
Chapter 8
Error Control Coding

Channel coding and interleaving techniques have long been used for combating
noise, interference, jamming, fading, and other channel impairments. The basic
idea of channel coding is to introduce controlled redundancy into the transmitted
signals that is subsequently exploited at the receiver for error correction. Channel
coding can also be used for error detection in schemes that use automatic repeat
request (ARQ) strategies. ARQ strategies must have a feedback channel to relay
the retransmission requests from the receiver back to the transmitter when errors
are detected. ARQ schemes require buffering at the transmitter and/or receiver and,
therefore, are suitable for data applications but are not suitable for delay sensitive
applications such as voice or real-time video. Hybrid ARQ schemes use both error
correction and error detection; the code is used to correct the most likely error
patterns and to detect the more infrequently occurring error patterns. Upon detection
of errors, a retransmission is requested.

There are many different types of error correcting codes, but historically they
have been classified into block codes and convolutional codes. Both block codes
and convolutional codes find potential applications in wireless systems. To generate
a codeword of an (n,k) block code, a block of k data bits is appended by n− k
redundant parity bits that are algebraically related to the k data bits, thereby
producing a codeword consisting of n code bits. The ratio Rc = k/n is called the code
rate, where 0 < Rc ≤ 1. Convolutional codes, on the other hand, are generated by the
discrete-time convolution of the input data sequence with the impulse response of
the encoder. The memory of the encoder is measured by the duration of the impulse
response. While block encoder operates on k-bit blocks of data bits, a convolutional
encoder accepts a continuous sequence of input data bits.

In the early application of coding to digital communications, the modulator and
coder were treated as separate entities. Hence, a block code or a convolutional
code was used to obtain a coding gain at the cost of bandwidth expansion or
data rate. Although this approach may be feasible for power limited channels
where bandwidth resources are plentiful, it is undesirable and sometimes not even
possible for bandwidth limited applications such as cellular radio. If no sacrifices
of data rate or bandwidth can be made, then schemes that separate the operations
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of coding and modulation require a very powerful code just to break even with
an uncoded system. In 1974, Massey [173] suggested that the performance of a
coded digital communication system could be improved by treating coding and
modulation as a single entity. Ungerboeck later developed the basic principles of
trellis-coded modulation (TCM) [258] and identified classes of trellis codes that
provide substantial coding gains on bandwidth limited additive white Gaussian noise
(AWGN) channels.

TCM schemes combine the operations of coding and modulation and can be
viewed as a generalization of convolutional codes. While convolutional codes
attempt to maximize the minimum Hamming distance between allowed code sym-
bol sequences, trellis-codes attempt to maximize the Euclidean distance between
allowed code symbol sequences. By jointly designing the encoder and modulator
Ungerboeck showed that, for an AWGN channel, coding gains of 3–6 dB could
be obtained relative to an uncoded system using trellis codes with 4–128 encoder
states, without sacrificing bandwidth or data rate. This property makes TCM very
attractive for wireless applications where high spectral efficiency is needed due to
limited bandwidth resources, and good power efficiency is needed to extend battery
life in portable devices. TCM experienced an almost immediate and widespread
application into high-speed power-efficient and bandwidth-efficient digital modems.
In 1984, a variant of the Ungerboeck eight-state 2D trellis code was adopted by
CCITT for both 14.4 kb/s leased-line modems and the 9.6 kb/s switched-network
modems [36]. In 1985, a TCM-based modem operating at 19.2 kb/s was introduced
by Codex [259].

Ungerboeck’s work [258] captured the attention of the coding community and
laid the foundation for intensified research. Calderbank and Mazo introduced
an analytic description of trellis codes [43]. They showed how to realize the
two operations (coding and mapping) in Ungerboeck’s codes using a single-step
procedure. Calderbank and Sloane [44] and Wei [278] proposed multidimensional
trellis codes. Spaces with larger dimensionality are attractive, because the signals
are spaced at larger Euclidean distances [36]. Calderbank and Sloan [44] and
Forney [105] made the observation that the signal constellation should be regarded
as a finite set of points taken from an infinite lattice, and the partitioning of
the constellation into subsets corresponds to the partitioning of the lattice into a
sublattice and its cosets. They then developed a new class of codes, called coset
codes, based on this principle.

Many studies have examined the performance of TCM on interleaved flat fading
channels [45, 76, 77, 85]. Divsalar and Simon [77, 78] constructed trellis codes that
are effective for interleaved flat Ricean and Rayleigh fading channels. Interleaving
randomizes the channel with respect to the transmitted symbol sequence and has
the effect of reducing the channel memory. Consequently, interleaving improves the
performance of codes that have been designed for memoryless channels. Moreover,
trellis codes that are designed for flat fading channels exhibit time diversity
when combined with interleaving of sufficient depth. It was reported in [45] that
interleaving with reasonably long interleaving depths is almost as good as ideal
infinite interleaving. The design of trellis codes for interleaved flat fading channels is
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not guided by the minimum Euclidean distance used for AWGN channels, but rather
by the minimum product squared Euclidean distance (MPSD) and the minimum
built-in time diversity (MTD) between any two allowed code symbol sequences. Wei
[279] introduced an additional design parameter called the minimum decoding depth
and proposed a set of efficient codes for interleaved flat Rayleigh fading channels.

Many studies have also considered the performance of trellis codes on inter-
symbol interference (ISI) channels [81, 93, 251, 286]. The coded performance on
static ISI channels may be significantly degraded compared to that on ISI-free
channels. Receivers for TCM on static ISI channels typically use a linear forward
equalizer followed by a soft decision Viterbi decoder. For channels with severe ISI,
a more appropriate approach is to use a decision feedback equalizer (DFE) in front
of the TCM decoder to avoid the problems of noise enhancement. However, the
feedback section of the DFE requires that decisions be available with zero delay.
Since the zero-delay decisions are unreliable, the performance improvement using
the DFE is marginal [50]. It is possible that the performance can be improved if
equalization and decoding is performed in a joint manner using maximum likelihood
sequence estimation (MLSE) or some other form of sequence estimator. However,
the complexity of an MLSE receiver grows exponentially with the number of
encoder states and the length of the channel vector.

In 1993, Berrou et al. introduced parallel concatenated convolutional codes
(PCCCs), called turbo coding [35]. When used in conjunction with an iterative
decoding scheme, PCCCs achieve near Shannon capacity limit performance on both
the AWGN channel and the interleaved flat fading channel. Simulations of a rate-
1/2 turbo code in [35] showed a bit error probability of 10−5 at an Eb/No = 0.5 dB,
which is only 0.5 dB from the Shannon capacity limit! Although, the performance
of turbo codes is remarkable at low Eb/No, their performance at high Eb/No is
unimpressive. There is a perceivable change in the slope of the bit error rate (BER)
curves, which has been loosely termed an “error floor.” In 1997, Benedetto et al.
showed that iterative decoding of serially concatenated interleaved convolutional
codes (SCCCs) can provide large coding gains without the problem of an error floor
[32]. In general, SCCCs outperform PCCCs at high Eb/No, whereas the opposite is
true for low Eb/No.

The remainder of this chapter is organized as follows. Section 8.1 gives an
introduction to block codes and space-time block codes. Section 8.2 introduces
convolutional codes, and decoding algorithms for convolutional codes, including
the Viterbi algorithm and BCJR algorithm. Section 8.3 introduces TCM. This is
followed the performance analysis of convolutional and trellis codes on AWGN
channels in Sect. 8.4. Section 8.5 considers block and convolutional interleavers that
are useful for coding on fading channels. This is followed by a consideration of the
design and performance analysis of trellis codes on interleaved flat fading channels
in Sect. 8.6. The performance of space-time codes and the decoding of space-time
codes is considered in Sect. 8.7. Finally, Sect. 8.8 provides a treatment of parallel
and serial turbo codes.
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8.1 Block Codes

8.1.1 Binary Block Codes

A binary block encoder accepts a length-k input vector a = (a1,a2, . . . ,ak), ai ∈
{0,1}, and generates a length-n codeword c = (c1,c2, . . . ,cn), ci ∈ {0,1}, through
the linear mapping c = aG, where G = [gi j]k×n is a k × n generator matrix. The
matrix G has full row rank k, and the code C is generated by taking all linear
combinations of the rows of the matrix G, where field operations are performed
using modulo-2 arithmetic. The code rate is Rc = k/n and there are 2k codewords.
The task of designing block codes reduces to one of finding generator matrices that
produce codes that are both powerful and easy to decode.

For any block code with generator matrix G, there exists an (n− k)× n parity
check matrix H = [hi j](n−k)×n such that GHT = 0k×(n−k). The matrix H has full row
rank n− k and is orthogonal to all codewords, that is, cHT = 0n−k. The matrix H is
the generator matrix of a dual code C T, consisting of 2n−k codewords. The parity
check matrix of C T is the matrix G.

A systematic block code is one having a generator matrix of the form

G = [Ik×k|P], (8.1)

where P is a k×(n−k) matrix. For a systematic block code, the first k coordinates of
each codeword are equal to the k-bit input vector a, while the last n− k coordinates
are the parity check bits. Using elementary row operations, the generator matrix of
any linear block code can be put into systematic form. A systematic block code has
the parity check matrix

H = [−PT|I(n−k)×(n−k)]. (8.2)

The parity check matrix in (8.2) is a general form that applies to both binary and
nonbinary systematic block codes. For binary codes, the negative sign in front of
the PT matrix is not necessary. For a binary systematic block code, GHT = Ik×kP⊕
PI(n−k)×(n−k) = P⊕P = 0k×(n−k), where ⊕ indicates modulo-2 addition.

Example 8.1:
The (n − k) × n parity check matrix of an (n,k) Hamming code is

constructed by listing as columns all nonzero binary (n− k)-tuples. There
are n = 2n−k −1 such nonzero (n− k)-tuples. For example, a systematic (7,4)
Hamming code has the parity check matrix

H =

⎡
⎢⎢⎢⎣

1 0 1 1
... 1 0 0

1 1 1 0
... 0 1 0

0 1 1 1
... 0 0 1

⎤
⎥⎥⎥⎦ , (8.3)
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where the columns of H consists of all nonzero binary three-tuples. Note
that the last three columns form a 3× 3 identity matrix since the code is in
systematic form, while the first four columns that constitute the PT matrix
may be placed in any random order with no effect on the performance of the
code. Such codes are said to be equivalent.

The generator matrix of this particular (7,4) systematic Hamming code is

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
... 1 1 0

0 1 0 0
... 0 1 1

0 0 1 0
... 1 1 1

0 0 0 1
... 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.4)

and it can be verified that GHT = 0k×(n−k). The 16 codewords of the (7,4)
Hamming code are generated by taking all linear combinations of the rows of
G using modulo-2 arithmetic.

8.1.1.1 Minimum Distance

Let d(c1,c2) denote the Hamming distance between the codewords c1 and c2, equal
to the number of coordinates in which they differ. For linear block codes d(c1,c2) =
w(c1⊕c2), where w(c1⊕c2) is the weight of c1⊕c2, equal to the number of nonzero
coordinates of c1 ⊕ c2. The free Hamming distance, dfree, of a linear block code is
the minimum number of coordinates in which any two codewords differ. For a linear
code, the sum of any two codewords c1⊕c2 is another codeword c, and the all zeroes
vector is a codeword. Hence, the free Hamming distance is

dfree = min
c1,c2

d(c1,c2) (8.5)

= min
c�=0

d(c,0) (8.6)

= min
c�=0

w(c). (8.7)

Therefore, dfree is equal to the weight of the minimum weight nonzero codeword.
To derive an upper bound on dfree, recall that the generator matrix of any linear

block code can be put into systematic form G = [Ik×k|P], where P is a k× (n− k)
matrix. It is certainly the case that the number of nonzero elements in any row of
P cannot exceed n− k. Hence, the number of nonzero elements in any row of G
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cannot exceed n− k + 1. Since the rows of the generator matrix G are themselves
valid codewords, it must be true that

dfree ≤ n− k + 1 (8.8)

a result known as the Singleton bound. A code that has dfree = n− k + 1 is called a
maximum distance separable (MDS) code. Intuitively, this means that all codewords
are as far apart from each other as possible in Hamming distance, and such codes
should perform well.

An example of a simple block code that meets the Singleton bound is the binary
repetition code

0 −→ c0 = (0,0, . . . ,0)n,

1 −→ c1 = (1,1, . . . ,1)n.

In this case, dfree = d(c0,c1) = n−k+1. The repetition code happens to be the only
binary MDS code, and no other binary MDS codes exist. The well-known Reed–
Solomon codes are good examples of nonbinary MDS codes.

8.1.1.2 Syndromes

Suppose that the codeword c is transmitted and the vector y = c⊕ e is received,
where e is defined as the error vector. The syndrome of the received vector y is
defined as the length n− k vector

s = yHT. (8.9)

If s = 0, then y is a codeword; conversely if s �= 0, then an error must have occurred.
Note that if y is a codeword, then s = 0. Hence, s = 0 does not mean that no errors
have occurred. They are just undetectable. Since the sum of any two codewords is
another codeword for a linear code, it follows that the number of undetectable error
vectors is equal to 2k − 1, the number of nonzero codewords. The syndrome only
depends upon the error vector because

s = yHT = cHT ⊕ eHT = 0⊕ eHT = eHT. (8.10)

In general, s = eHT is a system of n− k equations in n variables. Hence, for any
given syndrome s, there are 2k possible solutions having the same error vector e.
However, the most likely error pattern e is the one that has minimum Hamming
weight.
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8.1.1.3 Error Detection

A linear block code can detect all error patterns of dfree−1 or fewer errors. If e �= 0 is
a codeword, then no errors are detected. There are 2k−1 undetectable error patterns,
but there are 2n−1 possible nonzero error patterns. Hence, the number of detectable
error patterns is

2n −1− (2k−1) = 2n −2k.

Usually, 2k−1 is a small fraction of 2n−2k. For the (7,4) Hamming code considered
in Example 8.1, there are 24 −1 = 15 undetectable error patterns and 27 −24 = 112
detectable error patterns.

8.1.1.4 Weight Distribution

Consider a block code C and let Ai be the number of codewords of weight i. The set
{A0,A1, . . . ,An} is called the weight distribution of C . The weight distribution can
be expressed as a weight enumerator polynomial

A(z) = A0z0 + A1z1 + . . .+ Anzn. (8.11)

For the (7,4) Hamming code in Example 8.1,

A0 = 1,A2 = 0,A3 = 7,A4 = 7,A5 = 0,A6 = 0,A7 = 1.

Hence,
A(z) = 1 + 7z3 + 7z4 + z7.

The weight enumerator polynomial can be used to evaluate the exact performance
of a code. Unfortunately, weight enumerator polynomials are generally difficult to
find and are known only for a few classes of codes such as the Hamming codes.

8.1.1.5 Probability of Undetected Error

The probability of undetected error is

Pe[u] = P[e is a nonzero codeword]

=
n

∑
i=1

AiP[w(e) = i]. (8.12)

The error probability P[w(e) = i] depends on the coding channel, defined as that
portion of the communication system that is seen by the coding system. The simplest
coding channel is the binary symmetric channel (BSC), where

P[yi �= ci] = p = 1−P[yi = ci]. (8.13)
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For a BSC, P[w(e) = i] = pi(1− p)n−i and, hence,

Pe[u] =
n

∑
i=1

Ai p
i(1− p)n−i. (8.14)

The (7,4) Hamming code in Example 8.1 has an undetected error probability of

Pe[u] = 7p3(1− p)4 + 7p4(1− p)3 + p7. (8.15)

For a raw channel error rate of p = 10−2, we have Pe[u] = 7× 10−6. Hence, the
undetected error rate can be very small even for a fairly simple block code.

8.1.1.6 Error Correction

A linear block code can correct all error patterns of t or fewer errors, where

t ≤ �dfree −1
2

� (8.16)

and �x� is the largest integer contained in x. A code is usually capable of correcting
many error patterns of t +1 or more errors. In fact, up to 2n−k error patterns may be
corrected, which is equal to the number of syndromes.

For a BSC, the probability of codeword error is

P[e] ≤ 1−P[t or fewer errors]

= 1−
t

∑
i=0

(
n
i

)
pi(1− p)n−i. (8.17)

8.1.1.7 Standard Array Decoding

One conceptually simple method for decoding linear block codes is standard array
decoding. The standard array of an (n,k) linear block code is constructed as
follows:

1. Write out all 2k codewords in a row starting with c0 = 0.
2. From the remaining 2n − 2k n-tuples, select an error vector e2 of weight 1 and

place it under c0. Under each codeword put ci ⊕ e2, i = 1, . . . ,2k −1.
3. Select a minimum weight error vector e3 from the remaining unused n-tuples and

place it under c0 = 0. Under each codeword put ci ⊕ e3, i = 1, . . . ,2k −1.
4. Repeat Step 3 until all n-tuples have been used.

Note that every n-tuple appears once and only once in the standard array.
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Example 8.2:
Consider the (4,2) code with generator matrix

G =
[

1 1 0 0
0 1 0 1

]
.

The standard array is ⎡
⎢⎢⎣

e1 0000 1100 0101 1001
e2 0001 1101 0100 1000
e3 0010 1110 0111 1011
e4 0011 1111 0110 1010

⎤
⎥⎥⎦ .

The standard array consists of 2n−k disjoint rows of 2k elements. These rows are
called cosets and the ith row has the elements

Fi = {ei,ei ⊕ c1, . . . ,ei ⊕ c2k−1}.

The first element, ei, is called the coset leader. The standard array also consists of
2k disjoint columns. The jth column has the elements

D j = {c j,c j ⊕ e2, . . . ,c j ⊕ e2n−k}.

To correct errors, the following procedure is used. When y is received, find y in
the standard array. If y is in row i and column j, then the coset leader from row i, ei,
is the most likely error pattern to have occurred and y is decoded into y⊕ ei = c j.
A code is capable of correcting all error patterns that are coset leaders. If the error
pattern is not a coset leader, then erroneous decoding will result. Obviously, standard
array decoding is only useful for simple codes, since 2n vectors must be stored in
memory. A somewhat simpler decoding strategy is syndrome decoding.

8.1.1.8 Syndrome Decoding

Syndrome decoding relies on the fact that all 2k n-tuples in the same coset of the
standard array have the same syndrome. This is because the syndrome only depends
on the coset leader as shown in (8.10). To perform syndrome decoding:

1. Compute the syndrome s = yHT

2. Locate the coset leader e� where e�HT = s
3. Decode y into y⊕ e� = ĉ
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This technique can be used for any linear block code. The calculation in Step 2
can be done using a simple look-up table. However, for large n − k it becomes
impractical because 2n−k syndromes and 2n−k error patterns must be stored.

8.1.2 Space-Time Block Codes

Space-time block coding is a technique for coding across multiple antennas. In
Sect. 6.10, we discussed a simple transmit diversity scheme by Alamouti [11], which
uses two transmit antennas in a 2 × Lr arrangement, where Lr is the number of
receiver antennas. The Alamouti scheme achieves a diversity order of 2Lr and has a
very simple maximum likelihood decoding algorithm. It can be thought of as a very
simple 2×2 space-time block code having the code matrix

S =

[
s̃(1) s̃(2)

−s̃∗(2) s̃∗(1)

]
, (8.18)

where the rows represent time slots and the columns represent the transmissions
from the antennas over time. For the Alamouti code, two symbols are transmitted
from two antennas over two time slots. The basic idea of the Alamouti code was
later generalized by Tarokh, Jafarkhani, and Calderbank to an arbitrary number, Lt,
of transmit antennas by applying orthogonal designs [249]. While a variety of space-
time block codes exist, here we concentrate on orthogonal space-time block codes.
Orthogonal space-time block codes achieve a diversity order LtLr, while allowing
for maximum likelihood based on computationally simple linear processing [250].

Let Lt be the number of transmit antennas and p represent the number of
time slots that are used to transmit one space-time codeword. This gives rise to
a p × Lt space-time code matrix. Each group of k information symbols, chosen
from an M = 2m-ary alphabet, is encoded according to the space-time code matrix
to generate a p × Lt space-time codeword. Since the codewords are transmitted
simultaneously from Lt transmit antennas in p time slots, the space-time code rate is
equal to R = k/p. Similar to the Alamouti code, the entries of the p×Lt code matrix
are chosen to be a combination of the block of k modulating symbols {s̃(1), . . . , s̃(k)}
and their complex conjugates {s̃∗(1), . . . , s̃

∗
(k)}. For orthogonal space-time codes, the

p×Lt code matrix S satisfies the following orthogonal property [249]:

SHS = ILt×Lt

k

∑
i=1

|s̃(i)|2. (8.19)

Depending on the type of signal constellation from which the symbols s̃(i) are drawn,
either real or complex valued orthogonal space-time block codes can be constructed.
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8.1.2.1 Real Orthogonal Space-Time Block Codes

A real orthogonal design is a p × Lt orthogonal matrix containing real-valued
elements satisfying the orthogonal property in (8.19). First consider the case where
S is a Lt ×Lt square matrix. It is known that real orthogonal designs having square
code matrices only exist for Lt = 2,4 or 8 transmit antennas. Examples of real
orthogonal space-time block codes are the 2×2 design

S2 =

[
s̃(1) s̃(2)

−s̃(2) s̃(1)

]
, (8.20)

the 4×4 design

S4 =

⎡
⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4)

−s̃(2) s̃(1) −s̃(4) s̃(3)

−s̃(3) s̃(4) s̃(1) −s̃(2)

−s̃(4) −s̃(3) s̃(2) s̃(1)

⎤
⎥⎥⎥⎦ , (8.21)

and the 8×8 design

S8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6) s̃(7) s̃(8)

−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5) −s̃(8) s̃(7)
−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8) −s̃(5) −s̃(6)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7) s̃(6) −s̃(5)

−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2) s̃(3) s̃(4)

−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1) −s̃(4) s̃(3)

−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4) s̃(1) −s̃(2)
−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3) s̃(2) s̃(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.22)

The reader can verify that the columns of these matrices are mutually orthogonal,
that is, their dot product is zero. Hence, the orthogonal property in (8.19) is satisfied.
Also, the rate achieved with these code matrices is R = 1. For example, with the 8×8
code matrix, k = 8 symbols are transmitted in p = 8 time slots so that R = k/p = 1.
Finally, these codes all achieve full transmit diversity of order Lt.

The above orthogonal space-time code designs are based on Lt × Lt square
matrices. Tarokh et al. [249] have developed generalized real orthogonal designs
for any number of transmit antennas that achieve rate R = 1. They have shown that
the minimum number of transmission periods p to achieve full rate is given by [249]

p = min
{

24c+d
}

, (8.23)

where the minimization is taken over the set
{

c,d | 0 ≤ c,0 ≤ d < 4 and 8c + 2d ≥ Lt

}
. (8.24)
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Based on (8.23) and (8.24), real orthogonal designs for Lt = 3,5,6 and 7 transmit
antennas can be constructed that have full transmit diversity of order Lt and rate
R = 1 as follows:

S3 =

⎡
⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3)

−s̃(2) s̃(1) −s̃(4)

−s̃(3) s̃(4) s̃(1)
−s̃(4) −s̃(3) s̃(2)

⎤
⎥⎥⎥⎦ , (8.25)

S5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5)

−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6)

−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1)

−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2)

−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3)

−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.26)

S6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6)

−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5)

−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8)

−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7)

−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2)
−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1)
−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4)

−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.27)

and

S7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6) s̃(7)

−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5) −s̃(8)

−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8) −s̃(5)

−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7) s̃(6)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2) s̃(3)

−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1) −s̃(4)

−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4) s̃(1)

−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3) s̃(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.28)

Taking S7 as an example, we see that k = 8 symbols are transmitted from Lt = 7
antennas in p = 8 time slots. Hence, S7 has rate R = k/p = 1. Since the columns are
mutually orthogonal the code achieves full transmit diversity of order Lt = 7.



8.1 Block Codes 469

8.1.2.2 Complex Orthogonal Space-Time Block Codes

Complex orthogonal space-time codes have p × Lt code matrices containing the
elements {s̃(1), . . . , s̃(k)} and their complex conjugates {s̃∗(1), . . . , s̃

∗
(k)}, and they

satisfy the orthogonal property in (8.19). Such codes provide full transmit diversity
of order Lt and have rate R = k/p. The Alamouti space-time code matrix in (8.18)
is one such 2× 2 scheme that achieves a transmit diversity of order 2 with a full
code rate R = 1. The Alamouti scheme is unique in which it is the only complex
orthogonal space-time block code having full transmit diversity and rate R = 1.
Tarkoh et al. [249] have constructed complex orthogonal space-time block codes
with rate R = 1/2 for Lt = 3 and 4 transmit antennas as follows:

C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3)
−s̃(2) s̃(1) −s̃(4)
−s̃(3) s̃(4) s̃(1)

−s̃(4) −s̃(3) s̃(2)

s̃∗(1) s̃∗(2) s̃∗(3)

−s̃∗(2) s̃∗(1) −s̃∗(4)

−s̃∗(3) s̃∗(4) s̃∗(1)
−s̃∗(4) −s̃∗(3) s̃∗(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.29)

and

C4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2) s̃(3) s̃(4)

−s̃(2) s̃(1) −s̃(4) s̃(3)
−s̃(3) s̃(4) s̃(1) −s̃(2)
−s̃(4) −s̃(3) s̃(2) s̃(1)

s̃∗(1) s̃∗(2) s̃∗(3) s̃∗(4)
−s̃∗(2) s̃∗(1) −s̃∗(4) s̃∗(3)
−s̃∗(3) s̃∗(4) s̃∗(1) −s̃∗(2)
−s̃∗(4) −s̃∗(3) s̃∗(2) s̃∗(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.30)

The reader can verify that the columns of these code matrices are all mutually
orthogonal. Thus, these schemes achieve full transmit diversity of order Lt, but lose
half of the theoretical bandwidth efficiency since they are only R = 1/2 codes.

By allowing linear processing at the transmitter, it is possible to construct
higher rate complex space-time block codes. Tarokh et al. [249] have identified the
following complex orthogonal designs: the Lt = 3 rate R = 3/4 code
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H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2)
s̃(3)√

2

−s̃∗(2) s̃∗(1)
s̃(3)√

2
s̃∗(3)√

2

s̃∗(3)√
2

(−s̃(1)−s̃∗(1)+s̃(2)−s̃∗(2))
2

s̃∗(3)√
2

− s̃∗(3)√
2

(s̃(2)−s̃∗(2)+s̃(1)−s̃∗(1))
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.31)

and the Lt = 4 rate R = 3/4 code

H4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s̃(1) s̃(2)
s̃(3)√

2

s̃(3)√
2

−s̃(2) s̃(1)
s̃(3)√

2
− s̃(3)√

2

s̃(3)√
2

s̃(3)√
2

(−s̃(1)−s̃∗(1)+s̃(2)−s̃∗(2))
2

(−s̃(2)+s̃∗(2)+s̃(1)−s̃∗(1))
2

s̃∗(3)√
2

− s̃∗(3)√
2

(s̃(2)+s̃∗(2)+s̃(1)−s̃∗(1))
2

(−s̃(1)−s̃∗(1)−s̃(2)+s̃∗(2))
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8.32)

8.1.2.3 Decoding Orthogonal Space-Time Block Codes

The Alamouti space-time block code was shown to have an efficient and simple
maximum likelihood decoding method in Sect. 6.10. We now discuss the decoding
of orthogonal p×Lt space-time block codes. Following the notation in Sect. 6.10,
the received signal vector at antenna j and time t is given by

r̃(t), j =
Lt

∑
i=1

gi, j s̃(t),i + ñ(t), j, (8.33)

where gi, j is the complex channel gain from transmit antenna i to receiver antenna
j, s̃(t),i is the symbol vector transmitted from antenna i in time slot t, and the ñ(t), j
are independent zero-mean complex Gaussian random vectors with variance No in
each dimension of the signal space. Assuming perfect channel state information, the
maximum likelihood receiver computes the decision metric

μ(C) =
p

∑
t=1

Lr

∑
j=1

∥∥∥∥∥r̃(t), j −
Lt

∑
i=1

gi, j s̃(t),i

∥∥∥∥∥
2

(8.34)

over all codewords C = [s̃(t),i]p×Lt and chooses the codeword with the minimum
metric.

First consider the real orthogonal space-time block codes with square matrices
S2, S4 and S8. Note that the rows of code matrices S2, S4, and S8 are all permutations
of the first row, possibly with different signs. Let ε1, . . . ,εLt denote the permutations

corresponding to these rows, and let δ (i)
t denote the sign of the entry in row t and
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column i of the code matrix. Then ε(i)
t = q means that s̃(t),i is up to a sign change

equal to the element in row t and column q of the code matrix. Since the columns
of the space-time orthogonal code matrices S2, S4, and S8 are mutually orthogonal,
minimizing the metric in (8.34) is equivalent to minimizing [249]

μ(C) =
Lt

∑
i=1

Pi, (8.35)

where

Pi =

⎛
⎝
∥∥∥∥∥

[
Lt

∑
t=1

Lr

∑
j=1

r̃(t), jg
∗
ε(i)

t , j
δ (i)

t

]
− s̃i

∥∥∥∥∥
2

+

(
−1 +∑

i, j
|gi, j|2

)
‖s̃i‖2

⎞
⎠ . (8.36)

Note that Pi, i = 1, . . . ,Lt only depends on the choice of code symbol s̃i, the set of
received vectors {r̃(t), j, j = 1, . . . ,Lr}, the channel fading coefficients {gi, j}, and
the structure of the code matrix. It follows that minimizing the sum in (8.35) is
equivalent to minimizing Pi in (8.36) for each i,1 ≤ i ≤ Lt. This separable property
results in a very simple decoding strategy that provides spatial diversity of order
LtLr. The maximum likelihood receiver simply forms the Lt decision variables

Ri =
Lt

∑
t=1

Lr

∑
j=1

r̃(t), jg
∗
ε(i)

t , j
δ (i)

t , i = 1, . . . ,Lt (8.37)

and decides in favor of symbol ŝi if

ŝi = argmin
s

‖Ri − s‖2 +

(
−1 +∑

i, j

|gi, j|2
)
‖s̃‖2, i = 1, . . . ,Lt. (8.38)

Similar low complexity decoding strategies for the other space-time block codes C3,
C4, H3 and H4 in (8.29), (8.30), (8.31) and (8.32), respectively, are not presented
here but are available in [250].

8.2 Convolutional Codes

8.2.1 Encoder Description

The encoder for a rate-1/n binary convolutional code can be viewed as a finite-state
machine (FSM) that consists of a ν-stage binary shift register with connections
to n modulo-2 adders, and a multiplexer that converts the adder outputs to serial
codewords. The constraint length of a convolutional code is defined as the number
of shifts through the FSM over which a single input data bit can affect the encoder
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Fig. 8.1 Binary
convolutional encoder;
Rc = 1/2, K = 3

+

+

a
tuptuotupni

b

b
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Fig. 8.2 Binary
convolutional encoder;
Rc = 2/3, K = 2

+

+

+

output

a binput

b

b
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(2)

(3)a(2)

a(1)

output. For an encoder having a single ν-stage shift register, the constraint length
is equal to K = ν + 1. A very simple rate-1/2, constraint length K = 3, binary
convolutional encoder is shown in Fig. 8.1.

The above concept can be generalized to rate-k/n binary convolutional code
using k shift registers, n modulo-2 adders, along with input and output multiplexers.

For a rate-k/n code, the k-bit information vector a� = (a(1)
� , . . . ,a(k)

� ) is input to

the encoder at epoch � to generate the n-bit code vector b� = (b(1)
� , . . . ,b(n)

� ). If
Ki denotes the constraint length of the ith shift register, then the overall constraint
length is defined as K = maxi Ki. Figure 8.2 shows a simple rate-2/3, constraint
length-2 convolutional encoder.

A convolutional encoder can be described by the set of impulse responses, {g( j)
i },

where g( j)
i is the jth output sequence b( j) that results from the ith input sequence

a(i) = (1,0,0,0, . . .). The impulse responses can have a duration of at most K

and have the form g( j)
i = (g( j)

i,0 ,g( j)
i,1 , . . . ,g( j)

i,K−1). Sometimes the {g( j)
i } are called

generator sequences. For the encoder in Fig. 8.1

g(1) = (1, 1, 1) g(2) = (1, 0, 1) (8.39)

and for the encoder in Fig. 8.2

g(1)
1 = (1, 1), g(2)

1 = (0, 1), g(3)
1 = (1, 1),

g(1)
2 = (0, 1), g(2)

2 = (1, 0), g(3)
2 = (1, 0). (8.40)
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It follows that the jth output b( j)
i corresponding to the ith input sequence

a(i) is the discrete convolution b( j)
i = a(i) ∗ g( j)

i , where ∗ denotes modulo-
2 convolution. The time-domain convolutions can be conveniently replaced by
polynomial multiplications in a D-transform domain according to

b( j)
i (D) = a(i)(D)g( j)

i (D), (8.41)

where

a(i)(D) =
∞

∑
k=0

ai,kDk (8.42)

is the ith input data polynomial,

b( j)
i (D) =

∞

∑
k=0

b( j)
i,k Dk (8.43)

is the jth output polynomial corresponding to the ith input, and

g( j)
i (D) =

K−1

∑
k=0

g( j)
i,k Dk (8.44)

is the associated generator polynomial. It follows that the jth output sequence is

b( j)(D) =
k

∑
i=1

b( j)
i (D) =

k

∑
i=1

a(i)(D)g( j)
i (D). (8.45)

The above expression leads to the matrix form

(
b(i)(D), . . . ,b(n)(D)

)
=
(

a(1)(D), . . . ,a(k)(D)
)

G(D), (8.46)

where

G(D) =

⎡
⎢⎢⎣

g(1)
1 (D), . . . , g(n)

1 (D)
...

...

g(1)
k (D), . . . , g(n)

k (D)

⎤
⎥⎥⎦ (8.47)

is the generator matrix of the code. For the encoder in Fig. 8.1

G(D) =
[
1 + D+ D2 1 + D2] , (8.48)

while for the encoder in Fig. 8.2

G(D) =
[

1 + D D 1 + D
D 1 1

]
. (8.49)
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Fig. 8.3 State diagram for
the binary convolutional
encoder in Fig. 8.1
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After multiplexing the outputs, the final codeword has the polynomial representation

b(D) =
n

∑
j=1

D j−1b( j)(Dn). (8.50)

Systematic convolutional codes are those where first k of the n encoder output
sequences, b(1), . . . ,b(k) are equal to the k encoder input sequences a(1), . . . ,a(k).

8.2.2 State and Trellis Diagrams, and Weight Distribution

Since the convolutional encoder is an FSM, its operation can be described by a state
diagram and trellis diagram in a manner very similar to the state- and trellis-diagram
descriptions of the discrete-time white noise channel model in Chap. 7. The state of
the encoder is defined by the shift register contents. For a rate-k/n code, the ith shift
register contains νi previous information bits. The state of the encoder at epoch � is
defined as

σ � =
(

a(1)
�−1, . . . ,a

(1)
�−ν1

; . . . ;a(k)
�−1, . . . ,a

(k)
�−νm

)
. (8.51)

There are a total of NS = 2νT encoder states, where νT
�
= ∑k

i=1 νi is defined as the
total encoder memory. For a rate-1/n code, the encoder state at epoch � is simply
σ � = (a�−1, . . . ,a�−ν).

Figures 8.3 and 8.4 show the state diagrams for codes in Figs. 8.1 and 8.2,
respectively. The states are labeled using the convention σ (i), i = 0, . . . ,νT − 1,
where σ (i) represents the encoder state (c0, . . . ,cνT−1) corresponding to the integer
i = ∑νT−1

j=0 c j2 j. In general, for a rate-k/n code there are 2k branches entering
and leaving each state. The branches in the state diagram are labeled with the
convention a/b = (a(1),a(2), . . . ,a(k))/(b(1),b(2), . . . ,b(n)). For example, the state
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Fig. 8.4 State diagram for
the binary convolutional
encoder in Fig. 8.2
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σ (2) σ (0)
σ

(1)

Fig. 8.5 Modified state diagram for the binary convolutional encoder in Fig. 8.1

transition σ (1) → σ (3) in Fig. 8.3 has the label 1/01. This means if the encoder in
Fig. 8.1 is in state σ (1) = (01) and the input bit is a 1, the encoder will output the
code bits 01 and transition to state σ (3) = (11).

Convolutional codes are linear codes, meaning that the sum of any two code-
words is another codeword and the all-zeroes sequence is a codeword. It follows
that the weight distribution and other distance properties of a convolutional code
can be obtained from the state diagram. Consider, for example, the encoder in
Fig. 8.1 along with its state diagram in Fig. 8.3. Since the self-loop at the zero state
σ (0) corresponds to the all-zeroes codeword, we can split the zero state σ (0) into
two nodes, representing the input and output of the state diagram. This leads to
the modified state diagram shown in Fig. 8.5. The branches in the modified state
diagram have labels of the form DiN jL, where i is the number of 1’s in the encoder
output sequence corresponding to a particular state transition, and j is the number of
input 1’s into the encoder for that transition. Every branch is labeled with the letter
L, and the exponent of L is unity because each branch has length one. Each possible
path through the modified state diagram corresponds to a non-all-zeroes codeword.
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The weight distribution of a convolutional code can be obtained by
computing the transfer function T (D,N,L) of the modified state diagram. Any
appropriate technique can be used to obtain the transfer function, including flow-
graph reduction techniques and Mason’s formula [172]. For the example shown in
Fig. 8.5, the transfer function is

T (D,N,L) =
D5NL3

1−DNL(L+ 1)

= D5L3N + D6N2L4(L+ 1)+ D7N3L5(L+ 1)2

+ . . .+ Dk+5Nk+1Lk+3(L+ 1)k + . . . (8.52)

where the second line was obtained using polynomial division. The terms in the
second line of (8.52) enumerate the weight distribution and distance properties of
the code. For example, consider the term Dk+5Nk+1Lk+3(L + 1)k appearing in the
transfer function. Using the binomial expansion, this term can be rewritten as

Dk+5Nk+1
k

∑
n=0

(
k
n

)
Ln+k+3.

Hence, there are 2k paths through the modified state diagram that are at Hamming
distance k +5 from the all-zeroes path, that is, have k +5 output 1’s, that are caused
by k + 1 input 1’s. Of these 2k paths,

(k
n

)
have length k + n + 3 branches.

Sometimes the transfer function can be simplified if we are only interested in
extracting certain distance properties of the convolutional code. For example, the
output weight distribution of the code can be obtained by setting N = 1 and L = 1
in the transfer function. For the particular transfer function in (8.52), this leads to

T (D) =
D5

1−2D

= D5 + 2D6 + 4D7 + . . .+ 2kD5+k + . . . , (8.53)

meaning that there are 2k codewords at Hamming distance 5+ k from the all-zeroes
codeword. Notice that no nonzero codeword exists with a Hamming distance less
than 5 from the all-zeroes codeword. This means that the free Hamming distance of
the code is dfree = 5. The free Hamming distance for this simple example can also
be seen by inspecting the trellis diagram in Fig. 8.6, where the branches in the trellis
diagram are labeled with the encoder output bits that correspond to the various state
transitions.

Convolutional codes are designed to have the largest possible dfree for a given
code rate and total encoder memory. Tabulation of convolutional codes that are
optimal in this sense can be found in many references, for example, Proakis [217],
Lin and Costello [159], and Clark and Cain [59].
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Fig. 8.6 Trellis diagram for the binary convolutional encoder in Fig. 8.1

8.2.3 Recursive Systematic Convolutional Codes

Forney [102] and Costello [67] showed that it is possible to construct a recursive
systematic convolutional (RSC) encoder from every rate Rc = 1/n feedforward
nonsystematic convolutional encoder, such that the output weight distributions
of the codes are identical. Consider a rate-1/n code with generator polynomials
g1(D), . . . ,gn(D). The output sequences are described by the polynomials

b( j)(D) = a(D)g( j)(D), j = 1, . . . ,n. (8.54)

To obtain a systematic code, we need to have b(1)(D) = a(D). To obtain this,
suppose that both sides of (8.54) are divided by g(1)(D), so that

b̃(1)(D) =
b(1)(D)
g(1)(D)

= a(D), (8.55)

b̃( j)(D) =
b( j)(D)
g(1)(D)

= a(D)
g( j)(D)
g(1)(D)

, j = 2, . . . ,n. (8.56)

Sometimes the g( j)(D) are called the feedforward polynomials, while g(1)(D) is
called the feedback polynomial. Define a new input sequence ã(D) as

ã(D)
�
=

a(D)
g(1)(D)

(8.57)
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Fig. 8.7 Recursive
systematic convolutional
(RSC) encoder derived
from the feedforward
nonsystematic encoder
in Fig. 8.1
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+

so that

b̃(1)(D) = ã(D)g(1)(D), (8.58)

b̃( j)(D) = ã(D)g( j)(D) , j = 2, . . . ,n. (8.59)

Observe that the transformation between a(D) and ã(D) in (8.57) is that of
a recursive digital filter with modulo-2 operations. This transformation simply
reorders the input sequence a(D). Since the input sequences consist of all possible
binary sequences, the filtered sequences ã(D) also consist of all possible binary
sequences. Hence, the set of coded sequences b̃(D) is the same as the set of coded
sequences b(D), and thus the nonsystematic and systematic codes have the same
output weight distribution functions. However, the input weight distributions for the
two codes are completely different as we will see.

Example 8.3
Consider, for example, the rate-1/2 encoder in Fig. 8.1 with generators

g(1)(D) = 1 + D+ D2, (8.60)

g(2)(D) = 1 + D2. (8.61)

By following the above-described procedure, an RSC code is obtained with
generators

ĝ(1)(D) = 1,

ĝ(2)(D) =
g(2)(D)
g(1)(D)

=
1 + D2

1 + D+ D2 .

The RSC is shown in Fig. 8.7
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Similar to their feedforward counterparts, the weight distribution and other dis-
tance properties of RSC codes can be obtained by constructing their corresponding
modified state diagram and computing the transfer function T (D,N,L). The RSC
encoder in Fig. 8.7 has transfer function

T (D,N,L) =
D5N3L3 −D6N4L4 + D6N2L4

1−DNL−DNL2 −D2L3 + D2N2L3 (8.62)

= D5N3L3 + D6N2L4 + D6N4L5 + . . . (8.63)

By setting N = 1 and L = 1, we obtain the output weight distribution of the code,
T (D), which is identical to the output weight distribution of the corresponding
feedforward nonsystematic encoder in (8.53). However, by comparing the first few
terms in their respective transfer functions in (8.52) and (8.63), it can be observed
that the input weight distributions are completely different. In particular, codewords
can be generated by weight-1 input sequences for the feedforward nonsystematic
encoder, while the RSC requires input sequences having at least weight-2 to
generate codewords. In fact, any finite weight codeword for the RSC code in Fig 8.7
is generated by an input polynomial a(D) that is divisible by 1 + D + D2. We will
see later that these properties are crucial for turbo codes.

Finally, both the feedforward nonsystematic and RSC codes are time invariant.
This means that if the input sequence a(D) produces codeword b(D), then the input
sequence Dia(D) produces the codeword Dib(D). Note that the codewords b(D) and
Dib(D) have the same weight.

8.2.4 Viterbi Algorithm

The Viterbi algorithm was devised by Viterbi for maximum likelihood decoding
of convolutional codes [266, 267]. We first note that the convolutional encoder
outputs n bits per branch that are subsequently mapped onto a M = 2k-point signal
constellation. Here, we assume that there are � = n/k modulated symbols per
branch where � is an integer. For example, a rate-1/2 code having two code bits
per branch may have the two code bits mapped onto either two binary symbols
or just one quaternary symbol. To derive the Viterbi algorithm, suppose that a
sequence of modulated symbols s̃ = {s̃n}k

n=1, s̃n = (s̃n,1, . . . , s̃n,�), corresponding to
k branches in the code trellis are transmitted over an interleaved flat fading channel
with AWGN.1 After receiving the sequence r̃ = {r̃n}k

n=1, r̃n = (r̃n,1, . . . , r̃n,�), the
maximum likelihood receiver uses knowledge of the sequence of complex channel

1Here, we are using the complex low-pass vector notation.
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gains g = {gn}k
n=1, gn = (gn,1, . . . ,gn,�) (obtained from a separate channel estimator)

to decide in favor of the sequence s̃ that maximizes the likelihood function

p(r̃k, . . . , r̃1| gk,�s̃k,�, . . . , g1,1s̃1,1) (8.64)

or, equivalently, the log-likelihood function

log{p(r̃k, . . . , r̃1| gk,�s̃k,�, . . . , g1,1s̃1,1)}. (8.65)

The log-likelihood function in (8.65) can be rewritten as

log{p(r̃k, . . . , r̃1|gk,�s̃k,�, . . . ,g1,1s̃1,1)}
= log{p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�)}+ log{p(r̃k−1, . . . , r̃1|gk−1,�s̃k−1,�, . . . ,g1,1s̃1,1)}.

(8.66)

If the second term on the right-hand side of (8.66) has been calculated previously at
epoch k−1 and stored in memory, then only the first term, called the branch metric,
has to be computed for the incoming signal vector rk at epoch k. From our treatment
in Chap. 5

p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�) =
1

(2πNo)N exp

{
− 1

2No

�

∑
m=1

‖r̃k,m −gk,ms̃k,m‖2

}
(8.67)

so that log{p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�)} yields the Euclidean branch metric

μk = −
�

∑
m=1

‖r̃k,m −gk,ms̃k,m‖2. (8.68)

Based on the recursion in (8.66) and the branch metric in (8.68), the Viterbi
algorithm searches through the NS-state code trellis for the most likely transmitted
sequence s̃ given the sequence of received vectors r̃ and knowledge of the sequence
of complex channel gains g. At epoch k, the Viterbi algorithm stores NS survivors

š(σ (i)
k ) along with their associated path metrics Γ(σ (i)

k ) that terminate at state

σ (i)
k , i = 0, . . . ,NS −1. The path metric is defined as

Γ(σ (i)
k ) =

k

∑
n=1

μ (i)
n , i = 0, . . . ,NS −1, (8.69)

where {μ (i)
n } is the sequence of branch metrics along the surviving path š(σ (i)

k ).
The Viterbi algorithm is initialized at time index k = 0, by setting all path metrics

to zero, that is, Γ(σ (i)
0 ) = 0, i = 1, . . . ,NS −1.
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Fig. 8.8 Path metric update for the code trellis in Fig. 8.6

1. After the vector r̃k+1 has been received, compute the set of path metrics Γ(σ (i)
k →

σ ( j)
k+1) = Γ(σ (i)

k )+ μ(σ (i)
k → σ ( j)

k+1) for all possible paths through the trellis that

terminate in each state σ ( j)
k+1, j = 0, . . . , NS − 1, where μ(σ (i)

k → σ ( j)
k+1) is the

branch metric defined below. For a modulation alphabet of size M, there will be

M such paths that terminate in each state σ ( j)
k+1.

2. Find Γ(σ ( j)
k+1) = max

i
Γ(σ (i)

k → σ ( j)
k+1), j = 0, . . . , NS −1 where the maximization

is over all M possible paths through the trellis that terminate in state σ ( j)
k+1.

3. Store Γ(σ ( j)
k+1) and its associated surviving sequence š(σ ( j)

k+1), j = 0, . . . , NS −1.
Drop all other paths.

4. Increment the time index k, goto Step 1 and repeat the entire algorithm.

In Step 1 above, μ(σ (i)
k → σ ( j)

k+1) is the branch metric associated with the state

transition σ (i)
k → σ ( j)

k+1 and is computed according to the following variation of
(8.68)

μ
(

σ (i)
k → σ ( j)

k+1

)
= −

�

∑
m=1

∥∥∥r̃k,m −gk,ms̃k,m

(
σ (i)

k → σ ( j)
k+1

)∥∥∥
2
, (8.70)

where s̃k,m(σ (i)
k → σ ( j)

k+1) is a symbol that is uniquely determined by the state

transition σ (i)
k → σ ( j)

k+1 and the symbol mapping being used.

The calculation of the path metric Γ(σ (0)
k+1) for state σ (0) at epoch k + 1 is

illustrated in Fig. 8.8 for the code trellis shown in Fig. 8.6. In this case, there are
two paths merging into state σ (0) at epoch k + 1. The Viterbi algorithm determines

the path metric Γ(σ (0)
k+1) in this particular example as
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Γ
(

σ ( j)
0

)
= max

{
Γ(σ (0)

k )+ μ(σ (0)
k → σ (0)

k+1),Γ(σ (2)
k )+ μ(σ (2)

k → σ (0)
k+1)

}

= Γ
(

σ (0)
k

)
+ μ(σ (0)

k → σ (0)
k+1).

Hence, the path that includes the state transition σ (0)
k → σ (0)

k+1 is the survivor and the

path that includes the state transition σ (2)
k → σ (0)

k+1 is “dropped” as indicated by the
“X” on the path.

8.2.5 BCJR Algorithm

The Viterbi algorithm uses MLSE to find the most likely input sequence. The BCJR
algorithm, named after Bahl, Cocke, Jelinek, and Raviv [25], is a symbol-by-symbol
maximum a posteriori probability (MAP) algorithm for decoding convolutional
codes. Here we describe the BCJR algorithm for rate-1/n convolutional codes with
binary modulation.

Having observed the received sequence r̃, the decoder calculates the a posteriori
probabilities (APPs) P[ak = +1|r̃] and P[ak = −1|r̃], and decides ak = +1 if
P[ak = +1|r̃] > P[ak = −1|r̃] and ak = −1 otherwise. Alternatively, the decoder
can calculate the a posteriori log-likelihood ratio (LLR)

L(ak|r̃) �
= log

(
P[ak = +1|r̃]
P[ak = −1|r̃]

)
, (8.71)

and make the decision âk = sign(L(ak|r̃)). We first note that code bit ak is output for
the state transition σk → σk+1, and there may be several such state transitions that
will output the same code bit. It follows that the APP is

P[ak = u|r̃] =
p(r̃,ak = u)

p(r̃)

∝ p(r̃,ak = u)

= ∑
σk→σk+1:ak=u

p(r̃,σk,σk+1). (8.72)

Hence, the a posteriori LLR can be written as

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 p(r̃,σk,σk+1)

∑σk→σk+1:ak=−1 p(r̃,σk,σk+1)

}
. (8.73)

One elegant form of the APPs can be obtained by first defining the sequences

r̃ j<k = {r̃ j,1, . . . , r̃ j,n}k−1
j=1, (8.74)
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r̃ j>k = {r̃ j,1, . . . , r̃ j,n}N
j=k+1, (8.75)

r̃k = {r̃k,1, . . . , r̃k,n}, (8.76)

such that r̃ = (r̃ j<k, r̃k, r̃ j>k), where N is the block length (equal to the number of
input bits). Then the joint probability p(r̃,σk,σk+1) can be split as follows [124]:

p(r̃,σk,σk+1) = p(σk,σk+1, r̃ j<k, r̃k, r̃ j>k)

= p(σk,σk+1, r̃ j<k, r̃k)p(r̃ j>k|σk,σk+1, r̃ j<k, r̃k)

= p(σk, r̃ j<k)p(r̃k,σk+1|σk, r̃ j<k)p(r̃ j>k|σk,σk+1, r̃ j<k, r̃k)

= p(σk, r̃ j<k) · p(r̃k,σk+1|σk) · p(r̃ j>k|σk+1)

= αk(σk) · γk(σk → σk+1) ·βk+1(σk+1), (8.77)

leading to three terms; the branch metric γk(σk → σk+1), and the terms αk(σk) and
βk+1(σk+1). The second last equality in (8.77) comes from the properties of the
code trellis, which causes r̃ j>k to depend on σk,σk+1, r̃ j<k, r̃k only through the state
σk+1, and the pair r̃k,σk+1 depends on σk, r̃ j<k only through the state σk.

The terms αk(σk) and βk+1(σk+1) can be calculated according to a forward
recursion and a backward recursion, respectively. The forward recursion is given by

αk+1(σk+1) = p(σk+1, r̃ j<k+1)

= p(σk+1, r̃k, r̃ j<k)

= ∑
σk

p(σk+1,σk, r̃k, r̃ j<k)

= ∑
σk

p(r̃ j<k,σk)p(r̃k,σk+1|σk)

= ∑
σk

αk(σk) · γk(σk → σk+1) (8.78)

with the initial condition α0(σ0) = 1, that is, the all-zeroes state σ0 is the initial state
in the code trellis.

Similarly, the backward recursion is given by

βk(σk) = p(r̃ j>k−1|σk)

= ∑
σk+1

p(σk+1, r̃k, r̃ j>k|σk)

= ∑
σk+1

p(r̃k,σk+1|σk)p(r̃ j>k|σk+1)

= ∑
σk+1

γk(σk → σk+1) ·βk+1(σk+1) (8.79)
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with the initial condition βN(σ0) = 1, that is, the all-zeroes state σ0 is the ending
state of the code trellis. Note that tail bits are required to terminate the trellis in
state σ0.

The branch metric γk(σk → σk+1) has the form

γk(σk → σk+1) = p(σk, r̃i,σk+1)− p(σk+1|σk)p(r̃i|σk+1,σk)

= P[ak = u]p(r̃k|ak = u)

= P[ak = u]p(r̃k|gk,1s̃k,1, . . . ,gk,ns̃k,n), (8.80)

where s̃k = {s̃k,1, . . . , s̃k,n} is the sequence of binary modulated symbols transmitted
at epoch k, and gk = {gk,1, . . . ,gk,n} is the corresponding sequence of complex
channel gains at epoch k. The third line in (8.80) used the fact that there is a one-to-
one correspondence between the state transition σk → σk+1 in the code trellis and
the input bit ak = u, and where we have assumed that the state transition σk → σk+1

is possible in the code trellis. Note that the branch metric depends on the prior
probability P[ak = u] of the information bit at epoch k, and on the conditional
probability p(r̃k|gk,1s̃k,1, . . . ,gk,ns̃k,n) which is given by (8.67).

Finally, using (8.77) and (8.73) along with (8.78), (8.79), and (8.80), we obtain
the a posteriori LLR

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 αk(σk) · γk(σk → σk+1) ·βk+1(σk+1)

∑σk→σk+1:ak=−1 αk(σk) · γk(σk → σk+1) ·βk+1(σk+1)

}
, (8.81)

and make decisions according to âk = sign(L(ak|r̃)). Note that the L(ak|r̃) provide
a level of certainty of the decoder about the value of ak and are called soft outputs.
These soft outputs are essential for the decoding of turbo codes that will be discussed
later in this chapter.

8.2.5.1 Log-MAP Algorithm

The BCJR algorithm as described above exhibits numerical instability in the form of
underflows and overflows. An alternative to this algorithm is its log-domain version
known as the log-APP or log-MAP algorithm. Instead of using αk(σk), βk+1(σk+1)
and γk(σk → σk+1), we define their logarithms as follows:

α̃k(σk) = log{αk(σk)}, (8.82)

β̃k+1(σk+1) = log{βk+1(σk+1)}, (8.83)

γ̃k(σk → σk+1) = log{γk(σk → σk+1)}. (8.84)
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By examining (8.78) and (8.79), it can be seen that

α̃k+1(σk+1) = log

{
∑
σk

eα̃k(σk)+γ̃k(σk→σk+1)

}
, (8.85)

β̃k(σk) = log

{
∑

σk+1

eγ̃k(σk→σk+1)+β̃k+1(σk+1)

}
(8.86)

with the initial conditions α̃0(σ0) = 0 and β̃N(σ0) = 0, assuming that the code trellis
begins and ends in state σ0. The a posteriori LLR values are calculated according to

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 eα̃k(σk)+γ̃k(σk→σk+1)+β̃k+1(σk+1)

∑σk→σk+1:ak=−1 eα̃k(σk)+γ̃k(σk→σk+1)+β̃k+1(σk+1)

}
. (8.87)

To proceed further, we define the jacobian logarithm

max∗{x,y} �
= log{ex + ey}, (8.88)

max∗{x,y,z} �
= log{ex + ey + ez}. (8.89)

Note that

max∗{x,y} = max{x,y}+ log{1 + e−|x−y|}. (8.90)

The second term log{1 + e−|x−y|} is small when x and y are not close, and its
maximum value is equal to log{2} when x = y. Hence, when x and y are not close
we can use the approximation

max∗{x,y} ≈ max{x,y}. (8.91)

When the above approximation is used in place of the jacobian logarithm, we obtain
a suboptimal (but simpler) implementation the log-MAP algorithm called the max-
log-MAP algorithm.

Using the jacobian logarithm, we can write

α̃k+1(σk+1) = maxσk
∗ (α̃k(σk)+ γ̃k(σk → σk+1) , (8.92)

β̃k(σk) = maxσk+1
∗
(

γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)

, (8.93)
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and the a posteriori LLR values are

L(ak|r̃) = max
σk→σk+1

ak=+1

∗
(

α̃k(σk)+ γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)

(8.94)

− max
σk→σk+1

ak=−1

∗
(

α̃k(σk)+ γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)

.

Example 8.4:
Consider the case of a rate-1/2 RSC code, for example, the encoder

shown in Fig. 8.7. In this case, the transmitted sequence of code symbols
is s̃ = {s̃n}k

n=1, where s̃n = (s̃n,s, s̃n,p) and the terms with subscripts s
and p correspond to the systematic (information bit) and parity check bit,
respectively. For binary modulation, s̃n,s, s̃n,p ∈ {−√

2Eh,
√

2Eh}, where Eh =
Ec is the energy per code bit. Likewise, the sequence of received vectors is
r̃ = {r̃n}k

n=1, where r̃n = (r̃n,s, r̃n,p).
Returning to the branch metric in (8.80), we have

γk(σk→σk+1) = P[ak = u]p(r̃k,s, r̃k,p|gk,ss̃k,s,gk,ps̃k,p)

=
P[ak = u]
(2πNo)N exp

{
− 1

2No

(|r̃k,s −gk,ss̃k,s|2 + |r̃k,p −gk,ps̃k,p|2
)}

=
1

(2πNo)N exp

{
− 1

2No

(|r̃k,s|2 + |r̃k,p|2 + 4Ec
)}

×P[ak = u]exp

{
1

No

(
Re{g∗k,sr̃k,ss̃k,s}+ Re{g∗k,pr̃k,ps̃k,p}

)}
.

(8.95)

Note that the term

1
(2πNo)N exp

{
− 1

2No

(|r̃k,s|2 + |r̃k,p|2 + 4Ec
)}

is independent of ak and will cancel in the numerator and denominator of the
a posteriori LLR in (8.87) and, therefore, can be ignored. Also, the numerator
in (8.87) has s̃k,s =

√
2Ec corresponding to ak = +1, while the denominator

has s̃k,s = −√
2Ec corresponding to ak = −1. It follows that the a posteriori

LLR in (8.81) becomes
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L(ak|r̃) =
2
√

2Ecg∗k,sr̃k,s

No
+ log

{
P[ak = +1]
P[ak = −1]

}

+log

⎧
⎪⎪⎨
⎪⎪⎩

∑σk→σk+1:ak=+1 αk(σk) · exp
{Re{g∗k,pr̃k,ps̃k,p}

No

}
·βk+1(σk+1)

∑σk→σk+1:ak=−1 αk(σk) · exp

{
Re{g∗k,pr̃k,ps̃k,p}

No

}
·βk+1(σk+1)

⎫
⎪⎪⎬
⎪⎪⎭

.

(8.96)

Note that the symbols s̃k,p are not conjugated in the above expression since they
are real-valued in this example. If the Log-MAP algorithm is used, then the a
posteriori LLR becomes

L(ak|r̃) = Lsys(ak|r̃s)+La(ak)+Le(ak|r̃p), (8.97)

where Lsys(ak|r̃s), La(ak) and Le(ak|r̃p) are, respectively, defined as

Lsys(ak|r̃s) =
2
√

2Ecg∗k,s r̃k,s

No
, (8.98)

La(ak) = log
{

P[ak=+1]
P[ak=−1]

}
, (8.99)

Le(ak|r̃p) = max
σk→σk+1

ak=+1

∗
(

α̃k(σk)+
Re{g∗k,pr̃k,ps̃k,p}

No
+ β̃k+1(σk+1)

)

− max
σk→σk+1

ak=−1

∗
(

α̃k(σk)+
Re{g∗k,pr̃k,ps̃k,p}

No
+ β̃k+1(σk+1)

)
. (8.100)

The a posteriori LLR consists of three terms; the first depends on the channel
output due to the systematic component, the second depends on the a priori
probabilities of the information bits, and the third depends on the channel outputs
due to the parity bits. Usually P[ak = +1] = P[ak = −1] = 1/2 for convolutional
decoders, so that the a priori term La(ak) is zero. However, for the iterative
decoders that are used with the turbo codes discussed later in this chapter, the
decoder will receive extrinsic of soft information for each ak which serves as
a priori information. Once the a posteriori LLR has been calculated, the extrinsic
information can be calculated as

Le(ak|r̃p) = L(ak|r̃)−Lsys(ak|r̃s)−La(ak). (8.101)
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8.3 Trellis Coded Modulation

8.3.1 Encoder Description

Conventional convolutional codes realize a coding gain at the expense of the
coded modulation efficiency or bits/s/Hz. Although convolutional codes may be
attractive for power-limited applications, they are less suitable for bandwidth-
limited applications. One approach for overcoming the loss of coded modulation
efficiency is to map the encoder output bits onto a higher-order signal constellation,
such as M-PSK or M-QAM. However, the symbol mapping that is used in this
case is very critical. Using a straight forward mapping, such as Gray mapping or
natural mapping, will give disappointing results because the decreased Euclidean
distance between the signals points in the higher-order constellation will tend to
offset the benefits gained from using the convolutional code. Ungerboeck showed
that a coding gain can be achieved without sacrificing data rate or bandwidth using a
rate-m/(m+r) convolutional encoder, and mapping the coded bits onto signal points
{xk} through a technique called mapping by set partitioning [258]. This combination
of coding and modulation, called TCM, has three basic features:

1. An expanded signal constellation is used that is larger than the one necessary
for uncoded modulation at the same data rate. The additional signal points allow
redundancy to be inserted without sacrificing data rate or bandwidth.

2. The expanded signal constellation is partitioned such that the intra-subset
minimum squared Euclidean distance is maximized at each step in the partition
chain.

3. Convolutional encoding and signal mapping is used so that only certain
sequences of signal points are allowed.

Figure 8.9 shows the basic encoder structure for Ungerboeck’s trellis codes. The

n-bit information vector ak = (a(1)
k , . . . , a(n)

k ) is transmitted at epoch k. At each
epoch k, m ≤ n data bits are encoded into m + r code bits using a rate-m/(m + r)

subset
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Fig. 8.9 Ungerboeck trellis encoder
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Fig. 8.10 Encoder and signal mapping for the 4-state 8-PSK Ungerboeck trellis code
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Fig. 8.11 Encoder and signal mapping for the eight-state 8-PSK Ungerboeck trellis code

linear convolutional encoder. The m + r code bits select one of 2m+r subsets of a
2n+r-point signal constellation. The remaining n−m data bits are used to select
one of the 2n−m signal points within the selected subset. This principle is best
explained by example, and Fig. 8.10 shows a 4-state 8-PSK Ungerboeck trellis code.
The equivalent uncoded system is 4-PSK which has a rate of 2 bits/symbol. The
4-state 8-PSK code uses a rate-1/2 convolutional code along with one uncoded bit to
select signal points in an expanded 8-PSK signal constellation. Note that the overall
rate is still 2 bits/symbol. Figure 8.11 shows another example of an eight-state
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Fig. 8.12 Set partitioning for an 8-PSK signal constellation

8-PSK Ungerboeck trellis code. The equivalent uncoded system is again 8-PSK
with 2 bits/symbol. The eight-state 8-PSK code uses a rate-2/3 convolutional code
to select one of the points in an expanded 8-PSK signal constellation so that the
overall rate is again 2 bits/symbol.

8.3.2 Mapping by Set Partitioning

The critical step in the design of Ungerboeck’s codes is the method of mapping by
set partitioning. Figure 8.12 shows how the 8-PSK signal constellation is partitioned
into subsets such that the intra-subset minimum squared Euclidean distance is
maximized for each step in the partition chain. Here we assume a normalized 8-PSK
signal constellation having eight signal points uniformly spaced around a circle of
unit radius. Notice that the minimum Euclidean distance between signal points in the
normalized 8-PSK signal constellation is Δ0 = 0.765, while the minimum Euclidean
distances between signal points in the first and second level partitions are Δ1 =

√
2

and Δ2 = 2, respectively. Notice that the minimum Euclidean distance increases at
each level of partitioning.

The advantages of using TCM can most easily be seen by considering the trellis
diagram. For both the 4-state and eight-state 8-PSK trellis codes, the equivalent
uncoded system is 4-PSK. The trellis diagram for uncoded 4-PSK is shown in
Fig. 8.13. The trellis only has one state and there are four parallel transitions between
the states. The subsets D0, D2, D4, and D6 are used as the signal points. The label
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Fig. 8.13 Trellis diagram for
uncoded 4-PSK

D6D4D2D0 σ(0)

6
4

2
0

Fig. 8.14 Trellis diagram for
4-state 8-PSK Ungerboeck
trellis code
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D0,D2,D4,D6 means that the branches in the trellis diagram are labeled from top
to bottom with signal points taken from the sets D0,D2,D4,D6. The minimum
Euclidean distance between any two paths through the trellis is dmin =

√
2.

The trellis diagram for the 4-state 8-PSK code is shown in Fig. 8.14. Each branch
in the 4-state trellis is labeled with one of the four subsets C0, C1, C2, and C3. Again,
the label CiCj associated with a state means that the branches in the trellis diagram
originating from that state are labeled from top to bottom with the subsets Ci and
Cj. As shown in Fig. 8.12, each subset Ci contains two signal points. Thus, each
branch in the trellis diagram actually contains two parallel transitions. For example,
branches with the label C0 have two parallel transitions that are labeled with the
signal points 0 and 4. For the 4-state 8-PSK code, it is possible that two coded
sequences could differ by just a single parallel transition with a Euclidean distance
of d = 2. Also, any two signal paths that diverge from a state and merge with the
same state after more that one transition have a minimum Euclidean distance of
d =

√
Δ2

1 + Δ2
0 + Δ2

1 = 2.141. For example, the closest nonparallel code sequence

to the all-zeroes sequence x = (0,0,0) is the sequence x = (2,1,2) at Euclidean
distance d = 2.141. Hence, the minimum Euclidean distance of the code over all
parallel and nonparallel pairs of sequences for the 4-state 8-PSK code is dmin = 2.

The concept of mapping by set partitioning was developed by Ungerboeck
as a method for maximizing the minimum Euclidean distance of a code and
consequently to optimize its performance on an AWGN channel. Ungerboeck’s
construction of the optimum 4-state 8-PSK code was based on the following
heuristic rules [259]:

1. Parallel transitions (when they occur) are assigned signal points having the
maximum Euclidean distance between them.

2. The transition starting or ending in any state is assigned the subsets (C0,C2) or
(C1,C3) which have a maximum distance between them.

3. All signal points are used in the trellis diagram with equal frequency.
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Fig. 8.15 Trellis diagram for
8-state 8-PSK Ungerboeck
trellis code. The dashed lines
show two minimum distance
paths
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It is clear that the performance of the 4-state 8-PSK code is limited by the
parallel transitions. Larger asymptotic coding gains can be obtained by introducing
more code states so that the parallel transitions are eliminated. For example, the
above design rules can be applied to the 8-state 8-PSK code to obtain the code
trellis shown in Fig. 8.15. In this case, the minimum Euclidean distance is dmin =√

Δ2
1 + Δ2

0 + Δ2
1 = 2.141.

8.4 Code Performance on AWGN Channels

Viterbi originally exploited the trellis structure of convolutional codes and devel-
oped the Viterbi algorithm for ML decoding of convolutional codes [266, 267].
Forney recognized the analogy between an ISI channel and a convolutional encoder,
and applied the Viterbi algorithm for the detection of digital signals corrupted by ISI
and AWGN as discussed in Sect. 7.4.1 [104]. Given the similarity between the trellis
structures of ISI channels, convolutional codes, and trellis codes (e.g., compare
Figs. 7.11, 8.6, and 8.14), it is not surprising that the union bounding techniques
that we used to evaluate the error probability of digital signaling on ISI channels
with an MLSE receiver in Sect. 7.5 can be applied, with appropriate modification,
to evaluate the error probability of convolutional and trellis codes with an MLSE
receiver.

To develop the union bound on decoded bit error probability, let a = {ak} denote
the transmitted information sequence. For any other sequence â �= a, define the
corresponding error sequence as e = {ek} = a ⊕ â, where ⊕ denotes modulo-2
addition. Since the bit error probability at epoch j1 is of interest, e j1 �= 0 for all error
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sequences. An error event occurs between k1 and k2 of length k2 − k1, if σ k1 = σ̂ k1

and σ k2 = σ̂ k2 , but σ j �= σ̂ j for k1 < j < k2, where k1 ≤ j1 < k2, and σ = {σk} and
σ̂ = {σ̂ k} are the system state sequences associated with a and â, respectively. Let
E be the set of error sequences that have the first nonzero element starting at time
j1. Then, the average bit error probability is bounded by

Pb ≤ 1
n ∑

e∈E
wb(e) ∑

a
P [a] P

[
Γ(a⊕ e ) ≥ Γ(a)

∣∣∣a
]

, (8.102)

where Γ(a) is the path metric of a, and wb(e) is the number of bit errors associated
with e. The factor 1/n appears in front of the first summation, because n information
bits are transmitted per epoch (or per branch in the trellis diagram). The second
summation is over all possible information sequences, because each sequence a can
have e as the error sequence. This is necessary for TCM because the signal mapping
and, hence, the codes are nonlinear.

Another way of writing the bound on the bit error probability in (8.102) is

Pb ≤ ∑̃
s∈C

∑
ŝ∈C

wb(s̃, ŝ)P[s̃]P[s̃ → ŝ], (8.103)

where C is the set of all coded symbol sequences, wb(s̃, ŝ) is the number of bit
errors that occur when the complex symbol sequence s̃ = {s̃i} is transmitted and
the complex symbol sequence ŝ �= s̃ is chosen by the decoder, P[s̃] is the a priori
probability of transmitting s̃, and P[s̃ → ŝ] is the pairwise error probability.

At high signal-to-noise ratio (SNR), the BER performance on an AWGN channel
is dominated by the minimum Euclidean distance error events. The pairwise error
probability between two coded symbol sequences s̃ and ŝ separated by Euclidean
distance dmin is

P[s̃ → ŝ] = Q

⎛
⎝
√

d2
min

4No

⎞
⎠ . (8.104)

The asymptotic coding gain (at high SNR) is defined by [36]

Ga = 10log10

(d2
min,coded/Eav,coded)

(d2
min,uncoded/Eav,uncoded)

dB (8.105)

where Eav is the average energy per symbol in the signal constellation. For the
4-state 8-PSK code shown in Fig. 8.10, the asymptotic coding gain is Ga = 3 dB over
uncoded 4-PSK. Likewise, the 8-state 8-PSK code in Fig. 8.11 has an asymptotic
coding gain of 3.6 dB over uncoded 4-PSK.
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8.4.1 Union Bound for Convolutional Codes

For convolutional codes, the upper bound in (8.102) simplifies because the codes
are linear, meaning that the sum of any two codewords is another codeword and that
all-zeroes sequence is a codeword [159]. Because of this property, we can assume
that the all-zeroes sequence was transmitted, that is, a = 0, so that the union bound
becomes

Pb ≤ 1
k ∑

e∈E
wb(e) P

[
Γ(e ) ≥ Γ(0)

]
. (8.106)

Note that we divide by k rather than n in front of the summation, because a
convolutional code transmits k bits per epoch, whereas a trellis code transmits n
bits per epoch.

For convolutional codes, the set E in (8.106) consists of all sequences that
begin and end at the zero-state in the state diagram. The enumeration of these
sequences (or codewords) along with their associated Hamming distances, in-
formation weights, and lengths was obtained earlier by computing the transfer
function, T (D,N,L), of the augmented state diagram. When a particular incorrect
path through the trellis is selected over the all-zeroes path at a given node in the
trellis, the corresponding number of bits errors, wb(e), is given by the exponent
of N in the transfer function. Multiplying wb(e) by the pairwise error probability
P
[

Γ(e ) ≥ Γ(0)
]

for that path and dividing by the number of input bits per branch,
k, give the bit error probability associated with that path. Summing over the set of
all possible incorrect sequences E yields a union bound on the bit error probability.

The pairwise error probability in (8.106) depends on the type of modulation,
detection, and decoding that is used. The code bits are mapped onto symbols taken
from a signal constellation and transmitted over the channel. Assuming an AWGN
channel and a coherent receiver, the received vector (see Sect. 5.1) at epoch n is

r̃n = s̃n + ñn, (8.107)

where s̃n is the transmitted symbol vector and ñn is the Gaussian noise vector
at epoch n. For convolutional codes, two types of decoding are commonly used:
hard decision decoding and soft decision decoding. Soft decision decoders use the
sequence of received signal vectors r = {rn} to make sequence decisions. For an
AWGN channel, the MLSE receiver searches for the sequence of symbol vectors
s̃ = {s̃n} that is closest in Euclidean distance to the received sequence of signal
vectors r. To do so, the MLSE receiver chooses the sequence ŝ that minimizes the
metric

μ(ŝ) = ‖r− ŝ‖2. (8.108)

The decided sequence ŝ maps one-to-one onto the data bit sequence â that is the
final estimate of the transmitted information sequence.
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In general, the pairwise error probability for an AWGN channel that is associated
with an error event of length � beginning at epoch k1 is

P2(�) = Q

⎛
⎝
√

Δ2

4No

⎞
⎠ , (8.109)

where

Δ2 =
k1+�+1

∑
k=k1

δ 2
k , (8.110)

δ 2
k = ‖s̃k − ŝk‖2 (8.111)

and s̃ = {s̃k} and ŝ = {ŝk} are the symbol sequences corresponding to the data bit
sequences ã and â, respectively. The parameter δ 2

k is the squared branch Euclidean
distance associated with branch k, and Δ2 is the squared path Euclidean distance
associated with the error event. Clearly, the pairwise error probability depends on
the particular mapping between the encoder output bits and the points in the signal
constellation. Suppose for example that code bits are mapped onto a BPSK signal
constellation. Then the pairwise error probability between the two codewords b̃ and
b̂ that differ in d positions is

P2(d) = Q(
√

2Rcdγb), (8.112)

where γb is the received bit energy-to-noise ratio.2 Note that we have explicitly
shown the pairwise error probability to be a function of the Hamming distance
between the codewords in (8.112). However, it is important to realize that this
property does not always apply. For example, if the outputs of the rate-2/3
convolutional encoder in Fig. 8.2 are mapped onto symbols from an 8-PSK signal
constellation, then the pairwise error probability depends not only on the Hamming
distance between codewords, but also upon the particular mapping between the
8-PSK symbols and the encoder outputs.

In general, the transfer function T (D,N) for a convolutional code has the form

T (D,N) =
∞

∑
d=dfree

adDdN f (d), (8.113)

where f (d) is the exponent of N as a function of d. For the example in (8.52),
ad = 2d−5 and f (d) = d −4. Differentiating T (D,N) with respect to N and setting
N = 1 gives

dT (D,N)
dN

∣∣∣N=1 =
∞

∑
d=dfree

ad f (d)Dd . (8.114)

2The received symbol energy-to-noise ratio is γs = Rcγb
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Once again, for the example in (8.52) this leads to

dT (D,N)
dN

∣∣∣N=1 =
∞

∑
d=dfree

2d−5(d −4)Dd. (8.115)

Using this notation, the union bound on bit error probability for convolutional
coding with BPSK modulation is

Pb ≤ 1
k

∞

∑
d=dfree

ad f (d)P2(d), (8.116)

where P2(d) is given by (8.112).
In contrast to soft decision decoders, hard decision decoders first make symbol-

by-symbol decisions on the sequence of received vectors r = {rk} to yield the
sequence of symbol decisions s̃ = {s̃k}. The decoder then operates on the sequence s̃
to estimate the most likely transmitted data sequence. A minimum distance decoder
is one that decides in favor of the symbol sequence ŝ that is closest in Hamming
distance to the received symbol sequence s̃. Again, the pairwise error probability
depends on the particular mapping between the encoder outputs and the points in
the signal constellation. If BPSK signaling is used, for example, then the pairwise
error probability between two codewords b̃ and b̂ at Hamming distance d is

P2(d) =

{
∑d

k=(d+1)/2

(d
k

)
pk(1− p)d−k , d odd

∑d
k=d/2+1

(d
k

)
pk(1− p)d−k + 1

2

( d
d/2

)
pd/2(1− p)d/2 , d even

, (8.117)

where

p = Q(
√

2Rcγb) (8.118)

is the probability of symbol error. Once again, the pairwise error probability for
BPSK is a function of the Hamming distance between the codewords.

8.4.1.1 Union-Chernoff Bound for Convolutional Codes

The union bound in (8.116) can be simplified by imposing a Chernoff bound (see
Appendix) on the pairwise error probability. First consider the case of soft decision
decoding. Suppose that sequence s̃ is transmitted and r is the received sequence.
Then the pairwise error probability between sequences s̃ and ŝ with an maximum
likelihood receiver can be Chernoff bounded by

P[s̃ → ŝ] = P
[‖r− ŝ‖2 < ‖r− s̃‖2]

≤ E
[
eλ(‖r−s̃‖2−‖r−ŝ‖2) |s̃

]
. (8.119)
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Substituting r = s̃ + n, taking the expectation over the complex Gaussian random
vector n, and simplifying gives

P[s̃ → ŝ] ≤ e−λ‖s̃−ŝ‖2(1−λ 2No). (8.120)

The tightest upper bound is obtained with λ ∗ = 1/(4No) yielding

P[s̃ → ŝ] ≤ e−‖s̃−ŝ‖2/8No . (8.121)

For the case of BPSK signaling on an AWGN channel, the Chernoff bound on the
pairwise error probability becomes

P2(d) ≤ e−dγs = e−Rcdγb , (8.122)

where d is the number of coordinates in which the sequences s̃ and ŝ differ, γs =
Eh/No is the received symbol energy-to-noise ratio, Rc is the code rate, and γb is
the received bit energy-to-noise ratio. Likewise, if BPSK signaling is used with
hard decision decoding, it can be shown that the pairwise error probability has the
Chernoff bound

P2(d) ≤ [4p(1− p)]d/2, (8.123)

where the code bit error probability p is given by (8.118).
Notice how the Hamming distance d appears in the exponent of the Chernoff

bound on pairwise error probability with either hard or soft decision decoding. From
(8.114) and (8.116), it is apparent that the decoded bit error probability has the
following union-Chernoff bound:

Pb ≤ 1
k

dT (D,N)
dN

|N=1,D=Z , (8.124)

where

Z =

{√
4p(1− p) , hard decision decoding

e−Rcγb , soft decision decoding
. (8.125)

At high SNR, the performance is dominated by the error events with minimum
Hamming distance. Since the minimum distance error events are not necessarily
mutually exclusive, the decoded bit error probability with BPSK at high SNR is
approximately

Pb ≈ 1
k

adfree f (dfree)P2(dfree) ≤ 1
k

adfree f (dfree)Zdfree . (8.126)

The above procedure for upper bounding the decoded bit error probability
is sometimes called the transfer function approach, because it uses the transfer
function of the augmented state diagram. However, the transfer function approach
has its limitations. First, as the number of encoder states becomes large, it becomes
difficult to compute the transfer function T (D,N). Second, for nonbinary signal
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constellations, the pairwise error probability will depend on the particular pair
of modulated symbol sequences, and not just on the Hamming distance between
them. In this case, the branch labeling in the augmented state diagram must be
done differently and the Chernoff bound cannot be used. These problems can be
overcome using a different approach to compute the upper bound, such as a stack
algorithm [240].

8.5 Interleaving

Most error control codes are designed for memoryless channels, where successively
transmitted code symbols experience independent channel conditions. Although
this memoryless property holds for AWGN channels, it is not usually the case for
wireless channels due to the temporal correlation of the channel, as discussed in
Chap. 2. An effective method for dealing with such channels is to use interleaving.
There are two basic approaches to interleaving, namely symbol interleaving and
bit interleaving. A symbol interleaver performs symbol-by-symbol interleaving of
the code symbols after they have been mapped onto a signal constellation. A bit
interleaver, on the other hand, performs bit-by-bit interleaving of the encoder
outputs before they are mapped onto a signal constellation.

The interleaving/deinterleaving operation serves to reduce the correlation be-
tween the fades experienced by successive code bits at the output of the en-
coder. Since, most error control codes are designed for memoryless channels,
this will generally improve the decoded BER performance. Indeed if the inter-
leaver/deinterleaver was eliminated and the channel fades slowly, it is possible that
entire codewords could be received with either a low or a high SNR. Under a low
instantaneous SNR condition even a very low-rate code will fail, while under a high
instantaneous SNR condition even very high-rate codes will succeed. Under such
conditions, the error control code is ineffective.

8.5.0.2 Block Interleaving

A block interleaver can be regarded as a buffer with J rows and M columns, where
J represents the interleaving depth and M represents the interleaving span. Such an
interleaver is called a (J,M) block interleaver, and the length of the interleaver is
JM. The block interleaver can be used to perform either symbol interleaving or bit
interleaving. In the case of symbol (bit) interleaving, the code symbols (bits) are
input to the buffer row-wise from top to bottom and output from the buffer column-
wise from left to right. The deinterleaver simply performs the reverse operation. The
block interleaver has the following characteristics:

1. Any burst of symbol (bit) errors of length j ≤ J results in single symbol (bit)
errors at the deinterleaver output that are each separated by at least M symbols
(bits).
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2. Any burst of symbol (bit) errors of length j = kJ,k > 1 results in bursts of no
more than �k� symbol (bit) errors that are separated by no less than M − �k�
symbols (bits).

3. A periodic sequence of single symbol (bit) errors that are spaced J code symbols
(bits) apart results in a single burst of symbol (bit) errors of length M at the
deinterleaver output.

4. The end-to-end interleaving delay is equal to 2JM code symbols (bits), and the
memory requirements for the interleaver and deinterleaver is equal to JM code
symbols (bits).

In practise, the interleaver depth J should be chosen so that successive code
symbols (bits), which are transmitted J code symbol (bit) durations apart, are
independently faded. Chapter 2 showed that the temporal autocorrelation function
of a cellular land mobile radio channel observed at either the mobile station or
the base station with 2D isotropic scattering around the mobile station is φgg(τ) =
Ωp
2 J0(2π fmτ), where fm = v/λc with v being the mobile station velocity and λc the

carrier wavelength. From Fig. 2.5, we can see that the temporal autocorrelation
is small provided that fmτ > 0.5. Hence, for effective interleaving, we should
have J > 0.5λc/vT , where T is the code symbol (bit) duration. The choice of the
parameter M depends on the type of coding used. For block codes M should be larger
than the block length. For convolutional and trellis codes, the interleaver should
separate any LD + 1 successive code symbols (bits) as far apart as possible, where
LD is the decoding depth. Hence, we should have M ≥ LD + 1. For convolutional
and trellis codes, it is well known that the decoding depth LD ≈ 5K, where K is the
constraint length.

Observe that the required interleaving depth is inversely proportional to the speed
of the mobile station and, therefore, slower moving mobile stations require larger
interleaving depths. Unfortunately, interleaving introduces delay into the link, since
we must fill the J×M interleaver array before the symbols (bits) can be transmitted,
and later fill the J×M deinterleaver array before the symbols (bits) can be decoded.
However, delay critical traffic such as real-time voice will impose a limit on the
interleaving delay defined as td = JMT and, therefore, the interleaving will be
insufficient at low speeds. For example, if fc = 900 MHz, R = 1/T = 24× 103,
and v = 30 km/h, we require J > 478. For a constraint length K = 3 convolutional
code with a decoding depth LD = 5K = 15, the minimum required interleaving delay
satisfies

td = JMT > 0.5λc(LD + 1)/v = 319 ms.

Such a delay is quite large, especially for real-time voice applications, and the
problem is exasperated by lower mobile station speeds. One possible solution
is to use a code with a smaller decoding depth LD. The other solution is to
use improved interleaving techniques to reduce the interleaving delay. Once such
interleaver is the convolutional interleaver discussed below. However, at low speeds
the required interleaving delay may be excessive with any type of interleaver. Under
such conditions, adaptive closed loop power control techniques are effective for
combatting fading.
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Fig. 8.16 Convolutional interleaver implemented with shift registers

8.5.0.3 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [222] and Forney [103],
and here we discuss the structure proposed by Forney. Defining the parameter M =
LJ, the interleaver is referred to as a (J,M) interleaver and has properties that are
similar to a (J,M) block interleaver.

As shown in Fig. 8.16, the code symbols (bits) are input sequentially into the
bank of J registers of increasing lengths. With each new code symbol (bit), the
commutator switches to the next register, the code symbol (bit) is input to the
register and the oldest code symbol (bit) in that register is shifted out to the channel.
The input and output commutators of the interleaver operate in a synchronous
fashion. The deinterleaver performs the reverse operation, and the deinterleaving
commutators must be synchronized with the interleaving commutators. The most
important properties of the convolutional interleaver are as follows:

1. The minimum separation at the interleaver output is J symbols (bits) for any two
symbols that are separated by less than M symbols (bits) at the interleaver output.

2. Any burst of symbol (bit) errors of length j ≤ J results in single symbol (bit)
errors at the deinterleaver output that are each separated by at least M symbols
(bits).

3. A periodic sequence of single symbol (bit) errors that are spaced M + 1 code
symbols (bits) apart results in a single burst of symbol (bit) errors of length J at
the deinterleaver output.

4. The end-to-end interleaving delay is equal to M(J −1) code symbols (bits), and
the memory requirements for both the interleaver and deinterleaver are equal to
M(J −1)/2 code symbols (bits). This is half the delay and memory requirement
of a (J,M) block interleaver.

The parameters J and M are chosen in the same manner as for a block interleaver,
and the performance is very similar.
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8.6 Code Performance on Interleaved Flat Fading Channels

8.6.1 TCM with Symbol Interleaving

Figure 8.17 is a block diagram of a coded communication system operating on a flat
fading channel with symbol interleaving. The information sequence a is encoded
and mapped onto a signal set to generate the modulated symbol sequence s using
either a convolutional code or trellis code. The modulated symbol sequence is
then time interleaved (or scrambled) and the resulting sequence š is transmitted
over the channel. If a coherent detection is used, the receiver uses a correlator or
matched filter detector as discussed in Sect. 5.2 to generate the sequence of received
vectors r = {rk}. With hard decision decoding, the received vector rk at each epoch
k is applied to a decision device to yield an estimate of the transmitted symbol
sequence ŝ. The estimated symbol sequence ŝ is then deinterleaved and input to the
decoder. With soft decision decoding, on the other hand, the received vector r is
deinterleaved and applied directly to the decoder.

For analytical purposes, an infinite interleaving depth is often assumed so that the
deinterleaved sequence of complex channel gains g = α ·ejφ constitutes a sequence
of independent random variables. In this case the conditional density of r has the
product from

p(r|p(r|g · s̃) = ∏
k

p(rk|gks̃k), (8.127)

where g · s̃ is the vector dot product of g and s̃. Suppose that sequence s̃ is transmitted
and the sequence r = g · s̃+n is received. An ML receiver having perfect knowledge
of g chooses the sequence ŝ that minimizes the squared Euclidean distance metric

μ(ŝ) = ‖r−g · ŝ‖2. (8.128)

The pairwise error probability between the sequences s̃ and ŝ has the Chernoff bound
(see Appendix)

P[s̃ → ŝ] ≤ exp

{
−‖α · (s̃− ŝ)‖2

8No

}
. (8.129)

Signal
mappingencoder modulator

Channel

demodulatordecoder 1

Fig. 8.17 TCM with symbol interleaving on a flat fading channel
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If we assume the normalization E[|xk|2] = 1 so that Es = 1
2 E[‖sk‖2] = EsE[|xk|2], that

is, sk =
√

2Esxk, then the Chernoff bound becomes

P[s̃ → ŝ] ≤ exp

{
− Es

4No
‖α · (x̃− x̂)‖2

}
, (8.130)

where Es is the symbol energy.
Here we assume that the channel is characterized by flat Ricean fading, so that

the pdf of αk is

pα̌(x) =
2x(1 + K)

Ωp
exp

{
−K − (K + 1)x2

Ωp

}
I0

(
2x

√
K(K + 1)

Ωp

)
, (8.131)

where Ωp = E[α̌2
k ] is the average envelope power. Averaging (8.130) over the

probability density function in (8.131) gives [76]

P[s → ŝ] ≤ ∏
i∈A

1 + K

1 + K + γ̄s
4 |xi − x̂i|2

exp

{
− K γ̄s

4 |xi − x̂i|2
1 + K + γ̄s

4 |xi − x̂i|2

}
, (8.132)

where γ̄s = E[α2]Es/No is the average received symbol energy-to-noise ratio, and
A = {i|xi �= x̂i}. At sufficiently high γ̄s, (8.132) simplifies to

P[s → ŝ] ≤ ∏
i∈A

4(1 + K)
γ̄s|xi − x̂i|2

e−K . (8.133)

It follows that the bound in (8.102) will be dominated by the error event path having
the smallest number of elements in set A. Divsalar and Simon [76, 77] called this
path the shortest error event path and defined its length as Lmin. Based on previous
arguments, the bit error probability can be approximated as

Pb � C

(
(1 + K)e−K

γ̄s

)Lmin

, γ̄s � K, (8.134)

where C is a constant that depends on the distance structure of the code. Observe
that Pb varies inversely with (γ̄s)Lmin , yielding a diversity effect of order Lmin. Wei
[279] called Lmin the MTD. The MTD dominates the performance of TCM on an
interleaved flat fading channel, and the maximization of the MTD is the major
design criterion for TCM on interleaved flat fading channels.

The pairwise error probability in (8.132) can be written in the form

P[s → ŝ] , ≤ e−
γ̄s
4 d2

, (8.135)
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where

d2 = ∑
i∈A

|xi − x̂i|2K

1 + K + γ̄s
4 |xi − x̂i|2

+
(

γ̄s

4

)−1

ln

(
1 + K + γ̄s

4 |xi − x̂i|2
1 + K

)

= ∑
i∈A

d2
1i + d2

2i. (8.136)

Two special cases are associated with (8.136), K = ∞ and K = 0. For K = ∞ (no
fading),

d2
1i = |xi − x̂i|2, d2

2i = 0 (8.137)

and, therefore, d2 becomes the sum of the squared Euclidean distances over the
error event path. Maximizing d2 under this condition is the TCM design criterion
for AWGN channels.

For K = 0 (Rayleigh fading),

d2
1i = 0, d2

2i =
(

γ̄s

4

)−1

ln

(
1 +

γ̄s

4
|xi − x̂i|2

)
. (8.138)

For reasonably large SNR, d2 is the sum of the logarithms of the squared Euclidean
distances, each weighted by γ̄s. In this case, the pairwise error probability is given by

P[s → ŝ] ≤
(

∏
i∈A

γ̄s

4
|xi − x̂i|2

)−1

, (8.139)

which is inversely proportional to the product of the squared Euclidean distances
along the error event path. The MPSD between any two valid sequences,

min
x,x̂

∏
i∈A

|xi − x̂i|2 (8.140)

is another design parameter for Rayleigh fading channels. For values of K between
0 and ∞, the equivalent squared Euclidean distance in (8.136) becomes a mixture of
the two limiting cases given above.

If interleaving is not used, then the assumption that the fading is independent
from symbol to symbol is no longer valid. If the fading is slow enough to be
considered constant over the duration of the minimum distance error event path,
then for coherent detection with the metric in (8.128), the bit error probability at
high SNR is approximately,

Pb �C1E
[
e−γsd2

min/4
]
, (8.141)
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where C1 is a constant, γs = α2Es/No is the received symbol energy-to-noise ratio,
d2

min is the minimum Euclidean distance of the code, and the expectation is with
respect to the density in (8.131). Taking this average gives

Pb �C1
1 + K

1 + K + d2
min

γ̄s
4 |xi − x̂i|2

exp

{
− Kd2

min
γ̄s
4 |xi − x̂i|2

1 + K + d2
min

γ̄s
4 |xi − x̂i|2

}
, (8.142)

which can be approximated at large γ̄s by

Pb � 4C1
1 + K

d2
minγ̄s

e−K . (8.143)

Observe that without interleaving, Pb is asymptotically inverse linear with γ̄s,
independent of the trellis code. If follows that interleaving is required to achieve
diversity with TCM on a flat fading channel.

8.6.1.1 Design Rules for Symbol Interleaved TCM on Flat Fading Channels

According to the previous section, when symbol interleaved TCM is used on Ricean
fading channel, the design of the code for optimum performance is guided by the
MTD of the code. For Rayleigh fading channels, the design of the code is also
guided by the MPSD of the code. The minimum Euclidean distance, which is the
principal design criterion for TCM AWGN channels, plays a less significant role on
Ricean fading channels as the K factor decreases, and no role for Rayleigh fading
channels (K = 0). A third design criterion is to minimize the decoding depth of
the code.

The design of trellis codes for interleaved flat fading channels can be based on
Ungerboeck’s principle of mapping by set partitioning, but now the partitioning
is done to maximize the MTD and MPSD of the code. This can be accomplished
by maximizing the intra-subset MTD and MPSD, but it should be pointed out that
large MTD and MPSD can be sometimes achieved even if the partitioning is done
to maximize the minimum Euclidean distance.

In general, the following guidelines are followed when designing trellis codes for
symbol interleaved flat fading channels:

1. All signals occur with equal frequency and with regularity and symmetry.
2. Transitions originating from the even and odd numbered states are assigned

signals from the first and second subsets, respectively, of the first partitioning
level.

3. Whenever possible, the transitions joining in the same state receive signals from
either the first or second subset of the first partitioning level.

4. Parallel transitions receive signals from the same subset of the finest partitioning
level.
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5. The state transitions originating from each current state and going to even-
numbered next states are assigned signals from subsets whose inter-subset MTD
and MPSD are maximized. The same applies for the transition originating from
each current state and going to odd-numbered next states.

The first four rules are similar to those suggested by Ungerboeck [258], but now
the subsets used may be different. The fifth rule is used to reduce the decoding
depth of the code. Wei [279] developed several codes based on minimizing the
decoding depth of a code. He defined two minimum decoding depths (MDD1,
MDD2) to characterize a code. MDD1+1 is defined as the length (in symbols) of
the longest valid sequence of signal points, say x̃ = {x̃k}, which originates from the
same state as another valid sequence x = {xk} and merges into the same last state
as x and whose Hamming distance from x is the same as the MTD of the code.
Note that the performance of a code is mainly governed by the pairs of sequences
which determine the MTD of the code. Each such pair of sequences differ in at
most MDD1+1 successive symbols. The farther these symbols are separated, the
better the performance of the code. Hence, to benefit from the MTD of the code,
the symbol interleaver should separate the output symbols corresponding to each
sequence of MDD1+1 consecutive input symbols as far apart as possible.

MDD2 is defined as the length of the longest unmerged valid sequence of signal
points, say x̆, which originates from the same state as another valid sequence, say
x, and whose Hamming distance from x is not greater than the MTD of the code. In
case the Hamming distance between the two sequences is equal to the MTD of the
code, the squared product distance between the two sequences must be less than the
MPSD of the code. Since MDD2 is greater than MDD1, the decoding depth should
be at least equal to MDD2 to realize the MTD and MPSD of a code. It suffices if
the decoding depth is few symbols longer than MDD2. Finally, to benefit from both
the MTD and MPSD of a code, the symbol interleaver should separate the output
symbols corresponding to each sequence of MDD2+1 consecutive input symbols as
far apart as possible.

8.6.2 Bit Interleaved Coded Modulation

Bit interleaved coded modulation (BICM) interleaves the code bits at the output
of a convolutional encoder before symbol mapping, along with an appropriately
defined soft-decision metric as an input to the Viterbi decoder. The fundamental
idea of BICM is to separate the encoder and modulator to make the code diversity
equal to the number of distinct bits rather than the number of distinct modulated
symbols along any error event. Such an approach cannot achieve optimum Euclidean
distance. However, it will yield better performance on fading channels than TCM
with symbol interleaving due to the increased code diversity. The idea is to transform
the channel that is generated by a multilevel constellation of size M = 2k into a
parallel collection of k channels that each carry one binary symbol from the signal
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Fig. 8.18 Bit interleaved coded modulation (BICM) on a flat fading channel

mapping. To make the k channels independent, they are interleaved before the
signal mapping. The decoder in a BICM system must reflect the fact that we are
interleaving the bits before signal mapping. The basic structure of a BICM system
is shown in Fig. 8.18.

Suppose that we transmit the length-n codeword

s = (s1,s2, . . . ,sn) (8.144)

and we received the sequence

r = (r1,r2, . . . ,rn) (8.145)

at the output of the bank of receiver matched filters or correlators. With TCM on a
memoryless channel, we perform decoding using the log-likelihood metric

μ(ŝ) = log{p(r|α · ŝ)} = log

{
n

∏
k=1

p(rk|αk ŝk)

}
=

n

∑
k=1

log{p(rk|αk ŝk)}. (8.146)

When BICM is used, on the other hand, instead of the symbol metric p(rk|αk ŝk), we
must use the bit metric

μ(b) = log

{
∑

xi∈X (b, j)
p(ri|αisi)

}
, b = 0,1, j = 1,2, . . . ,k = log2M, (8.147)

where X (b, j) denotes the subset of the size M = 2k point signal constellation X
that has bit b in position j of its signal mapping label. The computation of this metric
may be complicated due to calculation of the logarithm. A suboptimum metric can
be defined based on

log

{
∑

j
z j

}
≈ max jlog{z j}, (8.148)
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which yields
μ(b) = maxxi∈X (b, j)log{p(ri|αisi)}. (8.149)

Except for the maximization operation, this metric is the same as the TCM
symbol metric. Finally, the performance of BICM strongly depends on the signal
mapping that is used. Gray mapping is known to perform better than mapping by
set partitioning.

8.7 Performance of Space-Time Codes

The orthogonal space-time block codes described in Sect. 8.1.2 are just one possible
construction for the space-time code matrix. We now discuss some useful criteria
for designing more general p×Lt space-time codes for quasi-static fading channels,
where the channel remains static over p time slots; the rank and determinant criteria.
These criteria are derived under the condition of independent fades, where the
complex channel gains gi, j are all independent.

To derive the rank and determinant criteria for space-time codes, we first need
to derive the pairwise error probability between any two space-time codewords.
Suppose that a space time codeword C = [s̃(t),i]p×Lt is transmitted over an Lt × Lr

MIMO channel in p time slots, where the modulated symbol vectors are chosen
from the symbol alphabet of a linear modulation scheme, such as QAM and PSK.
By observing the noisy received signal vectors in (8.33), the receiver decides which
space-time codeword was transmitted using the maximum likelihood metric in
(8.34). Suppose that the receiver erroneously decides in favor of another space-time
codeword Ĉ = [ŝ(t),i]p×Lt . This is the pairwise error probability P[C → Ĉ]. Assuming
ideal channel state information, the pairwise error probability can be written as

P[C → Ĉ] = P

⎡
⎣ Lr

∑
j=1

p

∑
t=1

∥∥∥∥∥r̃(t), j −
Lt

∑
i=1

gi, j s̃(t),i

∥∥∥∥∥
2

>
Lr

∑
j=1

p

∑
t=1

∥∥∥∥∥r̃(t), j −
Lt

∑
i=1

gi, j ŝ(t),i

∥∥∥∥∥
2
⎤
⎦

= P

⎡
⎣ Lr

∑
j=1

p

∑
t=1

2Re

{
ñH

(t), j

Lt

∑
i=1

gi, j(ŝ(t),i − s̃(t),i)

}

>
Lr

∑
j=1

p

∑
t=1

∥∥∥∥∥
Lt

∑
i=1

gi, j(ŝ(t),i − s̃(t),i)

∥∥∥∥∥
2
⎤
⎦

= Q

⎛
⎝
√

Δ2Es

4No

⎞
⎠ , (8.150)



508 8 Error Control Coding

where

Δ2 =
1
Es

Lr

∑
j=1

p

∑
t=1

∥∥∥∥∥
Lt

∑
i=1

gi, j(s̃(t),i − ŝ(t),i)

∥∥∥∥∥
2

. (8.151)

Applying a Chernoff bound on the Gaussian Q function (see Appendix) gives

P[C → Ĉ] ≤ 1
2

exp

{
−Δ2Es

4No

}
. (8.152)

We can rewrite (8.151) as

Δ2 =
1
Es

Lr

∑
j=1

Lt

∑
i=1

Lt

∑
i′=1

gi, jg
∗
i′, j

p

∑
t=1

(s̃(t),i − ŝ(t),i)(s̃(t),i′ − ŝ(t),i′)
H. (8.153)

Now let g j = (g1, j . . . ,gLt, j). After some manipulations, we can rewrite (8.153) as

Δ2 =
Lr

∑
j=1

g jA(C,Ĉ)gH
j , (8.154)

where A(C,Ĉ) = [Ap,q]Lt×Lt = 1
Es

spsT
q, and where

sp = (s̃(p),1 − ŝ(p),1, . . . , s̃(p),t − ŝ(p),t), (8.155)

sq = (s̃(q),1 − ŝ(q),1, . . . , s̃(q),t − ŝ(q),t). (8.156)

Hence, the Chernoff bound in (8.152) becomes

P[C → Ĉ] ≤ 1
2

Lr

∏
j=1

exp

{
−g jA(C,Ĉ)gH

j Es

4No

}
. (8.157)

Since A(C,Ĉ) = AH(C,Ĉ), there exists a unitary matrix V, such that VVH = ILt×Lt ,
and a real diagonal matrix D such that VA(C,Ĉ)VH = D. The rows v1,v2, . . . ,vLt

of V are a complete complex orthonormal basis for an Lt-dimensional complex
vector space. Also, the diagonal elements of D are the eigenvalues, λi, i = 1, . . . ,Lt

of A(C,Ĉ) that may include repeated eigenvalues. By construction, the matrix

B(C,Ĉ) =
1√
Es

⎡
⎢⎢⎢⎢⎣

s̃(1),1 − ŝ(1),1 s̃(2),1 − ŝ(2),1 . . . s̃(p),1 − ŝ(p),1

s̃(1),2 − ŝ(1),2 s̃(2),2 − ŝ(2),2 . . . s̃(p),2 − ŝ(p),2
...

...
...

...

s̃(1),Lt − ŝ(1),Lt s̃(2),Lt − ŝ(2),Lt . . . s̃(p),Lt − ŝ(p),Lt

⎤
⎥⎥⎥⎥⎦

(8.158)



8.7 Performance of Space-Time Codes 509

is the matrix square root of A(C,Ĉ) that is, A(C,Ĉ) = B(C,Ĉ)B(C,Ĉ)H. Therefore,
the eigenvalues of A(C,Ĉ) are all nonnegative real numbers. Next, we express Δ2 as
a function of the eigenvalues of the matrix A(C,Ĉ). Let (β1, j,β2, j, . . . ,βLt, j) = g jVH.
Then

g jA(C,Ĉ)gH
j = g jVHDVgH

j =
Lt

∑
i=1

λi|βi, j|2. (8.159)

Next recall that gi, j are all complex Gaussian random variables. Since V is unitary,
the βi, j are independent complex Gaussian random variables with a normalized
variance 1/2 per dimension. Assuming that the gi, j have zero mean, the |βi, j| are
independent Rayleigh random variables with the density function

pβi, j
(x) = 2xex2

, x ≥ 0. (8.160)

Thus to obtain Chernoff bound on the pairwise error probability, we average

Lr

∏
j=1

exp

{
− Es

4No

Lt

∑
i=1

λi|βi, j|2
}

(8.161)

over the distribution of the |β i, j| in (8.160). This leads to the bound on the pairwise
error probability

P[C → Ĉ] ≤ 1
2

(
1

∏Lt
i=1(1 + λiEs/4No)

)Lr

. (8.162)

Let r denote the rank of the matrix A(C,Ĉ), where 1 ≤ r ≤ Lt. Then for
sufficiently high Es/No such that 1 + λiEs/4No ≈ λiEs/4No, it follows that the
pairwise error probability has the upper bound

P[C → Ĉ] ≤ 1
2

⎡
⎣
(

r

∏
i=1

λi

)1/r
⎤
⎦

rLr (
Es

4No

)rLr

. (8.163)

Therefore, this space-time codeword pair provides diversity of order rLr and a
coding gain of (λ1 ·λ2 . . .λr)1/r which is equal to the geometric mean of the nonzero
eigenvalues. The coding gain is measured with respect to an uncoded system with
maximal ratio combining that is operating with the same diversity order. Finally, we
note that the ranks of A(C,Ĉ) and B(C,Ĉ) are equal.

The above development leads to the following two simple design criteria for
space-time codes on quasi-static Rayleigh fading channels:

Rank Criterion: To achieve the maximum diversity order LtLr, the matrix B(C,Ĉ)
must have full rank Lt for all pairs of distinct codewords. If the minimum rank of
B(C,Ĉ) is equal to r, then a diversity order of rLr is achieved.
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Determinant Criterion: If a diversity order of LtLr is achieved, then the coding
gain is optimized by maximizing the minimum determinant of A(C,Ĉ) over all pairs
of distinct codewords. If a diversity order of rLr is achieved, then the minimum value
of (λ1 ·λ2 . . .λr)1/r should be maximized over all pairs of distinct codewords.

8.7.1 Space-Time Trellis Codes

8.7.1.1 Encoder Description

A space-time trellis code (STTC) maps the information bit stream into Lt streams of
modulated symbols that are transmitted simultaneously from Lt transmit antennas.
The total transmission power is divided equally among the Lt transmit antennas.
STTCs can be designed according to the rank and determinant criteria as discussed
in Sect. 8.7, although other criteria exist as well.

SSTCs are an extension of TCM to multi-antenna systems. The encoder for a
STTC is similar to that for a trellis code, except that the encoder must begin and
end each frame in the all-zeroes state. The STTC encoder can be described in terms
of its generator sequences or generator polynomials. For a system with Lt transmit
antennas, the ith input sequence a(i), i = 1, . . . ,Lt has the polynomial representation

a(i)(D) =
∞

∑
k=0

ai,kDk , i = 1, . . . ,Lt, (8.164)

where the ai,k ∈ {0,1} are binary input data bits. The generator polynomial
corresponding to the ith input sequence, where i = 1, . . . ,Lt, and the jth transmit
antenna, where j = 1, . . . ,Lt, can be written as

g( j)
i (D) =

K−1

∑
k=0

g( j)
i,k Dk, (8.165)

where the g( j)
i,k are nonbinary coefficients chosen from the set {0,1, . . . ,M − 1},

where M is the size of the signal constellation, and K is the overall constraint length
of the encoder (similar to convolutional codes). Very often the generator sequences
for STTCs are tabulated in the following format:

gi = [(g(1)
i,0 ,g(2)

i,0 , . . . ,g(Lt)
i,0 ),(g(1)

i,1 ,g(2)
i,1 , . . . ,g(Lt)

i,1 ), . . .

. . . (g(1)
i,K−1,g

(2)
i,K−1, . . . ,g

(Lt)
i,K−1)], i = 1, . . . ,Lt. (8.166)

A simple 2-transmit antenna, 16-state, STTC encoder is shown in Fig. 8.19. For the
constraint length K = 3 encoder shown in Fig. 8.19, we might have

g1 = [(0,1),(1,2),(2,0)], g2 = [(0,2),(2,0),(0,2)], (8.167)

which just happens to satisfy the rank and determinant criteria in Sect. 8.7.
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Fig. 8.19 Encoder for a 2-transmit antenna, 16-state, STTC

The multiplier outputs, as illustrated in Fig. 8.19, are summed with modulo-M
addition. Hence, the encoded sequence that is transmitted from antenna j is given by

b( j)(D) =
Lt

∑
i=1

a(i)(D)g( j)
i (D) modulo M , i = 1, . . . ,Lt. (8.168)

The above expression can be expressed in the matrix form

[
b(i)(D), . . . ,b(Lt)(D)

]
=
[
a(1)(D), . . . ,a(Lt)(D)

]
⎡
⎢⎢⎣

g(1)
1 (D), . . . , g(Lt)

1 (D)
...

...

g(1)
Lt

(D), . . . , g(Lt)
Lt

(D)

⎤
⎥⎥⎦ ,

(8.169)

where

G(D) =

⎡
⎢⎢⎣

g(1)
1 (D), . . . , g(Lt)

1 (D)
...

...

g(1)
Lt

(D), . . . , g(Lt)
Lt

(D)

⎤
⎥⎥⎦ (8.170)

is the generator matrix of the STTC. The elements of the code symbol sequences
bi = {bi,k}, i = 1, . . . ,Lt at the output of the encoder are mapped onto symbols
chosen from an M-ary signal constellation, such as M-PSK or M-QAM according
to a one-to-one mapping. This yields the sequence of modulated symbols si =
{si,k}, i = 1, . . . ,Lt that are transmitted from the Lt transmit antennas.
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Fig. 8.20 Encoder for a
2-transmit antenna, 4-state,
4-PSK STTC x
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Fig. 8.21 STTC trellis for the 2-transmit antenna, 4-state, 4-PSK STTC in Fig. 8.20

8.7.1.2 STTC Code Trellis and the Viterbi Algorithm

Similar to convolutional and trellis codes, the STTC encoder can be described by a
state diagram and trellis diagram. As an example, consider the 2-transmit antenna,
4-state, 4-PSK STTC shown in Fig. 8.20, where the generators are

g1 = [(0,1),(1,0)], g2 = [(0,2),(2,0)]. (8.171)

The corresponding trellis diagram for this code is shown in Fig. 8.21. The branch
label b1b2 means that symbol b1 is transmitted from the first antenna, while the
symbol b2 from the second antenna. The symbol pairs in each row label the branch
transitions out of a given state, in order, from top to bottom. The symbols b1,b2 ∈
{0,1,2,3} are mapped onto a 4-PSK signal constellation using the mapping shown
in Fig. 8.21, which can be expressed mathematically as si =

√
2Eh( j)bi . The encoder

is required to begin and end each frame in the zero-state. Beginning at State 0, if the
two input bits are 11, then the encoder outputs symbol 0 on Antenna 1 and symbol 3
on Antenna 2, and transitions to State 3.
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Given their trellis structure, it is apparent that STTCs can be efficiently decoded
using the Viterbi algorithm with an appropriately defined branch metric. For quasi-
static flat fading channels, the branch metric is

μ
(

ρ (i)
k → ρ ( j)

k+1

)
= −

Lr

∑
d=1

∥∥∥∥∥r̃(t), j −
Lt

∑
i=1

gi, j ŝ(t),i

(
ρ (i)

k → ρ ( j)
k+1

)∥∥∥∥∥
2

, (8.172)

where ŝ(t),i(ρ
(i)
k → ρ ( j)

k+1) is a symbol that is uniquely determined by the state

transition ρ (i)
k → ρ ( j)

k+1.

8.8 Turbo Codes

The principle of turbo coding or concatenated coding is to construct long random-
like codes that have a structure that permits practical decoding [26]. Turbo codes
are interleaved concatenated codes that are constructed from simple component
codes and pseudo-random interleavers. The interleaver makes the code appear
random. Since the component codes are easy to decode, the overall code can
be decoded by iteratively decoding the component codes. There are two basic
types of turbo codes depending on the type of concatenation, namely parallel
concatenated codes and serial concatenated codes. The component codes can be
either convolutional codes or block codes that are realized in systematic form.
Here we just consider convolutional component codes. PCCCs use RSC component
codes. SCCCs use a recursive or nonrecursive convolutional outer code along with
a recursive convolutional inner code.

8.8.1 PCCC Encoder

Figure 8.22 shows a PCCC encoder structure which is a parallel concatenation of
two RSC component codes.3 The component codes must be recursive for reasons
that we will see later. Notice that both the systematic and parity bits of the first
encoder are used, while only the parity bits of the second encoder are used. If

the component codes have rates R(1)
c = k/n1 and R(2)

c = k/n2, then the PCCC has
code rate

RT =
R(1)

c R(2)
c

R(1)
c + R(2)

c −R(1)
c R(2)

c

=
k

n1 + n2 − k
. (8.173)

3The parallel concatenation of more than two component codes is possible, but we will consider
only two component codes for simplicity.
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Fig. 8.22 PCCC encoder a b

RSC1 puncturing (1)b

s

p

RSC2 puncturing (2)
pb

The input data sequence a is first encoded by RSC1. Suppose, for example,
that RSC1 and RSC2 happen to be identical rate-1/2 codes. Then feedforward and

feedback generator polynomials of RSC1 and RSC2 are g(2)(D) = g(2)
0 + g(2)

1 D +
. . .+ g(2)

ν Dν and g(1)(D) = g(1)
0 + g(1)

1 D+ . . .+ g(1)
ν Dν , respectively, where ν is the

encoder memory. The outputs of RSC1 are the systematic component bs = {bsk}
and the parity component b(1)

p = {b(1)
pk } defined by

bsk = ak,

b(1)
pk =

ν

∑
i=0

g(1)
i dk−i,

where

dk = ak ⊕
ν

∑
i=1

g(2)
i dk−i. (8.174)

The data sequence a is interleaved by a turbo interleaver π of size N = kN′ into

the sequence ã and encoded using RSC2 to produce the parity sequence b(2)
p . The

interleaving operation can be defined by a mapping i → π(i) of the input bit position
i to output bit position π(i). For example, the interleaver might perform the mapping

{0,1,2,3, . . . ,N −1}N → {23,12,6,7, . . . ,1}N .

For turbo codes the choice of interleaver is crucial. Interleavers that have a structure,
such as block interleavers, are not suitable. Usually, random interleavers are used,
where the interleaving mapping is randomly generated. In other cases, an S-random
interleaver is used, where interleaver inputs that are separated by less than S
positions, |i− j| < S, are interleaved into interleaver outputs that are separated by at
least S positions, |π(i)−π( j)| ≥ S.

A PCCC code word b = (bs,b
(1)
p ,b(2)

p ) is formed by the parallel concatenation
(or multiplexing) of the systematic component and the parity sequences. If higher
code rates are desired, then the parity outputs of the RSC component encoders can
be punctured according to a puncturing pattern. For example, if RSC1 and RSC2
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Fig. 8.23 PCCC decoder

in Fig. 8.22 are rate-1/2 codes and no puncturing is used, then the code rate will be
RT = 1/3. However, suppose that puncturing is used with the pattern

P =
[

1 0
0 1

]
, (8.175)

where, a “1” in the puncturing pattern means that the code bit is transmitted, while
a “0” means that the code bit is not transmitted. This particular puncturing pattern
means that the parity bits from RSC1 and RSC2 are transmitted in an alternate
fashion, and overall code rate is increased to RT = 1/2. Finally, tail bits are typically
added to the data sequence to terminate RSC1 in the all-zeroes state while the trellis
of RSC2 is left “open.”

8.8.2 PCCC Decoder

The turbo decoder is an iterative structure consisting of several identical stages, each
consisting of two soft-input soft-output (SISO) decoding units for the case of two

constituent codes. Suppose that the codeword b = (bs,b
(1)
p ,b(2)

p ) is transmitted and

the received vector is r̃ = (r̃s, r̃
(1)
p , r̃(2)

p ). The decoder structure for PCCCs is shown
in Fig. 8.23. The SISO modules generate APPs

P(ak|r̃s, r̃
(1)
p , r̃(2)

p ) (8.176)

or, for binary codes, aposteriori LLRs

L(ak|r̃s, r̃
(1)
p , r̃(2)

p ) = log

{
P(ak = +1|r̃s, r̃

(1)
p , r̃(2)

p )

P(ak = −1|r̃s, r̃
(1)
p , r̃(2)

p )

}
(8.177)

of each information bit ak based on the received vector r̃ = (r̃s, r̃
(1)
p , r̃(2)

p ) and the
extrinsic information passed between the two SISO modules.
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Fig. 8.24 Typical PCCC performance on an AWGN channel

The iterative decoding operation of parallel turbo codes can be explained as
follows, using LLRs as an example. At the mth iteration, m ≥ 1, the LLRs generated
by the SISO decoders for data bit ak are

L(m)
1 (ak|r̃(1)

p ) = Lsys(ak|r̃s)+ L(m−1)
ext2 (ak|r̃(2)

p )+ L(m)
ext1(ak|r̃(1)

p ), (8.178)

L(m)
2 (ak|r̃(2)

p ) = Lsys(ak|r̃s)+ L(m)
ext1(ak|r̃(1)

p )+ L(m)
ext2(ak|r̃(2)

p ), (8.179)

where Lsys(ak|r̃s) is the aposteriori LLR due to the systematic component, and

L(m)
ext1(ak|r̃(1)

p ) and L(m)
ext2(ak|r̃(2)

p ) are the extrinsic information for each bit gener-
ated at the mth decoding stage by SISO1 and SISO2, respectively, and can be
expressed as

L(m)
ext1(ak|r̃(1)

p ) = f (Lsys(ak|r̃s),L
(m−1)
ext2 (ak|r̃(2)

p )), (8.180)

L(m)
ext2(ak|r̃(2)

p ) = f (Lsys(ak|r̃s),L
(m)
ext1(ak|r̃(1)

p )), (8.181)

where f ( · ) denotes the SISO decoding unit. The extrinsic information can be
calculated using the BCJR algorithm as discussed in Sect. 8.2.5. For binary turbo
codes, Lsys(ak|r̃s) is given by (8.98). Note that the extrinsic information that is
generated by one SISO decoding unit serves at the a priori information for the
other SISO decoding unit. The iterative procedure is started with initial condition

L(0)
ext2(ak|r̃(2)

p ) = 0, since the data symbols are assumed random and equally likely.

The final bit decision for ak is determined as âk = sign(L(m)
2 (ak)).

As mentioned previously, turbo codes can provide near Shannon limit perfor-
mance. Figure 8.24 shows the typical performance of a rate-1/2, 16-state, PCCC on
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an AWGN channel for different random interleaver sizes. The capacity limit for a
rate-1/2 binary turbo code is −0.817 dB. Also included is a 216-state convolutional
code for comparison. Observe that a simple 16-state PCCC can easily outperform a
very complex 216-state convolutional code, at low Eb/No. At high Eb/No, the BER
slope of PCCCs is shallow, loosely termed an error floor. The error floor is not
actually an error floor, but rather a change in the slope of the error rate curve due to
the relatively small free Hamming distance of turbo codes as we will see.

8.8.3 SCCC Encoder and Decoder

Figure 8.25 shows a SCCC encoder which is a serial concatenation of two
component codes separated by an interleaver. In a SCCC scheme, the input data
sequence of length N′ is first encoded by an outer convolutional code Co with rate
Ro = k/p. The output of Co is interleaved using a pseudo-random interleaver of
length N = N′/Ro, and then encoded using an inner convolutional code Ci with rate
Ri = p/n. The SCCC has code rate

RT = R(1)
c R(2)

c = (k/p)(p/n) = k/n. (8.182)

The codewords of the outer and inner codes are referred to as outer and inner
codewords, respectively. Consequently, the inner codewords are also the codewords
of the SCCC. With SCCCs, the inner encoder must be recursive for reasons to be
seen later. The outer code does not have to be recursive.

The structure of the SCCC decoder is shown in Fig. 8.26. It operates in an
iterative fashion similar to the PCCC decoder. However, the SISO modules now
produce APPs or LLRs for the information bits, ak, and the code bits ck from the
outer coder.
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Fig. 8.27 Random turbo
interleaver
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8.8.4 Weight Distribution

It is sometimes useful to view PCCCs and SCCCs as equivalent block codes with
input sequences of length N′ = N/k and N′ = Nk/p, respectively, where N is the
interleaver size. Like block codes, turbo codes can be described by a distance
spectrum (d,Ad), where Ad is the number of codewords of weight Hamming
weight d. The conditional weight enumerating function (CWEF) of a block code
is defined as [30]

Aw(z)
�
= ∑

d

Aw,dzd , (8.183)

where Aw,d is the number of weight-d codewords having information-weight w. Note
that Ad = ∑w Aw,d . The smallest nonzero value of d is the free Hamming distance of
the code, denoted by dfree. The union bound on the probability of bit error is

Pb(e) ≤ 1
N′ ∑

w
∑

d=dfree

wAw,dP2(d), (8.184)

where P2(d) is the pairwise error probability between two coded sequences sepa-
rated by Hamming distance d.

To obtain a low Pb(e), there are generally two approaches; we can either decrease
Aw,d or increase dfree. With convolutional codes, Ad increases rapidly with d and, as
a result, convolutional codes are said to have a dense distance spectrum.4 Also,
Ad ∝ N′ with convolutional codes, due to their time invariant property. Hence, for
convolutional codes a decrease in Pb(e) is obtained by increasing dfree, which is
ultimately obtained by increasing the total encoder memory. Turbo codes take other
approach by drastically decreasing Ad . This property is called spectral thinning.

The spectral thinning property of turbo codes can be explained intuitively as
follows. Considering PCCCs, the total weight of a PCCC codeword is equal to the
weight of the systematic and parity components

w(b) = w(bs)+ w(b(1)
p )+ w(b(2)

p ). (8.185)

Consider, for example, an RSC with generator matrix
[
1, 1+D2

1+D+D2

]
and the random

interleaver shown in Fig. 8.27. Certain input sequences a will lead to low output

4It is important to realize that Ad is not equal to ad (in our earlier discussion of convolutional
codes), since the turbo codewords can consist of multiple error events.
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weights w(b(1)
p ) from the first encoder RSC1. For example, the input sequence

a(D) = 1+D3 produces the output b(1)
p (D) = 1+D+D2 +D3 from the first encoder

RSC1. However, the interleaved sequence ã(D) will usually lead to a high output

weight w(b(2)
p ) from the second encoder RSC2. Consequently, most codewords have

large weight. However, some input sequences that produce low weight codewords
in one encoder, after interleaving will also produce low weight codewords in the
other encoder. Therefore, there are a few codewords with small weight. For most
random interleavers, this event occurs with high probability [80]. At high Eb/No,
the error events corresponding to these low-weight codewords dominate the BER
performance with the result that the BER curves of PCCCs flatten at high Eb/No.
This has been loosely termed as an error floor [30, 68].

In the sequel, convolutional codes, PCCC and SCCC are discussed simultane-
ously and, to avoid confusion, the quantities associated with them are distinguished
by the superscripts c, T , and S, respectively.

For convolutional codes, every nonzero codeword corresponds to an error event
or a concatenation of error events. The weight of a codeword equals the sum
of the weights of the error events. Let Ac

w,d,i denote the number of weight d
codewords having information weight w and formed by the concatenation of i error
events. Then, the number of weight d codewords with information weight w is
Ac

w,d = ∑nmax
i=1 Ac

w,d,i, where nmax is the maximum number of possible error events
for a length-N′ input sequence.

The distance spectrum of turbo codes is difficult to determine for a particular
turbo interleaver. Fortunately, Benedetto and Montorsi [30] solved this problem by
introducing a hypothetical interleaver called a uniform interleaver that permutes a
given weight-w sequence onto any of the

(N
w

)
possible interleaved sequences with

equal probability. The distance spectrum of a turbo code with a uniform interleaver
can be obtained by averaging the distance spectrum over all possible interleaver
mappings. At least half the random interleavers are guaranteed to yield a weight
distribution that is as good as the average weight distribution. Furthermore, most of
the randomly generated interleavers have a weight distribution that is close to the
average weight distribution. Hence, the typical performance of a turbo code with a
randomly chosen interleaver can be obtained from the average weight distribution
with a uniform interleaver.

8.8.4.1 Weight Distribution of PCCCs

With a uniform interleaver the number of weight-d turbo codewords with weight-w
input sequences is, for large N, [29]

AT
w,d ≈

d

∑
l=0

nmax

∑
n1=1

nmax

∑
n2=1

(N
n1

)(N
n2

)
(N

w

) Ac
w,l,n1

Ac
w,d−l,n2

. (8.186)



520 8 Error Control Coding

Fig. 8.28 Bad random
interleaver mappings
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(N

n

)≈ Nn

n! gives

AT
w,d ≈

d

∑
l=0

nmax

∑
n1=1

nmax

∑
n2=1

w!
n1! ·n2!

Nn1+n2−wAc
w,l,n1

Ac
w,d−l,n2

. (8.187)

Observe that the multiplicity, AT
w,d , of the PCCC codewords is inversely proportional

to the interleaver length N. Consequently, increasing N results in very small
multiplicity, a phenomenon called spectral thinning, and is the reason for the
remarkable performance of turbo codes. In contrast, we note that the time-invariant
property of convolutional codes implies that Ac

d ∝ N.
The uniform interleaver is hypothetical and impractical. For reasonably large

interleaver sizes N, random interleavers perform very well [80]. To see why,
consider a rate-1/3, 8-state, PCCC code where the RSC component encoders have

generator matrices
[
1, 1+D2

1+D+D2

]
. Since the component codes are recursive, all

weight-1 input sequences produce infinite-weight output sequences. The minimum
distance error event at the output of each RSC encoder corresponds to an input error
sequence of the form Di(1 + D + D2). However, the random interleaver permutes
such sequences very effectively so that the output of the other encoder has high
weight [80]. Weight-2 input error sequences to RSC1 of the form Di(1 + D3) will
produce a finite-weight output sequence having the form Di(1 + D + D2 + D3).
However, the random interleaver permutes these sequences into sequences which
are not of the form D j(1 + D3) with high probability [80]. However, an occasional
bad mapping occurs, where input sequences of the form Di(1 + D3) are permuted
into input sequences of the form D j(1 + D3) for some i, j. This is illustrated in
Fig. 8.28. Such input sequences produce low-weight outputs from both encoders
and define the minimum Hamming distance of the PCCC code. The probability that
an input sequence Dia of weight-w is interleaved into a sequence ã of the form
D ja for at least one pair i, j is proportional to Nw−2 [80]. Hence, bad mappings are
very likely to occur for weight-2 input sequences and very unlikely to occur for
weight w > 2 input sequences. So the minimum distance error event corresponds to
a weight-2 input sequence with very high probability. If the smallest weight RSC
output corresponding to all weight-2 input sequences is dceff, then the free Hamming
distance of the PCCC code is dT

free = 2+2dceff. For our example PCCC code, the free
distance is dfree = 2 + 4 + 4 = 10, which is rather small. This small free Hamming
distance is typical of PCCCs precisely the reason for the so-called BER and frame
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error rate (FER) floor of PCCCs. Finally, we note that other types of interleavers,
such as the S-random interleaver, are generally very difficult to analyze, but most of
the above arguments are valid.

PCCCs inherently provide unequal error protection, because the bad interleaver
mappings define certain bit positions are affected by the dominant error events. Such
bad mappings affect only a very few bit positions, but they nevertheless result in a
BER floor. In contrast, for convolutional codes all bit positions in the input sequence
are affected by the same error events. Consequently, all bit positions are equally
likely to be in error. So PCCCs are inherently unequal error-protecting codes.

It is instructive to understand how the expected number of bad mappings changes
with the interleaver size, N. The total number of possible interleaver mappings for
a block of N bits is N! The number of bad mappings, where a sequence of the form
Di(1+D3) is mapped into a sequence of the form D j(1+D3), is approximately N×
2×(N−2)! The approximation is due to the fact that edge effects have been ignored
which is a valid assumption for large N. Therefore, the probability that a sequence
of the form Di(1 + D3) is mapped onto a sequence of the form D j(1 + D3) is

P[Di(1 + D3) → D j(1 + D3)] =
2N(N −2)!

N!
=

2
N −1

. (8.188)

Assuming that the mappings for the different bit positions are independent and
ignoring the edge effects, the distribution of the total number of such bad mappings
k, in a block of length N, can be approximated by a binomial distribution for small
k, that is,5

P[total number of bad mappings = k] =
(

N
k

)(
2

N −1

)k(
1− 2

N −1

)N−k

.

The mean number of bad mappings is N 2
N−1 , which converges to 2 for large N.

Therefore, the mean number of data bits affected by bad mappings converges to 4
for large N, since the bad mappings correspond to weight-2 input error sequences.

8.8.4.2 Weight Distribution of SCCCs

Consider the serial concatenation system in Fig. 8.25. Let the input block length is
N′ bits. The length of the outer codeword and, therefore, the interleaver size and
length of the input to the inner encoder is N = N′/Ro = N′p/k bits. Under the
assumption of a uniform interleaver, the number of weight h code words that are
generated by weight w input sequences is [31]

5The case of large k is not of interest because the probability of many bad mappings is extremely
small and, therefore, does not contribute significantly to the mean of the distribution.
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AS
w,d =

N

∑
l=do

f

no
M

∑
no=1

ni
M

∑
ni=1

(N′/p
no

)(N/p
ni

)
(N

l

) ACo
w,l,noACi

l,d,ni , (8.189)

where do
f is the minimum free distance of the outer code, and no

M and ni
M refer

to the maximum number of error events possible for the outer and inner codes,
respectively. Using the approximation

(N
n

)≈ Nn

n! [31]

AS
w,d ≈

N

∑
l=do

f

no
M

∑
no=1

ni
M

∑
ni=1

Nno+ni−l−1 l!

pno+nino!ni!

1
n

Ao
w,l,noAi

l,h,ni , (8.190)

where wo
m is the minimum-weight of all input sequences that will produce an error

event for the outer code.
Observe from (8.190) that the contribution of each codeword to the BER is

multiplied by the term Nno+ni−l−1. Therefore, when no +ni− l−1 < 0, increasing N
decreases the BER exponentially. This effect is called the interleaver gain. Consider
a weight-l outer codeword which is a result of no error events of the outer code.
If the inner encoder is nonrecursive, then a weight-l outer codeword can result in
a maximum of l error events (each “1” in the outer codeword can cause an error
event). Therefore, ni can be equal to l. In this case, the exponent of N will be no −1,
and, when no > 1, the exponent of N will be positive. Consequently, increasing N
increases the contribution of such codewords to the final BER [31]. When no = 1,
the exponent of N will be zero, implying that the interleaver does not impact the
multiplicity of such codewords or, equivalently, no interleaving gain is possible.

When the inner encoder is recursive, only input sequences having weight-2 or
greater can cause error events. Therefore, a weight-l outer codeword can cause at
most �l/2� error events for the inner code. Consequently, the exponent of N is no −
�l/2�−1. If all outer codewords corresponding to one error event of the outer code
(no = 1) have weight l > 2 or, equivalently, the free distance of the outer code is
greater than 2, the exponent of N is always negative. This implies that increasing N
will always decrease the BER.

Problems

8.1. Consider a simple repetition code that generates codewords by simply repeat-
ing each information symbol L times.

(a) What is the rate of the code?
(b) How many codewords are there in the code?
(c) What is the minimum distance of the code?
(d) How many channel errors would have to occur to confuse one codeword with

another?
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8.2. The generator matrix for a (6,3) linear binary block code is

G =

⎡
⎣

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎤
⎦

(a) What is the parity check matrix for this code?
(b) Generate the standard array for this code.
(c) Calculate the syndrome vector for all of the correctable error patterns.
(d) Decode the received sequence y = 101101.

8.3. The parity check matrix H for a linear block code is given as follows:

H =

⎡
⎣

1 0 0 1 1
0 1 0 1 1
0 0 1 0 1

⎤
⎦

(a) Construct a standard array decoding table for this code.
(b) How many error patterns can this code correct?
(c) If this code is used for error detection on a BSC with crossover probability p,

what is the probability of undetected error?

8.4. Consider a systematic (15,11) Hamming code.

(a) Construct a parity check matrix for a systematic (15,11) Hamming code.
(b) Construct a syndrome table for the code defined by the parity check matrix.
(c) If the (15,11) Hamming code is used for error detection on a BSC with crossover

probability p, what is the probability of undetected error?

8.5. Determine the decision variables for the separate maximum likelihood decod-
ing of the symbols in the following rate-3/4 space-time block code

C =

⎡
⎢⎢⎢⎣

s(1) s(2) s(3)

−s∗(2) s∗(1) 0

s∗(3) 0 −s∗(1)

0 s∗(3) −s∗(2)

⎤
⎥⎥⎥⎦ .

8.6. Determine the decision variables for the separate maximum likelihood de-
coding of the symbols in the following rate-1/2 orthogonal space-time block code
in (8.30).

8.7. The generator matrix for a rate-1 space-time block code is given as

C =

⎡
⎢⎢⎢⎣

s(1) s(2) s(3) s(4)

−s∗(2) s∗(1) −s∗(4) s∗(3)

−s∗(3) −s∗(4) s∗(1) s∗(2)

s(4) −s(3) −s(2) s(1)

⎤
⎥⎥⎥⎦ .



524 8 Error Control Coding

(a) Determine the matrix CHC, and thus show that the code is not orthogonal.
(b) Show that the maximum likelihood decoder can perform pairwise maximum

likelihood detection
(c) What is the diversity order achieved by the code?

8.8. Consider a rate-1/3 convolutional code with generators g(1) = (111), g(2) =
(111), and g(3) = (101).

(a) Draw a block diagram of the encoder structure.
(b) Draw the state diagram and trellis diagram.
(c) Determine the output sequence corresponding to the input sequence 1110101.

8.9. The output of a rate-1/3 convolutional encoder with constraint length 3 to the
input a = (1,1,0, . . .) is b = (111,110,010, . . .)

(a) Determine the transfer function T (D,N,L).
(b) Determine the number of paths through the state diagram or trellis that diverge

from the all-zeroes state and merge with the all-zeroes state 7 branches later.
(c) Determine the number of paths of Hamming distance 20 from the all zeroes

sequence.

8.10. Consider the rate-1/3 code in Problem 8.8.

(a) Determine the transfer function T (D,N,L) of the code. What is the free
Hamming distance dfree?

(b) Assuming the use of BPSK signaling and an AWGN channel, derive a union-
Chernoff bound on the decoded bit error probability with (1) hard decision
decoding and (2) soft decision decoding.

(c) Repeat part (b) assuming an interleaved flat Rayleigh fading channel, where the
receiver has perfect knowledge of the channel.

8.11. Consider the 8-PAM and 32-CROSS signal constellations in Fig. 8.29.

(a) Construct the partition chain as in Fig. 8.12 and compute the minimum
Euclidean distance between signal points at each step in the partition chain.

(b) What is the average symbol energy for each of the signal constellations.

8.12. Consider the 2-state, rate-1/2, trellis encoder shown in Fig. 8.30. Using this
encoder with a 4-PAM and 8-PAM signal constellation, we can construct TCM
systems having bandwidth efficiencies of 1 bit/s/Hz and 2 bits/s/Hz, respectively.

(a) Determine the appropriate partitions for the signal constellation for the 2-state,
4-PAM and 8-PAM trellis codes.

(b) Construct and label the trellis diagrams for the 2-state 4-PAM and 8-PAM trellis
codes.

(c) Determine the minimum Euclidean distance for each trellis code, and the
asymptotic coding gain on an AWGN channel relative to the equivalent uncoded
systems.
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Fig. 8.29 Signal
constellations for Prob. 8.11.
(a) 8-PAM (b) 32-CROSS

2

8-PAM

32-CROSS

2

Fig. 8.30 Trellis encoder for
Prob. 8.12

a

b

b

(1)

(2)

8.13. To simplify the calculation of performance bounds, a Chernoff bound is often
imposed on the pairwise error probability.

(a) Derive the Chernoff bound on the pairwise error probability for an AWGN
channel with soft decision decoding, given by (8.122).

(b) Derive the Chernoff bound on the pairwise error probability for an AWGN
channel with hard decision decoding, given by (8.123).

(c) Derive the Chernoff bound on the pairwise error probability for an interleaved
flat fading channel with soft decision decoding, given by (8.132).


	Chapter 8: Error Control Coding
	8.1 Block Codes
	8.1.1 Binary Block Codes
	8.1.1.1 Minimum Distance
	8.1.1.2 Syndromes
	8.1.1.3 Error Detection
	8.1.1.4 Weight Distribution
	8.1.1.5 Probability of Undetected Error
	8.1.1.6 Error Correction
	8.1.1.7 Standard Array Decoding
	8.1.1.8 Syndrome Decoding

	8.1.2 Space-Time Block Codes
	8.1.2.1 Real Orthogonal Space-Time Block Codes
	8.1.2.2 Complex Orthogonal Space-Time Block Codes
	8.1.2.3 Decoding Orthogonal Space-Time Block Codes


	8.2 Convolutional Codes
	8.2.1 Encoder Description
	8.2.2 State and Trellis Diagrams, and Weight Distribution
	8.2.3 Recursive Systematic Convolutional Codes
	8.2.4 Viterbi Algorithm
	8.2.5 BCJR Algorithm
	8.2.5.1 Log-MAP Algorithm


	8.3 Trellis Coded Modulation
	8.3.1 Encoder Description
	8.3.2 Mapping by Set Partitioning

	8.4 Code Performance on AWGN Channels
	8.4.1 Union Bound for Convolutional Codes
	8.4.1.1 Union-Chernoff Bound for Convolutional Codes


	8.5 Interleaving
	8.5.0.2 Block Interleaving
	8.5.0.3 Convolutional Interleaving

	8.6 Code Performance on Interleaved Flat Fading Channels
	8.6.1 TCM with Symbol Interleaving
	8.6.1.1 Design Rules for Symbol Interleaved TCM on Flat Fading Channels

	8.6.2 Bit Interleaved Coded Modulation

	8.7 Performance of Space-Time Codes
	8.7.1 Space-Time Trellis Codes
	8.7.1.1 Encoder Description
	8.7.1.2 STTC Code Trellis and the Viterbi Algorithm


	8.8 Turbo Codes
	8.8.1 PCCC Encoder
	8.8.2 PCCC Decoder
	8.8.3 SCCC Encoder and Decoder
	8.8.4 Weight Distribution
	8.8.4.1 Weight Distribution of PCCCs
	8.8.4.2 Weight Distribution of SCCCs


	Problems



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


