
Chapter 4
Digital Modulation and Power Spectrum

Modulation is the process whereby message information is embedded into a radio
frequency carrier. Such information can be transmitted in either the amplitude,
frequency, or phase of the carrier, or a combination thereof, in either analog or
digital format. Analog modulation schemes include amplitude modulation (AM)
and frequency modulation (FM). Analog modulation schemes are still used today
for broadcast AM/FM radio, but all other communication and broadcast systems use
digital modulation. Digital modulation schemes transmit information using a finite
set of waveforms and have a number of advantages over their analog counterparts.
Digital modulation is a natural choice for digital sources, for example, computer
communications. Source encoding or data compression techniques can reduce the
required transmission bandwidth with a controlled amount of signal distortion.
Digitally modulated waveforms are also more robust to channel impairments such
as delay and Doppler spread, and co-channel and adjacent channel interference.
Finally, encryption and multiplexing are easier with digital modulation schemes.

To achieve high spectral efficiency in wireless systems, signaling schemes are
sought that provide power and bandwidth efficient communication. In an informa-
tion theoretic sense, we want to operate close to the Shannon capacity limit of a
channel. This generally requires the use of error control coding along with a jointly
designed encoder and modulator. However, this chapter only considers modulation
schemes, while the subject of coding and coded modulation is considered in Chap. 8.
The bandwidth efficiency of a modulation scheme indicates how much information
is transmitted per channel use and is measured in units of bits per second per Hertz
of bandwidth (bits/s/Hz). The power efficiency can be measured by the received
signal-to-interference-plus-noise ratio (SINR) that is required to achieve reliable
communication with a specified bandwidth efficiency in the presence of channel
impairments such as delay spread and Doppler spread. In general, modulation
techniques for spectrally efficient wireless systems should have the following
properties:

• Compact Power Density Spectrum: To minimize the effect of adjacent channel
interference, the power radiated into the adjacent band is often limited to be
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190 4 Digital Modulation and Power Spectrum

60–80 dB below that in the desired band. This requires modulation techniques
having a power spectrum characterized by a narrow main lobe and fast roll-off of
side-lobes.

• Robust Communication: Reliable communication must be achieved in the pres-
ence of delay and Doppler spread, adjacent and co-channel interference, and
thermal noise. Modulation schemes that promote good power efficiency in the
presence of channel impairments are desirable.

• Envelope Properties: Portable and mobile devices often use power efficient
nonlinear (Class-C) power amplifiers to minimize battery drain. However, am-
plifier nonlinearities will degrade the performance of modulation schemes that
transmit information in the amplitude of the carrier and/or have a nonconstant
envelope. To obtain suitable performance, such modulation schemes require a
less power efficient linear or linearized power amplifier. Also, spectral shaping is
usually performed before up-conversion and nonlinear amplification. To prevent
the regrowth of spectral side-lobes during nonlinear amplification, modulation
schemes having a relatively constant envelope are desirable.

This chapter considers digital modulation techniques that are commonly found
in wireless communication systems. Section 4.1 begins the chapter with a mathe-
matical framework for band-pass modulated signals. Section 4.2 discusses Nyquist
pulse shaping for ISI-free transmission. Sections 4.3 through 4.8 provide a detailed
treatment of the various linear and nonlinear digital modulations techniques that
are found in wireless systems, including QAM, PSK, π/4-DQPSK, orthogonal
modulation, OFDM, CPM, GMSK, and others. Finally, Sect. 4.9 considers the
power spectrum of digitally modulated signals.

4.1 Representation of Bandpass Modulated Signals

Bandpass modulation schemes refer to modulation schemes that transmit informa-
tion using carrier modulation, such that the signal bandwidth is much less than
the carrier frequency. A bandpass waveform s(t) can be expressed in terms of its
complex envelope as

s(t) = Re
{

s̃(t)ej2π fct
}

, (4.1)

where

s̃(t) = s̃I(t)+ js̃Q(t) (4.2)

is the complex envelope and fc is the carrier frequency. For any digital modulation
scheme, the complex envelope can be written in the standard form

s̃(t) = A∑
n

b(t −nT,xn) (4.3)

xn = (xn, xn−1, . . . , xn−K), (4.4)
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where A is the amplitude and {xn} is the sequence of complex data symbols that are
chosen from a finite alphabet, and K is the modulator memory order which may be
finite or infinite. One data symbol is transmitted every T seconds, so that the baud
rate is R = 1/T symbols/s. The function b(t,xi) is a generalized shaping function
whose exact form depends on the type of modulation that is used. For example,
binary phase shift keying (BPSK) with rectangular amplitude pulse shaping has

b(t,xn) = xnuT (t), (4.5)

where

xn ∈ {−1,+1} is the data symbol transmitted at epoch n
uT (t) = u(t)−u(t−T ) is a unit amplitude rectangular pulse of length T
u(t) is the unit step function

Many types of modulation are considered in this chapter, where information is
transmitted in the amplitude, phase, and/or frequency of the carrier. In each case,
the modulated signal will be represented in the standard form in (4.3). This is done
to streamline the task of finding their power spectra.

By expanding (4.1), the bandpass waveform can also be expressed in the
quadrature form

s(t) = s̃I(t)cos(2π fct)− s̃Q(t)sin(2π fct). (4.6)

The waveforms s̃I(t) and s̃Q(t) are known as the quadrature components s(t),
because they modulate the quadrature components of the carrier, cos2π fct and
sin2π fct, respectively.

Finally s(t) can be expressed in the amplitude-phase form

s(t) = a(t)cos(2π fct + φ(t)), (4.7)

where

a(t) = |s̃(t)| =
√

s̃2
I (t)+ s̃2

Q(t) (4.8)

φ(t) = Tan−1
[

s̃Q(t)
s̃I(t)

]
, (4.9)

and where a(t) is the amplitude and φ(t) is the excess phase. The three represen-
tations in (4.1), (4.6), and (4.7) are equivalent, but sometimes one representation is
more handy than the other two depending on the particular task at hand.

4.1.1 Vector Space Representations

For digital modulation schemes, the bandpass signal that is transmitted at each baud
epoch will belong to a finite set of finite energy waveforms with a few exceptions.
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Let {s1(t),s2(t), . . . ,sM(t)} be the set of bandpass waveforms, where M denotes
the size of the signal set. The corresponding complex envelopes are denoted by
{s̃1(t), s̃2(t), . . . , s̃M(t)}. For now we will work with the complex envelopes and treat
the bandpass waveforms later.

An N-dimensional complex vector space can be defined by a set of N complex
orthonormal basis functions {ϕ1(t),ϕ1(t), . . . ,ϕN(t)}, where

∫ ∞

−∞
ϕi(t)ϕ∗

j (t)dt = δi j (4.10)

and

δi j =
{

1, i = j
0, i �= j

. (4.11)

Each waveform s̃m(t) in the signal set can be projected onto the set of basis functions
to yield a signal vector

s̃m = (s̃m1 , s̃m2 , . . . , s̃mN ), m = 1, . . . ,M, (4.12)

where

s̃mi =
∫ ∞

−∞
s̃m(t)ϕ∗

i (t)dt, i = 1, . . . , N. (4.13)

The collection of N basis functions is said to constitute a complete set, if each
waveform in the set {s̃1(t), s̃2(t), . . . , s̃M(t)} can be expressed exactly as a linear
combination of the basis functions. That is,

s̃m(t) =
N

∑
i=1

s̃mi ϕi(t), m = 1, . . . , M. (4.14)

A systematic procedure for constructing a complete set of basis functions from the
set of signal waveforms {s̃1(t), s̃2(t), . . . , s̃M(t)} is now described.

4.1.2 Gram–Schmidt Orthonormalization Procedure

Define the inner product between two complex-valued waveforms u(t) and v(t) as

(u,v) =
∫ ∞

−∞
u(t)v∗(t)dt (4.15)

and define the norm of the waveform u(t) as

‖u‖ =
√

(u,u). (4.16)
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Note that the squared-norm

‖u‖2 = (u,u) =
∫ ∞

−∞
|u(t)|2dt (4.17)

is the energy contained in the complex-valued waveform u(t).
Given the finite set of finite energy signals {s̃1(t), s̃2(t), . . . , s̃M(t)}, a complete

set of orthonormal basis functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)} can be constructed using
the following systematic procedure, known as the Gram–Schmidt orthonormaliza-
tion procedure:

1: Using s̃1(t), let g1(t) = s̃1(t) and define

ϕ1(t) =
g1(t)
‖g1‖ . (4.18)

2: Using s̃2(t), let g2(t) = s̃2(t)− (s̃2,ϕ1)ϕ1(t) and define

ϕ2(t) =
g2(t)
‖g2‖ . (4.19)

3: Using s̃i(t), let gi(t) = s̃i(t)−∑i−1
j=0(s̃i,ϕ j)ϕ j(t) and define

ϕi(t) =
gi(t)
‖gi‖ . (4.20)

4: Repeat Step 3 in a recursive fashion until all elements of the waveform set
{s̃1(t), s̃2(t), . . . , s̃M(t)} have been used.

If one or more steps in the above recursion yields gi(t) = 0, then the corresponding
waveform s̃i(t) can already be expressed exactly in terms of the basis functions
already generated. Consequently, the waveform s̃i(t) will not yield an additional
basis function and we proceed to the next waveform in the set, s̃i+1(t). In the
end, a complete set of N, 1 ≤ N ≤ M complex orthonormal basis functions
{ϕ1(t),ϕ2(t), . . . ,ϕN(t)} corresponding to the nonzero gi(t) will be obtained. The
dimensionality of the complex vector space N is equal to M if and only if the original
set of waveforms {s̃1(t), s̃2(t), . . . , s̃M(t)} is linearly independent, that is, none of the
waveforms in the set is a linear combination of the other waveforms in the set.

Example 4.1:
Construct an orthonormal basis set for the set of waveforms shown in

Fig. 4.1.

1: Let g1(t) = s̃1(t). Then
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ϕ1(t) =
g1(t)
‖g1‖ =

{√
3/T , 0 ≤ t ≤ T/3

0, else
.

2: Let g2(t) = s̃2(t)− (s̃2,ϕ1)ϕ1(t), where

(s̃2,ϕ1) =
∫ T

0
s̃2(t)ϕ∗

1 (t)dt =
∫ T/3

0

√
3/Tdt =

√
T/3.

Then

ϕ2(t) =
g2(t)
‖g2‖ =

{√
3/T , T/3 ≤ t ≤ 2T/3

0, else
.

3: Let g3(t) = s̃3(t)− (s̃3,ϕ1)ϕ1(t)− (s̃3,ϕ2)ϕ2(t), where

(s̃3,ϕ1) =
∫ T

0
s̃3(t)ϕ∗

1 (t)dt = 0

(s̃3,ϕ2) =
∫ T

0
s̃3(t)ϕ∗

2 (t)dt

=
∫ 2T/3

T/3

√
3/Tdt =

√
T/3.

Then

ϕ3(t) =
g3(t)
‖g3‖ =

{√
3/T , 2T/3 ≤ t ≤ T

0, else
.

4: Let g4(t) = s̃4(t) − (s̃4,ϕ1)ϕ1(t) − (s̃4,ϕ2)ϕ2(t) − (s̃4,ϕ3)ϕ3(t). But
g4(t) = 0 and, therefore, s̃4(t) does not yield an additional basis function.

The set of orthonormal basis functions obtained from the above procedure is
shown in Fig. 4.2, and they define a three-dimensional vector space.

Each s̃i(t) in the signal set can be expressed as a linear combination of the
basis functions, according to (4.14), and the corresponding signal vectors in
(4.12) can be constructed. For this example, the signal vectors are

s̃1 = (
√

T/3,0,0)

s̃2 = (
√

T/3,
√

T/3,0)

s̃3 = (0,
√

T/3,
√

T/3)

s̃4 = (
√

T/3,
√

T/3,
√

T/3).
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Fig. 4.1 Signal set {s̃i(t)}4
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The set of signal vectors {s̃i} can be plotted in the 3D vector space defined by
the set of orthonormal basis functions {ϕi(t)} as shown in Fig. 4.3. The set of
signal vectors is sometimes called a signal constellation.

In the above development, the Gram–Schmidt orthonormalization procedure
was applied to the set of complex envelopes {s̃1(t), s̃2(t), . . . , s̃M(t)} to produce
a complete set of N ≤M complex basis functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)}, where N
is the dimension of the complex vector space. Using the exact same Gram–Schmidt
orthonormalization procedure, a complete set of N real-valued orthonormal basis
functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)} can be obtained from the real-valued bandpass
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Fig. 4.3 Signal vectors in the
3D vector space
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waveforms {s1(t),s2(t), . . . ,sM(t)}, where N is the dimension of the real vector
space. In this case, the complex conjugates in the various equations can be omitted
since all waveforms are real-valued. Using the real-valued basis functions, each
bandpass waveform sm(t) can be projected onto the set of real-valued basis functions
to yield the set of signal vectors

sm = (sm1 , sm2 , . . . , smN ), m = 1, . . . , M, (4.21)

where

smi =
∫ ∞

−∞
sm(t)ϕi(t)dt, i = 1, . . . , N (4.22)

and

sm(t) =
N

∑
i=1

smi ϕi(t), m = 1, . . . , M. (4.23)

Note that the set of orthonormal basis functions and the dimensionality of the
vector space needed to represent the bandpass waveforms and their corresponding
complex envelopes are different, but related. The complex-valued basis functions
each define a two-dimensional complex plane, so that the dimensionality of vector
space for the real-valued bandpass waveforms will often, but not always, be twice
the dimensionality of the vector space for their corresponding complex envelopes.

4.1.3 Signal Energy and Correlations

Define the inner (dot) product between two length-N complex vectors u and v as

u ·v∗ =
N

∑
i=1

uiv
∗
i (4.24)
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and the norm (length) of the vector u as

‖u‖ =
√

u ·u∗ =

√
N

∑
i=1

|ui|2. (4.25)

If the vectors happen to be real, the complex conjugates can be neglected.
Consider the set of band-pass waveforms

sm(t) = Re
{

s̃m(t)ej2π fct
}

, m = 1, . . . ,M. (4.26)

The energy in the bandpass waveform sm(t) is

Em = (sm,sm) =
∫ ∞

−∞
s2

m(t)dt. (4.27)

Using the amplitude-phase representation of a bandpass waveform in (4.7), and the
identity cos2(x) = 1

2(1 + cos(2x)), we obtain

Em =
∫ ∞

−∞
(|s̃m(t)|cos(2π fct + φ(t)))2 dt

=
1
2

∫ ∞

−∞
|s̃m(t)|2dt +

1
2

∫ ∞

−∞
|s̃m(t)|2 cos(4π fct + 2φ(t))dt

≈ 1
2

∫ ∞

−∞
|s̃m(t)|2dt

=
1
2
(s̃m, s̃m), (4.28)

where φ(t) = Tan−1 [s̃Q(t)/s̃I(t)]. The above approximation is valid when the
bandwidth of the complex envelope is much less than the carrier frequency so
that the double frequency term can be neglected. For digital band-pass modulated
signals, this condition is equivalent to fcT 	 1 so that there are many cycles of the
carrier in the baud period T . This condition is satisfied in most wireless systems.

Using the vector representation of the bandpass waveforms in (4.21)–(4.23), it
follows that the energy in the bandpass waveform sm(t) is

Em =
∫ ∞

−∞

(
N

∑
i=1

smi ϕi(t)

)2

dt =
N

∑
i=1

s2
mi

= ‖sm‖2, (4.29)

where the second equality follows from the orthonormal property of the basis
functions in (4.10). Notice that the energy in sm(t) is equal to the squared
norm (length) of the corresponding signal vector sm. Likewise, using the vector
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representation of the corresponding complex envelope, the energy in the bandpass
waveform sm(t) is also equal to

Em =
1
2

∫ ∞

−∞

∣∣∣∣∣
N

∑
i=1

s̃miϕi(t)

∣∣∣∣∣
2

dt =
1
2

N

∑
i=1

|s̃mi |2 =
1
2
‖s̃m‖2. (4.30)

Note that the energy in the bandpass waveform is one-half the energy in its complex
envelope. This is due to the carrier modulation.

The correlation between the bandpass waveforms sm(t) and sk(t) is defined as

ρkm =
1√

EkEm

∫ ∞

−∞
sm(t)sk(t)dt

=
sm · sk

‖sm‖‖sk‖

= Re

{
s̃m · s̃∗k

‖s̃m‖‖s̃k‖
}

. (4.31)

Finally, the squared Euclidean distance between the bandpass waveforms sk(t) and
sm(t) is

d2
km =

∫ ∞

−∞
(sm(t)− sk(t))

2 dt

= ‖sm − sk‖2

=
1
2
‖s̃m − s̃k‖2. (4.32)

To obtain the results in (4.31) and (4.32), we have again used (4.14) and (4.23),
respectively, along with the orthonormal property of the basis functions.

4.2 Nyquist Pulse Shaping

Consider a modulation scheme where the transmitted complex envelope has the
form

s̃(t) = A∑
n

xnha(t −nT), (4.33)

where ha(t) is a real-valued amplitude shaping pulse, {xn} is a complex data symbol
sequence, and T is the baud period. As will be discussed in Chap. 5, the receiver
usually uses a filter that is matched to the transmitted pulse, having the form
hr(t) = ha(To − t), where To is the duration of the amplitude shaping pulse ha(t).
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An overall pulse can be defined that is the cascade of the transmitted pulse ha(t) and
the receiver filter hr(t) as p(t) = ha(t)∗ha(To − t), where ∗ denotes the operation of
convolution.

For the time being, consider an ideal channel having impulse response
g(t,τ)=δ (τ). In the absence of thermally generated noise in the receiver, the
signal at the output of the receiver matched filter is

ỹ(t) = A∑
n

xn p(t −nT). (4.34)

Now suppose the received complex envelope ỹ(t) is sampled once every T seconds
to yield the sample sequence {ỹk}, where

ỹk = ỹ(kT + to) = A∑
n

xn p(kT + to −nT ) (4.35)

and to is a timing offset assumed to lie in the interval [0,T ). First consider the case
when to = 0; the effect of having a nonzero timing offset will be treated later. When
to = 0

ỹk = A∑
n

xn pk−n

= Axk p0 + A ∑
n �=k

xn pk−n, (4.36)

where pm = p(mT ) is the sampled overall pulse. The first term in (4.36) is equal
to the data symbol transmitted at the kth baud epoch, scaled by the factor Ap0. The
second term is the contribution of all other data symbols on the sample ỹk. This term
is called intersymbol interference (ISI). To avoid the appearance of ISI, the sampled
pulse response {pk} must satisfy the condition

pk = δk0 p0, (4.37)

where δ jk is the Dirac delta function defined in (4.11). This requirement is known
as the (first) Nyquist criterion. Under this condition,

ỹk = Axk p0. (4.38)

We now derive an equivalent frequency-domain requirement by showing that the
pulse p(t) satisfies the condition pk = δk0 p0 if and only if

PΣ( f )


=

1
T

∞

∑
n=−∞

P
(

f +
n
T

)
= p0. (4.39)
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The function PΣ( f ) is called the folded spectrum, and we avoid ISI if and only if
the folded spectrum is flat, that is, it assumes a constant value. To prove the above
property, we use the inverse Fourier transform to write

pk =
∫ ∞

−∞
P( f )ej2π f kT d f

=
∞

∑
n=−∞

∫ (2n+1)/2T

(2n−1)/2T
P( f )ej2πk f T d f

=
∞

∑
n=−∞

∫ 1/2T

−1/2T
P
(

f ′ +
n
T

)
ej2πk( f ′+ n

T )T d f ′

=
∫ 1/2T

−1/2T

[
∞

∑
n=−∞

P
(

f +
n
T

)]
ej2π f kT d f

= T
∫ 1/2T

−1/2T
PΣ ( f )ej2π f kT d f . (4.40)

Since PΣ( f ) is periodic with period 1/T , it follows that the last line in (4.40)
represents a Fourier analysis equation except for the sign of the exponential term.
Therefore, {p−k} and PΣ ( f ) are a Fourier series pair, and PΣ( f ) can be constructed
from {p−k} using the Fourier synthesis equation, viz.,

PΣ ( f ) =
∞

∑
k=−∞

p−kej2πk f T =
∞

∑
k=−∞

pke−j2πk f T . (4.41)

To prove that (4.39) is a sufficient condition for ISI-free transmission, suppose
that (4.39) holds true. Then PΣ ( f ) = p0T and from the last line of (4.40)

pk =
∫ 1/2T

−1/2T
ej2π f kT p0T d f =

sinπk
πk

p0 = δk0 p0. (4.42)

To prove that (4.39) is a necessary condition for ISI-free transmission, suppose that
pk = p0δk0 holds true. Then from (4.41) PΣ( f ) = p0, and the folded spectrum must
be flat.

The requirement on the folded spectrum in (4.39) allows us to design pulses in
the frequency-domain that will exhibit zero ISI. First, consider a pulse having the
Fourier transform

PN( f ) = T rect( f T ), (4.43)

where

rect( f T ) =
{

1, | f | ≤ 1
2T

0, elsewhere
. (4.44)

This pulse has a flat folded spectrum. The corresponding time-domain pulse

pN(t) = sinc(t/T ), (4.45)
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Fig. 4.4 Construction of
pulses satisfying the (first)
Nyquist criterion
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satisfies the first Nyquist criterion because it has equally spaced zero crossings at
T second intervals. Furthermore, from the requirement of a flat folded spectrum,
it achieves zero ISI while occupying the smallest possible bandwidth. Hence, it is
called an ideal Nyquist pulse. Sometimes the edge frequency f = 1/2T is called the
Nyquist frequency.

We now examine the effect of the sampling or timing offset to with the aid of the
ideal Nyquist pulse. With a timing offset

ỹk = A∑
n

xnsinc((kT + to −nT)/T )

= Axksinc(to/T )+ A ∑
n �=k

xnsinc((kT + to −nT )/T ). (4.46)

Observe that the ISI term is nonzero when a timing offset is present. In fact,
with an ideal Nyquist pulse, the ISI term is not absolutely summable as shown in
Problem 4.1. This is because the tails of the ideal Nyquist pulse in (4.45) decay in
time as 1/t. To reduce this sensitivity to symbol timing errors, we need to design
pulses that satisfy the first Nyquist criterion while having tails that decay faster
than 1/t.

The construction of other Nyquist pulses starts with the ideal Nyquist pulse,
PN( f ), shown in Fig. 4.4a. To the pulse PN( f ), we add a “transmittance” function
Po( f ) as shown in Fig. 4.4b. The transmittance function must have skew symmetry
about the Nyquist frequency 1/2T , and any skew symmetric function will do.
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The resulting Nyquist pulse P( f ) is shown in Fig. 4.4c. Clearly, the folded spectrum
PΣ ( f ) is flat if the transmittance function is skew symmetric about the Nyquist
frequency 1/2T . The corresponding time-domain pulse p(t) can be obtained from
the inverse Fourier transform of resulting P( f ). Notice that the pulse P( f ) takes up
additional bandwidth, but the bandwidth expansion results in a time-domain pulse
p(t) having tails that decay faster with time than the ideal Nyquist pulse.

4.2.1 Raised Cosine and Root-Raised Cosine Pulse

The raised cosine pulse is defined in the frequency-domain by

P( f ) =

⎧
⎪⎨
⎪⎩

T, 0 ≤ | f | ≤ (1−β )/2T
T
2

[
1− sin

(
π f T

β − π
2β

)]
, (1−β )/2T ≤ | f | ≤ (1 + β )/2T

0, | f | ≥ (1 + β )/2T

. (4.47)

The bandwidth of the raised cosine pulse is (1+β )/2T , where the parameter β ,0 ≤
β ≤ 1 is called the roll-off factor and controls the bandwidth expansion. The term
“raised cosine” comes from the fact that pulse spectrum P( f ) with β = 1 has a
“raised cosine” shape, that is, with β = 1

P( f ) =
T
2

[1 + cos(π f T )], 0 ≤ | f | ≤ 1/T. (4.48)

The inverse Fourier transform of P( f ) in (4.47) gives the corresponding time-
domain pulse

p(t) =
sin(πt/T )

πt/T
cos(β πt/T)

1− (2β t/T)2 . (4.49)

For β = 0, p(t) reduces to the ideal Nyquist pulse in (4.45). Notice that the tails of
the raised cosine pulse decay as 1/t3.

As mentioned before, the overall pulse produced by the cascade of the transmitter
and receiver matched filters is p(t) = ha(t) ∗ ha(To − t). It follows that the Fourier
transform of p(t) is P( f ) = Ha( f )H∗

a ( f )e−j2π f To = |Ha( f )|2e−j2π f To . Hence, both
the transmitted pulse and receiver matched filter have the same magnitude response
|Ha( f )| = |P( f )|1/2, where P( f ) is defined in (4.47). If the overall pulse p(t)
is a raised cosine pulse with P( f ) defined in (4.47), then the pulse ha(t) is
said to be a root-raised cosine pulse. Taking the inverse Fourier transform of
|Ha( f )| = √

T |P( f )|1/2 gives the root-raised cosine pulse

ha(t) =

⎧
⎪⎨
⎪⎩

1−β + 4β/π , t = 0
(β/

√
2)((1 + 2/π)sin(π/4β )+ (1−2/π)cos(π/4β )) , t = ±T/4β

4β (t/T)cos((1+β )πt/T)+sin((1−β )πt/T)
π(t/T)(1−(4β t/T)2) , elsewhere

.

(4.50)
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Fig. 4.5 Raised cosine and
root-raised cosine pulses with
roll-off factor β = 0.5. The
pulses are truncated to length
6T and time shifted by 3T to
yield causal pulses
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For β = 0, the root-raised cosine pulse reduces to the sinc pulse

ha(t) = sinc(t/T ). (4.51)

The raised cosine and root-raised cosine pulses corresponding to β = 0.5 are
shown in Fig. 4.5. Strictly speaking, the root-raised cosine pulse in (4.50) is
noncausal. Therefore, in practice, a truncated and time-shifted approximation of
the pulse must be used. For example, in Fig. 4.5 the pulse is truncated to length 6T
and right time-shifted by 3T to yield a causal pulse. The time-shifting makes the
pulse have a linear phase response, while the pulse truncation will result in a pulse
that is no longer strictly bandlimited. Finally, we note that the raised cosine pulse
is a Nyquist pulse having equally spaced zero crossings at the baud period T , while
the root-raised cosine pulse by itself is not a Nyquist pulse.

4.3 Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is a bandwidth efficient modulation
scheme that is used in numerous wireless standards. With QAM, the complex
envelope of the transmitted waveform is

s̃(t) = A∑
n

b(t −nT,xn), (4.52)
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where

b(t,xn) = xnha(t), (4.53)

ha(t) is the amplitude shaping pulse (very often chosen as a root-raised cosine
pulse), and xn = xI,n + jxQ,n is the complex-valued data symbol that is transmitted
at epoch n. It is apparent that both the amplitude and the excess phase of a QAM
waveform depend on the complex data symbols. QAM has the advantage of high
bandwidth efficiency, but amplifier nonlinearities will degrade its performance due
to the nonconstant envelope.

The set QAM waveforms that are transmitted at each baud epoch have the
complex envelopes

s̃m(t) = Axmha(t) m = 1, . . . ,M. (4.54)

To obtain the vector representation of the complex envelopes s̃m(t),m = 1, . . . ,M,
we can use the basis function

ϕ1(t) =

√
A2

2Eh
ha(t), (4.55)

where

Eh =
A2

2

∫ ∞

−∞
h2

a(t)dt, (4.56)

is the energy in the band-pass pulse Aha(t)cos2π fct under the condition fcT 	 1.
Using this basis function

s̃m(t) =
√

2Eh xm ϕ1(t), (4.57)

and the QAM signal vectors are1

s̃m =
√

2Eh xm, m = 1, . . . ,M. (4.58)

4.3.1 QAM Signal Constellations

A variety of QAM signal constellations may be constructed. Square QAM constel-
lations can be constructed when M is an even power of 2 by choosing xI,m,xQ,m ∈
{±1, ±3, . . . , ±(N − 1)} and N =

√
M. The complex signal-space diagram for

the square 4-, 16, and 64-QAM constellations is shown in Fig. 4.6. Notice that the
minimum Euclidean distance between any two signal vectors is 2

√
2Eh.

1Note that the dimensionality of the complex vector space is N = 1.
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Fig. 4.6 Complex
signal-space diagram for
square QAM constellations
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Fig. 4.7 Complex
signal-space diagram for
cross QAM constellations
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Fig. 4.8 Complex
signal-space diagrams for
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When M is an odd power of 2, the signal constellation is not square. Usually,
the constellation is given the shape of a cross to minimize the average energy in
the constellation for a given minimum Euclidean distance between signal vectors.
Examples of the QAM “cross constellations” are shown in Fig. 4.7.

Other types of QAM constellations are possible as well. Figure 4.8 shows two
different 8-QAM constellations.
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Fig. 4.9 Complex
signal-space diagram for the
4- and 8-PAM constellations
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4.3.2 PAM Signal Constellations

Pulse amplitude modulation (PAM) can be viewed as a special case of QAM, where
information is transmitted only in the cosine component of the carrier. With our
formulation, this can be accomplished using real data symbols xm = xI,m, where
xI,m ∈ {±1,±3, . . . ,±(M−1)}. The PAM complex signal vectors are

s̃m =
√

2Eh(2m−1−M), m = 1, . . . ,M. (4.59)

Typical 4- and 8-PAM signal constellations are shown in Fig. 4.9.

4.4 Phase Shift Keying

The complex envelope of a PSK signal has the form

s̃(t) = A∑
n

b(t −nT,xn), (4.60)

where
b(t,xn) = ha(t)ejθn , (4.61)

ha(t) is the amplitude shaping pulse, and the excess phase takes on the values

θn =
2π
M

xn, (4.62)

where xn ∈ {0,1, . . . , M − 1}. The set of PSK waveforms that are transmitted at
each baud epoch have the complex envelopes

s̃m(t) = Aha(t)ejθm , m = 1, . . . ,M. (4.63)

Using the basis function in (4.55)

s̃m(t) =
√

2Ehejθmϕ0(t), m = 1, . . . ,M, (4.64)
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Fig. 4.10 Complex
signal-space diagram for the
8-PSK constellation
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and the PSK complex signal vectors are

s̃m =
√

2Ehejθm , m = 1, . . . ,M. (4.65)

The complex signal-space diagram for 8-PSK is shown in Fig. 4.10. Recall that the
energy in a PSK bandpass waveform is equal to one-half the squared length of its
complex signal vector. Notice that the PSK bandpass waveforms all have energy Eh.

4.4.1 Offset QPSK (OQPSK)

QPSK or 4-PSK is equivalent to 4-QAM, where xn = xI,n + jxQ,n and xI,n,xQ,n ∈
{−1/

√
2,+1/

√
2}. The QPSK signal can have either ±90◦ or 180◦ shifts of the

excess phase from one baud interval to the next. With offset (or staggered) QPSK
(OQPSK), the complex envelope is

s̃(t) = A∑
n

b(t −nT,xn) (4.66)

where
b(t,xn) = xI,nha(t)+ jxQ,nha(t −Tb) (4.67)

and Tb = T/2 is the bit interval. With OQPSK signals, the possibility of 180◦ shifts
of the excess phase is eliminated. In fact, the excess phase can only change by ±90◦
every Tb seconds. With OQPSK, the amplitude shaping pulse ha(t) is often chosen
to be the root-raised cosine pulse in (4.50) to yield a compact power spectrum.

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11, where
Eh is the symbol energy. The dotted lines in Fig. 4.11 show the allowable excess
phase transitions. The exact excess phase trajectories depend on the amplitude
shaping function. Note that the excess phase trajectories with OQPSK do not
pass through the origin, while those with QPSK do. This property reduces the
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Fig. 4.11 Complex signal-space diagram QPSK and OQPSK signals

peak-to-average power ratio (PAPR) of the OQPSK envelope as compared to the
QPSK envelope, defined as

PAPR = limT→∞
max0≤t≤T |s̃(t)|2
T−1

∫ T
0 |s̃(t)|2dt

.

A lower PAPR makes the OQPSK waveform less sensitive to power amplifier
nonlinearities than the QPSK waveform. For this reason OQPSK waveforms have
been used for satellite communication links where the satellite transponders use
power efficient nonlinear amplifiers.

4.4.2 π/4-DQPSK

π/4 phase shifted differential quadrature shift keying (π/4-DQPSK) is a modulation
scheme that was used in some types of now extinct second generation cellular
telephone systems. Similar to QPSK and OQPSK, π/4-DQPSK transmits 2 bits
per modulated symbol. However, unlike QPSK and OQPSK where information is
transmitted in the absolute excess phase, π/4-DQPSK transmits information in the
differential carrier phase, and one of eight absolute excess phases are transmitted at
each baud epoch.

Let θn be the absolute excess phase for the nth data symbol, and let
Δθn = θn −θn−1 be the differential excess phase. With π/4-DQPSK, the differential
excess phase is related to the quaternary data sequence {xn}, xn ∈ {±1,±3} through
the mapping

Δθn = xn
π
4

. (4.68)
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Fig. 4.12 Complex signal-space diagram QPSK and π/4-DQPSK signals

Notice that the excess phase differences are ±π/4 and ±3π/4. The complex
envelope of the π/4-DQPSK signal is

s̃(t) = A∑
n

b(t −nT,xn), (4.69)

where

b(t,xn) = ha(t)exp
{

j
(

θn−1 + xn
π
4

)}

= ha(t)exp

{
j
π
4

(
n−1

∑
k=−∞

xk + xn

)}
. (4.70)

The summation in the exponent of (4.70) represents the accumulated excess phase,
while the last term is the excess phase increment due to the nth data symbol. The
absolute excess phase during the even and odd baud intervals belongs to the sets
{0,π/2,π ,3π/2} and {π/4,3π/4,5π/4,7π/4}, respectively, or vice versa. With
π/4-DQPSK, the amplitude shaping pulse ha(t) is often chosen to be the root-raised
cosine pulse in (4.50).

The signal-space diagrams for QPSK and π/4-DQPSK are shown in Fig. 4.12,
where Eh is the symbol energy. The dotted lines in Fig. 4.12 show the allowable
phase transitions. The phaser diagram for π/4-DQPSK with root-raised cosine
amplitude pulse shaping is shown in Fig. 4.13. Note that the phase trajectories
do not pass through the origin. Like OQPSK, this property reduces the PAPR of
the complex envelope, making the π/4-DQPSK waveform less sensitive to power
amplifier nonlinearities.
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Fig. 4.13 Phaser diagram for
π/4-DQPSK with root-raised
cosine amplitude pulse
shaping;
β = 0.5
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Finally, we observe that the excess phase of π/4-DQPSK changes by ±π/4 or
±3π/4 radians during every baud interval. This property makes symbol synchro-
nization easier with π/4-DQPSK as compared to QPSK.

4.5 Orthogonal Modulation and Variants

Orthogonal modulation schemes transmit information using a set of waveforms
that may overlap in frequency but are orthogonal in time. Many different types of
orthogonal waveforms are possible, and here we consider a few methods that are
commonly used in wireless systems.

4.5.1 Orthogonal FSK Modulation

Orthogonal M-ary frequency shift keying (MFSK) is a modulation scheme that is
often used in frequency hopped spread spectrum military communication systems.
MFSK uses a set of M waveforms that all have different frequencies. The MFSK
complex envelope is

s̃(t) = A∑
n

b(t −nT,xn), (4.71)
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where

b(t,xn) = exp

{
j
xnπΔ f

2
t

}
uT (t), (4.72)

and xn ∈ {±1,±3, . . . ,±M − 1}. The set of MFSK waveforms that are transmitted
at each baud epoch have the complex envelopes

s̃m(t) = Aexp

{
j
xmπΔ f

2
t

}
uT (t), m = 1, . . . ,M. (4.73)

By choosing the frequency separation Δ f = 1/2T , all the s̃m(t),m = 1, . . . ,M are
mutually orthogonal (see Problem 4.7). Since the s̃m(t) are mutually orthogonal,
the MFSK signal vectors have dimension N = M. The appropriate set of basis
functions is

ϕi(t) =

√
A2

2Eh
exp

{
j
xmπΔ f

2
t

}
uT (t), i = 1, . . . ,M = N, (4.74)

where

Eh =
A2T

2
, (4.75)

is the energy in the band-pass pulse AuT (t)cos2π fct. The MFSK complex signal
vectors are

s̃m =
√

2Ehem, m = 1, . . . ,M, (4.76)

where em = (e1,e2, . . . ,eM), e j = δ jm, is a length-M unit basis vector with a “1” in
the mth coordinate.

4.5.2 Binary Orthogonal Codes

Another set of mutually orthogonal waveforms can be obtained from the rows of a
Hadamard matrix. A Hadamard matrix, HM, is generated recursively according to

HM =

[
HM/2 HM/2

HM/2 −HM/2

]
,

where H1 = [1]. For example, the 8×8 Hadamard matrix obtained from the above
recursive procedure is
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H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.77)

The rows of the Hadamard matrix are mutually orthogonal. A set of M equal energy
orthogonal waveforms can be constructed according to

s̃m(t) = A
M

∑
k=1

hmk hc(t − kTc), m = 1, . . . ,M, (4.78)

where hmk is the kth coordinate in the mth row of the Hadamard matrix, T = MTc

is the symbol duration, and hc(t) is a root Nyquist shaping pulse with a Nyquist
frequency of 1/(2Tc). Sometimes the above waveforms are called Walsh codes, and
find application in the forward link of some cellular code division multiple access
(CDMA) systems, such as IS-95A/B and cdma2000.

The bandpass waveforms, sm(t), all have energy

Eh =
MA2

2

∫ ∞

−∞
h2

c(t)dt. (4.79)

To construct signal vectors, the appropriate choice of basis function is

ϕi(t) =
A√
2Eh

M

∑
k=1

hik hc(t − kTc), i = 1, . . . ,M, (4.80)

and once again the signal vectors are

s̃m =
√

2Ehem, m = 1, . . . ,M. (4.81)

4.5.3 Biorthogonal Signals

A set of M biorthogonal waveforms can be constructed from a set of M/2 orthogonal
waveforms. The M-ary biorthogonal waveforms have complex signal vectors

s̃i =
{√

2Ehei, i = 1, . . . ,M/2
−s̃i−M/2, i = M/2 + 1, . . . ,M

, (4.82)
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where the unit basis vectors ei have length M/2. Using an appropriate set of basis
functions, for example in (4.74) or (4.80), the complex envelopes of the biorthogonal
waveforms can be synthesized.

4.5.4 Orthogonal Multipulse Modulation

With binary orthogonal codes, only k = log2M bits are transmitted at each baud
epoch. A much more bandwidth efficient scheme can be obtained using the rows of
the Hadamard matrix HN to define N orthogonal amplitude shaping pulses

hi(t) =
N−1

∑
k=0

hikhc(t − kTc), i = 1, . . . ,N, (4.83)

each having duration T = NTc. With orthogonal multipulse modulation, a block of
N data symbols are transmitted in parallel every T seconds using the N orthogonal
amplitude shaping pulses in (4.83). The transmitted complex envelope is

s̃(t) = A∑
n

b(t −nT,xn), (4.84)

where

b(t,xn) =
N−1

∑
k=0

xnk hk(t), (4.85)

T = NTc, and xn = (xn1 ,xn2 , . . . ,xnN ) is the block of N data symbols transmitted at
epoch n.

4.6 Orthogonal Frequency Division Multiplexing

All of the modulation techniques discussed so far are single-carrier modulation
techniques that use a single RF carrier. Another possibility is to use multi-carrier
modulation techniques where information is transmitted in parallel using multiple
sub-carriers. Orthogonal frequency division multiplexing (OFDM) is perhaps the
most popular multi-carrier modulation technique. OFDM was first introduced in
the 1960s [48], but it was perhaps the efficient DFT implementation of OFDM
developed by Weinstein and Ebert [280] that has lead to its popularity and
widespread use. OFDM was first suggested for use as cellular land mobile radio
by Cimini [55] and later implemented in the Motorola Integrated Digital Enhanced
Network (IDEN) standard [37]. OFDM is now used in a large number of standards
for broadcasting (DVB-T, DVB-H, MediaFLO, and others), wireless LAN or
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WiFi (IEEE 802.11a/g/n/p), wireless MAN or WiMAX (IEEE 802.16), mobile
broadband wireless access (MBWA) (IEEE 802.16e mobile WiMAX), wireless
regional area networks (WRAN) (IEEE 802.22), and cellular land mobile radio
(3GPP Long-Term Evolution (LTE) air interface named High Speed OFDM Packet
Access (HSOPA)), among others.

OFDM is a block modulation scheme where data symbols are transmitted in
parallel on orthogonal sub-carriers. A block of N data symbols, each of duration
Ts, is converted into a block of N parallel data symbols, each of duration T = NTs.
The N parallel data symbols modulate N sub-carriers that are spaced in frequency
1/T Hz apart. The OFDM complex envelope is given by

s̃(t) = A∑
n

b(t −nT,xn), (4.86)

where

b(t,xn) = uT (t)
N−1

∑
k=0

xn,kej 2πkt
T (4.87)

n is the block index, k is the sub-carrier index, N is the number of sub-carriers, and
xn = {xn,0, xn,1, . . . , xn,N−1} is the data symbol block at epoch n.

The data symbols xn,k are usually chosen from a QAM or PSK signal constel-
lation, although any 2D signal constellation can be used. The 1/T Hz frequency
separation of the sub-carriers ensures that the corresponding sub-channels are
mutually orthogonal regardless of the random phases that are imparted by the data
modulation (see Problem 4.7).

A cyclic extension (or guard interval) is usually added to the OFDM waveform
in (4.86) and (4.87) to combat ISI as explained in Sect. 10.1 of Chap. 10. The cyclic
extension can be in the form of either a cyclic prefix or a cyclic suffix. With a cyclic
suffix, the OFDM complex envelope becomes

s̃g(t) =
{

s̃(t), 0 ≤ t ≤ T
s̃(t −T ), T ≤ t ≤ (1 + αg)T

, (4.88)

where αgT is the length of the guard interval and s̃(t) is defined in (4.86) and (4.87).
The OFDM waveform with cyclic suffix can be rewritten in the standard form

s̃g(t) = A∑
n

b(t −nTg,xn), (4.89)

where

b(t,xn) = uT (t)
N−1

∑
k=0

xn,kej 2πkt
T + uαgT (t −T)

N−1

∑
k=0

xn,kej 2πk(t−T )
T (4.90)
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and Tg = (1 + αg)T is the OFDM symbol period with the addition of the guard
interval. Likewise, with a cyclic prefix, the OFDM complex envelope becomes

s̃g(t) =
{

s̃(t + T), −αgT ≤ t ≤ 0
s̃(t), 0 ≤ t ≤ T

, (4.91)

and

b(t,xn) = uαgT (t + αgT )
N−1

∑
k=0

xn,kej 2πk(t+T )
T + uT (t)

N−1

∑
k=0

xn,kej 2πkt
T . (4.92)

4.6.1 Adaptive Bit Loading and Discrete Multitone Modulation

A wireless OFDM system generally operates over a frequency-selective fading
channel with transfer function T (t, f ), such that the amplitude response |T (t, f )|
varies across the channel bandwidth W . The power spectral density of the additive
noise impairment Snn( f ) may vary with frequency as well due to the presence of
interference. Consider a quasi-static fading channel, such that the channel remains
constant over an OFDM block of duration T seconds. For convenience, we suppress
the time variable t with the understanding that T (t, f )≡ T ( f ) over an OFDM block,
but the channel may change from block to block. Furthermore, we assume that
knowledge of the channel is available at the transmitter. Shannon [239] proved
that the capacity of a frequency-selective channel with additive Gaussian noise is
achieved when the transmitted power Ωt( f ) is adjusted across the bandwidth Ws

according to

Ωt( f ) =
{

K −Snn( f )/|T ( f )|2, f ∈Ws

0, f �∈Ws

}
, (4.93)

where K is a constant chosen to satisfy the constraint
∫

Ws

Ωt( f )d f ≤ Ωav, (4.94)

and Ωav is the average available power to the transmitter. One method to achieve
capacity is to divide the bandwidth Ws into N sub-bands of width Ws/Δ f , where
Δ f = 1/T is chosen small enough so that |T ( f )|2/Snn( f ) is approximately constant
within each sub-band. The signals in each sub-band may then be transmitted with
the optimum power allocation Ωt( f ), while being individually coded to achieve
capacity.

It is clear from (4.87) that the data symbols xn,k for fixed n modulate the nth
sub-carrier. From (4.93), the transmitter power should be high when |T ( f )|2/Snn( f )
is large and small when T ( f )/Snn( f ) is small. In a practical system, this implies
the use of a larger size signal constellation in sub-bands where |T ( f )|2/Snn( f ) is
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large, and vice versa. The technique whereby different sized signal constellations are
used on the different OFDM sub-carriers is sometimes called adaptive bit loading
or discrete multitone modulation (DMT).

4.6.2 Multiresolution Modulation

In broadcasting applications, it is sometimes desirable to transmit video or audio
information in frames that will simultaneously provide different resolutions, de-
pending on the received signal-to-noise ratio. The lower resolution information is
typically of higher priority and must be received with higher reliability. The higher
resolution information, on the other hand, is of lower priority and may be received
with a lower reliability. The solution is multi-resolution modulation (MRM), a class
of modulation techniques that transmit multiple resolutions in a simultaneous or
concurrent fashion, that differ in their bit rates and/or error probabilities. MRM can
implemented in OFDM schemes using multiplexed, interleaved, embedded signal
constellations, and others.

Multiplexed MRM divides the OFDM band into subsets of contiguous sub-
carriers, for example the upper half sub-carriers may be used to transmit high
priority (HP) data symbols and the lower half sub-carriers used to transmit an equal
number of low priority (LP) data symbols. The HP low resolution, information can
be transmitted using a smaller signal constellation and/or higher transmit power
for further robustness and reliability. Likewise, the LP, high resolution, information
can be transmitted using a larger signal constellation and/or lower transmit power.
Broadcast service contours can be established for either high definition (both the HP
and LP data streams are decodable) or standard definition (only the HP data stream
is decodable) reception.

Interleaved MRM interleaves the different resolutions onto the sub-carriers in
a cyclic fashion. If there are K different resolutions, then sub-carriers �,�+ K, �+
2K, . . . are assigned to the �th resolution. Each resolution is then transmitted using
a different sized signal constellation and/or transmit power level.

Embedded MRM is more subtle and relies upon the use of an asymmetric signal
constellation and finds application in some broadcast video systems. Figure 4.14
shows an example of a 16-QAM embedded MRM signal constellation that can
be used to simultaneously transmit two different resolutions. In Fig. 4.14, two HP,
low resolution, bits are used to select the quadrant of the transmitted signal point,
while two low LP, high resolution, bits are used to select the signal point within
the selected quadrant. The relative error probability or reliability between the two
priorities is controlled by the parameter λ = dl/dh,λ ≤ 0.5, where dl is the distance
between LP symbols and dh is the distance between centroids of the HP symbols.
The upper limit on λ is due to the fact that the MRM constellation becomes a
symmetric 16-QAM constellation when λ = 0.5. As λ becomes smaller than 0.5,
more power is allocated to the HP low resolution bits than the LP high resolution
bits. For broadcasting applications, this can be used to provide high definition
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Fig. 4.14 16-QAM
embedded MRM signal
constellation with two
resolutions

d l

d h

reception over some adjustable fraction of the service area where standard definition
service can be received. At λ = 0.5, both resolution classes are treated equally and
the coverage areas for standard and high definition service are the same.

4.6.3 DFT-Based OFDM Baseband Modulator

A key advantage of using OFDM is that the baseband modulator can be imple-
mented using an inverse discrete-time Fourier transform (IDFT). In practice, an
inverse fast Fourier transform (IFFT) algorithm is used to implement the IDFT.
Consider the OFDM complex defined by (4.86) and (4.87). During the interval
nT ≤ t ≤ (n + 1)T , the complex envelope has the form

s̃(t) = AuT (t −nT)
N−1

∑
k=0

xn,ke
j2πk(t−nT )

T

= AuT (t −nT)
N−1

∑
k=0

xn,ke
j2πkt
NTs , nT ≤ t ≤ (n + 1)T. (4.95)

Now suppose that the complex envelope in (4.95) is sampled at synchronized Ts

second intervals to yield the sample sequence

Xn,m = s̃(mTs) = A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N −1. (4.96)
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Observe that the vector Xn = {Xn,m}N−1
m=0 is the IDFT of the vector Axn = A{xn,k}N−1

k=0 .
Contrary to conventional notation, the lower case vector Axn is used to represent
the coefficients in the frequency-domain, while the upper case vector Xn is used
to represent the coefficients in the time-domain. As mentioned earlier, a cyclic
extension (or guard interval) is usually added to the OFDM waveform as described
in (4.89) and (4.90) to combat ISI. When a cyclic suffix is used, the corresponding
sample sequence is

Xg
n,m = Xn,(m)N

(4.97)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N + G−1, (4.98)

where G is the length of the guard interval in samples, and (m)N is the residue of
m modulo N. This gives the vector Xg

n = {Xg
n,m}N+G−1

m=0 , where the values in the first
and last G coordinates of the vector Xg

n are the same. Likewise, when a cyclic prefix
is used, the corresponding sample sequence is

Xg
n,m = Xn,(m)N

(4.99)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = −G, . . . ,−1, 0, 1, . . . , N −1. (4.100)

This yields the vector Xg
n = {Xg

n,m}N−1
m=−G, where again the first and last G coordinates

of the vector Xg
n are the same. The sample duration after insertion of the guard

interval, T g
s , is compressed in time such that (N + G)T g

s = NTs.
The OFDM complex envelope can be generated by splitting the complex-valued

output vector Xm into its real and imaginary parts, Re(Xn) and Im(Xn), respectively.
The sequences {Re(Xn,m)} and {Im(Xn,m)} are then input to a pair of balanced
digital-to-analog converters (DACs) to generate the real and imaginary components
s̃I(t) and s̃Q(t), respectively, of the complex envelope s̃(t), during the time interval
nT ≤ t ≤ (n+1)T . As shown in Fig. 4.15, the OFDM baseband modulator consists
of an IDFT operation, followed by guard interval insertion and digital-to-analog
conversion.

It is instructive at this stage to realize that the waveform generated using
the IDFT OFDM baseband modulator is not exactly the same as the waveform
generated from the analog waveform definition of OFDM. Consider, for example,
the OFDM waveform without a cyclic guard in (4.86) and (4.87). The analog
waveform definition uses the rectangular amplitude shaping pulse uT (t) that is
strictly time-limited to T seconds. Hence, the corresponding power spectrum will
have infinite bandwidth, and any finite sampling rate of the complex envelope will
necessarily lead to aliasing and imperfect reconstruction. With the IDFT OFDM
baseband modulator, we apply the IDFT outputs to a pair of balanced DACs as
explained earlier. However, the ideal DAC is an ideal low pass filter with cutoff
frequency 1/(2Ts), with a corresponding noncausal impulse response given by
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Fig. 4.15 Block diagram of IDFT-based baseband OFDM modulator with guard interval insertion
and digital-to-analog conversion

h(t) = sinc(t/Ts). Since the ideal DAC is non-realizable, a causal, finite-length
reconstruction filter can be used instead. However, such a filter will necessarily
generate a waveform that is not strictly bandlimited. In conclusion, the side lobe
structure of the analog waveform definition of OFDM is inherent in the waveform
due to rectangular pulse shaping, whereas the side lobe structure with the IDFT
implementation arises from the nonideal (practical) DAC.

Finally, non-rectangular amplitude pulse shaping can be used with OFDM and
may yield a more compact power spectrum while still maintaining sub-channel
orthogonality. However, such pulse shaping will require an extension of the OFDM
symbol beyond T seconds in the time-domain. This will be discussed in more detail
in Chap. 10.

4.7 Continuous Phase Modulation

Continuous phase modulation (CPM) refers to a broad class of frequency mod-
ulation techniques where the carrier phase varies in a continuous manner. A
comprehensive treatment of CPM is provided by Anderson et. al. [13]. CPM
schemes are attractive because they have constant envelope and excellent spectral
characteristics, that is, a narrow main lobe and fast roll-off of side lobes. CPM wave-
forms find application in satellite communication systems and cellular telephone
systems such as GSM.

The complex envelope of a CPM waveform has the general form

s̃(t) = Aej(φ(t)+θo), (4.101)

where A is the amplitude, θo is initial carrier phase at t = 0, and

φ(t) = 2πh
∫ t

0

∞

∑
k=0

xkhf(τ − kT )dτ (4.102)
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Table 4.1 CPM frequency
shaping functions

Pulse type hf(t)
L-rectangular (LREC) 1

2LT uLT (t)

L-raised cosine (LRC) 1
2LT

[
1− cos

( 2πt
LT

)]
uLT (t)

L-half sinusoid (LHS) π
4LT sin(πt/LT )uLT (t)

L-triangular (LTR) 1
LT

(
1− |t−LT/2|

LT/2

)
uLT (t)

is the excess phase, h is the modulation index, {xk} is the data symbol sequence,
hf(t) is the frequency shaping pulse, and T is the baud period. The CPM waveform
can be written in the standard form

s̃(t) = A∑
n

b(t −nT,xn) (4.103)

where

b(t,xn) = ej2πh
∫ t

0 ∑∞
k=0 xkhf(τ−kT )dτ uT (t) (4.104)

where xn = (xn,xn−1, . . . ,x0), and we have assumed an initial phase θo = 0. CPM
waveforms have the following properties:

• The data symbols are chosen from the alphabet {±1, ±3, . . . ,±(M−1)}, where
M is the modulation alphabet size.

• h is the modulation index and is directly proportional to the peak and/or average
frequency deviation from the carrier. The instantaneous frequency deviation from
the carrier is

fdev(t) =
1

2π
dφ(t)

dt
= h

∞

∑
k=0

xkhf(t − kT ). (4.105)

• hf(t) is the frequency shaping function, that is zero for t < 0 and t > LT , and
normalized to have an area equal to 1/2. Full response CPM has L = 1, while
partial response CPM has L > 1. Some possible frequency shaping pulses are
shown in Table 4.1. A more compact power density spectrum is usually obtained
using frequency shaping functions having continuous higher-order derivatives,
such as the raised cosine pulse in Table 4.1. The excess phase is continuous
provided that the frequency shaping function hf(t) does not contain impulses,
which is true for all CPM waveforms. When describing CPM waveforms, it is
useful to define the phase shaping function,

β (t) =

⎧
⎨
⎩

0, t < 0∫ t
0 hf(τ)dτ, 0 ≤ t ≤ LT

1/2, t ≥ LT
. (4.106)

An infinite variety of CPM signals can be generated by choosing different frequency
shaping pulses, modulation indices, and modulation alphabet sizes.
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Fig. 4.16 Phase tree of binary CPFSK with an arbitrary modulation index. CPFSK is characterized
by linear excess phase trajectories

4.7.1 Full Response CPM

For a full response CPM waveform with L = 1, the shaping function in (4.104) has
the form

b(t,xn) = ej(πh∑n−1
k=0 xk+2πhxnβ (t))uT (t). (4.107)

The first term in the exponent of (4.107) represents the accumulated excess phase
up to time nT , while the second term represents the excess phase increment during
the time interval nT ≤ t ≤ (n + 1)T .

Continuous phase frequency shift keying (CPFSK) is a special type of full
response CPM characterized by the rectangular frequency shaping function LREC
with L = 1. For CPFSK

β (t) =

⎧⎪⎨
⎪⎩

0, t < 0

t/2T, 0 ≤ t ≤ T.

1/2, t ≥ T

(4.108)

CPM signals can be visualized by sketching the evolution of the excess phase
φ(t) for all possible data sequences. This plot is called a phase tree, and a typical
phase tree is shown in Fig. 4.16 for binary CPFSK. Since the CPFSK frequency
shaping function is rectangular, the excess phase trajectories are linear as suggested
by (4.108). In each baud interval, the excess phase increases by πh if the data symbol
is +1 and decreases by πh if the data symbol is −1.
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Fig. 4.17 Phase-trellis for MSK

4.7.1.1 Minimum Shift Keying

Minimum shift keying (MSK) is binary CPFSK with modulation index h = 1/2. In
this case,

b(t,xn) = ej( π
2 ∑n−1

k=0 xk+
π
2 xn

t
T )uT (t). (4.109)

The MSK waveform can be described in terms of the phase tree as shown in Fig. 4.16
with h = 1/2. At the end of each symbol interval, the excess phase φ(t) takes on
values that are integer multiples of π/2. Since excess phases that differ by integer
multiples of 2π are indistinguishable, the values taken by φ(t) at the end of each
symbol interval belong to the finite set {0,π/2,π ,3π/2}. The MSK phase tree-
reduced modulo 2π yields the MSK phase trellis as shown in Fig. 4.17.

An interesting property of MSK can be observed from the MSK bandpass
waveform. The bandpass waveform on the interval [nT,(n + 1)T ] can be obtained
from (4.109) as

s(t) = Acos

(
2π fct +

π
2

n−1

∑
k=0

xk +
π
2

xn
t −nT

T

)

= Acos

(
2π
(

fc +
xn

4T

)
t +

π
2

n−1

∑
k=0

xk − πn
2

xn

)
. (4.110)

Observe that the MSK bandpass waveform has one of two possible frequencies in
each baud interval

fL = fc − 1
4T

and fU = fc +
1

4T
(4.111)

depending on the data symbol xn. The difference between these two frequencies is
fU − fL = 1/(2T ). This is the minimum frequency separation to ensure orthogonal-
ity between two co-phased sinusoids of duration T (Problem 4.7) and, hence, the
name minimum shift keying.
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Another interesting representation for MSK waveforms can be obtained using
Laurent’s decomposition [149] (detailed in Sect. 4.8.3) to express the MSK complex
envelope in the quadrature form

s̃(t) = A∑
n

b(t −2nT,xn), (4.112)

where
b(t,xn) = x̂2n+1ha(t −T )+ jx̂2nha(t) (4.113)

and where xn = (x̂2n+1, x̂2n),

x̂2n = x̂2n−1x2n, (4.114)

x̂2n+1 = −x̂2nx2n+1, (4.115)

x̂−1 = 1 (4.116)

and

ha(t) = sin
( πt

2T

)
u2T (t). (4.117)

The sequences, {x̂2n} and {x̂2n+1}, are independent binary symbol sequences taking
on elements from the set {−1,+1}. The symbols x̂2n and x̂2n+1 are transmitted
on the quadrature branches with a half-sinusoid (HS) amplitude shaping pulse of
duration 2T seconds and an offset of T seconds. Hence, MSK is equivalent to offset
quadrature amplitude shift keying (OQASK) with HS amplitude pulse shaping. This
linear representation of MSK is useful in practice for linear detection of MSK
waveforms.

4.8 Partial Response CPM

Partial response CPM signals have a frequency shaping pulse hf(t) with duration
LT where L > 1. Partial response CPM signals typically have better spectral
characteristics than full response CPM signals, that is, a narrower main lobe and
faster roll-off of side lobes.

The partial response frequency shaping function can be written as

hf(t) =
L−1

∑
k=0

hf(t)uT (t − kT )

=
L−1

∑
k=0

hf,k(t − kT ), (4.118)

where
hf,k(t) = hf(t + kT )uT (t). (4.119)
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Likewise, for the partial response phase shaping function

β (t) =
L−1

∑
k=0

βk(t − kT ), (4.120)

where

βk(t) = β (t + kT )uT (t). (4.121)

Note that

βk(t) =

⎧
⎨
⎩

0, t < 0∫ t
0 hf,k(τ)dτ, 0 ≤ t ≤ LT

βk(T ), t ≥ T
(4.122)

and
L−1

∑
k=0

βk(T ) =
1
2
. (4.123)

An equivalent frequency shaping function of duration T can be derived by noting
that the baseband modulating signal has the form

x(t) = ∑
n

xnhf(t −nT)

= ∑
n

L−1

∑
k=0

xnhf,k(t − (n + k)T)

= ∑
m

L−1

∑
k=0

xm−khf,k(t −mT ). (4.124)

It follows that

x(t) = ∑
m

hf(t −mT,xm), (4.125)

where

hf(t,xm) =
L−1

∑
k=0

xm−khf,k(t) (4.126)

and

x(t) = ∑
m

β (t −mT,xm), (4.127)

where

β (t,xm) =
L−1

∑
k=0

xm−kβk(t) (4.128)

and

xm = (xm, xm−1, . . . , xm−L+1) . (4.129)
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Finally, we note that the complex envelope of partial response CPM signal can be
written in the standard form

s̃(t) = A∑
n

b(t −nT,xn) (4.130)

where
b(t,xn) = ej2πh(∑n−1

i=0 β (T,xi)+β (t,xn))uT (t) (4.131)

and we have assumed an initial excess phase equal to zero.

Example 4.2:
Consider a partial response CPM waveform with an LREC frequency

shaping function. In this case

hf(t) =
1

2LT
uLT (t).

Hence,

hf(t,xn) = xnhf,0(t)+ xn−1hf,1(t)+ · · ·+ xn−L+1hf,L−1(t),

where

hf,0(t) = hf,1(t) = · · · = hf,L−1(t) =
1

2LT
uT (t).

Therefore,

hf(t,xn) = (xn + xn−1 + · · ·+ xn−L+1)
1

2LT
uT (t).

Example 4.3:
Consider a partial response CPM waveform with an LRC frequency

shaping function. In this case

hf(t) =
1

2LT

(
1− cos

(
2πt
LT

))
uLT (t).

Hence,

hf(t,xn) = xnhf,0(t)+ xn−1hf,1(t)+ · · ·+ xn−Lhf,L−1(t),
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where

hf,k(t) =
(

1− cos

(
2π(t + kT )

LT

))
uT (t).

4.8.1 Phase States

The excess phase of a partial response CPM waveform on the interval [nT, (n+1)T] is

φ(t) = 2πh
∫ t

0

n

∑
k=0

xkhf(τ − kT )dτ (4.132)

= πh
n−L

∑
k=0

xk + 2πh
n

∑
k=n−L+1

xkβ (t − kT ) (4.133)

= θn + 2πh
n

∑
k=n−L+1

xkβ (t − kT ), (4.134)

where

θn = πh
n−L

∑
k=0

xk modulo 2π (4.135)

is the accumulated phase. During the interval nT ≤ t ≤ (n + 1)T , the excess
phase depends on the data symbol xn, the vector of L− 1 previous data symbols,
{xn−1,xn−2, . . . ,xn−L+1}, and the accumulated phase θn. The state of the CPM signal
at time, t = nT , is defined by the L-tuple

Sn = (θn,xn−1,xn−2, . . . ,xn−L+1). (4.136)

Since the vector (xn−1,xn−2, . . . ,xn−L+1) can take on ML−1 values, the number of
states equals ML−1 times the number of values that θn can assume. The modulation
index is often restricted to be a rational number, h = m/p, where m and p are integers
that have no common factors. This constraint ensures that the number of phase states
is finite which is a useful property for the implementation CPM receivers. If m is
even, then

θn ∈
{

0,
πm
p

,
2πm

p
, . . . ,

(p−1)πm
p

}
(4.137)
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Fig. 4.18 Phase state
diagram for MSK
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while if m is odd

θn ∈
{

0,
πm
p

,
2πm

p
, . . . ,

(2p−1)πm
p

}
. (4.138)

Hence, there are p phase states for even m, while there are 2p phase states for odd m.
In conclusion, the number of CPM states is

|Sn| =
{

pML−1 , m even
2pML−1 , m odd

. (4.139)

For example, if h = 1/4, M = 4, and L = 2, then

θn ∈
{

0,
π
4

,
π
2

,
3π
4

, π ,
5π
4

,
3π
2

,
7π
4

}
(4.140)

and the number of CPM states is 32.
CPM signals cannot be described in terms of a signal-space diagram, like QAM

and PSK. However, the CPM signal can be described in terms of the trajectories
from one phase state to another. Figures 4.18 and 4.19 show the phase state diagrams
for MSK and binary CPM with h = 1/4, respectively. Since binary modulation
is used, trajectories are only allowed between adjacent phase states as shown by
the dotted lines in the figures. Since CPM waveforms have constant envelope, it is
important to note that the actual phase trajectories will follow along the circle in
Figs. 4.18 and 4.19.
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Fig. 4.19 Phase state
diagram for binary CPM with
h = 1/4
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Fig. 4.20 Premodulation filtered MSK. The MSK modulating signal is low-pass filtered to remove
the high frequency components before frequency modulation

4.8.2 Gaussian Minimum Shift Keying

Due to their nonlinearity, CPM waveforms have a relatively complicated power
spectrum as detailed in Sect. 4.9.7. However, the bandwidth of a CPM waveform
can be approximated using Carson’s rule:

BW = (W + fpeak), (4.141)

where W is the bandwidth of the frequency shaping pulse hf(t) and fpeak is the
peak frequency deviation from the carrier. MSK waveforms have relatively poor
spectral characteristics due to the large bandwidth W of the rectangular frequency
pulse shaping hf(t) = 1

2T uT (t). A more compact power spectrum can be achieved by
low-pass filtering the MSK modulating signal

x(t) =
∞

∑
n=−∞

xnhf(t −nT) =
1

2T

∞

∑
n=−∞

xnuT (t −nT) (4.142)

before frequency modulation as shown in Fig. 4.20. Such filtering suppresses the
higher frequency components in x(t) thus yielding a more compact power spectrum.
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GMSK is a special type of partial response CPM that uses a low-pass
premodulation filter having the transfer function [187]

H( f ) = exp

{
−
(

f
B

)2 ln2
2

}
, (4.143)

where B is the 3 dB bandwidth of the filter. It is apparent that H( f ) is shaped
like a Gaussian probability density function with mean f = 0 and, hence, the name
“Gaussian” MSK. Convolving the rectangular pulse

1
2T

rect(t/T ) =
1

2T
uT (t + T/2)

with the corresponding filter impulse h(t) yields the frequency shaping pulse

hf(t) =
1

2T

√
2π
ln2

(BT )
∫ t/T+1/2

t/T−1/2
exp

{
−2π2(BT )2x2

ln2

}
dx

=
1

2T

(
Q

(
t/T −1/2

σ

)
−Q

(
t/T + 1/2

σ

))
, (4.144)

where

Q(α) =
∫ ∞

α

1√
2π

e−x2/2dx (4.145)

σ2 =
ln2

4π2(BT )2 . (4.146)

Figure 4.21 plots the GMSK frequency shaping pulse (truncated to 5T and time
shifted by 2.5T to yield a causal pulse) for various normalized premodulation filter
bandwidths BT . The GSM standard uses GMSK with BT = 0.3.

The phase shaping function is the integral of the frequency shaping function as
defined in (4.106). Using hf(t) in (4.144) and integrating by parts, we can show that

β (t) =
∫ t

−∞
hf(t)dt =

1
2

(
G

(
t
T

+
1
2

)
−G

(
t
T
− 1

2

))
, (4.147)

where

G(x) = x Φ
( x

σ

)
+

σ√
2π

e−
x2

2σ2 (4.148)

and

Φ(α) =
∫ α

−∞

1√
2π

e−x2/2dx. (4.149)
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Fig. 4.21 GMSK frequency
shaping pulse for various
normalized premodulation
filter bandwidths BT
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Fig. 4.22 GMSK phase
shaping pulse for various
normalized premodulation
filter bandwidths BT
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Figure 4.22, plots the GMSK phase shaping pulse (truncated to 4T and time shifted
by 2T to yield a causal pulse) for BT = 0.3.

Observe that β (∞) = 1/2 and, therefore, the total contribution to the excess phase
for each data symbol remains at ±π/2.



4.8 Partial Response CPM 231

The change in excess phase over the length-T baud interval from −T/2 to T/2 is

φ(T/2)−φ(−T/2) = πx0β0(T )+ π
∞

∑
n=−∞
n �=0

xnβn(T ), (4.150)

where

βn(T ) =
∫ T/2−nT

−T/2−nT
hf(τ)dτ. (4.151)

The first term in (4.150) is the desired term, and the second term is the ISI introduced
by the Gaussian premodulation filter. While the premodulation filter will yield
a more compact power spectrum, the induced ISI will degrade the bit error rate
performance and may necessitate an equalizer in the receiver.

4.8.3 Linearized GMSK

Like all other CPM waveforms, GMSK is a nonlinear waveform. Similar to
the linearized representation of MSK in Sect. 4.7.1.1, it is desirable to find a
linearized representation for GMSK to simplify receiver processing. Several linear
approximations have been suggested in the literature for GMSK. Here we consider
an approximation based on Laurent’s decomposition [149]. Laurent showed that any
binary partial response CPM signal can be represented exactly as a linear combina-
tion of 2L−1 partial-response pulse amplitude modulated (PAM) signals, viz.,

s̃(t) =
∞

∑
n=0

2L−1−1

∑
p=0

ejπhαn,pcp(t −nT), (4.152)

where

cp(t) = c(t)
L−1

∏
n=1

c(t +(n + Lεn,p)T ) , (4.153)

αn,p =
n

∑
m=0

xm −
L−1

∑
m=1

xn−mεm,p (4.154)

and εn,p ∈ {0,1} are the coefficients of the binary representation of the index p,
that is,

p = ε0,p + 2ε1,p + · · ·+ 2L−2εL−2,p. (4.155)
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The basic signal pulse c(t) in (4.153) is

c(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

sin(2πhβ (t))
sinπh , 0 ≤ t < LT

sin(πh−2πhβ (t−LT))
sinπh , LT ≤ t < 2LT

0, otherwise

, (4.156)

where β (t) is the CPM phase shaping function.
The above linear decomposition will yield an exact representation of the GMSK

waveform. However, the fact that 2L−1 pulses are needed to represent the waveform
means that the optimum coherent receiver will need 2L−1 filters that are matched to
the cp(t) pulses. Usually, the number of matched filters can be reduced to K < 2L−1

when a good approximation to the CPM signal can be obtained with K of the {cp(t)}
pulses. Often the pulse c0(t) contains most of the signal energy, so the p = 0 term
in (4.152) can provide a good approximation to the CPM signal. From Fig. 4.21, we
note that the GMSK frequency shaping pulse spans approximately L = 4 symbol
periods for practical values of BT . This means that the GMSK waveform can be
constructed from the superposition of eight pulses, cp(t), p = 0, . . . ,7. Numerical
analysis shows that the pulse c0(t) contains 99.83% of the energy, and, therefore,
we can derive a linearized GMSK waveform using only c0(t) and neglecting the
other pulses. This yields the waveform

s̃(t) =
∞

∑
n=0

ejπhαn,oc0(t −nT), (4.157)

where, with L = 4,

c0(t) =
3

∏
n=0

c(t + nT) , (4.158)

αn,0 =
n

∑
m=0

xm. (4.159)

Since the GMSK phase shaping pulse is noncausal, when evaluating c(t) in (4.156)
we use the truncated and time-shifted GMSK phase shaping pulse

β̂ (t) = β (t −2T) (4.160)

with L = 4 as shown in Fig. 4.22, where β (t) is defined in (4.147). Figure 4.23 plots
the resulting LGMSK amplitude shaping pulse c0(t) obtained from (4.158).

For the modulation index h = 1/2 used in GMSK,

an,0 = ej π
2 αn,0 ∈ {±1,±j} (4.161)
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Fig. 4.23 LGMSK
amplitude shaping pulse for
various normalized
premodulation filter
bandwidths BT
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and it follows that

s̃(t) = A∑
n

(
x̂2n+1c0(t −2nT −T )+ jx̂2nc0(t −2nT)

)
, (4.162)

where

x̂2n = x̂2n−1x2n, (4.163)

x̂2n+1 = −x̂2nx2n+1, (4.164)

x̂−1 = 1. (4.165)

This is the same as the OQPSK representation for MSK in Sect. 4.7.1.1, except that
the half-sinusoid amplitude pulse shaping function in (4.117) is replaced with the
LGMSK amplitude pulse shaping function defined in (4.158). Note that the LGMSK
pulse has length of approximately 4T , while the pulses on the quadrature branches
are transmitted every 2T seconds. Therefore, the LGMSK pulse will introduce ISI
that must be corrected by an equalizer to avoid a performance degradation. However,
as we will see later, GMSK has excellent spectral properties.

4.8.4 Tamed Frequency Modulation

Tamed frequency modulation (TFM) is a special type of partial response binary
CPM that was introduced by de Jager and Dekker [74]. TFM also has excellent
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spectral properties, similar to GMSK. To define TFM waveforms, recall that the
MSK excess phase obeys the difference equation

φ(nT + T )−φ(nT) =
π
2

xn. (4.166)

The TFM excess phase trajectory is “smoothed” by imposing the constraint

φ(nT + T )−φ(nT ) =
π
2

(xn−1

4
+

xn

2
+

xn+1

4

)
, (4.167)

such that the maximum change in excess phase over any bit interval is π/2. To
complete the definition of the TFM signal, an appropriate frequency shaping pulse
hf(t) must be defined. The TFM excess phase can be written as

φ(t) = π
∞

∑
k=0

xkβ (t − kT ), (4.168)

where

β (t) =
∫ t

0
hf(t)dt (4.169)

and where a modulation index h = 1/2 is assumed. The excess phase change over
the time interval [nT,(n + 1)T ] is

φ((n + 1)T )−φ(nT) = π
∞

∑
k=0

xk (β (nT + T − kT )−β (nT − kT ))

= π
∞

∑
�=n

xn−� (β (�T + T )−β (�T)) . (4.170)

Expanding (4.167) in more detail gives

φ(nT + T )−φ(nT ) =
π
2

(
. . .+ xn−2 ·0 +

xn−1

4
+

xn

2
+

xn+1

4
+ xn+2 ·0 + . . .

)
.

(4.171)

Comparing (4.170) and (4.171) gives the condition

β ((�+ 1)T)−β (�T) =

⎧⎨
⎩

1/8, |�| = 1
1/4, � = 0
0, otherwise

. (4.172)

From the definition of β (t) in (4.169), the above equation leads to

∫ (�+1)T

�T
hf(t)dt =

⎧
⎨
⎩

1/8, |�| = 1
1/4, � = 0
0, otherwise

. (4.173)
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Fig. 4.24 Filter to generate a
TFM frequency shaping pulse
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One way of obtaining hf(t) is to use a pulse hN(t) that satisfies Nyquist’s third
criterion [195, 203]

∫ (2�+1)T/2

(2�−1)T/2
hN(t)dt =

{
1, � = 0
0, � �= 0

(4.174)

and generate hf(t) using scaling and delay operations through the filter shown in
Fig. 4.24. The transfer function of this filter is

H( f ) =
1
4

+
1
8

e−j2π f T +
1
8

ej2π f T

=
1
2

cos2(π f T ). (4.175)

The overall pulse hf(t) has the form

Hf( f ) = HN( f )H( f )

= HN( f )
1
2

cos2(π f T ). (4.176)

The filter H( f ) ensures that the phase constraint in (4.167) is satisfied. However,
HN( f ) determines the shape of the phase trajectories and can, therefore, influence
the TFM power density spectrum. In general, HN( f ) has the form

HN( f ) =
π f T

sin(π f T )
N1( f ), (4.177)

where N1( f ) is the Fourier transform of a pulse that satisfies Nyquist’s first criterion
[195, 203]. One example of such a pulse is the raised cosine pulse P( f ) defined
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Fig. 4.25 TFM frequency
shaping pulse
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in (4.47). Consider, for example, the ideal Nyquist pulse (raised cosine pulse with
β = 0)

N1( f ) =
{

1, 0 ≤ | f | ≤ 1/2T
0, otherwise

. (4.178)

Using (4.176)–(4.178) gives

Hf( f ) =

{
1
2

π f T
sin(π f T ) cos2(π f T ), 0 ≤ | f | ≤ 1/2T

0, otherwise
. (4.179)

The corresponding frequency shaping pulse hf(t) is plotted in Fig. 4.25. Note the
close similarity to the GMSK frequency shaping pulse in Fig. 4.21.

Generalized tamed frequency modulation (GTFM) is an extension of TFM
where the phase difference has the form

φi(nT + T )−φi(nT ) =
π
2

(axn−1 + bxn + axn+1) . (4.180)

The constants a and b satisfy the condition 2a+b = 1 so that the maximum change
in excess phase during one bit period is equal to ±π/2. A large variety of waveforms
can be constructed by varying the value of b and the pulse response N1( f ) in (4.177).
TFM is a special case of GTFM where b = 0.5.
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4.9 Power Spectrum

A digitally modulated band-pass signal can be written in the generic form

s(t) = Re
{

s̃(t)ej2π fct
}

=
1
2

{
s̃(t)ej2π fct + s̃∗(t)e−j2π fct

}
. (4.181)

Modulated signals belong to the class of cyclostationary or periodic wide-sense
stationary random processes. The autocorrelation function of s(t) is

φss(τ) = E [s(t)s(t + τ)]

=
1
4

E
[(

s̃(t)ej2π fct + s̃∗(t)e−j2π fct
)

×
(

s̃(t + τ)ej(2π fct+2π fcτ) + s̃∗(t + τ)e−j(2π fct+2π fcτ)
)]

=
1
4

E
[
s̃(t)s̃(t + τ)ej(4π fct+2π fcτ) + s̃(t)s̃∗(t + τ)e−j2π fcτ

+ s̃∗(t)s̃(t + τ)ej2π fcτ + s̃∗(t)s̃∗(t + τ)e−j(4π fct+2π fcτ)
]

=
1
4

[
E[s̃(t)s̃(t + τ)]ej(4π fct+2π fcτ) + E[s̃(t)s̃∗(t + τ)]e−j2π fcτ

+E[s̃∗(t)s̃(t + τ)]ej2π fcτ + E[s̃∗(t)s̃∗(t + τ)]e−j(4π fct+2π fcτ)
]
. (4.182)

If s(t) is a wide-sense stationary random process, then the exponential terms
that involve t must vanish, that is, E[s̃(t)s̃(t + τ)] = 0 and E[s̃∗(t)s̃∗(t + τ)] = 0.
Substituting s̃(t) = s̃I(t)+ js̃Q(t) into these two expectations gives the requirement

φs̃I s̃I(τ) = E[s̃I(t)s̃I(t + τ)] = E[s̃Q(t)s̃Q(t + τ)] = φs̃Q s̃Q(τ), (4.183)

φs̃I s̃Q(τ) = E[s̃I(t)s̃Q(t + τ)] = −E[s̃Q(t)s̃I(t + τ)] = −φs̃Q s̃I(τ). (4.184)

Using these results,

φss(τ) =
1
2

φs̃s̃(τ)ej2π fcτ +
1
2

φ∗
s̃s̃(τ)e−j2π fcτ (4.185)

= Re
{

φs̃s̃(τ)ej2π fcτ
}

. (4.186)

Finally, the power density spectrum is the Fourier transform of φss(τ), that is,

Sss( f ) =
1
2

(
Ss̃s̃( f − fc)+ S∗s̃s̃(− f − fc)

)
, (4.187)
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where Ss̃s̃( f ) is the power density spectrum of the complex envelope s̃(t). Note that
Ss̃s̃( f ) is real, even though s̃(t) and φs̃s̃(τ) are complex; this property follows from
the fact that φs̃s̃(τ) = φ ∗̃

ss̃(−τ) as shown in the Appendix. It follows that:

Sss( f ) =
1
2

(
Ss̃s̃( f − fc)+ Ss̃s̃(− f − fc)

)
. (4.188)

From the above expression, we observe that the psd of the band-pass waveform
s(t) is real and even, and is completely determined by the psd of its complex
envelope s̃(t).

4.9.1 Psd of the Complex Envelope

We have seen that the complex envelope of any digitally modulated signal can be
expressed in the standard form

s̃(t) = A∑
n

b(t −nT,xn). (4.189)

The autocorrelation of s̃(t) is

φs̃s̃(t, t + τ) =
1
2

E [s̃(t)s̃∗(t + τ)] (4.190)

=
A2

2 ∑
i

∑
k

E [b(t − iT,xi)b∗(t + τ − kT,xk)] .

Observe that s̃(t) is a cyclostationary random process, meaning that the autocorre-
lation function φs̃s̃(t,t + τ) is periodic in t with period T . To see this property, first
note that

φs̃s̃(t + T,t + T + τ)

=
A2

2 ∑
i

∑
k

E [b(t + T − iT,xi)b∗(t + T + τ − kT,xk)]

=
A2

2 ∑
i′

∑
k′

E
[
b(t − i′T,xi′+1)b

∗(t + τ − k′T,xk′+1)
]
. (4.191)

Under the assumption that the information sequence is a stationary random process,
we can write

φs̃s̃(t + T, t + T + τ) =
A2

2 ∑
i′

∑
k′

E
[
b(t − i′T,xi′)b∗(t + τ − k′T,xk′)

]

= φs̃s̃(t,t + τ). (4.192)

Therefore, s̃(t) is cyclostationary.
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Since s̃(t) is cyclostationary, the autocorrelation φs̃s̃(τ) can be obtained by taking
the time average of φs̃s̃(t + τ,t), given by

φs̃s̃(τ) = < φs̃s̃(t,t + τ) >

=
A2

2 ∑
i

∑
k

1
T

∫ T

0
E [b(t − iT,xi)b∗(t + τ − kT,xk)]dt

=
A2

2T ∑
i

∑
k

∫ −iT+T

−iT
E [b(z,xi)b∗(z+ τ − (k− i)T,xk)]dz

=
A2

2T ∑
i

∑
m

∫ −iT+T

−iT
E [b(z,xi)b∗(z+ τ −mT,xm+i)]dz

=
A2

2T ∑
i

∑
m

∫ −iT+T

−iT
E [b(z,x0)b∗(z+ τ −mT,xm)]dz

=
A2

2T ∑
m

∫ ∞

−∞
E [b(z,x0)b∗(z+ τ −mT,xm)]dz, (4.193)

where 〈 · 〉 denotes time averaging and the second last equality used the stationary
property of the data sequence {xk}. The psd of s̃(t) is obtained by taking the Fourier
transform of φs̃s̃(τ),2

Ss̃s̃( f ) = E

[
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
b(z,x0)b∗(z+ τ −mT,xm)dze−j2π f τdτ

]

= E

[
A2

2T ∑
m

∫ ∞

−∞
b(z,x0)ej2π f zdz

×
∫ ∞

−∞
b∗(z+ τ −mT,xm)e−j2π f (z+τ−mT)dτdze−j2π f mT

]

= E

[
A2

2T ∑
m

∫ ∞

−∞
b(z,x0)ej2π f zdz

∫ ∞

−∞
b∗(τ ′,xm)e−j2π f τ ′dτ ′e−j2π f mT

]

=
A2

2T ∑
m

E [B( f ,x0)B∗( f ,xm)]e−j2π f mT , (4.194)

where B( f ,xm) is the Fourier transform of b(t,xm). To express the power density
spectrum in a more convenient form, let

Sb,m( f ) =
1
2

E [B( f ,x0)B∗( f ,xm)] . (4.195)

2Note that expectation and integration are linear operations and their order can be exchanged.
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Then

Ss̃s̃( f ) =
A2

T ∑
m

Sb,m( f )e−j2π f mT . (4.196)

Note that the psd in (4.196) depends on the correlation properties of the
information sequence xm and the form of the generalized pulse shaping function
b(t,xm). Now suppose that the data characteristics are such that xm and x0 are
independent for |m| ≥ K. Then

Sb,m( f ) = Sb,K( f ), |m| ≥ K, (4.197)

where

Sb,K( f ) =
1
2

E [B( f ,x0)]E [B∗( f ,xm)]

=
1
2

E [B( f ,x0)]E [B∗( f ,x0)]

=
1
2
|E [B( f ,x0)]|2 , |m| ≥ K. (4.198)

It follows that

Ss̃s̃( f ) = Sc
s̃s̃( f )+ Sd

s̃s̃( f ), (4.199)

where

Sc
s̃s̃( f ) =

A2

T ∑
|m|<K

(
Sb,m( f )−Sb,K( f )

)
e−j2π f mT

Sd
s̃s̃( f ) =

A2

T
Sb,K( f )∑

m
e−j2π f mT . (4.200)

The terms Sc
s̃s̃( f ) and Sd

s̃s̃( f ) represent the continuous and discrete (line) portions of
the psd. The fact that Sd

s̃s̃( f ) represents the discrete portion can be seen more clearly
using the identity

T ∑
m

e−j2π f mT = ∑
n

δ
(

f − n
T

)
(4.201)

to write

Sd
s̃s̃( f ) =

(
A
T

)2

Sb,K( f )∑
n

δ
(

f − n
T

)
. (4.202)

Finally, using the property Sb,−m( f ) = S∗b,m( f ), the continuous portion of the psd
can be written as
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Sc
s̃s̃( f ) =

A2

T

(
Sb,0( f )−Sb,K( f )

)
+

A2

T

K

∑
m=1

((
Sb,m( f )−Sb,K( f )

)
e−j2π f mT

+
(
S∗b,m( f )−Sb,K( f )

)
ej2π f mT

)

=
A2

T

(
Sb,0( f )−Sb,K( f )

)
+

A2

T
2Re

{
K

∑
m=1

(
Sb,m( f )−Sb,K( f )

)
e−j2π f mT

}
.

(4.203)

Note that the ensemble average and Fourier transform are interchangeable
linear operators. Therefore, if the complex envelope s̃(t) has zero mean, that is,
E[b(t,x0)] = 0, then E[B( f ,x0)] = 0. Under this condition

Sb,K( f ) =
1
2
|E[B( f ,x0)]|2 = 0. (4.204)

Hence, if b(t,x0) has zero mean, then Ss̃s̃( f ) contains no discrete components and
Ss̃s̃( f ) = Sc

s̃s̃( f ). Conversely, if b(t,x0) has nonzero mean, then Ss̃s̃( f ) will contain
discrete (line) components. Another important case arises with uncorrelated zero-
mean data, where Sb,K( f ) = 0, K = 1. In this case, only the term Sb,0( f ) remains and

Ss̃s̃( f ) =
A2

T
Sb,0( f ) (4.205)

where

Sb,0( f ) =
1
2

E
[|B( f ,x0)|2

]
. (4.206)

4.9.1.1 Alternative Method

An alternative method of computing psd is as follows. From the first line in (4.194)

Ss̃s̃( f ) = E

[
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
b(z,x0)b∗(z+ τ −mT,xm)dze−j2π f τ dτ

]

=
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
E
[
b(z,x0)b∗(τ ′,xm)

]
e−j2π f (τ ′−z)dzdτ ′e−j2π f mT . (4.207)

Therefore, Sb,m( f ) is given by the double Fourier transform

Sb,m( f ) =
∫ ∞

−∞

∫ ∞

−∞
φb,m(z,τ ′)e−j2π f (τ ′−z)dzdτ ′, (4.208)

where
φb,m(z,τ ′) =

1
2

E
[
b(z,x0)b∗(τ ′,xm)

]
. (4.209)
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4.9.1.2 Linear Full Response Modulation

Consider linear full response modulation schemes where b(t,xn) = xnha(t) and
B( f ,xn) = xnHa( f ). From (4.195)

Sb,m( f ) = φxx(m) |Ha( f )|2 , (4.210)

where

φxx(m) =
1
2

E[xkx∗k+m]. (4.211)

Hence, from (4.196) the psd of the complex envelope is

Ss̃s̃( f ) =
A2

T
|Ha( f )|2 Sxx( f ), (4.212)

where

Sxx( f ) = ∑
m

φxx(m)e−j2π f mT . (4.213)

Note that the psd is the product of two components; one depends on the squared
magnitude of the amplitude shaping function and the other depends on the correla-
tion of the data sequence. With uncorrelated data symbols

Sb,0( f ) = σ2
x |Ha( f )|2 , (4.214)

Sb,m( f ) =
1
2
|μx|2 |Ha( f )|2 , |m| ≥ 1. (4.215)

where μx = E[xm] and σ2
x = 1

2 E[|xk|2] are the mean and variance of the data symbols,
respectively. The psd Ss̃s̃( f ) is then given by (4.199), where

Sd( f ) =
A2

T 2 Sb,1( f )∑
n

δ
(

f − n
T

)
, (4.216)

Sc( f ) =
A2

T

(
Sb,0( f )−Sb,1( f )

)
. (4.217)

If μx = 0, then Sb,1( f ) = 0 and the psd has the simple form

Ss̃s̃( f ) =
A2

T
σ2

x |Ha( f )|2 . (4.218)

In this case, the psd only depends on the amplitude shaping pulse ha(t).
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4.9.1.3 Linear Partial Response Modulation

Consider linear partial response modulation schemes where ha(t) has duration
LT . Following the development in Sect. 4.8, the generalized shaping function has
the form

b(t,xm) = ha(t,xm)

=
L−1

∑
k=0

xm−kha,k(t), (4.219)

where

ha,k(t) = ha(t + kT )uT (t). (4.220)

Taking the Fourier transform of (4.219) gives

B( f ,xm) =
L−1

∑
k=0

xm−kHa,k( f ). (4.221)

From (4.195),

Sb,m( f ) =
1
2

E

[
L−1

∑
�=0

x−�Ha,�( f )
L−1

∑
k=0

x∗m−kH∗
a,k( f )

]

=
L−1

∑
k=0

L−1

∑
�=0

φxx(m− k + �)Ha,�( f )H∗
a,k( f ). (4.222)

For the special case of uncorrelated zero-mean data symbols, φxx(m − k + �) =
σ2

x δ (m− k + �). Hence,

Sb,m( f ) = σ2
x

L−1

∑
�=0

Ha,�( f )H∗
a,m+�( f ), (4.223)

where

σ2
x =

1
2

E[|x0|2]

is the variance of the data symbols.

Example 4.4: Duobinary Signaling:
For duobinary signaling, L = 2 and ha,0(t) = ha,1(t) = sinc(t/T ) and

Ha,0( f ) = Ha,1( f ) = T rect( f T ), where
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rect( f T ) =
{

1, | f | ≤ 1
2T

0, elsewhere
.

With uncorrelated zero-mean data symbols

Sb,m( f ) =
1
2

E
[
(x0Ha,0( f )+ x−1Ha,1( f ))

(
x∗mH∗

a,0( f )+ x∗m−1H∗
a,1( f )

)]

=

⎧⎨
⎩

2σ2
x T 2rect( f T ), m = 0

σ2
x T 2rect( f T ), |m| = 1

0, otherwise

and from (4.196)

Ss̃s̃( f ) = 2A2T σ2
x cos2(π f T )rect( f T ). (4.224)

Example 4.5: Modified Duobinary Signaling:
For modified duobinary signaling, L = 3 and ha,0(t) = ha,2(t) = sinc(t/T )

and ha,1(t) = 0. With uncorrelated zero-mean data symbols,

Sb,m( f ) =

⎧
⎨
⎩

2σ2
x T 2rect( f T ), m = 0

−σ2
x T 2rect( f T ), |m| = 2

0, otherwise

and from (4.196)

Ss̃s̃( f ) = 2A2Tσ2
x sin2(2π f T )rect( f T ).

4.9.2 Psd of QAM

The psd of QAM with uncorrelated zero-mean data symbols is given by (4.218). If
ha(t) = uT (t), then

Ss̃s̃( f ) = A2T σ2
x

(
sin(π f T )

π f T

)2

. (4.225)
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Fig. 4.26 Psd of QAM with a truncated square root-raised cosine amplitude shaping pulse with
various truncation lengths; β = 0.5. Truncation of the amplitude shaping pulse leads to side lobe
regeneration

To fairly compare bandwidth efficiencies with different M, the frequency variable
should be normalized by the bit interval Tb. For M-ary QAM T = Tb log2 M. Hence,

Ss̃s̃( f ) = A2T σ2
x

(
sin(π f Tb log2 M)

π f Tb log2 M

)2

. (4.226)

With root-raised cosine pulse shaping, |Ha( f )|2 = P( f ) has the form defined
in (4.47) with ha(t) in (4.50). The root-raised cosine pulse is noncausal. When
the pulse is implemented as a digital FIR filter, it must be truncated to a finite
length τ = LT . This truncation produces the new pulse h̃a(t) = ha(t)rect(t/LT ). The
Fourier transform of the truncated pulse h̃a(t) is H̃a( f ) = Ha( f ) ∗ LT sinc(π f LT ),
where ∗ denotes the operation of convolution taken over the frequency variable f .
The psd of QAM with the pulse h̃a(t) can again be obtained from (4.218) by simply
replacing Ha( f ) with H̃a( f ). As shown in Fig. 4.26, pulse truncation can lead to
significant side lobe regeneration.

Again, to fairly compare bandwidth efficiencies with different modulation
alphabet sizes M, the frequency variable should be normalized by the bit interval
Tb such that T = Tb log2 M.
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4.9.3 Psd of PSK

For PSK signals with the uncorrelated data symbols and the generalized shaping
function in (4.61), the psd is given by (4.218). Hence, PSK signals have the same
psd as QAM signals. The psd with rectangular and root-raised cosine amplitude
pulse shaping is given by (4.225) and (4.226), respectively. Once again, to fairly
compare bandwidth efficiencies with different M, the frequency variable must be
normalized by the bit interval Tb such that T = Tb log2 M.

4.9.4 Psd of OQPSK

For OQPSK, the generalized shaping function is

b(t,xn) = b(t,xn) = xI,nha(t)+ jxQ,nha(t −T/2), (4.227)

where xI,n,xQ,n ∈ {−1/
√

2,+1/
√

2}. It follows that

B( f ,xn) =
(

xI,n + jxQ,ne−j2π f T/2
)

Ha( f ). (4.228)

With uncorrelated data symbols,

Sb,0( f ) =
1
2

E
[|B( f ,x0)|2

]

=
1
2
|Ha( f )|2. (4.229)

Therefore,

Ss̃s̃( f ) =
A2

2T
|Ha( f )|2. (4.230)

Hence, OQPSK has the same psd as QPSK. However, it is important to note that
OQASK has a lower PAPR than QPSK.

4.9.5 Psd of π/4-DQPSK

To find the psd of π/4-DQPSK, we first compute the autocorrelation

φb,m(z,τ ′) =
1
2

E
[
b(z,x0)b∗(τ ′,xm)

]
, (4.231)
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where b(t,xn) is defined in (4.70). For m > 0,

φb,m(z,τ ′) =
1
2

E

[
ha(z)exp

{
−j

π
4

m

∑
k=1

xk

}
ha(τ ′)

]

=
1
2

E

[
exp

{
−j

π
4

m

∑
k=1

xk

}]
ha(z)ha(τ ′)

= 0. (4.232)

For m = 0,

φb,m(z,τ ′) =
1
2

E
[
ha(z)ha(τ ′)

]
=

1
2

ha(z)ha(τ ′). (4.233)

Taking the double Fourier transform gives

Sb,0( f ) =
∫ ∞

−∞

∫ ∞

−∞
φb,m(z,τ ′)e−j2π f (τ ′−z)dzdτ ′

=
1
2
|Ha( f )|2 . (4.234)

Finally, the psd is

Ss̃s̃( f ) =
A2

2T
|Ha( f )|2 . (4.235)

Just like OQPSK, π/4-DQPSK has the same psd as QPSK. Of course π/4-DQPSK
has a lower PAPR than QPSK.

4.9.6 Psd of OFDM

Recall that the OFDM waveform with guard interval is given by (4.89) and (4.90).
The data symbols xn,k,k = 0, . . . ,N−1 that modulate the N sub-carriers are assumed
to have zero mean, variance σ2

x = 1
2 E[|xn,k|2], and they are mutually uncorrelated.

In this case, the psd of the OFDM waveform is

Ss̃s̃( f ) =
A2

Tg
Sb,0( f ), (4.236)

where

Sb,0( f ) =
1
2

E
[
|B( f ,x0)|2

]
(4.237)

and

B( f ,x0) =
N−1

∑
k=0

x0,kT sinc( f T − k)+
N−1

∑
k=0

x0,kαgT sinc(αg( f T − k))ej2π f T . (4.238)
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Fig. 4.27 Psd of OFDM with
N = 16,αg = 0
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Substituting (4.238) into (4.237) along with T = NTs yields the result

Ss̃s̃( f ) = σ2
x A2T

(
1

1 + αg

N−1

∑
k=0

sinc2(N f Ts − k) +
α2

g

1 + αg

N−1

∑
k=0

sinc2(αg(N f Ts − k))

+
2αg

1 + αg
cos(2πN f Ts)

N−1

∑
k=0

sinc(N f Ts − k)sinc(αg(N f Ts − k))

)
. (4.239)

The OFDM psd is plotted in Figs. 4.27 and 4.28 for N = 16,αg = 0 and
N = 16,αg = 0.25, respectively. Observe the effect of the OFDM guard interval
on the psd. Likewise, Figs. 4.29 and 4.30 plot the psd for N = 1024,αg = 0 and
N = 1024,αg = 0.25, respectively, where we can see the effect of increasing the
block size N. When plotting the above figures, the index k was replaced with
k−(N−1)/2 in the argument of the sinc functions in (4.239) to center the spectrum
around 0 Hz. Note that the psd is plotted against the normalized frequency f Ts.
To avoid a reduction in data rate, the modulated symbol period with a cyclic
extension is T g

s = Ts/(1+αg). Hence, the Nyquist frequency in this case is 1/2Tg
s =

(1 + αg)/2Ts, which shows a bandwidth expansion due to the guard interval.

4.9.6.1 Psd of OFDM with IDFT Baseband Modulator

It is interesting to examine the OFDM power spectrum, when the OFDM complex
envelope is generated using an IDFT baseband modulator followed by a balanced
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Fig. 4.28 Psd of OFDM with
N = 16,αg = 0.25
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Fig. 4.29 Psd of OFDM with
N = 1024,αg = 0
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pair DACs as shown in Fig. 4.15. The output of the IDFT baseband modulator is
given by {Xg} = {Xg

n,m}, where m is the block index and

Xg
n,m = Xn,(m)N

(4.240)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N + G−1. (4.241)
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Fig. 4.30 Psd of OFDM with
N = 1024,αg = 0.25
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The power spectrum of the sequence {Xg} can be calculated by first determining
the discrete-time autocorrelation function of the time-domain sequence {Xg} and
then taking a discrete-time Fourier transform of the discrete-time autocorrelation
function. The psd of the OFDM complex envelope with ideal DACs can be obtained
by applying the resulting power spectrum to an ideal low-pass filter with a cutoff
frequency of 1/(2T g

s ) Hz.
The time-domain sequence {Xg} is a periodic wide-sense stationary sequence

having the discrete-time autocorrelation function

φXgXg(m, �) =
1
2

E[Xg
n,m(Xg

n,m+�)
∗] (4.242)

= A2
N−1

∑
k=0

N−1

∑
i=0

1
2

E[xn,kx∗n,i]e
j 2π

N (km−im−i�) (4.243)

for m = 0, . . . ,N + G−1. (4.244)

The data symbols, xn,k, are assumed to be mutually uncorrelated with zero mean and
variance σ2

x = 1
2 E[|xn,k|2]. Using the fact that Xg

n,m = Xn,(m)N
, we have

φXgXg(m, �) =

⎧
⎪⎪⎨
⎪⎪⎩

m = 0, . . . ,G−1, � = 0, N
Aσ2

x m = G, . . . ,N −1, � = 0
m = N, . . . ,N + G−1, � = 0, −N

0 otherwise

. (4.245)
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Averaging over all time indices m gives the time-averaged discrete-time autocorre-
lation function

φXgXg(�) =

⎧⎪⎨
⎪⎩

Aσ2
x � = 0

G
N+G Aσ2

x � = −N, N

0 otherwise

. (4.246)

Taking the discrete-time Fourier transform of the discrete-time autocorrelation
function in (4.246) gives

SXgXg( f ) = Aσ2
x

(
1 +

G
N + G

e−j2π f NT g
s +

G
N + G

ej2π f NT g
s

)

= Aσ2
x

(
1 +

2G
N + G

cos(2π f NT g
s )
)

. (4.247)

Finally, we assume that the sequence {Xg}= {Xg
n,m} is passed through a pair of ideal

DACs. The ideal DAC is a low-pass filter with cutoff frequency 1/(2T g
s ). Therefore,

the OFDM complex envelope has the psd

Ss̃s̃( f ) = Aσ2
x

(
1 +

2G
N + G

cos(2π f NT g
s )
)

rect( f T g
s ) . (4.248)

The OFDM psd is plotted in Fig. 4.31 for G = 0, where it has the ideal rectangular
form rect( f Ts) for any block size N. Figures 4.32 and 4.33 plot the psd for
N = 16, G = 4, and N = 1024, G = 256, respectively, where we can see the effect
of the cyclic guard interval and an increase in the block size N.

Finally, we note that the psd plotted in Figs. 4.31–4.33 assume an ideal DAC.
A practical DAC with a finite-length reconstruction filter will introduce side lobes
into the spectrum. It is interesting to note that side lobes are inherently present in the
continuous-time OFDM waveform in (4.89) and (4.90) due to the use of rectangular
amplitude pulse shaping on the sub-carriers. However, they are introduced into the
IDFT implementation by the nonideal (practical) DAC.

4.9.7 Psd of Full Response CPM

Recall that the generalized shaping function for a CPM waveform is given by
(4.104). To compute the psd, we first define the auxiliary function

r(t,xn)


= ej2πhxnβ (t)uT (t), (4.249)
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Fig. 4.31 Psd of IDFT-based
OFDM with N = 16,G = 0.
Note in this case that T g

s = Ts
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Fig. 4.32 Psd of IDFT-based
OFDM with N = 16,G = 4
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such that
b(t,xn) = ejπh∑n−1

k=0 xk r(t,xn) (4.250)

and calculate the mean and autocorrelation function of r(t,xn). If M-ary signaling is
used with the values of xk defined by

xk ∈ {2m−1−M : m = 1, 2, . . . , M}, (4.251)
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Fig. 4.33 Psd of IDFT-based
OFDM with
N = 1,024,G = 256
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s

then

mr(t)


= E[r(t,xn)]

=
1
M

M

∑
i=1

ej2πh(2i−1−M)β (t)uT (t)

= DM(2πhβ (t))uT (t), (4.252)

where

DM(x)


=

sin(Mx)
M sinx

(4.253)

is the Dirichlet function. Also

φr,m(t,t ′) =
1
2

E
[
r(t,x0)r∗(t ′,xm)

]
. (4.254)

Evaluating the above expression for m = 0 gives the following result which will be
used later

φr,0(t,t ′) =
1
2

E
[
r(t,x0)r∗(t ′,x0)

]

=
1
2

E
[
ej2πhx0β (t)e−j2πhx0β (t′)

]
uT (t)uT (t ′)
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=
1
2

E
[
ej2πhx0(β (t)−β (t′))

]
uT (t)uT (t ′)

=
1
2

DM

(
2πh(β (t)−β (t ′))

)
uT (t)uT (t ′). (4.255)

To evaluate the psd, it is necessary to compute the autocorrelation of b(t,xm).
This can be done as follows:

φb,m(t,t ′) =
1
2

E
[
b(t,x0)b∗(t ′,xm)

]

=
1
2

E
[
ejπh∑m−1

k=0 xk r(t,x0)r∗(t ′,xm)
]

=
1
2

E

[(
m−1

∏
k=0

r(T,xk)

)
r(t,x0)r∗(t ′,xm)

]

=
1
2

E

[(
m−1

∏
k=1

r(T,xk)

)
r(t,x0)r(T,x0)r∗(t ′,xm)

]
. (4.256)

Now suppose that the data sequence is uncorrelated. Then for m > 0

φb,m(t, t ′) =
1
2

[mr(T )]m−1 mr(t)φr,0(T,t ′)

=
1
2

[DM(πh)]m−1 DM(2πhβ (t))DM

(
2πh(β (T)−β (t ′))

)
uT (t)uT (t ′),

(4.257)

where we have used (4.255). Likewise, for m = 0

φb,0(t,t ′) =
1
2

E
[
b(t,x0)b∗(t ′,x0)

]

=
1
2

E
[
ej2πhx0(β (t)−β (t′))

]
uT (t)uT (t ′)

=
1
2

DM

(
2πh(β (t)−β (t ′))

)
uT (t)uT (t ′)

= φr,0(t,t ′). (4.258)

Finally, the psd is obtained using (4.257) and (4.258) along with (4.196) and (4.208).
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4.9.7.1 Alternative Method

There is an alternate method for obtaining the full response CPM psd that provides
more insight. Using (4.196) along with the property Sb,−m( f ) = S∗b,m( f ), we can
write

Ss̃s̃( f ) =
A2

T

(
Sb,0( f )+ 2Re

{
∞

∑
m=1

Sb,m( f )e−j2π f mT

})
. (4.259)

Taking the double Fourier transforms of (4.257) and (4.258) gives

Sb,m( f ) =
{

Sr,0( f ) m = 0
mm−1

r (T )Mr( f )M̂∗
r ( f ) m > 0

, (4.260)

where

mm−1
r (T )



= [DM(πh)]m−1,

Mr( f )


= F [mr(t)] = F [DM(2πhβ (t)uT (t)],

M̂∗
r ( f )



=

1
2

E [r(T,x0)R∗( f ,x0)] =
1
2

E
[
ejπhx0R∗( f ,x0)

]
,

F [ · ] denotes the Fourier transform and

R∗( f ,x0) = F [r∗(t,x0)] = F
[
e−j2πhx0β (t)uT (t)

]
. (4.261)

Then,

Ss̃s̃( f )=
A2

T

(
Sr,0( f )+2Re

{
Mr( f )M̂∗

r ( f )
∞

∑
m=1

mm−1
r (T )e−j2π f mT

})

=
A2

T

(
Sr,0( f )+2Re

{
Mr( f )M̂∗

r ( f )
∞

∑
n=0

[
mr(T )e−j2π f T

]n
e−j2π f T

})
.

(4.262)

Observe that ∣∣∣mr(T )e−j2π f T
∣∣∣= |mr(T )| = |DM(πh)| ≤ 1. (4.263)

The implication of (4.263) is that two separate cases must be considered when
evaluating the psd.
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Case 1: |mr(T )| < 1
In this case, the sum in (4.262) converges so that

Ss̃s̃( f ) =
A2

T

(
Sr,0( f )+ 2Re

{
Mr( f )M̂∗

r ( f )
ej2π f T −mr(T )

})
(4.264)

and the psd has no discrete components.

Case 2: |mr(T )| = 1
This case is possible only if

|mr(T )| =
∣∣∣E
[
ejπhxk

]∣∣∣= 1. (4.265)

For this condition to be true, we must have

ejπhxk = ejc , ∀ k, (4.266)

where c is the same constant for all k. Since this must be true for xk = 1, it follows
that c = πh and we must have

xkπh = πh mod (2π) ∀k. (4.267)

This means that h must be an integer, and when h is an integer

mr(T ) = E[r(T,x0)] = ejπh (4.268)

and

M̂∗
r ( f ) = M∗

r ( f )ejπh. (4.269)

Hence, the psd is

Ss̃s̃( f ) =
A2

T

(
Sr,0( f )+ |Mr( f )|22Re

{
∞

∑
m=1

ej2π( f− h
2T )mT

})

=
A2

T

(
Sr,0( f )−|Mr( f )|2 + |Mr( f )|2

∞

∑
m=−∞

e−j2π( f− h
2T )mT

)

=
A2

T

(
Sr,0( f )−|Mr( f )|2 +

1
T
|Mr( f )|2

∞

∑
n=−∞

δ
(

f − h
2T

− n
T

))
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=
A2

T

(
Sr,0( f )−|Mr( f )|2

)

+
(

A
T

)2 ∞

∑
n=−∞

∣∣∣∣Mr

(
h

2T
+

n
T

)∣∣∣∣
2

δ
(

f − h
2T

− n
T

)
. (4.270)

Clearly, the second term in the above expression is a discrete spectral component.
Hence, integer values of h lead to discrete spectral components. Since discrete
spectral components are generally undesirable, integer values of h are typically not
used.

4.9.7.2 Psd of CPFSK

With CPFSK, the phase shaping pulse is given by (4.108). Hence,

R( f ,x0) =
∫ T

0
ejπ hx0t

T · e−j2π f tdt

= Te−jπ( f T−hx0/2)sinc(( f T −hx0/2)) , (4.271)

where x0 ∈ {±1,±3, . . . ,±(M−1)}. It follows that

Mr( f ) = E [R( f ,x0)]

=
T
M

M

∑
m=1

e−jπ( f T−hxm/2)sinc(( f T −hxm/2)) , (4.272)

Sr,0( f ) =
1
2

E
[
|R( f ,x0)|2

]

=
T 2

2M

M

∑
m=1

sinc2 (( f T −hxm/2)) , (4.273)

M̂∗
r ( f ) =

T
2M

M

∑
m=1

ejπ( f T+xmh/2)sinc( f T − xmh/2) . (4.274)

These expressions are used in (4.264) to obtain the psd.
For binary M = 2 CPFSK, we have

Sr,0( f ) =
T 2

4

(
sinc2( f T −h/2)+ sinc2( f T + h/2)

)
, (4.275)

Mr( f ) =
T
2

(
e−jπ( f T+h/2)sinc( f T + h/2)+ e−jπ( f T−h/2)sinc( f T −h/2)

)
, (4.276)
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Fig. 4.34 Psd of binary
CPFSK with various
modulation indices. MSK
corresponds to h = 1/2
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h=0.25
h=0.5
h=0.75

M̂∗
r ( f ) =

T
4

(
ejπ( f T−h/2)sinc( f T + h/2)+ ejπ( f T+h/2)sinc( f T −h/2)

)
, (4.277)

mr(T ) = D2(hπ). (4.278)

When h is an integer, the psd has both continuous and discrete components

Ss̃s̃( f ) = Sc
s̃s̃( f )+ Sd

s̃s̃( f ), (4.279)

where

Sc
s̃s̃( f ) =

A2T
2

sinc( f T + h/2)sinc( f T −h/2),

Sd
s̃s̃( f ) =

A2

T

∞

∑
n=−∞

δ
(

f − h
2T

− n
T

)

×
(

sinc2(n + h)+ sinc2(n)−2sinc(n + h)sinc(n)
)

, (4.280)

which clearly exhibits line components at frequencies
(

h
2T + n

T

)
. Further simpli-

fication may be possible for special cases, but otherwise the psd has an intractable
form. Figures 4.34 and 4.35 plot the psd against the normalized frequency f T . MSK
corresponds to the case h = 0.5. Observe that the CPFSK power spectrum becomes
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Fig. 4.35 Psd of binary
CPFSK as the modulation
index h → 1
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more compact for smaller h, while the converse is true for larger h. Figure 4.35
illustrates the appearance of discrete components at frequencies

( 1
2 + n

) 1
T , n an

integer, as h → 1.

4.9.7.3 Psd of MSK

The psd of CPFSK is complicated for all but a few cases. Using Laurent’s
decomposition [149], we have seen that MSK is equivalent to OQASK with half-
sinusoid amplitude pulse shaping. From (4.113), the MSK baseband signal has the
quadrature form

s̃(t) = A∑
n

b(t −2nT,xn), (4.281)

where

b(t,xn) = x̂2n+1ha(t −T)+ jx̂2nha(t), (4.282)

ha(t) = sin
( πt

2T

)
u2T (t), (4.283)

xn = (x̂2n+1, x̂2n) is a sequence of odd-even pairs assuming values from the set
{±1,±1}, and T is the bit period. The Fourier transform of (4.282) is

B( f ,xn) =
(

x̂2n+1e−j2π f T + jx̂2n

)
Ha( f ). (4.284)
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Since the data sequence is zero-mean and uncorrelated, the MSK psd is

Sb,0( f ) =
1
2

E
[
|B( f ,x0)|2

]

=
1
2

E
[
x̂2

1 + x̂2
0

] |Ha( f )|2

= |Ha( f )|2. (4.285)

The Fourier transform of the half-sinusoid pulse in (4.283) is

Ha( f ) =
2T

π(1− (4 f T)2)

(
1 + e−j4π f T

)
. (4.286)

Hence, the power spectrum becomes

Ss̃s̃( f ) =
A2

T
|Ha( f )|2 =

16A2T
π2

(
cos2(2π f T )
1− (4 f T)2

)2

. (4.287)

The psd of MSK is plotted in Fig. 4.34.

4.9.8 Psd of GMSK and TFM

GSMK and TFM are special cases of partial response CPM. In general, the psd of
partial response CPM is difficult to obtain except for a rectangular shaping function.
One solution has been suggested by Garrison [106], where the modulating pulses are
approximated using a large number of rectangular sub-pulses with properly chosen
amplitudes.

Figure 4.36 plots the psd of GMSK with various normalized filter bandwidths
BT . Note that a smaller BT results in a more compact psd. Likewise, Fig. 4.37 plots
the psd of TFM and GMSK with BT = 0.25. Observe that the psd of TFM compares
well with that of GMSK. This is not surprising since their corresponding frequency
shaping pulses are quite similar as seen from Figs. 4.21 and 4.25.

Finally, it is interesting to compare the spectral characteristics of GMSK and
π/4-DQPSK. To make a fair comparison, we must remember that GMSK transmits
1 bit/baud while π/4-DQPSK transmits 2 bits/baud. If π/4-DQPSK uses root-raised
cosine pulse shaping, then the spectral occupancy normalized to a bit duration is
obtained by dividing the elements on the horizontal axis of Fig. 4.26 by a factor of
2. For example at f = 1/(2Tb) (corresponding to f T = 1.0), the side lobes are about
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Fig. 4.36 Psd of GMSK with
various normalized filter
bandwidths BT
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Fig. 4.37 Psd of TFM and
GMSK with BT = 0.25
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44 dB down from the main lobe ( f = 0) when τ = 6T . From Fig. 4.36, with f =
1/(2T), almost the same side lobe roll-off is obtained. However, for larger values of
f , the GMSK pulse side lobes are seen to decay faster in frequency.
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Problems

4.1. Assume that a received signal is given by

ỹ(t) = A
∞

∑
n=−∞

xn p(t −nT),

where xk = ±1, and p(t) is the ideal Nyquist pulse

p(t) = sinc(t/T ),

P( f ) = T rect( f T ).

Due to a slight timing error, the received signal is sampled with a timing offset to,
resulting in the sample sequence {ỹk} shown in (4.46). Show that

ỹk = Aaksinc(to/T )+ A
sin(πto/T )

π ∑
n �=k

an(−1)n

to/T −n
.

4.2. Show that 16-QAM can be represented as a superposition of two four-phase
constant envelope signals where each component is amplified separately before
summing, that is,

s(t) = G
(

An cos(2π fct)+ Bn sin(2π fct)
)

+
(

Cn cos(2π fct)+ Dn sin(2π fct)
)
,

where {An}, {Bn}, {Cn}, and {Dn} are statistically independent binary sequences
with elements from the set {−1,+1}. Thus, show that the resulting signal is
equivalent to

s(t) = In cos(2π fct)+ Qn sin(2π fct)

and determine In and Qn in terms of An, Bn, Cn, and Dn.

4.3. Consider the two 8-QAM signals constellations shown in Fig. 4.8. Suppose
that the distance between nearest-neighbor signal points in each constellation is
equal to A.

(a) For the constellation on the left, determine the cartesian coordinates of the
constellation points.

(b) For the constellation on the right, determine the radii a and b of the inner and
outer circles.

(c) Find the average energy per symbol for each of the two signal constellations
in terms of A assuming that each signal point is used with equal probability.
Which constellation is more power efficient?

4.4. Two data streams, {xn,1} and {xn,2}, are to be transmitted using unbalanced
QPSK with rectangular amplitude pulse shaping, such that the data rate for {xn,1} is
10 kbps and that for {xn,1} is 1 Mbps.
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(a) Relate the amplitudes of the waveforms, A1 and A2, such that both bit sequences
have equal energies per bit.

(b) With A1 and A2 so related, find the possible phase shifts for the carrier, where
the xn,1 and xn,2 take on all possible combinations of +1 and −1.

4.5. An important parameter for digital modulation schemes is the PAPR,
defined by

PAPR = limT→∞
max0≤t≤T |s̃(t)|2
T−1

∫ T
0 |s̃(t)|2dt

.

When nonlinear power amplifiers are used, it is desirable to keep the PAPR as small
as possible.

(a) Plot the PAPR for π/4-DQPSK with root-raised cosine pulse shaping, as a
function of the roll-off factor β .

(b) Repeat part (a) for QPSK. What conclusions can you draw?

4.6. Two new modulation schemes have been proposed called Q-O-QAM and
B-O-QAM. Q-O-QAM transmits 2 bits/symbol, while B-O-QAM transmits
1 bit/symbol. The mapping of Q-O-QAM data bits (a2k,a2k+1) to symbols bk is
as follows:

(a2k,a2k+1) bk

0,0 +3
0,1 +1
1,0 −3
1,1 −1

The symbols bk are used to generate the symbols xk which are given by

xk = bkejk π
2 .

For B-O-QAM, the mapping of data bits ak to symbols bk is as follows:

ak bk

0 +3
1 −3

The symbols ak are also used to generate the symbols xk which are given by

xk = bkejk π
2 .

(a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show the
allowable transitions between the signal points in the signal constellation.
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Why would these modulation schemes be useful for radio transmitters that use
nonlinear power amplifiers.

(b) Assuming an AWGN channel and coherent detection, write down an expression
for the probability of symbol error for Q-O-QAM and B-O-QAM in terms of the
bit energy to noise ratio γb.

4.7. Consider two sinusoids waveforms

s1(t) = Acos(2π fct),

s2(t) = Acos(2π( fc + Δ f )t).

(a) Determine the minimum value of Δ f such that the inner product (s1,s2) = 0
over the interval 0 ≤ t ≤ T . Assume that fcT 	 1.

(b) Repeat part (a) for the two sinusoids

s1(t) = Acos(2π fct + φ1),

s2(t) = Acos(2π( fc + Δ f )t + φ2),

where φ1 and φ2 are arbitrary phases.

4.8. A guard interval consisting of a cyclic prefix or cyclic suffix is used in OFDM
systems to mitigate the effects of channel time dispersion.

(a) Assess the cost of the cyclic prefix in terms of

(i) Bandwidth and/or data rate.
(ii) Transmitter power.

(b) Suppose that a guard interval of 500 ns is used. The data rate with 64-QAM
modulation is 54 Mb/s. The power penalty due to the guard interval is to be
kept less than 1 dB. What is the required value of G (constrained to an integer)
and minimum the possible OFDM block size (constrained to 2k for some k)?

4.9. Consider the time-domain sample sequence for the nth OFDM block

Xn,m =
N−1

∑
k=0

xn,kej 2πkm
N .

The data symbols xn,k, k = 0, . . . ,N − 1, are independent and each is chosen with
equal probability from a BPSK symbol alphabet, such that xn,k ∈ {−1,+1}. The
PAPR of the sample sequence for block n can be defined as follows:

PAPR =
maxm |Xn,m|2

N−1 ∑N−1
m=0 |Xn,m|2

.

Using the triangle inequality, show that PAPR ≤ N.
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4.10. Consider an OFDM time-domain sequence (without cyclic guard interval)

Xn,m =
N−1

∑
k=0

xn,kej 2πkm
N

=
N−1

∑
k=0

xn,k cos

(
2πkm

N

)
+ j

N−1

∑
n=0

xn,k sin

(
2πkm

N

)
, m = 0, 1, . . . , N −1,

where the xn,k are symbols are i.i.d. symbols chosen from the binary alphabet
{−1,+1}.

(a) Invoke the central limit theorem for large N and treat the Xn,m = XI
n,m + jXQ

n,m

as independent complex Gaussian random variables. What are the means,
variances, and cross correlation of the quadrature components XI

n,m and XQ
n,m?

(b) Suppose that the Xn,m can be treated as complex Gaussian random variables
with the parameters in part (a). What is the probability density function of the
peak power

Pmax = |Xmax|2 = max0≤m≤N−1|Xn,m|2 ?

(c) What is the probability density function of the PAPR

PAPR =
Pmax

Pav

in terms of the block size N?

4.11. Let {Xm}N−1
m=0 be a finite duration time-domain sequence of length N and let

{xk}N−1
k=0 be its N-point DFT. Suppose that we pad {Xm}N−1

m=0 with L zeroes and
compute the (N + L)-point DFT, denoted by {x̂k}N+L−1

k=0 .

(a) What is the relationship between x0 and x̂0?
(b) If we plot |xk|, k = 0, . . . ,N−1 and |x̂k|, k = 0, . . . ,N +L−1 on the same graph,

explain the relationships between the two graphs.

4.12. (Computer exercise) Consider the time-domain sample sequence for the nth
OFDM block {Xn,m}N−1

m=0. The PAPR for the nth data block can be defined as follows:

PAPRn =
maxm |Xn,m|2

N−1 ∑N−1
m=0 |Xn,m|2

,

Note that the PAPR for the nth data block, PAPRn, depends on the random data
vector xn = (xn,0,xn,1, . . . ,xn,N−1).

By averaging over many data vectors, determine the mean of the PAPR and the
variance of the PAPR. Do this for 16-QAM modulation with block sizes N = 256,
512, and 1024. Assume in all cases that no guard interval is used, that is, G = 0.

4.13. (Computer exercise) Consider a selective mapping scheme to reduce the
PAPR of an OFDM waveform. The technique begins by generating L different
random phase vectors of length N, that is, we first generate
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φ � = (φ�,0,φ�,1, . . . ,φ�,N−1), � = 1,2, . . . ,L,

where the φ�,i are independent uniformly distributed random variables on the
interval (−π ,π ]. Then for each φ �, � = 1, . . . ,L, we compute the PAPR of the OFDM
sample sequence

X �
n,m =

N−1

∑
k=0

xn,kejφ�,k ej 2πkm
N , m = 0,1, . . . ,N −1,

and select the waveform having the smallest PAPR for transmission.
Consider N = 256 and 16-QAM symbols, and assume that no guard interval is

used, that is, G = 0. Compute the mean PAPR and the variance of the PAPR of the
transmitted OFDM waveform for L = 1,2,4.

4.14. An OFDM signal with a large number of sub-carriers N and no guard interval
(G = 0) has a complex envelope that can be approximated as a zero-mean complex
Gaussian random process. Assume an “ideal” OFDM signal spectrum, where the
modulated power spectrum is

Ss̃s̃( f ) =
{

S0, | f | ≤ 1/2Ts

0, elsewhere

where T = NTs.

(a) Using the above Gaussian approximation, what is the distribution of the
magnitude of the complex envelope, |s̃(t)|, at any time t.

(b) Suppose that the RF power amplifier will clip the OFDM waveform if the
magnitude of the complex envelope |s̃(t)| exceeds the level ΘRrms, where Rrms

is the rms envelope level
√

E[|s̃(t)|2]. What is the probability that the OFDM
waveform will be clipped at any time t?

(c) Suppose that a continuous stream of OFDM symbols is transmitted. How many
times per second on average will the OFDM waveform be clipped?

4.15. The following problem requires you to design a length N = 256 phase vector

φ = (φ0,φ1, . . . ,φN−1),

such that the corresponding OFDM sample sequence

Xm =
N−1

∑
k=0

ejφk ej 2πkm
N , m = 0,1, . . . ,N −1,

has a PAPR that is no bigger than 3 dB and preferably as small as possible. Using
any and all techniques at your disposal, such as analysis and/or computer search,
find such a phase vector φ .
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Fig. 4.38 Frequency shaping
pulse for Problem 4.16

t0 T

hf(t)

T__
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4.16. Consider a CPM signal that is generated using a triangular frequency shaping
pulse shown in Fig. 4.38.

(a) If h = 1/2, find the peak frequency deviation from the carrier, where frequency
deviation is

fdev(t) =
1

2π
dφ(t)

dt
.

(b) Sketch the phase tree and phase trellis for the binary source symbol sequence

x = (+1,+1,+1,−1,−1,+1,−1,−1)

4.17. A CPM signal is generated from a baseband signal with a half-sinusoid
frequency shaping function hf(t).

(a) If h = 1/2 find the peak frequency deviation from the carrier frequency, where
frequency deviation is

fdev(t) =
1

2π
dφ(t)

dt
.

(b) Sketch the phase tree and phase trellis if the data symbol sequence is

x = {+3,−1,+1,+3,−3,+1,−1}.

4.18. Sketch the phase-tree, the phase trellis, and phase state diagram for partial
response CPM with h = 1/2 and

hf(t) =
1

4T
u2T (t).

4.19. Consider a partial response CPM signal

(a) Generate a frequency shaping function of duration 3T by convolving two
rectangular shaping functions of duration T and 2T .

(b) Define and sketch the three segments of the shaping function, hf,k(t), k = 0,1,2.
(c) Sketch the baseband signal if the symbol sequence is

x = {+1,−1,+1,−1,−1}.
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4.20. What are the phase states and states for the following CPM signals:

(a) Full response binary CPFSK with either h = 2/3 or h = 3/4.
(b) Partial response L = 3 binary CPFSK with either h = 2/3 or h = 3/4.

4.21. Equation 4.143 defines the transfer function H( f ) of the Gaussian low pass
filter that is used to generate the GMSK waveform.

(a) Obtain the impulse response h(t) and show that it satisfies the properties of a
probability density function (pdf).

(b) Expanding on the interpretation of h(t) as a pdf, determine the variance of the
distribution. What is the significance of this interpretation?

4.22. Design a Gaussian pulse-shaping filter with BT = 0.5 for a symbol rate of
19.2 kbps. Write expressions for and plot, (1) the impulse response and frequency
response of the filter, and (2) the frequency shaping pulse hf(t). Repeat for the case
of BT = 0.2 and BT = 0.75.

4.23. Consider TFM with the frequency shaping pulse

Hf( f ) =
π
4h

π f T
sin(π f T )

cos2(π f T ).

Suppose that this pulse is obtained by exciting a filter h̃(t) with a gate function
rect(t/T ). Find and sketch the impulse response of the filter h̃(t).

4.24. Prove the identity

T ∑
m

e−j2π f mT = ∑
n

δ
(

f − n
T

)
.

4.25. Consider the case of uncorrelated data symbols.

(a) Show that if the symbols are equiprobable, then

E
[
|B( f ,x0)|2

]
−
∣∣∣E [B( f ,x0)]

∣∣∣
2
=

1
2M2

M

∑
i=1

M

∑
k=1

∣∣∣B( f ,xi)−B( f ,xk)
∣∣∣
2
.

(b) Compute the value of part (a) for M = 2.

4.26. Consider the complex low-pass binary modulated signal

s̃(t) = A∑
n

xnha(t −nT),

where xn ∈ {−1, +1}. The data sequence {xn} is correlated such that

φxx(n) =
1
2

E[xkx∗k+n] = ρ |n|.

Compute the power density spectrum of s̃(t).
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4.27. Suppose that a binary data sequence {xn}, xi ∈ {−1,+1} is correlated such
that P(xn = xn+1) = 3/4, that is, adjacent data bits are the same with probability 3/4
and different with probability 1/4.

(a) Compute the autocorrelation function φxx(m) for this data sequence.
(b) Compute the power spectrum Sxx( f ).

4.28. Suppose that an uncorrelated binary data sequence is transmitted using binary
PAM with a root-Gaussian amplitude shaping pulse

Ha( f ) =
(

τe−π( f τ)2
)1/2

(a) What is the transmitted power density spectrum?
(b) Find the value of τ so that the power density spectrum is 20 dB below its peak

value at frequency 1/T , where T is the baud duration.
(c) What is the corresponding time-domain pulse ha(t)?

4.29. Consider the M-ary orthogonal FSK waveform defined by (4.71) and (4.72).
Assuming equally likely messages, determine the psd of the transmitted complex
envelope Ss̃s̃( f ).

4.30. Consider a system that uses a set of M = 16 bi-orthogonal signals that are
derived from the Hadamard matrix H8 in (4.77). The set of 16 signals is constructed
according to

s̃i(t) =
{

A∑7
k=0 hikhc(t − kTc), k = 1, . . . ,8

−s̃i(t), k = 9, . . . ,16
, (4.288)

where T = 8Tc is the baud period. Note that four bits are transmitted per baud.
Assume an uncorrelated data sequence and assume that all 16 waveforms are used
with equal probability.

(a) If hc(t) = uTc(t), find the psd of the transmitted complex envelope Ss̃s̃( f ).
(b) Plot the power spectrum Ss̃s̃( f ) against the normalized frequency f Tb, where

Tb = T/4 is the bit duration.
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