Chapter 25
Notes

Some General Comments

Semigroups, semiflows, semidynamical systems—all are the same. Once when
I gave a talk at the University of Alaska in Fairbanks, I mentioned that I once
heard that the Inuit had something like eighty different words for snow. One
of my hosts countered that the Inuit had over a hundred words for snow.
So much for a Texan making comments about snow to Alaskans! Anyway,
there being three words—semigroups, semiflows, semidynamical systems—
for the same thing is indicative of the importance of a certain idea—that of
a one-parameter family of transformations 7" so that for some space X,

T(0) = I, the identity transformation on X, T(¢t)T(s) =T(t + s), t,s >0
(25.1)

and
Tt): X - X, t>0.

Now the origins of these three terms come from different mathematical cul-
tures. The term ‘semigroup’, as used in this book, arose from abstraction of
time-dependent autonomous partial differential equations. ‘Semiflow’ seems
to me to have arisen from topology whereas ‘semidynamical system’ has a
life of its own in the vast world of dynamical systems. The terms ‘semiflow’
and ‘semidynamical system’ are used infrequently, for objects in this list of
problems, compared to the term ‘semigroup’. For each of the three terms,
dropping the ‘semi’ indicates that the members T'(t), ¢ > 0 all have inverses,
commonly continuous ones, and that the semigroup law (25.1) extends to all
of R. ‘Semigroup’, on the other hand, is more pervasive than ‘group’ in the
context of one-parameter families of transformations. A reason for this is that
time-dependent partial differential equations commonly are not reversible in
time. Physically, knowing the heat distribution in a metal bar doesn’t tell
us much about how hot the bar was an hour ago. Actually, for T" the heat
equation semigroup T(t) is invertible for ¢ > 0, but although T'(t)~! exists
it is only densely defined and is discontinuous at each point at which it is
defined. For plenty of examples of strongly continuous semigroups T', T'(t) is
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not invertible for some ¢ > 0; for example the semigroup 7" on X, where X is
the Banach space of bounded continuous functions on [0, c0) with sup norm
and

(T@N)(x) = f(t+z), t,x = 0.

Many things in life are not reversible, at least according to my own experience.
Confining oneself to time-dependent partial differential equations which are
reversible means one misses out on a lot. This said, however, there are many
important time-dependent processes which are reversible, a most noteworthy
one being the Schrodinger equation of quantum mechanics.

Something that conventionally separates things usually called ‘semigroup,
semiflow’ or ‘semidynamical system’ is that generators of ‘semigroups’ are
commonly densely defined everywhere discontinuous transformations. Such
generators are not commonly found in papers dealing with semidynamical
systems or semiflows, in my experience.

The recent incorporation of ‘local semigroups’ into existing semigroup the-
ory (see Chapter 17) seems to be a significant extension but it is hardly new
in that Sophus Lie considered them in his quest for integrating factors for
systems of ordinary differential equations. My own introduction to Lie’s work
came in a graduate seminar that I was, many years ago, conducting at Emory
University. We were trying to extend to non-locally compact spaces some of
von Neumann’s work, the part which was seminal to the eventual solution
of Hilbert’s Fifth Problem. I mentioned that one of us should find out what
Sophus Lie did. It turns out that no one took me up on this, so I made the
attempt myself, studying essentially work from [27]. Some five years later,
in about 1970, T made use of my inspiration from Lie’s work in [36], but it
wasn’t until my collaboration with Dorroh that the idea came to fruition as
an alternative to the (stalled, in my opinion) theory of nonlinear semigroups
(as a generalization of existing linear semigroup theory).

The present volume of these notes has its origins, [46], in notes I wrote in
Spanish for the XIII Escuela Venezolana Matematicas at the Universidad de
los Andes in Merida, Venezuela, 6-15 September 2000. These notes comprised
about 48 pages and contained about 111 problems. In the course the students
(faculty, graduate students and a few undergraduates) vigorously attacked
and settled many of the problems in these notes, leading to many intense
and enlightening discussions. The present form of these notes started with
my translation of the original notes into English. The number of problems
is nearly quadruple that of the original notes. There are several chapters of
problems dealing with subjects which didn’t even exist in 2000.

The original notes benefited greatly, for both mathematics and Span-
ish, from the help of Alfonso and Miryam Castro, Mario Jimenez, Barbara
Neuberger, Victor Padréon, Maria Mera Rivas and Maria Cristina Trevisén.

I particularly thank the organizing hosts, Victor Padrén and Oswaldo
Arajo, for their great hospitality and their great effort in arranging for this
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Summer School. It was a long-cherished dream to be able to conduct a course
using only Spanish, both in class and outside the classroom. This course
represented a particular challenge since I was not lecturing but rather con-
stantly interacting with the participants while they were presenting argu-
ments. Explaining a flaw in someone’s argument is a challenge even in one’s
native language. Everyone was very generous in putting up with my limited
Spanish.

For some problems in semigroups, complex analysis enters in an essential
way. Chapter 23 is one instance. The result of Beurling in Chapter 21 is an-
other instance. The subject of holomorphic semigroups is generally complex-
based. Earlier work (see in particular [21], for example) is based on Laplace
transforms as in Chapter 17. Passage from semigroup to resolvent is fre-
quently presented as a matter of inverting a Laplace transform—something
often done using contour integrals but this is not done in the present volume.

Problem 437 Find corresponding complex field results for the (majority) of
problems in this book which are stated (usually implicitly) for the real field.

25.1 Notes on Chapter 2

Problem 2 is the earliest functional equation of which I know. It is remarkable
that it has a vast set of solution, if the hypothesis of continuity is omitted
but only a simple family of solutions if continuity is assumed. Continuity, it
turns out, implies differentiability. Problem 5 urges a reading of at least the
second half of Hilbert’s Fifth Problem. It was Hilbert who likely was the first
to understand the profound power of combining algebraic and topological
hypotheses in the presence of the possibility of analytic results. Almost all of
the problems in this volume owe a debt to this legacy.

Problems 10, 12 are two examples considered at the start of the quest to
generalize linear semigroups to nonlinear semigroups. These early examples
led to [35] and attempts to incorporate the idea of resolvent into nonlinear
study. See [9], [60], [29] and references contained therein as well as notes in
Section 25.23 for more details.

The terms ‘continuous’ and ‘strongly continuous’ are somewhat mislead-
ing, but completely standard, when applied to semigroups. The term ‘contin-
uous’ is a stronger notion than is ‘strongly continuous’. To add to confusion,
there is also ‘weak continuity’ of semigroups which refers to continuity with
respect to a weak topology.
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25.2 Notes on Chapter 3

Operator semigroup theory has a curious property that often results from a
special case are applicable to more general cases. Many of the ideas developed
in this chapter for translation semigroups have direct application to much
more general cases. This holds true especially in Chapter 17 in which linear
theory is applied to nonlinear theory.

For some decades, a thrust was to try to develop a nonlinear theory in
analogy with linear theory. This led to many interesting developments but to
this day has had a rather limited success. Generalized translation semigroups
(see Chapter 17) ultimately gave a fairly satisfactory theory. For this reason
alone, translation semigroups would be of considerable interest. Nonlinear
semigroups in Chapter 17 give rise to linear semigroups which are essentially
translation semigroups on a metric space.

In this chapter, some probability distributions arise in a natural way. Some-
one working their way through these problems has at least two choices. One
is to find a source of information on Poisson distributions. Problem 36 is then
essentially a consequence of an appropriate central limit theorem. The other
choice is to closely study the distributions indicated in Problem 34 to see
directly that as n — oo, then the sequence of distributions, for some A > 0,
converges to a stepfunction which is zero from [0, A) is £ at A and is one on
(A, 00). The same distribution appears in an essential way in Chapter 17, so
effort spent on the Poisson distribution here will be rewarded later.

My own introduction to the application of probability to semigroup theory
stems from my encountering Bernstein polynomials in what is outlined in
this book as Problem 429. In 1958 while teaching my first graduate course.
I rather idly was looking into how numerics worked out for certain simple
partial differential equations. Much to my surprise, the Bernstein polynomials
suddenly arose. I knew little of central limit theorems then and, before that
time, Bernstein polynomials looked strange to me. My brute force approach
in showing convergence of the numerical scheme in Problem 429 led me in
a life-long affinity for how probability, semigroups and partial differential
equations relate. This episode also led me to a study of quasianalyticity in
terms of higher order differences, as indicated in Chapter 21. It is usually hard
to put in a good word for ignorance, but in this case my lack of knowledge
of central limit theorems led me to some nice things.

25.3 Notes on Chapter 4

Continuous semigroups are very special cases of semigroups of linear trans-
formations. They are essentially based on ordinary differential equations in
a Banach space. Continuous semigroups are essentially infinite-dimensional
generalizations of constant coefficient systems of linear equations, but many
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of the problems in this chapters reveal things which help in the study of more
general semigroups—those which do pertain to partial differential equations.

One result of working the problems in this chapter is to see in a rather
direct way how differentiability may arise from algebraic semigroup properties
taken together with continuity. The identity in Problem 38 is very useful in
this regard. Problem 42 is an early chance for a reader to see a generator
appearing for a semigroup.

A possible strategy in gaining understanding of the matters of this chapter
is to follow through using the semigroup ¢ from Problem 3.

Problem 46 indicates how Picard’s method of successive approximations
leads to existence of a semigroup with generator B € L(X, X), X a Banach
space. Remaining problems in this chapter show how exponentials of such a
transformation B represent the semigroup with generator B. Problems 49, 50
give a product expression and the equivalent series expression, respectively.

25.4 Notes on Chapter 5

As already indicated, linear semigroups which are strongly continuous but
not continuous form the theoretical basis for autonomous time-dependent
linear partial differential equations. This subject had its start with the work
of Marshall Stone on the Schrodinger equation in the 1930s, showing that this
equation gave rise to a group. The massive work of Hille and Phillips [21] in
the 1950s developed the theory of strongly continuous linear semigroups into
something close to its present form. The book [21] is an excellent reference,
but one might still seek out Hille’s original [20] book of the same title which
has more concrete information about partial differential equations. A prized
possession of mine is a copy of Hille’s Functional Analysis and Semigroups
given to me by Phillips.

The books [17], [19], [16] and [59] deal with linear semigroups and have a
good deal of information on applications. In [66] there is an excellent chapter
on strongly continuous linear semigroups.

To anyone reading any of these references it will be clear that problems in
the present book contain just an introduction to the study of one-parameter
semigroups.

25.5 Notes on Chapter 6

The heat equation gives the premier example of a semigroup that comes from
a time-dependent PDE. In a sense it dates back to Fourier. One can solve
the heat equations by Fourier’s method, ‘separation of variables’, and then
compare results with numerical solutions. Of particular interest here is how
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the relationship between ‘implicit’ and ‘explicit’ methods for solving the heat
equation has its counterpart in the general theory of linear strongly contin-
uous semigroups in that two plausible exponential formulae have strikingly
different levels of viability (see Problem 84). Contemplate the First Law of
Numerical Analysis, Chapter 6, in this regard.

25.6 Notes on Chapter 7

Definition 8 is for Fréchet derivative. Later problems give some properties.
Problem 97 gives a local existence and uniqueness theorem for ordinary dif-
ferential equations. It can be proved by the method of successive approxima-
tions, as in Problem 46. Problem 98 gives a limit theorem that is needed in
Chapter 14. Problems 100, 102 give two versions of the spectral theorem that
are useful in connection with Chapter 16. Problems 100, 101 give a gener-
alization of the fact that in finite-dimensional Euclidean space, a symmetric
linear transformation has a basis in terms of which the transformation has a
diagonal matrix representation. A reference such as [66] might be consulted
for lemmas and background.

The present chapter also contains some preliminaries to problems in Chap-
ter 16 in which a single linear transformation T has two (related) adjoints. In
this case, one adjoint of T is continuous and the other adjoint is not. This is
characteristic of Sobolev gradients arising from problems in differential equa-
tions. It is helpful for a reader to reconcile this pair of adjoints. A reader
might see later how gradients essentially based on one definition of adjoint
lead to viable numerical methods whereas when based on ordinary gradients
become a disaster (see Chapter 14 and [43] for problems on this issue).

For more background on Problems 100, 102, see, for example, [66] or other
books that deal with spectral theory.

25.7 Notes on Chapter 8

Results on combining two (or more) continuous linear semigroups give some
indication of what to expect for combining two strongly continuous linear
semigroups and also for combining two nonlinear semigroups. A starting point
is to note that for n > 1, a positive integer, and A, B € L(R"™, R"™), then it
does not necessarily follow that

oltAptB _ et(A+B)7 t>0,

but some aspects of this law of exponents can be regained by

. Lyt
etATB) = lim (exderB)F,
k—o00
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25.8 Notes on Chapter 9

In regard to Problem 144, I seem to recall working this out sometime around
the 1970s, but have been unable to recover my argument. A path to my
original scratchings on this problem might be found by first doing a web
search on ‘A Guide to the J. W. Neuberger Papers’. My actual papers up to
2002 (more to be added later) are in the

Dolph Briscoe Center for American History

at the University of Texas.

It might be easier to just work this out for yourself than to find it. I would
not be surprised to find that others have found this result, but I cannot offer
a reference.

What might be new to some is the introduction of a bit of near-ring theory,
which seems rarely used in analysis problems.

The site indicated above contains many of my scratchings from the early
1960s to about 2001. I don’t particularly wish it upon someone to spend a lot
of time searching these papers, but they are there if for some reason someone
might want to attempt to reconstruct some of my (usually vague at best)
mathematical thoughts.

In [62] there are results by Coke Reed on combining dynamical systems.
Two continuous dynamical systems 7" and S on a Banach space X are said
to combine provided that if x € X and a,b € R, then there is y € X so that
if € > 0 there is 6 > 0 so that if ¢y, t1, ..., 1, is a partition from a to b of mesh
less than §, then

(=g (T (b = ti1) S (B — te1))) () —yll <e. (25.2)
If there is a continuous dynamical system U on X so that
Kb—-a)z =y,

y as in (25.2), then it may be said that 7', S combine to get U. The paper
[62] contains a number of results on combining dynamical systems and sur-
prisingly, contains counterexamples to some combination conjectures which
struck me as plausible and probably true, but are not true.

Problem 438 Obtain and study [62]. Ponder how results there show some
limitations on combining semigroups as well as some promising directions of
inquiry. Examine other papers of Coke Reed as found in MathSciNet.

The paper [62] and others by Coke Reed show connections between the
semigroup-dynamical system-flow cultures. (Disclaimer: I introduced Coke
Reed to the study of dynamical systems in the 1960s. A reader might find it
interesting to learn where his study of dynamical systems has led him.)
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25.9 Notes on Chapter 10

This chapter contains a number of results which are an extension of Chapter
5 and are preliminary to Chapter 11. Perhaps the fundamental difficulty in
dealing with strongly continuous linear semigroups that are not continuous, is
that the generators of such semigroups are always closed densely defined lin-
ear transformations. Such transformations are always discontinuous at each
point at which they are defined, but many calculations which are natural
for continuous linear semigroups can be arrived at by rather convoluted rea-
soning (if they are true at all). Extensive use of resolvents of generators of
strongly continuous linear semigroups is characteristic of many of the main
developments in the theory. The present chapter gives some developments
which will be used in Chapter 11. What is probably new to even seasoned
researchers in the field is the use of probability measures as in Problem 155,
again the Poisson distribution as introduced in Chapter 3.

25.10 Notes on Chapter 11

Results of the present chapter give an outline of some special cases of the
celebrated Trotter-Kato development, which is of great interest in partial
differential equations. Developments in this chapter follow the outline given
in Chapter III, Section 5 of [17], but there are substantial differences in the
present development, particularly in the use of probability distributions

Pmn, M E ZT, N> 0. (25.3)

So far as I know, these distributions were first applied to semigroup theory
in [14]. In the present volume, these distributions are used in Chapters 5 and
3, but their use there was taken from [14].

Feynman—Kac formulae, based on Trotter—Kato developments, are of in-
terest in quantum mechanics. There is an account of this in [19] in which
there is indicated a continuing mystery concerning these formulae. In Chapter
12 there are some problems involving applications of Trotter-Kato formulae
to the numerical solution of time-dependent partial differential equations.

I consider Problems 179 to 181 rather speculative. My main reason for
including these is the following: Consideration of results surrounding (25.3)
might lead to a new and more comprehensive family of arguments for semi-
groups, those more based on ideas from probability, than have been usual
in semigroup theory. Traditional Trotter-Kato results seem to be based on
arguments such as those found in Chapter III, Section 5 of [17]. Tt just might
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be that some of Problems 179 to 181 can be proved true using these newer
applications of probability to semigroup theory and consequently extend the
theory.

In my opinion, to show that two semigroups 7', S combine to give a third
semigroup U is more important than the question of how possible generators
of T, S can be used to gain a generator of U even though the second issue is
certainly a significant one.

25.11 Notes on Chapter 12

Splitting methods are widely used in practice, often beyond the realm of
established proofs indicating their validity. There is a considerable literature
that may be consulted. The splitting method is a good way to deal with
reaction—convection—diffusion equations. Each of the reaction, convection and
diffusion equations has their own highly efficient method of solution. One
main time step in the splitting method for such equations entails a sequence of
three substeps: the first using only a diffusion method, the second a convection
method and the third a reaction method.

25.12 Notes on Chapter 13

The idea of using a method of steepest descent to find zeros or critical points
of real-valued functions goes back at least to Cauchy. This chapter gives
some basic results concerning zeros of linear transformations between two
Hilbert spaces. The two spaces may be Sobolev spaces, in which case re-
sults apply directly to systems of linear differential equations. In appropriate
finite-dimensional spaces, results apply to finding numerical approximations
of solutions to such equations, as illustrated in Section 25.13. A reference for
problems in the present chapter is [43], Chapter 3.

25.13 Notes on Chapter 14

In [43] there is a fairly complete recent discussion of Sobolev gradients. There
are applications to problems of transonic flow, minimal surfaces and super-
conductivity ([64], [65]). The gradient inequality (Definition 17) is a fairly
strong hypothesis and I hope that future work will seek to replace it with
weaker conditions.
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A main issue relating semigroups and steepest descent is the following:
Given a real-valued C! function ¢ on a Hilbert space X and a gradient Vo
for ¢, that is, a function which satisfies

¢'(x)h = (h,(Vo)(2))x, =, h € X,
determine conditions on ¢ so that if
2(0) =z, 2'(t) = =(Vo)(2(1)), t > 0,

then

lim v = lim z(¢) exists
t—o0 t— o0

and
(V§)(u) = 0.
There is the broad problem:

Problem 439 Make an investigation of the gradient inequality and try to
find weaker conditions which imply the conclusion of Problem 227.

One can consult [66] for example, and Chapter 16, to obtain more infor-
mation about the projections onto

(5,) o D,

where H, K are Hilbert spaces and 7T is a closed densely defined linear trans-
formation on H with range in K. The original formula was due to von
Neumann [70]. These projections serve as a point of departure in the construc-
tion of Sobolev gradients. See also [1] as a general reference for Sobolev spaces.

This chapter gives only the barest introduction to Sobolev gradients,
but [43] and references contained therein give a fairly comprehensive recent
account and a bibliography. A reader might google ‘Sobolev gradient’ or
‘Sobolev gradients’ for a further impression of this subject.

Continuous steepest descent using Sobolev gradients leads naturally to
nonlinear semigroups if the underlying problem is itself nonlinear. A domi-
nant feature is that a properly formulated least squares or variational prin-
ciple problem leads to a continuous nonlinear semigroup, not just a strongly
continuous one. Hence the underlying steepest descent equation is essentially
an ordinary differential equation. The contrast with more conventional for-
mulations is illustrated by minimal surface problems: In [8], for instance, the
process for finding a minimal surface is ‘evolution by mean curvature’ of a
conventional time-dependent partial differential equation. A corresponding
Sobolev gradient approach yields a steepest descent, with continually vary-
ing metric, which is an ordinary differential equation in function space (see
[43], Chapters 11 and 16). This fact alone seems to justify interest in Chapter
9 which deals with continuous nonlinear semigroups.
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This raises a question of both a numerical approach and a theoretical
approach, using Sobolev gradients in both cases, to such problems as the
Nash embedding problem and the Poincaré conjecture. These are, at present,
descent or conventional Newton’s method processes which can be embedded
into continuous processes giving rise to effectively time-dependent partial
differential equations.

Problem 440 Try to formulate the two problems in the above paragraph in
terms of Sobolev gradient descent in order that the process may be considered
as a problem concerning ordinary differential equations in a function space.

In a sense, such a corresponding pairing between time-dependent partial
differential equations and Sobolev gradient ordinary differential equations
in function space, is already illustrated in contrasting methods for Moser’s
inverse function theorem (Problem 402 of Chapter 22).

25.14 Notes on Chapter 15

A great deal of computational effort continues to be expended on numer-
ical solution of time-dependent partial differential equations. Equations of
Navier—Stokes, which govern a wide variety of fluid flows, are a notable
example.

Semigroups as developed in these notes grew out of, and remain as,
an abstraction of autonomous time-dependent partial differential equations.
Even for problems, such as elliptic systems, which do not physically involve
time, a semigroup is associated. For example, if X and Y are Hilbert spaces
and F': X — Y is such that the problem of finding v € X such that

F(u) =0 (25.4)

represents a system of partial differential equations, then critical points of ¢,
defined by

1
6@) = 5IF@I}, v € X,
can be turned into a semigroup problem by means of
2(0) =, 2'(t) = = (V) (z(t)), t > 0. (25.5)

Numerical calculations such as those introduced here are at once a practical
matter aiming to get concrete information about solutions, and also a means
to gain insight into the theory of semigroups. Literature on numerical solution
of time-dependent PDEs is truly vast, running from mathematics to physics,
chemistry, various branches of engineering, biology and economics. No at-
tempt is made here to do justice to this immense and important area. When
(25.5) arises from (25.4), relevant gradients put the problem in somewhat
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different terms from conventional time-dependent problems, but semigroup
issues remain for such problems.

In a practical sense, the theory of Sobolev gradients gives an organized
way to determine and to compute preconditioners to be applied to ordinary
gradients. Following the theory, preconditioners respect boundary and other
supplementary conditions, even nonlinear conditions. Generally the ratio

number of iterations needed using ordinary gradient

number of iterations needed with Sobolev gradient

goes, for a given problem, to infinity as mesh size approaches zero. This is
documented in [69], as well as a number of other papers authored or coau-
thored by Sultan Sial and in references contained in his work.

The above describes numerical symptoms when using Sobolev gradients
as opposed to ordinary gradients in descent process for partial differential
equations. Some issues may be illustrated by a simple example: Consider a
least squares formulation for the simple problem of finding « on [0, 1] so that

u —u=0.

The least squares formulation is essentially (14.5):
1
o(u) = —/ (v —u)?, (25.6)
2Jo

for u in what space? The space L3([0,1]) is not good since then ¢ would
be only densely defined and everywhere discontinuous where it is defined,
giving a poor or nonexistent gradient. However, the ordinary gradient for a
discrete version of (25.6) is in a sense trying to do just that. If, however,
the Sobolev space H'2([0,1]) is used, then the resulting ¢ is continuous and
differentiable—in fact it is a quadratic polynomial.

The fundamental idea of Sobolev gradients is this: For finite-dimensional
emulations of least square (or energy functional) emulations, the finite-
dimensional gradient should be taken with respect to a norm which emulates
the theoretical norm which renders the functional in question at least a C*
functional. This idea can be viewed as a consequence of the basic law of nu-
merical analysis, given in Chapter 6, essentially saying that sensitivities in a
functional should be matched by sensitivities in a gradient with respect to
which steepest descent is being taken.

25.15 Notes on Chapter 16

References for this chapter are [25] and [43], Chapter 5, Section 5.4. Most
of the material of this chapter comes directly from the first reference, as
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summarized in the second reference. The main object here is the systematic
use of the embedding operator between two abstract Hilbert spaces H and
H’ where the points of H' form a dense subset of H and the norm in H’
dominates the norm in H.

The material in this chapter had its origin in the seminal work [6]
(reprinted in [5]), in which a ‘kernel free’ development of potential theory
was presented. There are other interesting connections with semigroups in
these references. The material of this chapter is essentially an abstract ex-
tension of [6] without specific reference to various measures used in potential
theory.

The reference [25] contains a solution to an abstract symmetric version of
the Kato conjecture, [2]. It is related to Problem 257 by observing that

H, =H'.

An application of the idea in Problem 261 may be found in [53].

This chapter concludes with problems leading up to a formula of von
Neumann which applies the development in the first part of the chapter.
This formula presents in a simple form the orthogonal projection onto

T
X
(Tm)’ xr e X,

where T is a closed densely defined linear transformation of X into Y.

Problem 441 In (16.2), describe why one might write
THI +TTH ™" instead of (I 4+ T'T)~'T".

Both of these expressions are linear and continuous. They agree on a dense
subset of X. Are they precisely the same?

25.16 Notes on Chapter 17

Since the middle of 1950 some of us have sought a complete theory of non-
linear semigroups which has the power of the theory of strongly continuous
linear semigroups. Perhaps the first paper in this direction was [35]. The book
[9] has a good description of the case of strongly continuous semigroups of
contractions on a convex subset of a Hilbert space. The books [60], [68], [29]
deal with various extensions to spaces more general than Hilbert spaces. Af-
ter 1971 or so there has been little substantial progress in the direction of a
complete theory although many interesting results had been found. In this
context, ‘complete theory’ means a theory in which a collection of semigroups
SG, a collection of generators GEN, and a means of (a) for all elements of
SG finding a member of GEN by means of differentiation at zero and (b) for



122 25 Notes

all members of GEN, constructing by means of an exponential formula of
a member of SG. The problems in this chapter, for the most part, are from
[13], [14], [15].

In [71], von Neumann and Koopman consider Hamiltonian systems on a
region {2 in a complex finite-dimensional space. Such systems are commonly
a system of nonlinear ordinary equations. They take, using our present terms,
a linear representation on complex Ly(f2). This representation, using special
features of Hamiltonian systems, turns out to be a strongly continuous group
of unitary transformations, 7'. The generator of T turns out to be ¢ A, where A
is an unbounded, densely defined self-adjoint linear transformation on Lo ({2).
A spectral analysis using the spectral theorem, indicated in Chapter 7, is
then related to dynamical properties of the Hamiltonian system. This work
of von Neumann and Koopman gave encouragement to Dorroh and myself.
M. G. Crandall indicated to me (private communication) that he and A. Pazy
considered a study of nonlinear semigroups using linear representations, but
indicated that they did no