
Chapter 7
Equalization and Interference Cancelation

Chapters 5 and 6 have considered digital signaling on frequency nonselective or flat
fading channels. Such channels are typical for low data rate systems that occupy a
bandwidth that is smaller than the channel coherence bandwidth. However, as the
data rate increases, the bandwidth of the transmitted waveform will typically be
larger than the channel coherence bandwidth. Under this condition, the channel is
nonideal and will exhibit frequency selectivity or time delay spread. Such time delay
spread causes interference between modulated symbols, a phenomenon known
as inter-symbol interference (ISI). This chapter concentrates on the modeling of
ISI channels and the various signal processing methods for recovering digital
information transmitted over such channels.

This chapter begins with a treatment of ISI channel modeling in Sect. 7.1 that
includes a vector representation of digital signaling on ISI channels. Section 7.2 then
develops the maximum likelihood receiver for ISI channels, leading to an equivalent
model of the ISI channel known as the discrete-time white noise channel model.
We also consider the effects of using fractional sampling or over-sampling at the
receiver, where the sampling rate is an integer multiple of the modulated symbol
rate. Section 7.3 provides a treatment of symbol-by-symbol equalizers, including the
linear zero-forcing and minimum mean-square-error (MMSE) equalizers, and the
nonlinear decision feedback equalizer. Section 7.4 provides a treatment of sequence
estimators beginning with maximum likelihood sequence estimation (MLSE) and
the Viterbi algorithm. Since the MLSE receiver can have high complexity for
channels that have a long impulse response, we consider some reduced complexity
sequence estimation techniques such as reduced state sequence estimation (RSSE)
and delayed decision feedback sequence estimation (DDFSE). Section 7.5 provides
an analysis of the bit error rate performance of MLSE on static ISI channels and
multipath fading ISI channels. Section 7.6 considers fractionally spaced MLSE
receivers for ISI channels.

Finally, Sect. 7.7 concludes the chapter with a discussion of co-channel demodu-
lation for digital signals on ISI channels. The basic idea is to simultaneously recover
the data from multiple users that transmit in the same bandwidth. The problem is
formulated as a multiple-input multiple-output (MIMO) channel, where the inputs
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374 7 Equalization and Interference Cancelation

are the waveforms transmitted by multiple users in the same bandwidth, and the
outputs are the signals received at multiple antenna elements. We first develop
a vector representation of the received signals, along with the optimum receiver
that uses joint maximum likelihood sequence estimation (J-MLSE). Similar to
the single-user case, we consider the effects of using fractional sampling as well.
Finally, we wrap up with a receiver structure that incorporates a combination of
optimal combining as discussed in Chap. 6 and sequence estimation as implemented
with the Viterbi algorithm.

7.1 Modeling of ISI Channels

Chapter 4 showed that the complex envelope of any modulated signal can be
expressed in the general form

s̃(t) = A∑
n

b(t −nT,xn). (7.1)

This chapter restricts attention to linear full-response modulation schemes where

b(t,xn) = xnha(t), (7.2)

ha(t) is the amplitude shaping pulse, and {xn} is the complex data symbol sequence.
Suppose that the signal in (7.2) is transmitted over a channel having a

time-invariant complex low-pass impulse response g(t). The received complex
envelope is

r̃(t) =∑
n

xnh(t −nT )+ ñ(t), (7.3)

where
h(t) =

∫ ∞

−∞
ha(τ)g(t − τ)dτ, (7.4)

is the received pulse, given by the convolution of the transmitted pulse ha(t) and the
channel impulse response g(t), and ñ(t) is complex-valued additive white Gaussian
noise (AWGN) with a one-sided power spectral density (PSD) of No W/Hz. Since
the transmitted pulse ha(t) is causal (ha(t) = 0, t < 0), the lower limit of integration
can be replaced by zero, and since the physical channel is causal (g(t) = 0, t < 0),
the upper limit of integration in (7.4) can be replaced by t, so that

h(t) =
∫ t

0
ha(τ)g(t − τ)dτ , t ≥ 0. (7.5)

Finally, the received pulse h(t) is assumed to have a finite duration so that h(t) = 0
for t < 0 and t ≥ (L+ 1)T , where L is some positive integer.
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7.1.1 Vector Representation of Received Signals

Using a Gram–Schmidt orthonormalization procedure, the received signal r̃(t) in
(7.3) can be expressed in the form

r̃(t) = lim
N→∞

N

∑
k=1

r̃kϕk(t), (7.6)

where the {ϕn(t)} are a complete set of complex orthonormal basis functions. Note
that the basis functions span over the entire length of the waveform r̃(t), and for
the present purpose it is not necessary to actually generate the basis functions. Also,
this set of basis functions should not be confused with the set of basis functions that
is used to represent the signal set as in Sect. 5.1. It can be readily shown that

r̃k =∑
n

xnhnk + ñk, (7.7)

where

hnk =
∫ ∞

−∞
h(t −nT)ϕ∗

k (t)dt,

ñk =
∫ ∞

−∞
ñ(t)ϕ∗

k (t)dt. (7.8)

The noise samples ñk are zero-mean complex Gaussian random variables with
covariance φñkñm = 1

2 E[ñ∗kñm] = Noδkm. Hence, it follow that the observation vector
r̃ = (r̃1, r̃2, · · · , r̃N) has the conditional multivariate complex Gaussian distribution

p(r̃|x,h) =
N

∏
k=1

1
2πNo

exp

{
− 1

2No

∣∣∣∣r̃k −∑
n

xnhnk

∣∣∣∣
2
}

, (7.9)

where h = {hnk}.

7.2 Maximum Likelihood Receiver for ISI Channels
with AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x
that maximizes the likelihood function p(r̃|x,h) or the log-likelihood function
log{p(r̃|x,h)}, that is,

choose x if log{p(r̃|x,h)} > log{p(r̃|x̂,h)} ∀ x̂ �= x. (7.10)
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For an AWGN channel, p(r̃|x,h) has the form in (7.9) and the decision rule in (7.10)
is equivalent choosing x to maximize the quantity

μ(x) = −
N

∑
k=1

∣∣∣∣r̃k −∑
n

xnhnk

∣∣∣∣
2

= −
N

∑
k=1

|r̃k|2 +
N

∑
k=1

(
r̃∗k∑

n
xnhnk + r̃k∑

n
x∗nh∗nk

)

−
N

∑
k=1

(
∑
n

xnhnk

)(
∑
m

x∗mh∗mk

)
. (7.11)

Since the term∑N
k=1 |r̃k|2 is independent of x, it may be omitted so that the maximum

likelihood receiver chooses x to maximize

μ(x) = 2Re

{
∑
n

x∗n
N

∑
k=1

r̃kh∗nk

}
−∑

n
∑
m

xnx∗m
N

∑
k=1

hnkh∗mk
, (7.12)

where Re{z} denotes the real part of z. In the limit as the number of observable
random variables N approaches infinity, we define the following:

yn
�
= lim

N→∞

N

∑
k=1

r̃kh∗nk
=
∫ ∞

−∞
r̃(t)h∗(t −nT )dt, (7.13)

fm−n
�
= lim

N→∞

N

∑
k=1

hnk h∗mk
=
∫ ∞

−∞
h(t −nT)h∗(t −mT )dt. (7.14)

Using (7.13) and (7.14) in (7.12), we have the final form

μ(x) = 2Re

{
∑
n

x∗nyn

}
−∑

n
∑
m

xnx∗m fm−n. (7.15)

The variables {yn} are obtained by passing the received complex low-pass
waveform r̃(t) through the matched filter h∗(−t) and sampling the output. Note that
the T -spaced samples at the output of the matched filter must be obtained with the
correct timing phase, and in the above development perfect symbol synchronization
is implied. Hence, the optimum front-end processing is as shown in Fig. 7.1. Finally
by changing the variable of integration, the { fm−n} in (7.14) can be rewritten in the
form

f� =
∫ ∞

−∞
h(t + �T)h∗(t)dt, (7.16)

where � = m − n. From (7.16), it is seen that the { f�} represent the sampled
autocorrelation function of the received pulse h(t) with sample spacing T , and have
the property that f ∗n = f−n. Sometimes the { f�} are called the ISI coefficients.
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Fig. 7.1 Digital signaling on an ISI channel. The optimum front-end processor implements a filter
that is matched to the received pulse h(t) followed by a symbol rate sampler
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Fig. 7.2 Discrete-time model for digital signaling on an ISI channel

7.2.1 Discrete-Time White Noise Channel Model

Sampling the output of the matched filter h∗(−t) in Fig. 7.1 every T seconds yields
the sample sequence {yk}, where

yk = ∑
n

xn fk−n +νk

=
L

∑
�=−L

xk−� f� +νk (7.17)

and
νk =

∫ ∞

−∞
ñ(τ)h∗(τ− kT )dτ, (7.18)

is the noise sample at the output of the matched filter. It follows that the overall
discrete-time system in Fig. 7.1 can be represented by a discrete-time transversal
filter with coefficients

f = ( f−L, f−L+1, . . . , f−1, f0, f1, . . . , fL−1, fL) . (7.19)

This representation is depicted in Fig. 7.2.
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As shown in (7.15), the maximum likelihood receiver uses the observation vector
y = {yk} and knowledge of the ISI coefficients { f�} to determine the most likely
transmitted sequence x. Equivalently, the maximum likelihood receiver decides in
favor of the symbol sequence x that maximizes the likelihood function p(y|x, f) or
the log-likelihood function log{p(y|x, f)}, that is,

choose x if log{p(y|x, f)} > log{p(y|x̂, f)} ∀ x̂ �= x. (7.20)

The noise samples at the matched filter output in (7.18), have the discrete
autocorrelation function

φνν (n) =
1
2

E[νk+nν∗
k ] = No fn. (7.21)

Hence, the noise sequence {νk} will be correlated unless fn = 0,n �= 0, meaning that
the overall pulse

f (t) =
∫ ∞

−∞
h(t + τ)h∗(τ)dτ, (7.22)

satisfies the first Nyquist criterion. Such a condition will not be true for ISI
channels due to the nonideal channel g(t), and the resulting correlation between
the noise samples {νk} results in a log-likelihood function log{p(y|x, f)} that has a
complicated form. This difficulty can be overcome by passing the sample sequence
at the output of the matched filter, {yk}, through a noise-whitening filter as described
below, to whiten the noise samples.

The z-transform of the vector f is

F(z) =
L

∑
n=−L

fnz−n. (7.23)

Using the property f ∗n = f−n, we can write

F∗(1/z∗) = F(z). (7.24)

This means that if z is a root of F(z), then 1/z∗ is a root of F(z), that is, the roots of
F(z) occur in conjugate reciprocal pairs. It follows that F(z) has 2L roots with the
factorization

F(z) = G(z)G∗(1/z∗), (7.25)

where G(z) and G∗(1/z∗) are polynomials each of degree L. The roots of G(z) are
z1,z2, . . . ,zL, while the roots of G∗(1/z∗) are 1/z∗1,1/z∗2, . . . ,1/z∗L. Hence, there are
2L possible choices for the roots of G∗(1/z∗), and any one will suffice for a noise-
whitening filter 1/G∗(1/z∗). However, some reduced state equalization techniques
such as RSSE and DDFSE require that the polynomial of the overall system
G(z) = F(z) · 1/G∗(1/z∗) be minimum-phase, meaning all the poles and zeroes of
G(z) lie inside the unit circle. . For such cases, the noise-whitening filter 1/G∗(1/z∗)
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will be a stable filter, but it is noncausal since all its poles are outside the unit circle.
In practice, such a noncausal noise-whitening filter can be approximated to sufficient
accuracy using a long enough filter delay. If the overall response G(z) need not have
minimum phase, then we can choose G∗(1/z∗) to have minimum phase, that is, all
the poles and zeros of the noise-whitening filter 1/G∗(1/z∗) are inside the unit cir-
cle. This choice will ensure that the noise-whitening filter is both causal and stable.

If the noise-whitening filter is chosen such that G(z) has minimum phase,
then the resulting discrete-time white noise channel satisfies the minimum energy-
delay property. To explain this further, let Gmin(ej2π f ) be the frequency response
function corresponding to the G(z) having minimum phase, and let gk min be the
corresponding time-domain impulse response. All 2L choices for G(z) will have
the same magnitude response, that is, |G(ej2π f )| = |Gmin(ej2π f )|. Consequently, all
impulse responses gk whose magnitude response |G(ej2π f )| is equal to |Gmin(ej2π f )|
will have the same total energy by Parseval’s theorem, that is,

∞

∑
n=0

|gk|2 =
∫ 1/2

−1/2
|G(ej2π f )|2d f =

∫ 1/2

−1/2
|Gmin(ej2π f )|2d f =

∞

∑
n=0

|gk min|2. (7.26)

If we define the partial energy of the impulse response as

E(k)
�
=

k

∑
n=0

|gk|2, (7.27)

then it can be shown that [198],

E(k) =
k

∑
n=0

|gk|2 ≤
k

∑
n=0

|gk min|2 = Emin(k), (7.28)

for all impulse responses gk that have the same magnitude response. Accordingly,
the energy of the system having minimum phase is most concentrated around k = 0.
This means that the energy of the minimum phase system has the least delay among
all systems that have the same magnitude response function. For this reason, the
minimum phase system is said to satisfy the minimum energy-delay property.

Example 7.1:
Consider a simple T -spaced two-ray channel where the received pulse is

h(t) = ha(t)+ aha(t −T )

and the transmitted pulse ha(t) has duration T and is normalized to have unit
energy, that is,

∫ ∞
−∞ h2

a(t)dt = 1. The corresponding ISI coefficients are
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f� =
∫ ∞

−∞
h∗(t)h(t + �T)dt

=

⎧⎨
⎩

1 + |a|2 � = 0
a � = 1
a∗ � = −1

and, hence,

F(z) = a∗z+(1 + |a|2)+ az−1

= (az−1 + 1)(a∗z+ 1).

There are two possible choices for the noise-whitening filter.

Case 1: Under the assumption that |a| < 1, suppose that the zero of G∗(1/z∗)
is chosen to be outside the unit circle. That is,

G(z) = 1 + az−1,

G∗(1/z∗) = 1 + a∗z.

In this case, the noise-whitening filter 1/G∗(1/z∗) is noncausal yet stable, and
the overall system is characterized by the minimum phase polynomial

G(z) = 1 + az−1.

Note that the zero of G(z) is inside the unit circle, with a pole at the origin.
Case 2: Under the assumption that |a| < 1, suppose that the zero of G∗(1/z∗)
is instead chosen to be inside the unit circle. That is,

G(z) = 1 + a∗z,

G∗(1/z∗) = 1 + az−1.

In this case, the noise-whitening filter 1/G∗(1/z∗) is a minimum phase
filter that is both stable and causal. However, the overall system G(z) is
characterized by the non-minimum phase polynomial

G(z) = 1 + a∗z.

Note that the zero of G(z) is outside the unit circle with a pole at infinity.
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Fig. 7.3 Block diagram of system that implements a filter matched to h(t) followed by a discrete-
time noise-whitening filter

We now show that the sequence of noise samples at the output of the noise-
whitening filter is indeed uncorrelated. From (7.17), the z-transform of the sample
sequence at the output of the noise-whitening filter is

V (z) = (X(z)F(z)+ν(z))
1

G∗(1/z∗)

= X(z)G(z)+ν(z)
1

G∗(1/z∗)

= X(z)G(z)+W (z). (7.29)

From (7.21), the psd of the noise samples {νk} at the input to the noise-whitening
filter is

Sνν(ej2π f T ) = NoF(ej2π f T ) , | f | ≤ 1
2T

. (7.30)

Therefore, the psd of the noise samples {wk} at the output of noise-whitening filter
1/G∗(1/z∗) is

Sww(ej2π f T ) = No
F(ej2π f T )

|G∗(ej2π f T )|2

= No
G(ej2π f T )G∗(ej2π f T )
G(ej2π f T )G∗(ej2π f T )

= No, | f | ≤ 1
2T

, (7.31)

which is clearly white.
The above development leads to the system shown in Fig. 7.3, and the discrete-

time white noise channel model shown in Fig. 7.4. Sometimes the concatenation of
the matched filter and noise-whitening filter in Fig. 7.3 is called a whitened matched
filter. The overall system system function G(z) can be viewed as a finite impulse
response (FIR) filter with tap coefficients {gn}. The discrete-time samples at the
output of the noise-whitening filter are

vk =
L

∑
n=0

gnxk−n + wk. (7.32)
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Fig. 7.4 Discrete-time white noise channel model

The maximum likelihood receiver uses the observation vector v = {vk}L
k=0 to decide

in favor of the symbol sequence x that maximizes the likelihood function p(v|x,g)
or the log-likelihood function log{p(v|x,g)}, that is,

choose x if log{p(v|x,g)} > log{p(v|x̂,g)} ∀ x̂ �= x, (7.33)

where
g = (g0, g1, . . . , gL)T, (7.34)

is the overall channel impulse response. Since the noise samples {wk} are white, the
likelihood function has the simple product form

p(v|x,g) =∏
k

1
2πNo

exp

⎧⎨
⎩− 1

2No

∣∣∣∣∣vk −
L

∑
n=0

gnxk−n

∣∣∣∣∣
2
⎫⎬
⎭ . (7.35)

The log-likelihood function log{p(v|x,g)} results in the decision rule

choose x if μ(x) > μ(x̂) ∀ x̂ �= x, (7.36)

where

μ(x) = −∑
k

∣∣∣∣∣vk −
L

∑
n=0

gnxk−n

∣∣∣∣∣
2

. (7.37)

An efficient method for finding the sequence x is the Viterbi algorithm as discussed
in Sect. 7.4.1.

Finally, for an ISI channel, the received symbol energy-to-noise ratio is defined as

γs =
E[|xk|2]∑L

i=0 |gi|2
2No

=
E[|xk|2] f0

2No
=

2σ2
x Ehr

No
=

E
No

, (7.38)
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where

Ehr =
1
2

∫ ∞

−∞
|h(t)|2dt (7.39)

is the energy in the received pulse h(t). The bit energy-to-noise ratio is γb =
γs/ log2 M where M is the modulation alphabet size.

7.2.1.1 Slowly Fading ISI Channels with Diversity

Consider a fading channel with D-branch receiver diversity. The received pulse on
each diversity branch is equal to the convolution

hd(t) =
∫ ∞

−∞
gd(t,τ)ha(t − τ)dτ , d = 1, . . . ,D, (7.40)

where gd(t,τ) is the time-variant channel impulse response for branch d. For slow
fading, the channel impulse responses gd(t,τ) can be assumed to change slowly
with respect to the duration of the received pulses. When data is transmitted in short
frames, for example, 10–20 ms long, the channel may remain constant over the
duration of the frame. This is sometimes called a block fading channel or quasi-static
fading channel. In any case, at the kth epoch the received pulses can be accurately
approximated as

hd,k(t) =
∫ ∞

−∞
gd(kT,τ)ha(t − τ)dτ , d = 1, . . . ,D. (7.41)

The receiver then implements a matched filter on each diversity branch having the
impulse response h∗d,k(−t), and samples are taken at the output of the matched
filter every T seconds. The samples at the output of each matched filter are passed
through a corresponding noise-whitening filter 1/G∗

d,k(1/z∗). This results in the
discrete-time white noise channel model shown in Fig. 7.5. At epoch k, the tap gains
associated with diversity branch d are described by the vector

gd(k) = (g0,d(k), g1,d(k), . . . gL,d(k))T. (7.42)

The {gi,d(k)} are discrete-time complex Gaussian random processes that are
generally correlated with the correlation matrix

Φgd (m) =
1
2

E[gd(k)gH
d (k + m)], (7.43)

where xH is the complex conjugate transpose of the vector x. The received sample
on branch d at epoch k is

vk,d =
L

∑
i=0

gi,d(k)xk−i + wk,d , (7.44)
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Fig. 7.5 Discrete-time white noise channel model with D-branch diversity

where the wk,d are independent complex zero-mean white Gaussian noise samples
with variance 1

2 E[|wk,d |2] = No.
For a fading ISI channel, the average received symbol energy-to-noise ratio for

branch d is

γ̄d
s =

E[|xk|2]∑L
i=0 E[|gi,d|2]

2No
=

E[|xk|2]E[ f0,d ]
No

=
2σ2

x E[Eh,d]
No

=
Ē
No

. (7.45)

In many cases, the branches are balanced so that γ̄d
s = γ̄s, d = 1, . . . ,D. The averaged

received branch bit energy-to-noise ratio is γ̄s/ log2 M.
Note that the matched filter and noise-whitening filter impulse responses change

slowly with time due to variations in the underlying channels. This presents a
practical difficulty because implementation and adjustment of the matched filter and
noise-whitening filter require knowledge of the underlying channel. Later we will
show that we can overcome this difficulty by implementing a filter that is matched
to the transmitted pulse ha(t), over-sampling the output, and processing the output
samples with a fractionally spaced noise-whitening filter. First, we consider the
effect of over-sampling the matched filter output.

7.2.1.2 T/2-Spaced Receiver

In practice, the matched filter outputs are often over-sampled for the purpose of
symbol timing synchronization and to mitigate the effects of timing errors. One
important example that will be considered at various points in this chapter is
when the output of the matched filter is sampled with rate 2/T . In this case, the
overall channel impulse response and sampler can be represented by a discrete-time
transversal filter with coefficients
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f(2) =
(

f (2)
−2L, f (2)

−2L+1, . . . , f (2)
−1 , f (2)

0 , f (2)
1 , . . . , f (2)

2L−1, f (2)
2L

)
, (7.46)

where ( · )(2) indicates rate 2/T sampling. If the samples in (7.46) are obtained with

the correct timing phase, that is, f (2)
n = f (nT/2), then

f = ( f−L, f−L+1, . . . , f−1, f0, f1, . . . , fL−1, fL ) (7.47)

=
(

f (2)
−2L, f (2)

−2L+2, . . . , f (2)
−2 , f (2)

0 , f (2)
2 , . . . , f (2)

2L−2, f (2)
2L

)
,

where f (2)
n =

(
f (2)
−n

)∗
and fn = f (2)

2n . More details on timing phase sensitivity will

be provided in Sect. 7.6.3.
The T/2-spaced noise samples at the matched filter output have the discrete-time

autocorrelation function
φνν (n) = No f (2)

n . (7.48)

The z-transform of f(2), denoted as F (2)(z), has 4L roots with the factorization

F(2)(z) = G(2)(z)G(2)∗(1/z∗), (7.49)

where G(2)(z) and G(2)∗(1/z∗) are polynomials of degree 2L having conjugate recip-
rocal roots. The correlated noise samples can be whitened using a filter with transfer
function 1/G(2)∗(1/z∗). Once again, G(2)∗(1/z∗) can be chosen as a noncausal stable
filter such that the overall system function G(2)(z) has minimum phase with all its
roots inside the unit circle. The output of the noise-whitening filter is

v(2)
n =

2L

∑
k=0

g(2)
k x(2)

n−k + w(2)
n , (7.50)

where {w(2)
n } is a white Gaussian noise sequence with variance 1

2 E[|w(2)
n |2] = No

and the {g(2)
n } are the coefficients of a discrete-time transversal filter having a

transfer function G(2)(z). The sequence {x(2)
n } is the corresponding T/2-spaced

input symbol sequence and is given by

x(2)
n =

{
xn/2 , n = 0,2,4, . . .

0 , n = 1,3,5, . . .
(7.51)

Note that each transmitted symbol is padded with a zero. In general, if rate K/T
sampling is used, then each input symbol is padded with K − 1 zeros. The overall
system and equivalent discrete-time white noise channel models are shown in
Figs. 7.6 and 7.7, respectively.
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Fig. 7.6 Block diagram of system that implements a filter matched to h(t) followed by a T/2-
spaced sampler and a discrete-time noise-whitening filter
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Fig. 7.7 Discrete-time white noise channel model with rate-2/T sampling

Comparing (7.25) and (7.49), we have

2L

∑
k=0

|g(2)
k |2 =

L

∑
k=0

|gk|2 = f (2)
0 = f0. (7.52)

Finally, we note that the samples v(2)
2n and v(2)

2n+1 correspond to the nth received baud,
where

v(2)
2n =

L

∑
k=0

g(2)
2k xn−k + w(2)

2n , (7.53)

v(2)
2n+1 =

L−1

∑
i=0

g(2)
2k+1xn−k + w(2)

2n+1. (7.54)

Finally, by comparing (7.32) and (7.54), we note that v(2)
2n is not necessarily equal to

vn because a different noise-whitening filter is used to whiten the T/2-spaced noise
samples than that is used to whiten T -spaced noise samples.
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7.3 Symbol-by-Symbol Equalizers

7.3.1 Linear Equalizer

As shown in Fig. 7.8, a linear forward equalizer consists of a transversal filter with
adjustable tap coefficients. The tap coefficients of the equalizer are denoted by the
column vector

c = (c0, c1, · · · , cN−1)T, (7.55)

where N is the number of equalizer taps. Assuming that the equalizer is preceded
by a whitened matched filter that outputs the sequence {vn}, the output of the
equalizer is

x̃n =
N−1

∑
j=0

c jvn− j, (7.56)

where the vn are given by (7.32). The equalizer output x̃k is quantized to the nearest
(in Euclidean distance) information symbol to form the decision x̂k.

Observe that the overall discrete-time white noise channel and equalizer can be
represented by a single filter having the sampled impulse response

q = (q0,q1, . . . , qN+L−1)T, (7.57)

where

qn =
N−1

∑
j=0

c jgn− j,

= cT g(n) (7.58)

with
g(n) = (gn,gn−1,gn−2, . . . ,gn−N+1)T, (7.59)

and gi = 0, i < 0, i > L. That is, q is the discrete convolution of g and c.

c0 c1

x̂n
xn
~

εn

T T T T

cN-2 cN-1

vn

Fig. 7.8 Linear transversal equalizer with adjustable T -spaced taps
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If the equalizer is preceded by a noise-whitening filter, then the discrete-time
white noise channel has a system function G(z) with minimum phase. Although the
minimum phase system function G(z) satisfies the minimum energy-delay property
as discussed previously, it is not necessarily true that |g0|2 ≥ |gk|2,∀k ≥ 1, that is,
the first tap g0 does not necessarily have the largest magnitude. Let the component
of g of greatest magnitude be denoted by gd1 . Also, let the number of equalizer taps
be equal to N = 2d2 + 1 where d2 is an integer. Perfect equalization means that

q = ed = (0, 0, . . . , 0︸ ︷︷ ︸
d−1 zeroes

, 1, 0, . . . , 0, 0)T, (7.60)

where d−1 zeroes precede the “1” and d is an integer representing the overall delay.
Unfortunately, perfect equalization is difficult to achieve and does not always yield
the best performance.

7.3.1.1 Zero-Forcing Solution

Lucky [165, 166] was the first to develop an adaptive (linear) equalizer for digital
communication systems in the mid-1960s. This equalizer was based on the peak
distortion criterion, where the equalizer forces the ISI to zero, and it is called a
zero-forcing (ZF) equalizer. With a ZF equalizer, the tap coefficients c are chosen to
minimize the peak distortion of the equalized channel, defined as

Dp =
1

|qd|
N+L−1

∑
n=0
n �=d

|qn − q̂n|, (7.61)

where q̂ = (q̂0, . . . , q̂N+L−1)T is the desired equalized channel, and the delay d is a
positive integer optimized to have the value d = d1 + d2 [57]. Lucky showed that if
the initial distortion before equalization is less than unity, that is,

D =
1

|gd1 |
L

∑
n=0

n �=d1

|gn| < 1, (7.62)

then Dp is minimized by those N tap values which simultaneously cause q j = q̂ j for
d −d2 ≤ j ≤ d + d2. However, if the initial distortion before equalization is greater
than unity, the ZF criterion is not guaranteed to minimize the peak distortion. For
the case when q̂ = ed , the equalized channel is given by

q = (q0, . . . ,qd1−1,0, . . . ,0,1,0, . . . ,0,qd1+N , . . . ,qN+L−1)T. (7.63)

In this case the equalizer forces zeroes into the equalized channel, and hence the
name “zero-forcing equalizer.”
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Equalizer Tap Solution

For a known channel impulse response, the tap gains of the ZF equalizer can be
found by the direct solution of a simple set of linear equations [57]. To do so, we
form the matrix

G = [g(d1), . . . ,g(d), . . . ,g(N + d1 −1)] (7.64)

and the vector
q̃ =
(
q̂d1 , . . . , q̂d , . . . , q̂N+d1−1

)T
. (7.65)

Then the vector of optimal tap gains, cop, satisfies

cT
opG = q̃T −→ cop = (G−1)Tq̃. (7.66)

Example 7.2:
Suppose that a system has the channel vector

g = (0.90,−0.15,0.20,0.10,−0.05)T,

where gi = 0, i < 0, i > 4. The initial distortion before equalization is

D =
1
|g0|

4

∑
n=1

|gn| = 0.5555

and, therefore, the minimum distortion is achieved with the ZF solution.
Suppose that we wish to design a three-tap ZF equalizer. Since g0 is the
component of g having the largest magnitude, d1 = 0 and the equalizer delay
is chosen as d = d1 +d2 = 1. Suppose that the desired response is q̂0 = eT

1, so
that q̃ = (0, 1, 0). We then construct the matrix

G = [g(0),g(1),g(2)]

=

⎡
⎣0.90 −0.15 0.20

0.00 0.90 −0.15
0.00 0.00 0.90

⎤
⎦

and obtain the optimal tap solution

cop = (G−1)T q̃ = (0, 1.1111, −0.185185)T.

The overall response of the channel and equalizer is

q = (0.0, 1.0, 0, 0.194, 0.148, −0.037, −0.009, 0, . . .)T.
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Finally, the distortion after equalization is

Dp =
1
|q1|

6

∑
n=0
n �=1

|qn − q̂n| = 0.388.

Adaptive Solution

In practice, the channel impulse response is unknown to the receiver, and a known
finite length sequence x is used to train the equalizer. During this training mode,
the equalizer taps can be obtained using the following steepest-descent recursive
algorithm:

cn+1
j = cn

j +αεnx∗n− j−d1
, j = 0, . . . ,N −1, (7.67)

where

εn = xn−d − x̃n

= xn−d −
N−1

∑
i=0

civn−i (7.68)

is the error sequence, {cn
j} is the set of equalizer tap gains at epoch n, and α is an

adaptation step-size that can be optimized to trade-off convergence rate and steady-
state bit error rate performance. Notice that adaptation rule in (7.67) attempts to
force the cross-correlations εnx∗n− j−d1

, j = 0, . . . ,N −1, to zero. To see that (7.67)
leads to the desired solution, we use (7.32) and (7.68), along with the fact that the
symbol sequence {xn} is uncorrelated with the noise sequence {wn} to obtain

1
2

E[εnx∗n− j−d1
] =

1
2

E[xn−dx∗n− j−d1
]− 1

2

N−1

∑
i=0

L

∑
�=0

cig�E[xn−i−�x
∗
n− j−d1

]

= σ2
x

(
δd2− j −

N−1

∑
i=0

cig j+d1−i

)

= σ2
x (δd2− j −q j+d1), j = 0, 1, . . . , N −1, (7.69)

where σ2
x = 1

2 E[|xk|2]. Note that the conditions 1
2 E[εnx∗n− j−d1

] = 0 are satisfied when
qd = 1 and qi = 0 for d −d2 ≤ i < d and d < i ≤ d + d2, which is the zero forcing
solution.

After training the equalizer, a decision-feedback mechanism is typically used
where the sequence of symbol decisions x̂ is used to update the tap coefficients.
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This mode is called the data mode and allows the equalizer to track variations in the
channel vector g. In the data mode,

cn+1
j = cn

j +αεnx̂∗n− j−d1
, j = 0, . . . ,N −1, (7.70)

where the error term εn in (7.68) becomes

εn = x̂n−d −
N−1

∑
i=0

civn−i, (7.71)

and, again, x̂n−d is the decision on the equalizer output x̃n delayed by d samples.

Performance of the ZF Equalizer

If the ZF equalizer has an infinite number of taps, it is possible to select the tap
weights so that Dp = 0, that is, q = q̂. Assuming that q̂n = δn0, this condition means
that

Q(z) = 1 = C(z)G(z). (7.72)

Therefore,

C(z) =
1

G(z)
(7.73)

and the ideal ZF equalizer has a discrete transfer function that is simply the inverse
of overall channel G(z). The cascade of the noise-whitening filter with transfer
function

W (z) =
√

2Ehr/G∗(1/z∗), (7.74)

and the ZF equalizer with transfer function 1/G(z) results in an equivalent equalizer
with transfer function1

C′(z) =

√
2Ehr

G∗(1/z∗)G(z)
=

√
2Ehr

F(z)
. (7.75)

Recall from (7.30) that the noise sequence at the input to the equivalent equalizer
C′(z) has the discrete autocorrelation function φνν (n) = No

2Ehr
fn and psd

Sññ( f ) =
No

2Ehr

F(ej2π f T ), | f | ≤ 1
2T

. (7.76)

Therefore, the psd of the noise sequence {ζn} at the output of the equalizer is

Sζζ ( f ) =
No

F(ej2π f T )
, | f | ≤ 1

2T
(7.77)

1The scaling of the noise-whitening filter gain by
√

2Ehr is not necessary in practice and is done
here for mathematical convenience.
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and the noise samples have variance

σ2
ζ = T

∫ 1/2T

−1/2T
Sζζ ( f )d f

= T
∫ 1/2T

−1/2T

No

F(ej2π f T )
d f . (7.78)

If σ2
x = 1

2 E[|xk|2] and q̂n = δn0, then the signal-to-noise ratio at the output of the
infinite-tap equalizer is

γ∞ =
σ2

x

σ2
ζ
. (7.79)

Finally, we can show that (Problem 7.1)

F(ej2π f T ) = FΣ ( f ), | f | ≤ 1
2T

, (7.80)

where FΣ ( f ) is the folded spectrum of F( f ) defined by

FΣ( f )
�
=

1
T

∞

∑
n=−∞

F
(

f +
n
T

)
(7.81)

and F( f ) is the Fourier transform of the pulse f (t) = h(t) ∗ h∗(−t). Hence, the
signal-to-noise ratio at the equalizer output can be written in the final form

γ∞ = σ2
x

⎛
⎝TNo

∫ 1/2T

−1/2T

(
1
T

∞

∑
n=−∞

F
(

f +
n
T

))−1

d f

⎞
⎠

−1

. (7.82)

It is clear from (7.82) that ZF equalizers are unsuitable for channels that have
severe ISI, where the folded spectrum FΣ( f ) has spectral nulls or very small values.
Under these conditions, the equalizer tries to compensate for the nulls in the folded
spectrum by introducing infinite gain at their frequencies. Unfortunately, this results
in severe noise enhancement at the output of the equalizer at these same frequencies.
Land mobile radio channels often exhibit spectral nulls, and, therefore, linear ZF
equalizers are not used for land mobile radio applications.

On the other hand, when the overall channel f (t) satisfies the conditions for
ISI-free transmissions as discussed in Sect. 4.2, then the ISI coefficients satisfy the
property fn = f0δn0, and the matched filter output is

r̃k =
√

2Ehrxk + ñk. (7.83)

The noise samples {ñk} in the case are white due to the fact that the overall pulse
f (t) satisfies the first Nyquist criterion. From Sect. 4.2, an equivalent condition in
the frequency-domain is that the folded spectrum FΣ ( f ) is flat, that is,
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FΣ( f ) =
1
T

∞

∑
n=−∞

F
(

f +
n
T

)
= f0 = 2Ehr . (7.84)

Under this condition, the signal-to-noise ratio in (7.82) reaches its maximum value
γ∞ = 2σ2

x Ehr/No.

7.3.1.2 Minimum Mean-Square-Error Solution

Soon after Lucky introduced the ZF equalizer, Proakis and Miller [216], Lucky et. al.
[167], and Gersho [109] developed the linear MMSE equalizer based on the least
mean square (LMS) criterion. The MMSE equalizer is more robust and superior to
the ZF equalizer in its performance and convergence properties [216, 217, 220]. By
defining the vector

vn = (vn, vn−1, . . . , vn−N+1), (7.85)

where vk is the output of the whitened matched filter in (7.32), the output of the
equalizer in (7.56) can be expressed in the form

x̃n = cT vn = vT
nc. (7.86)

An MMSE equalizer adjusts the tap coefficients to minimize the mean square error
(MSE)

J
�
=

1
2

E[|xn−d − x̃n|2]

=
1
2

E
[
cT vnvH

n c∗ −2Re{vH
n c∗xn−d}+ |xn−d|2

]
, (7.87)

where, again, d is the equalizer delay assumed here to be chosen as d = d1 + d2.

Equalizer Tap Solution

If the channel impulse response is known, the optimum equalizer taps can be
obtained by direct solution. Define

Mv
�
=

1
2

E[vnvH
n ],

vH
x

�
=

1
2

E[vH
n xn−d] (7.88)

where Mv is an N ×N Hermitian matrix (meaning that Mv = MH
v ) and vx is a length

N column vector. Using these definitions and assuming that 1
2 E[|xn−d|2] = σ2

x , the
MSE is

J = cT Mvc∗ −2Re{vH
x c∗}+σ2

x . (7.89)
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The tap vector c that minimizes the MSE can obtained by equating the gradient ∇cJ
to zero. It can be shown that (Problem 7.15)

∇cJ =
(
∂J
∂c0

, · · · , ∂J
∂cN−1

)
= 2cT Mv −2vH

x . (7.90)

Setting ∇cJ = 0 gives the MMSE tap solution

cop = (MT
v )−1v∗x. (7.91)

By substituting (7.91) into (7.89), using the identity (A−1)T = (AT )−1 and the fact
that Mv is Hermitian, the MMSE can be expressed as

Jmin = cT
opMvc∗op −2Re{vH

x c∗op}+σ2
x

= σ2
x −vH

x M−1
v vx. (7.92)

To proceed further, the ith component of the vector vH
x is

1
2

E[xn−dv∗n−i] = σ2
x

L

∑
�=0

g∗�δd−i−� = σ2
x g∗d−i , i = 0, . . . ,N −1, (7.93)

so that
vH

x = σ2
x (g∗d,g

∗
d−1, . . . ,g

∗
0,0, . . . ,0)T. (7.94)

Also,
1
2

E[vk−iv
∗
k− j] =

{
σ2

x f j−i + Noδi j, |i− j| ≤ L
0, otherwise

, (7.95)

where we have used the property

fn =
L−n

∑
k=0

g∗kgk+n, n = 0, . . . ,L. (7.96)

Hence, the N ×N matrix Mv has the form

Mv = σ2
x

⎡
⎢⎢⎢⎢⎢⎣

f0 + No/σ2
x f1 f2 · · · fN−1

f ∗1 f0 + No/σ2
x f1 · · · fN−2

f ∗2 f ∗1 f0 + No/σ2
x · · · fN−3

...
...

... · · · ...
f ∗N−1 · · · f ∗2 f ∗1 f0 + No/σ2

x

⎤
⎥⎥⎥⎥⎥⎦

. (7.97)
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Example 7.3:
Consider a system having the same channel vector g as in Example 7.2.

Suppose that we wish to design a three-tap MMSE equalizer. In this case,
gd1 = 0 and N = 2d2 + 1 = 3, so that d = d1 + d2 = 1. Hence,

vH
x = σ2

x (g∗1,g
∗
0,0) = σ2

x (−0.15, 0.90, 0.00)

and

Mv = σ2
x

⎡
⎣ β −0.1500 0.1550
−0.1500 β −0.1500
0.1550 −0.1500 β

⎤
⎦,

where β = 0.8850 + No/σ2
x . The inverse of Mv is

M−1
v =

adj(Mv)
det(Mv)

,

where det(Mv) = (σ2
x )3(β (β 2 −0.069025)+ 0.006975) and

adj(Mv) = (σ2
x )2

⎡
⎣ β 2 −0.0225 0.15β −0.02325 0.0225−0.155β

0.15β −0.02325 β 2 −0.024025 0.15β −0.02325
0.0225−0.155β 0.15β −0.02325 β 2 −0.0225

⎤
⎦.

Hence,

cop =
(σ2

x )3

det(Mv)

⎛
⎝ −0.15β 2 + 0.135β −0.1755

0.90β 2 −0.0225β−0.018135
0.15825β−0.0243

⎞
⎠.

With this tap solution,

Jmin = σ2
x

(
1− 0.8325β 2−0.013689

β (β 2 −0.069025)+ 0.006975

)

and as No → 0, Jmin = 0.001089424σ2
x .

Adaptive Solution

In practice, the channel impulse response is unknown beforehand so that the MMSE
solution cannot be obtained by the matrix inversion in (7.91). However, the equalizer
taps can be obtained using the stochastic gradient algorithm

cn+1
j = cn

j +αεnv∗n− j, j = 0, . . . ,N −1, (7.98)
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where εn is given by (7.68). To show that (7.98) leads to the desired solution, note
from (7.90) that

∇cJ = E[cT vnvH
n − xn−dvH

n ]

= E[(cT vn − xn−d)vH
n ]

= E[εnvH
n ] = 0. (7.99)

It follows that
1
2

E[εnv∗n− j] = 0, j = 0, . . . , N −1, (7.100)

and, therefore, the adaptive solution tends to force the cross-correlations εnv∗n− j, j =
0, . . . , N −1 to zero.

Performance of the MMSE Equalizer

The performance of an MMSE equalizer having an infinite number of taps provides
some useful insight. In this case

c = (c−∞, . . . , c0, . . . , c∞),

vn = (vn+∞, . . . , vn, . . . , vn−∞).

Since the decision delay d with an infinite-tap equalizer is irrelevant, we can choose
d = 0 so that

1
2

E[xnv∗n− j] =

{
σ2

x g∗− j, −L ≤ j ≤ 0
0, otherwise

. (7.101)

The equation for the optimal tap gain vector cT Mv = vH
x can be written in the form

∞

∑
i=−∞

ci ( f j−i + Noδi j) = g∗− j, −∞ < j <∞. (7.102)

Taking the z-transform of both sides of (7.102) gives

C(z)
(

G(z)G∗(1/z∗)+ No

)
= G∗(1/z∗) (7.103)

and, therefore,

C(z) =
G∗(1/z∗)

G(z)G∗(1/z∗)+ No
. (7.104)

The equivalent MMSE equalizer C′(z) = C(z)W (z) that includes the noise-
whitening filter in (7.74) is
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C′(z) =

√
2Ehr

G(z)G∗(1/z∗)+ No
=

√
2Ehr

F(z)+ No
. (7.105)

Notice that C′(z) has the same form as the ZF equalizer in (7.75), except for the
noise term No in the denominator. Clearly, the ZF and MMSE criterion lead to the
same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability.
However, for many equalization techniques, the bit error probability is a highly
nonlinear function of the equalizer coefficients. Another measure of performance
is the MSE. The MMSE of an infinite-length MMSE equalizer is given by [217]

Jmin = σ2
x T
∫ 1/2T

−1/2T

No

FΣ ( f )+ No
d f , (7.106)

where σ2
x = 1

2 E[|xk|2]. Note that 0 ≤ Jmin ≤ σ2
x , and that Jmin = 0 when there is

no noise and Jmin = σ2
x when the folded spectrum FΣ ( f ) exhibits a spectral null.

Furthermore, the relationship between the signal-to-noise ratio at the equalizer
output and Jmin is

γ∞ = σ2
x ·

σ2
x − Jmin

Jmin
. (7.107)

When there is no ISI, FΣ ( f ) = f0 = 2Ehr , we have

Jmin =
σ2

x No

2Ehr + No
(7.108)

and the equalizer reaches its maximum output signal-to-noise ratio γ∞ = 2σ2
x Ehr/No.

Finally, another useful measure for the effectiveness of linear equalization tech-
niques is the signal-to-interference-plus-noise ratio (SINR) defined as

SINR =
2σ2

x |qd |2
2σ2

x ∑
N+L−1
j=0
j �=d

|q j|2 + No∑N−1
j=0 |c j|2

. (7.109)

Although the MMSE equalizer accounts for the effects of noise, satisfactory
performance still cannot be achieved for channels with severe ISI or spectral nulls,
because of the noise enhancement at the output of the equalizer [93, 217]. Another
problem with a linear equalizer is the adaptation of the equalizer during data mode.
This problem is especially acute when bandwidth efficient trellis-coded modulation
schemes are used with non-iterative receivers. In this case, equalizer-based decisions
are unreliable and inferior to those in uncoded systems due to the reduced separation
between the points in the enlarged signal constellation. This problem can be partially
alleviated using periodic training, where the equalizer taps are allowed to converge
in periodic training modes [81].
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c0 c1 cN-1 x̂n

+
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Fig. 7.9 Decision feedback equalizer

7.3.2 Decision Feedback Equalizer

Linear equalizers have the drawback of enhancing channel noise while trying to
eliminate ISI, a characteristic known as noise enhancement. As a result, satisfactory
performance is unattainable with linear equalizers for channels having severe
amplitude distortion. In 1967, Austin [21] proposed the nonlinear decision feedback
equalizer (DFE) to mitigate noise enhancement. The DFE consists of two sections;
a feedforward section and a feedback section as illustrated in Fig. 7.9. The DFE is
nonlinear because the feedback path includes a decision device. The feedforward
section has an identical structure to the linear forward equalizer discussed earlier,
and its purpose is to reduce the precursor ISI. It has been shown that the optimum tap
setting of a zero-forcing DFE having infinite length feedforward and feedback filters
is such that the feedforward filter is identical to a noise-whitening filter with system
function 1/G∗(1/z∗), such that the system function G(z) has minimum phase [220].
Such a filter suppresses the postcursor of the channel response and whitens the
noise. The combination of the matched filter, sampler, and feedforward filter yields
an equivalent discrete-time white noise channel having the system function G(z).

To eliminate the postcursor ISI, decisions made on the equalizer outputs are
propagated through the feedback filter. The optimal coefficients of the feedback
filter are the sampled impulse response of the tail of the overall system impulse
response that includes the forward part of the DFE. This feedback mechanism
introduces error propagation which can degrade the performance of the DFE and
complicate its performance analysis.

The output of the DFE shown in Fig. 7.9 is

x̃n =
N−1

∑
i=0

cir̃n−i −
M

∑
i=1

Fix̂n−i, (7.110)
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where {cn} and {Fn} are the tap coefficients of the feedforward and feedback filters,
respectively, {yn} is the sample sequence at the output of the matched filter, and {x̂n}
is the sequence of previously detected data symbols. Recall that the overall channel
and feedforward portion of the equalizer can be represented by the sampled impulse
response q in (7.57). Hence, the DFE output can be written as

x̃n =
N+L−1

∑
i=0

qixn−i −
M

∑
i=1

Fix̂n−i + η̃n, (7.111)

where

η̃n =
N−1

∑
i=0

ciñn−i (7.112)

is the nth noise sample at the output of the feedforward filter. By adding and
subtracting terms, the output of the DFE can be rewritten as

x̃n = xnq0 +
M

∑
i=1

qi(xn−i − x̃n−i)+
M

∑
i=1

(qi −Fi)x̂n−i

+
N+L−1

∑
i=M+1

qixn−i + η̃n. (7.113)

If we choose

Fi = qi = cT g(i), i = 1,2, . . . ,M (7.114)

so that the second summation is zero, and if correct decisions are made so that the
first summation is zero, then

x̃n = xnq0 +
N+L−1

∑
i=M+1

qixn−i + η̃n. (7.115)

The summation in (7.115) represents the residual ISI that remains from the
feedforward filter, which is zero if M = N + L−1.

Equalizer Tap Solution

The coefficients {ci} and {Fi} can be adjusted simultaneously to minimize the MSE,
resulting in an equalizer that is sometimes called a MMSE-DFE. Define

c = (c0, c1, . . . , cN−1)T, (7.116)

r̃n = (r̃n, r̃n−1, . . . , r̃n−N)T, (7.117)

x̂n = (x̂n−1, x̂n−2, . . . , x̂n−M)T, (7.118)

F = (F1, F2, . . . , FM)T (7.119)
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and define the error at the nth epoch, εn, as

εn = x̃n − xn

= cT r̃n −FT x̂n − xn. (7.120)

Now define

t̃
�
= vec(cT ,FT )T, (7.121)

ỹn
�
= vec(r̃T

n ,−x̂T
n)

T (7.122)

so that εn = t̃T ỹn − xn. Then the MSE can be expressed as

J =
1
2

E[|εn|2]

=
1
2

E
[
t̃T ỹnỹH

n t̃∗ −2Re{ỹH
n t̃∗xn}+ |xn|2

]
. (7.123)

Notice that (7.123) and (7.87) have the exact same form. Therefore, the MMSE tap
solution can be obtained by defining

M̃y
�
=

1
2

E[ỹnỹH
n ], (7.124)

ỹH
x

�
=

1
2

E[ỹH
n xn]. (7.125)

Using the same argument that lead to (7.91), we have the MMSE-DFE tap solution

t̃op = (M̃T
y )

−1ỹ∗x . (7.126)

Adaptive Solution

The feedforward taps of the DFE can be adjusted using

cn+1
j = cn

j +αεnv∗n+ j, j = 0, . . . ,N −1, (7.127)

while the feedback coefficients can be adjusted according to

Fn+1
j = Fn

j +αεnx̂∗n− j, j = 1, . . . ,M, (7.128)

where α is the step size. To see that this leads to the desired solution, we use the
same argument that lead to (7.99). Then observe that ∇cJ = E[εnỹH

n ] = 0 implies that
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1
2

E[εnv∗n+ j] = 0, j = 0, . . . , N −1, (7.129)

1
2

E[εnx̂∗n− j] = 0, j = 1, . . . , M, (7.130)

where the second expectation is zero under the assumption that the DFE makes
correct decision so that x̂∗n− j = x∗n− j.

Performance of the DFE

The performance of a DFE is complicated by the fact that incorrect decisions in
the feedback portion of the equalizer result in error propagation. Since the feedback
section of the DFE eliminates the postcursor residual ISI at the output of the forward
filter, it is apparent that the optimum setting for an infinite-length forward filter
is identical to a stable, noncausal, noise-whitening filter that results in an overall
system response G(z) having minimum phase [220]. The MMSE for the infinite
length DFE is [227]

Jmin = σ2
x exp

{
T
∫ 1/2T

−1/2T
ln

(
No

FΣ ( f )+ No

)
d f

}
, (7.131)

where 0 ≤ Jmin ≤ σ2
x . The corresponding signal-to-noise ratio at the output of the

DFE is

γ∞ = σ2
x ·

σ2
x − Jmin

Jmin
. (7.132)

Once again, when there is no ISI FΣ ( f ) = f0 = 2Ehr and

Jmin =
σ2

x No

2Ehr + No
, (7.133)

and the equalizer reaches its maximum output signal-to-noise ratio γ∞ = 2σ2
x Ehr/No.

7.4 Sequence Estimation

7.4.1 Maximum Likelihood Sequence Estimation

The Viterbi algorithm was originally devised by Viterbi for maximum likelihood
decoding of convolutional codes [266,267]. Forney recognized the analogy between
an ISI channel and a convolutional encoder, and applied the Viterbi algorithm for
the detection of digital signals corrupted by ISI and AWGN [104]. Because of
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the efficiency of the Viterbi algorithm, the implementation of the optimum MLSE
optimum for detecting ISI-corrupted signals is feasible.

Recall that the overall discrete-time white noise channel with D-branch diversity
reception can be modeled by collection of D transversal filters that are T -spaced
and have (L + 1)-taps, as shown in Fig. 7.5. From Fig. 7.5, it can be seen that the
channel has a finite number of states defined by contents of the L memory elements
in the tapped delay lines. If the size of the signal constellation is 2n, there are total
of NS = (2n)L states. The state at epoch k is

ρk = (xk−1,xk−2, · · · ,xk−L). (7.134)

Example 7.4:
Suppose that the binary sequence x, xn ∈ {−1,+1}, is transmitted over a

three-tap static ISI channel with channel vector g = (1, 1, 1). In this case,
there are four states (NS = 4) and the system can be described the state
diagram shown in Fig. 7.10. Note that there are two branches entering and
leaving each state since binary modulation is used. In general there are M = 2n

such branches for an M-ary modulation alphabet. The dashed lines correspond
to an input symbol equal to “−1,” while the solid lines correspond to an input
symbol equal to “1.”

The system state diagram can be used to construct the trellis diagram

shown in Fig. 7.11, where the initial zero state is assumed to be ρ (0)
0 =

(−1,−1). Again, state transitions with a solid line correspond to an input
symbol +1, while those with a dashed line correspond to an input symbol −1.

Suppose that the data sequence x = (−1, 1, 1, −1, 1, 1, −1, −1, . . .)
is transmitted over the channel g. Then the state sequence follows
the shaded path in Fig. 7.11. The noiseless received sequence is v =
(v0, v1, v2, v3, v4, . . .), where

vn = g0xn + g1xn−1 + g2xn−2

= xn + xn−1 + xn−2.

Hence, for the data sequence x = (−1, 1, 1, −1, 1, 1, −1, −1, . . .) the
noiseless received sequence is v = (−3, −1, 1, 1, 1, 1, 1, −1, . . .).

Assume that k symbols have been transmitted over the channel. Let Vn =
(vn,1, vn,2, . . . , vn,D) denote the vector of signals received on all D diversity
branches at epoch n. After receiving the sequence {Vn}k

n=1, the ML receiver decides
in favor of the sequence {xn}k

n=1 that maximizes the likelihood function

p(Vk, · · · , V1| xk, · · · , x1) (7.135)
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Fig. 7.10 State diagram for
binary signaling on a
three-tap ISI channel

1 -1

-1-1

-1 1

1  1

input ‘‘1’’

input ‘‘-1’’

state

-1  1

1 -1

-1 -1

1  1

1 2 3 4 5 6 7 80

input ‘‘1’’

input ‘‘-1’’

epoch

Fig. 7.11 Trellis diagram for binary signaling on a three-tap ISI channel

or, equivalently, the log-likelihood function

log{p(Vk, · · · , V1| xk, · · · , x1)}. (7.136)

Since the noise samples {wn,d} in (7.32) are mutually independent with respect to
the indices n and d, and Vn depends only on the L most recent transmitted symbols,
the log-likelihood function (7.136) can be rewritten as

log{p(Vk, · · · ,V1|xk, · · · ,x1)}

= log{p(Vk|xk, · · · ,xk−L)}+ log{p(Vk−1, · · · ,V1|xk−1, · · · ,x1)}, (7.137)
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where xk−L = 0 for k−L ≤ 0. If the second term on the right side of (7.137) has
been calculated previously at epoch k−1 and stored in memory, then only the first
term, called the branch metric, has to be computed for the incoming signal vector
Vk at epoch k.

The model in Fig. 7.5 gives the conditional pdf

p(Vk|xk, · · · ,xk−L) =
1

(2πNo)D exp

⎧⎨
⎩− 1

2No

D

∑
d=1

∣∣∣∣∣vk,d −
L

∑
i=0

gi,dxk−i

∣∣∣∣∣
2
⎫⎬
⎭ (7.138)

so that log p(Vk|xk, · · · ,xk−L) yields the branch metric

μk = −
D

∑
d=1

∣∣∣∣∣vk,d −
L

∑
i=0

gi,dxk−i

∣∣∣∣∣
2

, (7.139)

using the same argument that was used to arrive at (7.37). Note that the receiver
requires knowledge of the set of channel vectors {gd,d = 1, . . . ,D} to compute the
branch metric. As discussed later, this can be obtained using a separate channel
estimator.

Based on the recursion in (7.137) and the branch metric in (7.139), the well-
known Viterbi algorithm [267] can be used to implement the ML receiver by
searching through the NS-state trellis for the most likely transmitted sequence
x = {xk} given the sequence of observation vectors V = {Vk}. This search process
is called MLSE. At epoch k, the Viterbi algorithm stores NS surviving sequences

known as survivors x̌(ρ (i)
k ) (paths through the trellis) along with their associated

path metrics Γ(ρ (i)
k ) (squared Euclidean distances from the received sequence) that

terminate at state ρ (i)
k , i = 0, . . . ,NS −1. The path metric is defined as

Γ(ρ (i)
k ) =

k

∑
n=1

μ (i)
n , i = 0, . . . ,NS −1, (7.140)

where {μ (i)
n } is the sequence of branch metrics along the surviving path x̌(ρ (i)

k ).
Here, we give an outline of MLSE as implemented by the Viterbi algorithm followed
by an example.

The Viterbi algorithm is initialized at time index k = 0, by setting all path metrics

to zero, that is, Γ(ρ (i)
0 ) = 0, i = 1, . . . ,NS −1.

1. After the vector Vk+1 has been received, compute the set of path metricsΓ(ρ (i)
k →

ρ ( j)
k+1) = Γ(ρ (i)

k )+ μ(ρ (i)
k → ρ ( j)

k+1) for all possible paths through the trellis that

terminate in each state ρ ( j)
k+1, j = 0, . . . , NS − 1, where μ(ρ (i)

k → ρ ( j)
k+1) is the

branch metric defined below. For a modulation alphabet of size M, there will be

M such paths that terminate in each state ρ ( j)
k+1.
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2. Find Γ(ρ ( j)
k+1) = max

i
Γ(ρ (i)

k → ρ ( j)
k+1), j = 0, · · · , NS − 1 where, again, the

maximization is over all M possible paths through the trellis that terminate in

state ρ ( j)
k+1.

3. Store Γ(ρ ( j)
k+1) and its associated surviving sequence x̌(ρ ( j)

k+1). Drop all other paths

that terminate in state ρ ( j)
k+1.

4. Increment the time index k, goto Step 1, and repeat the entire algorithm.

In Step 1 above, μ(ρ (i)
k → ρ ( j)

k+1) is the branch metric associated with the state

transition ρ (i)
k → ρ ( j)

k+1 and is computed according to the following variation of
(7.139)

μ(ρ (i)
k → ρ ( j)

k+1) = −
D

∑
d=1

∣∣∣∣∣vk,d −g0,dxk(ρ
(i)
k → ρ ( j)

k+1)−
L

∑
m=1

gm,dxk−m(ρ (i)
k )

∣∣∣∣∣
2

,

(7.141)

where xk(ρ
(i)
k → ρ ( j)

k+1) is a symbol that is uniquely determined by the state transition

ρ (i)
k → ρ ( j)

k+1, and the L most recent symbols {xk−m(ρ (i)
k )}L

m=1 are uniquely specified

by the state ρ (i)
k .

Example 7.5:
Consider again binary four-state system in Example 7.4. In the presence of

noise, the noise received sequence is

vn = g0xn + g1xn−1 + g2xn−2 + wk

= xn + xn−1 + xn−2 + wk,

where the wk are i.i.d. zero-mean Gaussian random variables with variance
No. Suppose that due to AWGN, the noisy received sequence is

v = (v0, v1, v2, v3, v4, . . .)

= (−3.2, −1.1, 0.9, 0.1, 1.2, 1.5, 0.7, −1.3, . . .).

The Viterbi algorithm is initialized with Γ(ρ (i)
0 ) = 0 for i = 0, . . . ,3. The initial

state is assumed to be ρ (0)
0 = (−1, −1). Executing the Viterbi algorithm yields

the result shown in Fig. 7.12, where the Xs on the branches in the trellis denote
dropped paths (the other path at each state is the survivor), and the numbers
in the trellis are the path metrics corresponding to the surviving sequences

at each state. The path metric at each state ρ ( j)
k , j = 0, . . . ,3, is equal to the
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Fig. 7.12 Cumulative path metrics and surviving sequences with the Viterbi algorithm

squared Euclidean distance between the corresponding surviving sequence

x̌(ρ ( j)
k ) and the received sequence v at the output of the noise-whitening filter.

As implied in (7.137), the ML receiver theoretically waits until the entire
sequence {Vn}∞n=1 has been received before making a decision. In practice, such a
long delay (maybe infinite) is intolerable. One method for solving this problem is to
modify the Viterbi algorithm to introduce a fixed decoding delay. Typically, the NS

surviving sequences x̌(ρ (i)
k ), i = 1, . . . ,NS −1 at time index k will be identical for bit

(or symbol) indices k−Q or less where Q is some sufficiently large number. That is,
all the surviving sequences will share a common parent sequence for bit (or symbol)
indices k −Q or less. With this in mind, one possibility is to modify the Viterbi
algorithm to implement a finite fixed decoding delay, by storing only the Q most
recent bits or symbols for each surviving sequence. When the channel vector Vk is

received and the path metrics Γ(ρ ( j)
k+1), j = 1, . . . ,NS −1 are being calculated, the fi-

nal decision is made on the bit (or symbol) Q branches back in the trellis by deciding

in favor of the bit (or symbol) at index k−Q in the surviving sequence x̌(ρ (i)
k ) having

the largest path metric Γ(ρ (i)
k ). It is well known that if Q > 5L, the performance

degradation caused by the resulting path metric truncation is negligible [267].
Another possibility is to transmit the data in blocks x = (x1,x2, . . . ,xN) of length

N, and use tail symbols to terminate the trellis in a known state. Recall that the
state at epoch k is ρk = (xk−1,xk−2, . . . ,xk−L). Therefore, if each block of N data
symbols is appended with a known L-symbol tail sequence, the trellis will terminate
in a known state that is uniquely determined by the L-symbol tail sequence. After the
received vector VN+L has been processed, there will be only one surviving sequence
left, and this surviving sequence is then used to make a decision on the entire block
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of bits (or symbols). This approach suffers a loss in power and data rate by the factor
N/(N + L) due to the insertion of tail symbols.

7.4.1.1 Adaptive MLSE Receiver

The Viterbi algorithm requires knowledge of the channel vectors gd,d = 1, . . . ,D
to compute the branch metrics in (7.139) so that an adaptive channel estimator is
needed. Various channel estimators have been proposed in the literature [58,88,170].
Often the LMS algorithm is used for this purpose, because of its good performance,
numerical stability, and simplicity of implementation [130, 170]. Another possible
adaptation algorithm is the Recursive Least Squares (RLS) or the Kalman algorithm
[130]. The RLS algorithm has a very fast convergence rate as compared to the
LMS algorithm. However, it is very complicated to implement and it is sensitive
to roundoff noise that accumulates due to recursive computations which may cause
numerical instabilities in the algorithm [217]. It has also been reported that the
tracking properties of the LMS algorithm for the purpose of channel estimation
in a fast varying environment are quite similar to those of the RLS algorithm
[88, 158, 241]. For these reasons, the LMS algorithm is commonly used during the
tracking mode in adaptive MLSE receivers. During the training mode, it is possible
that the RLS algorithm could offer better performance than the LMS algorithm.

A straightforward method for adaptive channel estimation with an MLSE re-
ceiver is to use the final decisions at the output of the Viterbi algorithm to update the
channel estimator during the tracking mode. As mentioned previously, a decision on
the data symbol xk−Q, denoted by x̂k−Q, is made when the vector Vk is received and
processed. With the LMS algorithm, the tap coefficients are updated according to

ĝi,d(k + 1) = ĝi,d(k)+αεk−Q,d x̂∗k−i−Q, i = 0, . . . ,L

d = 1, . . . ,D, (7.142)

where α is the adaptation step size, and

εk−Q,d = vk−Q,d −
L

∑
i=0

ĝi,d(k)x̂k−i−Q, (7.143)

is the error associated with branch d at epoch k. A major problem with this channel
estimator is that it lags behind the true channel vector by the decision delay Q that
is used in the Viterbi algorithm. To see this, we can write

vk−Q,d =
L

∑
i=0

gi,d(k−Q)xk−i−Q +ηk−Q,d , (7.144)
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and if correct decisions are made

εk−Q,d =
L

∑
i=0

(
gi,d(k−Q)− ĝi,d(k)

)
xk−i−Q +ηk−Q,d . (7.145)

Hence, channel time variations over the decision delay Q will cause the terms
{gi,d(k −Q)− ĝi,d(k)}L

k=1 to be nonzero, and this will degrade the tracking per-
formance. The decision delay Q could be reduced but this will unfortunately reduce
the reliability of the data decisions x̂k−i−Q. Since decision errors will also degrade
the performance of the channel estimator, the overall performance improvement
obtained by reducing Q is minimal at best.

One effective solution to this problem is to use per-survivor processing [157,
221, 237, 238], where each state maintains a separate channel estimator to track

the channel. After storing the path metrics Γ(ρ ( j)
k+1) and the associated surviving

sequences x̌(ρ ( j)
k+1) for each state j = 0, . . . ,NS − 1, the channel tap estimates are

updated according to

ĝ( j)
i,d (k + 1) = ĝ( j)

i,d (k)+αε( j)
k,d x̌∗k+1−i(ρ

( j)
k+1), i = 0, . . . ,L

d = 1, . . . ,D

j = 0, . . . ,NS −1,

(7.146)

where

ε( j)
k,d = vk,d −

L

∑
i=0

ĝ( j)
i,d (k)x̌∗k+1−i(ρ

( j)
k+1) (7.147)

and x̌k+1−i(ρ
( j)
k+1) is element k + 1− i of the surviving sequence x̌(ρ ( j)

k+1) associated

with state ρ ( j)
k+1. Notice that the individual channel estimators for each state use zero-

delay symbols in their adaptation algorithm and, therefore, good channel tracking
performance is expected. The zero-delay symbols that are used to update the channel

tap estimates associated with state ρ ( j)
k+1 are uniquely defined by surviving sequence

x̌(ρ ( j)
k+1) that is associated with ρ ( j)

k+1.

7.4.1.2 Fractionally Spaced MLSE Receiver

As mentioned previously, the matched filter outputs are often over-sampled to aid
symbol timing synchronization and to mitigate the effects of sample timing errors.
Suppose that the matched filter output is sampled at rate 2/T and the T/2-spaced
samples are processed with a T/2-spaced noise-whitening filter as shown in Fig. 7.6.
Once again, the channel can be modeled as a finite-state machine with the states
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defined in (7.134). However, the Viterbi decoder searches for the most likely path

in the trellis based on two samples per branch. For each state transition ρ ( j)
k → ρ (i)

k+1

at epoch k, the samples v(2)
2k and v(2)

2k+1 are used by the Viterbi algorithm to evaluate
the branch metric2

μ
(
ρ (i)

k →ρ ( j)
k+1

)
=

∣∣∣∣∣v
(2)
2k −g(2)

0 xk

(
ρ (i)

k → ρ ( j)
k+1

)
−

L

∑
m=1

g(2)
2mxk−m(ρ (i)

k )

∣∣∣∣∣
2

+

∣∣∣∣∣v
(2)
2k+1 −g(2)

1 xk

(
ρ (i)

k → ρ ( j)
k+1

)
−

L−1

∑
m=1

g(2)
2m+1xk−m(ρ (i)

k )

∣∣∣∣∣
2

.

(7.148)

Other than the change in the branch metric, the Viterbi algorithm proceeds as before.
Note also that the adaptive channel estimator must estimate and track two different

channel vectors; g(2)
e = {g(2)

0 ,g(2)
2 , . . . ,g(2)

2L } and g(2)
o = {g(2)

1 ,g(2)
3 , . . . ,g(2)

2L−1}.

7.4.2 Delayed Decision-Feedback Sequence Estimation

The complexity of the MLSE receiver grows exponentially with the channel
memory length. When the channel memory length becomes large, the MLSE
receiver quickly becomes impractical. Considerable research has been undertaken
to reduce the complexity of MLSE while retaining most of its performance. Duel-
Hallen and Heegard [82,83] proposed DDFSE, a technique that reduces the receiver
complexity by truncating the effective channel memory to μ terms, where μ is an
integer that can be varied from 0 to L. Thus, a suboptimum receiver is obtained with
a complexity that is controlled by the parameter μ .

The system function G(z) of the overall discrete-time white noise channel can be
written as

G(z) = Gμ(z)+ z−(μ+1)G+(z), (7.149)

where

Gμ(z) =
μ

∑
i=0

giz
−i, (7.150)

G+(z) =
L−μ−1

∑
i=0

gi+μ+1z−i. (7.151)

2For notational simplicity we assume D = 1.
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Let U(z) = G+(z)X(z), where X(z) is the z-transform of the input sequence. Then

uk =
L−μ−1

∑
i=0

gi+μ+1xk−i (7.152)

and

vk =
μ

∑
i=0

gixk−i + uk−μ−1 + wk. (7.153)

From (7.152) and (7.153), the system state at epoch k can be decomposed into the
state

ρμ
k = (xk−1, . . . , xk−μ) (7.154)

and a partial state
κk = (xk−μ−1, . . . , xk−L). (7.155)

There are Nμ = 2nμ states in (7.154).
The DDFSE receiver can be viewed as a Viterbi algorithm with a decision

feedback mechanism. For each state transition ρμ(i)
k → ρμ( j)

k+1 , the DDFSE receiver
uses the branch metric

μk

(
ρμ(i)

k → ρμ( j)
k+1

)
= −

∣∣∣∣∣ vk −g0xk

(
ρμ(i)

k → ρμ( j)
k+1

)

−
μ

∑
�=1

g�xk−�(ρ
μ(i)
k )−

L

∑
�=μ+1

g�x̌k−�

(
ρμ(i)

k

)∣∣∣∣∣
2

, (7.156)

where x̌k−�(ρ
μ(i)
k ) is element k− � of the surviving sequence x̌(ρμ(i)

k ). Since each
path uses decision feedback based on its own history, the DDFSE receiver avoids
using a single unreliable decision for feedback. Hence, error propagation with a
DDFSE receiver is not as severe as with a DFE receiver. When μ = 0, the DDFSE
receiver is equivalent to Driscoll’s decoder [81], and when μ = L, the DDFSE
receiver is equivalent to the MLSE receiver.

Finally, since only the μ most recent symbols are represented by the state in
(7.154), it is important to have most of the signal energy contained in these terms.
Hence, it is very important that the noise-whitening filter be selected so that the
overall channel G(z) has minimum phase. If G(z) does not have minimum phase,
DDFSE does not work as well.

Example 7.6:
Consider again the system in Example 7.4, where the received sequence is

v = (v0, v1, v2, v3, v4, . . .)

= (−3.2, −1.1, 0.9, 0.1, 1.2, 1.5, 0.7, −1.3, . . .)
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state

-1

+1

epoch

Fig. 7.13 Cumulative path metrics and surviving sequences with DDFSE

Recall that ρ (i)
k = (xk−1, xk−2), so there are four system states. However, we

wish to apply DDFSE with the state ρμ(i)
k = xk−1, i = 0,1. The initial state is

assumed to be ρμ(0)
0 = −1. Since the channel has finite length, (7.156) gives

the branch metric

μk

(
ρμ(i)

k → ρμ( j)
k+1

)
=
∣∣∣yk − xk

(
ρμ(i)

k → ρμ( j)
k+1

)
− xk−1(ρ

μ(i)
k )− x̌k−2

(
ρμ(i)

k

)∣∣∣2.
Applying DDFSE with the Viterbi algorithm gives the result shown in
Fig. 7.13. Once again, the X ′s on the branches in the trellis denote the dropped
paths and the numbers on the trellis nodes denote the path metrics.

7.4.3 Reduced-State Sequence Estimation

For large signal constellations, the number of states with DDFSE, 2nμ , is substantial
even for small μ . Eyuboǧlu and Qureshi [94] proposed a reduced complexity
method called RSSE, a technique that is especially useful for systems with large
signal constellations. RSSE reduces the number of states using Ungerboeck-like set
partitioning principles that were developed for trellis-coded modulation [258]. As
described in [94], for each element xk−n in ρμ

k = (xk−1, . . . ,xk−μ), a set partitioning
Ω(n),1 ≤ n ≤ μ ≤ L is defined where the signal set is partitioned into Ji subsets in
a way of increasing intrasubset minimum Euclidean distance.3

3If J1 = J2 = · · ·= Jμ = M and μ < L, then RSSE becomes DDFSE.



412 7 Equalization and Interference Cancelation

The subset in the partitioning Ω(i) to which xk−i belongs is denoted by ci(xk−i).
The subset partitioning is constrained such that Ω(i) is a finer partition of Ω(i +
1), 1 ≤ i ≤ μ−1 and J1 ≥ J2 · · · ≥ Jμ . In this case this following subset-state can
be defined

tμk = (c1(xk−1), c2(xk−2), . . . , cμ(xk−μ)). (7.157)

Note that the RSSE subset-state does not completely specify the μ most recent
symbols {xk−i}μi=1. Rather, the subset-state only specifies the subset to which these
symbols belong.

The constraints on the subset partitioning ensure a properly defined subset-trellis.
Given the current subset-state tμk and the subset c0(xk) to which the current symbol
xk belongs, the next subset-state tμk+1 is uniquely determined. Since ci(xk−i) can only
assume Ji possible values, there are ∏μ

i=1 Ji subset-states which could be much less
than 2nμ . Note that if J1 < 2n, there are parallel transitions associated with each
subset-transition. The number of the parallel transitions is equal to the number of
symbols in the corresponding subset.

The Viterbi algorithm used to search the subset-trellis is the same one used for
MLSE, except for a different branch metric and the possibility of parallel transitions
associated with the subset-transitions.4 When there are parallel transitions, the
Viterbi algorithm chooses the parallel transition with the maximum branch metric
first5 and then the steps are executed as defined in Sect. 7.4.1.

With RSSE, the branch metric in (7.139) is not uniquely determined by the
associated pair of subset-states. This is solved by introducing a decision feedback
mechanism for the branch metric calculation [83, 94]. The RSSE branch metric for
a particular parallel transition associated with the subset-transition tμ(i)

k → tμ( j)
k+1 is

μ
(

tμ(i)
k → tμ( j)

k+1

)
= −

∣∣∣∣∣vk −g0xk

(
tμ(i)
k → tμ( j)

k+1

)
−

L

∑
�=1

g�x̌k−�

(
tμ(i)
k

)∣∣∣∣∣
2

, (7.158)

where xk

(
tμ(i)
k → tμ( j)

k+1

)
is the data symbol corresponding to the particular parallel

transition, and x̌k−�(t
μ(i)
k ) is element k − � of the surviving sequence x̌

(
tμ(i)
k

)

associated with the subset-state tμ(i)
k .

4With DDFSE there are no parallel transitions.
5If the signal constellation has some symmetries, this step can be done using a slicing
operation [94].



7.5 Error Probability for MLSE on ISI Channels 413

7.5 Error Probability for MLSE on ISI Channels

We now consider the error probability performance of MLSE on ISI channels. We
will see that it is impossible to derive the exact error probability so that bounding
techniques, such as the union bound, must be used. Let x and x̂ be the transmitted
and estimated symbol sequences, respectively. For every pair x and x̂, an error
sequence ε = {εi} can be formed by defining εi = xi − x̂i. We arbitrarily assume
that the bit error probability at epoch j1 is of interest, so that ε j1 �= 0 for all error
sequences that are considered. For each error sequence ε , define the following useful
error events:

E ′(ε): The sequence x− ε is the maximum likelihood sequence.
E (ε): The sequence x− ε has a larger path metric than sequence x.

It is also convenient to define the events

E ′
G =

⋃
ε ∈ G

E ′(ε) (7.159)

and
EF =

⋃
ε ∈ F

E (ε), (7.160)

where G is the set of all possible error sequences having ε j1 �= 0 and F ⊂G is the set
of error sequences containing no more than L−1 consecutive zeroes amid nonzero
elements.

Let ρ = {ρk} and ρ̂ = {ρ̂k} be the system state sequences corresponding to the
symbol sequences x and x̂, respectively. An error event occurs between k1 and k2,
of length k2 − k1, if

ρk1 = ρ̂k1 , ρk2 = ρ̂k2 , and ρ j �= ρ̂ j for k1 < j < k2, (7.161)

where k1 ≤ j1 ≤ k2. The symbol error probability at epoch j1 is

Ps( j1) = P[x j1 �= x̂ j1 ]

= P[E ′
G]

= ∑
ε∈G

∑
x∈X (ε)

P[E ′(ε)|x]P[x], (7.162)

where X (ε) is the set of symbol sequences that can have ε as the error sequence.
For different ε , the set X (ε) might be different. The third equation in (7.162)
is obtained using the property that the events E ′(ε) are disjoint for ε ∈ G.
Unfortunately, (7.162) does not admit an explicit expression, and hence, upper
bounding techniques are needed for the performance evaluation. A union bound
on the error probability will be used in our analysis.
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xx

~x(2)x~(1)

x~(1)

x~(2)

Fig. 7.14 A typical error state trellis diagram

To obtain a tighter union bound, we now prove that the symbol error probability
at epoch j1 is

Ps( j1) = P[EF ]. (7.163)

Consider the typical trellis diagram as shown in Fig. 7.14, where x denotes the
transmitted symbol sequence, and x̃(1) and x̃(2) denote two different symbol
sequences. It can be seen that the error sequence ε(1) associated with x̃(1) and the
error sequence ε(2) associated with x̃(2) belong to sets F and G \F , respectively.
For every ε (2) ∈ G \F , there always exists an ε(1) ∈ F . If the sequence x− ε(2) is
the ML sequence, that is, the event E ′

G has occurred, then the sequence x− ε(1) has
a larger path metric than the sequence x, that is, the event EF has occurred. This
means that E ′

G implies EF . On the other hand, if ε(1) ∈ F and the sequence x− ε(1)

has a larger path metric than sequence x, then there exists a sequence ε ∈ G such
that the sequence x− ε is the ML sequence. Therefore, EF implies E ′

G, and (7.163)
is proven.

The union bound on (7.163) yields

Ps( j1) ≤ ∑
ε∈F

P]E (ε)]

= ∑
ε∈F

∑
x∈X (ε)

P[E (ε)|x]P[x] (7.164)

or, equivalently,

Ps( j1) ≤ ∑
ε∈E

ws(ε) ∑
x∈X (ε)

P[E (ε)|x]P[x], (7.165)

where E ∈ F is the set of error sequences that have the first nonzero element starting
at time j1, and ws(ε) is the number of symbol errors associated with the error
sequence ε . To obtain (7.165), we have used the following observations; (1) there
are ws(ε) places for the error sequence ε to start such that ε j1 �= 0, and (2) the
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error probability P[E (ε)|x] is independent of the place where the error sequence
ε starts. If the transmitted symbol sequence is long enough, then the symbol error
probability Ps( j1) is independent of the time index j1 and, therefore, the time index
will be omitted hereafter. Finally, for a given transmitted symbol sequence x, the
events {E (ε)} for ε ∈ F in (7.164) might overlap. The reason is that there may be
multiple symbol sequences that simultaneously have a larger path metric than the
path metric of the transmitted symbol sequence. When the system is operating at
a low SNR, there are more overlapping events E (ε) and, hence, the union bound
(7.164) becomes looser.

From the definition of event E (ε), the union bound (7.165) becomes

Ps ≤ ∑
ε∈E

ws(ε) ∑
x∈X (ε )

P[Γ(x− ε) ≥ Γ(x)|x]P[x], (7.166)

where Γ(x) is the path metric associated with the input sequence x. To obtain the bit
error probability, (7.166) can be easily modified as

Pb ≤ 1
n ∑ε∈E

wb(ε) ∑
x∈X (ε)

P[Γ(x− ε) ≥ Γ(x)|x]P[x], (7.167)

where n is the number bits transmitted per unit time, and wb(ε) is the number of bit
errors associated with the error sequence ε . The probability

P[Γ(x− ε) ≥ Γ(x)|x] (7.168)

is called the pairwise error probability. We will see in the following two sections that
the pairwise error probability is independent of the transmitted symbol sequence x.
Therefore, the union bounds (7.166) and (7.167) simplify to

Ps ≤ ∑
ε∈E

ws(ε)P [Γ(x− ε) ≥ Γ(x)|X (ε)]P [X (ε)] (7.169)

and

Pb ≤ 1
n ∑ε∈E

wb(ε)P [Γ(x− ε) ≥ Γ(x)|X (ε)]P [X (ε)] , (7.170)

respectively. The expressions in (7.169) and (7.170) are easier to calculate than
those in (7.166) and (7.167), because not all of the symbol sequences need to be
considered in the calculation.

7.5.1 Static ISI Channels

The pairwise error probability associated with the error event of length � = k2 − k1

in (7.161) is (Problem 7.16)
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P[Γ(x− ε) ≥ Γ(x)|x] = Q

⎛
⎝
√

Δ2

4No

⎞
⎠, (7.171)

where

Δ2 =
k1+�−1

∑
k=k1

∣∣∣∣∣
L

∑
i=0

giεk−i

∣∣∣∣∣
2

(7.172)

and Δ2 is the squared Euclidean path distance. At high signal-to-noise ratios, the
error event probability is approximately

Pe ≈ NminQ

⎛
⎝
√

d2
min

4No

⎞
⎠, (7.173)

where d2
min is the minimum value of Δ2 and Nmin denotes the average number of

error events at distance dmin.
The squared Euclidean path distance in (7.172) can be rewritten as

Δ2 =
k1+�−1

∑
k=k1

Δ2
k, (7.174)

where
Δ2

k = gHEkg (7.175)

is the squared branch distance and

Ek = [(emn)k] (7.176)

is the (L + 1) × (L + 1) branch distance matrix with elements (emn)k =
ε∗k−m+1εk−n+1. Define the error vector

ek = (εk,εk−1, . . . ,εk−L)H . (7.177)

It follows that Ek = ekeH
k and, hence, Ek has rank one. Note that Ekek = (eHek)ek

and, therefore, ek is an eigenvector of Ek and the only eigenvalue of Ek is λ (k) =
∑L

i=0 |εk−i|2. The path distance matrix of the length � error event in (7.161) is defined
as

E
�
=

k1+�−1

∑
k=k1

Ek. (7.178)

Using (7.134) and (7.161), the elements of E are

emn = r�(n−m), (7.179)
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where

r�(i) =

{
∑k1+�−(L+1)−i

k=k1
εkε∗k+i i ≥ 0

r∗� (−i) i < 0
. (7.180)

It follows that (7.174) has the Hermitian form Δ2 = gHEg. Since Δ2 > 0, E is a
positive definite matrix with all eigenvalues being real and positive. The matrix E
depends on the signal constellation and the length of the channel L+ 1.

By noting that gHg = f0 = 2Ehr , the squared Euclidean path distance can be
expressed in the form

Δ2 = 2Ehr

gHE g
gHg

= 2EhrR(g), (7.181)

where the ratio of the Hermitian form gHE g to the inner product gHg is called the
Rayleigh quotient of the vector g and is denoted as R(g) [130]. The eigenvalues
of E are equal to the Rayleigh quotient of the corresponding eigenvectors. The
Rayleigh quotient of E satisfies λmin ≤ R(g) ≤ λmax. The minimum value of R(g)
corresponds to the smallest possible Δ2 (or largest pairwise error probability) for a
given error sequence ε , and occurs when g = vmin. Likewise, the maximum value of
R(g) corresponds to the largest possible Δ2 (or smallest pairwise error probability)
for a given error sequence ε , and occurs when g = vmax. Note that the eigenvalues
of E are only a function of the error sequence ε and do not depend on the channel
vector g. While the eigenvalues of E can be calculated exactly for a given error
sequence ε , the eigenvalues of E are bounded by [130]

λmax ≤
L

∑
i=0

|r�(i)| and λmin ≥ r�(0)−
L

∑
i=1

|r�(i)|. (7.182)

The upper and lower bounds on the eigenvalues are easier to calculate than the

eigenvalues themselves. Finally, the condition number of E is defined as c(E)
�
=

λmax/λmin, and c(E) ≥ 1. If the condition number of a particular error sequence ε
is large (small), then the corresponding pairwise error probability will have a large
(small) variation with the channel vector g.

7.5.2 Fading ISI Channels

Consider the case of a fading ISI channel with D-branch diversity reception and
maximal ratio combining. The pairwise error probability is still given by (7.171),
but the squared Euclidean path distance associated with an error event of length � is
[240]

Δ2 =
D

∑
d=1

Δ2
d , (7.183)
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where

Δ2
d =

k1+�−1

∑
k=k1

∣∣∣∣∣
L

∑
i=0

gi,d(k)εk−i

∣∣∣∣∣
2

. (7.184)

The above expression can be written in the form

Δ2
d =

k1+�−1

∑
k=k1

gH
d (k)Ekgd(k). (7.185)

In general, the correlation matrix Φgd (0), where Φgd (m) is defined in (7.43)
is not diagonal. Although a nondiagonal Φgd (0) matrix is more realistic, it leads
to considerable analytical difficulty and loss of insight. Therefore, we restrict our
attention to the case where Φgd (0) is a diagonal matrix, meaning that the channel
tap gains are all mutually uncorrelated (assuming they have zero mean). In such a
case, a normalized channel vector ĝd(k) can be defined such that Φĝd (0) = IL+1. As
a result, (7.185) can be rewritten as

Δ2
d =

k1+�−1

∑
k=k1

ĝH
d (k)Ak,d ĝd(k), (7.186)

where
Ak,d = ΣdEkΣd (7.187)

and
Σd = diag[σ0,d , σ1,d, . . . , σL,d ] (7.188)

with σ2
i,d = 1

2 E[|gi,d|2]. It follows that Ak,d = uk,duH
k,d where uk,d = Σ dek and, hence,

Ak,d is a rank one matrix and uk,d is an eigenvector of Ak,d . The only nonzero
eigenvalue of Ak,d is λd = ∑L

i=0σ2
i,d |εk−i|2.

For slowly time-variant channels, it is reasonable to assume that gd(k) remains
constant over the length of the dominant error events, that is, gd(k) ≡ gd . This
assumption holds even for relatively large Doppler frequencies and error event
lengths. For example, if the channel exhibits 2D isotropic scattering and fmT =
0.0025, then error events up to length 20 have J0(2π fm|k|T ) ≥ J0(2π fm20T ) =
0.9755 ≈ 1. Using the above assumption, (7.186) can be written as

Δ2
d = ĝH

d Ad ĝd, (7.189)

where

Ad =
k1+�−1

∑
k=k1

Ak,d

= ΣdEΣ d . (7.190)
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The matrix Ad is also positive definite with all its eigenvalues real and positive. The
elements of Ad are given by [(amn)]d = σm−1,d σn−1,d r�(n−m) where r�(i) is given
by (7.180). The trace of the matrix Ad is

tr(Ad) =
L

∑
i=0

λi,d = (Ē/σ2
x )r�(0), (7.191)

where the λi,d, i = 0, . . . ,L are the eigenvalues of Ad . The last equality in (7.191)
is obtained using (7.45). Since Ad is Hermitian, there exists a diagonalization
Ad = UdΛdUH

d such that Ud is a unitary matrix and Λd is a diagonal matrix
consisting of the eigenvalues of Ad . Let ωd = UH

d ĝd be the corresponding diagonal
transformation. Hence,

Δ2
d = ωH

d Λdωd =
L

∑
i=0

λi,d |ωi,d |2, (7.192)

where 1
2 E[ωdωH

d ] = IL+1 so that the {ωi,d} are independent zero-mean unit-variance
Gaussian random variables. Using (7.183) and (7.192) gives

Δ2 =
D

∑
d=1

L

∑
i=0

αi,d , (7.193)

where αi,d = λi,d |ωi,d |2. The αi,d are chi-square distributed with two degrees of
freedom and, therefore, the characteristic function of Δ2 is

ψΔ2(z) =
D

∏
d=1

L

∏
i=0

1
1−α i,dz

, (7.194)

where α i,d = 2λi,d . Finally, the pairwise error probability is

P[Γ(x− ε) ≥ Γ(x)|x] =
∫ ∞

0
Q
(√

2x
)

fΔ2(x)dx, (7.195)

where fΔ2(x) is the probability density function of Δ2. Note that if some of the
eigenvalues λi,d are the same, then there will be repeated poles in the characteristic
function in (7.194). This will be the case for balanced diversity branches and will
also be the case if the channel vectors gd have some equal strength taps. Consider
the case where balanced D-branch diversity is used, but where the channel taps in
each diversity branch are not of equal strength. In this case, λi,d ≡ λi, d = 1, . . . ,D
and the characteristic function in (7.194) has the form

ψΔ2(z) =
L

∏
i=0

1
(1− zᾱi)D

=
L

∑
i=0

D

∑
d=1

Aid

(1− zᾱi)d , (7.196)
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where

Aid =
1

(D−d)!(−ᾱi)D−d

{
dD−d

dzD−d (1− zᾱi)
D ψΔ2(z)

}
z = 1/ᾱi

(7.197)

and ᾱi = 2λi. The pdf of Δ2 is

fΔ2(x) =
L

∑
i=0

D

∑
d=1

Aid
1

(d−1)!(ᾱi)d
xd−1 e−x/ᾱi , x ≥ 0. (7.198)

From (7.195) and (7.198), the exact pairwise error probability is

P[Γ(x− ε) ≥ Γ(x)|x] =
L

∑
i=0

D

∑
d=1

Aid

(
1− μi

2

)d d−1

∑
m=0

(
d−1 + m

m

) (
1 + μi

2

)m

,

(7.199)

where

μi =
√

ᾱi

1 + ᾱi
. (7.200)

From (7.191), the α i,d have the sum value constraint

L

∑
i=0

α i,d = 2
L

∑
i=0

λi,d = (2Ē/σ2
x )r�(0). (7.201)

Define S ⊆ RL+1 as the set of all (L + 1)-component vectors {ᾱd : ∑L
i=0 ᾱi,d =

(2Ē/σ2
x )r�(0)}. The set S is convex, since for any pair of vectors ᾱd,k and ᾱd, j

the convex combination θᾱd,k +(1−θ )ᾱd, j is contained in S for any 0 ≤ θ ≤ 1. If
the pairwise error probability is treated as a mapping from S to R, then it is a convex
function of ᾱd and, hence, has a unique minimum. For example, Fig. 7.15 shows
the pairwise error probability for a three-tap channel (L = 2, D = 1) with equal
strength taps (ᾱ0 = ᾱ1 = ᾱ2). Note that the value of ᾱ2 is determined uniquely by
the values of ᾱ0 and ᾱ1, and that is why a three-dimensional graph is used. Using
variational calculus, it can be shown (Appendix 1) that the pairwise error probability
is minimized when the ᾱi,d are all equal, that is, λi,d = λ = (Ē/σ2

x )r�(0)/(L + 1),
resulting in the minimum pairwise error probability

Pmin =
(

1− μ
2

)D(L+1) D(L+1)−1

∑
m=0

(
D(L+ 1)−1 + m

m

)(
1 + μ

2

)m

, (7.202)

where

μ =

√
λ/4No

1 +λ/4No
. (7.203)
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Fig. 7.15 Pairwise error probability for a three-tap fading ISI channel

For a given error event, the pairwise error probability is minimized when
Ad is perfectly conditioned, that is, c(Ad) = 1. Recall c(Ad) = c(ΣdEΣ d) ≤
(c(Σ d))

2 c(E), where (c(Σd))
2 represents the ratio of the maximum and minimum

channel tap variances (σ2
d )max/(σ2

d )min for diversity branch d. We have seen that E
depends only the signal constellation being used and the channel vector length L+1.
However, Ad has information about the signal constellation and power distribution
of the fading ISI channel. It follows that c(Ad) ≤ c(E) with equality if and only
if the channel has equal strength taps. This means that any system has the best
performance when the fading ISI channel has equal strength taps.

7.6 Error Probability for T/2-Spaced MLSE Receiver

Referring to Fig. 7.6, let X(z), V (z), and V (2)(z) be the z-transforms of the
input sequence x, the T -spaced received sequence v and the T/2-spaced received
sequence v(2), respectively. The mappings from X(z) to V (z) and from X(z) to
V (2)(z) are one-to-one, and both the T -spaced and T/2-spaced MLSE receivers
operate on received sequences that are corrupted by noise samples with variance
No. Therefore, we only need to compare the Euclidean distances between allowed
sequences of channel outputs to determine the relative performance of the T - and
T/2-spaced receivers.
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7.6.1 T-Spaced MLSE Receiver

From the definition of the error event in (7.161), the z-transform of the length-� error
sequence ε = {εk1 ,εk1+1, . . . ,εk1+�−1} is

E (z) = εk1 + εk1+1z−1 + · · ·+ εk1+�−1z−�+1, (7.204)

where εk = xk− x̂k. The z-transform of the received signal error sequence associated
with the length-� error sequence ε is

Ev(z) = (vk1 − v̂k1)+ (vk1+1 − v̂k1+1)z−1 + . . .

· · ·+(vk1+�+L−1 − v̂k1+�+L−1)z−(�+L−1) (7.205)

and we have
Ev(z) = E (z)G(z). (7.206)

From (7.172), the squared Euclidean distance Δ2 of the error event in (7.161) is
[104]

Δ2 =
k1+�−1

∑
k=k1

∣∣∣∣∣
L

∑
i=0

giεk−i

∣∣∣∣∣
2

= [ Ev(z)E ∗
v (1/z∗) ]0

= [ E (z)F(z)E ∗(1/z∗) ]0, (7.207)

where [ · ]0 is the coefficient of z0.

7.6.2 T/2-Spaced MLSE Receiver

For the same error event described in (7.161), the corresponding T/2-spaced error

sequence is ε(2) = {ε(2)
k1

,ε(2)
k1+1, . . . ,ε

(2)
k1+2�−1}, where

ε(2)
k1+i =

{
εk1+i/2, i even
0, i odd

. (7.208)

The z-transform of ε(2) is

E (2)(z) = εk1 + εk1+1z−2 + · · ·+ εk1+�+L−1z−2(�+L−1) (7.209)
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and because ε(2) is zero in the odd coordinates E (2)(z) = E (z2). The corresponding
z-transform of the T/2-spaced received signal error sequence associated with the
error sequence ε(2) is

E
(2)
v (z) = E (2)(z)G(2)(z). (7.210)

From (7.172), the squared Euclidean distance of the error event in (7.161) is

(Δ(2))
2

=
k1+2�−1

∑
k=k1

∣∣∣∣∣
2L

∑
i=0

g(2)
i ε(2)

k−i

∣∣∣∣∣
2

=
[
E

(2)
v (z)E (2)

v
∗
(1/z∗)

]
0

=
[

E (2)(z)F (2)(z)E (2)∗(1/z∗)
]

0

=
[

E (z2)F (2)(z)E ∗(1/z∗2)
]

0
, (7.211)

where F (2)(z) = G(2)(z)(G(2)(1/z∗))∗. Note that the polynomial E (z2) E ∗(1/z∗2)
has the property that the odd powers of z have zero coefficients. Therefore,
the contributions to the coefficient [E (z2)F (2)(z)E ∗(1/z∗2)]0 arise only from the
coefficients of F (2)(z) associated with even powers of z. Note also from (7.46) and

(7.47) that the coefficients f (2)
2k of F (2)(z) associated with even powers of z are equal

to the coefficients fk of F(z), that is, f (2)
2k = fk. Therefore,

(Δ(2))
2
= [ E (z2)F (2)(z)E ∗(1/z∗2) ]0 = [ E (z)F(z)E ∗(1/z∗) ]0 = Δ2. (7.212)

Consequently, the T - and T/2-spaced MLSE receivers have identical error proba-
bility performance.

Example 7.9:
Let

E (z) = ε0 + ε1z−1 + ε2z−2,

F (2)(z) = f (2)
−2 z2 + f (2)

−1 z+ f (2)
0 + f (2)

1 z−1 + f (2)
2 z−2.

Then

F(z) = f−1z+ f0 + f1z−1 = f (2)
−2 z+ f (2)

0 + f (2)
2 z−1,

E (2)(z) = ε0 + ε1z−2 + ε2z−4.
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Therefore,

[ E (z)F(z)E ∗(1/z∗) ]0 =
(|ε0|2 + |ε1|2 + |ε2|2

)2
f0

+ε0ε∗1 f1 + ε1ε∗0 f−1

and

[ E (2)(z)F (2)(z)E (2)∗(1/z∗) ]0 =
(|ε0|2 + |ε1|2 + |ε2|2

)2
f (2)
0

+ε0ε∗1 f (2)
2 + ε1ε∗0 f (2)

−2 .

Hence, Δ2 = (Δ(2))2.

7.6.3 Timing Phase Sensitivity

The conventional MLSE receiver based on T -spaced sampling at the output of the
matched filter suffers from sensitivity to the sampler timing phase [220]. We now
show that a T/2-spaced MLSE receiver is insensitive to the sampler timing phase.
This can be readily seen by examining the sampled spectrum at the output of the
matched filter. Suppose that the received pulse has less than 100% excess bandwidth,
that is, H( f ) = 0 for | f | > 1/T . With T -spaced sampling and a timing offset of to,
the sampled spectrum is equal to

FΣ( f ) =
1
T ∑n

F
(

f +
n
T

)
ej2π( f+n/T)to . (7.213)

This spectrum exhibits aliasing for any received pulse having a bandwidth greater
than the Nyquist frequency of 1/(2T) Hz. Consider, for example, the sampled
spectrum at the Nyquist frequency f = 1/(2T) Hz. If there is no timing offset, then

FΣ(1/(2T )) =
1
T

(F(1/(2T))+ F(−1/(2T))) .

In this case, the sampled spectrum at frequency f = 1/(2T) Hz adds constructively.
Now suppose there is a timing offset to = T/2. Then,

FΣ(1/(2T )) =
1
T

(
F(1/(2T))ejπ/2 + F(−1/(2T))e−jπ/2

)
= 0.

In this case, the sampled spectrum at frequency f = 1/(2T) Hz adds destructively
and there is a null. Hence, the folded spectrum is sensitive to the timing offset with
T -spaced sampling. With T/2-spaced sampling, on the other hand,
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FΣ( f ) =
2
T ∑n

F

(
f +

2n
T

)
ej2π( f+2n/T)to . (7.214)

Notice that the sampled spectrum is a function of the timing offset to, but does not
exhibit aliasing since H( f ) has no more than 100% excess bandwidth.

For a given a timing offset t0, the sampled impulse response at the output of

the matched filter is represented by the vector f(2)
t0 , where f (2)

t0,k = f (kT ′ ± t0) and

T ′ = T/2. Note that f (2)
t0,n �=

(
f (2)
t0,−n

)∗
when a timing offset is present. The discrete-

time Fourier transform (DTFT) of f(2)
t0 is

F(2)
t0 (ejω) = F (2)(ejω )e± jωτ0 , (7.215)

where τ0 = t0/T ′. If the sampler phase is known, then a discrete-time filter with a
frequency response function e∓ jωτ0 after the sampler will give the sampled response
f(2) at its output. However, as we now show, there is no need to correct this phase
offset before performing MLSE equalization when T/2-spaced sampling is used.

The power spectrum of the noise at the output of the matched filter is independent
of the timing offset t0 and is given by

Sνν( f ) = NoF (2)(ejω ). (7.216)

Since the DTFT of the noise-whitening filter is

1/(G(2)(1/z∗))∗|z=ejω = 1/(G(2)(ejω))∗ (7.217)

and we have

F (2)(ejω) = G(2)(ejω) (G(2)(ejω ))∗ = |G(2)(ejω )|2, (7.218)

it follows that the noise samples are white at the output of the noise-whitening
filter with variance No. The DTFT of the message signal at the output of the noise-
whitening filter is

X (2)(ejω )G(2)
t0 (ejω ) = X (2)(ejω)G(2)(ejω)e± jωτ0 (7.219)

and we have

∑
i

|g(2)
i |2 =∑

i

|g(2)
t0,i|2 =

1
2π

∫ π

−π
|G(2)(ejω)|2dω , (7.220)

according to Parseval’s theorem. Also

G(2)
t0 (z)(G(2)

t0 (1/z∗))∗ = F (2)(z). (7.221)
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Hence, the distances between allowed sequences of channel outputs with the T/2-
spaced MLSE receiver in (7.211) remain the same and the performance is insensitive
to the sampler phase e± jωτ0 . The MLSE receiver just needs to estimate the set of tap

coefficients {g(2)
t0,i} instead of {g(2)

i } for use in the branch metric calculations.

7.6.4 Practical T /2-Spaced MLSE Receiver

The receivers in Figs. 7.3 and 7.6 use a filter that is matched to the received
pulse h∗(−t). Since this filter requires knowledge of the unknown channel impulse
response, it is impractical. One solution is to implement an “ideal” low-pass filter
with a cutoff frequency of 1/T and sample the output at rate 2/T . The noise
samples at the output of this filter will be uncorrelated and, therefore, the T/2-
spaced MLSE receiver can be implemented. Vachula and Hill [260] showed that
this receiver is optimum; however, it has some drawbacks. First, it is not suitable
for bandwidth efficient systems that use frequency division multiplexing, because
the cutoff frequency of the low-pass filter will extend significantly into the adjacent
band and pass large amounts of adjacent channel interference. Second, the ideal
low-pass filter is noncausal and difficult to approximate. Another solution is to use
a receiver filter that is matched to the transmitted pulse ha(t) followed by a T/2-
spaced sampler and a noise-whitening filter [54, 126]. If the transmitted signals are
strictly bandlimited, for example, ha(t) is a root raised cosine pulse, such that the
received pulse h(t) has at most 100% excess bandwidth,6 then rate-2/T sampling
satisfies the Shannon sampling theorem and the T/2-spaced samples will provide
sufficient statistics as we now show.

For simplicity, consider a time-invariant channel with impulse response g(t).
Let H(2)

a (z), G(2)(z), and H(2)(z) be the z-transforms of the T/2-spaced discrete-
time signals corresponding to ha(t), g(t), and h(t), respectively. The z-transform of
the autocorrelation function of the noise samples at the output of the receive filter

h∗a(−t) is NoF (2)
h (z), where F (2)

h (z) = H(2)
a (z)

(
H(2)

a (1/z∗)
)∗

. Using the factorization

F (2)
h (z) = G(2)

h (z)
(

G(2)
h (1/z∗)

)∗
, (7.222)

the T/2-spaced noise sequence can be whitened using a filter with transfer function

1/
(
G(2)

h (1/z∗)
)∗

such that G(2)
h (z) has minimum phase. The resulting system is

shown in Fig. 7.16. We now show that the receivers in Figs. 7.6 and 7.16 yield
identical performance.

The z-transform of the T/2-spaced discrete-time white noise channel in
Fig. 7.16 is

6The received pulse will a larger bandwidth due to Doppler spreading.
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Fig. 7.16 Block diagram of system that implements a filter matched to ha(t) followed by a T/2-
spaced noise-whitening filter. The structure of the noise-whitening filter depends only on the pulse
ha(t)

G(2)
eq (z) = H(2)

a (z)G(2)(z)
(

H(2)
a (1/z∗)

)∗
/
(

G(2)
h (1/z∗)

)∗

= G(2)
h (z)G(2)(z). (7.223)

On the other hand, referring to the conventional system shown in Fig. 7.6, we have

H(2)(z) = H(2)
a (z) G(2)(z) (7.224)

and
F (2)(z) = H(2)

a (z)
(

H(2)
a (1/z∗)

)∗
G(2)(z)

(
G(2)(1/z∗)

)∗
. (7.225)

Let
G(2)(z)

(
G(2)(1/z∗)

)∗
= G(2)

c (z)
(

G(2)
c (1/z∗)

)∗
, (7.226)

be a factorization of G(2)(z)
(

G(2)(1/z∗)
)∗

such that G(2)
c (z) has minimum phase.

Using (7.222), (7.225), and (7.226) yields

F(2)(z) = G(2)
h (z)

(
G(2)

h (1/z∗)
)∗

G(2)
c (z)

(
G(2)

c (1/z∗)
)∗

. (7.227)

If the system function of the noise-whitening filter is chosen as

1/
( (

G(2)
h (1/z∗)

)∗ (
G(2)

c (1/z∗)
)∗ )

, (7.228)

then the system function in Fig. 7.6 is

G(2)(z) = G(2)
h (z)G(2)

c (z). (7.229)

The system responses G(2)
eq (ejω ) and G(2)(ejω ) have the same amplitude response

but a different phase response. Also

G(2)
eq (z)

(
G(2)

eq (1/z∗)
)∗

= F(2)(z). (7.230)
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Therefore, the Euclidean distance between sequences of noise-whitening filter
outputs for the T -spaced and T/2-spaced systems is the same. It follows that the
systems shown in Figs. 7.6 and 7.16 yield identical performance. The main advan-
tage of the system in Fig. 7.16 is that the noise-whitening filter does not depend
on the unknown channel and has a fixed structure. Moreover, channel estimation
can be performed after the noise-whitening filter and the Viterbi algorithm can be
implemented using the metric in (7.148). Although the number of computations
needed in the T/2-spaced MLSE receiver is twice that of a T -spaced receiver, the
latter cannot be implemented for unknown channels. Moreover, a T -spaced MLSE
receiver has poor performance when it is implemented with a matched filter that is
derived from an inaccurate channel estimate [196].

7.7 Co-channel Demodulation

By extending Forney’s maximum likelihood receiver [104], Van Etten [92] proposed
MLSE for the joint detection of co-channel signals. In this section, we derive
optimum and suboptimum MLSE receivers for co-channel demodulation of digital
signals corrupted by ISI. By modeling the overall system as a discrete-time
MIMO channel, the optimum MIMO joint MLSE (J-MLSE) receiver is derived. By
following a parallel argument used for single-input single-output (SISO) channels, a
T/2-spaced MIMO J-MLSE receiver is shown to have the same performance as the
T -spaced receiver, but with insensitivity to timing phase errors. The optimality of a
practical T/2-spaced receiver is shown, which consists of a filter that is matched
to the transmitted pulse, followed by a rate-2/T sampler, a T/2-spaced noise-
whitening filter, and a Viterbi algorithm. The optimum MIMO J-MLSE receiver
requires complete knowledge of the complex channel gains associated with all co-
channel signals. In many cases, such complete knowledge is impractical or even
infeasible to obtain. For such cases, we discuss an interference rejection combining
MLSE (IRC-MLSE) receiver that only requires knowledge of the complex channel
gain for the desired signal but not the co-channel interferers.

7.7.1 System and Channel Model

Consider a system where the signals from K co-channel signals are received by J
antenna elements. This system can be modeled by a K × J MIMO channel, where
the MIMO channel inputs are the symbol sequences from the K co-channel users,
and the MIMO channel outputs are the combination of the signals that are received
from the co-channel users at each of the J receiver antenna elements. The co-channel
detection problem is mathematically very similar to the CDMA multiuser detection
problem. However, while the users in a CDMA system are distinguished by different
spreading sequences as discussed in Chap. 9, the K co-channel users will all use the
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same transmitter pulse shaping filter ha(t). The impulse response of the channel
between the kth user and the jth antenna element is denoted by g(k, j)(t,τ), where
we have assumed that the channels are modeled as time-variant linear filters. While
the channel introduces frequency and time selectivity into the received signals, it
also allows the co-channel signals to be distinguished at the receiver, since the
received pulses h(k, j)(t) = g(k, j)(t,τ) ∗ ha(t) are all distinct due to the different
channel impulse responses. The received pulses h(k, j)(t) are all assumed to have
a length of at most L(k, j)T , that is, h(k, j)(t) = 0 for t ≤ 0 and t ≥ (L(k, j) + 1)T . The
received complex envelope at the jth antenna element is

r̃( j)(t) =
K

∑
k=1
∑
�

x(k)
� h(k, j)(t − �T − τk)+ ñ( j)(t), (7.231)

where τk, 0≤ τk ≤ T is the random transmission delay due to symbol asynchronous
users, and ñ( j)(t) is AWGN assumed to be independent on the different antenna
branches.

7.7.2 Joint Maximum Likelihood Co-channel Receiver

The J-MLSE receiver processes the total received vector

r̃(t) =
(

r̃(1)(t), r̃(2)(t), . . . , r̃(J)(t)
)

, (7.232)

to generate a ML estimate of the information sequence

x = (x(1),x(2), . . . ,x(K)), (7.233)

where x(k) = {x(k)
n }. To derive the structure of the joint ML receiver, we follow the

same approach used in Sect. 7.1.1. Let {ϕn(t)} denote a complete set of complex
orthonormal basis functions that span the entire duration of the observation vector
r̃(t). Then

r̃( j)(t) =
N

∑
n=1

r̃( j)
n ϕn(t), (7.234)

where

r̃( j)
n =

K

∑
k=1
∑
�

x(k)
� h(k, j)

�n
+ ñ( j)

n (7.235)

and

h(k, j)
�n

=
∫ ∞

−∞
h(k, j)(t − �T − τk)ϕ∗

n (t)dt, (7.236)

ñ( j)
n =

∫ ∞

−∞
ñ( j)(t)ϕ∗

n (t)dt. (7.237)
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Define the received vector

r̃ = vec(r̃(1), r̃(2), . . . ,r(J)), (7.238)

where r̃( j) = {r̃( j)
n }. Since the noise components ñ( j)

n associated with the J antenna
elements are uncorrelated zero-mean complex Gaussian random variables with

variance 1
2 E[|ñ( j)

n |2] = No, the received vector r̃ has the complex multivariate
Gaussian density

p(r̃|x,h) =
N

∏
n=1

1
2πNo

exp

⎧⎨
⎩− 1

2No

J

∑
j=1

∣∣∣∣∣r̃
( j)
n −

K

∑
k=1
∑
�

x(k)
� h(k, j)

�n

∣∣∣∣∣
2
⎫⎬
⎭ , (7.239)

where h = {h(k, j)
�n

}.
The optimum receiver chooses x to maximize p(r̃|x,h) or, equivalently, the

metric

μ(x) = −
N

∑
n=1

J

∑
j=1

∣∣∣∣∣r̃
( j)
n −

K

∑
k=1
∑
�

x(k)
� h(k, j)

�n

∣∣∣∣∣
2

. (7.240)

Since ∑N
n=1∑

J
j=1 |r̃( j)

n |2 is independent of x, maximizing (7.240) is equivalent to
maximizing

μ(x) =
J

∑
j=1

(
2Re

{
K

∑
k=1
∑
�

x(k)∗
�

N

∑
n=1

r̃( j)
n h(k, j)∗

�n

}

−
K

∑
k=1

K

∑
k′=1

∑
�
∑
�′

x(k)
� x(k′)∗

�′
N

∑
n=1

h(k, j)
�n

h(k′, j)∗
�′n

)
. (7.241)

In the limit as the number of observable random variables N approaches infinity, we
define

y(k, j)
�

�
= lim

N→∞

N

∑
n=1

r̃( j)
n h(k, j)∗

�n

=
∫ ∞

−∞
r̃( j)(t)h(k, j)∗(t − �T − τk)dt, (7.242)

f (k,k′ , j)
�′−�

�
= lim

N→∞

N

∑
n=1

h(k, j)
�n

h(k′, j)∗
�′n

=
∫ ∞

−∞
h(k, j)(t − �T − τk)h(k′, j)∗(t − �′T − τk′)dt. (7.243)
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Fig. 7.17 Overall MIMO system model for co-channel demodulation

Using (7.242) and (7.243) in (7.241), we arrive at the final form

μ(x) =
J

∑
j=1

{
2Re

(
K

∑
k=1
∑
�

x(k)∗
� y(k, j)

�

)

−
K

∑
k=1

K

∑
k′=1

∑
�
∑
�′

x(k)
� x(k′)∗

�′ f (k,k′ , j)
�′−�

}
. (7.244)

The variables {y(k, j)
� } in (7.242) are obtained by passing the received complex

envelope r̃( j)
n (t) through the matched filter h(k, j)∗(−t−τk) and sampling the output.7

Note that there are K such matched filters on each of the J receiver antenna elements,
and the samples must be taken with the timing delay τk,k = 1, . . . ,K. The above
development leads to the overall system model shown in Fig. 7.17. Finally, by

changing the variable of integration, the { f (k,k′, j)
�′−� } in (7.243) can be rewritten in

the form

f (k,k′ , j)
n =

∫ ∞

−∞
h(k, j)(t −nT − τk)h(k′, j)∗(t − τk′)dt. (7.245)

where n = �′ − �. Using (7.245), it can be shown that the ISI coefficients have the
symmetric property

f (k,k′ , j)
n = f (k′ ,k, j)∗

−n . (7.246)

7It is assumed that the differential delay across the multiple receiver antenna elements is negligible.
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7.7.3 Discrete-Time MIMO Channel Model

Sampling the outputs of the matched filter h(k, j)∗(−t − τk) in Fig. 7.17 every T

seconds yields the sample sequence {y(k, j)
� }, where

y(k, j)
� =

K

∑
k′=1

∑
n

x(k′)
n f (k′ ,k, j)

�−n +ν(k, j)
�

=
K

∑
k′=1

Lj+1

∑
m=−Lj−1

x(k′)
�−m f (k′ ,k, j)

m +ν(k, j)
� (7.247)

and

ν(k, j)
� =

∫ ∞

−∞
ñ( j)(t)h(k, j)∗(t − �T − τk)dt, (7.248)

and where Lj = maxk L(k, j) is the maximum discrete-time channel length. This is
an extension of the result in (7.17) for SISO ISI channels. However, for MIMO
ISI channels, the range of summation must be expanded from (−Lj,Lj) to (−Lj −
1,Lj +1) to account for the random user delays in the case of symbol asynchronous
users. If we define

y( j)
�

�
=
(

y(1, j)
� , . . . ,y(K, j)

�

)T
, (7.249)

x�
�
=
(

x(1)
� , . . . ,x(K)

�

)T
, (7.250)

ν( j)
�

�
=
(
ν(1, j)

� , . . . ,ν(K, j)
�

)T
, (7.251)

F( j)
m

�
=
[

f (k′ ,k, j)
m

]
K×K

, (7.252)

then (7.247) leads to the convenient matrix representation

y( j)
� =

Lj+1

∑
m=−Lj−1

F( j)
m x�−m +ν( j)

� . (7.253)

From (7.244) and (7.253), it follows that the joint maximum likelihood receiver uses

the entire set of J observation vectors y = {y( j)
� , j = 1, . . . ,J} along with knowledge

of the entire set of ISI coefficient matrices F = {F( j)
m ,m = −Lj − 1, . . . ,Lj + 1, j =

1, . . . ,J} to determine the most likely transmitted sequence x = {x�}. Hence, the
joint maximum likelihood receiver decides in favor of the symbol sequence x that
maximizes the joint likelihood function p(y|x,F) or the log-likelihood function
log{p(y|x,F)}.

The noise samples in (7.248) are zero-mean complex Gaussian variables that are
correlated by the matched filters h(k, j)∗(−t − τk),k = 1, . . . ,K. The vector of zero

mean noise samples ν( j)
� has the covariance matrix
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Φν ( j)ν ( j) (n) =
1
2

E
[
ν( j)

� ν( j)H

�+n

]
= NoF( j)

n . (7.254)

As is the case with SISO ISI channels, the correlation of the noise samples
complicates the implementation of various equalization schemes. However, a matrix

noise-whitening filter can be used to whiten the vector of noise samples ν( j)
� . The

z-transform of the noise covariance matrix for the jth antenna element can be
defined as Φν ( j)ν ( j) (z) = NoF( j)(z), where [84]

F( j)(z) =
Lj+1

∑
n=−Lj−1

F( j)
n z−n (7.255)

and, once again, Lj = maxk L(k, j) is the maximum discrete-time channel length. This
is a straightforward extension of the SISO ISI channels where F(z) =∑L

n=−L fnz−n.
However, an MIMO channel is described by a covariance matrix, and the range
of summation in (7.255) must be expanded from (−Lj,Lj) to (−Lj − 1,Lj + 1) to
account for the random user delays in the case of symbol asynchronous users.

Using the symmetric property f (k,m, j)
n = f (m,k, j)∗

−n of the ISI coefficients, it follows

that F( j)
n = F( j)H

−n . Therefore, F( j)(z) has the symmetric form

F( j)(z) = F( j)H
(1/z∗). (7.256)

It follows that the matrix F( j)(z) can be factored as

F( j)(z) = G( j)(z)G( j)H
(1/z∗) (7.257)

and the filter [G( j)H
(1/z∗)]−1 will serve as a noise-whitening matrix filter.

Example 7.10:
Consider a two user system with a single receiver antenna. Since J = 1, we

can omit the index ( j). Let L = 1 and F(z) be

F(z) = FH
1 z+ F0 + F1z−1

=
[

1 0.48 + 0.48z−1

0.48 + 0.48z 1

]

=
[

0 0
0.48 0

]
z+
[

1 0.48
0.48 1

]
+
[

0 0.48
0 0

]
z−1.
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The matrix spectral factorization of F(z) has the form

F(z) = GH(1/z∗)G(z)

= [G0 + G1z∗]H
[
G0 + G1z−1] .

F0 and F1 can be represented by

F0 = GH
0 G0 + GH

1 G1,

F1 = GH
0 G1,

where G0 is lower triangular and F1 is upper triangular with zero diagonal.
In turn, G1 must be upper triangular with zero diagonal. This results in the
spectral factorization

F(z)=
[[

0.8 0
0.6 0.8

]
+
[

0 0.6
0 0

]
z∗
]H [[

0.8 0
0.6 0.8

]
+
[

0 0.6
0 0

]
z−1
]
.

The matrix noise-whitening filter [GH(1/z∗)]−1 is noncausal and stable with
an infinite length.

[GH(1/z∗)]−1 =
[

0.8 0.6
0.6z 0.8

]−1

=
1

0.64−0.36z

[
0.8 −0.6

−0.6z 0.8

]
.

In practice, the filter [GH(1/z∗)]−1 can be approximated with a finite length
filter using a sufficient filter delay. Finally, the overall discrete-time white
noise matrix channel has transfer function

G(z) =
[

0.8 0
0.6 0.8

]
+
[

0 0.6
0 0

]
z−1.

Let x(z) = (x(1)(z),x(2)(z), . . . ,x(K)(z))T be the z-transform of the input se-

quence {xn} to the channel, where xn = (x(1)
n ,x(2)

n , . . . ,x(K)
n )T, and let v( j)(z) =

(v(1, j)(z),v(2, j)(z), . . . ,v(K, j)(z))T be the z-transform of the output sequence {v( j)
n }

from the noise-whitening filter on antenna j, where v( j)
n = (v(1, j)

n ,v(2, j)
n , . . . ,v(K, j)

n )T.
Then

v( j)(z) = G( j)(z)x(z)+ w( j)(z), (7.258)
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Fig. 7.18 Discrete-time white noise MIMO channel model

where w( j)(z) = (w(1, j)(z),w(2, j)(z), . . . ,w(K, j)(z))T is the z-transform of the se-

quence of white Gaussian noise vectors w( j)
n = (w(1, j)

n ,w(2, j)
n , . . . ,w(K, j)

n )T . In the
time-domain

v( j)
n =

Lj

∑
k=0

G( j)
k xn−k + w( j)

n , (7.259)

where the zero mean noise vector w( j)
n has covariance matrix

Φ
w( j)

n w( j)
n

(n) =
1
2

E
[
w̃( j)

� w̃( j)H

�+n

]
= NoδnI. (7.260)

The optimum receiver consists of a bank of K matched filters at the output
of each antenna element, followed by a baud-rate sampler and a K × K matrix
noise-whitening filter. With J-branch diversity reception, the overall matrix channel
consisting of the transmit filters, channels, matched filters, samplers, and matrix
noise-whitening filters can be modeled as a parallel collection of J T -spaced matrix
filters with independent white noise sequences as shown in Fig. 7.18. To determine
the number of states in the overall channel model, we first define Lk = max j L(k, j)

as the length of the channel for the kth input. Then there are 2n∑K
k=1 Lk states, where

2n is the size of the signal constellation.

7.7.4 The Viterbi Algorithm

Suppose that m symbols from each of the K transmitters have been transmitted over

the channel. Let Vn = vec(v(1)T

n ,v(2)T

n , . . . ,v(J)T

n )T, where v( j)
n = (v(1, j)

n , . . . ,v(K, j)
n )T

denote the collection of vectors at the outputs of the matrix noise-whitening filters
for the J antenna branches at epoch n. After receiving the output sequence {Vn}m

n=1,
the ML receiver decides in favor of the sequence of input vectors {xn}m

n=1 that
maximizes the log-likelihood function
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log{p(Vm, . . . ,V1|xm, . . . ,x1)}
= log

{
p
(

Vm|x(1)
m , . . . ,x(1)

m−L1
;x(2)

m , . . . ,x(2)
m−L2

; . . . ;x(K)
m , . . . ,x(K)

m−LK

)}

+log{p(Vm−1, . . . ,V1|xm−1, . . . ,x1)}. (7.261)

The first term on the right-hand side of (7.261) is the branch metric used in the
Viterbi algorithm. The discrete-time white noise matrix channel model leads to the
conditional density function

log
{

p
(

Vm|x(1)
m , . . . ,x(1)

m−L1
;x(2)

m , . . . ,x(2)
m−L2

; . . . ;x(K)
m , . . . ,x(K)

m−LK

)}

=
1

(2πNo)KJ exp

{
− 1

2No

J

∑
j=1

‖v( j)
m −

L

∑
n=0

G( j)
n xm−n‖2

}
, (7.262)

where L = maxk Lk. Note that some elements in the matrix G( j)
n may be zero if

Lk �= L, k = 1, . . . ,K in which case the branch metric computation can be somewhat
simplified. The density in (7.262) leads to the branch metric

μm = −
J

∑
j=1

∥∥∥∥∥v( j)
m −

L

∑
n=0

G( j)
n xm−n

∥∥∥∥∥
2

. (7.263)

7.7.5 Pairwise Error Probability

Let x and x̂ be the transmitted and estimated symbol sequences, respectively, and
define the error sequence ε = x− x̂. The pairwise error probability is the probability
that the receiver decides in favor of sequence x̂ when sequence x was transmitted,
and is equal to

P[Γ(x− ε) ≥ Γ(x)|x] = P [Γ(x̂) > Γ(x)], (7.264)

where Γ(x) = ∑m μm is the path metric associated with the input sequence x with
the branch metric μm defined in (7.263). From (7.263),

P[Γ(x− ε) ≥ Γ(x)|x] = P

[
∑
m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εm−n + w( j)

m ‖2 <∑
m

J

∑
j=1

‖w( j)
m ‖2

]

= P

[
∑
m

J

∑
j=1

2Re

{
L

∑
n=0

w( j)H

m G( j)
n εm−n

}

< −∑
m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εm−n‖2

]
. (7.265)
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Define

Δ2 �
= ∑

m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εn−m‖2, (7.266)

χ �
= ∑

m

J

∑
j=1

2Re

{
L

∑
n=0

w( j)H

m G( j)
n εm−n

}
. (7.267)

It can be shown that χ is a zero-mean Gaussian random variable with variance
4NoΔ2. Therefore, the pairwise error probability becomes

P[Γ(x− ε) ≥ Γ(x)|x] = Q

⎛
⎝
√

Δ2

4No

⎞
⎠. (7.268)

7.7.6 T/2-Spaced MIMO J-MLSE Receiver

Suppose that the matched filter outputs h(k, j)∗(−t − τk),k = 1, . . . ,K are sampled
every T/2 seconds at the correct timing phase. Again, the zero mean noise samples
at the output of the matched filters are correlated due to the matched filtering, and
their covariance matrix is

Φ̃ν̃ ( j)ν̃ ( j) (n) =
1
2

E
[
ν̃( j)

� ν̃( j)H

�+n

]
= NoF̃( j)

n , (7.269)

where the elements of the matrix F̃( j)
n are f̃ (k,k′ , j)

n = f̃ (k,k′ , j)(nT/2), the function
f (k,k′ , j)(t) is defined in (7.245), and where the tilde denotes rate 2/T sampling.
It follows that the z-transform of the noise covariance matrix for the jth antenna
element can be defined as Φ̃ν̃ ( j)ν̃ ( j) (z) = NoF̃( j)(z), where

F̃( j)(z) =
2Lj+1

∑
n=−2Lj−1

F̃( j)
n z−n. (7.270)

Since f̃ (k,k′ , j)
� = f̃ (k′ ,k, j)∗

−� , it follows that F̃( j)(z) has the factorization

F̃( j)(z) = G̃( j)(z)G̃( j)H
(1/z∗). (7.271)

As with baud-rate sampling, the T/2-spaced noise samples can be whitened
using a stable noncausal matrix noise-whitening filter with the transfer function[
G̃( j)H

(1/z∗)
]−1

. Analogous to (7.258), the z-transform of the output of the matrix
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noise-whitening filter is

ṽ( j)(z) = G̃( j)(z)x̃(z)+ w̃( j)(z) (7.272)

or in the time-domain

ṽ( j)
� =

2Lj

∑
n=0

G̃( j)
n x̃�−n + w̃( j)

� , (7.273)

where {w̃( j)
� } is a T/2-spaced white noise sequence with power spectrum Sw̃w̃( f ) =

NoI. The sequence {x̃n} is the corresponding T/2-spaced input symbol sequence
and is given by

x̃n =
{

xn/2, n = 0,2,4, . . .

0, n = 1,3,5, . . .
(7.274)

The overall system and equivalent discrete-time white noise models are shown in
Figs. 7.19 and 7.20, respectively.
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Note that the vector samples ṽ( j)
2� and ṽ( j)

2�+1 correspond to the �th received baud,
such that

ṽ( j)
2� =

Lj

∑
n=0

G̃( j)
2n x�−n + w̃( j)

2� (7.275)

ṽ( j)
2�+1 =

Lj−1

∑
n=0

G̃( j)
2n+1x�−n + w̃( j)

2�+1. (7.276)

With T/2-spaced fractional sampling, there are two samples per baud, and the
branch metric becomes

μm = −
J

∑
j=1

(
‖ṽ( j)

2m −
L

∑
n=0

G̃( j)
2n xm−n‖2 +‖ṽ( j)

2m+1 −
L−1

∑
n=0

G̃( j)
2n+1xm−n‖2

)
. (7.277)

Once again, if Lk �= L,k = 1, . . . ,K then some of the G̃( j)
2n and G̃( j)

2n+1 may be zero.
Notice that T/2-spaced fractional sampling doubles the number of computations in
forming the branch metrics as compared to T -spaced sampling.

7.7.6.1 Error Probability

We now generalize the result for SISO channels and show that the T -spaced and
T/2-spaced MIMO J-MLSE receivers for co-channel demodulation have identical
performance. For T -spaced sampling, define

E(z)
�
= ∑

n
εnz−n, (7.278)

E( j)
v (z)

�
= ∑

n
v( j)

n z−n. (7.279)

Then
E( j)

v (z) = E(z)G( j)(z) (7.280)

and

Δ2 = ∑
m

J

∑
j=1

∥∥∥∥∥
L

∑
n=0

G( j)
n εn−m

∥∥∥∥∥
2

(7.281)

=
J

∑
j=1

[
E( j)

v (z)E( j)H
v (1/z∗)

]
0
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=
J

∑
j=1

[
E(z)G( j)(z)G( j)H

(1/z∗)E∗(1/z∗)
]

0

=
J

∑
j=1

[
E(z)F( j)(z)E∗(1/z∗)

]
0
. (7.282)

For T/2-spaced sampling, define

Ẽ(z)
�
=∑

n
ε̃nz−2n. (7.283)

Since ε̃n = xn − x̂n is zero for even k, we have Ẽ(z) = E(z2). Also,

Ẽ( j)
v (z) = Ẽ(z)G̃( j)(z). (7.284)

Therefore,

Δ̃2 = ∑
m

J

∑
j=1

∥∥∥∥∥
L

∑
n=0

G̃( j)
n ε̃n−m

∥∥∥∥∥
2

(7.285)

=
J

∑
j=1

[
Ẽ( j)

v (z)Ẽ( j)H
v (1/z∗)

]
0

=
J

∑
j=1

[
Ẽ(z)G( j)(z)G( j)H

(1/z∗)Ẽ∗(1/z∗)
]

0

=
J

∑
j=1

[
Ẽ(z)F( j)(z)Ẽ∗(1/z∗)

]
0

=
J

∑
j=1

[
E(z2)F( j)(z)E∗(1/z∗

2
)
]

0
, (7.286)

where [ · ]0 is the coefficient of z0. Since the odd powers of E(z2)E∗(1/z∗2
) are zero

and F� = F̃2�, we have Δ̃2 = Δ2. Therefore, the T -spaced and T/2-spaced receivers
have identical bit error probability performance.

7.7.6.2 Timing Phase Sensitivity

The T -spaced MIMO J-MLSE receiver is sensitive to sampler timing phase due
to aliasing, similar to the SISO MLSE receiver. As a result, the T -spaced receiver
must accurately estimate the delays τk,k = 1, . . . ,K. A T/2-spaced MIMO J-MLSE
receiver will avoid aliasing (assuming that the received pulse exhibits less than
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100% excess bandwidth) and is insensitive to sampler timing phase as we now
show. Suppose that the timing phase offset for the kth sampler and the jth antenna
branch is t(k, j) seconds. The T/2-spaced sampled pulse f (k,k′ , j)(t) at the output of

the matched filter h(k, j)∗(−t−τk) is denoted as f̃ (k,k′ , j)
�,t = f̃ (k,k′ , j)(�T ′±t(k, j)), where

T ′ = T/2. Due to the timing phase offset, the ISI coefficients are not symmetric, that

is, f̃ (k,k′ , j)
�,t �= f̃ (k,k′ , j)∗

−�,t . Define the matrices

F̃( j)
n

�
=
[

f̃ (k,k′ , j)
n

]
K×K

, (7.287)

F̃( j)
n,t

�
=
[

f̃ (k,k′ , j)
n,t

]
K×K

. (7.288)

The DTFT of F̃( j)
n,t is

F̃( j)
t (ejω) =

2Lj+1

∑
n=−2Lj−1

F̃( j)
n,t (e

jω)−n

= e± jωτ ( j)
F̃( j)(ejω), (7.289)

where e±jωτ ( j)
= (e±jωτ(1, j)

, . . . ,e±jωτ(K, j)
) and τ(k, j) = t(k, j)/T ′.

Since the noise is circularly symmetric, the psd of the noise at the output of the
jth matched filter is independent of the timing offset vector t( j) = (t(1, j), . . . ,t(K, j))
and is given by

Sw̃( j)w̃( j) ( f ) = NoF̃( j)(ejω). (7.290)

The DTFT of the noise-whitening matrix filter is

[
G̃( j)H

(1/z∗)
]−1

z=ejω
=
[
G̃( j)H

(ejω)
]−1

, (7.291)

and we have

F̃( j)(ejω ) = G̃( j)(ejω )G̃( j)H
(ejω ) = |G̃( j)H

(ejω )|2. (7.292)

Hence, the noise at the output of the matrix noise-whitening filter is white. The
DTFT of the message vector at the output of the noise-whitening filter is

x̃(ejω )G̃( j)
t (ejω ) = x̃(ejω )e± jωτ ( j)

G̃( j)(ejω), (7.293)

and we have

∑
n

G̃( j)
n G̃( j)H

n =∑
n

G̃( j)
n,t G̃( j)H

n,t =
1

2π

∫ π

−π
|G̃( j)(ejω )|2dω (7.294)
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Fig. 7.21 Practical MIMO system with T/2-spaced sampling

by Parseval’s theorem. Also

G̃( j)
t (z)G̃( j)H

t (1/z∗) = F̃( j)(z). (7.295)

It follows that the distances between allowed sequences of channel outputs in
(7.286) remains the same and the T/2-spaced J-MLSE receiver is not sensitive to

the sampler phase e± jωτ ( j)
. The J-MLSE receiver just needs to estimate the {G̃( j)

n,t}
rather than the {G̃( j)

n } to calculate the branch metrics in the Viterbi algorithm.
Finally, we note that (7.294) does not hold for the T -spaced receiver due to aliasing
of the signal spectrum.

7.7.6.3 Practical Receiver

Section 7.6 showed that the optimal front-end processing for a SISO ISI channel can
be realized by a receiver filter that is matched to the transmitted pulse ha(t) followed
by a rate-2/T sampler and a noise-whitening filter. Here we generalize this concept
to MIMO ISI channels. For an MIMO system where all co-channel waveforms are
transmitted with the same pulse shape ha(t), a significant complexity reduction is
realized using this receiver since a matched filter bank is no longer required at each
antenna element. As shown in Fig. 7.21, the receiver simply consists of a single
matched filter for each antenna element followed by a rate-2/T sampler and a noise-
whitening filter. Although the T -spaced samples at the output of the filter h∗a(−t) are
white since the pulse p(t) = ha(t) ∗ ha(−t) satisfies the first Nyquist criterion, the
T/2-spaced samples are not and, therefore, the noise-whitening filter is necessary.
However, the structure of the noise-whitening filter is completely known because it
only depends on the known filter h∗a(−t).

We now establish that the systems shown in Figs. 7.19 and 7.21 yield identical
performance. Assuming that rate-2/T sampling satisfies the sampling theorem,
the two systems can be completely represented by their T/2-spaced discrete-time
signals. This is achieved, for example, using root raised cosine pulse shaping with
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less than 100% excess bandwidth. Once again, assume that the channels are time-
invariant and have impulse responses g(k, j)(t),k = 1, . . .K. Define

g( j)(t)
�
= (g(1, j)(t), . . . ,g(K, j)(t))T, (7.296)

h( j)(t)
�
= (h(1, j)(t), . . . ,h(K, j)(t))T, (7.297)

where h(k, j)(t) = ha(t)∗g(k, j)(t). Let H̃a(z), G̃( j)(z), and H̃( j)(z) be the z-transforms
of the T/2-spaced samples of the waveforms ha(t), and waveform vectors g( j)(t)
and h( j)(t), respectively, where the tilde indicates T/2-spaced sampling. The
z-transform of the autocorrelation function of the noise samples at the output
of the receive filter h∗a(−t) is NoF̃h(z), where F̃h(z) = H̃a(z)H̃∗

a (1/z∗). Using the
factorization

F̃h(z) = G̃h(z)G̃∗
h(1/z∗), (7.298)

the T/2-spaced noise sequence at the output of the matched filter h∗a(−t) can
be whitened using a filter having the transfer function 1/G̃∗

h(1/z∗) as shown in
Fig. 7.21. Note that the noise-whitening filter is not a matrix filter, but just a scalar
filter.

The z-transform of the overall T/2-spaced discrete-time channel in Fig. 7.21 that
includes the noise-whitening filter is

G̃( j)
eq (z) = H̃a(z)G̃( j)(z)H̃∗

a (1/z∗)/G̃∗
h(1/z∗)

= G̃( j)(z)G̃h(z). (7.299)

On the other hand, referring to the conventional system shown in Fig. 7.19, we have

H̃( j)(z) = H̃a(z)G̃( j)(z) (7.300)

and

F̃( j)(z) = H̃a(z)G̃( j)(z)(H̃a(1/z∗)G( j)(1/z∗))H

= H̃a(z)G̃( j)(z)G̃( j)H
(1/z∗)H̃∗

a (1/z∗). (7.301)

Let
G̃( j)

c (z)G( j)H

c (1/z∗) = G̃( j)(z)G̃( j)H
(1/z∗), (7.302)

be a factorization of the matrix G̃( j)(z)G̃( j)H
(1/z∗) such that G̃( j)

c (z) has minimum
phase. Combining (7.298), (7.301), and (7.302) gives

F̃( j)(z) = G̃h(z)G̃
( j)H

c (z)G̃( j)H

c (1/z∗)G̃∗
h(1/z∗). (7.303)
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The transfer function of the matrix noise-whitening filter is chosen as

[
G̃( j)H

c (1/z∗)G̃∗
h(1/z∗)

]−1
. (7.304)

Therefore, the overall transfer function at the output of the matrix noise-whitening
filter is

G̃( j)(z) = G̃h(z)G̃
( j)
c (z). (7.305)

Finally, we note that

G̃( j)
eq (z)G̃( j)H

eq (1/z∗) = F̃( j)(z) = G̃( j)(z)G̃( j)H
(1/z∗). (7.306)

Therefore, the Euclidean distance between sequences of noise-whitening filter
outputs for the MIMO receiver in Fig. 7.21 is the same as those for the T/2-spaced
MIMO J-MLSE receiver in Fig. 7.19. Consequently, the system shown in Fig. 7.21
achieves ML performance. The main advantage of the system in Fig. 7.21 is that
the noise-whitening filter does not depend on the unknown channel and has a fixed
structure.

The receiver shown in Fig. 7.21 has a scalar output, while the receiver in Fig. 7.19

has a vector output, and furthermore, G̃( j)
eq,n is a vector while G̃( j)

n is a matrix.
As a result, the branch metric used in the Viterbi algorithm needs to be modified
accordingly. From (7.277)

μm = −
J

∑
j=1

⎛
⎝
∣∣∣∣∣ṽ

( j)
2m −

Lj

∑
n=0

G̃( j)T

eq,2nxm−n

∣∣∣∣∣
2

+

∣∣∣∣∣ṽ
( j)
2m+1 −

Lj−1

∑
n=0

G̃( j)T

eq,2n+1xm−n

∣∣∣∣∣
2
⎞
⎠ . (7.307)

Although the T/2-spaced receiver is optimum, there are several key issues that
must be resolved before it can be implemented. First, the receiver must be trained

to derive an initial estimate of the channel vectors {G̃( j)
eq,n}. This synchronization

and training problem is particularly challenging for an asynchronous co-channel
waveforms where the training sequences are not coincident. Second, the receiver

must be able to track the channel vectors {G̃( j)
eq,n} during data demodulation if

necessary. Perhaps, a per-survivor processing approach such as the one suggested
in Sect. 7.4.1.1 could be used for such cases.

7.7.7 Interference Rejection Combining MLSE Receiver

In many cases, the structure of the co-channel interferers is often unknown. In other
cases, it is only necessary to recover the data from a single desired co-channel
user. Bottomley and Jamal [39] developed a scheme called the IRC-MLSE that
combines adaptive antenna arrays and MLSE equalization. Co-channel interference
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cancelation is performed in the Viterbi metric, and the receiver is equivalent to
Winter’s optimum linear combiner [283, 285] under flat fading channel conditions.

Once again, we assume that the receiver filter on each antenna element is matched
to the transmitted pulse and followed by a rate 2/T sampler. Since the co-channel
waveforms are assumed to have an unknown structure, a matched filter is only
required for the desired signal. The overall pulse response consisting of the transmit
filter, channel, and receiver filter is f ( j)(t) = ha(t)∗g(1, j)(t)∗h∗a(−t). The vector of
matched filter outputs from the J receiver antenna elements is

ỹ(t) =
L

∑
�=0

x�f(t − �T)+ z̃(t), (7.308)

where

ỹ(t) =
(

y(1)(t), . . . ,y(J)(t)
)T

,

f(t) =
(

f (1)(t), . . . , f (J)(t)
)T

,

z̃(t) =
(

z(1)(t), . . . ,z(J)(t)
)T

(7.309)

and where LT is the length of the pulse f ( j)(t). The impairment vector z̃(t) at the
output of the matched filter is due to the K − 1 interfering co-channel signals plus
AWGN, and has the form

z̃(t) =
K−1

∑
k=1

Ĩk(t)+ ν̃(t), (7.310)

where

Ĩk(t) =
(

I(1)
k (t), . . . , I(J)

k (t)
)T

,

ν̃(t) =
(
ν(1)(t), . . . ,ν(J)(t)

)T
. (7.311)

The matched filter outputs are sampled at rate 2/T and passed to a noise-whitening
filter. The noise-whitening filter is suboptimum in the presence of co-channel
interference, since the co-channel interference at the input to the receiver filter
can be viewed as colored noise. However, the noise-whitening filter ensures
maximum likelihood performance in the absence of co-channel interference. The
noise-whitening filter is obtained using the same procedure leading to the overall
T/2-spaced discrete-time channel with the transfer function defined in (7.299). It
follows that the overall channel consisting of the transmit filter, channel, receiver
filter, T/2-spaced sampler, and noise-whitening filter can be modeled as a T/2-
spaced tapped delay line with tap coefficients

g̃( j) =
(

g̃( j)
0 , . . . , g̃( j)

2L

)T
.
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Define

g̃�
�
=
(

g̃(1)
� , . . . g̃(J)

�

)T
. (7.312)

Then the vectors ṽ2k = (ṽ(1)
2k , . . . , ṽ(J)

2k )T and ṽ2k+1 = (ṽ(1)
2k+1, . . . , ṽ

(J)
2k+1)

T at the output
of the noise-whitening filter corresponding to the kth received baud are

ṽ2k =
Lh

∑
�=0

x(k− �)g̃2� + ñ2k, (7.313)

ṽ2k+1 =
Lh−1

∑
�=0

x(k− �)g̃2�+1 + ñ2k+1, (7.314)

where ñ2k = (ñ(1)
2k , . . . , ñ(J)

2k )T and ñ2k+1 = (ñ(1)
2k , . . . , ñ(J)

2k )T. Once again, we empha-
size that the noise vectors ñ2k and ñ2k+1 are not white due to the presence of the
co-channel signals.

To derive a feasible receiver structure, we now assume that the sampled
impairment vector ñ� at the output of the noise-whitening filter at epoch � is a vector
of J correlated zero-mean complex Gaussian random variables having the joint pdf

p(ñ�) =
1

(2π)J |R�| exp

{
−1

2
ñH

� R−1
� ñ�

}
, (7.315)

where |R�| is the determinant of R� and

R� =
1
2

E [ñ�ñ
H
� ] (7.316)

is the impairment correlation matrix. Assuming an MLSE-like algorithm, the branch
metric should be related to the likelihood of the impairment vector. For each state

transition ρ ( j)
k → ρ (i)

k+1 at epoch k, the samples ṽ2k and ṽ2k+1 are used by the Viterbi
algorithm to evaluate the branch metric

μk = (ṽ2k − û1
2k)

HR−1
2k (ṽ2k − û1

2k)

+(ṽ2k+1 − û2
2k+1)

HR−1
2k+1(ṽ2k+1 − û2

2k+1), (7.317)

where

û1
2k =

Lh

∑
�=0

x̂(k− �)g̃2�, (7.318)

û2
2k+1 =

Lh−1

∑
�=0

x̂(k− �)g̃2�+1. (7.319)

Notice that the metric calculation requires the impairment correlation matrix Rk and
its inverse, and the channel impulse vectors
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g̃1 = (g̃0, g̃2, . . . , g̃2Lh)
T (7.320)

g̃2 = (g̃1, g̃3, . . . , g̃2Lh−1)T. (7.321)

Computing the inverse of the J × J matrix Rk can be computationally intensive
for large J, the number of computations required being proportional to J3. However,
when J = 2 (two receiver antenna elements) the inverse can be obtained using direct
matrix inversion (DMI), that is, the inverse of the matrix Rk is

R−1
k =

adj(Rk)
|Rk| =

1
rk11rk22 − rk12rk21

[
rk22 −rk12

−rk21 rk11

]
. (7.322)

Division by the determinant |Rk| is unnecessary, provided that Rk remains constant
over the decision delay in the Viterbi algorithm, since the determinant will just scale
all the path metrics. For such cases, the Viterbi algorithm can use the simplified
branch metric

μk = (ṽ2k − û1
2k)

Hadj(R2k)(ṽ2k − û1
2k)

+(ṽ2k+1 − û2
2k+1)

HadjR2k+1)(v2k+1 − û2
2k+1), (7.323)

which only requires multiplications and additions.
Finally, a metric combining MLSE (MC-MLSE) receiver is one that zeroes the

off diagonal elements of the matrix Rk. The metric combining receiver is equivalent
to maximal ratio combining when the additive impairment is white Gaussian noise.

7.7.8 Examples

The performances of the J-MLSE, IRC-MLSE, and MC-MLSE receivers discussed
in the previous sections are now compared and contrasted. For this purpose, an
EDGE burst format is assumed. The EGDE burst format is the same as the GSM
burst format described in Fig. 1.2. However, instead of the GMSK modulation used
in GSM, EDGE uses eight-PSK modulation with square-root raised cosine pulse
shaping with a roll-off factor of β = 0.5. For illustrative purposes, a T -spaced, two
equal ray, model is assumed for the desired signal. The interference impairment
consists of a single flat faded EDGE interferer. In all cases, the receiver front-end
consists of a receiver filter that is matched with the transmitted pulse followed by a
rate-2/T sampler and a noise-whitening filter. The J-MLSE receiver has 512 states,
as defined by two symbols for the desired signal and one symbol for the co-channel
interferer. The MC/IRC-MLSE receivers have 64 states, as defined by two symbols
for the desired signal. Each simulation run consists of 3,000 frames of 142 eight-
PSK symbols.

Figure 7.22 shows the Eb/No performance of the three receivers for a fixed
carrier-to-interference ratio C/I = 30 dB. Under this condition, the interference
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Fig. 7.22 Relative Eb/No
performance of the J-MLSE,
MC-MLSE and IRC-MLSE
receivers; C/I = 30 dB
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Fig. 7.23 Relative C/I
performance of the J-MLSE,
MC-MLSE and IRC-MLSE
receivers; Eb/No = 30 dB
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is very light. Perfect channel knowledge is assumed. The J-MLSE receiver is
the optimum receiver in the maximum likelihood sense and achieves the best
possible performance in AWGN. The MC-MLSE receiver is also optimum for
AWGN channels, but exhibits some degradation at higher Eb/No due to the co-
channel interference that is present. The IRC-MLSE receiver gives the worst Eb/No

performance.
Figure 7.23 shows the C/I performance of the three receivers for Eb/No =

30 dB. Observe that the MC-MLSE receiver gives the worst performance, while the
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J-MLSE receiver and IRC-MLSE receivers offer huge C/I performance gains. The
best performance is realized with the IRC-MLSE receiver. Hence, the IRC-MLSE
receiver sacrifices a small amount of Eb/No performance for a large gain in C/I
performance.

It is curious that the IRC-MLSE receiver outperforms the J-MLSE receiver. First,
the J-MLSE receiver that we have implemented does not have a sufficient number of
receiver states due to pulse truncation effects. Hence, there is some residual ISI that
is significant at low C/I. Second, the overall signal constellation produced by the
combination of the desired signal and the co-channel signal may degenerate when
the signal constellation points overlap. In this case, errors can occur even for large
Eb/No values.

Appendix 1: Derivation of (7.202)

Consider the case where D = 1 and suppose that the characteristic function in
(7.194) has L + 1 different poles ᾱ = (ᾱ0, ᾱ1, . . . , ᾱL). Then the pairwise error
probability is equal to

P(ᾱ) =
L

∑
i=0

((
1
2
− 1

2

√
ᾱi

1 + ᾱi

)
∏
j �=i

(
1− ᾱ j

ᾱi

)−1
)

. (7.324)

Define the function φ(ᾱ) = ∑L
i=0 ᾱi −C = 0, where C is a constant. The method of

Lagrange multipliers suggests that

∂P(ᾱ)
∂ᾱi

+λ
∂φ
∂ᾱi

= 0 i = 1, . . . , L (7.325)

for any real number λ . It can be shown by induction that

∂P(ᾱ)
∂ᾱk

= −
(

1
2
− 1

2

√
ᾱk

1 + ᾱk

)
∑
i�=k

(
ᾱi

ᾱ2
k

(
1− ᾱi

ᾱk

)−2

∏
j �=i,k

(
1− ᾱ j

ᾱk

)−1
)

+∑
i�=k

(
1
ᾱi

(
1− ᾱk

ᾱi

)−2(1
2
− 1

2

√
ᾱi

1 + ᾱi

)
∏
j �=i,k

(
1− ᾱ j

ᾱi

)−1
)

−
(

1

4ᾱ1/2
k

1

(1 + ᾱk)
3/2

)
∏
j �=k

(
1− ᾱ j

ᾱk

)−1

. (7.326)

By solving (7.325) and observing the symmetry of P(ᾱ) and the derivative (7.326)
with respect to the permutations of ᾱ , it is apparent that the minimum of P(ᾱ) is
achieved when ᾱ0 = ᾱ1 = · · · = ᾱL.
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Problems

7.1. Starting with

fk =
∫ ∞

−∞
h∗(τ)h(τ + kT )dτ,

show that

F(ej2π f T ) = FΣ ( f ).

7.2. Suppose that the impulse response of an overall channel consisting of the
transmit filter, channel, and receive filter is

F( f ) =

{
1, | f | ≤ f�
fu−| f |
fu− f�

, f� ≤ | f | ≤ fu
.

(a) Find the overall impulse response f (t).
(b) Is it possible to transmit data without ISI?
(c) How do the magnitudes of the tails of the overall impulse response decay with

large values of t?
(d) Suppose that binary signaling is used with this pulse shape so that the noiseless

signal at the output of the receive filter is

y(t) =∑
n

xn f (t −nT),

where xn ∈ {−1,+1}. What is the maximum possible magnitude that y(t) can
achieve?

7.3. Suppose a digital communication system operates over an “ideal channel” and
uses an overall pulse p(t) that has the Gaussian-shaped form

p(t) = e−πa2t2
.

(a) Explain why p(t) does not admit ISI-free transmission.
(b) To reduce the level of ISI to a relatively small amount, we impose the condition

that p(T ) = 0.01, where T is the symbol interval. The bandwidth W of the pulse
p(t) is defined as that value of W for which P(W )/P(0) = 0.01, where P( f ) is
the Fourier transform of p(t). Determine the value W and compare this value to
that of a raised cosine spectrum with 100% roll-off.

7.4. Show that the ISI coefficients { fn} may be expressed in terms of the channel
vector coefficients {gn} as

fn =
L−n

∑
k=0

g∗kgk+n n = 0,1,2, . . . ,L.
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7.5. Suppose that BPSK is used on a static ISI channel. The complex envelope has
the form

s̃(t) = A
∞

∑
k=−∞

xkha(t − kT ),

where xk ∈ {−1,+1} and ha(t) is the amplitude shaping pulse. The full response
rectangular pulse ha(t) = uT (t) is used and the impulse response of the channel is

g(t) = g0δ (t)−g1δ (t − τ),

where g0 and g1 are complex numbers and 0 < τ < T .

(a) Find the received pulse h(t).
(b) What is the filter matched to h(t)?
(c) What are the ISI coefficients { fi}?

7.6. Suppose that BPSK signaling is used on a static ISI channel having impulse
response

g(t) = δ (t)+ 0.1δ (t−T ).

The receiver employs a filter that is matched to the transmitted pulse ha(t), and the
sampled outputs of the matched filter are

yk = xkq0 +∑
n �=k

xnqk−n +νk,

where xn ∈ {−1,+1}. Decisions are made on the {yk} without any equalization.

(a) What is the variance of noise term νk?
(b) What are the values of the {qn}?
(c) What is the probability of error in terms of the average received bit-energy-to-

noise ratio?

7.7. A typical receiver for digital signaling on an ISI channel consists of a matched
filter followed by an equalizer. The matched filter is designed to minimize the effect
of random noise, while the equalizer is designed to minimize the effect of ISI. Using
mathematical arguments, show that (1) the matched filter tends to accentuate the
effect of ISI, and (2) the equalizer tends to accentuate the effect of random noise.

7.8. Consider an ISI channel, where fn = 0 for |n| > 1. Suppose that the receiver
uses a filter matched to the received pulse h(t) = ha(t) ∗ g(t), and the T -spaced
samples at the output of the matched filter, {yk}, are filtered as shown in Fig. 7.24.
The values of g0 and g1 are chosen to satisfy

|g0|2 + |g1|2 = f0,

g0g∗1 = f1.

Find an expression for the filter output vk in terms of g0, g1, xk, xk−1, and the noise
component at the output of the digital filter, wk.
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Fig. 7.24 Digital filter
for Problem 7.8
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7.9. The z-transform of the channel vector g of a communication system is equal to

G(z) = 0.1 + 1.0z−1−0.1z−2.

A binary sequence x is transmitted, where xn =∈ {−1,+1}. The received samples
at the output of the noise whitening filter are

vk =
2

∑
n=0

gnxk−n + wk,

where {wk} is a white Gaussian noise sequence with variance σ2
w = No.

a) Evaluate the probability of error if the demodulator ignores ISI.
b) Design a 3-tap zero-forcing equalizer for this system.
c) What is the response {vk} for the input sequence

{xn} = (−1)k, k = 0,1,2,3?

What is the response at the output of the equalizer?
d) Evaluate the probability of error for the equalized channel.

7.10. Suppose that a system is characterized by the received pulse

h(t) =
√

2ae−at , 0 ≤ t ≤ ∞.

A receiver implements a filter matched to h(t) and generates T -spaced samples at
the output of the filter. Note that the matched filter is actually noncausal.

(a) Find the ISI coefficients fi.
(b) What is the transfer function of the noise-whitening filter that yields a system

having an overall minimum phase response?
(c) Find the transfer function of the equivalent zero-forcing equalizer C′(z).
(d) Find the noise power at the output of the zero-forcing equalizer, and find the

condition when the noise power becomes infinite.
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7.11. Consider M-PAM on a static ISI channel, where the receiver uses a filter that
is matched to the received pulse. The sampled outputs of the matched filter are

yn = xn f0 +∑
k �=n

xk fn−k +νn,

where the source symbols are from the set {±1, ±3, . . . , ±(M−1)}. Decisions are
made on the {yn} without any equalization using a threshold detector. The �th ISI
pattern can be written as

D(�) = ∑
k �=n

x�,k fn−k,

and D(�) is maximum when sgn(x�,k) = sgn( fn−k) and each of the x�,k takes on
the maximum signaling level, that is, x�,k = (M − 1)d for M even. The maximum
distortion is defined as

Dmax =
1
f0
∑
n �=0

| fn|.

(a) Discuss and compare error performance M-ary signaling (M > 2) with binary
signaling (M = 2), using Dmax as a parameter.

(b) Suppose that the channel has ISI coefficients

fi = 0.0, |i| ≥ 3,

f2 = f−2 = 0.1,

f1 = f−1 = −0.2,

f0 = 1.0.

Plot the probability of error against the signal-to-noise ratio and compare with
the ideal channel case, that is, f0 = δn0. Show your results for M = 2 and 4.

7.12. Consider a linear MSE equalizer and suppose that the tap gain vector c
satisfies

c = cop + ce,

where ce is the tap gain error vector. Show that the MSE that is achieved with the
tap gain vector c is

J = Jmin + cT
e Mvc∗e.

7.13. The matrix Mv has an eigenvalue λk and eigenvector xk if

xkMv = λkxk, k = 1, . . . ,N.

Prove that the eigenvectors are orthogonal, that is, xixT
j = δi j.
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7.14. Show that the relationship between the output SNR and Jmin for an infinite-tap
mean-square error linear equalizer is

γ∞ =
1− Jmin

Jmin
,

where γ∞ indicates that the equalizer has an infinite number of taps. Note that this
relationship between γ∞ and Jmin holds when there is residual ISI in addition to the
noise.

7.15. In this question, we will show in steps that

∇cJ = 2cT Mv −2vH
x .

Define

Mv
�
= MvR + jMvI ,

c
�
= cR + jcI ,

vx
�
= vxR + jvxI .

(a) Using the Hermitian property Mv = MH
v , show that

MvR = MT
vR

and MvI = −MT
vI
.

(b) Show that

∇cR Re{vH
x c∗} = vT

xR
,

∇cI Re{vH
x c∗} = −vT

xI
,

∇cR cT Mvc∗ = 2cT
RMvR −2cT

I MvI ,

∇cI c
T Mvc∗ = 2cT

I MvR + 2cT
RMvI ,

where ∇x is the gradient with respect to vector x.
(c) If we define the gradient of a real-valued function with respect to a complex

vector c as
∇c = ∇cR + j∇cI ,

show that

∇cRe{vH
x c∗} = vH

x ,

∇ccHMvc∗ = 2cT Mv.
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Fig. 7.25 Discrete-time
white noise channel model
for Problem 7.17
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7.16. Show that the pairwise error probability for digital signaling on an ISI channel
is given by (7.171).

7.17. Consider the transmission of the binary sequence x, xn ∈ {−1,+1} over the
equivalent discrete-time white noise channel model shown in Fig. 7.25. The received
sequence is

v0 = .70x0 + w1

v1 = .70x1 − .60x0 + w2

v2 = .70x2 − .60x1 + w3

...

vk = .70xk − .60xk−1 + wk.

(a) Draw the state diagram for this system.
(b) Draw the trellis diagram.
(c) Suppose that the received sequence is

{vi}6
i=0 = {1.0, −1.5, 0.0, 1.5, 0.0, −1.5, 1.0}.

Show the surviving paths and their associated path metrics after v6 has been
received.

7.18. Suppose that BPSK signaling is used on a frequency selective fading channel.
The discrete-time system consisting of the transmit filter, channel, receiver filter, and
baud-rate sampler can be described by the polynomial

F(z) =
5

16
− 1

8
z−1 − 1

8
z.



456 7 Equalization and Interference Cancelation

The samples at the output of the receiver filter are processed by a noise-whitening
filter such that the overall discrete-time white noise channel model G(z) has
minimum phase.

(a) Find G(z).
(b) Draw the state diagram and the trellis diagram for the discrete-time white noise

channel model.
(c) A block of ten symbols x = {xi}9

i=0 is transmitted over the channel and it is
known that x9 =−1. Assume that xi = 0, i < 0 and the suppose that the sampled
sequence at the output of the noise-whitening filter is

v = {v0,v1,v2,v3, . . .v9}
= {1/2,1/4,−3/4,3/4,−3/4,−1/4,3/4,−3/4,−1/4,−1/4}.

What sequence x was most likely transmitted?
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