x3
2− 0.5x3|x3| (2.17)

g(t) = 1+ 0.1sin
(πt

3

)
(2.18)

Δ(x1,x2,x3, t) = (−0.05+ 0.25sin(5πt))x1 +(−0.03+ 0.3cos(5πt))x3
2

+(−0.05+ 0.25sin(7πt))x3|x3| (2.19)

ξ (t) = 0.2sin(4πt) (2.20)

The plant considered is a nonlinear one having four states, disturbance terms, and
uncertainties. The time-varying gain multiplying the state x4 in (2.14) makes the
problem further complicated, and we compare the neural network substitute of the
PIλ Dμ controller given by

U(s)
E(s)

= 2+
0.7
s0.9 + 0.6s0.75 (2.21)

The results are illustrated in Figs. 2.7 and 2.8. The responses of the system for
both controllers are depicted in Fig. 2.7, where we see that the two responses are
very close to each other. The similarity in the fluctuations around the setpoint is
another result to emphasize. The outputs of the controllers are analyzed in Fig. 2.8,
where we see that the PIλ Dμ controller generates a very large magnitude spike
when the step change in the command signal occurs, whereas the neural network-
based substitute produces a smoother control signal, and this is reflected as a slight
difference in between the plant responses to controllers being compared. The two
controllers produce similar signals when the plant output is forced to lie around
unity, which is seen in the middle subplot of Fig. 2.8, and the difference between the
two control signals is seen to be bounded by 0.05 during this period. The value of
erel for this case is equal to 20.3283, which seems large but noticing the peak in the
top subplot of Fig. 2.8; this could be seen tolerable as the PIλ Dμ controller requests
high magnitude control signals when there is a step change in the command.
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Fig. 2.7 For the second example, system response and the difference in between the two responses
obtained with the PIλ Dμ controller and its neural network-based substitute

A last issue to consider here is the possibility of increasing the performance
obtained by the chosen neural network structure, which is 16-25-10-1. One can
argue that the neural network could be realized as a single hidden layer one, or
with two hidden layers with less number of neurons in each. In obtaining the neural
model, whose results are discussed, many trials have been performed, and it is seen
that the approximation performance could be increased if there are more neurons
in the hidden layers. In a similar fashion, a better map could be constructed if
earlier values of the incoming error signal are taken into consideration. This enlarges
the network size and makes it more intense computationally to train the model.
Depending on the problem in hand, the goal of this chapter is to demonstrate that a
fractional order PIλ Dμ control could be replicated to a certain extent using neural
network models, and the findings of the chapter support these claims thoroughly.

5 Conclusions

This chapter discusses the use of standard neural network models for imitating the
behavior of a PIλ Dμ controller, whose parameters are provided explicitly as the
inputs to the neural network. The motivation in focusing this has been the difficulty
of realizing fractional order controllers requiring high orders of approximation for



30 M.Ö. Efe
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Fig. 2.8 The control signals generated by the PIλ Dμ controller and its neural network-based
substitute. The top row illustrates the two signals when the step change occurs. The middle row
depicts the closeness of the two signals when t > 5 s, and the bottom row shows the difference in
between the two signals

accuracy. The method followed here is to collect a set of data and to optimize the
set of parameters to obtain an emulator of the PIλ Dμ controller. Aside from the
parameters of the PIλ Dμ controller, the neural model observed some history of
the input and outputs a value approximating the response of the PIλ Dμ controller.
Several exemplar cases are presented, and it is seen that the use of neural network
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models is a practical alternative in realizing the PIλ Dμ controllers. Furthermore, the
developed neural model allows modifying the controller parameters online as those
parameters are supplied as eternal inputs to the network.
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Chapter 3
Application of Backstepping Control Technique
to Fractional Order Dynamic Systems

Mehmet Önder Efe

1 Introduction

Recently there has been a dramatic increase in the number of research outcomes
regarding the theory and applications of fractional order systems and control
[4, 12, 14]. Despite the emergence of the theory dates back to a letter from
Leibniz to L’Hôpital in 1695, asking the possible consequences of choosing a
derivative of order 1/2, the theory has been stipulated and with the advances in
the computational facilities, many important tools of classical control have been
reformulated for (or adapted to) fractional order case, such as PID controllers
[15,20], stability considerations [2,3,8,9], Kalman filtering [18], state space models
and approaches [4,13,17], root locus technique [11], applications involved with the
partial differential equations [10, 16], discrete time issues [4, 12, 14, 18], and so on.
A system to be identified can well be approximated by an integer order model or it
can be approximated by a much simpler model that is a fractional order one. Having
the necessary techniques and tools for such cases becomes a critical issue and with
this motivation in mind, this chapter focuses on adapting the backstepping control
technique for fractional order plant dynamics.

Backstepping technique has been a frequently used nonlinear control technique
that is based on the definition of a set of intermediate variables and the procedure of
ensuring the negativity of Lyapunov functions that add up to build a common control
Lyapunov function for the overall system. Due to this nature, the backstepping
technique is applicable to a particular – yet wide – class of systems, which
includes most mechanical systems, biochemical processes, etc. The technique has
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successfully been implemented in the field of robotics to as one of the state variables
is of type position and the other is of type velocity [1, 5–7].

Although the tools and approaches of fractional order mathematics and back-
stepping control are not new, implementation of backstepping control for fractional
order system dynamics is new. The reason is the definition of derivative that is
generalized by Leibniz rule. The rule, which also generalizes the integer order
cases, yields infinitely many terms for the product, and it becomes difficult to
figure out stability by choosing a square-type Lyapunov function and obtaining
its time derivative. This chapter discusses a remedy to this within the context of
backstepping control method. The contribution of the current study is to extend the
backstepping technique to fractional order plants.

This chapter is organized as follows: Sect. 2 briefly gives the definitions of
widely used fractional differintegration formulas and basics of fractional calculus,
Sect. 3 describes the backstepping technique for fractional order plant dynamics,
Sect. 4 presents a set of simulation studies covering a second-order linear system
with known dynamics, and a third-order nonlinear system having uncertainties and
disturbances, and the concluding remarks are given in Sect. 5 at the end of the
chapter.

2 Fractional Order Differintegration Operators

Let Dβ denote the differintegration operator of order β , where β ∈ℜ. For positive
values of β, the operator is a differentiator, whereas the negative values of β
correspond to integrators. This representation lets Dβ to be a differintegration
operator whose functionality depends upon the numerical value of β. With n being
an integer and n−1≤ β < n, Riemann–Liouville definition of the β -fold fractional
differintegration is defined by (3.1) where Caputo’s definition for which is in (3.2).

Dβ f (t) =
1

Γ(n−β)

(
d
dt

)n t∫

0

f (τ)
(t− τ)β−n+1

dτ (3.1)

Dβ f (t) =
1

Γ(n−β)

t∫

0

f (n)(τ)
(t− τ)β−n+1

dτ (3.2)

where Γ(β ) = ∫∞
0 e−t tβ−1dt is the well-known Gamma function. In both definitions,

we assumed the lower terminal zero and the integrals start from zero. Considering
ak, bk ∈ℜ and αk, βk ∈ℜ+, one can define the following differential equation

(anDαn + an−1Dαn−1 + · · ·+ a0)y(t)

= (bmDβm + bm−1Dβm−1 + · · ·+ b0)u(t) (3.3)
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and with the assumption that all initial conditions are zero, obtain the transfer
function given by (3.4).

Y (s)
U(s)

=
bmsβm + bm−1sβm−1 + · · ·+ b0

ansαn + an−1sαn−1 + · · ·+ a0
(3.4)

Denoting frequency by ω and substituting s = jω in (3.4), one can exploit the
techniques of frequency domain. A significant difference in the Bode magnitude plot
is to observe that the asymptotes can have any slope other that the integer multiples
of 20 dB/decade and this is a substantially important flexibility for modeling and
identification research. When it comes to consider state space models, one can
define

Dβ x = Ax+Bu

y = Cx+Du (3.5)

and obtain the transfer function via taking the Laplace transform in the usual
sense, i.e.,

H(s) = C
(

sβ I−A
)−1

B+D (3.6)

For the state space representation in (3.5), if λi is an eigenvalue of the matrix A, the
condition

|arg(λi)|> β
π
2

(3.7)

is required for stability. It is possible to apply the same condition for the transfer
function representation in (3.4), where λis denote the roots of the expression in the
denominator.

The implementation issues are tightly related to the numerical realization of the
operators defined in (3.1) and (3.2). There are several approaches in the literature
and Crone is the most frequently used scheme in approximating the fractional order
differintegration operators [4]. More explicitly, the algorithm determines a number
of poles and zeros and approximates the magnitude plot over a predefined range
of the frequency spectrum. In (3.8), the expression used in Crone approximation
is given and the approximation accuracy is depicted for N = 9 in Fig. 3.1 and
for N = 40 in Fig. 3.2. According to the shown approximates, it is clearly seen
that the accuracy is improved as N gets larger, yet the price paid for this is the
complexity.

sβ ≈ K
∏N

k=1 1+ s/wpk

∏N
k=1 1+ s/wzk

(3.8)
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Fig. 3.1 Crone approximation to the operator s0.5 with ωmin = 1e−12rad/s, ωmax = 1e+4rad/s,
N = 9

3 Backstepping Control Technique for Fractional
Order Plant Dynamics

Denote the β -fold differintegration operator Dβ x by x(β ) and consider the system

x(β1)
1 = x2

x(β2)
2 = f (x1,x2)+ g(x1,x2)u (3.9)

where x1 and x2 are the state variables, 0 < β1,β2 < 1 are positive fractional
differentiation orders, f (x1,x2) and g(x1,x2) are known and smooth functions of
the state variables and g(x1,x2) 	= 0. Define the following intermediate variables of
backstepping design.
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Fig. 3.2 Crone approximation to the operator s0.5 with ωmin = 1e−12rad/s, ωmax = 1e+4rad/s,
N = 35

z1 : = x1− r1−A1

z2 : = x2− r2−A2 (3.10)

where A1 = 0 and r(β1)
1 = r2.

Theorem 3.1. Let z be the variable of interest and choose the Lyapunov function
given by (3.11).

V =
1
2

z2 (3.11)

If zz(β ) < 0 if 0 < β < 1 is maintained then zż < 0 is satisfied.
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Proof. Consider the Riemann–Liouville definition, which is rewritten for the given
conditions in (3.12).

zz(β ) =
z

Γ(1−β)
d
dt

t∫

0

z(τ)
(t− τ)β dτ (3.12)

If zz(β ) < 0 is satisfied, then the variable z and the integral

d
dt

t∫

0

z(τ)
(t− τ)β dτ (3.13)

are opposite signed, i.e.,
t∫

0

z(τ)
(t−τ)β dτ is monotonically decreasing for positive z, and

monotonically increasing for negative z. Since the denominator of the integrand is
always positive, this can only arise if zż < 0 is satisfied.

Considering the Caputo’s definition in (3.14), having zz(β ) < 0 can arise when
zż < 0.

zz(β ) =
z

Γ(1−β)

t∫

0

ż(τ)
(t− τ)β dτ (3.14)

This proves that forcing zz(β ) < 0 implies zż < 0. 
�
Now we will formulate the backstepping control technique for the plant described

by (3.9) by repetitively checking the quantities z1z(β1)
1 and z1z(β1)

1 + z2z(β2)
2 as

explained below.

Step 1: Check z1z(β1)
1

z1z(β1)
1 = z1

(
x(β1)

1 − r(β1)
1

)

= z1(x2− r2)

= z1(z2 + r2 +A2− r2)

= z1(z2 +A2) (3.15)

Step 2: With k1 > 0, choose A2 =−k1z1, this would let us have

z1z(β1)
1 =−k1z2

1 + z1z2 (3.16)
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Step 3: Check z1z(β1)
1 + z2z(β2)

2

z1z(β1)
1 + z2z(β2)

2 =−k1z2
1 + z1z2 + z2

(
x(β2)

2 − r(β2)
2 −A(β2)

2

)

=−k1z2
1 + z2

(
x(β2)

2 − r(β2)
2 −A(β2)

2 + z1

)

=−k1z2
1 + z2

(
f + gu− r(β2)

2 −A(β2)
2 + z1

)
(3.17)

Step 4: Force z1z(β1)
1 + z2z(β2)

2 =−k1z2
1− k2z2

2, k2 >0, this requires

f + gu− r(β2)
2 −A(β2)

2 + z1 :=−k2z2 (3.18)

Step 5: Solve for u

u =− 1
g(x1,x2)

(
f (x1,x2)− r(β2)

2 + k1z(β2)
1 + z1 + k2z2

)
(3.19)

It is possible to generalize the above procedure for higher order systems of the form

x(βi)
i = xi+1, i = 1,2, · · · ,q− 1

x
(βq)
q = f (x1,x2, · · · ,xq)+ g(x1,x2, · · · ,xq)u (3.20)

and the control law

u =−1
g

(
f − r

(βq)
q −A

(βq)
q + zq−1 + kqzq

)
(3.21)

where kq > 0 and

A1 = 0,z0 = 0 (3.22)

Ai+1 =−kizi +A(βi)
i − zi−1, i = 1,2,q− 1 (3.23)

and the result of applying the control law in (3.21) is given below.

q

∑
i=1

ziz
(βi)
i =−

q

∑
i=1

kiz
2
i (3.24)

According to the aforementioned theorem, ensuring the negativeness of the right-
hand side of (3.24) is equivalent to ensuring the negativity of ∑q

i=1 ziżi, and the
trajectories in the coordinate system spanned by z1, . . . ,zq converge the origin.



40 M.Ö. Efe

4 Simulation Studies

In this section, we consider two sets of simulations to justify the claims. The first
system is linear and a second-order one with all necessary parameters are known
perfectly. The system is given by (3.25).

(
x(0.7)1

x(0.6)2

)
=

(
0 1
−2 −3

)(
x1

x2

)
+

(
0
1

)
u (3.25)

The system is desired to track a sinusoidal profile for a period of 50 s, and then the
following of a pulse-like command is claimed. The results are illustrated in Figs. 3.3
and 3.4.

According to the presented results, precise tracking of the command signals is
achieved with N = 35 term approximation for the fractional order differentiation
operators. The numerical realization has been performed in Matlab environment
with Ninteger toolbox [19]. The results seen in Fig. 3.3 have been obtained with
k1 = k2 = 10, and those in Fig. 3.4 are obtained with k1 = k2 = 0.1. The former
case reveals better tracking performance while the latter produces smother control
signals, and the comparison guides the designer for setting the best parameter values
for the design expectations.

In the second set of simulations, a third-order system dynamics with several
uncertainty terms is considered. The system dynamics is given by (3.26).

x(0.7)1 = x2

x(0.6)1 = x3

x(0.5)3 = f (x1,x2,x3)+Δ(x1,x2,x3, t)+ g(t)u+ ξ (t) (3.26)

where Δ(x1,x2,x3) and ξ (t) are uncertainties and disturbance terms that are not
available to the designer. In the above equation, we have

f (x1,x2,x3) = −0.5x1− 0.5x3
2− 0.5x3|x3| (3.27)

g(t) = 1+ 0.1sin
(πt

3

)
(3.28)

Δ(x1,x2,x3, t) = (−0.05+ 0.25sin(5πt))x1 +(−0.03+ 0.3cos(5πt))x3
2

+(−0.05+ 0.25sin(7πt))x3|x3| (3.29)

ξ (t) = 0.2sin(4πt) (3.30)

The results of the simulations are shown in Fig. 3.5, where it is seen that the
reference signal for the first state variable is followed very precisely when k1 =
k2 = 10 and N = 35. Regarding the second state variable, due to the sharp changes
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Fig. 3.3 Simulation results for the system described by (3.24). k1 = k2 = 10, N = 35

in the reference signal, several instantaneous peaks are visible. The effect of the
disturbances and approximation errors are seen as a slight degradation in the
tracking performance of the third state variable. The last row in Fig. 3.5 shows
the control signal that yields the shown tracking performances. Clearly the control
signal has very sharp responses when there are sudden changes in the command
signal. In Fig. 3.6, the approximation parameter is reduced to N = 9 and the
simulations were repeated. Apparently in this case the state tracking performance
even for the second state is visibly degraded, and we conclude that the numerical
issues in implementing the fractional order differintegration operators influence the
performance significantly.

Since the reference signal contains instantaneous changes, the responses are
affected at these instants. In order to clarify this situation, we study the second
example once again but in this time, we choose the reference signal as a filtered
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Fig. 3.4 Simulation results for the system described by (3.24). k1 = k2 = 0.1, N = 35

version of the reference signal considered in the previous cases. More explicitly, we
choose

R1(s) =
1

(s+ 1)6 C(s) (3.31)

where C(s) is the command signal used so far and R1(s) is the Laplace transform
of r1(t). The results are shown in Fig. 3.7, where it is seen that both the trajectory
tracking performance and the control signal smoothness are very good provided that
the smoothness of the command signal is assured.

The presented results demonstrate that the backstepping design can be adapted
for fractional order plant dynamics and the use of better approximations for
fractional order operators can lead to improved performance indications.
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Fig. 3.5 Simulation results for the system described by (3.26)–(3.30), k1 = k2 = k3 = 10 and
N = 35
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Fig. 3.7 Simulation results for the system described by (3.26)–(3.30), k1 = k2 = k3 = 10, N = 35
and the reference signal is a filtered one as described by (3.31)
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5 Conclusions

This chapter focuses on the adaptation of backstepping control technique for
fractional order plant dynamics. The derivation of the control law for a second
order plant is given, the result is generalized for q-th order case and it is shown
that ensuring zz(β ) < 0 implies zż < 0 and stability conclusions for the control
laws maintaining zz(β ) < 0 are tied to the integer order case. Two application
examples are scrutinized. The first is a linear second order system, the analytical
details embodying which is known thoroughly. The second example is a nonlinear
system that possesses some uncertainty terms as well as disturbances, which are all
bounded. The adapted backstepping scheme is applied to both systems, and it is seen
that the analytical claims are met perfectly for the first case and some degradation in
the performance due to the uncertainties is seen in the second case. If the smoothness
of the command signal is assured, then a significant improvement in the trajectory
tracking performance and the command signal smoothness is observed.

Briefly, the chapter demonstrates the use of backstepping control technique for
fractional order plant dynamics and several illustrative examples are discussed. The
results show that the design parameters N and kis have a strong influence on the
overall performance of the control system as well as the smoothness of the command
signal is seen to be an important parameter influencing the closed loop performance.
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Chapter 4
Parameter Tuning of a Fractional-Order
PI Controller Using the ITAE Criteria

Badreddine Boudjehem and Djalil Boudjehem

1 Introduction

Recently the concept of fractional calculus are widely introduced in many areas in
science and engineering. In control systems, this concept are successfully used to
construct fractional order controllers. As a result, the closed loop control system
performances are improved in comparison with classical controllers.

In podlubny [11] proposed a generalization of the PID controller namely
fractional PID (PIλ Dμ ) where λ and μ are the order of integration and derivation
respectively that can be real numbers. In comparison with classical PID these
controllers have two extra parameters. Therefore classical design method may not
be applied directly to adjust all fractional controller parameters.

Several research works have proposed new design techniques and tuning rules,
for fractional controllers. Some of them are based on an extension of the classical
control theory. In Valerio and da costa [16] a tuning method for fractional PID
controller based on Ziegler–Nichols-type rules was proposed. Monje et al. [6]
present a frequency domain approach based on the expected crossover frequency
and phase margin. A state-space tuning method based on pole placement was also
used (see [3]). Recent tuning method based on quantitative feedback theory (QFT)
are presented in [9].
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Many methods for control design are based on optimization techniques. The
common approach is to minimize a performance index [1]. An optimization
approach was proposed in [6], for the PI fractional controller tuning. A nonlinear
functional minimization subject to some given nonlinear constraints are solved using
matlab minimization function. An intelligent optimization method for designing
fractional order PID controller based on particle swarm optimization (PSO) was
presented (see [2]). In Leu et al. [4], an optimal fractional order PID controller
based on specified gain and phase margins with a minimum ISE criterion has
been designed by using a differential evolutionary algorithm. Tuning fractional PID
controller based on ITAE criterion by using Particle Swarm Optimization has been
also presented in [12]. In Tavazoei [15] the infiniteness and finiteness of different
performance indices in class of fractional-order systems have been presented.

In this paper we propose a tuning method for fractional PI controller based on
minimizing integral time absolute error (ITAE) by means of diffusive representation.
The feedback control system is implemented in Matlab/Simulink. Simulation results
show the effectiveness of the proposed design method in comparison with classical
PI controller. The paper is organized as follows. Section 2 gives an overview on
fractional order controllers and the diffusive representation. Section 3 presents the
design method procedure. An illustrative example is given in Sect. 4 to demonstrate
the effectiveness of the proposed method. Finally conclusions are stated in Sect. 5.

2 Fractional Order Operators and Controllers

2.1 Fractional Order Operator

There are several different definitions of fractional operators (see [10] and [5]). One
of the most used definition of the fractional integration is the Riemann–Liouville
definition:

D−α f (t) =
1

Γ (α)

∫ t

0
(t− τ)α−1 f (τ)dτ (4.1)

while the fractional derivative definition is

Dβ f (t) = Dm[D−γ f (t)], (4.2)

where

Γ (α) =

∫ ∞

0
xα−1e−xdx (4.3)

is the Gamma function, α is the order of the integration, m is an integer number and
γ = m−β .
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The Laplace transform method is a powerful tool in the frequency domain for
both the system analysis and the controller synthesis. The Laplace transform of the
fractional integral given by Riemann–Liouville, under zero initial conditions for
order α is:

L
(
D−α f (t)

)
= s−α F(s), (4.4)

where F(s) is the normal Laplace transformation f (t).

2.2 Fractional PID Controller (PIλ Dμ )

Fractional PIλ Dμ controller is a system described by a fractional differential
equation:

Kp

(
y(t)+

1
Ti

D−λ y(t)+TdDμy(t)

)
= e(t), (4.5)

where D is the derivative operation, Kp is the proportional gain, Ti is the integration
constant, Td is the derivative constant, λ is the integration order and μ is the
derivative order. The Laplace transform of (4.5), lead to the following transfer
function:

C (s) = Kp

(
1+

1
Ti

s−λ +Tdsμ
)
. (4.6)

Taking μ = 0 and/or Td = 0 we obtain a fractional PI. We note that if μ = 1 and
λ = 1, we obtain a classical PID controller.

2.3 Diffusive Representation of Fractional Operators

There are several approaches that have been used to implement fractional order
integration (see [7] and [14]). An alternative is to use the so-called “Diffusive
approach” (see [8]).

The diffusive realization of the pseudo differential operator H, with impulse

response h, u→ g = H
(

d/
dt

)
u is defined by the dynamic input–output system:

⎧⎪⎪⎨
⎪⎪⎩

∂tϕ(ξ , t) =−ξ ϕ(ξ , t)+ u(t),

g(t) =
∫ ∞

0 μ(ξ )ϕ(ξ , t)dξ

ϕ(ξ ,0) = 0, ξ � 0.

(4.7)

The system (4.7) is the diffusive realization of H.
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The impulse response h(t) is expressed from h(t) by:

h(t) =
∫ +∞

0
e−ξ t μ(ξ )dξ (4.8)

So the diffusive symbol is also given by: μ = L−1h.
The transfer function of the operator H is given by:

H (s) =
∫ +∞

−∞

μ (ξ )
s+ ξ

dξ . (4.9)

We thus have the three equivalent representations:

Diffusive rep.
L→ Convolution rep.

L→ Symbol
μ h(t) H(s)

μ#ν h(t)∗r(t) H(s).R(s)
In the particular case of fractional integrators

H

(
d
dt

)
=

(
d
dt

)−α
, 0 < α < 1. (4.10)

The diffusive symbol is expressed as (see [13]): μ (ξ ) = sin(πα)
π

1
ξ α ,x > 0 where

a is the order of integration.
The numerical approximation of the fractional order system based on diffusive

representation is simple and present more advantages.

3 The Proposed Design Method

Let us consider the feedback control system depicted in Fig. 4.1. Where G(s) is the
controlled system transfer function and C(s) is the controller transfer function. The
controller used is a fractional PI controller with transfer function given by (4.11):

C (s) = Kp

(
1+

1

Tisλ

)
. (4.11)

Fig. 4.1 Feedback control system
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These controllers have three unknown parameters Kp, Ti, and λ , that must
be determined to achieve the desired specifications. Using (4.7), the diffusive
realization of the controller with input e and output u is given by

{
∂tϕ (ξ , t) =−ξ ϕ (ξ , t)+ e(t),
u(t) =

∫ ∞
0 ν (ξ )ϕ (ξ , t) dξ ,

(4.12)

where the diffusive symbol is:

ν (ξ ) = Kp

(
δ (ξ )+

1
Ti

sin(πλ )
π

1

ξ λ

)
. (4.13)

Thus the transfer function of the fractional controller PIλ by means of diffusive
representation are

C (s) =
∫ +∞

−∞

ν (ξ )
s+ ξ

dξ , (4.14)

where ν is defined by (4.13).
Our objectives are to adjust the three fractional PI parameters (Kp, Ti, and λ ) that

minimizing is ITAE defined by the objective function:

JITAE(Kp,Ti,λ ) =
∫ T

0
t|e(t)|dt, (4.15)

where t is the time and e(t) is the error step set-point change.
The procedures to determine the PIλ fractional controller parameters are summa-

rized in the following:

1. Implement the feedback control system in Matlab/Simulink including diffusive
realization of the fractional PI controller through Simulink model

2. Calculate the ITAE
3. Use a function of Matlab optimization toolbox to minimize the objective

function J. The initial controller parameters is set to be those determined by one
of existing tuning rules

4 An Example of Application

In this section, an example of application is given to illustrate the proposed method.
Consider the forth order system:

G(s) =
k

s(s+ 1)(s+ 2)(s+ 3)
. (4.16)

To illustrate the robustness to parameter variations, we consider only that the gain
can be changed with a variation range of K ∈ [1,1.8]. For the simulation the function
of matlab optimization tool box are used to minimize the objective function JITAE.
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Fig. 4.2 Step response of the controlled system with fractional PI controller

The stability margin based Ziegler–Nichols is used for determine the initial
parameters Kp and Ti whereas the order λ = 1. The optimized parameters of the
fractional PI controller are: Kp = 5.64, Ti = 76.32, and λ = 1.12.

Therefore, the transfer function of the fractional controller is:

C(s) = 5.64

(
1+

1
76.32s1.12

)
. (4.17)

Figure 4.2 presents the step response of the controlled system with fractional PI
controller. This figure shows clearly that the overshoot and set time are acceptable.

Figure 4.3 illustrates the step responses with fractional controller for different
values of K. This figure shows that the fractional controller designed by the proposed
method permits to have a time responses with slightly iso-overshoot for different
values of gain K.

In order to prove the efficiency of the proposed method we compare our results
with those obtained using classical PI controller, the same procedure are applied to
tune classical PI controller Therefore the optimal transfer function of classical PI
controller is:

C (s) = 2.0512

(
1+

1
3.0681e6s

)
. (4.18)
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Fig. 4.3 Step response of the controlled system with fractional PI controller for different
values of K

Fig. 4.4 Step response of the controlled system with classical PI controller



56 B. Boudjehem and D. Boudjehem

Fig. 4.5 Step response of the controlled system with classical PI controller for different values
of K

Figure 4.4 presents the step response of the controlled system with classical
PI controller. Figure 4.5 illustrates the step responses with classical controller for
different values of K. This figure shows that the responses with this controller
present different overshoot. So that the system is not robust to gain variations.

5 Conclusions

An optimal design method for fractional PI controller has been presented. The
method is based on using diffusive representation of fractional operator. The
optimal settings have been obtained by minimizing ITAE using Matlab optimization
toolbox. The simulation results have shown the effectiveness of the proposed
method in comparison with classical PI controller. In addition the system obtain
is robust to gain variations.
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Chapter 5
A Fractional Model Predictive Control
for Fractional Order Systems

Djalil Boudjehem and Badreddine Boudjehem

1 Introduction

Fractional calculus allows a more compact representation and problem solution for
many systems. The idea of fractional integrals and derivatives has been known since
the development of regular calculus. Probably the first physical system to be widely
recognized as one demonstrating fractional behavior is the semi-infinite lossy (RC)
transmission line (see [5]). Another equivalent system is the diffusion of heat into
semi-infinite solid (see [8]). Other systems that are known to display fractional
order dynamics are viscoelasticity, colored noise, electrode–electrolyte polarization,
dielectric polarization, boundary layer effects in ducts, and electromagnetic waves.
Because many systems are known to display fractional order dynamics, they can’t
be controlled the same way as those which doesn’t. Unfortunately, these systems
had been considered to be similar to systems with integer order dynamics for a long
time. However, in the last decade we noticed the born of the fractional control that
deals with those specific systems. The significance of fractional control system is
that it is the generalization of the classical integer order control theory, which could
lead to a more adequate modeling and more robust control performance.

Predictive control is a family of control techniques that optimize a given criterion
by using a model to predict system evolution and compute a sequence of future
control actions. Predictive control accepts a variety of models, objective functions,
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and constraints, providing flexibility in handling a wide range of operating criteria
present in industrial processes, See [4,6,7]. A variety of processes can be controlled
using MPC [3].

Generally, in MPC linear models are used to predict the system dynamics, even
though the dynamics of the closed-loop system is nonlinear or displays fractional
order dynamics.

This paper focuses on the use of fractional order system description to model
fractional order dynamics in model predictive control (MPC) to construct a frac-
tional order MPC. The fractional order model could model various real materials
more adequately than integer order ones and provide a more adequate description of
many actual dynamical processes, which will improve the MPC performances and
lead to a more robust control performance, See [1,2]. The results in this paper show
that the use of fractional order models not only give better results than the use of
integer order models, but also it performs better with the presence of noise which,
can be interpreted as a kind of robustness.

The paper is organized as follows. In Sect. 1 we present some theoretical aspects
of fractional order systems and fractional order approximation. In Sect. 2. the basic
concept of MPC is introduced. An outline of the fractional model MPC schemes is
also presented and simulation results are discussed in Sect. 3.

2 Fractional Order Systems

A fractional order system is that system described by the following fractional order
differential equation

anDαn f (x)+ an−1Dαn−1 f (x)+ an−2Dαn−2 f (x)+ · · ·
= bnDβn f (x)+ bn−1Dβn−1 f (x)+ bn−2Dβn−2 f (x)+ · · · , (5.1)

where Dαn =0 Dαn
t , is called the fractional derivative of order αn with respect to

variable t and with the starting point t = 0.
In fractional calculus, the fractional derivative is defined due to Riemann and
Liouville fractional integral version given by (5.2), (See [9, 12]):

0D−ν
x f (x) =

∫ x

0

(x− t)ν−1

(ν− 1)!
f (t)dt (5.2)

Or

0D−ν
x f (x) =

1
Γ (ν)

∫ x

0
(x− t)ν−1 f (t)dt, (5.3)

where Γ (ν) is the Euler’s Gamma function defined by:
Γ (ν) = (ν− 1)! , with the property: Γ (ν + 1) = νΓ (ν).
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The fractional derivation is then defined by:

Dν f (x) =
1

Γ (n−ν)

(
d
dx

)n ∫ x

0
(x− t)n−ν−1 f (t)dt, (5.4)

where n is an integer number defined as n− 1 < ν < n.
The Laplace transform of a fractional derivative can be calculated easily by

applying the regular Laplace operator on (5.3):

L[Dν f (x)] = sν F(s)−
n−1

∑
k=0

sn−k−1 Dk−n+ν f (0) if Re(ν)> 0 (5.5)

and n is the integer number defined before. The summation in the right hand side of
(5.5) will be equal to zero if Re(ν)≤ 0.

Approximation of the Fractional Order Transfer Function

For simulations and implementations, we need to approximate the fractional order
transfer functions of powers of ν ∈ R by the usual integer order n ∈ Z transfer
functions with a similar behavior. The integer transfer function may then have to
include an infinite number of poles and zeros. But it is always possible to get good
approximations. In fact, there are a number of approximations that exist and makes
use of a recursive distribution of poles and zeros. See [13, 14]. The most common
approximation used is that proposed by [14]:

sν ≈C
N

∏
k=−N

1+(s�ωzk)

1+(s�ωpk)
, ν > 0 (5.6)

Where ωl ,ωh are the lower and higher frequency approximation interval. This
means that the approximation is valid in that frequency interval. The gain C has
the role of approximation tuning, so it is adjusted until both sides of (5.6) will have
unit gain at 1 rad/s. The approximation limits N is chosen before hand, and the good
performance of the approximation strongly depends thereon. Low values result in
simpler approximations, but also cause the appearance of a ripple in both gain and
phase behaviors; such a ripple may be practically eliminated increasing N, but the
approximation will be computationally heavier. Frequencies of poles and zeros in
(5.6) are given by:

α = (ωh�ωl)
ν�N , (5.7)

η = (ωh�ωl)
(1−ν)�N , (5.8)

ωz0 = ω0
√

η , (5.9)
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ωpk = ωzk α, (5.10)

ωzk+1 = ωpkη . (5.11)

In general, it is usual to split fractional powers of s like this:

sν = snsδ , ν = n+ δ , (5.12)

where n is an integer number defined as: n < ν < n+ 1, thus the values of δ will
be compromised between 0 and 1. In this manner we need only to approximate the
latter term.

3 The MPC

The MPC problem is formulated as solving on-line, a finite horizon open-loop
optimal, control problem subject to system dynamics and constraints involving
states and controls. However, the success of the MPC strategy depends critically
on the choice of the model, See [3, 4, 7].

3.1 The MPC Principle

For a given plant, at instant k, the reference trajectory r(k) is defined to be the
ideal trajectory along which the plant should return to the set point trajectory
w(k). It is frequently assumed that the reference trajectory approaches the set point
exponentially from the current output value y(k), with the time constant of the
exponential, which we shall denote Tref, defining the speed of response [4].

The current error between the output and the set point is then defined to be:

err(k) = w(k)− y(k), (5.13)

then the reference trajectory is chosen such that the error i steps later, if the output
followed it exactly, would be

err(k+ i) = exp−iTs/Tref err(k), (5.14)

where Ts is the sampling interval. That is the reference trajectory is defined to be:

r(k+ i|k) = w(k+ i)− err(k+ i). (5.15)

The notation r(k + i|k) indicates that the reference trajectory depends on the
conditions at time k, in general, See [7, 11].

A predictive controller has an internal model which is used to predict the behavior
of the plant, starting at the current time k, over a future prediction horizon Hp. This
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predicted behavior depends on the assumed input trajectory û that is to be applied
over the prediction horizon. The idea is to select that input which promises the best
predicted behavior. The notation û rather than u here indicates that at time k we only
have a prediction of what the input at time k+ i may be; the actual input at that time,
u(k + i), will probably be different from û(k + i|k). Note that we assume having
the output measurement y(k) available when deciding the value of the input u(k).
We should also notice that the model output y(k) depends only on the past inputs
u(k− 1),u(k− 2), . . ., not including the present input u(k) [7].

Once a future input trajectory has been chosen, only the first element of that
trajectory is applied as the input signal to the plant. That is, we set u(k) =
û(k|k), where u(k) denotes the actual signal applied. Then the whole cycle of
output measurement, prediction, and input trajectory determination is repeated, one
sampling interval later. Since the prediction horizon remains of the same length as
before, but slides along by one sampling interval at each step, this way of controlling
a plant is often called a receding horizon strategy.

3.2 Computing the Optimal Control Signal

To compute the control signal û(k) that will be applied at time instant k, we should
solve an optimization problem where, the receding horizon cost function that will
be minimized is defined by the following equation:

J =∑
i∈P

R× [r(k+ i|k)− y(k+ i|k)]2

+∑
Hu

Q× [Δu(k+ i− 1)]2, (5.16)

where P denotes the set of indices i which correspond to coincidence points and Hu

is the control horizon, R and Q are weighting matrices. In the simplest case these
matrices are set to identity matrix.

Conceptually, the internal model can first be used to predict the free responses
ŷ f (i +Hp|k) of the plant, which are the responses that would be obtained at the
coincidence points if the future input trajectory remained at the latest value u(k−1).
Depending on the form of the model, these values will be obtained, and if a step or
pulse response is available as the model, then all the available past inputs are needed.

Now let S(Hp) be the response of the model to a unit step input, Hp steps after
the unit step is applied. The predicted output at time k+Hp is as follows:

ŷ(k+H p|k) = ŷ f (k+H p|k)+ S(Hp)Δ û(k|k), (5.17)

where
Δ û(k|k) = û(k|k)− u(k− 1) (5.18)
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is the change from the current input u(k−1) to the predicted input û(k|k). We want
to achieve

ŷ(k+H p|k) = r(k+H p|k) (5.19)

Hence, the optimal change of input can be calculated easily by solving the
minimization of the cost function given by (5.16).

4 Fractional Model for Predictive Control

Since fractional order models describes fractional systems better than integer order
models do, we propose to use a fractional order model rather than an integer order
one as in the used conventional MPC.

Figure 5.1 shows the MPC scheme using the fractional order model. The
implementation of this idea means that (5.16) have to be in the following form:

J =∑
i∈P

[r(k+ i)− yfrac(k+ i|k)]2

+∑
Hu

[Δu(k+ i− 1)]2, (5.20)

where yfrac is the fractional order system output. Due to the approximation calcu-
lation of yfrac the determination of the control signal u(k) or its increment Δu(k)
will be quit difficult, and for this reason the matrices R and Q are set to identity.
Therefore, depending on the number of poles and zeros used for the fractional
system approximation, we can adjust the control system for better improvement.
Consequently, a better fractional system dynamic approximation will be achieved.

Fig. 5.1 General structure of
the fractional MPC

Optimizer
Future Errors

Predicted output +

Plant output

Fractional
order model

Cost function Constraints

Future inputs

Plant

-
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We will show in the next section how can we improve the performances of the
predictive control, and maintain the system stability in the case of changing the
prediction horizon by the use of a fractional order model rather than integer order
model in the predictive control.

4.1 Simulation Results

In this section we consider the following non commensurate fractional order plant
given by Podlubny ( [9]):

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
. (5.21)

To implement the fractional system model we used the approximation given by
(5.6)–(5.11).

For the comparison purpose, we will use the integer order model proposed by
Podlubny ([10]) given by (5.22), which represent the nearest integer order model to
the system defined by (5.21). Since the fractional orders are approximated to those
nearest integer ones this model will be used to implement the integer order MPC:

G(s) =
1

0.8s2 + 0.5s+ 1
. (5.22)

The performance of the results is then asserted and compared to the performance
obtained with integer order model.

Figure 5.2 shows the step response of the fractional order system.
Figures 5.3 and 5.4 show the effect of the prediction horizon on the closed loop

control system using both fractional order and integer order MPC respectively. In
Fig. 5.3 the step responses shows an increase in the maximum overshoot as the
prediction horizon increases. Unfortunately, this not the case for the integer order
MPC as shown in Fig. 5.4. Since integer order MPC was completely unstable for a
prediction horizon Hp = 6 the prediction horizon started from Hp = 8.

Hence, for the comparison reasons we used the prediction horizon Hp = 12 with
both MPC’s.

Figure 5.5 shows the controlled plant output to a square input signal using both
fractional order and conventional MPC. Notice that both plant outputs reaches the
correct set-point. However, the use of the fractional order MPC leads to better
improvements of the control of the fractional order system compared to the use
of the integer order MPC.

Figure 5.6 shows the control input signal using both fractional model and integer
order MPC. To see the effect of the noise presence, we add a noise of a standard
deviation of 0.1 which switches from +0.1 to −0.1 halfway as shown in Fig. 5.9.
Then, the resulting noisy input signal is shown in Fig. 5.8. Figure 5.7 shows the
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plant output with a noise presence. Notice that both plant outputs reaches the correct
set-point despite the unknown input noise. However, the use of the fractional order
MPC leads to better improvements (maintain the maximum overshoot level as in
the first case. See Fig. 5.5) of the control of the fractional order system compared to
the use of the integer order MPC, where an increase in the maximum overshoot is
remarkable.

5 Conclusion

In this paper, a fractional order MPC is proposed for fractional order systems
control. The benefits of fractional order models for real dynamical objects and
processes become more and more obvious. Through the fractional order and integer
order dynamical models, the proposed fractional order MPC has been presented.
The simulation results illustrate that the use of fractional order models to control
systems that present fractional dynamic behaviors, to construct a fractional model
MPC achieves better control performances compared to those of the conventional
MPC. This approach allows an efficient formulation of MPC while guaranteeing
stability and performance of the closed-loop control system.
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Chapter 6
A Note on the Sequential Linear Fractional
Dynamical Systems from the Control System
Viewpoint and L2 -Theory

Abolhassan Razminia, Vahid Johari Majd, and Ahmad Feiz Dizaji

1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to an arbitrary real-valued order. This subject is as old as the ordinary differential
calculus and goes back to the times when Leibniz and Newton invented differential
calculus. The problem raised by Leibniz in a letter dated 30 September 1695 for a
fractional derivative that has become an ongoing topic for more than hundreds of
years [1, 2].

This subject has attracted the attention of researchers from different fields in the
recent years. While it was developed by mathematicians few hundred years ago,
efforts on its usage in practical applications have been made only recently. It is
known that many real systems are fractional in nature; thus, it is more effective to
model them by means of fractional order than integer order systems. Applications
such as modeling of damping behavior of viscoelastic materials [3], cell diffusion
processes [4], transmission of signals through strong magnetic fields [5], and finance
systems [6] are some examples. Moreover, fractional order dynamic systems have
been used in both design and implementation of control systems. Studies have
shown that a fractional order controller can provide better performance than an
integer order one and can lead to more robust control performance [7].

On the other hand, it is has been reported that specific fractional differential
equations with order less than three may exhibit complex dynamical evolution,
even chaotic dynamics [8, 9]; however, this is not the case for ordinary differential
equations due to the famous Poincaré–Bendixson theorem [10].
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Here L2 space as a special case of Lp space is considered. The Lp spaces
are function spaces defined using natural generalizations of p-norms for finite-
dimensional vector spaces. They are sometimes called Lebesgue spaces. One of
the main topics in Lp space is approximation theory [11], which is used here for
deriving a relationship between an arbitrary function from L2 space and the output
of a linear time invariant fractional control system. The dynamics of the control
system are stated in the sequential format. Sequential fractional operator is a special
case among other fractional operators which is discussed in the next section.

Due to the computing demands of the fractional differentiation and integration
and the need for approximating some complicated functions which are used in
physical process, we present a novel method in this chapter by which any arbitrary
function from L2 space can be approximated by the output of a linear time invariant
time fractional control system (LTIFCS). Using a rigorous proof, we provide the
construction procedure of LTIFCS whose output approximated the given function
in the sense of L2-norm.

This chapter is organized as follows: after this introduction in Sect. 1, a historical
review is presented in Sect. 2. Some basic concepts and mathematical preliminaries
are summarized in Sect. 3. Section 4 studies the main result which is stated in a
theorem form. Finally conclusions in Sect. 5 close the chapter.

2 Historical Review

How well can functions be approximated in a finite interval by the output of a con-
trollable and observable SISO fractional linear time-invariant system? This question
was first considered in the framework of constructing the inverse of a linear system
in the integer order system basin [12]. Here we want to extend this problem for the
first time, in a more comprehensive field, i.e., fractional order systems. Although in
[13] Unser’s method has been extended for fractional systems, the method presented
in this chapter is completely different and has a more general form.

Over the past few decades, the theory of linear control theory has centered on
stability properties that only really make sense on an infinite interval. However, there
are many problems in which the only thing of interest is a finite interval. Indeed, this
work began with questions of constructing flyable trajectories for linear systems
[14]. Since the appearance of those initial papers, there has been a growing interest
on the construction of curve approximator using linear control theory, which has
developed into the theory of interpolating and smoothing splines.

The theory of interpolating splines began with the paper of Schoenberg [15] in
1946 and has begun to be widely used since 1960s with the availability of digital
computers. The theory of smoothing splines began with the work of [16]. A more
theoretic problem can be found in [14]. A body of literature has developed around
the concept of control theoretic splines. The initial work was about flight control
application [11].
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In the area of smoothing splines, Martin and colleagues have developed the
theory of smoothing splines based on linear control theory [17]. Some modifications
in a more general prospective under weaker conditions and more general spaces,
e.g., Banach spaces, of the problem studied in [17] were treated in [17] and [18]
recently. These works were motivated by the trajectory planning problem to avoid
high accelerations that were observed when it was required to be exactly at point
at a given time. The constraint of interpolation was relaxed to approximation,
and a simple optimal control problem yielded generalized smoothing splines. This
technique was shown to be adaptable to a number of situations not easily handled
with traditional polynomial smoothing spline techniques.

The question in the background of all of the control theoretic splines was about
its convergence. This problem was specifically discussed in [19]. Reference [20]
also gives a fairly comprehensive theory of convergence of splines in a L2 sense.
However, it was necessary to impose some rather restrictive conditions on the
linear system, which although were natural from an approximation view point, they
were not natural from the viewpoint of control theory. Beside these restrictions and
developments, we want to extend these tasks to a more general form, i.e., fractional
order control systems. The new theory might have an important impact on the
interpolation and spline theory. Moreover, this methodology can be used fairly in
the signal processing and system identification.

3 Preliminaries

Fractional calculus as an extension to ordinary calculus possesses definitions that
stem from the definitions existing for ordinary derivatives. Some of the current
definitions for fractional derivatives are described in [21]. The Riemann–Liouville
definition is the simplest definition to use. Based on this definition, the qth order
fractional integral of f ∈ L1[0, t] and the terminal value a is given by [22]:

Jq
a f (t) = fq(t) =

1
Γ(q)

t∫

a

(t− s)q−1 f (s)ds; q ∈ R+ (6.1)

where the Euler–Gamma function is defined as follows:

Γ(q) =
∞∫

0

e−quq−1du; q > 0 (6.2)

Another definition for the fractional derivative is the Caputo’s definition [22]:

Dα
∗ f (t) = Jm−α

a Dm f (t) =

⎧⎨
⎩

1
Γ(m−α)

t∫
a

f (m)(τ)
(t−τ)α+1−m dτ m− 1 < α < m

dm

dtm f (t) α = m
(6.3)
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The following property holds for the Laplace transform of the Caputo derivative
[23]:

L{Dα
∗ f (t)}= sα L{ f (t)}−

m−1

∑
k=0

sα−k−1 f (k)(0) (6.4)

It can be seen that in the Caputo derivative, one needs the integer order derivatives
of the initial conditions while in the Riemann–Liouville derivative, the fractional
derivative of the initial conditions is used. Therefore, it is more suitable to use
Caputo definition.

Miller and Ross in [24] introduced a so-called sequential fractional derivative in
the following way: MRD

MRDα
= Dα , 0 < α ≤ 1

MRDkα
= MRDα

MRD(k−1)α
, k = 2,3, . . . (6.5)

where Dα is the Caputo fractional derivative. Next, we define a sequential fractional
differential equation in an operator format as follows:

(
MR

Dnα + an−1MRD(n−1)α + · · ·+ a1MRDα + a0

)
y(t) = f (t) (6.6)

without loss of generality we restrict 0 < α < 1.
As in the usual case, it is easy to obtain the connection between (6.6) and the

corresponding system of linear fractional differential equations. If we apply the
following change of variables to (6.6):

x1(t) = y(t),Dα x j(t) = x j+1(t), ( j = 1,2, . . . ,n− 1) (6.7)

where we have used the Caputo fractional derivative. Using the above notation we
have:

Dα x1 = x2,

Dα x2 = x3,

...

Dα xn−1 = xn,

Dα xn =−
n−1

∑
k=0

akxk + f (t) (6.8)

Or in a matrix form with a companion matrix A,

Dα x(t) = Ax(t)+ f (t) (6.9)
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This is a standard linear fractional differential equation (LFDE).

Definition 6.1 ([25]). Let 1 ≤ p < ∞ and (S,Σ ,μ) be a measure space. Consider
the set of all measurable functions from S to C (or R) whose absolute value raised
to the p-th power has finite integral, or equivalently, that:

|| f ||p :=

(∫
S
| f |pdμ

)1/p

< ∞ (6.10)

In this chapter, we consider a special case with p = 2 which is the most important
case in the Lp spaces. Consider the dynamical system:

Dα x(t) = Ax(t)+ bu(t)

y = Cx (6.11)

Definition 6.2 ([26]). The system (6.11) is observable on [t0, t f ] iff x(t) for t ∈
[to, t f ] can be deduced from knowledge of y(t) and u(t) on [t0, t f ].

Definition 6.3 ([26]). System (6.11) is controllable iff for any (x0,x1) there exists
a control u(t) defined on [t0, t f ] which drives the initial state x(t0) = x0 to the final
state x(t f ) = x1.

4 Main Results

As in the integer order case, let xh and xp be the homogeneous and particular
solutions of (6.9), respectively.

Proposition 6.1. For the LFDE (6.9), we have the general solution as follows:

x(t) = xh(t)+ xp(t) (6.12)

Proof. Inserting xh and xp in (6.9) we have:

Dα xh = Axh,

Dα xp = Axp + f ,

⇔ Dα x = Dα(xh + xp) = Dα xh +Dαxp = Axh +(Axp + f )

= A(xh + xp)+ f = Ax+ f . (6.13)

So based on this proposition it is sufficient to find the homogeneous and particular
solutions separately. Using a similar method in finding the homogeneous solution
for integer order differential equations, we can find the homogeneous solution for
LFDE as:

xh(t) =
∞

∑
k=0

Ak(t)(1+k)α−1

Γ[(k+ 1)α]
M (6.14)
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To show that this can be the homogenous solution of (6.9), based on the differinte-
grability of xh it is easy to differentiate (6.14) [27]:

Dα

(
∞

∑
k=0

Ak(t)(1+k)α−1

Γ[(k+ 1)α]
M

)
=

∞

∑
k=0

AkDα (t)(1+k)α−1

Γ[(k+ 1)α]
M

=
∞

∑
k=0

Ak (t)
kα−1Γ((1+ k)α)

Γ[(k+ 1)α]Γ(kα)
M = A.

∞

∑
j=0

A j(t)(1+ j)α−1

Γ[( j+ 1)α]
M (6.15)

where M is a constant matrix. Also one can show that the particular solution is as
follows [28]:

xp =

t∫

0

∞

∑
k=0

Ak(t− ζ )(1+k)α−1

Γ[(k+ 1)α]
f (ζ )dζ

=
∞

∑
k=0

Ak

Γ[(k+ 1)α]

t∫

0

(t− ζ )(k+1)α−1 f (ζ )dζ (6.16)

Therefore, the general solution is:

x(t) = xh(t)+ xp(t) =
∞

∑
k=0

Ak(t)(1+k)α−1

Γ[(k+ 1)α]
M

+
∞

∑
k=0

Ak

Γ[(k+ 1)α]

t∫

0

(t− ζ )(k+1)α−1 f (ζ )dζ (6.17)

Now we return to a control system problem. Consider a fractional control system
with zero initial conditions and companion matrix which is not a restrictive
assumption:

Dα x(t) = Ax(t)+ bu(t)

y = Cx (6.18)

According to the previously developed theory, we can write:

y = Cx =C.
∞

∑
k=0

Ak

Γ[(k+ 1)α]

t∫

0

(t− ζ )(k+1)α−1bu(ζ )dζ

=
∞

∑
k=0

CAk

Γ[(k+ 1)α]

t∫

0

(t− ζ )(k+1)α−1bu(ζ )dζ (6.19)
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Now we present the main result of the chapter:

Theorem 6.1. Consider the system (6.18) which is controllable and observable.
Defining a linear operator as follows:

Θ(u)(t) =

t∫

0

C
∞

∑
k=0

Ak(t− ζ )(1+k)α−1

Γ[(k+ 1)α]
bu(ζ )dζ (6.20)

Therefore, for every m(t) ∈ L2[0,T ] there exists a u ∈ L2[0,T ] such that:

inf
u∈L2[0,T ]

T∫

0

(m(t)− y(t))2dt = 0 (6.21)

Proof. It is enough to establish that the range space of the Θ(u) is dense in L2[0,T ].
Suppose that Θ(u) is not dense in L2[0,T ]. Thus there exists a nonzero function
v ∈ L2[0,T ] such that 〈Θ(u),v〉= 0 for all u ∈ L2[0,T ]. Thus:

〈Θ(u),u〉 =
T∫

0

v(t)

T∫

0

C(t− ζ )α−1
∞

∑
k=0

Ak(t− ζ )kα

Γ[(k+ 1)α]
bu(ζ )dζdt

=
∞

∑
k=0

CAkb
Γ[(k+ 1)α]

T∫

0

v(t)

T∫

0

(t− ζ )(k+1)α−1u(ζ )dζdt

=
∞

∑
k=0

CAkb
Γ[(k+ 1)α]

T∫

0

T∫

ζ

(t− ζ )(k+1)α−1u(ζ )dζv(t)dt u(ζ )

= 〈u,Θ∗(v)〉 (6.22)

where

Θ∗(v)(ζ ) =
∞

∑
k=0

CAkb
Γ[(k+ 1)α]

T∫

ζ

(t− ζ )(k+1)α−1v(t)dt

=

T∫

ζ

∞

∑
k=0

CAkb
Γ[(k+ 1)α]

(t− ζ )(k+1)α−1v(t)dt (6.23)

Therefore, it is concluded that Θ∗(v)(ζ ) = 0. Now we use the fact that Θ(u) is onto
if Θ∗(v) is one-to-one [29]. It suffices to show that v = 0 almost everywhere. Let

℘(ζ ) =
T∫

ζ

∞

∑
k=0

Akb
Γ[(k+ 1)α]

(t− ζ )(k+1)α−1v(t)dt (6.24)
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Using the following important facts [30]

1. Dα
ζ ζ l =

Γ(l + 1)
Γ(l + 1−α)

ζ l−α

2. Dα
ζ

ζ∫

0

K(ζ ,τ)dτ =

ζ∫

0

Dα
ζ K(ζ ,τ)dτ + lim

τ→ζ−0
Dα−1

ζ K(ζ ,τ) (6.25)

We deduce that

Dα
ζ ℘(ζ ) = Dα

ζ

T∫

ζ

∞

∑
k=0

Akb
Γ[(k+ 1)α]

(t− ζ )(k+1)α−1v(t)dt

=

⎧⎨
⎩

T∫

ζ

∞

∑
k=0

Akb
Γ[(k+ 1)α]

Dα
ζ (t− ζ )(k+1)α−1v(t)dt + bv(ζ )

⎫⎬
⎭

= −A

T∫

ζ

∞

∑
j=0

A jb
Γ[(k+ 1)α]

(t− ζ )( j+1)α−1v(t)dt− bv(ζ )

= −A℘(ζ )− bv(ζ ) (6.26)

or briefly

Dα
ζ ℘(ζ ) =−A℘(ζ )− bv(ζ ), ℘(T ) = 0 (6.27)

Hence, from Θ∗(v)(ζ ) = 0 and using the controllability condition of the original
system (A,b), it is obtained that for an initial value ℘0 we have

∞

∑
k=0

(−A)kζ (k+1)α−1

Γ((k+ 1)α)
℘0−

∞

∑
k=0

(−A)k

Γ((k+ 1)α)

ζ∫

0

(ζ − τ)(k+1)α−1bv(τ)dτ = 0

⇒ C℘(ζ ) = 0 (6.28)

Now introducing the vector valued function℘(ζ ) as follows, we can manipulate the
relations easily:

C = [c1 . . . cn], ℘(ζ ) = [℘1(ζ ) ℘2(ζ ) . . . ℘n(ζ )] (6.29)

Using these notations, we have

n

∑
i=0

ci℘i(ζ ) = 0 (6.30)
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since (A,b) and (A,C) are controllable and observable, respectively. Thus, we can
write:

n

∑
i=0

ciD
α
ζ℘i(ζ ) = 0 (6.31)

Introducing the following state variables:

Dα
ζ ℘1 =−℘i+1, i = 1,2, . . . ,n− 1 (6.32)

we have:

Dα
ζ

⎡
⎢⎢⎢⎣

℘1

℘2
...
℘n

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 · · · 0

0 0 −1 0
...

...
. . .

. . . −1 0
0 0 · · · · · · −1
c1
cn

c1
cn

· · · · · · c1
cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

℘1

℘2
...
℘n

⎤
⎥⎥⎥⎦= Q

⎡
⎢⎢⎢⎣

℘1

℘2
...
℘n

⎤
⎥⎥⎥⎦ (6.33)

Using (6.17), we have:

℘(ζ ) =
∞

∑
k=0

(Q)kζ (k+1)α−1

Γ((k+ 1)α)
℘(0) (6.34)

Since ℘(T) = 0 we conclude that ℘(0) = 0 and consequently ℘(ζ ) = 0. This
establishment is based on the assumption that cn = 0, but this approach can be easily
extended to more general case. Therefore, we have:

∞

∑
k=0

(−A)kζ (k+1)α−1

Γ((k+ 1)α)
℘0−

∞

∑
k=0

(−A)k

Γ((k+ 1)α)

ζ∫

0

(ζ − τ)(k+1)α−1bv(τ)dτ = 0 (6.35)

and hence that

℘0−
∞

∑
k=0

(A)k

Γ((k+ 1)α)

ζ∫

0

(τ)(k+1)α−1bv(τ)dτ = 0 (6.36)

Differintegrating of (6.36) once we have:

Dα
ζ

⎛
⎝℘0−

∞

∑
k=0

(A)k

Γ((k+ 1)α)

ζ∫

0

(τ)(k+1)α−1bv(τ)dτ

⎞
⎠

= Dα
ζ ℘0−

∞

∑
k=0

(A)k

Γ((k+ 1)α)
Dα

ζ

ζ∫

0

(τ)(k+1)α−1bv(τ)dτ
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= 0− lim
τ→ζ−0

Dα
ζ (τ)

(k+1)α−1bv(τ) = 0

⇒ v(ζ ) = 0 a.e. (6.37)

Hence, this shows that Θ∗ is one-to-one and hence that Θ is onto a dense subspace
of L2[0,T ]. 
�

This idea indicates an important point in control theory. Indeed given a function
in L2 space, one can propose a fractional order transfer function which can
approximate that function in term of L2 norm. One of the main advantages of this
idea is that we can analyze a very complex function in L2 space by transferring
it to a fractional order transfer function space which may exhibit a more general
transfer function than the usual ones. By transferring it to the second space, we can
develop an analysis using well-known existing methods such as frequency methods,
root-locus methods, and state space techniques, which are well established and easy
to use.

5 Conclusions

In this chapter, considering a fractional differential equation system with constant
matrices and using some facts from functional analysis, we proved that any arbitrary
function belonging to L2 can be approximated by an output of a linear time-invariant
fractional differential control system. More precisely, we gave a proof that every
L2 function can be represented as the L2 limit of functions that are the outputs of
fractional linear control systems. Our analysis was developed in the Hilbert space
time-invariant fractional differential control system.
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Chapter 7
Stabilization of Fractional Order
Unified Chaotic Systems via Linear
State Feedback Controller

E.G. Razmjou, A. Ranjbar, Z. Rahmani, R. Ghaderi, and S. Momani

1 Introduction

The real world sometime possesses a fractional order dynamic [17]. Accordingly,
fractional order controllers such as CRONE [13], TID [7], fractional PID controller
[14], and lead-lag compensator [16] have been implemented to improve the
performance and robustness of some closed loop control systems. An application
of fractional algebra is the modeling of the fractional order chaotic systems. This
kind of modeling provides more accuracy, less complexity as well as the possibility
to increase the stability region [17].

Chaos, as an application of the fractional order modeling, is a very interesting
nonlinear phenomenon. High sensitivity to initial conditions is a main character-
istic of chaotic systems. Therefore, these systems are found to be difficult for
synchronization or control [5]. Due to the complexity of these systems, control
and stabilization task of chaotic nonlinear systems have been one of the arising
interests in the control engineering area. In the past decade, great efforts have been
devoted toward the chaos control, including stabilization of unstable equilibrium
points, and more generally, unstable periodic solutions. Particularly, in case of chaos
suppression of known chaotic systems, some useful methods have been developed.
These include time delay feedback control [15], bang–bang control [19], optimal
control [8], intelligent control [22], adaptive control [23], etc.

A unified chaotic system is a chaotic system that depends on a parameter,
e.g., α ∈ [0,1]. If 0 ≤ α < 0.8, the unified chaotic system is reduced to the
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generalized Lorenz chaotic system; the unified chaotic system is altered to the Lü
chaotic system when α = 0.8. For 0.8<α ≤ 1, the unified chaotic system is changed
to the generalized Chen chaotic system.

Chen [3] considered that the parameter of the two unified chaotic systems
is unknown. Hence, an adaptive controller was used to achieve synchronization
based on Lyapunov stability theory. Chen [4] investigated the stabilization and
synchronization of the unified chaotic system via an impulsive control method.
Lu [10] used linear feedback and adaptive control to synchronize identical unified
chaotic systems with only one controller. Ucar [18] used a nonlinear active
controller to synchronize two coupled unified chaotic systems with three control
inputs. Wang [20] proved that the unified chaotic system is equivalent to a passive
system and asymptotically stabilized it at equilibrium points. Wang [21] studied
the synchronization problem of two identical unified chaotic systems using three
different methods. They used a linear feedback controller, a nonlinear feedback
method, and an impulsive controller to synchronize the systems. In [24] based on the
sliding mode theory, synchronization of two identical unified chaotic is discussed.

However, in this chapter, a linear state feedback controller stabilizes a fractional
order unified chaotic system. An advantage of the proposed controller can be seen
when it is used to stabilize a fractional order unified chaotic system, by means
of increasing the stability region. In contrast, the application on the integer order
system is shown to be failed.

The chapter is organized as follows: Sect. 2 includes the basic definition and
preliminaries. A state feedback controller is proposed to stabilize the fractional
order unified chaotic systems in Sect. 3. Results of numerical simulation are given
in Sect. 4, to illustrate the effectiveness of the proposed controller. The chapter will
be closed by a conclusion in Sect. 5.

2 Preliminary Definitions

2.1 Fractional Algebra

Among several definitions of fractional derivatives, the following Caputo-type
definition [1] is more popular with respect the rest [17].

0Dq
t f (t) =

⎧⎨
⎩

1
Γ(m−q)

∫ t
0

f m(τ)
(t−τ)q+1−m dτ, m− 1 < q≤ m

dm

dtm f (t) q = m
(7.1)

where m is the first integer number larger than q.

Definition 1. [6] A saddle point of index 2 is a saddle point with one stable
eigenvalue and two unstable ones.
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Definition 2. [2] Assume that a 3D fractional order chaotic system of ẋ = f (x)
displays a chaotic attractor. For every scroll existing in the chaotic attractor, this
system has a saddle point of index 2 encircled by its respective scroll.

Theorem 1. [11] Assume that a 3D chaotic system ẋ = f (x) displays a chaotic
attractor with n scrolls. Suppose Λ is a set of unstable eigenvalues of these n saddle
points. A necessary condition for fractional system Dqx = f (x) to exhibit an n-scroll
chaotic attractor, similar to the chaotic attractor of system ẋ = f (x), to keep the
eigenvalues λ ∈ Λ in the unstable region, satisfies:

q >
2
π

tan−1
( |Im(λ )|

Re(λ )

)
, ∀λ ∈ Λ (7.2)

Otherwise, at least one of these equilibriums becomes asymptotically stable and
then attracts the nearby trajectories.

2.2 The Unified Chaotic System

[9] considered a kind of chaotic system which describes a class of unified form by:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = (25α + 10)(y− x)
dy
dt = (28− 35α)x− xz+(29α− 1)y
dz
dt = xy− 8+α

3 z

(7.3)

where x,y,z are the state variables and α ∈ [0,1] is a “homogeneity” parameter of
the system. [9] calls (7.3) as unified chaotic system due to chaotic behavior for
any α ∈ [0,1]. When 0 ≤ α < 0.8, system (7.3) is called as the generalized Lorenz
chaotic system. For α = 0.8, it is called Lü chaotic system. Similarly, it is called
generalized Chen chaotic system when 0.8 < α ≤ 1. However, let us introduce a
fractional version of dynamic (7.3) as in (7.4). Standard derivatives of (7.3) are
accordingly replaced by the following fractional derivatives:

⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = (25α + 10)(y− x)
dqy
dtq = (28− 35α)x− xz+(29α− 1)y
dqz
dtq = xy− 8+α

3 z

(7.4)

where q with 0 < q≤ 1 is the fractional order. Chaos in the fractional order unified
system of Chen, Lü, and Lorenz-Like for q = 0.9,0.95,0.99 are shown in [12].



88 E.G. Razmjou et al.

From (7.4), a generalized scheme of the fractional order unified chaotic system can
be given as follows: ⎧⎪⎪⎨

⎪⎪⎩

dqx
dtq = a(y− x)
dqy
dtq = bx− xz+ cy
dqz
dtq = xy− dz

(7.5)

3 State Feedback Control

3.1 Design of the Controller for Fractional Order Chen System

The fractional order Chen system is given as follows [12]:

⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq = (c1− a1)x− xz+ c1y
dqz
dtq = xy− b1z

(7.6)

To obtain the Chen chaotic behavior, parameters in (7.6) are set to [12]:

a1 = 40, b1 = 3, c1 = 28 (7.7)

The equilibrium points of the Chen system are as follows:

O1 = (0,0,0)

O2 = (6.9282,6.9282,16)

O3 = (−6.9282,−6.9282,16) (7.8)

From (7.6) the Jacobian matrix of the Chen system is achieved by:

J =

⎡
⎣ −a1 a1 0

c1− a1− z c1 −x
y x −b1

⎤
⎦ (7.9)

Accordingly, the corresponding eigenvalues of the equilibrium (7.8) are obtained as:

O1 → λ1 =−3, λ2 = 20, λ3− 32

O2,3 → λ1 =−20.2304, λ2,3 = 2.6152± 13.5268 j (7.10)
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From definition 1, O2,3 are of saddle point of index 2. Therefore, from theorem 1
the fractional order Chen system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)
= 0.8784 (7.11)

Otherwise the system is asymptotically stable. In order to stabilize the fractional
order Chen system, a control input is added into the second state of the system, by
the following: ⎧⎪⎪⎨

⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq = (c1− a1)x− xz+ c1y+ u
dqz
dtq = xy− b1z

(7.12)

A linear state feedback controller is proposed to construct the input signal u as in
the following form:

u =−(c1− a1)x− k1y (7.13)

Where k1is a constant gain by k1 = 12.7.

Theorem 2. The proposed state feedback controller in (7.13) increases the stability
region of the fractional order Chen system and stabilizes the system at their stable
equilibrium points.

Proof. Using the state feedback controller changes the equilibrium points and the
Jacobian matrix J to:

O′1 = (0,0,0)

O′2 = (6.7749,6.7749,15.3)

O′3 = (−6.7749,−6.7749,15.3) (7.14)

J =

⎡
⎣ −a1 a1 0
−z c1− k1 −x
y x −b1

⎤
⎦ (7.15)

The corresponding eigenvalues of the equilibrium points in (7.14) are:

O′1 → λ1 =−3, λ2 = 15.3, λ3 =−40

O′2,3 → λ1 =−28.0829, λ2,3 = 0.1915± 11.4331 j (7.16)

Similarly, from the definition 1, O′2,3 are of the saddle point of index 2. Hence, the
fractional order Chen system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)
= 0.9893 (7.17)

Otherwise the system is asymptotically stable. This means that for q < 0.9893 the
fractional order Chen system is asymptotically stable. �
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3.2 Design of the Controller for the Fractional Order Lü System

The fractional order Lü system is also given by [12]:
⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq =−xz+ c1y
dqz
dtq = xy− b1z

(7.18)

The chaos in the Lü dynamic occurs when parameters in (7.18) are set to [12]:

a1 = 35, b1 = 3, c1 = 30 (7.19)

From (7.18) and (7.19), the equilibrium points and the Jacobian matrix of the Lü
system are, respectively, as follows:

O1 = (0,0,0)

O2 = (9.4868,9.4868,30)

O3 = (−9.4868,−9.4868,30) (7.20)

J =

⎡
⎣ −a1 a1 0
−z c1 −x
y x −b1

⎤
⎦ (7.21)

Then the corresponding eigenvalues of the equilibrium points in (7.20) are:

O1 → λ1 =−3, λ2 = 30, λ3 =−35

O2,3 → λ1 =−19.3701, λ2,3 = 5.6851± 17.1149 j (7.22)

From definition 1, O2,3 are of the saddle point of index 2. Thus, the fractional order
Lü system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)
= 0.7958 (7.23)

Otherwise the system is asymptotically stable.
Similar to the previous section, to stabilize the fractional order Lü system, a

controller is applied to the 2ns state, according to:

⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = a1(y− x)
dqy
dtq =−xz+ c1y+ u
dqz
dtq = xy− b1z

(7.24)
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The linear state feedback controller u in the following form stabilizes the chaotic
dynamic:

u =−k1y (7.25)

where k1 as a constant gain is set to k1 = 16.5.

Theorem 3. The proposed state feedback controller in (7.25) stabilizes the system
at their stable equilibrium points while increasing the stability region of the
fractional order Lü system.

Proof. The state feedback controller in the fractional order Lü system similar to
(7.24) the equilibrium points and Jacobian matrix are, respectively, achieved by:

O′1 = (0,0,0)

O′2 = (6.3639,6.3639,13.5)

O′3 = (−6.3639,−6.3639,13.5) (7.26)

J =

⎡
⎣ −a1 a1 0
−z c1− k1 −x
y x −b1

⎤
⎦ (7.27)

Thus, the corresponding eigenvalues of the equilibrium points in (7.26) are:

O′1 → λ1 =−3, λ2 = 13.5, λ3 =−35

O′2,3 → λ1 =−24.863, λ2,3 = 0.1815± 10.6767 j (7.28)

Again from the definition 1, O′2,3 are the saddle points of index 2. Therefore, the
fractional order Lü system becomes chaotic when:

q >
2
π

tan−1
( |Im(λ2,3)|

Re(λ2,3)

)
= 0.9892 (7.29)

Otherwise the system is asymptotically stable. This means, for q < 0.9892 the
fractional order Lü system is asymptotically stable. �

4 Simulation

A simulation approach has been carried out using SIMULINKTM. Dormand–Prince
solver is used to solve the system of differential equations during the simulation.
Results of the unified chaotic Chen and Lü dynamics are shown for q = 0.96, q =
0.98, q = 1. Initial conditions of the states are selected as (10,15,25). Simulation
results show that the proposed state feedback controller stabilizes the fractional
order unified chaotic systems while the behavior of the equivalent integer one still
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Fig. 7.1 Stabilization of the fractional order Chen system at their stable equilibrium points
(O′2 and O′3), via linear state feedback controller for q = 0.96 and q = 0.98
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Fig. 7.2 Chaos behaviour in the integer order Chen system despite of using the state feedback
controller

kept chaotic. Figure 7.1 shows that the fractional order Chen system is stabilized for
q = 0.96 and q = 0.98 with state feedback controller in (7.13). Figure 7.2 shows the
chaotic behavior of an integer order Chen system, despite of using the same state
feedback controller in the system. Similar result is achieved in Fig. 7.3 when the
fractional order Lü system is stabilized by the controller for q = 0.96 and q = 0.98.
In the same way, Fig. 7.4 shows the chaotic behavior of integer order of the Lü
system using the same state feedback controller.
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Fig. 7.3 Stabilization of the fractional order Lü system at their stable equilibrium points
(O′2 and O′3), via linear state feedback controller for q = 0.96 and q = 0.98.
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Fig. 7.4 Chaos behaviour in the integer order Lü system despite of using the state feedback
controller

5 Conclusion

Three chaotic Lorenz, Chen, and Lü systems as unified systems will be separately
shown unified by a same dynamic. These systems will separately be excited when
a relevant parameter α is accordingly adjusted. A linear state feedback controller
is gained to stabilize the unified chaotic systems at their stable equilibrium points.
The controller also increases the stability region with respect to their integer order
counterpart. Simulation approach is given to verify the outcome. The approach
signifies the performance as well as the reliability of the proposed state feedback
controller.
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Part II
Fractional Variational Principles and

Fractional Differential Equations



Chapter 8
Fractional Variational Calculus
for Non-differentiable Functions

Agnieszka B. Malinowska

1 Introduction

The fractional calculus (FC) is one of the most interdisciplinary fields of
mathematics, with many applications in physics and engineering. The history of FC
goes back more than three centuries, when in 1695 the derivative of order α = 1/2
was described by Leibniz. Since then, many different forms of fractional operators
were introduced: the Grunwald–Letnikov, Riemann–Liouville, Riesz, and Caputo
fractional derivatives [23, 34, 38]) and the more recent notions see [11, 19, 24, 25].
Fractional calculus is nowadays the realm of physicists and mathematicians, who
investigate the usefulness of such non-integer order derivatives and integrals in
different areas of physics and mathematics (see, e.g., [10, 18, 23]). It is a successful
tool for describing complex quantum field dynamical systems, dissipation, and
long-range phenomena that cannot be well illustrated using ordinary differential
and integral operators (see, e.g., [15, 18, 24, 36]). Applications of FC are found in
classical and quantum mechanics, field theories, variational calculus, and optimal
control (see, e.g., [14, 17, 20]).

The calculus of variations is an old branch of optimization theory that has many
applications both in physics and geometry. Apart from a few examples known since
ancient times such as Queen Dido’s problem (reported in The Aeneid by Virgil), the
problem of finding optimal curves and surfaces has been posed first by physicists
such as Newton, Huygens, and Galileo. Their contemporary mathematicians,
starting with the Bernoulli brothers and Leibniz, followed by Euler and Lagrange,
invented the calculus of variations of a functional in order to solve those problems.
Fractional calculus of variations (FCV) unifies the calculus of variations and the
fractional calculus, by inserting fractional derivatives into the variational integrals.

A.B. Malinowska (�)
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This occurs naturally in many problems of physics or mechanics, in order to
provide more accurate models of physical phenomena. The FCV started in 1996
with the work of Riewe [36]. Riewe formulated the problem of the calculus of
variations with fractional derivatives and obtained the respective Euler–Lagrange
equations, combining both conservative and nonconservative cases. Nowadays
the FCV is a subject under strong research. Different definitions for fractional
derivatives and integrals are used, depending on the purpose under study. Investiga-
tions cover problems depending on Riemann–Liouville fractional derivatives (see,
e.g., [6, 15, 16, 32]), the Caputo fractional derivative (see, e.g., [1, 7, 28, 30]), the
symmetric fractional derivative (see, e.g., [24]), the Jumarie fractional derivative
(see, e.g., [4, 5, 19–22, 27]), and others [2, 11, 14]. For applications of the FCV
we refer the readers to [15, 20, 24, 35]. Although the literature of FCV is already
vast, much remains to be done.

In this paper we study problems of FCV which are defined in terms of the
Jumarie fractional derivatives and integrals. The Euler–Lagrange equations for such
problems with and without constraints were recently shown in [4]. Here we develop
further the theory by proving necessary optimality conditions for more general
problems of FCV with a Lagrangian that may also depend on the unspecified end-
points y(a), y(b). More precisely, the problem under our study: to extremize a
functional which is defined in terms of the Jumarie fractional operators and having
no constraint on y(a) and/or y(b). The novelty is the dependence of the integrand L
on the a priori unknown final values y(a), y(b). The new natural boundary conditions
(8.5)–(8.6) have important implications in economics (see [12] and the references
therein).

The paper is organized as follows. Section 2 presents the necessary definitions
and concepts of Jumarie’s fractional calculus. Our results are formulated, proved,
and illustrated through examples in Sect. 3. Main results of the paper include
necessary optimality conditions with the generalized natural boundary conditions
(Theorem 8.1) that become sufficient under appropriate convexity assumptions
(Theorem 8.2). We finish with Sect. 4 by providing conclusions.

2 Fractional Calculus

For an introduction to the classical fractional calculus we refer the readers to [11,
23, 34, 38]. In this section we briefly review the main notions and results from the
recent fractional calculus proposed by Jumarie [19–21].

Definition 8.1. Let f : [a,b]→R be a continuous function. The Jumarie fractional
derivative of f is defined by

f (α)(t) :=
1

Γ (−α)

∫ t

0
(t− τ)−α−1( f (τ)− f (a))dτ, α < 0,
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where Γ (z) =
∫ ∞

0 tz−1e−t dt. For positive α , one will set

f (α)(t) = ( f (α−1)(t))′ =
1

Γ (1−α)

d
dt

∫ t

0
(t− τ)−α( f (τ)− f (a))dτ,

for 0 < α < 1, and

f (α)(t) := ( f (α−n)(t))(n), n≤ α < n+ 1, n≥ 1.

The Jumarie fractional derivative has the following property:

• The αth derivative of a constant is zero.
• Assume that 0 < α ≤ 1, then the Laplace transform of f (α) is

L{ f (α)(t)}= sαL{ f (t)}− sα−1 f (0).

• (g(t) f (t))(α) = g(α)(t) f (t)+ g(t) f (α)(t), 0 < α < 1.

Example 8.1. Let f (t) = tγ . Then f (α)(x) = Γ (γ + 1)Γ−1(γ + 1−α)tγ−α , where
0 < α < 1 and γ > 0.

Example 8.2. The solution of the fractional differential equation

x(α)(t) = c, x(0) = x0, c = constant,

is

x(t) =
c

α!
tα + x0,

with the notation α! := Γ (1+α).

The integral with respect to (dt)α is defined as the solution of the fractional
differential equation

dy = f (x)(dx)α , x≥ 0, y(0) = y0, 0 < α ≤ 1, (8.1)

which is provided by the following result.

Lemma 8.1. Let f (t) denote a continuous function. The solution of the (8.1) is
defined by the equality

∫ t

0
f (τ)(dτ)α = α

∫ t

0
(t− τ)α−1 f (τ)dτ, 0 < α ≤ 1.

Example 8.3. Let f (t) = 1. Then
∫ t

0(dτ)α = tα , 0 < α ≤ 1.

Example 8.4. The solution of the fractional differential equation

x(α)(t) = f (t), x(0) = x0
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is

x(t) = x0 +Γ−1(α)
∫ t

0
(t− τ)α−1 f (τ)dτ.

One can easily generalize the previous definitions and results for functions with a
domain [a,b]:

f (α)(t) =
1

Γ (1−α)

d
dt

∫ t

a
(t− τ)−α( f (τ)− f (a))dτ

and ∫ t

a
f (τ)(dτ)α = α

∫ t

a
(t− τ)α−1 f (τ)dτ.

For the discussion to follow, we will need the following formula of integration
by parts:

∫ b

a
u(α)(t)v(t)(dt)α = α![u(t)v(t)]ba−

∫ b

a
u(t)v(α)(t)(dt)α , (8.2)

where α! := Γ (1+α).

3 Main Results

Let us consider the functional defined by

J (y) =
∫ b

a
L(x,y(x),y(α)(x),y(a),y(b))(dx)α ,

where L(·, ·, ·, ·, ·) ∈C1([a,b]×R
4;R) and x→ ∂3L(t) has continuous α-derivative.

The fractional problem of the calculus of variations under consideration has the
form

J (y)−→ extr

(y(a) = ya), (y(b) = yb),

y(·) ∈C0. (8.3)

Using parentheses around the end-point conditions means that the conditions may
or may not be present.

Along the work we denote by ∂iL, i = 1, . . . ,5, the partial derivative of function
L(·, ·, ·, ·, ·) with respect to its ith argument.

The following lemma will be needed in the next subsection.
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Lemma 8.2. Let g be a continuous function and assume that

∫ b

a
g(x)h(x)(dx)α = 0

for every continuous function h satisfying h(a) = h(b) = 0. Then g≡ 0.

Proof. Can be done in a similar way as the proof of the standard fundamental lemma
of the calculus of variations (see, e.g., [40]).

3.1 Necessary Conditions

Next theorem gives necessary optimality conditions for the problem (8.3).

Theorem 8.1. Let y be an extremizer to problem (8.3). Then, y satisfies the
fractional Euler–Lagrange equation

∂2L(x,y(x),y(α)(x),y(a),y(b)) =
dα

dxα ∂3L(x,y(x),y(α)(x),y(a),y(b)), (8.4)

for all x ∈ [a,b]. Moreover, if y(a) is not specified, then;

∫ b

a
∂4L(x,y(x),y(α)(x),y(a),y(b))(dx)α = α!∂3L(a,y(a),y(α)(a),y(a),y(b)),

(8.5)
if y(b) is not specified, then;

∫ b

a
∂5L(x,y(x),y(α)(x),y(a),y(b))(dx)α =−α!∂3L(b,y(b),y(α)(b),y(a),y(b)).

(8.6)

Proof. Suppose that y is an extremizer of J and consider the value of J at a
nearby function ỹ = y+ εh, where ε ∈ R is a small parameter and h is an arbitrary
continuous function. We do not require h(a) = 0 or h(b) = 0 in case y(a) or
y(b), respectively, is free (it is possible that both are free). Let j(ε) = J (y+ εh).
Then a necessary condition for y to be an extremizer is given by j′(0) = 0.
Hence,

∫ b

a

[
∂2L(·)h(x)+ ∂3L(·)h(α)(x)+ ∂4L(·)h(a)+ ∂5L(·)h(b)

]
(dx)α = 0 , (8.7)

where (·) =
(

x,y(x),y(α)(x),y(a),y(b)
)
. Using integration by parts (8.2) to the

second term we get
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∫ b

a

[
∂2L(·)− dα

dxα ∂3L(·)
]
(dx)α + α!∂3L(·)|x=b h(b)−α!∂3L(·)|x=a h(a)

+
∫ b

a

[
∂4L(·)h(a)+ ∂5L(·)h(b)

]
(dx)α = 0. (8.8)

We first consider functions h such that h(a) = h(b) = 0. Then, by the Lemma 8.2
we deduce that

∂2L(·) = dα

dxα ∂3L(·),

for all x ∈ [a,b]. Therefore, in order for y to be an extremizer to the problem (8.3),
y must be a solution of the fractional Euler–Lagrange equation (8.4). But if y is a
solution of (8.4), the first integral in expression (8.8) vanishes, and then condition
(8.7) takes the form

h(b)

[∫ b

a
∂5L(·)(dx)α +α!∂3L(·)|x=b

]
+ h(a)

[∫ b

a
∂4L(·)dx−α!∂3L(·)|x=a

]
= 0.

If y(a) = ya and y(b) = yb are given in the formulation of problem (8.3), then the
latter equation is trivially satisfied since h(a) = h(b) = 0. When y(b) is free, then
(8.6) holds, when y(a) is free, then (8.5) holds, since h(a) or h(b) is, respectively,
arbitrary.

In the case L does not depend on y(a) and y(b), by Theorem 8.1 we obtain the
following result.

Corollary 8.1. [4, Theorem 1] Let y be an extremizer to problem

J (y) =
∫ b

a
L(x,y(x),y(α)(x))(dx)α −→ extr.

Then, y satisfies the fractional Euler–Lagrange equation

∂2L(x,y(x),y(α)(x)) =
dα

dxα ∂3L(x,y(x),y(α)(x)),

for all x ∈ [a,b]. Moreover, if y(a) is not specified, then;

∂3L(a,y(a),y(α)(a)) = 0,

if y(b) is not specified, then;

∂3L(b,y(b),y(α)(b)) = 0.
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Observe that if α goes to 1, then the operators dα

dxα , (dx)α could be replaced with
d
dx and dx. Thus, in this case we obtain the corresponding result in the classical
context of the calculus of variations (see [29, Corollary 1], [12, Theorem 2.1]).

Corollary 8.2. [29, Corollary 1] If y is a local extremizer for

J (y) =
∫ b

a
L(x,y(x),y′(x),y(a),y(b))dx−→ extr

(y(a) = ya), (y(b) = yb),

then
d
dx

∂3L(x,y(x),y′(x),y(a),y(b)) = ∂2L(x,y(x),y′(x),y(a),y(b)),

for all x ∈ [a,b]. Moreover, if y(a) is free, then;

∂3L(a,y(a),y′(a),y(a),y(b)) =
∫ b

a
∂5L(x,y(x),y′(x),y(a),y(b))dx;

and if y(b) is free, then,

∂3L(b,y(b),y′(b),y(a),y(b)) =−
∫ b

a
∂6L(x,y(x),y′(x),y(a),y(b))dx.

3.2 Sufficient Conditions

In this section we prove sufficient conditions for optimality. Similarly to what
happens in the classical calculus of variations, some conditions of convexity
(concavity) are in order.

Definition 8.2. Given a function L, we say that L(x,y,z, t,u) is jointly convex
(concave) in (y,z, t,u), if ∂iL , i = 2, . . . ,5, exist and are continuous and verify the
following condition:

L(x,y+ y1,z+ z1, t + t1,u+ u1)−L(x,y,z, t,u)

≥ (≤)∂2L(·)y1 + ∂3L(·)z1 + ∂4L(·)t1 + ∂5L(·)u1,

where (·) = (x,y,z, t,u), for all (x,y,z, t,u), (x,y + y1,z + z1, t + t1,u + u1) ∈
[a,b]×R

4.

Theorem 8.2. Let L(x,y,z, t,u) be a jointly convex (concave) in (y,z, t,u). If y0

satisfies conditions (8.4)–(8.6), then y0 is a global minimizer (maximizer) to
problem (8.3).

Proof. We shall give the proof for the convex case. Since L is jointly convex in
(y,z, t,u) for any continuous function y0 + h, we have
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J (y0 + h)−J (y0) =

∫ b

a

[
L(x,y0(x)+ h(x),y(α)

0 (x)+ h(α)(x),y0(a)+ h(a),y0(b)

+ h(b))−L(x,y0(x),y
(α)
0 (x),y0(a),y0(b))

]
(dx)α

≥
∫ b

a

[
∂2L(·)h(x)+ ∂3L(·)h(α)(x)+ ∂4L(·)h(a)

+ ∂5L(·)h(b)
]
(dx)α ,

where (·) =
(

x,y0(x),y
(α)
0 (x),y0(a),y0(b)

)
. We can now proceed analogously to the

proof of Theorem 8.1. As the result we get

J (y0 + h)−J (y0)≥
∫ b

a

[
∂2L(·)− dα

dxα ∂3L(·)
]
(dx)α

h(b)

[∫ b

a
∂5L(·)(dx)α+α!∂3L(·)|x=b

]
+h(a)

[∫ b

a
∂4L(·)dx−α!∂3L(·)|x=a

]
= 0,

since y0 satisfies conditions (8.4)–(8.6). Therefore, we obtain J (y0 + h)≥J (y0).

3.3 Examples

We shall provide examples in order to illustrate our main results.

Example 8.5. Consider the following problem

J (y) =
∫ 1

0

{[
xα

Γ (α + 1)
(y(α))2− 2xαy(α)

]2

+(y(0)− 1)2+(y(1)− 2)2

}
(dx)α −→ extr.

The Euler–Lagrange equation associated to this problem is

dα

dxα

(
2

[
xα

Γ (α + 1)
(y(α))2− 2xαy(α)

]
·
[

2xα

Γ (α + 1)
y(α)− 2xα

])
= 0. (8.9)

Let y = xα + b, where b ∈ R. Since y(α) = Γ (α + 1), it follows that y is a solution
of (8.9). In order to determine b we use the generalized natural boundary conditions
(8.5)–(8.6), which can be written for this problem as,

∫ 1

0
(y(0)− 1)(dx)α = 0,

∫ 1

0
(y(1)− 2)(dx)α = 0.
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Hence, ỹ = xα +1 is a candidate solution. We remark that the ỹ is not differentiable
in [0,1].

Example 8.6. Consider the following problem:

J (y) =
∫ 1

0

[
(y(α)(x))2 + γy2(0) + λ (y(1)− 1)2](dx)α −→min, (8.10)

where γ,λ ∈ R
+. For this problem, the fractional Euler–Lagrange equation and the

generalized natural boundary conditions (see Theorem 8.1) are given, respectively,
as

2
dα

dxα y(α)(x) = 0, (8.11)

∫ 1

0
γy(0)(dx)α = α!y(α)(0), (8.12)

∫ 1

0
λ (y(1)− 1)(dx)α =−α!y(α)(1). (8.13)

Solving (8.11)–(8.13) we obtain that

ȳ(x) =
γλ α!

γλ +(α!)2(λ + γ)
xα +

(α!)2λ
γλ +(α!)2(λ + γ)

is a candidate for minimizer. Observe that problem (8.10) satisfies assumptions of
Theorem 8.2. Therefore ȳ is a global minimizer to this problem. We note that when
α goes to 1 problem (8.10) tends to

K(y) =
∫ 1

0

[
(y′(x))2 + γy2(0)+λ (y(1)− 1)2

]
dx−→min .

with the solution

y(x) =
γλ

γλ +λ + γ
x+

λ
γλ +λ + γ

.

4 Conclusion

In recent years fractional calculus has played an important role in various fields such
as physics, chemistry, biology, economics, modeling, identification, control theory
and signal processing (see, e.g., [3, 9, 13, 25, 26, 33, 37]). The fractional operators
are non-local, therefore they are suitable for constructing models possessing
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memory. This gives several possible applications of the FCV, e.g., in describing
non-local properties of physical systems in mechanics (see, e.g., [10, 24, 35])
or electrodynamics (see, e.g., [8, 39]). The Jumarie fractional derivative is quite
suitable to describe dynamics evolving in a space which exhibit coarse-grained
phenomenon. When the point in this space is not infinitely thin but rather has a
thickness, then it would be better to replace dx by (dx)α , 0 < α < 1, where α
characterizes the grade of the phenomenon. The fractal feature of the space is
transported on time, and so both space and time are fractal. Thus, the increment
of time of the dynamics of the system is not dx but (dx)α . In this note we
generalize some previous results of the FCV (which are defined in terms of the
Jumarie fractional derivatives and integrals) by proving optimality conditions for
problems of FCV with a Lagrangian density depending on the free end-points.
The advantage of using the Jumarie fractional derivative lies in the fact that this
derivative is defined for continuous functions, non-differentiable (see, Example 8.5).
Note that the integrand in problem (8.3) depends upon the a priori unknown final
values y(a) and y(b). The present paper indicates how such problems may be
solved.
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Chapter 9
Fractional Euler–Lagrange Differential
Equations via Caputo Derivatives

Ricardo Almeida, Agnieszka B. Malinowska, and Delfim F.M. Torres

1 Introduction

Fractional calculus plays an important role in many different areas, and has proven
to be a truly multidisciplinary subject [20, 26]. It is a mathematical field as old
as the calculus itself. In a letter dated 30th September 1695, Leibniz posed the
following question to L’Hopital: “Can the meaning of derivative be generalized
to derivatives of non-integer order?” Since then, several mathematicians had
investigated Leibniz’s challenge, prominent among them were Liouville, Riemann,
Weyl, and Letnikov. There are many applications of fractional calculus, for example,
in viscoelasticity, electrochemistry, diffusion processes, control theory, heat conduc-
tion, electricity, mechanics, chaos and fractals, and signals and systems [12, 22].

Several methods to solve fractional differential equations are available, using
Laplace and Fourier transforms, truncated Taylor series, and numerical approxi-
mations. In Almeida and Torres [7] a new direct method to find exact solutions
of fractional variational problems is proposed, based on a simple but powerful
idea introduced by Leitmann, that does not involve solving (fractional) differential
equations [32]. By an appropriate coordinate transformation, we rewrite the initial
problem to an equivalent simpler one; knowing the solution for the new equivalent
problem, and since there exists an one-to-one correspondence between the minimiz-
ers (or maximizers) of the new problem with the ones of the original, we determine
the desired solution. For a modern account on Leitmann’s direct method see [25,26].
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The calculus of variations is a field of mathematics that deals with extremizing
functionals [33]. The variational functionals are often formed as definite integrals
involving unknown functions and their derivatives. The fundamental problem
consists to find functions y(x), x ∈ [a,b], that extremize a given functional when
subject to boundary conditions y(a) = ya and y(b) = yb. Since this can be a
hard task, one wishes to study necessary and sufficient optimality conditions.
The simplest example is the following one: what is the shape of the curve y(x),
x ∈ [a,b], joining two fixed points ya and yb, that has the minimum possible length?
The answer is obviously the straight line joining ya and yb. One can obtain it
solving the corresponding Euler–Lagrange necessary optimality condition. If the
boundary condition y(b) = yb is not fixed, that is, if we are only interested in
the minimum length, the answer is the horizontal straight line y(x) = ya, x ∈
[a,b] (free endpoint problem). In this case we need to complement the Euler–
Lagrange equation with an appropriate natural boundary condition. For a general
account on Euler–Lagrange equations and natural boundary conditions, we refer the
readers to [23, 24] and references therein. Another important family of variational
problems is the isoperimetric one [5]. The classical isoperimetric problem consists
to find a continuously differentiable function y = y(x), x ∈ [a,b], satisfying given
boundary conditions y(a) = ya and y(b) = yb, which minimizes (or maximizes) a
functional

I(y) =
∫ b

a
L(x,y(x),y′(x))dx

subject to the constraint

∫ b

a
g(x,y(x),y′(x))dx = l.

The most famous isoperimetric problem can be posed as follows. Amongst all
closed curves with a given length, which one encloses the largest area? The answer,
as we know, is the circle. The general method to solve such problems involves
an Euler–Lagrange equation obtained via the concept of Lagrange multiplier (see,
e.g., [4]).

The fractional calculus of variations is a recent field, initiated in 1997, where
classical variational problems are considered but in presence of some fractional
derivative or fractional integral [31]. In the past few years an increasing of
interest has been put on finding necessary conditions of optimality for variational
problems with Lagrangians involving fractional derivatives [1, 9–11, 16–19, 27, 28],
fractional derivatives and fractional integrals [3, 6, 15], classical and fractional
derivatives [29], as well as fractional difference operators [13, 14]. A good in-
troduction to the subject is given in the monograph of Klimek [21]. Here we
consider unconstrained and constrained fractional variational problems via Caputo
operators.
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2 Preliminaries and Notations

There exist several definitions of fractional derivatives and fractional integrals,
for example, Riemann–Liouville, Caputo, Riesz, Riesz–Caputo, Weyl, Grunwald–
Letnikov, Hadamard, and Chen. Here we review only some basic features of
Caputo’s fractional derivative. For proofs and more on the subject, we refer the
readers to [20, 26].

Let f : [a,b]→ R be an integrable function, α > 0, and Γ be the Euler gamma
function. The left and right Riemann–Liouville fractional integral operators of order
α are defined by1

aIα
x [ f ] := x �→ 1

Γ (α)

∫ x

a
(x− t)α−1 f (t)dt

and

xIα
b [ f ] := x �→ 1

Γ (α)

∫ b

x
(t− x)α−1 f (t)dt,

respectively. The left and right Riemann–Liouville fractional derivative operators of
order α are, respectively, defined by

aDα
x :=

dn

dxn ◦ aIn−α
x

and

xDα
b := (−1)n dn

dxn ◦ xIn−α
b ,

where n = [α] + 1. Interchanging the composition of operators in the definition
of Riemann–Liouville fractional derivatives, we obtain the left and right Caputo
fractional derivatives of order α:

C
a Dα

x := aIn−α
x ◦ dn

dxn

and

C
x Dα

b := xIn−α
b ◦ (−1)n dn

dxn .

1Along the work we use round brackets for the arguments of functions, and square brackets for the
arguments of operators. By definition, an operator receives a function and returns another function.
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Theorem 9.1. Assume that f is of class Cn on [a,b]. Then its left and right Caputo
derivatives are continuous on the closed interval [a,b].

One of the most important results for the proof of necessary optimality con-
ditions, is the integration by parts formula. For Caputo derivatives the following
relations hold.

Theorem 9.2. Let α > 0, and f ,g : [a,b]→ R be Cn functions. Then,

∫ b

a
g(x) ·Ca Dα

x [ f ](x)dx =
∫ b

a
f (x) · xDα

b [g](x)dx

+
n−1

∑
j=0

[
xDα+ j−n

b [g](x) · xDn−1− j
b [ f ](x)

]b

a

and

∫ b

a
g(x) ·Cx Dα

b [ f ](x)dx =
∫ b

a
f (x) · aDα

x [g](x)dx

+
n−1

∑
j=0

[
(−1)n+ j

aDα+ j−n
x [g](x) · aDn−1− j

x [ f ](x)
]b

a ,

where aDk
x = aI−k

x and xDk
b = xI−k

b whenever k < 0.

In the particular case when 0 < α < 1, we get from Theorem 9.2 that

∫ b

a
g(x) ·Ca Dα

x [ f ](x)dx =
∫ b

a
f (x) · xDα

b [g](x)dx+
[

xI1−α
b [g](x) · f (x)

]b
a

and

∫ b

a
g(x) ·Cx Dα

b [ f ](x)dx =
∫ b

a
f (x) · aDα

x [g](x)dx− [aI1−α
x [g](x) · f (x)

]b
a .

In addition, if f is such that f (a) = f (b) = 0, then

∫ b

a
g(x) ·Ca Dα

x [ f ](x)dx =
∫ b

a
f (x) · xDα

b [g](x)dx

and

∫ b

a
g(x) ·Cx Dα

b [ f ](x)dx =
∫ b

a
f (x) · aDα

x [g](x)dx.

Along the work, we denote by ∂iL, i = 1, . . . ,m (m ∈ N), the partial derivative of
function L : Rm → R with respect to its ith argument. For convenience of notation,
we introduce the operator C

α [·]β defined by
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C
α [y]β := x �→

(
x,y(x), C

a Dα
x [y](x),

C
x Dβ

b [y](x)
)
,

where α,β ∈ (0,1).

3 Euler–Lagrange Equations

The fundamental problem of the fractional calculus of variations is addressed in the
following way: find functions y ∈ E ,

E :=
{

y ∈C1([a,b]) |y(a) = ya and y(b) = yb
}
,

that maximize or minimize the functional

J(y) =
∫ b

a

(
L◦C

α [y]β
)
(x)dx. (9.1)

As usual, the Lagrange function L is assumed to be of class C1 on all its arguments.
We also assume that ∂3L◦C

α [y]β has continuous right Riemann–Liouville fractional
derivative of order α and ∂4L ◦ C

α [y]β has continuous left Riemann–Liouville
fractional derivative of order β for y ∈ E .

In [1] a necessary condition of optimality for such functionals is proved. We
remark that although functional (9.1) contains only Caputo fractional derivatives,
the fractional Euler–Lagrange equation also contains Riemann–Liouville fractional
derivatives.

Theorem 9.3 (Euler–Lagrange equation for (9.1)). If y is a minimizer or a
maximizer of J on E , then y is a solution of the fractional differential equation

(
∂2L◦C

α [y]β
)
(x)+ xDα

b

[
∂3L◦C

α [y]β
]
(x)+ aDβ

x

[
∂4L◦C

α [y]β
]
(x) = 0 (9.2)

for all x ∈ [a,b].

Proof. Given |ε| � 1, consider h ∈V where

V :=
{

h ∈C1([a,b]) |h(a) = 0 and h(b) = 0
}
,

and a variation of function y of type y + εh. Define the real valued function
j(ε) by

j(ε) = J(y+ εh) =
∫ b

a

(
L◦C

α [y+ εh]β
)
(x)dx.
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Since ε = 0 is a minimizer or a maximizer of j, we have j′(0) = 0. Thus,

∫ b

a

[(
∂2L◦C

α [y]β
)
(x) ·h(x)+ (∂3L◦C

α [y]β
)
(x) ·Ca Dα

x [h](x)

+
(
∂4L◦C

α [y]β
)
(x) ·Cx Dβ

b [h](x)
]
dx = 0.

We obtain equality (9.2) integrating by parts and applying the classical fundamental
lemma of the calculus of variations [33]. 
�

We remark that when α → 1, then (9.1) is reduced to a classical functional

J(y) =
∫ b

a
f (x,y(x),y′(x))dx,

and the fractional Euler–Lagrange equation (9.2) gives the standard one:

∂2 f (x,y(x),y′(x))− d
dx

∂3 f (x,y(x),y′(x)) = 0.

Solutions to equation (9.2) are said to be extremals of (9.1).

4 The Isoperimetric Problem

The fractional isoperimetric problem is stated in the following way: find the
minimizers or maximizers of functional J as in (9.1), over all functions y ∈ E
satisfying the fractional integral constraint

I(y) =
∫ b

a

(
g ◦C

α [y]β
)
(x)dx = l.

Similarly as L, g is assumed to be of class C1 with respect to all its arguments, func-
tion ∂3g ◦C

α [y]β is assumed to have continuous right Riemann–Liouville fractional
derivative of order α and ∂4g ◦C

α [y]β continuous left Riemann–Liouville fractional
derivative of order β for y ∈ E . A necessary optimality condition for the fractional
isoperimetric problem is given in [8].

Theorem 9.4. Let y be a minimizer or maximizer of J on E , when restricted to the
set of functions z∈ E such that I(z) = l. In addition, assume that y is not an extremal
of I. Then, there exists a constant λ such that y is a solution of

(
∂2F ◦C

α [y]β
)
(x)+ xDα

b [∂3F ◦C
α [y]β ](x)+ aDβ

x [∂4F ◦C
α [y]β ](x) = 0 (9.3)

for all x ∈ [a,b], where F = L+λ g.
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Proof. Given h1,h2 ∈V , |ε1| � 1 and |ε2| � 1, consider

j(ε1,ε2) =
∫ b

a

(
L◦C

α [y+ ε1h1 + ε2h2]β
)
(x)dx

and

i(ε1,ε2) =

∫ b

a

(
g ◦C

α [y+ ε1h1 + ε2h2]β
)
(x)dx− l.

Since y is not an extremal for I, there exists a function h2 such that

∂ i
∂ε2

∣∣∣∣
(0,0)

	= 0,

and by the implicit function theorem, there exists a C1 function ε2(·), defined in
some neighborhood of zero, such that

i(ε1,ε2(ε1)) = 0.

Applying the Lagrange multiplier rule (see, e.g., [33, Theorem 4.1.1]) there exists a
constant λ such that

∇( j(0,0)+λ i(0,0)) = 0.

Differentiating j and i at (0,0), and integrating by parts, we prove the theorem. 
�

Example 9.1. Let y(x) =Eα(xα), x∈ [0,1], where Eα is the Mittag-Leffler function.
Then C

0 Dα
x [y] = y. Consider the following fractional variational problem:

J(y) =
∫ 1

0

(C
0 Dα

x [y](x)
)2

dx−→ extr,

I(y) =
∫ 1

0
y(x)C

0 Dα
x [y](x)dx = l,

y(0) = 1 , y(1) = y1,

with l :=
∫ 1

0
(y(x))2dx and y1 := Eα(1). In this case function F of Theorem 9.4 is

F(x,y,v,w) = v2 +λ y(x)v

and the fractional Euler–Lagrange equation (9.3) is

xDα
1 [2

C
0 Dα

x [y]+λ y](x) = 0.

A solution to this problem is λ =−2 and y(x) = y(x), x ∈ [0,1].
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The case when y is an extremal of I is also included in the results of [8].

Theorem 9.5. If y is a minimizer or a maximizer of J onE , subject to the isoperimetric
constraint I(y) = l, then there exist two constants λ0 and λ , not both zero, such that

(
∂2K ◦C

α [y]β
)
(x)+ xDα

b

[
∂3K ◦C

α [y]β
]
(x)+ aDβ

x

[
∂4K ◦C

α [y]β
]
(x) = 0

for all x ∈ [a,b], where K = λ0L+λ g.

Proof. The same as the proof of Theorem 9.4, but now using the abnormal Lagrange
multiplier rule (see, e.g., [33, Theorem 4.1.3]). 
�

5 Transversality Conditions

We now give the natural boundary conditions (also known as transversality
conditions) for problems with the terminal point of integration free as well as yb.

Let

F :=
{
(y,x) ∈C1([a,b])× [a,b] |y(a) = ya

}
.

The type of functional we consider now is

J(y,T ) =
∫ T

a

(
L◦C

α [y]
)
(x)dx, (9.4)

where the operator C
α [·] is defined by

C
α [y] := x �→ (x,y(x), C

a Dα
x [y](x)

)
.

These problems are investigated in [1] and more general cases in [2].

Theorem 9.6. Suppose that (y,T ) ∈F minimizes or maximizes J defined by (9.4)
on F . Then

(
∂2L◦C

α [y]
)
(x)+ xDα

T

[
∂3L◦C

α [y]
]
(x) = 0 (9.5)

for all x ∈ [a,T ]. Moreover, the following transversality conditions hold:

(
L◦C

α [y]
)
(T ) = 0 , xI1−α

T

[
∂3L◦C

α [y]
]
(T ) = 0.

Proof. The result is obtained by considering variations y+ εh of function y and
variations T +ε�T of T as well, and then applying the Fermat theorem, integration
by parts, Leibniz’s rule, and using the arbitrariness of h and�T . 
�
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Transversality conditions for several other situations can be easily obtained.
Some important examples are:

• If T is fixed but y(T ) is free, then besides the Euler–Lagrange equation (9.5) one
obtains the transversality condition

xI1−α
T

[
∂3L◦C

α [y]
]
(T ) = 0.

• If y(T ) is given but T is free, then the transversality condition is

(
L◦C

α [y]
)
(T )− y′(T ) · xI1−α

T

[
∂3L◦C

α [y]
]
(T ) = 0.

• If y(T ) is not given but is restricted to take values on a certain given curve ψ , that
is, y(T ) = ψ(T ), then

(
ψ ′(T )− y′(T )

) · xI1−α
T

[
∂3L◦C

α [y]
]
(T )+

(
L◦C

α [y]
)
(T ) = 0.
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Chapter 10
Strict Stability of Fractional Perturbed Systems
in Terms of Two Measures

Coşkun Yakar, Mustafa Bayram Gücen, and Muhammed Çiçek

1 Introduction

The history of fractional order derivative was started by L’ Hospital and Leibnitz
[2, 5, 10, 11]. The question of L’ Hospital to Leibnitz gave a new theory to
mathematicians. Then, the mathematicians has developed the fractional calculus and
the theory of fractional differential equations. The improvement of these studies
are continued still and gained new results in mathematics and this results are
also applied for different disciplines such as physics, chemistry and engineering
[5, 7, 16].

The application of Lyapunov’s second method in stability of differential equa-
tions see [4–6, 13, 16–18] that has the advantage of not requiring behavior of
solutions of the system which investigates. Recently, the stability with initial time
difference in terms of two measures [15, 19, 20] and the properties of fractional
differential equations [5, 16], has been investigated. The strict stability criteria of
differential equations in [14] and initial time difference strict stability worked and
obtained comparison results and the appropriate definitions are presant in the work
of Yakar [17].

In this paper, we investigate strict stability criteria with initial time difference in
terms of two measures on fractional order differential equations and we have used
the definition of Caputo’s fractional order derivative because of some advantages
which we express. We look into the strict stability criteria in terms of two measures
with initial time difference of a perturbed fractional order differential system with
respect to an unperturbed fractional order differential system which have different
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initial time and initial position. Using Lyapunov functions and comparison principle
have been given sufficient conditions for the strict stability of dynamic systems on
fractional order differential equations.

2 Preliminaries

In this study, we have used Caputo’s fractional order derivative. But we have three
definition of fractional order derivative: Caputo, Reimann–Liouville and Grünwald–
Letnikov. The definition of Caputo’s and Reimann–Liouville’s fractional derivatives

cDqx =
1

Γ (1− q)

t∫

t0

(t− s)−q x′(s)ds, t0 ≤ t ≤ T, (10.1)

Dqx =
1

Γ (p)

⎛
⎝ d

dt

t∫

τ0

(t− s)p−1 x(s)ds

⎞
⎠, t0 ≤ t ≤ T, (10.2)

order of 0 < q < 1 ,and p+ q = 1 where Γ denotes the Gamma function.
It can’t be denied that the fractional derivative of Riemann-Liouville is important

for the development of fractional calculus and fractional order differential equations.
But in mathematical modeling of some applications of various areas, there is a
difficulty to interpret the initial condition required for the initial value problems of
fractional order differential equations. The main advantage of Caputo’s definition
of fractional order derivative is that the initial conditions for fractional order
differential equations with Caputo derivative take on the same form as that of
ordinary differential equations with integer derivatives and another difference is
that the Caputo derivative for a constant C is zero, while the Riemann–Liouville

fractional derivative for a constant C is not zero but equals to DqC = C(t−t0)
−q

Γ (1−q) .

By using (1) and therefore,

cDqx(t) = Dq [x(t)− x(t0)], (10.3)

cDqx(t) = Dqx(t)− x(t0)
Γ (1− q)

(t− t0)
−q . (10.4)

In particular, if x(t0) = 0, the equality holds

cDqx(t) = Dqx(t) (10.5)

and Caputo’s derivative is defined for functions for which Riemann–Liouville
fractional order derivative exists.
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Let us write that Grünwald–Letnikov’s notion of fractional order derivative in a
convenient form

Dq
0x(t) = lim

,
nh=t−t0

h→0

1
hq [x(t)− S (x,h,r,q)] ,

where S (x,h,r,q) =
n
∑

r=1
(−1)r+1

(q
r
)

x(t− rh). If x(t) is continuous and dx(t)
dt exists

and integrable, then Riemann–Liouville and Grünwald–Letnikov fractional order
derivatives are connected by the relation

Dqx(t) = Dq
0x(t) =

x(t0)(t− t0)
−q

Γ (1− q)
+

t∫

τ0

(t− s)−q

Γ (1− q)
d
ds

x(s)ds. (10.6)

By using (3) implies that we have the relations among the Caputo, Riemann–
Liouville and Grünwald–Letnikov fractional derivatives

cDqx(t) = Dq [x(t)− x(t0)] (10.7)

cDqx(t) = 1
Γ (1−q)

t∫

τ0

(t− s)−q dx(s)
ds ds

This relations of the definitions of the fractional order derivative are important to
understand the properties of the solutions of fractional order differential equations.

3 Definition and Notation

Consider the differential systems

cDqx(t) = f (t,x),x(t0) = x0 for t ≥ t0, t0 ∈ R+, (10.8)

cDqy(t) = f (t,y),y(τ0) = y0 for t ≥ τ0,τ0 ∈R+, (10.9)

where x0 = limt→t0 Dq−1x(t) and y0 = limt→τ0 Dq−1y(t) exist and the perturbed
fractional order differential system with Caputo’s derivative of (8)

cDqy(t) = F(t,y),y(τ0) = y0 for t ≥ τ0, (10.10)

where y0 = limt→τ0 Dq−1y(t) exist and f ,F ∈C[[t0,τ0 +T ]×R
n,Rn]; satisfy a local

Lipschitz condition on the set R+×Sρ , Sρ = [x∈R
n : ‖x‖≤ ρ <∞] and f (t,0) = 0

for t ≥ 0. A special case of (10) is where F (t,y) = f (t,y)+R(t,y) and R(t,y) is
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the perturbation term. Assume that the existence and uniqueness of the solutions
x(t) = x(t, t0,x0) of (8) for t ≥ t0 and y(t) = y(t,τ0,y0) of (10) for t ≥ t0.

The basic existence and uniqueness result with the Lipschitz condition by using
contraction mapping theorem and a weighted norm with Mittag-Leffler function in
[6, 10–12]. We introduce definitions for a variety of classes of functions that we
use in Sect. 4 and for generalized Dini-like derivatives and initial time difference
strict stability in terms of two measures. All inequalities between vectors are
componentwise.

Let us give the definition of the fractional strict stability in terms of two measures
with initial time difference.

Definition 10.1. The solution y(t,τ0,y0) of the perturbed system (10) through
(τ0,y0) is said to be initial time difference (h0− h)−strict stable in fractional case
with respect to the solution x(t−η , t0,x0), where x(t, t0,x0) is any solution of the
unperturbed system (8) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0− t0. If given any ε1 > 0
and τ0 ∈ R+ there exist δ1 = δ1 (ε1,τ0)> 0 and δ2 = δ2 (ε1,τ0)> 0 such that

h(t,y(t,τ0,y0)− x(t−η , t0,x0)) < ε1 for t ≥ τ0

whenever h(τ0,y0− x0)< δ1 and h0(τ0,τ0− t0) < δ2 and, for δ ∗1 < δ1 and δ ∗2 < δ2

there exist 0 < ε2 < min{δ ∗1 ,δ ∗2 } such that

h(t,y(t,τ0,y0)− x(t−η , t0,x0)) > ε2 for t ≥ τ0

whenever h(τ0,y0− x0)> δ ∗1 and h0(τ0,τ0− t0)> δ ∗2 .

Definition 10.2. If δ1,δ2 and ε2 in Definition 1 are independent of τ0, then the
solution y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) is initial time
difference (h0 − h)−uniformly strict stable in fractional case with respect to the
solution x(t−η , t0,x0) for t ≥ τ0.

Definition 10.3. The solution y(t,τ0,y0) of the system (10) through (τ0,y0) is said
to be initial time difference (h0−h)−strictly attractive in fractional case with respect
to the solution x(t−η , t0,x0), where x(t, t0,x0) is any solution of the system (8) for
t ≥ τ0 ≥ 0, t0 ∈R+ and η = τ0− t0. If given any α1 > 0,γ1 > 0,ε1 > 0 and τ0 ∈R+,
for every α2 <α1 and γ2 < γ1, there exist ε2 < ε1,T1 = T1 (ε1,τ0) and T2 = T2 (ε1,τ0)
such that

h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1, T1 + τ0 ≤ t ≤ T2 + τ0,

whenever h(τ0,y0− x0)< α1 and h0(τ0,τ0− t0)< γ1 and

h(t,y(t,τ0,y0)− x(t−η , t0,x0))> ε2, T2 + τ0 ≥ t ≥ T1 + τ0,

whenever h(τ0,y0− x0)> α2 and h0(τ0,τ0− t0)> γ2.
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If T1and T2 in Definition 3 are independent of τ0, then the solution y(t,τ0,y0)
of the system (10) is initial time difference (h0−h)−strictly uniformly attractive in
fractional case with respect to the solution x(t−η , t0,x0) for t ≥ τ0.

Definition 10.4. The solution y(t,τ0,y0) of the system (10) through (τ0,y0) is said
to be initial time difference (h0−h)−strictly asymptotically stable in fractional case
with respect to the solution x(t−η , t0,x0) if Definition 3 satisfies and the solution
y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) is initial time difference
(h0−h)−strictly stable in fractional case with respect to the solution x(t−η , t0,x0)
of the unperturbed system (8).

If T1and T2 in Definition 3 are independent of τ0, then the solution y(t,τ0,y0) of
the system (10) is initial time difference (h0−h)−uniformly strictly asymptotically
stable in fractional case with respect to the solution x(t−η , t0,x0) for t ≥ τ0.

Definition 10.5. For any real-valued function V ∈ C[R+×R
n,R+], we define the

fractional order Dini derivatives in Caputo’s sense

cDq
+V (t,x) = lim

h→0+
sup

1
hq [V (t,x)−V (t− h,x− hq f (t,x))],

and

cDqV (t,x) = lim
h→0−

inf
1
hq [V (t,x)−V (t− h,x− hq f (t,x))],

where x(t) = x(t, t0,x0) for (t,x) ∈R+×R
n.

Definition 10.6. For a real-valued function V (t,x) ∈ C[R+ ×R
n,R+] we define

the generalized fractional order derivatives (Dini-like derivatives) in Caputo’s sense
c∗D

q
+V (t,y− x̃) and c∗DqV (t,y− x̃) as follows

c
∗D

q
+V (t,y− x̃) = lim

h→0+
sup

[
V (t,y− x̃)−V(t− h,y− x̃− hqH(t,y, x̃))

hq

]

c
∗D

qV (t,y− x̃) = lim
h→0−

inf

[
V (t,y− x̃)−V(t− h,y− x̃− hqH(t,y, x̃))

hq

]
,

where H(t,y, x̃) = F(t,y)− f̃ (t, x̃)) for (t,x) ∈ R+×R
n,

Definition 10.7. The class K is set of functions such that K := [a : a∈C[[0,ρ ],R+],
a is strictly increasing and a(0) = 0 and also a(t)→ ∞ as t → ∞].

Definition 10.8. A function h(t,x) is said to belong to the class Γ if h ∈ C[R+×
R

n,R+], inf(t,x) h(t,x) = 0 for all (t,x) ∈ R+×Rn.

Definition 10.9. A function h(t,x) is said to belong to the class Γ0 if h ∈ Γ ,
supt∈R+

h(t,x) exist for x ∈Rn.
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4 Main Results

In this section we obtain the strict stability concepts in fractional case with initial
time difference parallel to the Lyapunov’s results.

Theorem 10.1. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+× Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and h(t,z)≥ μ ,

b1(h(t,z))≤Vμ(t,z)≤ a1(h(t,z)),a1,b1 ∈K

c
∗D

q
+Vμ(t,z)≤ 0;

(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and h(t,z)≤ θ ,

b2(h(t,z))≤Vθ (t,z)≤ a2(h(t,z)),a2,b2 ∈K

c
∗D

q
+Vθ (t,z)≥ 0; (10.11)

where z(t) = y(t,τ0,y0)− x(t −η , t0,x0) for t ≥ τ0, y(t,τ0,y0) the solution of the
system (10) through (τ0,y0), x(t, t0,x0) is any solution of the system (8) for t ≥ τ0 ≥
t0 > 0, and η = τ0− t0.

Then the solution y(t,τ0,y0) of the perturbed system (10) is the initial time
difference (h0,h)−strictly stable in fractional case with respect to the solution
x(t − η , t0,x0) of the unperturbed system, where x(t, t0,x0) is any solution of the
system (8) for t ≥ τ0 ≥ t0 > 0.

Proof. Let 0 < ε1 < ρ and τ0 ∈ R+ and choose δ1 = δ1(ε1,τ0) > 0 and δ2 =
δ2(ε1,τ0)> 0 such that

a1(δ1)< b1(ε1), (10.12)

since we have b1(ε1)≤ a1(δ1) in (A1). Then we claim that

h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1 for t ≥ τ0, (10.13)

whenever h(τ0,y0− x0)< δ1 and h0(τ0,τ0− t0)< δ2.
If (14) is not true, then there would exist t1 > t2 > τ0 and the solution of (8) and

from (11) with h(τ0,y0− x0)< δ1,h0(τ0,τ0− t0)< δ2 satisfying

h(t1,y(t1)− x̃(t1)) = ε1,h(t2,y(t2)− x̃(t2)) = δ1

and δ1 ≤ h(t,y(t)− x̃(t))≤ ε1 for t ∈ [t2, t1], where x̃(t) = x(t−η , t0,x0).
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Let us set μ = δ1, and using (A1) we get

b1(ε1) = b1(h(t1,y(t1)− x̃(t1)))

≤ Vμ(t1,y(t1)− x̃(t1))

≤ Vμ(t2,y(t2)− x̃(t2))

≤ a1(h(t2,y(t2)− x̃(t2)))

= a1(δ1)

and we have the inequality
b1(ε1)≤ a1(δ1),

which contradicts with (13). Hence (14) is valid.

Now let 0 < δ ∗1 < δ1,0 < δ ∗2 < δ2 and choose 0 < h(τ0,y0− x0) < δ ∗1 < δ1 and
0 < h0(τ0,τ0− t0)< δ ∗2 < δ2 for 0 < ε2 < δ = min{δ ∗1 ,δ ∗2 } such that

a2(ε2)< b2(δ ). (10.14)

Then we can prove that

ε2 < h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1 for t ≥ τ0, (10.15)

whenever δ ∗1 < h(τ0,y0− x0)< δ1 and δ ∗2 < h0(τ0,τ0− t0)< δ2.
If (16) is not true, then there would exist t1 > t2 > τ0 and the solution of (8) and

(22) with δ ∗1 < h(τ0,y0− x0)< δ1,δ ∗2 < h0(τ0,τ0− t0)< δ2 satisfying

h(t1,y(t1)− x̃(t1)) = ε2, (10.16)

h(t2,y(t2)− x̃(t2)) = δ and h(t,y(t)− x̃(t))≤ δ , t ∈ [t2, t1].
Let us set θ = δ and using (A2), we get

a2(ε2) = a2(h(t1,y(t1)− x̃(t1)))

≥ Vθ (t1,y(t1)− x̃(t1))

≥ Vθ (t2,y(t2)− x̃(t2))

≥ b2(h(t2,y(t2)− x̃(t2)))

= b2(δ )

and we have the inequality
a2(ε2)≥ b2(δ )

which contradicts with (15). Thus (16) is valid.
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Then the solution y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) is
initial time difference (h0,h)−strictly stable in fractional case with respect to the
solution of unperturbed system x(t−η , t0,x0) for t ≥ τ0.

This completes the proof of Theorem 1. 
�
If δ1,δ2 and ε2 in the proof of the Theorem 1 are chosen independent of τ0,

then the solution y(t,τ0,y0) of the perturbed system (10) is initial time difference
(h0− h)−strictly uniformly stable in fractional case with respect to the solution
x(t−η , t0,x0) for t ≥ τ0.

Theorem 10.2. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+× Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and h(t,z)≥ μ ,

b1(h(t,z))≤Vμ(t,z)≤ a1(h(t,z)),a1,b1 ∈K,

c
∗D

q
+Vμ(t,z)≤−c1(h(t,z)) ,c1 ∈K; (10.17)

(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and h(t,z)≤ θ ,

b2(h(t,z))≤Vθ (t,z)≤ a2(h(t,z)),a2,b2 ∈K,

c∗D
q
+Vθ (t,z)≥−c2(h(t,z)) c2 ∈K; (10.18)

where z(t) = y(t,τ0,y0)− x(t − η , t0,x0) for t ≥ τ0,y(t,τ0,y0) of the perturbed
system (10) through (τ0,y0) and x(t − η , t0,x0), where x(t, t0,x0) is any solution
of the unperturbed system (8) for t ≥ τ0 ≥ t0 > 0.

Then the solution y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) is the
initial time difference (h0,h)−strictly uniformly asymptotically stable in fractional
case with respect to the solution x(t −η , t0,x0) of the unperturbed system, where
x(t, t0,x0) is any solution of the unperturbed system (8) for t ≥ τ0 ≥ t0 > 0.

Proof. We note that (18) implies (11). However, (19) does not yield (12). Therefore,
we get because of (18) only (h0,h)−uniformly stability in fractional case of
perturbed systems related to initial time difference with respect to unperturbed
systems, that is, for given any ε1 ≤ ρ and τ0 ∈ R+ there exist δ10 = δ10(ε1) > 0
and δ20 = δ20(ε1)> 0 such that

h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1 for t ≥ τ0

whenever h(τ0,y0− x0)< δ10 and h0(τ0,τ0− t0)< δ20.
To prove the conclusion of Theorem 2 we need to show that the solution

y(t,τ0,y0) of the system (10) through (τ0,y0) is initial time difference
(h0,h)−strictly uniformly attractive in fractional case with respect to x(t−η , t0,x0)
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for this purpose, let ε1 = ρ and set δ10 = δ1(ρ) and δ20 = δ2(ρ) so that (20) yields

h(t,y(t,τ0,y0)− x(t−η , t0,x0)) < ρ for t ≥ τ0

whenever h(τ0,y0− x0)< δ10 and h0(τ0,τ0− t0)< δ20.
Let h(τ0,y0 − x0) < δ10 and h0(τ0,τ0 − t0) < δ20. We show, using standard

argument, that there exists a t∗ ∈ [τ0,τ0 +T ], we choose

T = T (ε,τ0) ≥
(

a1(max{δ10,δ20})
c1(min{δ1,δ2}) Γ (q+ 1)

) 1
q

where δ10 and δ20 are the numbers

corresponding to ε1 in (20) ,that is, in initial time difference (h0,h)−uniformly
stability in fractional case of perturbed system with respect to x(t−η , t0,x0) such
that h(τ0,y(t∗,τ0,y0)− x(t∗ −η , t0,x0)) < δ1 for any solutions of the system (10)
with h(τ0,y0− x0) < δ10 and h0(τ0,τ0− t0) < δ20. If this is not true, we will have
h(t,y(t,τ0,y0)− x(t −η , t0,x0)) ≥ δ1 for t ∈ [τ0,τ0 +T ]. Then, μ = δ1 and using
(A1) with (18), we have

0 < b1(δ1)≤ b1(h(τ0 +T,y(τ0 +T )− x̃(τ0 +T )))

≤ Vμ(τ0 +T,y(τ0 +T)− x̃(τ0 +T ))

≤ Vμ(τ0,y0− x0)

− 1
Γ (q)

∫ τ0+T

τ0

(t− s)q−1 c1(h(s,y(s)− x̃(s)))ds

≤ a1(max{δ10,δ20})

−c1(min{δ1,δ2})
Γ (q)

∫ τ0+T

τ0

(t− s)q−1 ds

≤ a1(max{δ10,δ20})− c1(min{δ1,δ2})
Γ (q+ 1)

T q

≤ 0

in view of the choice of T. This contradiction implies that there exist a t∗ ∈ [τ0,τ0 +
T ] satisfying h(τ0,y(t∗,τ0,y0)− x(t∗ −η , t0,x0)) < δ1. Due to the (h0,h)−uniform
stability in fractional case y(t,τ0,y0) of the perturbed system with initial time
difference with respect to x(t−η , t0,x0), this yields that

h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1 , t ≥ τ0 +T ≥ t∗

which implies that there exists a τ0 < T1 < T such that

h(τ0 +T,y(τ0 +T)− x(τ0 +T −η)) = ε1

Now, for any δ12,0 < δ12 < δ10 and 0 < δ12 < δ20 we choose ε2 such that
b2(δ12)> a2(ε2) and 0 < ε2 < ε1 < δ12.
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Suppose that δ12 < h(τ0,y0 − x0) < min{δ10,δ20} and δ12 < h0(τ0,τ0 − t0) <

min{δ10,δ20}.Let us define τ =
[

Γ (q)(b2(ε1)−a2(ε2))
c2(ε1)

] 1
q
, and T2 = T1 + τ.Since

h(t,y(t)− x̃(t)) ≤ ε1 for t ≥ τ0 + T1, choosing θ = ε1 and using (A2) with (19)
we have for t ∈ [τ0 +T1,τ0 +T2],

a2(‖y(t)− x̃(t)‖) ≥ Vθ (t,y(t)− x̃(t))

≥ Vθ (τ0 +T1,y(τ0 +T1)− x̃(τ0 +T1))

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1 c2(h(s,y(s)− x̃(s)))ds

≥ b2(ε1)

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1 c2(h(s,y(s)− x̃(s)))ds

≥ b2(ε1)− c2(ε1)

Γ (q)
[t− (τ0 +T1)]

q.

Since, t− (τ0 +T1)> τ and a−1
2 exists, it follows that

a2(‖y(t)− x̃(t)‖) > b2(ε1)− c2(ε1)

Γ (q)

[
Γ (q)(b2(ε1)− a2(ε2))

c2(ε1)

]

= a2(ε2).

This yields that,

h(t,y(t,τ0,y0)− x(t−η , t0,x0))≥ ε2 for t ∈ [τ0 +T1,τ0 +T2]

and therefore,

ε2 < h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1,t ∈ [τ0 +T1,τ0 +T2].

Then the solution y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) is
initial time difference (h0,h)−strictly uniformly asymptotically stable in fractional
case with respect to the solution x(t−η , t0,x0), where x(t, t0,x0) is any solution of
the unperturbed system (8) for t ≥ τ0 ≥ t0 > 0.This completes the proof. 
�

Before we express the comparison result in fractional case, we need to
give uncoupled comparison fractional order differential systems and to define
(h0,h)−strictly stability in fractional case of comparison fractional order differential
systems. Consider the uncoupled comparison fractional order differential systems:

{
(i)c Dq u1 = g1(t,u1), u1 (τ0) = u10 ≥ 0,
(ii)c Dq u2 = g2(t,u2), u2 (τ0) = u20 ≥ 0,

(10.19)
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where g1,g2 ∈C
[
R

2
+,R
]
. The fractional order comparison system (21) is said to be

(h0,h)−strictly stable in fractional case:
If given any ε1 > 0 and t ≥ τ0,τ0 ∈ R+, there exist a δ1 > 0 such that

h0(τ0,u10)< δ1 implies h(t,u1(t))< ε1 for t ≥ τ0,

and for every δ2 ≤ δ1 there exists an ε2,0 < ε2 < δ2 such that

h0(τ0,u20)> δ2 implies h(t,u2(t))> ε2 for t ≥ τ0.

Here, u1(t) and u2(t) are any solutions of (i) in (21) and (ii) in (21); respec-
tively. Following this theorem based on this definition and an another theorem is
formulated in terms of comparison principle.

Theorem 10.3. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+× Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and h(t,z)≥ η ,

b1(h(t,z))≤Vμ(t,z)≤ a1(h(t,z)),a1,b1 ∈K,

c∗D
q
+Vμ(t,z)≤ g1(t,Vμ(t,z)); (10.20)

(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and h(t,z)≤ θ ,

b2(h(t,z))≤Vθ (t,z)≤ a2(h(t,z)),a2,b2 ∈K,

c∗D
q
+Vθ (t,z)≥ g2(t,Vθ (t,z)); (10.21)

where g2(t,u) ≤ g1(t,u),g1,g2 ∈ C[R2
+,R],g1(t,0) ≡ g2(t,0) ≡ 0 and

z(t) = y(t,τ0,y0)− x(t−η , t0,x0) for t ≥ τ0,y(t,τ0,y0) of the system (10) through
(τ0,y0) and x(t − η , t0,x0), where x(t, t0,x0) is any solution of the system (8) for
t ≥ τ0 ≥ t0 > 0.

Then any (h0,h)−strict stability concept in fractional case of the comparison
system implies the corresponding (h0,h)−strict stability concept in fractional
case of the solution y(t,τ0,y0) of the perturbed system (10) through (τ0,y0) with
respect to the solution x(t − η , t0,x0) of the unperturbed system (8) with initial
time difference where x(t, t0,x0) is any solution of the unperturbed system (8) for
t ≥ τ0 ≥ t0 > 0.

Proof. First we will prove the case of initial time difference (h0,h)−strictly
uniformly stability in fractional case of the perturbed system with respect to the
unperturbed system. Suppose that the comparison differential systems in (21) is
(h0,h)− strictly uniformly stable in fractional case, then for any given ε1, 0 < ε1 <
δ , there exist a δ ∗ > 0 such that

0 < u10 < δ ∗ implies that u1(t,τ0,u10)< b1(ε1) for t ≥ τ0, (10.22)

where u1(t) = u1(t,τ0,u10) is the solution of (21).
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For this ε1 > 0, we choose δ1 > 0 and δ11 > 0, such that a1(δ1)≤ δ ∗ and δ ∗1 < ε1

where δ ∗1 = max{δ1,δ11}, then we claim that

h(τ0,y0− x0)< δ1,h0(τ0,τ0− t0)< δ11, (10.23)

h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1,t ≥ τ0.

If it is not true, then there exist t1 and t2, t2 > t1 > τ0 and a solution of

cDqz = f̃ (t,z),z(τ0) = y0− x0 for t ≥ τ0

with h0(τ0,τ0− t0)< δ11 and h(τ0,y0− x0)< δ1.

h(t1,y(t1,τ0,y0)− x(t1−η , t0,x0)) = δ ∗1 ,

h(t2,y(t2,τ0,y0)− x(t2−η , t0,x0)) = ε1 and

δ ∗1 < h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε1 for [t1, t2].

Choosing μ = δ ∗1 and using the theory of differential inequalities, together with
(A1), we obtain (22) and (24)

b1(ε1) = b1(h(t2,y(t2,τ0,y0)− x(t2−η , t0,x0)))

≤ Vμ(t2,y(t2,τ0,y0)− x(t2−η , t0,x0))

≤ r(t2, t1,Vμ(t1,y(t1,τ0,y0)− x(t1−η , t0,x0)))

≤ r(t2, t1,a1(δ1))

≤ r(t2, t1,δ ∗)

< b1(ε1).

which is a contradiction. Here r(t, t0,u10) is the maximal solution of (21). Hence,
(25) is true and we have initial time difference (h0,h)−strictly uniformly stability
in fractional case.

Now, we shall prove initial time difference (h0,h)−strictly uniformly attractive
in fractional case.

For any given δ2, ε2 > 0, δ2 < δ ∗ we choose δ 2 and ε2 such that a1(δ2) < δ 2

and b1(ε2) ≥ ε. For these δ 2 and ε2, since (21) is strictly uniformly attractive in
fractional case, for any δ 3 < δ 2there exist ε3 and T1 and T2 (we assume T2 < T1)
such that δ 3 < u10 = u20 < δ 2 implies

r(t,τ0,u10) ≤ r(t,τ0,δ 2)< ε2,

ρ(t,τ0,u20) ≥ ρ(t,τ0,δ 3)> ε2,

where r(t,τ0,u10) and ρ(t,τ0,u20) is the maximal solution and minimal solution of
(21) (i) and (ii); respectively.
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Now, for any δ3, let b2(δ3) ≥ δ3. We choose ε3 such that a2(ε3) < ε3. Then by
using comparison principle in fractional case (21), (i) and (A1), we have

b1(h(t,y(t,τ0,y0)− x(t−η , t0,x0)))

≤Vμ(t,y(t,τ0,y0)− x(t−η , t0,x0)))

≤ r(t,τ0,Vμ(τ0,y0− x0))

≤ r(t,τ0,a1(h(τ0,y0− x0)))

≤ r(t,τ0,δ2)

< ε2 ≤ b1(ε2)

b1(h(t,y(t,τ0,y0)− x(t−η , t0,x0)))< b1(ε2), (10.24)

which implies that h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε2 for t ∈ [τ0 +T2,τ0 +T1].
Similarly, by using comparison principle in fractional case (21), (ii) and (A2),

we get

a2(h(t,y(t,τ0,y0)− x(t−η , t0,x0)))

≥Vθ (t,y(t,τ0,y0)− x(t−η , t0,x0))

≥ ρ(t,τ0,Vθ (τ0,y0− x0))

≥ ρ(t,τ0,b2(h(τ0,y0− x0))

≥ ρ(t,τ0,b2(δ3))

≥ ρ(t,τ0,δ 3)

> ε3 ≥ a2(ε3)

a2(h(t,y(t,τ0,y0)− x(t−η , t0,x0)))> a2(ε3), (10.25)

which implies that for h(t,y(t,τ0,y0)−x(t−η , t0,x0))> ε3 for τ0+T2 < t < τ0+T1.
Thus (26) and (27) yield that

ε3 < h(t,y(t,τ0,y0)− x(t−η , t0,x0))< ε2, τ0 +T2 < t < τ0 +T1

provided that δ2 < h(τ0,y0− x0) < δ1 and δ ∗ < h0(τ0,τ0− t0) < δ11. Hence, the
solution y(t,τ0,y0) of the perturbed system of (10) through (τ0,y0) is initial time
difference (h0,h)−strictly uniformly attractive in fractional case with respect to the
solution x(t −η , t0,x0) of the unperturbed system where x(t, t0,x0) is any solution
of the unperturbed system of (8) for t ≥ τ0 ≥ t0 > 0. Therefore the proof is
completed. 
�
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Chapter 11
Initial Time Difference Strict Stability
of Fractional Dynamic Systems

Coşkun Yakar and Mustafa Bayram Gücen

1 Introduction

The theory of fractional differential equations has been realized that it has very
useful models for studying and understanding the various disciplines and processes
of engineering applications. The development and improvement of this theory are
very important for mathematics and other areas of modern science. The history
of fractional order derivative and fractional order differential equations goes back
to the Seventeenth century. It had always attracted the interest of many famous
mathematicians, including L’ Hospital, Leibnitz, Liouville, Riemann, Grünwald and
Letnikov [2, 5, 8–10]. In recent decades, fractional order differential equations have
been found to be a powerful tool for some fields, such as, physics, mechanics, and
engineering. It was realized that the derivatives of non-integer order provide an
perfect framework for modeling of the real world applications in related disciplines
from physics, chemistry and engineering [2, 10].

The strict stability criteria had been studied by Sivasundaram [13] and
Yakar [16].

We have investigated the strict stability criteria between two unperturbed dif-
ferential systems with different initial time and initial position of fractional order
with initial time difference. The differential operators are taken in the Riemann–
Liouville and Caputo’s sense and the initial conditions are specified according to
Caputo’s suggestion [1], thus allowing for interpretation in a physically meaningful
way [2, 5, 9, 10]. The initial time difference stability is very important for dynamic
systems. It has been worked by Lakshmikantham and Vatsala [7] and Yakar
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[11, 12, 14–19]. We develop initial time difference fractional strict stability criteria
for unperturbed fractional order differential systems with Caputo’s derivative. We
establish a comparative results for unperturbed fractional order differential systems
with respect to another unperturbed fractional order differential systems which have
different initial position and initial time. The difference of these systems is that
they have different initial conditions. The Lyapunov stability is with respect to null
solution. The difference of these definitions and results from Lyapunov stability
[4–6] is that these systems stability investigates with respect to another unperturbed
fractional differential systems which have different initial position and initial
time.

2 Definition and Notation

The definition of Caputo’s and Reimann–Liouville’s fractional derivatives are as
follows:

cDqx =
1

Γ (1− q)

t∫

t0

(t− s)−q x′(s)ds, t0 ≤ t ≤ τ0 +T, (11.1)

Dqx =
1

Γ (p)

⎛
⎝ d

dt

t∫

t0

(t− s)p−1 x(s)ds

⎞
⎠ , t0 ≤ t ≤ τ0 +T, (11.2)

order of 0 < q < 1, and p+ q = 1 where Γ denotes the Gamma function.
The main advantage of Caputo’s approach is that the initial conditions for

fractional order differential equations with Caputo derivative take on the same
form as that of ordinary differential equations with integer derivatives and another
difference is that the Caputo derivative for a constant C is zero, while the Riemann–
Liouville fractional derivative for a constant C is not zero but equals to DqC =
C(t−t0)

−q

Γ (1−q) . By using (1) and therefore,

cDqx(t) = Dq [x(t)− x(t0)] , (11.3)

cDqx(t) = Dqx(t)− x(t0)
Γ (1− q)

(t− t0)
−q . (11.4)

In particular, if x(t0) = 0, we obtain

cDqx(t) = Dqx(t). (11.5)

Hence, we can see that Caputo’s derivative is defined for the functions for which
Riemann–Liouville fractional order derivative exists.
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Consider the initial value problems of the fractional order differential equations
with Caputo’s fractional derivative

cDqx = f (t,x), x(t0) = x0 for t ≥ t0, t0 ∈ R+, (11.6)

cDqy = f (t,y), y(τ0) = y0 for t ≥ τ0 ≥ t0, (11.7)

where x0 = limt→t0 Dq−1x(t) and y0 = limt→τ0 Dq−1y(t) exist and f ∈
C[[t0,τ0 +T ]×R

n,Rn]; satisfy a local Lipschitz condition on the set R+ × Sρ ,
Sρ = [x ∈ R

n : ‖x‖ ≤ ρ < ∞] and f (t,0) = 0 for t ≥ 0.
We assume that we have sufficient conditions to the existence and uniqueness of

solutions through (t0,x0) and (τ0,y0). If f ∈C[[t0,τ0 +T ]×R
n,Rn] and x(t) is the

solution of the system (6) where cDqx is the Caputo fractional order derivative of x
as in (1), then it also satisfies the Volterra fractional order integral equation

x(t) = x0 +
1

Γ (q)

t∫

t0

(t− s)q−1 f (s,x(s))ds, t0 ≤ t ≤ τ0 +T (11.8)

and that is every solution of (6) is also a solution of (8), for details, see [3].
Let us give the definition of the strict stability criteria for unperturbed fractional

differential systems with the initial time difference.

Definition 11.1. The solution y(t,τ0,y0) of the fractional order differential system
(7) through (τ0,y0) is said to be the initial time difference strict stable in fractional
case with respect to the solution x(t−η , t0,x0), where x(t, t0,x0) is any solution of
the fractional order differential system (6) for t ≥ τ0 ≥ 0, t0 ∈R+ and η = τ0− t0. If
given any ε1 > 0 and τ0 ∈R+ there exist δ1 = δ1 (ε1,τ0)> 0 and δ2 = δ2 (ε1,τ0)> 0
such that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ≥ τ0

whenever ‖y0− x0‖< δ1 and |τ0− t0|< δ2 and, for δ ∗1 < δ1 and δ ∗2 < δ2 there exist
ε2 < min{δ ∗1 ,δ ∗2 } such that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖> ε2 for t ≥ τ0

whenever ‖y0− x0‖> δ ∗1 and |τ0− t0|> δ ∗2 .

Definition 11.2. If δ1,δ2 and ε2 in Definition 1 are independent of τ0, then the
solution y(t,τ0,y0) of the system (7) is the initial time difference uniformly strict
stable in fractional case with respect to the solution x(t−η , t0,x0) for t ≥ τ0.

Definition 11.3. The solution y(t,τ0,y0) of the system (7) through (τ0,y0) is said
to be the initial time difference strictly attractive in fractional case with respect to
the solution x(t−η , t0,x0), where x(t, t0,x0) is any solution of the system (6) for
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t ≥ τ0 ≥ 0, t0 ∈R+ and η = τ0− t0. If given any α1 > 0,γ1 > 0,ε1 > 0 and τ0 ∈R+,
for every α2 <α1 and γ2 < γ1, there exist ε2 < ε1,T1 = T1 (ε1,τ0) and T2 = T2 (ε1,τ0)
such that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for T1 + τ0 ≤ t ≤ T2 + τ0

whenever ‖y0− x0‖< α1 and |τ0− t0|< γ1 and

‖y(t,τ0,y0)− x(t−η , t0,x0)‖> ε2 for T2 + τ0 ≥ t ≥ T1 + τ0

whenever ‖y0− x0‖> α2 and |τ0− t0|> γ2.
If T1and T2 in Definition 3 are independent of τ0, then the solution y(t,τ0,y0) of

the system (7) is the initial time difference uniformly strictly attractive stable with
respect to the solution x(t−η , t0,x0) for t ≥ τ0.

Definition 11.4. The solution y(t,τ0,y0) of the system (7) through (τ0,y0) is said to
be initial time difference strictly asymptotically stable in fractional case with respect
to the solution x(t−η , t0,x0) if Definition 3 satisfies and the solution y(t,τ0,y0)
of the system (7) through (τ0,y0) is the initial time difference strictly stable with
respect to the solution x(t−η , t0,x0).

If T1and T2 in Definition 3 are independent of τ0, then the solution y(t,τ0,y0) of
the system (7) is the initial time difference uniformly strictly asymptotically stable
in fractional case with respect to the solution x(t−η , t0,x0) for t ≥ τ0.

Definition 11.5. For any real-valued function V ∈ C[R+×R
n,R+], we define the

fractional order Dini derivatives in Caputo’s sense

cDq
+V (t,x) = lim

h→0+
sup

1
hq [V (t,x)−V (t− h,x− hq f (t,x))], (11.9)

where x(t) = x(t, t0,x0) for (t,x) ∈R+×R
n.

Definition 11.6. For a real-valued function V (t,x) ∈ C[R+ ×R
n,R+], we define

the generalized fractional order derivatives (Dini-like derivatives) in Caputo’s sense
c∗D

q
+V (t,y− x̃) as follows:

c
∗D

q
+V (t,y− x̃) (11.10)

= lim
h→0+

sup

[
V (t,y− x̃)−V(t− h,y− x̃− hq( f (t,y)− f̃ (t, x̃)))

hq

]
(11.11)

for (t,x) ∈ R+×R
n, where x̃ = x(t−η , t0,x0).

Definition 11.7. K is said to be the class K set of functions such that

K := [a : a ∈C([0,ρ ],R+), a is strictly monotone increasing and a(0) = 0].
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3 Main Results

In this section we obtain the strict stability concepts with initial time difference for
fractional differential equations parallel to the Lyapunov’s results.

Theorem 11.1. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+×Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≥ μ ,

b1(‖z‖)≤Vμ(t,z)≤ a1(‖z‖),a1,b1 ∈K

c
∗D

q
+Vμ(t,z)≤ 0; (11.12)

(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≤ θ ,

b2(‖z‖)≤Vθ (t,z)≤ a2(‖z‖),a2,b2 ∈K

c
∗D

q
+Vθ (t,z)≥ 0; (11.13)

where z(t) = y(t,τ0,y0)− x(t − η , t0,x0) for t ≥ τ0,y(t,τ0,y0) of the system (7)
through (τ0,y0) and x(t −η , t0,x0), where x(t, t0,x0) is any solution of the system
(6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0− t0.

Then the solution y(t,τ0,y0) of the system (7) is the initial time difference
strictly stable in fractional case with respect to x(t−η , t0,x0) of the system (6) for
t ≥ τ0 ≥ 0, t0 ∈R+ and η = τ0− t0.

Proof. Let us assume that 0 < ε1 < ρ and τ0 ∈ R+. Let us choose that δ1 =
δ1(ε1,τ0)> 0 such that

a1(δ1)< b1(ε1) (11.14)

since we have b1(ε1)≤ a1(δ1) in (A1). Then we claim that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ≥ τ0 (11.15)

whenever ‖y0− x0‖< δ1 and |τ0− t0|< δ2.
If (14) is not true, then there exist t1 > t2 > τ0 and the solution of (6) and by using

(11) with ‖y0− x0‖< δ1, |τ0− t0|< δ2 satisfying

‖y(t1)− x̃(t1)‖ = ε1,‖y(t2)− x̃(t2)‖= δ1

and δ1 ≤ ‖y(t)− x̃(t)‖ ≤ ε1, t ∈ [t2, t1] where x̃(t) = x(t − η , t0,x0). Let us set
μ = δ1, we can obtain that

b1(ε1) = b1(‖y(t1)− x̃(t1);‖)≤Vμ(t1,y(t1)− x̃(t1));

≤ Vμ(t2,y(t2)− x̃(t2));
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≤ a1(‖y(t2)− x̃(t2)‖) = a1(δ1),

b1(ε1) ≤ a1(δ1);

which contradicts with (13). Hence, (14) is valid.
Now let 0 < δ ∗1 < δ1,0 < δ ∗2 < δ2 and ε2 < δ = min{δ ∗1 ,δ ∗2 } such that

a2(ε2)< b2(δ ), (11.16)

since we have a2(ε2)≥ b2(δ ) in (A2). Then we can prove that

ε2 < ‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ≥ τ0 (11.17)

whenever δ ∗1 < ‖y0− x0‖< δ1 and δ ∗2 < |τ0− t0|< δ2.
In fact, if (16) is not true, then there would exist t1 > t2 > τ0 and the solution of

(6) and by using (12) with δ ∗1 < ‖y0− x0‖< δ1,δ ∗2 < |τ0− t0|< δ2 satisfying

‖y(t1)− x̃(t1)‖= ε2,‖y(t2)− x̃(t2)‖ = δ and ‖y(t)− x̃(t)‖ ≤ δ for t ∈ [t2, t1].
(11.18)

Let us set θ = δ and by using (A2), we get

a2(ε2) = a2(‖y(t1)− x̃(t1)‖)≥Vθ (t1,y(t1)− x̃(t1));

≥ Vθ (t2,y(t2)− x̃(t2));

≥ b2(‖y(t2)− x̃(t2)‖) = b2(δ );

a2(ε2) ≥ b2(δ ),

which contradicts with (15). Thus (16) is valid. Then the solution y(t,τ0,y0) of the
system (7) through (τ0,y0) is the initial time difference strictly stable in fractional
case with respect to the solution x(t−η , t0 x0) for t ≥ τ0. This completes the proof
of Theorem 1. 
�
If δ1,δ2 and ε2 is independent of τ0, then the solution y(t,τ0,y0) of the system (7)
is initial time difference uniformly strict stable in fractional case with respect to the
solution x(t−η , t0,x0) for t ≥ τ0.

Theorem 11.2. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+× Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≥ μ ,

b1(‖z‖)≤Vμ(t,z)≤ a1(‖z‖),a1,b1 ∈K ,

c
∗D

q
+Vμ(t,z)≤−c1(‖z‖), c1 ∈K ; (11.19)
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(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≤ θ ,

b2(‖z‖)≤Vθ (t,z)≤ a2(‖z‖),a2,b2 ∈K ,

c
∗D

q
+Vθ (t,z)≥−c2(‖z‖), c2 ∈K ; (11.20)

where z(t) = y(t,τ0,y0)− x(t − η , t0,x0) for t ≥ τ0,y(t,τ0,y0) of the system (7)
through (τ0,y0) and x(t −η , t0,x0), where x(t, t0,x0) is any solution of the system
(6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0− t0.

Then the solution y(t,τ0,y0) of the system (7) through (τ0,y0) is the initial time
difference uniformly strictly asymptotically stable in fractional case with respect to
x(t−η , t0,x0) of the solution of the system (6) for t ≥ τ0≥ 0, t0 ∈R+ and η = τ0−t0.

Proof. We note that (18) implies (11). However, (19) does not yield (12). As a result
of these, we obtain because of (18) only uniformly stability of unperturbed systems
with initial time difference with respect to x(t−η , t0,x0) that is for given any ε1 ≤ ρ
and τ0 ∈ R+ there exist δ10 = δ10(ε1)> 0 and δ20 = δ20(ε1)> 0 such that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ≥ τ0 .

whenever ‖y0− x0‖< δ10 and |τ0− t0|< δ20.
To prove the conclusion of Theorem 2 we need to show that the solution

y(t,τ0,y0) of the system (7) through (τ0,y0) for t ≥ τ0 is strictly uniformly
attractive in fractional case with respect to x(t − η , t0,x0) for this purpose
and for t ≥ τ0, let ε1 = ρ and set δ10 = δ1(ρ) and δ20 = δ2(ρ) so that (20)
yields ‖y(t,τ0,y0)− x(t−η , t0,x0)‖ < ρ for t ≥ τ0 whenever ‖y0− x0‖ < δ1 and
|τ0− t0|< δ2.

Let ‖y0− x0‖ < δ10 and |τ0− t0| < δ20. We show, using standard ar-
gument, that there exists a t∗ ∈ [τ0,τ0 + T ], we choose T = T (ε,τ0) ≥(

a1(max{δ10,δ20})
c1(min{δ1,δ2}) Γ (q+ 1)

) 1
q

where δ10 and δ20 are the numbers corresponding

to ε1 in (20), that is, in stability of unperturbed systems with initial time difference
with respect to x(t − η , t0,x0) such that ‖y(t∗,τ0,y0)− x(t∗−η , t0,x0)‖ < δ1 ,
t∗ ≥ τ0 for any solutions of the systems (6) and (7) with ‖y0− x0‖ < δ10 and
|τ0− t0|< δ20. If this is not true, we will have ‖y(t∗,τ0,y0)− x(t∗−η , t0,x0)‖ ≥ δ1

for t∗ ∈ [τ0,τ0 +T ]. Then, μ = δ1 and using (A1) with (18), we have in view of the
choice of T,

0 < b1(δ1)≤ b1(‖y(τ0 +T)− x̃(τ0 +T )‖)
≤ Vμ(τ0 +T,y(τ0 +T )− x̃(τ0 +T))

≤ Vμ(τ0,y0− x0)− 1
Γ (q)

∫ τ0+T

τ0

(t− s)q−1 c1(‖y(s)− x̃(s)‖)ds

≤ a1(max{δ10,δ20})− c1(min{δ1,δ2})
Γ (q)

∫ τ0+T

τ0

(t− s)q−1 ds
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≤ a1(max{δ10,δ20})− c1(min{δ1,δ2})
Γ (q+ 1)

T q

≤ 0.

This contradiction implies that there exist a t∗ ∈ [τ0,τ0 + T ] satisfying
‖y(t∗,τ0,y0)− x(t∗ −η , t0,x0)‖ < δ1 for t∗ ≥ τ0. Because of the uniform stability
y(t,τ0,y0) of (7) with initial time difference with respect to x(t −η , t0,x0) related
to the solution of (6), this yields

‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ≥ τ0 +T ≥ t∗

which implies that there exists a τ0 < T1 < T such that

‖y(τ0 +T,τ0,y0)− x(τ0 +T −η , t0,x0)‖ = ε1.

Now, for any δ12,0 < δ12 < δ10 and 0 < δ12 < δ20 we can choose ε2 such that
b2(ε1)> a2(ε2) and 0 < ε2 < ε1 < δ12.

Suppose δ12 < ‖y0− x0‖ < min{δ10,δ20} and δ12 < |τ0− t0| < min{δ10,δ20}.
Let us define τ =

[
Γ (q)(b2(ε1)−a2(ε2))

c2(ε1)

] 1
q
, and T2 = T1 + τ.

Since, ‖y(t,τ0,y0)− x(t−η , t0,x0)‖ ≤ ε1 for t ≥ τ0 +T1, choosing θ = ε1 and
using (A2) with (19) we have for t ∈ [τ0 +T1,τ0 +T2],

a2(‖y(t)− x̃(t)‖) ≥ Vθ (t,y(t)− x̃(t))

≥ Vθ (τ0 +T1,y(τ0 +T1)− x̃(τ0 +T1))

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1 c2(‖y(s)− x̃(s)‖)ds

≥ b2(ε1)

− 1
Γ (q)

∫ t

τ0+T1

(t− s)q−1 c2(‖y(s)− x̃(s)‖)ds

≥ b2(ε1)− c2(ε1)

Γ (q)
[t− (τ0 +T1)]

q.

Since, t− (τ0 +T1)> τ and a−1
2 exists, it follows that

a2(‖y(t)− x̃(t)‖)> b2(ε1)− c2(ε1)

Γ (q)

[
Γ (q)(b2(ε1)− a2(ε2))

c2(ε1)

]
= a2(ε2).

This yields

‖y(t,τ0,y0)− x(t−η , t0,x0)‖> ε2 for t ∈ [τ0 +T1,τ0 +T2]

and therefore,

ε2 < ‖y(t,τ0,y0)− x(t−η , t0,x0)‖< ε1 for t ∈ [τ0 +T1,τ0 +T2].
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This completes the proof. Then the solution y(t,τ0,y0) of the system (7) through
(τ0,y0) is the initial time difference uniformly strictly asymptotically stable in
fractional case with respect to the solution x(t −η , t0,x0), where x(t, t0,x0) is any
solution of the system (6) for t ≥ τ0 ≥ 0, t0 ∈R+ and η = τ0− t0. 
�
Before we prove the general result in terms of the comparison principle. Let
us consider the uncoupled comparison fractional differential systems in Caputo’s
sense: {

(i)c Dq u1 = g1(t,u1), u1 (τ0) = u10 ≥ 0,
(ii) cDqu2 = g2(t,u2), u2 (τ0) = u20 ≥ 0,

(11.21)

where g1,g2 ∈C
[
R

2
+,R
]
. The comparison system (21) is said to be strictly stable in

fractional case:
If given any ε1 > 0 and t ≥ τ0,τ0 ∈ R+, there exist a δ1 > 0 such that

u10 ≤ δ1 implies u1(t)< ε1 for t ≥ τ0 and for every δ2 < δ1 there exists an ε2 > 0,
0 < ε2 < δ2 such that
u20 ≥ δ2 implies u2(t)> ε2 for t ≥ τ0. Here, u1(t) and u2(t) are any solutions of (i)
and (ii) in (21); respectively.

The comparison system (21) is said to be strictly attractive in fractional case:
If given any α1 > 0,γ1 > 0,ε1 > 0 and τ0 ∈ R+, for every α2 < α1, there exist

ε2 < ε1,T1 = T1 (ε1,τ0)> 0 and T2 = T2 (ε1,τ0)> 0 such that
u1 (t,τ0,u0)< ε1 for T1 + τ0 ≤ t ≤ T2 + τ0 when u10 ≤ α1 and
u2 (t,τ0,u0) > ε2 for T2 + τ0 ≥ t ≥ T1 + τ0 when u20 ≥ α2. If T1and T2 are
independent of τ0, then the comparison system (21) is the initial time difference
uniformly strictly attractive in fractional case for t ≥ τ0.

Following the main result based on this definition another result is formulated in
terms of comparison principle.

Theorem 11.3. Assume that
(A1) for each μ ,0 < μ < ρ ,Vμ ∈C[R+×Sρ ,R+] and Vμ is locally Lipschitzian

in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≥ μ ,

b1(‖z‖)≤Vμ(t,z)≤ a1(‖z‖),a1,b1 ∈K ,

c
∗D

q
+Vμ(t,z)≤ g1(t,Vμ(t,z)); (11.22)

(A2) for each θ ,0 < θ < ρ ,Vθ ∈C[R+× Sρ ,R+] and Vθ is locally Lipschitzian
in z and for (t,z) ∈ R+× Sρ and ‖z‖ ≤ θ ,

b2(‖z‖)≤Vθ (t,z)≤ a2(‖z‖),a2,b2 ∈K ,

c
∗D

q
+Vθ (t,z)≥ g2(t,Vθ (t,z)); (11.23)

where g2(t,u) ≤ g1(t,u),g1,g2 ∈ C[R2
+,R],g1(t,0) = g2(t,0) = 0 and z(t) =

y(t,τ0,y0) − x(t − η , t0,x0) for t ≥ τ0,y(t,τ0,y0) of the system (7) through
(τ0,y0) and x(t − η , t0,x0), where x(t, t0,x0) is any solution of the system (6) for
t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0− t0. Then any strict stability concept in fractional
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case of the comparison system implies the corresponding strict stability concept
in fractional case of the solution y(t,τ0,y0) of the system (7) through (τ0,y0) with
respect to the solution x(t −η , t0,x0) of the system (6) with initial time difference
where x(t, t0,x0) is any solution of the system (6) for t ≥ τ0 ≥ 0, t0 ∈ R+.

Proof. We will only prove the case of strict uniformly asymptotically stability in
fractional case. Suppose the comparison fractional differential systems in (21) is
strictly uniformly asymptotically stable in fractional case, then for any given ε1, 0<
ε1 < δ , there exist a δ ∗ > 0 such that u10 ≤ δ ∗ implies that u1(t,τ0,u10) < b1(ε1)
for t ≥ τ0. For this ε1 we choose δ1 and δ11, such that a1(δ ∗1 ) ≤ δ ∗ and δ ∗1 < ε1

where δ ∗1 = max{δ1,δ11}, then we claim that ‖y0− x0‖ < δ1, |τ0− t0| < δ11 imply
that

‖y(t,τ0,y0)− x(t−η , t0,x0)‖ < ε1, t ≥ τ0. (11.24)

If it is not true, then there exist t1 and t2, t2 > t1 > τ0 and a solution z(t) of
cDqz = f̃ (t,z), z(τ0) = y0− x0, t ≥ τ0,

with |τ0− t0| < δ11 and ‖y0− x0‖ < δ1,‖y(t,τ0,y0)− x(t−η , t0,x0)‖ < δ ∗1 ,
‖y(t,τ0,y0)− x(t−η , t0,x0)‖ = ε1 and δ ∗1 ≤ ‖y(t,τ0,y0)− x(t−η , t0,x0)‖ < ε1

for [t1, t2].
Choosing μ = δ ∗1 and using the theory of differential inequalities we get

b1(ε1) = b1(‖y(t2,τ0,y0)− x(t2−η , t0,x0)‖)
≤ Vμ(t2,y(t2,τ0,y0)− x(t2−η , t0,x0))

≤ r(t2, t1,Vμ(t1,y(t1,τ0,y0)− x(t1−η , t0,x0)))

≤ r(t2, t1,a1(δ ∗1 ))

≤ r(t2, t1,δ ∗)

< b1(ε1)

b1(ε1) < b1(ε1)

which is a contradiction. Here r(t,τ0,u10) is the maximal solution of (21). Hence,
(24) is true and we have uniformly stability in fractional case with initial time
difference. Now, we shall prove strictly uniformly attractive in fractional case with
initial time difference.

For any given δ2, ε2 > 0, δ2 < δ ∗ , we choose δ 2 and ε2 such that a1(δ2)< δ 2

and b1(ε2) ≥ ε2. For these δ 2 and ε2, since (21) is strictly uniformly attractive in
fractional case, for any δ 3 < δ 2 there exist ε3 and T1 and T2 (we assume T2 < T1)
such that δ 3 < u10 = u20 < δ 2 implies

r(t,τ0,u10) ≤ r(t,τ0,δ 2)< ε2,

ρ(t,τ0,u20) ≥ ρ(t,τ0,δ 3)> ε2,

where r(t,τ0,u10) and ρ(t,τ0,u20) is the maximal solution and minimal solution of
(i) and (ii) (21); respectively.
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Now, for any δ3, let b2(δ3) ≥ δ3. We choose ε3 such that a2(ε3) < ε3. Then by
using comparison principle (21) (i) and (A1), we have

b1(‖y(t,τ0,y0)− x(t−η , t0,x0)‖) ≤ Vμ(t,y(t,τ0,y0)

−x(t−η , t0,x0))

≤ r(t,τ0,Vμ(τ0,y0− x0))

≤ r(t,τ0,a1(‖y0− x0‖))
≤ r(t,τ0,δ2)

< ε2 ≤ b1(ε2)

b1(‖y(t,τ0,y0)− x(t−η , t0,x0)‖) < b1(ε2),

since b−1
1 exists which implies that ‖y(t,τ0,y0)− x(t−η , t0,x0)‖ < ε2 for

t ∈ [τ0 + T2,τ0 + T1]. Similarly, by using comparison principle in (21) (ii) and
(A2), we get

a2(‖y(t,τ0,y0)− x(t−η , t0,x0)‖) ≥ Vθ (t,y(t,τ0,y0)

−x(t−η , t0,x0))

≥ ρ(t,τ0,Vθ (τ0,y0− x0))

≥ ρ(t,τ0,b2(δ3))

≥ ρ(t,τ0,δ 3)

> ε3 ≥ a2(ε3)

a2(‖y(t,τ0,y0)− x(t−η , t0,x0)‖) > a2(ε3),

since a−1
2 exists which implies that for ‖y(t,τ0,y0)− x(t−η , t0,x0)‖ > ε3 for

t ∈ [τ0 + T2,τ0 + T1]. Hence, the solution y(t,τ0,y0) of the system (7) through
(τ0,y0) is strictly uniformly attractive in fractional case with respect to the solution
x(t−η , t0,x0) is any solution of the system (6) for t ≥ τ0 ≥ 0, t0 ∈ R+. The proof
is completed. 
�
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Chapter 12
A Fractional Order Dynamical Trajectory
Approach for Optimization Problem with HPM

Fırat Evirgen and Necati Özdemir

1 Introduction

Optimization theory is aimed to find out the optimal solution of problems which
are defined mathematically from a model that arise in wide range of scientific
and engineering disciplines. Many methods and algorithms have been developed
for this purpose since the late 1940s. The penalty function methods are classical
methods for solving nonlinear programming (NLP) problem by transforming it to
the unconstrained problem, see Luenberger [1] and Sun [2] for details. Furthermore,
dynamical trajectory approaches based on differential equations system are alterna-
tive methods for NLP problems. In this type of methods an optimization problem
is formulated as a system of ordinary differential equations (ODEs) so that the
equilibrium point of this system converges to the local minimum of the optimization
problem. The methods based on ODEs for solving optimization problems have been
first proposed by Arrow and Hurwicz [3] and then improved by Rosen [4], Fiacco
and Mccormick [5], and Yamashita [6]. Recently, Wang et al. [7], Jin et al. [8] and
Özdemir and Evirgen [9,10] have made studies in differential equation approach for
solving optimization problems.

In last decade, fractional calculus has drawn a wide attention from many
physicists and mathematicians, because of its interdisciplinary application and
physical meaning, e.g. [11–13]. Fractional calculus deals with the generalization of
differentiation and integration of noninteger order. Several analytical and numerical
methods have been proposed for solving fractional differential equations (FDEs).
Some commonly used techniques are summarized as follows. The variational itera-
tion method (VIM) was first introduced by He [14], and applied to FDEs [15]. The
Adomian decomposition method (ADM) [16, 17] is applied to various problems.
Also, the homotopy perturbation method (HPM) is an another successful analytical
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approximate technique, which provides a solution to linear and nonlinear problems,
see [18, 19]. The HPM yields a very rapid convergent series solution, and usually a
few iterations lead to very accurate approximation of the exact solution [18–23]. The
reason of this success is mainly based on combination of the traditional perturbation
method and homotopy techniques. The HPM is used to solve a wide range of differ-
ential equations in the literature. Abdulaziz et al. [24] used HPM for solving system
of FDEs. Momani and Odibat presented HPM for fractional order partial differential
equation [25] and fractional quadratic Riccati differential equation was described
in Odibat and Momani [26]. Baleanu et al. have solved linear and nonlinear
Schrodinger equations by HPM [27]. Chowdhury and Hashim [28] have employed
HPM for solving Klein Gordon equation. Furthermore, some techniques are adapted
to the HPM for getting the essential behavior of the differential equation system for
large time t, such as multistage and Padé approximants. The adaptation of HPM with
multistage strategy for numerical and analytical solution of a system of ODEs was
introduced by Hashim and Chowdhury [29]. Applications of multistage HPM for
solving chaotic systems and biochemical reaction model were illustrated in [30–32],
respectively.

This paper constructs a system of FDEs which is proposed to solve NLP problem
with equality constraints. In order to see the coincidence between the steady state
solution of the system of FDEs and the optimal solution of the NLP problem in a
long time t period, we used the multistage strategy.

The paper is organized as follows. In Sect. 2, the fundamentals of optimization
problem, fractional calculus and HPM are briefly reviewed. In Sect. 3, the multistage
HPM is adapted to the nonlinear system of FDEs for solving NLP problem.
In Sect. 4, the applicability and efficiency of multistage HPM is illustrated by
comparison among traditional HPM and fourth order Runge–Kutta (RK4) method
on some numerical examples. And finally some concluding remarks are given in
Sect. 5.

2 Preliminaries

2.1 Optimization Problem

Consider the NLP problem with equality constraints defined by

minimize f (x),
subject to x ∈M

(12.1)

with
M = {x ∈ R

n |h(x) = 0} ,
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where f : Rn −→ R and h = (h1,h2, . . . ,hp)
T : Rn −→ R

p (p≤ n). It is assumed
that the functions in problem are at least twice continuously differentiable, that a
solution exists, and which ∇h(x) has full rank. To obtain a solution of (12.1), the
penalty function method solves a sequence of unconstrained optimization problems.
A well-known penalty function for this problem is given by

F(x,μ) = f (x)+ μ
1
γ

p

∑
l=1

(hl(x))
γ , l = 1,2, . . . , p, (12.2)

where γ > 0 is constant and μ > 0 is an auxiliary penalty variable. The correspond-
ing unconstrained optimization problem of (12.1) is defined as follows:

min F(x,μ) subject to x ∈ R
n. (12.3)

Further information about NLP problem can be found in Luenberger [1] and Sun [2].

2.2 Fractional Calculus

Now we will give some definitions and properties of the fractional calculus [11–13].
We begin with the Riemann–Liouville definition of the fractional integral of order
α > 0, which is given as

Iα f (x) =
1

Γ (α)

x∫

0

(x− t)α−1 f (t)dt, x > 0,

where Γ (.) is the Gamma function.
Most commonly encountered fractional derivatives are Riemann–Liouville and

Caputo fractional derivative. The definitions of these two derivatives are given as:
Riemann–Liouville fractional derivative (RLFD)

Dα f (x) = Dm (Im−α f (x)
)
=

1
Γ (m−α)

(
d
dt

)m x∫

0

(x− t)m−α−1 f (t)dt,

Caputo fractional derivative (CFD)

CDα f (x) = Im−α (Dm f (x)) =
1

Γ (m−α)

x∫

0

(x− t)m−α−1
(

d
dt

)m

f (t)dt,
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where m− 1 < α � m and m ∈ N. Note that Dm is the usual integer differential
operator of order m. Furthermore,

Iα Dα f (x) = f (x)−
m−1

∑
s=0

f (s)(0+)
xs

s!
, m− 1 < α � m, (12.4)

is satisfied.

2.3 Homotopy Perturbation Method

The brief outline of HPM is given in general by He in [18, 20]. For convenience,
consider the following nonlinear differential equation

L(u)+N (u) = f (r), r ∈Ω , (12.5)

with boundary condition

B

(
u,

∂u
∂n

)
= 0, r ∈ Γ ,

where L is a linear operator, while N is nonlinear operator, B is a boundary operator,
Γ is the boundary of the domain Ω and f (r) is a known analytic function. The
He’s homotopy perturbation technique defines the homotopy v(r, p) : Ω× [0,1]→R

which satisfies

H (v, p) = (1− p)[L(v)−L(u0)]+ p [L(v)−N (v)− f (r)] = 0, (12.6)

where p ∈ [0,1] is an embedding parameter, u0 is an initial approximation which
satisfies the boundary conditions. The changing process of p from zero to unity is
just that of v(r, p) from u0 to u(r). The basic assumption is that the solution of (12.6)
can be expressed as a power series in p:

v = v0 + pv1 + p2v2 + · · ·

The approximate solution of nonlinear equation (12.5), therefore can be readily
obtained:

u = lim
p→1

v = v0 + v1 + v2 + · · · (12.7)

The convergence of the series (12.7) has been proved in [19,21] and the asymptotic
behavior of the series is given in [22, 23].
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2.4 The Runge–Kutta Method

The Runge–Kutta method is one of the well known numerical methods for
differential equations. The fourth order Runge–Kutta method computes the approx-
imate solutions of the problem ẋ = f (t,x) by the following iterative equations:

xn+1 = xn +
1
6

h(k1 + 2k2+ 2k3 + k4),

k1 = f (tn,xn),

k2 = f

(
tn +

1
2

h,xn +
1
2

hk1

)
,

k3 = f

(
tn +

1
2

h,xn +
1
2

hk2

)
,

k4 = f (tn + h,xn + hk3),

where h is the fixed step size ti− ti−1 and xn is the estimated value of the solution at
the time tn.

3 Multistage HPM for System of FDEs

In this section we solve NLP problems which are governed by system of fractional
differential equation. Consider the unconstrained optimization problem (12.3), an
approach based on fractional dynamic system can be described by the following
FDEs

CDα x(t) =−∇xF(x,μ), (12.8)

subjected to the initial conditions

x(t0) = x(0),

where CDα is the fractional derivative in Caputo sense of x of order α (0 < α � 1).
Note that, a point xe is called an equilibrium point of (12.8) if it satisfies the right

hand side of (12.8). For convenience of reader, we reformulate fractional dynamic
system (12.8) as follows:

CDα xi(t) = gi(t,μ ,x1,x2, . . . ,xn), i = 1,2, . . . ,n. (12.9)

The steady state solution of the nonlinear system of FDEs (12.9) must be coincided
with local optimal solution of the NLP problem (12.1).

In order to find the solution of system (12.9), we use multistage HPM. Because
the multistage strategy is provided to reach steady state solution in whole time
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horizon rather than traditional HPM. According to (12.6), we have constructed the
following homotopy:

CDα xi(t) = pgi(t,μ ,x1,x2, . . . ,xn), (12.10)

where i = 1,2, . . . ,n and p ∈ [0,1]. If p = 0, (12.10) becomes the linear equation

CDα xi(t) = 0,

and when p = 1, the homotopy (12.10) turns out to be the original system given in
(12.9).

We assume that the system (12.9) is defined on the time interval t ∈ [0,T ].
We divide the time interval into N equal length subintervals ΔT = Tj − Tj−1,
j = 1,2, . . . ,N with T0 = 0 and TN = T . Using the parameter p, we expand the
solution xi in the following form:

xi (t) = xi,0 (t)+ pxi,1 (t)+ p2xi,2 (t)+ · · · , i = 1,2,3, . . . ,n. (12.11)

Also, we take the initial approximations as below

x1,0 (t) = x1 (t
∗), x2,0 (t) = x2 (t

∗), . . . ,xn,0 (t) = xn (t
∗), (12.12)

where t∗ is the left end point of each subinterval and initial conditions as

x1,1 (t
∗) = 0, x2,1 (t

∗) = 0, . . . ,xn,1 (t
∗) = 0

...

x1,K (t∗) = 0, x2,K (t∗) = 0, . . . ,xn,K (t∗) = 0

...

Substituting (12.11) into (12.10), and equating the coefficient of the terms with
identical power of p, we get

p0 : CDα xi,0(t) = 0
p1 : CDα xi,1(t) = gi,1(t,μ ,x1,0, . . . ,xn,0)

...
pK : CDα xi,K(t) = gi,K(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1; . . . ;x1,K−1, . . . ,xn,K−1)

...
(12.13)

where i = 1,2,3, . . . ,n and the function gi,1,gi,2, . . . satisfy the following equation:

gi(t,μ ,x1,0 + px1,1 + · · · ,x2,0 + px2,1 + · · · ,xn,0 + pxn,1+ · · ·)
= gi,1(t,μ ,x1,0, . . . ,xn,0)+ pgi,2(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1)

+ p2gi,3(t,μ ,x1,0, . . . ,xn,0;x1,1, . . . ,xn,1;x1,2, . . . ,xn,2)+ · · · .
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For solving the linear system (12.13), we apply the inverse operator Iα both side
of equations. Therefore the components xi,k (i = 1,2, . . . ,n ; k = 0,1,2, . . .) of the
multistage HPM can be determined. In order to carry out the iterations for every
subinterval, we have to clarify initial approximations (12.12). For this purpose we
set t∗ = t0. In multistage HPM, the iterations provide appropriate value of solutions
by means of the previous K-term approximations Φi,K of the preceding subinterval.
Consequently, the approximation solution of (12.9) can be denoted as follows:

xi(t) = Φi,K =
K−1

∑
k=0

xi,k, 1 � i � n. (12.14)

Here the effectiveness and the applicability of the approach especially depend on
choosing ΔT and the number of term in approximate solution (12.14).

4 Numerical Implementation

To illustrate the effectiveness of the multistage HPM according to the HPM and
fourth order Runge–Kutta method, some test problems are taken from Hock and
Schittkowski [33, 34]. Methods are coded in Maple and digits of the variables are
set to 15 in all the calculations done in this paper.

Example 12.1. Consider the following NLP problem [34, Problem No: 216]

minimize f (x) = 100
(
x2

1− x2
)2

+(x1− 1)2 ,

subject to h(x) = x1 (x1− 4)− 2x2 + 12 = 0.
(12.15)

The optimal solution is x∗ = (2,4)T . For solving the above problem, we convert it
to an unconstrained optimization problem with quadratic penalty function (12.2) for
γ = 2, then we have

F (x,μ) = 100
(
x2

1− x2
)2

+(x1− 1)2 +
1
2

μ (x1 (x1− 4)− 2x2 + 12)2 ,

where μ ∈R
+ is an auxiliary penalty variable. The corresponding nonlinear system

of FDEs from (12.8) is defined as

CDα x1(t) =−400(x2
1− x2)x1− 2(x1− 1)− μ(2x1− 4)(x2

1− 4x1− 2x2 + 12),
CDα x2(t) = 200(x2

1− x2)+ 2μ(x2
1− 4x1− 2x2 + 12),

}

(12.16)

where 0 < α � 1. The initial conditions are x1(0) = 0 and x2(0) = 0. Utilizing
the homotopy (12.10) with auxiliary penalty variable μ = 800 and step size
ΔT = 0.00001, the terms of the multistage HPM solutions (12.14) are acquired.
In Fig. 12.1(a)–(b) we show the approximate–exact solution x1 and x2 of the
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a b

Fig. 12.1 Comparison of x1 (a) and x2 (b); Dash: HPM for α = 0.9, Dashdot: MHPM (ΔT =
0.00001) for α = 1, Solidline: MHPM(ΔT = 0.00001) for α = 0.9, Open circle: RK4(ΔT =
0.00001) for α = 1

Table 12.1 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.001 −0.69E +07 −0.11E +07 1.9991 3.9996 1.9338 3.8549 1.9338 3.8549
0.002 −0.84E +08 −0.14E +08 1.9993 3.9998 1.9916 3.9915 1.9916 3.9915
0.003 −0.36E +09 −0.62E +08 1.9993 3.9998 1.9986 3.9992 1.9986 3.9992
0.004 −0.10E +10 −0.17E +09 1.9993 3.9998 1.9993 3.9997 1.9992 3.9997
0.005 −0.23E +10 −0.39E +09 1.9993 3.9998 1.9994 3.9998 1.9993 3.9998

problem (12.15) for the derivative order α = 1 and α = 0.9. We see that for
α = 1 and α = 0.9 our solutions obtained using the multistage HPM are in
good agreement with the RK4 method solution on x∗ = (2,4)T . Furthermore, the
numerical results in Table 12.1 show that the multistage HPM for α = 0.9 has better
performance than for α =1. Clearly, the MHPM(α =0.9) iterations converge faster
than MHPM(α =1) and RK4. So, it seems fractional order dynamical systems more
realistic than integer order one for finding optimal solution of NLP problem.

Example 12.2. Consider the equality constrained optimization problem [33, Prob-
lem No: 79]

minimize f (x) = (x1− 1)2 +(x1− x2)
2 +(x2− x3)

2 +(x3− x4)
4 +(x4− x5)

4

subject to h1(x) = x1 + x2
2 + x3

3− 2− 3
√

2 = 0,
h2(x) = x2− x2

3 + x4 + 2− 2
√

2 = 0,
h3(x) = x1x5− 2 = 0.

(12.17)
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Table 12.2 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0 2 2 2 2 2 2 2 2
2 0.160E +8 0.620E +8 1.198931 1.369223 1.182161 1.352495 1.191010 1.359541
10 0.288E +9 0.112E +10 1.191090 1.362530 1.191050 1.362499 1.191082 1.362524
15 0.594E +9 0.230E +10 1.191090 1.362530 1.191084 1.362498 1.191090 1.362530
20 0.100E +10 0.388E +10 1.191090 1.362530 1.191082 1.362472 1.191090 1.362530
30 0.209E +10 0.811E +10 1.191090 1.362530 1.191113 1.362541 1.191090 1.362530

Table 12.3 Comparison of x(t) between HPM and MHPM with RK4 solutions for different value
of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)
t x3(t) x4(t) x3(t) x4(t) x3(t) x4(t) x3(t) x4(t)

0 2 2 2 2 2 2 2 2
2 0.301E +9 −0.420E +7 1.468744 1.616076 1.478320 1.661326 1.474039 1.641529
10 0.546E +10 −0.756E +8 1.472774 1.634738 1.472792 1.634827 1.472778 1.634755
15 0.113E +11 −0.156E +9 1.472774 1.634738 1.472786 1.634792 1.472774 1.634738
20 0.191E +11 −0.263E +9 1.472774 1.634738 1.472798 1.634853 1.472774 1.634738
30 0.395E +11 −0.550E +9 1.472774 1.634738 1.472765 1.634750 1.472774 1.634738

The solution of (12.17) is x∗ ≈ (1.191127,1.362603,1.472818,1.635017,
1.679081)T , and this is not an exact solution. The equality constrained optimization
problem (12.17) is transformed to an unconstrained optimization problem by using
quadratic penalty function (12.2) for γ = 2 as follows:

F (x,μ) = f (x)+
1
2

μ
3

∑
l=1

(hl(x))
2 ,

where μ ∈R
+ is an auxiliary penalty variable.

The corresponding nonlinear system of FDEs from (12.8) is defined as

CDα x(t) =−∇ f (x)− μ∇h(x)h(x), (12.18)

where 0 < α � 1. The initial condition is x(0) = (2,2,2,2,2)T that is not feasible.
Using the homotopy (12.10) with auxiliary penalty variable μ = 75 and step
size ΔT = 0.0001, the multistage HPM approximate–exact solutions (12.14) are
obtained. In Tables 12.2–12.4, the comparison of the xi, i = 1,2,3,4,5 solutions
between the HPM for α = 0.9, the multistage HPM for α = 0.9 and α = 1 with the
classical RK4 method are given, respectively. Here, the solutions continuously de-
pends on the order of fractional derivative. Furthermore, our approximate solutions
using the multistage HPM are in good agreement with the RK4 method solution and
the optimal solution of the optimization problem (12.17).
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Table 12.4 Comparison of x(t) between HPM and MHPM with RK4 solutions
for different value of α

HPM (α = 0.9) MHPM (α = 0.9) MHPM (α = 1) RK4 (α = 1)

t x5(t) x5(t) x5(t) x5(t)

0 2 2 2 2
2 0.102E +7 1.668076 1.691867 1.679209
10 0.183E +8 1.679130 1.679187 1.679140
15 0.378E +8 1.679130 1.679136 1.679130
20 0.637E +8 1.679130 1.679142 1.679130
30 0.133E +9 1.679130 1.679093 1.679130

5 Conclusions

In the present work, the HPM has been successfully used to obtain approximate
analytical solutions of NLP problems. Initially, the NLP problem is reformulated
by a system of FDEs. In order to see the essential behavior of the system of FDEs,
the multistage strategy is adapted to the HPM. The numerical comparison among
the fourth order Runge–Kutta (RK4), the multistage HPM (α = 0.9 and α = 1)
and HPM (α = 0.9) shows that the multistage HPM (α = 0.9) performs rapid
covergency to the optimal solutions of the optimization problems. Consequently,
these results verify the efficiency of the multistage HPM as a practical tool for
solving NLP problem.
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Chapter 13
On the Hadamard Type Fractional
Differential System

Ziqing Gong, Deliang Qian, Changpin Li, and Peng Guo

1 Introduction

In recent decades, the fractional differential equations has been paid more and more
attention, which mostly involve the Riemann–Liouville fractional calculus or the
Caputo one [1–6]. The Hadamard calculus (differentiation and integration) has not
been mentioned so much as other kinds of fractional derivative, even if it has been
presented many years before [7].

In the following, the definitions of the Hadamard derivative and integral are
introduced [8].

Definition 13.1. The Hadamard fractional integral of order α ∈ R+ of function
f (x), ∀x > 1, is defined by:

HD−α
1,x f (x) =

1
Γ (α)

∫ x

1

(
ln

x
t

)α−1
f (t)

dt
t
, (13.1)

where Γ (·) is the Euler Gamma function.

Definition 13.2. The Hadamard derivative of order α ∈ [n− 1,n), n ∈ Z+, of
function f (x) is given as follows:

HDα
1,x f (x) =

1
Γ (n−α)

(
x

d
dx

)n ∫ x

1

(
ln

x
t

)n−α−1
f (t)

dt
t
. (13.2)
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From the above definitions, the differences between Hadamard fractional deriva-
tive and the Riemann–Liouville fractional derivative are obvious, which include two
aspects: firstly, no matter what the definitions of integral or derivative, the kernel in
the Hadamard integral has the form of ln x

t instead of the form of (x− t) which is
involved in the Riemann–Liouville integral; secondly, the Hadamard derivative has
the operator

(
x d

dx

)n
, whose construction is well suited to the case of the half-axis

and is invariant relative to dilation [9], while the Riemann–Liouville derivative has
the operator

(
d
dx

)n
.

Next, some of propositions with the Hadamard calculus are formed as follows.

Proposition 13.1. If 0 < α < 1, the following relations hold

(i) HD−α
1,x (lnx)β−1 =

Γ (β )
Γ (β +α)

(ln x)β+α−1;

(ii) HDα
1,x(lnx)β−1 =

Γ (β )
Γ (β −α)

(lnx)β−α−1.

Proof. Here we only prove (ii), (i) can be proved similar to (ii). Direct calculations
yield

HDα
1,x(lnx)β−1 =

(
x

d
dx

)
· 1

Γ (1−α)

∫ x

1

(
ln

x
t

)−α
(ln t)β−1 dt

t

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)

∫ x

1

(
1− ln t

lnx

)−α( ln t
lnx

)β−1

d
ln t
lnx

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)
B(1−α,β )

=

(
x

d
dx

)
· (lnx)β−α

Γ (1−α)

Γ (1−α)Γ (β )
Γ (β −α + 1)

=
Γ (β )

Γ (β −α + 1)
· x ·

d
(
(lnx)(β−α)

)

dx

=
Γ (β )

Γ (β −α)
(ln x)(β−α−1).

This completes the proof. 
�
The following results are available in [8].

Proposition 13.2. If α ≥ 0 and β = 1, for any j = [α]+1, the following relations
hold

(i) (HDα
1,t1)(x) =

1
Γ (1−α)

(lnx)−α ;

(ii)
(

HDα
1,t(ln t)α− j)(x) = 0.
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Next, we will introduce the weighted space Cγ, ln[a,b], Cn
δ ,γ [a,b] of the function

f on the finite interval [a,b], if γ ∈C(0 ≤ Re(γ)< 1), n− 1 < α ≤ n, then

Cγ, ln[a,b] :=
{

f (x) : ln( x
a )

γ f (x) ∈ C[a,b], || f ||Cγ = ||(ln x
a)

γ f (x)||C
}
,

C0, ln[a,b] = C[a,b],

and

Cn
δ ,γ [a,b] : =

{
g(x) : (δ ng)(x) ∈ Cγ, ln[a,b],

||g||Cγ, ln = ∑n−1
k=0 ||δ kg||C + ||δ ng||Cγ, ln

}
,

δ = x
d
dx

.

Theorem 13.1. Let α > 0, n=−[−α] and 0≤ γ < 1. Let G be an open set in R and
let f : (a,b]×G −→ R be a function such that: f (x,y) ∈ Cγ, ln[a,b] for any y ∈ G,
then the following problem

HDα
a,t(x) = f (x,y(x)),(α > 0), (13.3)

HDα−k
a,t (a+) = bk,bk ∈ R,(k = 1, . . . ,n,n =−[−α]), (13.4)

satisfies the following Volterra integral equation:

y(x)=
n

∑
j=1

b j

Γ (α− j+ 1)

(
ln

t
a

)α− j
+

1
Γ (α)

∫ x

a

(
ln

x
t

)α−1
f [t,y(t)]

dt
t
,(x > a > 0),

(13.5)
i.e., y(x) ∈ Cn−α ,ln[a,b] satisfies the relations (13.3)–(13.4) if and only if it satisfies
the Volterra integral equation (13.5).

In particular, if 0 < α ≤ 1, the problem (13.3)–(13.4) is equivalent to the
following equation:

y(x) =
b

Γ (α)

(
ln

t
a

)α−1
+

1
Γ (α)

∫ x

a

(
ln

x
t

)α−1
f [t,y(t)]

dt
t
, (x > a > 0). (13.6)

2 The Generalized Gronwall Inequality

The Gronwall inequality, which plays a very important role in classical differential
systems, has been generalized by Ye and Gao [10] which is used to fractional
differential equations with Riemann–Liouville derivative. In this paper we further
generalize the inequality. We firstly recall the classical Gronwall inequality which
can be found in [11].
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Theorem 13.2. If

x(t)≤ h(t)+
∫ t

t0
k(s)x(s)ds, t ∈ [t0,T ),

where all the functions involved are continuous on [t0,T ), T ≤∞, and k(t)≥ 0, then
x(t) satisfies

x(t)≤ h(t)+
∫ t

t0
h(s)k(s)exp

[∫ t

s
k(u)du

]
ds, t ∈ [t0,T ).

If, in addition, h(t) is nondecreasing, then

x(t)≤ h(t)exp

(∫ t

t0
k(s)ds

)
, t ∈ [t0,T ).

The generalized Gronwall inequality corresponding to the Riemann–Liouville
type fractional differential system is introduced as follows which is presented in Ye
and Gao [10].

Theorem 13.3. Suppose α > 0, a(t) is a nonnegative function and locally inte-
grable on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing,
continuous function defined on 0≤ t < T , g(t)≤M (constant), and suppose u(t) is
nonnegative and locally integrable on 0≤ t < T with

u(t)≤ a(t)+ g(t)
∫ t

0
(t− s)α−1u(s)ds,

on the interval. Then

u(t)≤ a(t)+
∫ t

0

[
∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)
(t− s)nα−1a(s)

]
ds, 0≤ t < T.

This inequality can be used to estimate the bound of the Lyapunov exponents
for both the Riemann–Liouville fractional differential systems and the Caputo ones
[5]. In the following, we derive another inequality which can be regarded as a
modification of Theorem 3.

Theorem 13.4. Suppose α > 0, a(t) and u(t) are nonnegative functions and locally
integrable on 1 ≤ t < T (≤ +∞), and g(t) is a nonnegative, nondecreasing,
continuous function defined on 1 ≤ t < T , g(t) ≤ M (constant). If the following
inequality

u(t)≤ a(t)+ g(t)
∫ t

1

(
ln

t
s

)α−1
u(s)

ds
s
, 1≤ t < T, (13.7)
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holds. Then

u(t)≤ a(t)+
∫ t

1

[
∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1
a(s)

]
ds
s
, 1≤ t < T. (13.8)

Proof. Let

Bφ(t) = g(t)
∫ t

1

(
ln

t
s

)nα−1

φ(s)
ds
s
.

Then
u(t)≤ a(t)+Bu(t).

Iterating the inequality, one has

u(t)≤
n−1

∑
k=0

Bka(t)+Bnu(t).

In the following, we prove

Bnu(t)≤
∫ t

1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1
u(s)

ds
s
, (13.9)

and Bnu(t)→+∞ for each t ∈ (1,T ).
Obviously, (13.9) holds when n = 1. Suppose it holds for n = k. Let n = k+ 1,

then one has

Bk+1u(t) = B
(
Bku(t)

)
≤g(t)

∫ t

1

(
ln

t
s

)α−1
[∫ s

1

(g(t)Γ (α))n

Γ (nα)

(
ln

s
τ

)kα−1
u(τ)

dτ
τ

]
ds
s
.

Under the condition that g(t) is nondecreasing, one obtains

Bk+1u(t)≤ (g(t))k+1
∫ t

1

(
ln

t
s

)α−1
[∫ s

1

(Γ (α))n

Γ (nα)

(
ln

s
τ

)kα−1
u(τ)

dτ
τ

]
ds
s
.

By interchanging the order of integration, we get

Bk+1u(t)≤ (g(t))k+1
∫ t

1

[∫ t

τ

(Γ (α))k

Γ (kα)

(
ln

t
s

)α−1(
ln

s
τ

)kα−1 ds
s

]
u(τ)

dτ
τ

=

∫ t

1

(g(t)Γ (α))k+1

Γ ((k+ 1)α)

(
ln

t
s

)(k+1)α−1
u(s)

ds
s
,
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where the integral

∫ t

τ

(
ln

t
s

)α−1(
ln

s
τ

)kα−1 ds
s

=
(

ln
t
τ

)kα+α−1 ∫ 1

0
(1− z)α−1zkα−1dz

=
(

ln
t
τ

)(k+1)α−1
B(kα,α)

=
Γ (α)Γ (kα)

Γ ((k+ 1)α)

(
ln

t
τ

)(k+1)α−1
,

is obtained, where lns = lnτ + z ln t
τ is used.

Therefore, (13.9) is true.
Moreover, since

Bnu(t)≤
∫ t

1

(MΓ (α))n

Γ (nα)

(
ln

t
s

)nα−1
u(s)

ds
s
→ 0,

as n→+∞, for t ∈ [1,T ).
Hence this completes the proof. 
�

Corollary 13.1. Let g(t) = b > 0 in (13.7). The inequality (13.7) turns into the
following form

u(t)≤ a(t)+ b
∫ t

1

(
ln

t
s

)α−1
u(s)

ds
s
.

Furthermore

u(t)≤ a(t)+
∫ t

1

[
∞

∑
n=1

(bΓ (α))n

Γ (nα)

(
ln

t
s

)nα−1
a(s)

]
ds
s
, (1≤ t < T ).

Corollary 13.2. Under the assumption of Theorem 4, suppose that a(t) is a
nondecreasing function on [1,T ). Then

u(t)≤ a(t)Eα ,1(g(t)Γ (α)(ln t)α),

where Eα ,1 is the Mittag-leffler function defined by

Eα ,1 =
∞

∑
k=0

zk

Γ (kα + 1)
.
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Proof. The assumptions imply

u(t)≤ a(t)

[
1+

∫ t

1

∞

∑
n=1

(g(t)Γ (α))n

Γ (nα)

(
ln

t
s

)nα−1 ds
s

]

= a(t)
∞

∑
n=0

(g(t)Γ (α) ln t)n

Γ (nα + 1)

= a(t)Eα(g(t)Γ (α)(ln t)α).

This ends the proof. 
�

3 The Dependence of Solution on Parameters

As far as we are concerned, there have been some papers dedicated to study the
dependence of the solution on the order and the initial condition to the fractional
differential equation with Riemann–Liouville type and Caputo type derivative, while
quite few papers are contributed to the Hadamard type fractional differential system.
In this section, we study the dependence of the solution on the order and the initial
condition of the fractional differential equation with Hadamard fractional derivative.

Now we consider the following fractional system:

HDα
1,ty(t) = f (t,y(t)), (13.10)

HDα−1
1,t y(t)|t=1 = η , (13.11)

where 0 < α < 1,1≤ t < T ≤+∞, f : [1,T )×R→ R.
The existence and uniqueness of the initial value problem (13.10)–(13.11) have

been studied in [8], in which the dependence of a solution on initial conditions has
also been considered. Here, we investigate the dependence on both the initial value
conditions and the derivative order.

Obviously, the problem (13.10)–(13.11) can be changed into the Volterra integral
equation.

y(t) =
η

Γ (α)
(ln t)α−1 +

1
Γ (α)

∫ t

1
(ln t)α−1 f (τ,y(τ))

dτ
τ
. (13.12)

In effect, the Volterra equation (13.12) is equivalent to the initial value problem
(13.10)–(13.11).

Theorem 13.5. Let α > 0 and δ > 0 such that 0 < α − δ < α ≤ 1. Also let the
function f be continuous and satisfy the Lipschitz condition with respect to the
second variable:

| f (t,y)− f (t,z)| ≤ L|y− z|,
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for a constant L independent of t,y,z in R. For 1 ≤ t ≤ h < T , assume that y and z
are the solutions of the initial value problems (13.10)–(13.11) and

HDα−δ
1,t z(t) = f (t,z(t)), (13.13)

HDα−δ−1
1,t z(t)|t=1 = η̄ , (13.14)

respectively. Then, the following relation holds for 1 < t ≤ h:

|z(t)− y(t)| ≤ A(t)+
∫ t

1

[
∞

∑
n=1

(
L

Γ (α)
Γ (α− δ )

)n (ln t
s )

n(α−δ )−1

Γ (n(α− δ ))
A(s)

]
ds
s
,

where

A(t) =

∣∣∣∣ η̄
Γ (α−δ )

(ln t)α−δ−1− η
Γ (α)

(ln t)α−1

∣∣∣∣+
∣∣∣∣∣

(ln t)α−δ

(α− δ )Γ (α)
− (ln t)α

Γ (α+1)

∣∣∣∣∣ · ‖ f‖

+

∣∣∣∣∣
(ln t)α−δ

α− δ

[
1

Γ (α− δ )
− 1

Γ (α)

]∣∣∣∣∣ · ‖ f‖,

and
‖ f‖= max

1≤t≤h
| f (t,y)|.

Proof. The solutions of the initial value problem (13.10)–(13.11) and (13.13)–
(13.14) are as follows:

y(t) =
η

Γ (α)
(ln t)α−1 +

1
Γ (α)

∫ t

1
(ln t)α−1 f (τ,y(τ))

dτ
τ
,

and

z(t) =
η̄

Γ (α− δ )
(ln t)α−δ−1 +

1
Γ (α− δ )

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
.

So we have

|z(t)−y(t)| ≤
∣∣∣∣ η̄
Γ (α−δ )

(lnt)α−δ−1− η
Γ (α)

(lnt)α−1
∣∣∣∣

+

∣∣∣∣ 1
Γ (α−δ )

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ

∣∣∣∣

+

∣∣∣∣ 1
Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,z(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,y(τ))

dτ
τ

∣∣∣∣

+

∣∣∣∣ 1
Γ (α)

∫ t

1
(ln t)α−δ−1 f (τ,y(τ))

dτ
τ
− 1

Γ (α)

∫ t

1
(lnt)α−1 f (τ,y(τ))

dτ
τ

∣∣∣∣
≤ A(t)+

1
Γ (α)

∫ t

1
(lnt)α−δ−1L|z(τ)−y(τ)|dτ

τ
,
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where

A(t) =

∣∣∣∣ η̄
Γ (α−δ )

(lnt)α−δ−1− η
Γ (α)

(ln t)α−1
∣∣∣∣+
∣∣∣∣∣

(lnt)α−δ

(α−δ )Γ (α)
− (ln t)α

Γ (α+1)

∣∣∣∣∣ · ‖ f ‖

+

∣∣∣∣∣
(ln t)α−δ

α−δ

[
1

Γ (α−δ )
− 1

Γ (α)

]∣∣∣∣∣ · ‖ f ‖.

Applying Theorem 1 to the above inequality yields:

|z(t)−y(t)| ≤ A(t)+
∫ t

1

[
∞

∑
n=1

(
L

Γ (α)
Γ (α−δ )

)n (ln t
s )

n(α−δ )−1

Γ (n(α−δ ))
A(s)

]
ds
s
.

The proof is finished. 
�
Next, we give an example to discuss the approximate solution of the Hadamard

fractional differential equation.

HD1−δ
1,t x(t) = x(t), (13.15)

HD−δ
1,t x(t)|t=1 = 1, (13.16)

where 1≤ t < T ≤+∞, δ ∈ R+ is small enough.
For the above question, we need not get its asymptotic solution. We can find its

approximate solution quickly in the other way. Now we consider the simple problem
as follows:

HD1
1,t y(t) = y(t), (13.17)

HD0
1,ty(t)|t=1 = 1. (13.18)

Combining the corresponding evaluation and Theorem 5, one has

A(t) =

∣∣∣∣ 1
Γ (1−δ )

(lnt)−δ −1

∣∣∣∣+
∣∣∣∣∣
(ln t)1−δ

1−δ
− ln t

∣∣∣∣∣ · ‖x‖+
∣∣∣∣∣
(lnt)1−δ

1−δ

[
1

Γ (1−δ )
−1

]∣∣∣∣∣ · ‖y‖.

When δ −→ 0 and t ∈ [1,T ), we get A(t)−→ 0.
Actually, δ −→ 0 and t ∈ [1,T ), one has

|x(t)− y(t)|= |elnt − (lnt)δ e(lnt)1−δ | −→ 0.

The example shows that the Hadamard differential equation is dependent on both
the initial value conditions and the order of derivative.
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4 Estimation of the Bound of the Lyapunov Exponents

Recently, Li, Chen and Li, Xia have obtained the bound of the Lyapunov exponents
of the discrete-time system, the ordinary differential system respectively. For
details, see [12, 13]. Also, Li, et al. firstly introduced the Lyapunov exponents for
the fractional differential systems with Riemann–Liouville derivative and Caputo
derivative, and determined the bounds of their Lyapunov exponents [5]. In this
paper, we use the modified Gronwall inequality to derive the bound of the Lyapunov
exponents of the fractional differential system with Hadamard derivative.

Theorem 13.6. The following fractional differential system with Hadamard deriva-
tive

⎧⎪⎨
⎪⎩

HDα
t0,t x(t) = f (x, t),

(x, t) ∈Ω × (t0,+∞)⊂ Rn× (t0,+∞), α ∈ (0,1), t0 > 0,

HDα−1
t0,t x(t)|t=t0 = x0,

(13.19)

has its first variation equation

⎧⎪⎨
⎪⎩

HDα
t0,tΦ(t) = fx(x, t)Φ(t),

(x, t) ∈Ω × (t0,+∞)⊂ Rn× (t0,+∞), α ∈ (0,1), t0 > 0,

Φ(t0) = I,

(13.20)

where I is an identity matrix and

Φ(t) =
∂
∂ s

φ(t;x0 + sΦ(t))|s=0 = Dxφ(t0;x0),

φ(t0;x0) is the fundamental solution to the system.

Proof. The proof is similar to that in [5], we omit the details here. 
�
Definition 13.3. Let uk(t), k = 1,2, . . . ,n be the eigenvalues of Φ(t) of system
(13.20), which satisfy |u1(t)| ≤ |u2(t)| ≤ · · · ≤ |un(t)|. Then the Lyapunov exponents
lk of the trajectory x(t) solving (13.20) are defined by:

lk = lim
t→∞

sup
1
t

ln |uk(t)|, k = 1,2, . . . ,n.

These exponents lk, k = 1,2, . . . ,n, are real numbers. The existence of the
limit for the classical differential system was established [14]. For the fractional
differential system, it still holds. Obviously, Φ is not invertible when u1(t) = 0,
which implies l1 =−∞. But this case does not happen in general. Hence, we always
assume that u1(t) is not (identically) equal to zero. Therefore, Φ is always supposed
to be invertible.
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Next, we estimate the bound of the Lyapunov exponents for the fractional
differential systems with Hadamard derivative. But firstly, let’s take a look at the
following lemma [15].

Lemma 13.1. If 0 < α < 2, β is an arbitrary complex number, u is an arbitrary
real number such that πα

2 < u < min{π ,πα}, then for an arbitrary integer p ≥ 1
the following expansion holds

Eα ,β (z) =
1
α

z(1−β )/αez1/α −
p

∑
k=1

z−k

Γ (β − kα)
+O(|z|−1−p), |z| → ∞, |arg(z)| ≤ u.

By Lemma 1, we can directly obtain the asymptotic expansion of the Mittag-
Leffler function

Eα ,α(K(ln t)α)≈ eK
1
α

α
K

1
α−1(ln t)1−αt, t →+∞,

where K is a positive constant.
Integrating system (13.19) gives

Φ(t) =

(
ln t

t0

)α−1

Γ (α)
I +

1
Γ (α)

∫ t

t0

(
ln

t
τ

)α−1
fx(x,τ)Φ(τ)

dτ
τ
.

Taking the matrix norm of both sides of the above equation leads to

‖Φ(t)‖ ≤
(

ln t
t0

)α−1

Γ (α)
+

M
Γ (α)

∫ t

t0

(
ln

t
τ

)α−1
‖Φ(τ)‖dτ

τ
,

where the constant M is assumed the bound of ‖ fx(x, t)‖.
Applying Corollary 2 to the above integral inequality brings about

‖Φ(t)‖ ≤
(

ln
t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α)
.

By the fact that the spectral radius of a given matrix is not bigger than its norm, we
have

|un(t)| ≤ ‖Φ(t)‖ ≤
(

ln
t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α)
.

Using the definition of the Lyapunov exponents and applying Lemma 1, one gets
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ln = lim
t→+∞

sup
1
t

ln |un(t)| ≤ lim
t→+∞

sup
1
t

ln‖Φ(t)‖

≤ lim
t→+∞

sup
1
t

ln

((
ln

t
t0

)α−1

Eα ,α

(
M

(
ln

t
t0

)α))

= lim
t→+∞

sup
1
t

ln

⎛
⎝eK

1
α

α
K

1
α−1
(

ln
t
t0

)1−α t
t0

⎞
⎠

= 0.

So the Lyapunov exponents of systems (13.19) satisfy

−∞ < l1 ≤ ·· · ≤ ln ≤ 0.

Therefore we eventually derive the upper bound of the Lyapunov exponents for
the fractional differential systems with Hadamard derivative and the upper bound is
zero, which means that generally the fractional differential system with Hadamard
derivative has no chaotic attractor in the sense of the definition 3. We do not know
whether or not such a system is chaotic in the other sense. Such a problem is still
open. We hope the studies in this respect will appear elsewhere.
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Chapter 14
Robust Synchronization and Parameter
Identification of a Unified Fractional-Order
Chaotic System

E.G. Razmjou, A. Ranjbar, Z. Rahmani, and R. Ghaderi

1 Introduction

Chaotic systems have held researchers’ interest in the past decades. Some nonlinear
systems can model various natural and man-made systems, and are known to have
great sensitivity to initial conditions. This means two system starting trajectories
from their arbitrary and almost the same initial states could evolve in dramatically
different fashions, and soon become uncorrelated and unpredictable. In recent years,
a new direction of chaos research has emerged, in which fractional-order calculus is
applied to dynamic systems [19].

Fractional calculus is in essence as an extension of the ordinary calculus, with
almost 300-year-old history. In spite of the long history, the application of the
fractional calculus to physics and engineering is just a recent focus of interest
[15]. It has been found that the behavior of many physical systems can be properly
described by using the fractional-order system theory. For example, heat conduction
[8], quantum evolution of complex systems [9], and diffusion waves [6] are known
systems governed by the fractional-order equations. In fact, real world process
generally or most likely is fractional-order system [16]. More recently, there is a new
trend to investigate the control and dynamics of fractional-order dynamical systems.

Ahmad and Sprott [1] have shown that nonlinear chaotic systems can still show
chaos when their models become fractional. Ahmad and Harba [2] investigated
chaos control for fractional-chaotic systems, where controllers have been designed
using “backstepping” method of nonlinear control design. Li and Chen [12]
found that chaos exists in the fractional-order Chen system with order less than
three. Linear feedback control of chaos in this system is studied. In [11] chaos
synchronization of fractional-order chaotic systems is studied.
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A unified chaotic system is a chaotic system, which depends on a parameter
α ∈ [0,1]. If 0 ≤ α < 0.8, the unified chaotic system reduces to the generalized
Lorenz chaotic system; the unified chaotic system is reduced to the Lü chaotic
system when α = 0.8. The choice 0.8 < α ≤ 1 makes the unified chaotic system
the generalized Chen chaotic system. Several researchers have focused on control
and synchronization of the unified chaotic system. Chen and Lu [4] considered
that the parameter of the two unified chaotic systems is unknown and an adaptive
controller is used to achieve synchronization based on the Lyapunov stability
theory. Chen et al. [5] investigated the stabilization and synchronization of the
unified chaotic system via an impulsive control method. Lu et al. [13] used linear
feedback and adaptive control to synchronize an identical unified chaotic system
with only one input controller. Ucar et al. [17] used a nonlinear active controller to
synchronize two coupled unified chaotic systems with three control inputs. Wang
and Liu [18] proved that the unified chaotic system is equivalent to a passive one
which becomes asymptotically stabilized at equilibrium points. Wang and Song [20]
studied the synchronization problem of two identical unified chaotic systems using
three different methods. They used a linear feedback controller, a nonlinear feedback
method, and an impulsive controller to synchronize the systems. In [21] based on the
sliding mode theory, synchronization of two identical unified chaotic is discussed.

In this chapter adaptive sliding mode control will be designed to synchronize
two fractional-order unified chaotic systems. This will be done when parameters are
unknown and need to be identified, especially when initial conditions of master and
slave systems are different. This is also done when the slave system is perturbed
by the uncertainties in the dynamic. Also Unlike many well-known methods of the
sliding mode control, no knowledge on the bound of uncertainty and disturbance is
required.

The chapter is organized as follows: Section 2 describes the unified system.
Fractional-order adaptive controller is proposed to synchronize and identify param-
eters of the two unified systems in Sect. 3. Simulation study is given in Sect. 4, to
illustrate the effectiveness of the proposed controller. The chapter will be concluded
in Sect. 5.

2 System Description

Unified chaotic system is a system whose behavior incorporates the behavior of the
chaotic Lorenz, Chen, and the Lü systems. The unified chaotic system is governed
by the following set of ordinary differential equations:

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = (25α + 10)(y− x)
dy
dt = (28− 35α)x− xz+(29α− 1)y.
dz
dt = xy− 8+α

3 z

(14.1)
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The states of the system (6) are x, y, and z and the key parameter of the system
is α which takes values in the range [0, 1] to become chaotic. When α = 0.01,
the unified chaotic system represents the Lorenz chaotic attractor. It represents the
Lü chaotic attractor when α = 0.8. Similarly, when α = 1, it represents the Chen
chaotic attractor [3]. Moreover, for α ∈ [0,0.8], system (6) is called the general
Lorenz system. Ultimately, system (6) is called the general Chen system when α ∈
[0.8,1] [7].

The work will be expanded when a fractional order of (14.2) is considered. It
means the standard derivatives in (14.1) are replaced by fractional derivatives, which
are as follows:

⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = (25α + 10)(y− x)
dqy
dtq = (28− 35α)x− xz+(29α− 1)y,
dqz
dtq = xy− 8+α

3 z

(14.2)

where q, as the fractional order, is subjected to 0 < q≤ 1.
The chaos in fractional-order unified systems (Chen, Lü and Lorenz-like) for

q = 0.9, 0.95, 0.99 is shown in [14]. From fractional-order unified chaotic system in
(14.2) a generalized type can be given as follows:

⎧⎪⎪⎨
⎪⎪⎩

dqx
dtq = a(y− x)
dqy
dtq = bx− xz+ cy.
dqz
dtq = xy− dz

(14.3)

2.1 Fractional-Order Chen System

From [14], the fractional-order Chen system is represented by:

⎧⎪⎪⎨
⎪⎪⎩

dqx1
dtq = a1(x2− x1)

dqx2
dtq = (c1− a1)x1− x1x3 + c1x2.

dqx3
dtq = x1x2− b1x3

(14.4)

The fractional-order Chen system as master is represented from (14.4), where x1,
x2, and x3 are the states and a1, b1, and c1 are unknown constant parameters of the
master dynamic. A similar uncertain driven slave system may be written as:

⎧⎪⎪⎨
⎪⎪⎩

dqy1
dtq = a2(t)(y2− y1)+Δ f1(y1,y2,y3)+ u1

dqy2
dtq = (c2(t)− a2(t))y1− y1y3 + c2(t)y2 +Δ f2(y1,y2,y3)+ u2.

dqy3
dtq = y1y2− b2(t)y3 +Δ f3(y1,y2,y3)+ u3

(14.5)
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a2(t), b2(t), and c2(t) are time dependent unknown parameters, which must be
identified through the behavior of the master. Δ fi(y1, y2, y3) (i = 1, 2, 3) are
uncertain terms, representing the unknown part of dynamic. The uncertainty is
assumed upper bounded by a positive constant σ as |Δ fi(y1, y2, y3)| ≤ σ .

Note that the slave dynamic contains three individual input control signals. The
control will be designed such that the master and the slave are synchronized after
starting from different initial conditions. The error will be defined between the states
of the master in (14.4) and the slave systems in (14.5), which is as follows:

⎧⎪⎪⎨
⎪⎪⎩

dqe1
dtq = a2(t)(e2− e1)+ ã(x2− x1)+Δ f1(y1,y2,y3)+ u1

dqe2
dtq =c2(t)(e1+e2)+c̃(x1+x2)−y1e3−e1x3+a2(t)e1−x1ã+Δ f2(y1,y2,y3)+u2,

dqe3
dtq = y1e2 + e1x2− b2(t)e3− x3b̃+Δ f3(y1,y2,y3)+ u3

(14.6)
where e1 = y1− x1, e2 = y2− x2, and e3 = y3− x3 are the states error. Likewise the
tilda-term shows the deviation of parameters from their nominal values as:

ã = a2(t)− a1, b̃ = b2(t)− b1, c̃ = c2(t)− c1.

2.2 Fractional Order Lü System

From [14], the fractional-order Lü system is expressed by:

⎧⎪⎪⎨
⎪⎪⎩

dqx1
dtq = a1(x2− x1)

dqx2
dtq =−x1x3 + c1x2.

dqx3
dtq = x1x2− b1x3

(14.7)

The master fractional-order Lü system is represented in (14.7), whilst the forced
uncertain slave system may be written as:

⎧⎪⎪⎨
⎪⎪⎩

dqy1
dtq = a2(t)(y2− y1)+Δ f1(y1,y2,y3)+ u1

dqy2
dtq =−y1y3 + c2(t)y2 +Δ f2(y1,y2,y3)+ u2.

dqy3
dtq = y1y2− b2(t)y3 +Δ f3(y1, y2, y3)+ u3

(14.8)

Deduction of equations in (14.7) from (14.8) yields the error dynamic by:

⎧⎪⎪⎨
⎪⎪⎩

dqe1
dtq = a2(t)(e2− e1)+ ã(x2− x1)+Δ f1(y1,y2,y3)+ u1

dqe2
dtq =−y1e3− e1x3 + c2(t)e2 + x2c̃+Δ f2(y1,y2,y3)+ u2.

dqe3
dtq = y1e2 + e1x2− b2(t)e3− x3b̃+Δ f3(y1,y2,y3)+ u3

(14.9)
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In this chapter, the goal is to design an adaptive sliding mode controller such that the
resultant error and the parameter identification approach zero. This means a robust
synchronization will be achieved when:

lim
t→∞

|e(t)|= lim
t→∞

|y(t)− x(t)|= 0

and

lim
t→∞

|ã|= lim
t→∞

|a2(t)− a1|= 0

lim
t→∞

|b̃|= lim
t→∞

|b2(t)− b1|= 0

lim
t→∞

|c̃|= lim
t→∞

|c2(t)− c1|= 0.

3 Sliding Mode Controller

3.1 Design of the Controller for the Fractional-Order Chen
System

A primary step in designing the sliding mode controller is to choose a sliding
surface. An appropriate switching surface with integral operation is proposed such
that the sliding motion on the manifold achieves desired properties. However, a
sliding surface may be defined in the form of:

S(t) =
∫ t

0
(e1(τ)+ e2(τ)+ e3(τ))dτ +Dq−1(e1 + e2 + e3). (14.10)

Since the dynamic is of the fractional, a similar fractional dynamic surface is
suggested. Due to complexity of the current synchronization task, an integral
dynamic term is dedicated to be included in the surface. This will be shown
providing a faster synchronization with less error. The situation S(t) = 0 proves
a stable dynamic for e(t). Our aim is to design a controller to enable the system
reaching the sliding surface in a finite time. To ensure the occurrence of the sliding
motion, a control law and the adaptation mechanism are proposed by:

⎧⎪⎪⎨
⎪⎪⎩

u1 =−e1− a2(t)(e2− e1)−ηk sgn(S)

u2 =−e2− c2(t)(e2 + e1)+ a2(t)e1 + y1e3 + e1x3−ηk sgn(S)

u3 =−e3− y1e2− e1x2 + b2(t)e3−ηk sgn(S)

(14.11)

⎧⎪⎪⎨
⎪⎪⎩

ȧ2(t) =−S(x2− 2x1)

ḃ2(t) = Sx3

ċ2(t) =−S(x2 + x1)

(14.12)
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where η > 1 and k is the reaching gain, achieved by the following adaptive law:

k̇ =
γ
3
|S|, k(0) = k̂ > 0 (14.13)

showing γ is a positive constant number.

Lemma 14.1 (Barbalat lemma, [10]). If ω : R → R is a uniformly continuous
function for t ≥ 0 and if lim

t→∞

∫ t
0 ω(λ )dλ exists and is finite, then:

lim
t→∞

ω(t) = 0.

Statement 1. Consider the error dynamic (6) with unknown parameters and
disturbance uncertainties. This system is controlled by the adaptive sliding mode
controller (14.11) together with the adaptation mechanism (14.12). Consequently
the state error trajectory converges to the sliding surface S(t) = 0.

Proof. Consider the following Lyapunov function as:

V =
1
2

S2 +
1
2
(ã2 + b̃2 + c̃2)+

3
2γ

(σ − k)2,

where σ is an upper bound of the uncertainty. Then, the appropriate first derivative
is obtained by:

V̇ = SṠ+ ȧ2(t)ã+ ḃ2(t)b̃+ ċ2(t)c̃+
3
γ
(σ − k)(−3k̇)

= S

⎡
⎢⎢⎢⎢⎢⎣

e1 + e2 + e3 + a2(t)(e2− e1)+ ã(x2− x1)

+Δ f1(y1 + y2 + y3)+ u1 + c2(e2 + e1)

+c̃(x2 + x1)− a2e1− x1ã− y1e3− e1x3

+Δ f2(y1 + y2 + y3)+ u2 + y1e2 + x2e1− b2e3− x3b̃
+Δ f3(y1 + y2 + y3)+ u3

⎤
⎥⎥⎥⎥⎥⎦

+ȧ2(t)ã+ ḃ2(t)b̃+ ċ2(t)c̃+
3
γ
(σ − k)(−3k̇). (14.14)

Substitution of (14.11) and (14.12) into (14.14) achieves the derivative of the
Lyapunov function as:

V̇ = S

[−3ηk sgn(S)+Δ f1(y1,y2,y3)+Δ f2(y1,y2,y3)

+Δ f3(y1,y2,y3)

]

+
3
γ
(σ − k)(−3k̇)≤ 3σ |S|− 3ηk|S|+ 3

γ
(σ − k)(−3k̇). (14.15)

From (14.13) and (14.15) we achieve:

V̇ = SṠ≤ 3k|S|(1−η). (14.16)
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From η > 1 and k̇,k(0)> 0, the derivative of Lyapunov function accordingly yields:

V̇ ≤ 3k|S|(1−η) =−ω(t)≤ 0, (14.17)

where ω(t) = 3k|S|(η− 1). Using (14.11) and (14.12) concludes that the reaching
condition V̇ ≤ 0 is always maintained. Since V̇ is negative semi-definite, the origin
in the error dynamic is not an asymptotically stable point. On the other hand as
V̇ ≤ 0 then S ∈ L∞ and ã, b̃, c̃ ∈ L∞, accordingly V (t) ∈ L∞ (i.e. S, ã, b̃, c̃,V (t) are
bounded). Then we have:

∫ t

0
ω(λ )dλ ≤

∫ t

0
−V̇dλ =V (0)−V(t)≤V (0).

As t approaches infinity, the above integral is always less than or equal to V (0).
Since V (0) is positive and finite, lim

t→∞

∫ t
0 ω(λ )dλ exists and is finite. Thus, according

to the Barbalat’s lemma, we obtain:

lim
t→∞

ω(t) = lim
t→∞

3k|S|(η− 1) = 0. (14.18)

Since η > 1, (14.18) implies S = 0. Hence the proof is completely achieved. �

3.2 Design of the Controller for the Fractional-Order Lü system

The same switching surface is used for the Lü system when the following proposed
control law and the adaptation mechanism are used by:

⎧⎪⎪⎨
⎪⎪⎩

u1 =−e1− a2(t)(e2− e1)−ηk sgn(S)

u2 =−e2− c2(t)e2 + a2(t)e1 + y1e3 + e1x3−ηk sgn(S)

u3 =−e3− y1e2− e1x2 + b2(t)e3−ηk sgn(S)

(14.19)

⎧⎪⎪⎨
⎪⎪⎩

ȧ2(t) =−S(x2− x1)

ḃ2(t) = Sx3

ċ2(t) =−Sx2

(14.20)

Similar to the previous section, η > 1 and k as the reaching gain is achieved
according to (14.13).

Statement 2. Consider the error dynamic in (14.9) with unknown parameters and
disturbance uncertainties. The state error trajectory converges to the sliding surface
S(t) = 0 if the sliding mode control law and the adaptation mechanism in (14.19)
and (14.20) are applied.



180 E.G. Razmjou et al.

Proof. Candidate the Lyapunov function as:

V =
1
2

S2 +
1
2
(ã2 + b̃2 + c̃2)+

3
2γ

(σ − k)2.

The time derivative of V is obtained by:

V̇ = SṠ+ ȧ2(t)ã+ ḃ2(t)b̃+ ċ2(t)c̃+
3
γ
(σ − k)(−3k̇)

= S

⎡
⎢⎢⎣

e1 + e2 + e3 + a2(t)(e2− e1)+ ã(x2− x1)

+Δ f1(y1 + y2 + y3)+ u1 + c2e2

+c̃x2− y1e3− e1x3 +Δ f2(y1 + y2 + y3)+ u2

+y1e2 + x2e1− b2e3− x3b̃+Δ f3(y1 + y2 + y3)+ u3

⎤
⎥⎥⎦

+ȧ2(t)ã+ ḃ2(t)b̃+ ċ2(t)c̃+
3
γ
(σ − k)(−3k̇). (14.21)

Replacing (14.19), (14.20), and (14.13) into (14.21) achieves the derivative of the
Lyapunov function as:

V̇ = SṠ≤ 3k|S|(1−η). (14.22)

Similar to the previous section the derivative of Lyapunov function remains
negative. From inequality (14.22), it is concluded that there exists a finite time t1
such that for all t ≥ t1, where the reach condition V̇ ≤ 0 is maintained. Similar to the
previous section, using Barbalat’s lemma provides S = 0 as t → ∞. Thus the proof
is completely achieved. �

4 The Simulation

A simulation has been carried out using SIMULINK R©, where the order is set
as q = 0.95. The Adams method is used to solve the system of differential
equations during the simulation. Initial conditions of states of master and slave are,
respectively, selected as (15, 10, 6) and (12, 8, 7). Meanwhile the master is perturbed
by such an uncertainty term of:

Δ fi(y1,y2,y3) = 0.5sin

(√
y2

1 + y2
2 + y2

3

)
(i = 1,2,3).

Furthermore, the following adaptation law is appropriately chosen to update k:

k̇ = 2|S|, k(0) = 10

together with the switching function in (14.10), which is shown in Fig. 14.3.
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Fig. 14.1 Parameter identification of two unified systems when the master incorporates unknown
parameters
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Fig. 14.2 Robust synchronization of fractional-order unified chaotic systems

4.1 Robust Synchronization and Parameter Identification
of the Chen Fractional-Order System

In this section a robust synchronization together with a parameter identification of
the Chen system are of concerned. Master system incorporates unknown constant
parameters whilst the slave dynamic is perturbed by uncertainties. To achieve
a robust synchronization and parameter identification, input controllers and the
adaptation mechanism in (14.11) and (14.12) are, respectively, used. To obtain the
Chen chaotic behavior, parameters in (14.4) is set to [14]:

a1 = 40, b1 = 3, c1 = 28.

The result of the synchronization and parameter identification are, respectively,
shown in Figs. 14.1 and 14.2, respectively.
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Fig. 14.3 Time response of the corresponding switching function S(t)

4.2 Robust Synchronization and Parameter Identification of Lü
Fractional-Order System

Likewise a robust synchronization of Lü fractional-order system is considered
here whilst some parameters are also identified. It is also assumed that the
master involves unknown constant parameters when the slave is perturbed by
such uncertainties. A robust synchronization and parameter identification will be
achieved when input controllers and the adaptation mechanism are, respectively,
used as in (14.19) and (14.20). The Lü system behaves chaotic when parameters in
(14.7) are taken as [14]:

a1 = 35, b1 = 3, c1 = 28.

The results of the synchronization and parameter identification are, respectively,
shown in Figs. 14.1 and 14.2.

5 Conclusion

In this chapter, an adaptive sliding mode controller was used to synchronize a
class of master–slave unified chaotic system through a Lyapunov based approach.
This is achieved through using nonlinear inputs control when the system is also
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perturbed by the uncertainties. A novel switching surface is proposed to perform
the task and to raise the convergence rate of the error in the closed-loop sliding
mode control. This is achieved with no prior knowledge on the bound of uncertainty
and disturbance is required. The states error converges to zero as time tends to
infinity. The simulation result verifies the capability of the proposed adaptive control
mechanism during the synchronization task through a simultaneous parameter
identification scheme. The synchronization is made possible for two identical
systems with different initial conditions. The result also shows the quality of that
the proposed control scheme when it is found robust to bounded uncertainty.
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Chapter 15
Fractional Cauchy Problems on Bounded
Domains: Survey of Recent Results

Erkan Nane

1 Introduction

A celebrated paper of Einstein [8] established a mathematical link between random
walks, the diffusion equation, and Brownian motion. The scaling limits of a simple
random walk with mean zero, finite variance jumps yields a Brownian motion. The
probability densities of the Brownian motion variables solve a diffusion equation,
and hence we refer to the Brownian motion as the stochastic solution to the diffusion
(heat) equation. The diffusion equation is the most familiar Cauchy problem. The
general abstract Cauchy problem is ∂t u = Lu, where u(t) takes values in a Banach
space and L is the generator of a continuous semigroup on that space, see [2]. If L
generates a Markov process, then we call this Markov process a stochastic solution
to the Cauchy problem ∂t u = Lu, since its probability densities (or distributions)
solve the Cauchy problem. This point of view has proven useful, for instance, in the
modern theory of fractional calculus, since fractional derivatives are generators of
certain (α-stable) stochastic processes, see [16].

Fractional derivatives are almost as old as their more familiar integer-order
counterparts, see [23,28]. Fractional diffusion equations have recently been applied
to problems in physics, finance, hydrology, and many other areas, see [11,13,22,30].
Fractional space derivatives are used to model anomalous diffusion or dispersion,
where a particle plume spreads at a rate inconsistent with the classical Brownian
motion model, and the plume may be asymmetric. When a fractional derivative
replaces the second derivative in a diffusion or dispersion model, it leads to
enhanced diffusion (also called superdiffusion). Fractional time derivatives are
connected with anomalous subdiffusion, where a cloud of particles spreads more
slowly than a classical diffusion. Fractional Cauchy problems replace the integer
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time derivative by its fractional counterpart: ∂ β
t u = Lu. Here, ∂ β

t g(t) indicates the
Caputo fractional derivative in time, the inverse Laplace transform of sβ g̃(s)−
sβ−1g(0), where g̃(s) =

∫ ∞
0 e−stg(t)dt is the usual Laplace transform, see [6].

Nigmatullin [25] gave a physical derivation of the fractional Cauchy problem, when
L is the generator of some continuous Markov process {Y (t)} started at x = 0.
The mathematical study of fractional Cauchy problems was initiated by Kochubei,
Schneider and Wyss, see [12,13,31]. The existence and uniqueness of solutions was
proved in [12, 13]. Fractional Cauchy problems were also invented independently
by Zaslavsky [32] as a model for Hamiltonian chaos.

Stochastic solutions of fractional Cauchy problems are subordinated processes.
If X(t) is a stochastic solution to the Cauchy problem ∂t u = Au, then under certain
technical conditions, the subordinate process X(E(t)) is a stochastic solution to

the fractional Cauchy problem ∂ β
t u = Au, see [3]. Here, E(t) is the inverse or

hitting time process to a stable subordinator D(t) with index β ∈ (0,1). That is,
E(t) = inf{x > 0 : D(x)> t}, and D(t) is a Lévy process (continuous in probability
with independent, stationary increments) whose smooth probability density fD(1)(t)

has Laplace transform e−sβ
= f̃D(1)(s), see [29]. Just as Brownian motion is a

scaling limit of a simple random walk, the stochastic solution to certain fractional
Cauchy problems are scaling limits of continuous time random walks, in which the
independent identically distributed (iid) jumps are separated by iid waiting times,
see [19]. Fractional time derivatives arise from power law waiting times, where the
probability of waiting longer than time, t > 0, falls off like t−β for large t value,
see [16]. This is related to the fact that fractional derivatives are non-local operators
defined by convolution with a power law, see [3].

In some applications, the waiting times between particle jumps evolve according
to a more complicated process that cannot be adequately described by a single power
law. Then, a waiting time model, that is, conditional power law leads to a distributed-
order fractional derivative in time, defined by integrating the fractional derivative
of order β against the probability distribution of the power law index, see [17].
The resulting distributed-order fractional Cauchy problem provides a more flexible
model for anomalous sub-diffusion. The Lévy measure of a stable subordinator
with index β is integrated against the power law index distribution to define a
subordinator W (t). Its inverse E(t) produces a stochastic solution X(E(t)) of the
distributed-order fractional Cauchy problem on R

d , when X(t) solves the original
Cauchy problem ∂t u = Lu.

2 Stochastic Solution of Heat Equation on Bounded Domains

Let D be a bounded domain in R
d . We denote by Ck(D),Ck,α (D)and,Ck(D̄) the

space of k-times differentiable functions in D, the space of k-times differential
functions with k-th derivative is Hölder’s continuous of index α , and the space of
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functions that have all the derivatives up to order k extendable continuously up to
the boundary ∂D of D, respectively. We refer to [20] for a detailed discussion of
these spaces and concepts in this section.

Suppose that every point of ∂D is regular for DC. The corresponding Markov pro-
cess is a killed Brownian motion. We denote the eigenvalues and the eigenfunctions
of the Laplacian Δ = ∑d

i=1 ∂ 2
xi

by {μn,φn}∞
n=1, where φn ∈C∞(D).

Remark 15.1. Eigenfunctions {φn}∞
n=1 form an orthonormal basis of L2(D). In

particular, the initial function f regarded as an element of L2(D) can be represented
as

f (x) =
∞

∑
n=1

f̄ (n)φn(x); f̄ (n) =
∫

D
φn(x) f (x)dx. (15.1)

The corresponding heat kernel is given by

pD(t,x,y) =
∞

∑
n=1

e−μntφn(x)φn(y).

The series converges absolutely and uniformly on [t0,∞)×D×D for all t0 > 0. Let
B be Brownian motion and let τD(X) = inf{τ > 0 : X(τ) /∈D} be the first exit time
of a process X from D. In this case, the semigroup given by

TD(t) f (x) = Ex[ f (B(t))I(t < τD(B))]

=
∞

∑
n=1

e−μntφn(x) f̄ (n) =
∫

D
pD(t,x,y) f (y)dy (15.2)

solves the heat equation in D with Dirichlet boundary conditions:

∂t u(t,x) = Δu(t,x), x ∈ D, t > 0,

u(t,x) = 0, x ∈ ∂D,

u(0,x) = f (x), x ∈ D.

3 Fractional Cauchy Problem

Fractional derivatives in time are useful for physical models that involve sticking
or trapping, see [19]. They are closely connected to random walk models with
long waiting times between particle jumps, see [16]. The fractional derivatives are
essentially convolutions with a power law. Various forms of the fractional derivative
can be defined, depending on the domain of the power law kernel, and the way
boundary points are handled, see [23,28]. The Caputo fractional derivative invented
by Caputo [6] is defined for 0 < β < 1 as

∂ β
t u(t,x) =

1
Γ (1−β )

∫ t

0
∂ru(r,x)

dr

(t− r)β . (15.3)
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Its Laplace transform
∫ ∞

0
e−st∂ β

t u(t,x)ds = sβ ũ(s,x)− sβ−1u(0,x) (15.4)

incorporates the initial value in the same way as the first derivative. The Caputo
derivative is useful for solving differential equations that involve a fractional time
derivative, see [11, 26], because it naturally incorporates initial values.

Let D ∈ R
d be a bounded domain. In this section we will consider the fractional

Cauchy problem:

∂ β
t u(t,x) = Δu(t,x), x ∈D, t > 0;

u(t,x) = 0, x ∈ ∂D, t > 0;

u(0,x) = f (x), x ∈ D. (15.5)

To obtain a solution, let u(t,x) = G(t)F(x) be a solution of (15.5). Substituting in
the PDE (15.5) leads to

F(x)∂ β
t G(t) = G(t)ΔF(x)

and now dividing both sides by G(t)F(x), we obtain:

∂ β
t G(t)
G(t)

=
ΔF(x)
F(x)

=−μ .

That is,
∂ β

t G(t) =−μG(t), t > 0; (15.6)

ΔF(x) =−μF(x) x ∈ D; F(x) = 0, x ∈ ∂D. (15.7)

Eigenvalue problem (15.7) is solved by an infinite sequence of pairs (μn,φn), n≥ 1,
where φn is a sequence of functions that form a complete orthonormal set in L2(D),
μ1 < μ2 ≤ μ2 ≤ ·· · , and μn → ∞.

Using the μn determined by (15.7), we need to find a solution of (15.6) with
μ = μn, which is the eigenvalue problem for the Caputo fractional derivative.

We next consider the eigenvalue problem for the Caputo fractional derivative of
order 0 < β < 1.

Lemma 15.1. Let λ > 0. The unique solution of the eigenvalue problem

∂ β
t G(t) =−λ G(t), G(0) = 1 (15.8)

is given by the Mittag-Leffler function:

G(t) = Mβ (−λ tβ ) =
∞

∑
n=0

(−λ tβ )n

Γ (1+β n)
. (15.9)
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For a detailed study of the Mittag-Leffler type functions we refer the reader to
the tutorial paper by Gorenflo and Mainardi [10].

Therefore the solution to (15.6) is given by:

G(t) = G0(n)Mβ

(
−μtβ

)
,

where G0(n) = f̄ (n) is selected to satisfy the initial condition f . Therefore using
this lemma, we obtain a formal solution of the fractional Cauchy problem (15.5) as

u(t,x) =
∞

∑
n=1

f̄ (n)Mβ

(
−μntβ

)
φn(x). (15.10)

Remark 15.2. The separation of variables technique works for a large class opera-
tors including uniformly elliptic operators L in divergence form, see Remark 15.5.
For details, see [20]. Define a cube, i.e.,

D = {x = (x1,x2, . . . ,xd) : 0 < xi < M for all 1≤ i≤ d}.

The functions

φn(x) = (2/M)d/2
d

∏
i=1

sin(πnixi/M)

parametrized by the multi-index of positive integers n = {n1,n2, . . . ,nd}, form
a complete orthonormal set of eigenfunctions of the Laplacian, with Dirichlet
boundary conditions with corresponding eigenvalues

μn = π2M−2(n2
1 + · · ·+ n2

d).

See, for example, Lemma 6.2.1 in [7]. In this case the boundary of the cube domain
is not smooth.

3.1 Stochastic Solution

Fractional time derivatives emerge in anomalous diffusion models, when particles
wait a long time between jumps. In the standard model, called a continuous time
random walk (CTRW), a particle waits for a random time Jn > 0 and then takes a
step of random size Yn. Suppose the two sequences of i.i.d. random variables (Jn)
and (Yn) are independent. The particle arrives at location X(n)=Y1+ · · ·+Yn at time
T (n) = J1 + · · ·+ Jn. Since N(t) = max{n ≥ 0 : T (n) ≤ t} is the number of jumps
by time t > 0, the particle location at time t is X(N(t)). If EYn = 0 and E[Y 2

n ] < ∞
then, as the time scale c → ∞, the random walk of particle jumps has a scaling
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limit c−1/2X([ct])⇒ B(t), a standard Brownian motion. If P(Jn > t) ∼ ct−β for
some 0 < β < 1 and c > 0, then the scaling limit c−1/β T ([ct])⇒ D(t) is a strictly
increasing stable Lévy process with index β , sometimes called a stable subordinator.
The jump times T (n) and the number of jumps N(t) are inverses {N(t) ≥ n} =
{T (n)≤ t}, and it follows that the scaling limits are also inverses, see [16, Theorem
3.2]: c−β N(ct)⇒ E(t), where

E(t) = inf{τ : D(τ)> t}, (15.11)

so that {E(t)≤ τ}= {D(τ)≥ t}. A continuous mapping argument in [16, Theorem
4.2] yields the CTRW scaling limit: Heuristically, since N(ct) ≈ cβ E(t), we
have c−β/2X(N([ct])) ≈ (cβ )−1/2X(cβ E(t)) ≈ B(E(t)), a time-changed Brownian
motion. The density u(t,x) of the process B(E(t)) solves a fractional Cauchy
problem

∂ β
t u(t,x) = ∂ 2

x u(t,x),

where the order of the fractional derivative equals the index of the stable subordina-
tor. Roughly speaking, if the probability of waiting longer than time t > 0 between
jumps falls off like t−β , then the limiting particle density solves a diffusion equation
that involves a fractional time derivative of the same order β .

The Laplace transform of D(t) is given by:

E(e−sD(t)) =

∫ ∞

0
e−sx fD(t)(x)dx = e−tsβ

.

The inverse E(t) of D(t) has density

fE(t)(l) = ∂lP(E(t)≤ l) = ∂l(1−P(D(l)≤ t))

=−∂l

∫ t
l1/β

0
fD(1)(u)du

= (t/β ) fD(1)(tl
−1/β )l−1−1/β , (15.12)

using the scaling property of the density fD(t)(l) = t−1/β fD(1)(lt
−1/β ), see [5].

Using the representation (15.12) and taking Laplace transforms we can show that
the unique solution of the eigenvalue problem (15.8) is also given by

G(t) =
∫ ∞

0
exp(−lλ ) fE(t)(l)dl = E(exp(−λ E(t))), (15.13)

see [19] for the details.
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Now using (15.2) and (15.13) we can express the solution to (15.5) as

u(t,x) =
∞

∑
n=1

f̄ (n)Mβ

(
−μntβ

)
φn(x)

=
∞

∑
n=1

f̄ (n)

[∫ ∞

0
exp(−lμn) fE(t)(l)dl

]
φn(x)

=

∫ ∞

0

[
∞

∑
n=1

f̄ (n)exp(−lμn)φn(x)

]
fE(t)(l)dl

=

∫ ∞

0
[TD(l) f (x)] fE(t)(l)dl

= Ex[ f (B(E(t)))I(τD(B)> E(t))]

= Ex[ f (B(E(t)))I(τD(B(E))> t)]. (15.14)

Remark 15.3. Meerschaert et al. [20] established the conditions on the initial
function f under which u(t,x) is a classical solution (i.e., for each t > 0, u(t,x) ∈
C1(D̄)∩C2(D) and for each x ∈ D, u(t,x) ∈C1(0,∞)) of (15.5): that Δ f (x) has an
eigenfunction expansion w.r.t. {φn}, that is, absolutely and uniformly convergent.
The analytic expression in (0,M)⊂ R above is due to Agrawal [1].

4 Distributed-Order Fractional Cauchy Problems

Let μ be a finite measure with supp μ ⊂ (0,1). We consider the distributed order-
time fractional derivative

D
(ν)u(t,x) :=

∫ 1

0
∂ β

t u(t,x)ν(dβ ), ν(dβ ) = Γ (1−β )μ(dβ ). (15.15)

To ensure that D(ν) is well-defined, we impose the condition

∫ 1

0

1
1−β

μ(dβ )< ∞ (15.16)

as in [17, Eq. (3.3)]. Since Γ (x)∼ 1/x, as x→ 0+, this ensures that ν(dβ ) is a finite
measure on (0,1).

4.1 Eigenvalue Problem: Solution with Waiting Time Process

Stochastic solution to the distributed-order fractional Cauchy problem is obtained
by considering a more flexible sequence of CTRW. At each scale c > 0, we are
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given i.i.d. waiting times (Jc
n) and i.i.d. jumps (Y c

n ). Assume the waiting times
and jumps form triangular arrays whose row sums converge in distribution. Letting
Xc(n) = Y c

1 + · · ·+Y c
n and T c(n) = Jc

1 + · · ·+ Jc
n , we require that Xc(cu)⇒ A(t)

and T c(cu)⇒ W (t) as c → ∞, where the limits A(t) and W (t) are independent
Lévy processes. Letting Nc

t = max{n ≥ 0 : T c(n) ≤ t}, the CTRW scaling limit
Xc(Nc

t )⇒ A(Eν
t ), see [18, Theorem 2.1]. A power-law mixture model for waiting

times was proposed in [17]: Take an i.i.d. sequence of mixing variables (Bi) with
0 < Bi < 1 and assume P{Jc

i > u|Bi = β} = c−1u−β for u ≥ c−1/β , so that the
waiting times are power laws conditional on the mixing variables. The waiting
time process T c(cu)⇒W (t) a nondecreasing Lévy process, or subordinator, with
E[e−sW(t)] = e−tψW (s) and Laplace exponent

ψW (s) =
∫ ∞

0
(e−sx− 1)φW (dx). (15.17)

The Lévy measure

φW (t,∞) =

∫ 1

0
t−β μ(dβ ) =

∫ 1

0

t−β

Γ (1−β )
ν(dβ ), (15.18)

where μ is the distribution of the mixing variable Bi, see [17, Theorem 3.4 and
Remark 5.1]. A computation in [17, Eq. (3.18)] using

∫ ∞
0 (1− e−st)β t−β−1dt =

Γ (1−β )sβ shows that:

ψW (s) =
∫ 1

0
sβ Γ (1−β )μ(dβ ) =

∫ 1

0
sβ ν(dβ ). (15.19)

Then c−1Nc
t ⇒ Eν(t), the inverse subordinator, see [17, Theorem 3.10]. The general

infinitely divisible Lévy process limit A(t) forms a strongly continuous convolution
semigroup with generator L (e.g., see [2]) and the corresponding CTRW scaling
limit A(Eν(t)) is the stochastic solution to the distributed-order fractional Cauchy
problem [17, Eq. (5.12)] defined by

D
(ν)u(t,x) = Lu(t,x). (15.20)

Since φW (0,∞) = ∞ in (15.18), Theorem 3.1 in [18] implies that the inverse
subordinator

Eν(t) = inf{x > 0 : W (x)> t} (15.21)

has density

g(t,x) =
∫ t

0
φW (t− y,∞)PW(x)(dy). (15.22)

This same condition ensures also that Eν(t) is almost surely continuous, since W (t)
jumps in every interval, and hence is strictly increasing. Further, it follows from the
definition (15.21) that Eν(t) is monotone nondecreasing.
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We say that a function is a mild solution to a pseudo-differential equation if its
transform solves the corresponding equation in transform space. The next Lemma
follows easily by taking Laplace transforms.

Lemma 15.2 ([21]). For any λ > 0, h(t,λ ) =
∫ ∞

0 e−λ xg(t,x)dx = E[e−λ Eν (t)] is a
mild solution of

D
(ν)h(t,λ ) =−λ h(t,λ ); h(0,λ ) = 1. (15.23)

Kochubei [15] considered the following: Let ρ(α) be a right continuous non-
decreasing step function on (0,1). Assume that ρ has two sequences of jump points,
βn and νn, n = 0,1,2, . . ., where βn → 0, νn → 1, β0 = ν0 ∈ (0,1). Suppose also
that the sequence {βn} is strictly decreasing and {νn} is strictly increasing. Let
γ1

n = (ρ(βn)−ρ(βn− 0)) and γ2
n = (ρ(νn)−ρ(νn− 0)), and define the distributed

order differential operator as:

D
(ρ)u(t,x) =

∞

∑
n=0

γ1
n ∂ βn

t u(t,x)+
∞

∑
n=0

γ2
n ∂ νn

t u(t,x). (15.24)

Since ρ is a finite measure we have

∞

∑
n=1

γ1
n < ∞,

∞

∑
n=1

γ2
n < ∞.

Here the corresponding subordinator is the sum of infinitely many independent
stable subordinators;

W (t) =
∞

∑
n=0

(γ1
n )

1/βnΓ (1−βn)W
βn(t)+

∞

∑
n=1

(γ2
n )

1/νnΓ (1−νn)W
νn(t) (15.25)

for independent stable subordinators W βn(t), W νn(t) for n = 0,1, · · · .
Lemma 15.3. Let Eρ(t) = inf{x > 0 : W (x) > t}. Then h(t,μ) = E

(
e−μEρ (t)

)
is

the classical solution to the eigenvalue problem

D
(ρ)h(t,μ) =−μh(t,μ), h(0,μ) = 1.

Using inverse Laplace transforms Kochubei [15] established the following repre-
sentation of h(t,μ):

h(t,μ) =
μ
π

∫ ∞

0
r−1e−tr H1(r)

H2(r)
dr, (15.26)

where

H1(r) =
∞

∑
n=0

[
(γ1

n )r
βn sin(πβn)+ (γ2

n )r
νn sin(πνn)

]
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H2(r) =

{
μ +

∞

∑
n=0

[
γ1

n rβn cos(πβn)+ γ2
n rνn cos(πνn)

]}2

+

{ ∞

∑
n=0

[
γ1

n rβn sin(πβn)+ γ2
n rνn sin(πνn)

]}2

. (15.27)

Let D ⊂ R
d be a bounded domain with ∂D ∈ C1,α for some 0 < α < 1, and

D∞ = (0,∞)×D. We will write u∈Ck(D̄) to mean that for each fixed t > 0, u(t, ·)∈
Ck(D̄), and u ∈Ck

b(D̄∞) to mean that u ∈Ck(D̄∞) and is bounded.
Define

HΔ (D∞) = {u : D∞ →R : Δu(t,x) ∈C(D∞)};
Hb

Δ (D∞) =HΔ (D∞)∩{u : |∂tu(t,x)| ≤ k(t)g(x), g ∈ L∞(D), t > 0},

for some functions k and b satisfying the condition

b(λ )
∫ 1

0

∫ t

0

k(s)ds

(t− s)β dμ(β )< ∞, (15.28)

for t, λ > 0 and

k(t)
∞

∑
n=1

b(λn) f̄ (n)|φn(x)|< ∞. (15.29)

Theorem 15.1. Let f ∈ C1(D̄) ∩C2(D) for which the eigenfunction expansion
(of Δ f ) with respect to the complete orthonormal basis {φn : n ∈ N} converges
uniformly and absolutely. Then the classical solution to the distributed-order
fractional Cauchy problem

D
(ρ)u(t,x) = Δu(t,x), x ∈D, t ≥ 0;

u(t,x) = 0, x ∈ ∂D, t ≥ 0;

u(0,x) = f (x), x ∈ D, (15.30)

for u ∈Hb
Δ (D∞)∩Cb(D̄∞)∩C1(D̄), with the distributed order fractional derivative

D
(ρ) defined by (15.24), is given by

u(t,x) = Ex[ f (B(E
ρ (t)))I(τD(B)> Eρ(t))]

= Ex[ f (B(E
ρ (t)))I(τD(B(E

ρ))> t)]

=
∫ ∞

0
[TD(l) f (x)] fEρ (t)(l)dl

=
∞

∑
0

f̄ (n)φn(x)h(t,μn). (15.31)



15 Fractional Cauchy Problems on Bounded Domains: Survey of Recent Results 195

In this case, b(λ ) = λ , and k(t) is given by k(t) =Ctβ0−1, 0 < β0 < 1.

Proof. The proof is similar to the proof of Theorem 3.1 in [21]. We give the main
parts of the proof here.

Denote the Laplace transform t → s of u(t,x) by

ũ(s,x) =
∫ ∞

0
e−stu(t,x)dt.

Since wet are working on a bounded domain, the Fourier transform methods in
[19] are not useful. Instead, we will employ Hilbert space methods. Hence, given a
complete orthonormal basis {φn(x)} on L2(D), we will call

ū(t,n) =
∫

D
φn(x)u(t,x)dx ;

û(s,n) =
∫

D
φn(x)

∫ ∞

0
e−stu(t,x)dtdx

=

∫
D

φn(x)ũ(s,x)dx

=

∫ ∞

0
e−st ū(t,x)dt (when Fubini Thm. holds), (15.32)

respectively the φn and the φn-Laplace transforms. Since {φn} is a complete
orthonormal basis for L2(D), we can invert the φn-transform to obtain

u(t,x) = ∑
n

ū(t,n)ψn(x)

for any t > 0, where the above series converges in the L2 sense (e.g., see [27,
Proposition 10.8.27]).

Assume that u(t,x) solves (15.31). Using Green’s second identity, we obtain

∫
D
[uΔφn−φnΔu]dx =

∫
∂D

[
u

∂φn

∂θ
−φn

∂u
∂θ

]
ds = 0,

since u|∂D = 0 = φn|∂D, u ∈C1(D̄) by assumption, and φn ∈C1(D̄) by [9, Theorem
8.29]. Hence, the φn-transform of Δu is

∫
D

φn(x)Δu(t,x)dx =−μn

∫
D

u(t,x)φn(x)dx

=−μnū(t,n), (15.33)

as φn is the eigenfunction of the Laplacian corresponding to eigenvalue μn.
The fact that the operator D

(ρ) commutes with the φn-transform follows
from (15.28).
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Taking the φn-transform of (15.31) we obtain that

D
(ρ)ū(t,n) =−μnū(t,n). (15.34)

From Lemma 15.3 we get the solution

ū(t,n) = f̄ (n)h(t,μn) = f̄ (n)E
(

e−μnEρ (t)
)
.

Now inverting the φn-transform gives

u(t,x) =
∞

∑
0

f̄ (n)φn(x)h(t,μn).

The stochastic representation uses Lemma 15.3 and the stochastic representation
of the killed semigroup of Brownian motion (15.2).

We use the representation (15.26) to establish the fact that the solution is a
classical solution. The details of the proof can be seen from the proof of the main
results in [20, 21]. 
�
Remark 15.4. Let ν(dβ ) = p(β )dβ for some p ∈C1(0,1), and 0 < β0 < β1 < 1 be
such that

C(β0,β1, p) =
∫ β1

β0

sin(β π)Γ (1−β )p(β )dβ > 0. (15.35)

Then

h(t,λ ) = E

[
e−λ Eν(t)

]
=

λ
π

∫ ∞

0
r−1e−tr Φ1(r)

Φ2(r)
dr, (15.36)

where

Φ1(r) =
∫ 1

0
rβ sin(β π)Γ (1−β )p(β )dβ

Φ2(r) =

[∫ 1

0
rβ cos(β π)Γ (1−β )p(β )dβ +λ

]2

+

[∫ 1

0
rβ sin(β π)Γ (1−β )p(β )dβ

]2

.

In this case we have |∂t h(t,λ )| ≤ λ k(t), where

k(t) = [C(β0,β1, p)π ]−1
[
Γ (1−β1)t

β1−1 +Γ (1−β0)t
β0−1
]
. (15.37)

Hence, h(t,λ ) is a classical solution to (15.23). The representation (15.36) is due to
Kochubei [14], which follows by inverting the Laplace transform of (15.23).

For u ∈Hb
Δ (D∞)∩Cb(D̄∞)∩C1(D̄) for k given by (15.37), Meerschaert et al.

[21] shows that the solution to (15.30), where D
(ρ) replaced with the more general

D
(ν), is a strong (classical) solution for f ∈ C1(D̄)∩C2(D) for which Δ f has an
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absolutely and uniformly convergent eigenfunction expansion w.r.t {φn}. Naber [24]
studied the distributed-order fractional Cauchy problem in D = (0,M)⊂ R.

Remark 15.5. The methods of this paper also apply to the Cauchy problems that
are obtained by replacing Laplacian with uniformly elliptic operator in divergence
form defined on C2 functions by

Lu =
d

∑
i, j=1

∂ (ai j(x)(∂u/∂xi))

∂x j
(15.38)

with ai j(x) = a ji(x) and, for some λ > 0,

λ
n

∑
i=1

y2
i ≤

n

∑
i, j=1

ai j(x)yiy j ≤ λ−1
n

∑
i=1

y2
i , ∀y ∈ R

d . (15.39)

If Xt is a solution to dXt = σ(Xt)dBt + b(Xt)dt, X0 = x0, where σ is a d ×
d matrix, and Bt is a Brownian motion, then Xt is associated with the op-
erator L with a = σσT , see Chapters 1 and 5 in Bass [4]. Define the first
exit time as τD(X) = inf{t ≥ 0 : Xt /∈ D}. The semigroup defined by TD(t) f (x) =
Ex[ f (Xt)I(τD(X) > t)] has generator L with Dirichlet boundary conditions, which
follows by an application of the Itô formula.
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Chapter 16
Fractional Analogous Models in Mechanics
and Gravity Theories

Dumitru Baleanu and Sergiu I. Vacaru

1 Introduction

We can construct analogous fractional models of geometries and physical theories
in explicit form if we use fractional derivatives resulting in zero for actions on
constants (for instance, for the Caputo fractional derivative). This is important for
elaborating geometric models of theories with fractional calculus even (performing
corresponding nonholonomic deformations) we may prefer to work with another
type of fractional derivatives.

In this chapter, we outline some key constructions for analogous classical and
quantum fractional theories [1–6] when methods of nonholonomic and Lagrange–
Finsler geometry are generalized to fractional dimensions.1

An important consequence of such geometric approaches is that using analogous
and bi-Hamilton models (see integer dimension constructions [7, 7, 8]) and related
solitonic systems, we can study analytically and numerically, as well to try to
construct some analogous mechanical and gravitational systems, with the aim to
mimic a nonlinear/fractional nonholonomic dynamics/evolution and even to provide
certain schemes of quantization, like in the “fractional” Fedosov approach [4, 8].

1We recommend readers to consult in advance the above cited papers on details, notation
conventions, and bibliography.
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This work is organized in the form:
In Sect. 2, we remember the most important formulas on Caputo fractional deriva-
tives and nonlinear connections. Section 3 is devoted to fractional Lagrange–Finsler
geometries. There are presented the main constructions for analogous fractional
gravity in Sect. 4.

2 Caputo Fractional Derivatives and N-Connections

We provide some important formulas on fractional calculus for nonholonomic
manifold elaborated in [1–3, 5]. Our geometric arena consists from an abstract

fractional manifold
α
V (we shall use also the term “fractional space” as an equivalent

one enabled with certain fundamental geometric structures) with prescribed non-
holonomic distribution modeling both the fractional calculus and the non-integrable
dynamics of interactions.

The fractional left, respectively, right Caputo derivatives are denoted

1x

α
∂ x f (x) :=

1
Γ (s−α)

x∫

1x

(x− x′)s−α−1
(

∂
∂x′

)s

f (x′)dx′;

x

α
∂

2x f (x) :=
1

Γ (s−α)

2x∫

x

(x′ − x)s−α−1
(
− ∂

∂x′

)s

f (x′)dx′. (16.1)

Using such operators, we can construct the fractional absolute differential
α
d :=

(dx j)α
0

α
∂ j when

α
dx j = (dx j)α (x j)1−α

Γ (2−α)
, where we consider 1xi = 0.

We denote a fractional tangent bundle in the form
α
T M for α ∈ (0,1), associated

with a manifold M of necessary smooth class and integer dimM = n.2 Locally, both
the integer and fractional local coordinates are written in the form uβ = (x j,ya).

A fractional frame basis
α
eβ = eβ ′

β (u
β )

α
∂ β ′ on

α
T M is connected via a vierlbein

transform eβ ′
β (u

β ) with a fractional local coordinate basis

α
∂ β ′ =

(α
∂ j′ = 1x j′

α
∂ j′ ,

α
∂ b′ = 1yb′

α
∂ b′

)
, (16.2)

2The symbol T is underlined to emphasize that we shall associate the approach with a fractional
Caputo derivative.



16 Fractional Analogous Models in Mechanics and Gravity Theories 201

for j′ = 1,2, . . . ,n and b′= n+1,n+2, . . . ,n+n. The fractional co-bases are written

as
α
e

β
= e β

β ′ (u
β )

α
duβ ′ , where the fractional local coordinate co-basis is

α
duβ ′ =

(
(dxi′)α ,(dya′)α

)
. (16.3)

It is possible to define a nonlinear connection (N-connection)
α
N for a fractional

space
α
V by a nonholonomic distribution (Whitney sum) with conventional h- and

v-subspaces, h
α
V and v

α
V,

α
T

α
V = h

α
V⊕v

α
V. (16.4)

Locally, such a fractional N-connection is characterized by its local coefficients
α
N={α Na

i }, when
α
N= α Na

i (u)(dxi)α ⊗
α
∂ a.

On
α
V, it is convenient to work with N-adapted fractional (co) frames,

α eβ =

[
α e j =

α
∂ j− α Na

j

α
∂ a,

α eb =
α
∂ b

]
, (16.5)

α eβ = [ α e j = (dx j)α , α eb = (dyb)α + α Nb
k (dxk)α ]. (16.6)

A fractional metric structure (d-metric)
α
g = {α gαβ} =

[ α gk j,
α gcb

]
on

α
V can

be represented in different equivalent forms,

α
g = α gγβ (u)(duγ)α ⊗ (duβ )α = ηk′ j′

α ek′ ⊗ α e j′+ηc′b′
α ec′ ⊗ α eb′ ,

= α gk j(x,y)
α ek⊗ α e j + α gcb(x,y)

α ec⊗ α eb (16.7)

where matrices ηk′ j′ = diag[±1,±1, . . . ,±1] and ηa′b′ = diag[±1,±1, . . . ,±1], for
the signature of a “prime” spacetime V, are obtained by frame transforms ηk′ j′ =

ek
k′ e j

j′
α gk j and ηa′b′ = ea

a′ eb
b′

α gab.

We can adapt geometric objects on
α
V with respect to a given structure

α
N, calling

them as distinguished objects (d-objects). For instance, a distinguished connection

(d-connection)
α
D on

α
V is defined as a linear connection preserving under parallel

transports the Whitney sum (16.4). There is an associated N-adapted differential
1-form

α Γ τ
β = α Γ τ

β γ
α eγ , (16.8)

parametrizing the coefficients (with respect to (19.2) and (19.1)) in the form α Γ γ
τβ =(

α Li
jk,

α La
bk,

αCi
jc,

αCa
bc

)
.
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The absolute fractional differential α d = 1x

α
dx + 1y

α
dy acts on fractional

differential forms in N-adapted form. This is a fractional distinguished operator,
d-operator; the value α d :=α eβ α eβ splits into exterior h-/ v-derivatives,

1x

α
dx : =(dxi)α

1x

α
∂ i=

α e j α e j and 1y

α
dy : =(dya)α

1x

α
∂ a=

α eb α eb. Using such
differentials, we compute the torsion and curvature (as fractional two d-forms

derived for (16.8)) of
α
D = {α Γ τ

β γ},

αT τ �
α
D α eτ = α d α eτ + α Γ τ

β ∧ α eβ and

αRτ
β �

α
D αΓ τ

β = α d αΓ τ
β − α Γ γ

β ∧ α Γ τ
γ = α Rτ

β γδ
α eγ ∧ α eδ .

Contracting respectively the indices, we can compute the fractional Ricci tensor
αRic = {α Rαβ � α Rτ

αβ τ} with components

α Ri j � α Rk
i jk,

α Ria �− α Rk
ika,

α Rai � α Rb
aib,

α Rab � α Rc
abc

and the scalar curvature of
α
D,

α
s R � α gτβ α Rτβ = α R+ α S, α R = α gi j α Ri j,

α S = α gab α Rab,

with α gτβ being the inverse coefficients to a d-metric (19.3).

The Einstein tensor of any metric compatible
α
D, when

α
Dτ

α gτβ = 0, is defined
αEns = {α Gαβ}, where

α Gαβ := α Rαβ −
1
2

α gαβ
α
s R. (16.9)

The regular fractional mechanics defined by a fractional Lagrangian
α
L can be

equivalently encoded into canonical geometric data (L
α
N, L

α
g, α

c D), where we put
the label L to emphasize that such geometric objects are induced by a fractional
Lagrangian as we provided in [1–3, 5]. We also note that it is possible to ”arrange”

on
α
V such nonholonomic distributions when a d-connection 0

α
D = {α

0 Γ̃
γ ′
α ′β ′} is de-

scribed by constant matrix coefficients, see details in [7, 8], for integer dimensions,
and [5], for fractional dimensions.
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3 Fractional Lagrange–Finsler Geometry

A Lagrange space Ln = (M,L), of integer dimension n, is defined by a Lagrange
fundamental function L(x,y), i.e., a regular real function L : TM→R, for which the
Hessian Lgi j = (1/2)∂ 2L/∂yi∂y j is not degenerate.

We say that a Lagrange space Ln is a Finsler space Fn if and only if its
fundamental function L is positive and two homogeneous with respect to variables
yi, i.e. L = F2. For simplicity, we shall work with Lagrange spaces and their frac-
tional generalizations, considering the Finsler ones to consist of a more particular,
homogeneous, subclass.

Definition 16.1. A (target) fractional Lagrange space
α
Ln = (

α
M,

α
L) of fractional

dimension α ∈ (0,1), for a regular real function
α
L :

α
TM → R, when the fractional

Hessian is

L
α
gi j =

1
4

(α
∂ i

α
∂ j +

α
∂ j

α
∂ i

)
α
L 	= 0. (16.10)

In our further constructions, we shall use the coefficients L

α
gi j being inverse to

L
α
gi j (16.10).3 Any

α
Ln can be associated with a prime ”integer” Lagrange space Ln.

The concept of nonlinear connection (N-connection) on
α
Ln can be introduced

similarly to that on nonholonomic fractional manifold [1, 2] considering the

fractional tangent bundle
α
T M.

Definition 16.2. An N-connection
α
N on

α
TM is defined by a nonholonomic distri-

bution (Whitney sum) with conventional h- and v-subspaces, h
α
TM and v

α
T M, when

α
T

α
T M = h

α
T M⊕v

α
TM. (16.11)

Locally, a fractional N-connection is defined by a set of coefficients,
α
N={α Na

i }
computed as

α
N= α Na

i (u)(dxi)α ⊗
α
∂ a, see formulas (19.15) and (16.3).

Let us consider values yk(τ) = dxk(τ)/dτ, for x(τ) parametrizing smooth curves
on a manifold M with τ ∈ [0,1]. The fractional analogs of such configurations are

determined by changing d/dτ into the fractional Caputo derivative
α
∂ τ = 1τ

α
∂ τ

when α yk(τ) =
α
∂ τ xk(τ). For simplicity, we shall omit the label α for y ∈ α

T M if
that will not result in ambiguities and/or we shall do not associate with it an explicit
fractional derivative along a curve.

3We shall put a left label L to certain geometric objects if it is necessary to emphasize that they are
induced by Lagrange generating function. Nevertheless, such labels will be omitted (to simplify
the notations) if that will not result in ambiguities.
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By straightforward computations, following the same scheme as in [7] but with
fractional derivatives and integrals, we prove:

Theorem 16.1. Any
α
L defines the fundamental geometric objects determining

canonically a nonholonomic fractional Riemann–Cartan geometry on
α
T M being

satisfied the properties:

1. The fractional Euler–Lagrange equations,
α
∂ τ (1yi

α
∂ i

α
L)−

1xi

α
∂ i

α
L = 0, are equiva-

lent to the fractional “nonlinear geodesic” (equivalently, semi-spray) equations(α
∂ τ

)2

xk + 2
α

Gk(x, α y) = 0, where

α
Gk = 1

4 L

α
gk j
[
y j

1y j

α
∂ j

(
1xi

α
∂ i

α
L
)
−

1xi

α
∂ i

α
L
]

defines the canonical N-connection

α
L Na

j = 1y j

α
∂ j

α
Gk(x, α y).

2. There is a canonical (Sasaki type) metric structure,

L
α
g = α

L gk j(x,y)
α ek⊗ α e j + α

L gcb(x,y)
α
L ec⊗ α

L eb,

where the frame structure (defined linearly by α
L Na

j ) is α
L eν = (α

L ei,ea).
3. There is a canonical metrical distinguished connection

α
c D = (h α

c D,v α
c D) =

{
α
c Γ γ

αβ = (α L̂i
jk,

αĈi
jc)
}
,

(in brief, d-connection), which is a linear connection preserving under paral-

lelism the splitting (16.11) and metric compatible, i.e. α
c D
(

L
α
g
)
= 0, α

c Γ i
j =

α
c Γ i

jγ
α
L eγ = L̂i

jkek + Ĉi
jc

α
L ec, for L̂i

jk = L̂a
bk,Ĉ

i
jc = Ĉa

bc in α
c Γ a

b = α
c Γ a

bγ
α
L eγ =

L̂a
bkek + Ĉa

bc
α
L ec,

α L̂i
jk =

1
2

α
L gir ( α

L ek
α
L g jr +

α
L e j

α
L gkr− α

L er
α
L g jk

)
,

αĈa
bc =

1
2

α
L gad ( α ec

α
L gbd +

α ec
α
L gcd− α ed

α
L gbc)

are just the generalized Christoffel indices.4

Finally, in this section, we note that:

Remark 16.1. We note that α
c D is with nonholonomically induced torsion structure

defined by 2-forms

α
LT i = Ĉi

jc
α ei∧ α

L ec,

α
LT a = −1

2 LΩ a
i j

α ei∧ α e j +
(

α eb
α
L Na

i − α L̂a
bi

)
α ei∧ α

L eb

4For integer dimensions, we contract “horizontal” and “vertical” indices following the rule: i = 1
is a = n+1; i = 2 is a = n+2; ... i = n is a = n+n.



16 Fractional Analogous Models in Mechanics and Gravity Theories 205

computed from the fractional version of Cartan’s structure equations

d α ei− α ek∧ α
c Γ i

k = − α
LT i, d α

L ea− α
L eb∧ α

c Γ a
b =− α

LT a,

d α
c Γ i

j− α
c Γ k

j ∧ α
c Γ i

k =− α
LRi

j

in which the curvature 2-form is denoted α
LRi

j.

For any d-connection on
α
T M, we can compute, respectively, the N-adapted

coefficients of αT τ = {α Γ τ
β γ} and αRτ

β = {α Rτ
β γδ} as it is explained for general

fractional nonholonomic manifolds in [1, 2].

4 Analogous Fractional Gravity

Let us consider a “prime” nonholonomic manifold V is of integer dimension dim

V = n+m,n ≥ 2,m ≥ 1.5 Its fractional extension
α
V is modelled by a quadruple

(V,
α
N,

α
d,

α
I), where

α
N is a nonholonomic distribution stating a nonlinear connection

(N-connection) structure. The fractional differential structure
α
d is determined by

Caputo fractional derivative (19.13) following formulas (19.15) and (16.3).
For any frame and co-frame (dual) structures, α eα ′ = (α ei′ ,

α ea′) and α eβ ′ =

(α ei′ , α ea′) on
α
V, we can consider frame transforms

α eα = A α ′
α (x,y) α eα ′ and α eβ = Aβ

β ′(x,y)
α eβ ′ . (16.12)

A subclass of frame transforms (16.12), for fixed “prime” and “target” frame
structures, is called N-adapted if such nonholonomic transformations preserve the
splitting defined by a N-connection structure N = {Na

i }.
Under (in general, nonholonomic) frame transforms, the metric coefficients of

any metric structure
α
g on

α
V are recomputed following the formulas:

α gαβ (x,y) = A α ′
α (x,y) A β ′

β (x,y) α gα ′β ′(x,y).

5A nonholonomic manifold is a manifold endowed with a non-integrable (equivalently, nonholo-
nomic, or anholonomic) distribution. There are three useful (for our considerations) examples when
(1) V is a (pseudo) Riemannian manifold; (2) V = E(M), or (3) V = TM, for a vector, or tangent,
bundle on a base manifold M. We also emphasize that in this chapter we follow the conventions
from [1,2,7] when left indices are used as labels and right indices may be abstract ones or running
certain values.
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For any fixed
α
g and

α
N, there are N-adapted frame transforms when

α
g = α gi j(x,y)

α ei⊗ α e j + α hab(x,y)
α ea⊗ α eb,

= α gi′ j′(x,y)
α ei′ ⊗ α e j′ + α ha′b′(x,y)

α ea′ ⊗ α eb′ ,

where α ea and α ea′ are elongated following formulas (19.2), respectively, by α Na
j

and
α Na′

j′ = A a′
a (x,y)A j

j′(x,y)
α Na

j(x,y), (16.13)

or, inversely, α Na
j = A a

a′ (x,y)A
j′
j(x,y)

α Na′
j′(x,y), with prescribed α Na′

j′ .
We preserve the N-connection splitting for any frame transform (16.12) when

α gi′ j′ = Ai
i′A

j
j′

α gi j,
α ha′b′ = Aa

a′A
b
b′

α hab, for A i′
i constrained to get holonomic

α ei′ = A i′
i

α ei, i.e. [ α ei′ , α e j′ ] = 0 and α ea′ = dya′ + α Na′
j′dx j′ , for certain

xi′ = xi′(xi,ya) and ya′ = ya′(xi,ya), with α Na′
j′ computed following formulas

(16.13). Such conditions can be satisfied by prescribing from the very beginning a
nonholonomic distribution of necessary type. The constructions can be equivalently
inverted, when α gαβ and α Na

i are computed from α gα ′β ′ and α Na′
i′ , if both the

metric and N-connection splitting structures are fixed on
α
V.

An unified approach to Einstein–Lagrange/Finsler gravity for arbitrary integer
and noninteger dimensions is possible for the fractional canonical d-connection α D̂.
The fractional gravitational field equations are formulated for the Einstein d-tensor
(19.5), following the same principle of constructing the matter source α ϒβ δ as

in general relativity but for fractional metrics and d-connections, α Ê β δ = α ϒβ δ .
Such a system of integro-differential equations for generalized connections can
be restricted to fractional nonholonomic configurations for α ∇ if we impose the
additional constraints

α L̂c
a j =

α ea(
α Nc

j ),
αĈi

jb = 0, α Ω a
ji = 0. (16.14)

There are no theoretical or experimental evidences that for fractional dimensions
we must impose conditions of type (19.7) but they have certain physical motivation
if we develop models which in integer limits result in the general relativity theory.
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Chapter 17
Schrödinger Equation in Fractional Space

Sami I. Muslih and Om P. Agrawal

1 Introduction

The concept of a “fractal” and a fractional dimensional space was introduced by
Mandelbrot [1]. Historically, the first example of the fractional physical object
was the Brownian motion [2]. In quantum physics, the first successful attempt of
applying fractiality concept was Feynman path integral approach [3]. Feynman and
Hibbs [4] reformulated the non-relativistic quantum mechanics as a path integral
over a Brownian path.

Several applications of fractional dimensional space could be cited. In 1970s,
Stillinger [5] described a procedure for integration on a fractional space of dimen-
sion D (where D is a noninteger number), and generalized the Laplace operator
ΔDψ(r) in this space as,

ΔD =
∂ 2

∂ r2 +
D− 1

r
∂
∂ r

+
1

r2 sinD−2 θ
∂

∂θ
sinD−2 θ

∂
∂θ

.

Many investigations into low-dimensional semiconductors [6–8] have used this
Laplacian to solve the Schrödinger equation for hydrogen-like atoms for anisotropic
solids to obtain energy bounds and the optical spectra as a function of frac-
tional spatial dimension D. Recent progress includes the description of a single
coordinate momentum operator in this fractional dimensional space based on
generalized Wigner relations [9, 10] presenting realization of parastatics [11]. In
some applications, a fractional dimension appears as an explicit parameter when
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the physical problem is formulated in α dimensions in such a way that D maybe
extended to noninteger values, as in Wilson’s study of quantum field theory models
in less than four dimensions [12], or in the approach to quantum mechanics by
Stillinger [5]. It is worthwhile to mention that the experimental measurement of
dimension D of our real world is given by D = (3± 10−6) [5, 12]. The fractional
value of D agrees with the experimental physical observations that in general rela-
tivity, gravitational fields are understood to be geometric perturbations (curvatures)
in our space time [13], rather than entities residing within a flat space time. Besides,
Zeilinger and Svozil [14] noted that the current discrepancy between theoretical and
experimental values of the anomalous magnetic moment of the electron could be
resolved if we take the dimension D of our space as D = 3− (5.3± 2.5)× 10−7.

The formalism from [5] has been applied to problems such as excitons
[8, 15–21], magnetoexcitons [22], impurities [19], semiconductor heterostructures
[23], polarons [24], and superconductivity [25], often successfully mirroring
computational results in specified problems. Also, the putative fractional dimension
may be viewed as an effective dimension of compactified higher dimensions or as a
manifestation of a nontrivial microscopic lattice structure of space [26].

In fractional dimensional model, one can study the energy spectrum for
hydrogen-like atom-fractioan “Bohr atom” by solving the relevant Schrödinger
equation in a noninteger dimensional space.

2 Fractional Schrödinger Equation

Recently, Laskin [2] showed that the path integral over Lévy trajectories leads to a
fractional Schrödinger equation which can be written as

ih̄
∂ψ(r, t)

∂ t
=Cα(−h̄2Δ)α/2ψ(r, t)+V(r, t)ψ(r, t), (17.1)

where h̄ is the Plank’s constant, r is the position vector and r its magnitude, Δ is the
Laplacian operator, Cα is a constant of dimensions erg1−α .cmα .sec−α , V (r, t) is the
potential field, ψ(r, t) is the wave function, and (−h̄2Δ)α/2 is the 3D quantum Riesz
fractional derivative [2,27]. In the standard case, when α = 2, we have C2 = 1/(2m),
and (17.1) reduces to the standard Schrödinger equation. Since a Lévy trajectory
is a trajectory in a fractional dimension space, we call (17.1) as the fractional
Schrödinger equation in a fractional dimension space.

When V (r, t) =V (r), i.e., the potential is not a function of time, using the method
of separation of variables one can show that the solution of (17.1) is

ψ(r, t) = e(−i/h̄)Etφ(r), (17.2)

and the following equation is satisfied:

Cα(−h̄2Δ)α/2φ(r)+V(r)φ(r) = Eφ(r), (17.3)
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where E is a number. Equation (17.3) is the time-independent fractional Schrödinger
equation. For this case, the probability density is

ρ = |ψ(r, t)2|= |φ(r)2| (17.4)

i.e., the probability density is independent of time. Furthermore, (17.3) can be
written as

Hα ψ(r, t) = Eψ(r, t), (17.5)

which is an eigenvalue equation. Here, Hα is the Hamiltonian operator given as

Hα =Cα(−h̄2Δ)α/2 +V(r), (17.6)

and E is the energy eigenvalue. In other words, the system has a well-defined energy
and it is a stationary system. These results are the same as those for an ordinary
Schrödinger equation with time-independent Hamiltonian [29]. Using (17.5) and
(17.6), we have

Hα =Cα pα +V(r) = Ekin +V (r) = E, (17.7)

where p (= −ih̄∇) is the momentum operator, p is the magnitude of p, ∇ is the
gradient operator, and Ekin (= Cα pα ) is the kinetic energy of the system. Thus,
unless α = 2, the total energy E of an ordinary and a fractional systems are not the
same.

In the discussion to follow, we shall use these equations to find the radius of the
fractional Bohr atom and the frequency of the radiated wave when an electron jumps
from one energy level to another. This requires the virial theorem for fractional atom
which is discussed next.

3 The Virial Theorem for Fractional Bohr Atom

To develop the virial theorem to be used for a stationary fractional dynamic system,
consider a particle at a position r under the influence of a central force with a
potential V (r). The total Hamiltonian of the system is given by (see (17.7)),

H =Cα pα +V(r). (17.8)

Note that for a central force, the potential depends on r only. For this case, the
Hamilton’s equations lead to

ṗs = −∂H
∂ s

=−∂V
∂ s

, s = x,y,z (17.9)

ṡ =
∂H
∂ p

= αCα pα−2 ps, s = x,y,z, (17.10)
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where s and ps, s = x,y,z, are the components of r and p along the direction s.
In deriving (17.9) and (17.10), we have used the fact that p2 = p2

x + p2
y + p2

z and
V (r) =V (x,y,z).

We now define the scalar virial G as

G = p · r = xpx + ypy + zpz, (17.11)

where “ · ” represents the dot product. Taking total time derivative of virial G and
using (17.9) and (17.10), we obtain

dG
dt

= αCα pα +

(
−∂V

∂ r

)
r = αEkin− ∂V

∂ r
r. (17.12)

Here we have used the fact that ∇V · r = r(∂V/∂ r). The average value dG/dt over
an interval τ is given as

dG
dt

=
1
τ

∫ τ

0

dG
dt

dt =
1
τ
[G(τ)−G(0)] = αEkin− ∂V

∂ r
r, (17.13)

where a bar on “*,” i.e. ∗, represents the average value of “*.” The last part of (17.13)
follows from (17.12). Assuming that G(τ) remains bounded and letting the limit of
τ go to infinity, we obtain dG/dt = 0, which leads to

αEkin =
∂V
∂ r

r. (17.14)

Note that if V (r) is of the form, C/r, we obtain αEkin = −V , which is the same as
that given in [2]. Equation (17.14) will be used to obtain the radii of the fractional
Bohr atom and the frequency of the radiated wave which are discussed next.

4 Radii and Frequency of the Fractional Bohr Atom
in Fractional Dimensional Space

The potential energy V (r) of a hydrogen-like fractional Bohr atom in a fractional
dimensional space is [29]

V (r) =−Ze2kε
|r|ε+1 , 0≤ ε < 1, (17.15)

where Z is the atomic number, e is the charge of the electron, ε is a parameter, and
kε is a space constant given as

kε =
Γ ( ε+3

2 )

2π (ε+3)/2(ε + 1)ε0
. (17.16)
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Here ε0 is the dielectric coefficient of the free space, and ε is a constant which may
account for various conditions discussed below. In the special case, when ε = 0,
k1 has a value of 1/(4πε0), and (17.15) reduces to standard potential energy term.
Note that the expression for the potential energy considered here is different from
that considered in [2]. Apart from the derivations given in [29], (17.15) is motivated
by the fact that according to experimental measurements the central force differs
slightly from the inverse square law. In addition, ε in (17.15) may account for the
rotation of the nucleus, motion of the electron in fractional dimension, or simply a
new potential function.

Substituting (17.15) into (17.14), we obtain

Ekin =−1+ ε
α

V. (17.17)

To obtain the radius of the fractional hydrogen-like atom, according to Bohr’s
postulate [30], we have

pan = nh̄, (n = 1,2,3, ...), (17.18)

where, n is the quantum number and an is the radius of the nth electron circular
orbit. Using (17.15), (17.17), (17.18), and the fact that Ekin =Cα pα , we obtain

an = A0n
α

α−ε−1 , (17.19)

where the fractional Bohr radius A0 (also known as the radius of the ground orbit)
is given as

A0 =

[
αCα h̄α

Ze2kε(ε + 1)

] 1
α−ε−1

. (17.20)

The energy spectrum can be obtained from the total energy E given by

E = Ekin +V =
(ε−α + 1)
(1+ ε)

Ekin. (17.21)

Thus, the nth energy level of the fractional hydrogen-like atom is given by

En,α ,ε = B0,α ,εn
−α(ε+1)
α−ε−1 , (17.22)

where B0 is defined as

B0,α ,ε =
(ε−α + 1)

[ααCα h̄α(ε + 1)]
ε+1

α−ε−1

(
(Ze2kε)

α) 1
α−ε−1 . (17.23)

Equation (17.22) generalizes the well-known energy spectrum of the standard
quantum mechanical hydrogen-like atom. In the special case, when α = 2, ε = 0
and C2 = 1/(2m), the expression for En,α ,ε reduces to

En,2,0 =− Z2μe4

32π2ε0
2h̄2n2

, (17.24)
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which is the same as energy levels of the standard hydrogen atom (see [28]).
However, to compare the results given here and in [28], note that one must replace
here kε with 1 and the electron mass m with the reduced mass μ .

Now, the frequency of radiation associated with the transition of electrons from
one allowed orbit corresponding to n1 = k to another corresponding to n2 = n is
given by

ωk,n,α ,ε =

(
Ek,α ,ε −En,α ,ε

h̄

)
,

=
(α− ε− 1)E0

h̄

(
1

n
α(ε+1)
α−ε−1

− 1

k
α(ε+1)
α−ε−1

)
. (17.25)

This expression reduces to the standard frequency shifts for α = 2 and ε = 0 as

ωk,n =
E0

h̄

(
1
n2 −

1
k2

)
. (17.26)

5 Conclusions

The complexity of calculations involving the fractional dynamics has been illus-
trated by solving the fractional Schrodinger equation in a noninteger dimensional
space. We have obtained the energy eigenvalues and the fractional Bohr radius for
the hydrogen-like atom. One should notice that as a special case ε = 0, we obtain
the same energy spectrum as obtained in [2].
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Chapter 18
Solutions of Wave Equation in Fractional
Dimensional Space

Sami I. Muslih and Om P. Agrawal

1 Introduction

In 1918 the Mathematician Felix Hausdorff introduced the notion of fractional
dimension. This concept became very important especially after the revolutionary
discovery of fractal geometry by Mandelbrot [1], where he used the concept of
fractionality, and worked out the relations between fractional dimension and integer
dimension by using a scaling method to describe irregular geometries of complex
objects such as clouds, mountains, cost lines, and travel path of a lightning. The
first fractional physical phenomenon, that was observed sometime ago and that is
still a subject of many investigations, is the Brownian motion [1]. Feynman and
Hibbs were first to formulate the non-relativistic quantum mechanics as an integral
over Brownian paths, which is now known as the Feynman path integral [2]. The
concept of fractals has been applied in many other areas of physics ranging from the
dynamics of fluids in porous media to the resistivity networks in electronics [3–5].

The corner stone of fractal geometry is measuring the dimension of the fractional
space, and several applications of fractional dimensional space could be cited. In
1970s, Stillinger [6] described a procedure for integration on a fractional space
of dimension D (where D is a non-integer number), and generalized the Laplace
operator ΔDψ(r) in this space as,

ΔD =
∂ 2

∂ r2 +
D− 1

r
∂
∂ r

+
1

r2 sinD−2 θ
∂

∂θ
sinD−2 θ

∂
∂θ

.
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Many investigations into low-dimensional semi conductors [7, 8] have used this
Laplacian to solve the Schrödinger equation for hydrogen like atoms for anisotropic
solids to obtain energy bounds and the optical spectra as a function of fractional
spatial dimension D. Recent progress in the area of quantum mechanics includes the
description of a single coordinate momentum operator in a fractional dimensional
space based on the generalized Wigner relations [9, 10] presenting realization
of parastatics [11]. In some applications, the fractional dimensions appear as an
explicit parameter when the physical problem is formulated in D dimensions in such
a way that D maybe extended to non-integer values, as in Wilson’s study of quantum
field theory models in less than four dimensions [12]. It is worthwhile to mention
that the experimental measurement of the dimension D of our real world is given
by D = (3± 10−6) [6, 12]. The fractional value of D agrees with the experimental
physical observations that in general relativity, gravitational fields are understood to
be geometric perturbations (curvatures) in our space-time [13], rather than entities
residing within a flat space-time. Zeilinger and Svozil [14] noted that the current
discrepancy between theoretical and experimental values of the anomalous magnetic
moment of the electron could be resolved if we take the dimension D of our space
as 3− (5.3± 2.5)×10−7.

In the field of electromagnetic theory, the fractional concepts of space-time
in space-time dimensions is slightly different from four lead to eliminate the
logarithmic divergence of quantum electrodynamics [9]. Muslih and Agrawal [15]
have studied the solutions of the Riesz potential in fractional dimensional space.
Besides, the scalar Helmholtz equation (which is the time independent case of
the most general wave equation) is one of the most basic and important equation
encountered in mathematical treatment of various phenomena in many areas of
physical sciences and engineering. The solutions of Helmholtz equation in n
dimensions (n being a positive integer) was studied by using the fractional calculus
[16]. Now we can ask the following important question: Is the dimension of the
geometry of the field source exactly n, an integer? In fact, the geometries of the
field sources (electric charge distribution , or current charge densities) are irregular
and have fractional dimensions [1]. Using Mandelbrot’s results about fractals, we
will develop a new method to solve the wave equation in a fractional dimensional
space. The starting point for solving the wave equation in fractals is to define the
Fourier transform and its inverse in a fractional dimensional space to solve non-
homogenous partial differential equation in fractional dimensional space. After
doing this we obtain the potential solutions in terms of the fractional Green’s
function (Kernel) GD(r,r′, t, t ′) which depend on the dimensionality parameter D.
A compact form for the Green’s function for fractal systems with dimensionality
0 < D ≤ 3 is also obtained. The treatment proposed gives a better understanding
of building, designing and developing fractal devices with low dimensionality
including fractional antennas, which are more reliable, and cost less than traditional
high performance antennas. These devises include, dot thin rod antenna (0<D≤ 1),
and fractal antenna (0<D≤ 3), which receive or transmit signals with high stability.

The chapter is organized as follows: In Sect. 2, the wave equation is presented. In
Sect. 3, we introduce Fourier transform method in fractional dimensional space and
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its inverse transform to solve the wave equation. Section 4 deals with the evaluation
of the Greens function for fractal systems with dimensionality 0<D≤ 3. It is shown

that the required time of the propagation tD is greater than or equal to t ′+ |r−r′ |
c ),

and no wave could propagate with time less than t ′+ |r−r′|
c . In Sect. 5, we solve the

problem of moving charged particle in D dimensional space. Section 6 contains our
conclusions.

2 Wave Equation in Fractional Dimensional Space

In order to solve the wave equation for electromagnetic field, we start from the time
varying fields, the electric field E and the magnetic field B and their corresponding
coupled Maxwell’s equations as

∇ ·E = ρ/ε0, ∇×E =−∂B
∂ t

, (18.1)

∇ ·B = 0, ∇×B = μ0

(
J+ ε0

∂E
∂ t

)
, (18.2)

where ρ is source charge density and J is source current density. One of the methods
to solve the coupled Maxwell’s equation is to consider the solutions of the electric
field and the magnetic field as

E = ∇φ(r, t)− ∂A(r, t)
∂ t

, (18.3)

B = ∇×A(r, t), (18.4)

where φ(r, t) and A(r, t) are the scalar and the vector potentials, respectively.
Simultaneous solution of Maxwell’s equations leads to the following wave

equation

∇2ψ(r, t)− 1
c2

∂ 2

∂ t2 ψ(r, t) =− f (r, t) (18.5)

In (18.5), if ψ(r, t) is the scalar potential then f (r, t) = ρ(r,t)
ε0

, and if ψ(r, t) is
the vector potential, then f (r, t) = μ0J(r, t). Note that the equations in integer and
fractional dimensional spaces are the same.

3 Fourier Transform Method in Fractional Dimensional Space

The Fourier transform method in fractional dimensional space of Gaussian integral
over fractional volume element dVD is defined by Stillinger in [6]. In this section,
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the Fourier transform g(k) of a continues function f (x) will be considered over
fractional line element dα x, 0 < α ≤ 1 by using the the Mandelbrot [1] fractional
line element which is defined as

dα x =
πα/2|x|α−1

Γ (α/2)
dx, (18.6)

where 0 < α ≤ 1. Then the Fourier transformation is defined as

g(k) = F( f (x)) =
∫

f (x)eikxdα x, (18.7)

and the inverse Fourier transformation f (x) is given by

f (x) = F−1(g(k)) =

(
1

2π

)α ∫
g(k)e−ikxdα k. (18.8)

The above definition can be generalized for N dimensional vector RN . The
dimension of fractional space is given by D = α1 +α2 + · · ·+αN , 0 < αi ≤ 1

Theorem 18.1. The generalized Dirac delta function in the α dimensional frac-
tional space satisfies the following identity

δ α (x− x′) =
(

1
2π

)α ∫
eik(x−x′)dα k. (18.9)

Proof.

F−1(F( f (x))) = f (x) =
∫ (

f (x′)dα(x′)
(

1
2π

)α ∫
eik(x−x′)dα k

)
, (18.10)

=

∫
( f (x′)dα (x′)δ α(x− x′)). (18.11)


�
Theorem 18.2. The generalized Dirac delta function in the α dimensional frac-
tional space can be defined as

δ α(x) = lim
ε→∞

εα e−πε2x2
. (18.12)

Proof. From Theorem 1, we have

∫ ∞

−∞
eikxdα k = (2π)α δ α (x). (18.13)
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Now, let us define the following integral [6, 12]

I(λ ,q) =
∫ ∞

−∞
e(−λ x2+qx)dα x = λ−α/2πα/2eq2/4λ . (18.14)

Take q = ik and x→ k. This yields

∫ ∞

−∞
e(−λ k2+ikx)dα k = λ−α/2πα/2e−x2/4λ . (18.15)

Hence, we arrive to the value of Dirac delta function as

δ α(x) =

(
1

2π

)α ∫ ∞

−∞
eikxdα k = lim

λ→0

(∫ ∞

−∞
e(−λ k2+ikx)dα k

)
,

=

(
1

2π

)α
lim
λ→0

(
λ−α/2πα/2e−x2/4λ

)
. (18.16)

By taking λ = 1
4πε2 , we arrive at the proof of Theorem 2. 
�

Theorem 18.3. The generalized Dirac delta function satisfies the following identi-
ties
1- ∫ ∞

−∞
f (x)δ α (x)dα x = f (0). (18.17)

2- ∫ ∞

−∞
δ α(x)dα x = 1. (18.18)

Proof. Using the scaling method of Mandelbrot (18.6), we have

∫ ∞

−∞
δ α (x) f (x)dα x =

2πα/2

Γ (α/2)

(∫ ∞

0
δ α(x) f (x)xα−1dx

)
. (18.19)

Substitution of Dirac delta function defined in (18.12), we obtain

∫ ∞

−∞
δ α (x) f (x)dα x =

2πα/2

Γ (α/2)

(∫ ∞

0
lim
ε→∞

εα e−πε2x2
f (x)xα−1dx

)
. (18.20)

Using z = πε2x2, (18.20) can be written as

∫ ∞

−∞
δ α(x) f (x)dα x =

1
Γ (α/2)

(
lim
ε→∞

f (0)
∫ ∞

0
e−zz(α/2−1)dz

)
= f (0). (18.21)
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In particular, when f (x) = 1, we arrive at

∫ ∞

−∞
δ α(x)dα x = 1. (18.22)


�
In general the above definitions can be generalized for N dimensional vectors in

RN . The dimension of a fractional space is given by D = α1 +α2 + · · ·+αN , 0 <
αi ≤ 1. In this case the generalized Dirac delta function in the D dimensional
fractional space satisfies the following identity

δ D(r− r′) =
(

1
2π

)D ∫
ek·(r−r′)dDk,

= δ α1(x1− x′1)δ
α2(x2− x′2) . . .δ

αN (xN− x′N). (18.23)

Now, to solve the wave equation (18.5) we use the Fourier transform method in
the fractional dimensional space defined previously, which leads to

Fψ(r, t) = φ(k,ω) =
∫

RD+1
ψ(r, t)ei(k·r−ωt) dDr dt, (18.24)

F f (r, t) = g(k,ω) =
∫

RD+1
f (r, t)ei(k·r−ωt) dDr dt. (18.25)

The inverse Fourier transform read as

ψ(r, t) = F−1φ(k,ω) =

(
1

2π

)D+1 ∫
kD+1

φ(k,ω)e−i(k·r−ωt) dDk dω , (18.26)

f (r, t) = F−1g(k,ω) =

(
1

2π

)D+1 ∫
kD+1

g(k,ω)e−i(k·r−ωt) dDk dω . (18.27)

Taking the Fourier transform of (18.5), we have

φ(k,ω) =
g(k,ω)

k2− ω2

c2

. (18.28)

Hence, we obtain the solution for ψD(r, t) as

ψD(r, t) =
∫

RD+1
GD(r,r′, t, t ′) f (r′, t ′) dDr′ dt ′, (18.29)

where GD(r,r′, t, t ′) is the Green’s function (Kernel) and is given by

GD(r,r′, t, t ′) =
(

1
2π

)D+1 ∫ ({∫
KD

eik·(r−r′)

k2− ω2

c2

dDk

}
e−iω(t−t′)

)
dω . (18.30)
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4 Evaluating the Green’s Function

Thus, the problem is reduced to evaluating the fractional integral (18.30). Let us first
perform the integration over ω , and let us consider the case where (t− t ′)> 0. Note
that the Green function should satisfy the boundary condition and should converge
for (t− t ′)→ ∞. This means that our complex contour should be in the lower half
plane, with simple poles at ω =±c|k|. Hence, we obtain

∫ ∞

−∞

(
e−iω(t−t′)

k2− ω2

c2

)
dω =

2π
c|k| sinc|k|(t− t ′). (18.31)

Inserting the result (18.31) in (18.30), we obtain the Green’s function as

GD(r,r′, t, t ′) =
(

1
2π

)D+1 ∫
KD

(
2π
c|k| sin(c|k|(t− t ′))

)
eik·(r−r′) dDk. (18.32)

Using the following transformation introduced in reference [17]

∫
KD

ϕ(k)eik·(r−r′) dDk = (2π)D/2
∫ ∞

0

JD/2−1(ρ |r− r′|)
(ρ |r− r′|)D/2−1

ϕ(ρ)ρD−1 dρ , (18.33)

where Jν(x) is the Bessel function of the first kind. We obtain

GD(r,r′, t, t ′) =
(

1
2π

)D+1 ∫ ∞

0

(
2π
cρ

sin(cρ(t− t ′))
)

× (2π)D/2 JD/2−1(ρ |r− r′|)
(ρ |r− r′|)D/2−1

ϕ(ρ)ρD−1 dρ , (18.34)

The Green’s function GD(r,r′, t, t ′) can be written in a compact form as

GD(r,r′, t, t ′) =
(

1
2π

)D/2 1

c|r− r′|D/2−1

∫ ∞

0
sin(cρ(t− t ′))ρD/2−1

× JD/2−1(ρ |r− r′|) dρ . (18.35)

To evaluate the Green’s function we have to consider the following cases:

Case 1: D = 3. Then from (18.35) for D = 3 we have,

G3(r,r′, t, t ′) =
δ
(

t ′ − t + |r−r′|
c

)

4π |r− r′| , (18.36)

which represent the retarded Greens function in four space-time dimensions [18].
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This means that the wave signal arrives to the observer at time t3 = t ′+ |r−r′ |
c

where t3 is the time measured in three dimensional space.

Case 2: In fractional dimensional space with D 	= 3, the Green’s function (18.35)
can be calculated with the aid of the following identity [19]

∫ ∞

0
xν sin(ax)Jν(bx) dx =

⎧⎨
⎩

√
π2vbν

(a2−b2)ν+1/2Γ (1/2−ν) [0 < b < a, −1 < Reν < 1/2]

0 [0 < a < b, −1 < Reν < 1/2]
(18.37)

In (35), ν = D/2− 1, a = c(t − t ′) and b = |r− r′|. For 0 < D < 3 and 0 <
|r− r′|< c(t− t ′), we have

GD(r,r′, t, t ′) =
1

2cΓ ( 3−D
2 )π(

D−1
2 ) (c2(t− t ′)2−|r− r′|2)( D−1

2 )
. (18.38)

Which means that the signal arrives to the observer at time tD > (t3 = t ′+ |r−r′ |
c ).

This relates to the fact, that for fractals and in a fractional dimensional space, the
measurement of the distance is greater than the distance |r− r′| in exactly three
dimensional space. So, the wave signal takes longer time tD to arrive the observer.

For, 0 < D < 3 and 0 < c(t− t ′)< |r− r′|, then GD(r,r′, t, t ′) = 0. Which means
no wave signal propagates in this case. In conclusion, the wave signal will propagate
and arrive the observation point at least with time not less than t3.

In all the above calculations, once we obtain the Greens function, we can plug its
value in the potentials defined in (18.29) as

ψD(r, t) =
∫

RD+1

f (r′, t ′)δ (t ′ − t− |r−r′ |
c )

4π |r− r′| dDr′ dt ′, D = 3, (18.39)

ψD(r, t) =

∫
RD+1

⎛
⎝ f (r′, t ′)

2cΓ ( 3−D
2 )π(

D−1
2 ) (c2(t− t ′)2−|r− r′|2)(D−1

2 )

⎞
⎠dDr′ dt ′,

0 < D < 3, 0 < |r− r′|< c(t− t ′). (18.40)

This finally allow us to calculate the transmitted fields E and B for any fractal
source.

5 Moving Point Charge

In this section, we consider a source as a point charge moving with velocity v. Let
us first assume that this particle is moving in exactly three dimensions. The charge
and the current densities for this system are
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ρ(r′, t ′) = qδ (r′ − r∗(t ′)), (18.41)

J(r′, t ′) = qvδ (r′ − r∗(t ′)). (18.42)

According to (18.39), the potential function is obtained as

φ(r, t) =
1

4πε0

∫
qδ (r′ − r∗(t ′))δ (t ′ − t + 1/c|r− r′|)

|r− r′| d3r′dt ′. (18.43)

Integrating over the spatial coordinates, we have

φ(r, t) =
q

4πε0

∫ ∞

−∞

δ (t ′ − t +R(t ′)/c)
R(t ′)

dt ′, (18.44)

where, R(t ′) = |r− r∗(t ′)|. Now the delta-function δ (t ′ − t + R(t ′)/c) can be
expressed as

δ (t ′ − t +R(t ′)) = Σi
δ (t ′ − ti)
| f ′(ti)| f (ti)=0

, (18.45)

where
f (t ′) = t ′+R(t ′)/c− t. (18.46)

Now f (t ′) = 0 = t ′+R(t ′)/c− t,⇒ t ′ = t−R(t ′)/c and

f ′(t ′) = 1+
1
2c

[
(r− r∗(t ′)) · (r− r∗(t ′))]−1/2

[
d
dt
(r− r∗(t ′)) · (r− r∗(t ′))

]
,

= 1− v ·R(t′)
cR(t ′)

, (18.47)

where, v = dr∗(t′)
dt′ . Hence

δ (t ′ − t +R(t ′)/c) =
δ (t ′ − tret)(
1− v·R(t′)

cR(t′)

) , (18.48)

where tret = t +R(t ′)/c. Now, the integral (18.44) can be written as

φ(r, t) =
1

4πε0

∫ δ (t ′ − tret)

R(t ′)
(
1− v·R

cR

)dt ′. (18.49)

Integrating over t ′ we obtain

φ(r, t) =
q

4πε0

(
1− β ·R

cR

) |tret , (18.50)
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where β = v
c . Similarly, the vector potential A is calculated as

A =
β
c

φ(r, t). (18.51)

Now let us consider that the charged particle is moving in a fractal media along
z axis with a fractional dimensionality D = αx +αy +αz = 2+α (0 < α < 1). The
charge and the current densities for this system are

ρ(r′, t) = qδ α(z′ − vt ′)δ (x′)δ (y′), (18.52)

J(r′, t) = qvδ α (z′ − vt ′)δ (x′)δ (y′). (18.53)

Making use of (18.40), we obtain the potential φ(z, t) along z axis as

φ(z, t) =
∫

c(t−t′)<|r−r′|

⎛
⎝ qδ α(z′ − vt ′)δ (x′)δ (y′)

2cΓ (α+1
2 )π(

α+1
2 ) (c2(t− t ′)2−|r− r′|2)( α+1

2 )

⎞
⎠

× dαz′ dx′ dy′ dt ′. (18.54)

Integrating over the spatial coordinates, we obtain

φ(z, t) =
∫

c(t−t′)<|r−r′|
q

2cΓ (α+1
2 )π(

α+1
2 ) (c2(t− t ′)2− (z− vt ′)2)(

α+1
2 )

dt ′.

(18.55)
Noting that, c(t− t ′) < |r− r′| and t > t ′, implies that t′(c−v)

(ct−z) < 1. Let t′(c−v)
(ct−z) = x.

Hence the integral (18.55) can be written as

φ(z, t) =
q

2cΓ (α+1
2 )π ( α+1

2 )

(ct + z)−
1+α

2

(c− v)(ct− z)(
α−1

2 )

∫ 1

0
dx(1− x)

−(1+α)
2 (1− ux)

−(1+α)
2 ,

(18.56)

where u = (c+v)(ct−z)
(c−v)(ct+z) . Using the integral [19]

∫ 1

0
dxxλ−1(1− x)μ−1(1− vx)−ν = β (λ ,μ)2F1(ν,λ ;λ + μ ;v),

[Re λ > 0, Re μ > 0, |v|< 1], (18.57)

where 2F1(ν,λ ;λ + μ ;v) is the Gauss hypergeometric function, we arrive at the
following expression
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φ(z, t) =
q

2cΓ (α+1
2 )π(

α+1
2 )

(ct + z)−
1+α

2

(c− v)(ct− z)(
α−1

2 )

×Γ ( 1−α
2 )

Γ ( 3−α
2 )

2F1

(
α + 1

2
,1;

3−α
2

;
(c+ v)(ct− z)
(c− v)(ct + z)

)
. (18.58)

6 Conclusion

In this chapter we have given an application of time-dependent wave equation in
fractional space and we solved the wave equation in fractional space by applying
the Fourier transform method for nonhomogeneous partial differential equation.
We obtained the retarded potentials and the values of the Green’s function which
depend on the dimensionality parameter D. We showed that the required time of

the propagation tD ≥ t ′+ |r−r′|
c , and no wave could propagate with time less than

t ′ + |r−r′|
c . The potential ψ3(r, t) for the exact three dimensional case D = 3 is

recovered as a special case.
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Chapter 19
Fractional Exact Solutions and Solitons
in Gravity

Dumitru Baleanu and Sergiu I. Vacaru

1 Introduction

Recently, we extended the fractional calculus to Ricci flow theory, gravity and
geometric mechanics, solitonic hierarchies, etc. [1–6]. In this work, we outline some
basic geometric constructions related to fractional derivatives and integrals and their
applications in modern physics and mechanics.

Our approach is also connected to a method when nonholonomic deformations
of geometric structures1 induce a canonical connection, adapted to a necessary type
of nonlinear connection structure, for which the matrix coefficients of curvature
are constant [7, 8]. For such an auxiliary connection, it is possible to define a
biHamiltonian structure and derive the corresponding solitonic hierarchy.

The chapter is organized as given below: In Sect. 19.2, we outline the geometry
of N-adapted fractional manifolds and provide an introduction to fractional gravity.
In Sect. 19.3, we show how fractional gravitational field equations can be solved
in a general form. Section 19.4 is devoted to the main theorem on fractional
solitonic hierarchies corresponding to metrics and connections in fractional gravity.
The appendix contains necessary definitions and formulas on Caputo fractional
derivatives.

1Determined by a fundamental Lagrange/Finsler/Hamilton generating function (or, for instance,
and Einstein metric).
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2 Fractional Nonholonomic Manifolds and Gravity

Let us consider a “prime” nonholonomic manifold V of integer dimension dim

V = n+m,n ≥ 2,m ≥ 1.2 Its fractional extension
α
V is modeled by a quadruple

(V,
α
N,

α
d,

α
I), where

α
N is a nonholonomic distribution stating a nonlinear connection

(N-connection) structure (for details, see Appendix 5). The fractional differential

structure
α
d is determined by Caputo fractional derivative (19.13) following formulas

(19.15). The noninteger integral structure
α
I is defined by rules of type (19.14).

A nonlinear connection (N-connection)
α
N for a fractional space

α
V is defined by

a nonholonomic distribution (Whitney sum) with conventional h- and v-subspaces,

h
α
V and v

α
V,

α
T

α
V = h

α
V⊕v

α
V.

A fractional N-connection is defined by its local coefficients
α
N={ α Na

i } and
α
N = α Na

i (u)(dxi)α ⊗
α
∂ a. For a N-connection

α
N, we can always construct a class of

fractional (co)-frames (N-adapted) linearly depending on α Na
i ,

α eβ =

[
α e j =

α
∂ j− α Na

j

α
∂ a,

α eb =
α
∂ b

]
, (19.1)

α eβ =
[

α e j = (dx j)α , α eb = (dyb)α + α Nb
k (dxk)α

]
. (19.2)

The nontrivial nonholonomy coefficients are computed αW a
ib =

α
∂ b

α Na
i and αW a

i j =
α Ω a

ji =
α ei

α Na
j − α e j

α Na
i , for

[ α eα ,
α eβ
]
= α eα

α eβ − α eβ
α eα = αW γ

αβ
α eγ .

In the above formulas, the values α Ω a
ji are called the coefficients of N-connection

curvature. A nonholonomic manifold defined by a structure
α
N is called, in brief, a

N-anholonomic fractional manifold.

We write a metric structure
α
g = { α gαβ} on

α
V in the form:

α
g = α gk j(x,y)

α ek⊗ α e j + α gcb(x,y)
α ec⊗ α eb

= ηk′ j′
α ek′ ⊗ α e j′ +ηc′b′

α ec′ ⊗ α eb′ , (19.3)

where matrices ηk′ j′ = diag[±1,±1, ...,±1] and ηa′b′ = diag[±1,±1, ...,±1], for
the signature of a “prime” spacetime V, are obtained by frame transforms ηk′ j′ =

ek
k′ e j

j′
α gk j and ηa′b′ = ea

a′ eb
b′

α gab.

2A nonholonomic manifold is a manifold endowed with a nonintegrable (equivalently, nonholo-
nomic, or anholonomic) distribution.
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A distinguished connection (d-connection)
α
D on

α
V is defined as a linear

connection preserving under parallel transports the Whitney. We can associate an
N-adapted differential one-form α Γ τ

β = α Γ τ
β γ

α eγ , parametrizing the coefficients

(with respect to (19.2) and (19.1)) in the form α Γ γ
τβ =

(
α Li

jk,
α La

bk,
αCi

jc,
αCa

bc

)
.

The absolute fractional differential α d = 1x

α
dx + 1y

α
dy acts on fractional differential

forms in N-adapted form; the value α d := α eβ α eβ splits into exterior h-/v-

derivatives, 1x

α
dx := (dxi)α

1x

α
∂ i =

α e j α e j and 1y

α
dy := (dya)α

1x

α
∂ a =

α eb α eb.

The torsion and curvature of a fractional d-connection
α
D = {α Γ τ

β γ} can be
defined and computed, respectively, as fractional two-forms,

αT τ �
α
D α eτ = α d α eτ + α Γ τ

β ∧ α eβ and

αRτ
β �

α
D αΓ τ

β = α d αΓ τ
β − α Γ γ

β ∧ α Γ τ
γ = α Rτ

β γδ
α eγ ∧ α eδ . (19.4)

There are two another important geometric objects: the fractional Ricci tensor
αRic = {αRαβ � α Rτ

αβ τ}, with α Ri j � α Rk
i jk,

α Ria � −α Rk
ika,

α Rai �
α Rb

aib,
α Rab � α Rc

abc, and the scalar curvature of fractional d-connection
α
D,

α
s R � α gτβ α Rτβ = α R+ α S, α R = α gi j α Ri j,

α S = α gab α Rab, with α gτβ being
the inverse coefficients to a d-metric (19.3). We can introduce the Einstein tensor
αEns = {α Gαβ},

α Gαβ := α Rαβ −
1
2

α gαβ
α
s R. (19.5)

For applications, we can consider more special classes of d-connections:

• There is a unique canonical metric compatible fractional d-connection α D̂ ={
α Γ̂

γ
αβ =

(
α L̂i

jk,
α L̂a

bk,
αĈi

jc,
αĈa

bc

)}
, when α D̂ (α g) = 0, satisfying the

conditions α T̂ i
jk = 0 and α T̂ a

bc = 0, but α T̂ i
ja,

α T̂ a
ji, and α T̂ a

bi are not zero. The
N-adapted coefficients are given in explicit form in our works [1–6].

• The fractional Levi–Civita connection α ∇ = {αΓ γ
αβ} can be defined in standard

form but for the fractional Caputo left derivatives acting on the coefficients of a
fractional metric.

On spaces with nontrivial nonholonomic structure, it is preferred to work on
α
V

with α D̂ = { α Γ̂
γ
τβ} instead of α ∇ (the last one is not adapted to the N-connection

splitting). The torsion α T̂ τ (19.4) of α D̂ is uniquely induced nonholonomically
by off-diagonal coefficients of the d-metric (19.3).

With respect to N-adapted fractional bases (19.1) and (19.2), the coefficients of
the fractional Levi–Civita and canonical d-connection satisfy the distorting relations
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αΓ γ
αβ = α Γ̂

γ
αβ +

α Zγ
αβ , where the N-adapted coefficients of distortion tensor Zγ

αβ
are computed in [6].

An unified approach to Einstein–Lagrange/Finsler gravity for arbitrary integer
and noninteger dimensions is possible for the fractional canonical d-connection α D̂.
The fractional gravitational field equations are formulated for the Einstein d-tensor
(19.5), following the same principle of constructing the matter source α ϒβ δ as in
general relativity but for fractional metrics and d-connections,

α Ê β δ = α ϒβ δ . (19.6)

Such a system of integro-differential equations for generalized connections can
be restricted to fractional nonholonomic configurations for α ∇ if we impose the
additional constraints:

α L̂c
a j =

α ea(
α Nc

j ),
αĈi

jb = 0, α Ω a
ji = 0. (19.7)

There are not theoretical or experimental evidences that for fractional dimensions
we must impose conditions of type (19.7) but they have certain physical motivation
if we develop models which in integer limits result in the general relativity theory.

3 Exact Solutions in Fractional Gravity

We studied in detail [2] what type of conditions must satisfy the coefficients of
a metric (19.3) for generating exact solutions of the fractional Einstein equations
(19.6). For simplicity, we can use a “prime” dimension splitting of type 2 + 2
when coordinates are labeled in the form uβ = (x j ,y3 = v,y4), for i, j, ... = 1,2 and
the metric ansatz has one Killing symmetry when the coefficients do not depend
explicitly on variable y4.

3.1 Separation of Equations for Fractional and Integer
Dimensions

The solutions of equations can be constructed for a general source3 αϒ α
β =

diag[ αϒγ ; αϒ1 = αϒ2 = αϒ2(xk,v); αϒ3 = αϒ4 =
αϒ4(xk)]. For such sources and

ansatz with Killing symmetries for metrics, the Einstein equations (19.6) can be
integrated in general form.

3Such parametrizations of energy-momentum tensors are quite general ones for various types of
matter sources.
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We can construct “non-Killing” solutions depending on all coordinates,

α g = α gi(x
k) α dxi⊗ α dxi + α ω2(x j,v,y4) α ha(x

k,v) α ea⊗ α ea,

α e3 = α dy3 + α wi(x
k,v) α dxi, α e4 = α dy4 + α ni(x

k,v) α dxi, (19.8)

for any α ω for which α ek
α ω =

α
∂ k

α ω + α wk
α ω∗+ α nk

α
∂ y4

α ω = 0. Configu-
rations with fractional Levi–Civita connection α ∇, of type (19.7), can be extracted
by imposing additional constraints

α w∗i =
α ei ln | α h4|, α ek

α wi =
α ei

α wk,
α n∗i = 0,

α
∂ i

α nk =
α
∂ k

α ni, (19.9)

where α a•=
α
∂ 1a=

1x1

α
∂ x1

α a, α a′=
α
∂ 2a=

1x2

α
∂ x2

α a, α a∗=
α
∂ va= 1v

α
∂ v

α a, being
used the left Caputo fractional derivatives (19.15).

3.2 Solutions with αh∗3,4 	= 0 and αϒ 2,4 	= 0

For simplicity, we provide only a class of exact solution with metrics of type (19.8)
when α h∗3,4 	= 0 (in [2], there are all analyzed possibilities for coefficients4) We
consider the ansatz:

α g = e
α ψ(xk) α dxi⊗ α dxi + h3(x

k,v) α e3⊗ α e3 + h4(x
k,v) α e4⊗ α e4,

α e3 = α dv+ α wi(x
k,v) α dxi, α e4 = α dy4 + α ni(x

k,v) α dxi (19.10)

We consider any nonconstant α φ = α φ(xi,v) as a generating function. We have
to solve, respectively, the two-dimensional fractional Laplace equation, for α g1 =
α g2 = e

α ψ(xk). Then we integrate on v, in order to determine α h3,
α h4, and α ni,

and solve algebraic equations, for α wi. We obtain (computing consequently for a
chosen α φ(xk,v)):

α g1 = α g2 = e
α ψ(xk), α h3 =± |

α φ∗(xi,v)|
αϒ2

,

α h4 = α
0 h4(x

k)± 2 1v
α
I v
(exp[2 α φ(xk,v)])∗

αϒ2
,

α wi = −
α
∂ i

α φ/ α φ∗, α ni =
α
1 nk
(
xi)+ α

2 nk
(
xi)

1v

α
I v

[
α h3/(

√
| α h4|)3

]
, (19.11)

4By nonholonomic transforms, various classes of solutions can be transformed from one to another.
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where α
0 h4(xk), α

1 nk
(
xi
)
, and α

2 nk
(
xi
)

are integration functions, and 1v
α
I v is the

fractional integral on variables v and

α φ = ln

∣∣∣∣
α h∗4√| α h3

α h4|

∣∣∣∣, α γ =
(

ln | α h4|3/2/| α h3|
)∗

,

α αi =
α h∗4

α
∂ k

α φ , α β = α h∗4
α φ∗ . (19.12)

For α h∗4 	= 0; αϒ2 	= 0, we have α φ∗ 	= 0. The exponent e
α ψ(xk) is the fractional

analog of the “integer” exponential functions and is called the Mittag–Leffer

function Eα [(x− 1x)α ]. For α ψ(x) = Eα [(x− 1x)α ], we have
α
∂ iEα = Eα .

We have to constrain the coefficients (19.11) to satisfy the conditions (19.9) in
order to construct exact solutions for the Levi–Civita connection α ∇. To select such
classes of solutions, we can fix a nonholonomic distribution when α

2 nk
(
xi
)
= 0

and α
1 nk
(
xi
)

are any functions satisfying the conditions
α
∂ i

α
1 nk (x j) =

α
∂ k

α
1 ni
(
x j
)
.

The constraints on α φ(xk,v) are related to the N-connection coefficients α wi =

−
α
∂ i

α φ/ α φ∗ following relations:

(α wi[
α φ ])∗+ α wi[

α φ ] (α h4[
α φ ])∗+

α
∂ i

α h4[
α φ ] = 0,

α
∂ i

α wk[
α φ ] =

α
∂ k

α wi[
α φ ],

where, for instance, we denoted by α h4[
α φ ] the functional dependence on α φ .

Such conditions are always satisfied for α φ = α φ(v) or if α φ = const when
α wi(xk,v) can be any functions with zero α β and α αi, see (19.12).

4 The Main Theorem on Fractional Solitonic Hierarchies

In [6–8], we proved that the geometric data for any fractional metric (in a
model of fractional gravity or geometric mechanics) naturally define a N-adapted
fractional biHamiltonian flow hierarchy inducing anholonomic fractional solitonic
configurations.

Theorem 19.1. For any N-anholonomic fractional manifold with prescribed frac-
tional d-metric structure, there is a hierarchy of bi-Hamiltonian N-adapted frac-
tional flows of curves γ(τ, l) = hγ(τ, l)+ vγ(τ, l) described by geometric nonholo-
nomic fractional map equations. The 0 fractional flows are defined as convective
(traveling wave) maps

γτ = γl, distinguished (hγ)τ = (hγ)hX and (vγ)τ = (vγ)vX .
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There are fractional +1 flows defined as non-stretching mKdV maps

−(hγ)τ = α D2
hX (hγ)hX +

3
2
| α DhX (hγ)hX|2hg (hγ)hX ,

−(vγ)τ = α D2
vX (vγ)vX +

3
2
| α DvX (vγ)vX|2vg (vγ)vX ,

and fractional +2,... flows as higher order analogs. Finally, the fractional -1 flows
are defined by the kernels of recursion fractional operators inducing non-stretching
fractional maps α DhY (hγ)hX = 0 and α DvY (vγ)vX = 0.

5 Fractional Caputo N-Anholonomic Manifolds

The fractional left and right Caputo derivatives, respectively, are defined as:

1x

α
∂ x f (x) :=

1
Γ (s−α)

x∫

1x

(x− x′)s−α−1
(

∂
∂x′

)s

f (x′)dx′;

x

α
∂

2x f (x) :=
1

Γ (s−α)

2x∫

x

(x′ − x)s−α−1
(
− ∂

∂x′

)s

f (x′)dx′. (19.13)

We can introduce
α
d := (dx j)α

0

α
∂ j for the fractional absolute differential, where

α
dx j = (dx j)α (x j)1−α

Γ (2−α) if 1xi = 0. Such formulas allow us to elaborate the concept

of fractional tangent bundle
α
TM, for α ∈ (0,1), associated to a manifold M of

necessary smooth class and integer dimM = n.5

Let us denote by Lz( 1x, 2x) the set of those Lesbegue measurable functions

f on [1x, 2x] when || f ||z = (
2x∫

1x
| f (x)|zdx)1/z < ∞ and Cz[1x, 2x] be the space of

functions which are z times continuously differentiable on this interval. For any
real-valued function f (x) defined on a closed interval [1x, 2x], there is a function

F(x) = 1x
α
I x f (x) defined by the fractional Riemann–Liouville integral 1x

α
I x f (x) :=

1
Γ (α)

x∫
1x
(x−x′)α−1 f (x′)dx′, when f (x) = 1x

α
∂ xF(x), for all x∈ [ 1x, 2x], satisfies the

conditions

5For simplicity, we may write both the integer and fractional local coordinates in the form uβ =
(x j ,ya). We underlined the symbol T in order to emphasize that we shall associate the approach to
a fractional Caputo derivative.
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1x

α
∂ x

(
1x

α
I x f (x)

)
= f (x), α > 0,

1x
α
I x

(
1x

α
∂ xF(x)

)
= F(x)−F( 1x), 0 < α < 1. (19.14)

We can consider fractional (co)-frame bases on
α
T M. For instance, a fractional

frame basis
α
eβ = eβ ′

β (u
β )

α
∂ β ′ is connected via a vierlbein transform eβ ′

β (u
β ) with a

fractional local coordinate basis

α
∂ β ′ =

(α
∂ j′ = 1x j′

α
∂ j′ ,

α
∂ b′ = 1yb′

α
∂ b′

)
, (19.15)

for j′ = 1,2, ...,n and b′ = n+ 1,n+ 2, ...,n+ n. The fractional cobases are related

via
α
e

β
= e β

β ′ (u
β )

α
duβ ′ , where

α
duβ ′ =

(
(dxi′)α ,(dya′)α

)
.

The fractional absolute differential
α
d is written as

α
d := (dx j)α

0

α
∂ j, where

α
dx j =

(dx j)α (x j)1−α

Γ (2−α) , where we consider 1xi = 0.
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Chapter 20
Front Propagation in an Autocatalytic
Reaction-Subdiffusion System

Igor M. Sokolov and Daniela Froemberg

1 Introduction

The theory of reactions controlled by subdiffusion attracted much interest in the
recent few years both because of practical needs (reactions in porous media and
geological formations, and in crowded cellular environments) and because of very
unusual mathematical structure of the corresponding equations. In what follows, we
concentrate on the A+B→2A autocatalytic reaction leading to a propagation of the
pulled front into the unstable B-domain [3]. Under normal diffusion, the reaction is
described by the Fisher–Kolmogorov–Petovskii–Piskunov (FKPP) equation which
is mathematically well understood. In the case when all particles were initially B
and were distributed in space with the constant concentration B0 (which will be put
to unity in what follows), the equation for the concentration B of B reads

∂B
∂ t

= DΔB− k(B0−B)B. (20.1)

Here, D is the diffusion coefficient of the particles (assumed equal for A and B
particles), and k is the reaction rate. The two initial reaction-diffusion equations for
A and for B particles are reduced to (20.1) by using the conservation law A+B= B0

following from the stoichiometry. The initial condition corresponds to a droplet of A
particles introduced at the origin. We concentrate on the reaction front propagating
to the right.

Assuming the front to propagate with a constant velocity along the x-direction,
one changes to a comoving frame thus obtaining an ordinary differential equation
for the stable front form. This equation can be linearized close to the leading edge
of the front, and the spectrum of possible velocities is obtained by requesting
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the concentration to be nonnegative everywhere. This condition defines then the
minimal possible propagation velocity. The fact that this minimal propagation
velocity is the one really attained under a sharp initial condition (marginal stability
principle) follows from the stability analysis of perturbations.

The minimal propagation velocity in FKPP front is v = 2
√

DkB0, and the
characteristic width of the propagating front is w "√D/kB0. In what follows, we
confine ourselves to a one-dimensional situation, where the concentrations A, B, and
B0 have the dimension of the inverse length L−1, and the reaction rate coefficient k
has a dimension of [k] = LT−1.

The case of subdiffusion is much more complicated. First, different types of
subdiffusive behaviors are possible, corresponding either to disordered systems
(percolation, energetic disorder, etc.) or to systems with slow modes (polymers).
Second, even if the model of the subdiffusion is fixed, for example, to be continuous
time random walk (CTRW) with the power-law probability density function (PDF)
of waiting times

ψ(t)" τα

t1+α (20.2)

for t > τ , different reaction-subdiffusion equations emerge when considering
situations when the “internal clock” of the particle is reset after the reaction or
not [1]. In what follows, we consider the situation when the diffusion on the large
scales is hindered, but the small-scale reactions follow the mass action law. The
reaction does not reset waiting times, since the last one describes only the large-
scale behavior of the system. The simplest case of this situation (the isomerization
reaction A→B) was discussed in [5] and leads to equations where the reaction
term is not simply added to a subdiffusion equation like it is the case in (20.1)
but enters as well the transport operator. The corresponding equation for the
A+B→2A reaction was derived in [2], where the analysis of the corresponding
reaction-subdiffusion equation showed that the minimal propagation velocity is
zero, which fact was interpreted as propagation arrest. The situation was clarified
in numerical simulations of [4], where two propagation regimes were identified,
both corresponding to propagation with the velocity which decays with time.
Thus, for small reaction rates and low concentrations the front velocity behaved
as v(t) ∝ t(α−1)/2, where α is the subdiffusion exponent (governing the mean
squared displacement of a particle 〈x2(t)〉 ∝ tα in the reaction-free case), while for
larger concentrations and high reaction rates (a fluctuation-dominated regime which
cannot be described within continuous reaction-diffusion or reaction-subdiffusion
equations), the propagation velocity behaves as v ∝ tα−1.

The longer numerical simulations of [1] identified the second, but not the first
propagation regime, claiming that the first one “is not robust.” In what follows,
we discuss this situation in some detail and present new results on the front
propagation in such a system. We show that the continuous description of the
reaction-subdiffusion reaction gives hints in favor of propagation of a front with
a velocity v(t) ∝ t(α−1)/2. The intermediate asymptotic behavior v(t) ∝ t(α−1)/2

holds as long as the continuous description of the reaction is possible. The front
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width, however, decays with time as w ∝ t
α−1

2 , and gets of the order of one of the
microscopic scales of the problem, so that the continuous description inevitably
breaks down at longer time. Then another, final asymptotic behavior (v ∝ tα−1

for a one-dimensional case) sets in. The present contribution reports on a work in
progress; however, we are highly confident that the overall physical understanding
is reached, although a large amount of computations still has to be performed.

2 Model and Equations

Let us consider the medium as consisting of compartments of size a. The transport
of particles between these compartments is governed by CTRW: the waiting time of
a particle in a compartment is given by the PDF (20.2). Within a compartment i the
particles react according to classical kinetic law, i.e. the transformation from B to A
follows at the rate kAiBi, where Ai and Bi are the numbers of the particles within the
compartment, and k is the properly renormalized reaction rate constant.

Following the same procedure as in [2, 5] we start from the balance equation for
B-particles:

Ḃi(t) =
1
2

j−i−1(t)+
1
2

j−i+1(t)− j−i (t)−κAi(t)Bi(t),

where j−i (t) is the loss flux from the compartment i given by

j−i (t) = ψ(t)Ps(t,0)Bi(0)+
∫ t

0
ψ(t− t ′)Ps(t, t

′)
[
Ḃi(t

′)+ j−i (t
′)+κAi(t

′)Bi(t
′)
]

dt ′

and

Ps(t, t
′) = exp

[
−κ
∫ t

t′
Ai(t

′′)dt ′′
]

is the survival probability of a B particle. Since the equation for the loss flux
only involves the concentrations at one site, it can be easily solved by means
of Laplace transform, and the solution can be inserted into the first equation for
the concentration. The equation for A follows in a similar way. Afterwards, the
transition to the continuous limit in space is performed leading to the following
equation for B

∂
∂ t

B(x, t) = −k[1−B(x, t)]B(x, t)+
a2

2
Δ
∫ t

0
M(t− t ′)

×B(x, t ′)exp

[
−
∫ t

t′
k[1−B(x, t ′′)]dt ′′

]
dt ′, (20.3)
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where we used the conservation law A(x, t) = 1−B(x, t), and with M(t) given by
the inverse Laplace transform of M(u) = uψ(u)/[1−ψ(u)]. The equation for A
follows from the one for B by using the conservation law. For the Markovian process
with ψ(t) = τ−1 exp(−t/τ) one obtains M(t) to be a δ -function, M(t) = τ−1δ (t)
and the equations for the concentrations reduce to partial differential equations, the
FKPP case. For subdiffusion with waiting time density following (20.2), the integral
operator with the M(t)-kernel is proportional to the Riemann–Liouville fractional
derivative of order 1−α . Thus, in a subdiffusive case the equations for A and B are
nonlinear fractional partial differential equations of quite a complex structure.

3 Absence of the Constant Front Velocity

Let us give a short sketch of the calculations done in [2] and leading to the
conclusions that no front propagation at a constant velocity is possible. Assuming
that A(x, t) is small at the very far edge of the front and linearizing the reaction-
subdiffusion equation for A(x, t), one can look for an exponential solution of the
form A = A0 exp [−λ (x− vt)]. This solution has to satisfy the equation

λ v
(
A0 exp [−λ (x− vt)]

)
= −kA0 exp [−λ (x− vt)]

+
a2

2
A0

[
−λ 2 +

kλ
v

]∫ t

0
M(t− t ′)exp

[−λ (x− vt ′)
]

dt ′

−a2

2
kλ
v

A0 exp [−λ (x− vt)]
∫ t

0
M(t− t ′)dt ′. (20.4)

For the Markovian case, the standard expression for the minimal velocity of
the stable propagation is reproduced: Taking M(t) = τ−1δ (t), introducing a new
variable z = x− vt, and concentrating on the leading edge of the front (z→ ∞), we
find the dispersion relation:

a2

2τ
λ 2− vλ + k = 0. (20.5)

The quadratic equation (20.5) has two complex conjugated roots. Since the roots λ
corresponding to the propagating front need to stay real (to prevent concentration
from taking negative values which are inevitable if the solutions oscillate), the
condition v≥ vmin = 2

√
a2k/2τ ≡ 2

√
Dk follows for the propagation velocity, with

D = a2/2τ being the diffusion coefficient. In this case the two roots v = ±v(λ )
correspond to the two possible directions of the front propagation.

For waiting time PDFs decaying as a power law, ψ(t) ∝ t−1−α , 0 < α < 1 for
large t, we find with t̂ = t− t ′ that

∫ t
0 M(t− t ′)exp [λ vt ′] dt ′ = exp [λ vt]M̃(λ v) and

R(t) =
∫ t

0
M(t− t ′)dt ′ =

const
τα tα−1, (20.6)
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so that the last term in (20.4) vanishes for large t. Note that the integral R(t), (20.6),
gives the rate of jumps of a particle performing CTRW. Finally, with z = x− vt we
get

−λ vA0 exp [−λ z] =−kA0 exp [−λ z]+
a2

2
A0 exp [−λ z]

[(
−λ 2 +

kλ
v

)
M̃(λ v)

]
,

from which the dispersion relation

0 =−λ v+ k+
a2

2

(
λ 2− kλ

v

)
M̃(λ v)

follows. Taking M̃(u) = τ−α u1−α this last one can be put into the form

(vλ − k)
( a2

2τα λ 2−αv−α − 1
)
= 0

and possesses two nonnegative roots for any v≥ 0, at variance with the Markovian
case, where such roots exist only for v > vmin. This finding means that the minimal
propagation velocity in this case is zero, so that the front velocity tends to zero in
the course of time.

4 Front Moving at a Decaying Velocity

Numerical simulations of [4] suggest that the front does propagate, but its prop-
agation velocity decays in the course of time. Assuming the constant front form,
one could imagine that the asymptotic solution of the linearized equation could, for
example, follow the pattern

A(x, t) = A0 exp
[
−λ0

(
x− v0t

α−1
2

)]
= A0 exp(−λ0z) (20.7)

with the constant v0 indicating now the subvelocity of the front. Here, z = x−v0t
1+α

2

is the variable defining the comoving frame of the front whose velocity decays as
v ∝ t(α−1)/2. However, substitution of (20.7) into (20.4) shows that (20.7) is not
an appropriate ansatz at all. Thus, the subdiffusion analog of the FKPP equation
does not possess a front solution of constant form with the velocity decaying as
v ∝ t(α−1)/2.

Interestingly enough, a different form of the solution is possible, the one with
decaying width:

A(x, t) = A0 exp
[
−λ0t

1−α
2

(
x− v0t

1+α
2

)]
, (20.8)
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where λ (t) = λ0t
1−α

2 gives the time-dependent width of the front. Proceeding as in
[2] we have in first order for the A particles:

∂A(x, t)
∂ t

≈ kA(x, t)+
a2

2

∫ t

0
M(t− t ′)Δ exp

[
−λ0t ′

1−α
2

(
x− v0t ′

α+1
2

)]
dt ′

+
a2

2

∫ t

0
M(t− t ′)k×

∫ t

t′
Δ exp

[
−λ0t ′′

1−α
2

(
x− v0t ′′

1+α
2

)]
dt ′′ dt ′

Evaluating the integrals we get for both z = x− v0t
1+α

2 and t large:

λ0v0 exp
[
−λ0t

1−α
2

(
x−v0t

1+α
2

)]
= exp

[
−λ0t

1−α
2

(
x−v0t

1+α
2

)]

×
(

a2

2Γ (α)Γ (1−α)τα

(
Cλ 2

0 +
kλ0

v0
(1−C)

)
+k

)
,

where C is a constant (depending on the parameters of the model) for which the
inequality B(α,2− α) ≥ C ≥ 0 holds. The upper bound B(α,2− α) is the β
function. This yields the dispersion relation for λ0:

0 = λ 2
0 −

kK∗α (1−C)/v0− v0

K∗αC
λ0 +

k
K∗αC

,

with K∗α = a2/2Γ (α)Γ (1−α)τα = Kα/Γ (α), where Kα is the generalized diffu-
sion constant. Solving this equation for λ , we find a restriction on the values of v0

for which this λ is real: (kK∗α/v0(1−C)− v0)
2 ≥ 4kK∗αC, a quartic equation in v0

which yields in general four symmetric roots

v2
0 = K∗α k

[
1+C± 2

√
C
]
. (20.9)

In the FKPP case pertinent to normal diffusion, the value of C is C = 1, the minimal
front velocity vmin = ±2

√
Dk is reproduced; the other solution is a double root

v = 0, which is a nonphysical one and appears due to the overall higher order of
the dispersion relation obtained by this method. For any C other than C = 1, there
exists bounded domain of real roots around zero,−v− ≤ v0 ≤ v− (the subscript “−”
corresponds to the minus sign in (20.9)) separated by gaps from another domain of
real roots |v0| > v+. The existence of the gap and of the corresponding minimal
velocity can be interpreted in favor of propagation of the corresponding front.
Of course, such an analysis is still incomplete without looking at the stability of
corresponding perturbations. There exists, however, a strong physical argument in
favor of the existence of the propagation mode described above.
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5 The Crossover Argument

In order to gain intuition about the front’s behavior, we make use of the following
idea: for any waiting time PDF ψ(t) with finite mean waiting time 〈t〉, the classical
(FKPP) behavior is recovered if only the time t is large enough, t # 〈t〉. We,
therefore, consider a truncated power-law waiting time distribution

ψT (t) =
τα(τ +T )α

(τ +T )α − τα
α

(τ + t)1+α Θ(T − t)

with T # τ which possesses a mean

〈t〉= αT τ + τ (τα − (T − τ)α)

(α− 1)(τα − (T − τ)α)
.

For T # τ , 〈t〉 ≈ α
1−α τα T 1−α . For short times τ < t � T , when particles cannot

yet feel the cutoff, this distribution is practically a power law (20.2), and the
behavior of the front velocity will be similar to that in subdiffusion, whereas for
large times the behavior is the classical one with a constant velocity given by
the minimal propagation velocity in FKPP. There has to be a crossover at a time
tcr between these two regimes. Thus, we assume that in the anomalous domain
the velocity is time-dependent, vSD ∝ tβ , and that after a crossover to normal
behavior vD = const∼√kD(T ) sets on. Here, D(T ) is the final diffusion coefficient,
D(T ) = a2/2〈t〉 depending on the cutoff time T . The subscripts SD and D indicate
the regimes of subdiffusion and of normal diffusion, respectively. The number of
performed steps, a measure of mobility, is nD(t) = t/〈t〉 in the normal regime t# tcr,
and nSD(t) = (Γ [1+α]τα )−1tα in the subdiffusive regime t � tcr. By equating
nSD(tcr) = nD(tcr) at the two sides of the crossover, we find tcr ∝ T . The velocities
on both sides at the crossover time have to be of the same order of magnitude
and, therefore, vSD(tcr) ∝ tβ

cr ∝
√

kD(T ). Since tcr ∼ T and D(T ) ∼ T α−1, we get
β = (1−α)/2 and thus

v(t) ∝ t
α−1

2

in the subdiffusive regime t � tcr.
The same argument applies to the front’s width. The width of the front in

the normal FKPP regime is of the order of w " D/v =
√

D/k. Taking the width
of the front to behave as w(t) ∝ tγ for t < tcr and matching this width with the width

of the front in FKPP at tcr we get w ∝ t
α−1

2 , in accordance with the previous section.
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6 Breakdown of the Continuous Description and Final
Asymptotics

Since the subdiffusive front is not only slowing down but also becomes steeper in the
course of time, a Monte-Carlo simulation, if performed long enough, enters a regime
where the width of the front is comparable to the one of microscopic scales of the
problem, the compartment size a or the interparticle distance B−1

0 = 1. The first
happens at high concentrations, where there are many particles per compartment,
the second at low concentrations. Both situations lead to similar behavior of the
front’s velocity.

Since in continuous time random walks the rate of the particle’s jumps R(t)
decays in the course of time, at longer time one enters the regime, when the
mean time between the two jumps of the particles within the front region gets
large compared to the time of the order of kB0 necessary for full conversion of
all particles from B to A in a compartment where at least one A particle is present.
Within this picture, the front can be considered as “atomically sharp,” and is placed
exactly between the last compartment containing A particles and the first A-free
compartment. This front moves exactly one a-step forward, when an A particle from
the compartment left of the front makes its jump to the right. Since the rate of these
jumps is proportional to the number of the particles in the compartment aB0 and to
R(t), the velocity goes as

v ∝ a2B0

(
tα−1

τα

)
∝ B0Kα t1−α .

This is the situation pertinent to high concentration of particles.
The case of low concentrations (much less then one particle per compartment)

needs for a slightly different discussion, parallel to the one in [6]. The front is again
“atomically sharp”: If the A and the B particles meet in the same compartment,
they have enough time to react before making a jump, and therefore there are no B
particles to the left of the front position and no A particles to the right of it. The front
position can be associated with the one of the rightmost A. This one does not change
at the average as long as there is a single particle in a compartment (the jumps to the
left and to the right are equally probable), but does increase by a with probability 1/2
if another particle is present in the same compartment (the probability of which is of
the order of aB0) since in this case the front cannot jump back. The mean velocity
differs from the previous one only in prefactor: v ∝ (a/2)aB0tα−1/τα ∝ B0Kα t1−α .

The result v ∝ B0Kα t1−α is exactly what follows immediately from the dimen-
sional analysis, if one assumes that the reaction is infinitely fast on the time scale of
jumps and therefore the reaction rate coefficient k cannot play any role.
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7 Conclusions

We discussed the motion of a reaction front in the A+B→2A reaction under
subdiffusion in a system where the transport of the particles is described by
continuous time random walks but the reaction between them locally follows the
mass action law. We show, that the reaction front in such a system moves at
intermediate times at a decaying velocity v ∝ t(α−1)/2, and that this velocity has
to cross over to a faster decay v ∝ tα−1 in the asymptotics of very long times.
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Chapter 21
Numerical Solution of a Two-Dimensional
Anomalous Diffusion Problem

Necati Özdemir and Derya Avcı

1 Introduction

In the last decade, there has been a considerable interest to the applications of
fractional calculus such that many processes in the nature have been successfully
modeled by a set of axioms, definitions, and methods of fractional calculus (see
[1–4]). One of these processes is anomalous diffusion which is a phenomenon
occurs in complex and nonhomogeneous mediums. The phenomenon of anoma-
lous diffusion may be based on generalized diffusion equation which contains
fractional order space and/or time derivatives [5]. Turski et al. [6] presented the
occurrence of the anomalous diffusion from the physical point of view and also
explained the effects of fractional derivatives in space and/or time to diffusion
propagation. Agrawal [7] represented an analytical technique using eigenfunctions
for a fractional diffusion-wave system and therefore provided that this formulation
could be applied to all those systems for which the existence of eigenmodes
is guaranteed. Agrawal [8] also formulated a general solution using finite sine
transform technique for a fractional diffusion-wave equation in a bounded domain
whose fractional term was described in sense of Caputo. Herzallah et al. [9]
researched the solution of a fractional diffusion wave model which is more accurate
and provides the existence, uniqueness, and continuation of the solution. Huang and
Liu [10] considered a sort of generalized diffusion equation which is defined as a
space-time fractional diffusion equation in sense of Caputo and Riemann-Liouville
operators. In addition, Huang and Liu [11] found the fundamental solution of the
space-time fractional advection-dispersion equation with Riesz–Feller derivative.
Langlands [12] proposed a modified fractional diffusion equation on an infinite
domain and therefore found the solution as an infinite series of Fox functions.
Sokolov et al. [13] analyzed different types of distributed-order fractional diffusion
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equations and investigated the effects of different classes of such equations. Saichev
and Zaslavsky [14] presented the solutions of a symmetrized fractional diffusion
equation with a source term applying a method similar to separation of variables.
Mainardi et al. [15] researched the fundamental solution of a Cauchy problem for
the space-time fractional diffusion equation obtained from the standard diffusion
equation by replacing the second-order space derivative by a fractional Riesz or
Riesz–Feller derivative, and the first-order time derivative by a fractional Caputo
derivative. Gorenflo and Mainardi [16, 17] analyzed a space-fractional (or Levy–
Feller) diffusion process governed by a generalized diffusion equation which
generates all Levy stable probability distributions and also approximated these
processes by random walk models, discreted space and time based on Gr ünwald-
Letnikov (GL) approximation. Özdemir et al. [18] presented the numerical solution
of a diffusion-wave problem in polar coordinates using GL approximation. Özdemir
and Karadeniz [19] also applied GL formula to find the numerical results for a
diffusion problem in cylindrical coordinates. Povstenko [20–23] researched the
solutions of axial-symmetric fractional diffusion-wave equations in cylindrical and
spherical coordinates.

In addition, numerical schemes are fine research topics in fractional calculus.
Because the analytical solutions of the fractional differential equations are usually
obtained in terms of Green and Fox functions which are difficult to calculate explic-
itly. For this reason, there are many research related to numerical approximation of
space or space-time fractional diffusion equations. Shen and Liu [24] investigated
the error analysis of the numerical solution of a space fractional diffusion equation
obtained using an explicit finite difference method. Liu et al. [25] formulated
the numerical solution of a space-time fractional advection-dispersion equation in
terms of Caputo and RL derivatives using an implicit and an explicit difference
methods. Lin et al. [26] considered a nonlinear fractional diffusion equation in terms
of generalized Riesz fractional derivative and applied an explicit finite-difference
method to find numerical solutions. Özdemir et al. [27] researched the numerical
solutions of a two-dimensional space-time fractional diffusion equation in terms
of Caputo and Riesz derivatives. Ciesielski and Leszczynski [28] proposed a new
numerical method for the spatial derivative called Riesz–Feller operator, and hence
found the numerical solutions to a fractional partial differential equation which
describe an initial-boundary value problem in one-dimensional space. Ciesielski
and Leszczynski [29] also presented the numerical solutions of a boundary value
problem for an equation with the Riesz–Feller derivative. Liu et al. [30] presented a
random walk model for approximating a Levy–Feller advection-dispersion process
and proposed an explicit finite difference approximation for Levy–Feller advection-
dispersion process, resulting from the GL discretization of fractional derivatives.
Zhang et al. [31] considered the Levy–Feller diffusion equation and investigated
their probabilistic interpretation and numerical analysis in a bounded spatial
domain. Moreover, Machado [32] presented a probabilistic interpretation to the
fractional-order derivatives.

The plan of this work as follows. In this work, we consider a two-dimensional
anomalous diffusion problem in terms of Caputo and Riesz–Feller derivatives.
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For this purpose, we give some basic definitions necessary for our formulations in
Sect. 2. In Sect. 3, we formulate our considerations and find the analytical solution
of the problem. We apply GL definition to find the numerical solution in Sect. 4. In
Sect. 5, we choose an example and therefore show the effectiveness of the numerical
approximation for our problem. Finally, we conclude our work in Sect. 6.

2 Mathematical Background

In this work, we consider an anomalous diffusion equation in two-dimensional
space. We define our problem in terms of Caputo time and Riesz–Feller fractional
derivatives. Therefore, let we remind the well-known definitions and origins of these
operators.

Originally, Riesz introduced the pseudo-differential operator xIα
0 whose symbol

is |κ |−α , well defined for any positive α with the exclusion of odd integer numbers,
then was called Riesz Potential. The Riesz fractional derivative xDα

0 =− xIα
0 defined

by analytical continuation can be represented as follows:

xDα
0 = −|κ |α

= −(κ2) α
2

= −
(
− d2

dx2

) α
2

. (21.1)

In addition, Feller [33] generalized the Riesz fractional derivative to include the
skewness parameter θ of the strictly stable densities. Feller showed that the pseudo-
differential operator Dα

θ is as the inverse to the Feller potential, which is a linear
combination of two Riemann–Liouville (or Weyl) integrals:

xIα
+ f (x) =

1
Γ (α)

x∫

−∞

(x− ξ )α−1 f (ξ )dξ , (21.2)

xIα
− f (x) =

1
Γ (α)

+∞∫

x

(ξ − x)α−1 f (ξ )dξ , (21.3)

where α > 0. By these definitions, the Feller potential can be defined as follows:

xIα
θ f (x) = c+ (α,θ )x Iα

+ f (x)+ c− (α,θ )x Iα
− f (x) , (21.4)

where the real parameters α and θ are always restricted as follows:

0 < α ≤ 2, α 	= 1,

|θ | ≤ min{α,2−α} ,
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and also the coefficients are

c+ (α,θ ) =
sin
(
(α−θ)π

2

)

sin(απ)
,

c− (α,θ ) =
sin
(
(α+θ)π

2

)

sin(απ)
. (21.5)

Using the Feller potential, Mainardi and Gorenflo [16] defined the Riesz–Feller
derivative

∂ α f (x)

∂ |x|αθ
=−xI−α

θ f (x) =−[c+ (α,θ )x Dα
+ f (x)+ c− (α,θ )x Dα

− f (x)
]
,

where xDα± f (x) are Weyl fractional derivatives defined as follows:

xDα
± f (x) =

{± d
dx

[
xI1−α
± f (x)

]
, 0 < α < 1,

d2

dx2

[
xI2−α
± f (x)

]
, 1 < α ≤ 2.

(21.6)

The Caputo fractional derivative is defined as follows:

∂ β u(t)

∂ tβ =
1

Γ (n−β )

t∫

0

(t− τ)n−β−1
(

d
dτ

)n

u(τ)dτ, (21.7)

where 0 < β ≤ n,n ∈ Z. Now, we can formulate our problem after these
preliminaries.

3 Formulation of the Main Problem

Let us consider the following space-time fractional anomalous diffusion problem:

∂ β u(x,y, t)

∂ tβ =
∂ α u(x,y, t)

∂ |x|αθ1

+
∂ μu(x,y, t)

∂ |y|μθ2

, (21.8)

u(x,y,0) = u0 (x,y) , (21.9)

lim
x,y→±∞

u(x,y, t) = 0, (21.10)

where x,y ∈ R; β ,α,μ are real parameters restricted as 0 < β ≤ 1, 0 <
α < 1, 1 < μ ≤ 2; the skewness parameters θ1 (θ1 ≤min{α,1−α}) and θ2

(θ2 ≤min{μ ,2− μ}) are measures of the asymmetry of the probability distribution
of a real-valued random variable among the x and y coordinate axes. Note that
many simplistic mathematical models are defined under the Gaussian (normal)
distribution; i.e., the skewness parameter is zero. However, in reality, random
variables may not distribute symmetrically. Therefore, the behavior of such
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anomalous diffusion problem differs with the changing of θ1 and θ2 parameters.
We first assume that the solution and the initial condition functions can be expanded
into the complex Fourier series, respectively:

u(x,y, t) =
∞

∑
n=1

∞

∑
m=1

unm (t)einxeimy, (21.11)

u0 (x,y) =
∞

∑
n=1

∞

∑
m=1

u0nmeinxeimy, (21.12)

where i2 = −1. Under these assumptions, we calculate the fractional derivative
terms in the right-hand side of (21.8), respectively, as follows: We start with the
calculation of ∂ α u(x,y,t)

∂ |x|αθ1

term which dependent on x variable and 0 < α < 1. Let us

remind the definition:

∂ α u(x,y, t)

∂ |x|αθ1

=−[c+ (α,θ1)−∞ Dα
x u(x,y, t)+ c− (α,θ1)x Dα

+∞u(x,y, t)
]
, (21.13)

where

−∞Dα
x u(x,y, t) =

∂
∂x

⎛
⎝ 1

Γ (1−α)

x∫

−∞

u(ξ ,y, t)
(x− ξ )α dξ

⎞
⎠ (21.14)

and

xDα
+∞u(x,y, t) =− ∂

∂x

⎛
⎝ 1

Γ (1−α)

∞∫

x

u(ξ ,y, t)
(ξ − x)α dξ

⎞
⎠ (21.15)

are the left- and the right-side Weyl fractional derivatives. Now, substituting (21.11)
into (21.14), we have

−∞Dα
x u(x,y, t) =

∂
∂x

(
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy
∫ x

−∞

einξ

(x− ξ )α dξ

)

=
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy d
dx

⎛
⎝einx

∞∫

0

e−inr

rα dr

⎞
⎠

=
1

Γ (1−α)

∞

∑
n=1

∞

∑
m=1

unm (t)eimy d
dx

(
einx (in)α−1 Γ (1−α)

)

=
∞

∑
n=1

∞

∑
m=1

(in)α unm (t)eimyeinx

and with the similar manipulations,

xDα
+∞u(x,y, t) =

∞

∑
n=1

∞

∑
m=1

(−in)α unm (t)eimyeinx.
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Hence, for 0 < α < 1,

∂ α u(x,y, t)

∂ |x|αθ1

=−
∞

∑
n=1

∞

∑
m=1

nα {c+ (α,θ1)(i)
α + c− (α,θ1) (−i)α}unm (t)eimyeinx.

(21.16)
Now, we obtain a similar computation of ∂ μ u(x,y,t)

∂ |y|μθ2

for the case of 1 < μ ≤ 2.

Therefore, we get

−∞Dμ
y u(x,y, t) =

∂ 2

∂y2

⎛
⎝ 1

Γ (2− μ)

y∫

−∞

u(x,η , t)
(y−η)μ−1 dη

⎞
⎠

=
∂ 2

∂y2

⎛
⎝ 1

Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx

y∫

−∞

eimη

(y−η)μ−1 dη

⎞
⎠

=
1

Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx d2

dy2

⎛
⎝eimy

∞∫

0

e−imk

kμ−1 dk

⎞
⎠

=
1

Γ (2− μ)

∞

∑
n=1

∞

∑
m=1

unm (t)einx d2

dy2

(
eimy (im)μ−2 Γ (2− μ)

)

=
∞

∑
n=1

∞

∑
m=1

(im)μ unm (t)einxeimy

and

yDμ
+∞u(x,y, t) =

∞

∑
n=1

∞

∑
m=1

(−im)μ unm (t)einxeimy.

Hence, we obtain

∂ μ u(x,y, t)

∂ |y|μθ2

=
∞
−∑
n=1

∞

∑
m=1

{
c+ (μ ,θ2)(im)μ + c− (μ ,θ2)(−im)μ}unm (t)eimyeinx.

(21.17)
Consequently, substituting (21.16) and (21.17) into (21.8) we take the following
time fractional differential equation

∂ β unm (t)

∂ tβ = −{nα [c+ (α,θ1) (i)
α + c− (α,θ1) (−i)α]

+ mμ [c+ (μ ,θ2) (i)
μ + c− (μ ,θ2) (−i)μ]}unm (t) . (21.18)

Therefore, we reduce the (21.8) to a fractional differential equation with one
fractional term. To find the unm (t), we apply Laplace transform to (21.18) and obtain

sβ unm (s)− sβ−1unm (0)+Aunm (s) = 0 (21.19)
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where

A=nα [c+ (α,θ1) (i)
α +c− (α,θ1)(−i)α]+mμ [c+ (μ ,θ2)(i)

μ + c− (μ ,θ2)(−i)μ].
(21.20)

Using inverse Laplace transform, (21.19) reduces to

unm (t) = unm (0)Eβ ,1

(
−Atβ

)
, (21.21)

where Eβ ,1(.) is a well-known Mittag–Leffler function. The Fourier coefficients of
the (21.12) can be found by

u0nm =
1

(2π)2

π∫

−π

π∫

−π

u0 (x,y)e−inxe−imydxdy. (21.22)

After some manipulations, we take unm (0) = u0nm and also unm (t) = u0nmEβ ,1(−Atβ). Now, we can rewrite the solution series after these computations:

u(x,y, t) =
∞

∑
n=1

∞

∑
m=1

u0nm (0)Eβ ,1

(
−Atβ

)
einxeimy. (21.23)

4 Grünwald–Letnikov Approximation for Numerical Solution

In this section, we show the numerical solution of the problem by applying GL
approximation for Caputo derivative. Let us first give the relation between the left
RL and Caputo definitions:

aDβ
t u(t) = C

a Dβ
t u(t)+

m−1

∑
r=0

dr

dtr u(t) |
t=a

(t− a)r−β

Γ (r−β + 1)
,

where m ∈ N, m − 1 < β ≤ m, a ∈ R. Note that under the assumption∣∣∣∣ lim
a→−∞

dr

dtr u(t) |
x=a

∣∣∣∣< ∞ for r = 0,1, ...,m− 1, we have

−∞Dβ
x u(t) = C

−∞Dβ
x u(t) .

It is also valid for the upper limit case and similar assumption as follows:

xDβ
+∞u(t) = C

x Dβ
+∞u(t) .

We remind that the order of Caputo derivative is 0 < β ≤ 1, the lower limit of
derivative a = 0, and so we obtain

C
0 Dβ

x u(t) = 0Dβ
x u(t) − u(0)

t−β

Γ (1−β )
.
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It is well known that if a function has suitable properties, i.e., it has first-order
continuous derivatives and its second-order derivative is integrable, the β -order
derivatives of function in both RL and GL senses are the same. By this property,
we discretize the RL operator applying GL definition to (21.18), and therefore we
take the approximation of Caputo derivative as

C
0 Dβ

t unm (t)≈ 1

hβ

M

∑
r=0

w(β )
r unm (hM− rh)− unm (0)

(hM)−β

Γ (1−β )
, (21.24)

where M = t
h represents the number of sub-time intervals, h is step size, and w(β )

r

are the coefficients of GL formula:

wβ
0 = 1, wβ

r =
(

1− β+1
r

)
wβ
(r−1) . (21.25)

Substituting (21.24) into (21.18) and after some arranging, we get

unm (hM) =
1(

1
hβ w(β )

0 +A
)
{

unm (0)
(hM)−β

Γ (1−β )
− 1

hβ

M

∑
r=1

w(β )
r unm (hM− rh)

}
,

(21.26)
where A is given by (21.20).

5 Numerical Example

In this section, we consider the following initial condition:

u(x,y,0) = sinh(x+ y).

In Fig. 21.1, we first validate the efficiency of numerical method by comparison of
analytical and numerical solutions for x = π

5 , y = π
4 , t = 5, h= 0.01 and n=m = 10.

It is clear from the figure that the analytical solution is in a good agreement with the
numerical solution. Figure 21.2 shows the behavior of problem under the variations
of μ values for x= π

5 , y= π
4 , t = 5, h= 0.01, β = 1, α = 0.3 and θ1 = 0.3. Similarly,

Fig. 21.3 shows the response of the problem for variable order of α for t = 5, β =
0.5, μ = 1.5 and θ2 = 0.5. Figure 21.4 indicates changing behaviors of problem
with respect to the variations of α, β , and μ parameters for x = π

5 , y = π
4 , t = 5. In

Fig. 21.5, we get the three-dimensional surface of the problem (21.8) with respect
to x and t for y = π

4 , β = 0.7, α = 0.5,θ1 = 0.5 and μ = 1.8,θ2 = 0.1. Finally, we
obtain the surface of the problem (21.8) with respect to x and y for β = 0.7, α = 0.5,
θ1 = 0.5, and μ = 1.8, θ2 = 0.1 and h = 0.01 in Fig. 21.6.
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6 Conclusions

In this chapter, we have defined a two-dimensional anomalous diffusion problem
with time and space fractional derivative terms. These have been described in the
sense of Caputo and Riesz–Feller operators, respectively. We have purposed to find
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the exact and the numerical solutions of the problem under some assumptions.
Therefore, we use Laplace and Fourier transforms for analytical solution and
also prefer to apply GL definition. However, we first reduce the main problem
to a fractional differential equation with time fractional term. By this way, we
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have obtained numerical results more easily. Finally, we apply the formulations
to an example. After that we present some figures under different considerations
about variations of parameters. In addition, we deduce from the comparison of the
analytical and the numerical solutions that the GL approximation can be applied
successfully to such type of anomalous diffusion problems.
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Chapter 22
Analyzing Anomalous Diffusion in NMR
Using a Distribution of Rate Constants

R.L. Magin, Y.Z. Rawash, and M.N. Berberan-Santos

1 Introduction

There is a growing realization that relaxation and diffusion phenomena in complex
materials cannot be expressed simply in terms of sum of exponential decays,
each characterized by a single relaxation time or rate [8]. In nuclear magnetic
resonance (NMR) and in optical luminescence studies, single-exponential models
fail to describe the wide variety of relaxation times observed in synthetic and
biological materials [6, 11]. In luminescence decay, for example, the observed
relaxation spans many orders of magnitude – from nanoseconds to milliseconds
– and a wide distribution of rate constants is needed to describe the phenomena
[5]. In NMR relaxation experiments, the direct measurement of a distribution of T2
relaxation times from 1 to 1,000 ms is possible, but only for high signal-to-noise
data collected from bulk samples [10]. The same is true for so-called q-space NMR
diffusion measurements [1]. Our attention has been drawn recently to the success
of simple empirical fits to the NMR diffusion attenuation in pulsed field gradient
(PFG) studies [7], where both magnetic resonance imaging (MRI) and diffusion
distribution analysis are possible. In PFG, the signal attenuation caused by diffusion
can be measured for applied magnetic field gradients and the data fit to a simple-
exponential decay law:

S(b) = S0 exp(−bD), (22.1)
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where b is a measure of the applied gradient strength and duration, and D is the
effective diffusion constant, with units of mm2/s. For high b-value experiments
(b > 1,000s/mm2) in the brain, however, the data collected from both gray and
white matter do not follow a single exponential and have been simply fit using the
so-called, stretched-exponential decay law:

S(b) = S0 exp
[−(bDα)

α], (22.2)

where 0 < α < 1 and Dα is the fractional diffusion constant. A rationale for the
empirical function was recently provided using fractional calculus [6,11,14,18]. The
purpose of this chapter is to show that the stretching parameter, α , directly reflects
a “distribution” of many single-exponential relaxation rates. This analysis follows
closely the approach used by [3] in applying the stretched exponential and similar
functions to the time decay of optical luminescence signals.

2 Underlying Distributions

The exponential function (22.1) can also be written in a more general form. Let
I(b) = S(b)/S0, so we can write:

I(b) = exp

⎛
⎝−

b∫

0

w(u)du

⎞
⎠, (22.3)

where w(b) is a b-value-dependent rate coefficient, defined by:

w(b) =−dln I(b)
db

=− 1
I(b)

dI(b)
db

. (22.4)

In the simplest case, w(b) can be b-value independent with, for example, w(b) = D
and the decay is an exponential function as in (22.1). Equation (22.3) can be easily
generalized to fractional order as follows:

I(b) = exp(− [1 ∗w(b)]) = exp(− [kα(b)∗w(b)]) . (22.5)

Here, the ∗ symbol indicates the convolution operator and kα(b) is a monotonically
decreasing function that provides fading memory of earlier b-values. If we assume
that we can write kα(b) as a power law, kα(b) = bα−1/Γ(α), where Γ(α) is the
γ function, then (22.5) takes the form of a classical Riemann–Liouville fractional
integral [9], and we have:

I(b) = exp(−Iα
0 [w(b)]) . (22.6)
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Now in the case of w(b) = D, we find using either the properties of fractional
calculus or the Laplace transformation, that:

I(b) = exp [−bαD/Γ(α)] = exp
[−(bDα)

α], (22.7)

where Dα = D/Γ(1+α) is the effective diffusion constant and the diffusion decay
curve is a stretched-exponential function of b.

The relaxation function I(b) used to describe diffusion signal attenuation is
thus seen to span the range from a single exponential to a stretched exponential
depending upon the amount of memory included in the convolution; with longer
memory, additional, slower components of the response could be expected to
become more evident. Another way of spanning both long and short diffusion
components is to assume two or more single exponentials are present. This is the
usual approach to incorporate multi-compartmental and multi-component behavior.
Here we will take this idea to the extreme and assume a distribution of exponential
terms that can also be written as:

I(b) = L [ρ (kD)] =

∞∫

0

ρ (kD)e−bkDdkD. (22.8)

This relation is valid as long as the integral exists (i.e. ρ(kD) grows no faster than
an exponential) and shows ρ(kD) to be the inverse Laplace transform of I(b). The
function ρ(kD) is normalized, as I(0) = 1 implies:

∞∫

0

ρ (kD)dkD = 1. (22.9)

The integrand of (22.8), ρ(kD)exp(−bkD), can be seen as a particular diffusion term
in the distribution with kD viewed either as the corresponding diffusion coefficient
or as the rate constant for the process that proceeds with advancing b.

In previous work, we found that the stretched-exponential function is well suited
to describe signal attenuation caused by diffusion phenomena in gels, cartilage, and
brain tissue [11]. We now will show that the distribution of rate constants – the
probability density function – outlined above for a stretched-exponential function
is well suited to describe and characterize intrinsic properties of the complex
environment that water inhabits in each of these cases.

Recovery of the distribution ρ(kD) from experimental data is an ill-conditioned
problem [12]. In other words, a small change in I(b) can cause an arbitrarily
large change in ρ(kD). In general, high signal-to-noise is needed so that ρ(kD)
can be recovered from the experimental relaxation decay results. A simple form
of the inverse Laplace transform of a relaxation function can be obtained by the
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method outlined by [3]. Briefly, the three following equations can be used for the
computation of ρ(kD) from I(b):

ρ (kD) =
2
π

∞∫

0

Re [I(iω)]cos(kDω)dω (22.10)

ρ (kD) =− 2
π

∞∫

0

Im [I(iω)]sin (kDω)dω (22.11)

ρ (kD) =
1
π

∞∫

0

Re [I(iω)]sin(kDω)dω− Im [I(iω)] sin(kDω)dω . (22.12)

3 Anomalous Diffusion Model

The stretched-exponential model follows from a fundamental extension of the
Bloch–Torrey equation through application of the operators of fractional calculus
[11]. This promising model needs further investigation and study; however, like
models of [2] and of [7], it describes the anomalous diffusion behavior of signal
attenuation using a stretched-exponential function. The specific formula derived by
Magin et al. is:

I(b) = exp

[
−Dμ2(β−1) (γGzδ )2β

(
Δ − 2β − 1

2β + 1
δ
)]

. (22.13)

In this equation, γ is the gyromagnetic ratio for the water proton (42.58 MHz/T), Gz

is the spatial gradient in z direction, Δ is the time between the two gradient pulses,
δ is the gradient pulse duration, and D is the diffusion coefficient. In this model
there are also two fractional order-related parameters: μ , a space constant needed
to maintain consistent units and β , the order of the fractional calculus operator,
0.5 < β ≤ 1, which can be related to the complexity of the material.

For the case of β = 1, the classic expression for diffusion is recovered, that is:

I(b) = exp
[
−D(γGzδ )2 (Δ− δ/3)

]
. (22.14)

Using (22.13) the theoretical curves are plotted in Fig. 22.1, as I(b) versus the
gradient parameter b (where for Δ # Δ , b = (γGzδ )2δ ) for selected values of μ
and β . In this figure a gradient pulse sequence Gz,Δ , and δ is assumed with Gz

varying from 0 to 1,500 mT/m. We observe that as β decreases from 1.0 to 0.6, the
attenuation curves change from a simple exponential (a straight line on the semi-log
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Fig. 22.1 Normalized signal attenuation decay (22.13), plotted versus b, where b= (γGzδ )2Δ , for
selected values of β . In each curve, Gz increases from 0 to 1,500 mT/m while all other parameters
are fixed: D(1×10−3 mm2/s), Δ (50 ms), δ (1 ms), and μ(35μm)

graph) to heavy-tailed curved shape that strongly resembles the behavior recorded
in restricted diffusion – particularly at high b-values.

In Fig. 22.2, (22.13) is plotted for a series of μ-values ranging from 20 to 80μm
with β = 0.8. The Gz,Δ , and δ -values in Fig. 22.2 are the same as those used
in Fig. 22.1. Here we see that increasing the value of μ appears to increase the
contribution of restricted diffusion in the diffusion attenuation curve for a fixed
value of β . This behavior is evident when (22.13) is expressed either in terms of
a single-exponential decay, exp{−bDapI}, where the apparent diffusion coefficient
is expressed as:

DapI = D/((γGzδ )μ)2(1−β ), (22.15)

or when (22.13) is written as a stretched exponential, exp{−(bDF)
β}, where:

Dβ
F = D

(
Δ/μ2)1−β

. (22.16)

In addition, when μ =
√

DΔ , (22.13) corresponds with the “stretched exponential”
result, exp{−(bD)β}, considered by [2]. In the example plotted in Fig. 22.2 this
correspondence occurs for μ = 7.07μm. Overall, Figs. 22.1 and 22.2 show for
(22.13) a decrease in the apparent diffusion coefficient as the values of β decrease
and values of μ increase.
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Fig. 22.2 Normalized signal attenuation decay (22.13), plotted versus b, where b = (γGzδ )2Δ ,
with selected values of μ . In each curve, Gz increases from 0 to 1,500 mT/m while all other
parameters are fixed: D(1×10−3 mm2/s), Δ (50 ms), δ (1 ms), and β (0.8)

4 Anomalous Distribution Model

The stretched-exponential decay function was also recently used in the analysis of
single-molecule fluorescence, quantum dot luminescence, and in the fluorescence
lifetime imaging of biological tissues [6]. The determination of ρ(kD) for a given
I(b) amounts to finding the inverse Laplace transform of the stretched-exponential
decay function.

The result, first obtained by [15], and an equivalent integral representation found
by [3], is:

ρ (kD) =
1

πDF

∞∫

0

e
−uβ cos

(
βπ
2

)
cos

(
uβ sin

(
β π
2

)
− kDu

DF

)
du. (22.17)

In addition, a convergent power series for ρ(kD) is known:

ρ (kD) =
1

πDF

∞

∑
n=1

(−1)n+1

n!
sin(nβ π)

(kD/DF)
(1+nβ ) Γ(1+ nβ) . (22.18)

It can be seen that the asymptotic form of ρ(kD) is:

ρ (kD) =
Γ(1+β )

πDF

sin(β π)
(kD/DF)

1+β . (22.19)
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Fig. 22.3 A series of plots of the distribution of diffusional decay rates calculated using (22.18).
The β -values span the range from 0.5 to 0.95

We have calculated the distribution of diffusional rate constants ρ(kD) using
(22.18) for a range of β -values from 0.5 to 0.95, and the results are plotted in
Fig. 22.3. As the value of β approaches 1, the distribution appears to converge
toward a Dirac Delta function corresponding to a single-exponential function with
kD = D, whereas, as β approaches the value of 0.5, the distribution of diffusional
relaxation rates broadens and becomes more uniform. A similar broadening of
the distribution occurs for a fixed value of β as μ is increased, as is shown in
Fig. 22.4.

The stretched-exponential decay function is necessarily of an approximate
nature, as it implies an infinitely fast initial rate of decay. Super-exponential short-
time behavior results from the fat tail of the stretched-exponential distribution
[4]. Usually, one is, however, more interested in the long-time behavior, which is
governed by the shape of the distribution of rate constants near the origin. With this
aim in view, an exponentially attenuated modified form of the stretched-exponential
distribution was proposed [4]. The resulting decay law retains the original long-
time behavior but no longer suffers from the short-time problems of the original
distribution. Other well-behaved decay functions that encompass the exponential
function as a special case such as the compressed hyperbola have been proposed
and successfully applied to several problems where a continuous distribution of rate
constants was found to exist [16, 17].
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Fig. 22.4 A series of plots of the distribution of diffusional decay rates calculated using (22.18)
with β of 0.5. The μ-values span the range from 2 to 14μm

5 Experimental Results

Two diffusion-weighted MRI (DWI) experiments were carried out at 11.74 T
(500 MHz for protons) to illustrate applications of the stretched-exponential model
to characterized biological complexity. In first experiment, glass capillary tubes
were filled with Sephadex (Sigma-Aldrich, St. Louis, MO) gels type G-25, G-50,
and G-100, and placed in a 5 mm NMR tube filled with distilled water. Diffusion-
weighted images were acquired using a Stejskal–Tanner diffusion-weighted spin–
echo pulse sequence with the following parameters: TR = 1,000ms, TE = 60ms,
slice thickness = 1.5mm, Δ = 45ms, δ = 1ms, and 4 averages. The FOV was
0.6cm× 0.6cm, which for a matrix size of 64× 64 corresponds to an in-plane
resolution of 94μm× 94μm.

In the second experiment, diffusion-weighted brain imaging was carried out on a
healthy human volunteer at the University of Illinois Medical Center. Axial images
were acquired with multiple b-values using a customized single-shot EPI. The key
data acquisition parameters were: TR = 4,000ms, TE = 96.6ms, slice thickness of
4 mm, slice gap of 3 mm, Δ = 42.6ms, δ = 32.2ms, and 4 averages. Diffusion-
weighted images were acquired with a maximum b-value of 3,300s/mm2.

The signal attenuation results from DWI for the two experiments (Figs. 22.5 and
22.6) was measured for selected regions of interest (ROI) at increasing b-values,
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Fig. 22.5 Normalized signal intensity plotted versus b, where b = (γGzδ )2Δ , for selected ROI in
samples of distilled water and Sephadex G-25, G-50, and G-100. The experimental data were fit to
the fractional-order model (22.13) to determine DF , β , and μ

Fig. 22.6 Normalized signal intensity plotted versus b∗, from (22.13) for selected ROI in white
matter, gray matter and cerebrospinal fluid for a human brain. The experimental data were fit to the
fractional-order stretched-exponential model. (22.13) for D, β , and μ , where b∗ = (γGz(δ )2(Δ −
((2β −1)/(2β +1))δ )
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Table 22.1 Diffusion and complexity measurement

DF×10−3 mm2/s β (a.u.) μ(μm)

G-25 1.1±0.04 0.71±0.06 6.4±0.1
G-50 1.5±0.03 0.8±0.05 5.7±0.1
G-100 1.8±0.06 0.91±0.08 4.4±1.6
Distilled water 2.1±0.02 1.0±0.003 2.9±0.3
White matter 0.41±0.006 0.60±0.008 4.3±0.04
Gray matter 0.75±0.08 0.78±0.03 4.9±0.02
CSF 2.8±0.18 0.91±0.005 3.0±1.3

Fig. 22.7 Distribution of rate constants (probability density function) calculated using (22.18) for
the stretched-exponential relaxation function for (Sephadex G-25, G-50 and G-100, CSF, gray
matter, and white matter)

and the data fit to the stretched-exponential model (22.13) using the Levenberg–
Marquardt nonlinear least squares algorithm. A summary of the results is listed in
Table 22.1.

We have used (22.18) to calculate the distribution of diffusional rate constants
ρ(kD) for the data on Sepadex gels (Fig. 22.5) and for human brain tissue (Fig. 22.6).
The resulting distributions are plotted in Fig. 22.7. The results provide a graphic
depiction of the effect of the fractional-order parameter β to embed a wide range
of diffusion rates. As expected, the water and water-like cerebral spinal fluid (CSF)
have very narrow distributions while the Sephadex gels, beginning with the G-100
(largest pore size) fan out with decreasing G-number (effectively the gel’s molecular
exclusion value in kilodaltons). Interestingly, the gray matter distribution peaks
between the G-25 and G-50 Sephadex samples, while the white matter shows an
almost uniform distribution of diffusion rates.
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6 Discussion and Conclusions

In this work, we demonstrated that a stretched-exponential model describing anoma-
lous diffusion in disordered system can be employed with success to characterize the
diffusion results from the MR signal attenuation curves obtained from Sephadex
gels and biological tissue during DWI experiments. Moreover, the probability
density function of diffusional rate constants was found to describe and characterize
the complexity of gels and biological tissue in a manner consistent with the water
distribution inside the biological environments.

The general properties and conditions of the MR signal attenuation curves were
outlined for the MR signal in order to have a probability density function of rate
constants; it was concluded that the decay must be either exponential or sub-
exponential for all b-values, if ρ(kD) is to be a probability density function. The
use of the stretched-exponential model for analyzing MR signal attenuation curves
has been shown to provide excellent tissue discrimination [11, 18]. Even more
importantly, the stretched-exponential function not only describes the decay profiles
almost exactly but also derives from the more realistic decay model of continuous
distributions in biological tissue, rather than from an arbitrary assumption of single
or multiple discrete exponential decay components.

The heterogeneity parameter β is important because it enables the study of
mechanisms that cause a continuous distribution to broaden or narrow. Future work
on a variety of different tissue types and in different environmental conditions will
hopefully provide more insight in this matter. It is possible that the heterogeneity
parameter β is sensitive to the gradient direction, particularly in highly anisotropic
structures in the brain. This is expected because diffusion imaging of the brain has
revealed considerable anisotropy. In the present studies, diffusion gradients were
applied in only one direction to avoid averaging the data in more than one direction.
Results showed reduced μ in regions of human brain corresponding to the superior
sagittal sinus. This is thought to occur because of partial volume effects between
the relatively fast-diffusing CSF in the sinus and the slow-diffusing gray matter
parenchymal protons and white matter in between, so it is likely that μ can be
related to the porosity and tortuosity in biological tissue, and more specifically to
the heterogeneity of the biological tissue.

A stretched-exponential model that describes diffusion in a random disordered
system and fractal spaces was used to parameterize the diffusion and biological
complexity from diffusion-weighted MR signals. The model performed well on
data obtained from Sephadex gel type G-100, G-50, and G-25 as well as on data
from human brain tissues (white and gray matter) with different predicted diffusion
characteristics. This approach has potential to be applied in clinical studies and may
aid in monitoring the developmental as well as pathological changes to biological
tissues.
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Chapter 23
Using Fractional Derivatives to Generalize
the Hodgkin–Huxley Model

Hany H. Sherief, A.M.A. El-Sayed, S.H. Behiry, and W.E. Raslan

1 Introduction

In recent years fractional differential equations have gained a considerable amount
of interest due to their many applications in the fields of physics [16], signal
processing [1], fluid mechanics [2], mathematical biology [14], and bioengineering
[15].

Fractional calculus has been used successfully to modify many existing models
of physical processes. The first application of fractional derivatives was given by
Abel who applied fractional calculus in the solution of an integral equation that
arises in the formulation of the tautochrone problem [17]. Subsequently, Caputo and
Mainardi [3] applied fractional calculus for the description of viscoelastic materials
and found good agreement with experimental results and established a connection
between fractional derivatives and the theory of linear viscoelasticity [4, 5].

Recent monographs and symposia proceedings have highlighted the application
of fractional calculus in physics, continuum mechanics, signal processing, and
electromagnetism, but with few examples of applications in bioengineering. This is
surprising because the methods of fractional calculus, when defined as a Laplace or
Fourier convolution product, are suitable for solving many problems in biomedical
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research. For example, early studies by Cole and Hodgkin [6] of the electrical
properties of nerve cell membranes and the propagation of electrical signals are well
characterized by differential equations of fractional order. The solution involves a
generalization of the exponential function to the Mittage-Leffler function, which
provides a better fit to the observed cell membrane data [15].

Since action potentials are the most important phenomenon of the nervous
system, a great deal of scientific research was conducted in deciphering their
proprieties. Alan Hodgkin and Andrew Huxley (HH) established a model system
in 1952 that is until today one of the key achievements in cellular biophysics [10–
13]. Their work on the squid giant axon was awarded a Nobel prize in physiology
and medicine together with John Eccles in 1963. Hodgkin and Huxley conducted
a series of experiments that allowed the determination of the time and voltage
dependence of the sodium and potassium conductance. Their set of differential
equations is able to model all that was known about action potentials at that time
with remarkable accuracy. Their model is an empirical approach to the kinetic
description of excitable membranes and their goal to predict the properties of action
potentials was met with astonishing accuracy. They were able to fit their research on
the squid giant axon into a set of four differential equations and various supporting
functions. The main equation, describing the membrane in terms of an electric
circuit, is a nonlinear differential equation, whereas the remaining three describe
the properties of the ion channels using ordinary first order differential equations.

2 Fractional HH Model

As in the original HH model, we assume that the electrical properties of a segment of
nerve membrane can be modeled by an equivalent circuit. In this circuit, current flow
across the membrane has two major components one, IC (μAcm−2) associated with
charging the membrane capacitance C (μFcm−2) and another, Iion associated with
the movement of specific types of ions across the membrane. In squid giant axon, the
ionic current is further subdivided into three distinct components, a sodium current
INa, a potassium current IK, and a small leakage current IL that is primarily carried
by chloride ions. We thus have:

IC + Iion = Iext, (23.1)

where Iext is the external applied current.
For the fractional model, we suggest that:

IC =CcDμ
t v, (23.2)

where v is the membrane voltage (mV) and cDμ
t is the Caputo fractional derivative

of order μ , 0 < μ ≤ 1, defined by [17]:

cDμ
t f (t) =

t∫

0

(t− s)−μ

Γ (1− μ)
f ′(s)ds,

where Γ (.) is the gamma function.
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Substituting (23.2) into (23.1), we obtain:

CcDμ
t v+ Iion = Iext. (23.3)

Each individual ionic component has an associated conductance value denoted by
G (mScm−2) and an equilibrium potential denoted by E (the potential for which
the net ionic current flowing across the membrane is zero). Each current component
is assumed to be proportional to the conductance times the driving force. Thus, the
ionic current in (23.3) can be written as [18]:

Iion = GNa(v−ENa)+GK(v−EK)+GL(v−EL). (23.4)

Let the gating variables m, n, and h represent the sodium activation, potassium
activation and sodium de-inactivation, respectively. If we consider a large number
of channels, rather than an individual channel, we can also define a variable p to
be the fraction of gates in that population that is in the permissive state and (1− p)
to be the fraction in the nonpermissive state. In (23.4), sodium conductance is a
function of both m and h, while the potassium conductance is a function of n only
[13]. Transitions between permissive and nonpermissive states are assumed to obey
the relation:

cD
μp
t p = αp(v)(1− p)−βp(v)p,

p = m, n, h, 0 < μp ≤ 1, (23.5)

where αp and βp are voltage-dependent rate constants describing the nonpermissive
to permissive and permissive to nonpermissive transition rates, respectively.

Equation (23.5) can be rewritten in the form:

cD
μp
t p =

p∞− p
τp

, (23.6)

where p∞(v) =
αp(v)

αp(v)+βp(v)
, τp(v) = 1

αp(v)+βp(v)
.

The above model is a generalization of the HH model [12] given by:

C
dv
dt

=−GNa(v−ENa)−GK(v−EK)−GL(v−EL)+ Iext (23.7)

dp
dt

= αp(v)(1− p)−βp(v)p = p∞−p
τp

, p = m, n, h (23.8)

with the initial conditions, v(0) = v0 and p(0) = p0 = p∞(v0) [13].
Equations (23.7) and (23.8) are special cases of (23.3), (23.4), and (23.6). They

can be obtained by passing to the limit as μ , μp → 1.
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3 Solution of the Fractional Model

Taking the Laplace transform, denoted by an over bar, of both sides of (23.6), we
obtain after some manipulations:

p̄(s) =
p0

sμp + 1/τp
+ p∞

[
1
s
− sμp−1(

sμp + 1τp
)
]
. (23.9)

Inverting the Laplace transform in (23.9), we obtain:

p(t) = p∞−
[

p∞Eμp,1

(
− tμp

τp

)
− p0tμp−1Eμp,μp

(
− tμp

τp

)]
, (23.10)

where Eα ,β (z) is the Mittage function defined by [9]:

Eα ,β (z) =
∞

∑
k=0

zk

Γ (β +αk)
, α > 0, β ∈ R, z ∈C, (23.11)

from which, we can find:

n(t) = n∞−
[

n∞Eμn,1

(
− tμn

τn

)
− n0tμn−1Eμn,μn

(
− tμn

τn

)]
, (23.12)

m(t) = m∞−
[

m∞Eμm,1

(
− tμm

τm

)
−m0tμm−1Eμm,μm

(
− tμm

τm

)]
, (23.13)

and

h(t) = h∞−
[

h∞Eμh,1

(
− tμh

τh

)
− n0tμh−1Eμh,μh

(
− tμh

τh

)]
. (23.14)

4 Numerical Results

The conductance for each current component can be written in the form [10],

GNa = gNam3h, Gk =−gKn3, (23.15)

where gNa and gK are the maximal conductance of sodium and potassium, respec-
tively, and GL is a constant.

Substituting (23.15) into (23.4), we obtain:

Iion =−gNam3h(v−ENa)− gKn3(v−EK)− gL(v−EL). (23.16)
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We take the applied external current and the parameters of the problem as [13]:

Iext =

{
40 when 0.1≤ t ≤ 0.3

0 otherwise
, (23.17)

and gNa = 120mS/cm2, gK = 36mS/cm2, gL = 0.3mS/cm2, ENa = 50mV,
Ek =−77mV, EL = 50mV, and v0 =−65mV

Note that: As μm, μn, and μh tend to one, we recover the HH model. In this case,
the rates αp andβp will be approximated by [13]:

αn(v) =
0.01(v+ 55)

1− e−
(v+55)

10

, βn(v) = 0.125e−
v

80 , (23.18)

αm(v) =
0.1(v+ 40)

1− e−
(v+40)

10

, βm(v) = 4e−
(v+65)

18 , (23.19)

and

αh(v) = 0.07e−
(v+40)

10 , βh(v) =
1

1+ e−
(v+35)

10

. (23.20)

Using (23.18)–(23.20), (23.3) takes the form:

cDα
t v = −gNa

(
m∞−

[
m∞Eμm,1

(
− tμm

τm

)
−m0tμm−1Eμm,μm

(
− tμm

τm

)])3

(
h∞−

[
h∞Eμh,1

(
− tμh

τh

)
− n0tμh−1Eμh,μh

(
− tμh

τh

)])
(v−ENa)

−gK

(
n∞−

[
n∞Eμn,1

(
− tμn

τn

)
− n0tμn−1Eμn,μn

(
− tμn

τn

)])3

(v−EK)

−gL(v−EL)+ Iext. (23.21)

To solve the above nonlinear fractional differential equation, we shall use a
numerical predictor-corrector algorithm given by Diethelm for solving initial value
problems with Caputo derivatives [7,8]. We have used the algorithm of Gorenflo [9]
to evaluate the Mittage function.

The following figures illustrate the response of the membrane voltage for
different values of μ .
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5 Discussion

The fractional HH model is a generalization of the original HH model. We believe
that it may be applicable to a wider range of organisms. In this model four new
parameters are introduced, we can obtain the action potential characteristics of a
different organism by choosing the appropriate parameters in each case.

It can be noted that as these parameters tend to unity, the classical HH model
is obtained. Also in our proposed model, the calculations of voltage-dependent rate
constants αp and βp are dependent on the values of μp which reflect the generality,
we can obtain different forms for αp and βp by changing the parameters.

In future work, we think that a specific data set should be used to describe how
each parameter affects the shape of the action potential response.
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Note that: as μm, μn, and μh tend to 1, (23.10) becomes:

p(t) = p∞− (p∞− p0)e
−t/τp ,

which is in accord with the HH model.
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Chapter 24
An Application of Fractional Calculus
to Dielectric Relaxation Processes

M.S. Çavuş and S. Bozdemir

1 Introduction

Fractional calculus, which is the field of mathematical analysis dealing with the
investigation and applications of integrals and derivatives of arbitrary order, has
attracted in recent years a considerable interest in many disciplines. It has been
found that the behavior of many physical systems can be more properly defined
by using the fractional theory. The flexibility of degrees of freedom, which is very
easily obtained in the fractional theory, is one of the most important advantages of
the fractional order modeling. Moreover, in recent years, the use of the fractional
calculus in the analysis of the fractional diffusion equations has been a field of
increasing interest [5, 11, 13–16, 21, 22].

1.1 The Fractional Integral and Riemann–Liouville Fractional
Derivative

According to the Riemann–Liouville approach, the fractional integral of order α > 0
is defined as,

aJ−α
t U(t) =

1
Γ (α)

t∫

a

(t− τ)α−1U(τ)dτ (24.1)

aJ0
t U(t) =U(t) (24.2)
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Moreover, for α,β > 0, t > 0, and υ >−1 (24.1) has the following properties:

J−α
t J−β

t U(t) = J−(α+β )
t U(t) (24.3)

and

J−α
t tυ =

Γ (υ + 1)
Γ (υ + 1+α)

tυ+α (24.4)

Also,

aDp
t U(t) =

(
d
dt

)m+1 ∫ t

a
(t− τ)m−pU(τ)dτ. (24.5)

The expression (24.5) is the most widely known definition of the fractional deriva-
tive and is usually called the Riemann–Liouville fractional derivative definition.
The most important property of the Riemann–Liouville fractional approach is
given by:

aDα
t

(
aJ−α

t U(t)
)
=U(t) (24.6)

The Riemann–Liouville fractional differentiation operator is a left inverse to the
Riemann–Liouville fractional integration operator of the same order α . The detailed
properties of the operator Jα and Dp can be found in [17, 19, 20].

1.2 Adomian Decomposition Method

Adomian decomposition method (ADM) introduced by Adomian in 1980 has
proved to be a very useful tool in the solution of nonlinear functional equations.
The decomposition method consists of finding a solution in the form,

U(x, t) =
∞

∑
n=0

Un(x, t), (24.7)

where the components Un(x, t) will be determined recursively. More information
about ADM can be found in [1].

2 Dielectric Relaxation Processes

Relaxation properties are generally expressed in terms of time-domain response
function f (t) or of the frequency-dependent real and imaginary components of its
Fourier transform [23]:

f̃ (iω) =
∫ ∞

0
e−iωt f (t)dt = φ ′(ω)− iφ ′′(ω). (24.8)
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Classically, relaxation processes are described in terms of the exponential function:

ϕ(t) = exp(−t/τ), t ≥ 0 (24.9)

that is generally referred to as Maxwell–Debye relaxation. However, in many
systems the dynamical behavior shows conspicuous deviations from the ideal
exponential pattern. Therefore, in general the empirical expressions, involving
adjustable parameters, have been widely used in the literature.

Commonly three general relaxation laws are encountered in the experimental
studies of complex systems:

(i) Stretched exponential (KWW) function [24]

f (t) ≈ exp[−(t/τ)α ], 0 < α < 1, t > τ (24.10)

(ii) Exponential–logarithmic function

f (t)≈ exp[−B lnα(t/τ)] (24.11)

(iii) Algebraic decay function

f (t)≈ (t/τ)α (24.12)

where α,τ , and B are the appropriate fitting parameters [18].
By definition, the normalized susceptibility, χ(ω), is connected to the normalized

relaxation function through the relation:

χ(ω) =

∫ ∞

0
e−iωtd(−ϕ(t)) = 1− iω

∫ ∞

0
e−iωtϕ(t)dt, (24.13)

where ϕ(t) = Φ(t)/ϕ(0). A significant amount of experimental data on disordered
systems supports the following empirical expressions for dielectric loss spectra,
namely, the Cole–Cole equation [4],

χ(ω) =
χ0

1+(iωτ)α , 0 < α ≤ 1 (24.14)

the Cole–Davidson equation [6],

χ(ω) =
χ0

(1+ iωτ)β ,0 < β ≤ 1 (24.15)

and the Havriliak–Negami equation [8] considered as a general expression for the
universal relaxation law [10],
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χ(ω) =
χ0

(1+(iωτ)α)β , 0 < α andβ ≤ 1. (24.16)

Here, we should point out that the Havriliak–Negami equation is a combination of
the Cole–Cole and Cole–Davidson equations.

3 The Ising Model and Fractional Relaxation

The spin–spin time correlation functions in a one-dimensional Ising model [9] with
Glauber dynamics [7] was studied by Bozdemir [3], and later by Brey and Parados
[2]. The main idea in those studies is the spin time autocorrelation function obtained
in the one-dimensional Ising model with Glauber dynamics which is assumed to be
identical with the dipole correlation function of a molecular chain. Based on this
assumption, the system can be analyzed in the following way: The energy of the
system in the one-dimensional Ising model for a spin configuration σ is

H(σ) =−J∑
i

σiσi+1, (24.17)

where J is a positive coupling constant. The state of the system is specified by
the spin vector σ = {σi}, where σi = ±1 is the spin at site i. The evolution of the
system is described by a Markov process with Glauber dynamics. So, the conditional
probability P1/1(σ , t/σ ′, t ′) of finding the system in the state σ at a time t, provided
that it was given in the state σ ′ at a time t ′, obeys the master equation:

∂P1/1(σ , t/σ ′, t ′)
∂ t

=
∞

∑
i=−∞

[
ωi(Riσ)p1/1(Riσ , t/σ ′, t ′)

−ωi(σ)p1/1(σ , t/σ ′, t ′)
]
, (24.18)

where Riσ is the configuration obtained from σ by flipping the ith spin and ωi(σ)
is the transition rate for the flip. Following the above procedure, the spin–spin–time
correlation function, in the low temperature limit, was found by Brey and Parados
as the following differential equation,

∂ fn

∂ t
=−α fn(t)+

αγ
2
[ fn−1 + fn+1], (24.19)

where n is an integer in the range−∞ < n < ∞, α is a positive constant defining the
time scale of the evolution of the system and γ is a function of temperature T of the
heat bath given as:

γ = tanh
2J

kBT
, (24.20)
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where kB is the Boltzmann’s constant. Equation (24.19), which is a function of time
and position, can be expressed as:

∂ f (x, t)
∂ t

=−α f (x, t)+
αγ
2

[ f (x− 1, t)+ f (x+ 1, t)] . (24.21)

If one takes the Taylor expansion of Equation (24.21) and retains only terms up to
second order, one obtains a diffusion type equation:

∂ f (x, t)
∂ t

= (αγ−α) f (x, t)+
αγ
2

∂ 2 f (x, t)
∂x2 (24.22)

If equation (24.22) is converted to fractional differential equation form, one gets

Dξ
t f (x, t) = (αγ−α) f (x, t)+

αγ
2

∂ 2 f (x, t)
∂x2 , (24.23)

where Dξ
t is the Riemann–Liouville fractional differentiation operator, and the

initial condition for f (x, t) is

f (x,0) = e−|x|. (24.24)

We adopt ADM for solving (24.23). According to this method we assume that

f (x, t) =
∞

∑
n=0

fn(x, t). (24.25)

Now, the fractional differential equation (24.25) can be written as, for υ + ζ = 1,

Dυ
t (D

ξ
t f (x, t)) = (αγ−α)Dυ

t f (x, t)+
αγ
2

Dυ
t

∂ 2 f (x, t)
∂x2 . (24.26)

If we operate on both sides of this relation with integral operator Ω−1
t , we reach to

Ω−1
t Dυ

t

(
Dξ

t f (x, t)
)
= (αγ−α)Ω−1

t (Dυ
t f (x, t))+

αγ
2

Ω−1
t

(
Dυ

t
∂ 2 f (x, t)

∂x2

)

(24.27a)

f (x, t) = (αγ−α)Ω−1
t (Dυ

t f (x, t))+
αγ
2

Ω−1
t

(
Dυ

t
∂ 2 f (x, t)

∂x2

)
. (24.27b)

Moreover, the recursive relations related to the above equation are given in the
following forms:

f (0) = f (x,0) = e−|x|

f (1) = (αγ−α)D−ξ
t f (0)+

αγ
2

D−ξ
t

∂ 2 f (0)
∂x2 =

(
αγ−α +

αγ
2

) e−|x|tξ

Γ(ξ + 1)
.
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f (2) = (αγ−α)D−ξ
t f (1)+

αγ
2

D−ξ
t

∂ 2 f (1)
∂x2 =

(
αγ−α +

αγ
2

)2 e−|x|t2ξ

Γ(2ξ + 1)
.

f (3) = (αγ−α)D−ξ
t f (2)+

αγ
2

D−ξ
t

∂ 2 f (2)
∂x2 =

(
αγ−α +

αγ
2

)3 e−|x|t3ξ

Γ(3ξ + 1)
.

and so on. Therefore, the solution (24.27b) becomes:

f (x, t) =
∞

∑
n=0

(
αγ−α +

αγ
2

)n e−|x|tnξ

Γ (nξ + 1)

= e−|x|Eξ

{
α(−1+ 3γ/2)tξ

}
, 0 < ξ < 1, (24.28)

where Eξ{·} is the Mittag–Leffler function given by:

Ev{Z}=
∞

∑
n=0

Zn

Γ (vn+ 1)
. (24.29)

If we assume that the position of dipoles located between x and x + x0 have a
probability density given by:

f (x) =
1
x0

e(−x/x0), (24.30)

and substitute it into (24.30), integrate over all the space, we can obtain the time-
dependent correlation function:

f (t) =
∫ ∞

0
e(−x/x0)e−|x|Eξ{α(−1+3γ/2)tξ}dx =

Eξ{α(−1+ 3γ/2)tξ}
1+ x0

, (24.31)

where x0 is the average value of x, and 1/2x0 is the average number of dipoles per
unit length.

If equation (24.31) is substituted into (24.13), one obtains

χ(ω) = 1− iω
∫ ∞

0
e−iωt Eξ{α(−1+ 3γ/2)tξ}

1+ x0
dt. (24.32)

From this expression, in the frequency zone, the empiric Cole–Cole type equation
is obtained as:

χ(ω) =
x0

1+(iωτ)ξ , 0 < ξ ≤ 1, (24.33)

where τ = [α(−1+ 3γ/2)]−ξ , χ0 = 1+λ (iωτ)ξ , and λ = 1− 1/(1+ x0).
Moreover, for sufficiently small times, (24.33), which is a Mittag–Leffter type

function, exhibits the same behavior as with the stretched exponential function [12]:
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f (t)≈ 1− (t/τ)ξ

Γ (ξ + 1)
+ . . .≈ exp

[
− (t/τ)ξ

Γ (ξ + 1)

]
, 0 < t � 1, (24.34)

which is known as Kolraush–William–Watts (KWW) function. Also, by using the
asymptotic expansions it can be written as,

f (t)≈ Γ (ξ )sin(πξ )
π

(t/τ)−ξ , t → ∞, (24.35)

which has the same form with that of empirical algebraic decay function (24.12).
When (24.19) is solved by using the eigenfunctions method with appropriate
boundary conditions, which was done by [2],

χ(ω)
α(1−η2)

(1+η2) [(iω +α)2−α2γ2]

1/2

(24.36)

is obtained, where η = tanJ/KBT . This expression, at low temperature, converts to
a special case of the Cole–Davidson equation:

χ(ω) =
1

(1+ iωτ)1/2
, (24.37)

where τ is the relaxation time [2].

4 Conclusion

In this study, it is shown that fractional solution of the diffusion equation obtained
from the stochastic Ising model, where we used the Adomian decomposition method
for solving the fractional diffusion equation, gives a non-Debye type behavior which
can also be represented by the Mittag–Leffler decay function. Furthermore, we may
say that fractional dynamics in polar dielectric systems are a result of fractional
dipole distribution in the medium. In the fractional approaches, the variable
parameter α , especially used in the forming of the fractional order modeling,
exhibits that the space of physical processes has a fractional form. Therefore, the
irregularity (or chaos) in the nature compels us to use the fractional theory.

We have seen that the fractional order of the differential equations, which is
compatible with most of the experimental results, is generally smaller than that
of the integer order of differential equations. Likely, in the medium, the nearest
neighbor interactions between dipoles or charged particles have not the same
behaviors as that of the linear systems in terms of times and velocities, because
the time (or energy) is fractionally changing in time. The local spaces of charged
particles which have different time and energy intervals should lead to be resulted
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to have fractional order differential equations. Moreover, it may be said that in
the atomic levels (or electronic) the flow of the time is quantized. Therefore, the
interactions between dipoles in questions may also be quantized in time domain.
That is, quantization of the energy may be a result of the time quantization. As a
result of these processes, the order of the differential equations should be changing
during the interaction times.

Acknowledgements We thank our friends Prof. Dr Kerim Kıymaç and Prof. Dr Metin Özdemir
for their reading and correcting the article.
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Chapter 25
Fractional Wave Equation for Dielectric
Medium with Havriliak–Negami Response

R.T. Sibatov, V.V. Uchaikin, and D.V. Uchaikin

1 Introduction

When a step-wise electric field is applied, polarization of a material approaches its
equilibrium value not instantly but after some time. Hereditary effect of polarization
is expressed through the integral relation. For electric induction in an isotropic
medium, we have [1]

D(t) = ε∞ E(t)+

t∫

−∞

κ(t− t ′) E(t ′)dt ′. (25.1)

Fourier transformation of the last expression gives

D̃(ω) = ε∗(ω)Ẽ(ω), ε∗(ω) = ε∞ + κ̃(ω).

Relaxation properties of different media (dielectrics, semiconductors, ferromag-
netics, and so on) are normally expressed in terms of time-domain response function
φ(t) which represents the current flowing under the action of a step-function electric
field, or of the frequency-dependent real and imaginary components of its Fourier
transform:

φ̃(ω) =

∞∫

0

e−iωtφ(t)dt = φ ′(ω)− iφ ′′(ω).
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The Fourier transform of the response function φ(t) is related to the frequency
dependence of dielectric permittivity through the following relation

φ̃ (ω) =
ε∗(ω)− ε∞

εs− ε∞
, κ̃(ω) = (εs− ε∞)φ̃ (ω).

Here εs = ε∗(0) is the stationary dielectric permittivity.
The classical Debye expression (see [2]) for a system of noninteracting randomly

oriented dipoles freely floating in a neutral viscous liquid is

φ̃ (ω) =
1

1+ iωτ
,

where τ is the temperature-dependent relaxation time characterizing the Debye
process:

φ(t) = φ(0)exp(−t/τ), t > 0.

The latter function obeys the simple differential equation

dφ(t)
dt

+ τ−1φ(t) = 0.

Numerous experimental data gathered, for instance, in books [3, 4] convincingly
show that this theory is not able to describe relaxation processes in solids, and the
relaxation behavior may deviate considerably from the exponential Debye pattern
and exhibits a broad distribution of relaxation times. There exist a few other
empirical response functions for solids: the Cole–Cole function [5]

φ̃ (ω) =
1

1+(iω/ωp)α , 0 < α < 1, (25.2)

the Cole–Davidson function [6]

φ̃ (ω) =
1

(1+(iω/ωp))β , 0 < β < 1, (25.3)

and the Havriliak–Negami function [7]

φ̃ (ω) =
1

(1+(iω/ωp)α)β , 0 < α,β < 1. (25.4)

Here ωp is the peak of losses, and α and β are constant parameters.
In this chapter, we obtain the fractional relaxation equation in dielectrics with

response function of the Havriliak–Negami type. With the help of definitions of the
functional analysis, we derive the explicit expression for fractional operator in this
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equation. Then we construct a Monte Carlo algorithm for calculation of action of
this operator and of the inverse one. The algorithm represents a numerical way of
calculation in relaxation problems with arbitrary initial and boundary conditions.
Then, we obtain the equation for propagation of electromagnetic waves in such
dielectric media.

2 Havriliak–Negami’s Relaxation

The most general approximation for frequency dependence of response function is
given by two-parameter formula proposed by [7]. The solution of the corresponding
fractional differential equation

[1+(τ 0Dt)
α ]β φ(t) = δ (t), τ = 1/ωp, (25.5)

based on the expansion of fractional power of operator sum into infinite Newton’s
series

[1+(τ 0Dt)
α ]β =

∞

∑
n=0

(
β
n

)
(τ 0Dt)

α(β−n),

has been obtained by [8]:

φ(t) =− 1
Γ (β )

∞

∑
n=0

(−1)nΓ (n+β )
n!Γ (α(n+β ))

( t
τ

)α(n+β )
.

The operator
[
1+ω−α

p (0Dt)
α]β can also be presented in the form [9]:

Wα,β
ωp f (t) = [1+ω−α

p 0Dα
t ]

β f (t) = ω−αβ
p exp

(
−ωα

p t

α 0D1−α
t

)
0Dαβ

t exp

(ωα
p t

α 0D1−α
t

)
f (t).

The HN function is considered as a general expression for the universal relax-
ation law [10]. This universality is observed in dielectric relaxation in dipolar and
nonpolar materials, conduction in hopping electronic semiconductors, conduction
in ionic conductors, trapping in semiconductors, decay of delayed luminescence,
surface conduction on insulators, chemical reaction kinetics, mechanical relaxation,
and magnetic relaxation. Despite of quite different intrinsic mechanisms, the
processes manifest astonishing similarity [10]. The situation seems to be similar
to diffusion processes. Random movements of small pollen grain visible under a
microscope, and neutrons in nuclear reactors, electrons in semiconductors are quite
different processes from physical point of view, but they are the same processes of
Brownian motion from stochastic point of view. This analogy stimulates search of
an appropriate stochastic model for the universal relaxation law. Investigations of
such kind have been carried out in the works [11–18].
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Weron et al. [19] have shown how to modify the random-walk scheme underlying
the classical Debye response to derive the empirical Havriliak–Negami function.
Moreover, they have derived formulas for simulation of random variables with
probability density function, Fourier transform of which is the Havriliak–Negami
function. These relations contain stable random variables.

Coffey et al. [16] reformulated the Debye theory of dielectric relaxation of an
assembly of polar molecules using a fractional noninertial Fokker–Planck equation
to explain anomalous dielectric relaxation.

Déjardin [17] considered the fractional approach to the orientational motion of
polar molecules acted on by an external perturbation. The problem is treated in
terms of noninertial rotational diffusion (configuration space only) which leads to
solving a fractional Smoluchowski equation. This model is in a good agreement
with experimental data for the third-order nonlinear dielectric relaxation spectra of
a ferroelectric liquid crystal.

Here with the help of relations of the functional analysis for fractional powers of
operators, we derive a new numerical algorithm of solution of fractional equations
corresponding to the Havriliak–Negami response. This algorithm is based on Monte
Carlo simulation of one-sided stable random variables.

3 Fractional Operator Corresponding to the Havriliak–Negami
Response

Let the equi-continuous semigroup {Tt ;t ≥ 0} of C0-class be defined on locally
convex linear topological B-space F . The infinitesimal generating operator A of the
semigroup {Tt} is defined as

A f = lim
h↓0

h−1(Th− I) f

with domain

D(A) = { f ∈ F ; lim
h↓0

h−1(Th− I) f exists in F}.

According to S. Bochner [20] and R. S. Phillips [21], the operators

T̃t,α x≡ T̃t x =

⎧⎨
⎩

∞∫
0

t−1/αg(α)(t−1/αs) Tsx ds, t > 0.,

x, t = 0
,

where g(α)(t) is a one-sided stable density, which constitute an equi-continuous
semigroup of C0 class.
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The corresponding infinitesimal operators are connected through the following
relation [22]:

Ãα x =−(−A)αx, ∀x ∈ D(A).

The infinitesimal operator−[1+−∞ Dα
t ] generates the semigroup

Th = e−he−h−∞Dα
z ,

According to the Bochner–Philips relation, the semigroup generated by the infinites-
imal operator [1+−∞ Dα

t ]
β , where β < 1, has the form

T̂t f =

∞∫

0

t−1/β g(α)
(

t−1/β τ
)

T̃τ f dτ

=

∞∫

0

dτ e−τ t−1/β g(β )
(

t−1/β τ
) ∞∫

0

τ−1/αg(α)
(

τ−1/α u
)

Tu f du.

Considering this integral as averaging over ensembles of stable random variables,
we obtain the following relationship:

T̂t f =

〈
exp
(
−t1/β Sβ

)
f

(
z−
[
t1/β Sβ

]1/α
Sα

)〉
.

From this semigroup, we can obtain the corresponding infinitesimal operator [1+−∞
Dα

t ]
β .

To find the inverse operator

[1+−∞ Dα
t ]
−β , 0 < α,β < 1,

we use the relation for potential operator

A−1 f =

∞∫

0

Ts f ds.

Consequently,

[1+−∞ Dα
t ]
−β f =

〈 ∞∫

0

exp
(
−t1/β Sβ

)
f

(
z−
(

t1/β Sβ

)1/α
Sα

)
dt

〉
.

Here Sα and Sβ are one-sided stable random variables with characteristic exponents
0 < α ≤ 1 and 0 < β ≤ 1.
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Introducing exponentially distributed random variable U , we arrive at

[1+−∞ Dα
t ]
−β f =

〈 ∞∫

0

e−ξ f
(

z− Sαξ 1/α
) β ξ β−1

Sβ
β

dξ

〉

=β
〈

S−β
β Uβ−1 f

(
z− SαU1/α

)〉
. (25.6)

We use this formula to find the solution of fractional relaxation equation for
arbitrary prehistories of charging–discharging process.

4 Fractional Wave Equation

Substituting the Havrilyak–Negami dependence of permittivity on frequency

ε∗(ω) = ε∞ +
εs− ε∞

[1+(iω/ωp)α ]β

into the Fourier transform of (25.1), we obtain

D(t) = ε∞E(t)+(εs− ε∞) ωαβ
p × exp

(
−ωα

p

α
t −∞D1−α

t

)
−∞Iαβ

t exp

(ωα
p

α
t −∞D1−α

t

)
E(t).

Here special forms of fractional operators arise

Wα ,β
ωp f (t) = [1+ω−α

p −∞Dα
t ]

β f (t)

= ω−αβ
p exp

(
−ωα

p t

α −∞D1−α
t

)
−∞Dαβ

t exp

(ωα
p t

α −∞D1−α
t

)
f (t).

The inverse operator has the form

Wα ,−β
ωp f (t) = [1+ω−α

p −∞Dα
t ]
−β f (t)

= ωαβ
p exp

(
−ωα

p

α
t −∞D1−α

t

)
−∞Iαβ

t exp

(ωα
p

α
t −∞D1−α

t

)
f (t).

The following asymptotical relationships take place:

Wα ,β
ωp f (t)∼

⎧⎨
⎩
[1+β ω−α

p −∞Dα
t ] f (t), t # 1/ωp,

ω−αβ
p −∞Dαβ

t f (t), t � 1/ωp,
(25.7)
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Wα ,−β
ωp f (t)∼

⎧⎨
⎩
[1−β ω−α

p −∞Dα
t ] f (t), t # 1/ωp,

ωαβ
p −∞Iαβ

t f (t), t � 1/ωp.
(25.8)

Maxwell’s equations,

rot H =
4π
c

j+
1
c

∂D
∂ t

,

rot E =−1
c

∂B
∂ t

,

in combination with the material relations

D = ε∞E+(εs− ε∞)[1+ω−1
p −∞Dα

t ]
−β E, B = μH

lead to the following wave equation

με∞

c2

∂ 2E
∂ t2 +

μ(εs− ε∞)

c2 [1+ω−1
p −∞Dα

t ]
−β ∂ 2E

∂ t2 +∇(div E)−∇2E =
4πμ
c2

∂ j
∂ t

.

(25.9)

At small times, we have (t � 1/ωp)

με∞

c2

∂ 2E
∂ t2 +

μ(εs− ε∞)

c2 ωαβ
p −∞D2−αβ

t E+∇(div E)−∇2E =
4πμ
c2

∂ j
∂ t

.

At large times, we have (t # 1/ωp)

μεs

c2

∂ 2E
∂ t2 −

μ(εs− ε∞)

c2 β ω−α
p −∞D2+α

t E+∇(div E)−∇2E =
4πμ
c2

∂ j
∂ t

.

The wave equation presented above is concordant with the equation obtained by
Tarasov [23] from Jonscher’s universal law.

5 Conclusion

Let us summarize the results of this chapter. The fractional relaxation
equation (25.5) and the fractional wave equation (25.9) for dielectrics with the
response function of the Havriliak–Negami type are considered. The explicit
expression for the fractional operator in these equations is obtained. The Monte
Carlo algorithm for calculation of action of this operator and of the inverse
one is constructed. The algorithm is derived from the Bochner–Phillips relation
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for a semigroup generated by a fractional power of initial infinitesimal operator.
The method is based on averaging procedure over ensembles of one-sided stable
variables.

Relaxation functions calculated numerically according to this scheme coincide
with analytical functions obtained earlier by other authors. The algorithm represents
a numerical way of calculation in relaxation problems with arbitrary initial and
boundary conditions.
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