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Preface

Principles of Mobile Communication, third edition, is a major revision of the
second edition. Like its earlier editions, this book provides a mathematically
rigorous overview of physical layer wireless communications. The basic pedagogic
methodology is to include fully detailed derivations from first principles. The text is
intended to provide enough principle material to guide the novice student, while
at the same time having plenty of detailed material to satisfy graduate students
inclined to pursue research in the area. The book is intended to stress the principles
of wireless communications that are applicable to a wide array of wireless standards.
It is intended to serve as a textbook and reference for graduate students, and a useful
reference for practicing engineers.

Organization of the Book

Chapter 1 begins with an overview that is intended to introduce a broad array of
issues relating to wireless communications. Included is a brief description of the
evolution of various wireless standards, the basic concepts of cellular frequency
reuse, the land mobile radio propagation environment, link budgets, and coverage
and capacity of cellular radio systems.

Chapter 2 provides an extensive treatment of radio propagation, since good
understanding of the physical wireless channel is essential for the development
and deployment of wireless systems. The chapter begins with a treatment of
the narrow-band faded envelope for conventional fixed-to-mobile channels found
in cellular radio systems, mobile-to-mobile channels found in mobile ad hoc
networks, and multiple-input multiple-output (MIMO) channels where multiple
antennas are used at both the transmitter and receiver to achieve high capacity. After
considering the narrow-band channel, we consider the statistical treatment of wide-
band channels. The emulation of wireless channels is essential for the development
and testing of wireless systems, and the chapter provides a detailed discussion of
channel simulation techniques. Finally, the chapter concludes with a discussion of
shadowing and path loss models for land mobile radio environments.
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Chapter 3 provides a detailed treatment of co-channel interference which is the
primary impairment in spectrally efficient cellular frequency reuse systems. Very
often the receivers in such systems are affected by multiple co-channel interferers
and the probability distribution of the total interfering power is considered. The
chapter also considers the link outage performance due to co-channel interference
in a variety of wireless environments.

Chapter 4 covers the various types of modulation schemes that are used in mobile
communication systems along with their spectral characteristics. The chapter begins
with the mathematical representation of bandpass modulated signals, along with
Nyquist pulse shaping. Later, a large variety of modulation schemes used in wireless
systems are considered, including both single-carrier and multi-carrier modulation,
and both linear and nonlinear modulation techniques. This is followed by a treatment
of the power density spectrum of modulated signals. Although quite mathematical
in nature, power spectrum is an important topic, since wireless systems are required
to operate within a specified out-of-band emission mask.

Chapter 5 discusses the error probability performance of various digital modula-
tion schemes on narrow-band flat fading channels. The performance is evaluated
with a variety of receiver structures, including coherent detectors, differentially
coherent detectors, and noncoherent detectors.

Chapter 6 includes a treatment of multi-antenna techniques for combating
envelope fading. The chapter includes a discussion of various diversity combining
techniques for coherent, differentially coherent, and noncoherent receiver detection
of signals on fading channels with additive white Gaussian noise. Also considered
is optimal combining which is effective when the primary additive impairment is
co-channel interference rather than noise. Finally, the chapter considers the use of
multiple antennas at the transmitter in the context of classical beam-forming and
transmit diversity.

Chapter 7 provides an extensive treatment of digital signaling on intersymbol
interference (ISI) channels that are typical of broadband land mobile radio systems.
The chapter begins with the characterization of ISI channels and goes on to
discuss techniques for combating ISI based on symbol-by-symbol equalization and
sequence estimation. Later, error probability for maximum likelihood sequence
estimation is considered. The chapter concludes with a discussion of co-channel
demodulation for the purpose of mitigating co-channel interference on ISI channels.

Chapter 8 covers error control coding techniques for wireless systems. The
chapter begins with a discussion of basic block coding, including space-time block
codes. Convolutional coding is considered next along with the Viterbi and BCJR
algorithms for decoding convolutional codes, followed by trellis coded modulation.
The chapter then provides a detailed discussion on the design and performance
analysis of convolutional and trellis codes for AWGN channels, and interleaved flat
fading channels, and fading ISI channels. Later, space-time trellis codes are treated,
and the chapter concludes with Turbo coding.

Chapter 9 is devoted to spread spectrum techniques. The chapter begins with an
introduction to direct sequence and frequency hop spread spectrum. This is followed
by a detailed treatment of spreading sequences. Also included is a discussion
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of the effects of tone interference on direct sequence spread spectrum, and the
RAKE receiver performance on wide-band channels. The chapter wraps up with
a discussion of CDMA multiuser detection.

Chapter 10 is devoted to multi-carrier techniques. It considers the performance
of OFDM on frequency-selective channels and considers the effect of residual
ISI and problem of residual ISI cancellation. Later, the chapter examines single-
carrier frequency-domain equalization (SC-FDE) techniques. This is followed by a
treatment of orthogonal frequency division multiple access (OFDMA) on both the
forward and reverse links. The chapter concludes with a discussion of single-carrier
frequency division multiple access (SC-FDMA).

Chapter 11 considers frequency planning techniques for cellular systems. The
chapter begins with a discussion of cell sectoring, cell splitting, and reuse partition-
ing. Later, the chapter considers radio planning for OFDMA cellular systems. This
is followed by hierarchical overlay/underlay architectures based on cluster planning.
Finally, the chapter wraps up with macrodiversity TDMA cellular architectures.

Chapter 12 considers CDMA considers CDMA cellular systems, considering
topics such as capacity and power control. This is followed by a discussion of
hierarchical macrodiversity CDMA architectures and their performance.

Chapter 13 is devoted to cellular radio resource management. The chapter begins
with an introduction to basic hard and soft handoff. Later, the chapter considers the
important problem of link quality evaluation, including signal strength averaging,
velocity estimation, and velocity adaptive hard handoff algorithms. Later, a detailed
analysis of hard and soft handoff is provided. Finally, the chapter wraps up with
methods for estimating received carrier-to-interference plus noise ratio (CINR).

The Appendix includes a brief and focused tutorial discussion of probability
and random processes. A good understanding of the material in the Appendix is
essential, since the concepts are widely used throughout the text.

Using This Book for Instruction

The book has been developed from a graduate-level course on physical wireless
communications that I have taught at Georgia Tech since 1993. Normally, I prefer
a graduate-level course in digital communications as a prerequisite for this course.
However, such a prerequisite may be waived to the extent that there is extensive
background material in each chapter. A course may cover the introductory material
in each chapter and skip the more specialized material. In my own classes, I always
try to judge the mathematical level of the students early and adapt accordingly.

The book obviously contains far too much material to be taught in a one
semester course. However, I believe that it can serve as a suitable text in most
situations through the appropriate instructor selection of background sections. My
own preference for a one semester course is to include the following material in
order: Chap. 1, Chap. 2 (skipping the more advanced material), and the first two
sections of Chap. 3. In moving to modulation waveforms in Chap. 4, an instructor
may have to treat/assume basic signal-space representation. However, most students
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will not have seen the material on either continuous phase modulation or the power
spectrum of digitally modulated waveforms even with a prerequisite. Likewise, in
Chap. 5 an instructor will have to treat/assume basic signal detection, and a good
understanding of this material is necessary to cover multi-antenna techniques in
Chap. 6. After completing Chap. 6, there are many potential directions to take the
course and the book provides for much flexibility depending on the course focus. For
example, an instructor may choose to concentrate on spread spectrum and CDMA
in Chaps. 9 and 11, or on OFDM/OFDMA in Chap. 10.
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Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Brief History of Wireless Systems and Standards . . . . . . . . . . . . . . . . . . 2

1.1.1 First Generation (1G) Cellular Systems . . . . . . . . . . . . . . . . . . . 2
1.1.2 Second Generation (2G) Cellular Systems . . . . . . . . . . . . . . . . 3
1.1.3 Third Generation Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Fourth Generation Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 Cordless Telephone Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.6 Wireless LANs and PANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Frequency Reuse and the Cellular Concept . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Mobile Radio Propagation Environment .. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Co-channel Interference and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Receiver Sensitivity and Link Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Interference Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.2 Shadow Margin and Handoff Gain . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Coverage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Spectral Efficiency and Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7.1 Bandwidth Efficiency.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7.2 Spatial Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7.3 Trunking Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.7.4 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Propagation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Fixed-to-Mobile Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1.1 Envelope Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.2 Doppler Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.3 Received Envelope and Phase Distribution.. . . . . . . . . . . . . . . 58
2.1.4 Envelope Correlation and Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.5 Level Crossing Rates and Fade Durations .. . . . . . . . . . . . . . . . 70
2.1.6 Space–Time Correlation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



xii Contents

2.2 Mobile-to-Mobile Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.2.1 Mobile-to-Mobile Reference Model . . . . . . . . . . . . . . . . . . . . . . . 82

2.3 MIMO Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.1 Analytical MIMO Channel Models . . . . . . . . . . . . . . . . . . . . . . . . 86

2.4 Statistical Characterization of Multipath-Fading Channels . . . . . . . . 89
2.4.1 Statistical Channel Correlation Functions . . . . . . . . . . . . . . . . . 91
2.4.2 Classification of Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.4.3 Power Delay Profile and Coherence Bandwidth . . . . . . . . . . 94

2.5 Simulation of Multipath-Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.5.1 Filtered White Gaussian Noise Models. . . . . . . . . . . . . . . . . . . . 96
2.5.2 Sum of Sinusoids Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.5.3 Multiple Uncorrelated Faded Envelopes . . . . . . . . . . . . . . . . . . 107
2.5.4 Wide-Band Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.5.5 Mobile-to-Mobile Simulation Models . . . . . . . . . . . . . . . . . . . . . 117
2.5.6 Symbol-Spaced Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.6 Shadowing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.6.1 Shadow Simulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2.6.2 Composite Shadowing-Fading Distributions .. . . . . . . . . . . . . 130

2.7 Path Loss Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.7.1 Free Space Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.7.2 Flat Earth Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.7.3 Empirical Path Loss Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3 Co-channel Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.1 Multiple Log-normal Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.1.1 Fenton–Wilkinson Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.1.2 Schwartz and Yeh Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.1.3 Farley’s Method.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3.1.4 Numerical Comparisons .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.2 Log-Normal/Multiple Log-Normal Interferers . . . . . . . . . . . . . . . . . . . . . 175
3.3 Rician/Multiple Rayleigh Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.4 Log-Normal Nakagami/Multiple Log-Normal

Nakagami Interferers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.4.1 Statistically Identical Interferers . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.4.2 Statistically Non-identical Co-channel Interferers . . . . . . . . 184

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4 Digital Modulation and Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.1 Representation of Bandpass Modulated Signals . . . . . . . . . . . . . . . . . . . . 190

4.1.1 Vector Space Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1.2 Gram–Schmidt Orthonormalization Procedure . . . . . . . . . . . 192
4.1.3 Signal Energy and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.2 Nyquist Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.2.1 Raised Cosine and Root-Raised Cosine Pulse . . . . . . . . . . . . 202



Contents xiii

4.3 Quadrature Amplitude Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.3.1 QAM Signal Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.3.2 PAM Signal Constellations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

4.4 Phase Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.4.1 Offset QPSK (OQPSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.4.2 π/4-DQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.5 Orthogonal Modulation and Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.5.1 Orthogonal FSK Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.5.2 Binary Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.5.3 Biorthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.5.4 Orthogonal Multipulse Modulation .. . . . . . . . . . . . . . . . . . . . . . . 213

4.6 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . . . . . . . 213
4.6.1 Adaptive Bit Loading and Discrete Multitone

Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.6.2 Multiresolution Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.6.3 DFT-Based OFDM Baseband Modulator . . . . . . . . . . . . . . . . . 217

4.7 Continuous Phase Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.7.1 Full Response CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.8 Partial Response CPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.8.1 Phase States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.8.2 Gaussian Minimum Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.8.3 Linearized GMSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.8.4 Tamed Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

4.9 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.9.1 Psd of the Complex Envelope .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.9.2 Psd of QAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.9.3 Psd of PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.9.4 Psd of OQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.9.5 Psd of π/4-DQPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.9.6 Psd of OFDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
4.9.7 Psd of Full Response CPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.9.8 Psd of GMSK and TFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5 Digital Signaling on Flat Fading Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.1 Vector Space Representation of Received Signals . . . . . . . . . . . . . . . . . . 272
5.2 Detection of Known Signals in AWGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5.3 Probability of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

5.3.1 Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
5.3.2 Upper Bounds on Error Probability. . . . . . . . . . . . . . . . . . . . . . . . 282
5.3.3 Lower Bound on Error Probability . . . . . . . . . . . . . . . . . . . . . . . . 284
5.3.4 Bit Versus Symbol Error Probabilities . . . . . . . . . . . . . . . . . . . . . 284
5.3.5 Rotation and Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

5.4 Error Probability of PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
5.4.1 Error Probability of BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
5.4.2 Error Probability of QPSK and OQPSK. . . . . . . . . . . . . . . . . . . 288



xiv Contents

5.4.3 Error Probability of M-PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
5.4.4 Error Probability with Rayleigh Fading . . . . . . . . . . . . . . . . . . . 291
5.4.5 Differential PSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

5.5 Error Probability of PAM and QAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
5.5.1 Error Probability of M-PAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
5.5.2 Error Probability of M-QAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

5.6 Error Probability of Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
5.6.1 Orthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
5.6.2 Biorthogonal Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

5.7 Error Probability of OFDM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
5.7.1 Interchannel Interference .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

5.8 Error Probability of MSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
5.9 Differential Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

5.9.1 Binary DPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
5.9.2 Differential Detection of π/4-DQPSK . . . . . . . . . . . . . . . . . . . . 310

5.10 Noncoherent Detection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
5.10.1 Error Probability of M-ary Orthogonal Signals . . . . . . . . . . . 313

5.11 Detection of CPM Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
5.11.1 Coherent CPM Demodulator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.11.2 Noncoherent CPM Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

6 Multi-antenna Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
6.1 Diversity Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.2 Selective Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.3 Maximal Ratio Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.4 Equal Gain Combining .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
6.5 Switched Combining .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.6 Differential Detection with Equal Gain Combining . . . . . . . . . . . . . . . . 340
6.7 Noncoherent Square-Law Combining .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.8 Optimum Combining.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

6.8.1 Optimum Combining Performance . . . . . . . . . . . . . . . . . . . . . . . . 350
6.9 Classical Beam-Forming .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.10 Transmitter Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

6.10.1 Alamouti’s Transmit Diversity Scheme . . . . . . . . . . . . . . . . . . . 363
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

7 Equalization and Interference Cancelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
7.1 Modeling of ISI Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

7.1.1 Vector Representation of Received Signals . . . . . . . . . . . . . . . 375
7.2 Maximum Likelihood Receiver for ISI Channels with AWGN .. . . 375

7.2.1 Discrete-Time White Noise Channel Model . . . . . . . . . . . . . . 377
7.3 Symbol-by-Symbol Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

7.3.1 Linear Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
7.3.2 Decision Feedback Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398



Contents xv

7.4 Sequence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
7.4.1 Maximum Likelihood Sequence Estimation . . . . . . . . . . . . . . 401
7.4.2 Delayed Decision-Feedback Sequence Estimation . . . . . . . 409
7.4.3 Reduced-State Sequence Estimation. . . . . . . . . . . . . . . . . . . . . . . 411

7.5 Error Probability for MLSE on ISI Channels . . . . . . . . . . . . . . . . . . . . . . . 413
7.5.1 Static ISI Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
7.5.2 Fading ISI Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

7.6 Error Probability for T/2-Spaced MLSE Receiver. . . . . . . . . . . . . . . . . . 421
7.6.1 T -Spaced MLSE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
7.6.2 T/2-Spaced MLSE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
7.6.3 Timing Phase Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
7.6.4 Practical T /2-Spaced MLSE Receiver . . . . . . . . . . . . . . . . . . . . . 426

7.7 Co-channel Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
7.7.1 System and Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
7.7.2 Joint Maximum Likelihood Co-channel Receiver . . . . . . . . 429
7.7.3 Discrete-Time MIMO Channel Model . . . . . . . . . . . . . . . . . . . . 432
7.7.4 The Viterbi Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
7.7.5 Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
7.7.6 T/2-Spaced MIMO J-MLSE Receiver . . . . . . . . . . . . . . . . . . . . . 437
7.7.7 Interference Rejection Combining MLSE Receiver . . . . . . 444
7.7.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

8 Error Control Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
8.1 Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

8.1.1 Binary Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
8.1.2 Space-Time Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

8.2 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
8.2.1 Encoder Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
8.2.2 State and Trellis Diagrams, and Weight Distribution . . . . . 474
8.2.3 Recursive Systematic Convolutional Codes . . . . . . . . . . . . . . . 477
8.2.4 Viterbi Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
8.2.5 BCJR Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

8.3 Trellis Coded Modulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.3.1 Encoder Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.3.2 Mapping by Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

8.4 Code Performance on AWGN Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.4.1 Union Bound for Convolutional Codes . . . . . . . . . . . . . . . . . . . . 494

8.5 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
8.6 Code Performance on Interleaved Flat Fading Channels . . . . . . . . . . . 501

8.6.1 TCM with Symbol Interleaving .. . . . . . . . . . . . . . . . . . . . . . . . . . . 501
8.6.2 Bit Interleaved Coded Modulation .. . . . . . . . . . . . . . . . . . . . . . . . 505

8.7 Performance of Space-Time Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
8.7.1 Space-Time Trellis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510



xvi Contents

8.8 Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
8.8.1 PCCC Encoder .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
8.8.2 PCCC Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.8.3 SCCC Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
8.8.4 Weight Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

9 Spread Spectrum Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
9.1 Basic Principles of Spread Spectrum .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

9.1.1 Direct Sequence Spread Spectrum .. . . . . . . . . . . . . . . . . . . . . . . . 528
9.1.2 Frequency Hop Spread Spectrum .. . . . . . . . . . . . . . . . . . . . . . . . . 532

9.2 Spreading Sequences .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
9.2.1 Spreading Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
9.2.2 m-Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
9.2.3 Gold Sequences .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
9.2.4 Kasami Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
9.2.5 Barker Sequences .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
9.2.6 Walsh–Hadamard Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
9.2.7 Variable Length Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . 543
9.2.8 Complementary Code Keying.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

9.3 Power Spectral Density of DS Spread Spectrum Signals . . . . . . . . . . 545
9.4 Performance of DS/QPSK in Tone Interference . . . . . . . . . . . . . . . . . . . . 549

9.4.1 Short Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
9.4.2 Short Code Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
9.4.3 Long Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

9.5 DS Spread Spectrum on Frequency-Selective Fading Channels . . . 563
9.5.1 RAKE Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
9.5.2 Error Probability of DS/BPSK with a RAKE Receiver . . . 567

9.6 CDMA Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
9.6.1 Optimum CDMA Multiuser Detection . . . . . . . . . . . . . . . . . . . . 572
9.6.2 Decorrelating Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
9.6.3 Minimum Mean Square Error Detector . . . . . . . . . . . . . . . . . . . 576

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

10 Multi-carrier Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
10.1 Orthogonal Frequency Division Multiplexing . . . . . . . . . . . . . . . . . . . . . . 584

10.1.1 Performance of OFDM on ISI Channels . . . . . . . . . . . . . . . . . . 587
10.1.2 Residual ISI Cancelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
10.1.3 Performance of the RISIC Algorithm .. . . . . . . . . . . . . . . . . . . . 595

10.2 Single-Carrier Frequency-Domain Equalization .. . . . . . . . . . . . . . . . . . . 600
10.2.1 ZF and MMSE SC-FDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

10.3 Orthogonal Frequency Division Multiple Access . . . . . . . . . . . . . . . . . . 605
10.3.1 OFDMA Forward Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
10.3.2 OFDMA Reverse Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
10.3.3 Peak-to-Average Power Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612



Contents xvii

10.4 Single-Carrier Frequency Division Multiple Access . . . . . . . . . . . . . . . 612
10.4.1 Peak-to-Average Power Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

11 Frequency Planning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
11.1 Cell Sectoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

11.1.1 Cell Sectoring with Wide-beam Directional Antennas . . . 622
11.2 Conventional Cell Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

11.2.1 Reuse Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
11.3 OFDMA Radio Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
11.4 Cluster-Planned Hierarchical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 631

11.4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
11.4.2 Underlaid Microcell Planning Algorithm . . . . . . . . . . . . . . . . . 633
11.4.3 Performance Analysis of Cluster-Planned

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
11.5 Macrodiversity Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

11.5.1 Co-channel Interference Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
11.5.2 Shadow Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
11.5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

12 CDMA Cellular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
12.1 CDMA Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
12.2 Capacity of Cellular CDMA .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

12.2.1 Reverse Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
12.2.2 Forward Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
12.2.3 Imperfect Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

12.3 Hierarchical Macrodiversity CDMA Cellular Architectures . . . . . . . 680
12.3.1 System Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
12.3.2 Reverse Link Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
12.3.3 Forward Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

13 Radio Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
13.1 Signal Strength-Based Hard Handoff Algorithms . . . . . . . . . . . . . . . . . . 710
13.2 Pilot-to-Interference Ratio-Based Soft Handoff Algorithms .. . . . . . 712
13.3 Signal Strength Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

13.3.1 Choosing the Proper Window Length . . . . . . . . . . . . . . . . . . . . . 714
13.3.2 Choosing the Proper Number of Samples to Average . . . . 716

13.4 Velocity Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
13.4.1 Level Crossing Rate Estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
13.4.2 Covariance Approximation Methods . . . . . . . . . . . . . . . . . . . . . . 722
13.4.3 Velocity Estimator Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

13.5 Velocity Adaptive Hard Handoff Algorithms . . . . . . . . . . . . . . . . . . . . . . . 730
13.5.1 Effect of Nλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
13.5.2 Corner Effects and Sensitivity to a and Wl . . . . . . . . . . . . . . . . 732
13.5.3 Velocity Adaptive Handoff Performance . . . . . . . . . . . . . . . . . . 733



xviii Contents

13.6 Hard Handoff Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
13.6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

13.7 CDMA Soft Handoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
13.7.1 System Model and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
13.7.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

13.8 CINR-based Link Quality Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
13.8.1 Discrete-Time Model for Signal Quality Estimation . . . . . 759
13.8.2 Training Sequence Based C/(I+N) Estimation . . . . . . . . . . 763

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

A Probability and Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
A.1 Conditional Probability and Bayes’ Theorem.. . . . . . . . . . . . . . . . . . . . . . 771

A.1.1 Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
A.1.2 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

A.2 Means, Moments, and Moment Generating Functions . . . . . . . . . . . . . 773
A.2.1 Bivariate Random Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

A.3 Some Useful Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
A.3.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
A.3.2 Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

A.4 Upper Bounds on the cdfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785
A.4.1 Chebyshev Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
A.4.2 Chernoff Bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

A.5 Random Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
A.5.1 Moments and Correlation Functions. . . . . . . . . . . . . . . . . . . . . . . 790
A.5.2 Cross-Correlation and Cross-Covariance .. . . . . . . . . . . . . . . . . 795
A.5.3 Complex-Valued Random Processes . . . . . . . . . . . . . . . . . . . . . . 797
A.5.4 Power Spectral Density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
A.5.5 Random Processes Filtered by Linear Systems . . . . . . . . . . . 800
A.5.6 Cyclostationary Random Processes. . . . . . . . . . . . . . . . . . . . . . . . 803
A.5.7 Discrete-Time Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . 804

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821



Acronyms

AAoA Azimuth angle of arrival
AAoD Azimuth angle of departure
ADC Analog to digital converter
ADPCM Adaptive differential pulse-code modulation
AMPS Advanced Mobile Phone Service
AoA Angle of arrival
AoD Angle of departure
APP Aposteriori probability
ARQ Automatic repeat request
ASELP Algebraic code excitation linear prediction
AWGN Additive white Gaussian noise
BCH Bose-Chaudhuri-Hocquenghem
BCJR Bahl-Cocke-Jelinek-Raviv
BER Bit error rate
BICM Bit interleaved coded modulation
BPSK Binary phase shift keying
BS Base station
BSC Binary symmetric channel
BU Bad urban
CC Convolutional code
CCI Co-channel interference
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Chapter 1
Introduction

Commercial wireless systems and services have undergone rapid development and
deployment, since first generation cellular telephone systems were introduced in the
early 1980s. These first generation cellular telephone systems were based on analog
frequency modulation (FM) technology and designed to carry narrow-band circuit
switched voice services. The first generation cellular service providers (CSPSs) saw
an exponential growth rate in their subscriptions, and by the late 1980s capacity lim-
its were already reached in the largest markets. In response to such heavy demand,
second generation (2G) digital cellular systems were developed and introduced in
the early 1990s and their evolutions are still in widespread operation today. These
2G cellular systems were/are based on either time division multiple access (TDMA)
or code division multiple access (CDMA) technologies, and were initially designed
to carry circuit-switched voice and data. During the 1990s, these 2G systems
were enhanced to provide packet-switched data in addition to circuit-switched
voice. These transitional 2G cellular systems with their enhanced data transmission
capabilities later became known as 2.5G systems. Third generation (3G) cellular
systems were introduced after the year 2000 that allowed simultaneous use of speech
and data services and still higher data rates. These higher data rate capabilities
supplemented by geolocation information gave rise to location-dependent services.
Currently, 4G cellular systems are under development that use voice over Internet
Protocol (VoIP) and multimedia applications with ultra-broadband (gigabit peak
speed) access. Most are based on multicarrier modulation/multiplexing techniques
such as orthogonal frequency division multiple access (OFDMA), or advanced
single-carrier modulation/multiplexing techniques such as single-carrier frequency
division multiple access (SC-FDMA).

Wireless communication systems and services are now extensively deployed
throughout the world. The most widespread cellular telephony standard is the
Global System for Mobile Communication (GSM). As of the year 2010, GSM
has four billion subscriptions out of a world population of six billion people.
Likewise, the most widely deployed wireless local area network (WLAN)
standard for Internet access is IEEE 802.11a/b/g commonly known as WiFi.
Today we may carry around a hand-held device with access to a CSP and
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2 1 Introduction

either a separate or the same internet service provider (ISP) for Internet access
via WiFi and Internet-enabled applications like VoIP. Most CSPs have now
deployed 3G networks that operate using one of two different standards. One is
GSM/GPRS/EDGE/WCDMA/HSPA which has/is being developed by the Third
Generation Partnership Project (3GPP) and accounts for roughly 80% of the
global market. The other is IS-95A/B/cdma20001x/cdma2000EV-DO, which has/is
been/being developed by the Third Generation Partnership Project 2 (3GPP2) and
accounts for the remaining 20% of the global market. Some cellular handsets may
contain both the GSM and IS-95A transceivers to enable voice services with global
roaming. Third generation (3G) subscribers are roughly split equally between the
WCDMA/HSPA and IS-95B/EVDO standards with roughly 500 million subscribers
each as of the year 2010. The 3G standard HSPA+ has a peak downlink speed of
21 Mbps in 5 MHz bandwidth based on single-carrier TDM/CDMA technology.
Currently, fourth generation (4G) cellular systems are commercially available,
known as Long-Term Evolution (LTE), and Long-Term Evolution – Advanced
(LTE-A) is currently under development. Unlike the 3G cellular systems that
are based on CDMA technology, the 4G cellular system proposals are based on
OFDMA and SC-FDMA technology. The LTE-A specification has a peak downlink
speed of 22 Mbps in 5 MHz bandwidth. Based on the rather modest improvement in
peak downlink speed of LTE-A over HSPA+ in a 5 MHz bandwidth, it appears that
3G systems may be operational for some time.

1.1 Brief History of Wireless Systems and Standards

Although this textbook is intended to address the fundamentals of wireless com-
munications, it is nevertheless useful to have some basic knowledge of the history
and evolution of wireless systems and standards. In what follows, we give a
brief description of the major standards that have been developed or are under
development for cellular radio systems, cordless phone systems, and wireless local
and personal area networks.

1.1.1 First Generation (1G) Cellular Systems

The early 1970s saw the emergence of the radio technology that was needed for
the deployment of mobile radio systems in the 800/900 MHz band at a reasonable
cost. In 1976, the World Allocation Radio Conference (WARC) approved frequency
allocations for cellular telephones in the 800/900 MHz band, thus setting the stage
for the commercial deployment of cellular systems. In the early 1980s, many
countries deployed incompatible first generation (1G) cellular systems based on
frequency division multiple access (FDMA) and analog FM technology. With
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Table 1.1 First generation (1G) cellular standards

Feature NTT NMT AMPS

Frequency band 925–940/870–885 890–915/917–950 824–849/869–894
RL/FLa 915–918.5/860–863.5
(MHz) 922–925/867–870

Carrier spacing 25/6.25 12.5b 30
(kHz) 6.25

6.25

Number of 600/2400 1999 832
channels 560

280

Modulation Analog FM Analog FM Analog FM
aRL reverse link, FL forward link
bFrequency interleaving using overlapping channels, where the channel spacing is
half the nominal channel bandwidth

FDMA there is a single traffic channel per radio frequency carrier. When a
user accesses the network two carriers (channels) are actually assigned, one for
the forward (base-to-mobile) link and one for the reverse (mobile-to-base) link.
Separation of the forward and reverse carrier frequencies is necessary to allow
implementation of a duplexer, an arrangement of filters that isolates the forward
and reverse link channels, thus preventing a radio transceiver from jamming itself.

In 1979, the first analog cellular system, the Nippon Telephone and Telegraph
(NTT) system, became operational. In 1981, Ericsson Radio Systems AB fielded
the Nordic Mobile Telephone (NMT) 900 system, and in 1983 AT&T fielded the
Advanced Mobile Phone Service (AMPS) as a trial in Chicago, IL. Many other
first generation analog systems were also deployed in the early 1980s including
TACS, ETACS, NMT 450, C-450, RTMS, and Radiocom 2000 in Europe, and
JTACS/NTACS in Japan. The basic parameters of NTT, NMT, and AMPS are shown
in Table 1.1. All 1G cellular systems are now extinct.

1.1.2 Second Generation (2G) Cellular Systems

Second generation (2G) digital cellular systems were developed in the 1980s and
early 1990s, and widely deployed throughout the world in the 1990s. These included
the GSM/DCS1800/PCS1900 standard in Europe, the Personal Digital Cellular
(PDC) standard in Japan, and the IS 54-/136 and IS-95 standards in the USA. Major
parameters of the air interface specifications of these standards are summarized in
Tables 1.2 and 1.3, and a very brief description of each is provided in the following
sections.
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Table 1.2 Second generation (2G) digital cellular standards, GSM and IS-54/136

Feature GSM/DCS1800/PCS1900 IS-54/136

Frequency band GSM: 890–915/ 824–829/
RL/FLa 935–960 869/894
(MHz) DCS1800: 1710–1785/ 1930–1990/

1805–1880 1850–1910
PCS1900: 1930–1990/
1850–1910

Multiple access F/TDMA F/TDMA
Carrier spacing (kHz) 200 30
Modulation GMSK π/4-DQPSK
Baud rate (kb/s) 270.833 48.6
Frame size (ms) 4.615 40
Slots/frame 8/16 3/6
Voice coding (kb/s) VSELP(HR 6.5) VSELP (FR 7.95)

RPE-LTP (FR 13) ACELP (EFR 7.4)
ACELP (EFR 12.2) ACELP (12.2)

Channel coding Rate-1/2 CC Rate-1/2 CC
Frequency hopping Yes No
Handoff Hard Hard
aRL reverse link, FL forward link

Table 1.3 Second generation (2G) digital cellular standards, PDC and IS-95

Feature PDC IS-95

Frequency band 810–826/ 824–829/
RL/FLa 940–956 869–894
(MHz) 1429–1453/ 1930–1990/

1477–1501 1850–1910
Multiple access F/TDMA F/CDMA
Carrier spacing (kHz) 25 1250
Modulation π/4-DQPSK QPSK
Baud rate (kb/s) 42 1228.8 Mchips/s
Frame size (ms) 20 20
Slots/frame 3/6 1
Voice coding (kb/s) PSI-CELP (HR 3.45) QCELP (8,4,2,1)

VSELP (FR 6.7) RCELP (EVRC)
Channel coding Rate-1/2 BCH FL: rate-1/2 CC

RL: rate-1/3 CC
Frequency hopping no N/A
Handoff Hard Soft
aRL reverse link, FL forward link

1.1.2.1 Groupe Spécial Mobile

European countries saw the deployment of incompatible 1G cellular systems
that did not admit roaming throughout Europe. As as result, the Conference
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of European Postal and Telecommunications Administrations (CEPT) established
Groupe Spécial Mobile (GSM) in 1982 with the mandate of defining standards
for future Pan-European cellular radio systems. The GSM system (now “Global
System for Mobile Communications”) was developed to operate in a new frequency
allocation, and made improved quality, Pan-European roaming, and the support of
data services its primary objectives. GSM was deployed in late 1992 as the world’s
first digital cellular system.

GSM can support full-rate (8 slots/carrier) and half-rate (16 slots/carrier) voice
operation, and provide various synchronous and asynchronous data services at 2.4,
4.8, and 9.6 kb/s. GSM uses TDMA with 200 kHz carrier spacings, eight channels
per carrier with a time slot (or burst) duration of 0.577 ms, and Gaussian minimum
shift keying (GMSK) with a raw bit rate of 270.8 kb/s. The time slot format of
the GSM traffic channels is shown in Fig. 1.1. Variants of GSM have also been
developed to operate in the 900 MHz and 1,800 MHz bands in Europe, and the
850 MHz and 1,900 MHz bands in North America. GSM has been a phenomenal
success and is arguably the most successful cellular standard. In late 1993, already
over a million subscribers were using GSM phone networks. By mid 2010, GSM
had over 4.3 billion subscribers across more than 212 countries and territories.

Newer versions of the standard have been developed that are backward-
compatible with the original GSM system. GSM Release ’97 added packet
data capabilities by aggregating all time slots together for a single user. This
enhancement provides data rates up to 140 kb/s and is called General Packet Radio
Service (GPRS). GSM Release ’99 introduced higher speed data transmission using
a higher-level 8-PSK modulation format (up to 473.6 kb/s with uncoded 8-PSK).
This enhancement is called Enhanced Data Rates for GSM Evolution (EDGE).
Some parameters of the EDGE standard are shown in Table 1.4. EDGE is deployed
worldwide except for Japan and South Korea. GPRS and EDGE are generally
branded as 2.5G systems.
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Table 1.4 Parameters of
the EDGE standard

Multiple access TDMA

Duplexing FDD
Carrier spacing (kHz) 200
Modulation 8-PSK/GMSK
Frame length (ms) 4.615
Slots/frame 8
Maximum bit rate (kb/s) 473.6 (8-PSK)/140.8 (GMSK)

1.1.2.2 IS-54/136 and IS-95

In North America, the primary driver for second generation systems was the
capacity limit felt by some AMPS operators in the largest US markets by the late
1980s. One of the key objectives established by the Cellular Telephone Industry
Association (CTIA) at that time was a tenfold increase in capacity over AMPS.
Furthermore, since AMPS was already deployed extensively throughout North
America, it was desirable that any second generation cellular system be reverse
compatible with AMPS. This eventually lead to the development of dual-mode
cellular standards in North America.

While Europe saw a convergence to the GSM standard based on TDMA
technology, North America saw a divergence to two second generation digital
cellular standards, IS-54/136 and IS-95, based on TDMA and CDMA technology,
respectively. The IS-54 standard, adopted in 1990, was based on TDMA with 30 kHz
carrier spacings (the same as AMPS) and π/4 phase-shifted quadrature differential
phase shift keyed (π/4-DQPSK) modulation with a raw bit rate of 48.6 kb/s [86].
IS-54 and IS-136 differ in the control channel; IS-54 uses an analog control channel,
whereas IS-136 uses a digital control channel. The IS-54/136 air interface specified
6 slots (or bursts) per frame, yielding three full-rate channels or six half-rate
channels per carrier. The burst format for the IS-54/136 traffic channel is shown
in Fig. 1.2. IS-54/136 was once deployed widely in the USA and Canada during the
1990s, but its use was discontinued in the 2007–2009 time frame often in favor of
GSM/GPRS/EDGE.

Just after the CTIA adopted IS-54 in 1990, another second generation digital
cellular standard was proposed by Qualcomm based on CDMA technology. In
March 1992, CDMA was adopted as the IS-95 standard [87]. The introduction of
IS-95 saw considerable debate and spirited exchanges over the relative capacity
and merits of TDMA and CDMA cellular systems. Initial capacity claims for IS-
95 were 40 times AMPS. However, commercial deployments eventually realized a
capacity gain of six to ten times AMPS. The introduction of IS-95 CDMA cellular
was of historical significance, because 3G cellular systems are based on CDMA
technology.

With IS-95, the basic user data rate is 9.6 kb/s for Rate Set 1 (RS1) and 14.4 kb/s
for Rate Set 2 (RS2), which is spread using pseudonoise (PN) sequence with a chip
rate of 1.2288 Mchips/s. The forward channel supports coherent detection using an
unmodulated pilot channel for channel estimation. Information on the forward link
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is encoded using a rate-1/2 convolutional code, interleaved, spread using one of
64 orthogonal Walsh codes, and transmitted in 20 ms bursts. Each MS in a cell is
assigned a different Walsh code, thus providing complete orthogonality under ideal
channel conditions. Final spreading with a PN code of length 215, having a phase
offset that depends on each BS, is used to mitigate the multiple access interference
to and from other cells.

CDMA systems are susceptible to the near-far effect, a phenomenon where MSs
close into a BS will swamp out the signals from more distant MSs. For CDMA
systems to function properly, all signals to be recovered must be received with
(nearly) the same power. To combat the near-far effect, the IS-95 reverse link uses
fast-closed loop power control to compensate for fluctuations in received signal
power due to the radio propagation environment. The information on the IS-95
reverse link is encoded using a rate-1/3 convolutional code, interleaved, and mapped
onto one of 64 Walsh codes. Unlike the IS-95 forward channel that uses Walsh codes
for spreading, the reverse link uses Walsh codes for 64-ary orthogonal modulation.
The BS receiver uses noncoherent detection, since no pilot signal is transmitted
on the reverse link. Both the BSs and the MSs use RAKE receivers to provide
multipath diversity. To ensure that the power control algorithm is stable, CDMA
cellular systems must use soft handoff, where the MS maintains a radio link with
multiple BSs when traversing between cells and softer handoff when traversing
between sectors of the same cell.
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In 1998, the IS-95B standard was approved to support packet-switched data with
rates up to 115.2 kbps using multi-code CDMA, where up to eight Walsh codes are
aggregated and assigned to a single user in a dynamic and scheduled manner.

1.1.2.3 PDC

In 1991, the Japanese Ministry of Posts and Telecommunications standardized PDC.
The air interface of PDC is similar to IS-54/136. PDC uses TDMA with three full
rate (six half rate) channels per carrier, 25 kHz carrier spacings, and π/4-DQPSK
modulation with a raw bit rate of 42 kb/s. The burst format for the PDC traffic
channels is shown in Fig. 1.3. Notice that the synchronization word is placed near
the center of the PDC burst, whereas it is placed near the beginning of the IS-
54/136 burst as shown in Fig. 1.2. This feature better enables the PDC receiver to
track channel variations over the time slot. Another key feature of PDC standard is
the inclusion MS antenna diversity. Like IS-54/136, PDC suffers from degraded
performance under conditions of low delay spread due to the loss of multipath
diversity. However, antenna diversity in the PDC MS receiver maintains spatial
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diversity under these conditions. More details on the PDC system can be found
in the complete standard [224]. PDC is still in use in Japan but is being phased out
in favor of 3G cellular technologies.

1.1.3 Third Generation Cellular Systems

In March 1992, WARC approved a worldwide spectral allocation in support of IMT-
2000 (International Mobile Telephone by the Year 2000) in the 1,885–2,200MHz
band. The IMT-2000 standard was developed by the International Telecommuni-
cations Union Radio Communications (ITU-R) and Telecommunications (ITU-T)
sectors. Various standards bodies around the world have provided inputs to the
IMT-2000 standard definition. IMT-2000 was envisioned as an ubiquitous wireless
system that could support voice, multimedia, and high-speed data communication.
The ITU provided no clear definition of the minimum or average rates users could
expect from 3G equipment or providers. However, it was generally expected that 3G
networks would provide a minimum downlink peak data rate of 2 Mbit/s for station-
ary or walking users, and 384 kbit/s in a moving vehicle. Most 3G networks today
can offer peak data rates of 14.0 Mbit/s on the downlink and 5.8 Mbit/s on the uplink.

IMT-2000 is actually a family of standards. Two of the standards are based
on TDMA approaches, namely EDGE and Digital Enhanced Cordless Telephone
(DECT). While the EDGE standard fulfils the requirements for IMT-2000, EDGE
networks are typically branded as 2.5G networks rather than 3G networks. The
most predominant forms of IMT-2000 are cdma2000 developed by 3GPP2 and the
Universal Mobile Telecommunications System (UMTS) family of standards, which
includes Wideband Code Division Multiple Access (WCDMA), developed by
3GPP. Sometimes WCDMA is used synonymously with UMTS. Mobile WiMAX
(Worldwide Interoperability for Microwave Access), developed by the IEEE802.16
working group, is also included under the IMT-2000 umbrella as a 3.5G standard.
WiMAX is a multicarrier scheme based on OFDMA.

Table 1.5 summarizes the main parameters for WCDMA and cdma2000. The
common attributes of WCDMA and cmda2000 include the following:

• Provision of multirate services
• Packet data services
• Complex spreading
• A coherent uplink using a user dedicated pilot
• Additional pilot channel in the downlink for beam forming
• Seamless inter-frequency handoff
• Fast forward link power control
• Optional multiuser detection

The major differences between WCDMA and cdma2000 centers around the chip
rate that is used, and synchronous (cdma2000) versus asynchronous (WCDMA)
network operation. Synchronous operation with cdma2000 is achieved using a
Global Positioning System (GPS) clock reference.
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Table 1.5 Parameters for WCDMA and cdma2000

Feature WCDMA cdma2000

Multiple access DS-CDMA DS-CDMA
Chip rate (Mcps) 3.84 1.2288
Carrier spacing (MHz) 5 1.25
Frame length (ms) 10 5/20
Modulation FL: QPSK FL: BPSK/QPSK

RL: BPSK RL: BPSK
64-ary orthogonal

Coding Rate-1/2, 1/3 Rate-1/2, 1/3, 1/4,
K = 9 CC 1/6 K = 9 CC
Rate-1/3 Rate-1/2, 1/3, 1/4,
K = 4 turbo code 1/5, K = 4 turbo code

Interleaving Inter/Intraframe Intraframe
Spreading FL: BPSK Complex

RL: QPSK
Inter BS Asynchronous Synchronous
synchronization

1.1.3.1 cdma2000

The cdma2000 family of standards developed by 3GPP2 evolved from IS-95A/B
and includes cdma20001x, cdma2000EV-DO Rev. 0, cdma2000 EV-DO Rev. A, and
cdma2000 EV-DO Rev. B. cdma20001x, also known as 1x and 1xRTT, is the core
cdma2000 wireless air interface standard, and was recognized by the ITU as an IMT-
2000 standard in November 1999. It was the first IMT-2000 technology deployed
worldwide, in October 2000. The designation “1x” stands for 1 times Radio
Transmission Technology, and means that the system has the same RF bandwidth as
IS-95: a duplex pair of 1.25 MHz radio channels. The cdma20001x almost doubles
the capacity of IS-95 by adding 64 more traffic channels to the forward link,
orthogonal to (in quadrature with) the original set of 64 forward channels. The
cmda20001x Release 0 standard supports bi-directional peak data rates of up to
153 kbps and Release 1 can achieve peak data rates of up to 307 kbps in a single
1.25 MHz channel. cdma20001x supports a variety of applications including circuit-
switched voice, short messaging service (SMS), multimedia messaging service
(MMS), games, GPS-based location services, music and video downloads.

EV-DO, which now stands for “Evolution-Data Optimized,” was initially devel-
oped by Qualcomm in 1999 to meet the IMT-2000 requirements for a minimum
2-Mbit/s downlink speed for stationary or walking users, and sometimes referred to
as IS-856. EV-DO is typically for broadband Internet access. It uses a mixture of
CDMA and TDMA to maximize both individual user’s throughput and the overall
system throughput. EV-DO has been adopted by many service providers in the USA,
Canada, Mexico, Europe, Asia, Russia, Brazil, and Australia.
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1.1.3.2 UMTS

UMTS was developed by 3GPP and is part of the global ITU IMT-2000 standard.
The most common form of UMTS uses WCDMA (IMT Direct Spread) as the un-
derlying air interface. However, UMTS also includes TD-CDMA and TD-SCDMA
(both IMT CDMA TDD). The first deployment of UMTS was the Release’99
architecture. UMTS requires new base stations and new frequency allocations.
However, it is closely related to GSM/EDGE as it borrows and builds upon concepts
from GSM. Further, most UMTS handsets also support GSM, allowing seamless
dual-mode operation. WCDMA uses paired 5 MHz channels and can support peak
data rates of up to 384 kbit/s for Release’99 handsets. WCDMA systems have
been criticized for their large (5 MHz) bandwidth requirement, which has delayed
deployment in countries (such as the USA) that acted relatively slowly in allocating
new frequencies specifically for 3G services.

Since 2006, UMTS networks in many countries have been or are in the process
of being upgraded to include High Speed Packet Access (HSPA), sometimes known
as 3.5G. Currently, High Speed Downlink Packet Access (HSDPA) enables peak
downlink transfer speeds of 14 Mbit/s and High Speed Uplink Packet Access
(HSUPA) has peak data rates of 5.8 Mbit/s in the uplink, although most HSDPA
network deployments have peak downlink speeds of 7.2 Mbps. HSPA has been
commercially deployed by over 200 operators in more than 80 countries. Evolved
HSPA (also known as HSPA+) is an upcoming wireless broadband standard
defined in 3GPP Release 7 and 8 of the WCDMA specification. Evolved HSPA
will eventually provide data rates up to 42 Mbit/s in the downlink and 11 Mbit/s
in the uplink (per 5 MHz carrier) using multiple-input multiple-output (MIMO)
technologies and high-order modulation schemes.

1.1.3.3 WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) is a telecommunica-
tions protocol that provides fixed and fully mobile Internet access. There are several
versions of the WiMAX standard. IEEE 802.16-2004, also known as 802.16d, is
sometimes referred to as “Fixed WiMAX,” since it does not support mobility.
IEEE 802.16e-2005, often abbreviated as 802.16e, includes support for mobility
among other things and is commonly known as “Mobile WiMAX”. Mobile WiMAX
is the version receiving the most commercial interest and is being actively deployed
in many countries, sometimes being branded as 4G. Mobile WiMAX can deliver
mobile broadband services, with peak data rates up to 40 Mbit/s, at vehicular speeds
greater than 120 km/h while maintaining a quality of service (QoS) comparable to
broadband wireline access.

Some of the key features and attributes of WiMAX include the following:

• Tolerance to delay spread and multiuser interference due to orthogonality of
OFDMA sub-carriers in both the downlink (DL) and uplink (UL) directions.



12 1 Introduction

• Scalable channel bandwidths ranging from 1.25 to 20 MHz through adjustment
of the Fast Fourier Transform (FFT) size in the baseband modulator/demodulator.
Supported FFT sizes are 128, 256, 512, 1024, 2048.

• Hybrid-Automatic Repeat Request (H-ARQ) to provide robustness in high
mobility environments.

• Adaptive sub-carrier allocation (in time and frequency) to optimize connection
quality based on relative signal strengths on a connection-by-connection basis.

• Advanced modulation and coding schemes that use BPSK, QPSK, 16-QAM, 64-
QAM together with convolutional and turbo coding.

• Power management to ensure power-efficient operation of mobile and portable
devices in sleep and idle modes.

• Network-optimized hard handoff to minimize overhead and achieve a handoff
delay of less than 50 ms.

• Advanced antenna systems including MIMO, beam forming, space-time coding,
and spatial multiplexing.

• Fractional frequency reuse to achieve high spectral efficiency.

1.1.4 Fourth Generation Cellular Systems

IMT-Advanced, also known as “systems beyond IMT-2000” is currently envisioned
to provide even higher data rates than IMT-2000 can provide. IMT-Advanced
anticipates peak data rates of 100 Mbps in high-mobility applications and 1 Gbps
in stationary or low-mobility applications. IMT-Advanced is expected to have the
following characteristics:

• Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz
• A nominal peak data rate of 100 Mbps in high mobility, and 1 Gbps for stationary

environments
• A data rate of at least 100 Mbps between any two points in the world.
• Bandwidth efficiency of up to 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in

the uplink.
• Spectral efficiency of up to 3 bit/s/Hz/cell in the downlink
• Smooth handoff across heterogeneous networks
• Seamless connectivity and global roaming across multiple networks
• High QoS for next generation multimedia support
• Backward compatibility with existing wireless standards
• All Internet Protocol (IP) packet-switched network

The 3GPP Long Term Evolution Advanced (LTE-A) and IEEE 802.16e mobile
WiMAX standards are often branded as “4G.” However, they do not fully comply
with the IMT-Advanced requirements.

In all 4G proposals submitted to ITU-R as 4G candidates, the CDMA technology
that is prevalent in 3G systems has been abandoned in favor of multicarrier
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Table 1.6 Cordless telephone standards

Feature DECT PHS

Frequency band (MHz) 1880–1900 (Europe) 1895–1918
1900–1920 (China)
1910–1930 (Latin America)
1920–1930 (USA, Canada)

Multiple access F/TDMA F/TDMA
Duplexing TDD TDD
Carrier spacing (kHz) 1728 300
Modulation GFSK π/4-DQPSK
Number of carriers 10 (Europe) 77
Number of carriers 5 (USA)
Channels/carrier 12 4
Bit Rate (kb/s) 1152 384
Speech coding ADPCM ADPCM

32 kb/s 32 kb/s
Frame size (ms) 10 5
Mean TX power (mW) 10 (Europe) 10

4 (USA)
Peak TX power (mW) 250 (Europe) 80

100 (USA)

transmission schemes such as OFDMA. Basically, all 4G proposals are based on
two technologies, (1) LTE-A as standardized by 3GPP, and (2) IEEE 802.16m as
standardized by the IEEE.

1.1.5 Cordless Telephone Systems

Similar to cellular telephones, first generation cordless telephones were based
on analog frequency modulation technology. After their introduction, cordless
telephones gained high popularity, which made them victims of their own success;
the voice quality was often unacceptable due to uncoordinated deployment and
resulting mutual interference between cordless phones operating on the same
frequency. This lead to the development of digital cordless telephones. The most
predominant cordless phone standard is DECT. DECT originated in Europe, where
it is the universal standard, replacing earlier cordless phone standards. It has been
adopted by Australia, and most countries in Asia and South America. Adoption
in the USA was delayed due to radio licensing regulations, and earlier technologies
are still competitive. In the USA, DECT operates in the 1920-1930 MHz, or 1.9 GHz
band, and is branded as DECT 6.0. DECT is recognized by the ITU as fulfilling the
IMT-2000 requirements and, thus, it actually qualifies as a 3G system. The major
technical properties of DECT are described in Table 1.6.

The Personal Handy-phone System (PHS), is a mobile network system developed
by NTT Laboratory in Japan in 1989. It is deployed mainly in Japan, China, Taiwan,
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Table 1.7 2.4 and 5 GHz bands for license exempt use. B = −26 dB emission
bandwidth in MHz

Frequency Maximum output
Location range (GHz) power (mW or dBm)

North America 2.400–2.4835 1,000 mW
Europe 2.400–2.4835 100 mW EIRP
Japan 2.471–2.497 10 mW
USA 5.150–5.250 Minimum of 50 mW or 4 dBm
(UNII lower band) +10log10B
USA 5.250–5.350 Minimum of 250 mW or 11 dBm
(UNII middle band) +10log10B
USA 5.725–5.825 Minimum of 1000 mW or 17 dBm
(UNII upper band) +10log10B

and some other Asian countries. PHS is a cordless telephone like DECT, with
the capability to handover from one cell to the next. PHS operates in the 1880-
1930 MHz frequency band, and is far simpler to implement and deploy than cellular
systems like PDC or GSM. However, the PHS cells are small due to a maximum
base station transmit power of 500 mW, and cell radii are typically in the order
of tens or at most hundreds of meters in non line-of-sight conditions. While the
small cell size makes PHS suitable for dense urban areas, it is impractical for rural
areas, and the small cell size also makes it difficult if not impossible to make calls
from moving vehicles. For this reason, PHS has seen declining popularity in Japan.
Nevertheless, PHS has seen a resurgence in markets like China, Taiwan, Vietnam,
Bangladesh, Nigeria, Mali, Tanzania, and Honduras where its low deployment costs
make it attractive to operators. The major technical properties of PHS are described
in Table 1.6.

1.1.6 Wireless LANs and PANs

WLAN and wireless personal area network (WPAN) systems have been developed
to operate in unlicensed bands. Table 1.7 lists the unlicensed bands that are used in
various regions of the world.

In 1997, the IEEE 802.11 standards group established the first WLAN standard
to provide 1 and 2 Mb/s aggregate data rates. IEEE 802.11 uses direct sequence
spread spectrum with a length-11 Barker sequence for spreading, and either BPSK
(1 Mbps) or QPSK (2 Mbps). Barker sequences are discussed in Chap. 9. In 1998,
the IEEE 802.11b standard was defined to provide 5.5 and 11 Mbps aggregate
data rates. IEEE 802.11b uses complementary code keying (CCK), which is also
described in Chap. 9. In 1998, the IEEE 802.11a standard was defined for operation
in the newly unlicensed 5 GHz UNII bands in the USA. IEEE 802.11a is based
on a combination of orthogonal frequency division (OFDM) and time division
multiplexing (TDM) and can provide a range of aggregate data rates ranging from 6



1.2 Frequency Reuse and the Cellular Concept 15

Table 1.8 Key parameters of
the IEEE 802.11a OFDM
standard, from [261]

Data rate 6, 9, 12, 18, 24, 36, 48,
54 Mb/s

Modulation BPSK, QPSK,
16-QAM, 64-QAM

Coding 1/2, 2/3, 3/4 CC
Number of sub-carriers 52
Number of pilots 4
OFDM symbol duration 4 μs
Guard interval 800 ns
Sub-carrier spacing 312.5 kHz
3 dB bandwidth 16.56 MHz
Channel spacing 20 MHz

to 54 Mbps. The parameters of the IEEE 802.11a OFDM standard are summarized
in Table 1.8. Since then, the same system has been adopted as IEEE 820.11g for
operation in the 2.4 GHz unlicensed band. IEEE 820.11b/g is now widely deployed
throughout the world.

A WPAN is a computer network used for communication among computer
devices, including telephones and personal digital assistants, that are in close
proximity. The physical size of a WPAN is typically less than 10 m. WPANs can be
used for communication among the devices themselves, or to connect to the Internet.
A key feature WPAN technology is the ability to “plug-in” devices, such that when
any two WPAN-equipped devices are in close proximity, they can communicate
with each other. Another important feature is the ability of each device to lock out
other devices selectively, thus preventing unauthorized access.

In 1999, the IEEE802.15 Working Group was created to define WPAN standards.
The Bluetooth v1.1 specification [123] was adopted as the IEEE 802.15.1-2002
standard and was later published as IEEE 802.15.1-2005 based upon the additions
incorporated into Bluetooth v1.2. A Bluetooth WPAN is also called a piconet, and
consists of up to eight active devices connected in a master–slave configuration
(others maybe in idle mode). The first Bluetooth device in the piconet is the master,
and all other devices are slaves that communicate with the master. Bluetooth uses
Frequency Hop CDMA (FH-CDMA) with a set of 79 hop carriers with a spacing of
1 MHz and a hop dwell time of 625 μs. Classical Bluetooth uses Gaussian frequency
shift keying (GFSK) with a modulation index of 0.3 and either a very simple rate-
1/3 3-bit repetition code or a simple rate-2/3 shortened Hamming code. Classical
Bluetooth supports a data rate of 1 Mbps. Extended data rate Bluetooth systems are
available that use π/4-DQPSK and 8-DPSK, giving 2 and 3 Mbps, respectively.

1.2 Frequency Reuse and the Cellular Concept

A cellular land mobile radio network, is a collection of individual cells that are
served by BSs. Each BS covers a small geographical area. By integrating the
coverage of a plurality of BSs, a cellular network provides radio coverage over a
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much larger geographic area. A group of BSs is sometimes called a location area,
or a routing area. A cellular land mobile radio system has two basic functions;
it must locate and track both active and idle MSs, and it must always attempt
to connect the MSs to the best available BSs. The former task is the subject of
mobility management, and requires a location-update procedure, which allows an
MS to inform the cellular network, whenever it moves from one location area to
the next. The latter task is the subject of radio resource management and requires
the continuous evaluation of the radio link quality with the serving BS(s), and the
radio link qualities of alternate BSs. This monitoring is performed by a base station
controller (BSC) or mobile switching center (MSC) that uses knowledge of the link
quality evaluations on the forward and reverse channels, in addition to the system
topology and traffic flow, to decide upon the best BS(s) to serve a particular MS.

A cellular land mobile radio system uses low power radio communication
between an MS and a grid of BSs. Movement of the MS, however, leads to highly
erratic radio link conditions, and careful monitoring and control are required to keep
the radio link quality acceptable. Evaluation of radio link quality is based upon a
large number of criteria, but at the core is a statistical measurement process based
on prior knowledge of the expected radio channel characteristics. The time required
to measure the radio link quality and the accuracy of the measurement depends on
the local propagation characteristics. Time-consuming link quality measurements
will limit the ability of the cellular system to react to changes in link quality
and compensate by changing the set of serving BSs and the allocation of BS and
MS power resources. Conversely, if the link-quality measurements can be made
quickly, then the time required for the cellular system to process the link-quality
measurements, make decisions, and transmit desired changes to the network entities,
including the MSs, will limit the adaptability of the cellular system. Limitations on
the speed of link-quality measurement and network control essentially determine
overall link quality and the size and distribution of cells in modern cellular systems.
The cell sizes, the ability radio links to withstand interference, and the ability of the
cellular system to react to variations in traffic are the main factors that determine the
spectral efficiency of a cellular system.

In cellular systems, the available spectrum is partitioned among the BSs, and a
given frequency is reused at the closest possible distance that the radio link will
allow. Smaller cells have a shorter distance between reused frequencies, and this
results in an increased spectral efficiency and traffic-carrying capacity. Dramatic
improvement in spectral efficiency is the main reason for the deployment of small
cells known as microcells and picocells. However, the microcellular and picocellular
propagation environment is also highly erratic and the radio links are more difficult
to control due to the combination of small cell sizes and mobility. Distributed radio
resource management algorithms are typically used to maintain acceptable link
quality and high spectral efficiency.

Cellular systems are designed to have high spectral efficiency and offer ubiqui-
tous service coverage. These systems require (1) effective cellular architectures, (2)
fast and accurate link-quality measurements, (3) rapid control in all types of environ-
ments, (4) installation of BSs to provide radio coverage virtually everywhere, and



1.2 Frequency Reuse and the Cellular Concept 17

Fig. 1.4 Commonly used
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(5) power and bandwidth efficient air interface schemes that can mitigate the harsh
effects of the propagation environment and tolerate high levels of interference. Since
the radio links in high-capacity cellular systems will interfere with each other due
to frequency reuse, it is always desirable to maintain each radio link at a target QoS
while using the lowest possible transmit power. This means that radio links should
not significantly exceed their target QoS since doing so will cause unnecessary
interference to other radio links.

Cellular mobile radio systems rely upon frequency reuse, where users in
geographically separated cells simultaneously use the same carrier frequency and/or
time slot. The cellular layout of a conventional macrocellular system is very often
described by a uniform grid of hexagonal cells or radio coverage zones. In reality
the cells are neither hexagonal or circular, but instead are irregular and overlapping
regions. The hexagon is a common choice for representing macrocellular coverage
areas, because it closely approximates a circle and offers a wide range of tessellating
frequency reuse cluster sizes. Tessellating frequency reuse clusters are those that
will fit together without leaving any gaps. A tessellating reuse cluster of size N can
be constructed if [202]

N = i2 + ij + j2, (1.1)

where i and j are nonnegative integers, and i ≥ j. It follows that the allowable
hexagonal cluster sizes are N = 1, 3, 4, 7, 9, 12, . . . Examples of 3-, 4-, and
7-cell reuse clusters are shown in Fig. 1.4. The reuse clusters are tessellated to form a
frequency plan. A simplified 7-cell frequency reuse plan is shown in Fig. 1.5, where
cells marked with the same letter label use identical sets of carrier frequencies.

The co-channel reuse factor D/R, is defined as the ratio of the co-channel reuse
distance D between cells using the same set of carrier frequencies and the cell
radii R, where R is the distance from the center to the corner of a cell. For regular
hexagonal cells, the reuse cluster size N and co-channel reuse factor D/R are related
by (see Problem 1.2)

D/R =
√

3N. (1.2)

For microcellular systems with lower BS antenna heights, regular hexagons may
no longer appropriate for approximating the radio coverage areas. Typical microcell
BSs use an antenna height of about 15 m, well below the skyline of any buildings
that might be present, and acceptable link quality can be obtained anywhere within
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Fig. 1.5 Macrocellular
deployment using 7-cell
reuse pattern

B

G

F

G

D

B

C

G

A

F

B

G

D

E

C

A

E

C

A

F

B

A

F

G

D

D

E

C

A

F

G

B

A CB A B C A B C A

Fig. 1.6 Microcellular deployment along a highway with a 3-cell reuse pattern

Fig. 1.7 Microcellular
deployment in a dense urban
area, with a rectangular grid
of streets. Base stations are
deployed at every intersection
with a 2-cell reuse pattern
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200–500 m of the BS. For microcells, the choice of cell shape depends greatly upon
the local topography. For example, the linear cells shown in Fig. 1.6 can be used
to model microcells that are deployed along a highway with directional antennas.
In a dense metropolitan area with urban canyons, the buildings act as wave guides
to channel the radio waves along the street corridors. Figure 1.7 shows a typical
“Manhattan” street cell deployment that is often used to model microcells that are
deployed in city centers.
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1.3 Mobile Radio Propagation Environment

Radio signals in cellular land mobile radio systems generally propagate according
to three mechanisms; reflection, diffraction, and scattering. Reflections arise when
the plane waves are incident upon a surface with dimensions that are large compared
to the wavelength. The radio wave reflects off the surface with an angle of departure
equal to the angle of incidence, while the amplitude and phase of the reflected wave
depend on the surface characteristics. Diffraction occurs according to the Huygens–
Fresnel principle when there is an obstruction between the transmitter and receiver
antennas, and secondary waves are generated behind the obstructing body. Scatter-
ing occurs when the plane waves are incident upon an object whose dimensions
are on the order of a wavelength or less, and causes the energy to be redirected in
many directions. A good example occurs at millimeter wave frequencies, where rain
drops cause scattering that manifests itself in a phenomenon called rain attenuation.
The relative importance of these three propagation mechanisms depends on the
particular propagation scenario.

As a result of the above three mechanisms, cellular land mobile radio propagation
can be roughly characterized by three nearly independent phenomenon; path loss
with distance, shadowing, and multipath fading. Each of these phenomenon is
caused by a different underlying physical principle. Multipath fading results in
rapid variations in the envelope of the received signal and is caused when plane
waves arrive from many different directions with random phases and combine
vectorially at a receiver antenna. Typically, the amplitude of a narrow band received
envelope can vary by as much as 30–40 dB over a fraction of a wavelength due
to constructive and destructive addition. Multipath also causes time dispersion,
because the multiple replicas of the transmitted signal propagate over transmission
paths of different lengths and, therefore, reach the receiver antenna with different
time delays. Time dispersion can be combatted and exploited using time-domain
equalization in TDMA systems, RAKE receivers in CDMA systems, and frequency-
domain equalization in OFDM systems.

Free space propagation does not apply in a land mobile radio environment and
the propagation path loss depends not only on the distance and frequency but also
on the antenna heights and topography. The empirical propagation models due to
W. C. Y. Lee [151] assume that the received power is

Ωp (dBm)(d) = μΩp (dBm)
(do)− 10β log10{d/do}+ ε(dB), (1.3)

where μΩp (dBm)
(do) = E[Ωp (dBm)(do)] is the average received signal power (in

dBm) at a known reference distance that is in the far field of the transmitting
antenna. Typically, do is on the order of 1.6 km for macrocells, 100 m for outdoor
microcells, and 1 m for indoor picocells. The value of μΩp (dBm)

(do) will depend
on the frequency, antenna heights and gains, and other factors. The parameter β is
called the path loss exponent and is a key parameter that describes the slope of the
path loss characteristic (in dB) as a function of distance. This parameter is strongly
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Fig. 1.8 Path loss in free
space and typical
macrocellular environments;
β = 4, σΩ = 8 dB. The
received signal strength (in
dBm units) at a distance of
10 km is Gaussian distributed
with a mean of −70 dBm and
a variance of σ 2
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dependent on the cell size and local terrain characteristics. The path loss exponent
ranges from 3 to 4 for a typical urban macrocellular environment, and from 2 to 8
for a microcellular environment. As mentioned earlier, path loss exponents are often
determined by curve fitting to measured data. Lee’s model is discussed in further
detail in Sect. 2.7.3.2.

The parameter ε(dB) in (1.3) is a zero-mean Gaussian random variable when
expressed in decibel units, and represents the error between the actual and pre-
dicted path loss. This statistical variation in Ωp (dBm)(d) is caused by shadowing.
Shadows are generally modeled as being log-normally distributed, meaning that the
probability density function of Ωp (dBm)(d) has the normal distribution

pΩp (dBm)(d)
(x) =

1√
2πσΩ

exp

⎧
⎪⎨

⎪⎩
−
(

x− μΩp (dBm)
(d)
)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
, (1.4)

where

μΩp (dBm)
(d) = μΩp (dBm)

(do)− 10β log10{d/do} (dBm) (1.5)

is the average received signal power.
The parameter σΩ is the shadow standard deviation. A more accurate path loss

model will result in a smaller σΩ . However, there will always be some residual
error between the actual and predicted path loss due to terrain irregularities. For
macrocells σΩ typically ranges from 5 to 12 dB, with σΩ = 8 dB being a commonly
used value. Furthermore, σΩ has been observed to be nearly independent of the radio
path length d. The received signal power in the absence of shadowing as defined by
(1.5) is called the area mean, while the received signal power in the presence of
shadowing as defined by (1.3) is called the local mean. Figure 1.8 illustrates the



1.4 Co-channel Interference and Noise 21

above concepts by plotting the received signal strength as a function of the radio
path length for both free space and a typical macrocellular environment. Shadowing
is discussed in further detail in Sect. 2.6.

1.4 Co-channel Interference and Noise

Frequency reuse in cellular systems introduces co-channel interference (CCI),
which is the primary factor that limits cellular spectral efficiency. CCI arises when
the same carrier frequency is used in different cells and/or cell sectors. In this case,
the power density spectra of the desired and interfering signals overlap. Frequency
reuse also introduces adjacent channel interference. This type of interference arises
when neighboring cells use carrier frequencies that are spectrally adjacent to each
other. In this case, the power density spectrum of the desired and interfering
signals partially overlap. However, since adjacent frequencies are used at close
distances, the interference can still be significant. Consequently, the transmit power
is regulated to fit within a regulatory emission mask. Modulation schemes along
with their power spectra is the subject of Chap. 4.

Radio links often exhibit a performance threshold, where the link QoS is deemed
acceptable when both the carrier-to-noise ratio Γ and carrier-to-interference ratio
Λ exceed certain defined thresholds, denoted by Γth and Λth, respectively [96].
Otherwise, the QoS is considered unacceptable and an outage is said to occur. The
thresholds Γth and Λth depend on many parameters of the radio link, including the
modulation and coding scheme that is used, and the particular receiver processing
algorithms that are implemented. Sometimes the thresholds can be very sharp,
especially when powerful modulation and coding techniques are used. Once the
air interface is specified and the receiver-processing algorithms are implemented,
Γth and Λth will be defined and the particular propagation environment encountered
on the radio link will determine whether or not an outage occurs.

Here, we introduce two types of outages. The first is the thermal noise outage,
defined as

ON = P[Γ < Γth] (1.6)

and the second is the CCI outage, defined as

OI = P[Λ < Λth]. (1.7)

For lightly loaded cellular systems thermal noise will dominate the outage per-
formance, while for fully loaded cellular systems CCI will dominate the outage
performance. CCI outage is the subject of Chap. 3.
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1.5 Receiver Sensitivity and Link Budget

Receiver sensitivity refers to the ability of the receiver to detect signals in the
presence of noise. The ratio of the desired carrier power to noise power before
detection is commonly called the carrier-to-noise ratio, Γ . The parameter Γ is a
function of the communication link parameters, such as the transmitted power or
effective isotropic radiated power (EIRP), path loss, receiver antenna gain, and the
effective input-noise temperature of the receiving system. The formula that relates Γ
to the link parameters is called the link budget . A simplified link budget for cellular
radio systems can be expressed in terms of the following parameters:

Ωt = transmit carrier power

GT = transmit antenna gain

Lp = path loss

GR = receiver antenna gain

Ωp = receive signal power

Ec = receive energy per modulated symbol

To = receiving system noise temperature in degrees Kelvin

Bw = receiver noise equivalent bandwidth

No = thermal noise power spectral density

Rc = modulation symbol rate

k = 1.38× 10−23Ws/K = Boltzmann’s constant

F = noise figure, typically 5–6 dB

LRX = receiver implementation losses

LI = interference margin

Mshad = shadow margin

GHO = handoff gain

Ωth = receiver sensitivity

Many other parameters may be included in a detailed link budget, such as cable
losses, but they are not included here.

The average received carrier power (or local mean) can be expressed as

Ωp =
ΩtGTGR

LRXLp
. (1.8)
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Receiver implementation losses are included in the denominator of (1.8), since
imperfect receiver implementation often results in a loss of effective received signal
energy. Sometimes it also increases the effective noise power as well. The total input
thermal noise power to the detector is [97]

N = kToBwF. (1.9)

The value of kTo at a room temperature of 17◦C (290◦K) is kTo = −174 dBm/Hz.
The received carrier-to-noise ratio, Γ , defines the link budget, where

Γ =
Ωp

N
=

ΩtGTGR

kToBwFLRX Lp
. (1.10)

The carrier-to-noise ratio, Γ , and modulated symbol energy-to-noise ratio, Es/No,
are related as follows [97]

Es

No
= Γ × Bw

Rs
. (1.11)

Hence, we can rewrite the link budget as

Es

No
=

ΩtGTGR

kToRsFLRXLp
. (1.12)

Converting to decibel units gives

Es/No(dB) = Ωt (dBm) +GT (dB) +GR (dB)

−kTo(dBm)/Hz −Rs (dBHz)−F(dB)−LRX (dB)−Lp (dB). (1.13)

The receiver sensitivity is defined as

Ωth = LRX kToF(Es/No)Rs (1.14)

or converting to decibel units

Ωth (dBm) = LRX (dB) + kTo(dBm)/Hz +F(dB) +Es/No(dB) +Rs (dBHz). (1.15)

In (1.15), all parameters are usually fixed except for Es/No(dB). To determine the
receiver sensitivity, we first find the minimum Es/No(dB) that will yield an ac-
ceptable link QoS, and then substitute this value into (1.15). Then by substituting
the resulting value for Ωth (dBm) into (1.13) and solving for Lp (dB), we obtain the
maximum allowable path loss

Lmax (dB) = Ωt (dBm) +GT (dB) +GR (dB)−Ωth (dBm). (1.16)
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Once the maximum allowable path loss is known, we can apply a path-loss model to
determine the maximum radio path length, which is equal to the cell radii. Because
we are interested in the link budget for cellular radio systems, there are three other
relevant link budget parameters; (1) the margin for system loading or interference
loading, (2) the shadow margin, and (3) the handoff gain. The first two quantities
will reduce the maximum allowable path loss, while the third increases it.

1.5.1 Interference Loading

Frequency reuse results in co-channel and adjacent channel interference. As the
system load increases the level of interference will also increase. This increase
in interference will cause the cell radii to shrink since the radio receivers will be
subjected to interference in addition to the thermal noise. Once the cell radii shrink,
MSs that are located near the edges of the cells will experience an unacceptably low
QoS. This will result in some links being dropped. However, as the connections are
dropped the level of interference will decrease. This in turn will expand the cell radii
and MSs located near the edges of the cells will again be able to establish links. This
will once again increase the system load, and the entire process repeats itself. This
phenomenon is sometimes called cell breathing.

If we wish to ensure coverage and prevent dropped links as the system load
increases, then we must include an interference margin in the link budget. To do
so, we note that the received carrier-to-interference-plus-noise ratio is

ΓIN =
Ωp

I+N
=

Ωp/N

1+ I/N
, (1.17)

where I is the total interference power. A key parameter in this equation is the
interference-to-noise ratio, I/N. The net effect of such interference is to reduce
the carrier-to-noise ratio Ωp/N by the factor LI = (1+ I/N). To allow for system
loading, we must reduce the maximum allowable path loss in (1.16) by an amount
equal to LI (dB), otherwise known as the interference margin. The required LI (dB)
depends on the particular cellular system under consideration and the traffic load.
The interference margin can be quite difficult to derive since it depends not only
on the parameters of the radio link but also on the detailed resource management
algorithms being used for power control and handoff. CDMA systems typically
require a higher interference margin than TDMA systems due to their universal
frequency reuse. With universal frequency reuse, every cell sector in the network
can reuse the same set of carrier frequencies, and the emitter will act as a source
of interference to a relatively large number of receivers (compared to larger reuse
clusters) due to the small reuse distance. In any case, comparisons between different
systems should always be made using the same total bandwidth and the same level
of traffic loading.
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1.5.2 Shadow Margin and Handoff Gain

Suppose that an outage due to thermal noise occurs whenever the received carrier-
to-noise ratio at distance d, Γ = Ωp(d)/N drops below some threshold Γth. Once
the noise power N in (1.9) is specified, an outage will occur when the local mean
drops below the receiver sensitivity, that is, Ωp (dBm)(d) < Ωth (dBm). The outage
probability due to noise on the cell boundary is defined as the probability that
Ωp (dBm)(R) < Ωth (dBm), where d = R for a MS located on the cell edge. The area
averaged noise outage probability is defined as the probability that Ωp (dBm)(d) <
Ωth (dBm), where the average is taken over the random location of an MS in the entire
cell area. If the spatial distribution of MSs are unknown, then we may assume that
the MSs are uniformly distributed throughout the cell area. To ensure a specified
edge or area averaged outage probability we must include a shadow margin, Mshad,
into the link budget. Finally, the outage probability will depend on the transmit
power. In cellular systems, the BSs and MSs are power controlled so an outage is
generally calculated under the condition of maximum allowable transmit power.

The outage probability due to noise on the cell edge is

ON(R) = P[Ωp (dBm)(R)< Ωth (dBm)]

=

∫ Ωth(dBm)

−∞

1√
2πσΩ

exp

⎧
⎪⎨

⎪⎩
−
(

x− μΩp (dBm)
(R)
)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dx

= Q

(
Mshad

σΩ

)

, (1.18)

where

Q(x) =
∫ x

−∞

1√
2π

e−y2/2dy (1.19)

and
Mshad = μΩp (dBm)

(R)−Ωth (dBm). (1.20)

is the shadow margin. The outage probability, ON(R) is plotted against Mshad in
Fig. 1.9 for various shadow standard deviations.

Example 1.1
Suppose that we wish to have ON(R) = 0.1. To determine the required

shadow margin, we choose Mshad so that the shaded area under the Gaussian
density function in Fig. 1.10 is equal to 0.1. Hence, we solve

0.1 = Q

(
Mshad

σΩ

)

. (1.21)
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Fig. 1.9 Outage probability
due to noise on the cell edge,
ON(R), against the shadow
margin Mshad
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required shadow margin
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We have
Mshad

σΩ
= Q−1(0.1) = 1.28. (1.22)

For σΩ = 8 dB, the required shadow margin is

Mshad = 1.28× 8= 10.24dB. (1.23)

To obtain a relationship between the edge and area-averaged noise outage
probabilities, we need models for the propagation path loss and spatial distribution
of MSs. It is common to assume that the MSs are uniformly distributed throughout
the cell area. This assumption along with the path loss model in (1.5) yields an area
noise outage probability [96]



1.5 Receiver Sensitivity and Link Budget 27

ON =
1

πR2

∫ R

0
ON(r)2πrdr

= Q(X)− eXY+Y 2/2Q(X +Y), (1.24)

where

X =
Mshad

σΩ
, Y =

2σΩ ξ
β

, (1.25)

where ξ = ln(10)/10. The first term of this expression is equal to the noise outage
probability on the cell edge, ON(R), while the second term is a correction factor.
This obviously means that the edge outage probability is higher than the area
averaged outage probability.

The above argument applies to the case of a single isolated cell. For cellular sys-
tems where the geographical area is covered by multiple cells, the situation is more
complicated. As an MS moves from one cell to the next, handoffs will be executed
to maintain service continuity. Consider a MS that is located in the boundary area
between two cells. Although the link to the serving BS may be shadowed and be
in an outage condition, the link to an alternate BS may at the same time provide an
acceptable link quality. This is due to the fact that different shadowing conditions
are usually encountered on links with different BSs. Hence, at the boundary area
between two cells, we obtain a macrodiversity gain. The word macrodiversity is used
to describe the case where the multiple receiver antennas are located in different base
stations, as opposed to microdiversity where the multiple antennas are collocated in
the same base station. Handoffs take advantage of macrodiversity, and they will
increase the maximum allowable path loss by an amount equal to the handoff gain,
GHO. There are a variety of handoff algorithms that are used in cellular systems.
CDMA cellular systems such as IS-95A/B, cdma2000 and WCDMA use soft
handoff, while TDMA cellular systems such as GSM/GPRS/EDGE and OFDMA
cellular systems such as WiMAX typically use hard handoff.

To illustrate the principle of handoff gain, consider a cluster of 7 cells; the target
cell is in the center and surrounded by 6 adjacent cells. Although the MS is located in
the center cell, it is possible that the MS could be connected to any one of the 7 BSs.
We wish to calculate the area averaged noise outage probability for the target cell
assuming that the MS location is uniformly distributed over the target cell area. This
can be done quite effectively using Monte Carlo approaches with a large number of
trials. Our results assume that the links to the serving BS and the six neighboring
BSs experience correlated log-normal shadowing. To generate the required shadow
gains, we express the shadow gain at BSi as

εi = aζ + bζi, (1.26)

where

a2 + b2 = 1
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and ζ and ζi are generated once each simulation trial, and constitute independent
Gaussian random variables with zero mean and variance σ2

Ω . It follows that the
shadow gains (in decibel units) have the correlation

E[εiε j] = a2σ2
Ω = ρσ2

Ω , i �= j. (1.27)

where ρ = a2 is the correlation coefficient. Here we assume that ρ = 0.5.
Let Ωp,k (dBm),k = 0, . . . ,6 denote the received signal strength associated with

the target BS (k = 0) and each of the six neighboring BSs (k = 1, . . . ,6). Three cases
are considered; a single isolated cell to compare with earlier results, soft handoffs,
and hard handoffs. For the case of a single isolated cell, no handoffs are used and
the outage probability is identical to that obtained in (1.18) or (1.24). With a soft
handoff algorithm, the BS that provides the largest instantaneous received signal
strength is selected as the serving BS. The instantaneous received signal strength is
affected by not only the path loss and shadowing variations, but envelope fading as
well. However, for the present purpose envelope fading is not considered.1 If any
BS has an associated received signal power that is above the receiver sensitivity,
Ωth (dBm), then the link quality is acceptable; otherwise, an outage will occur. Other
more sophisticated and effective soft handoff and power control strategies are the
subject of Chaps. 12 and 13.

With a hard handoff algorithm, the received signal power at the MS from the
serving BS is denoted as Ωp,0 (dBm). If this value exceeds the receiver sensitivity,
Ωth (dBm), then the link quality is acceptable. Otherwise, the six surrounding BSs
are evaluated for handoff candidacy using a mobile assisted handoff (MAHO)
algorithm. BS k is included in the neighbor set if Ωp,k (dBm)− Ωp,0 (dBm) ≥ H(dB),
where H(dB) is the handoff hysteresis. If the received signal power for any member
of the neighbor set is above the receiver sensitivity, Ωth (dBm), then link quality is
acceptable; otherwise an outage occurs. A more detailed description and analysis of
hard handoff is provided in Chap. 13.

Figure 1.11 compares hard and soft handoffs, for H(dB) = 6 dB. Note that a 10%
area noise outage probability (90% coverage) requires a shadow margin of 5.6 dB for
a single isolated cell (no handoff). With soft handoffs, the required shadow margin
is only 1.8 dB. The difference of 3.8 dB between the two is the soft handoff gain.
The corresponding hard handoff gain is about 2.8 dB. Note that the soft handoff gain
is always greater than the hard handoff gain. However, the true relative advantage
depends on many factors and is difficult to predict.

The maximum allowable path loss with the inclusion of the margins for
shadowing, interference loading, and handoff gain is

Lmax (dB) = Ωt (dBm) +GT (dB) +GR (dB)−Ωth (dBm)

−Mshad (dB)−LI (dB) +GHO (dB). (1.28)

1As discussed in Sect. 2.6.2.1, a composite Nakagami-log-normal random variable can be
approximated by a purely log-normal random variable with an appropriate area mean and shadow
variance.
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1.6 Coverage

Coverage refers to the number of base stations or cell sites that are required to cover
or provide service to a given geographical area with an acceptable QoS. This is
an important consideration when a new cellular network is deployed. Clearly the
choice of cellular system that requires the fewest number of cell sites to cover a
given geographic area has an infrastructure cost advantage. However, it is always
important to include interference margin into the coverage calculation to allow for
system loading and this is often where the difficulty lies in comparing the different
options. First, the traffic loads must be the same to allow for a fair comparison.
Second, the function relating the required interference margin, LI (dB) to the system
load can be quite complicated, especially for CDMA cellular systems with universal
frequency reuse.

The number of cell sites that are required to cover a given area is determined from
the knowledge of the maximum allowable path loss and the path loss characteristic
with distance. To compare the coverage of different cellular systems, we first
determine the maximum allowable path loss for the different systems for the same
QoS. From (1.5), it is apparent that

Lmax (dB) =C+ 10β log10{dmax} (dB), (1.29)
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where dmax is the distance corresponding to the maximum allowable path loss and
C is some constant that depends on factors that are common to different cellular
systems, such as the antenna heights and operating frequency. The quantity dmax is
equal to the radius of the cell. To provide good coverage it is desirable that dmax be
as large as possible. A variety of theoretical and empirical path loss models will be
considered in detail in Sect. 2.7.

Once Lmax has been determined for the various cellular systems to be evaluated,
the relative coverage of the different systems can be compared, all other factors
being equal. As an example of how this is done, suppose that System 1 has
Lmax (dB) = L1 and System 2 has Lmax (dB) = L2, with corresponding radio path
lengths of d1 and d2, respectively. The difference in the maximum allowable path
loss is related to the cell radii through the following relationship

L1 −L2 = 10β (log10{d1}− log10{d2})

= 10β log10

{
d1

d2

}

. (1.30)

Looking at things another way

d1

d2
= 10(L1−L2)/(10β ). (1.31)

Since the area of a cell is equal to A = πd2 (assuming a circular cell) the ratio of the
cell areas is

A1

A2
=

d2
1

d2
2

=

(
d1

d2

)2

(1.32)

and, hence,

A1

A2
= 102(L1−L2)/(10β ). (1.33)

Suppose that Atot is the total geographical area to be covered. Then the ratio of the
required number of cell sites for Systems 1 and 2 is

N1

N2
=

Atot/A1

Atot/A2
=

A2

A1
= 10−2(L1−L2)/(10β ). (1.34)

As an example, suppose that β = 3.5 and L1 − L2 = 2 dB. Then N2/N1 = 1.30.
Hence, System 2 requires 30% more base stations to cover the same geographical
area. In conclusion, a seemingly small difference in link budget translates into a
substantial difference in infrastructure cost. Since parameters such as the Ec/No(dB)
required, handoff gain and interference margin can each vary considerably from one
system to the next, careful consideration is required.
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1.7 Spectral Efficiency and Capacity

Spectral efficiency is of primary concern to cellular system operators. There are a
variety of definitions for spectral efficiency, but an appropriate definition measures
spectral efficiency in terms of the spatial traffic density per unit bandwidth. For a
cellular system that consists of a deployment of uniform cells, the spectral efficiency
with circuit-switched call traffic can be expressed in terms of the following
parameters:

Gc = offered traffic per channel (Erlangs/channel)

Nslot = number of channels per RF carrier

Nc = number of RF carriers per cell area (carriers/m2)

Wsys = total system bandwidth (Hz)

A = area per cell (m2).

One Erlang is the traffic intensity in a channel that is continuously occupied, so that
a channel occupied for x% of the time carriers x/100 Erlangs. Adjustment of this
parameter controls the system loading and it is important to compare systems at
the same traffic load level. For an N-cell reuse cluster, we can define the spectral
efficiency as follows:

ηS =
NcNNslotGc

WsysA
Erlangs/m2/Hz. (1.35)

Recognizing that the bandwidth per channel, Wc, is Wsys/(NNcNslot), the spectral
efficiency can be written as the product of three efficiencies, viz.,

ηS =
1

Wc
· 1

A
·Gc (1.36)

= ηB ·ηC ·ηT, (1.37)

where

ηB = bandwidth efficiency

ηC = spatial efficiency

ηT = trunking efficiency

Unfortunately, these efficiencies are not at all independent so the optimization of
spectral efficiency can be quite complicated.
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For cellular systems, the number of channels per cell (or cell sector) is sometimes
used instead of the Erlang capacity. We have

NcNslot =
Wsys

Wc ·N (1.38)

where, again, Wc is the bandwidth per channel and Nslot is the number of traffic
channels multiplexed on each RF carrier. The number of channels per cell or cell
sector is called the cell or sector capacity. However, the cell capacity does not
account for trunking efficiency.

1.7.1 Bandwidth Efficiency

Bandwidth efficiency is measured in bits per second per unit bandwidth (b/s/Hz).
High bandwidth efficiency can be achieved using bandwidth efficient modulation
and coding techniques, along with effective receiver signal processing techniques
that produce radio links that are tolerant to interference.

1.7.2 Spatial Efficiency

High spatial efficiency can be achieved by (1) minimizing the area per cell, and
(2) minimizing the co-channel reuse distance. The first of these explains the
intense interest in microcell and picocell technologies, where cell radii on the
order of 50–500 m are used. The co-channel reuse distance D/R is minimized by
(1) controlling the generation of CCI, and (2) mitigating the effect of any CCI that is
present. The generated levels of CCI can be controlled using techniques such as cell
sectoring, smart antennas, power control, scheduling, effective hand-off algorithms,
macroscopic BS diversity, and a whole host of other techniques. The impact of CCI
on the radio link can be mitigated using techniques such as optimum combining,
single antenna interference cancelation, equalization, antenna diversity, and others.

Consider the situation shown in Fig. 1.12, depicting a simplified worst case
forward link channel CCI condition. The MS is located at distance d0 from the
serving BS and at distances dk,k = 1,2, · · · ,NI from the first tier of NI = 6 interfering
co-channel BSs. If we let d = (d0, d1, · · · , dNI) denote the vector of distances at
a particular MS location, then the forward link carrier-to-interference ratio as a
function of the distance vector d is

Λ(dB)(d) = Ωp (dBm)(d0)− 10log10

{
NI

∑
k=1

10Ωp (dBm)(dk)/10

}

. (1.39)
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Fig. 1.12 CCI on the
forward channel at a desired
MS. There are six first-tier
interfering BSs
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At this point, we must account for the handoff gain. Consider, for example, the
case of soft handoff. Let Λk (dB)(d),k = 0, . . . ,M denote the carrier-to-interference
ratio for serving BS and M surrounding BSs. Note that the vector d is different for
each candidate BS. With soft handoff, the BS that provides the most robust link is
always selected such that the resulting carrier-to-interference ratio is

Λ(dB) = max{Λ0 (dB)(d),Λ1 (dB)(d), . . . ,ΛM (dB)(d)}. (1.40)

The area averaged probability CCI outage is

OI = P
[
Λ(dB) < Λth (dB)

]
, (1.41)

where the calculation is performed by averaging the probability of outage over the
random location of a MS within the reference cell. Finally, we note that the outage
depends on the number of interferers, NI that are present. Due to the statistical
nature of the user traffic, the number of interferers present is random. In the case
of Fig. 1.12, it ranges from 0 to 6.

Finally, Fig. 1.13 depicts the CCI on the reverse link at the serving BS. Note that
the CCI may not be exactly the same on the forward and reverse links, because
the vector d is different in each direction and the propagation and interference
conditions are different. This phenomenon is known as link imbalance.
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Fig. 1.13 CCI on the reverse channel at a desired BS. There are six first-tier interfering MSs

1.7.3 Trunking Efficiency

High trunking efficiency can be achieved using channel-assignment schemes that
maximize channel utilization. There is usually a trade-off between trunking effi-
ciency (or offered traffic per channel) and grade of service in terms of new call
and handoff blocking probabilities. Various fundamental formula were developed
by Erlang almost a century ago that laid the foundation of modern teletraffic theory.
One of Erlang’s most famous results is the Erlang-B formula, first derived in 1917,
that gives the probability that a newly arriving call will not find any available
channel in a trunk of m channels and is blocked. Sometimes this policy is called
the blocked calls cleared queueing discipline, meaning that blocked calls are not
buffered or queued and, if no free channels are available, they are dropped. The
Erlang-B formula is not entirely applicable to cellular systems, because it does not
account for handoff calls. Furthermore, the total offered traffic per cell may be time
varying due to the spatial movement of the subscribers, whereas the offered traffic
in the Erlang-B formula is assumed to be constant. The Erlang-B formula is

B(ρT,m) =
ρm

T

m!∑m
k=0

ρk
T

k!

, (1.42)

where m is the total number of channels in the trunk and ρT = λaμd is the total of-
fered traffic (λa is the call arrival rate and μd is the mean call duration). The Erlang-B
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Fig. 1.14 Erlang-B blocking probability B(ρT,m) versus offered traffic per channel Gc = ρT/m.
Trunking is shown to improve the spectral efficiency

formula is derived under the so-called standard Markovian assumptions, including
an infinite population of users, Poisson call arrivals with rate λa calls/s, and
exponentially distributed call durations with a mean call duration μd s/call. Note that
the total offered traffic ρT is a dimensionless quantity, but the quantity is expressed
as Erlangs.

Figure 1.14 plots the blocking probability B(ρT,m) as a function of the offered
traffic per channel Gc = ρT/m. The benefit from trunking is obvious, since the of-
fered traffic per channel, Gc, increases as the number of trunked channels increases,
at any blocking probability. Note that diminishing returns are obtained as the number
of trunked channels becomes larger. Finally, it is important to realize that doubling
the number of channels in a cell or cell sector will double the cell or sector capacity.
However, the Erlang capacity will more than double due to trunking efficiency.

1.7.4 Capacity

The capacity of a cellular system is often measured in terms of two quantities:

1. The cell capacity or sector capacity equal to the number of available channels per
cell or cell sector.
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2. The cell Erlang capacity equal to the traffic-carrying capacity of a cell
(in Erlangs) for a specified call blocking probability.

Note that difference between spectral efficiency and cell Erlang capacity is that
spectral efficiency accounts for the spatial efficiency and bandwidth efficiency. If
the area per cell is the same in two different cellular systems, then their relative
spectral efficiencies and Erlang capacities will be the same all other things being
equal.

Comparing the spectral efficiency of different cellular systems can be difficult,
because the various systems may be in different evolutionary stages. However, a fair
comparison between suitably optimized digital cellular systems without deployment
constraints will probably show roughly equal spectral efficiency. Indeed this is
what we are seeing with EV-DO Rev B., HSPA+, LTE-A. HSPA+ achieves peak
downlink speeds of 21 Mbps in 5 MHz, while LTE-A achieves 22 Mbps. Both
systems are highly optimized. Recall that LTE-A downlink uses OFDMA, while
the EV-DO downlink uses TDM/CDMA.

1.7.4.1 GSM Cell Capacity

A 3/9 (3-cell/9-sector) reuse pattern is achievable for most GSM systems that
use frequency hopping; without frequency hopping, a 4/12 reuse pattern may be
possible. A capacity gain is achieved with frequency hopping, since the CCI is
averaged over the set of hop frequencies. GSM has 8 logical channels that are
time division multiplexed onto a single radio frequency carrier, and the carriers
are spaced 200 kHz apart. Therefore, the bandwidth per channel is roughly 25 kHz,
which was common in first generation European analog mobile phone systems.
The analog AMPS system in North America had 30 kHz carrier spacings. In a
nominal bandwidth of 1.25 MHz (uplink or downlink), there are 1250/25 = 6.25
carriers spaced 200 kHz apart.2 Hence, there are 6.25/9 ≈ 0.694 carriers per sector
or 6.25/3= 2.083 carriers/cell. Each carrier commonly carries half-rate traffic, such
that there are 16 channels/carrier. Hence, the 3/9 reuse system has a sector capacity
of 11.11 channels/sector or a cell capacity of 33.33 channels/cell in 1.25 MHz.

1.7.4.2 IS-95 Cell Capacity

The cell capacity of IS-95 was a topic of historical debate. CDMA systems were
initially reported to achieve 40 times AMPS cell capacity, which made GSM appear
to have a rather meager capacity. The key attribute of CDMA systems that leads
to high capacity is universal frequency reuse, where all cells and cell sectors reuse

2Fractional carriers are used for the capacity calculation but can be eliminated in practice using a
larger nominal bandwidth.
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the same carrier frequency. About 20% of the global market went with the promise
of CDMA. Ironically, GSM, which has 80% of the global market, has evolved to
WCDMA in its 3GPP evolution.

For even the basic IS-95 system, the cell capacity is quite elusive because the
universal frequency reuse means that every transmitter interferes with every receiver
within radio range. To illustrate the difficulty in evaluating CDMA cell capacity,
consider the following simplified analysis. Suppose there are N users in a cell; one
desired user and N − 1 interfering users. For the time being, ignore the interference
from surrounding cells. Consider the reverse link, and assume perfectly power
controlled MS transmissions that arrive chip and phase asynchronous at the BS
receiver. Treating the co-channel signals as a Gaussian impairment, the effective
carrier-to-noise ratio is

Γ =
3

N − 1
(1.43)

and the effective received bit energy-to-noise ratio is

Eb

No
= Γ × Bw

Rb

=
3G

N − 1
≈ 3G

N
,

where G = Bw/Rb. The factor of 3 in the numerator of (1.43) arises from the
assumption of randomly generated spreading sequences and the signals arriving at
the receiver antenna in a chip and phase asynchronous fashion [183]. For a required
Eb/No, (Eb/No)req, the cell capacity is

N ≈ 3G
(Eb/No)req

.

Suppose that 1.25 MHz of spectrum is available and the source coder operates at
Rb = 4 kbps. Then G = 1250/4 = 312.5. If (Eb/No)req = 6 dB (a typical IS-95
value), then the cell capacity is roughly N = 3 ·312.5/4≈ 234 channels per cell. This
is roughly 7 times the cell capacity of GSM. However, this rudimentary analysis
did not include out-of-cell interference which is typically 50–60% of the in-cell
interference. This will result in a reduction of cell capacity by a factor of 1.5 and 1.6,
respectively. Also, with CDMA receivers, great gains can be obtained by improving
receiver sensitivity. For example, if (Eb/No)req can be reduced by 1 dB, then the cell
capacity N increases by a factor of 1.26. Finally, CDMA systems are known to be
sensitive to power control errors. An rms power control error of 2 dB will reduce the
capacity by roughly a factor of 2 as discussed in Chap. 12.
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Problems

1.1. Show that the area averaged outage probability due to thermal noise is given
by (1.24).

1.2. Using geometric arguments, show that the co-channel reuse factor, D/R, for
cellular deployments based on hexagonal cells is given by D/R =

√
3N.

1.3. Plot and compare the path loss (dB) for the free-space and flat specular surface
models at 800 MHz versus distance on a log-scale for distances from 1 m to 40 km.
Assume that the antennas are isotropic and have a height of 10 m. You may need
material from Sects. 2.7.1 and 2.7.2 to do this problem.

1.4. A brief measurement campaign indicates that the median propagation loss at
420 MHz in a mid-size North American city can be modeled by the following path
loss equation

Lp = 25 dB+ 10log10{d2.8},
that is, the path loss exponent is β = 2.8 and there is a 25 dB fixed loss.

(a) Assuming a cell phone receiver sensitivity of −95 dBm, what transmitter power
is required to service a circular area of radius 10 km?

(b) Suppose the measurements were optimistic and β = 3.1 is more appropriate.
What is the corresponding increase in transmit power (in decibels) that would
be required?

(c) If log-normal shadowing is present with σΩ = 8 dB, how much additional
transmit power is required to ensure 10% thermal noise outage at a distance
of 10 km?

1.5. A receiver in an urban cellular radio system detects a 1 mW signal at do = 1 m
from the transmitter. In order to mitigate CCI effects, it is required that the CCI
power that is received from any co-channel base station be no more than −100 dBm.
A measurement team has determined that the average path loss exponent in the
system is β = 3.

(a) Determine the radius R of each cell if a 7-cell reuse pattern is used.
(b) What is the radius R if a 4-cell reuse pattern is used?

1.6. Consider the worst case forward channel CCI situation shown in Fig. 1.15
The path loss is described by the following flat earth model

μΩp =
Ωt(hbhm)

2

d4

where

μΩp = average received power

Ωt = transmitted power
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Fig. 1.15 Worst case CCI on the forward channel

hb = base station antenna height

hm = mobile station antenna height

d = radio path length

(a) Assume that hb = 30 m, hm = 1.5 m, and Ωt is the same for all BSs. What is the
worst case carrier-to-interference ratio Λ for a cluster size N = 4?

(b) Now suppose that the antenna height of the serving BS (in the center) is
increased to 40 m while the other BS antenna heights remain at 30 m. This
has the effect of enlarging the center cell. Assuming that we wish to maintain
the same worst case Λ value obtained in part (a), what is the new radius of the
center cell?

(c) Now suppose that the antenna height of one of the co-channel BSs is increased
to 40 m while the antenna heights of the other BSs antenna heights, including
the serving BS, remain at 30 m. This has the effect of shrinking the center
cell. Assuming, again, that we wish to maintain the same worst case Λ value
obtained in part (a), what are the new dimensions of the center cell?
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1.7. A TDMA cellular system consists of a deployment of uniform radii hexagonal
cells with a 9-cell reuse pattern. The cell diameter (corner-to-corner) is equal to
8 km. The system has a total bandwidth of 12.5 MHz (for both uplink and downlink).
The channels have a channel spacing of 30 kHz. Calculate the following:

(a) Number of traffic channels/cell.
(b) Number of cells required to cover a total area of 3600km2. In this problem use

the exact area of the hexagon cell rather than approximating the hexagon cell
by a circle cell with the same cell radius.

(c) Co-channel reuse distance D.

1.8. Whenever a mobile station crosses a cell boundary a handoff occurs to the
target cell. However, sometimes a handoff will occur because there are no channels
available in the target cell. One method to decrease the probability of handoff failure
is to queue the handoff calls. A handoff call that does not find an available channel in
the target cell is allowed to remain in a queue for tq seconds and is dropped from the
queue, that is, it will experience a handoff failure, if no channel becomes available
in that time.

Suppose the queue is serviced using a “first-come first-served” discipline. If m is
the total number of channels in the trunk and ρ is the total offered traffic, then the
probability of queueing is given by the famous Erlang-C formula

C(ρT,m) =
ρm

T

ρm
T +m!

(
1− ρT

m

)
∑m−1

k=0
ρk

T
k!

.

The probability that a queued call will have to wait more than tq seconds in the
queue is

P[W > tq] = exp

{

− (m−ρT)tq
μ

}

,

where μ is the mean call duration. Assuming that μ = 120 s and tq = 5 s, plot the
blocking probability against the normalized offered traffic per channel Gc = ρT/m,
for m = 5,10, and 15. Comment on your results.

1.9. A GSM cellular service provider uses base station receivers that have a carrier-
to-interference ratio threshold Λth = 9 dB.

(a) Find the optimal cluster size N for the following cases;

(i) Omni-directional antennas
(ii) 120◦ sectoring

(iii) 60◦ sectoring

Ignore shadowing and use path loss model in (1.5) with path loss exponents of
β = 3 and β = 4.

(b) Assume that there are 200 traffic channels in the cellular system and that
a blocked calls cleared queueing discipline is used with a target blocking
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probability of 1%. Further, assume that each cell or sector has approximately
the same number of channels, and the cells have uniform traffic loading. Ignore
any handoff traffic. The average call duration is equal to 120 s. Determine the
offered traffic load (per cell) in units of Erlangs and calls per hour for each of
the cases in part (a).

1.10. Suppose that an urban area has three competing trunked mobile networks
(systems A, B, and C) to provide cellular service. System A has 400 cells with 15
channels/cell, System B has 50 cells with 100 channels/cell, and System C has 100
cells with 60 channels/cell. Ignore handoff traffic and assume uniform cell traffic
loading.

(a) Plot the (Erlang-B) blocking probability, B(ρT,m), for each system versus ρT.
(b) Find the number of users that can be accommodated by each system for a

blocking probability of 2% if the traffic loading offered by each user is 0.1
Erlangs.

1.11. A service area is covered by a cellular radio system with 84 cells and
a cluster size N. A total of 300 voice channels are available for the system.
Users are uniformly distributed over the service area, and the offered traffic per
user is 0.04 Erlang. Assume a “blocked calls cleared queueing discipline, and the
designated blocking probability from the Erlang-B formula is B = 1%.

(a) Determine the carried traffic per cell if cluster size N = 4 is used. Repeat for
cluster sizes N = 3,7, and 12.

(b) Determine the number of users that can be served by the system for a blocking
probability of 1% and cluster size N = 4. Repeat for cluster sizes N = 7 and 12.

In this question, the offered traffic per user is 0.04 Erlang. This is not the same as
the offered traffic per channel. However, we can write

ρT =Uρu,

where

ρu = offered traffic per user

U = number of users

Note that ρT in this case is the total offered traffic per cell and U is the number of
users per cell.



Chapter 2
Propagation Modeling

The design of spectrally efficient wireless communication systems requires a
thorough understanding of the radio propagation channel. The characteristics of the
radio channel will vary greatly with the operating frequency, and the propagation
environment, for example, line-of-sight (LoS) versus non-line-of-sight (NLoS),
stationary versus mobile transmitters and receivers, and other factors. This chapter
emphasizes land mobile radio channels, including those found in cellular land
mobile radio systems and mobile ad hoc networks. However, many of the concepts
are of a fundamental nature and will apply to other types of radio channels as well.

A typical cellular land mobile radio system consists of a collection of fixed
base stations (BSs) that define radio coverage areas known as cells. The height
and placement of the BS antennas affect the proximity of local scatterers at the
BSs. In a macrocellular environment where the cell radii are large, the BS antennas
are well elevated above the local terrain and are free of local scatterers. Mobile
stations (MSs), on the other hand, tend to be surrounded by local scatterers due
to their low elevation antennas. Sometimes an LoS condition will exist between
a BS and an MS, for example in a rural (or open) environment. However, in an
urban environment, an NLoS condition typically exists between the BSs and MSs.
As a consequence, the radio waves must propagate between the BSs and MSs via
reflections, diffraction, and scattering. Due to the typically large distance between
the BSs and MSs in macrocellular systems, radio propagation is often assumed to
occur in a two-dimensional (2D) plane. As shown in Fig. 2.1, multiple plane waves
will arrive at the MS (or BS) receiver antenna(s) from different directions, with
each having a distinct polarization, amplitude, phase, and delay. This phenomenon
is called multipath propagation. The multiple plane waves combine vectorially at
each MS (or BS) receiver antenna to produce a composite received signal.

Commercial cellular land mobile radio systems operate at UHF frequencies in
bands located at 700/800/900 MHz and 1,800/1,900MHz. At these frequencies,
the carrier wavelength, λc, is approximately 15 cm and 30 cm, respectively, using
the relationship c = fcλc, where fc is the carrier frequency and c is the speed of
light. Therefore, small changes in the propagation delays of the individual multipath
components due to MS mobility on the order of a few centimeters will cause a large
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base station

mobile subscriber

local scatterers

Fig. 2.1 Typical macrocellular radio propagation environment

change in the relative phases of the plane wave components arriving at the MS (or
BS) receiver antennas. Hence, when the arriving plane waves combine vectorially
at the receiver antenna(s), they will experience constructive and destructive addition
depending on the physical location of the MS. If the MS is moving or there are
changes in the location of the scatterers, then these spatial variations will manifest
themselves as time variations in the amplitude and phase of the composite signal
received at each MS (or BS) antenna, a phenomenon known as envelope fading.
If the propagation environment is such that no individual multipath component
is dominant, such as when NLoS conditions exist between the BS and MS, then
the composite received envelope under narrowband propagation conditions is often
modeled as being Rayleigh distributed at any time. Such a channel is said to exhibit
Rayleigh fading. However, if a dominant multipath component exists, such as when
an LoS or specular condition exists between the BS and MS, then the envelope is
often modeled as being Ricean distributed at any time. Such a channel is said to
exhibit Ricean fading.

Radio channels are reciprocal in the sense that if a propagation path exists, it
carries energy equally well in both directions. However, the spatial distribution of
arriving plane waves may be significantly different in each direction. An MS in a
typical NLoS macrocellular environment is usually surrounded by local scatterers,
so that the plane waves will arrive at the MS antenna from many different directions,
as shown in Fig. 2.1. Two-dimensional (2D) isotropic scattering, where the plane
waves arrive from all azimuth directions with equal probability and with equal
strength, is a very commonly used reference model to describe the signals received
at an MS in this case. The BSs, on the other hand, are relatively free from local
scatterers. Hence, plane waves tend to arrive at a BS with a small azimuth angle
of arrival (AoA) spread as shown in Fig. 2.1. We will see later in this chapter that
these differences in the scattering environment for the forward and reverse links
will cause significant and important differences in the spatial correlation properties
of the respective faded envelopes at the MSs and BSs.

Some types of land mobile radio systems, such as mobile ad hoc networks,
consist of vehicle-to-vehicle (or mobile-to-mobile) and vehicle-to-infrastructure
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Fig. 2.2 Typical mobile-to-mobile radio propagation environment

links. In this book, we refer to vehicle-to-vehicle links as mobile-to-mobile links,
because the user terminals are not necessarily vehicular mounted. A typical mobile-
to-mobile radio propagation environment is depicted in Fig. 2.2. Such mobile-to-
mobile communication systems differ from conventional cellular radio systems
where one end of the link (the BS) is stationary and free of scattering, and only
the MS is moving. Although the received signal envelope of mobile-to-mobile links
is still Rayleigh faded under NLoS narrowband propagation conditions, the mobility
of both the transmitters and receivers, and scattering at both ends of the links, causes
these links to exhibit much different statistical properties than cellular land mobile
radio channels.

If the received envelope or squared envelope is averaged over a spatial distance of
20–30 wavelengths, an estimated mean envelope or mean-squared envelope can be
obtained. Sometimes, this quantity is called the local mean because it corresponds to
a particular locality. The local mean will experience slow variations over distances
of several tens of wavelengths due to the presence of large terrain features such
as buildings, hills, and valleys. This phenomenon is known as shadow fading or
shadowing. Experimental observations have confirmed that the local mean signal
strength follows a log-normal distribution. This log-normal distribution applies to
both macrocellular [134, 151] and microcellular environments [119, 179, 181].

If the local mean is averaged over a sufficiently large spatial distance (to average
over the shadows), the area mean is obtained. The area mean is the average signal
strength that is received to/from an MS over locations that lie at the same distance
from the BS. The area mean is inversely proportional to the path loss, which
describes how the area mean decreases with the distance between the BS and MS.
Early studies by Okumura [197] and Hata [129] yielded an empirical path loss
model for macrocellular radio systems operating in urban, suburban, and rural areas.
The Okumura–Hata model is accurate to within 1 dB for distances ranging from 1 to
20 km and carrier frequencies between 150 and 1,000 MHz, and was adopted in the
COST207 study [63]. The Okumura–Hata model is only valid for carrier frequencies
less than 1,000 MHz. Consequently, when additional spectrum was made available
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in the 1990s for cellular systems operating in the 1,800/1,900MHz band, new path
loss models were needed. The COST231 study [66] resulted in the COST231–Hata
model that extended the Okumura–Hata model to the 1,800/1,900MHz band, and
provided the Walfish–Ikegami model for path loss prediction in LoS and NLoS
urban microcells.

The remainder of this chapter presents the fundamentals of radio propagation
modeling, analysis, and simulation. Section 2.1 considers conventional narrow-
band F-to-M channels, and various properties of the faded envelope are considered.
Section 2.2 considers mobile-to-mobile channels. Section 2.3 considers multiple-
input multiple-output (MIMO) channels that are created by having multiple anten-
nas at both the transmitter and receiver. Section 2.4 treats the statistical characteriza-
tion of wide-band multipath-fading channels. Simulation models for fading channels
are covered in Sect. 2.5. Shadowing models and simulation techniques are discussed
in Sect. 2.6. Finally, Sect. 2.7 treats theoretical and empirical models for path loss in
macrocellular and microcellular systems.

2.1 Fixed-to-Mobile Channels

For land mobile radio applications, the signals from the BSs are usually transmitted
with vertical polarization, meaning that the electric field is perpendicular to the
Earth’s surface. At VHF frequencies, vertical polarization produces a higher field
strength close to the ground than horizontal polarization. Likewise, the MS antennas
are also vertically polarized, although tilting of the MS antenna will result in a
polarization mismatch. Even if the signals are transmitted with vertical polariza-
tion, reflections and diffractions from objects will cause the signals to undergo
depolarization. This effect can be exploited using polarization diverse antennas.
For example, cross-polarized antennas, where two antennas having +45◦ and −45◦
polarizations from vertical, are sometimes used at the BSs. Although it is important
to account for polarization effects, we will assume in this chapter that the transmitted
and received signals are vertically polarized.

In cellular land mobile radio systems, the radio signals will propagate in three
dimensions. However, if the distance between the BS and MS is sufficiently large,
the radio propagation environment is often modeled as occurring in a 2D plane.
Figure 2.3 depicts a horizontal x–y plane, where an MS is moving in the direction
of the positive x-axis with velocity v. The BS is assumed stationary. With vertical
polarization, the electric field vector is aligned with the z-axis. The nth plane
wave arrives at the MS antenna with an angle of incidence θn. The MS movement
introduces a Doppler shift, or frequency shift, into the incident plane wave. The
Doppler shift is given by

fD,n = fm cos(θn) Hz, (2.1)
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Fig. 2.3 A typical plane
wave incident on a MS
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where fm = v/λc and λc is the wavelength of the arriving plane wave, and fm is the
maximum Doppler frequency occurring when θn = 0. Plane waves arriving from the
right half plane will experience a positive Doppler shift, while those arriving from
the left half plane will experience a negative Doppler shift.

Consider the transmission of the band-pass signal

s(t) = Re
{

s̃(t)ej2π fct
}
. (2.2)

where s̃(t) is the complex envelope of the band-pass signal, fc is the carrier
frequency, and Re{z} denotes the real part of z. If the channel is comprised of N
propagation paths, then the noiseless received band-pass waveform is

r(t) = Re

{
N

∑
n=1

Cnejφn−j2πcτn/λc+j2π( fc+ fD,n)t s̃(t − τn)

}

, (2.3)

where Cn, φn, fD,n, and τn are the amplitude, phase, Doppler shift, and time delay,
respectively, associated with the nth propagation path, and c is the speed of light.
The magnitude Cn depends on the cross-sectional area of the nth reflecting surface
or the length of the nth diffracting edge. The phase φn is randomly introduced by
the nth scatterer and can be assumed to be uniformly distributed on [−π ,π). The
delay τn = dn/c is the propagation delay associated with the nth propagation path,
where dn is the length of the path. The path lengths, dn, will depend on the physical
scattering geometry which we have not specified at this point. The Doppler shift
fD,n is as discussed previously.

Similar to (2.2), the received band-pass signal r(t) has the form

r(t) = Re
{

r̃(t)ej2π fct
}
, (2.4)

where the received complex envelope is

r̃(t) =
N

∑
n=1

Cnejφn(t)s̃(t − τn) (2.5)
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and

φn(t) = φn − 2πcτn/λc + 2π fD,nt (2.6)

is the time-variant phase associated with the nth path. From (2.5) and the fact that
r̃(t) = g(t,τ) ∗ s̃(t) with ∗ denoting the operation of convolution, the channel can
be modeled by a linear time-variant filter having the complex low-pass impulse
response

g(t,τ) =
N

∑
n=1

Cnejφn(t)δ (τ − τn), (2.7)

where g(t,τ) is the channel response at time t due to an impulse applied at time
t − τ , and δ ( · ) is the Dirac delta function or unit impulse function.

From (2.5) and (2.6), several interesting observations can be made. Since the
carrier wavelength λc is small (approximately 30 cm at 1 GHz), even small changes
in the path delays dn = cτn will cause large changes in the phases φn(t), due to
the term 2πcτn/λc = 2πdn/λc. Also, due to the Doppler frequency fD,n, the phases
φn(t) vary with time. Hence, at any given point in space–time, the phases φn(t) will
result in the constructive or destructive addition of the N multipath components, a
phenomenon known as fading.

If the differential path delays τi − τ j for all i, j are very small compared to the
modulation symbol period, T , then the τn that appear in the argument of Dirac delta
function in (2.7) can be approximated by their average value τ̄ , that is, τn ≈ τ̄ . In
this case, the channel impulse response has the form

g(t,τ) = g(t)δ (τ − τ̂), (2.8)

where

g(t) =
N

∑
n=1

Cnejφn(t). (2.9)

It is important to note that φn(t) remains as defined with the τn in (2.6), since we
cannot make the approximation fcτn ≈ fcτ̄ when fc is large. Therefore, the received
complex envelope is

r̃(t) = g(t)s̃(t − τ̂), (2.10)

which experiences fading due to the time-varying complex channel gain g(t). In the
frequency-domain, the received complex envelope is

R̃( f ) = G( f )∗
(

S̃( f )e−j2π f τ̂
)
. (2.11)

Since the channel changes with time, G( f ) has a finite nonzero width in the
frequency-domain. Due to the convolution operation, the output spectrum R̃( f ) will
be larger than the input spectrum S̃( f ). This broadening of the transmitted signal
spectrum is caused by the channel time variations and is called frequency spreading.
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Fig. 2.4 Concentric ellipses model for frequency-selective fading channels

The time-variant channel transfer function can be obtained by taking the Fourier
transform of (2.8) with respect to the τ variable, giving

T ( f , t) = F{g(t,τ)}= g(t)e−j2π f τ̂ . (2.12)

The time-variant channel magnitude response is |T ( f , t)| = |g(t)|. Note that all
frequency components in the received signal are scaled by the same time-variant
magnitude |g(t)|. In this case, the received signal is said to exhibit frequency
flat fading, because the magnitude of the time-variant channel transfer function is
constant (or flat) with respect to frequency variable f .

If the differential path delays τi − τ j for some i, j are sufficiently large compared
to the modulation symbol period T , then the magnitude response |T ( f , t)| is
no longer flat and the channel exhibits frequency-selective fading. Sometimes
frequency-selective fading channels are called wide-band channels. A simplified
concentric-ellipses model for frequency-selective fading channels is depicted in
Fig. 2.4, where the transmitter and receiver are located at the foci of the ellipses.
Considering only single bounce reflections between the transmitter and receiver, all
paths that are associated with scatterers on the nth elliptical contour will have the
same propagation delay τn. Frequency-selective channels have strong scatterers that
are located on several ellipses such that the corresponding differential path delays
τi − τ j for some i, j are significant compared to the modulation symbol period T .

2.1.1 Envelope Correlation

A flat fading channel can be characterized by assuming the transmission of an
unmodulated carrier, because the channel magnitude response is flat. Assuming
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s̃(t) = 1 in (2.5), the received band-pass signal in (2.4) can be expressed in the
quadrature form

r(t) = gI(t)cos(2π fct) − gQ(t)sin(2π fct), (2.13)

where

gI(t) =
N

∑
n=1

Cn cos(φn(t)), (2.14)

gQ(t) =
N

∑
n=1

Cn sin(φn(t)) (2.15)

are the in-phase and quadrature components of the received band-pass signal.
Assuming that the band-pass process r(t) is wide-sense stationary (WSS), the
autocorrelation function of r(t) is

φrr(τ) = E[r(t)r(t + τ)]

= φgIgI(τ)cos(2π fcτ)−φgIgQ(τ)sin(2π fcτ), (2.16)

where E[ · ] is the ensemble average operator, and

φgIgI(τ)
�
= E[gI(t)gI(t + τ)], (2.17)

φgIgQ(τ)
�
= E[gI(t)gQ(t + τ)]. (2.18)

Note that the wide-sense stationarity of r(t) imposes the condition

φgIgI(τ) = φgQgQ(τ), (2.19)

φgIgQ(τ) = −φgQgI(τ). (2.20)

We now proceed to evaluate the expectations in (2.17) and (2.18).
It is safe to assume that the phases φn(t) are statistically independent random

variables at any time t, since the path delays τn are all independent due to the random
placement of scatterers and the phases φn are also independent. Furthermore, the
phases φn(t) at any time t can be treated as being uniformly distributed over the
interval [−π ,π). The azimuth angles of arrival, θn are all independent due to the
random placement of scatterers. In the limit as N → ∞, the central limit theorem can
be invoked, and gI(t) and gQ(t) can be treated as Gaussian random processes. Also,
in the limit as N → ∞, the discrete azimuth angles of arrival θn can be replaced by a
continuous random variable θ having the probability density function p(θ ). Using
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these statistical properties, the autocorrelation function φgIgI(τ) can be obtained
from (2.1), (2.14), and (2.6) as follows:

φgIgI(τ) = lim
N→∞

Eτ ,θ [gI(t)gI(t + τ)]

=
Ωp

2
Eθn [cos(2π fmτ cos(θn))], (2.21)

where

τ = (τ1,τ2, . . . ,τN) , (2.22)

θ = (θ1,θ2, . . . ,θN) , (2.23)

Ωp = E[|g(t)|2] = E[g2
I (t)]+E[g2

Q(t)] =
N

∑
n=1

C2
n (2.24)

and Ωp can be interpreted as the received envelope power. Likewise, the cross-
correlation function φgIgQ(τ) can be derived as follows:

φgIgQ(τ) = lim
N→∞

Eτ ,θ [gI(t)gQ(t + τ)]

=
Ωp

2
Eθn [sin(2π fmτ cos(θn))]. (2.25)

Evaluation of the expectations in (2.21) and (2.25) requires the azimuth distribu-
tion of arriving plane waves p(θ ), and the antenna azimuth gain pattern G(θ ), as a
function of the azimuth angle θ . One simple and commonly used model assumes
that the plane waves arrive at the receiver antenna from all azimuth directions
with equal probability, that is, p(θ ) = 1/(2π),θ ∈ [−π ,π). This model was first
suggested by Clarke [60] and is commonly referred to as Clarke’s 2D isotropic
scattering model. With 2D isotropic scattering and an isotropic receiver antenna
with gain G(θ ) = 1,θ ∈ [−π ,π), the expectation in (2.21) becomes

φgIgI(τ) =
Ωp

2

∫ π

−π
cos(2π fmτ cos(θ )) p(θ )G(θ )dθ

=
Ωp

2
1
π

∫ π

0
cos(2π fmτ sin(θ ))dθ

=
Ωp

2
J0(2π fmτ), (2.26)

where

J0(x) =
1
π

∫ π

0
cos(xsin(θ ))dθ (2.27)

is the zero-order Bessel function of the first kind. The normalized autocorrelation
function φgIgI(τ)/(Ωp/2) in (2.26) is plotted against the normalized time delay fmτ
in Fig. 2.5.
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Fig. 2.5 Normalized autocorrelation function of the quadrature components of the received
complex envelope with 2D isotropic scattering and an isotropic receiver antenna

Likewise, for 2D isotropic scattering and an isotropic receiver antenna, the cross-
correlation function in (2.25) becomes

φgIgQ(τ) =
Ωp

2π

∫ π

−π
sin(2π fmτ cos(θ ))dθ = 0. (2.28)

A cross-correlation of zero means that gI(t) and gQ(t) are uncorrelated and, since
they are Gaussian, independent random processes. The fact that gI(t) and gQ(t)
are independent is a consequence of the symmetry of the 2D isotropic scattering
environment and the isotropic receiver antenna. In general, gI(t) and gQ(t) are
correlated random processes for non-isotropic scattering environments and/or a non-
isotropic receiver antenna.

2.1.2 Doppler Spectrum

The autocorrelation of the received complex envelope g(t) = gI(t)+ jgQ(t) is

φgg(τ) =
1
2

E[g∗(t)g(t + τ)]

= φgIgI(τ)+ jφgIgQ(τ). (2.29)
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The Doppler Spectrum and time autocorrelation function are Fourier transform
pairs, that is,

Sgg( f ) =
∫ ∞

−∞
φgg(τ)e−j2π f τ dτ,

φgg(τ) =
∫ ∞

−∞
Sgg(τ)ej2π f τ dτ,

where,

Sgg( f ) = SgIgI( f )+ jSgIgQ( f ) (2.30)

and Sgg( f ) is the Doppler spectrum. For the autocorrelation function in (2.26), the
corresponding psd is [118, 6.671.7]

SgIgI( f ) = F [φgIgI(τ)]

=

{ Ωp
2π fm

1√
1−( f/ fm)2 | f | ≤ fm

0 otherwise
. (2.31)

For the case of 2D isotropic scattering and an isotropic receiver antenna,
SgIgQ( f ) = 0, so that Sgg( f ) = SgIgI( f ). We can also relate the power spectrum
of the complex envelope g(t) to that of the band-pass process r(t). From (2.16), we
have

φrr(τ) = Re
{

φgg(τ)ej2π fcτ
}
. (2.32)

Using the identity

Re{z}= z+ z∗

2
(2.33)

and the property φgg(τ) = φ∗
gg(−τ), it follows that the band-pass Doppler spec-

trum is

Srr( f ) =
1
2
(Sgg ( f − fc)+ Sgg (− f − fc)) . (2.34)

Since φgg(τ) = φ∗
gg(−τ), the Doppler spectrum Sgg( f ) is always a real-valued

function of frequency, but not necessarily even. However, the band-pass Doppler
spectrum Srr( f ) is always real-valued and even.

The Doppler spectrum can be derived using a different approach that is some-
times very useful because it can avoid the need to evaluate integrals. As mentioned
earlier, the incident power on the receiver antenna as a function of the azimuth angle
θ has the distribution p(θ ). The fraction of the total incoming power that arrives
between angels θ and θ +dθ is p(θ )dθ . If the antenna has an azimuth gain of G(θ ),
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then the power received between angels θ and θ + dθ is G(θ )p(θ )dθ . Therefore,
the Doppler spectrum can be expressed as [134]

Sgg( f )|d f | = Ωp

2

(
G(θ )p(θ ) + G(−θ )p(−θ )

)
|dθ |. (2.35)

From Fig. 2.3, the Doppler frequency associated with the incident plane wave
arriving at angle θ is

f = fm cos(θ ), (2.36)

and, hence,

|d f |= fm|− sin(θ )dθ |=
√

f 2
m − f 2 |dθ |. (2.37)

Therefore,

Sgg( f ) =
Ωp/2

√
f 2
m − f 2

(
G(θ )p(θ ) + G(−θ )p(−θ )

)
, (2.38)

where

θ = cos−1 ( f/ fm) . (2.39)

Hence, if p(θ ) and G(θ ) are known, the Doppler spectrum can be easily calculated.
Once again, for 2D isotropic scattering and an isotropic antenna G(θ )p(θ ) =
1/(2π), so that

Sgg( f ) =

{ Ωp
2π fm

1√
1−( f/ fm)2 | f | ≤ fm

0 otherwise
. (2.40)

The same result can be obtained from the autocorrelation function, but it requires
the solution of a Fourier transform integral.

The normalized Doppler spectrum Sgg( f )/(Ωp/2π fm) in (2.40) is plotted against
the normalized Doppler frequency f/ fm in Fig. 2.6. Notice that Sgg( f ) is limited to
the range of frequencies 0 ≤ | f | ≤ fm and Sgg( f ) = ∞ at f = ± fm. In reality, the
Doppler spectrum is bounded, and the singular behavior at f = ± fm is due to the
assumption of 2D plane wave propagation. Aulin [16] modified Clarke’s 2D model
to yield a 3D model that accounts for both azimuth and elevation angles of arrival.
The resulting Doppler spectrum has the general same U-shape as Fig. 2.6, but it is
bounded at frequencies f =± fm.

In some cases, it is appropriate to model the received signal as consisting of
a strong specular or LoS component plus a scatter component. In this case, the
azimuth distribution p(θ ) might have the form

p(θ ) =
1

K + 1
p̂(θ )+

K
K + 1

δ (θ −θ0), (2.41)
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Fig. 2.6 Normalized psd of the quadrature components of the received complex envelope with 2D
isotropic scattering channel and an isotropic receiver antenna

where p̂(θ ) is the continuous distribution of the scatter component, θ0 is the AoA
of the specular or LoS component, and K is the ratio of the received specular to
scattered power. Figure 2.7 shows a plot of p(θ ) for one such scattering envi-
ronment, where the scatter component is characterized by 2D isotropic scattering,
that is, p̂(θ ) = 1/(2π),θ ∈ [−π ,π). The correlation functions φgIgI(τ) and φgIgQ(τ)
corresponding to (2.41) can be readily obtained from (2.21) and (2.25) as

φgIgI(τ) =
1

K + 1
Ωp

2
J0(2π fmτ)+

K
K + 1

Ωp

2
cos(2π fmτ cos(θ0)), (2.42)

φgIgQ(τ) =
K

K + 1
Ωp

2
sin(2π fmτ cos(θ0)). (2.43)

The azimuth distribution in (2.41) yields a complex envelope having a Doppler
spectrum of the form

Sgg( f ) =
1

K + 1
Sc

gg( f )+
K

K + 1
Sd

gg( f ), (2.44)
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Fig. 2.7 Plot of p(θ ) versus θ with 2D isotropic scattering plus a LoS or specular component
arriving at angle θ0 = π/2

where Sd
gg( f ) is the discrete portion of the Doppler spectrum due to the specular

component and Sc
gg( f ) is the continuous portion of the Doppler spectrum due

to the scatter component. For the case when p̂(θ ) = 1/(2π),θ ∈ [−π ,π ], the
correlation functions in (2.42) and (2.43) are obtained and the corresponding
Doppler spectrum is

Sgg( f ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
K+1 · Ωp

2π fm
1√

1−( f/ fm)2

+ K
K+1

Ωp
2 δ ( f − fm cos(θ0)) 0 ≤ | f | ≤ fm

0 otherwise

. (2.45)

Note that the Doppler spectrum in (2.45) has the same shape as Fig. 2.6, except for
the discrete spectral tone at frequency f = fm cos(θ0).

Sometimes the azimuth distribution p(θ ) may not be uniform, a condition
commonly called non-isotropic scattering. Several distributions have been suggested
to model non-isotropic scattering. Once possibility is the Gaussian distribution

p(θ ) =
1√

2πσS
exp

{

− (θ − μ)2

2σ2
S

}

, (2.46)
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Fig. 2.8 Plot of p(θ ) versus θ for the von Mises distribution with a mean angle-to-arrival μ = π/2

where μ is the mean AoA, and σS is the root mean square (rms) AoA spread.
Another possibility is the von Mises distribution

p(θ ) =
1

2πI0(k)
exp{k cos(θ − μ)} , (2.47)

where θ ∈ [−π ,π), I0( · ) is the zeroth-order modified Bessel function of the first
kind, μ ∈ [−π ,π) is the mean AoA, and k controls the spread of scatterers around the
mean. When k = 0, the von Mises distribution reduces to p(θ ) = 1/(2π), yielding
2D isotropic scattering. As k increases, the scatterers become more clustered around
the mean AoA μ and the scattering becomes increasingly non-isotropic as shown in
Fig. 2.8. Still another possibility is the cosine distribution

p(θ ) =

{
π

4θmax
cos
(

π
2

θ
θmax

)
, |θ | ≤ θmax ≤ π

2

0 , elsewhere
. (2.48)

The parameter θmax controls the AoA spread of the incoming waves. Figure 2.9
shows a plot of p(θ ) for θmax = 30o, 60o, and 90o. Note that the distribution is
symmetric about θ = 0. Therefore, this azimuth distribution is less flexible than
either the Gaussian or von Mises distributions. The density in (2.48) is sometimes
used to model the elevation AoA distribution of scatterers in 3D propagation
models, where the mean elevation AoA is 0◦ [291].
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Fig. 2.9 Plot of p(θ ) versus θ for the angle of arrival pdf in (2.48) for various θmax. The mean
angle of arrival is θ = 0

Once the azimuth distribution is specified, the correlation functions φgIgI(τ) and
φgIgQ(τ) can be readily obtained by evaluating the expectations in (2.21) and (2.25),
respectively, using for example the densities in (2.46), (2.47), or (2.48). The Doppler
spectrum, Sgg( f ), can be obtained by taking the Fourier transform of φgg(τ) or,
alternatively, by substituting the azimuth distribution p(θ ) directly into (2.38).

2.1.3 Received Envelope and Phase Distribution

2.1.3.1 Rayleigh Fading

When the composite received signal consists of a large number of sinusoidal
components, the received complex envelope g(t) = gI(t) + jgQ(t) can be treated
as a complex Gaussian random process. For some types of scattering environments,
for example, 2D isotropic scattering, gI(t) and gQ(t) at any time t1 are independent
identically distributed Gaussian random variables with zero mean and variance
b0 = E[g2

I (t1)] = E[g2
Q(t1)]. Under these conditions, the magnitude of the received

complex envelope

α �
= |g(t1)|=

√

g2
I (t1)+ g2

Q(t1) (2.49)
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has a Rayleigh distribution at any time t1, as shown in (A.26), that is,

pα(x) =
x
b0

exp

{

− x2

2b0

}

, x ≥ 0. (2.50)

The average envelope power is Ωp = E[α2] = 2b0 so that

pα(x) =
2x
Ωp

exp

{

− x2

Ωp

}

, x ≥ 0. (2.51)

This type of fading is called Rayleigh fading. The corresponding squared envelope
α2 = |g(t1)|2 is exponentially distributed at any time t1 with density

pα2(x) =
1

Ωp
exp

{

− x
Ωp

}

, x ≥ 0. (2.52)

The squared envelope is important for the performance analysis of digital commu-
nication systems because it is proportional to the received signal power and, hence,
the received signal-to-noise ratio. This concept will be discussed in more detail in
Chap. 5.

2.1.3.2 Ricean Fading

As mentioned earlier, some types of scattering environments have a specular or
LoS component. In this case, gI(t) and gQ(t) are Gaussian random processes with
nonzero means mI(t) and mQ(t), respectively. If we again assume that gI(t) and
gQ(t) are uncorrelated, and the random variables gI(t1) and gQ(t1) have the same
variance b0, then the magnitude of the received complex envelope α = |g(t1)| at any
time t1 has a Ricean distribution as shown in (A.61), that is,

pα(x) =
x
b0

exp

{

−x2 + s2

2b0

}

Io

(
xs
b0

)

x ≥ 0, (2.53)

where

s2 = m2
I (t)+m2

Q(t) (2.54)

is called the noncentrality parameter. This type of fading is called Ricean fading and
is often used to describe fading in environments where an LoS or strong specular
path exists between the transmitter and receiver.

A very simple Ricean fading model assumes that the means mI(t) and mQ(t) are
constants, that is, mI(t) =mI and mQ(t) =mQ. Such an approach will certainly yield
a Ricean distributed envelope, but it lacks physical meaning. A better model has
been suggested by Aulin [16], such that the azimuth distribution p(θ ) is defined
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in (2.41) and is shown in Fig. 2.7. In this case, the LoS or specular component
determines the means mI(t) and mQ(t) of the in-phase and quadrature components,
respectively, as follows:

mI(t) = s · cos(2π fm cos(θ0)t +φ0) (2.55)

mQ(t) = s · sin(2π fm cos(θ0)t +φ0), (2.56)

where fm cos(θ0) and φ0 are the Doppler shift and random phase associated with the
LoS or specular component, respectively.

The Rice factor, K, is defined as the ratio of the LoS or specular power s2

to scattered power 2b0, that is, K = s2/2b0. When K = 0, there is no LoS or
specular component and the envelope exhibits Rayleigh fading. When K = ∞, there
is no scatter component and the channel does not exhibit any fading. The envelope
distribution can be rewritten in terms of the Rice factor and the average envelope
power E[α2] = Ωp = s2 + 2b0 by first noting that

s2 =
KΩp

K + 1
, b0 =

Ωp

2(K + 1)
. (2.57)

Substituting s2 and b0 into (2.53) yields

pα(x) =
2x(K + 1)

Ωp
exp

{

−K − (K + 1)x2

Ωp

}

Io

(

2x

√
K(K + 1)

Ωp

)

, x ≥ 0. (2.58)

Figure 2.10 shows the Rice pdf for several values of K. The curve for K = 0 is the
Rayleigh pdf.

The squared envelope α2 = |g(t1)|2 at any time t1 has the following noncentral
chi-square distribution with two degrees of freedom:

pα2(x) =
(K + 1)

Ωp
exp

{

−K − (K + 1)x
Ωp

}

Io

(

2

√
K(K + 1)x

Ωp

)

, x ≥ 0. (2.59)

2.1.3.3 Nakagami Fading

The Nakagami distribution was introduced by Nakagami in the early 1940s to
characterize rapid fading in long distance HF channels [191]. The Nakagami
distribution was selected to fit empirical data and is known to provide a closer
match to some measurement data than either the Rayleigh, Ricean, or log-normal
distributions [49].
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Fig. 2.10 The Rice pdf for
several values of K with
Ωp = 1
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Nakagami fading describes the magnitude of the received complex envelope by
the distribution

pα(x) = 2

(
m

Ωp

)m x2m−1

Γ(m)
exp

{

−mx2

Ωp

}

m ≥ 1
2
, (2.60)

where Ωp = E[α2]. Figure 2.11 shows the Nakagami distribution for several values
of the shape factor, m. Beyond its empirical justification, the Nakagami distribution
is often used for the following reasons. First, the Nakagami distribution can model
fading conditions that are either more or less severe than Rayleigh fading. When
m = 1, the Nakagami distribution becomes the Rayleigh distribution, when m = 1/2
it becomes a one-sided Gaussian distribution, and when m → ∞ the distribution
approaches an impulse (no fading). Second, the Rice distribution can be closely
approximated using the following relation between the Rice factor K and the
Nakagami shape factor m [191];

K ≈
√

m2 −m+m− 1 (2.61)

m ≈ (K + 1)2

(2K + 1)
. (2.62)
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Fig. 2.11 The Nakagami pdf
for several values of m with
Ωp = 1
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Finally, since the Rice distribution contains a Bessel function while the Nakagami
distribution does not, the Nakagami distribution often leads to convenient closed
form analytical expressions that may otherwise be intractable.

With Nakagami fading, the squared envelope has the Gamma distribution

pα2(x) =

(
m
Ωp

)m xm−1

Γ(m)
exp

{

−mx
Ωp

}

. (2.63)

Using the relationship between the K factor and the shape factor m in (2.61), the
cumulative distribution function (cdf), Fα2(x) = P(α2 ≤ x) of the squared envelope
with Nakagami and Ricean fading is plotted in Fig. 2.12. It is apparent from Fig. 2.12
that a Gamma distribution can approximate a noncentral chi-square distribution to a
reasonable degree of accuracy. However, the reader is cautioned that the tails of the
pdf are often the most important. The reason is that bit errors in a communication
link tend to occur during deep fades, which correspond to small values of x in the
cdf. Figure 2.12 does not show how well the tails of a Ricean pdf are approximated
by a Nakagami pdf.
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Fig. 2.12 Comparison of the
cdf of the squared envelope
with Ricean and Nakagami
fading
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2.1.3.4 Envelope Phase

The phase of the received complex envelope g(t) = gI(t)+ jgQ(t) is

φ(t) = Tan−1
(

gQ(t)
gI(t)

)

. (2.64)

For Rayleigh fading, gI(t1) and gQ(t1) are independent identically distributed zero-
mean Gaussian random variables at any time t1. It follows (Appendix A.3.2.4) that
the phase φ ≡ φ(t1) at any time t1 is uniformly distributed over the interval [−π ,π),
that is,

pφ (x) =
1

2π
, −π ≤ x ≤ π . (2.65)

For Ricean fading channels, the phase φ is not uniformly distributed and takes on a
more complicated integral form.
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2.1.4 Envelope Correlation and Spectra

The autocorrelation of the envelope α(t) = |g(t)| of a complex Gaussian random
process can be expressed in terms of the hypergeometric function F(·, ·; ·, ·) as [72]

φαα(τ) = E[α(t) α(t + τ)]

=
π
2
|φgg(0)|F

(

−1
2
,−1

2
;1,

|φgg(τ)|2
|φgg(0)|2

)

, (2.66)

where

|φgg(τ)|2 = φ2
gIgI

(τ)+φ2
gIgQ

(τ). (2.67)

The above expression is analytically cumbersome, but fortunately a useful
approximation can be obtained by expanding the hypergeometric function into the
following infinite series:

F

(

−1
2
,−1

2
;1,x

)

= 1+
1
4

x+
1

64
x2 + · · · (2.68)

Neglecting the terms beyond second order yields the approximation

φαα(τ)
.
=

π
2
|φgg(0)|

(

1+
1
4
|φgg(τ)|2
|φgg(0)|2

)

. (2.69)

At τ = 0, the approximation gives φαα(0) = 5πΩp/8, whereas the true value is
φαα(0) = Ωp. Hence, the relative error in the signal power is only 1.86%, leading
us to believe that the approximation is probably very good.

The psd of the received envelope can be obtained by taking the Fourier transform
of φαα(τ). The psd will include a discrete spectral component at f = 0 due to the
dc component of the received envelope. Since we are primarily interested in the
continuous portion of the psd, the autocovariance function λαα(τ) is of interest,
where

λαα(τ) = E[α(t)α(t + τ)]−E[α(t)]E[α(t+ τ)]

=
π
2
|φgg(0)|

(

1+
1
4
|φgg(τ)|2
|φgg(0)|2

)

− π
2
|φgg(0)|

=
π

8|φgg(0)| |φgg(τ)|2. (2.70)

For 2D isotropic scattering and an isotropic receiver antenna |φgg(τ)|2 = φ2
gIgI

(τ)
and, therefore,

λαα(τ) =
πΩp

16
J2

0(2π fmτ). (2.71)
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Fig. 2.13 Normalized envelope autocovariance against the normalized time delay fmτ for a 2D
isotropic scattering with an isotropic receiver antenna

Figure 2.13 plots the normalized envelope auto-covariance λαα(τ)/(πΩp/16)
against the normalized time delay fmτ for the case of 2D isotropic scattering and an
isotropic receiver antenna.

The Fourier transform of λαα(τ) yields the continuous portion Sc
αα( f ) of

the envelope psd Sαα( f ), and can be calculated using the identities |φgg(τ)|2 =
φgg(τ)φ∗

gg(τ) and φgg(τ) = φ∗
gg(−τ) to write

Sc
αα( f ) =

π
8|φgg(0)|Sgg( f )∗ Sgg( f )

=
π

8|φgg(0)|
∫ ∞

−∞
Sgg(x)Sgg(x− f )dx

=
π

8|φgg(0)|
∫ fm−| f |

− fm
Sgg(x)Sgg(x+ | f |)dx, 0 ≤ | f | ≤ 2 fm. (2.72)

Note that Sαα( f ) is always real, positive, and even. It is centered about f = 0 with
a spectral width of 4 fm, where fm is the maximum Doppler frequency. To proceed
further, we need to specify Sgg( f ). With 2D isotropic scattering and an isotropic
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Fig. 2.14 Continuous portion of the normalized envelope psd against the normalized frequency
f / fm for a 2D isotropic scattering channel with an isotropic receiver antenna

receiver antenna Sgg( f ) = SgIgI( f ), where SgIgI( f ) is given by (2.31). The result
from evaluating (2.72) is (see Problem 2.9)

Sc
αα( f ) =

Ωp

16π
1
fm

K

⎛

⎝

√

1−
(

f
2 fm

)2
⎞

⎠ 0 ≤ | f | ≤ 2 fm, (2.73)

where K( · ) is the complete elliptic integral of the first kind, defined by

K(γ) =
∫ 1

0

dx
√
(1− x2)(1− γ2x2)

. (2.74)

The continuous portion of the normalized envelope psd Sαα( f )/(Ωp/16π fm) is
plotted against the normalized frequency f/ fm in Fig. 2.14.

The psd of the received envelope α(t) for a non-isotropic scattering channel
can be obtained using the above procedure. For example, consider the particular
scattering environment shown in Fig. 2.7 with the associated Doppler spectrum
in (2.45). To obtain the continuous portion of the psd of the envelope α(t), we
substitute (2.45) into (2.72) to obtain (see Problem 2.10)
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Fig. 2.15 Continuous portion of the normalized envelope psd against the normalized frequency
f / fm for the scattering environment shown in Fig. 2.7; K = 10 and θ0 = π/3

Sc
αα( f ) =

(
1

K + 1

)2 Ωp

16π fm

⎛

⎝K

⎛

⎝

√

1−
(

f
2 fm

)2
⎞

⎠

+
Kπ

√
1− ( f/ fm + cos(θ0))2

+
Kπ

√
1− ( f/ fm − cos(θ0))2

+K2π2 fmδ ( f )

)

.

(2.75)

Figure 2.15 shows a plot of the continuous portion of the normalized envelope psd
Sαα( f )/(Ωp/(K + 1)216π fm) against the normalized frequency f/ fm for K = 10
and θ0 = π/3.

2.1.4.1 Squared-Envelope Correlation and Spectrum

The autocorrelation of the squared envelope is

φα2α2(τ) = E[α2(t)α2(t + τ)]. (2.76)
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Since α2(t) = g2
I (t)+ g2

Q(t), it follows that

φα2α2(τ) = E[g2
I (t)g

2
I (t + τ)]+E[g2

Q(t)g
2
Q(t + τ)]

+E[g2
I (t)g

2
Q(t + τ)]+E[g2

Q(t)g
2
I (t + τ)]. (2.77)

First consider the case where the propagation environment is such that gI(t)
and gQ(t) have zero mean. Then the squared-envelope autocorrelation is (see
Problem 2.11)

φα2α2(τ) = 4φ2
gIgI

(0)+ 4φ2
gIgI

(τ)+ 4φ2
gIgQ

(τ)

= 4φ2
gIgI

(0)+ 4
∣
∣φgg(τ)

∣
∣2 . (2.78)

Finally, the squared-envelope autocovariance is

λα2α2(τ) = φα2α2(τ)−E2[α2(t)]

= 4
∣
∣φgg(τ)

∣
∣2 . (2.79)

With 2D isotropic scattering and an isotropic receiver antenna, the above expression
reduces to

λα2α2(τ) = Ω 2
p J2

0 (2π fmτ). (2.80)

By comparing (2.70) and (2.79), we observe that the approximate autocorrelation
function of the envelope and the exact autocorrelation function of the squared
envelope are identical, except for a multiplicative constant. If the propagation
environment is characterized by a specular or LoS component (e.g., Ricean fading),
then gI(t) and gQ(t) have nonzero means and the autocovariance of the squared
envelope has a more complicated form. Let

gI(t) = ĝI(t)+mI(t), (2.81)

gQ(t) = ĝQ(t)+mQ(t), (2.82)

where mI(t) and mQ(t) are the means of gI(t) and gQ(t), respectively. From
Problem 2.12,

φα2α2(τ) = 4|φĝĝ|2(τ)+ 4φ2
ĝIĝI

(0)+ 4Re
{

m(t)m∗(t + τ)φĝĝ(τ)
}

+2
(|m(t)|2 + |m(t + τ)|2)φĝIĝI(0)+ |m(t)|2|m(t + τ)|2, (2.83)

where

m(t) = mI(t)+ jmQ(t), (2.84)

m(t + τ) = mI(t + τ)+ jmQ(t + τ). (2.85)

The squared-envelope autocovariance is

λα2α2(τ) = 4
∣
∣φĝĝ(τ)

∣
∣2 + 4Re

{
m(t)m∗(t + τ)φĝĝ(τ)

}
. (2.86)
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Fig. 2.16 Squared-envelope autocovariance against the normalized time delay fmτ for the scatter-
ing environment shown in Fig. 2.7

Consider the scattering environment shown in Fig. 2.7. The corresponding correla-
tion functions φgIgI(τ) and φgIgQ(τ) are given by (2.42) and (2.43), respectively, and
the means mI(t) and mQ(t) are defined in (2.55) and (2.56). It can be shown that

φĝIĝI(τ) =
1

K + 1
Ωp

2
J0(2π fmτ), (2.87)

φĝIĝQ(τ) = 0 (2.88)

and

m(t)m∗(t + τ) = s2
(

cos(2π fmτ cos(θ0))− j sin(2π fmτ cos(θ0))
)

=
KΩp

K + 1

(
cos(2π fmτ cos(θ0))− j sin(2π fmτ cos(θ0))

)
,

(2.89)

where K is the Rice factor and θ0 is the angle that the specular component makes
with the MS direction of motion. Using these results in (2.86) gives

λα2α2(τ) =
(

Ωp

K + 1

)2

J0(2π fmτ)
(

J0(2π fmτ)+ 2K cos(2π fmτ cos(θ0))
)
.

(2.90)

The normalized squared-envelope autocovariance is plotted in Fig. 2.16 as a func-
tion of the normalized time delay fmτ for various values of K and θ0.
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2.1.5 Level Crossing Rates and Fade Durations

Two important second-order statistics associated with envelope fading are the level
crossing rate (how often the envelope crosses a specified level) and the average fade
duration (how long the envelope remains on average below a specified level). These
quantities are affected not only by the scattering environment but also by the velocity
of the MS.

2.1.5.1 Envelope Level Crossing Rate

The envelope level crossing rate at a specified envelope level R, LR, is defined as
the rate (in crossings per second) at which the envelope α crosses the level R in
the positive (or negative) going direction. Obtaining the level crossing rate requires
the joint pdf, p(α, α̇), of the envelope level α = |g(t1)| and the envelope slope
α̇ = d|g(t1)|/dt at any time instant t1.1 In terms of the joint pdf p(α, α̇), the expected
amount of time the envelope lies in the interval (R,R+ dα) for a given envelope
slope α̇ and time increment dt is

p(R, α̇)dαddα̇dt. (2.91)

The time required for the envelope α to traverse the interval (R,R+ dα) once for a
given envelope slope α̇ is

dα/α̇. (2.92)

The ratio of these two quantities is the expected number of crossings of the envelope
α within the interval (R,R+ dα) for a given envelope slope α̇ and time increment
dt, viz.

α̇ p(R, α̇)dα̇dt. (2.93)

The expected number of crossings of the envelope level R for a given envelope slope
α̇ in a time interval of duration T is

∫ T

0
α̇ p(R, α̇)dα̇dt = α̇ p(R, α̇)dα̇T. (2.94)

The expected number of crossings of the envelope level R with a positive slope in
the time interval T is

NR = T
∫ ∞

0
α̇ p(R, α̇)dα̇. (2.95)

1For simplicity of notation, we suppress the time variable and simply write α ≡ α(t1) and
α̇ ≡ α̇(t1).
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Finally, the expected number of crossings per second of the envelope level R, or the
level crossing rate, is

LR =

∫ ∞

0
α̇ p(R, α̇)dα̇. (2.96)

This is actually a general result that applies to any random process characterized by
the joint pdf p(α, α̇).

Rice has derived the joint pdf p(α, α̇) for a sine wave plus Gaussian noise [225].
A Ricean fading channel consists of LoS or specular (sine wave) component plus
a scatter (Gaussian noise) component. For the case of a Ricean fading channel, we
have the joint density function

p(α, α̇) =
α(2π)−3/2

√
Bb0

×
∫ π

−π
exp

{

− 1
2Bb0

[
B
(
α2 − 2αscos(θ )+ s2)

+(b0α̇ + b1ssin(θ ))2
]}

dθ , (2.97)

where s is the non-centrality parameter in the Rice distribution, and B = b0b2 − b2
1,

and where b0, b1, and b2 are constants that are derived from the power spectrum
of the scatter component. For the scattering environment described by (2.41) and
Fig. 2.7, the sine wave corresponds to the specular component arriving at angle θ0,
while the Gaussian noise is due to the scatter component with azimuth distribution
p̂(θ ) = 1/(2π),−π ≤ θ ≤ π . Note that the joint pdf derived by Rice in (2.97) is
general enough to apply to scattering environments described by other p̂(θ ) as well.

Suppose that the specular or LoS component of the complex envelope g(t) has a
Doppler frequency equal fq = fm cos(θ0), where 0 ≤ | fq| ≤ fm. In this case [225]

bn = (2π)n
∫ fm

− fm
Sc

gg( f )( f − fq)
nd f (2.98)

= (2π)nb0

∫ 2π

0
p̂(θ )G(θ )

(
fm cos(θ )− fq

)n
dθ , (2.99)

where p̂(θ ) is the azimuth distribution of the scatter component, G(θ ) is the antenna
gain pattern, and Sc

gg( f ) is the corresponding continuous portion of the Doppler
power spectrum. Equivalence between (2.98) and (2.99) can be established using
(2.38). Note that Sc

gg( f ) is given by the Fourier transform of

φ c
gg(τ) = φ c

gIgI
(τ)+ jφ c

gIgQ
(τ), (2.100)

where

φ c
gIgI

(τ) =
Ωp

2

∫ 2π

0
cos(2π fmτ cos(θ ))p̂(θ )G(θ )dθ , (2.101)
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φ c
gIgQ

(τ) =
Ωp

2

∫ 2π

0
sin(2π fmτ cos(θ ))p̂(θ )G(θ )dθ . (2.102)

In some special cases, the psd Sc
gg( f ) is symmetrical about the frequency fq =

fm cos(θ0). This condition occurs, for example, when fq = 0 (θ0 = 90o), p̂(θ ) =
1/(2π),−π ≤ θ ≤ π , and G(θ ) = 1. In this case, bn = 0 for all odd values of n (and
in particular b1 = 0) so that (2.97) reduces to the convenient product form

p(α, α̇) =

√
1

2πb2
exp

{

− α̇2

2b2

}

· α
b0

exp

{

− (α2 + s2)

2b0

}

I0

(
αs
b0

)

= p(α̇) · p(α). (2.103)

Since p(α, α̇) = p(α̇) · p(α) in (2.103), it follows that α and α̇ are statistically
independent. When fq = 0 and p̂(θ ) = 1/(2π), a closed form expression can be
obtained for the envelope level crossing rate. Substituting (2.40) into (2.98) gives

bn =

{
b0(2π fm)

n 1·3·5 ··· (n−1)
2·4·6 ··· n n even

0 n odd
. (2.104)

Therefore, b1 = 0 and b2 = b0(2π fm)
2/2. By substituting the joint density in (2.103)

into (2.96) and using the expression for b0 in (2.57), we obtain the envelope level
crossing rate

LR =
√

2π(K + 1) fmρe−K−(K+1)ρ2
I0

(
2ρ
√

K(K + 1)
)
, (2.105)

where

ρ =
R
√

Ωp
=

R
Rrms

(2.106)

and Rrms
�
=
√

E[α2] is the rms envelope level. Under the further condition that K = 0
(Rayleigh fading), the above expression simplifies to

LR =
√

2π fmρe−ρ2
. (2.107)

Notice that the level crossing rate is directly proportional to the maximum Doppler
frequency fm and, hence, the MS speed v = fm/λc. The normalized level crossing
rate LR/ fm in (2.105) is plotted in Fig. 2.17 as a function of ρ and K.

2.1.5.2 Zero Crossing Rate

Recall that received complex envelope g(t) = gI(t)+ gQ(t) is a complex Gaussian
random process. If the channel is characterized by a specular or LoS component,
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Fig. 2.17 Normalized level crossing rate for the scattering environment shown in Fig. 2.7 with
θ0 = 90o

then gI(t) and gQ(t) have mean values mI(t) and mQ(t), respectively. Here we are
interested in the zero crossing rate of the zero-mean Gaussian random processes
ĝI(t) = gI(t)−mI(t) and ĝQ(t) = gQ(t)− mQ(t). Rice [225] has derived this zero
crossing rate as

LZ =
1
π

√
b2

b0
. (2.108)

When the scatter component has the azimuth distribution p̂(θ ) = 1/(2π),−π ≤ θ ≤
π , the zero crossing rate is

LZ =
√

2 fm. (2.109)

Similar to the level crossing rate, the zero crossing rate is directly proportional to
the maximum Doppler frequency fm.

2.1.5.3 Average Fade Duration

Another quantity of interest is the average duration that the envelope remains below
a specified level R. Although the pdf of the envelope fade duration is unknown, the
average fade duration can be calculated. Consider a very long time interval of length
T and let ti be the duration of the ith fade below the level R. The probability that the
received envelope is less than R is

P[α ≤ R] =
1
T ∑

i

ti. (2.110)
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The average fade duration is equal to

t̄ =
∑i ti
TLR

=
P[α ≤ R]

LR
. (2.111)

If the envelope is Ricean distributed as in (2.58), then

P(α ≤ R) =
∫ R

0
p(α)dα = 1−Q

(√
2K,
√

2(K + 1)ρ2

)

, (2.112)

where Q(a,b) is the Marcum Q function. Moreover, if we again assume that fq = 0
and p̂(θ ) = 1/(2π), we have

t̄ =
1−Q

(√
2K,
√

2(K + 1)ρ2
)

√
2π(K+ 1) fmρe−K−(K+1)ρ2I0

(
2ρ
√

K(K + 1)
) . (2.113)

If K = 0 (Rayleigh fading), then

P[α ≤ R] =
∫ R

0
p(α)dα = 1− e−ρ2

(2.114)

and

t̄ =
eρ2 − 1

ρ fm
√

2π
. (2.115)

The normalized average fade duration t̄ fm in (2.113) is plotted in Fig. 2.18 as a
function of ρ .

The level crossing rate, zero crossing rate, and average fade duration all depend
on the velocity of the MS, since fm = v/λc. Very deep fades tend to occur
infrequently and do not last very long. For example, at 60 miles/h and 900 MHz, the
maximum Doppler frequency is fm = 80 Hz. Therefore, with 2D isotropic scattering
and Rayleigh fading (K = 0), there are LR = 74 fades/s at ρ = 0 dB with an average
fade duration of 8.5 ms. However, at ρ = −20 dB there are only 20 fades/s with an
average fade duration of 0.5 ms. Note that since ρ represents a normalized envelope
(magnitude) level, we use ρ(dB) = 20log10 ρ . We can also observe from Fig. 2.17
that for small ρ(dB), the level crossing rate decreases with an increasing Rice factor
K. Furthermore, we see from Fig. 2.18 that for small ρ(dB) the average fade duration
increases with increasing K. Hence, as K increases the fades occur less frequently,
but last longer when they do occur.

2.1.6 Space–Time Correlation

Many mobile radio systems use receiver antenna diversity, where spatially separated
receiver antennas are used to provide multiple faded replicas of the same informa-
tion bearing signal. In order for such diversity systems to provide the maximum
diversity gain, it is desirable that the multiple faded replicas experience uncorrelated
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Fig. 2.18 Normalized average fade duration for the scattering environment shown in Fig. 2.7 with
θ0 = 90o

fading. The spatial correlation characteristics are needed for determining the
required spatial separation between antenna elements so that they are sufficiently
decorrelated. Moreover, it is sometimes desirable to simultaneously characterize
both the spatial and temporal channel correlation characteristics. For these purposes,
space–time correlation functions are useful. To obtain the space–time correlation
functions, it is necessary to specify the scattering geometry. One possibility for
NLoS conditions is the single-ring model shown in Fig. 2.19, where the BS and MS
are located at OB and OM, respectively, and separated by distance D, and the scatter-
ers are assumed to be located on a ring of radius R centered around the MS such that

D  R. We consider two MS antennas, A(q)
M ,q = 1,2, separated by distance δM. The

MS antenna array is oriented with angle θM with respect to the x-axis, and the MS
moves with velocity v and angle γM with respect to the x-axis. For the environment

shown in Fig. 2.19, the channel from OB to A(q)
M has the complex envelope

gq(t) =
N

∑
n=1

Cnejφn−j2π(εn+εnq)/λce
j2π fmt cos

(
α(n)

M −γM

)

, q = 1,2, (2.116)

where εn and εnq denote the distances OB −Sn and S(n)M −A(q)
M , q = 1,2, respectively.

From the law of cosines, the distances εn and εnq can be expressed as a function of

the AoA α(n)
M as follows:

ε2
n = D2 +R2 + 2DRcos

(
α(n)

M

)
, (2.117)

ε2
nq = ((1.5− q)δM)2 +R2 − 2(1.5− q)δMRcos

(
α(n)

M −θM

)
, q = 1,2. (2.118)
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Fig. 2.19 Single-ring scattering model for NLoS propagation on the forward link of a cellular
system. The MS is surrounded by a scattering ring of radius R and is at distance D from the BS,
where R � D

Recognizing that R/D � 1, δM � R and
√

1± x ≈ 1± x/2 for small x, we have

εn ≈ D+Rcos
(

α(n)
M

)
, (2.119)

εnq ≈ R− (1.5− q)δM cos
(

α(n)
M −θM

)
, q = 1,2. (2.120)

Substituting (2.119) and (2.120) into (2.116) gives

gq(t) =
N

∑
n=1

Cne
jφn−j2π

(
D+Rcosα(n)

M +R−(1.5−q)δM cos(α(n)
M −θM)

)
/λc

×ej2π fmt cos(α(n)
M −γM), q = 1,2. (2.121)

The space–time correlation function between the two complex faded envelopes g1(t)
and g2(t) is

φg1,g2(δM,τ) =
1
2

E
[
g1(t)g2(t + τ)∗

]
. (2.122)

Using (2.121) and (2.122), the space–time correlation function between g1(t) and
g2(t) can be written as

φg1,g2(δM,τ) =
Ωp

2N

N

∑
n=1

E

[

e
j2π(δM/λc)cos

(
α(n)

M −θM

)

e
−j2π fmτ cos

(
α(n)

M −γM

)]

. (2.123)
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Since the number of scatters is infinite, the discrete angles of arrival α(n)
M can be

replaced with a continuous random variable αM with probability density function
p(αM). Hence, the space–time correlation function becomes

φg1,g2(δM,τ) =
Ωp

2

∫ 2π

0
ejbcos(αM−θM)e−jacos(αM−γM)p(αM)dαM, (2.124)

where a = 2π fmτ and b = 2πδM/λc.
For the case of 2D isotropic scattering with isotropic MS antenna, p(αM) =

1/(2π),−π ≤ αM ≤ π , and the space–time correlation function becomes

φg1,g2(δM,τ) =
Ωp

2
J0

(√

a2 + b2 − 2abcos(θM − γM)

)

. (2.125)

The spatial and temporal correlation functions can be obtained by setting τ = 0
and δM = 0, respectively. This gives φg1,g2(δM) = φg1,g2(δM,0) = Ωp

2 J0(2πδM/λc)

and φgg(τ) = φg1,g2(0,τ) =
Ωp
2 J0(2π fmτ), which matches our earlier result in (2.26)

as expected. For the case of 2D isotropic scattering and an isotropic MS antenna,
it follows that Fig. 2.13 also plots the normalized envelope spatial autocovariance
function λαα(�)/(πΩp/16) against the normalized spatial separation fmτ = δM/λc.
The spatial autocovariance function is zero at δM/λc = 0.38 and is less than 0.3 for
δM/λc > 0.38. The implication is that under conditions of 2D isotropic scattering
and isotropic MS antennas, sufficient spatial decorrelation can be obtained by
spacing the MS antenna elements a half wavelength apart.

2.1.6.1 Received Signal at the Base Station

Radio channels are reciprocal in the sense that if a propagation path exists, it will
carry energy equally well in either the uplink or downlink directions. That is, the
plane waves in either direction will propagate by exactly the same set of scatterers.
Therefore, we expect that the temporal autocorrelation functions and Doppler
spectra will be the same for both the uplink and downlink directions. However, for
cellular land mobile radio applications, most of the scatters are in the vicinity of the
MS, while the BS antennas are elevated and free of local scatters. Consequently, the
plane waves will arrive at the BS antennas with a narrow AoA spread, whereas they
arrive with a large AoA spread at the MS. This will cause significant differences in
the spatial correlation properties of the uplink and downlink. As we will see, a much
larger spatial distance is required to obtain a given degree of spatial decorrelation at
the BS as compared to the MS.

To obtain the space–time correlation functions, it is once again necessary to
specify the scattering geometry. One possibility for NLoS conditions is the single
ring model shown in Fig. 2.20, where the MS and BS are located at OM and OB,
respectively, and separated by distance D, and the scatterers are assumed to be
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Fig. 2.20 Single-ring scattering model for NLoS propagation on the reverse link of a cellular
system. The MS is surrounded by a scattering ring of radius R and is at distance D from the BS,
where R � D

located on a ring of radius R centered around the MS such that D  R. We consider

two BS antennas, A(q)
B ,q = 1,2, separated by distance δB. The BS antenna array is

oriented with angle θB with respect to the x-axis, and the MS moves with velocity v
and angle γM with respect to the x-axis. For the environment shown in Fig. 2.20, the

channel from OM to A(q)
B has the complex envelope

gq(t) =
N

∑
m=1

Cmejφm−j2π(R+εmq)/λce
j2π fmt cos

(
α(m)

M −γM

)

, q = 1,2, (2.126)

where εmq denotes the distance S(m)
M −A(q)

B , q = 1,2. To proceed further, we need to

express εmq as a function of α(m)
M .

Applying the cosine law to the triangle �S(m)
M OBA(q)

B , the distance εmq can be

expressed as a function of the angle θ (m)
B −θB as follows:

ε2
mq = ((1.5− q)δB)

2 + ε2
m − 2(1.5− q)δBεm cos

(
θ (m)

B −θB

)
,q = 1,2, (2.127)

where εm is the distance S(m)
M − OB. By applying the sine law to the triangle

�OMS(m)
M OB, we obtain the following identity

εm

sin
(

α(m)
M

) =
R

sin
(

π −θ (m)
B

) =
D

sin
(

π −α(m)
M −

(
π −θ (m)

B

)) . (2.128)
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Since the angle π − θ (m)
B is small, we can apply the small angle approximations

sinx ≈ x and cosx ≈ 1 for small x, to the second equality in the above identity. This
gives

R
(

π −θ (m)
B

) ≈ D

sin
(

π −α(m)
M

) (2.129)

or
(

π −θ (m)
B

)
≈ (R/D)sin

(
π −α(m)

M

)
. (2.130)

It follows that the cosine term in (2.127) becomes

cos
(

θ (m)
B −θB

)
= cos

(
π −θB −

(
π −θ (m)

B

))

= cos(π −θB)cos
(

π −θ (m)
B

)
+ sin(π −θB)sin

(
π −θ (m)

B

)

≈ cos(π −θB)+ sin(π −θB)(R/D)sin
(

π −α(m)
M

)

= −cos(θB)+ (R/D)sin(θB)sin
(

α(m)
M

)
. (2.131)

Substituting the approximation in (2.131) into (2.127), along with δB/εm � 1, gives

ε2
mq ≈ ε2

m

(

1− 2(1.5− q)
δB

εm

(
(R/D)sin(θB)sin

(
α(m)

M

)
− cos(θB)

))

. (2.132)

Applying the approximation
√

1± x ≈ 1± x/2 for small x, we have

εmq ≈ εm − (1.5− q)δB

(
(R/D)sin(θB)sin

(
α(m)

M

)
− cos(θB)

)
. (2.133)

Applying the cosine law to the triangle �OMS(m)
M OB, we have

ε2
m = D2 +R2 − 2DRcos

(
α(m)

M

)

≈ D2
(

1− 2(R/D)cos
(

α(m)
M

))
, (2.134)

and again using the approximation
√

1± x ≈ 1± x/2 for small x, we have

εm ≈ D−Rcos
(

α(m)
M

)
. (2.135)

Finally, using (2.135) in (2.127) gives

εmq ≈ D−Rcos
(

α(m)
M

)
− (1.5− q)δB

(
(R/D)sin(θB) sin

(
α(m)

M

)
− cos(θB)

)
.

(2.136)
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Substituting (2.136) into (2.126) gives the result

gq(t) =
N

∑
m=1

Cme
jφm+j2π fmt cos

(
α(m)

M −γM

)

×e
−j2π

(
R+D−Rcos

(
α(m)

M

)
−(1.5−q)δB

(
(R/D)sin(θB)sin

(
α(m)

M

)
−cos(θB)

))
/λc,

(2.137)

which is a function of the azimuth angle of departure α(m)
M .

The space–time correlation function between the two complex faded envelopes
g1(t) and g2(t) at the BS is once again given by (2.122). Using (2.137) and (2.122),
the space–time correlation function between g1(t) and g2(t) can be written as
follows:

φg1,g2(δB,τ) =
Ωp

2N

N

∑
m=1

E

[

e
j2π(δB/λc)

(
(R/D)sin(θB)sin

(
α(m)

M

)
−cos(θB)

)

×e
−j2π fmτ cos

(
α(m)

M −γM

)]

. (2.138)

Since the number of scatters around the MS is infinite, the discrete angles-of-arrival

α(m)
M can be replaced with a continuous random variable αM with probability density

function p(αM). Hence, the space–time correlation function becomes

φg1,g2(δB,τ) =
Ωp

2

∫ π

−π
e−jacos(αM−γM)ejb((R/D)sin(θB)sin(αM)−cos(θB))p(αM)dαM,

(2.139)
where a = 2π fmτ and b = 2πδB/λc.

For the case of 2D isotropic scattering with an isotropic MS transmit antenna,
p(αM) = 1/(2π),−π ≤ αM ≤ π , and the space–time correlation function becomes

φg1,g2(δB,τ) =
Ωp

2
e−jbcos(θB)

×J0

(√

a2 + b2(R/D)2 sin2(θB)− 2ab(R/D)sin(θB)sin(γM)

)

.

(2.140)

The spatial and temporal correlation functions can be obtained by setting τ = 0 and
δB = 0, respectively. For the temporal correlation function φgg(τ) = φg1,g2(0,τ) =
Ωp
2 J0(2π fmτ) which matches our earlier result in (2.26) as expected. The spatial

correlation function is

φg1,g2(δB) = φg1,g2(δB,0) =
Ωp

2
e−jbcos(θB)J0

(
b(R/D)sin(θB)

)
. (2.141)
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Fig. 2.21 Envelope cross-correlation magnitude at the base station for R = 60 m and various
arrival angles, θB; D = 3,000 m

Figure 2.21 plots the magnitude of the normalized spatial envelope cross-
covariance function, |φg1,g2(δB)|/(Ωp/2), for R = 60 m and various BS array
orientation angles θB. Likewise, Fig. 2.22 plots |φg1,g2(δB)|/(Ωp/2) for θB = π/3
and various scattering radii, R. In general, we observe that a much greater spatial
separation is required to achieve a given degree of envelope decorrelation at the
BS as compared to the MS. This can be readily seen by the term R/D � 1 in the
argument of the Bessel function in (2.141). Also, the spatial correlation increases as
the angle θB and scattering radii R decrease. BS antenna arrays that are broadside
with the MS direction will experience the lowest correlation, while those that are in-
line with the MS direction will experience the highest correlation. In fact, for in-line
antennas we have |φg1,g2(δB)|= 1.

2.2 Mobile-to-Mobile Channels

Mobile-to-mobile (M-to-M) communication channels arise when both the transmit-
ter and receiver are in motion and are equipped with low elevation antennas that
are surrounded by local scatterers. The statistical properties of M-to-M channels
differ significantly from those of conventional F-to-M cellular land mobile radio
channels, where the mobile station is surrounded by local scatterers and the base
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Fig. 2.22 Envelope cross-correlation magnitude at the base station for θB = π/3 and various
scattering radii, R; D = 3,000 m

station is stationary, elevated, and relatively free of local scattering. Akki and
Haber [9, 10] were the first to propose a mathematical reference model for M-to-
M flat fading channels under NLoS propagation conditions. The Akki and Haber
model was extended by Vatalaro and Forcella [262] to account for 3D scattering,
and by Linnartz and Fiesta [161] to include LoS propagation conditions. Channel
measurements for outdoor-to-outdoor, narrow-band outdoor-to-indoor, and wide-
band mobile-to-mobile communications have been reported in [7,143,146,175], and
methods for simulating M-to-M channels have been proposed in [204, 277, 301].

2.2.1 Mobile-to-Mobile Reference Model

Akki and Haber’s mathematical reference model for M-to-M flat fading channels
gives the complex faded envelope as [10]

g(t) =

√
1
N

N

∑
n=1

e
j2π
(

f T
m cos

(
α(n)

T

)
+ f R

m cos
(

α(n)
R

))
t+jφn , (2.142)
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where N is the number of propagation paths; f T
m and f R

m are the maximum Doppler

frequencies due to the motion of the transmitter and receiver, respectively; α(n)
T is the

random angle of departure and α(n)
R is the random AoA of the nth propagation path

measured with respect to the transmitter and receiver velocity vectors, respectively;

φn is a random phase uniformly distributed on [−π ,π) independent of α(n)
T and α(n)

R
for all n.

In the above model, the Doppler frequency experienced by each propagation
path is the sum of the individual Doppler frequencies induced by the motion of
the transmitter and receiver. Once again, for sufficiently large N, the central limit
theorem can be invoked with the result that gI(t) and gQ(t) can be treated as
zero-mean Gaussian random processes. If we assume omnidirectional transmitter
and receiver antennas and 2D isotropic scattering around both the transmitter and
receiver, then the envelope |g(t)| is Rayleigh distributed at any time t. This is similar
to the case of conventional fixed to mobile cellular land mobile radio channels with
2D isotropic scattering and an isotropic antenna at the MS. However, the ensemble
averaged temporal correlation functions of the faded envelope are quite different
and are as follows [9, 10]:

φgIgI(τ) =
1
2

J0(2π f T
mτ)J0(2πa f T

mτ),

φgQgQ(τ) =
1
2

J0(2π f T
mτ)J0(2πa f T

mτ),

φgIgQ(τ) = φgQgI(τ) = 0,

φgg(τ) =
1
2

J0(2π f T
mτ)J0(2πa f T

mτ), (2.143)

where a = f R
m/ f T

m is the ratio of the two maximum Doppler frequencies (or speeds)
of the receiver and transmitter, and 0 ≤ a ≤ 1 assuming f R

m ≤ f T
m. Observe that the

temporal correlation functions of M-to-M channels involve a product of two Bessel
functions in contrast to the single Bessel function found in F-to-M channels. Also,
a = 0 yields the temporal correlation functions for F-to-M channels as expected.
The corresponding Doppler spectrum obtained by taking the Fourier transform of
(2.143) is

Sgg( f ) =
1

π2 f T
m
√

a
K

⎛

⎝
1+ a
2
√

a

√

1−
(

f
(1+ a) f T

m

)2
⎞

⎠, (2.144)

where K( · ) is the complete elliptic integral of the first kind. The Doppler spectrum
of M-to-M channels in (2.144) differs from the classical spectrum of F-to-M cellular
land mobile radio channels, as illustrated in Fig. 2.23, which shows the Doppler
spectrum for different values of a.
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Fig. 2.23 Doppler spectrum for M-to-M and F-to-M channels

2.3 MIMO Channels

An MIMO system is one that consists, for example, of multiple transmit and receive
antennas as shown in Fig 2.24. For a system consisting of LT transmit and LR receive
antennas, the channel can be described by the LT ×LR matrix

G(t,τ) =

⎡

⎢
⎢
⎢
⎣

g1,1(t,τ) g1,2(t,τ) · · · g1,LT(t,τ)
g2,1(t,τ) g2,2(t,τ) · · · g2,LT(t,τ)

...
...

...
gLR,1(t,τ) gLR,2(t,τ) · · · gLR,LT(t,τ)

⎤

⎥
⎥
⎥
⎦
, (2.145)

where gqp(t,τ) denotes the time-varying sub-channel impulse response between the
pth transmit antenna and qth receive antenna.

Suppose that the complex envelopes of the signals transmitted from the LT

transmit antennas are described by the vector

s̃(t) = (s̃1(t), s̃2(t), . . . , s̃LT(t))
T , (2.146)

where s̃p(t) is the signal transmitted from the pth transmit antenna. Likewise, let

r̃(t) = (r̃1(t), r̃2(t), . . . , r̃LR(t))
T , (2.147)
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Fig. 2.24 MIMO system with multiple transmit and multiple receive antennas

denote the vector of received complex envelopes, where r̃q(t) is the signal received
at the qth receiver antenna. Then

r̃(t) =
∫ t

0
G(t,τ)s̃(t − τ)dτ. (2.148)

Under conditions of flat fading

G(t,τ) = G(t)δ (τ − τ̂), (2.149)

where τ̂ is the delay through the channel and

r̃(t) = G(t)s̃(t − τ̂). (2.150)

If the MIMO channel is characterized by slow fading, then

r̃(t) =
∫ t

0
G(τ)s̃(t − τ)dτ. (2.151)

In this case, the channel matrix G(τ) remains constant over the duration of the
transmitted waveform s̃(t), but can vary from one channel use to the next, where a
channel use may be defined as the transmission of either a single modulated symbol
or a vector of modulated symbols from each antenna. In the case of a vector of
modulated symbols, this type of channel is sometimes called a quasi-static fading
channel or a block fading channel. Finally, if the MIMO channel is characterized by
slow flat fading, then

r̃(t) = Gs̃(t). (2.152)

MIMO channel models can be classified as either physical or analytical models.
Physical MIMO models characterize the channel on the basis of electromagnetic
wave propagation between the transmitter and receiver antennas. Such physical
channel models can be further classified as deterministic models, geometry-based
stochastic models, and nongeometric stochastic models. Deterministic models
construct the MIMO channel in a completely deterministic manner, such as ray
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tracing and stored measurement data. With geometry-based stochastic models, the
time-variant MIMO channel impulse response is generated by applying the laws
of wave propagation to specific transmitter, receiver, and scattering geometries,
which are generated in a stochastic or random fashion [302–304]. The nongeometric
stochastic models determine physical parameters such as the angles of departure
and angles of arrival in a completely stochastic fashion by prescribing underlying
probability density functions, but not using an underlying geometry. These models
include the extended Saleh–Valenzuela models [53, 272].

The MIMO analytical models characterize the MIMO sub-channel impulse
responses in a mathematical manner without explicitly considering the underlying
electromagnetic wave propagation. Analytic models can be further classified as
propagation motivated models or correlation-based models. Propagation motivated
models include the finite scattering models [40], maximum entropy models [75],
and virtual channel representation [233]. Correlation-based models generate random
realizations of the channel matrix with specified correlations between the matrix
elements [140, 281]. These models are easy to implement, which has made them
very popular for MIMO channel simulations. Moreover, the analytical models are
relatively easy to understand and so we treat them here.

2.3.1 Analytical MIMO Channel Models

Analytical MIMO channel models are most often used under quasi-static flat
fading conditions. We have seen earlier that the time-variant channel impulses for
flat fading channels can be treated as complex Gaussian random processes under
conditions of Rayleigh and Ricean fading. The various analytical models generate
the MIMO matrices as realizations of complex Gaussian random variables having
specified means and correlations. To model Ricean fading, the channel matrix can
be divided into a deterministic part and a random part, that is,

G =

√
K

K + 1
Ḡ+

√
1

K + 1
Gs, (2.153)

where E[G] =
√

K
K+1 Ḡ is the LoS or specular component and

√
K

K+1 Gs is the scatter

component assumed to have zero-mean. The elements of the matrices Ḡ and Gs are
normalized to have power Ωp, so that the elements of matrix G have power Ωp, that
is, E[|gpq|2] = Ωp. In this case, K represents the Rice factor, defined as the ratio of
the power in the LoS or specular component to the power in the scatter component.

To simply our further treatment of the MIMO channel, assume for the time
being that K = 0, so that G = Gs. The simplest MIMO model assumes that the
entries of the matrix G are independent and identically distributed (i.i.d) complex
Gaussian random variables. This model corresponds to the so-called rich scattering
or spatially white environment. Such an independence assumption simplifies the
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performance analysis of various digital signaling schemes operating on MIMO
channels. However, in reality the sub-channels will be correlated and, therefore,
the i.i.d. model will lead to optimistic results.

A variety of more sophisticate models have been introduced to account for
spatial correlation of the sub-channels. Consider the vector g = vec{G}, where G =
[g1,g2, . . . ,gLT ] and vec{G}= [gT

1,g
T
2 , . . . ,g

T
LT
]T . The vector g is a column vector of

length n = LTLR. The vector g is zero-mean complex Gaussian random vector and
its statistics are fully specified by the n×n covariance matrix RG = 1

2 E[ggH ]. Hence,
g ∼ CN (0,RG) and, if RG is invertible, the probability density function of g is

p(g) =
1

(2π)ndet(RG)
e−

1
2 gH R−1

G g, g ∈ C n. (2.154)

Realizations of the MIMO channel with the distribution in (2.154) can be generated
by

G = unvec{g} with g = R1/2
G w. (2.155)

Here, R1/2
G is any matrix square root of RG, that is, RG = R1/2

G (R1/2
G )H , and w is a

length n vector where w ∼ C N (0,I).

2.3.1.1 Kronecker Model

The Kronecker model [140] constructs the MIMO channel matrix G under the
assumption that the spatial correlation at the transmitter and receiver is separable.
This is equivalent to restricting the correlation matrix RG to have the Kronecker
product form

RG = RT ⊗RR, (2.156)

where

RT =
1√
2

E[GHG] RR =
1√
2

E[GGH]. (2.157)

are the LT ×LT and LR ×LR transmit and receive correlation matrices, respectively,
and ⊗ is the Kronecker product. For example, the Kronecker product of an n × n
matrix A and an m×m matrix B would be

A⊗B =

[
a11B · · · a1nB
an1B · · · annB

]

. (2.158)

Under the above Kronecker assumption, (2.155) simplifies to the Kronecker model

g = (RT ⊗RR)
1/2 w (2.159)

and

G = R1/2
R WR1/2

T , (2.160)
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where W is an LR × LT matrix consisting of i.i.d. zero mean complex Gaussian
random variables.

The elements of the matrix G represent correlations between the faded envelopes
of the MIMO sub-channels. If the elements of G could be arbitrarily selected, then
the correlation functions would be a function of four sub-channel index parameters,
that is,

1
2

E[gqpg∗
q̃p̃] = φ(q, p, q̃, p̃), (2.161)

where gqp is the channel between the pth transmit and qth receive antenna. However,
due to the Kronecker property in (2.156), the elements of G are structured. One
implication of the Kronecker property is spatial stationarity

1
2

E[gqpg∗
q̃p̃] = φ(q− q̃, p− p̃). (2.162)

This implies that the sub-channel correlations are determined not by their position
in the matrix G, but by their difference in position. In addition to the stationary
property, manipulation of the Kronecker product form in (2.156) implies that

1
2

E[gqpg∗
q̃ p̃] = φT (p− p̃) ·φR(q− q̃). (2.163)

This means that the correlation can be separated into two parts: a transmitter part
and a receiver part, and both parts are stationary. Finally, we note that the Kronecker
property in (2.156) holds if and only if the separable property in (2.163) holds. Later
in our discussion of physical models, we will show that the separable property is
satisfied by double-bounced channels such as the double ring model in Fig. 2.44,
where the angles of arrival for each ray at the receiver are independent of the angles
of departure at the transmitter.

2.3.1.2 Weichselberger Model

The Weichselberger model [281] overcomes the separable requirement of the
channel correlation functions in (2.163) so as to include a broader range of MIMO
channels. Its definition is based on an eigenvalue decomposition of the transmitter
and receiver correlation matrices,

RT = UTΛTUH
T, (2.164)

RR = URΛRUH
R. (2.165)

Here the matrices ΛT and ΛR are diagonal matrices containing the eigenvalues of,
and UT and UR are unity matrices containing the eigenvectors of, RT and RR,
respectively. The Weichselberger model constructs the matrix G as

G = UR
(
Ω̃�W

)
UT

T, (2.166)
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where W is an LR × LT matrix consisting of i.i.d. zero mean complex Gaussian
random variables and � denotes the Schur–Hadmard product (element-wise matrix
multiplication), and Ω is an LR × LT coupling matrix whose nonnegative real
values determine the average power coupling between the transmitter and receiver
eigenvectors. The matrix Ω̃ is the element-wise square root of Ω. For validation of
the Weichselberger model, the matrix Ω can be determined from measured data as

Ω = EG
[
(UH

RGU∗
T)� (UT

RG∗UT)
]
. (2.167)

Note that the Kronecker model is a special case of the Weichselberger model
obtained with the coupling matrix Ω = λ Rλ T

T, where λ R and λ T are column vectors
containing the eigenvalues of ΛT and ΛR, respectively.

2.4 Statistical Characterization of Multipath-Fading Channels

Multipath-fading channels can be modeled as randomly time-variant linear filters,
whose inputs and outputs can be described in both the time and frequency-
domains. This leads to four possible transmission functions [28]; the time-variant
impulse response g(τ, t), the output Doppler-spread function H( f ,ν), the time-
variant transfer function T ( f , t), and the delay Doppler-spread function S(τ,ν). The
time-variant impulse response relates the complex low-pass input and output time
waveforms, s̃(t) and r̃(t), respectively, through the convolution integral

r̃(t) =
∫ t

0
s̃(t − τ)g(t,τ)dτ. (2.168)

In physical terms, g(t,τ) can be interpreted as the channel response at time t due
to an impulse applied at time t − τ . Since a physical channel is causal, g(t,τ) = 0
for τ < 0 and, therefore, the lower limit of integration in (2.168) is zero. If the
convolution in (2.168) is approximated as a discrete sum, then

r̃(t) =
n

∑
m=0

s̃(t −mΔτ)g(t,mΔτ)Δτ. (2.169)

This representation allows us to visualize the channel as a transversal filter with tap
spacing Δτ and time-varying tap gains g(t,mΔτ) as shown in Fig. 2.25.

The second transmission function relates the input and output spectra, S̃( f ) and
R̃( f ), respectively, through the integral equation

R̃( f ) =
∫ ∞

−∞
S̃( f −ν)H( f −ν,ν)dν. (2.170)
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Fig. 2.25 Discrete-time tapped delay line model for a multipath-fading channel
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Fig. 2.26 Frequency conversion model for a multipath-fading channel

Bello called the function H( f ,ν) the output Doppler-spread function [28]. This
function explicitly shows the effect of Doppler shift or spectral broadening on the
output spectrum. In physical terms, the frequency-shift variable ν can be interpreted
as the Doppler shift that is introduced by the channel. Once again, the integral in
(2.170) can be approximated by the discrete sum

R̃( f ) =
n

∑
m=−n

S̃( f −mΔν)H( f −mΔν,mΔν)Δν. (2.171)

This allows the channel to be represented by a bank of filters with transfer functions
H( f ,mΔν)Δν followed by a dense frequency conversion chain with tap spacing Δν
that produces the Doppler shifts as shown in Fig. 2.26.

The third transmission function T ( f , t) is the familiar time-variant transfer
function and relates the output time waveform to the input spectrum as follows:

r̃(t) =
∫ ∞

−∞
S̃( f )T ( f , t)ej2π f t d f . (2.172)

The final description relates the input and output time waveforms through the
double integral

r̃(t) =
∫ ∞

−∞

∫ ∞

−∞
s̃(t − τ)S(τ,ν)ej2π f τdνdτ. (2.173)
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Fig. 2.27 Fourier transform
relations between the
transmission functions
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The function S(τ,ν) is called the delay Doppler-spread function [28] and provides a
measure of the scattering amplitude of the channel in terms of the time delay τ and
Doppler frequency ν .

The four transmission functions are related to each other through Fourier
transform pairs as shown in Fig. 2.27. In each transform pair there is always a fixed
variable, so that the transform involves the other two variables.

2.4.1 Statistical Channel Correlation Functions

Similar to flat fading channels, the channel impulse response g(t,τ) = gI(t,τ) +
jgQ(t,τ) of a frequency-selective fading channel can be modeled as a complex
Gaussian random process, where the quadrature components gI(t,τ) and gQ(t,τ)
are real Gaussian random processes. Hence, all of the transmission functions defined
in the last section are themselves random processes. Since the underlying process
is Gaussian, a complete statistical description of these transmission functions is
provided by their means and autocorrelation functions. In the following discussion,
we assume zero-mean Gaussian random processes for simplicity so that only the
autocorrelation functions are of interest. Since there are four transmission functions,
four autocorrelation functions can be defined as follows [201, 217]:

φg(t,s;τ,η) =
1
2

E[g(t,τ)g∗(s,η)], (2.174)

φT ( f ,m;t,s) =
1
2

E[T ( f , t)T ∗(m,s)], (2.175)

φH( f ,m;ν,μ) =
1
2

E[H( f ,ν)H∗(m,μ)], (2.176)

φS(τ,η ;ν,μ) =
1
2

E[S(τ,ν)S∗(η ,μ)]. (2.177)
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Fig. 2.28 Double Fourier
transform relations between
the channel autocorrelation
functions
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These autocorrelation functions are related to each other through double Fourier
transform pairs. For example,

φS(τ,η ;ν,μ) =
∫ ∞

−∞

∫ ∞

−∞
φg(t,s;τ,η)e−j2π(νt−μs)dt ds, (2.178)

φg(t,s;τ,η) =
∫ ∞

−∞

∫ ∞

−∞
φS(τ,η ;ν,μ)ej2π(νt−μs)dν dμ . (2.179)

The complete set of such relationships is summarized in Fig. 2.28.

2.4.2 Classification of Channels

WSS channels have fading statistics that remain constant over small periods of
time or short spatial distances. This implies that the channel correlation functions
depend on the time variables t and s only through the time difference Δ t = s− t. It
can be demonstrated (see Problem 2.19) that WSS channels give rise to scattering
with uncorrelated Doppler shifts. This behavior suggests that the attenuations and
phase shifts associated with multipath components having different Doppler shifts
are uncorrelated. This makes sense because multipath components with different
Doppler shifts arrive from different directions and, hence, propagate via different
sets of scatterers. For WSS channels, the correlation functions become

φg(t, t +Δ t;τ,η) = φg(Δ t;τ,η), (2.180)

φT ( f ,m;t, t +Δ t) = φT ( f ,m;Δ t), (2.181)

φH( f ,m;ν,μ) = ψH( f ,m;ν)δ (ν − μ), (2.182)

φS(τ,η ;ν,μ) = ψS(τ,η ;ν)δ (ν − μ), (2.183)
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where

ψH( f ,m;ν) =
∫ ∞

−∞
φT ( f ,m;Δ t)e−j2πνΔ tdΔ t, (2.184)

ψS(τ,η ;ν) =
∫ ∞

−∞
φc(Δ t;τ,η)e−j2πνΔ tdΔ t (2.185)

are Fourier transform pairs.
Uncorrelated scattering (US) channels are characterized by an uncorrelated

complex gain with paths of different delays. Bello showed that US channels are
WSS in the frequency variable so that the correlation functions depend on the
frequency variables f and m only through the frequency difference Δ f =m− f [28].
Analogous to (2.182) and (2.183), the channel correlation functions are singular
in the time-delay variable (see Problem 2.20). Again, this makes sense because
multipath components arriving with different delays propagate via different sets of
scatterers. For US channels, the channel correlation functions become

φg(t,s;τ,η) = ψg(t,s;τ)δ (η − τ), (2.186)

φT ( f , f +Δ f ;t,s) = φT (Δ f ; t,s), (2.187)

φH( f , f +Δ f ;ν,μ) = φH(Δ f ;ν,μ), (2.188)

φS(τ,η ;ν,μ) = ψS(τ;ν,μ)δ (η − τ), (2.189)

where

ψg(t,s;τ) =
∫ ∞

−∞
φT (Δ f ;t,s)ej2πΔ f τ dΔ f , (2.190)

ψS(τ;ν,μ) =
∫ ∞

−∞
φH(Δ f ;ν,μ)ej2πΔ f τ dΔ f (2.191)

are Fourier transform pairs.
WSS uncorrelated scattering (WSSUS) channels exhibit uncorrelated scattering

in both the time-delay and Doppler shift. Fortunately, many radio channels can be
effectively modeled as WSSUS channels. For WSSUS channels, the correlation
functions have singular behavior in both the time delay and Doppler shift variables,
and reduce to the following simple forms:

φg(t, t +Δ t;τ,η) = ψg(Δ t;τ)δ (η − τ), (2.192)

φT ( f , f +Δ f ;t, t +Δ t) = φT (Δ f ;Δ t), (2.193)

φH( f , f +Δ f ;ν,μ) = ψH(Δ f ;ν)δ (ν − μ), (2.194)

φS(τ,η ;ν,μ) = ψS(τ,ν)δ (η − τ)δ (ν − μ). (2.195)

The correlation functions for WSSUS channels are related through the Fourier
transform pairs shown in Fig. 2.29.
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Fig. 2.29 Fourier transform
relations between the channel
correlation functions for
WSSUS channels
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2.4.3 Power Delay Profile and Coherence Bandwidth

The function ψg(0;τ) ≡ ψg(τ) is called the power-delay profile and gives the
average power at the channel output as a function of the time delay τ . A typical
power-delay profile is shown in Fig. 2.30. One quantity of interest is the average
delay, defined as

μτ =

∫ ∞
0 τψg(τ)dτ
∫ ∞

0 ψg(τ)dτ
. (2.196)

Note that the normalization
∫ ∞

0 ψg(τ)dτ is applied because ψg(τ) does not necessar-
ily integrate to unity like a probability density function. Another quantity of interest
is the rms delay spread, defined as

στ =

√∫ ∞
0 (τ − μτ)2ψg(τ)dτ
∫ ∞

0 ψg(τ)dτ
. (2.197)



2.4 Statistical Characterization of Multipath-Fading Channels 95

There are other quantities that can also be used to describe the power-delay profile.
One is the width, Wx, of the middle portion of the power-delay profile that contains
a fraction x of the total power in the profile. Referring to Fig. 2.30

Wx = τ3 − τ1, (2.198)

where τ1 and τ3 are chosen so that

∫ τ1

0
ψg(τ)dτ =

∫ ∞

τ3

ψg(τ)dτ (2.199)

and
∫ τ3

τ1

ψg(τ)dτ = x
∫ ∞

0
ψg(τ)dτ. (2.200)

Another quantity is the difference in delays where the power-delay profile rises to
a value P dB below its maximum value for the first time and where the power-delay
profile drops to a value P dB below its maximum value for the last time. This
quantity is denoted by WP and is also illustrated in Fig. 2.30, where WP = τ2 − τ1.
In general, the average delay and delay spread of the channel will diminish with
decreasing cell size, the reason being that the radio path lengths are shorter. While
the delay spread in a typical macrocellular application may be on the order of
1–10 μs, the delay spreads in a typical microcellular applications are much less.
Delay spreads for indoor channels can range anywhere from 30 to 60 ns in buildings
with interior walls and little metal, to 300 ns in buildings with open plans and a
significant amount of metal.

The function φT (Δ t;Δ f ) is called the spaced-time spaced-frequency correlation
function. The function φT (0;Δ f ) ≡ φT (Δ f ) measures the frequency correlation of
the channel. The coherence bandwidth, Bc, of the channel is defined as the smallest
value of Δ f for which φT (Δ f ) = xφT (0) for some suitably small value of x,0 <
x < 1. As a result of the Fourier transform relation between φg(τ) and φT (Δ f ),
the reciprocal of either the average delay or the delay spread is a measure of the
coherence bandwidth of the channel. That is,

Bc ∝
1

μτ
or Bc ∝

1
στ

. (2.201)

Wideband fading channels can be classified according to the relationship between
the transmitted signal bandwidth Ws and the coherence bandwidth Bc. If Bc <Ws, the
channel is said to exhibit frequency selective fading which introduces intersymbol
interference (ISI) into the received signal. If Bc Ws, the channel is said to exhibit
flat fading, and very little ISI is introduced into the received signal.

The function φH(ν;0) ≡ φH(ν) is identical to the Doppler spectrum Sgg( f )
(2.30), that is, φH(ν) ≡ Sgg( f ), and gives the average power at the channel output



96 2 Propagation Modeling

as a function of the Doppler frequency ν . The range of values over which φH(ν)
is significant is called the Doppler spread and is denoted by Bd. Since φH(ν) and
φT (Δ t) are a Fourier transform pair, it follows that the inverse of the Doppler spread
gives a measure of the channel coherence time, Tc, that is,

Tc ≈ 1
Bd

. (2.202)

Wideband fading channels can also be classified according to the relationship
between the transmitted symbol duration, T , and the coherence time Tc. If Tc < T ,
the channel is said to exhibit fast fading which introduces severe frequency
dispersion into the received signal. If Tc  T , the channel is said to exhibit the
very common case of slow fading which introduces very little frequency dispersion
into the received signal.

Finally, the function ψS(τ,ν) is called the scattering function and gives the
average power output of the channel as a function of the time delay τ and the
Doppler shift ν . Plots of the scattering function are often used to provide a concise
statistical description of a multipath-fading channel from measurement data.

2.5 Simulation of Multipath-Fading Channels

A channel simulator is an essential component for the development and testing of
wireless systems. Simulation of mobile radio channels is commonly used as opposed
to field trials, because it allows for less expensive and more reproducible system
tests and evaluations. For this purpose, it is desirable to generate complex faded
envelopes that match the statistical characteristics of a reference model while at the
same time having low complexity. For example, the reference model might be a 2D
isotropic scattering channel with an isotropic antenna.

Two fundamentally different approaches to channel simulation models are the
filtered white Gaussian noise models and the sum-of-sinusoids (SoS) models. The
basic idea of the filtered-based approach is to shape the power spectrum of a white
Gaussian noise process using a filter having a transfer function that is the square root
of the power density spectrum of the desired random process. The sum of sinusoids
approach, on the other hand, approximates the complex fading envelope by the
superposition of a finite number of sinusoids with properly chosen amplitudes,
frequencies, and phases.

2.5.1 Filtered White Gaussian Noise Models

Recall that the faded envelope g(t) = gI(t)+ jgQ(t) is a complex Gaussian random
process. A straightforward method for constructing a fading simulator is to low-
pass filter two independent white Gaussian noise processes, as shown in Fig. 2.31.
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Fig. 2.31 Fading simulator that uses low-pass filtered white Gaussian noise

Since the input processes to the filters are independent, the random processes gI(t)
and gQ(t) are independent and have power spectral densities that are determined by
the squared magnitude response of the low-pass filters. If the white Gaussian noise
sources have power spectral densities equal to Ωp/2 W/Hz and the low-pass filters
have transfer function H( f ), then

SgIgI( f ) = SgQgQ( f ) =
Ωp

2
|H( f )|2,

SgIgQ( f ) = 0, (2.203)

where the normalization
∫ ∞
−∞ |H( f )|2d f = 1 is assumed so that the envelope power

is equal to Ωp. The filtered white noise processes gI(t) and gQ(t) are independent
zero-mean Gaussian random process, so that the envelope α ≡ |g(t1)| is Rayleigh
distributed at any time t1.

2.5.1.1 IDFT Method

One approach for generating the faded envelope using the filtering method has been
suggested by Young & Beaulieu [298] and is based on an inverse discrete Fourier
transform (IDFT) as shown in Fig. 2.32. The input sequences {A[k]} and {B[k]} are
first generated, each consisting of N i.i.d. real zero-mean Gaussian random variables
with variance NΩp/2. These samples are then applied to a filter with frequency
response H[k], followed by an IDFT to generate the time-domain samples of the
complex faded envelope as

g[n] = IDFT{A[k]H[k]− jB[k]H[k]}N−1
n=0

=
1
N

N−1

∑
k=0

(A[k]H[k]− jB[k]H[k])ej2πkn/N , n = 0, . . . ,N − 1. (2.204)
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Fig. 2.32 IDFT-based fading simulator

Due to linearity of the IDFT operation, the discrete-time autocorrelation function of
the output sample sequence {g[n]}= {gI[n]}+ j{gQ[n]}, is [298]

φgg[n] = φgIgI [n]+ jφgIgQ [n]

=
Ωp

2
(aI[n]+ jaQ[n]) , (2.205)

where {a[n]}= {aI[n]}+ j{aQ[n]} is given by the IDFT of the sequence {(H[k])2},
that is,

a[n] =
1
N

N−1

∑
k=0

(H[k])2ej2πkn/N , n = 0, . . . ,N − 1. (2.206)

The only problem remaining is to design the filter, H[k]. To do so, we follow the
argument by Young & Beaulieu [298].

A sequence {ACS[k]} that satisfies the property ACS[k] = A∗
CS[N − k] is called

a conjugate-symmetric sequence, while a sequence {ACAS[k]} that satisfies the
property ACAS[k] = −A∗

CAS[N − k] is called a conjugate-antisymmetric sequence.
The IDFT of a conjugate-symmetric sequence is real valued, while the IDFT of a
conjugate-antisymmetric sequence is imaginary valued. If the sequence {a[n]} has
discrete Fourier transform (DFT) {A[k]} we have

a[n] = aI[n]+ jaQ[n] = IDFT{A[k]}
= IDFT{ACS[k]}+ IDFT{ACAS[k]}. (2.207)

We also note that

ACS[k] =
1
2

A[k]+
1
2

A∗[N − k] (2.208)

and

ACAS[k] =
1
2

A[k]− 1
2

A∗[N − k] (2.209)
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for any sequence {A[k]}, where A[k] = ACS[k]+ACAS[k]. Thus, the sequence {A[k]}
can always be decomposed into the sum of conjugate-symmetric and conjugate-
antisymmetric components. To ensure that the quadrature components of the faded
envelope, {gI[n]} and {gQ[n]}, are uncorrelated, which is the case for 2D isotropic
scattering and an isotropic antenna, we require that ACAS[k] = 0 for all k. Using
(2.208), the filter should have the following structure:

H[k] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
Hs[0], k = 0

√
Hs [k]

2 , k = 1,2, . . . ,
(

N
2 − 1

)

√
Hs[k], k = N

2
√

Hs [N−k]
2 , k =

(
N
2 + 1

)
, . . . ,(N − 1)

, (2.210)

where the filter Hs[k] can be obtained from the sampled Doppler spectrum.
To obtain the required filter H[k], we assume 2D isotropic scattering with an

isotropic antenna. The required normalized autocorrelation function and normalized
Doppler spectrum are, respectively,

φgg(τ) = J0(2π fmτ) (2.211)

and

Sgg( f ) =

{
1

π fm
1√

1−( f/ fm)2
| f | ≤ fm

0 otherwise
. (2.212)

Ideally, we wish the generated sequence g[n] to have the normalized autocorrelation
function

φgg[n] = J0(2π f̂m|n|), (2.213)

where f̂m = fmTs is the maximum normalized Doppler frequency and Ts is the
sampling period. However, an exact realization of this autocorrelation function is
not possible, because the time-domain sequence is truncated to N samples. Looked
at another way, while the theoretical spectrum is bandlimited, the truncation to N
samples in the time-domain means that the realized spectrum is not bandlimited.

To obtain the required filter, we sample the continuous spectrum in (2.212)
at frequencies fk = k/(NTs),k = 0, . . . ,N − 1. Special treatment is given to the
frequency-domain coefficients at two points. The first is at zero frequency, where we
set Hs[0] = 0 to ensure that the generated time-domain sequence always has zero-
mean regardless of the particular values assumed by the length-N input sequences
{A[k]} and {B[k]}. The second is at the index km that is at, or just below, the
maximum Doppler frequency, that is,

km = � fmNTs�= � f̂mN�, (2.214)
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where �x� is the largest integer contained in x. The realized maximum Doppler
frequency is km/(NTs) Hz. The area under the Doppler spectrum curve in (2.212)
from zero to frequency f is [118, 2.271.4]

C( f ) =
km

NTs
arcsin( f NTs/km), 0 ≤ f ≤ km/(NTs). (2.215)

The area under the Doppler spectrum between the frequencies represented by the
samples (km −1) and km is equal to C(km/(NTs))−C([km −1]/(NTs). Approximat-
ing this area by a rectangle of height (Hs[km])

2 and width 1/(NTs) gives

Hs[km] =

√

km

[
π
2
− arctan

(
km − 1√
2km − 1

)]

. (2.216)

The complete filter H[k] can now be specified as follows:

H[k] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k = 0

√
1

2π fm
√

1−(k/(N f̂m))2
, k = 1,2, . . . ,km − 1

√

km

[
π
2 − arctan

(
km−1√
2km−1

)]
, k = km

0, k = km + 1, . . . ,N − km − 1

√

km

[
π
2 − arctan

(
km−1√
2km−1

)]
, k = N − km

√
1

2π fm
√

1−(N−k/(N f̂m))2
, N − km+ 1, . . . ,N − 1

.

(2.217)

The above IDFT approach will generate a Rayleigh faded envelope with an auto-
correlation function that closely matches the reference model for large N. However,
the main limitation of the IDFT approach arises from the block-oriented structure
which may preclude continuous transmission in which there is a discontinuity in the
time series (i.e., the faded envelope) from one block of N samples to the next.
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Table 2.1 Coefficients for K = 5 biquad stage elliptical filter

Stage Filter coefficients

k ak bk ck dk

1 1.5806655278853 0.99720549234156 −0.64808639835819 0.88900798545419
2 0.19859624284546 0.99283177405702 −0.62521063559242 0.97280125737779
3 −0.60387555371625 0.9999939585621 −0.62031415619505 0.99996628706514
4 −0.56105447536557 0.9997677910713 −0.79222029531477 0.2514924845181
5 −0.39828788982331 0.99957862369507 −0.71405064745976 0.64701702807931

A 0.020939537466725

2.5.1.2 IIR Filtering Method

Another approach is to implement the filters in the time-domain as finite impulse
response (FIR) or infinite impulse response (IIR) filters. There are two main
challenges with this approach. The first challenge arises from the fact that the
sampled channel waveform is bandlimited to a discrete frequency f̂m = fmTs, where
Ts is the sample period. Consider, for example, a cellular system operating at a
carrier frequency of fc = 1,800 MHz with a maximum MS speed of 300 km/h. In
this case, the maximum Doppler frequency is fm = fc(v/λc) = 500 Hz, where c
is the speed of light. If the signal is sampled at rate Rs = 1/Ts = 1 MHz, then the
normalized Doppler frequency is f̂m = fmTs = 0.0005. If implemented as a FIR
filter, such an extremely narrowband filter would required an impractically high
filter order. Fortunately, this can be satisfied with an IIR filter designed at a lower
sampling frequency followed by an interpolator to increase the sampling frequency.
For example, we could design the shaping filter at a sampling frequency of 2 kHz,
which is two times the Nyquist frequency. Later interpolate by a factor of I = 500
to obtain the desired sampling frequency of 1 MHz.

The second main challenge is that the square-root of the target Doppler spec-
trum for 2D isotropic scattering and an isotropic antenna in (2.212) is irrational
and, therefore, none of the straightforward filter design methods can be applied.
However, an approach developed by Steiglitz [245] allows the design of an IIR filter
with an arbitrary magnitude response. Another possibility is to use the MATLAB
function iirlpnorm [174].

Here we consider an IIR filter of order 2K that is synthesized as the cascade of K
Direct-Form II second-order (two poles and two zeroes) sections (biquads) having
the form

H(z) = A
K

∏
k=1

1+ akz−1 + bkz−2

1+ ckz−1 + dkz−2 . (2.218)

For example, for fmTs = 0.4, K = 5, and an ellipsoidal accuracy of 0.01, the filter
design procedure described by Komninakis [142] results in the coefficients tabulated
in Table 2.1. Figure 2.33 plots the magnitude response of the designed filter, which
is shown to closely match that of the ideal filter.
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Fig. 2.33 Magnitude response of the designed shaping filter with K = 5 biquad sections

2.5.2 Sum of Sinusoids Methods

SoS channel models attempt to simulate the channel as a stationary complex Gaus-
sian random process, formed by the sum of multiple sinusoids having appropriately
selected frequencies, amplitudes, and phases. The objective is to generate a faded
envelope having statistical properties that are as close as possible to a specified
reference model, while at the same time minimizing the number of sinusoids that
are required to achieve a given degree of modeling accuracy. SoS models are broadly
categorized as either deterministic or statistical. Deterministic SoS models use fixed
frequencies, amplitudes, and phases for the sinusoidal components. Therefore, the
statistical properties of the faded envelope are deterministic for all simulation trials.
Such models are useful for simulations that require continuous transmission over
a long time interval, such as a real-time hardware channel simulator. In contrast,
the statistical SoS models require multiple simulation trials, where one or more of
the parameter sets (frequencies, amplitudes, or phases) are randomly selected for
each simulation trial. As a result, the simulated channels have statistical properties
that vary for each simulation trial, but they converge to the desired statistical
properties when averaged over a sufficiently large number of simulation trials. Since
a statistical model requires multiple simulation trials, it cannot be used in cases
where continuous transmission is required. An ergodic statistical SoS model is one
whose statistical properties converge to the desired properties in a single simulation
trial. For this reason, an ergodic statistical model is essentially a deterministic
model, but differs in the sense that one of the parameter sets, usually the phases,
are randomly generated when the simulator is initialized.
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2.5.2.1 Clarke’s Model

Clarke derived a statistical SoS simulation model that begins with (2.9) and (2.6) and
assumes equal strength multipath components (Cn =

√
1/N). The received complex

envelope has the form

g(t) =

√
1
N

N

∑
n=1

ej(2π fmt cos(θn)+φ̂n), (2.219)

where N is the number of sinusoids and the phases φ̂n are independent identically
distributed (i.i.d.) uniform random variables on [−π ,π).

If we assume a reference model having 2D isotropic scattering and an isotropic
antenna, then the θn are also i.i.d. uniform random variables on [−π ,π) and are
independent of the φ̂n. Based on the above assumptions concerning the Cn, φ̂n, and
θn, the ensemble averaged correlation functions of Clarke’s model in (2.219) for a
finite N are2

φgIgI(τ) = φgQgQ(τ) =
1
2

J0(2π fmτ), (2.220)

φgIgQ(τ) = φgQgI(τ) = 0, (2.221)

φgg(τ) =
1
2

J0(2π fmτ), (2.222)

φα2α2(τ) = 1+
N − 1

N
J2

0 (2π fmτ). (2.223)

Note that for finite N, the autocorrelation and cross-correlation functions of gI(t)
and gQ(t) match those of the reference model in (2.26) and (2.28), while the squared
envelope autocorrelation function reaches the desired form 1+ J2

0(2π fmτ) in (2.78)
asymptotically as N → ∞.

2.5.2.2 Jakes’ Model

Jakes [134] derived a deterministic SoS simulation model that is perhaps the most
widely cited model in literature. Jakes’ model begins by choosing the N sinusoidal
components to be uniformly distributed in angle, that is,

θn =
2πn
N

, n = 1, 2, . . . , N. (2.224)

2Note that Ωp = ∑N
n=1 C2

n = 1 in this case; other values of Ωp can be obtained by straight forward
scaling.
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By choosing N/2 to be an odd integer, the sum in (2.219) can be rearranged into the
form

g(t) =

√
1
N

{
N/2−1

∑
n=1

[
e−j(2π fmt cos(θn)+φ̂−n) + ej(2π fmt cos(θn)+φ̂n)

]

+e−j(2π fmt+φ̂−N ) + ej(2π fmt+φ̂N )

}

, (2.225)

where we have relabeled the phase indices. Note that the Doppler shifts progress
from −2π fm cos(2π/N) to +2π fm cos(2π/N) as n progresses from 1 to N/2 − 1
in the first sum, while they progress from +2π fm cos(2π/N) to −2π fm cos(2π/N)
in the second sum. Therefore, the frequencies in these terms overlap. To reduce the
number of sinusoidal components used in the model, Jakes uses non-overlapping
frequencies to write g(t) as

g(t) =

√
1
N

{√
2

M

∑
n=1

[
e−j(2π fmt cos(θn))+φ̂−n + ej(2π fmt cos(θn)+φ̂n)

]

+e−j(2π fmt+φ̂−N ) + ej(2π fmt+φ̂N)

}

, (2.226)

where

M =
1
2

(
N
2
− 1

)

(2.227)

and the factor
√

2 is included so that the total power remains unchanged. Note that
(2.225) and (2.226) are not equal. In (2.225) all phases are independent. However,
(2.226) implies that φ̂n = −φ̂−N/2+n and φ̂−n = −φ̂N/2−n for n = 1, . . . ,M. If we
further constrain the phases such that φ̂n = −φ̂−n,n = 1, . . . ,M and φ̂N = −φ̂−N ,
then (2.226) can be rewritten in the form g(t) = gI(t)+ jgQ(t), where

gI(t) =

√
2
N

·2
M

∑
n=1

cos(βn)cos(2π fnt)+
√

2cos(α)cos(2π fmt), (2.228)

gQ(t) =

√
2
N

·2
M

∑
n=1

sin(βn)cos(2π fnt)+
√

2sin(α)cos(2π fmt), (2.229)

and where α = φ̂N and βn = φ̂n.
Jakes chooses the phases α and βn with the objective of making 〈g2

I (t)〉= 〈g2
Q(t)〉

and 〈gI(t)gQ(t)〉= 0, where 〈 · 〉 denotes time averaging. From (2.228) and (2.229),

〈g2
I (t)〉 =

2
N

[

2
M

∑
n=1

cos2(βn)+ cos2(α)

]

=
2
N

[

M+ cos2(α)+
M

∑
n=1

cos(2βn)

]

, (2.230)
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Fig. 2.34 Faded envelope generated using Jakes’ method with M = 8 oscillators; fmT = 0.1

〈g2
Q(t)〉 =

2
N

[

2
M

∑
n=1

sin2(βn)+ sin2(α)

]

=
2
N

[

M+ sin2(α)−
M

∑
n=1

cos(2βn)

]

(2.231)

and

〈gI(t)gQ(t)〉= 2
N

[

2
M

∑
n=1

sin(βn)cos(βn)+ sin(α)cos(α)

]

. (2.232)

Choosing α = 0 and βn = πn/M gives 〈g2
Q(t)〉 = M/(2M + 1), 〈g2

I (t)〉 =
(M+ 1)/(2M+ 1) and 〈gI(t)gQ(t)〉= 0. Note that there is a small imbalance in the
values of 〈g2

Q(t)〉 and 〈g2
I (t)〉. Finally, we note that 〈g2

I (t)〉+ 〈g2
Q(t)〉= Ωp = 1. The

envelope power 〈g2
I (t)〉+ 〈g2

Q(t)〉 can be easily scaled to any other desired value.
A typical faded envelope obtained using Jakes’ method with N = 34 or (M = 8) is
shown in Fig. 2.34.

The accuracy of Jakes’ simulator can be evaluated by comparing the autocorre-
lation functions of the complex envelope with those of the 2D isotropic scattering
reference model. Suppose we modify Clarke’s method by imposing the additional
restrictions of even N and θn = 2πn/N. The resulting model is still a statistical
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Fig. 2.35 Autocorrelation of in-phase and quadrature components obtained using Clarke’s method
with M = 8 oscillators

model, because the phases φ̂n are still i.i.d. uniform random variable on [−π ,π). A
faded envelope is obtained having the autocorrelation function

φgg(τ) =
1

2N

N

∑
n=1

cos

(

2π fmτ cos

(
2πn
N

))

, (2.233)

where ensemble averaging is performed over the random phases. Note that this
autocorrelation tends to a Bessel function as N →∞. The normalized autocorrelation
functions in (2.222) and (2.233) with N = 8 are plotted against the normalized time
delay fmτ in Fig. 2.35. Observe that Clark’s model with θn = 2πn/N yields an
autocorrelation function that deviates from the desired values at large lags. This
can be improved upon by increasing the number of oscillators that are used in
the simulator. For example, Fig. 2.36 shows the autocorrelation function when the
number of oscillators is doubled from N = 8 to N = 16.

The autocorrelation function in (2.233) was originally reported in Jakes’ [134],
and it may be confused with the autocorrelation function of the faded envelope
generated by (2.228) and (2.229). However, Jakes’ method in (2.228) and (2.229) is
a deterministic simulation model with no random parameters and, therefore, only the
time averaged autocorrelation function exists. This time averaged autocorrelation
function has been derived by Pop and Beaulieu as [209]

φ̂gg(t, t + τ) =
1

2N
(cos(2π fmτ)+ cos(2π fm(2t + τ)))

+
1
N

M

∑
n=1

(cos(2π fnτ)+ cos(2π fn(2t + τ))) . (2.234)
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Fig. 2.36 Autocorrelation of in-phase and quadrature components obtained using Clarke’s method
with 16 oscillators

From (2.234), it is apparent that the time averaged autocorrelation function with
Jakes’ method, φ̂gg(t, t + τ), depends on the time variable t. Hence, Jakes’ method
yields a faded envelope that is not stationary or even WSS. The root cause of this
nonstationary behavior is the correlation that is introduced into the phases of the
Jakes model, that is, restrictions φ̂n = −φ̂−N/2+n, φ̂−n = −φ̂N/2−n, φ̂n = −φ̂−n,n =

1, . . . ,M, and φ̂N =−φ̂−N .

2.5.3 Multiple Uncorrelated Faded Envelopes

In many cases, it is necessary to generate multiple uncorrelated faded envelopes.
Jakes [134] suggested a method to modify the method in Sect. 2.5.2.2 to generate
up to M fading envelopes. However, the method yields faded envelopes that exhibit
very large cross-correlations at some nonzero lags and, therefore, the method is
not recommended. We now present deterministic and statistical simulation models
that will generate multiple faded envelopes having low cross-correlations. These
simulation models outperform other simulation models reported in the literature,
and a detailed comparison is available in [300].
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2.5.3.1 Deterministic Model

With our deterministic model, the kth faded envelope, gk(t) = gI,k(t)+ jgQ,k(t), is
generated as [300]

gI,k(t) =

√
2
N

M

∑
n=0

an cos(2π fmt cos(θn,k)+φn,k), (2.235)

gQ,k(t) =

√
2
N

M

∑
n=0

bn sin(2π fmt cos(θn,k)+φn,k), (2.236)

where

M =
1
2

(
N
2
− 1

)

, (2.237)

and

an =

{
2cos(βn), n = 1, . . . ,M√

2cos(βn), n = 0
, (2.238)

bn =

{
2sin(βn), n = 1, . . . ,M√

2sin(βn), n = 0
, (2.239)

βn =
πn
M

, n = 0, . . . ,M, (2.240)

θn,k =
2πn
N

+
2πk
MN

+
0.2π
MN

, n = 0, . . . ,M, k = 0, . . . ,M − 1. (2.241)

This method will generate M faded envelopes.
The angle θn,k is chosen so that the arrival angles associated with the kth faded

envelope are obtained by rotating the arrival angles of the (k− 1)th faded envelope
by 2π/MN. This ensures an asymmetrical arrangement of arrival angles, which
minimizes the correlation between the multiple faded envelopes. The initial arrival
angle, θ0,0, can be optimized to minimize the correlation between the quadrature
components of each faded envelope. This results in the choice θ0,0 = 0.2π/MN, a
value optimized by experimentation. Finally, the phases φn,k are chosen as arbitrary
realizations of uniform random variables on the interval [0,2π).

For our deterministic model, the autocorrelation and cross-correlation functions
of the quadrature components, the autocorrelation and cross-correlation functions
of the multiple faded envelopes, and the squared envelope autocorrelation are,
respectively, [300]

lim
N→∞

φgI,kgI,k(τ) = lim
N→∞

2
N

M

∑
n=0

a2
n

2
cos(2π fmτ cos(θn,k))

=
1
2

J0(2π fmτ)+
1
2

J4(2π fmτ), (2.242)
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lim
N→∞

φgQ,kgQ,k(τ) = lim
N→∞

2
N

M

∑
n=0

b2
n

2
cos(2π fmτ sin(θn,k))

=
1
2

J0(2π fmτ)− 1
2

J4(2π fmτ), (2.243)

φgI,kgQ,k(τ) = φgQ,kgI,k(τ) = φgkgl �=k(τ) = 0, (2.244)

lim
N→∞

φgkgk(τ) = lim
N→∞

2
N

M

∑
n=0

a2
n

2
cos(2π fmτ cos(θn,k))

+ lim
N→∞

2
N

M

∑
n=0

b2
n

2
cos(2π fmτ sin(θn,k))

=
1
2

J0(2π fmτ), (2.245)

φα2
k α2

k
(τ) =

2
N2

M

∑
n=0

a4
n+

2
N2

M

∑
n=0

b4
n +

1
2

φ2
gI,kgI,k

(τ)

+
1
2

φ2
gQ,kgQ,k

(τ)+φ2
gI,kgQ,k

(τ)

=
1
4

J2
0 (ωmτ), (2.246)

where J0 (·) is the zero-order Bessel function of the first kind and J4 (·) is the fourth-
order Bessel function of the first kind.

Figures 2.37 and 2.38 confirm that, for M = 8, the autocorrelation and
cross-correlation of the quadrature components and the autocorrelation and cross-
correlation of the multiple faded envelopes approach values given by (2.242) –
(2.245), respectively. The model satisfies (2.221) and (2.222) of the reference model.
However, the autocorrelations of the quadrature components and the autocorrelation
of the squared envelope are close to, but do not perfectly match, (2.220) and (2.223).
Nevertheless, our deterministic model is shown in [300] to outperform other well-
known deterministic simulation models, including the Jakes’ model [134] and
MEDS model [206].

2.5.3.2 Statistical Model

Our deterministic model can be modified to better match the statistical properties
of the reference model by introducing randomness into the model. To do so, the kth
faded envelope, gk(t) = gI,k(t)+ jgQ,k(t), is generated as

gI,k(t) =

√
2
N

M

∑
n=0

cos(βn,k)cos(2π fmt cos(θn,k)+φn,k), (2.247)
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Fig. 2.37 Theoretical and simulated autocorrelation functions and the cross-correlation function
of the in-phase and quadrature components of the deterministic model

gQ,k(t) =

√
2
N

M

∑
n=0

sin(βn,k)sin(2π fmt cos(θn,k)+φn,k), (2.248)

where M = N/4,

θn,k =
2πn
N

+
πk

2MN
+

αk −π
N

, n = 1, . . . ,M, k = 0, . . . ,M − 1, (2.249)

and φn,k, βn,k, and αk are independent uniform random variables on the interval
[−π ,π). The parameter θn,k is chosen in the following manner: the arrival angles of
the kth faded envelope are obtained by rotating the arrival angles of the (k − 1)th
faded envelope by π/2MN. Randomness in the Doppler frequencies is introduced
by random variable αk.

Figures 2.39 and 2.40 show that, for M = P = 8 and Nstat = 30 simulation trials,
the autocorrelation and cross-correlations of the quadrature components, and the
autocorrelation and cross-correlations of the complex faded envelopes approach
those of the reference model in (2.220) and (2.222). Although not shown, the
squared-envelope autocorrelation also approaches that of the reference model in
(2.223). Finally, our statistical model is shown in [300] to outperform other well-
known statistical simulation models, including the Zheng & Xiao model [307].



2.5 Simulation of Multipath-Fading Channels 111

0 2 4 6 8 10 12 14 16 18 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
φgigi

φgqgq

φgigi
J0(ωmτ)+J4(ωmτ)

J0(ωmτ)-J4(ωmτ)

N
or

m
al

iz
ed

 C
or

re
la

tio
n 

F
un

ct
io

ns

Normalized time delay,wmτ

Fig. 2.38 Theoretical and simulated autocorrelation functions and the cross-correlation function
of the first and the second complex envelope of the deterministic model

2.5.4 Wide-Band Simulation Models

Wide-band channels can be modeled by a tapped delay line with irregularly spaced
tap delays. Each channel tap is the superposition of a large number of scattered plane
waves that arrive with approximately the same delay and, therefore, the channel taps
will undergo fading. The wide-band channel has the time-variant impulse response

g(t,τ) =
�

∑
i=1

gi(t)δ (τ − τi), (2.250)

where � is the number of channel taps, and the {gi(t)} and {τi} are the complex
gains and path delays associated with the channel taps. The corresponding time-
variant transfer function is

T ( f , t) =
�

∑
i=1

gi(t)ej2π f τi . (2.251)

Usually, the tap delays are multiples of some very small delay τ , such that
τi = Kiτ, i = 1, . . . , �, which yields the sparse tapped delay line channel model
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Fig. 2.39 Theoretical and simulated autocorrelation functions and the cross-correlation function
of the quadrature components of the statistical model

shown in Fig. 2.41. We call this the “τ-spaced” model. Many of the tap coefficients
in the tapped delay line are zero, reflecting the fact that no energy is received at
these delays. Also, the Ki should be chosen to be relatively prime so as to prevent
any periodicity in the channel. Assuming a WSSUS channel, the autocorrelation
function of the time-variant channel impulse response in (2.250) is

φg(t,s;τ,η) =
1
2

E[g(t,τ)g∗(s,η)] (2.252)

=
�

∑
i=1

φgigi(Δ t)δ (τ − τi)δ (η − τ). (2.253)

It follows that the channel correlation function is

ψg(Δ t;τ) =
�

∑
i=1

φgigi(Δ t)δ (τ − τi) (2.254)

and the power-delay profile is

ψg(τ) = ψg(0;τ) =
�

∑
i=1

Ωiδ (τ − τi), (2.255)
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Fig. 2.40 Theoretical and simulated autocorrelation functions and the cross-correlation function
of the first and the second complex envelopes of the statistical model
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Fig. 2.41 Sparse tapped delay line model for wide-band multipath-fading channels

where Ωi = φgigi(0) is the envelope power of the ith channel tap, and the total
envelope power is

Ωp =
�

∑
k=1

Ωk. (2.256)

Hence, the channel can be described by the power profile

Ω = (Ω0, Ω1, . . . ,Ω�) (2.257)
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and the delay profile

τ = (τ1, τ2, . . . ,τ�). (2.258)

Taking the Fourier transform of (2.254) with respect to the τ variable yields the
spaced-time spaced-frequency correlation function

φT (Δ f ;Δ t) =
�

∑
i=1

φgigi(Δ t)e−j2πΔ f τi . (2.259)

Sometimes the channel taps are assumed to have the same time correlation function,
such that

φgigi(Δ t) = Ωiφt(Δ t), i = 1, . . . , �. (2.260)

For example, if each tap is characterized by 2D isotropic scattering, then we have
φt(Δ t) = 1

2 J0(2π fmΔ t). In this case, the spaced-time spaced-frequency correlation
function has the separable form

φT (Δ f ;Δ t) = φt(Δ t)φ f (Δ f ), (2.261)

where

φ f (Δ f ) =
�

∑
i=1

Ωie−j2πΔ f τi . (2.262)

2.5.4.1 COST 207 Models

The COST 207 models were developed for the GSM cellular system. Four different
Doppler spectra Sgg( f ) are specified in the COST 207 models [64]. First define the
function

G(A, f1, f2) = Aexp

{

− ( f − f1)
2

2 f 2
2

}

(2.263)

which has the shape of a Gaussian probability density function with mean f1 and
variance f 2

2 . COST 207 specifies the following Doppler spectra:

(a) CLASS is the classical Doppler spectrum and is used for excess path delays not
exceeding 500 ns (τi ≤ 500 ns);

(CLASS) Sgg( f ) =
A

√
1− ( f/ fm)2

, | f | ≤ fm (2.264)

Multipath components arriving with short path delays are those that experience
local scattering around the MS. In the COST 207 models, the local scattering is
modeled as 2D isotropic scattering and the MS is assumed to have an isotropic
antenna.
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(b) GAUS1 is the sum of two Gaussian functions and is used for excess path delays
ranging from 500 ns to 2 μs; (500ns ≤ τi ≤ 2μs)

(GAUS1) Sgg( f ) = G(A,−0.8 fm,0.05 fm)+G(A1,0.4 fm,0.1 fm), (2.265)

where A1 is 10 dB below A. The GAUS1 Doppler spectra implies two clusters
of scattering objects. The larger cluster is located behind the MS such that the
mean AoA is θ = cos−1(−0.8) = ±143o. A smaller cluster is located in front
of the MS such that the mean AoA is θ = cos−1(0.4) =±66o.

(c) GAUS2 is the sum of two Gaussian functions, used for excess path delays
exceeding 2 μs; (τi > 500ns)

(GAUS2) Sgg( f ) = G(B,0.7 fm,0.1 fm)+G(B1,−0.4 fm,0.15 fm), (2.266)

where B1 is 15 dB below B. Like GAUS1, GAUS2 implies two clusters of
scattering objects such that the mean angles of arrival are θ = cos−1(0.7) =
±45o and θ = cos−1(−0.4) =±113o.

(d) RICE is a combination of 2D isotropic scattering and an LoS component;

(RICE) Sgg( f ) =
0.41

2π fm
√

1− ( f/ fm)2
+ 0.91δ ( f − 0.7 fm), | f | ≤ fm

(2.267)

The RICE scattering environment is depicted in Fig. 2.7, where θ0 =
cos−1(0.7) = 45o.

Several power delay profiles have been defined in the COST 207 study for
different environments [64]. Typical urban (TU) (non-hilly) and bad urban (BU)
(hilly) discrete power-delay profiles are shown in Fig. 2.42 and Table 2.5 of
Appendix 1. In these figures and tables, the fractional power sums to unity, that is,
the total envelope power Ωp is normalized to unity. Also notice that the discrete tap
delays in Table 2.5 are chosen to avoid a regular spacing between taps so as to avoid
any periodicities in the time-variant transfer function. Sometimes it is desirable to
use a smaller number of taps to reduce the computational requirements of computer
simulations. Figure 2.43 and Table 2.6 of Appendix 1 show the 6-ray reduced typical
urban and reduced bad urban channel. Also provided in Appendix 1 are discrete tap
models for rural (non-hilly) areas (RA) in Table 2.7, typical hilly terrain (HT) in
Table 2.8, and reduced HT in Table 2.9.

2.5.4.2 COST 259 Models

The COST 207 models were developed for the GSM system having a channel
bandwidth of 200 kHz. However, the COST 207 models are not be appropriate
for WCDMA systems with 5, 10, and 20 MHz channel bandwidths. Similar to
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Fig. 2.42 COST 207 typical urban (TU) and bad urban (BU) power-delay profiles
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Fig. 2.43 COST 207 reduced typical urban (TU) and bad urban (BU) power-delay profiles

the COST 207 models, typical realizations have been developed by 3GPP for the
COST 259 models [91]. These are tabulated in Tables 2.10 –2.12 of Appendix 2
for typical urban (TU), rural area (RA), and hilly terrain (HT). Notice that the
tap positions in the 3GPP realizations of the COST 259 models are multiples of
0.001 μs as compared to the 0.1 μs used in the COST 207 models. Moreover, a large
number of paths (20) are included to ensure that the frequency-domain correlation
properties are realistic, which is important for wide-band systems.
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Fig. 2.44 Double ring model for M-to-M radio propagation with isotropic scattering at the
transmitter and receiver

2.5.5 Mobile-to-Mobile Simulation Models

An important distinction between F-to-M cellular land mobile radio channels and
M-to-M channels arises due to the scattering and mobility at both ends of the
link. In contrast to cellular F-to-M channels, it is natural for both the transmitter
and the receiver to have low elevation antennas in M-to-M applications. This
results in local scattering around both the transmitter and receiver antennas which
led to the 2D isotropic scattering assumption in the Akki and Haber reference
model [10]. To develop M-to-M channel simulation models, we apply a double-
ring concept that defines two rings of isotropic scatterers, one placed around the
transmitter and another placed around the receiver as shown in Fig. 2.44. Assuming
omnidirectional antennas at both ends, the waves from the transmitter antenna first
arrive at the scatterers located on the transmitter ring. Considering these fixed
scatterers as “virtual base-stations (VBS),” the communication link from each VBS
to the receiver is treated like a F-to-M link. The signals from each VBS arrive at
the receiver antenna uniformly from all directions in the horizontal plane due to
isotropic scatterers located on the receiver end ring. It should be noted here that
the double-ring model has been often used in various forms, for example in [41]
and references therein for the study and simulation of the spatial correlations and
capacity in MIMO systems, where multiple antennas are used at both the transmitter
and receiver. Here we apply the double-ring model to M-to-M channel modeling.
The use of a double-ring model has a strong rationale. First and foremost, it is
a mathematically convenient reference model. Second, considering the lack of a
detailed and standardized M-to-M channel models, the model provides a generic
scenario with isotropic scattering at both ends of the communication link. Finally,
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empirical Doppler spectrum measurements for vehicle-to-vehicle communication
links [7, 175] more or less match those predicted by the double-ring model.

Using the double-ring model in Fig. 2.44, the complex faded envelope can be
written as

g(t) =

√
2

NM

N

∑
m=1

M

∑
n=1

e−j2πεmn/λce
j2πt
{

f T
m cos

(
α(m)

T

)
+ f R

m cos
(

α(n)
R

)}
+jφn,m , (2.268)

where the index “m” refers to the paths traveling from the transmitter to the N
scatterers located on the transmitter end ring, and the index “n” refers to the paths
traveling from the M scatterers on the receiver end ring to the receiver. The angle

α(m)
T is the random angle of departure and α(n)

R is the random AoA of the {m,n}th
propagation path measured with respect to the x-axis, respectively. The phases φn,m

are uniformly distributed on [−π ,π) and are independent for all pairs {n,m}. Note
that the single summation in (2.142) is replaced with a double summation, because
each plane wave on its way from the transmitter to the receiver is double bounced.
The temporal correlation characteristics remain the same as those of the model in
(2.142), because each path will undergo a Doppler shift due to the motion of both the
transmitter and receiver. Finally, we note that the temporal correlation properties do
not depend on the distance εmn in Fig. 2.44. Although not discussed here, the spatial
correlation properties will depend on εmn and, through εmn, on the scattering radii
RT and RR, and the distance D.

2.5.5.1 Deterministic Model

We now suggest an ergodic statistical (deterministic) simulation model. By choosing
only the phases to be random variables, the statistical correlation properties of this
model will converge to those of the reference model in a single simulation trial. The
complex faded envelope, g(t) = gI(t)+ jgQ(t), is generated as

gI(t) =

√
1

NIMI

MI

∑
m=1

NI

∑
n=1

cos
(
2π f T

m cos(αT
I,n)t + 2π f R

m cos(αR
I,m)t +φI,n,m

)
,

(2.269)

gQ(t) =

√
1

NQMQ

MQ

∑
m=1

NQ

∑
n=1

cos
(
2π f T

m cos(αT
Q,n)t + 2π f R

m cos(αR
Q,m)t +φQ,n,m

)
,

(2.270)

where φI,n,m and φQ,n,m are all independent random phases uniformly distributed
on [−π ,π). The nth angle of departure is equal to αT

I/Q,n = π(n − 0.5)/(2NI/Q),

for n = 1,2, . . . ,NI/Q. The mth AoA is equal to αR
I/Q,m = π(m− 0.5)/(MI/Q), for

m = 1,2, . . . ,MI/Q.
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There are two remarks about this model. First, the angles αT
I/Q,n are essentially

the same as those in the method of exact Doppler spreads (MEDS) model [205],
while the angles αR

I/Q,m are chosen to reproduce desired statistical properties for
M-to-M channels. Second, to make the time average correlation functions determin-
istic and independent of the random phases φI/Q,n,m, the frequencies f T

m cos(αT
I,n)+

f R
m cos(αR

I,m) in gI(t) and f T
m cos(αT

Q,n)+ f R
m cos(αR

Q,m) in gQ(t) must all be distinct
and, moreover, they must also be distinct among themselves for all pairs (n,m)
and (k, l). Although it is difficult to establish a general rule to meet this criterion,
choosing NI = MI and NQ = MQ = NI + 1 yields distinct Doppler frequencies for
practical ranges of NI varying from 5 to 60 and for different Doppler frequency
ratios, that is, different values of a = f R

m/ f T
m. This rule is similar to the one used

in the MEDS model [205]. Under these assumptions, it can be shown that the time
average correlation functions are

φ̂gIgI(τ) =
1

2N2
I

NI ,NI

∑
n,m=1

cos
(
2π f T

mτ cos(αT
I,n)+ 2π f R

mτ cos(αR
I,m)
)
, (2.271)

φ̂gQgQ(τ) =
1

2(NI + 1)2

(NI+1),(NI+1)

∑
n,m=1

cos(2π f T
mτ cos(αT

Q,n)+ 2π f R
mτ cos(αR

Q,m)),

(2.272)

φ̂gIgQ(τ) = φ̂gQgI(τ) = 0. (2.273)

2.5.5.2 Statistical Model

Although not shown here, our deterministic model has the disadvantage that the
time averaged correlation functions match those of the reference model only for
a small range of normalized time delays (0 ≤ f T

mTs ≤ 3). To improve upon the
statistical properties, we suggest an alternative statistical model, where orthogonal
functions are chosen for the quadrature components of the complex faded envelope.
By allowing all three parameter sets (amplitudes, phases, and Doppler frequencies)
to be random variables for each simulation trial, the statistical properties of this
model will vary for each simulation trial, but they will converge to those of the
reference model when averaged over a sufficient number of simulation trials. This
model is also able to generate multiple uncorrelated complex faded envelopes.

The following function is considered as the kth complex faded envelope:

gk(t) =

√
1

NM

N

∑
n=1

M

∑
m=1

ej(2π f T
m cos(αT

k,n)t+2π f R
m cos(αR

k,m)t+φk,n,m), (2.274)

where f T
m, f R

m, αT
k,n, αR

k,m, and φk,n,m are the maximum Doppler frequencies, the
random angle of departure, the random AoA, and the random phase, respectively.
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It is assumed that P independent complex faded envelopes are required (k = 0,
. . . ,P− 1) each consisting of NM sinusoidal components.

The number of sinusoidal components needed for simulation can be reduced by
choosing N0 = N/4 to be an integer, by taking into account shifts of the angles αT

k,n

and αR
k,m, and by splitting the sum in (2.274) into four terms, viz.,

gk(t) =

√
1
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M
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ej2π f R
mt cos(αR
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(
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∑
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(
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+ej(2π f T
mt cos(αT

k,n+π/2)+φk,n,m+π/2)
)
)

+

√
1

NM

M

∑
m=1

ej2π f R
mt cos(αR

k,m)

(
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∑
n=1

(
ej(2π f T

mt cos(αT
k,n+π)+φk,n,m+π)

+ej(2π f T
mt cos(αT

k,n+3π/2)+φk,n,m+3π/2)
)
)

. (2.275)

Equation (2.275) simplifies as follows:

gk(t) =

√
1

N0M

N0

∑
n=1

M

∑
m=1

cos
(
2π f R

mt cos(αR
k,m)
)

cos
(
2π f T

mt cos(αT
k,n)+φk,n,m

)

+ j
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N0M
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mt sin(αT
k,n)+φk,n,m

)
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(2.276)

Based on gk(t) in (2.276), we define our statistical simulation model. The kth
complex faded envelope, gk(t) = gI,k(t)+ jgQ,k(t), is generated as

gI,k(t) =
1√

N0M

N0

∑
n=1

M

∑
m=1

cos
(
2π f R

m cos(αR
k,m)t

)
cos
(
2π f T

m cos(αT
k,n)t +φk,n,m

)
,

(2.277)

gQ,k(t) =
1√

N0M

N0

∑
n=1

M

∑
m=1

sin
(
2π f R

m cos(αR
k,m)t

)
sin
(
2π f T

m sin(αT
k,n)t +φk,n,m

)
.

(2.278)

It is assumed that P independent complex envelopes are desired (k = 0, . . . ,P− 1),
each having MN0 sinusoidal terms in I and Q components. The angles of departure
and the angles of arrival are chosen as follows:

αT
k,n =

2πn
4N0

+
2πk

4PN0
+

θ −π
4N0

, (2.279)
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αR
k,m = 0.5

(
2πm
M

+
2πk
PM

+
ψ −π

M

)

, (2.280)

for n = 1, . . . ,N0, m = 1, . . . ,M k = 0, . . . ,P− 1. The angles of departure and the
angles of arrival in the kth complex faded envelope are obtained by rotating the
angles of departure and the angles of arrival in the (k − 1)th complex envelope by
(2π)/(4PN0) and (2π)/(2PM), respectively. The parameters φk,n,m, θ , and ψ are
independent uniform random variables on the interval [−π ,π).

The ensemble averaged statistical correlation functions of our statistical model
match those of the reference model [301]. For brevity, only the derivation of the
autocorrelation function of the in-phase component is presented. Other properties
can be derived in an analogous fashion. The autocorrelation function of the in-phase
component of the kth complex faded envelope is

φgk,Igk,I (τ) = E[gk,I(t)gk,I(t + τ)] (2.281)

=
4
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(2.282)

As in [290], the derivation can be completed by replacing the variables of inte-
gration, θ and ψ , with γk,n = (2πn)/(4N0)+ (2πk)/(4PN0)+ (θ − π)/(4N0) and
δk,m = (2πm)/(2M)+ (2πk)/(2PM)+ (ψ−π)/(2M), respectively. Finally,

lim
N0,M→∞

φgk,Igk,I (τ) = J0(2π f T
mτ)J0(2π f R

mτ). (2.283)

Figure 2.45 shows that, for N0 = M = P = 8 and 30 simulation trials, the
autocorrelation and cross-correlation of the complex faded envelopes produced by
the statistical model approach those of the reference model.
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Fig. 2.46 Baseband model for a typical digital communication system

2.5.6 Symbol-Spaced Models

The baseband representation of a typical digital communication system consists
of the concatenation of an up-sampler, a discrete-time transmit filter or pulse
shaping filter, digital-to-analog converter (DAC), waveform channel, analog-to-
digital converter (ADC), and discrete-time receiver filter or matched filter, and
down-sampler as shown in Fig. 2.46. The channel g(t,τ) is assumed to have the
structure in (2.250) or Fig. 2.41. Data symbols are input to the up-sampler, one every
T seconds, where T is the baud period. Usually, the bandwidth of the transmitted
signal W will exceed the Nyquist frequency 1/2T ; for example, when root-raised
cosine pulse shaping is used. Therefore, up-sampling is required at the transmitter
so that the DAC operates with sample period T/K, where K is the up-sampling
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Fig. 2.47 Symbol-spaced tapped delay line model for wide-band multipath-fading channels

factor. At the receiver, the ADC also operates with a sampling period T/K. The
up-sampling factor K must be chosen to at least to satisfy the sampling theorem at
the transmit side, that is, K/T ≥ 2W , but often K is made larger to facilitate timing
synchronization in the receiver and to accommodate the Doppler spreading that is
introduced by the channel. Once the correct sample timing phase is determined, the
sample sequence at the output of the receiver filter can be down-sampled for further
processing. For the purpose of illustration, we assume down-sampling by factor of
K, so that symbol-spaced samples are taken at the output of the receiver filter.3

From the above discussion, it is apparent that the overall channel from the
input to the transmitter filter to the output of the receiver filter can be modeled
as a FIR filter as shown in Fig. 2.47, where the {gT

n [k]} are the tap gains. While
it is true that the channel taps, {gi(t)} in the underlying waveform channel in
Fig. 2.41 are uncorrelated for WSSUS channels, the same cannot be said of the
taps {gT

n [k]} in the FIR filter of Fig. 2.47. The tap correlations in the symbol-
spaced model often leads to analytical intractability when evaluating the theoretical
performance of digital communication systems that operate on these channels. This
difficulty is often overcome by assuming that the taps {gT

n [k]} are uncorrelated
[73,89,111,148,160,240,253], when in fact they are not. However, when the same
systems are evaluated by software simulation, such modeling simplifications are
unnecessary and in fact undesirable. We now describe a method for generating the
tap coefficients {gT

n [k]} with the proper cross-correlations in the case where linear
modulation schemes are used. The procedure can be readily extended to generate
the required tap coefficients when fractional sampling is used, that is, if K > 1.

Consider the arrangement shown in Fig 2.48, where we assume the equivalent
analog representation of the transmit filter, ha(t), and receiver matched filter h∗

a(−t).
Pulses that are shaped by the transmit filter ha(t) are transmitted through the channel

3In practice, T/2-spaced samples at the output of the receiver filter are often used for further
processing.
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Fig. 2.48 Method for generating correlated tap coefficients in a T -spaced channel model

g(t,τ) and the receiver matched filter h∗
a(−t). The output of the receiver matched

filter is sampled at symbol-spaced intervals. Since the filters ha(t), g(t,τ), and
h∗

a(−t) are linear, we may exchange their order as shown in Fig 2.48, where the
overall pulse is equal to p(t) = ha(t) ∗ h∗

a(−t). The overall pulse p(t) is usually
chosen to be a Nyquist pulse. For example, p(t) might be a raised cosine pulse
so that ha(t) and h∗

a(−t) are root-raised cosine pulses. To obtain the symbol-
spaced channel tap coefficients, we pass the pulse p(t) through the channel g(t,τ)
and extract symbol-spaced samples at the output. Assuming that the channel has
the form in (2.250), we now show that the symbol-spaced samples are a linear
combination of the elements of the tap gain vector

g(t) = (g1(t), g2(t), . . . , g�(t))
T . (2.284)

Suppose that a vector of M, symbol-spaced, tap coefficients

gT (t) = (gT
1 (t), gT

2 (t), . . . , gT
M(t))T (2.285)

is to be generated. Then we can write gT (t)=Ag(t), where g(t) is defined in (2.284),
and A is an M × � real matrix. As shown in Example 2.1 below, the entries of the
matrix A are determined by the overall pulse p(t), the delay profile τ in (2.258), and
the timing phase of the sampler that extracts the symbol-spaced samples. The matrix
A must be generated each time the delay profile and/or the sampler timing phase
changes. For systems where timing information is derived from a training sequence
or synchronization word that is inserted into every transmitted slot or burst, the
sampler timing phase is usually adjusted on a burst-by-burst basis and, consequently,
the matrix A must be computed on a burst-by-burst basis as well.
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The autocovariance matrix of the symbol-spaced tap gain vector gT (t) is

ΦgT (τ) =
1
2

E
[
gT (t)gT H(t + τ)

]

=
1
2

E
[
Ag(t)gH(t + τ)AT ]

= A
1
2

E
[
g(t)gH(t + τ)

]
AT

= AΦg(τ)AT .

For a WSSUS channel and 2D isotropic scattering on each of the channel taps gi(t),
we have

Φg(τ) =
1
2

diag[Ω1,Ω2, . . . ,Ω�]J0(2π fmτ). (2.286)

Example 2.1
Suppose that the channel g(t,τ) consists of two taps having the spacing

τs = |τ1(t)− τ0(t)|. In this example, we wish to generate the two main taps in
the symbol-spaced channel model, gT

0 (t) and gT
1 (t). Let

g(t) = (g0(t),g1(t))
T ,

gT (t) = (gT
0 (t),g

T
1 (t))

T

and
gT (t) = Ag(t).

The entries of matrix A depend on the timing phase of the T -spaced samples
taken at the output of the pulse generator. In a practical system, the sampler
timing phase is determined by the synchronization process in the receiver.
Suppose that the taps just happen to have equal strength, |g0(t)|2 = |g1(t)|2,
when the sampler timing is being determined, that is, during the training se-
quence or synchronization word. Furthermore, for the purpose of illustration,
suppose that the result of the sampler timing phase adjustment is such that the
symbol-spaced taps have equal strength as well, that is, |gT

0 (t)|2 = |gT
1 (t)|2.

Figure 2.49 illustrates this situation. The entries of matrix A can be obtained
by writing

gT
0 (t) = p(τs/2−T/2)g0(t)+ p(−τs/2−T/2)g1(t),

gT
1 (t) = p(τs/2+T/2)g0(t)+ p(−τs/2+T/2)g1(t).
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Fig. 2.49 Generation symbol-spaced channel taps

Hence,

A =

[
p(τs/2−T/2) p(−τs/2−T/2)
p(τs/2+T/2) p(−τs/2+T/2)

]

.

Now suppose that the combination of the transmitter and receiver filter is
a raised cosine pulse,4

p(t) = sinc(t/T ) · cos(πβ t/T)
1− 4β 2t2/T 2 (2.287)

with roll-off factor β = 0.35, and τs = T/4. Then we have

A =

[
p(−3T/8) p(−5T/8)
p(5T/8) p(3T/8)

]

=

[
0.7717 0.4498
0.4498 0.7717

]

2.6 Shadowing

We have seen earlier in (2.24) that the received envelope power is

Ωp = E[|g(t)|2] =
N

∑
n=1

C2
n , (2.288)

4See Chap. 4 for a discussion of raised cosine pulse shaping.
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where Cn depends on the cross-sectional area of the nth local scatterer. In practice,
the local mean is calculated by computing the time average

Ω̂p =
1
T

∫

T
|g(t)|2dt, (2.289)

where the time interval T is chosen to correspond to a spatial averaging interval that
is large enough to average over the envelope fades. In practice, this corresponds to a
spatial averaging distance of about 20 wavelengths. Note that the required averaging
interval T will depend on velocity. The averaging interval must be small enough so
that the {Cn} do not change over the averaging interval. The location area is defined
as the largest volume of space where this condition will hold true. Sometimes Ωp is
called the local mean because it is computed within a location area. If the receiver
moves outside the location area, the {Cn} will change due to the presence of large
terrain features such as hills, valley, and buildings. Therefore, the local mean Ωp

(or Ω̂p) changes with location in a process known as shadowing. The same state-
ments can also be made for the mean envelope Ωv = E[|g(t)|] and its time average

Ω̂v =
1
T

∫

T
|g(t)|dt. (2.290)

Empirical studies have shown that Ωv and Ωp have the log-normal distributions

pΩv(x) =
2

xσΩ ξ
√

2π
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{x2}− μΩv (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
, (2.291)

pΩp(x) =
1

xσΩ ξ
√

2π
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{x}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
, (2.292)

where

μΩv (dBm)
= 30+ 10E[log10{Ω 2

v }], (2.293)

μΩp (dBm)
= 30+ 10E[log10{Ωp}], (2.294)

σΩ is the shadow standard deviation in decibel units, and ξ = ln(10)/10. The mean
values μΩv (dBm)

and μΩp (dBm)
are sometimes called the area mean because they

correspond to an extended location area defined as the largest volume of space where
the {Cn} can be characterized as stationary random variables and N is a constant.
Within an extended location area, the mean envelope power μΩp = E[Ωp] and mean
envelope μΩv = E[Ωv] are constant. These quantities will depend on the propagation
path loss between the transmitter and receiver, so that the path loss is constant within
the extended location area.
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Using a transformation of random variables, it can be shown that Ωv (dBm) =

30+ 10log10{Ω 2
v } and Ωp (dBm) = 30+ 10log10{Ωp} have the respective Gaussian

densities

pΩv (dBm)
(x) =

1√
2πσΩ

exp

⎧
⎪⎨

⎪⎩
−
(

x− μΩv (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
, (2.295)

pΩp (dBm)
(x) =

1√
2πσΩ

exp

⎧
⎪⎨

⎪⎩
−
(

x− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
. (2.296)

Note that the logarithm of the log-normal random variable yields a normal random
variable.

Some confusion may arise when reading the literature because some authors
[100, 101, 185] treat the mean envelope Ωv as being log-normally distributed with
shadow standard deviation σΩ , while other authors [163, 180, 214] treat the mean
square envelope Ωp as being log-normally distributed with the same value of σΩ .
Clearly, the mean envelope and mean square envelope are not the same, and we
question whether the same shadow standard deviation should be used in each case.
It is shown in Appendix 3 that the shadow standard deviation σΩ is indeed the same
in each case. However, with Ricean fading the means differ by

μΩp (dBm)
= μΩv (dBm)

+ 10log10{C(K)}, (2.297)

where

C(K) =
4e2K(K + 1)

π1F2
1 (3/2,1;K)

(2.298)

and 1F1(·, ·; ·) denotes the confluent hypergeometric function.
The shadow standard deviation σΩ ranges from 5 to 12 dB with 8 dB being

a typical value for macrocellular applications. The shadow standard deviation
increases slightly with frequency (0.8 dB higher at 1,800 MHz than at 900 MHz),
but has been observed to be nearly independent radio path length, even for distances
that are very close to the transmitter [180]. The shadow standard deviation that is
observed in microcells varies between 4 and 13 dB [33, 113, 115, 171, 181, 223].
Mogensen [181] has reported σΩ = 6.5 to 8.2 dB at 900 MHz in urban areas, while
Mockford et. al. [180] report a value of 4.5 dB for urban areas. Berg [33] and
Goldsmith and Greenstein [115] report that σΩ is around 4 dB for a spatial averaging
window of 20 wavelengths and BS antenna heights of about 10 m. Several studies
suggest that σΩ decreases with an increase in the degree of urbanization or density
of scatters. For example, the results presented by Mockford et. al. [180] suggest that
σΩ is 1.3 to 1.8 dB higher in a suburban environment than in an urban environment.
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2.6.1 Shadow Simulation

One of the challenges when constructing a shadow simulator is to account for the
spatial correlation of the shadows. Several studies have investigated the spatial
correlation of shadows [121, 122, 129, 133, 171]. One simple model has been
suggested by Gudmundson [122], where log-normal shadowing is modeled as a
Gaussian white noise process that is filtered by a first-order low-pass filter. With
this model,

Ωk+1 (dBm) = ζΩk (dBm) + (1− ζ )vk, (2.299)

where Ωk (dBm) is the mean envelope or mean squared envelope, expressed in
decibels, that is experienced at index k, ζ is a parameter that controls the spatial
correlation of the shadows, and vk is a zero-mean Gaussian random variable with
φvv(n) = σ̃2δ (n). It can be shown that the spatial autocorrelation function of
Ωk (dBm) as generated by (2.299) is

φΩ(dBm)Ω(dBm)
(k) =

1− ζ
1+ ζ

σ̃2ζ |k|. (2.300)

Since the shadow variance is

σ2
Ω = φΩ(dBm)Ω(dBm)

(0) =
1− ζ
1+ ζ

σ̃2, (2.301)

we can express the autocorrelation of Ωk as

φΩ(dBm)Ω(dBm)
(k) = σ2

Ω ζ |k|. (2.302)

This approach generates shadows that decorrelate exponentially with distance. It is
interesting to note that Mandayam et. al. [169] have shown through an extreme value
analysis that log-normal shadows cannot decorrelate exponentially with distance.
Nevertheless, in the absence of a better solution, Gudmundson’s model in (2.299) is
still useful and effective.

While shadows decorrelate spatially, simulations are usually conducted in dis-
crete time. Therefore, to use the simulator in (2.299), we must relate the spatial
decorrelation parameter ζ to the simulation index k. Suppose that we wish to model
the shadows that are experienced by a MS that is traveling with velocity v. The
envelope (or squared envelope) is sampled every T seconds. In kT seconds the
MS moves a distance vkT . Let ζD be the shadow correlation between two points
separated by a distance of D m. Then the time autocorrelation of shadowing is

φΩ(dBm)Ω(dBm)
(k)≡ φΩ(dBm)Ω(dBm)

(kT ) = σ2
Ω ζ (vT/D)|k|

D . (2.303)
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Comparing (2.302) and (2.303) we see that ζ = ζ (vT/D)
D . For typical suburban

propagation at 900 MHz, it has been experimentally verified by Gudmundson
[120] that σΩ ≈ 7.5 dB and ζ100 = 0.82. For typical microcellular propagation at
1,700 MHz, Gudmundson has also reported σΩ = 4.3 dB and ζ10 = 0.3.

2.6.2 Composite Shadowing-Fading Distributions

Sometimes it is desirable to obtain the composite envelope distribution due to
shadowing and multipath fading. Such a composite distribution is relevant in cases
where the MSs are slowly moving or stationary. In this case, the fading rate may be
so slow that entire codewords are either faded completely or not at all regardless of
the interleaving depth that is used, and the code fails. In this case, the composite
shadow-fading distribution is useful for evaluating system coverage, that is, the
fraction of the service area having an acceptable quality of service.

Two different approaches have been suggested in the literature for obtaining the
composite distribution. The first approach is to express the envelope (or squared
envelope) as a conditional density, conditioned on Ωv (or Ωp), and then integrate
over the density of Ωv (or Ωp) to obtain the composite distribution. This results in
the composite squared envelope distribution

pα2
c
(x) =

∫ ∞

0
pα2| Ωp

(x|w)pΩp(w)dw. (2.304)

For the case of Rayleigh fading, at any time t1

Ωp = E[α2(t1)] = 2b0 (2.305)

and, hence,
pα2| Ωp

(x|w) = x
w

e−x/w. (2.306)

The composite squared envelope distribution with Rayleigh fading and log-normal
shadowing is

pα2
c
(x) =

∫ ∞

0

1
w

e−x/w × 1

wσΩ ξ
√

2π
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{w}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dw,

(2.307)

where ξ = ln(10)/10. Unfortunately, this distribution does not exist in closed form,
but can be efficiently evaluated using Gauss–Hermite quadrature integration.
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The second approach, originally suggested by Lee and Yeh [155], expresses the
composite received envelope as the product of the envelope due to multipath fading
and shadow fading. Using this approach, the envelope of the composite signal has
the product form

α̂c(t) = α(t) ·Ωv(t), (2.308)

while the squared envelope of the composite signal has the product form

α̂2
c (t) = α2(t) ·Ωp(t). (2.309)

Under the assumption that the fading and shadowing are independent random pro-
cesses, we now show that both approaches lead to identical results. The composite
envelope in (2.309) is the product of two random variables at any time t1. Hence,
the corresponding density function can be obtained using a bivariate transformation
and then integrating to obtain the marginal density. This leads to the density

pα̂2
c
(x) =

∫ ∞

0

1
w

pα2

( x
w

)
pΩp(w)dw. (2.310)

Again, consider the case of log-normal shadowing and Rayleigh fading. Using
(2.50) and (2.291) gives

pα̂2
c
(x) =

∫ ∞

0

1
Ωpw

exp

{

− x
Ωpw

}

× 1

wσΩ ξ
√

2π
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{w}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dw. (2.311)

Observe that (2.307) and (2.311) are related by

pαc(x) = Ωp pα̂c

(
Ωpx
)
. (2.312)

Hence, if we assume that the faded envelope α(t) in the second approach has
E[α(t)2] = Ωp = 1, then α2

c and α̂2
c will have the exact same composite distribution.

Although the above result may not matter much for analysis, it does have impli-
cations for software simulation. When simulating the combined effects of fading
and shadowing, we can generate the composite envelope or squared envelope by
generating the fading and shadowing processes separately and multiplying them
together as shown in (2.308) and (2.309), respectively. To do so, the faded envelope
should be generated such that Ωv = 1 or Ωp = 1 as appropriate.
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2.6.2.1 Composite Gamma-Log-Normal Distribution

It is sometimes very useful to model the radio propagation environment as a
shadowed Nakagami fading channel, because the Nakagami distribution is math-
ematically convenient and can closely approximate a Rice distribution. The com-
posite distribution of the squared-envelope due to Nakagami fading and log-normal
shadowing has the Gamma-log-normal density function

pα2
c
(x) =

∫ ∞

0

(m
w

)m xm−1

Γ(m)
exp
{
−mx

w

}

× 1√
2πξ σΩ w

exp

{

−
(10log10{w}− μΩp (dBm)

)2

2σ2
Ω

}

dw, (2.313)

where ξ = ln(10)/10. As shown in Appendix 4, the composite Gamma-log-normal
distribution in (2.313) can be approximated by a log-normal distribution with
parameters

μ(dBm) = ξ−1 (ψ(m)− ln(m))+ μΩp (dBm)

σ2 = ξ−2ζ (2,m)+σ2
Ω , (2.314)

where ψ(·) is the Euler psi function and ζ (·, ·) is Riemann’s zeta function as defined
in Appendix 4. When m= 1, the approximation is valid for σΩ > 6 dB; when m = 2,
σΩ > 6 must be greater than or equal to 4 dB; when m ≥ 4, the approximation is
good for all σΩ [131].

The effect of Nakagami fading in (2.314) is to decrease the mean and increase
the variance of the composite envelope. However, this effect decreases as the shape
factor m increases (corresponding to less severe fading). For example, with m = 1
(Rayleigh fading) we have μ(dBm) = μΩp (dBm)

− 2.50675 and σ2 = σ2
Ω + 31.0215,

while with m = 8 we have μ(dBm) = μΩp (dBm)
− 0.277 and σ2 = σ2

Ω + 2.50972.

2.7 Path Loss Models

Path loss is the largest and most variable quantity in a communication link budget.
It depends on frequency, antenna heights, and distance and topography. A variety
of theoretical and empirical path loss models exist in the literature. We start with a
discussion of theoretical models followed by empirical models.
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2.7.1 Free Space Path Loss

Free-space path loss (FSPL) is proportional to the square of the distance between
the transmitter and receiver, and also proportional to the square of the frequency of
the radio signal. The FSPL equation is

LFS =

(
4πd
λc

)2

. (2.315)

FSPL is a combination of two effects: First, the intensity of an electromagnetic wave
in free space decays with the square of the radio path length, d, such that the received
power per unit area or power spatial density (in watts per meter square) at distance
d is

Ωr(d) = Ωt
1

4πd2 , (2.316)

where Ωt is the total transmit power in watts. Note that this term is not frequency
dependent.

The second effect is due to aperture, which determines how well an antenna
picks up power from an incoming electromagnetic wave. For an isotropic antenna,
we have

Ωp(d) = Ωr(d)
λ 2

c

4π
, (2.317)

where Ωp(d) is the received power. Note that this is entirely dependent on
wavelength, λc, which is how the frequency-dependent behavior arises.

Using (2.316) and (2.317) gives the free space propagation path loss as

LFS (dB) = 10log10

{
Ωt

Ωp(d)

}

= 10log10

{(
4πd
λc

)2
}

= 10log10

{(
4πd
c/ fc

)2
}

= 20log10{ fc}+ 20log10{d}− 147.55 dB.
(2.318)

2.7.2 Flat Earth Path Loss

The signals in land mobile radio environments do not experience free space
propagation. A more appropriate theoretical model assumes propagation over a flat
reflecting surface (the earth) as shown in Fig. 2.50. The length of the direct path is

d1 =
√

d2 +(hb − hm)2 (2.319)
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Fig. 2.50 Radio propagation over a flat reflecting surface

and the length of the reflected path is

d2 =
√

d2 +(hb + hm)2. (2.320)

Given that d  hbhm, we have d1 ≈ d and d2 ≈ d. However, since the wavelength
is small, the direct and reflected paths may add constructively or destructively
over small distances. The carrier phase difference between the direct and reflected
paths is

φ2 −φ1 =
2π
λc

(d2 − d1). (2.321)

Taking into account the phase difference, the received envelope power is

μΩp = Ωt

(
λc

4πd

)2 ∣
∣
∣1+ ae−jbej(φ2−φ1)

∣
∣
∣
2
, (2.322)

where a and b are the amplitude attenuation and phase change introduced by the flat
reflecting surface. If we assume a perfect specular reflection, then a = 1 and b = π
for small θ and

μΩp = Ωt

(
λc

4πd

)2 ∣
∣
∣1− ej( 2π

λc
Δd)
∣
∣
∣
2

= 4Ωt

(
λc

4πd

)2

sin2
(

π
λc

Δd

)

, (2.323)

where Δd = (d2 −d1). Given that d  hb and d  hm, and applying the approxima-
tion

√
1+ x ≈ 1+ x/2 for small x to (2.319) and (2.320), we have

Δd ≈ 2hbhm

d
. (2.324)
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Fig. 2.51 Propagation path
loss with distance over a flat
reflecting surface; hb = 7.5 m,
hm = 1.5 m, fc = 1,800 MHz
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Finally, the received envelope power is

μΩp ≈ 4Ωt

(
λc

4πd

)2

sin2
(

2πhbhm

λcd

)

, (2.325)

where hb and hm are the heights of the BS and MS antennas, respectively. Under the
condition that d  hbhm, (2.325) reduces to

μΩp ≈ Ωt

(
hbhm

d2

)2

, (2.326)

where we have invoked the small angle approximation sinx ≈ x for small x. Observe
that when d  hbhm, the propagation over a flat reflecting surface differs from free
space propagation in two ways. First, the path loss is not frequency dependent and,
second, the envelope power decays with the fourth power of the distance rather than
the square of the distance. Finally, the model in (2.326) shows how changes in the
BS and MS antenna heights will affect the path loss.

Figure 2.51 plots the flat Earth path loss (FEPL)

LFE (dB) = 10log10

{
Ωt

μΩp

}

=−10log10

{

4

(
λc

4πd

)2

sin2
(

2πhbhm

λcd

)}

dB

(2.327)
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against the distance d. Notice that the path loss and, hence, the received envelope
power have alternate minima and maxima when the path length is small. This
property has been noted in experiments by Milstein et. al. [178]. The last local
maxima in the path loss occurs when

2πhbhm

λcd
=

π
2
.

2.7.3 Empirical Path Loss Models

Several highly useful empirical models for macrocellular systems have been
obtained by curve fitting experimental data. Two of the more useful models for
900 MHz cellular systems are Hata’s model [197] based on Okumura’s prediction
method [129], and Lee’s model [153].

2.7.3.1 Okumura–Hata and CCIR Models

Hata’s empirical model [129] is probably the simplest to use and can distinguish
between man-made structures. The empirical data for this model was collected by
Okumura [197] in the city of Tokyo. The Okumura–Hata model is expressed in
terms of the carrier frequency 150 ≤ fc ≤ 1,000 (MHz), BS antenna height 30 ≤
hb ≤ 200 (m), the MS antenna height 1 ≤ hm ≤ 10 (m), and the distance 1 ≤ d ≤
20 (km) between the BS and MS. Note the units of the parameters that are used
in the model. The model is known to match the experimental data from which is
formed to within 1 dB for distances ranging from 1 to 20 km. With the Okumura–
Hata model, the path loss between two isotropic BS and MS antennas is:

Lp (dB) =

⎧
⎨

⎩

A+B log10{d} for urban area
A+B log10{d}−C for suburban area
A+B log10{d}−D for open area

, (2.328)

where

A = 69.55+ 26.16log10{ fc}− 13.82log10{hb}− a(hm),

B = 44.9− 6.55log10{hb},
C = 5.4+ 2(log10{ fc/28})2 ,

D = 40.94+ 4.78(log10{ fc})2 − 18.33log10{ fc}. (2.329)



2.7 Path Loss Models 137

Fig. 2.52 Path loss obtained
from the Okumura–Hata
model; hb = 70 m,
hm = 1.5 m, fc = 900 Mhz
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and

a(hm) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1.1log10{ fc}− 0.7)hm − (1.56log10{ fc}− 0.8)

for medium or small city

{
8.28(log10{1.54hm})2 − 1.1 for fc ≤ 200MHz
3.2(log10{11.75hm})2 − 4.97 for fc ≥ 400MHz

for large city

.

(2.330)

Typical values from the Okumura–Hata “large city” model are plotted in
Fig. 2.52, for a BS height of 70 m, a MS antenna height of 1.5 m, and a carrier
frequency of 900 MHz. The reader is cautioned that, due to a lesser degree of
urbanization, the path losses for Japanese suburban areas do not match North
American suburban areas very well. The latter are more like the quasi-open areas in
Japan. In addition, the North American urban areas have path losses more like the
Japanese suburban areas.

To account for varying degrees of urbanization, the Comité International des
Radio-Communication, now ITU-R (CCIR) developed an empirical model for the
path loss as:

Lp (dB) = A+Blog10{d}−E, (2.331)

where A and B are defined in (2.329) with a(hm) being the medium or small city
value in (2.330). The parameter E accounts for the degree of urbanization and is
given by
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E = 30− 25log10{% of area covered by buildings}, (2.332)

where E = 0 when the area is covered by approximately 16% buildings.

2.7.3.2 Lee’s Area-to-Area Model

Lee’s area-to-area model [153] is used to predict a path loss over flat terrain. If the
actual terrain is not flat, for example, hilly, there will be large prediction errors. Two
parameters are required for Lee’s area-to-area model; the power at a 1 mile (1.6 km)
point of interception, μΩp(do), and the path-loss exponent, β . The received signal
power at distance d can be expressed as

μΩp(d) = μΩp(do)

(
d
do

)−β ( f
fo

)−n

α0 (2.333)

or in decibel units

μΩp (dBm)(d) = μΩp (dBm)(do)−10β log10

{
d
do

}

−10nlog10

{
f
fo

}

+10log10{α0},
(2.334)

where d is in units of kilometers and do = 1.6 km. The parameter α0 is a correction
factor used to account for different BS and MS antenna heights, transmit powers,
and antenna gains. The following set of nominal conditions are assumed in Lee’s
area-to-area model:

• Frequency fo = 900 MHz
• BS antenna height = 30.48 m
• BS transmit power = 10 W
• BS antenna gain = 6 dB above dipole gain
• MS antenna height = 3 m
• MS antenna gain = 0 dB above dipole gain

If the actual conditions are different from those listed above, then we compute the
following parameters:

α1 =

(
BS antenna height (m)

30.48m

)2

,

α2 =

(
MS antenna height (m)

3 m

)κ
,

α3 =
transmitter power

10W
,

α4 =
BS antenna gain with respect to λc/2 dipole

4
,

α5 = different antenna-gain correction factor at the MS. (2.335)
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Table 2.2 Parameters for Lee’s area-to-area model in various propa-
gation environments, from [153]

Terrain μΩp (dBm)
(do) β

Free space −45 2
Open area −49 4.35
North American suburban −61.7 3.84
North American urban (Philadelphia) −70 3.68
North American urban (Newark) −64 4.31
Japanese urban (Tokyo) −84 3.05

From these parameters, the correction factor α0 is

α0 = α1 ·α2 ·α3 ·α4 ·α5. (2.336)

The parameters β and μΩp(do) have been found from empirical measurements and
are listed in Table 2.2.

Experimental data suggest that n in (2.334) ranges between 2 and 3 with the
exact value depending upon the carrier frequency and the geographic area. For fc <
450 MHz in a suburban or open area, n = 2 is recommended. In an urban area with
fc > 450 MHz, n = 3 is recommended. The value of κ in (2.335), also determined
from empirical data, is

κ =

{
2 for a MS antenna height > 10m
3 for a MS antenna height < 3m

. (2.337)

The path loss Lp (dB) is the difference between the transmitted and received
envelope power, Lp (dB) = μΩp (dBm)

(d)− μΩt (dBm)
. To compare directly with the

Okumura–Hata model in Fig. 2.52, we assume an isotropic BS antenna with 0 dB
gain, so that α4 =−6 dB. Then using the same parameters as in Fig. 2.52, hb = 70 m,
hm = 1.5 m, fc = 900 MHz, a nominal BS transmitter power of 40 dBm (10 W), and
the parameters in Table 2.2 for μΩp (dBm)

(do) and β , the following path losses are
obtained:

Lp (dB) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

85.74+ 20.0log10{d} Free Space
84.94+ 43.5log10{d} Open Area
98.68+ 38.4log10{d} Suburban
107.31+ 36.8log10{d} Philadelphia
100.02+ 43.1log10{d} Newark
122.59+ 30.5log10{d} Tokyo

. (2.338)

These typical values from Lee’s area-to-area model are plotted in Fig. 2.53.
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Fig. 2.53 Path loss obtained using Lee’s method; hb = 70 m, hm = 1.5 m, fc = 900 MHz, and an
isotropic BS antenna

2.7.3.3 COST231–Hata Model

The COST231–Hata model is based on the proposal by Mogensen [181] et. al. to
extend the Okumura–Hata model for use in the 1,500–2,000MHz frequency range,
where it is known that the Okumura–Hata model underestimates the path loss. The
COST231–Hata model is expressed in terms of the carrier frequency 1,500 ≤ fc ≤
2,000 (MHz), BS antenna height 30 ≤ hb ≤ 200 (m), MS antenna height 1 ≤ hm ≤
10 (m), and distance 1 ≤ d ≤ 20 (km). Note again that the parameters must be used
with the proper units in the model. The path loss predicted by the COST231–Hata
model is [65]

Lp (dB) = A+Blog10{d}+C, (2.339)

where

A = 46.3+ 33.9log10{ fc}− 13.82log10{hb}− a(hm),

B = 44.9− 6.55log10{hb},

C =

⎧
⎨

⎩

0 medium city and suburban areas
with moderate tree density

3 for metropolitan centers
.
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Although both the Okumura and Hata and the COST231–Hata models are limited
to BS antenna heights greater than 30 m, they can be used for lower BS antenna
heights provided that the surrounding buildings are well below the BS antennas.
They should not be used to predict path loss in urban canyons. The COST231–Hata
model is good down to a path length of 1 km. They should not be used for smaller
ranges, where path loss becomes highly dependent upon the local topography.

2.7.3.4 COST231–Walfish–Ikegami Model

The COST231–Walfish–Ikegami model was developed for microcellular systems
and distinguishes between LoS and NLoS propagation. The model is accurate for
carrier frequencies in the range 800 ≤ fc ≤ 2000 (MHz), and path distances in the
range 0.02 ≤ d ≤ 5 (km).

LoS propagation

For LoS propagation in a street canyon, the path loss is

Lp (dB) = 42.6+ 26log10{d}+ 20log10{ fc}, d ≥ 20m, (2.340)

where the first constant is chosen so that Lp is equal to the FSPL at a distance of
20 m. The model parameters are the distance d (km) and carrier frequency fc (MHz).

NLoS propagation

As defined in Fig. 2.54, the path loss for NLoS propagation is expressed in terms of
the following parameters:

d = distance (m),

hb = BS antenna height over street level, 4 ≤ hb ≤ 50 (m),

hm = MS antenna height over street level, 1 ≤ hm ≤ 3 (m),

hRoof = nominal roof height of buildings (m),

Δhb = hb − hRoof = height of BS relative to rooftops (m),

Δhm = hRoof − hm = height of MS relative to rooftops (m),

w = width of streets (m),

b = building separation (m),

φ = angle of incident wave with respect to street (degrees).
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Fig. 2.54 Definition of parameters used in the COST231–Walfish–Ikegami model

If no data on the structure of the buildings and roads are available, the following
default values are recommended, b = 20 . . .50 (m), w = b/2 (m), φ = 90o, and
hRoof = 3× number of floors+ roof (m), where roof = 3 (m) pitched and 0 (m) flat.

The NLoS path loss is composed of three terms, viz.,

Lp (dB) =

{
Lo +Lrts +Lmsd, for Lrts +Lmsd ≥ 0
Lo, for Lrts +Lmsd < 0

, (2.341)

where

Lo = free-space loss = 32.4+ 20log10{d}+ 20log10{ fc},
Lrts = roof-top-to-street diffraction and scatter loss,

Lmsd = multiscreen diffraction loss.

Note that the expression for free-space loss differs from (2.318) because here the
units of d are in kilometers and the units of fc are in megahertz. The roof-top-to-
street diffraction and scatter loss represent the coupling of the wave propagation
along the multiscreen path into the street where the MS is located, and is given by

Lrts =−16.9− 10log10{w}+ 10log10{ fc}+ 20log10{Δhm}+Lori, (2.342)

where

Lori =

⎧
⎨

⎩

−10+ 0.354(φ), 0 ≤ φ ≤ 35o

2.5+ 0.075(φ − 35o), 35o ≤ φ ≤ 55o

4.0− 0.114(φ − 55o), 55o ≤ φ ≤ 90o
(2.343)

is a street orientation loss.
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The multiscreen diffraction loss is

Lmsd = Lbsh + ka + kdlog10{d}+ k f log10{ fc}− 9log10{b}, (2.344)

where

Lbsh =

{−18log10{1+Δhb}, hb > hRoof

0, hb ≤ hRoof
(2.345)

is the shadowing gain (negative loss) for cases when the BS antenna is above the
rooftops. The parameters ka and kd depend on the path length, d, and base station
elevation with respect to the rooftops, Δhb. The term ka accounts for the increase
in path loss when the BS antennas are situated below the roof tops of adjacent
buildings, and is given by

ka =

⎧
⎨

⎩

54, hb > hRoof

54− 0.8Δhb, d ≥ 0.5km and hb ≤ hRoof

54− 0.8Δhbd/0.5, d < 0.5km and hb ≤ hRoof

. (2.346)

The terms kd and k f control the dependency of the multiscreen diffraction loss on
the distance and frequency, respectively, and are given by

kd =

{
18, hb > hRoof

18− 15Δhb/hRoof, hb ≤ hRoof
, (2.347)

k f = −4+

{
0.7( fc/925− 1), medium city and suburban
1.5( fc/925− 1), metropolitan area

. (2.348)

The COST231–Walfish–Ikegami model works best for hb  hRoof. Large predic-
tion errors can be expected for hb ≈ hRoof. The model is poor for hb � hRoof because
the terms in (2.346) do not consider wave guiding in street canyons and diffraction
at street corners.

2.7.3.5 Street Microcells

For ranges less than 500 m and antenna heights less than 20 m, some empirical mea-
surements have shown that the received signal strength for LoS propagation along
city streets can be described by the two-slope model [119, 128, 137, 214, 270, 282]

μΩp =
kΩt

da(1+ d/g)b , (2.349)

where Ωt is the transmitted power, k is a constant of proportionality and d (m) is
the distance. For small path length distances, free space propagation will prevail
so that a = 2. The parameter g is called the break point and ranges from 150 to
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Table 2.3 Two-slope path
loss parameters obtained by
Harley, from [128]

Base antenna Break
height (m) a b point g (m)

5 2.30 −0.28 148.6
9 1.48 0.54 151.8
15 0.40 2.10 143.9
19 −0.96 4.72 158.3

Fig. 2.55 The corner effect
in a street microcell
environment

Building

base
station

station

basemobile

250 m

250 m

300 m [119, 128, 137, 282]. At larger distances, an inverse-fourth to -eighth power
law is experienced so that b ranges from 2 to 6 [128]. The model parameters that
were obtained by Harley are listed in Table 2.3. Xia [289] has demonstrated that
the break-point occurs where the Fresnel zone between the transmit and receive
antennas just touches the ground assuming a flat surface. This distance is

g =
1
λc

√

(Σ2 −Δ 2)2 − 2(Σ2 +Δ 2)

(
λc

2

)2

+

(
λc

2

)4

, (2.350)

where Σ = hb + hm and Δ = hb − hm. For high frequencies, this distance can be
approximated as g = 4hbhm/λc, which is the same distance as the last local maxima
in the flat reflecting surface model in Sect. 2.7.2. Notice that the break-point is
dependent on frequency, with the break-point at 1.9 GHz being about twice that
for 900 MHz.

Street microcells may also exhibit NLoS propagation when a MS rounds a street
corner as shown in Fig. 2.55. In this case, the average received signal strength can
drop by as much as 25–30 dB over distances as small as 10 m for low antenna heights
in an area with multistory buildings [51, 164, 186, 226, 257], and by 25–30 dB over
distances of 45–50 m for low antenna heights in a region with only one- or two-story
buildings [226]. This phenomenon is known as the corner effect.
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Fig. 2.56 Received signal strength for the street microcell environment in Fig. 2.55. Solid lines
show the area mean signal strength, while the dashed lines account for shadowing and fading as
well. For this latter case, σΩ = 6 dB and φΩp (dBm)Ωp (dBm)

(d) = 0.1σ 2
Ω at d = 30 m. For each BS,

the received signal strength is shown when the MS is connected to that particular BS and the MS
moves along the route in Fig. 2.55

Grimlund and Gudmundson [119] have proposed an empirical street corner path
loss model. Their model assumes LoS propagation until the MS reaches a street
corner. The NLoS propagation after rounding a street corner is modeled by assuming
LoS propagation from a virtual transmitter that is located at the street corner having
a transmit power equal to the received power at the street corner from the serving
BS. That is, the received signal strength (in dBm) is given by

μΩp =

{
kΩt

da(1+d/g)b d ≤ dc
kΩt

da
c (1+dc/g)b · 1

(d−dc)a(1+(d−dc)/g)b d > dc
, (2.351)

where dc (m) is the distance between the serving BS and the corner. For the scenario
depicted in Fig. 2.55, the received signal strength with this model is shown in
Fig. 2.56. The heavy curves show the average received signal strength from the two
BSs as the MS traverses the dashed path shown in Fig. 2.55. These curves were
obtained using a = 2, b = 2, g = 150 m, and dc = 250 m in (2.351), and assuming
that μΩp = 1 dBm at d = 1 m. The dotted curves superimposed on the heavy lines in
Fig. 2.56 show the received signal strength with the combined effects of path loss,
log-normal shadowing, and multipath fading. The latter two were obtained using the
simulators described in Sects. 2.6.1 and 2.5.2.2.
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Table 2.4 Path loss exponents and shadow standard deviations for several
different types of buildings, from [12]

Building Frequency (MHz) β σΩ (dB)

Retail stores 914 2.2 8.7
Grocery stores 914 1.8 5.2
Office, hard partition 1,500 3.0 7.0
Office, soft partition 900 2.4 9.6
Office, soft partition 1,900 2.6 14.1

2.7.3.6 Path Loss in Indoor Microcells

The path loss and shadowing characteristics for indoor microcells vary greatly from
one building to the next. Typical path loss exponents and shadow standard deviations
are provided in Table 2.4 for several different types of buildings.

For multistory buildings, the signal attenuation between floors is important.
Measurements have shown that the greatest floor loss occurs when the transmitter
and receiver are separated by a single floor. Typically, the floor loss is 15–20 dB
for one floor and an additional 6–10 dB per floor up to a separation of four floors.
For five or more floors of separation, the overall floor loss will increase only a few
decibels for each additional floor. This effect is thought to be caused by signals
diffracting up the sides of the building and signals scattering off the neighboring
buildings. Also important for the deployment of indoor wireless systems is the
building penetration loss. This loss depends on the frequency and height of the
building. Turkmani et. al. [256] have shown that the building penetration losses
decrease with increasing frequency, in particular they are 16.4, 11.6, and 7.6 dB
at 441 MHz, 896.5 MHz, and 1,400 MHz, respectively. In general, the building
penetration loss for signals propagating into a building tends to decrease with height,
the reason being that an LoS path is more likely to exist at increased height. The
building penetration loss decreases by about 2 dB per floor from ground level up to
about 9–15 floors and then increases again [271]. Windows also have a significant
effect on penetration loss. Plate glass provides an attenuation of about 6 dB, while
lead-lined glass provides an attenuation anywhere from 3 to 30 dB.

Appendix 1: COST 207 Channel Models

Teh COST 207 study has specified typical realizations for the power-delay profile
in the following environments: typical urban (TU), bad urban (BA), reduced TU,
reduced BU, rural area (RA), and Hilly Terrain (HT) [64]. The models below
are identical to the COST 207 models, except that fractional powers have been
normalized so as to sum to unity, that is, the envelope power is normalized to unity.
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Table 2.5 COST 207 typical urban (TU) (στ = 1.0 μs) and bad urban (BU) (στ = 2.5 μs)
power-delay profiles, from [64]

Typical urban Doppler Bad urban Doppler
Delay μs fractional power category Delay μs fractional power category

0.0 0.092 CLASS 0.0 0.033 CLASS
0.1 0.115 CLASS 0.1 0.089 CLASS
0.3 0.231 CLASS 0.3 0.141 CLASS
0.5 0.127 CLASS 0.7 0.194 GAUS1
0.8 0.115 GAUS1 1.6 0.114 GAUS1
1.1 0.074 GAUS1 2.2 0.052 GAUS2
1.3 0.046 GAUS1 3.1 0.035 GAUS2
1.7 0.074 GAUS1 5.0 0.140 GAUS2
2.3 0.051 GAUS2 6.0 0.136 GAUS2
3.1 0.032 GAUS2 7.2 0.041 GAUS2
3.2 0.018 GAUS2 8.1 0.019 GAUS2
5.0 0.025 GAUS2 10.0 0.006 GAUS2

Table 2.6 COST 207 reduced typical urban (TU) (στ = 1.0 μs) and reduced bad urban (BU)
(στ = 2.5 μs) power-delay profiles, from [64]

Typical urban Doppler Bad urban Doppler
Delay μs fractional power category Delay μs fractional power category

0.0 0.189 CLASS 0.0 0.164 CLASS
0.2 0.379 CLASS 0.3 0.293 CLASS
0.5 0.239 CLASS 1.0 0.147 GAUS1
1.6 0.095 GAUS1 1.6 0.094 GAUS1
2.3 0.061 GAUS2 5.0 0.185 GAUS2
5.0 0.037 GAUS2 6.6 0.117 GAUS2

Table 2.7 COST 207 typical
rural (non-hilly) area (RA)
power-delay profile
(στ = 0.1 μs), from [64]

Delay Fractional Doppler
μs power category

0.0 0.602 RICE
0.1 0.241 CLASS
0.2 0.096 CLASS
0.3 0.036 CLASS
0.4 0.018 CLASS
0.5 0.006 CLASS

Appendix 2: COST 259 Channel Models

The 3GPP standards group has defined three typical realizations for the COST 259
models: typical urban (TUx), rural area (RAx), and hilly terrain (HTx), where x is
the MS speed in km/h, [91]. Default speeds are 3, 50, and 120 km/h for the TUx
model, 120 and 250 km/h for the RAx model, and 120 km/h for the HTx model.
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Table 2.8 COST 207 typical
hilly terrain (HT)
power-delay profile
(στ = 5.0 μs), from [64]

Delay Fractional Doppler
μs power category

0.0 0.026 CLASS
0.1 0.042 CLASS
0.3 0.066 CLASS
0.5 0.105 CLASS
0.7 0.263 GAUS1
1.0 0.263 GAUS1
1.3 0.105 GAUS1
15.0 0.042 GAUS2
15.2 0.034 GAUS2
15.7 0.026 GAUS2
17.2 0.016 GAUS2
20.0 0.011 GAUS2

Table 2.9 COST 207
reduced hilly terrain (HT)
power-delay profile
(στ = 5.0 μs), from [64]

Delay Fractional Doppler
μs power category

0.0 0.413 CLASS
0.1 0.293 CLASS
0.3 0.145 CLASS
0.5 0.074 CLASS
15.0 0.066 GAUS2
17.2 0.008 GAUS2

Appendix 3: Derivation of Equation (2.297)

This Appendix derives an expression for the second moment of a Ricean random
variable in terms of its first moment. A Ricean random variable X has probability
density function, cf., (2.53)

pX(x) =
x
b0

exp

{

−x2 + s2

2b0

}

I0

(
xs
b0

)

x > 0 (2.352)

and moments [217]

E[Xn] = (2b0)
n
2 exp

{

− s2

2b0

}

Γ
(
(2+ n)/2

)

1F1

(
n+ 2

2
,1;

s2

2b0

)

, (2.353)

where Γ( · ) is the Gamma function, and 1F1(a, b; x) is the confluent hypergeomet-
ric function. The first moment of X is

E[X ]≡ Ωv = (2b0)
1
2 e−K

√
π

2 1F1(3/2,1;K), (2.354)
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Table 2.10 COST 259
typical urban (TUx) channel
model, from [91]

Delay Fractional Doppler
μs power category

0.000 0.26915 CLASS
0.217 0.17378 CLASS
0.512 0.09772 CLASS
0.514 0.09550 CLASS
0.517 0.09550 CLASS
0.674 0.07079 CLASS
0.882 0.04571 CLASS
1.230 0.02344 CLASS
1.287 0.02042 CLASS
1.311 0.01950 CLASS
1.349 0.01820 CLASS
1.533 0.01259 CLASS
1.535 0.01259 CLASS
1.622 0.01047 CLASS
1.818 0.00708 CLASS
1.836 0.00692 CLASS
1.884 0.00617 CLASS
1.943 0.00550 CLASS
2.048 0.00447 CLASS
2.140 0.00372 CLASS

Table 2.11 COST 259 rural
area (RAx) channel model,
from [91]

Delay Fractional Doppler
μs power category

0.000 0.30200 Direct Path,
f0 = 0.7 fm

0.042 0.22909 CLASS
0.101 0.14454 CLASS
0.129 0.11749 CLASS
0.149 0.10000 CLASS
0.245 0.04898 CLASS
0.312 0.02951 CLASS
0.410 0.01413 CLASS
0.469 0.00912 CLASS
0.528 0.00575 CLASS

where K = s2/2b0 is the Rice factor. The second moment of X is

E[X2]≡ Ωp = 2b0e−K
1F1(2,1;K)

= 2b0(K + 1). (2.355)

Substituting 2b0 from (2.354) into (2.355) gives

Ωp =
4e2K (K + 1)

π 1F2
1(3/2,1;K)

Ω 2
v =C(K) Ω 2

v . (2.356)

Note that C(0) = 4/π , C(∞) = 1, and 4/π ≤ C(K)≤ 1 for 0 ≤ K ≤ ∞.
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Table 2.12 COST 259 hilly
terrain (HTx) channel model,
from [91]

Delay Fractional Doppler
μs power category

0.000 0.43652 CLASS
0.356 0.12882 CLASS
0.441 0.09550 CLASS
0.528 0.07079 CLASS
0.546 0.06607 CLASS
0.609 0.05370 CLASS
0.625 0.05012 CLASS
0.842 0.02399 CLASS
0.916 0.01862 CLASS
0.941 0.01698 CLASS
15.000 0.01738 CLASS
16.172 0.00537 CLASS
16.492 0.00389 CLASS
16.876 0.00263 CLASS
16.882 0.00263 CLASS
16.978 0.00240 CLASS
17.615 0.00126 CLASS
17.827 0.00102 CLASS
17.849 0.00100 CLASS
18.016 0.00085 CLASS

Appendix 4: Derivation of Equation (2.314)

From (2.313), the composite distribution for the squared envelope, α2
c , is

pα2
c
(x) =

∫ ∞

0

(m
w

)m xm−1

Γ(m)
exp
{
−mx

w

}

× 1√
2πξ σΩ w

exp

{

−
(10log10{w}− μΩp (dB)

)2

2σ2
Ω

}

dw, (2.357)

where ξ = ln(10)/10. The mean of the approximate log-normal distribution is

μ(dBm) = E[10log10{α2
c }]

=
∫ ∞

0

∫ ∞

0
10log10{x}

(m
w

)m xm−1

Γ(m)
exp
{
−mx

w

}

× 1√
2πξ σΩ w

exp

{

−
(10log10{w}− μΩp (dB)

)2

2σ2
Ω

}

dwdx

=
10mm

√
2πξ σΩ Γ(m)

∫ ∞

0

1
wm+1 exp

{

−
(10log10{w}− μΩp (dB)

)2

2σ2
Ω

}

×
∫ ∞

0
log10{x} xm−1 exp

{
−mx

w

}
dxdw. (2.358)
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Assuming that m is an integer, the inner integral becomes [118, 4.352.2]

∫ ∞

0
log10{x}xm−1 exp

{
−mx

w

}
dx =

Γ(m)wm

mm ln10
(ψ(m)− ln(m/w)) . (2.359)

Then using the change of variables x = 10log10{w}, we obtain

μ(dBm) = ξ−1 (ψ(m)− ln(m))+ μΩp (dB)
, (2.360)

where ψ( · ) is the Euler psi function, and

ψ(m) =−C+
m−1

∑
k=1

1
k

(2.361)

and C � 0.5772 is Euler’s constant. Likewise, the second moment of the approxi-
mate log-normal distribution is

E[(10log10(α
2
c ))

2] =

∫ ∞

0

∫ ∞

0
(10log10{x})2

(m
w

)m xm−1

Γ(m)
exp
{
−mx

w

}

× 1√
2πξ σΩ w

exp

{

−
(10log10{w}− μΩp(dB)

)2

2σ2
Ω

}

dwdx

=
mm

√
2πξ Γ(m)

∫ ∞

0

1
wm+1 exp

{

−
(10log10{w}− μΩp (dB)

)2

2σ2
Ω

}

×
∫ ∞

0
(10log10{x})2 xm−1 exp

{
−mx

w

}
dxdw. (2.362)

Assuming again that m is an integer, the inner integral is [118, 4.358.2]

∫ ∞

0
(10log10(x))

2 xm−1 exp
{
−mx

w

}
dx =

(m− 1)!wm

mm ln10

×
(
(ψ(m)− ln(m/w))2 + ζ (2,m)

)

(2.363)

leading to

E[(10log10{α2
c })2] = ζ 2

(
(ψ(m)− ln(m))2 μ2

Ωp (dB)
+ ζ (2,m)

)

+2ζ (ψ(m)− ln(m))μΩp (dB)
+σ2 + μ2

Ωp (dB)
, (2.364)
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where

ζ (2,m) =
∞

∑
k=0

1
(m+ k)2 (2.365)

is Reimann’s zeta function. Finally, the variance of the approximate log-normal
distribution is

σ2 = E[(10log10{α2
c })2]−E2[10log10{α2

c }]
= ξ−2ζ (2,m)+σ2

Ω . (2.366)

Problems

2.1. Suppose that r(t) is a wide-sense stationary (WSS) band-pass random process,
such that

r(t) = gI(t)cos(2π fct)− gQ(t)sin(2π fct)

(a) Show that the autocorrelation and cross-correlation of gI(t) and gQ(t) must
satisfy the following conditions:

φgIgI(τ) = φgQgQ(τ)

φgIgQ(τ) = −φgQgI(τ)

(b) Under the conditions in part (a), show that the autocorrelation of r(t) is

E[r(t)r(t + τ)] = φgIgI(τ)cos(2π fcτ)−φgIgQ(τ)sin(2π fcτ).

2.2. What is the maximum Doppler shift for the GSM mobile cellular system on
the “downlink” from the base station to the mobile unit (935–960 MHz RF band)?
What is it on the “uplink” direction, or mobile to base (890–915 MHz RF band)?
Assume a high-speed train traveling at a speed of v = 250 km/h.

2.3. A wireless channel is characterized by the time-variant impulse response

g(t,τ) =
(

1− τ
T

)
cos(Ω t +φ0) , 0 ≤ τ ≤ T,

where T = 0.05 ms, Ω = 10π , and φ0 ∈ (−π ,+π ] is a constant.
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(a) Determine the channel time-variant transfer function.
(b) Given an input signal having the complex envelope

s̃(t) =

{
1, 0 ≤ t ≤ Ts

0, otherwise
,

determine the complex envelope of the signal at the output of the channel, r̃(t).
Make sure to consider cases when 0 < Ts < T and 0 < T < Ts, separately.

(c) Consider digital modulation scheme with a modulated symbol interval Ts. If the
channel fading is frequency selective, specify the relation between Ts and T .

2.4. Suppose that an omnidirectional antenna is used and the azimuth AoA
distribution, p(θ ), is given by (2.48). Find the Doppler power spectrum Sgg( f ).

2.5. A very useful model for a non-isotropic scattering environment assumes that
the azimuth AoA distribution is described by the von Mises pdf in (2.47).

(a) Assuming an isotropic receiver antenna, calculate the received Doppler power
spectrum, Sgg( f ).

(b) Under what conditions are the quadrature components gI(t) and gQ(t) uncorre-
lated?

2.6. Determine and plot the (normalized) power spectral densities Sgg( f ) for the
following cases. Assume 2D isotropic scattering:

(a) A vertical loop antenna in the plane perpendicular to vehicle motion, G(θ ) =
3
2 sin2(θ ).

(b) A vertical loop antenna in the plane of vehicle motion, G(θ ) = 3
2 cos2(θ ).

(c) A directional antenna of beamwidth β directed perpendicular to vehicle motion
with (see Fig. 2.57a)

G(θ ) =
{

G0, |π
2 −θ |< β/2

0, otherwise
.

(d) A directional antenna of beamwidth β directed along vehicle motion with (see
Fig. 2.57b)

G(θ ) =
{

G0, |θ |< β/2
0, otherwise

.

2.7. Consider a narrow-band channel with a 700 MHz carrier frequency. The
complex channel gain at a MS is g(t) = gI(t)+ jgQ(t), such that

SgIgI( f ) =

{
rect
(

f
200

)
, | f | ≤ 100Hz

0, elsewhere

SgIgQ( f ) = 0.
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Fig. 2.57 Scenario for
Prob. 2.6 parts (c) and (d)

θ

vβ

v

β

θ

a

b

(a) What is the speed of the mobile station?
(b) What is the cross-correlation function φgIgQ(τ) of the I and Q components of

the faded envelope?
(c) If antenna diversity is deployed at the mobile station, what are the possible

spatial separations between the antenna elements such that the corresponding
faded envelopes will be uncorrelated?

(d) Write down an expression for φgQgQ(τ).

2.8. Consider a Ricean fading channel with Rice factor K and average envelope
power Ωp. Assume that the means mI(t) and mQ(t) of the in-phase and quadrature
components are given by (2.55) and (2.56), respectively. Derive an integral expres-
sion for the probability density function of the envelope phase in terms of K and Ωp.

2.9. Consider a 2D isotropic scattering channel. Show that the psd of the received
envelope α(t) = |g(t)| is given by (2.73).

2.10. Consider the non-isotropic scattering environment shown in Fig. 2.7. Show
that the continuous portion of the psd of the received envelope α(t) = |g(t)| is given
by (2.76).

2.11. Consider a wide-sense stationary zero-mean complex Gaussian random
process g(t) having the autocorrelation function φgg(τ) = φgIgI(τ) + jφgIgQ(τ).
Show that the autocorrelation and autocovariance functions of the squared-envelope
α2(t) = |g(t)|2 are given by (2.78) and (2.79), respectively.
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Fig. 2.58 Mobile with
directional antenna for
Prob. 2.16
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2.12. Consider a wide-sense stationary nonzero-mean complex Gaussian random
process g(t) = gI(t)+ jgQ(t), where

gI(t) = ĝI(t)+mI(t),

gQ(t) = ĝQ(t)+mQ(t)

and mI(t) and mQ(t) are the means of gI(t) and gQ(t), respectively. Show that
the autocorrelation and autocovariance functions of the squared-envelope α2(t) =
|g(t)|2 are given by (2.83) and (2.86), respectively.

2.13. Establish the equivalence between (2.98) and (2.99).

2.14. A flat Rayleigh fading signal at 6 GHz is received by a vehicle traveling at
80 km/h.

(a) Determine the number of positive-going zero crossings about the rms value that
occur over a 5 s interval.

(b) Determine the average duration of a fade below the rms level.
(c) Determine the average duration of a fade at a level of 20 dB below the rms value.

2.15. Consider a situation where the received envelope is Rayleigh faded (K = 0),
but the Doppler power spectrum Sc

gg( f ) is not symmetrical about f = 0, that is,
a form of non-isotropic scattering. Show that the envelope level crossing rate is
given by

LR =

√
b2

b0
− b2

1

b2
0

· ρ√
π

e−ρ2
,

where

ρ =
R
√

Ωp
=

R√
2b0

and the bi are defined in (2.98) with fq = 0.

2.16. Consider the situation in the Fig. 2.58, where the MS uses a directional
antenna with a beam width of φo. Assume a 2D isotropic scattering environment.
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(a) In receiving a radio transmission at 850 MHz, a Doppler frequency of 20–60 Hz
is observed. What is the beam width of the MS antenna, and how fast is the MS
traveling?

(b) Suppose that the MS antenna has a beam width of 13o. What is the level crossing
rate with respect to the rms envelope level, assuming that the MS is traveling at
a speed of 30 km/h?

2.17. A vehicle experiences 2D isotropic scattering and receives a Rayleigh faded
900 MHz signal while traveling at a constant velocity for 10 s. Assume that the local
mean remains constant during travel, and the average duration of fades 10 dB below
the rms envelope level is 1 ms.

(a) How far does the vehicle travel during the 10 s interval?
(b) How many fades is the envelope expected to undergo that are 10 dB below the

rms envelope level during the 10 s interval?

2.18. A vehicle receives a Ricean faded signal where the specular component is at
the frequency fc and scatter component is due to 2D isotropic scattering.

(a) Compute the average duration of fades that 10 dB below the rms envelope level
for K = 0,7,20, and a maximum Doppler frequency of fm = 20 Hz.

(b) Suppose that data are transmitted using binary modulation at a rate of 1 Mbps,
and an envelope level that is 10 dB below the rms envelope level represents
a threshold between “error-free” and “error-prone” conditions. During error-
prone conditions, bits are in error half the time. Assuming that the data are
transmitted in 10,000-bit packets, how many bits errors (on the average) will
each transmitted packet contain?

2.19. Show that for wide-sense stationary (WSS) channels

φH( f ,m;ν,μ) = ψH( f ,m;ν)δ (ν − μ),

φS(τ,η ;ν,μ) = ψS(τ,η ;ν)δ (ν − μ).

That is the channel correlation functions φH( f ,m;ν,μ) and φS(τ,η ;ν,μ) have a
singular behavior with respect to the Doppler shift variable. What is the physical
interpretation of this property?

2.20. Show that for uncorrelated scattering (US) channels

φg(t,s;τ,η) = ψg(t,s;τ)δ (η − τ),

φS(τ,η ;ν,μ) = ψS(τ;ν,μ)δ (η − τ).

That is the channel correlation functions φg(t,s;τ,η) and φS(τ,η ;ν,μ) have a
singular behavior with respect to the time delay variable. What is the physical
interpretation of this property?
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2.21. Given the channel input signal s̃(t) and the channel delay-Doppler spread
function S(τ,ν), show that the channel output signal is

r̃(t) =
∫ ∞

−∞

∫ ∞

−∞
s̃(t − τ)S(τ,ν)e−j2π f τ dν dτ.

How do you interpret the channel function H(τ,ν)?

2.22. Suppose that the spaced-time spaced-frequency correlation function of a
WSSUS channel has the following form:

φT (Δ f ;Δ t) = exp{−b|Δ t|} 1
a+ j2πΔ f

.

(a) Find the corresponding channel correlation function ψg(Δ t;τ).
(b) Find the corresponding scattering function ψS(ν;τ).
(c) What is the average delay spread, μτ , and rms delay spread στ ?

2.23. The scattering function for a WSSUS scattering channel is given by the
following:

ψS(τ,ν) = Ωp · 2a
a2 +(2πν)2 ·be−bτu(τ).

(a) What is the spaced-time spaced-frequency correlation function?
(b) What is the average delay?
(c) What is the rms delay spread?

2.24. Consider a linear time-invariant channel consisting of two equal rays

g(t,τ) = δ (τ)+ δ (τ − τ1).

(a) Derive an expression for magnitude response of the channel |T ( f , t)| and sketch
showing all important points.

(b) Repeat for the phase response of the channel ∠T ( f , t).

2.25. The power delay profile of a WSSUS channel is given by

φg(τ) = e−τ/T , τ ≥ 0.

Assuming that T = 10 μs, determine

(a) The average delay
(b) The rms delay spread
(c) The coherence bandwidth of the channel
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2.26. The power delay profile of a WSSUS channel is given by

φg(τ) =
{

0.5[1+ cos(2πτ/T )], 0 ≤ τ ≤ T/2
0, otherwise

.

(a) Find the channel frequency correlation function.
(b) Calculate the mean delay, the multipath delay spread, and the coherence

bandwidth.
(c) If T = 0.1 ms, determine whether the channel exhibits frequency-selective

fading to the GSM system.

2.27. Consider the power delay profile shown in Fig. 2.59. Calculate the
following:

(a) Mean delay
(b) rms delay spread
(c) If the modulated symbol duration is 40 μs, is the channel frequency selective?

Why

2.28. Consider a WSSUS channel with scattering function

ψS(τ,ν) = ψ1(τ) ·ψ2(ν),

where

ψ1(τ) =
{

1, 0 ≤ τ ≤ 100ms
0, otherwise

ψ2(ν) =

{
1
fm
[1− (ν/ fm)

2], 0 ≤ |ν| ≤ fm

0, otherwise
.
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Assume fm = 10 Hz. Find:

(a) The delay psd
(b) The Doppler power spectrum
(c) The mean delay and the rms delay spread
(d) The maximum Doppler frequency, the mean Doppler frequency, the rms

Doppler frequency
(e) The coherence bandwidth and the coherence time of the channel

2.29. Consider the COST-207 TU and BU power delay profiles shown in Fig. 2.42
of the text with delays and fractional powers given in Table 2.5.

(a) Calculate the average delay, μτ
(b) Calculate the rms delay spread, στ
(c) Calculate the approximate values of W50 and W90

(d) If the channel is to be used with a modulation that requires an equalizer
whenever the symbol duration T < 10στ , determine the maximum symbol rate
that can be supported without requiring an equalizer

2.30. The scattering function ψS(τ,ν) for a multipath fading channel is nonzero for
the range of values 0 ≤ τ ≤ 1 μs and −40 ≤ λ ≤ 40 Hz. Furthermore, ψS(τ,ν) is
uniform in the two variables τ and ν .

(a) Find numerical values for the following parameters:

• The average delay, μτ , and rms delay spread, στ .
• The Doppler spread, Bd

• The approximate coherence time, Tc

• The approximate coherence bandwidth, Bc

(b) Given the answers in part (a), what does it mean when the channel is:

• Frequency-nonselective
• Slowly fading
• Frequency-selective

2.31. Suppose that a fading simulator is constructed by low-pass filtering white
Gaussian noise as shown in Fig. 2.31. Assume that the white Gaussian noise
generators that produce gI(t) and gQ(t) are uncorrelated and have power density
spectrum Ωp/2 W/Hz. The low-pass filters that are used have the transfer function

H( f ) =
A

1+ j2πβ f
.

(a) What is the Doppler power spectrum Sgg( f ) and autocorrelation function
φgg(τ)?

(b) Find A such that the envelope power is equal to Ωp.
(c) What is the joint probability density function of the output g(t) and g(t + τ)?
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2.32. Suppose that a fading simulator is constructed using low-pass filtered white
Gaussian noise as shown in Fig. 2.31. Assume that the white Gaussian noise
generators that produce gI(t) and gQ(t) are uncorrelated. The low-pass filters that
are used have the transfer function

H( f ) =
1√
B

rect

(
f
B

)

.

(a) What is the Doppler power spectrum Sgg( f )?
(b) For the Sgg( f ) in part (a), derive an expression for the envelope level crossing

rate.

2.33. Consider Jakes’ method in (2.228) and (2.229).

(a) With the choice that α = 0 and βn = πn/(M+ 1) show that

< gI(t)gQ(t)> = 0

< g2
Q(t)> = (M + 1)/(2M+ 1)

< g2
I (t)> = M/(2M+ 1).

(b) Rederive the time averages in part (a) for the choice α = 0 and βn = πn/M.

2.34. (Computer exercise) You are to write a software fading simulator that uses
Jakes’ method and plot typical sample functions of the faded envelope. By scaling
gI(t) and gQ(t) appropriately, generate a Rayleigh faded envelope having the mean-
squared envelope Ωp = 1. Plot a sample function of your faded envelope assuming
a maximum Doppler frequency of fmT = 0.1, where T is the simulation step size.

Note that Jakes’ simulator is nonstationary. Therefore, you may not necessary get
a plot that is identical to Fig. 2.34. In fact, it would be good if you could observe the
nonstationary behavior of the simulator, that is, the pdf of the envelope distribution
changes with time.

2.35. (Computer exercise) In this problem you are to generate a Ricean faded
envelope ĝ(t) = ĝI(t) + jĝQ(t) by making appropriate modifications to Jakes’
method such that

ĝI(t) = mI(t)+ gI(t),

ĝQ(t) = mQ(t)+ gQ(t),

where gI(t) and gQ(t) are defined in (2.228) and (2.229), respectively. Assume that
the means mI(t) and mQ(t) are generated according to Aulin’s model in (2.55) and
(2.56). For fmT = 0.1, Ωp = 1 and K = 0,4,7, and 16, plot the following:

(a) The envelope α̂(t) =
√

ĝ2
I (t)+ ĝ2

Q(t)

(b) The wrapped phase φ(t) = Tan−1 (ĝQ(t)/ĝI(t)), mod 2π
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2.36. (Computer exercise) This problem uses the fading simulator you developed
in Problem 2.35. We now want to compute an estimate of the mean-squared
envelope Ωp = E[α̂2(t)] from samples of ĝI(kT ) and ĝQ(kT ), where T is the sample
spacing in seconds. The estimate is computed by forming the empirical average

Ω̂p =
1
N

N

∑
i=1

(
ĝ2

I (iT )+ ĝ2
Q(iT )

)
,

where NT is the window averaging length in seconds. Assuming a constant velocity,
the distance MS moves (in units of wavelengths) in a time of NT seconds is

d
λc

= N fmT.

(a) For K = 0,4,7, and 16, generate 1,000 estimates of the of Ωp using non-
overlapping averaging windows of size N = 50,100,150,200,250,300. Con-
struct a graph that plots, for each K, the sample variance of the Ωp estimate on
the ordinate and the window size on the abscissa.

(b) Can you draw any qualitative conclusions from part (a)?

Note: Estimates of the local mean Ωp are used in resource management algorithms
such as handoff algorithms.

2.37. Suppose that we have available two complex faded envelopes gi(t) = gI
i (t)+

jgQ
i (t), i = 1,2, such that

μg = E[g(t)] = 0,

Φg(τ) =
1
2

E[g(t)gH(t + τ)] = ΩJo(2π fmτ),

where

g(t) = (g1(t),g2(t)),

Ω =

[
Ω1 0
0 Ω2

]

.

We now generate a third faded envelope g3(t) that is correlated with g1(t) and g2(t)
according to

g3(t) = αg1(t)+ (1−α)g2(t), 0 ≤ α ≤ 1.
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(a) Compute the values of

φg1g3(τ) =
1
2

E[g1(t)g
∗
3(t + τ)],

φg2g3(τ) =
1
2

E[g2(t)g
∗
3(t + τ)],

φg3g3(τ) =
1
2

E[g3(t)g
∗
3(t + τ)].

(b) What is the envelope distribution of g3(t)?

2.38. Suppose that the two τ = T/4 spaced taps in Example 2.1 do not have equal
magnitude. In particular, suppose that |g0(t)|2 = |g1(t)|2/2. Once again, we wish
to generate a T -spaced channel model such that the two T -spaced taps capture the
maximum possible total energy.

(a) Find the optimal sampler timing instant
(b) Determine the corresponding matrix A for β = 0.35

2.39. By starting with the Gaussian density for the local mean envelope power in
(2.296), derive the log-normal density in (2.292).

2.40. (Computer exercise) In this problem we want to generate variations in the
local mean Ωp due to shadowing. The shadows are generated according to the state
equation in (2.299).

(a) Suppose that the simulation step size is T = 0.1 s and the MS velocity is
v = 30 km/h. We want a shadow decorrelation of 0.1 at a distance of 30 m.
Find ζ .

(b) Using the value of ζ obtained in part (a) and a shadow standard deviation of
σΩ = 8 dB, plot a graph of Ωp (dB) against the distance traveled. Scale your plot
so the distance traveled goes from 0 to 100 m.

2.41. The measured path loss at a distance of 10 km in the city of Tokyo is 160 dB.
The test parameters used in the experiment were the following:

• BS antenna height hb = 30 m
• MS antenna height hm = 3 m
• Carrier frequency fc = 1,000 MHz
• Isotropic BS and MS antennas

Compare the measured path loss with the predicted path loss from Okumura and
Hata’s model and Lee’s model.
Note: If any model parameters are undefined, then use the default values.

2.42. Suppose that the received power from a transmitter at the input to a receiver
is 1 microwatt at a distance of 1 km. Find the predicted power at the input to the
same receiver (in dBm) at distances of 2, 3, and 5 km from the transmitter for the
following path loss models:
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Fig. 2.60 Base station and street layout for Prob. 2.43

(a) Free space
(b) 2-ray ground reflection
(c) Model described by

μΩp (dBm)
(d) = μΩp (dBm)

(do)− 10β log10(d/do) (dBm)

where β = 3.5
(d) COST231–Hata model (medium city)

In all cases assume that fc = 1,800 MHz, hb = 40 m, hm = 3 m, GT = GR = 0 dB.
Tabulate your results.

2.43. Consider Fig. 2.60 and the following data:

• The symbol transmission rate is 24,300 symbols/s with 2 bits/symbol
• The channel bandwidth is 30 kHz
• The propagation environment is characterized by an rms delay spread of

στ = 1 ns

An MS is moving from base station A (BSA) to base station B (BSB). Base station
C (BSC) is a co-channel base station with BSA.

Explain how you would construct a computer simulator to model the received
signal power at the MS from (BSA) and (BSC), as the MS moves from BSA to BSB.
Clearly state your assumptions and explain the relationship between the propagation
characteristics in your model.



Chapter 3
Co-channel Interference

For cellular radio systems, the radio link performance is usually limited by
interference rather than noise and, therefore, the probability of link outage due to
CCI, OI , is of primary concern. For the remainder of this chapter, the probability
of outage refers to the probability of link outage due to CCI. The definition of
the outage probability depends on the assumptions made about the radio receiver
and propagation environment. One extreme occurs with fast moving mobile stations
(MSs), that is, high Doppler conditions, where the radio receiver can average over
the fast envelope variations using variety of coding and interleaving techniques.
In this case, the transmission quality will be acceptable provided that the average
received carrier-to-interference ratio, Λ , exceeds a critical receiver threshold Λth.
The receiver threshold Λth is determined by the performance of the radio link
in the presence of envelope fading and CCI. Once Λth has been determined, the
variations in Λ due to path loss and shadowing will determine the outage probability.
Another extreme occurs with stationary or very slowly moving MSs, that is, low
Doppler conditions, where the radio receiver cannot average over the fast envelope
variations because the required coding and interleaving depth is too large and will
result in excessive transmission delay. Such delays may be acceptable for non-real-
time services, but they are unacceptable for real-time services such as voice and
streaming video. In this case, the transmission quality will be acceptable provided
that the instantaneous received carrier-to-interference ratio, λ , exceeds another
receiver threshold λth.1 The threshold λth is determined by the performance of
the radio link in the presence of CCI under the condition that the link does not
experience fading. Once λth has been determined, variations in λ due to path loss,
shadowing, and envelope fading will determine the outage probability. Sometimes
the MSs will move with moderate velocities and the performance will lie somewhere
between these two extreme cases.

The effect of CCI on the radio link performance depends on the ability of the
radio receiver to reject CCI. Some of the more advanced receivers incorporate

1Note that Λth and λth are not the same.

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 3,
© Springer Science+Business Media, LLC 2011
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sophisticated signal processing techniques to reject or cancel the CCI, for example,
single antenna interference cancelation techniques, or optimum combining with
multiple antennas. In this case, the radio receiver is more tolerant to CCI and the
receiver thresholds Λth and λth are generally reduced. This will reduce the outage
probability or, conversely, improve the coverage probability.

Evaluating the outage probability for the log-normally shadowed signals that are
typically found in land mobile radio systems requires the probability distribution
of the total interference power that is accumulated from the sum of multiple log-
normally shadowed interferers. Although there is no known exact expression for
the probability distribution for the sum of log-normally random variables, several
approximations have been derived by various authors in the literature. All of these
approaches approximate the sum of log-normal random variables by another log-
normal random variable. One such method that matches the first two moments of the
approximation was developed by Fenton [98]. Sometimes Wilkinson is credited with
this method, as in [236]. Here we called it the Fenton–Wilkinson method. Schwartz
and Yeh developed another log-normal approximation that is based on the exact first
two moments for the sum of two log-normal random variables [236]. The Schwartz
and Yeh method generally provides a more accurate approximation than the Fenton–
Wilkinson method but it is more difficult to use. Prasad and Arnbak [210] have
corrected some errors in the equations found in Schwartz and Yeh’s original paper,
but the equations for Schwartz and Yeh’s method in their paper also have errors.
Another log-normal approximation is the cumulants matching approach suggested
by Schleher [234]. With this approach, different log-normal approximations are
applied over different ranges of the composite distribution. A good comparison
of the methods of Fenton–Wilkinson, Schwartz-and-Yeh, Farley, and Schleher has
been undertaken by Beaulieu, Abu-Dayya, and McLane [27].

The above log-normal approximations have been extensively applied to the
calculation of the probability of outage in cellular systems. For example, Fenton’s
approach has been applied by Nagata and Akaiwa [190], Cox [69], Muammar
and Gupta [185], and Daikoku and Ohdate [71]. Likewise, the Schwartz-and-Yeh
approach has been applied by Yeh and Schwartz [296], Prasad and Arnbak [210],
and Prasad, Kegel, and Arnbak [212].

Current literature also provides a thorough treatment of the probability of outage
when the signals are affected by fading only, including the work of Yao and
Sheikh [292], Muammar [184], and Prasad and Kegel [211]. Section 3.3 shows
that the probability of outage is sensitive to the Rice factor of the desired signal,
but it is insensitive to the number of interferers provided that the total interfering
power remains constant. Calculations of the probability of outage for signals
with composite log-normal shadowing and fading have considered the cases of
Rayleigh fading by Linnartz [163], Nakagami fading by Ho and Stüber [131], and
Ricean fading by Austin and Stüber [24]. Section 3.4 shows that shadowing has a
more significant effect on the probability of outage than fading. Furthermore, the
probability of outage is dominated by fading of the desired signal rather than fading
of the interfering signals, for example, with Nakagami-m fading, the probability of
outage is sensitive to the shape factor m of the desired signal but is insensitive to
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the shape factor of interfering signals. Finally, all of the above references assume a
channel characterized by frequency nonselective (flat) fading. If the channel exhibits
frequency selective fading, then the same general methodology can be used but
the instantaneous carrier-to-interference ratio, λ , must be appropriately defined.
The proper definition depends on the type of receiver that is used, for example, a
maximum likelihood sequence estimation (MLSE) receiver or decision feedback
equalizer.

Most of the literature dealing with the probability of outage assumes that the
interfering co-channel signals add noncoherently. The probability of outage has also
been evaluated by Prasad and Kegel [211, 213] for the case of coherent addition
of Rayleigh faded co-channel interferers and a Ricean faded desired signal. The
coherent co-channel interferers are assumed to arrive at the receiver antenna with the
same carrier phase. However, as discussed by Prasad and Kegel [213] and Linnartz
[163], it is more realistic to assume noncoherent addition of co-channel interferers in
mobile radio environments. Coherently, addition of co-channel interferers generally
leads to pessimistic predictions of the probability of outage.

The remainder of this chapter begins with approximations for the sum of multiple
log-normally shadowed interferers in Sect. 3.1. The various approximations are
compared in terms of their accuracy. Section 3.2 derives the probability of out-
age with log-normal/multiple log-normal (desired/interfering) signals. Section 3.3
considers the outage probability for Ricean/multiple Rayleigh signals without
shadowing. Section 3.4 does the same for log-normal-Nakagami/multiple log-
normal Nakagami signals.

3.1 Multiple Log-normal Interferers

Consider the sum of NI log-normal random variables

I =
NI

∑
k=1

Ωk =
NI

∑
k=1

10Ωk(dBm)/10, (3.1)

where the Ωk (dBm) are Gaussian random variables with means μΩk(dBm)
and

variances σ2
Ωk

, and the Ωk = 10Ωk(dBm)/10 are log-normal random variables. Unfortu-
nately, there is no known closed form expression for the probability density function
(pdf) of the sum of multiple (NI ≥ 2) log-normal random variables. One may think
to apply the central limit theorem, provided that NI is large enough, and approximate
I as a Gaussian random variable. However, since I represents a power sum, it cannot
assume negative values so that the resulting approximation is invalid. Moreover, the
value of NI will be small in the case of a few dominant co-channel interferers, so the
central limit theorem will not apply anyway. There is a general consensus that the
sum of independent log-normal random variables can be approximated by another
log-normal random variable with appropriately chosen parameters. That is,

I =
NI

∑
k=1

10Ωk(dBm)/10 ≈ 10Z(dBm)/10 = Î, (3.2)
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where Z(dBm) is a Gaussian random variable with mean μZ (dBm) and variance σ2
Z .

The problem is to determine μZ (dBm) and σ2
Z in terms of the μΩk (dBm)

and σ2
Ωk

,
k = 1, . . . ,NI. Several methods have been suggested in the literature to solve this
problem including those by Fenton [98], Schwartz and Yeh [236], and Farley [236].
Each of these methods provides varying degrees of accuracy over specified ranges
of the shadow standard deviation σΩ , the sum I, and the number of interferers NI.

3.1.1 Fenton–Wilkinson Method

With the Fenton–Wilkinson method, the mean μZ (dBm) and variance σ2
Z of Z(dBm)

are obtained by matching the first two moments of the sum I with the first two
moments of the approximation Î. To derive these moments, it is convenient to use
natural logarithms. We write

Ωk = 10Ωk (dBm)/10 = eξ Ωk (dBm) = eΩ̂k , (3.3)

where ξ = ln(10)/10 = 0.23026 and Ω̂k = ξ Ωk (dBm). Note that μΩ̂k
= ξ μΩk (dBm)

and σ2
Ω̂k

= ξ 2σ2
Ωk

. The nth moment of the log-normal random variable Ωk can be

obtained from the moment generating function of the Gaussian random variable
Ω̂k as

E[Ω n
k ] = E[enΩ̂k ] = e

nμΩ̂k
+(1/2)n2σ 2

Ω̂k . (3.4)

To find the required moments for the log-normal approximation, we can use (3.4)
and equate the first two moments on both sides of the approximation

I =
NI

∑
k=1

eΩ̂k ≈ eẐ = Î, (3.5)

where Ẑ = ξ Z(dBm). For example, suppose that the Ω̂k,k = 1, . . . ,NI have means
μΩ̂k

,k = 1, . . . ,NI and identical variances σ2
Ω̂ . Identical variances are often assumed

for the sum of log-normal interferers because the standard deviation of log-normal
shadowing is largely independent of the radio path length [151, 153]. Equating the
means on both sides of (3.5) gives

μI = E[I] =
NI

∑
k=1

E[eΩ̂k ] = E[eẐ] = E[Î] = μÎ (3.6)

and substituting (3.4) with n = 1 into (3.6) gives the result

(
NI

∑
k=1

e
μΩ̂k

)

e(1/2)σ 2
Ω̂ = eμẐ+(1/2)σ 2

Ẑ . (3.7)
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Likewise, we can equate the variances on both sides of (3.5), that is,

σ2
I = E[I2]− μ2

I = E[Î2]− μ2
Î = σ2

Î . (3.8)

Under the assumption that the Ω̂k,k = 1, . . .NI are independent random variables
when calculating the second moments in the above equation, this gives the result

(
NI

∑
k=1

e
2μΩ̂k

)

eσ 2
Ω̂ (eσ 2

Ω̂ − 1) = e2μẐ eσ 2
Ẑ (eσ 2

Ẑ − 1). (3.9)

By squaring each side of the equality in (3.7) and dividing each side of resulting
equation by the respective sides of the equality in (3.9), we can solve for σ2

Ẑ
in

terms of the known values of μΩ̂k
,k = 1, . . . ,NI and σ2

Ω̂ . Later, μẐ can be obtained

by substituting the obtained expression for σ2
Ẑ

into (3.7). This procedure yields the
following solution:

σ2
Ẑ = ln

⎛

⎜
⎝(eσ 2

Ω̂ − 1)
∑NI

k=1 e
2μΩ̂k

(

∑NI
k=1 e

μΩ̂k

)2 + 1

⎞

⎟
⎠. (3.10)

μẐ =
σ2

Ω̂ −σ2
Ẑ

2
+ ln

(
NI

∑
k=1

e
μΩ̂k

)

, (3.11)

Finally, we convert back to base 10 logarithms by scaling, such that μZ (dBm) =

ξ−1μẐ and σ2
Z = ξ−2σ2

Ẑ
.

The accuracy of this log-normal approximation can be measured in terms of
how accurately the first two moments of I(dB) = 10log10I are estimated, and how
well the cumulative distribution function (cdf) of I(dB) is described by a Gaussian
cdf. It has been reported in [236] that the Fenton–Wilkinson method breaks down
in the accuracy of the values obtained for μZ (dBm) and σ2

Z when σΩ > 4 dB. For
cellular radio applications σΩ typically ranges from 6 to 12 dB and the Fenton–
Wilkinson method has often been discredited in the literature on that basis. However,
as pointed out in [27], the Fenton–Wilkinson method breaks down only if one
considers the application of the Fenton–Wilkinson method for the prediction of
the first two moments of I(dB). Moreover, in problems relating to the probability
of CCI outage in cellular radio systems, we are usually interested in the tails
of the complementary distribution function (cdfc) Fc

I (x) = P[I ≥ x] and the cdf
FI(x) = 1−Fc

I (x) = P[I < x]. In this case, we are interested in the accuracy of the
approximation

FI(x)≈ P[eẐ ≥ x] = Q

(
lnx− μẐ

σẐ

)

, (3.12)
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for large and small values of x. It will be shown later that the Fenton–Wilkinson
method approximates the tails of the cdf and cdfc functions with good accuracy, a
result that was reported in [27].

3.1.2 Schwartz and Yeh Method

The Schwartz and Yeh method [236] calculates exact values for the first two
moments of the sum of two independent log-normal random variables. Nesting and
recursion techniques are then used to find exact values for the first two moments
for the sum of NI independent log-normal random variables. For example, suppose
that I = Ω1 + Ω2 + Ω3. The exact first two moments of ln(Ω1 + Ω2) are first
computed. We then define Z2 = ln(Ω1 +Ω2) as a new Gaussian random variable,
let I = eZ2 +Ω3, and again compute the exact first two moments of ln I. Since the
procedure is recursive, we only need to detail the Schwartz and Yeh method for the
case when NI = 2, that is,

I = eΩ̂1 + eΩ̂2 ≈ eẐ = Î (3.13)

or

Ẑ ≈ ln
(

eΩ̂1 + eΩ̂2

)
, (3.14)

where the Gaussian random variables Ω̂1 and Ω̂2 have means μΩ̂1
and μΩ̂2

, and

variances σ2
Ω̂1

and σ2
Ω̂2

, respectively.

Define the Gaussian random variable Ω̂d
�
= Ω̂2 − Ω̂1 so that

μΩ̂d
= μΩ̂2

− μΩ̂1
, (3.15)

σ2
Ω̂d

= σ2
Ω̂1

+σ2
Ω̂2
. (3.16)

Taking the expectation of both sides of (3.14) and assuming that the approximation
holds with equality gives

μẐ = E
[
ln
(

eΩ̂2 + eΩ̂1

)]

= E
[
ln
(

eΩ̂1

(
1+ eΩ̂2−Ω̂1

))]

= E
[
Ω̂1
]
+E
[
ln
(

1+ eΩ̂d

)]
. (3.17)

The second term in (3.17) is

E
[
ln
(

1+ eΩ̂d

)]
=

∫ ∞

−∞
(ln(1+ ex)) pΩ̂d

(x)dx. (3.18)
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We now use the power series expansion

ln(1+ x) =
∞

∑
k=1

ckxk, ck =
(−1)k+1

k
, (3.19)

where |x|< 1. To ensure convergence of the power series and the resulting series of
integrals, the integration in (3.18) is broken into ranges as follows:

∫ ∞

−∞
(ln(1+ ex)) pΩ̂d

(x)dx =

∫ 0

−∞
(ln(1+ ex)) pΩ̂d

(x)dx

+
∫ ∞

0

(
ln
(
1+ e−x)+ x

)
pΩ̂d

(x)dx. (3.20)

The second integral in the above equation was obtained using the identity

ln(1+ ex) = ln
(
(e−x + 1)ex)

= ln(1+ e−x)+ ln(ex)

= ln(1+ e−x)+ x. (3.21)

After a very long derivation that is detailed in [236],

μẐ = μΩ̂1
+G1, (3.22)

where

G1 = μΩ̂d
Φ

(
μΩ̂d

σΩ̂d

)

+
σΩ̂d√

2π
e
−μ2

Ω̂d
/2σ 2

Ω̂d

+
∞

∑
k=1

cke
k2σ 2

Ω̂d
/2
(

e
kμΩ̂d Φ

(−μΩ̂d
− kσ2

Ω̂d

σΩ̂d

)

+T1

)

(3.23)

with

T1 = e
−kμΩ̂d Φ

(
μΩ̂d

− kσ2
Ω̂d

σΩ̂d

)

(3.24)

and where Φ(x) is the cdfc of a standard normal random variable, defined as

Φ(x) =
∫ x

−∞

1√
2π

e−y2/2dy. (3.25)

The variance of Ẑ can be computed in a similar fashion, resulting in the
expression [236]

σ2
Ẑ = σ2

Ω̂1
−G2

1 − 2σ2
Ω̂1

G3 +G2, (3.26)
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where

G2 =
∞

∑
k=1

bkT2 +

(

1−Φ

(

−
μΩ̂d

σΩ̂d

))
(

μ2
Ω̂d

+σ2
Ω̂d

)
+

μΩ̂d
σΩ̂d√
2π

e
−μ2

Ω̂d

/(
2σ 2

Ω̂d

)

+
∞

∑
k=1

bke
−(k+1)μΩ̂d

+(k+1)2σ 2
Ω̂d

/2
Φ

(
μΩ̂d

−σ2
Ω̂d

(k+ 1)

σΩ̂d

)

(3.27)

−2
∞

∑
k=1

cke
−kμΩ̂d

+k2σ 2
Ω̂d

/2

⎛

⎝ξΩ̂k
Φ

(

−
ξΩ̂k

σΩ̂d

)

−
σΩ̂d√

2π
e
−ξ 2

Ω̂k

/(
2σ 2

Ω̂d

)⎞

⎠

G3 =
∞

∑
k=0

(−1)ke
k2σ 2

Ω̂d
/2

T1 +
∞

∑
k=0

(−1)kT2 (3.28)

with

T2 = e
μΩ̂d

(k+1)+(k+1)2σ 2
Ω̂d

/2
Φ

(−μΩ̂d
− (k+ 1)σ2

Ω̂d

σΩ̂d

)

(3.29)

and

bk =
2(−1)k+1

k+ 1

k

∑
n=1

1
n
, (3.30)

ξΩ̂k
=−μΩ̂d

+ kσ2
Ω̂d

. (3.31)

It has been reported in [236] that approximately 40 terms are required in the infinite
summations for G1, G2 and G3 to achieve four significant digits of accuracy in the
moments of Ẑ. On the next step of the recursion, it is important that we let σ2

Ω̂1
= σ2

Ẑ
and μΩ̂1

= μẐ; otherwise, the recursive procedure will fail to converge.

3.1.3 Farley’s Method

Consider NI-independent identically distributed (i.i.d.) normal random variables Ω̂k

each with mean μΩ̂ and variance σ2
Ω̂ . Farley approximated the cdfc of the sum

I =
NI

∑
k=1

Ωk =
NI

∑
k=1

eΩ̂k (3.32)

as [236]

P[I > x]≈ 1−
(

1−Q

(
lnx− μΩ̂

σΩ̂

))NI

. (3.33)
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As shown in [27], Farley’s approximation is actually a strict lower bound on the
cdfc. To obtain this result, let

Fc
I (x) = P [Ω1 +Ω2 + . . .+ΩNI > x] (3.34)

and define the two events

A = {at least one Ωi > x}
B = Ac, the complement of event A. (3.35)

Events A and B are mutually exclusive and partition the sample space. Therefore,

P[I > x] = P[I > x∩A]+P[I > x∩B]

= P[A]+P[I > x∩B]. (3.36)

The second term in (3.36) is positive for continuous pdfs such as the log-normal
pdf. For example, the event

C =

{
NI⋂

i=1

x/NI < Ωi < x

}

(3.37)

is a subset of the event B. Under the assumption that the Ωi are i.i.d., event C occurs
with nonzero probability because

P[C] =

(

Q

(
ln(x/NI)− μΩ̂

σΩ̂

)

−Q

(
lnx− μΩ̂

σΩ̂

))NI

> 0. (3.38)

Therefore, P[I > x]> P[A]. Since the Ωi are i.i.d.,

P[A] = 1−
NI

∏
i=1

P[Ωi ≤ x]

= 1−
(

1−Q

(
lnx− μΩ̂

σΩ̂

))NI

. (3.39)

Finally, we have the lower bound on the cdfc

P[I > x]> 1−
(

1−Q

(
lnx− μΩ̂

σΩ̂

))NI

(3.40)

or, equivalently, the upper bound on the cdf

P[I ≤ x]>

(

1−Q

(
lnx− μΩ̂

σΩ̂

))NI

. (3.41)
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Fig. 3.1 Comparison of the
cdf for the sum of two and six
log-normal random variables
with various approximations;
μΩk (dB)

= 0 dB, σΩ = 6 dB
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Fig. 3.2 Comparison of the
cdfc for the sum of two
log-normal random variables
with various approximations;
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3.1.4 Numerical Comparisons

Figure 3.1 compares the cdf for the sum of NI = 2 and NI = 6 log-normal
random variables, obtained with the various approximations. Likewise, Figs. 3.2–
3.4 compare the cdfc obtained with the various approximations. Exact results are
also shown that have been obtained by computer simulation. Observe that the cdfc
is approximated quite well for all the methods, but the best approximation depends
on the number of interferers, shadow standard deviation, and argument of the cdfc.
The cdf is approximated less accurately, especially for NI = 6 log-normal random
variables.
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Fig. 3.3 Comparison of the
cdfc for the sum of six
log-normal random variables
with various approximations;
μΩk (dB)

= 0 dB, σΩ = 6 dB
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Fig. 3.4 Comparison of the
cdfc for the sum of six
log-normal random variables
with various approximations;
μΩk (dB)

= 0 dB, σΩ = 12 dB
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3.2 Log-Normal/Multiple Log-Normal Interferers

Consider the situation shown in Fig. 1.15, where a mobile station (MS) is at distance
d0 from the serving base station (BS) and at distances dk,k = 1,2, . . . ,NI from the
first tier of NI co-channel BSs. Define the vector d = (d0, d1, . . . , dNI) as the set of
distances of a particular MS from the serving BS and surrounding BSs. The average
received carrier-to-interference ratio as a function of the vector d is

Λ(dB)(d) = Ω(dBm)(d0)− 10log10

NI

∑
k=1

10Ω(dBm)(dk)/10. (3.42)
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For the case of a single interferer (NI = 1), the sum on the right side of (3.42) has
only one term. In this case, Λ(dB)(d) is Gaussian distributed with mean μΩ(dBm)(d0)−
μΩ(dBm)(d1) and variance 2σ2

Ω . For the case of multiple log-normal interferers, the
second term of (3.42) is approximated as a normal random variable Z(dBm) with
mean μZ (dBm) and variance σ2

Z using the techniques discussed in Sect. 3.1. Then

Λ(dB)(d) = Ω(dBm)(d0)−Z(dBm)(d1, d2, . . . , dNI), (3.43)

where we, again, show the dependency of the CCI on the set of distances. Note that
Λ(dB)(d) has mean and variance

μΛ(dB)(d) = μΩ(dBm)(d0)− μZ (dBm) (3.44)

σ2
Λ(d) = σ2

Ω +σ2
Z . (3.45)

If there were only one possible choice of serving BS, then the probability of outage
at a particular MS location is

OI(d) = Q

⎛

⎝
μΩ(dBm)(d0)− μZ (dBm)−Λth(dB)

√

σ2
Ω +σ2

Z

⎞

⎠ . (3.46)

If handoffs are allowed, then the analysis is more complicated. In this case, the
probability of outage will depend on the handoff algorithm that is used. In the
simplest case, we can consider soft handoffs where the BS that provides the best
link is always used. In this case, an outage occurs only when no BS can provide a
link having a carrier-to-interference ratio that exceeds the receiver threshold Λth. In
this case, the probability of outage at a particular location is

OI(d) =
M

∏
k=0

Q

⎛

⎝
μΩk (dBm)(d0)− μZk (dBm)−Λth(dB)

√

σ2
Ω +(σZk)

2

⎞

⎠ , (3.47)

where M is the number of handoff candidates. The outage can then be calculated
by averaging the probability of outage over the random location of a MS within the
reference cell.

3.3 Rician/Multiple Rayleigh Interferers

Sometimes propagation conditions may exist such that the received signals
experience envelope fading, but not shadowing. In this section, we calculate the
outage probability for the case of envelope fading only. The case of combined
shadowing and envelope fading is deferred until the next section. In the case of
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envelope fading only, the received desired signal may consist of a direct line of
sight (LoS) component, or perhaps a specular component, accompanied by a diffuse
component. The envelope of the received desired signal experiences Ricean fading.
The co-channel interferers are often assumed to be Rayleigh faded, because a direct
LoS condition is unlikely to exist between the co-channel interferers and target
receiver due to their large physical separation. Let the instantaneous power in the
desired signal and the NI interfering signals be denoted by s0 and sk, k = 1, . . . , NI,
respectively. Note that si = α2

i , where α2
i is the squared envelope. The carrier-to-

interference ratio is defined as

λ �
=

s0

∑NI
k=1 sk

. (3.48)

For a specified receiver threshold λth, the outage probability is

OI = P [λ < λth] . (3.49)

The instantaneous received power of the desired signal, s0, has the noncentral chi-
square (Ricean fading) distribution in (2.59), while the instantaneous power of each
interferer, sk, has the exponential distribution (Rayleigh fading) in (2.52).

For the case of a single interferer, the outage probability reduces to the simple
closed form expression [292]

OI =
λth

λth +A1
exp

{

− KA1

λth +A1

}

, (3.50)

where K is the Rice factor of the desired signal, A1 =Ω0/(K+1)Ω1, and Ωk =E[sk].
Note that A1 can be interpreted as the ratio of the average desired signal power to
the total interfering power. If the desired signal is Rayleigh faded, then the outage
probability can be obtained by setting K = 0 in (3.50). For the case of multiple
interferers, each with mean power Ωk, the outage probability has the closed form
expression [292]

OI = 1−
NI

∑
k=1

(

1− λth

λth +Ak
exp

{

− KAk

λth +Ak

}) NI

∏
j=1
j �=k

A j

A j −Ak
, (3.51)

where Ak = Ω0/(K + 1)Ωk. This expression is valid only if Ωi �= Ω j when i �=
j, that is, the different interferers are received with distinct mean power levels. If
some of the interfering signals are received with the same mean power, then an
appropriate expression for the outage probability can be derived in straight forward
manner. If all the interferers are received with the same mean power, then the total
interference power sM = ∑NI

k=1 sk has the Gamma pdf
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Fig. 3.5 Probability of CCI
outage with a single
interferer. The desired signal
is Ricean faded with various
Rice factors, while the
interfering signal is Rayleigh
faded; λth = 10.0 dB

10 15 20 25 30 35

Λ (dB)

10−4

10−3

10−2

10−1

100

P
ro

ba
bi

lit
y 

of
 O

ut
ag

e,
 O

I

 K =  0

 K =  4

 K =  7

 K =  10

psM(x) =
xNI−1

Ω NI
1 (NI − 1)!

exp

{

− x
Ω1

}

. (3.52)

The outage probability can be derived as [292]

OI =
λth

λth +A1
exp

{

− KA1

λth +A1

}

×
NI−1

∑
k=0

(
A1

λth +A1

)k k

∑
m=0

(
k
m

)
1

m!

(
Kλth

λth +A1

)m

. (3.53)

Again, if the desired signal is Rayleigh faded, then the probability of outage with
multiple Rayleigh faded interferers can be obtained by setting K = 0 in either (3.51)
or (3.53) as appropriate. In Fig. 3.5, the outage probability is plotted as a function
of the average received carrier-to-average-interference ratio

Λ =
Ω0

NIΩ1
(3.54)

for various Rice factors and a single interferer. Observe that the Rice factor of the
desired signal has a significant effect on the outage probability. Figure 3.6 plots the
outage probability for K = 0 and 7 and a varying number of interferers. Observe that
the number of interferers does not affect the probability of outage as much as the
Rice factor of the desired signal, provided that the total interfering power remains
constant.
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Fig. 3.6 Probability of CCI
outage with multiple
interferers. The desired signal
is Ricean faded with various
Rice factors, while the
interfering signals are
Rayleigh faded and of equal
power; λth = 10.0 dB
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3.4 Log-Normal Nakagami/Multiple Log-Normal
Nakagami Interferers

The probability of outage has been evaluated in the literature for a single Nakagami
interferer [287] and multiple Nakagami interferers [6, 293], in the absence of
shadowing. Here we analytically formulate the probability of outage with multiple
log-normal Nakagami interferers. For the case when the interfering signals have the
same shadowing and fading statistics, we derive an exact mathematical expression
for the probability of outage.

Let the instantaneous power in the desired signal and the NI interfering signals
be denoted by s0 and sk, k = 1, . . . ,NI, respectively. The instantaneous carrier-
to-interference ratio is λ = s0/∑NI

k=1 sk. For a specified receiver threshold λth, the
probability of outage is

OI = P [λ < λth]≡ P

[

s0 < λth

NI

∑
k=1

sk

]

. (3.55)

The kth interfering signal, sk, k = 1, . . . ,NI, is affected by log-normal shadowing
and Nakagami fading with the composite pdf c.f. (2.313)

psk(x) =
∫ ∞

0

(mk

w

)mk xmk−1

Γ(mk)
exp
{
−mkx

w

}

× 1√
2πξ σΩ w

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{w}− μΩk (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dw. (3.56)
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Let W =∑NI
k=1 sk be the total instantaneous received power from the NI interfering

signals such that λ = s0/W , and define the auxiliary random variable Y =W . Then
using a bivariate transformation of random variables, the joint pdf of λ and Y is
pλ ,Y (x,y) = yps0,W (xy,y) = yps0(xy)pW (y) and

pλ (x) =
∫ ∞

0
yps0(xy)pW (y)dy, (3.57)

where we used the fact that s0 and W are statistically independent random variables.
It follows that the outage probability is

OI = P [λ < λth]

= 1−
∫ ∞

λth

∫ ∞

0
yps0(xy)pW (y)dydx. (3.58)

Suppose for the time being that the desired signal is affected by Nakagami fading
only, that is, there is no shadowing and Ω0 = E[s0] is fixed. Then s0 has the Gamma
distribution in (2.63) and

∫ ∞

λth

ps0(xy)dx =
m0−1

∑
h=0

(
m0

Ω0

)h yh−1λ h
th

h!
exp

{

−m0λthy
Ω0

}

. (3.59)

Hence, the conditional outage probability in (3.58) becomes

P(λ < λth |Ω0 ) = 1−
m0−1

∑
h=0

(
m0λth

Ω0

)h 1
h!

∫ ∞

0
exp

{

−m0λthy
Ω0

}

yh pW (y)dy. (3.60)

3.4.1 Statistically Identical Interferers

Here we assume statistically identical interferers so that mk = mI and μΩk (dBm)
=

μΩI (dBm)
, i = 1, . . . , NI. Following Linnartz [163], the integral in (3.60) can be

obtained using Laplace transform techniques. The Laplace transform of the pdf
pW (y) is

LW (s) =
∫ ∞

0
e−sy pW (y)dy. (3.61)

The integral in (3.60) is then equal to the hth derivative of LW (s) with respect to
s evaluated at the point s = (m0λth)/Ω0. That is,

∫ ∞

0
e−syyh pW (y)dy = (−1)hL

(h)
W (s)

= (−1)h dh

dsh

{
NI

∏
k=1

∫ ∞

0
e−syk psk(yk)dyk

}

, (3.62)
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where the last line follows under the assumption of statistically independent
interferers. Using the composite distribution in (3.56) with mk = mI and μΩk (dBm)

=
μΩI (dBm)

, i = 1, . . . , NI, it can be shown that

∫ ∞

0
e−syk psk(yk)dyk =

mmI
I√
π

∫ ∞

−∞

e−x2

(

10
(μΩI (dBm)

+
√

2σΩ x)/10
s+mI

)mI
dx. (3.63)

Using this result and averaging over the log-normal shadowing distribution of the
desired signal gives the final result
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∫ ∞
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2σ2
Ω

}

dΩ0. (3.64)

Equation (3.64) is an exact expression for log-normal Nakagami fading channels.
When m0 = mI = 1, it reduces to the simpler expression obtained by Linnartz [163]
for log-normal Rayleigh fading channels. In (3.64), let

F(s) =
∫ ∞

−∞

e−x2

(

10
(μΩI (dBm)

+
√

2σΩ x)/10
s+mI

)mI
dx (3.65)

and use the identity [118]

G(s) =
dh

dsh
(F(s))NI

= NI

(
h−NI

NI

) h

∑
i=1

(−1)i
(

h
i

)
(F(s))NI−i

NI − i
dh

dsh F(s). (3.66)



182 3 Co-channel Interference

Observe that G(s) is a function of the derivatives of F(s) only, and

dhF(s)
dsh =

dh

dsh

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞

−∞
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⎪⎪⎬

⎪⎪⎭

= (−1)h (mI + h− 1)!
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∫ ∞
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μΩI (dBm)
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√
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10
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(
μΩI (dBm)

+
√

2σΩ x
)/

10
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)mI+h dx. (3.67)

We can obtain G(s) from (3.66) and (3.67), and substitute it into (3.64). Then using
the following change in the variable of integration

x =
10log10{Ω0}− μΩ0 (dBm)√

2σΩ
(3.68)

the outage probability in (3.64) becomes

OI = 1−
m0−1

∑
h=0

(
−m0λth10

−μΩ0 (dBm)
/10
)h mmINI

I√
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m0λth10
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+
√

2σΩ xh
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10
)

dx. (3.69)

The integrals in (3.67) and (3.69) can be efficiently computed using Gauss–
Hermite quadrature integration. Applying the Gauss–Hermite quadrature formula
to (3.67) gives

dhF(s)
dsh = (−1)h (mI + h− 1)!

(mI − 1)!
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∑
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Hxt
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(
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(
μΩI (dBm)

+
√

2σΩ xt

)/
10

s+mI

)mI+h (3.70)

where Hxt are weight factors, xt are the zeros of the Hermite polynomial Hp(x), and
Np is the order of the Hermite polynomial. When obtaining numerical results, a Her-
mite polynomial of order 16 resulted in sufficient accuracy and the corresponding
values for Hxt and xt are listed in Table 3.1. Likewise, for (3.69) we have

OI = 1−
m0−1

∑
h=0

(
−m0λth10

μΩ0 (dBm)
/10
)h mmINI
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μΩ0 (dBm)
+
√

2σΩ xh
)/

10
)

dx. (3.71)
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Table 3.1 Zeros and weight factors of 16 order Hermite
polynomials [2]

Zeros xi Weight factors Hxi

±0.27348104613815 5.079294790166×10−1

±0.82295144914466 2.806474585285×10−1

±1.38025853919888 8.381004139899×10−2

±1.95178799091625 1.288031153551×10−2

±2.54620215784748 9.322840086242×10−4

±3.17699916197996 2.711860092538×10−5

±3.86944790486012 2.320980844865×10−7

±4.68873893930582 2.654807474011×10−10

Fig. 3.7 Probability of CCI
outage when the desired and
interfering signals are
Nakagami faded. Results are
shown for various fading
distribution parameters;
σΩ = 6 dB, λth = 10.0 dB
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Figure 3.7 shows the probability of outage as a function of the average-carrier-
to-average-interference ratio

Λ =
μΩ0

NIμΩI

. (3.72)

Results are plotted for NI = 6 interfering signals and varying degrees of fading on the
desired and interfering signals. Observe that the outage probability is insensitive to
changes in the Nakagami shape factor, m, for interfering signals. This phenomenon



184 3 Co-channel Interference

Fig. 3.8 Probability of CCI
outage when the desired and
interfering signals are
Nakagami faded. Results are
shown for various shadow
standard deviations; m0 = 8,
mI = 2, λth = 10.0 dB
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demonstrates that the probability of CCI outage is dominated by the fading of the
desired signal rather than fading of the interfering signals. Figure 3.8 shows the
outage probability for different values of the shadow standard deviation σΩ . The
shadow standard deviation has a significant effect on the outage probability.

3.4.2 Statistically Non-identical Co-channel Interferers

If the interferers are statistically nonidentical, then (3.64) still applies with mI

replaced by mk. Since the product in (3.64) does not reduce to taking the nth
power, the numerical evaluation is difficult. This difficulty can be overcome using
approximations. Sect. 2.6.2.1 showed that the composite distribution of the squared-
envelope due to Nakagami fading and log-normal shadowing can be approximated
by a log-normal distribution with the parameters in (2.314). Moreover, the sum
of log-normal random variables can be approximate by still another log-normal
random variable using either the Fenton–Wilkinson method in Sect. 3.1.1 or the
Schwartz and Yeh method in Sect. 3.1.2. Hence, we can use (2.314) to find
individual approximated log-normal distribution for each of the interfering signals,
and then apply Schwartz and Yeh’s method or the Fenton–Wilkinson method to find
a pure log-normal distribution for the total interference power sI. This results in the
density

psI(x) =
1

xσIξ
√

2π
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{x}− μsI (dBm)

)2

2σ2
I

⎫
⎪⎬

⎪⎭
. (3.73)
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Fig. 3.9 Probability of CCI
outage for different dB
spreads and statistically
nonidentical interferers;
m0 = 4, λth = 10.0 dB
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To maintain accuracy, we still treat the desired signal as a composite Nakagami
log-normal signal with the pdf in (3.56). After repeated integrations

OI = 1−
m0−1

∑
k=0

(

m0λth10

(
μsI (dBm)

−μΩ0 (dBm)

)/
10
)k

k!π

×
∫ ∞

−∞
e−y2

e
√

2σIξ ky
∫ ∞

−∞
e−x2

e−
√

2σΩ ξ kx

×exp

{

−m0λthe
√

2ξ (σIy−σΩ x)+ξ
(

μsI (dBm)
−μΩ0 (dBm)

)}

dxdy. (3.74)

We note that when the number of interferers increases, σI decreases, while μI

increases. For a fixed μd , the CIR will be reduced when the number of interferers
is increased. Once again (3.74) can be evaluated using double Gauss-Hermite
quadrature integration. Figure 3.9 shows the probability of CCI for interferers with
various statistics. Observe that the number of interferers and shadowing are the
dominant factors in determining the probability of CCI outage.



186 3 Co-channel Interference

Problems

3.1. A receiver is affected by three log-normally shadowed co-channel signals
having the power sum

I =
3

∑
k=1

Ik,

where

I1(dB) ∼ N (−10 dBm,σ2
Ω ),

I2(dB) ∼ N (−15 dBm,σ2
Ω ),

I3(dB) ∼ N (−20 dBm,σ2
Ω ),

and where σΩ = 8 dB, and N (μ ,σ2
Ω ) refers a Gaussian random variable with mean

μ and variance σ2
Ω . The sum I is to be approximated as another log-normal random

variable, Z, using the Fenton–Wilkinson method.

(a) Find the mean and variance of Z(dB).
(b) Suppose that the received carrier power C(dB) has the distribution

C(dB) ∼ N(0 dBm,σ2
Ω ),

where σΩ = 8 dB. Using your result from part a), what is the distribution of the
carrier-to-interference ratio Λ(dB) ≡ (C/I)(dB)?

3.2. Consider a system where the local mean signal strength is described by (1.3),
where do = 1 m, μΩp (dBm)

(do) = 0 dBm, β = 3.5, and ε(dB) is a zero-mean Gaussian
random variable with standard deviation σΩ = 8 dB.

(a) Suppose that a mobile station is 1 km from its serving base-station and at
distances 3 and 4 km from two co-channel base-stations. Using the Fenton–
Wilkinson method, derive the probability density function of the received
interference power I(dB).

(b) What is the probability density function of the received carrier-to-interference
ratio Λ(dB)?

3.3. The scenario in Fig. 3.10 depicts the worst case CCI situation for the first tier of
co-channel interferers on the forward channel. Assume a reuse cluster size of seven
cells, a cell radius of R = 3 km, a path loss exponent of β = 3.5, and a receiver
carrier-to-interference threshold Λth (dB) = 10 dB. Ignore the effect of handoffs and
assume that the MS must stay connected to the BS in the center cell.

(a) Assuming that the local mean signal strength is described by (1.3) with
μΩp (dBm)

(do)=−10 dBm at do = 1 km, a shadow standard deviation σΩ = 8 dB,
calculate the probability of outage OI(d) in (3.46) using the Fenton–Wilkinson
method.
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Fig. 3.10 Worst case CCI
situation on forward channel
in Problem 3.3

(b) For σΩ = 4 dB, what is required threshold Λth such that the probability of outage
is less than 1%?

(c) Repeat b) for σΩ = 12 dB.

3.4. Consider the Fenton–Wilkinson method for approximating the sum of log-
normal random variables. Consider the sum of N log-normal random variables

I =
N

∑
k=0

eΩ̂k ,

where the Ω̂k are independent zero-mean Gaussian random variables with σΩ =
8 dB. Plot the mean μZ (dBm) and variance σ2

Z of the approximate Gaussian random
variable Z(dB) as a function of N for N = 2,3,4, . . . ,10.

3.5. This problem uses Monte Carlo simulation techniques to verify the usefulness
of the Schwartz and Yeh approximation and the Fenton–Wilkinson approximation
for the sum of two log-normal random variables. Consider the sum of two log-
normal random variables

I = Ω1 +Ω2,

where the corresponding Gaussian random variables Ω1 (dB) and Ω̂2 (dB) are
independent and identically distributed with zero mean and variance σ2

Ω . Using
the Schwartz and Yeh method, plot the values of μZ (dB) and σ2

Z as a function of
the variance σ2

Ω . Repeat for the Fenton–Wilkinson method. Now obtain the same
results using computer simulation and compare the analytical results. What are your
conclusions?



188 3 Co-channel Interference

2R

. . . . . .

Fig. 3.11 Highway microcell deployment for Problem 3.6

3.6. You are asked to design a highway microcell system as shown in Fig. 3.11.
Each cell has length 2R.

(a) A BS with an omnidirectional antenna is placed at the center of each cell.
Ignoring shadowing and envelope fading, determine the minimum reuse factor
needed so that the worst case carrier-to-interference ratio, Λ , is at least 17 dB.
State whatever assumptions you make.

(b) Now suppose that directional antennas are used to divide each cell into two
sectors with boundaries perpendicular to the highway. Repeat part (a).

(c) Consider again the sectored cell arrangement in part (b). If shadowing is present
with a standard deviation of σΩ dB, what is the probability of CCI outage on a
cell boundary? Assume soft handoffs between adjacent cells.

3.7. Derive (3.50).

3.8. Derive (3.51).

3.9. Derive (3.53).

3.10. Derive (3.74).

3.11. Consider a microcellular environment where a Ricean faded desired signal
is affected by a single Rayleigh faded interferer. Neglect the effect of path loss
and shadowing. Suppose that the transmission quality is deemed acceptable if both
the instantaneous carrier-to-noise ratio and the instantaneous carrier-to-interference
ratio exceed the thresholds, γth and λth, respectively. Analogous to (3.53), derive an
expression for the probability of outage.



Chapter 4
Digital Modulation and Power Spectrum

Modulation is the process whereby message information is embedded into a radio
frequency carrier. Such information can be transmitted in either the amplitude,
frequency, or phase of the carrier, or a combination thereof, in either analog or
digital format. Analog modulation schemes include amplitude modulation (AM)
and frequency modulation (FM). Analog modulation schemes are still used today
for broadcast AM/FM radio, but all other communication and broadcast systems use
digital modulation. Digital modulation schemes transmit information using a finite
set of waveforms and have a number of advantages over their analog counterparts.
Digital modulation is a natural choice for digital sources, for example, computer
communications. Source encoding or data compression techniques can reduce the
required transmission bandwidth with a controlled amount of signal distortion.
Digitally modulated waveforms are also more robust to channel impairments such
as delay and Doppler spread, and co-channel and adjacent channel interference.
Finally, encryption and multiplexing are easier with digital modulation schemes.

To achieve high spectral efficiency in wireless systems, signaling schemes are
sought that provide power and bandwidth efficient communication. In an informa-
tion theoretic sense, we want to operate close to the Shannon capacity limit of a
channel. This generally requires the use of error control coding along with a jointly
designed encoder and modulator. However, this chapter only considers modulation
schemes, while the subject of coding and coded modulation is considered in Chap. 8.
The bandwidth efficiency of a modulation scheme indicates how much information
is transmitted per channel use and is measured in units of bits per second per Hertz
of bandwidth (bits/s/Hz). The power efficiency can be measured by the received
signal-to-interference-plus-noise ratio (SINR) that is required to achieve reliable
communication with a specified bandwidth efficiency in the presence of channel
impairments such as delay spread and Doppler spread. In general, modulation
techniques for spectrally efficient wireless systems should have the following
properties:

• Compact Power Density Spectrum: To minimize the effect of adjacent channel
interference, the power radiated into the adjacent band is often limited to be

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 4,
© Springer Science+Business Media, LLC 2011

189
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60–80 dB below that in the desired band. This requires modulation techniques
having a power spectrum characterized by a narrow main lobe and fast roll-off of
side-lobes.

• Robust Communication: Reliable communication must be achieved in the pres-
ence of delay and Doppler spread, adjacent and co-channel interference, and
thermal noise. Modulation schemes that promote good power efficiency in the
presence of channel impairments are desirable.

• Envelope Properties: Portable and mobile devices often use power efficient
nonlinear (Class-C) power amplifiers to minimize battery drain. However, am-
plifier nonlinearities will degrade the performance of modulation schemes that
transmit information in the amplitude of the carrier and/or have a nonconstant
envelope. To obtain suitable performance, such modulation schemes require a
less power efficient linear or linearized power amplifier. Also, spectral shaping is
usually performed before up-conversion and nonlinear amplification. To prevent
the regrowth of spectral side-lobes during nonlinear amplification, modulation
schemes having a relatively constant envelope are desirable.

This chapter considers digital modulation techniques that are commonly found
in wireless communication systems. Section 4.1 begins the chapter with a mathe-
matical framework for band-pass modulated signals. Section 4.2 discusses Nyquist
pulse shaping for ISI-free transmission. Sections 4.3 through 4.8 provide a detailed
treatment of the various linear and nonlinear digital modulations techniques that
are found in wireless systems, including QAM, PSK, π/4-DQPSK, orthogonal
modulation, OFDM, CPM, GMSK, and others. Finally, Sect. 4.9 considers the
power spectrum of digitally modulated signals.

4.1 Representation of Bandpass Modulated Signals

Bandpass modulation schemes refer to modulation schemes that transmit informa-
tion using carrier modulation, such that the signal bandwidth is much less than
the carrier frequency. A bandpass waveform s(t) can be expressed in terms of its
complex envelope as

s(t) = Re
{

s̃(t)ej2π fct
}
, (4.1)

where

s̃(t) = s̃I(t)+ js̃Q(t) (4.2)

is the complex envelope and fc is the carrier frequency. For any digital modulation
scheme, the complex envelope can be written in the standard form

s̃(t) = A∑
n

b(t − nT,xn) (4.3)

xn = (xn, xn−1, . . . , xn−K), (4.4)
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where A is the amplitude and {xn} is the sequence of complex data symbols that are
chosen from a finite alphabet, and K is the modulator memory order which may be
finite or infinite. One data symbol is transmitted every T seconds, so that the baud
rate is R = 1/T symbols/s. The function b(t,xi) is a generalized shaping function
whose exact form depends on the type of modulation that is used. For example,
binary phase shift keying (BPSK) with rectangular amplitude pulse shaping has

b(t,xn) = xnuT (t), (4.5)

where

xn ∈ {−1,+1} is the data symbol transmitted at epoch n
uT (t) = u(t)− u(t −T ) is a unit amplitude rectangular pulse of length T
u(t) is the unit step function

Many types of modulation are considered in this chapter, where information is
transmitted in the amplitude, phase, and/or frequency of the carrier. In each case,
the modulated signal will be represented in the standard form in (4.3). This is done
to streamline the task of finding their power spectra.

By expanding (4.1), the bandpass waveform can also be expressed in the
quadrature form

s(t) = s̃I(t)cos(2π fct)− s̃Q(t)sin(2π fct). (4.6)

The waveforms s̃I(t) and s̃Q(t) are known as the quadrature components s(t),
because they modulate the quadrature components of the carrier, cos2π fct and
sin2π fct, respectively.

Finally s(t) can be expressed in the amplitude-phase form

s(t) = a(t)cos(2π fct +φ(t)), (4.7)

where

a(t) = |s̃(t)|=
√

s̃2
I (t)+ s̃2

Q(t) (4.8)

φ(t) = Tan−1
[

s̃Q(t)
s̃I(t)

]

, (4.9)

and where a(t) is the amplitude and φ(t) is the excess phase. The three represen-
tations in (4.1), (4.6), and (4.7) are equivalent, but sometimes one representation is
more handy than the other two depending on the particular task at hand.

4.1.1 Vector Space Representations

For digital modulation schemes, the bandpass signal that is transmitted at each baud
epoch will belong to a finite set of finite energy waveforms with a few exceptions.
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Let {s1(t),s2(t), . . . ,sM(t)} be the set of bandpass waveforms, where M denotes
the size of the signal set. The corresponding complex envelopes are denoted by
{s̃1(t), s̃2(t), . . . , s̃M(t)}. For now we will work with the complex envelopes and treat
the bandpass waveforms later.

An N-dimensional complex vector space can be defined by a set of N complex
orthonormal basis functions {ϕ1(t),ϕ1(t), . . . ,ϕN(t)}, where

∫ ∞

−∞
ϕi(t)ϕ∗

j (t)dt = δi j (4.10)

and

δi j =

{
1, i = j
0, i �= j

. (4.11)

Each waveform s̃m(t) in the signal set can be projected onto the set of basis functions
to yield a signal vector

s̃m = (s̃m1 , s̃m2 , . . . , s̃mN ), m = 1, . . . ,M, (4.12)

where

s̃mi =

∫ ∞

−∞
s̃m(t)ϕ∗

i (t)dt, i = 1, . . . , N. (4.13)

The collection of N basis functions is said to constitute a complete set, if each
waveform in the set {s̃1(t), s̃2(t), . . . , s̃M(t)} can be expressed exactly as a linear
combination of the basis functions. That is,

s̃m(t) =
N

∑
i=1

s̃mi ϕi(t), m = 1, . . . , M. (4.14)

A systematic procedure for constructing a complete set of basis functions from the
set of signal waveforms {s̃1(t), s̃2(t), . . . , s̃M(t)} is now described.

4.1.2 Gram–Schmidt Orthonormalization Procedure

Define the inner product between two complex-valued waveforms u(t) and v(t) as

(u,v) =
∫ ∞

−∞
u(t)v∗(t)dt (4.15)

and define the norm of the waveform u(t) as

‖u‖=
√
(u,u). (4.16)
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Note that the squared-norm

‖u‖2 = (u,u) =
∫ ∞

−∞
|u(t)|2dt (4.17)

is the energy contained in the complex-valued waveform u(t).
Given the finite set of finite energy signals {s̃1(t), s̃2(t), . . . , s̃M(t)}, a complete

set of orthonormal basis functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)} can be constructed using
the following systematic procedure, known as the Gram–Schmidt orthonormaliza-
tion procedure:

1: Using s̃1(t), let g1(t) = s̃1(t) and define

ϕ1(t) =
g1(t)
‖g1‖ . (4.18)

2: Using s̃2(t), let g2(t) = s̃2(t)− (s̃2,ϕ1)ϕ1(t) and define

ϕ2(t) =
g2(t)
‖g2‖ . (4.19)

3: Using s̃i(t), let gi(t) = s̃i(t)−∑i−1
j=0(s̃i,ϕ j)ϕ j(t) and define

ϕi(t) =
gi(t)
‖gi‖ . (4.20)

4: Repeat Step 3 in a recursive fashion until all elements of the waveform set
{s̃1(t), s̃2(t), . . . , s̃M(t)} have been used.

If one or more steps in the above recursion yields gi(t) = 0, then the corresponding
waveform s̃i(t) can already be expressed exactly in terms of the basis functions
already generated. Consequently, the waveform s̃i(t) will not yield an additional
basis function and we proceed to the next waveform in the set, s̃i+1(t). In the
end, a complete set of N, 1 ≤ N ≤ M complex orthonormal basis functions
{ϕ1(t),ϕ2(t), . . . ,ϕN(t)} corresponding to the nonzero gi(t) will be obtained. The
dimensionality of the complex vector space N is equal to M if and only if the original
set of waveforms {s̃1(t), s̃2(t), . . . , s̃M(t)} is linearly independent, that is, none of the
waveforms in the set is a linear combination of the other waveforms in the set.

Example 4.1:
Construct an orthonormal basis set for the set of waveforms shown in

Fig. 4.1.

1: Let g1(t) = s̃1(t). Then
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ϕ1(t) =
g1(t)
‖g1‖ =

{√
3/T , 0 ≤ t ≤ T/3

0, else
.

2: Let g2(t) = s̃2(t)− (s̃2,ϕ1)ϕ1(t), where

(s̃2,ϕ1) =

∫ T

0
s̃2(t)ϕ∗

1 (t)dt =
∫ T/3

0

√
3/Tdt =

√
T/3.

Then

ϕ2(t) =
g2(t)
‖g2‖ =

{√
3/T , T/3 ≤ t ≤ 2T/3

0, else
.

3: Let g3(t) = s̃3(t)− (s̃3,ϕ1)ϕ1(t)− (s̃3,ϕ2)ϕ2(t), where

(s̃3,ϕ1) =

∫ T

0
s̃3(t)ϕ∗

1 (t)dt = 0

(s̃3,ϕ2) =

∫ T

0
s̃3(t)ϕ∗

2 (t)dt

=

∫ 2T/3

T/3

√
3/Tdt =

√
T/3.

Then

ϕ3(t) =
g3(t)
‖g3‖ =

{√
3/T , 2T/3 ≤ t ≤ T

0, else
.

4: Let g4(t) = s̃4(t) − (s̃4,ϕ1)ϕ1(t) − (s̃4,ϕ2)ϕ2(t) − (s̃4,ϕ3)ϕ3(t). But
g4(t) = 0 and, therefore, s̃4(t) does not yield an additional basis function.

The set of orthonormal basis functions obtained from the above procedure is
shown in Fig. 4.2, and they define a three-dimensional vector space.

Each s̃i(t) in the signal set can be expressed as a linear combination of the
basis functions, according to (4.14), and the corresponding signal vectors in
(4.12) can be constructed. For this example, the signal vectors are

s̃1 = (
√

T/3,0,0)

s̃2 = (
√

T/3,
√

T/3,0)

s̃3 = (0,
√

T/3,
√

T/3)

s̃4 = (
√

T/3,
√

T/3,
√

T/3).



4.1 Representation of Bandpass Modulated Signals 195

Fig. 4.1 Signal set {s̃i(t)}4
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The set of signal vectors {s̃i} can be plotted in the 3D vector space defined by
the set of orthonormal basis functions {ϕi(t)} as shown in Fig. 4.3. The set of
signal vectors is sometimes called a signal constellation.

In the above development, the Gram–Schmidt orthonormalization procedure
was applied to the set of complex envelopes {s̃1(t), s̃2(t), . . . , s̃M(t)} to produce
a complete set of N ≤ M complex basis functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)}, where N
is the dimension of the complex vector space. Using the exact same Gram–Schmidt
orthonormalization procedure, a complete set of N real-valued orthonormal basis
functions {ϕ1(t),ϕ2(t), . . . ,ϕN(t)} can be obtained from the real-valued bandpass
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Fig. 4.3 Signal vectors in the
3D vector space
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waveforms {s1(t),s2(t), . . . ,sM(t)}, where N is the dimension of the real vector
space. In this case, the complex conjugates in the various equations can be omitted
since all waveforms are real-valued. Using the real-valued basis functions, each
bandpass waveform sm(t) can be projected onto the set of real-valued basis functions
to yield the set of signal vectors

sm = (sm1 , sm2 , . . . , smN ), m = 1, . . . , M, (4.21)

where

smi =
∫ ∞

−∞
sm(t)ϕi(t)dt, i = 1, . . . , N (4.22)

and

sm(t) =
N

∑
i=1

smi ϕi(t), m = 1, . . . , M. (4.23)

Note that the set of orthonormal basis functions and the dimensionality of the
vector space needed to represent the bandpass waveforms and their corresponding
complex envelopes are different, but related. The complex-valued basis functions
each define a two-dimensional complex plane, so that the dimensionality of vector
space for the real-valued bandpass waveforms will often, but not always, be twice
the dimensionality of the vector space for their corresponding complex envelopes.

4.1.3 Signal Energy and Correlations

Define the inner (dot) product between two length-N complex vectors u and v as

u ·v∗ =
N

∑
i=1

uiv
∗
i (4.24)
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and the norm (length) of the vector u as

‖u‖=√
u ·u∗ =

√
N

∑
i=1

|ui|2. (4.25)

If the vectors happen to be real, the complex conjugates can be neglected.
Consider the set of band-pass waveforms

sm(t) = Re
{

s̃m(t)ej2π fct
}
, m = 1, . . . ,M. (4.26)

The energy in the bandpass waveform sm(t) is

Em = (sm,sm) =

∫ ∞

−∞
s2

m(t)dt. (4.27)

Using the amplitude-phase representation of a bandpass waveform in (4.7), and the
identity cos2(x) = 1

2(1+ cos(2x)), we obtain

Em =

∫ ∞

−∞
(|s̃m(t)|cos(2π fct +φ(t)))2 dt

=
1
2

∫ ∞

−∞
|s̃m(t)|2dt +

1
2

∫ ∞

−∞
|s̃m(t)|2 cos(4π fct + 2φ(t))dt

≈ 1
2

∫ ∞

−∞
|s̃m(t)|2dt

=
1
2
(s̃m, s̃m), (4.28)

where φ(t) = Tan−1 [s̃Q(t)/s̃I(t)]. The above approximation is valid when the
bandwidth of the complex envelope is much less than the carrier frequency so
that the double frequency term can be neglected. For digital band-pass modulated
signals, this condition is equivalent to fcT  1 so that there are many cycles of the
carrier in the baud period T . This condition is satisfied in most wireless systems.

Using the vector representation of the bandpass waveforms in (4.21)–(4.23), it
follows that the energy in the bandpass waveform sm(t) is

Em =

∫ ∞

−∞

(
N

∑
i=1

smi ϕi(t)

)2

dt =
N

∑
i=1

s2
mi

= ‖sm‖2, (4.29)

where the second equality follows from the orthonormal property of the basis
functions in (4.10). Notice that the energy in sm(t) is equal to the squared
norm (length) of the corresponding signal vector sm. Likewise, using the vector



198 4 Digital Modulation and Power Spectrum

representation of the corresponding complex envelope, the energy in the bandpass
waveform sm(t) is also equal to

Em =
1
2

∫ ∞

−∞

∣
∣
∣
∣
∣

N

∑
i=1

s̃miϕi(t)

∣
∣
∣
∣
∣

2

dt =
1
2

N

∑
i=1

|s̃mi |2 =
1
2
‖s̃m‖2. (4.30)

Note that the energy in the bandpass waveform is one-half the energy in its complex
envelope. This is due to the carrier modulation.

The correlation between the bandpass waveforms sm(t) and sk(t) is defined as

ρkm =
1√

EkEm

∫ ∞

−∞
sm(t)sk(t)dt

=
sm · sk

‖sm‖‖sk‖

= Re

{
s̃m · s̃∗k

‖s̃m‖‖s̃k‖
}

. (4.31)

Finally, the squared Euclidean distance between the bandpass waveforms sk(t) and
sm(t) is

d2
km =

∫ ∞

−∞
(sm(t)− sk(t))

2 dt

= ‖sm − sk‖2

=
1
2
‖s̃m − s̃k‖2. (4.32)

To obtain the results in (4.31) and (4.32), we have again used (4.14) and (4.23),
respectively, along with the orthonormal property of the basis functions.

4.2 Nyquist Pulse Shaping

Consider a modulation scheme where the transmitted complex envelope has the
form

s̃(t) = A∑
n

xnha(t − nT), (4.33)

where ha(t) is a real-valued amplitude shaping pulse, {xn} is a complex data symbol
sequence, and T is the baud period. As will be discussed in Chap. 5, the receiver
usually uses a filter that is matched to the transmitted pulse, having the form
hr(t) = ha(To − t), where To is the duration of the amplitude shaping pulse ha(t).
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An overall pulse can be defined that is the cascade of the transmitted pulse ha(t) and
the receiver filter hr(t) as p(t) = ha(t)∗ha(To − t), where ∗ denotes the operation of
convolution.

For the time being, consider an ideal channel having impulse response
g(t,τ)=δ (τ). In the absence of thermally generated noise in the receiver, the
signal at the output of the receiver matched filter is

ỹ(t) = A∑
n

xn p(t − nT). (4.34)

Now suppose the received complex envelope ỹ(t) is sampled once every T seconds
to yield the sample sequence {ỹk}, where

ỹk = ỹ(kT + to) = A∑
n

xn p(kT + to − nT ) (4.35)

and to is a timing offset assumed to lie in the interval [0,T ). First consider the case
when to = 0; the effect of having a nonzero timing offset will be treated later. When
to = 0

ỹk = A∑
n

xn pk−n

= Axk p0 +A ∑
n �=k

xn pk−n, (4.36)

where pm = p(mT ) is the sampled overall pulse. The first term in (4.36) is equal
to the data symbol transmitted at the kth baud epoch, scaled by the factor Ap0. The
second term is the contribution of all other data symbols on the sample ỹk. This term
is called intersymbol interference (ISI). To avoid the appearance of ISI, the sampled
pulse response {pk} must satisfy the condition

pk = δk0 p0, (4.37)

where δ jk is the Dirac delta function defined in (4.11). This requirement is known
as the (first) Nyquist criterion. Under this condition,

ỹk = Axk p0. (4.38)

We now derive an equivalent frequency-domain requirement by showing that the
pulse p(t) satisfies the condition pk = δk0 p0 if and only if

PΣ( f )
�
=

1
T

∞

∑
n=−∞

P
(

f +
n
T

)
= p0. (4.39)



200 4 Digital Modulation and Power Spectrum

The function PΣ( f ) is called the folded spectrum, and we avoid ISI if and only if
the folded spectrum is flat, that is, it assumes a constant value. To prove the above
property, we use the inverse Fourier transform to write

pk =

∫ ∞

−∞
P( f )ej2π f kT d f

=
∞

∑
n=−∞

∫ (2n+1)/2T

(2n−1)/2T
P( f )ej2πk f T d f

=
∞

∑
n=−∞

∫ 1/2T

−1/2T
P
(

f ′+
n
T

)
ej2πk( f ′+ n

T )T d f ′

=

∫ 1/2T

−1/2T

[
∞

∑
n=−∞

P
(

f +
n
T

)
]

ej2π f kT d f

= T
∫ 1/2T

−1/2T
PΣ ( f )ej2π f kT d f . (4.40)

Since PΣ( f ) is periodic with period 1/T , it follows that the last line in (4.40)
represents a Fourier analysis equation except for the sign of the exponential term.
Therefore, {p−k} and PΣ ( f ) are a Fourier series pair, and PΣ( f ) can be constructed
from {p−k} using the Fourier synthesis equation, viz.,

PΣ ( f ) =
∞

∑
k=−∞

p−kej2πk f T =
∞

∑
k=−∞

pke−j2πk f T . (4.41)

To prove that (4.39) is a sufficient condition for ISI-free transmission, suppose
that (4.39) holds true. Then PΣ ( f ) = p0T and from the last line of (4.40)

pk =
∫ 1/2T

−1/2T
ej2π f kT p0T d f =

sinπk
πk

p0 = δk0 p0. (4.42)

To prove that (4.39) is a necessary condition for ISI-free transmission, suppose that
pk = p0δk0 holds true. Then from (4.41) PΣ( f ) = p0, and the folded spectrum must
be flat.

The requirement on the folded spectrum in (4.39) allows us to design pulses in
the frequency-domain that will exhibit zero ISI. First, consider a pulse having the
Fourier transform

PN( f ) = T rect( f T ), (4.43)

where

rect( f T ) =

{
1, | f | ≤ 1

2T
0, elsewhere

. (4.44)

This pulse has a flat folded spectrum. The corresponding time-domain pulse

pN(t) = sinc(t/T ), (4.45)
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Fig. 4.4 Construction of
pulses satisfying the (first)
Nyquist criterion
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satisfies the first Nyquist criterion because it has equally spaced zero crossings at
T second intervals. Furthermore, from the requirement of a flat folded spectrum,
it achieves zero ISI while occupying the smallest possible bandwidth. Hence, it is
called an ideal Nyquist pulse. Sometimes the edge frequency f = 1/2T is called the
Nyquist frequency.

We now examine the effect of the sampling or timing offset to with the aid of the
ideal Nyquist pulse. With a timing offset

ỹk = A∑
n

xnsinc((kT + to − nT)/T )

= Axksinc(to/T )+A ∑
n �=k

xnsinc((kT + to − nT )/T ). (4.46)

Observe that the ISI term is nonzero when a timing offset is present. In fact,
with an ideal Nyquist pulse, the ISI term is not absolutely summable as shown in
Problem 4.1. This is because the tails of the ideal Nyquist pulse in (4.45) decay in
time as 1/t. To reduce this sensitivity to symbol timing errors, we need to design
pulses that satisfy the first Nyquist criterion while having tails that decay faster
than 1/t.

The construction of other Nyquist pulses starts with the ideal Nyquist pulse,
PN( f ), shown in Fig. 4.4a. To the pulse PN( f ), we add a “transmittance” function
Po( f ) as shown in Fig. 4.4b. The transmittance function must have skew symmetry
about the Nyquist frequency 1/2T , and any skew symmetric function will do.
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The resulting Nyquist pulse P( f ) is shown in Fig. 4.4c. Clearly, the folded spectrum
PΣ ( f ) is flat if the transmittance function is skew symmetric about the Nyquist
frequency 1/2T . The corresponding time-domain pulse p(t) can be obtained from
the inverse Fourier transform of resulting P( f ). Notice that the pulse P( f ) takes up
additional bandwidth, but the bandwidth expansion results in a time-domain pulse
p(t) having tails that decay faster with time than the ideal Nyquist pulse.

4.2.1 Raised Cosine and Root-Raised Cosine Pulse

The raised cosine pulse is defined in the frequency-domain by

P( f ) =

⎧
⎪⎨

⎪⎩

T, 0 ≤ | f | ≤ (1−β )/2T
T
2

[
1− sin

(
π f T

β − π
2β

)]
, (1−β )/2T ≤ | f | ≤ (1+β )/2T

0, | f | ≥ (1+β )/2T

. (4.47)

The bandwidth of the raised cosine pulse is (1+β )/2T , where the parameter β ,0 ≤
β ≤ 1 is called the roll-off factor and controls the bandwidth expansion. The term
“raised cosine” comes from the fact that pulse spectrum P( f ) with β = 1 has a
“raised cosine” shape, that is, with β = 1

P( f ) =
T
2
[1+ cos(π f T )], 0 ≤ | f | ≤ 1/T. (4.48)

The inverse Fourier transform of P( f ) in (4.47) gives the corresponding time-
domain pulse

p(t) =
sin(πt/T )

πt/T
cos(β πt/T)

1− (2β t/T)2 . (4.49)

For β = 0, p(t) reduces to the ideal Nyquist pulse in (4.45). Notice that the tails of
the raised cosine pulse decay as 1/t3.

As mentioned before, the overall pulse produced by the cascade of the transmitter
and receiver matched filters is p(t) = ha(t) ∗ ha(To − t). It follows that the Fourier
transform of p(t) is P( f ) = Ha( f )H∗

a ( f )e−j2π f To = |Ha( f )|2e−j2π f To . Hence, both
the transmitted pulse and receiver matched filter have the same magnitude response
|Ha( f )| = |P( f )|1/2, where P( f ) is defined in (4.47). If the overall pulse p(t)
is a raised cosine pulse with P( f ) defined in (4.47), then the pulse ha(t) is
said to be a root-raised cosine pulse. Taking the inverse Fourier transform of
|Ha( f )|=√

T |P( f )|1/2 gives the root-raised cosine pulse

ha(t) =

⎧
⎪⎨

⎪⎩

1−β + 4β/π , t = 0
(β/

√
2)((1+ 2/π)sin(π/4β )+ (1− 2/π)cos(π/4β )) , t =±T/4β

4β (t/T)cos((1+β )πt/T)+sin((1−β )πt/T)
π(t/T)(1−(4β t/T)2)

, elsewhere

.

(4.50)
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Fig. 4.5 Raised cosine and
root-raised cosine pulses with
roll-off factor β = 0.5. The
pulses are truncated to length
6T and time shifted by 3T to
yield causal pulses
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For β = 0, the root-raised cosine pulse reduces to the sinc pulse

ha(t) = sinc(t/T ). (4.51)

The raised cosine and root-raised cosine pulses corresponding to β = 0.5 are
shown in Fig. 4.5. Strictly speaking, the root-raised cosine pulse in (4.50) is
noncausal. Therefore, in practice, a truncated and time-shifted approximation of
the pulse must be used. For example, in Fig. 4.5 the pulse is truncated to length 6T
and right time-shifted by 3T to yield a causal pulse. The time-shifting makes the
pulse have a linear phase response, while the pulse truncation will result in a pulse
that is no longer strictly bandlimited. Finally, we note that the raised cosine pulse
is a Nyquist pulse having equally spaced zero crossings at the baud period T , while
the root-raised cosine pulse by itself is not a Nyquist pulse.

4.3 Quadrature Amplitude Modulation

Quadrature amplitude modulation (QAM) is a bandwidth efficient modulation
scheme that is used in numerous wireless standards. With QAM, the complex
envelope of the transmitted waveform is

s̃(t) = A∑
n

b(t − nT,xn), (4.52)



204 4 Digital Modulation and Power Spectrum

where

b(t,xn) = xnha(t), (4.53)

ha(t) is the amplitude shaping pulse (very often chosen as a root-raised cosine
pulse), and xn = xI,n + jxQ,n is the complex-valued data symbol that is transmitted
at epoch n. It is apparent that both the amplitude and the excess phase of a QAM
waveform depend on the complex data symbols. QAM has the advantage of high
bandwidth efficiency, but amplifier nonlinearities will degrade its performance due
to the nonconstant envelope.

The set QAM waveforms that are transmitted at each baud epoch have the
complex envelopes

s̃m(t) = Axmha(t) m = 1, . . . ,M. (4.54)

To obtain the vector representation of the complex envelopes s̃m(t),m = 1, . . . ,M,
we can use the basis function

ϕ1(t) =

√

A2

2Eh
ha(t), (4.55)

where

Eh =
A2

2

∫ ∞

−∞
h2

a(t)dt, (4.56)

is the energy in the band-pass pulse Aha(t)cos2π fct under the condition fcT  1.
Using this basis function

s̃m(t) =
√

2Eh xm ϕ1(t), (4.57)

and the QAM signal vectors are1

s̃m =
√

2Eh xm, m = 1, . . . ,M. (4.58)

4.3.1 QAM Signal Constellations

A variety of QAM signal constellations may be constructed. Square QAM constel-
lations can be constructed when M is an even power of 2 by choosing xI,m,xQ,m ∈
{±1, ±3, . . . , ±(N − 1)} and N =

√
M. The complex signal-space diagram for

the square 4-, 16, and 64-QAM constellations is shown in Fig. 4.6. Notice that the
minimum Euclidean distance between any two signal vectors is 2

√
2Eh.

1Note that the dimensionality of the complex vector space is N = 1.
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Fig. 4.6 Complex
signal-space diagram for
square QAM constellations
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When M is an odd power of 2, the signal constellation is not square. Usually,
the constellation is given the shape of a cross to minimize the average energy in
the constellation for a given minimum Euclidean distance between signal vectors.
Examples of the QAM “cross constellations” are shown in Fig. 4.7.

Other types of QAM constellations are possible as well. Figure 4.8 shows two
different 8-QAM constellations.



206 4 Digital Modulation and Power Spectrum

Fig. 4.9 Complex
signal-space diagram for the
4- and 8-PAM constellations
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4.3.2 PAM Signal Constellations

Pulse amplitude modulation (PAM) can be viewed as a special case of QAM, where
information is transmitted only in the cosine component of the carrier. With our
formulation, this can be accomplished using real data symbols xm = xI,m, where
xI,m ∈ {±1,±3, . . . ,±(M − 1)}. The PAM complex signal vectors are

s̃m =
√

2Eh(2m− 1−M), m = 1, . . . ,M. (4.59)

Typical 4- and 8-PAM signal constellations are shown in Fig. 4.9.

4.4 Phase Shift Keying

The complex envelope of a PSK signal has the form

s̃(t) = A∑
n

b(t − nT,xn), (4.60)

where
b(t,xn) = ha(t)e

jθn , (4.61)

ha(t) is the amplitude shaping pulse, and the excess phase takes on the values

θn =
2π
M

xn, (4.62)

where xn ∈ {0,1, . . . , M − 1}. The set of PSK waveforms that are transmitted at
each baud epoch have the complex envelopes

s̃m(t) = Aha(t)ejθm , m = 1, . . . ,M. (4.63)

Using the basis function in (4.55)

s̃m(t) =
√

2Ehejθmϕ0(t), m = 1, . . . ,M, (4.64)
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Fig. 4.10 Complex
signal-space diagram for the
8-PSK constellation
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and the PSK complex signal vectors are

s̃m =
√

2Ehejθm , m = 1, . . . ,M. (4.65)

The complex signal-space diagram for 8-PSK is shown in Fig. 4.10. Recall that the
energy in a PSK bandpass waveform is equal to one-half the squared length of its
complex signal vector. Notice that the PSK bandpass waveforms all have energy Eh.

4.4.1 Offset QPSK (OQPSK)

QPSK or 4-PSK is equivalent to 4-QAM, where xn = xI,n + jxQ,n and xI,n,xQ,n ∈
{−1/

√
2,+1/

√
2}. The QPSK signal can have either ±90◦ or 180◦ shifts of the

excess phase from one baud interval to the next. With offset (or staggered) QPSK
(OQPSK), the complex envelope is

s̃(t) = A∑
n

b(t − nT,xn) (4.66)

where
b(t,xn) = xI,nha(t)+ jxQ,nha(t −Tb) (4.67)

and Tb = T/2 is the bit interval. With OQPSK signals, the possibility of 180◦ shifts
of the excess phase is eliminated. In fact, the excess phase can only change by ±90◦
every Tb seconds. With OQPSK, the amplitude shaping pulse ha(t) is often chosen
to be the root-raised cosine pulse in (4.50) to yield a compact power spectrum.

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11, where
Eh is the symbol energy. The dotted lines in Fig. 4.11 show the allowable excess
phase transitions. The exact excess phase trajectories depend on the amplitude
shaping function. Note that the excess phase trajectories with OQPSK do not
pass through the origin, while those with QPSK do. This property reduces the



208 4 Digital Modulation and Power Spectrum

2Eh E2

QPSK

φ1( t ) φ1( t )

h

OQPSK

Fig. 4.11 Complex signal-space diagram QPSK and OQPSK signals

peak-to-average power ratio (PAPR) of the OQPSK envelope as compared to the
QPSK envelope, defined as

PAPR = limT→∞
max0≤t≤T |s̃(t)|2
T−1

∫ T
0 |s̃(t)|2dt

.

A lower PAPR makes the OQPSK waveform less sensitive to power amplifier
nonlinearities than the QPSK waveform. For this reason OQPSK waveforms have
been used for satellite communication links where the satellite transponders use
power efficient nonlinear amplifiers.

4.4.2 π/4-DQPSK

π/4 phase shifted differential quadrature shift keying (π/4-DQPSK) is a modulation
scheme that was used in some types of now extinct second generation cellular
telephone systems. Similar to QPSK and OQPSK, π/4-DQPSK transmits 2 bits
per modulated symbol. However, unlike QPSK and OQPSK where information is
transmitted in the absolute excess phase, π/4-DQPSK transmits information in the
differential carrier phase, and one of eight absolute excess phases are transmitted at
each baud epoch.

Let θn be the absolute excess phase for the nth data symbol, and let
Δθn = θn −θn−1 be the differential excess phase. With π/4-DQPSK, the differential
excess phase is related to the quaternary data sequence {xn}, xn ∈ {±1,±3} through
the mapping

Δθn = xn
π
4
. (4.68)
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Fig. 4.12 Complex signal-space diagram QPSK and π/4-DQPSK signals

Notice that the excess phase differences are ±π/4 and ±3π/4. The complex
envelope of the π/4-DQPSK signal is

s̃(t) = A∑
n

b(t − nT,xn), (4.69)

where

b(t,xn) = ha(t)exp
{

j
(

θn−1 + xn
π
4

)}

= ha(t)exp

{

j
π
4

(
n−1

∑
k=−∞

xk + xn

)}

. (4.70)

The summation in the exponent of (4.70) represents the accumulated excess phase,
while the last term is the excess phase increment due to the nth data symbol. The
absolute excess phase during the even and odd baud intervals belongs to the sets
{0,π/2,π ,3π/2} and {π/4,3π/4,5π/4,7π/4}, respectively, or vice versa. With
π/4-DQPSK, the amplitude shaping pulse ha(t) is often chosen to be the root-raised
cosine pulse in (4.50).

The signal-space diagrams for QPSK and π/4-DQPSK are shown in Fig. 4.12,
where Eh is the symbol energy. The dotted lines in Fig. 4.12 show the allowable
phase transitions. The phaser diagram for π/4-DQPSK with root-raised cosine
amplitude pulse shaping is shown in Fig. 4.13. Note that the phase trajectories
do not pass through the origin. Like OQPSK, this property reduces the PAPR of
the complex envelope, making the π/4-DQPSK waveform less sensitive to power
amplifier nonlinearities.
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Fig. 4.13 Phaser diagram for
π/4-DQPSK with root-raised
cosine amplitude pulse
shaping;
β = 0.5
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Finally, we observe that the excess phase of π/4-DQPSK changes by ±π/4 or
±3π/4 radians during every baud interval. This property makes symbol synchro-
nization easier with π/4-DQPSK as compared to QPSK.

4.5 Orthogonal Modulation and Variants

Orthogonal modulation schemes transmit information using a set of waveforms
that may overlap in frequency but are orthogonal in time. Many different types of
orthogonal waveforms are possible, and here we consider a few methods that are
commonly used in wireless systems.

4.5.1 Orthogonal FSK Modulation

Orthogonal M-ary frequency shift keying (MFSK) is a modulation scheme that is
often used in frequency hopped spread spectrum military communication systems.
MFSK uses a set of M waveforms that all have different frequencies. The MFSK
complex envelope is

s̃(t) = A∑
n

b(t − nT,xn), (4.71)
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where

b(t,xn) = exp

{

j
xnπΔ f

2
t

}

uT (t), (4.72)

and xn ∈ {±1,±3, . . . ,±M − 1}. The set of MFSK waveforms that are transmitted
at each baud epoch have the complex envelopes

s̃m(t) = Aexp

{

j
xmπΔ f

2
t

}

uT (t), m = 1, . . . ,M. (4.73)

By choosing the frequency separation Δ f = 1/2T , all the s̃m(t),m = 1, . . . ,M are
mutually orthogonal (see Problem 4.7). Since the s̃m(t) are mutually orthogonal,
the MFSK signal vectors have dimension N = M. The appropriate set of basis
functions is

ϕi(t) =

√

A2

2Eh
exp

{

j
xmπΔ f

2
t

}

uT (t), i = 1, . . . ,M = N, (4.74)

where

Eh =
A2T

2
, (4.75)

is the energy in the band-pass pulse AuT (t)cos2π fct. The MFSK complex signal
vectors are

s̃m =
√

2Ehem, m = 1, . . . ,M, (4.76)

where em = (e1,e2, . . . ,eM), e j = δ jm, is a length-M unit basis vector with a “1” in
the mth coordinate.

4.5.2 Binary Orthogonal Codes

Another set of mutually orthogonal waveforms can be obtained from the rows of a
Hadamard matrix. A Hadamard matrix, HM, is generated recursively according to

HM =

[
HM/2 HM/2

HM/2 −HM/2

]

,

where H1 = [1]. For example, the 8× 8 Hadamard matrix obtained from the above
recursive procedure is
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H8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.77)

The rows of the Hadamard matrix are mutually orthogonal. A set of M equal energy
orthogonal waveforms can be constructed according to

s̃m(t) = A
M

∑
k=1

hmk hc(t − kTc), m = 1, . . . ,M, (4.78)

where hmk is the kth coordinate in the mth row of the Hadamard matrix, T = MTc

is the symbol duration, and hc(t) is a root Nyquist shaping pulse with a Nyquist
frequency of 1/(2Tc). Sometimes the above waveforms are called Walsh codes, and
find application in the forward link of some cellular code division multiple access
(CDMA) systems, such as IS-95A/B and cdma2000.

The bandpass waveforms, sm(t), all have energy

Eh =
MA2

2

∫ ∞

−∞
h2

c(t)dt. (4.79)

To construct signal vectors, the appropriate choice of basis function is

ϕi(t) =
A√
2Eh

M

∑
k=1

hik hc(t − kTc), i = 1, . . . ,M, (4.80)

and once again the signal vectors are

s̃m =
√

2Ehem, m = 1, . . . ,M. (4.81)

4.5.3 Biorthogonal Signals

A set of M biorthogonal waveforms can be constructed from a set of M/2 orthogonal
waveforms. The M-ary biorthogonal waveforms have complex signal vectors

s̃i =

{√
2Ehei, i = 1, . . . ,M/2

−s̃i−M/2, i = M/2+ 1, . . . ,M
, (4.82)
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where the unit basis vectors ei have length M/2. Using an appropriate set of basis
functions, for example in (4.74) or (4.80), the complex envelopes of the biorthogonal
waveforms can be synthesized.

4.5.4 Orthogonal Multipulse Modulation

With binary orthogonal codes, only k = log2M bits are transmitted at each baud
epoch. A much more bandwidth efficient scheme can be obtained using the rows of
the Hadamard matrix HN to define N orthogonal amplitude shaping pulses

hi(t) =
N−1

∑
k=0

hikhc(t − kTc), i = 1, . . . ,N, (4.83)

each having duration T = NTc. With orthogonal multipulse modulation, a block of
N data symbols are transmitted in parallel every T seconds using the N orthogonal
amplitude shaping pulses in (4.83). The transmitted complex envelope is

s̃(t) = A∑
n

b(t − nT,xn), (4.84)

where

b(t,xn) =
N−1

∑
k=0

xnk hk(t), (4.85)

T = NTc, and xn = (xn1 ,xn2 , . . . ,xnN ) is the block of N data symbols transmitted at
epoch n.

4.6 Orthogonal Frequency Division Multiplexing

All of the modulation techniques discussed so far are single-carrier modulation
techniques that use a single RF carrier. Another possibility is to use multi-carrier
modulation techniques where information is transmitted in parallel using multiple
sub-carriers. Orthogonal frequency division multiplexing (OFDM) is perhaps the
most popular multi-carrier modulation technique. OFDM was first introduced in
the 1960s [48], but it was perhaps the efficient DFT implementation of OFDM
developed by Weinstein and Ebert [280] that has lead to its popularity and
widespread use. OFDM was first suggested for use as cellular land mobile radio
by Cimini [55] and later implemented in the Motorola Integrated Digital Enhanced
Network (IDEN) standard [37]. OFDM is now used in a large number of standards
for broadcasting (DVB-T, DVB-H, MediaFLO, and others), wireless LAN or
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WiFi (IEEE 802.11a/g/n/p), wireless MAN or WiMAX (IEEE 802.16), mobile
broadband wireless access (MBWA) (IEEE 802.16e mobile WiMAX), wireless
regional area networks (WRAN) (IEEE 802.22), and cellular land mobile radio
(3GPP Long-Term Evolution (LTE) air interface named High Speed OFDM Packet
Access (HSOPA)), among others.

OFDM is a block modulation scheme where data symbols are transmitted in
parallel on orthogonal sub-carriers. A block of N data symbols, each of duration
Ts, is converted into a block of N parallel data symbols, each of duration T = NTs.
The N parallel data symbols modulate N sub-carriers that are spaced in frequency
1/T Hz apart. The OFDM complex envelope is given by

s̃(t) = A∑
n

b(t − nT,xn), (4.86)

where

b(t,xn) = uT (t)
N−1

∑
k=0

xn,kej 2πkt
T (4.87)

n is the block index, k is the sub-carrier index, N is the number of sub-carriers, and
xn = {xn,0, xn,1, . . . , xn,N−1} is the data symbol block at epoch n.

The data symbols xn,k are usually chosen from a QAM or PSK signal constel-
lation, although any 2D signal constellation can be used. The 1/T Hz frequency
separation of the sub-carriers ensures that the corresponding sub-channels are
mutually orthogonal regardless of the random phases that are imparted by the data
modulation (see Problem 4.7).

A cyclic extension (or guard interval) is usually added to the OFDM waveform
in (4.86) and (4.87) to combat ISI as explained in Sect. 10.1 of Chap. 10. The cyclic
extension can be in the form of either a cyclic prefix or a cyclic suffix. With a cyclic
suffix, the OFDM complex envelope becomes

s̃g(t) =

{
s̃(t), 0 ≤ t ≤ T
s̃(t −T ), T ≤ t ≤ (1+αg)T

, (4.88)

where αgT is the length of the guard interval and s̃(t) is defined in (4.86) and (4.87).
The OFDM waveform with cyclic suffix can be rewritten in the standard form

s̃g(t) = A∑
n

b(t − nTg,xn), (4.89)

where

b(t,xn) = uT (t)
N−1

∑
k=0

xn,kej 2πkt
T + uαgT (t −T)

N−1

∑
k=0

xn,kej 2πk(t−T )
T (4.90)
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and Tg = (1+αg)T is the OFDM symbol period with the addition of the guard
interval. Likewise, with a cyclic prefix, the OFDM complex envelope becomes

s̃g(t) =

{
s̃(t +T), −αgT ≤ t ≤ 0
s̃(t), 0 ≤ t ≤ T

, (4.91)

and

b(t,xn) = uαgT (t +αgT )
N−1

∑
k=0

xn,kej 2πk(t+T )
T + uT (t)

N−1

∑
k=0

xn,kej 2πkt
T . (4.92)

4.6.1 Adaptive Bit Loading and Discrete Multitone Modulation

A wireless OFDM system generally operates over a frequency-selective fading
channel with transfer function T (t, f ), such that the amplitude response |T (t, f )|
varies across the channel bandwidth W . The power spectral density of the additive
noise impairment Snn( f ) may vary with frequency as well due to the presence of
interference. Consider a quasi-static fading channel, such that the channel remains
constant over an OFDM block of duration T seconds. For convenience, we suppress
the time variable t with the understanding that T (t, f )≡ T ( f ) over an OFDM block,
but the channel may change from block to block. Furthermore, we assume that
knowledge of the channel is available at the transmitter. Shannon [239] proved
that the capacity of a frequency-selective channel with additive Gaussian noise is
achieved when the transmitted power Ωt( f ) is adjusted across the bandwidth Ws

according to

Ωt( f ) =

{
K − Snn( f )/|T ( f )|2, f ∈ Ws

0, f �∈ Ws

}

, (4.93)

where K is a constant chosen to satisfy the constraint
∫

Ws

Ωt( f )d f ≤ Ωav, (4.94)

and Ωav is the average available power to the transmitter. One method to achieve
capacity is to divide the bandwidth Ws into N sub-bands of width Ws/Δ f , where
Δ f = 1/T is chosen small enough so that |T ( f )|2/Snn( f ) is approximately constant
within each sub-band. The signals in each sub-band may then be transmitted with
the optimum power allocation Ωt( f ), while being individually coded to achieve
capacity.

It is clear from (4.87) that the data symbols xn,k for fixed n modulate the nth
sub-carrier. From (4.93), the transmitter power should be high when |T ( f )|2/Snn( f )
is large and small when T ( f )/Snn( f ) is small. In a practical system, this implies
the use of a larger size signal constellation in sub-bands where |T ( f )|2/Snn( f ) is
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large, and vice versa. The technique whereby different sized signal constellations are
used on the different OFDM sub-carriers is sometimes called adaptive bit loading
or discrete multitone modulation (DMT).

4.6.2 Multiresolution Modulation

In broadcasting applications, it is sometimes desirable to transmit video or audio
information in frames that will simultaneously provide different resolutions, de-
pending on the received signal-to-noise ratio. The lower resolution information is
typically of higher priority and must be received with higher reliability. The higher
resolution information, on the other hand, is of lower priority and may be received
with a lower reliability. The solution is multi-resolution modulation (MRM), a class
of modulation techniques that transmit multiple resolutions in a simultaneous or
concurrent fashion, that differ in their bit rates and/or error probabilities. MRM can
implemented in OFDM schemes using multiplexed, interleaved, embedded signal
constellations, and others.

Multiplexed MRM divides the OFDM band into subsets of contiguous sub-
carriers, for example the upper half sub-carriers may be used to transmit high
priority (HP) data symbols and the lower half sub-carriers used to transmit an equal
number of low priority (LP) data symbols. The HP low resolution, information can
be transmitted using a smaller signal constellation and/or higher transmit power
for further robustness and reliability. Likewise, the LP, high resolution, information
can be transmitted using a larger signal constellation and/or lower transmit power.
Broadcast service contours can be established for either high definition (both the HP
and LP data streams are decodable) or standard definition (only the HP data stream
is decodable) reception.

Interleaved MRM interleaves the different resolutions onto the sub-carriers in
a cyclic fashion. If there are K different resolutions, then sub-carriers �,�+K, �+
2K, . . . are assigned to the �th resolution. Each resolution is then transmitted using
a different sized signal constellation and/or transmit power level.

Embedded MRM is more subtle and relies upon the use of an asymmetric signal
constellation and finds application in some broadcast video systems. Figure 4.14
shows an example of a 16-QAM embedded MRM signal constellation that can
be used to simultaneously transmit two different resolutions. In Fig. 4.14, two HP,
low resolution, bits are used to select the quadrant of the transmitted signal point,
while two low LP, high resolution, bits are used to select the signal point within
the selected quadrant. The relative error probability or reliability between the two
priorities is controlled by the parameter λ = dl/dh,λ ≤ 0.5, where dl is the distance
between LP symbols and dh is the distance between centroids of the HP symbols.
The upper limit on λ is due to the fact that the MRM constellation becomes a
symmetric 16-QAM constellation when λ = 0.5. As λ becomes smaller than 0.5,
more power is allocated to the HP low resolution bits than the LP high resolution
bits. For broadcasting applications, this can be used to provide high definition
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Fig. 4.14 16-QAM
embedded MRM signal
constellation with two
resolutions

d l

d h

reception over some adjustable fraction of the service area where standard definition
service can be received. At λ = 0.5, both resolution classes are treated equally and
the coverage areas for standard and high definition service are the same.

4.6.3 DFT-Based OFDM Baseband Modulator

A key advantage of using OFDM is that the baseband modulator can be imple-
mented using an inverse discrete-time Fourier transform (IDFT). In practice, an
inverse fast Fourier transform (IFFT) algorithm is used to implement the IDFT.
Consider the OFDM complex defined by (4.86) and (4.87). During the interval
nT ≤ t ≤ (n+ 1)T , the complex envelope has the form

s̃(t) = AuT (t − nT)
N−1

∑
k=0

xn,ke
j2πk(t−nT )

T

= AuT (t − nT)
N−1

∑
k=0

xn,ke
j2πkt
NTs , nT ≤ t ≤ (n+ 1)T. (4.95)

Now suppose that the complex envelope in (4.95) is sampled at synchronized Ts

second intervals to yield the sample sequence

Xn,m = s̃(mTs) = A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N − 1. (4.96)
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Observe that the vector Xn = {Xn,m}N−1
m=0 is the IDFT of the vector Axn =A{xn,k}N−1

k=0 .
Contrary to conventional notation, the lower case vector Axn is used to represent
the coefficients in the frequency-domain, while the upper case vector Xn is used
to represent the coefficients in the time-domain. As mentioned earlier, a cyclic
extension (or guard interval) is usually added to the OFDM waveform as described
in (4.89) and (4.90) to combat ISI. When a cyclic suffix is used, the corresponding
sample sequence is

Xg
n,m = Xn,(m)N

(4.97)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N +G− 1, (4.98)

where G is the length of the guard interval in samples, and (m)N is the residue of
m modulo N. This gives the vector Xg

n = {Xg
n,m}N+G−1

m=0 , where the values in the first
and last G coordinates of the vector Xg

n are the same. Likewise, when a cyclic prefix
is used, the corresponding sample sequence is

Xg
n,m = Xn,(m)N

(4.99)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m =−G, . . . ,−1, 0, 1, . . . , N − 1. (4.100)

This yields the vector Xg
n = {Xg

n,m}N−1
m=−G, where again the first and last G coordinates

of the vector Xg
n are the same. The sample duration after insertion of the guard

interval, T g
s , is compressed in time such that (N +G)T g

s = NTs.
The OFDM complex envelope can be generated by splitting the complex-valued

output vector Xm into its real and imaginary parts, Re(Xn) and Im(Xn), respectively.
The sequences {Re(Xn,m)} and {Im(Xn,m)} are then input to a pair of balanced
digital-to-analog converters (DACs) to generate the real and imaginary components
s̃I(t) and s̃Q(t), respectively, of the complex envelope s̃(t), during the time interval
nT ≤ t ≤ (n+1)T . As shown in Fig. 4.15, the OFDM baseband modulator consists
of an IDFT operation, followed by guard interval insertion and digital-to-analog
conversion.

It is instructive at this stage to realize that the waveform generated using
the IDFT OFDM baseband modulator is not exactly the same as the waveform
generated from the analog waveform definition of OFDM. Consider, for example,
the OFDM waveform without a cyclic guard in (4.86) and (4.87). The analog
waveform definition uses the rectangular amplitude shaping pulse uT (t) that is
strictly time-limited to T seconds. Hence, the corresponding power spectrum will
have infinite bandwidth, and any finite sampling rate of the complex envelope will
necessarily lead to aliasing and imperfect reconstruction. With the IDFT OFDM
baseband modulator, we apply the IDFT outputs to a pair of balanced DACs as
explained earlier. However, the ideal DAC is an ideal low pass filter with cutoff
frequency 1/(2Ts), with a corresponding noncausal impulse response given by
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Fig. 4.15 Block diagram of IDFT-based baseband OFDM modulator with guard interval insertion
and digital-to-analog conversion

h(t) = sinc(t/Ts). Since the ideal DAC is non-realizable, a causal, finite-length
reconstruction filter can be used instead. However, such a filter will necessarily
generate a waveform that is not strictly bandlimited. In conclusion, the side lobe
structure of the analog waveform definition of OFDM is inherent in the waveform
due to rectangular pulse shaping, whereas the side lobe structure with the IDFT
implementation arises from the nonideal (practical) DAC.

Finally, non-rectangular amplitude pulse shaping can be used with OFDM and
may yield a more compact power spectrum while still maintaining sub-channel
orthogonality. However, such pulse shaping will require an extension of the OFDM
symbol beyond T seconds in the time-domain. This will be discussed in more detail
in Chap. 10.

4.7 Continuous Phase Modulation

Continuous phase modulation (CPM) refers to a broad class of frequency mod-
ulation techniques where the carrier phase varies in a continuous manner. A
comprehensive treatment of CPM is provided by Anderson et. al. [13]. CPM
schemes are attractive because they have constant envelope and excellent spectral
characteristics, that is, a narrow main lobe and fast roll-off of side lobes. CPM wave-
forms find application in satellite communication systems and cellular telephone
systems such as GSM.

The complex envelope of a CPM waveform has the general form

s̃(t) = Aej(φ(t)+θo), (4.101)

where A is the amplitude, θo is initial carrier phase at t = 0, and

φ(t) = 2πh
∫ t

0

∞

∑
k=0

xkhf(τ − kT )dτ (4.102)
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Table 4.1 CPM frequency
shaping functions

Pulse type hf(t)

L-rectangular (LREC) 1
2LT uLT (t)

L-raised cosine (LRC) 1
2LT

[
1− cos

( 2πt
LT

)]
uLT (t)

L-half sinusoid (LHS) π
4LT sin(πt/LT )uLT (t)

L-triangular (LTR) 1
LT

(
1− |t−LT/2|

LT/2

)
uLT (t)

is the excess phase, h is the modulation index, {xk} is the data symbol sequence,
hf(t) is the frequency shaping pulse, and T is the baud period. The CPM waveform
can be written in the standard form

s̃(t) = A∑
n

b(t − nT,xn) (4.103)

where

b(t,xn) = ej2πh
∫ t

0 ∑∞
k=0 xkhf(τ−kT )dτ uT (t) (4.104)

where xn = (xn,xn−1, . . . ,x0), and we have assumed an initial phase θo = 0. CPM
waveforms have the following properties:

• The data symbols are chosen from the alphabet {±1, ±3, . . . ,±(M−1)}, where
M is the modulation alphabet size.

• h is the modulation index and is directly proportional to the peak and/or average
frequency deviation from the carrier. The instantaneous frequency deviation from
the carrier is

fdev(t) =
1

2π
dφ(t)

dt
= h

∞

∑
k=0

xkhf(t − kT ). (4.105)

• hf(t) is the frequency shaping function, that is zero for t < 0 and t > LT , and
normalized to have an area equal to 1/2. Full response CPM has L = 1, while
partial response CPM has L > 1. Some possible frequency shaping pulses are
shown in Table 4.1. A more compact power density spectrum is usually obtained
using frequency shaping functions having continuous higher-order derivatives,
such as the raised cosine pulse in Table 4.1. The excess phase is continuous
provided that the frequency shaping function hf(t) does not contain impulses,
which is true for all CPM waveforms. When describing CPM waveforms, it is
useful to define the phase shaping function,

β (t) =

⎧
⎨

⎩

0, t < 0
∫ t

0 hf(τ)dτ, 0 ≤ t ≤ LT
1/2, t ≥ LT

. (4.106)

An infinite variety of CPM signals can be generated by choosing different frequency
shaping pulses, modulation indices, and modulation alphabet sizes.
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Fig. 4.16 Phase tree of binary CPFSK with an arbitrary modulation index. CPFSK is characterized
by linear excess phase trajectories

4.7.1 Full Response CPM

For a full response CPM waveform with L = 1, the shaping function in (4.104) has
the form

b(t,xn) = ej(πh∑n−1
k=0 xk+2πhxnβ (t))uT (t). (4.107)

The first term in the exponent of (4.107) represents the accumulated excess phase
up to time nT , while the second term represents the excess phase increment during
the time interval nT ≤ t ≤ (n+ 1)T .

Continuous phase frequency shift keying (CPFSK) is a special type of full
response CPM characterized by the rectangular frequency shaping function LREC
with L = 1. For CPFSK

β (t) =

⎧
⎪⎨

⎪⎩

0, t < 0

t/2T, 0 ≤ t ≤ T.

1/2, t ≥ T

(4.108)

CPM signals can be visualized by sketching the evolution of the excess phase
φ(t) for all possible data sequences. This plot is called a phase tree, and a typical
phase tree is shown in Fig. 4.16 for binary CPFSK. Since the CPFSK frequency
shaping function is rectangular, the excess phase trajectories are linear as suggested
by (4.108). In each baud interval, the excess phase increases by πh if the data symbol
is +1 and decreases by πh if the data symbol is −1.
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π/2
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3π/2

φ (t)  (Mod 2π)

Fig. 4.17 Phase-trellis for MSK

4.7.1.1 Minimum Shift Keying

Minimum shift keying (MSK) is binary CPFSK with modulation index h = 1/2. In
this case,

b(t,xn) = ej( π
2 ∑n−1

k=0 xk+
π
2 xn

t
T )uT (t). (4.109)

The MSK waveform can be described in terms of the phase tree as shown in Fig. 4.16
with h = 1/2. At the end of each symbol interval, the excess phase φ(t) takes on
values that are integer multiples of π/2. Since excess phases that differ by integer
multiples of 2π are indistinguishable, the values taken by φ(t) at the end of each
symbol interval belong to the finite set {0,π/2,π ,3π/2}. The MSK phase tree-
reduced modulo 2π yields the MSK phase trellis as shown in Fig. 4.17.

An interesting property of MSK can be observed from the MSK bandpass
waveform. The bandpass waveform on the interval [nT,(n+ 1)T ] can be obtained
from (4.109) as

s(t) = Acos

(

2π fct +
π
2

n−1

∑
k=0

xk +
π
2

xn
t − nT

T

)

= Acos

(

2π
(

fc +
xn

4T

)
t +

π
2

n−1

∑
k=0

xk − πn
2

xn

)

. (4.110)

Observe that the MSK bandpass waveform has one of two possible frequencies in
each baud interval

fL = fc − 1
4T

and fU = fc +
1

4T
(4.111)

depending on the data symbol xn. The difference between these two frequencies is
fU − fL = 1/(2T ). This is the minimum frequency separation to ensure orthogonal-
ity between two co-phased sinusoids of duration T (Problem 4.7) and, hence, the
name minimum shift keying.
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Another interesting representation for MSK waveforms can be obtained using
Laurent’s decomposition [149] (detailed in Sect. 4.8.3) to express the MSK complex
envelope in the quadrature form

s̃(t) = A∑
n

b(t − 2nT,xn), (4.112)

where
b(t,xn) = x̂2n+1ha(t −T )+ jx̂2nha(t) (4.113)

and where xn = (x̂2n+1, x̂2n),

x̂2n = x̂2n−1x2n, (4.114)

x̂2n+1 =−x̂2nx2n+1, (4.115)

x̂−1 = 1 (4.116)

and

ha(t) = sin
( πt

2T

)
u2T (t). (4.117)

The sequences, {x̂2n} and {x̂2n+1}, are independent binary symbol sequences taking
on elements from the set {−1,+1}. The symbols x̂2n and x̂2n+1 are transmitted
on the quadrature branches with a half-sinusoid (HS) amplitude shaping pulse of
duration 2T seconds and an offset of T seconds. Hence, MSK is equivalent to offset
quadrature amplitude shift keying (OQASK) with HS amplitude pulse shaping. This
linear representation of MSK is useful in practice for linear detection of MSK
waveforms.

4.8 Partial Response CPM

Partial response CPM signals have a frequency shaping pulse hf(t) with duration
LT where L > 1. Partial response CPM signals typically have better spectral
characteristics than full response CPM signals, that is, a narrower main lobe and
faster roll-off of side lobes.

The partial response frequency shaping function can be written as

hf(t) =
L−1

∑
k=0

hf(t)uT (t − kT )

=
L−1

∑
k=0

hf,k(t − kT ), (4.118)

where
hf,k(t) = hf(t + kT )uT (t). (4.119)
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Likewise, for the partial response phase shaping function

β (t) =
L−1

∑
k=0

βk(t − kT ), (4.120)

where

βk(t) = β (t + kT )uT (t). (4.121)

Note that

βk(t) =

⎧
⎨

⎩

0, t < 0
∫ t

0 hf,k(τ)dτ, 0 ≤ t ≤ LT
βk(T ), t ≥ T

(4.122)

and
L−1

∑
k=0

βk(T ) =
1
2
. (4.123)

An equivalent frequency shaping function of duration T can be derived by noting
that the baseband modulating signal has the form

x(t) = ∑
n

xnhf(t − nT)

= ∑
n

L−1

∑
k=0

xnhf,k(t − (n+ k)T)

= ∑
m

L−1

∑
k=0

xm−khf,k(t −mT ). (4.124)

It follows that

x(t) = ∑
m

hf(t −mT,xm), (4.125)

where

hf(t,xm) =
L−1

∑
k=0

xm−khf,k(t) (4.126)

and

x(t) = ∑
m

β (t −mT,xm), (4.127)

where

β (t,xm) =
L−1

∑
k=0

xm−kβk(t) (4.128)

and

xm = (xm, xm−1, . . . , xm−L+1) . (4.129)
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Finally, we note that the complex envelope of partial response CPM signal can be
written in the standard form

s̃(t) = A∑
n

b(t − nT,xn) (4.130)

where
b(t,xn) = ej2πh(∑n−1

i=0 β (T,xi)+β (t,xn))uT (t) (4.131)

and we have assumed an initial excess phase equal to zero.

Example 4.2:
Consider a partial response CPM waveform with an LREC frequency

shaping function. In this case

hf(t) =
1

2LT
uLT (t).

Hence,

hf(t,xn) = xnhf,0(t)+ xn−1hf,1(t)+ · · ·+ xn−L+1hf,L−1(t),

where

hf,0(t) = hf,1(t) = · · ·= hf,L−1(t) =
1

2LT
uT (t).

Therefore,

hf(t,xn) = (xn + xn−1 + · · ·+ xn−L+1)
1

2LT
uT (t).

Example 4.3:
Consider a partial response CPM waveform with an LRC frequency

shaping function. In this case

hf(t) =
1

2LT

(

1− cos

(
2πt
LT

))

uLT (t).

Hence,

hf(t,xn) = xnhf,0(t)+ xn−1hf,1(t)+ · · ·+ xn−Lhf,L−1(t),
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where

hf,k(t) =

(

1− cos

(
2π(t + kT )

LT

))

uT (t).

4.8.1 Phase States

The excess phase of a partial response CPM waveform on the interval [nT, (n+1)T] is

φ(t) = 2πh
∫ t

0

n

∑
k=0

xkhf(τ − kT )dτ (4.132)

= πh
n−L

∑
k=0

xk + 2πh
n

∑
k=n−L+1

xkβ (t − kT ) (4.133)

= θn + 2πh
n

∑
k=n−L+1

xkβ (t − kT ), (4.134)

where

θn = πh
n−L

∑
k=0

xk modulo 2π (4.135)

is the accumulated phase. During the interval nT ≤ t ≤ (n + 1)T , the excess
phase depends on the data symbol xn, the vector of L− 1 previous data symbols,
{xn−1,xn−2, . . . ,xn−L+1}, and the accumulated phase θn. The state of the CPM signal
at time, t = nT , is defined by the L-tuple

Sn = (θn,xn−1,xn−2, . . . ,xn−L+1). (4.136)

Since the vector (xn−1,xn−2, . . . ,xn−L+1) can take on ML−1 values, the number of
states equals ML−1 times the number of values that θn can assume. The modulation
index is often restricted to be a rational number, h=m/p, where m and p are integers
that have no common factors. This constraint ensures that the number of phase states
is finite which is a useful property for the implementation CPM receivers. If m is
even, then

θn ∈
{

0,
πm
p

,
2πm

p
, . . . ,

(p− 1)πm
p

}

(4.137)
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Fig. 4.18 Phase state
diagram for MSK
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while if m is odd

θn ∈
{

0,
πm
p

,
2πm

p
, . . . ,

(2p− 1)πm
p

}

. (4.138)

Hence, there are p phase states for even m, while there are 2p phase states for odd m.
In conclusion, the number of CPM states is

|Sn|=
{

pML−1 , m even
2pML−1 , m odd

. (4.139)

For example, if h = 1/4, M = 4, and L = 2, then

θn ∈
{

0,
π
4
,

π
2
,

3π
4
, π ,

5π
4
,

3π
2
,

7π
4

}

(4.140)

and the number of CPM states is 32.
CPM signals cannot be described in terms of a signal-space diagram, like QAM

and PSK. However, the CPM signal can be described in terms of the trajectories
from one phase state to another. Figures 4.18 and 4.19 show the phase state diagrams
for MSK and binary CPM with h = 1/4, respectively. Since binary modulation
is used, trajectories are only allowed between adjacent phase states as shown by
the dotted lines in the figures. Since CPM waveforms have constant envelope, it is
important to note that the actual phase trajectories will follow along the circle in
Figs. 4.18 and 4.19.
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Fig. 4.19 Phase state
diagram for binary CPM with
h = 1/4
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Fig. 4.20 Premodulation filtered MSK. The MSK modulating signal is low-pass filtered to remove
the high frequency components before frequency modulation

4.8.2 Gaussian Minimum Shift Keying

Due to their nonlinearity, CPM waveforms have a relatively complicated power
spectrum as detailed in Sect. 4.9.7. However, the bandwidth of a CPM waveform
can be approximated using Carson’s rule:

BW = (W + fpeak), (4.141)

where W is the bandwidth of the frequency shaping pulse hf(t) and fpeak is the
peak frequency deviation from the carrier. MSK waveforms have relatively poor
spectral characteristics due to the large bandwidth W of the rectangular frequency
pulse shaping hf(t) = 1

2T uT (t). A more compact power spectrum can be achieved by
low-pass filtering the MSK modulating signal

x(t) =
∞

∑
n=−∞

xnhf(t − nT) =
1

2T

∞

∑
n=−∞

xnuT (t − nT) (4.142)

before frequency modulation as shown in Fig. 4.20. Such filtering suppresses the
higher frequency components in x(t) thus yielding a more compact power spectrum.
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GMSK is a special type of partial response CPM that uses a low-pass
premodulation filter having the transfer function [187]

H( f ) = exp

{

−
(

f
B

)2 ln2
2

}

, (4.143)

where B is the 3 dB bandwidth of the filter. It is apparent that H( f ) is shaped
like a Gaussian probability density function with mean f = 0 and, hence, the name
“Gaussian” MSK. Convolving the rectangular pulse

1
2T

rect(t/T ) =
1

2T
uT (t +T/2)

with the corresponding filter impulse h(t) yields the frequency shaping pulse

hf(t) =
1

2T

√
2π
ln2

(BT )
∫ t/T+1/2

t/T−1/2
exp

{

−2π2(BT )2x2

ln2

}

dx

=
1

2T

(

Q

(
t/T − 1/2

σ

)

−Q

(
t/T + 1/2

σ

))

, (4.144)

where

Q(α) =

∫ ∞

α

1√
2π

e−x2/2dx (4.145)

σ2 =
ln2

4π2(BT )2 . (4.146)

Figure 4.21 plots the GMSK frequency shaping pulse (truncated to 5T and time
shifted by 2.5T to yield a causal pulse) for various normalized premodulation filter
bandwidths BT . The GSM standard uses GMSK with BT = 0.3.

The phase shaping function is the integral of the frequency shaping function as
defined in (4.106). Using hf(t) in (4.144) and integrating by parts, we can show that

β (t) =
∫ t

−∞
hf(t)dt =

1
2

(

G

(
t
T
+

1
2

)

−G

(
t
T

− 1
2

))

, (4.147)

where

G(x) = x Φ
( x

σ

)
+

σ√
2π

e−
x2

2σ2 (4.148)

and

Φ(α) =

∫ α

−∞

1√
2π

e−x2/2dx. (4.149)



230 4 Digital Modulation and Power Spectrum

Fig. 4.21 GMSK frequency
shaping pulse for various
normalized premodulation
filter bandwidths BT
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Fig. 4.22 GMSK phase
shaping pulse for various
normalized premodulation
filter bandwidths BT
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Figure 4.22, plots the GMSK phase shaping pulse (truncated to 4T and time shifted
by 2T to yield a causal pulse) for BT = 0.3.

Observe that β (∞) = 1/2 and, therefore, the total contribution to the excess phase
for each data symbol remains at ±π/2.
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The change in excess phase over the length-T baud interval from −T/2 to T/2 is

φ(T/2)−φ(−T/2) = πx0β0(T )+π
∞

∑
n=−∞
n �=0

xnβn(T ), (4.150)

where

βn(T ) =
∫ T/2−nT

−T/2−nT
hf(τ)dτ. (4.151)

The first term in (4.150) is the desired term, and the second term is the ISI introduced
by the Gaussian premodulation filter. While the premodulation filter will yield
a more compact power spectrum, the induced ISI will degrade the bit error rate
performance and may necessitate an equalizer in the receiver.

4.8.3 Linearized GMSK

Like all other CPM waveforms, GMSK is a nonlinear waveform. Similar to
the linearized representation of MSK in Sect. 4.7.1.1, it is desirable to find a
linearized representation for GMSK to simplify receiver processing. Several linear
approximations have been suggested in the literature for GMSK. Here we consider
an approximation based on Laurent’s decomposition [149]. Laurent showed that any
binary partial response CPM signal can be represented exactly as a linear combina-
tion of 2L−1 partial-response pulse amplitude modulated (PAM) signals, viz.,

s̃(t) =
∞

∑
n=0

2L−1−1

∑
p=0

ejπhαn,pcp(t − nT), (4.152)

where

cp(t) = c(t)
L−1

∏
n=1

c(t +(n+Lεn,p)T ) , (4.153)

αn,p =
n

∑
m=0

xm −
L−1

∑
m=1

xn−mεm,p (4.154)

and εn,p ∈ {0,1} are the coefficients of the binary representation of the index p,
that is,

p = ε0,p + 2ε1,p + · · ·+ 2L−2εL−2,p. (4.155)
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The basic signal pulse c(t) in (4.153) is

c(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin(2πhβ (t))
sinπh , 0 ≤ t < LT

sin(πh−2πhβ (t−LT))
sinπh , LT ≤ t < 2LT

0, otherwise

, (4.156)

where β (t) is the CPM phase shaping function.
The above linear decomposition will yield an exact representation of the GMSK

waveform. However, the fact that 2L−1 pulses are needed to represent the waveform
means that the optimum coherent receiver will need 2L−1 filters that are matched to
the cp(t) pulses. Usually, the number of matched filters can be reduced to K < 2L−1

when a good approximation to the CPM signal can be obtained with K of the {cp(t)}
pulses. Often the pulse c0(t) contains most of the signal energy, so the p = 0 term
in (4.152) can provide a good approximation to the CPM signal. From Fig. 4.21, we
note that the GMSK frequency shaping pulse spans approximately L = 4 symbol
periods for practical values of BT . This means that the GMSK waveform can be
constructed from the superposition of eight pulses, cp(t), p = 0, . . . ,7. Numerical
analysis shows that the pulse c0(t) contains 99.83% of the energy, and, therefore,
we can derive a linearized GMSK waveform using only c0(t) and neglecting the
other pulses. This yields the waveform

s̃(t) =
∞

∑
n=0

ejπhαn,oc0(t − nT), (4.157)

where, with L = 4,

c0(t) =
3

∏
n=0

c(t + nT) , (4.158)

αn,0 =
n

∑
m=0

xm. (4.159)

Since the GMSK phase shaping pulse is noncausal, when evaluating c(t) in (4.156)
we use the truncated and time-shifted GMSK phase shaping pulse

β̂ (t) = β (t − 2T) (4.160)

with L = 4 as shown in Fig. 4.22, where β (t) is defined in (4.147). Figure 4.23 plots
the resulting LGMSK amplitude shaping pulse c0(t) obtained from (4.158).

For the modulation index h = 1/2 used in GMSK,

an,0 = ej π
2 αn,0 ∈ {±1,±j} (4.161)
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Fig. 4.23 LGMSK
amplitude shaping pulse for
various normalized
premodulation filter
bandwidths BT
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and it follows that

s̃(t) = A∑
n

(
x̂2n+1c0(t − 2nT −T )+ jx̂2nc0(t − 2nT)

)
, (4.162)

where

x̂2n = x̂2n−1x2n, (4.163)

x̂2n+1 =−x̂2nx2n+1, (4.164)

x̂−1 = 1. (4.165)

This is the same as the OQPSK representation for MSK in Sect. 4.7.1.1, except that
the half-sinusoid amplitude pulse shaping function in (4.117) is replaced with the
LGMSK amplitude pulse shaping function defined in (4.158). Note that the LGMSK
pulse has length of approximately 4T , while the pulses on the quadrature branches
are transmitted every 2T seconds. Therefore, the LGMSK pulse will introduce ISI
that must be corrected by an equalizer to avoid a performance degradation. However,
as we will see later, GMSK has excellent spectral properties.

4.8.4 Tamed Frequency Modulation

Tamed frequency modulation (TFM) is a special type of partial response binary
CPM that was introduced by de Jager and Dekker [74]. TFM also has excellent
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spectral properties, similar to GMSK. To define TFM waveforms, recall that the
MSK excess phase obeys the difference equation

φ(nT +T )−φ(nT) =
π
2

xn. (4.166)

The TFM excess phase trajectory is “smoothed” by imposing the constraint

φ(nT +T )−φ(nT ) =
π
2

(xn−1

4
+

xn

2
+

xn+1

4

)
, (4.167)

such that the maximum change in excess phase over any bit interval is π/2. To
complete the definition of the TFM signal, an appropriate frequency shaping pulse
hf(t) must be defined. The TFM excess phase can be written as

φ(t) = π
∞

∑
k=0

xkβ (t − kT ), (4.168)

where

β (t) =
∫ t

0
hf(t)dt (4.169)

and where a modulation index h = 1/2 is assumed. The excess phase change over
the time interval [nT,(n+ 1)T ] is

φ((n+ 1)T )−φ(nT) = π
∞

∑
k=0

xk (β (nT +T − kT )−β (nT − kT ))

= π
∞

∑
�=n

xn−� (β (�T +T )−β (�T)) . (4.170)

Expanding (4.167) in more detail gives

φ(nT +T )−φ(nT ) =
π
2

(
. . .+ xn−2 ·0+ xn−1

4
+

xn

2
+

xn+1

4
+ xn+2 ·0+ . . .

)
.

(4.171)

Comparing (4.170) and (4.171) gives the condition

β ((�+ 1)T)−β (�T) =

⎧
⎨

⎩

1/8, |�|= 1
1/4, �= 0
0, otherwise

. (4.172)

From the definition of β (t) in (4.169), the above equation leads to

∫ (�+1)T

�T
hf(t)dt =

⎧
⎨

⎩

1/8, |�|= 1
1/4, �= 0
0, otherwise

. (4.173)
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Fig. 4.24 Filter to generate a
TFM frequency shaping pulse
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One way of obtaining hf(t) is to use a pulse hN(t) that satisfies Nyquist’s third
criterion [195, 203]

∫ (2�+1)T/2

(2�−1)T/2
hN(t)dt =

{
1, �= 0
0, � �= 0

(4.174)

and generate hf(t) using scaling and delay operations through the filter shown in
Fig. 4.24. The transfer function of this filter is

H( f ) =
1
4
+

1
8

e−j2π f T +
1
8

ej2π f T

=
1
2

cos2(π f T ). (4.175)

The overall pulse hf(t) has the form

Hf( f ) = HN( f )H( f )

= HN( f )
1
2

cos2(π f T ). (4.176)

The filter H( f ) ensures that the phase constraint in (4.167) is satisfied. However,
HN( f ) determines the shape of the phase trajectories and can, therefore, influence
the TFM power density spectrum. In general, HN( f ) has the form

HN( f ) =
π f T

sin(π f T )
N1( f ), (4.177)

where N1( f ) is the Fourier transform of a pulse that satisfies Nyquist’s first criterion
[195, 203]. One example of such a pulse is the raised cosine pulse P( f ) defined
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Fig. 4.25 TFM frequency
shaping pulse
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in (4.47). Consider, for example, the ideal Nyquist pulse (raised cosine pulse with
β = 0)

N1( f ) =

{
1, 0 ≤ | f | ≤ 1/2T
0, otherwise

. (4.178)

Using (4.176)–(4.178) gives

Hf( f ) =

{
1
2

π f T
sin(π f T ) cos2(π f T ), 0 ≤ | f | ≤ 1/2T

0, otherwise
. (4.179)

The corresponding frequency shaping pulse hf(t) is plotted in Fig. 4.25. Note the
close similarity to the GMSK frequency shaping pulse in Fig. 4.21.

Generalized tamed frequency modulation (GTFM) is an extension of TFM
where the phase difference has the form

φi(nT +T )−φi(nT ) =
π
2
(axn−1 + bxn + axn+1) . (4.180)

The constants a and b satisfy the condition 2a+b = 1 so that the maximum change
in excess phase during one bit period is equal to ±π/2. A large variety of waveforms
can be constructed by varying the value of b and the pulse response N1( f ) in (4.177).
TFM is a special case of GTFM where b = 0.5.
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4.9 Power Spectrum

A digitally modulated band-pass signal can be written in the generic form

s(t) = Re
{

s̃(t)ej2π fct
}

=
1
2

{
s̃(t)ej2π fct + s̃∗(t)e−j2π fct

}
. (4.181)

Modulated signals belong to the class of cyclostationary or periodic wide-sense
stationary random processes. The autocorrelation function of s(t) is

φss(τ) = E [s(t)s(t + τ)]

=
1
4

E
[(

s̃(t)ej2π fct + s̃∗(t)e−j2π fct
)

×
(

s̃(t + τ)ej(2π fct+2π fcτ) + s̃∗(t + τ)e−j(2π fct+2π fcτ)
)]

=
1
4

E
[
s̃(t)s̃(t + τ)ej(4π fct+2π fcτ) + s̃(t)s̃∗(t + τ)e−j2π fcτ

+ s̃∗(t)s̃(t + τ)ej2π fcτ + s̃∗(t)s̃∗(t + τ)e−j(4π fct+2π fcτ)
]

=
1
4

[
E[s̃(t)s̃(t + τ)]ej(4π fct+2π fcτ) +E[s̃(t)s̃∗(t + τ)]e−j2π fcτ

+E[s̃∗(t)s̃(t + τ)]ej2π fcτ +E[s̃∗(t)s̃∗(t + τ)]e−j(4π fct+2π fcτ)
]
. (4.182)

If s(t) is a wide-sense stationary random process, then the exponential terms
that involve t must vanish, that is, E[s̃(t)s̃(t + τ)] = 0 and E[s̃∗(t)s̃∗(t + τ)] = 0.
Substituting s̃(t) = s̃I(t)+ js̃Q(t) into these two expectations gives the requirement

φs̃I s̃I(τ) = E[s̃I(t)s̃I(t + τ)] = E[s̃Q(t)s̃Q(t + τ)] = φs̃Q s̃Q(τ), (4.183)

φs̃I s̃Q(τ) = E[s̃I(t)s̃Q(t + τ)] =−E[s̃Q(t)s̃I(t + τ)] =−φs̃Q s̃I(τ). (4.184)

Using these results,

φss(τ) =
1
2

φs̃s̃(τ)ej2π fcτ +
1
2

φ∗
s̃s̃(τ)e−j2π fcτ (4.185)

= Re
{

φs̃s̃(τ)ej2π fcτ
}
. (4.186)

Finally, the power density spectrum is the Fourier transform of φss(τ), that is,

Sss( f ) =
1
2

(
Ss̃s̃( f − fc)+ S∗

s̃s̃(− f − fc)
)
, (4.187)
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where Ss̃s̃( f ) is the power density spectrum of the complex envelope s̃(t). Note that
Ss̃s̃( f ) is real, even though s̃(t) and φs̃s̃(τ) are complex; this property follows from
the fact that φs̃s̃(τ) = φ ∗̃

ss̃(−τ) as shown in the Appendix. It follows that:

Sss( f ) =
1
2

(
Ss̃s̃( f − fc)+ Ss̃s̃(− f − fc)

)
. (4.188)

From the above expression, we observe that the psd of the band-pass waveform
s(t) is real and even, and is completely determined by the psd of its complex
envelope s̃(t).

4.9.1 Psd of the Complex Envelope

We have seen that the complex envelope of any digitally modulated signal can be
expressed in the standard form

s̃(t) = A∑
n

b(t − nT,xn). (4.189)

The autocorrelation of s̃(t) is

φs̃s̃(t, t + τ) =
1
2

E [s̃(t)s̃∗(t + τ)] (4.190)

=
A2

2 ∑
i

∑
k

E [b(t − iT,xi)b
∗(t + τ − kT,xk)] .

Observe that s̃(t) is a cyclostationary random process, meaning that the autocorre-
lation function φs̃s̃(t, t + τ) is periodic in t with period T . To see this property, first
note that

φs̃s̃(t +T, t +T + τ)

=
A2

2 ∑
i

∑
k

E [b(t +T − iT,xi)b
∗(t +T + τ − kT,xk)]

=
A2

2 ∑
i′

∑
k′

E
[
b(t − i′T,xi′+1)b

∗(t + τ − k′T,xk′+1)
]
. (4.191)

Under the assumption that the information sequence is a stationary random process,
we can write

φs̃s̃(t +T, t +T + τ) =
A2

2 ∑
i′

∑
k′

E
[
b(t − i′T,xi′)b

∗(t + τ − k′T,xk′)
]

= φs̃s̃(t, t + τ). (4.192)

Therefore, s̃(t) is cyclostationary.
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Since s̃(t) is cyclostationary, the autocorrelation φs̃s̃(τ) can be obtained by taking
the time average of φs̃s̃(t + τ, t), given by

φs̃s̃(τ) = < φs̃s̃(t, t + τ)>

=
A2

2 ∑
i

∑
k

1
T

∫ T

0
E [b(t − iT,xi)b

∗(t + τ − kT,xk)]dt

=
A2

2T ∑
i

∑
k

∫ −iT+T

−iT
E [b(z,xi)b

∗(z+ τ − (k− i)T,xk)]dz

=
A2

2T ∑
i

∑
m

∫ −iT+T

−iT
E [b(z,xi)b

∗(z+ τ −mT,xm+i)]dz

=
A2

2T ∑
i

∑
m

∫ −iT+T

−iT
E [b(z,x0)b

∗(z+ τ −mT,xm)]dz

=
A2

2T ∑
m

∫ ∞

−∞
E [b(z,x0)b

∗(z+ τ −mT,xm)]dz, (4.193)

where 〈 · 〉 denotes time averaging and the second last equality used the stationary
property of the data sequence {xk}. The psd of s̃(t) is obtained by taking the Fourier
transform of φs̃s̃(τ),2

Ss̃s̃( f ) = E

[
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
b(z,x0)b

∗(z+ τ −mT,xm)dze−j2π f τdτ
]

= E

[
A2

2T ∑
m

∫ ∞

−∞
b(z,x0)e

j2π f zdz

×
∫ ∞

−∞
b∗(z+ τ −mT,xm)e−j2π f (z+τ−mT)dτdze−j2π f mT

]

= E

[
A2

2T ∑
m

∫ ∞

−∞
b(z,x0)e

j2π f zdz
∫ ∞

−∞
b∗(τ ′,xm)e−j2π f τ ′

dτ ′e−j2π f mT
]

=
A2

2T ∑
m

E [B( f ,x0)B
∗( f ,xm)]e−j2π f mT , (4.194)

where B( f ,xm) is the Fourier transform of b(t,xm). To express the power density
spectrum in a more convenient form, let

Sb,m( f ) =
1
2

E [B( f ,x0)B
∗( f ,xm)] . (4.195)

2Note that expectation and integration are linear operations and their order can be exchanged.
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Then

Ss̃s̃( f ) =
A2

T ∑
m

Sb,m( f )e−j2π f mT . (4.196)

Note that the psd in (4.196) depends on the correlation properties of the
information sequence xm and the form of the generalized pulse shaping function
b(t,xm). Now suppose that the data characteristics are such that xm and x0 are
independent for |m| ≥ K. Then

Sb,m( f ) = Sb,K( f ), |m| ≥ K, (4.197)

where

Sb,K( f ) =
1
2

E [B( f ,x0)]E [B∗( f ,xm)]

=
1
2

E [B( f ,x0)]E [B∗( f ,x0)]

=
1
2
|E [B( f ,x0)]|2 , |m| ≥ K. (4.198)

It follows that

Ss̃s̃( f ) = Sc
s̃s̃( f )+ Sd

s̃s̃( f ), (4.199)

where

Sc
s̃s̃( f ) =

A2

T ∑
|m|<K

(
Sb,m( f )− Sb,K( f )

)
e−j2π f mT

Sd
s̃s̃( f ) =

A2

T
Sb,K( f )∑

m
e−j2π f mT . (4.200)

The terms Sc
s̃s̃( f ) and Sd

s̃s̃( f ) represent the continuous and discrete (line) portions of
the psd. The fact that Sd

s̃s̃( f ) represents the discrete portion can be seen more clearly
using the identity

T ∑
m

e−j2π f mT = ∑
n

δ
(

f − n
T

)
(4.201)

to write

Sd
s̃s̃( f ) =

(
A
T

)2

Sb,K( f )∑
n

δ
(

f − n
T

)
. (4.202)

Finally, using the property Sb,−m( f ) = S∗
b,m( f ), the continuous portion of the psd

can be written as
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Sc
s̃s̃( f ) =

A2

T

(
Sb,0( f )− Sb,K( f )

)
+

A2

T

K

∑
m=1

((
Sb,m( f )− Sb,K( f )

)
e−j2π f mT

+
(
S∗

b,m( f )− Sb,K( f )
)

ej2π f mT
)

=
A2

T

(
Sb,0( f )−Sb,K( f )

)
+

A2

T
2Re

{
K

∑
m=1

(
Sb,m( f )− Sb,K( f )

)
e−j2π f mT

}

.

(4.203)

Note that the ensemble average and Fourier transform are interchangeable
linear operators. Therefore, if the complex envelope s̃(t) has zero mean, that is,
E[b(t,x0)] = 0, then E[B( f ,x0)] = 0. Under this condition

Sb,K( f ) =
1
2
|E[B( f ,x0)]|2 = 0. (4.204)

Hence, if b(t,x0) has zero mean, then Ss̃s̃( f ) contains no discrete components and
Ss̃s̃( f ) = Sc

s̃s̃( f ). Conversely, if b(t,x0) has nonzero mean, then Ss̃s̃( f ) will contain
discrete (line) components. Another important case arises with uncorrelated zero-
mean data, where Sb,K( f ) = 0, K = 1. In this case, only the term Sb,0( f ) remains and

Ss̃s̃( f ) =
A2

T
Sb,0( f ) (4.205)

where

Sb,0( f ) =
1
2

E
[|B( f ,x0)|2

]
. (4.206)

4.9.1.1 Alternative Method

An alternative method of computing psd is as follows. From the first line in (4.194)

Ss̃s̃( f ) = E

[
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
b(z,x0)b

∗(z+ τ −mT,xm)dze−j2π f τ dτ
]

=
A2

2T ∑
m

∫ ∞

−∞

∫ ∞

−∞
E
[
b(z,x0)b

∗(τ ′,xm)
]

e−j2π f (τ ′−z)dzdτ ′e−j2π f mT . (4.207)

Therefore, Sb,m( f ) is given by the double Fourier transform

Sb,m( f ) =
∫ ∞

−∞

∫ ∞

−∞
φb,m(z,τ ′)e−j2π f (τ ′−z)dzdτ ′, (4.208)

where
φb,m(z,τ ′) =

1
2

E
[
b(z,x0)b

∗(τ ′,xm)
]
. (4.209)
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4.9.1.2 Linear Full Response Modulation

Consider linear full response modulation schemes where b(t,xn) = xnha(t) and
B( f ,xn) = xnHa( f ). From (4.195)

Sb,m( f ) = φxx(m) |Ha( f )|2 , (4.210)

where

φxx(m) =
1
2

E[xkx∗k+m]. (4.211)

Hence, from (4.196) the psd of the complex envelope is

Ss̃s̃( f ) =
A2

T
|Ha( f )|2 Sxx( f ), (4.212)

where

Sxx( f ) = ∑
m

φxx(m)e−j2π f mT . (4.213)

Note that the psd is the product of two components; one depends on the squared
magnitude of the amplitude shaping function and the other depends on the correla-
tion of the data sequence. With uncorrelated data symbols

Sb,0( f ) = σ2
x |Ha( f )|2 , (4.214)

Sb,m( f ) =
1
2
|μx|2 |Ha( f )|2 , |m| ≥ 1. (4.215)

where μx = E[xm] and σ2
x = 1

2 E[|xk|2] are the mean and variance of the data symbols,
respectively. The psd Ss̃s̃( f ) is then given by (4.199), where

Sd( f ) =
A2

T 2 Sb,1( f )∑
n

δ
(

f − n
T

)
, (4.216)

Sc( f ) =
A2

T

(
Sb,0( f )− Sb,1( f )

)
. (4.217)

If μx = 0, then Sb,1( f ) = 0 and the psd has the simple form

Ss̃s̃( f ) =
A2

T
σ2

x |Ha( f )|2 . (4.218)

In this case, the psd only depends on the amplitude shaping pulse ha(t).
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4.9.1.3 Linear Partial Response Modulation

Consider linear partial response modulation schemes where ha(t) has duration
LT . Following the development in Sect. 4.8, the generalized shaping function has
the form

b(t,xm) = ha(t,xm)

=
L−1

∑
k=0

xm−kha,k(t), (4.219)

where

ha,k(t) = ha(t + kT )uT (t). (4.220)

Taking the Fourier transform of (4.219) gives

B( f ,xm) =
L−1

∑
k=0

xm−kHa,k( f ). (4.221)

From (4.195),

Sb,m( f ) =
1
2

E

[
L−1

∑
�=0

x−�Ha,�( f )
L−1

∑
k=0

x∗m−kH∗
a,k( f )

]

=
L−1

∑
k=0

L−1

∑
�=0

φxx(m− k+ �)Ha,�( f )H∗
a,k( f ). (4.222)

For the special case of uncorrelated zero-mean data symbols, φxx(m − k + �) =
σ2

x δ (m− k+ �). Hence,

Sb,m( f ) = σ2
x

L−1

∑
�=0

Ha,�( f )H∗
a,m+�( f ), (4.223)

where

σ2
x =

1
2

E[|x0|2]

is the variance of the data symbols.

Example 4.4: Duobinary Signaling:
For duobinary signaling, L = 2 and ha,0(t) = ha,1(t) = sinc(t/T ) and

Ha,0( f ) = Ha,1( f ) = T rect( f T ), where
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rect( f T ) =

{
1, | f | ≤ 1

2T
0, elsewhere

.

With uncorrelated zero-mean data symbols

Sb,m( f ) =
1
2

E
[
(x0Ha,0( f )+ x−1Ha,1( f ))

(
x∗mH∗

a,0( f )+ x∗m−1H∗
a,1( f )

)]

=

⎧
⎨

⎩

2σ2
x T 2rect( f T ), m = 0

σ2
x T 2rect( f T ), |m|= 1

0, otherwise

and from (4.196)

Ss̃s̃( f ) = 2A2T σ2
x cos2(π f T )rect( f T ). (4.224)

Example 4.5: Modified Duobinary Signaling:
For modified duobinary signaling, L = 3 and ha,0(t) = ha,2(t) = sinc(t/T )

and ha,1(t) = 0. With uncorrelated zero-mean data symbols,

Sb,m( f ) =

⎧
⎨

⎩

2σ2
x T 2rect( f T ), m = 0

−σ2
x T 2rect( f T ), |m|= 2

0, otherwise

and from (4.196)

Ss̃s̃( f ) = 2A2Tσ2
x sin2(2π f T )rect( f T ).

4.9.2 Psd of QAM

The psd of QAM with uncorrelated zero-mean data symbols is given by (4.218). If
ha(t) = uT (t), then

Ss̃s̃( f ) = A2T σ2
x

(
sin(π f T )

π f T

)2

. (4.225)
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Fig. 4.26 Psd of QAM with a truncated square root-raised cosine amplitude shaping pulse with
various truncation lengths; β = 0.5. Truncation of the amplitude shaping pulse leads to side lobe
regeneration

To fairly compare bandwidth efficiencies with different M, the frequency variable
should be normalized by the bit interval Tb. For M-ary QAM T = Tb log2 M. Hence,

Ss̃s̃( f ) = A2T σ2
x

(
sin(π f Tb log2 M)

π f Tb log2 M

)2

. (4.226)

With root-raised cosine pulse shaping, |Ha( f )|2 = P( f ) has the form defined
in (4.47) with ha(t) in (4.50). The root-raised cosine pulse is noncausal. When
the pulse is implemented as a digital FIR filter, it must be truncated to a finite
length τ = LT . This truncation produces the new pulse h̃a(t) = ha(t)rect(t/LT ). The
Fourier transform of the truncated pulse h̃a(t) is H̃a( f ) = Ha( f ) ∗ LT sinc(π f LT ),
where ∗ denotes the operation of convolution taken over the frequency variable f .
The psd of QAM with the pulse h̃a(t) can again be obtained from (4.218) by simply
replacing Ha( f ) with H̃a( f ). As shown in Fig. 4.26, pulse truncation can lead to
significant side lobe regeneration.

Again, to fairly compare bandwidth efficiencies with different modulation
alphabet sizes M, the frequency variable should be normalized by the bit interval
Tb such that T = Tb log2 M.
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4.9.3 Psd of PSK

For PSK signals with the uncorrelated data symbols and the generalized shaping
function in (4.61), the psd is given by (4.218). Hence, PSK signals have the same
psd as QAM signals. The psd with rectangular and root-raised cosine amplitude
pulse shaping is given by (4.225) and (4.226), respectively. Once again, to fairly
compare bandwidth efficiencies with different M, the frequency variable must be
normalized by the bit interval Tb such that T = Tb log2 M.

4.9.4 Psd of OQPSK

For OQPSK, the generalized shaping function is

b(t,xn) = b(t,xn) = xI,nha(t)+ jxQ,nha(t −T/2), (4.227)

where xI,n,xQ,n ∈ {−1/
√

2,+1/
√

2}. It follows that

B( f ,xn) =
(

xI,n + jxQ,ne−j2π f T/2
)

Ha( f ). (4.228)

With uncorrelated data symbols,

Sb,0( f ) =
1
2

E
[|B( f ,x0)|2

]

=
1
2
|Ha( f )|2. (4.229)

Therefore,

Ss̃s̃( f ) =
A2

2T
|Ha( f )|2. (4.230)

Hence, OQPSK has the same psd as QPSK. However, it is important to note that
OQASK has a lower PAPR than QPSK.

4.9.5 Psd of π/4-DQPSK

To find the psd of π/4-DQPSK, we first compute the autocorrelation

φb,m(z,τ ′) =
1
2

E
[
b(z,x0)b

∗(τ ′,xm)
]
, (4.231)
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where b(t,xn) is defined in (4.70). For m > 0,

φb,m(z,τ ′) =
1
2

E

[

ha(z)exp

{

−j
π
4

m

∑
k=1

xk

}

ha(τ ′)

]

=
1
2

E

[

exp

{

−j
π
4

m

∑
k=1

xk

}]

ha(z)ha(τ ′)

= 0. (4.232)

For m = 0,

φb,m(z,τ ′) =
1
2

E
[
ha(z)ha(τ ′)

]
=

1
2

ha(z)ha(τ ′). (4.233)

Taking the double Fourier transform gives

Sb,0( f ) =
∫ ∞

−∞

∫ ∞

−∞
φb,m(z,τ ′)e−j2π f (τ ′−z)dzdτ ′

=
1
2
|Ha( f )|2 . (4.234)

Finally, the psd is

Ss̃s̃( f ) =
A2

2T
|Ha( f )|2 . (4.235)

Just like OQPSK, π/4-DQPSK has the same psd as QPSK. Of course π/4-DQPSK
has a lower PAPR than QPSK.

4.9.6 Psd of OFDM

Recall that the OFDM waveform with guard interval is given by (4.89) and (4.90).
The data symbols xn,k,k = 0, . . . ,N−1 that modulate the N sub-carriers are assumed
to have zero mean, variance σ2

x = 1
2 E[|xn,k|2], and they are mutually uncorrelated.

In this case, the psd of the OFDM waveform is

Ss̃s̃( f ) =
A2

Tg
Sb,0( f ), (4.236)

where

Sb,0( f ) =
1
2

E
[
|B( f ,x0)|2

]
(4.237)

and

B( f ,x0) =
N−1

∑
k=0

x0,kT sinc( f T − k)+
N−1

∑
k=0

x0,kαgT sinc(αg( f T − k))ej2π f T . (4.238)
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Fig. 4.27 Psd of OFDM with
N = 16,αg = 0
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Substituting (4.238) into (4.237) along with T = NTs yields the result

Ss̃s̃( f ) = σ2
x A2T

(
1

1+αg

N−1

∑
k=0

sinc2(N f Ts − k) +
α2

g

1+αg

N−1

∑
k=0

sinc2(αg(N f Ts − k))

+
2αg

1+αg
cos(2πN f Ts)

N−1

∑
k=0

sinc(N f Ts − k)sinc(αg(N f Ts − k))

)

. (4.239)

The OFDM psd is plotted in Figs. 4.27 and 4.28 for N = 16,αg = 0 and
N = 16,αg = 0.25, respectively. Observe the effect of the OFDM guard interval
on the psd. Likewise, Figs. 4.29 and 4.30 plot the psd for N = 1024,αg = 0 and
N = 1024,αg = 0.25, respectively, where we can see the effect of increasing the
block size N. When plotting the above figures, the index k was replaced with
k−(N−1)/2 in the argument of the sinc functions in (4.239) to center the spectrum
around 0 Hz. Note that the psd is plotted against the normalized frequency f Ts.
To avoid a reduction in data rate, the modulated symbol period with a cyclic
extension is T g

s = Ts/(1+αg). Hence, the Nyquist frequency in this case is 1/2Tg
s =

(1+αg)/2Ts, which shows a bandwidth expansion due to the guard interval.

4.9.6.1 Psd of OFDM with IDFT Baseband Modulator

It is interesting to examine the OFDM power spectrum, when the OFDM complex
envelope is generated using an IDFT baseband modulator followed by a balanced
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Fig. 4.28 Psd of OFDM with
N = 16,αg = 0.25
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Fig. 4.29 Psd of OFDM with
N = 1024,αg = 0
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pair DACs as shown in Fig. 4.15. The output of the IDFT baseband modulator is
given by {Xg}= {Xg

n,m}, where m is the block index and

Xg
n,m = Xn,(m)N

(4.240)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N +G− 1. (4.241)
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Fig. 4.30 Psd of OFDM with
N = 1024,αg = 0.25
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The power spectrum of the sequence {Xg} can be calculated by first determining
the discrete-time autocorrelation function of the time-domain sequence {Xg} and
then taking a discrete-time Fourier transform of the discrete-time autocorrelation
function. The psd of the OFDM complex envelope with ideal DACs can be obtained
by applying the resulting power spectrum to an ideal low-pass filter with a cutoff
frequency of 1/(2T g

s )Hz.
The time-domain sequence {Xg} is a periodic wide-sense stationary sequence

having the discrete-time autocorrelation function

φXgXg(m, �) =
1
2

E[Xg
n,m(X

g
n,m+�)

∗] (4.242)

= A2
N−1

∑
k=0

N−1

∑
i=0

1
2

E[xn,kx∗n,i]e
j 2π

N (km−im−i�) (4.243)

for m = 0, . . . ,N +G− 1. (4.244)

The data symbols, xn,k, are assumed to be mutually uncorrelated with zero mean and
variance σ2

x = 1
2 E[|xn,k|2]. Using the fact that Xg

n,m = Xn,(m)N
, we have

φXgXg(m, �) =

⎧
⎪⎪⎨

⎪⎪⎩

m = 0, . . . ,G− 1, �= 0, N
Aσ2

x m = G, . . . ,N − 1, �= 0
m = N, . . . ,N +G− 1, �= 0, −N

0 otherwise

. (4.245)
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Averaging over all time indices m gives the time-averaged discrete-time autocorre-
lation function

φXgXg(�) =

⎧
⎪⎨

⎪⎩

Aσ2
x �= 0

G
N+G Aσ2

x �=−N, N

0 otherwise

. (4.246)

Taking the discrete-time Fourier transform of the discrete-time autocorrelation
function in (4.246) gives

SXgXg( f ) = Aσ2
x

(

1+
G

N +G
e−j2π f NT g

s +
G

N +G
ej2π f NT g

s

)

= Aσ2
x

(

1+
2G

N +G
cos(2π f NT g

s )

)

. (4.247)

Finally, we assume that the sequence {Xg}= {Xg
n,m} is passed through a pair of ideal

DACs. The ideal DAC is a low-pass filter with cutoff frequency 1/(2T g
s ). Therefore,

the OFDM complex envelope has the psd

Ss̃s̃( f ) = Aσ2
x

(

1+
2G

N +G
cos(2π f NT g

s )

)

rect( f T g
s ) . (4.248)

The OFDM psd is plotted in Fig. 4.31 for G= 0, where it has the ideal rectangular
form rect( f Ts) for any block size N. Figures 4.32 and 4.33 plot the psd for
N = 16, G = 4, and N = 1024, G = 256, respectively, where we can see the effect
of the cyclic guard interval and an increase in the block size N.

Finally, we note that the psd plotted in Figs. 4.31–4.33 assume an ideal DAC.
A practical DAC with a finite-length reconstruction filter will introduce side lobes
into the spectrum. It is interesting to note that side lobes are inherently present in the
continuous-time OFDM waveform in (4.89) and (4.90) due to the use of rectangular
amplitude pulse shaping on the sub-carriers. However, they are introduced into the
IDFT implementation by the nonideal (practical) DAC.

4.9.7 Psd of Full Response CPM

Recall that the generalized shaping function for a CPM waveform is given by
(4.104). To compute the psd, we first define the auxiliary function

r(t,xn)
�
= ej2πhxnβ (t)uT (t), (4.249)
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Fig. 4.31 Psd of IDFT-based
OFDM with N = 16,G = 0.
Note in this case that T g

s = Ts
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Fig. 4.32 Psd of IDFT-based
OFDM with N = 16,G = 4
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such that
b(t,xn) = ejπh∑n−1

k=0 xk r(t,xn) (4.250)

and calculate the mean and autocorrelation function of r(t,xn). If M-ary signaling is
used with the values of xk defined by

xk ∈ {2m− 1−M : m = 1, 2, . . . , M}, (4.251)
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Fig. 4.33 Psd of IDFT-based
OFDM with
N = 1,024,G = 256
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then

mr(t)
�
= E[r(t,xn)]

=
1
M

M

∑
i=1

ej2πh(2i−1−M)β (t)uT (t)

= DM(2πhβ (t))uT (t), (4.252)

where

DM(x)
�
=

sin(Mx)
M sinx

(4.253)

is the Dirichlet function. Also

φr,m(t, t
′) =

1
2

E
[
r(t,x0)r

∗(t ′,xm)
]
. (4.254)

Evaluating the above expression for m = 0 gives the following result which will be
used later

φr,0(t, t
′) =

1
2

E
[
r(t,x0)r

∗(t ′,x0)
]

=
1
2

E
[
ej2πhx0β (t)e−j2πhx0β (t′)

]
uT (t)uT (t

′)
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=
1
2

E
[
ej2πhx0(β (t)−β (t′))

]
uT (t)uT (t

′)

=
1
2

DM

(
2πh(β (t)−β (t ′))

)
uT (t)uT (t

′). (4.255)

To evaluate the psd, it is necessary to compute the autocorrelation of b(t,xm).
This can be done as follows:

φb,m(t, t
′) =

1
2

E
[
b(t,x0)b

∗(t ′,xm)
]

=
1
2

E
[
ejπh∑m−1

k=0 xk r(t,x0)r
∗(t ′,xm)

]

=
1
2

E

[(
m−1

∏
k=0

r(T,xk)

)

r(t,x0)r
∗(t ′,xm)

]

=
1
2

E

[(
m−1

∏
k=1

r(T,xk)

)

r(t,x0)r(T,x0)r
∗(t ′,xm)

]

. (4.256)

Now suppose that the data sequence is uncorrelated. Then for m > 0

φb,m(t, t
′) =

1
2
[mr(T )]

m−1 mr(t)φr,0(T, t
′)

=
1
2
[DM(πh)]m−1 DM(2πhβ (t))DM

(
2πh(β (T)−β (t ′))

)
uT (t)uT (t

′),

(4.257)

where we have used (4.255). Likewise, for m = 0

φb,0(t, t
′) =

1
2

E
[
b(t,x0)b

∗(t ′,x0)
]

=
1
2

E
[
ej2πhx0(β (t)−β (t′))

]
uT (t)uT (t

′)

=
1
2

DM

(
2πh(β (t)−β (t ′))

)
uT (t)uT (t

′)

= φr,0(t, t
′). (4.258)

Finally, the psd is obtained using (4.257) and (4.258) along with (4.196) and (4.208).
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4.9.7.1 Alternative Method

There is an alternate method for obtaining the full response CPM psd that provides
more insight. Using (4.196) along with the property Sb,−m( f ) = S∗

b,m( f ), we can
write

Ss̃s̃( f ) =
A2

T

(

Sb,0( f )+ 2Re

{
∞

∑
m=1

Sb,m( f )e−j2π f mT

})

. (4.259)

Taking the double Fourier transforms of (4.257) and (4.258) gives

Sb,m( f ) =

{
Sr,0( f ) m = 0
mm−1

r (T )Mr( f )M̂∗
r ( f ) m > 0

, (4.260)

where

mm−1
r (T )

�
= [DM(πh)]m−1,

Mr( f )
�
= F [mr(t)] = F [DM(2πhβ (t)uT (t)],

M̂∗
r ( f )

�
=

1
2

E [r(T,x0)R
∗( f ,x0)] =

1
2

E
[
ejπhx0R∗( f ,x0)

]
,

F [ · ] denotes the Fourier transform and

R∗( f ,x0) = F [r∗(t,x0)] = F
[
e−j2πhx0β (t)uT (t)

]
. (4.261)

Then,

Ss̃s̃( f )=
A2

T

(

Sr,0( f )+2Re

{

Mr( f )M̂∗
r ( f )

∞

∑
m=1

mm−1
r (T )e−j2π f mT

})

=
A2

T

(

Sr,0( f )+2Re

{

Mr( f )M̂∗
r ( f )

∞

∑
n=0

[
mr(T )e

−j2π f T
]n

e−j2π f T

})

.

(4.262)

Observe that
∣
∣
∣mr(T )e−j2π f T

∣
∣
∣= |mr(T )|= |DM(πh)| ≤ 1. (4.263)

The implication of (4.263) is that two separate cases must be considered when
evaluating the psd.
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Case 1: |mr(T )|< 1
In this case, the sum in (4.262) converges so that

Ss̃s̃( f ) =
A2

T

(

Sr,0( f )+ 2Re

{
Mr( f )M̂∗

r ( f )
ej2π f T −mr(T )

})

(4.264)

and the psd has no discrete components.

Case 2: |mr(T )|= 1
This case is possible only if

|mr(T )|=
∣
∣
∣E
[
ejπhxk

]∣
∣
∣= 1. (4.265)

For this condition to be true, we must have

ejπhxk = ejc , ∀ k, (4.266)

where c is the same constant for all k. Since this must be true for xk = 1, it follows
that c = πh and we must have

xkπh = πh mod (2π) ∀k. (4.267)

This means that h must be an integer, and when h is an integer

mr(T ) = E[r(T,x0)] = ejπh (4.268)

and

M̂∗
r ( f ) = M∗

r ( f )ejπh. (4.269)

Hence, the psd is

Ss̃s̃( f ) =
A2

T

(

Sr,0( f )+ |Mr( f )|22Re

{
∞

∑
m=1

ej2π( f− h
2T )mT

})

=
A2

T

(

Sr,0( f )−|Mr( f )|2 + |Mr( f )|2
∞

∑
m=−∞

e−j2π( f− h
2T )mT

)

=
A2

T

(

Sr,0( f )−|Mr( f )|2 + 1
T
|Mr( f )|2

∞

∑
n=−∞

δ
(

f − h
2T

− n
T

))
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=
A2

T

(
Sr,0( f )−|Mr( f )|2

)

+

(
A
T

)2 ∞

∑
n=−∞

∣
∣
∣
∣Mr

(
h

2T
+

n
T

)∣
∣
∣
∣

2

δ
(

f − h
2T

− n
T

)

. (4.270)

Clearly, the second term in the above expression is a discrete spectral component.
Hence, integer values of h lead to discrete spectral components. Since discrete
spectral components are generally undesirable, integer values of h are typically not
used.

4.9.7.2 Psd of CPFSK

With CPFSK, the phase shaping pulse is given by (4.108). Hence,

R( f ,x0) =

∫ T

0
ejπ hx0t

T · e−j2π f tdt

= Te−jπ( f T−hx0/2)sinc(( f T − hx0/2)) , (4.271)

where x0 ∈ {±1,±3, . . . ,±(M − 1)}. It follows that

Mr( f ) = E [R( f ,x0)]

=
T
M

M

∑
m=1

e−jπ( f T−hxm/2)sinc(( f T − hxm/2)) , (4.272)

Sr,0( f ) =
1
2

E
[
|R( f ,x0)|2

]

=
T 2

2M

M

∑
m=1

sinc2 (( f T − hxm/2)) , (4.273)

M̂∗
r ( f ) =

T
2M

M

∑
m=1

ejπ( f T+xmh/2)sinc( f T − xmh/2) . (4.274)

These expressions are used in (4.264) to obtain the psd.
For binary M = 2 CPFSK, we have

Sr,0( f ) =
T 2

4

(
sinc2( f T − h/2)+ sinc2( f T + h/2)

)
, (4.275)

Mr( f ) =
T
2

(
e−jπ( f T+h/2)sinc( f T + h/2)+ e−jπ( f T−h/2)sinc( f T − h/2)

)
, (4.276)
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Fig. 4.34 Psd of binary
CPFSK with various
modulation indices. MSK
corresponds to h = 1/2
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M̂∗
r ( f ) =

T
4

(
ejπ( f T−h/2)sinc( f T + h/2)+ ejπ( f T+h/2)sinc( f T − h/2)

)
, (4.277)

mr(T ) = D2(hπ). (4.278)

When h is an integer, the psd has both continuous and discrete components

Ss̃s̃( f ) = Sc
s̃s̃( f )+ Sd

s̃s̃( f ), (4.279)

where

Sc
s̃s̃( f ) =

A2T
2

sinc( f T + h/2)sinc( f T − h/2),

Sd
s̃s̃( f ) =

A2

T

∞

∑
n=−∞

δ
(

f − h
2T

− n
T

)

×
(

sinc2(n+ h)+ sinc2(n)− 2sinc(n+ h)sinc(n)
)
, (4.280)

which clearly exhibits line components at frequencies
(

h
2T + n

T

)
. Further simpli-

fication may be possible for special cases, but otherwise the psd has an intractable
form. Figures 4.34 and 4.35 plot the psd against the normalized frequency f T . MSK
corresponds to the case h = 0.5. Observe that the CPFSK power spectrum becomes
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Fig. 4.35 Psd of binary
CPFSK as the modulation
index h → 1
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more compact for smaller h, while the converse is true for larger h. Figure 4.35
illustrates the appearance of discrete components at frequencies

( 1
2 + n

) 1
T , n an

integer, as h → 1.

4.9.7.3 Psd of MSK

The psd of CPFSK is complicated for all but a few cases. Using Laurent’s
decomposition [149], we have seen that MSK is equivalent to OQASK with half-
sinusoid amplitude pulse shaping. From (4.113), the MSK baseband signal has the
quadrature form

s̃(t) = A∑
n

b(t − 2nT,xn), (4.281)

where

b(t,xn) = x̂2n+1ha(t −T)+ jx̂2nha(t), (4.282)

ha(t) = sin
( πt

2T

)
u2T (t), (4.283)

xn = (x̂2n+1, x̂2n) is a sequence of odd-even pairs assuming values from the set
{±1,±1}, and T is the bit period. The Fourier transform of (4.282) is

B( f ,xn) =
(

x̂2n+1e−j2π f T + jx̂2n

)
Ha( f ). (4.284)
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Since the data sequence is zero-mean and uncorrelated, the MSK psd is

Sb,0( f ) =
1
2

E
[
|B( f ,x0)|2

]

=
1
2

E
[
x̂2

1 + x̂2
0

] |Ha( f )|2

= |Ha( f )|2. (4.285)

The Fourier transform of the half-sinusoid pulse in (4.283) is

Ha( f ) =
2T

π(1− (4 f T)2)

(
1+ e−j4π f T

)
. (4.286)

Hence, the power spectrum becomes

Ss̃s̃( f ) =
A2

T
|Ha( f )|2 = 16A2T

π2

(
cos2(2π f T )
1− (4 f T)2

)2

. (4.287)

The psd of MSK is plotted in Fig. 4.34.

4.9.8 Psd of GMSK and TFM

GSMK and TFM are special cases of partial response CPM. In general, the psd of
partial response CPM is difficult to obtain except for a rectangular shaping function.
One solution has been suggested by Garrison [106], where the modulating pulses are
approximated using a large number of rectangular sub-pulses with properly chosen
amplitudes.

Figure 4.36 plots the psd of GMSK with various normalized filter bandwidths
BT . Note that a smaller BT results in a more compact psd. Likewise, Fig. 4.37 plots
the psd of TFM and GMSK with BT = 0.25. Observe that the psd of TFM compares
well with that of GMSK. This is not surprising since their corresponding frequency
shaping pulses are quite similar as seen from Figs. 4.21 and 4.25.

Finally, it is interesting to compare the spectral characteristics of GMSK and
π/4-DQPSK. To make a fair comparison, we must remember that GMSK transmits
1 bit/baud while π/4-DQPSK transmits 2 bits/baud. If π/4-DQPSK uses root-raised
cosine pulse shaping, then the spectral occupancy normalized to a bit duration is
obtained by dividing the elements on the horizontal axis of Fig. 4.26 by a factor of
2. For example at f = 1/(2Tb) (corresponding to f T = 1.0), the side lobes are about
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Fig. 4.36 Psd of GMSK with
various normalized filter
bandwidths BT
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Fig. 4.37 Psd of TFM and
GMSK with BT = 0.25
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44 dB down from the main lobe ( f = 0) when τ = 6T . From Fig. 4.36, with f =
1/(2T), almost the same side lobe roll-off is obtained. However, for larger values of
f , the GMSK pulse side lobes are seen to decay faster in frequency.
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Problems

4.1. Assume that a received signal is given by

ỹ(t) = A
∞

∑
n=−∞

xn p(t − nT),

where xk =±1, and p(t) is the ideal Nyquist pulse

p(t) = sinc(t/T ),

P( f ) = T rect( f T ).

Due to a slight timing error, the received signal is sampled with a timing offset to,
resulting in the sample sequence {ỹk} shown in (4.46). Show that

ỹk = Aaksinc(to/T )+A
sin(πto/T )

π ∑
n �=k

an(−1)n

to/T − n
.

4.2. Show that 16-QAM can be represented as a superposition of two four-phase
constant envelope signals where each component is amplified separately before
summing, that is,

s(t) = G
(

An cos(2π fct)+Bn sin(2π fct)
)
+
(

Cn cos(2π fct)+Dn sin(2π fct)
)
,

where {An}, {Bn}, {Cn}, and {Dn} are statistically independent binary sequences
with elements from the set {−1,+1}. Thus, show that the resulting signal is
equivalent to

s(t) = In cos(2π fct)+Qn sin(2π fct)

and determine In and Qn in terms of An, Bn, Cn, and Dn.

4.3. Consider the two 8-QAM signals constellations shown in Fig. 4.8. Suppose
that the distance between nearest-neighbor signal points in each constellation is
equal to A.

(a) For the constellation on the left, determine the cartesian coordinates of the
constellation points.

(b) For the constellation on the right, determine the radii a and b of the inner and
outer circles.

(c) Find the average energy per symbol for each of the two signal constellations
in terms of A assuming that each signal point is used with equal probability.
Which constellation is more power efficient?

4.4. Two data streams, {xn,1} and {xn,2}, are to be transmitted using unbalanced
QPSK with rectangular amplitude pulse shaping, such that the data rate for {xn,1} is
10 kbps and that for {xn,1} is 1 Mbps.
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(a) Relate the amplitudes of the waveforms, A1 and A2, such that both bit sequences
have equal energies per bit.

(b) With A1 and A2 so related, find the possible phase shifts for the carrier, where
the xn,1 and xn,2 take on all possible combinations of +1 and −1.

4.5. An important parameter for digital modulation schemes is the PAPR,
defined by

PAPR = limT→∞
max0≤t≤T |s̃(t)|2
T−1

∫ T
0 |s̃(t)|2dt

.

When nonlinear power amplifiers are used, it is desirable to keep the PAPR as small
as possible.

(a) Plot the PAPR for π/4-DQPSK with root-raised cosine pulse shaping, as a
function of the roll-off factor β .

(b) Repeat part (a) for QPSK. What conclusions can you draw?

4.6. Two new modulation schemes have been proposed called Q-O-QAM and
B-O-QAM. Q-O-QAM transmits 2 bits/symbol, while B-O-QAM transmits
1 bit/symbol. The mapping of Q-O-QAM data bits (a2k,a2k+1) to symbols bk is
as follows:

(a2k,a2k+1) bk

0,0 +3
0,1 +1
1,0 −3
1,1 −1

The symbols bk are used to generate the symbols xk which are given by

xk = bkejk π
2 .

For B-O-QAM, the mapping of data bits ak to symbols bk is as follows:

ak bk

0 +3
1 −3

The symbols ak are also used to generate the symbols xk which are given by

xk = bkejk π
2 .

(a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show the
allowable transitions between the signal points in the signal constellation.
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Why would these modulation schemes be useful for radio transmitters that use
nonlinear power amplifiers.

(b) Assuming an AWGN channel and coherent detection, write down an expression
for the probability of symbol error for Q-O-QAM and B-O-QAM in terms of the
bit energy to noise ratio γb.

4.7. Consider two sinusoids waveforms

s1(t) = Acos(2π fct),

s2(t) = Acos(2π( fc +Δ f )t).

(a) Determine the minimum value of Δ f such that the inner product (s1,s2) = 0
over the interval 0 ≤ t ≤ T . Assume that fcT  1.

(b) Repeat part (a) for the two sinusoids

s1(t) = Acos(2π fct +φ1),

s2(t) = Acos(2π( fc +Δ f )t +φ2),

where φ1 and φ2 are arbitrary phases.

4.8. A guard interval consisting of a cyclic prefix or cyclic suffix is used in OFDM
systems to mitigate the effects of channel time dispersion.

(a) Assess the cost of the cyclic prefix in terms of

(i) Bandwidth and/or data rate.
(ii) Transmitter power.

(b) Suppose that a guard interval of 500 ns is used. The data rate with 64-QAM
modulation is 54 Mb/s. The power penalty due to the guard interval is to be
kept less than 1 dB. What is the required value of G (constrained to an integer)
and minimum the possible OFDM block size (constrained to 2k for some k)?

4.9. Consider the time-domain sample sequence for the nth OFDM block

Xn,m =
N−1

∑
k=0

xn,kej 2πkm
N .

The data symbols xn,k, k = 0, . . . ,N − 1, are independent and each is chosen with
equal probability from a BPSK symbol alphabet, such that xn,k ∈ {−1,+1}. The
PAPR of the sample sequence for block n can be defined as follows:

PAPR =
maxm |Xn,m|2

N−1 ∑N−1
m=0 |Xn,m|2

.

Using the triangle inequality, show that PAPR ≤ N.
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4.10. Consider an OFDM time-domain sequence (without cyclic guard interval)

Xn,m =
N−1

∑
k=0

xn,kej 2πkm
N

=
N−1

∑
k=0

xn,k cos

(
2πkm

N

)

+ j
N−1

∑
n=0

xn,k sin

(
2πkm

N

)

, m = 0, 1, . . . , N − 1,

where the xn,k are symbols are i.i.d. symbols chosen from the binary alphabet
{−1,+1}.

(a) Invoke the central limit theorem for large N and treat the Xn,m = XI
n,m + jXQ

n,m

as independent complex Gaussian random variables. What are the means,
variances, and cross correlation of the quadrature components XI

n,m and XQ
n,m?

(b) Suppose that the Xn,m can be treated as complex Gaussian random variables
with the parameters in part (a). What is the probability density function of the
peak power

Pmax = |Xmax|2 = max0≤m≤N−1|Xn,m|2 ?

(c) What is the probability density function of the PAPR

PAPR =
Pmax

Pav

in terms of the block size N?

4.11. Let {Xm}N−1
m=0 be a finite duration time-domain sequence of length N and let

{xk}N−1
k=0 be its N-point DFT. Suppose that we pad {Xm}N−1

m=0 with L zeroes and
compute the (N +L)-point DFT, denoted by {x̂k}N+L−1

k=0 .

(a) What is the relationship between x0 and x̂0?
(b) If we plot |xk|, k = 0, . . . ,N−1 and |x̂k|, k = 0, . . . ,N+L−1 on the same graph,

explain the relationships between the two graphs.

4.12. (Computer exercise) Consider the time-domain sample sequence for the nth
OFDM block {Xn,m}N−1

m=0. The PAPR for the nth data block can be defined as follows:

PAPRn =
maxm |Xn,m|2

N−1 ∑N−1
m=0 |Xn,m|2

,

Note that the PAPR for the nth data block, PAPRn, depends on the random data
vector xn = (xn,0,xn,1, . . . ,xn,N−1).

By averaging over many data vectors, determine the mean of the PAPR and the
variance of the PAPR. Do this for 16-QAM modulation with block sizes N = 256,
512, and 1024. Assume in all cases that no guard interval is used, that is, G = 0.

4.13. (Computer exercise) Consider a selective mapping scheme to reduce the
PAPR of an OFDM waveform. The technique begins by generating L different
random phase vectors of length N, that is, we first generate



266 4 Digital Modulation and Power Spectrum

φ � = (φ�,0,φ�,1, . . . ,φ�,N−1), �= 1,2, . . . ,L,

where the φ�,i are independent uniformly distributed random variables on the
interval (−π ,π ]. Then for each φ �, �= 1, . . . ,L, we compute the PAPR of the OFDM
sample sequence

X �
n,m =

N−1

∑
k=0

xn,kejφ�,k ej 2πkm
N , m = 0,1, . . . ,N − 1,

and select the waveform having the smallest PAPR for transmission.
Consider N = 256 and 16-QAM symbols, and assume that no guard interval is

used, that is, G = 0. Compute the mean PAPR and the variance of the PAPR of the
transmitted OFDM waveform for L = 1,2,4.

4.14. An OFDM signal with a large number of sub-carriers N and no guard interval
(G = 0) has a complex envelope that can be approximated as a zero-mean complex
Gaussian random process. Assume an “ideal” OFDM signal spectrum, where the
modulated power spectrum is

Ss̃s̃( f ) =

{
S0, | f | ≤ 1/2Ts

0, elsewhere

where T = NTs.

(a) Using the above Gaussian approximation, what is the distribution of the
magnitude of the complex envelope, |s̃(t)|, at any time t.

(b) Suppose that the RF power amplifier will clip the OFDM waveform if the
magnitude of the complex envelope |s̃(t)| exceeds the level ΘRrms, where Rrms

is the rms envelope level
√

E[|s̃(t)|2]. What is the probability that the OFDM
waveform will be clipped at any time t?

(c) Suppose that a continuous stream of OFDM symbols is transmitted. How many
times per second on average will the OFDM waveform be clipped?

4.15. The following problem requires you to design a length N = 256 phase vector

φ = (φ0,φ1, . . . ,φN−1),

such that the corresponding OFDM sample sequence

Xm =
N−1

∑
k=0

ejφk ej 2πkm
N , m = 0,1, . . . ,N − 1,

has a PAPR that is no bigger than 3 dB and preferably as small as possible. Using
any and all techniques at your disposal, such as analysis and/or computer search,
find such a phase vector φ .
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Fig. 4.38 Frequency shaping
pulse for Problem 4.16
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4.16. Consider a CPM signal that is generated using a triangular frequency shaping
pulse shown in Fig. 4.38.

(a) If h = 1/2, find the peak frequency deviation from the carrier, where frequency
deviation is

fdev(t) =
1

2π
dφ(t)

dt
.

(b) Sketch the phase tree and phase trellis for the binary source symbol sequence

x = (+1,+1,+1,−1,−1,+1,−1,−1)

4.17. A CPM signal is generated from a baseband signal with a half-sinusoid
frequency shaping function hf(t).

(a) If h = 1/2 find the peak frequency deviation from the carrier frequency, where
frequency deviation is

fdev(t) =
1

2π
dφ(t)

dt
.

(b) Sketch the phase tree and phase trellis if the data symbol sequence is

x = {+3,−1,+1,+3,−3,+1,−1}.

4.18. Sketch the phase-tree, the phase trellis, and phase state diagram for partial
response CPM with h = 1/2 and

hf(t) =
1

4T
u2T (t).

4.19. Consider a partial response CPM signal

(a) Generate a frequency shaping function of duration 3T by convolving two
rectangular shaping functions of duration T and 2T .

(b) Define and sketch the three segments of the shaping function, hf,k(t), k = 0,1,2.
(c) Sketch the baseband signal if the symbol sequence is

x = {+1,−1,+1,−1,−1}.
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4.20. What are the phase states and states for the following CPM signals:

(a) Full response binary CPFSK with either h = 2/3 or h = 3/4.
(b) Partial response L = 3 binary CPFSK with either h = 2/3 or h = 3/4.

4.21. Equation 4.143 defines the transfer function H( f ) of the Gaussian low pass
filter that is used to generate the GMSK waveform.

(a) Obtain the impulse response h(t) and show that it satisfies the properties of a
probability density function (pdf).

(b) Expanding on the interpretation of h(t) as a pdf, determine the variance of the
distribution. What is the significance of this interpretation?

4.22. Design a Gaussian pulse-shaping filter with BT = 0.5 for a symbol rate of
19.2 kbps. Write expressions for and plot, (1) the impulse response and frequency
response of the filter, and (2) the frequency shaping pulse hf(t). Repeat for the case
of BT = 0.2 and BT = 0.75.

4.23. Consider TFM with the frequency shaping pulse

Hf( f ) =
π
4h

π f T
sin(π f T )

cos2(π f T ).

Suppose that this pulse is obtained by exciting a filter h̃(t) with a gate function
rect(t/T ). Find and sketch the impulse response of the filter h̃(t).

4.24. Prove the identity

T ∑
m

e−j2π f mT = ∑
n

δ
(

f − n
T

)
.

4.25. Consider the case of uncorrelated data symbols.

(a) Show that if the symbols are equiprobable, then

E
[
|B( f ,x0)|2

]
−
∣
∣
∣E [B( f ,x0)]

∣
∣
∣
2
=

1
2M2

M

∑
i=1

M

∑
k=1

∣
∣
∣B( f ,xi)−B( f ,xk)

∣
∣
∣
2
.

(b) Compute the value of part (a) for M = 2.

4.26. Consider the complex low-pass binary modulated signal

s̃(t) = A∑
n

xnha(t − nT),

where xn ∈ {−1, +1}. The data sequence {xn} is correlated such that

φxx(n) =
1
2

E[xkx∗k+n] = ρ |n|.

Compute the power density spectrum of s̃(t).



Problems 269

4.27. Suppose that a binary data sequence {xn}, xi ∈ {−1,+1} is correlated such
that P(xn = xn+1) = 3/4, that is, adjacent data bits are the same with probability 3/4
and different with probability 1/4.

(a) Compute the autocorrelation function φxx(m) for this data sequence.
(b) Compute the power spectrum Sxx( f ).

4.28. Suppose that an uncorrelated binary data sequence is transmitted using binary
PAM with a root-Gaussian amplitude shaping pulse

Ha( f ) =
(

τe−π( f τ)2
)1/2

(a) What is the transmitted power density spectrum?
(b) Find the value of τ so that the power density spectrum is 20 dB below its peak

value at frequency 1/T , where T is the baud duration.
(c) What is the corresponding time-domain pulse ha(t)?

4.29. Consider the M-ary orthogonal FSK waveform defined by (4.71) and (4.72).
Assuming equally likely messages, determine the psd of the transmitted complex
envelope Ss̃s̃( f ).

4.30. Consider a system that uses a set of M = 16 bi-orthogonal signals that are
derived from the Hadamard matrix H8 in (4.77). The set of 16 signals is constructed
according to

s̃i(t) =

{
A∑7

k=0 hikhc(t − kTc), k = 1, . . . ,8
−s̃i(t), k = 9, . . . ,16

, (4.288)

where T = 8Tc is the baud period. Note that four bits are transmitted per baud.
Assume an uncorrelated data sequence and assume that all 16 waveforms are used
with equal probability.

(a) If hc(t) = uTc(t), find the psd of the transmitted complex envelope Ss̃s̃( f ).
(b) Plot the power spectrum Ss̃s̃( f ) against the normalized frequency f Tb, where

Tb = T/4 is the bit duration.



Chapter 5
Digital Signaling on Flat Fading Channels

The performance of a digital modulation scheme is degraded by many transmission
impairments including fading, delay spread, Doppler spread, co-channel and adja-
cent channel interference, noise, and receiver implementation losses. Fading causes
a very low instantaneous received signal-to-noise ratio (SNR) or carrier-to-noise
ratio (CNR) when the channel exhibits a deep fade, delay spread causes inter-symbol
interference (ISI) between the transmitted symbols, and a large Doppler spread is
indicative of rapid channel variations and may necessitate a receiver with a fast
convergent algorithm. Receiver implementation losses include carrier frequency
offset, sample clock offset, symbol timing errors, and channel estimation errors.
Co-channel interference, adjacent channel interference, and noise are additive
impairments that degrade the bit error rate performance by reducing the CNR
or SNR.

This chapter considers the bit error rate performance of digital signaling on
frequency nonselective (flat) fading channels with additive white Gaussian noise
(AWGN). Flat fading channel models are appropriate for narrow-band land mobile
radio systems or mobile satellite systems. Flat fading channels affect all frequency
components of a narrow-band signal in exactly the same way and, therefore, do not
introduce amplitude or phase distortion into the received signal. Frequency selective
channels distort the transmitted signal and will be the subject of Chap. 7. Flat fading
channel will be shown to significantly degrade the bit error rate performance unless
appropriate countermeasures are taken. Diversity and coding techniques are well-
known methods for combating fading. The basic idea of diversity systems is to
provide the receiver with multiple replicas of the same information bearing signal,
where the replicas are affected by uncorrelated fading. Diversity techniques will be
discussed in Chap. 6. Coding techniques introduce a form of time diversity into the
transmitted signal which can be exploited to mitigate the effects of fading. Coding
techniques will be discussed in Chap. 8.

The remainder of this chapter is organized as follows. Section 5.1 introduces
a vector representation for digital signaling on flat fading channels with AWGN.
Section 5.2 derives the structure of the optimum coherent receiver for the detection
of known signals in AWGN. Section 5.3 provides a generalized analysis of the error

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 5,
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rate performance of digital signaling on flat fading channels. The error probability
performance of various coherently detected digital signaling schemes is considered,
including PSK in Sect. 5.4, QAM in Sect. 5.5, orthogonal signals in Sect. 5.6, OFDM
in Sect. 5.7 and MSK in Sect. 5.8. Section 5.9 considers differential detection of
DPSK and π/4-DQPSK. Section 5.10 considers noncoherent detection and, finally,
Sect. 5.11 considers coherent and noncoherent detection of CPM signals.

5.1 Vector Space Representation of Received Signals

Consider a general digital modulation scheme having the complex envelope

s̃(t) = A∑
n

b(t − nT,xn), (5.1)

where the generalized shaping function b(t − nT,xn) depends on the particular
modulation scheme being used. Suppose the waveform s̃(t) is transmitted over a
flat fading channel having the time-variant channel impulse response

g(t,τ) = g(t)δ (τ − τ̂). (5.2)

The received complex envelope is

r̃(t) = g(t)s̃(t − τ̂)+ ñ(t), (5.3)

where g(t) = α(t)ejφ(t) is the time-variant complex fading gain introduced by the
channel, and ñ(t) is zero-mean complex AWGN with a power spectral density (psd)
of No W/Hz. Note that the fading channel introduces a multiplicative distortion,
while the receiver front end introduces AWGN. The channel will also introduce a
time delay τ̂ .

Now consider a linear full-response modulation scheme, such as QAM or PSK,
where one of the M message waveforms having a complex envelope chosen from
the set {s̃i(t)}M

i=1 is transmitted over the channel every T seconds. By observing
received waveform r̃(t), the receiver must determine the time sequence of message
waveforms that was transmitted over the channel. To do so, the receiver must
determine the time delay τ̂ , such that the location of the symbol boundaries in
the received waveform is known. The process of estimating τ̂ is commonly called
symbol or baud timing recovery. For our present purpose, we will assume that the
receiver knows τ̂ exactly and, therefore, we can just set τ̂ = 0. Under the above
assumptions, the received complex envelope is

r̃(t) = g(t)s̃(t)+ ñ(t). (5.4)

To derive the structure of the optimal receiver, suppose that a single isolated
message waveform s̃n(t) is chosen from the set {s̃i(t)}M

i=1 and transmitted over the
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channel. If the channel changes very slowly with respect to the symbol period T ,
that is, fmT � 1, then g(t) will remain essentially constant over the duration of the
amplitude shaping pulse ha(t). Under this condition, the explicit time dependency
of g(t) can be removed so that the received complex envelope is

r̃(t) = gs̃n(t)+ ñ(t), (5.5)

where g = αejφ is the random fading gain.
Chapter 4 showed that the set of waveforms {s̃i(t)}M

i=1 can be represented as
a set vectors {s̃i}M

i=1 in an N-dimensional vector space. The signal vectors and
the associated basis functions, {ϕi(t)}N

i=1, were obtained using a Gram–Schmidt
orthonormalization procedure. To derive the structure of the optimum receiver, it is
useful to obtain a vector representation of the received waveform in (5.5). This can
be accomplished by projecting r̃(t) onto the set of basis functions {ϕi(t)}N

i=1 giving
the representation

r̃(t) =
N

∑
i=1

r̃iϕi(t)+ z̃(t), (5.6)

where

r̃i =

∫ ∞

−∞
r̃(t)ϕ∗

i (t)dt (5.7)

= g
∫ ∞

−∞
s̃n(t)ϕ∗

i (t)dt +
∫ ∞

−∞
ñ(t)ϕ∗

i (t)dt (5.8)

= gs̃ni + ñi (5.9)

and

z̃(t) = ñ(t)−
N

∑
i=1

ñiϕi(t) (5.10)

is a “remainder” process, which is the component of the noise waveform ñ(t) that is
orthogonal to the signal space. The above process yields the received vector

r̃ = gs̃n + ñ, (5.11)

where

r̃ = (r̃1, r̃2, . . . , r̃N)

s̃n = (s̃n1 , s̃n2 , . . . , s̃nN )

ñ = (ñ1, ñ2, . . . , ñN).

Note that the effect of the fading process is to multiply the transmitted signal vector
s̃n by the channel gain g.
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For an AWGN channel, the ñk,k = 1, . . . ,N are complex Gaussian random
variables that can be completely described by their means and covariances. The
means are

E[ñk] =

∫ ∞

−∞
E[ñ(t)]ϕk(t)dt = 0 (5.12)

and covariances are1

φñ j ñk =
1
2

E[ñ jñ
∗
k ] =

∫ ∞

−∞

∫ ∞

−∞

1
2

E[ñ(t)ñ∗(s)]ϕ j(t)ϕ∗
k (s)dtds

= No

∫ ∞

−∞

∫ ∞

−∞
δ (t − s)ϕ j(t)ϕ∗

k (s)dtds

= No

∫ ∞

−∞
ϕ j(t)ϕ∗

k (t)dt

= Noδ jk.

It follows that the ñk are all independent zero-mean complex Gaussian random
variables with variance No. Hence, the vector ñ has the multivariate complex
Gaussian probability density function (PDF) (A.51)

p(ñ) =
N

∏
i=1

1
2πNo

exp

{

− 1
2No

|ñi|2
}

=
1

(2πNo)N exp

{

− 1
2No

‖ñ‖2
}

. (5.13)

The joint PDF p(ñ) is said to be circularly symmetric, because it appears as a
hyperspherical cloud that is centered at the origin in the N −D vector space.

The waveform z̃(t) is a remainder process due to the fact that z̃(t) lies outside the
vector space that is spanned by the basis functions {ϕn(t)}N

n=1. We now show that
the remainder process is uncorrelated with received vector r̃. We have

E[z̃(t)r∗j ] = E[z̃(t)]gs̃∗mj
+E[z̃(t)ñ∗

j ]

= E[z̃(t)ñ∗
j ]

= E

[(

ñ(t)−
N

∑
n=1

ñnϕn(t)

)

ñ∗
j

]

=

∫ ∞

−∞
E[ñ(t)ñ∗(τ)]ϕ j(τ)dτ −

N

∑
n=1

E[ñnñ∗
j ]ϕn(t)

= Noϕ j(t)−Noϕ j(t) = 0.

1Since the ñk has zero mean, their covariances λñ j ñk are equal to their correlations φñ j ñk .
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Since E[z̃(t)r̃∗j ] = 0, j = 1, . . . ,N, it follows that z̃(t) is uncorrelated with the
received vector r̃. This property implies that the remainder process z̃(t) is irrelevant
when making the decision as to which signal waveform was transmitted, a result
known as Wozencraft’s irrelevance theorem [288]. In other words, the received
vector r̃ provides “sufficient statistics” for determining which message waveform
was transmitted.

5.2 Detection of Known Signals in AWGN

Based on the observation of the noisy received vector r̃ in (5.11), we wish
the receiver to determine which message vector was transmitted such that the
probability of decision error is minimized. It is assumed that the receiver has perfect
knowledge of the channel gain g. With this in mind, consider the set of a posteriori
probabilities

P[si was sent |g, r̃], i = 1, . . . ,M, (5.14)

which we abbreviate as P[si|g, r̃]. The maximum a posteriori probability (MAP)
receiver decides in favor of the message vector s̃m having the MAP P[s̃m|g, r̃]. That
is, the MAP decision rule is

choose s̃m if P[s̃m|g, r̃]≥ P[s̃i|g, r̃] ∀ i �= m. (5.15)

The probability of error in this decision, denoted by Pe[s̃m|g, r̃], is

Pe[s̃m|g, r̃] = P[sm was not sent |g, r̃]
= 1−P[sm was sent |g, r̃]
= 1−P[sm|g, r̃]. (5.16)

Since the MAP receiver always decides in favor of the message vector sm having the
MAP P[sm|g, r̃] for any received vector r̃, the probability of error is minimized.

Using Bayes’ theorem, the a posteriori probability P[s̃m|g, r̃] can be expressed in
the form

P[s̃m|g, r̃] = p(r̃|g, s̃m)Pm

p(r̃)
, m = 1, . . . , M, (5.17)

where p(r̃|g, s̃m) is the joint conditional PDF of the received vector r̃ given the
transmitted message vector s̃m and channel gain g, and Pm is the prior probability
of transmitting s̃m. Since the PDF of the received vector p(r̃) is independent of the
transmitted message vector, the MAP receiver chooses the vector s̃m to maximize
p(r̃|g, s̃m)Pm. In other words, the MAP decision rule is equivalent to

choose s̃m if p(r̃|g, s̃m)Pm ≥ p(r̃|g, s̃i)Pi ∀ i �= m. (5.18)
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A receiver that chooses the vector s̃m to maximize p(r̃|g, s̃m) regardless of the
prior messages probabilities is called a maximum likelihood (ML) receiver. The
ML decision rule is

choose s̃m if p(r̃|g, s̃m)≥ p(r̃|g, s̃i) ∀ i �= m. (5.19)

If the prior message probabilities are all equal, that is, Pm = 1/M, m = 1, . . . , M,
then the signal vector that maximizes p(r̃|g, s̃m) also maximizes p(s̃m|g, r̃). Under
this condition the ML receiver minimizes the probability of decision error. In
practice, an ML receiver is sometimes implemented regardless of the prior message
probabilities, because they may be unknown. Also, the prior message probabilities
will be all equal for a well-designed system.

To proceed further, we need the joint conditional PDF p(r̃|g, s̃m). Since r̃= gs̃m+
ñ and ñ has the joint PDF in (5.13), we have

p(r̃|g, s̃m) =
1

(2πNo)N exp

{

− 1
2No

‖r̃− gs̃m‖2
}

. (5.20)

Using (5.20) in (5.19), it is apparent that the signal vector s̃m that maximizes
p(r̃|g, s̃m) also minimizes the exponent in (5.20). Hence, the ML receiver decides in
favor of that message s̃m which minimizes the decision metric

μ1(s̃m) = ‖r̃− gs̃m‖2, m = 1, . . . ,M. (5.21)

From (5.21), the ML receiver decides in favor of the scaled message vector gs̃m

that is closest in squared Euclidean distance (or Euclidean distance) to the received
vector r̃. Such a receiver is said to make minimum distance decisions.

An alternative form of the ML receiver can be derived by first expanding (5.21) as

μ1(s̃m) = ‖r̃‖2 − 2Re{r̃ ·g∗s̃∗m}+ |g|2‖s̃m‖2. (5.22)

Then notice that ‖r̃‖2 is independent of the choice of s̃m, and ‖s̃m‖2 = 2Em, where
Em is the energy in the bandpass waveform corresponding to the signal vector s̃m.
Hence, the ML receiver decides in favor of that message s̃m which maximizes the
decision metric

μ2(s̃m) = Re{r̃ ·g∗s̃∗m}− |g|2Em, m = 1, . . . ,M. (5.23)

Using the definition of the inner product, the above decision metric can be rewritten
in the alternate form

μ2(s̃m) = Re

{∫ ∞

−∞
r̃(t)g∗s̃∗m(t)dt

}

−|g|2Em

≡ Re

{∫ ∞

−∞
r̃(t)e−jφ s̃∗m(t)dt

}

−αEm, m = 1, . . . ,M. (5.24)
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Fig. 5.1 Quadrature
demodulator
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The last line in (5.24) follows because the μ2(s̃m) can be divided by α without
altering the decision process. In this form of the ML decision metric, the received
complex envelope r̃(t) is correlated directly with the scaled and conjugated signal
vector e−jφ s̃∗m(t).

From the above development, the ML receiver can now be constructed. The
receiver must first perform quadrature demodulation as shown in Fig. 5.1 to extract
the complex envelope r̃(t) = r̃I(t) + jr̃Q(t). The low pass filter in each branch is
used to reject the double frequency term after demodulation. The received bandpass
waveform is

r(t) = Re
{

r̃(t)ej2π fct
}
= r̃I(t)cos(2π fct)− r̃Q(t)sin(2π fct). (5.25)

It follows that

[r(t) ·2cos(2π fct)]LP = r̃I(t), (5.26)

[−r(t) ·2sin(2π fct)]LP = r̃Q(t), (5.27)

where [ · ]LP indicates low-pass filtering. After quadrature demodulation, there
are several receiver structures that are functionally equivalent, but differ in their
method of implementation and complexity. As shown in Fig. 5.2, one possibility is
to generate the observation vector r̃ by correlating the received complex envelope
with each of the N basis functions used to define the signal space. This receiver
structure is called a correlation detector.

A functionally equivalent structure to the correlation detector is shown in
Fig. 5.3, where the complex envelope is filtered with a bank of N filters having
impulse responses ϕ∗

i (To − t) and sampling the outputs at time To, where To is the
duration of the ϕi(t) (or s̃i(t)). The filter ϕ∗

i (To − t) is the matched filter to ϕi(t) and,
therefore, this receiver structure is called a matched filter detector. The matched
filter can be shown to be the filter that maximizes the SNR at the sampling instant
when the input consists of a signal corrupted by AWGN (see Problem 5.2). Finally,
the metric computer in Fig. 5.4 processes the observation vector r̃ to produce M
decision metrics μ2(s̃m), m= 1, . . . ,M. The decision is made in favor of the message
s̃m having the largest decision metric.
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Fig. 5.2 Correlator detector
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To show equivalence of the correlation and matched filter detectors in Figs. 5.2
and 5.3, respectively, let hi(t) = ϕ∗

i (To − t) denote the filter that is matched to ϕi(t).
Then the output of the matched filter is the convolution

y(t) =
∫ t

0
r̃(τ)hi(t − τ)dτ

=
∫ t

0
r̃(τ)ϕ∗

i (To − t + τ)dτ. (5.28)
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Fig. 5.4 Metric computer

Sampling the filter output at time To gives

y(To) =

∫ To

0
r̃(τ)ϕ∗

i (τ)dτ. (5.29)

This is exactly the same as the correlation in (5.7). We note that other variations of
the ML receiver can be constructed in a similar fashion by direct implementation of
(5.24). This will require either a bank of M correlators or a bank of M matched
filters, where M is the number of waveforms in the signal set. Since N ≤ M,
the number of correlators or matched filters is usually larger with this latter
implementation. However, the outputs of the correlators or matched filters generate
the required decision metrics directly, and a subsequent metric computer is not
required.

Some simplifications can be made for certain types of signal sets. If the message
waveforms have equal energy such as PSK signals, then Em = E for all m. Hence,
the bias term αEm in (5.23) can be neglected, and the ML receiver decides in favor
of that message s̃m which maximizes the decision metric

μ2(s̃m) = Re
{

r̃ · e−jφ s̃∗m
}

(5.30)

= Re

{∫ ∞

−∞
r̃(t)e−jφ s̃∗m(t)dt

}

, m = 1, . . . ,M. (5.31)

In this case, the receiver does not need to know the complete complex channel gain
g = αejφ , but only the phase φ .
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5.3 Probability of Error

Consider a signal constellation having the set M signal vectors {s̃m}M
m=1. Assume

that the messages are equally likely so that Pm = 1/M. By observing the vector
r̃, the ML receiver chooses that message vector s̃m that minimizes the squared
Euclidean distance ‖r̃− gs̃m‖2. To compute the probability of ML decision error
for an arbitrary set of signal vectors, we first define convex decision regions Rm

around each of the scaled signal vectors gs̃m in the ND complex signal space.
Figure 5.5 shows an example of the decision regions. Formally, the decision regions
are defined by

Rm =
{

r̃ : ‖r̃− gs̃m‖2 ≤ ‖r̃− gs̃i‖2, ∀i �= m
}
. (5.32)

Observe that every r̃ ∈ Rm is closer to gs̃m than to any other scaled signal vector
gs̃i, i �= m. The ML decision rule becomes

choose s̃m if r̃ ∈ Rm. (5.33)

The decision boundaries are hyperplanes in the ND complex signal space that are
defined by the locus of signal points that are equidistant from two neighboring
scaled signal vectors.

The conditional error probability associated with s̃m is

P[e|s̃m] = P[r̃ �∈ Rm]

= 1−P[r̃ ∈ Rm]

= 1−P[c|s̃m], (5.34)

Fig. 5.5 Decision regions
in a 2D complex signal space

sk

sl

φ2(t)

φ1(t)

Rk

Rj

Rl

decision
boundaries

sj
~

~

~



5.3 Probability of Error 281

Fig. 5.6 Two received signal
points in an ND complex
signal space
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where P[c|s̃m] is the conditional probability of correct reception. Using the joint
conditional pdf in (5.20), we can write

P[e|s̃m] = 1−
∫

Rm

p(r̃|g, s̃m)dr̃. (5.35)

Finally, the average probability of decision error is

P[e] =
1
M

M

∑
m=1

P[e|s̃m]. (5.36)

It is often difficult if not impossible to compute the exact probability of decision
error, due to the difficulty in defining the decision regions Rm and performing the
N-fold integration in (5.35) with the proper limits of integration. In this case, various
upper and lower bounds, and approximations on the probability of error are useful.
First we introduce the concept of the pairwise error probability.

5.3.1 Pairwise Error Probability

Consider two signal vectors s̃ j and s̃k in a signal constellation of size M. We now
determine the probability of decision error at the receiver, as if these two signal
vectors are the only ones that exist. This error probability is called the pairwise error
probability because it can be defined for each pair of signal vectors in the signal
constellation. The two signal vectors s̃ j and s̃k are separated at the receiver by the
squared Euclidean distance ‖gs̃ j − gs̃k‖2 = α2‖s̃ j − s̃k‖2. A decision boundary can
be established at the midpoint between the two signal vectors as shown in Fig. 5.6.
Suppose that vector s̃ j is sent, and let P[e|s̃ j] denote the probability of ML decision
error. This error probability is just the probability that the noise along the vector
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gs̃ j −gs̃k forces the received vector r̃ = s̃ j + ñ to cross the decision boundary. Due to
the circularly symmetric property of the AWGN noise, the PDF of the noise vector
ñ is invariant to its rotation about the origin in the signal space. Hence, the noise
component along the line that passes through the two signal vectors will have zero
mean and variance No. It follows that the error probability is equal to

P[e|s̃ j ] = Q

⎛

⎝

√
α2d̃ 2

jk

4No

⎞

⎠, (5.37)

where d̃ 2
jk = ‖s̃ j − s̃k‖2 is the squared Euclidean distance between s̃ j and s̃k. Finally,

we note that P[e|s̃ j] = P[e|s̃k]. Hence, the pairwise error probability between the
message vectors s̃ j and s̃k, denoted by P[s̃ j , s̃k], is

P[s̃ j, s̃k] = Q

⎛

⎝

√
α2d̃ 2

jk

4No

⎞

⎠. (5.38)

5.3.2 Upper Bounds on Error Probability

Suppose that s̃k is transmitted and let E j denote the event that the receiver chooses
s̃ j instead. The probability of the event E j is the pairwise error probability P[s̃ j , s̃k].
The probability of decision error is the probability of the union of all error events

P(e|s̃k) = P

[
⋃

j �=k

E j

]

. (5.39)

Quite often the error events will overlap, and this complicates the calculation of the
error probability. However, we can obtain an upper bound on the error probability
using the union bound

P

[
⋃

j �=k

E j

]

≤ ∑
j �=k

P[E j]. (5.40)

This gives the upper bound

P[e|s̃k]≤ ∑
j �=k

P[s̃ j , s̃k]. (5.41)

Combining the above result with (5.38) gives

P[e|s̃k]≤ ∑
j �=k

Q

⎛

⎝

√
α2d̃ 2

jk

4No

⎞

⎠ (5.42)
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and using (5.36) to average error probability over all messages gives

P[e]≤ 1
M

M

∑
k=1

∑
j �=k

Q

⎛

⎝

√
α2d̃ 2

jk

4No

⎞

⎠. (5.43)

Calculation of the union bound in (5.43) requires the set of squared Euclidean
distances {d̃ 2

jk} between the signal vectors. A simpler upper bound on error
probability can be obtained by finding the minimum squared Euclidean distance
between any two signal points

d̃2
min = min

n,m
‖s̃n − s̃m‖2. (5.44)

Then the pairwise error probability between s̃ j and s̃k is bounded by

P[s̃ j, s̃k]≤ Q

⎛

⎝

√

α2d̃2
min

4No

⎞

⎠, (5.45)

since d̃2
min ≤ d̃ 2

jk and the function Q(x) monotonically decreases with x. Hence, we
can write

P[e]≤ (M − 1)Q

⎛

⎝

√

α2d̃2
min

4No

⎞

⎠ (5.46)

Finally, some further upper bounds can be obtained using the upper bounding of
the Gaussian Q-function. One such upper bound is (Problem 5.1)

Q(x)≤ 1
2

e−x2/2 x ≥ 0. (5.47)

Combining with the union bound in (5.43) gives

P[e]≤ 1
2M

M

∑
k=1

∑
j �=k

exp

{

−α2d̃ 2
jk

8No

}

, (5.48)

and combining with the upper bound in (5.46) will give the simplest but loosest
upper bound of all

P[e]≤ (M − 1)
2

exp

{

−α2d̃2
min

8No

}

. (5.49)
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5.3.3 Lower Bound on Error Probability

A useful lower bound on the probability of decision error can be obtained by
bounding the error probability

P[e|s̃k]≥
⎧
⎨

⎩

Q

(√
α2d̃2

min
4No

)

, if s̃k has at least one neighbor at distance d̃min

0, otherwise
.

(5.50)

Then

P[e] =
1
M

M

∑
m=1

P[e|s̃m] (5.51)

≥ wmin

M
Q

⎛

⎝

√

α2d̃2
min

4No

⎞

⎠, (5.52)

where wmin is the number of signal vectors having at least one minimum distance
neighbor. Certainly wmin ≥ 2, so that

P[e]≥ 2
M

Q

⎛

⎝

√

α2d̃2
min

4No

⎞

⎠. (5.53)

5.3.4 Bit Versus Symbol Error Probabilities

So far we have considered the probability of decision error P[e] otherwise known
as the symbol error probability, PM. However, we are very often interested in the bit
error probability, Pb. In general, the bit error probability will depend on the particular
mapping between the data bits and the modulated symbols. Since each data symbol
corresponds to log2M data bits, the bit error probability can be bounded as follows:

PM

log2M
≤ Pb ≤ PM. (5.54)

The lower bound results from the fact that each symbol error corresponds to at least
one bit error, while the upper bound results from the fact that each symbol error
corresponds to at most log2M bit errors.

5.3.4.1 Gray Mapping

For signal constellations such as PSK and QAM, it is possible to map the binary
data bits onto the data symbols in such a way that the nearest neighboring symbols
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Fig. 5.7 Mapping of binary
k-tuples onto M-ary symbols
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(in Euclidean distance) differ in only one bit position. Such a mapping is called a
Gray mapping. When the SNR is high, we find that symbol errors are made onto the
nearest neighboring symbols with high probability. In these cases, symbol errors
correspond to single bit errors. Hence,

Pb ≈ PM

log2M
. (5.55)

It turns out that Gray mapping is the optimum mapping for uncoded systems.
However, if error control coding is used, Gray mapping is usually not the optimum
mapping strategy and other types of mapping are used. This issue will be discussed
in more detail in Chap. 8.

5.3.4.2 Equally Likely Symbol Errors

Suppose that when symbol errors occur, each of the M − 1 incorrect symbols are
chosen with equal probability. To compute the probability of bit error, we first
note that the set of M = 2k symbols has a one-to-one mapping onto the set of 2k

binary k-tuples as shown in Fig. 5.7. Now suppose that all the zeroes k-tuple, or
first row, corresponds to the correct symbol. Moreover, the receiver makes an error
by choosing ith row (symbol), i �= 1, instead. Since there are 2k−1 zeros and 2k−1

ones in each column, and a zero corresponds to a correct bit, the probability of a
particular bit position being in error is

Pb =
2k−1

2k − 1
PM =

M
2(M − 1)

PM. (5.56)

We will see later that this result applies to M-ary orthogonal signals.

5.3.5 Rotation and Translations

The probability of symbol error in (5.36) is invariant to any rotation of the signal
constellation {s̃i}M

i=1 about the origin of the signal space. This is a consequence
of two properties. First, the probability of symbol error depends solely on the
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set of Euclidean distances {d̃ jk}, j �= k between the signal vectors in the signal
constellation. Second, the AWGN is circularly symmetric in all directions of the
signal space. A signal constellation can be rotated about the origin of the signal
space, by multiplying each N-dimensional signal vector by an N ×N unitary matrix
Q. A unitary matrix has the property QQH = QHQ = I, where QH is the complex
conjugate transpose of Q, and I is the N × N identity matrix. The rotated signal
vectors are equal to

ŝi = s̃iQ, i = 1, . . . ,M. (5.57)

Correspondingly, the noise vector ñ is replaced with its rotated version

n̂ = ñQ. (5.58)

The rotated noise vector n̂ is a vector of complex Gaussian random variables that is
completely described by its mean and covariance matrix. The mean is

E[n̂] = E[ñ]Q = 0. (5.59)

The covariance matrix is2

Φn̂n̂ =
1
2

E[n̂Hn̂]

=
1
2

E[(ñQ)HñQ]

=
1
2

E[QHñHñQ]

= QH 1
2

E[ñHñ]Q

= NoQHQ = NoI. (5.60)

Since, the statistical properties of the noise vector are invariant to rotation, the
probability of symbol error is invariant to rotation of the signal constellation about
the origin of the signal space.

Next consider a translation of the signal set such that

ŝi = s̃i − a, i = 1, . . . ,M, (5.61)

where a is a constant vector. In this case, the error probability remains the same
since d̂ jk = d̃ jk, j �= k. However, the average energy in the signal constellation is
altered by the translation and becomes

2Since the vector n̂ has zero mean, its covariance matrix Λn̂n̂ is equal to its autocorrelation matrix
Φn̂n̂.
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Êav =
1
2

M

∑
i=1

‖ŝi‖2Pi

=
1
2

M

∑
i=1

‖s̃i − a‖2Pi

=
1
2

M

∑
i=1

{‖s̃i‖2 − 2Re{s̃i ·a∗}+ ‖a‖2}Pi

=
1
2

M

∑
i=1

‖s̃i‖2Pi −Re

{
M

∑
i=1

s̃iPi ·a∗
}

+
1
2
‖a‖2

M

∑
i=1

Pi

= Eav −Re{E[ s̃ ] ·a∗}+ 1
2
‖a‖2, (5.62)

where Eav is the average energy of the original signal constellation and E[ s̃ ] =

∑M−1
i=0 s̃iPi is its centroid (or center of mass).
Differentiating (5.62) with respect to a and setting the result equal to zero will

yield the translation that minimizes the average energy in the signal constellation.
This gives

aopt = E[ s̃ ]. (5.63)

Note that the center of mass of the translated signal constellation is at the origin,
and the minimum average energy in the translated signal constellation is

Êmin = Eav − 1
2
‖aopt‖2. (5.64)

5.4 Error Probability of PSK

In this section, we consider the error probability of various forms of PSK signals.
We start with binary PSK signals, followed by the more complicated forms of PSK
signals.

5.4.1 Error Probability of BPSK

The BPSK signal vectors are3

s̃1 =−s̃2 =
√

2Eh. (5.65)

3When the signal vectors lie in a 1D complex vector space, we simplify notation using the scalars
s̃i, ñ, r̃ rather than the vectors s̃i, ñ, and r̃.
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Fig. 5.8 Complex
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Since there are only two signal vectors, the bit error probability is given by the
pairwise error probability in (5.38). For BPSK signals, d̃12 = 2

√
2Eh. Also BPSK

transmits 1 bit/symbol so the symbol energy is Eh = Eb, where Eb is the bit energy.
Therefore, the probability of bit error is

Pb(γb) = Q
(√

2γb

)
, (5.66)

where γb is defined as the received bit energy-to-noise ratio

γb
�
=

α2Eb

No
. (5.67)

5.4.2 Error Probability of QPSK and OQPSK

The QPSK (or 4-PSK) signal vectors are

s̃1 = −s̃3 =
√

2Eh, (5.68)

s̃2 = −s̃4 = j
√

2Eh, (5.69)

where the signal points are seen to lie on the real and imaginary axes. The QPSK
signal constellation can be rotated by 45o as shown in Fig. 5.8 without changing the
error probability due to the rotational invariance property. In this case, the decision
boundaries correspond to the real and imaginary axes of the complex signal space.
The noise vector is ñ = ñI + jñQ, where ñI and ñQ are independent zero-mean
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Gaussian random variables with variance No. With minimum distance decisions,
the probability of symbol error is

PM = P[e|s̃1]

= 1−P[c]

= 1−P
[
ñI >−α d̃/2, ñQ >−α d̃/2

]

= 1−P
[
ñI >−α d̃/2

]
P
[
ñQ >−α d̃/2

]

= 1−
⎛

⎝1−Q

⎛

⎝

√

α2d̃2

4No

⎞

⎠

⎞

⎠

2

,

where, again, α is the channel attenuation. Since d̃2 = 4Eh, we have

PM = 1− (1−Q(
√

γs ))
2 , (5.70)

where γs is defined as the received symbol energy-to-noise ratio

γs
�
=

α2Eh

No
. (5.71)

Suppose the data bits are mapped onto the data symbols with the Gray code
shown in Fig. 5.8. Letting Pb denote the probability of bit error, it follows that

P[c] = (1−Pb)
2 (5.72)

and

PM = 1− (1−Pb)
2. (5.73)

Comparing (5.73) with (5.70), we see that

Pb = Q(
√

γs) . (5.74)

QPSK transmits 2 bits/symbol so the symbol energy is Eh = 2Eb, where Eb is the
bit energy. Since γs = 2γb, the probability of bit error is

Pb(γb) = Q
(√

2γb

)
. (5.75)

Notice that the bit error rate performances of QPSK and BPSK are identical.
Finally, since OQPSK is identical to QPSK with the exception that the in-phase and
quadrature branches are offset by Tb = T/2 seconds, the bit error rate performance
of OQPSK is identical to that of QPSK and BPSK as well.
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Fig. 5.9 Complex
signal-space diagram for
8-PSK along and the
associated decision regions
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5.4.3 Error Probability of M-PSK

To derive the error probability of M-PSK consider, for example, the 8-PSK signal
constellation and associated decision regions shown in Fig. 5.9. Once again data bits
are mapped onto data symbols using a Gray code. Suppose that the message vector
s̃1 =

√
2Eh is transmitted. The received signal vector is

r̃ = αejφ s̃1 + ñ. (5.76)

Since the error probability is invariant to the angle rotation φ , we can arbitrarily set
φ = 0 so that

r̃ = α s̃1 + ñ

= α
√

2Eh + ñ. (5.77)

It follows that r̃ = r̃I + jr̃Q is a complex Gaussian random variable with PDF

pr̃(r̃) =
1

2πNo
exp

{

− 1
2No

∣
∣
∣r̃−α

√
2Eh

∣
∣
∣
2
}

. (5.78)

Since s̃1 was transmitted, the probability of correct symbol reception with minimum
distance decisions is the probability that the received vector r̃ falls in the “pie-
shaped” region containing s̃1. This is equivalent to the received angle Θ =
Tan−1[r̃Q/r̃I] falling in the interval [−π/8,π/8].

To find the PDF of the angle Θ , we first define the random variables

R =
√

r̃2
I + r̃2

Q, Θ = Tan−1 [r̃Q/r̃I] (5.79)
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such that

r̃I = RcosΘ , r̃Q = RsinΘ . (5.80)

Then using a bivariate transformation of random variables as shown in the Ap-
pendix, the joint PDF of R and Θ can be obtained as

pR,Θ (r,θ ) =
r

2πNo
e−

1
2No (r2−2α

√
2Ehr cosθ+2α2E2

h), r ≥ 0,−π ≤ θ ≤ π . (5.81)

Since we are interested only in the phase Θ , we obtain the marginal PDF of Θ

pΘ (θ ) =
∫ ∞

0
pR,Θ (r,θ )dr (5.82)

=
1

2π
e−γs sin2 θ

∫ ∞

0
xe(x−

√
2γs cosθ)2/2

dx, (5.83)

where γs = α2Eh/No is the received symbol energy-to-noise ratio. The probabil-
ity of symbol error, PM, is just the probability that Θ falls outside the region
[−π/M,π/M]. Thus

PM(γs) = 1−
∫ π/M

−π/M
p(θ )dθ . (5.84)

Unfortunately, a closed form expression for this integral does not exist, except for
the cases M = 2,4 which were considered earlier.

5.4.4 Error Probability with Rayleigh Fading

When the channel experiences fading, the error probability must be averaged over
the fading distribution. For example, if the channel is Rayleigh faded, then α is a
Rayleigh random variable and the squared envelope α2 is an exponential random
variable at any given time, as discussed in Sect. 2.1.3.1. It follows that the received
bit and symbol-energy-to-noise ratios γb and γs in (5.67) and (5.71), respectively,
have the exponential PDFs

pγb(x) =
1
γ̄b

e−x/γ̄b , x ≥ 0 (5.85)

and

pγs(x) =
1
γ̄s

e−x/γ̄s , x ≥ 0, (5.86)

where γ̄b and γ̄s are the average received bit and symbol energy-to-noise ratios,
respectively. Since there are log2M bits per modulated symbol, it also follows that
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Fig. 5.10 Bit error
probability for BPSK and
QPSK for a slow flat
Rayleigh fading channel
with AWGN
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γs = γblog2M and γ̄s = γ̄blog2M. Corresponding expressions for the distribution of
γb and γs can be obtained in a similar fashion for other types of fading, such as
Ricean and Nakagami fading.

For BPSK and QPSK, the probability of bit error averaged over the distribution
of the received bit energy-to-noise ratio in (5.85) is

Pb =
∫ ∞

0
Q(

√
2x)pγb(x)dx

=
1
2

(

1−
√

γ̄b

1+ γ̄b

)

≈ 1
4γ̄b

for γ̄b  1. (5.87)

The BPSK and QPSK bit error probability is plotted in Fig. 5.10 for an AWGN
channel and a Rayleigh fading channel. Observe that Rayleigh fading converts an
exponential dependency of the bit error probability on the average received bit
energy-to-noise ratio into an inverse linear one. This behavior with flat Rayleigh
fading will be observed for all types of modulation, and it results in a huge loss in
performance unless appropriate countermeasures such as diversity and coding are
used. For M-PSK, the average symbol error probability is

PM =

∫ ∞

0
PM(x)pγs(x)dx, (5.88)
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where PM(x) is given by (5.84) and γs is given by (5.86). Although no closed form
expression exists, numerical results will show that the bit error probability depends
inversely on the average received bit energy-to-noise ratio γ̄b. Recall that with Gray
coding the bit error probability is approximately Pb ≈ PM/log2M.

5.4.5 Differential PSK

The received carrier phase for PSK signals is

θk =
2π
M

xk +φ , (5.89)

where φ is the random phase due to the channel. The receiver corrects for the
phase φ by multiplying the received complex envelope by e−jφ as shown in (5.31).
However, in practice this operation is not quite that simple, because the symmetries
in the signal constellation create phase ambiguity. In particular, we note that any
channel induced phase of the form φ +2kπ/M, k an integer, will lead to exactly the
same set of received carrier phases. While the receiver can use a phased locked loop
to recover the received carrier phase, there will remain a phase ambiguity which is
a multiple of 2π/M. This phase ambiguity must be resolved if the information is to
be recovered correctly.

Differential encoding is one of the most popular methods for resolving phase
ambiguity, where information is transmitted in the carrier phase differences between
successive baud intervals rather than the absolute carrier phases. Differential
encoding of PSK signals is done as follows. The information sequence {xk},xk ∈
{0,1, . . .M − 1} is differentially encoded into a new sequence {dk} according to

dk = xk ⊕ xk−1, (5.90)

where ⊕ denotes modulo-M addition. Then the sequence {dk} is transmitted in the
absolute carrier phase according to

θk =
2π
M

dk. (5.91)

After carrier recovery, the received carrier phase is

θ̃k =
2π
M

dk +
2π�
M

, (5.92)
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where the additional term 2π�/M, � an integer, represents the phase ambiguity. The
receiver computes the differential phase

θ̃k − θ̃k−1 modulo 2π =
2π
M

(dk − dk−1) modulo 2π

=
2π
M

(dk � dk−1)

=
2π
M

xk, (5.93)

where � denotes modulo-M subtraction. Hence, the data sequence {xk} can be
recovered regardless of the phase ambiguity.

In the presence of AWGN noise, the receiver must form estimates θ̂k of the
received carrier phases θ̃k. However, the noise will cause errors in these estimates
and occasionally θ̂k �= θ̃k. We note that an incorrect phase estimate θ̂k causes the
decisions for both xk and xk−1 to be in error, assuming that the phase estimates θ̂k−1

and θ̂k+1 are both correct. Hence, at high SNRs where errors occur infrequently, the
bit error probability of DPSK is roughly two times that of PSK.

5.5 Error Probability of PAM and QAM

5.5.1 Error Probability of M-PAM

Consider the Gray coded 8-PAM system signal constellation shown in Fig. 5.11. For
the M − 2 inner points of the signal constellation, the probability of symbol error is

Pi = 2Q

(
2α2Eh

No

)

. (5.94)

Likewise, for the two outer points of the signal constellation, the probability of
symbol error is

Po = Q

⎛

⎝

√

2α2Eh

No

⎞

⎠. (5.95)

Fig. 5.11 Complex
signal-space diagram
for 8-PAM
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Assuming all points in the signal constellation are used with equal probability, the
overall probability of symbol error is

PM =
M − 2

M
Pi +

2
M

Po

= 2

(

1− 1
M

)

Q

⎛

⎝

√

2α2Eh

No

⎞

⎠. (5.96)

To proceed further, we must relate Eh to the average symbol energy. Since

s̃m =
√

2Eh(2m− 1−M), m = 1, . . . ,M (5.97)

the energy in s̃m is

Em =
1
2

s̃2
m = Eh(2m− 1−M)2. (5.98)

The average energy is

Eav = Eh
1
M

M

∑
m=1

(2m− 1−M)2

= Eh
1
M

(

4
M

∑
m=1

m2 − 4(M+ 1)
M

∑
m=1

m+M(M+ 1)2

)

. (5.99)

Using the identities

n

∑
k=1

k =
n(n+ 1)

2
,

n

∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(5.100)

and simplifying gives the result

Eav = Eh
M2 − 1

3
. (5.101)

Hence, from (5.96)

PM(γs) = 2

(

1− 1
M

)

Q

(√
6

M2 − 1
γs

)

, (5.102)

where

γs =
α2Eav

No
(5.103)
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Fig. 5.12 Complex signal-space diagram for 16-QAM constellation

is the average symbol energy-to-noise ratio. Note that in this case, the “average” is
over the points in the signal constellation. Since γs = (log2M)γb, we can also write

PM(γb) = 2

(

1− 1
M

)

Q

(√
6(log2M)

M2 − 1
γb

)

. (5.104)

5.5.2 Error Probability of M-QAM

Consider an M-QAM system having a square constellation of size M = 4m for some
integer m. Such an M-QAM system can be viewed as two

√
M-PAM systems in

quadrature, each allocated one-half the power of the M-QAM system. For example,
the Gray-coded 16-QAM system in Fig. 5.12 can be treated as two independent
Gray-coded 4-PAM systems in quadrature, each operating with half the power of
the 16-QAM system. From (5.102), the symbol error probability for each

√
M-PAM

system is

P√
M = 2

(

1− 1√
M

)

Q

(√
6

M − 1
γs

2

)

, (5.105)

where γs is the average symbol energy-to-noise ratio of the M-QAM system. Finally,
the probability of correct symbol reception in the M-QAM system is

P[c] =
(

1−P√
M

)2
(5.106)
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Fig. 5.13 Bit error
probability for M-QAM on an
AWGN channel and a
Rayleigh fading channel with
AWGN
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and the probability of symbol error is

PM(γs) = 1−
(

1−P√
M

)2
. (5.107)

For other types of M-QAM constellations, such as those in Figs. 4.7 and 4.8, the
error probability can be obtained by defining convex decision regions and using the
approach suggested in Sect. 5.3.

5.5.2.1 Error Probability with Rayleigh Fading

If the channel is Rayleigh faded, then γs has the exponential PDF in (5.86). It follows
that the average symbol error probability is

PM =

∫ ∞

0
PM(x)pγs(x)dx. (5.108)

Fig. 5.13 plots the (approximate) bit error probability Pb ≈ PM/log2M against the
average received bit energy-to-noise ratio, γ̄b = γ̄s/log2M, for several values of M.
Once again, Rayleigh fading converts an exponential dependency of the bit error
probability on the average received bit energy-to-noise ratio into an inverse linear
one. Finally, we notice that the γ̄b required to achieve a given bit error probability
increases with the alphabet size M. However, the bandwidth efficiency also increases
with M, since there are log2M bits per modulated symbol.
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5.6 Error Probability of Orthogonal Signals

5.6.1 Orthogonal Signals

Consider the M-ary orthogonal signal set

s̃i =
√

2Ehem, m = 1, . . . ,M,

where em is a length-M unit basis vector with a “1” in the mth coordinate. If the
signal s̃1 is transmitted, then the received vector is

r̃ =
(

g
√

2Eh + ñ1, ñ2, . . . , ñM

)
, (5.109)

where the ñi are independent zero mean complex Gaussian random variables with
variance No. The ML receiver computes the M decision variables

μ(s̃m) = Re{r̃ ·g∗s̃∗m} , m = 1, . . . ,M, (5.110)

and decides in favor of the signal having the largest μ(s̃m). We have

μ(s̃1) = 2α2Eh + ñI,1α
√

2Eh,

μ(s̃m) = ñI,mα
√

2Eh, m = 2, . . . ,M, (5.111)

where we have ignored the phase rotation on the noise samples due to their circular
symmetry. The μ(s̃i), i = 1, . . . ,M, are independent Gaussian random variables with
variance 2α2ENo; the mean of μ(s̃1) is 2α2Eh while the μ(s̃m),m �= 1, have zero
mean. The probability of correct symbol decision conditioned on μ(s̃1) = x is the
probability that all the μ(s̃m),m �= 1 are less than x. This is just

P[c|μ(s̃0) = x] =

(

Φ

(
x

√
2α2EhNo

))M−1

. (5.112)

Hence,

P[c] =
∫ ∞

−∞

(

Φ

(
x

√
2α2EhNo

))M−1
1

√
4πα2EhNo

exp

{

− (x− 2α2Eh)
2

4α2EhNo

}

dx.

(5.113)

Now let y = (x− 2α2Eh)/
√

2α2EhNo. Then

P[c] =
∫ ∞

−∞

(
Φ
(

y+
√

2γs

))M−1 1√
2π

e−y2/2dx, (5.114)
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where

γs =
α2Eh

No
. (5.115)

Finally, the probability of symbol error is

PM = 1−P[c]. (5.116)

An alternate expression for the error probability can be derived by first conditioning
on the event that one of the M − 1 decision variables μ(s̃m),m �= 1 is the largest.
This gives

PM = (M − 1)
∫ ∞

−∞
Φ

(
x− 2α2Eh
√

2α2EhNo

)(

Φ

(
x

√
2α2EhNo

))M−2

× 1
√

4πα2EhNo
exp

{

− x2

4α2EhNo

}

dx. (5.117)

Now let y = x/
√

2α2EhNo. Then

PM = (M − 1)
∫ ∞

−∞
Φ
(

y−√2γs

)
(Φ(y))M−2 1√

2π
e−y2/2dx. (5.118)

For orthogonal signals γs = γblog2M and the bit error probability is given by (5.56).
Hence,

Pb =
M
2

∫ ∞

−∞
Φ
(

y−√2γblog2M
)
(Φ(y))M−2 1√

2π
e−y2/2dx. (5.119)

If the channel is Rayleigh faded, then γb has the exponential PDF in (5.85), and the
average bit error probability can be calculated as

Pb =

∫ ∞

0
Pb(x)pγb(x)dx. (5.120)

5.6.2 Biorthogonal Signals

Consider the biorthogonal signal set

s̃i =

{√
2Ehei, i = 1, . . . ,M/2

−s̃i−M/2, i = M/2+ 1, . . . ,M − 1
. (5.121)
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Now suppose that s1 is transmitted. The receiver computes the M/2 decision
variables

μ(s̃m) = Re{r̃ ·g∗s̃∗m} , m = 1, . . . ,M/2, (5.122)

and chooses the one having the largest magnitude. The sign of μ(s̃m) is used to
decide whether s̃m or s̃M/2+m =−s̃m was sent. As before, the μ(s̃i), i = 1, . . . ,M/2,
are independent Gaussian random variables with variance 2α2ENo; the mean of
μ(s̃1) is 2α2Eh while the μ(s̃m),m = 2, . . . ,M/2, have zero mean. The probability
of correct decision is the probability that μ(s̃1) > 0 and |μ(s̃m)| < μ(s̃1),m =
2, . . . ,M/2. Conditioned on μ(s̃1) = x, x > 0, we have

P [|μ(s̃m)|< x] = Φ

(
x

√
2α2EhNo

)

−Φ

(

− x
√

2α2EhNo

)

. (5.123)

Hence,

P[c] =
∫ ∞

0

(

Φ

(
x

√
2α2EhNo

)

−Φ

(

− x
√

2α2EhNo

))M/2−1

× 1
√

4πα2EhNo

exp

{

− (x− 2α2Eh)
2

4α2EhNo

}

dx. (5.124)

Now let y = (x− 2α2Eh)/
√

2α2EhNo. Then

P[c] =
∫ ∞

−√
2γs

(
Φ
(

y+
√

2γs

)
−Φ

(
−y−

√
2γs

))M/2−1 1√
2π

e−y2/2dy. (5.125)

Finally, PM = 1−P[c]. For biorthogonal signals γs = γblog2M. However, the bit error
probability is not given by (5.56), because when symbol errors occur the incorrect
symbols do not occur with equal probability.

5.7 Error Probability of OFDM

The OFDM baseband demodulator is usually implemented using a fast Fourier
transform (FFT), as discussed in Sect. 4.6. Following the development in Sect. 4.6,
suppose that the discrete-time sequence Xg

n = {Xg
n,m}N+G−1

m=0 is passed through a
balanced pair of digital-to-analog converters (DACs), as shown in Fig. 4.15, and
the resulting complex envelope is transmitted over a quasi-static flat fading channel
with complex gain g. The quasi-static assumption means that the channel remains
static over an OFDM symbol, but can vary from one OFDM symbol to the next. For
flat fading channels, the cyclic guard interval is not really necessary, but we include
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Fig. 5.14 Block diagram of OFDM receiver

it here for completeness. The receiver uses a quadrature demodulator to extract
the received complex envelope r̃(t) = r̃I(t) + jr̃Q(t). Suppose that the quadrature
components r̃I(t) and r̃Q(t) are each passed through an ideal anti-aliasing filter (ideal
low-pass filter) having a cutoff frequency 1/(2T g

s ) followed by an analog-to-digital
converter (ADC) as shown in Fig. 5.14. This produces the received complex-valued
sample sequence Rg

n = {Rg
n,m}N+G−1

m=0 , where

Rg
n,m = gXg

n,m+ ñn,m, (5.126)

g=αejφ is the complex channel gain, and the ñn,m are the complex-valued Gaussian
noise samples. For an ideal anti-aliasing filter having a cutoff frequency 1/(2T g

s ),
the ñn,m are independent zero-mean complex Gaussian random variables with
variance σ2 = 1

2 E[|ñn,m|2] = No/T g
s , where T g

s = NTs/(N +G).
Assuming a cyclic suffix as discussed in Sect. 4.6.3, the receiver first removes the

guard interval according to

Rn,m = Rg
n,G+(m−G)N

, 0 ≤ m ≤ N − 1, (5.127)

where (m)N is the residue of m modulo N. Demodulation is then performed by
computing the FFT on the block Rn = {Rn,m}N−1

m=0 to yield the vector zn = {zn,k}N−1
k=0

of N decision variables

zn,k =
1
N

N−1

∑
m=0

Rn,me−
j2πkm

N

= gAxn,k +νn,k, k = 0, . . . ,N − 1, (5.128)
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where A =
√

2Eh/T , T = (N +G)Tg
s , and the noise terms are given by

νn,k =
1
N

N−1

∑
m=0

ñn,me−
j2πkm

N , k = 0, . . . ,N − 1. (5.129)

It can be shown that the νn,k are zero mean complex Gaussian random variables
with covariance

φ j,k =
1
2

E[νn, jν∗
n,k] =

No

NT g
s

δ jk. (5.130)

Hence, the zn,k are independent complex Gaussian random variables with mean
g
√

2Eh/T xn,k and variance No/NT g
s . To be consistent with our earlier results for

PSK and QAM signals, we can multiply the zn,k for convenience by the scalar
√

NT g
s . Such scaling gives

z̃n,k = g
√

2EhN/(N +G)xn,k + ν̃n,k, (5.131)

where the ν̃n,k are i.i.d. zero-mean complex Gaussian random variables with
variance No. Notice that

√
2EhN/(N +G)xn,k = s̃n,k is equal to the complex signal

vector that is transmitted on the ith sub-carrier, where the term N/(N+G) represents
the loss in effective symbol energy due to the insertion of the cyclic guard interval.
For each of the z̃n,k, the receiver decides in favor of the signal vector s̃n,k that
minimizes the squared Euclidean distance

μ(s̃n,k) = ‖z̃n,k − gs̃n,k‖2, k = 0, . . . ,N − 1. (5.132)

Thus, for each OFDM block, N symbol decisions must be made, one for each of
the N sub-carriers. This can be done in either a serial fashion as in Fig. 5.14, or a
parallel fashion. It is apparent from (5.131) that the probability of symbol error is
identical to that achieved with independent modulation on each of the sub-carriers.
This is expected because the sub-carriers are mutually orthogonal in time.

5.7.1 Interchannel Interference

The above analysis assumes that the complex channel gain g remains constant over
the OFDM symbol duration T = NTs = (N + G)T g

s . However, as the block size
N increases and/or the maximum Doppler frequency increases for a fixed data
rate Rs = 1/Ts, this assumption becomes invalid. We now investigate the effect
channel time variations on the OFDM link performance. Although our analysis will
be undertaken for flat fading channels, a similar analysis will apply to frequency
selective channels provided that G ≥ L. We will show that variations in the complex
channel gain {gk}N−1

k=0 over the duration of an OFDM symbol causes interchannel
interference (ICI) due to a loss of sub-channel orthogonality. The ICI will be shown
to behave like additional AWGN that results in an error floor at high SNRs.
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To isolate the Doppler effects, AWGN is ignored. The received discrete-time
sequence after removal of the guard interval is

Rn,m = gG+(m−G)N
Xn,m. (5.133)

The vector zn = {zn,i}N−1
i=0 at the output of the FFT baseband demodulator is

zn,i =
√

2Eh/T
N−1

∑
m=0

xn,mH(m− i), (5.134)

where

H(m− i) =
1
N

N−1

∑
k=0

gG+(k−G)N
e

j2π
N (m−i)k, 0 ≤ i ≤ N − 1. (5.135)

To highlight the effect of channel time variations, (5.134) can be rewritten as

zn,i =
√

2Eh/TH(0)xn,i + cn,i, (5.136)

where

cn,i =
√

2Eh/T
N−1

∑
m=0
m �=i

xn,mH(m− i). (5.137)

Note that H(0) is the effective complex channel gain, while cn,i is an additive noise
term due to the ICI. Note that if the channel is time-invariant, then gk = g and
zn,i = g

√
2Eh/Txn,i as before.

If N is sufficiently large in (5.137), the central limit theorem can be invoked
and cn,i, i = 0, . . . ,N − 1 can be treated as complex Gaussian random variables that
are characterized by their means, variances, and correlations. Since the xn,m and
H(m− i) are independent random variables and E[xn,m] = 0, it follows that E[cl ] = 0.
Since 2Eh · 1

2 E[xn,kx∗n,m] = Eavδkm, where Eav is the average symbol energy, the
autocorrelation of the cn,i is

φcc(r) =
1
2

E[cn,ic
∗
n,i+r] =

Eav

T ∑
m�=i,i+r

E[H(m− i)H∗(m− i− r)]. (5.138)

To proceed further, we require a model for the time correlation of the channel.
If we assume the normalization E[|gk|2] = 1 and Clarke’s 2D isotropic scattering
model with an isotropic receiver antenna (see Chap. 2), then the autocorrelation
becomes

φcc(r) =
Eav

T
δr − Eav

TN2

N−1

∑
k=0

N−1

∑
k′=0

J0(2π fmT g
s (k− k′))

(

ej 2πk′r
N +(1− δr)ej 2πkr

N

)

,

(5.139)

where fm is the maximum Doppler frequency.
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Fig. 5.15 Signal-to-
interference ratio of OFDM
due to ICI
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For symbol-by-symbol detection, it is sufficient to examine the variance of the
ICI term

φcc(0) =
Eav

T
− Eav

T N2

(

N + 2
N−1

∑
i=1

(N − i)J0(2π fmT g
s i)

)

, (5.140)

where the fact that J0( · ) is an even function that has been used. Note that variance
of the cn,i are only a function of Eav, N, Ts, and fm, but is otherwise independent of
the signal constellation. Figure 5.15 plots the signal-to-interference ratio, defined as

SIR
�
=

Eav/T
φcc(0)

, (5.141)

as a function of fmT g
s for several values of N. Observe that the SIR decreases as both

the normalized Doppler maximum frequency fmT g
s and the block size N increase.

Suppose that the data symbols xn,k are chosen from a 16-QAM alphabet. From
Sect. 5.5, the symbol error probability for 16-QAM is

PM = 3Q

(√
1
5

γs

)(

1− 3
4

Q

(√
1
5

γs

))

, (5.142)

where γs is the average received symbol energy-to-noise ratio. With Rayleigh fading,
the symbol error probability is obtained by averaging (5.142) over the PDF in (5.86).
Assuming validity of the Gaussian approximation for the ICI, the error floor due to
ICI can be obtained by substituting the SIR in (5.141) for γ̄s. The results are shown in
Fig. 5.16. Simulation results are also shown in Fig. 5.16 corroborating the Gaussian
approximation for the ICI. Figure 5.17 shows the bit error rate performance of
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Fig. 5.16 Error floor due to
ICI with 16-QAM
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Fig. 5.17 Bit error
probability for 16-QAM
OFDM on a Rayleigh fading
channel with various Doppler
frequencies
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OFDM with N = 512 sub-carriers, a 16-QAM signal constellation, and a 20 Mbps
bit rate for various Doppler frequencies. At low γ̄b, additive noise dominates the
performance so that the extra noise due to ICI has little effect. However, at large γ̄b

ICI dominates the performance and causes an error floor.
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Fig. 5.18 Coherent detector for MSK signals

5.8 Error Probability of MSK

MSK signals can be recovered using a variety of detection techniques. One method
uses the linear representation of MSK, where MSK is equivalent to OQASK with
a half-sinusoid amplitude shaping function as described in (4.112)–(4.117). The
received complex envelope is

r̃(t) = gs̃(t)+ ñ(t), (5.143)

where g = αejφ . A coherent MSK receiver first removes the effect of the channel
phase rotation according to

e−jφ r̃(t) = r̃I(t)cos(φ)+ r̃Q(t)sin(φ)+ j(r̃Q(t)cos(φ)− r̃I(t)sin(φ))

= α s̃I(t)+ ñI(t)+ j(α s̃Q(t)+ ñQ(t)) , (5.144)

where we have ignored the effect of the phase rotation on the noise ñ(t) due to its
circular symmetry. Detection then proceeds by processing the real and imaginary
parts of e−jφ r̃(t) as orthogonal binary PAM streams. The resulting MSK detector
is shown in Fig. 5.18. Note that the source symbols on the in-phase and quadrature
carrier components must be detected over intervals of length 2T , the duration of the
amplitude shaping pulse ha(t), and bit decisions are made every T seconds.It follows
that coherently detected MSK has the same bit error rate performance as QPSK,
OQPSK, and BPSK.

5.9 Differential Detection

Differentially encoded PSK (DPSK) can also be detected using differentially
coherent detection, where the receiver estimates the change in the excess phase of
the received carrier between two successive baud intervals. Since DPSK transmits
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data in the differential excess carrier phase from one baud interval to the next, the
basic mechanism for differential detection is obvious. For slow fading channels,
the phase difference between waveforms received in two successive baud intervals
will be independent of the absolute carrier phase. However, for fast fading channels,
the excess carrier phase will change over two successive baud intervals due to the
channel. This leads to an error floor that increases with the fading rate.

5.9.1 Binary DPSK

Consider binary DPSK. Let θn denote the absolute transmitted excess carrier phase
during the baud interval nT ≤ t ≤ (n+ 1)T , and let Δθn = θn − θn−1 denote the
differential excess carrier phase, where

Δθn =

{
0, xn =+1
π , xn =−1

. (5.145)

The DPSK complex envelope is

s̃(t) = A∑
n

ha(t − nT)ejθn (5.146)

and the received complex envelope is

r̃(t) = αejφ A∑
n

ha(t − nT)ejθn + ñ(t), (5.147)

where g = αejφ is the complex channel gain. It is assumed that g changes slowly
enough to remain essentially constant over two successive baud intervals.

A block diagram of a differentially coherent baseband demodulator for binary
DPSK is shown in Fig. 5.19. During the time interval nT ≤ t ≤ (n+1)T , the values
of Xn, Xnd , Yn, and Ynd in Fig. 5.19 are

Xn = 2αEh cos(θn +φ)+ ñI,

Xnd = 2αEh cos(θn−1 +φ)+ ñI,d,

Yn = 2αEh sin(θn +φ)+ ñQ,

Ynd = 2αEh sin(θn−1 +φ)+ ñQ,d, (5.148)

where

Eh =
A2

2

∫ T

0
h2

a(t)dt (5.149)
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Fig. 5.19 Differentially coherent receiver for binary DPSK

and the noise terms are

ñI = A
∫ (n+1)T

nT
ñI(t)ha(t)dt,

ñI,d = A
∫ nT

(n−1)T
ñI(t)ha(t)dt,

ñQ = A
∫ (n+1)T

nT
ñQ(t)ha(t)dt,

ñQ,d = A
∫ nT

(n−1)T
ñQ(t)ha(t)dt. (5.150)

One can show that ñI , ñI,d , ñQ, and ñQ,d are independent identically distributed zero-
mean Gaussian random variables with variance 2EhNo.

In the absence of noise, it is easy to verify that the input to the decision device is
Un = 4α2E2

h xn. Hence, the sign of Un is equal to the sign of xn and correct decisions
are made. When noise is present Un is a random variable, and to determine the
probability of error, we need the PDF of Un. To determine the PDF of the Un, it is
convenient to express Un as

Un = Re{ZnZ∗
nd}=

1
2
(ZnZ∗

nd +Z∗
nZnd) , (5.151)

where

Zn = Xn + jYn, (5.152)

Znd = Xnd + jYnd. (5.153)

It can be shown using characteristic functions that Un has the differential form Un =
Wn −Yn, where Wn and Yn are independent noncentral and central chi-square random
variables with respective densities [246]
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fWn(w) =
1

2EhNo
exp

{

− (wxn + 4α2E2
h )

2EhNo

}

I0

⎛

⎝
2
√

wxnα2E2
h

EhNo

⎞

⎠ , wxn ≥ 0,

(5.154)

fYn(y) =
1

2EhNo
exp

{

− yxn

2EhNo

}

, yxn ≥ 0, (5.155)

where I0(x) is the zero-order modified Bessel function of the first kind defined by

I0(x) =
1

2π

∫ 2π

0
e−xcosθ dθ . (5.156)

By defining the auxiliary random variable Vn = Wn and using a bivariate transfor-
mation of random variables, the PDF of Un is

fUn(u) =
∫

RUnVn

fWn(v) fYn(v− u)dv

=

⎧
⎪⎪⎨

⎪⎪⎩

1
4EhNo

exp
{

xnu−2α2E2
h

2EhNo

}
, −∞ < xnu < 0

1
4EhNo

exp
{

xnu−2α2E2
h

2EhNo

}
Q

(√
2α2Eh

No
,
√

2xnu
EhNo

)

, 0 < xnu < ∞
,

(5.157)

where Q(a,b) is the Marcum Q function, defined by

Q(a,b) = 1−
∫ b

0
ze−

z2+a2
2 I0 (za)dz. (5.158)

From (5.157), the bit error probability of DPSK with differential detection is

Pb(γb) =

∫ ∞

0

1
4EhNo

exp

{

−u+ 2α2E2
h

2EhNo

}

du =
1
2

e−γb , (5.159)

where γb = α2Eh/No is the received bit energy-to-noise ratio. For a slow Rayleigh
fading channel, α is Rayleigh distributed so the received bit energy-to-noise ratio,
γb, has the exponential PDF in (5.85). It follows that the average bit error probability
with slow Rayleigh fading is

Pb =
∫ ∞

0
Pb(x)pγb(x)dx =

1
2(1+ γ̄b)

≈ 1
2γ̄b

. (5.160)

Note that the error probability has an inverse linear dependency on γ̄b.
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Fig. 5.20 Differentially coherent receiver for π/4-DQPSK

5.9.2 Differential Detection of π/4-DQPSK

Differential detection can be used with π/4-DQPSK as well. Once again the
complex envelopes of the transmitted and received signals are given by (5.146)
and (5.147), respectively. However, with π/4-DQPSK, Δθn = πxn/4 where xn ∈
{±1,±3}, so that one of four possible differential phases must be detected. A block
diagram of a differentially coherent baseband demodulator for π/4-DQPSK is
shown in Fig. 5.20. The values of Xn, Xnd , Yn, and Ynd are again given by (5.148).
The detector outputs are

Un = Re{ZnZ∗
nd}=

1
2
(ZnZ∗

nd +Z∗
nZnd) , (5.161)

Vn = Im{ZnZ∗
nd}=

1
j2

(ZnZ∗
nd −Z∗

nZnd) , (5.162)

where Zn and Znd are defined in (5.152) and (5.153), respectively. In the absence of
noise, it can be verified that the detector outputs are

Un = −a, Vn =−a, for xn =−3,

Un = a, Vn =−a, for xn =−1,

Un = a, Vn = a, for xn =+1,

Un = −a, Vn = a, for xn =+3, (5.163)

where a = 2
√

2α2E2
h . The bit error probability for π/4-DQPSK with Gray coding

is somewhat complicated to derive and omitted here, but can be expressed in terms
of well-known functions [217]

Pb(γb) = Q(a,b)− 1
2

I0(ab)e−
1
2 (a2+b2), (5.164)
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where

a =

√

2γb

(

1− 1√
2

)

, (5.165)

b =

√

2γb

(

1+
1√
2

)

(5.166)

and γb is the bit energy-to-noise ratio. Once again, if the channel is flat faded,
then the bit error probability can be obtained by averaging (numerically) over the
distribution of γb in (5.85).

5.10 Noncoherent Detection

If information is transmitted in the amplitude and/or frequency of a waveform, but
not the phase, then a noncoherent receiver can be used. Noncoherent receivers make
no attempt to determine the carrier phase and are, therefore, easier to implement than
coherent receivers. Noncoherent receivers generally trade implementation complex-
ity and robustness to channel impairments, such as high Doppler conditions, for
transmitter power and/or bandwidth.

Suppose that one of the M complex low-pass waveforms, s̃m(t),m = 1, . . . ,M,
say s̃i(t), is transmitted on a flat fading channel with AWGN. The received complex
envelope is

r̃(t) = gs̃i(t)+ ñ(t), (5.167)

where g = αejφ is the channel gain that includes the random phase φ , and ñ(t) is
the AWGN. By projecting r̃(t) onto the set of basis functions {ϕn(t)}N

n=1 obtained
through the Gram–Schimdt orthonormalization procedure, we obtain the received
vector

r̃ = gs̃i + ñ, (5.168)

where the joint pdf of ñ is given in (5.13).
The maximum likelihood (ML) noncoherent detector does not require knowledge

of the random excess received carrier phase φ in the decision process, and chooses
the message vector s̃m that maximizes the joint conditional PDF p(r̃|α, s̃m):

choose s̃m if p(r̃|α, s̃m)≥ p(r̃|α, s̃m̂) ∀m̂ �= m. (5.169)

Letting p(φ) denote the PDF of φ , we have

p(r̃|α, s̃m) = Eφ [p(r̃|g, s̃m)] =

∫ 2π

0
p(r̃|g, s̃m)p(φ)dφ . (5.170)
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Using the joint conditional pdf of p(r̃|g, s̃m) in (5.20), we can write

p(r̃|g, s̃m) =
1

(2πNo)N exp

{

− 1
2No

‖r̃− gs̃m‖2
}

=
1

(2πNo)N exp

{

−‖r̃‖2 + 2α2Em

2No

}

exp

{
1

No
Re{r̃ ·g∗s̃∗m}

}

,

(5.171)

where, again, Em is the energy in the bandpass waveform sm(t) corresponding to the
signal vector s̃m. Next, let r̃ · s̃∗m = Xmejθm so that

r̃ ·g∗s̃∗m = g∗r̃ · s̃∗m = g∗X jθm
m = αXmej(θm−φ). (5.172)

Hence,

p(r̃|g, s̃m) =
1

(2πNo)N exp

{

−‖r̃+ 2α2Em‖2

2No

}

exp

{
αXm

No
cos(θm −φ)

}

. (5.173)

In the absence of any prior information, the random phase φ is assumed to be
uniformly distributed on [−π ,π), resulting in

p(r̃|α, s̃m) =
1

(2πNo)N exp

{

−2α2Em + ‖r̃‖2

2No

}
1

2π

∫ 2π

0
exp

{
αXm

No
cos(θm −φ)

}

dφ

=
1

(2πNo)N exp

{

−2α2Em + ‖r̃‖2

2No

}

I0

(
αXm

No

)

. (5.174)

Since the terms ‖r̃‖2 and (2πNo)
N are independent of the choice of s̃m, the signal

vector that maximizes p(r̃|α, s̃m) also maximizes the decision metric

μ1(sm) = exp

{

−α2Em

No

}

I0

(
αXm

No

)

. (5.175)

If all message waveforms have equal energy, then considerable simplification will
result. In this case, the ML receiver can choose s̃m to maximize

μ2(s̃m) = I0

(
αXm

No

)

. (5.176)

However, I0(x) increases monotonically with x. Therefore, the ML receiver can
simply choose s̃m to maximize

μ3(s̃m) = Xm. (5.177)
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Fig. 5.21 Noncoherent
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From the above development, the structure of the ML noncoherent receiver is
clear. The receiver first uses the quadrature demodulator in Fig. 5.1 to extract the
real and imaginary components of the complex envelope r̃I(t) and r̃Q(t). Then it
computes the received signal vector r using the correlator detector in Fig. 5.2 or
matched filter detector in Fig. 5.3. For equal energy messages, we compute the
decision variables Xm = |r̃ · s̃∗m|, m = 1, . . . ,M, and finally choose the signal vector
s̃m having the largest Xm. If the messages do not have equal energy, then the metric
in (5.175) must be used instead. This will add considerable complexity to the ML
receiver, because the channel gain α must be determined and the Bessel function
I0(x) must be calculated. Finally, we note that

Xm =
[
Re2(r̃ · s̃∗m)+ Im2(r̃ · s̃∗m)

]1/2
. (5.178)

This leads to the detector structure shown in Fig. 5.21, commonly known as a
square-law detector. Note that the square-law detector generates X2

m, m = 1, . . . ,M
rather than Xm, m = 1, . . . ,M. However, the choice of s̃m that maximizes X2

m also
maximizes Xm.

5.10.1 Error Probability of M-ary Orthogonal Signals

Consider the case of M-ary orthogonal signals as discussed in Sect. 4.5. Assume
without loss of generality that s̃1 is sent. Then the received vector r̃= (r̃1, r̃2, . . . , r̃N)
has components



314 5 Digital Signaling on Flat Fading Channels

r̃1 = g
√

2E + ñ1

r̃i = ñi, i = 2, . . . ,M. (5.179)

Since the M-ary orthogonal signals have equal energy, we can use the metric in
(5.177). Then

X1 = |r̃ · s̃∗1|
= |2Eg+

√
2Eñ1|

=
∣
∣
∣2Eα cos(φ)+

√
2EñI,1 + j

(
2Eα sin(φ)+

√
2EñQ,1

)∣
∣
∣ (5.180)

and

Xm = |r̃ · s̃∗m|
= |

√
2Eñm|

=
∣
∣
∣
√

2EñI,m + j
√

2EñQ,m

∣
∣
∣ , m = 2, . . . ,M. (5.181)

The receiver will make a correct decision if

X1 > Xi, ∀ i �= 1. (5.182)

From the Appendix, X1 has the Rice distribution

pX1(x) =
x

2ENo
exp

{

−x2 + 4α2E2

4ENo

}

I0

(
αx
No

)

, (5.183)

while the Xi, i �= 0 are independent Rayleigh random variables with pdf

pXi(x) =
x

2ENo
exp

{

− x2

4ENo

}

, i = 2, . . . ,M. (5.184)

The probability of correct symbol reception is

P[c] = P [X2 < X1,X3 < X1, . . . ,XM < X1]

=
∫ ∞

0

(∫ y

0

x
2ENo

exp

{

− x2

4ENo

}

dx

)M−1

pX1(y)dy

=

∫ ∞

0

(

1− exp

{

− y2

4ENo

})M−1

pX1(y)dy. (5.185)
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Using the binomial expansion

(1− x)n =
n

∑
k=0

(
n
k

)

(−1)kxk

gives

P[c] =
M−1

∑
k=0

(−1)k
(

M − 1
k

)∫ ∞

0
exp

{

− ky2

4ENo

}

pX1(y)dy. (5.186)

The integral in the above expression is

I =

∫ ∞

0
exp

{

− ky2

4ENo

}

pX1(y)dy

=

∫ ∞

0
exp

{

− ky2

4ENo

}
y

2ENo
exp

{

−y2 + 4α2E2

4ENo

}

I0

(
αy
No

)

dy

=
∫ ∞

0

y
2ENo

exp

{

− (k+ 1)y2 + 4α2E2

4ENo

}

I0

(
αy
No

)

dy. (5.187)

The trick is to manipulate the integrand of I into the product of a Ricean pdf and a
term that does not depend on the variable of integration y. This is accomplished by
making the substitutions

N′
o =

2ENo

k+ 1
E ′ =

E
(k+ 1)

(5.188)

and solving the integral. This gives

I =
1

k+ 1
exp

{

−2kα2E ′2

N′
o

}

=
1

k+ 1
exp

{

− kγs

(k+ 1)

}

, (5.189)

where γs = α2E/No is the symbol energy-to-noise ratio. Hence, the probability of
correct symbol reception is

P[c] =
M−1

∑
k=0

(−1)k
(M−1

k

)

k+ 1
exp

{

− kγs

(k+ 1)

}

(5.190)

and the probability of symbol error is

PM = 1−P[c] =
M−1

∑
k=1

(−1)k+1
(M−1

k

)

k+ 1
exp

{

− kγs

(k+ 1)

}

. (5.191)
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For orthogonal signals γs = γblog2M and the bit error probability is given by (5.56).
Hence,

Pb(γb) =
M

2(M − 1)

M−1

∑
k=1

(−1)k+1
(M−1

k

)

k+ 1
exp

{

−kγblog2M
(k+ 1)

}

. (5.192)

For Rayleigh fading channels, the error probability can be averaged over the
distribution of γb in (5.85). This gives the following simple closed form for the
average bit error probability

Pb =
M

2(M − 1)

M−1

∑
k=1

(−1)k+1
(M−1

k

)

1+ k+ kγ̄blog2M
. (5.193)

Once again, the error probability has an inverse linear dependency on γ̄b.

5.11 Detection of CPM Signals

CPM receivers can be categorized into three different types of detection schemes;
coherent detection, differential detection, and noncoherent detection. Furthermore,
in each category there are two approaches: symbol-by-symbol detectors and se-
quence estimators. Sequence estimators will be treated in the context of channel
coding in Chap. 8. This section only considers symbol-by-symbol CPM detectors.
While there exist a large variety of coherent and noncoherent symbol-by-symbol
CPM detectors, we present two structures. Both receiver structures use multiple-
symbol observation intervals to detect partial response CPM signals, and both
generate soft outputs making them well suited to systems that use convolutional,
trellis, or Turbo coding.

Recall that the partial-response CPM complex envelope during the time interval
nT ≤ t ≤ (n+ 1)T is, from (4.134),

s̃(t) = Aej(θn+2πh∑n
k=n−L+1 xnβ (t−kT )), (5.194)

and the CPM state at time t = nT is defined by the L-tuple

Sn = (θn,xn−1,xn−2, · · · ,xn−L+1). (5.195)

In the sequel, the CPM complex envelope during the time interval nT ≤ t ≤ (n+1)T
will also be denoted by s̃(Sn,xn, t) to emphasize the finite state nature of the signal.
For a slow flat fading channel, the received signal is

r̃(t) = gs̃(t)+ ñ(t), (5.196)

where ñ(t) is a zero-mean complex AWGN with psd No W/Hz.
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5.11.1 Coherent CPM Demodulator

A coherent CPM demodulator was proposed by Osborn and Luntz [199], and
Schonhoff [235]. The decision metrics for symbol xn are obtained by observing
r̃(t) over Np +1 successive symbol intervals and generating decision metrics for all
MNp+1 possible symbol vectors xn = {xn,bn}, where bn = {xn+1, . . . ,xn+Np}. The
ML metric for xn is proportional to the conditional density p(r̃(t)|Sn,xn,bn,g) and
is given by

μ(Sn,xn,bn) =−
n+Np

∑
i=n

∫ (i+1)T

iT
|r̃(t)− gs̃(Si,xi, t)|2dt. (5.197)

The metrics for xn can be obtained by averaging (5.197) over the MNp possible
values of bn and averaging over all possible initial states Sn. This leads to the
decision metric

μ(xn) = ∑
Sn

∑
bn

μ(Sn,xn,bn)P[bn]P[Sn] = ∑
Sn

∑
bn

μ(Sn,xn,bn), (5.198)

where P[bn] and P[Sn] are the probabilities of bn and Sn, respectively, and the last
equality follows because all the bn are equally likely, and all the Sn are equally likely,
for equally likely data symbols. Using (5.198) a set of M metrics is calculated for
the M possible xn. The receiver makes the final decision by choosing the symbol
having the largest decision metric.

A simplified receiver that will yield almost the same performance uses the
suboptimum decision metric [199, 235]

μ(xn) = max
Sn

max
bn

{

−
n+Np

∑
i=n

∫ (i+1)T

iT
|r̃(t)− gs̃(Si,xi, t)|2dt

}

, (5.199)

which is also exactly the same as the decision metric proposed by Kerr and McLane
for full response CPFSK [141]. Once again, using (5.199) a set of M decision
metrics is calculated for the M possible xn and the receiver chooses the symbol
having the largest decision metric.

5.11.2 Noncoherent CPM Demodulator

A noncoherent receiver can be constructed using a multiple-symbol observation
interval similar to that suggested for the coherent receiver described in the previous
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section [297]. After observing r̃(t) over the N-symbol interval (n − n1)T ≤ t ≤
(n + n2)T , where N = n1 + n2 + 1, the noncoherent CPM demodulator in [297]
generates the following set of MN+L−2 conditional symbol metrics for each xn:

μ(xn,bn) =

∣
∣
∣
∣
∣
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∑
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2

, (5.200)

where bn = {xn−n1−L+1, . . . ,xn−1,xn+1, . . . ,xn+n2} is the “adjacent” symbol vector
that excludes xn. Note that the phase term θn−n1 in Sn−n1 does not affect the value of
(5.200) and can, therefore, be assumed zero. A simple symbol metric can be formed
by choosing the largest among all possible μ(xn,bn), viz.,

μ(xn) = max
bn
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. (5.201)

The set of M symbol metrics so obtained is then used to make decisions on the
transmitted symbols by selecting the symbol with the largest symbol metric.

For N = 1 (n1 = n2 = 0), the symbol metric in (5.201) is the same one used by
the single-symbol receiver in [3], and, as a result, the single-symbol receiver can
be treated as a special case of the receiver presented here. In order to calculate the
metrics in an efficient recursive fashion, we can follow a similar approach to [243]
and rewrite μ(xn,bn) as

μ(xn,bn) =
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∣
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∑
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ΓiFi
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, (5.202)

where

Γi =
∫ (i+1)T

iT
r̃(t)s̃∗(xi−L+1, · · · ,xi, t)dt,

Fi = e−jπhxi−LFi−1; Fn−n1 = 1. (5.203)

The metric generator structure is shown in Fig. 5.22. Generally, the metric calculator
requires ML matched filters and generates MN+L−1 conditional symbol metrics
μ(xn,bn). However, unlike the coherent receiver, the complexity is independent of
the modulation index h. Actually, since the term θn is not explicitly exploited in
Sn, h is not even required to be a rational number, that is, we do not require the
CPM waveform to have a finite number of states. Finally, it is observed that the
complex channel gain g is not required and, therefore, the receiver complexity is
greatly reduced.
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Fig. 5.22 The symbol metric calculator. Note that the signal s̃∗(t) is labeled to account for P =ML

possible matched filters

Fig. 5.23 Figure for
Prob. 5.1
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Problems

5.1. Derive the upper bound

Q(x)≤ 1
2

e−x2/2, x ≥ 0.

Hint: Note that 4Q2(x) is the probability that a pair of independent zero-mean, unit
variance, Gaussian random variables u,v lies within the shaded region of Fig. 5.23a.
This probability is exceeded by the probability that u,v lies within the shaded region
of Fig. 5.23b.

5.2. Consider the receiver model shown in Fig. 5.24, consisting of a linear time-
invariant filter hr(t) followed by a sampler. The input to the filter consists of a pulse
ha(t) of duration T corrupted by AWGN

r̃(t) = ha(t)+ ñ(t), 0 ≤ t ≤ T.
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Fig. 5.24 Figure for
Prob. 5.2

The output of the filter is

ỹ(t) = p(t)+ z̃(t),

where p(t) = ha(t)∗hr(t) and z̃(t) = ñ(t)∗hr(t), the filter output is sampled at time
T to produce the sample y(T ) = p(T )+ z̃(T ). The SNR at the output of the sampler
is defined as

SNR =
|p(T )|2

E[|z̃(T )|2] .

Find the filter hr(t), and corresponding transfer function Hr( f ), that will maximize
the SNR.

5.3. Consider the pulse

ha(t) =

{
sin
(

4πt
T

)
, 0 ≤ t ≤ T

0, otherwise
.

(a) Determine the impulse response of the matched filter for this signal.
(b) Sketch the waveform y(t) at the output of the matched filter, and determine the

output value at time t = T .
(c) Sketch the waveform y(t) at the output of a correlator that correlates ha(t) with

itself, and determine the output value at time t = T .

5.4. Derive the expression for the symbol error probability of
√

M-PAM in (5.102).

5.5. Show that the symbol error probability for coherent M-ary PSK is bounded by
p ≤ PM ≤ 2p, where

p = Q
(√

2γs sin
π
M

)

and γs is the symbol energy-to-noise ratio.

5.6. Suppose that BPSK signaling is used with coherent detection. The channel is
affected by flat Rayleigh fading and log-normal shadowing with a shadow standard
deviation of σΩ dB. The composite envelope distribution has the form in (2.308),
while the composite squared-envelope has the form in (2.309).
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(a) Obtain an expression for the probability density function of the composite
envelope.

(b) Find an expression for the probability of bit error as a function of the average
received bit energy-to-noise ratio.

(c) Plot your results in part (b) for different values of σΩ .

5.7. (Computer exercise) This problem requires that you first complete the
computer exercise in Problem 2.35, wherein you will construct a Ricean fading
simulator. The objective of this question is to evaluate the performance of BPSK
signaling on a Ricean fading channel through computer simulation.

Suppose that we send one of the two possible signal vectors s̃0 = −s̃1 =
√

2En

where Eh = Eb is the transmitted bit energy. Assuming ideal coherent detection, the
received signal vector is

r̃ = α s̃i + ñ,

where α is a Ricean distributed random variable and ñ is a zero-mean complex
Gaussian random variable with variance No. For a given α , the probability of bit
error is

Pb(γb) = Q
(√

2γb

)
,

where γb = α2Eb/No. The probability of bit error with Ricean fading is

Pb =

∫ ∞

0
Q
(√

2γb

)
p(γb)dγb.

(a) Evaluate the bit error probability using computer simulation, where α is
generated by the Ricean fading simulator that you developed in Problem 2.35.
Assume that the value of α stays constant for a bit duration, that is, update
your fading simulator every T seconds, where T is the bit duration. Assume
fmT = 0.1.

(b) Plot the simulated bit error probability, Pb, against the average received bit
energy-to-noise ratio γ̄b = E[α2]Eb/No. Show your results for 0.5 < Pb < 10−3

and for Rice factors K = 0,4,7 and 16. Note: To adjust γ̄b you will need to
adjust the value of Ωp in your fading envelope generator.

5.8. Consider a nonorthogonal coherent binary FSK system with the bandpass
waveforms

s1(t) = Acos(2π fct), 0 ≤ t ≤ T

s2(t) = Acos(2π( fc +Δ f )t), 0 ≤ t ≤ T

and assume that fcT  1.
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(a) Show that the correlation between the bandpass waveforms is given by

ρ =
1
E

∫ T

0
s1(t)s2(t)dt = sinc(2Δ f T ),

where E is the energy in the waveforms.
(b) What is the value of Δ f that minimizes the probably of symbol error?
(c) For the value of Δ f obtained in part (b), determine the increase in the received

bit energy-to-noise ratio, γb, required so that this coherent FSK system has the
same bit error probability as a coherent binary PSK system.

5.9. OFDM systems are known to be resilient to timing errors. Consider the
following OFDM waveform with a cyclic prefix

s̃g(t) = A∑
n

b(t − nTg,xn),

where

b(t,xn) = uαgT (t +αgT )
N−1

∑
k=0

xn,kej 2πk(t+T )
NTs + uT (t)

N−1

∑
k=0

xn,kej 2πkt
NTs ,

and T = NTs and Tg = (1+αg)T . Suppose the waveform s̃g(t) is sampled every Ts

seconds. For the nth OFDM symbol, this yields the sample sequence {Xn,m}N−1
m=0,

where

Xn,m = s̃(−αgT + nTg +mTs +Δt),

and Δt is a timing offset. For the nth OFDM symbol, an FFT is taken on the sample
sequence {Xn,m}N−1

m=0.

(a) Suppose that the timing offset Δt lies in the interval (0,αgT ) such that the
samples {Xn,m}N−1

m=0 all belong to the nth OFDM symbol. Determine the FFT
coefficients.

(b) Now suppose that the timing offset Δt lies outside the interval (0,αgT ), such
that the samples {Xn,m}N−1

m=0 do not all belong to the nth OFDM symbol.
Determine the FFT coefficients.

5.10. Consider the following OFDM waveform with a cyclic suffix and a carrier
frequency offset Δ f :

s̃g(t) = A∑
n

b(t − nTg,xn),

where

b(t,xn) = uT (t)
N−1

∑
k=0

xn,kexp

{

j2π
(

k
NTs

+Δ f

)

t

}

+uαgT (t −T )
N−1

∑
k=0

xn,kexp

{

j2π
(

k
NTs

+Δ f

)

t

}

,
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T = NTs and Tg = (1+αg)T . The waveform s̃g(t) is sampled every Ts seconds. For
the nth OFDM symbol, this yields the sample sequence {Xn,m}N−1

m=0, where

Xn,m = s̃(nTg +mTs).

An FFT is taken on the sample sequence {Xn,m}N−1
m=0.

Show that the FFT coefficients (in absence of noise) can be written as

Zn,i = FFT{Xn,m}= ηxn,i + ci,

where

η = A

{
sin
(
πNΔ f Ts

)

N sin
(
πΔ f Ts

)

}

ejπ(N−1)Δ f Ts

and

ci = A
N−1

∑
m=0
m �=i

xn,mH(m, i)

is the random ICI term, where

H(m, i) =

{
sin
(
π
(
m− i+NΔ f Ts

))

N sin
(
π
(
m− i+NΔ f Ts

)
/N
)

}

ejπ(N−1
N )(m−i+NΔ f Ts).

5.11. Suppose that the average bit energy-to-noise ratio, γ̄b, in a cell is uniformly
distributed between 12 and 16 dB. Calculate the average probability of bit error in
the cell assuming that there is also Rayleigh fading, and binary DPSK signaling is
used.

5.12. Consider the differentially coherent receiver shown in Fig. 5.19. Show that
the PDF of Un is given by (5.157).

5.13. Consider a system that uses M-ary orthogonal modulation with noncoherent
detection. The error probability on an AWGN channel is known to be

Pb =
M

2(M − 1)

M−1

∑
k=1

(−1)k+1
(M−1

k

)

k+ 1
exp

{

− kγs

(k+ 1)

}

,

where γs = α2Es/No is the received symbol-energy-to-noise ratio.

(a) Derive the corresponding expression for the probability of bit error on a slow
flat Rayleigh fading channel. Express your result in terms of the average
received bit-energy-to-noise ratio, γ̄b, and simplify to closed form.

(b) Repeat part (a) for a slow flat Ricean fading channel. Simplify as much as
possible.
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5.14. Consider binary CPFSK modulation with modulation index h ≤ 0.5. Compute
the minimum squared Euclidean distance between any pair of band-pass waveforms
as given by

D2
min = lim

n→∞
min

i, j

∫ nT

0

(
s(t;x(i))− s(t;x( j))

)2
dt,

where s(t;x(i)) and s(t;x( j)) are the two band-pass signals whose phase trajectories
diverge at time t = 0 and merge sometime later. What is the pairwise error
probability between two such signals?

5.15. The squared Euclidean distance between a pair of CPM band-pass wave-
forms, s(t;x(i)) and s(t;x( j)), is

D2 =
∫ ∞

0

(
s(t;x(i))− s(t;x( j))

)2
dt.

Show that

D2 = 2(log2M)Eb
1
T

∫ ∞

0

(
1− cosΔφ (t)

)
dt,

where M is the symbol alphabet size, Eb is the energy per bit, and Δφ (t) is the phase
difference between the two signals.

5.16. Construct a differential detector for MSK signaling. Obtain an expression for
the probability of bit error for differentially detected MSK on an AWGN channel.

5.17. Suppose that GMSK signaling is used. Unfortunately, the GMSK pulse is
noncausal and, therefore, a truncated version of the pulse is used, that is, the time-
domain pulse is

h f (t) =
1

2T

(

Q

(
t/T − 1/2

σ

)

−Q

(
t/T + 1/2

σ

))

rect

(
t −LTT
2LTT

)

,

where

Q(α) =
∫ ∞

α

1√
2π

e−x2
dx, (5.204)

σ2 =
ln2

4π2(BT )2 . (5.205)

Compute the maximum value of the ISI term in (4.150) as a function of the
normalized filter bandwidth BT when LT = 3.



Chapter 6
Multi-antenna Techniques

Rayleigh fading converts an exponential dependency of the bit error probability on
the average received bit energy-to-noise ratio into an inverse linear one, yielding
a very large performance loss. Diversity is one very effective remedy that exploits
the principle of providing the receiver with multiple independently faded replicas of
the same information bearing signal. Sometimes these replicas are called diversity
branches. To illustrate the diversity mechanism, let p denote the probability that
the instantaneous bit energy-to-noise ratio for any one diversity branch falls below
a critical threshold γ th. Then with independently faded diversity branches, the
probability that the instantaneous bit energy-to-noise ratio simultaneously falls
below the same critical threshold γth for all L diversity branches is pL, and pL � p
for small values of p.

The methods by which diversity can be achieved generally fall into six categories:
(1) space, (2) angle, (3) polarization, (4) frequency, (5) multipath, and (6) time.
Space diversity is achieved using multiple transmit or receiver antennas. The spatial
separation between the antenna elements at the transmitter and/or receiver is chosen
so that the diversity branches experience uncorrelated fading. Chapter 2 showed
that a spatial separation of about a half-wavelength will suffice for 2D isotropic
scattering and isotropic antenna elements. Angle (or direction) diversity requires a
number of directional antennas. Each antenna selects plane waves arriving from a
different spatial direction, so that uncorrelated branches are achieved. Polarization
diversity exploits the property that a scattering environment tends to depolarize
a signal. Receiver antennas having different polarizations can be used to obtain
uncorrelated branches. Frequency diversity uses multiple channels that are separated
by at least the coherence bandwidth of the channel. In general, frequency diversity
is not a bandwidth efficient solution. However, frequency hopping can be used along
with coding where the elements of the codewords are transmitted on multiple hops
(or carriers) that experience uncorrelated fading. Multipath diversity is obtained by
resolving multipath components at different delays using direct sequence spread
spectrum signaling along with a RAKE receiver. Spread spectrum concepts will be
discussed in detail in Chap. 9. Time diversity is obtained by transmitting the same
information at multiple time periods that are separated by at least the coherence time

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 6,
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of the channel. Error correction coding techniques can be viewed as a bandwidth
efficient method for implementing time diversity. Unfortunately, the coherence time
of the channel depends on the Doppler spread, and a small Doppler spread implies
a large coherence time. Under this condition, it may not be possible to obtain time
diversity without introducing an unacceptably large interleaving delay. Finally, the
above techniques can be combined together. For example, spatial and temporal
diversity can be combined together using space-time coding techniques.

Once the diversity branches are generated, they must be combined together.
A very large variety of diversity combining techniques have been described in the
literature. The type of diversity combining that is most effective will depend, among
other things, on the type of additive impairment that is present, that is, additive white
Gaussian noise (AWGN) or co-channel interference (CCI). For AWGN dominant
channels, maximal ratio combining (MRC) is optimum in a maximum likelihood
sense. For channels that are dominated by CCI, optimum combining is more
effective, where interference correlation across multiple antenna branches is used
to reject the CCI.

This chapter concentrates on antenna diversity techniques, although the mathe-
matical concepts will readily apply to other types of diversity as well. Section 6.1
formulates the diversity combining problem when there is a single transmit an-
tenna and multiple receiver antennas. Sections 6.2, 6.3, 6.4, and 6.5 consider
selective combining, MRC, equal gain combining (EGC), and switched combining,
respectively. Section 6.6 considers differential detection with EGC, while Sect. 6.7
is concerned with noncoherent square-law combining. Optimum combining for
the purpose of combating fading and CCI is considered in Sect. 6.8. Section 6.9
considers the case of multiple transmit antennas, where an antenna array is used for
beam forming. Finally, Sect. 6.10 considers transmit diversity schemes, where there
are multiple transmit antennas and either a single or multiple receiver antennas.

6.1 Diversity Combining

There are many methods for combining the signals that are received on the different
diversity branches, and several ways of categorizing them. Diversity combining
that takes before matched filtering or correlation detection is sometimes called
predetection combining, while diversity combining that takes place after matched
filtering or correlation detection is sometimes called postdetection combining. In
many cases, there is no difference in theoretical performance between the two
approaches, while in other cases there is a performance difference.

Consider the receiver diversity system shown in Fig. 6.1. The signal that is
received by each receiver antenna is demodulated to baseband with a quadrature
demodulator as shown in Fig. 5.1 and then processed with correlator or matched
filter detector shown in Figs. 5.2 and 5.3, respectively. Later, the correlator or
matched filter outputs are applied to a diversity combiner as shown in Fig. 6.1.
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Fig. 6.1 Postdetection
diversity receiver

(   )r
1

t ~r1

diversity
combiner

~rdetector

detector

(   )r t ~r

~r(   )r t

22

LL

detector

Consider a communication system that uses an M-ary modulation alphabet along
with a receiver having L diversity branches. During each baud interval, one of M
message waveforms is transmitted having the complex envelope s̃m(t),m= 1, . . . ,M.
The received complex envelopes for the L diversity branches are

r̃k(t) = gks̃m(t)+ ñk(t), k = 1, . . . , L, (6.1)

where gk = αkejφk is the complex fading gain associated with the kth branch. The
AWGN processes ñk(t), k = 1, . . . , L are independent from branch to branch, since
they correspond to the thermal noise that is introduced by the high gain amplifiers
that are used to amplify the signals received on each of the receiver antenna
elements. After correlating or matched filtering the received waveforms r̃k(t) with
the basis functions that are obtained from a Gram–Schmidt orthonormalization
procedure, the corresponding received signal vectors are

r̃k = gks̃m + ñk, k = 1, . . . , L, (6.2)

where

r̃ki = gks̃mi + ñki , i = 1, . . . , N. (6.3)

The fading gains of the various diversity branches typically have some degree of
correlation, and the degree of correlation depends on the type of diversity being used
and the propagation environment. To simplify analytical derivations, the diversity
branches are often assumed to be uncorrelated in the literature. However, branch
correlation will reduce the achievable diversity gain and, therefore, the uncorrelated
branch assumption gives optimistic results. Nevertheless, we will evaluate the
performance of the various diversity combining techniques under the assumption
of uncorrelated branches.

The fade distribution will affect the diversity gain as well. In general, the relative
advantage of diversity is greater for Rayleigh fading than Ricean fading, because
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as the Rice factor K increases there is less difference between the instantaneous
received bit energy-to-noise ratios on the various diversity branches. However, the
performance will always be better with Ricean fading than with Rayleigh fading,
for a given average received bit energy-to-noise ratio and diversity order. For our
purpose, we will consider the performance with slow flat Rayleigh fading, although
our methodology will apply to slow flat Ricean fading as well.

6.2 Selective Combining

With selective combining (SC), the diversity branch yielding the highest bit energy-
to-noise ratio is always selected. In this case, the diversity combiner in Fig. 6.1
performs the operation

r̃ = max
|gk|

r̃k. (6.4)

For communication links that use continuous transmission, SC is impractical
because it requires continuous monitoring of all diversity branches to estimate and
track the time-varying complex gains gk. If such channel estimation is performed,
then it is better to use MRC, as discussed in the next section, since the imple-
mentation is not that much more complicated and the performance is optimal in
AWGN. In systems that transmit information in bursts, a form of SC can sometimes
be implemented where the diversity branch is selected on a burst-by-burst basis,
using the synchronization word or training sequence that is inserted into each burst.
The selected branch is then used for the duration of the entire burst. Obviously, such
an approach is only useful if the channel does not change significantly over the burst
duration. In this section, however, we evaluate selection diversity under the idealized
assumption of continuous branch selection.

With Rayleigh fading, the instantaneous received modulated symbol energy-to-
noise ratio on the kth diversity branch has the exponential pdf

pγk(x) =
1
γ̄c

e−x/γ̄c , (6.5)

where γ̄c is the average received branch symbol energy-to-noise ratio, assumed to
be the same for all diversity branches. With ideal SC, the branch with the largest
symbol energy-to-noise ratio is always selected so that the instantaneous symbol
energy-to-noise ratio at the output of the selective combiner is

γ s
s = max{γ1, γ2, . . . , γL} , (6.6)

where L is the number of branches. If the branches are independently faded, then
order statistics gives the cumulative distribution function (cdf)
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Fig. 6.2 Cdf of γ s
b for
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Fγ s
s (x) = P [γ1 ≤ x,γ2 ≤ x, . . . ,γL ≤ x] =

(
1− e−x/γ̄c

)L
. (6.7)

Differentiating the above expression gives the pdf of the instantaneous output
symbol energy-to-noise ratio as

pγ s
s (x) =

L
γ̄c

(
1− e−x/γ̄c

)L−1
e−x/γ̄c . (6.8)

The average output symbol energy-to-noise ratio with SC is

γ̄ s
s =

∫ ∞

0
xpγ s

s (x)dx

=

∫ ∞

0

Lx
γ̄c

(
1− e−x/γ̄c

)L−1
e−x/γ̄cdx

= γ̄c

L

∑
k=1

1
k
. (6.9)

Figure 6.2 plots the cdf Fγ s
s (x) against the normalized symbol energy-to-noise ratio

x/γ̄c. Note that the largest diversity gain is obtained in going from L = 1 to L = 2,
and diminishing returns are obtained with increasing L. This behavior is typical for
all diversity techniques.

The bit error probability with slow flat fading can be obtained by averaging the
bit error probability, as a function of the symbol energy-to-noise ratio, over the
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Fig. 6.3 Bit error probability
for binary DPSK with
differential detection and
L-branch selective diversity
combining
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pdf of γ s
s . For example, the bit error probability for binary DPSK with differential

detection on an AWGN channel is

Pb(γ s
s ) =

1
2

e−γ s
s , (6.10)

where γ s
s can be interpreted as the instantaneous bit energy-to-noise ratio since

binary modulation is being used. Hence, with SC

Pb =

∫ ∞

0
Pb(x)pγ s

s (x)dx

=

∫ ∞

0

L
2γ̄c

e−(1+1/γ̄c)x
(

1− e−x/γ̄c
)L−1

dx

=
L

2γ̄c

L−1

∑
n=0

(
L− 1

n

)

(−1)n
∫ ∞

0
e−(1+(n+1)/γ̄c)xdx

=
L
2

L−1

∑
n=0

(L−1
n

)
(−1)n

1+ n+ γ̄c
, (6.11)

where we have used the binomial expansion

(1− x)L−1 =
L−1

∑
n=0

(
L− 1

n

)

(−1)nxn. (6.12)

The bit error probability is plotted in Fig. 6.3, where γ̄c is equal to the branch bit
energy-to-noise ratio. SC is seen to give a very large improvement in bit error rate
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performance. When γ̄c  1, (6.11) shows that the bit error probability is proportional
to 1/γ̄ L

c . Again, the greatest benefit of using diversity is achieved in going from L= 1
to L = 2 diversity branches and diminishing returns are obtained with increasing L.

6.3 Maximal Ratio Combining

With MRC, the diversity branches are weighted by their respective complex fading
gains and combined. MRC realizes a maximum likelihood receiver as we now show.
Referring to (6.2), the vector

r̃ = vec(r̃1, r̃2, · · · , r̃L) (6.13)

has the multivariate complex Gaussian distribution

p(r̃|g, s̃m) =
L

∏
k=1

N

∏
i=1

1
2πNo

exp

{

− 1
2No

|r̃k,i − gks̃m,i|2
}

=
1

(2πNo)LN exp

{

− 1
2No

L

∑
k=1

‖r̃k − gks̃m‖2

}

, (6.14)

where g = (g1,g2, . . . ,gL) is the channel vector. The maximum likelihood receiver
chooses the message vector s̃m that maximizes the likelihood function p(r̃|g, s̃m).
This is equivalent to choosing the message vector s̃m that minimizes the metric

μ(s̃m) =
L

∑
k=1

‖r̃k − gks̃m‖2

=
L

∑
k=1

(‖r̃k‖2 − 2Re{r̃k ·g∗
k s̃∗m}+ |gk|2‖s̃m‖2) . (6.15)

Since ∑L
k=1 ‖r̃k‖2 is independent of the hypothesis as to which s̃m was sent and

‖s̃m‖2 = 2Em, the receiver just needs to maximize the metric

μ2(s̃m) =
L

∑
k=1

Re{r̃k ·g∗
k s̃∗m}−Em

L

∑
k=1

|gk|2

=
L

∑
k=1

Re

{

g∗
k

∫ ∞

−∞
r̃k(t)s̃

∗
m(t)dt

}

−Em

L

∑
k=1

|gk|2. (6.16)
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Fig. 6.4 Metric computer for maximal ratio combining

If signals have equal energy then the last term can be neglected, since it is the same
for all message vectors. This results in

μ3(s̃m) =
L

∑
k=1

Re{r̃k ·g∗
k s̃∗m}

=
L

∑
k=1

Re

{

g∗
k

∫ ∞

−∞
r̃k(t)s̃

∗
m(t)dt

}

. (6.17)

An alternative form of the ML receiver can also be obtained by rewriting the metric
in (6.16) as

μ4(s̃m) = Re

{
L

∑
k=1

g∗
k r̃k · s̃∗m

}

−Em

L

∑
k=1

|gk|2

=
∫ ∞

−∞
Re

{(
L

∑
k=1

g∗
k r̃k(t)

)

s̃∗m(t)

}

dt −Em

L

∑
k=1

|gk|2. (6.18)

From (6.18), the ML receiver can be constructed. The diversity combiner in Fig. 6.1
generates the sum

r̃ =
L

∑
k=1

g∗
k r̃k, (6.19)

which is then applied to the metric computer shown in Fig. 6.4.
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To evaluate the performance gain with MRC, we substitute the received branch
vectors in (6.2) into (6.19). This yields

r̃ =
L

∑
k=1

g∗
k (gks̃m + ñk)

=

(
L

∑
k=1

α2
k

)

s̃m +
L

∑
k=1

g∗
k ñk

≡ α2
Ms̃m + ñM, (6.20)

where α2
M = ∑L

k=1 α2
k , ñM = ∑L

k=1 g∗
k ñk and α2

k = |gk|2. The first term in (6.20) is
the signal component with average energy 1

2 E[α4
M‖s̃m‖2] = α4

MEav, where Eav is
the average symbol energy in the signal constellation. The second term is the noise
component with variance

σ2
ñM

=
1
2

E[‖ñM‖2] = No

L

∑
k=1

α2
k = Noα2

M. (6.21)

The ratio of the two gives the symbol energy-to-noise ratio

γ mr
s =

1
2 E[α4

M‖s̃m‖2]

σ2
ñM

=
α2

MEav

No
=

L

∑
k=1

α2
k Eav

No
=

L

∑
k=1

γk, (6.22)

where γk = α2
k Eav/No. Hence, γ mr

s is the sum of the individual symbol energy-to-
noise ratios of the L diversity branches.

If the branches are balanced (which is a reasonable assumption with antenna
diversity) and uncorrelated, then γ mr

s has a chi-square distribution with 2L degrees
of freedom as shown in the Appendix. That is,

pγ mr
s (x) =

1
(L− 1)!(γ̄c)L xL−1e−x/γ̄c , (6.23)

where

γ̄c = E[γk] k = 1, . . . , L. (6.24)

The cdf of γ mr
s is

Fγ mr
s
(x) = 1− e−x/γ̄c

L−1

∑
k=0

1
k!

(
x
γ̄c

)k

. (6.25)

It follows from (6.22) that the average symbol energy-to-noise ratio with MRC and
balanced branches is

γ̄ mr
s =

L

∑
k=1

γ̄k =
L

∑
k=1

γ̄c = Lγ̄c. (6.26)
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Fig. 6.5 Cdf of γ mr
s for

maximal ratio combining; γ̄c
is the average branch symbol
energy-to-noise ratio
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Figure 6.5 plots the cdf Fγ mr
b
(x) against the normalized symbol energy-to-noise ratio

x/γ̄c. Plots of the cdf can be used to compare the various diversity combining
schemes, independent of the modulation scheme being used. For example, with
L = 2 and SC, the cdf in Fig. 6.2 shows that Fγ s

s
(x) = 10−4 at x/γ̄c = 0.01 (γ s

s − γ̄c =

−20 dB). However, with L = 2 and MRC, Fig. 6.5 shows that Fγ mr
s (x) = 10−4 at

x/γ̄c = 0.01585 (γ mr
s − γ̄c = −18 dB). The implication is that MRC is 2 dB more

power efficient than SC, with all other things being equal.
When computing the probability of bit error, we must limit our attention to

coherent signaling techniques since MRC is a coherent detection technique. For
example, the bit error probability with BPSK is

Pb(γ mr
s ) = Q(

√
2γ mr

s ), (6.27)

where γ mr
s is the instantaneous bit energy-to-noise ratio. Hence, the bit error

probability is

Pb =

∫ ∞

0
Pb(x)pγ mr

s (x)dx

=

∫ ∞

0
Q
(√

2x
) 1
(L− 1)!(γ̄c)L xL−1e−x/γ̄cdx

=

(
1− μ

2

)L L−1

∑
k=0

(
L− 1+ k

k

)(
1+ μ

2

)k

, (6.28)



6.4 Equal Gain Combining 335

Fig. 6.6 Bit error probability
for maximal ratio combining
and coherent BPSK signaling
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where

μ =

√
γ̄c

1+ γ̄c
. (6.29)

The last step follows after some algebra. The bit error probability in (6.28) is
plotted in Fig. 6.6. Once again, diversity significantly improves the performance.
The largest gain in performance is obtained in going from L = 1 to L = 2 branches,
and diminishing returns are obtained as L increases further.

6.4 Equal Gain Combining

EGC is similar to MRC in which the branches are coherently combined, but is
different from MRC in which the branches are not weighted. In practice, such
a scheme is useful for modulation techniques having equal energy symbols, for
example, M-PSK. With signals of unequal energy, the complete channel vector
g = (g1,g2, . . . ,gL) is required anyway and optimum maximum likelihood MRC
might as well be used. With EGC, the receiver maximizes the metric

μ(s̃m) =
L

∑
k=1

Re{e−jφk r̃k · s̃∗m}

=
L

∑
k=1

Re

{

e−jφk

∫ ∞

−∞
r̃k(t)s̃

∗
m(t)dt

}

. (6.30)
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This metric can be rewritten in the alternate form

μ(s̃m) = Re

{
L

∑
k=1

e−jφk r̃k · s̃∗m
}

=

∫ T

0
Re

{(
L

∑
k=1

e−jφk r̃k(t)

)

s̃∗m(t)

}

dt. (6.31)

It is apparent that the combiner in Fig 6.1 generates the sum

r̃ =
L

∑
k=1

e−jφk r̃k (6.32)

with EGC. The vector r̃ is then applied to the metric computer shown in Fig. 6.4 with
βm = 0,m = 1, . . . ,L. The reason for setting βm = 0 comes from the assumption of
equal energy signals.

To evaluate the performance gain with EGC, we substitute the received branch
vectors in (6.2) into (6.32). This yields

r̃ =
L

∑
k=1

e−jφk (gks̃m + ñk)

=

(
L

∑
k=1

αk

)

s̃m +
L

∑
k=1

e−jφk ñk

≡ αEs̃m + ñE, (6.33)

where αE = ∑L
k=1 αk, ñE = ∑L

k=1 e−jφk ñk and αk = |gk|. The first term in (6.33) is
the signal component with average energy 1

2 E[α2
E‖s̃m‖2] = α2

EEav, where Eav is the
average symbol energy in the signal constellation. The second term is the noise
component with variance

σ2
ñE

=
1
2

E[‖ñE‖2] = LNo. (6.34)

The ratio of the two gives the symbol energy-to-noise ratio

γ eg
s =

α2
E Eav

LNo
. (6.35)

The cdf and pdf for γ eg
s do not exist in closed form for L > 2. However, for L = 2

and γ̄1 = γ̄2 = γ̄c, the cdf is equal to

Fγ eg
s
(x) = 1− e−2x/γ̄c −

√

π
x
γ̄c

e−x/γ̄c

(

1− 2Q

(√

2
x
γ̄c

))

. (6.36)
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Differentiating the above expression yields the pdf

pγ eg
s
(x) =

1
γ̄c

e−2x/γ̄c −√
πe−x/γ̄c

(
1

2
√

xγ̄c
− 1

γ̄c

√
x
γ̄c

)(

1− 2Q

(√

2
x
γ̄c

))

.

(6.37)

The average symbol energy-to-noise ratio with EGC is

γ̄ eg
s =

Eav

LNo
E

⎡

⎣

(
L

∑
k=1

αk

)2
⎤

⎦

=
Eav

LNo

L

∑
j=1

L

∑
�=1

E [αkα�] . (6.38)

With Rayleigh fading, E[α2
k ] = 2b0 and E[αk] =

√
πb0/2. Furthermore, if the

branches experience uncorrelated fading, then E[αkα�] = E[αk]E[α�] for k �= �.
Hence,

γ̄eg
s =

Eav

LNo

(

2Lb0 +L(L− 1)
πb0

2

)

=
2b0Eav

No

(
1+(L− 1)

π
4

)

= γ̄c

(
1+(L− 1)

π
4

)
. (6.39)

The bit error probability with two-branch EGC can be obtained using the pdf in
(6.37). Once again, EGC is a coherent detection technique so that we must restrict
our attention to coherent signaling techniques. For example, with BPSK the bit error
probability is (Problem 6.11)

Pb =
∫ ∞

0
Pb(x)pγ eg

s
(x)dx

=
1
2

(
1−
√

1− μ2
)
, (6.40)

where

μ =
1

1+ γ̄c
. (6.41)

6.5 Switched Combining

A switched combiner scans through the diversity branches until it finds one that has
a bit energy-to-noise ratio exceeding a specified threshold. This diversity branch is
selected and used until the bit energy-to-noise ratio again drops below the threshold.
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When this happens, another diversity branch is chosen which has a bit energy-to-
noise ratio exceeding the threshold. The big advantage of switched combining is that
only one detector is needed. There are several variations of switched diversity. Here,
we analyze two-branch switch and stay combining (SSC). With SSC, the receiver
switches to, and stays with, the alternate branch when the bit energy-to-noise ratio
drops below a specified threshold. It does this regardless of whether the bit energy-
to-noise ratio with the alternate branch is above or below the threshold.

Let the bit energy-to-noise ratios associated with the two branches be denoted
by γ1 and γ2, and let the switching threshold be denoted by T . Using (6.5), the
probability that γi is less than T is

q = P[γi < T ]

= 1− e−T/γ̄c , i = 1,2. (6.42)

Likewise, the probability that γi is less than S is

p = 1− e−S/γ̄c, i = 1,2. (6.43)

Let γ sw
s denote the symbol energy-to-noise ratio at the output of the switched

combiner. Then

P[γ sw
s ≤ S] = P

[
γ sw

s ≤ S|γ sw
s = γ1

⋃
γ sw

s ≤ S|γ sw
s = γ2

]
. (6.44)

Since γ1 is statistically identical to γ2, we can assume that branch 1 is currently in
use. It follows that

P[γ sw
s ≤ S] =

{
P [γ1 ≤ T

⋂
γ2 ≤ S] , S < T

P [T ≤ γ1 ≤ S
⋃

γ1 ≤ T
⋂

γ2 ≤ S] , S ≥ T
. (6.45)

The region S < T corresponds to the case where γ1 has dropped below the threshold
T and a switch to branch 2 is initiated, but γ2 < T so that the switch does not result
in a γ sw

s greater than T . On the other hand, the region S ≥ T corresponds to the case
when either γ1 is between T and S or when γ1 has dropped below the threshold T so
that a switch to branch 2 occurs, and T ≤ γ2 ≤ S. Since γ1 and γ2 are independent,
the above probabilities are

P
[
γ1 ≤ T

⋂
γ2 ≤ S

]
= qp (6.46)

and

P
[
T ≤ γ1 ≤ S

⋃(
γ1 ≤ T

⋂
γ2 ≤ S

)]
= p− q+ qp. (6.47)

Therefore,

P[γsw
s ≤ S] =

{
qp S < T
p− q+ qp S ≥ T

. (6.48)
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Fig. 6.7 Cdf of γ sw
s for

two-branch switched diversity
for several values of the
normalized threshold
R = 10log10(T/γ̄c); γ̄c is the
average branch bit
energy-to-noise ratio
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Figure 6.7 plots the cdf Fγ sw
s (x) against the normalized symbol energy-to-noise

ratio x/γ̄c, for several values of the normalized threshold R = 10log10{T/γ̄c} (dB).
Observe that SSC always performs worse than SC except at the switching threshold,
where the performance is the same. Since SSC offers the most improvement just
above the threshold level, the threshold level should be chosen as γ th, the minimum
acceptable instantaneous bit energy-to-noise ratio that the communication link can
tolerate and still provide an acceptable quality of service. Finally, the optimum
threshold, T = Rγ̄c, depends on γ̄c.

The probability of bit error can be computed for SSC from the pdf of the bit
energy-to-noise ratio at the output of the switched combiner. The pdf of γ sw

s is

pγ sw
s (x) =

{
q 1

γ̄c
e−x/γ̄c , x < T

(1+ q) 1
γ̄c

e−x/γ̄c , x ≥ T
(6.49)

If DPSK is used with differential detection, for example, then Pb(γ sw
s ) = 1

2 e−γ sw
s ,

and the probability of bit error is

Pb =

∫ ∞

0
Pb(x)pγ sw

s (x)dx

=
1

2(1+ γ̄c)

(
q+(1− q)e−T) , (6.50)

where γ̄c is the average branch bit energy-to-noise ratio. The above expression is
plotted in Fig. 6.8 for several values of T . The performance with T = 0 is the same
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Fig. 6.8 Bit error probability
for two-branch switched
combining and differentially
detected DPSK
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as using no diversity at all, because no switching occurs. The performance changes
little for T > 6. As T increases, the probability of switching, q, also increases as
shown in Fig. 6.9. For some systems, it may desirable to keep q as small as possible
to minimize the number of switches.

6.6 Differential Detection with Equal Gain Combining

EGC has a simple implementation and very good performance when used in
conjunction with differential detection. Differential detection circumvents the need
to co-phase and weight the diversity branches. The overall receiver structure is
shown in Fig. 6.10. The structure of the individual differential detectors depends
on the type of modulation that is being used. For DPSK, the detector structure is as
shown in Fig. 5.19, while for π/4-QPSK the detector is as shown in Fig. 5.20. In the
latter case, the U and V branches in Fig. 5.20 are combined separately.

For DPSK, the decision variable at the output of the combiner at epoch n is, from
(5.151) and Fig. 6.10,

Un =
L

∑
k=1

Un,k =
1
2

L

∑
k=1

(Zn,kZ∗
d,n,k +Z∗

n,kZd,n,k). (6.51)
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Fig. 6.9 Probability of
switching for two-branch
switched combining
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Fig. 6.10 Differential
detection with postdetection
equal gain combining
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Using characteristic functions, it can be shown that the decision variable Un has
the difference form Un =Wn −Yn, where Wn and Yn are independent noncentral and
central chi-square random variables, respectively, each with 2L degrees of freedom,
that is,

fWn(w) =
1

2EhNo

(w
s2

) L−1
2

exp

{

− (s2 +w)
2EhNo

}

IL−1

(√
w

s
EhNo

)

, (6.52)

fYn(y) =

(
1

2EhNo

)L 1
(L− 1)!

yL−1 exp

{

− y
2EhNo

}

, (6.53)

where

s2 = 4Eh

L

∑
k=1

α2
k (6.54)
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is the noncentrality parameter, and In(x) is the nth-order modified Bessel function
of the first kind, defined by

In(x) =
1

2π

∫ 2π

0
excos(θ) cos(nθ )dθ . (6.55)

After some algebraic detail, the probability of error can be expressed in the closed
form [217]

Pb(γt) =
1

22L−1 e−γt
L−1

∑
k=0

bkγ k
t , (6.56)

where

bk =
1
k!

L−1−k

∑
n=0

(
2L− 1

n

)

(6.57)

and

γt =
L

∑
k=1

γk. (6.58)

The parameter γt has the central chi-square distribution in (6.23), and averaging
Pb(γt) over this distribution gives the result

Pb =
1

22L−1(L− 1)!(1+ γ̄c)L

L−1

∑
k=1

bk(L− 1+ k)!

(
γ̄c

1+ γ̄c

)k

. (6.59)

This can be manipulated in the same form as (6.28) with

μ =
γ̄c

1+ γ̄c
. (6.60)

The various diversity combining techniques are compared in Fig. 6.11 for dif-
ferentially detected binary DPSK signals. It is apparent that differentially detected
DPSK with postdetection equal gain combining has the best performance, followed
by SC and SSC combining. Once again, we stress that it does not make sense to
use MRC or EGC with differential detection since MRC and EGC are coherent
combining techniques.

6.7 Noncoherent Square-Law Combining

Square-law combining is a diversity combining technique that is used with non-
coherent detection. As such, square-law combining is only useful for orthogonal
modulation schemes, including M-ary FSK modulation and binary orthogonal codes
as discussed in Sect. 4.5.
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Fig. 6.11 Comparison
of two-branch diversity
combining techniques for
differentially detected binary
DPSK

5.0 15.0 25.0 35.0
γ c (dB)−

10-6

10-5

10-4

10-3

10-2

10-1

100

P b

switched (T  = 6)
selective
postdetection equal gain

Section 5.10 showed that the noncoherent detector calculates the M decision
variables X2

m, m = 1, . . . ,M and chooses the message waveform corresponding to
the largest decision variable (assuming equal energy messages). When diversity is
used, a separate square-law detector, as shown in Fig. 5.21, is used on each diversity
branch. This will yield the set of outputs Xm,k, m = 1, . . . ,M, k = 1, . . . ,L. The
square-law combiner then computes the following set of decision variables

Um =
L

∑
k=1

X2
m,k, m = 1, . . . ,M, (6.61)

and a decision is made in favor of the message waveform corresponding to the
largest Um.

If we assume that waveform s̃1(t) was transmitted, then we have

U1 =
L

∑
k=1

|r̃k · s̃∗1|2

=
L

∑
k=1

|2Egk +
√

2Eñk,1|2

=
L

∑
k=1

∣
∣
∣2Eαk cos(φk)+

√
2EñI,k,1 + j

(
2Eαk sin(φk)+

√
2EñQ,k,1

)∣
∣
∣
2
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and

Um =
L

∑
k=1

|r̃k · s̃∗m|2

=
L

∑
k=1

|
√

2Eñk,m|2

=
L

∑
k=1

∣
∣
∣
√

2EñI,k,m + j
√

2EñQ,k,m

∣
∣
∣
2
, m = 2, . . . ,M.

From Appendix A, the random variables Ui, i = 1, . . . ,M have a central chi-square
distribution with 2L degrees of freedom. It follows that

pU1(u1) =
1

(2σ2
1 )

L(L− 1)!
uL−1

1 exp

{

− u2
1

2σ2
1

}

, u1 ≥ 0, (6.62)

where

σ2
1 =

1
2

E

[∣
∣
∣2Egk +

√
2Eñk,1

∣
∣
∣
2
]

= 2ENo

(

1+
E[α2

k ]E

No

)

= 2ENo (1+ γ̄c) . (6.63)

Likewise,

pUm(um) =
1

(2σ2
2 )

L(L− 1)!
uL−1

m exp

{

− u2
m

2σ2
2

}

, um ≥ 0. (6.64)

where

σ2
2 = 2ENo, m = 2, . . . ,M. (6.65)

To evaluate the probability of error with square-law combining, we proceed along
the lines of Sect. 5.10.1. We first assume without loss of generality that waveform
s̃1(t) is sent. The receiver will make a correct decision if

Ui <U1, ∀ i �= 1. (6.66)

Hence, the probability of correct symbol decision is

P[c] = P [U2 <U1,U3 <U1, . . . ,UM <U1]

=
∫ ∞

0
(P [U2 < u1])

M−1 pU1(u1)du1, (6.67)
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where the second line follows from the fact that the Um, m = 2, . . . ,M are
independent and identically distributed. From the cdf of the central chi-square
distribution in (A.65), we have

P [U2 < u1] = 1− exp

{

− u1

2σ2
2

}L−1

∑
k=0

1
k!

(
u1

2σ2
2

)k

, u1 ≥ 0. (6.68)

The (M − 1)th power of this probability is then used in (6.67) to obtain the
probability of correct decision, and subtracting this result from unity gives the
probability of symbol error. This gives

PM = 1−
∫ ∞

0

(

1− exp

{

− u1

2σ2
2

}L−1

∑
k=0

1
k!

(
u1

2σ2
2

)k
)M−1

× 1

(2σ2
1 )

L(L− 1)!
uL−1

1 exp

{

− u1

2σ2
1

}

du1

= 1−
∫ ∞

0

(

1− e−y
L−1

∑
k=0

yk

k!

)M−1

× 1
(1+ γ̄c)L(L− 1)!

yL−1exp

{

− y
1+ γ̄c

}

dy. (6.69)

The above expression can be expressed in closed form using a multinomial
expansion. However, this is mathematically cumbersome for all but small values
of M and L, and it may just be easier to evaluate (6.69) numerically. When L = 1
(no diversity), (6.69) reduces to the simple form

PM =
M−1

∑
m=1

(−1)m+1
(M−1

m

)

1+m+mγ̄c
. (6.70)

Finally, from Sect. 5.3.4, the probability of bit error is

Pb =
2k−1

2k − 1
PM =

M
2(M − 1)

PM, (6.71)

and the average received bit energy-to-noise ratio is

γ̄b = Lγ̄c/log2M. (6.72)

Using these, (6.70) agrees with the result in (5.193).
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Fig. 6.12 Performance of
M-ary orthogonal signals
with square-law combining
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For the case of binary noncoherent orthogonal FSK (M = 2), it can be shown that
(6.69) reduces to the form in (6.28) where the parameter μ is defined as

μ =
γ̄c

2+ γ̄c
. (6.73)

When γ̄c  1, the probability of bit error for binary orthogonal FSK with Lth order
noncoherent square-law combining can be approximated by

Pb ≈
(

1
γ̄c

)L(2L− 1
L

)

. (6.74)

Figure 6.12 plots the probability of bit error against the bit energy-to-noise ratio
for various values of M and L. Note that the performance improves with increasing
M and increasing L. A significant improvement is realized by increasing L, and the
performance gain realized by increasing M is relatively small when L is small. Since
an increase in M implies a decrease in bandwidth efficiency for M-ary orthogonal
signals, it is more efficient in terms of bandwidth efficiency to increase L.

6.8 Optimum Combining

MRC is the optimal combining method in a maximum likelihood sense when the
additive impairment is AWGN. However, when the additive channel impairment is
dominated by CCI, it is better to use optimum combining (OC) which is designed
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to maximize the signal-to-interference-plus-noise ratio (SINR) at the output of
the combiner. OC uses spatial diversity not only to combat fading of the desired
signal, as is the case with MRC, but also to reduce the relative power of the
interfering signals at the receiver. This is achieved by exploiting the correlation of
the interference across the multiple receiver antenna elements. By combining the
signals that are received by multiple antennas, OC can suppress the interference and
improve the output SINR by several decibels. OC was first introduced by Baird and
Zahm [42] for the case of a single interferer and later extended to the case of multiple
interferers and applied to cellular frequency reuse systems by Winters [283,284]. In
this section, we describe the optimal combiner, derive the distribution of the output
signal-to-interference-plus-noise ratio, and then evaluate the bit error rate of PSK
signals when the desired and interfering signals are subject to slow flat Rayleigh
fading.

Consider a situation of a desired signal in the presence of K co-channel
interferers. The signal vectors at the L receiver antennas are equal to

r̃k = gk,0s̃0 +
K

∑
i=1

gk,is̃i + ñk, k = 1, . . . , L, (6.75)

where

s̃0 = (s̃01 , s̃02 , . . . , s̃0N ),

s̃i = (s̃i1 , s̃i2 , . . . , s̃iN ),

ñk = (ñk1 , ñk2 , . . . , ñkN )

are the desired signal vector, ith interfering signal vector, and noise vector, respec-
tively, N is the dimension of the signal space, and K is the number of interferers.

The L received signal vectors can be stacked in a column to yield the L × N
received matrix

R̃t = g0s̃0 +
K

∑
i=1

gis̃i + Ñ, (6.76)

where

R̃t =

⎛

⎜
⎜
⎜
⎝

r̃1

r̃2
...

r̃L

⎞

⎟
⎟
⎟
⎠
, gi =

⎛

⎜
⎜
⎜
⎝

gi,1

gi,2
...

gi,L

⎞

⎟
⎟
⎟
⎠
, Ñ =

⎛

⎜
⎜
⎜
⎝

ñ1

ñ2
...

ñL

⎞

⎟
⎟
⎟
⎠
. (6.77)

The L×L received desired-signal-plus-interference-plus noise correlation matrix is
given by

ΦR̃t R̃t
=

1
2

Es̃0,s̃i,Ñ

[(

g0s̃0 +
K

∑
i=1

gis̃i + Ñ

)(

g0s̃0 +
K

∑
i=1

gis̃i + Ñ

)H]

, (6.78)
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where ( ·)H denotes complex conjugate transpose. Likewise, the received
interference-plus-noise correlation matrix is given by

ΦR̃iR̃i
=

1
2

Es̃i,Ñ

[(
K

∑
i=1

gis̃i + Ñ

)(
K

∑
i=1

gis̃i + Ñ

)H]

. (6.79)

Note that the expectations in (6.78) and (6.79) are taken over a period that is much
less than the channel coherence time, that is, several modulated symbol durations.
If the desired signal, interfering signal, and noise vectors are mutually uncorrelated,
then (6.78) and (6.79) reduce to

ΦR̃t R̃t
= g0gH

0 Eav +
K

∑
i=1

gigH
i Ei

av +NoI (6.80)

and

ΦR̃iR̃i
=

K

∑
i=1

gigH
i Ei

av +NoI, (6.81)

respectively, where I is the L×L identity matrix and Ei
av is the average energy in the

ith interfering signal. It is important to note that the matrices ΦR̃t R̃t
and ΦR̃iR̃i

will
vary at the channel fading rate.

To mitigate the interference, the received signal vectors r̃k are multiplied by
controllable weights wk and summed together, that is, the combiner output is

r̃ =
L

∑
k=1

wk r̃k = wT R̃t , (6.82)

where w = (w1,w2, . . . ,wL)
T is the weight vector. Several approaches can be taken

to find the optimal weight vector w. One approach is to minimize the mean square
error

J = E
[‖r̃− s̃0‖2]

= E
[‖wT R̃t − s̃0‖2]

= 2wT ΦR̃t R̃t
w∗ − 4Re

{
Φs̃0R̃t

w∗
}
− 2Eav,

where ΦR̃t R̃t
is defined in (6.80) and

Φs̃0R̃t
= E
[
s̃0R̃H

t

]
= 2EavgH

0 . (6.83)

The weight vector that minimizes the mean square error can be obtained by setting
the gradient ∇wJ to zero. This gives the minimum mean square error (MMSE)
solution
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∇wJ =

(
∂J

∂w1
, · · · , ∂J

∂wL

)

= 4wT ΦR̃t R̃t
− 4Φs̃0R̃t

= 0. (6.84)

The solution is

wopt = Φ−1
R̃t R̃t

ΦT
s̃0R̃t

= 2EavΦ−1
R̃t R̃t

g∗
0, (6.85)

where we have used the fact that ΦT
s̃0R̃t

= 2g∗
0Eav. Since ΦR̃t R̃t

= g0gH
0Eav +ΦR̃iR̃i

,
we can write

wopt = 2Eav

(
ΦR̃iR̃i

+ g0gH
0 Eav

)−1
g∗

0

= 2Eav

(
ΦR̃iR̃i

+ g∗
0gT

0Eav

)−1
g∗

0. (6.86)

Next, we apply a variation of the matrix inversion lemma

(A+uvH)−1 = A−1 − A−1uvHA−1

1+ vHA−1u
(6.87)

to (6.86) resulting in

wopt = 2Eav

(

Φ−1
R̃iR̃i

−
EavΦ−1

R̃iR̃i
g∗

0gT
0Φ−1

R̃iR̃i

1+EavgT
0Φ−1

R̃iR̃i
g∗

0

)

g∗
0

= 2Eav

(
1

1+EavgT
0Φ−1

R̃iR̃i
g∗

0

)

·Φ−1
R̃iR̃i

g∗
0

= C ·Φ−1
R̃iR̃i

g∗
0, (6.88)

where C = 2Eav/(1+EavgT
0Φ−1

R̃iR̃i
g∗

0) is a scalar.
Another criterion for optimizing the weight vector is to maximize the instanta-

neous SINR at the output of the combiner

ω =
wT g0gH

0 Eavw∗

wT Φ−1
R̃iR̃i

w∗ . (6.89)

Solving for the optimum weight vector gives

wopt = B ·Φ−1
R̃iR̃i

g∗
0, (6.90)

where B is an arbitrary constant. Hence, the maximum instantaneous output SINR is

ω = EavgH
0Φ−1

R̃iR̃i
g0. (6.91)
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Note that the maximum instantaneous output SINR does not depend on the choice
of the scalar B. Therefore, the MMSE weight vector in (6.88) also maximizes the
instantaneous output SINR. Finally, when no interference is present, ΦR̃iR̃i

= NoI
and the optimal weight vector becomes

wopt =
g∗

0

No
, (6.92)

so that the combiner output is

r̃ =
L

∑
k=1

g∗
0,k

No
r̃k. (6.93)

From (6.19) and (6.93), we observe that OC reduces to MRC when no co-channel
interference is present.

6.8.1 Optimum Combining Performance

In typical land mobile radio environments, there can be several interfering signals
whose power level is close to that of the desired signal and numerous lower power
interfering signals. The number of interfering signals can be much greater than
the number of receiver antenna elements. In this case, the array output SINR may
not be changed significantly. However, even a small (few dB) increase in output
SINR can result in a large capacity gain. Thus, the array only needs to suppress the
dominant interferers so that their power level is below the sum power level of the
other interferers.

In a nonfading environment, the array cannot resolve two closely spaced
transmitters because the phase differences of the desired and interfering signals
across the antenna elements are almost the same. However, for land mobile radio
applications, the receiver antenna elements can be separated enough so that the
phases at each antenna element are independent. For 2D isotropic scattering around
the receiver antennas, a half-wavelength separation between the receiver antenna
elements is sufficient. Likewise, if there is a 2D isotropic scattering around the
transmit antennas, then a half-wavelength spatial separation is sufficient to ensure
independent phases at the receiver antenna elements, for example, at a base
station. Thus, the resolution of the signals from two different transmitters in a
land mobile radio environment does not depend on the spatial separation of the
transmitters. Instead for all locations there is a small probability that the receiver
array cannot resolve the two signals. This occurs when the phase differences across
all the receiver antenna elements is nearly the same for both the desired and
interfering signals. However, since the phase differences between antenna elements
are independent, the probability that the phase difference is nearly the same across
all antenna elements decreases significantly as the number of receiver antenna
elements increases, and becomes negligible for only a few antennas.
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We now consider the performance of OC in terms of the output SINR distribution
and the bit error rate for coherent BPSK modulation. Comparisons are made with
MRC. We assume that all signals are subject to slow flat Rayleigh fading. The
performance with optimum combining is quite complicated, since each interferer
impacts the performance of the optimum combiner. In this section, we evaluate
the performance with a single dominant interferer and assume that the remaining
co-channel interferers can be combined together and treated as additional lumped
interference that is uncorrelated between the receiver antenna elements. Such
lumped interference can be treated as additional AWGN. Under the assumption
that the combiner cannot suppress the lumped interference (since it is uncorrelated
across the antenna elements), we obtain a worst case analysis since the actual
combiner performance will always be better.

To evaluate the performance of OC, several definitions are required as follows:

Ω =
Average received desired signal power per antenna

Average received noise plus interference power per antenna

γ̄c =
Average received desired signal power per antenna

Average received noise power per antenna
=

E[|g0,k|2]Eav

No

γ̄i =
Average received ith interferer power per antenna

Average received noise power per antenna
=

E[|gi,k|2]Ei
av

No

ωR =
Instantaneous desired signal power at the array output

Average noise plus interference power at the array output

ω =
Instantaneous desired signal power at the array output

Instantaneous noise plus interference power at the array output
.

In the above definitions, “average” refers to the average over the Rayleigh fading,
while “instantaneous” refers to an average over a period that is much less than the
channel coherence time, that is, several modulated symbol durations. Finally, we
note that

Ω =
γ̄c

1+∑K
k=1 γ̄i

. (6.94)

In general, two approaches have been taken in the literature to evaluate the
performance of OC. The first approach assumes fading of the desired signal only
(nonfaded interferer), while the second approach assumes fading of both the desired
and interfering signals. The second approach is actually more realistic, since the
interfering signals are usually subject to the same fading rate as the desired signals.
Closed form expressions have been derived for either approach in the case of a single
interferer, while bounds and approximations have been used for multiple interferers.
For our purpose, we restrict our attention to a single interferer.
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Fig. 6.13 Cdf of ωR with
optimal combining for
various values of γ̄1 and
various number of receiver
antenna elements, L
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6.8.1.1 Fading of the Desired Signal Only

From (6.91), ωR is equal to

ωR = EavgH
0Φ−1

R̃iR̃i
g0, (6.95)

where, with a single interferer,

ΦR̃iR̃i
= E1

avE[g1gH
1 ]+NoI. (6.96)

Note that the expectation in (6.96) is over the Rayleigh fading. The pdf of ωR is [38]

pωR(x) =
e−x/γ̄c(x/γ̄c)

L−1(1+Lγ̄1)

γ̄c(L− 2)!

∫ 1

0
e−((x/γ̄c)Lγ̄1)t(1− t)L−2 dt (6.97)

and the cdf of ωR is

FωR(x) =
∫ x/γ̄c

0

e−yyL−1(1+Lγ̄1)

(L− 2)!

∫ 1

0
e−(yLγ̄1)t(1− t)L−2 dt dy. (6.98)

which are valid for L ≥ 2. Note that ωR in (6.97) and (6.98) is normalized by γ̄c.
Since γ̄c = (1+ γ̄1)Ω for the case of a single interferer, it is apparent that ωR can
be normalized by Ω as well. The normalization by Ω allows for a straight forward
comparison of OC and MRC. The cdf FωR(x) is plotted against x/Ω in Fig. 6.13
for various values of γ̄1. The curve corresponding to γ̄1 = 0 corresponds to the
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performance with MRC. Note that as γ̄1 increases, the cdf for a fixed value of Ω
decreases. This means that OC performs better when the interference becomes a
larger fraction of the interference-plus-noise power. Also, the performance improves
as the number of antenna elements increases.

The probability of bit error for coherently detected BPSK is given by

Pb =

∫ ∞

0
Q
(√

2x
)

pωR(x)dx. (6.99)

Several approaches have been taken to evaluate the above integral. Using (6.99) and
(6.97), and the results in [38], Winters derived the bit error probability as [283]

Pb =
(−1)L−1(1+Lγ̄1)

2(Lγ̄1)L−1

(

− Lγ̄1

1+Lγ̄1
+

√
γ̄c

1+ γ̄c
− 1

1+Lγ̄1

√
γ̄c

1+Lγ̄1 + γ̄c

−
L−2

∑
k=1

(−Lγ̄1)
k

(

1−
√

γ̄c

1+ γ̄c

(

1+
k

∑
i=1

(2i− 1)!!
i!(2+ 2γ̄c)i

)))

, (6.100)

where

(2i− 1)!! = 1 ·3 ·5 · · · · · (2i− 1).

As observed by Simon and Alouini [242], this expression is only valid for L ≥ 2.
The lack of validity for L = 1 can be observed by noting that Pb = 0 for γ̄1 = 0 (no
interference) which is clearly incorrect. Using an alternative form for the Gaussian
Q-function, Simon and Alouini have derived the following alternate expression
which is valid for L ≥ 1:

Pb =
1
2

(

1−
√

γ̄c

1+ γ̄c

L−2

∑
k=0

(
2k
k

)
1

(4(1+ γ̄c))k

(

1−
(

− 1
Lγ̄1

)L−1−k
)

−
√

γ̄c

1+Lγ̄1 + γ̄c

(

− 1
Lγ̄1

)L−1
)

. (6.101)

Figure 6.14 shows the probability of bit error with OC and one interferer against
Ω for several values of L and γ̄1. The performance with γ̄1 = 0 is identical to that of
MRC, and we have already seen that the bit error probability of coherently detected
BPSK with MRC is given by (6.28), where

μ =

√
Ω

1+Ω

and Ω = γ̄c.
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Fig. 6.14 Bit error
probability for coherent
BPSK and optimal combining
for various values of γ̄1 and
various number of receiver
antenna elements, L
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6.8.1.2 Fading of the Desired and Interfering Signals

From (6.91), the maximum instantaneous output SINR is equal to

ω = EavgH
0Φ−1

R̃iR̃i
g0, (6.102)

where, with a single interferer,

ΦR̃iR̃i
= E1

avg1gH
1 +NoI. (6.103)

In this case, the matrix ΦR̃iR̃i
varies at the fading rate. The matrix ΦR̃iR̃i

is Her-
mitian, meaning that ΦH

R̃iR̃i
= ΦR̃iR̃i

. Consequently, there exists a diagonalization

ΦR̃iR̃i
= UΛUH such that U is a unitary matrix and Λ = diag{λ1,λ2, . . . ,λL} is

a diagonal matrix consisting of the eigenvalues of ΦR̃iR̃i
. It follows that Φ−1

R̃iR̃i
=

UHΛ−1U. Hence, we can write

ω = EavgH
0 UHΛ−1Ug0. (6.104)

Since the matrix U is unitary, the vector ĝ0 = Ug0 = (ĝ0,1, ĝ0,2, . . . , ĝ0,L)
T retains the

statistical properties of g0. Therefore, we can write

ω = EavĝH
0 Λ−1ĝ0

= Eav

L

∑
i=1

|ĝ0,i|2
λi

. (6.105)
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Conditioned on the set of eigenvalues λi, i = 1,2, . . . ,L (which are now assumed
to be random variables), ω is a sum of independent exponentially distributed
random variables with mean values EavE[|ĝ0,i|2]/λi, i = 1,2, . . . ,L. It follows that
the characteristic function of ω , conditioned on the set of eigenvalues λi, i =
1,2, . . . ,L, is

φω|Λ( jv) =
L

∏
i=1

(
λi

λi − jvEavE[|ĝ0,i|2]
)

. (6.106)

The main difficulty in proceeding further is that, except for some special cases, it is
difficult to find the eigenvalues λi, i = 1,2, . . . ,L, and their associated pdfs. For the
case of a single interferer, the eigenvalues are given by [70]

λ1 = E1
avgH

1 g1 +No, (6.107)

λi = No, i = 2,3, . . . ,L. (6.108)

The interference-to-noise ratio at the combiner output, γ1 = E1
avgH

1 g1/No, is a central
chi-square random variable with 2L degrees of freedom, and has the pdf

pγ1(x) =
1

(L− 1)!(γ̄1)L xL−1e−x/γ̄1 ,x ≥ 0, (6.109)

where γ̄1 = E1
avE[|g1,k|2]/No. Also, the desired signal-to-noise ratio at the output

of the combiner, γs = EavgH
0g0/No, is a central chi-square random variable with 2L

degrees of freedom, and has the pdf

pγs(x) =
1

(L− 1)!(γ̄c)L xL−1e−x/γ̄c , x ≥ 0, (6.110)

where, once again, γ̄c = EavE[|g0,k|2]/No. Using (6.106), the characteristic function
of ω , conditioned on γ1, is [1]

ψω|γ1
( jv) =

( γ1+1
γ̄c

γ1+1
γ̄c

− jv

)( 1
γ̄c

1
γ̄c
− jv

)L−1

. (6.111)

For coherent BPSK, it can be shown that the probability of bit error for a given
ω , is [118, 3.363]

Pb(ω) = Q
(√

2ω
)

=
1

2π

∫ ∞

1

1

z
√

z− 1
e−ωz dz. (6.112)
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The bit error probability is then obtained by averaging over the pdf of ω . We have [1]

Pb =

∫ ∞

0

1
2π

∫ ∞

1

1

z
√

z− 1
e−xz pω(x)dzdx

=
1

2π

∫ ∞

1

1

z
√

z− 1

∫ ∞

0
e−xz pω(x)dxdz

=
1

2π

∫ ∞

1

1

z
√

z− 1
ψω(−z)dz. (6.113)

It follows that the bit error probability conditioned on γ1 can be obtained by
substituting (6.111) into (6.113). The result has the closed form [1]

Pb|γ1
=

1
2

(

1−
√

γ̄c

γ̄c + 1

L−2

∑
k=0

(
2k
k

)(
1

4(γ̄c + 1)

)k

−
(√

γ̄c

γ̄c + γ1 + 1
−
√

γ̄c

γ̄c + 1

L−2

∑
k=0

(
2k
k

)( −γ1

4(γ̄c + 1)

)k
)

(−γ1)
−(L−1)

)

.

(6.114)

The performance with a nonfaded interferer can be obtained by replacing γ1 with its
mean value Lγ̄1. The result agrees with (6.100) and (6.101), where it is assumed that
a single interferer with constant power is present. Moreover, as mentioned earlier,
OC reduces to MRC when no interfering signals are present. It can be verified that
(6.114) with γ1 = 0 reduces to

Pb =
1
2

(

1−
√

γ̄c

γ̄c + 1

L−1

∑
k=0

(
2k
k

)(
1

4(γ̄c + 1)

)k
)

, (6.115)

which is also equivalent to (6.28) as expected. In the present case, however, the
interference-to-noise ratio, γ1, is a central chi-square random variable with 2L
degrees of freedom having the pdf in (6.109). Averaging over the pdf of γ1 gives
the probability of bit error

Pb =

∫ ∞

0
Pb|γ1

(x)pγ1(x)dx

=
1
2

(

1−
√

γ̄c

γ̄c + 1

L−2

∑
k=0

(
2k
k

)(
1

4(γ̄c + 1)

)k
)

− 1
2Γ(L)(−γ̄1)L−1

(√
πγ̄c

γ̄1
exp

(
γ̄c + 1

γ̄1

)

erfc

(√
γ̄c + 1

γ̄1

)

−
√

γ̄c

γ̄c + 1

L−2

∑
k=0

(2k)!
k!

( −γ̄1

4(γ̄c + 1)

)k
)

. (6.116)



6.9 Classical Beam-Forming 357

Fig. 6.15 Bit error
probability for coherent
BPSK and optimal combining
for various values of γ̄1 and
various number of receiver
antenna elements, L
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Figure 6.15 plots the bit error probability against

Ω =
γ̄c

1+ γ̄1
(6.117)

for γ̄1 = 0,1,2. Figure 6.16 compares the bit error probability for a nonfaded
interferer in (6.100) or (6.101) with that of a faded interferer in (6.116), where
it is seen that the performance is almost identical. The assumption of a nonfaded
interferer gives a very slightly pessimistic prediction of system performance as
compared to the case of a faded interferer. The performance is so close because
an array with L = 2 or 4 has enough degrees of freedom to reject the co-channel
interferer regardless of whether it is affected by fading.

6.9 Classical Beam-Forming

In this section, we consider line-of-sight reception of a signal by a uniform linear
array (ULA) of antenna elements as shown in Fig. 6.17. The distance between
the transmitter and receiver is assumed to be large enough so that plane wave
propagation can be assumed. The ULA is positioned with an angle θ with respect
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Fig. 6.16 Comparison of the
bit error probability for
coherent BPSK and optimal
combining for a nonfaded
interferer and a faded
interferer; the performance is
almost identical
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Fig. 6.17 Plane wave
incident on a uniform linear
array (ULA)

to the x-axis and the elements are uniformly spaced δ m apart as shown in Fig. 6.17.
The transmitted bandpass waveform has the form

s(t) = Re
{

s̃(t)ej2π fct
}
. (6.118)

Then the received bandpass waveform at a distance � from the transmitter is

r(t) = Re
{

α(�)s̃(t − �/c)ej2π fc(t−�/c)
}
, (6.119)

where α(�) is the attenuation at distance � and c is the speed of light. It follows that
the received complex envelope is

r̃(t) = α(�)s̃(t − �/c)ejφ(t), (6.120)
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where

φ(t) =−j2π fc�/c (6.121)

is the excess carrier phase. We assume that (1) the antenna elements are spaced
close enough together so that α(�) = α(�0) ≡ α0 for all antenna elements, (2) the
antenna elements are far enough apart so that there is no mutual coupling between
antenna elements, and (3) the transmitted signal is a bandpass waveform such that
s̃(t − �/c) = s̃(t − �0/c)≡ s̃0(t).

Assume that the ULA has L elements, where L is odd, that are spaced δ m apart.
Antenna k is located at distance �k from the transmit antenna and the corresponding
excess carrier phase is

φk(t) = −2π fc�k/c

= −2π fc�0/c− 2π fc(�k − �0)/c

≡ φ0(t)− 2π fcΔ�k/c

≡ φ0(t)−Δφk. (6.122)

From the geometry in Fig. 6.17, the relative distance Δ�k is

Δ�k = kδ cos(θ ), (6.123)

under the assumption that the distance OB − OM is large compared to the antenna
spacing δ , and where the antenna index k is assumed to run from −L/2 to L/2. The
phase offset Δφk is

Δφk = (2π fc/c)kδ cos(θ )

= 2π
(

kδ
λc

)

cos(θ ), (6.124)

where λc is the carrier wavelength. Hence, the received complex envelope at antenna
element k is

r̃k(t) = α0s̃0(t)e
jφ0(t)e

j2π
(

kδ
λc

)
cos(θ)

= α0s̃0(t)e
jφ0(t)ak(θ ), (6.125)

where

ak(θ ) = e
j2π
(

kδ
λc

)
cos(θ)

. (6.126)
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A phased array computes the weighted sum

r̃c(t) =
L/2

∑
k=−L/2

w∗
kak(θ )α0 s̃0(t)e

jφ0(t)

= wHa(θ )α0s̃0(t)e
jφ0(t), (6.127)

where

a(θ ) = (a−L/2(θ ), . . . ,a0, . . . ,aL/2(θ ))T , (6.128)

and

w = (w−L/2, . . . ,w0, . . . ,wL/2)
T (6.129)

is the weighting vector. The weighting vector can be chosen to optimize a variety of
criteria. One possibility is to maximize the gain of the antenna array G(θ ) =wHa(θ )
when the desired signal arrives such that the antenna array orientation is equal to θo.
Using the Cauchy–Schwartz inequality, it can be shown that this is accomplished
with the weighting vector

wopt = a(θo), (6.130)

which yields the antenna gain

G(θ ) = aH(θo)a(θ ). (6.131)

Example 6.1.
Suppose that θo = 90o so that the plane waves arrive broadside to the

antenna array. Then

wopt = a(θo) = (1,1, . . . , 1)T . (6.132)

In this case, the antenna gain can be written as

G(θ ) = wH
opta(θ )

=
L/2

∑
k=−L/2

e
j2π
(

kδ
λc

)
cos(θ)

.

If we let

z = e
j2π
(

δ
λc

)
cos(θ),

(6.133)
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Fig. 6.18 Antenna gain
|G(θ )| dB for a uniform
linear array (ULA) optimized
for θo = 90o; L = 8 (9
element array), δ/λc = 0.25
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then we can write

G(θ ) =
L/2

∑
k=−L/2

zk

=
z−(L+1)/2 − z(L+1)/2

z−1/2 − z1/2
. (6.134)

Substituting (6.133) into (6.134) and simplifying using the inverse Euler
identity yields

G(θ ) =
sin (π(L+ 1)(δ/λc)cos(θ ))

sin (π(δ/λc)cos(θ ))
. (6.135)

Figure 6.18 plots the magnitude of the antenna gain

G(θ )(dB) = 20log10{|G(θ )|/|G(0)|} (6.136)

against the angle-of-arrival θ for δ/λc = 0.25 and L = 8 (9 element array).
Clearly, the antenna exhibits significant gain in the direction θo = 90o (π/2
radians).
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For a ULA, the quality of the beam forming depends on the angle of arrival. The
best result is obtain for the broadside case when θo = 90o, and the worse case is
obtained for the in-line case when θo = 0o. However, other types of antenna arrays,
such as uniform circular arrays, can be used to provide a more uniform performance
in all azimuthal directions.

6.10 Transmitter Diversity

Transmitter diversity uses multiple transmit antennas to provide the receiver with
multiple uncorrelated replicas of the same signal. The obvious advantage is that the
complexity of having multiple antennas is placed on the transmitter which may be
shared among many receivers, for example, the forward (base-to-mobile) link in
many wireless systems. The user terminals can use just a single antenna and still
benefit from a diversity gain.

Transmitter diversity can take on many forms, distinguished by the method of
using the multiple transmit antennas. Transmit diversity is straight forward for
systems that use time division duplexing (TDD), where different time slots on the
same carrier are used for the forward and reverse link transmissions. For TDD
systems, the channel impulse response satisfies the reciprocity principle. At the
base station, the signals received on all antennas can be processed during every
received burst, and used to estimate the corresponding channel impulse responses.
The antenna that provides the largest received bit or symbol energy-to-noise ratio
on the reverse link is selected and used for the next forward burst transmission. This
is a form of selective transmit diversity (STD). Obviously, this scheme requires that
the channel coherence time be larger than the burst duration.

For frequency division duplexed (FDD) systems, transmit diversity is more
complicated to implement, because the forward and reverse links are not reciprocal.
Time division transmit diversity (TDTD) can be used for FDD by switching the
transmitted signal between two or more transmit antennas. Alternate bursts are
transmitted through two or more separate antennas, a technique known as time-
switched transmit diversity (TSTD). Delay transmit diversity is another method,
where copies of the same symbol are transmitted through multiple antennas at
different times. This has the effect of creating artificial delay spread so that the
resulting channel looks like a fading ISI channel. An equalizer can then be used to
recover the signal and provide a diversity gain.

More elaborate forms of transmit diversity use space-time, space-frequency, or
space-time-frequency encoding of the transmitted information. In general, these
schemes require three functions: (1) a method for encoding and transmitting the
information sequence at the transmitter, (2) a combining scheme at the receiver,
and (3) a rule for making decisions. Alamouti [11] introduced a simple repetition
transmit diversity scheme with maximum likelihood combining at the receiver.
Using two transmit antennas and one receiver antenna, the scheme provides the
same diversity order as maximal ratio receiver combining with one transmit antenna
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and two receiver antennas. This scheme requires no feedback from the receiver to the
transmitter and requires no bandwidth expansion. However, to estimate the channel,
the scheme requires that separate pilot sequences be inserted into the waveforms
that are transmitted from each of the transmit antennas.

6.10.1 Alamouti’s Transmit Diversity Scheme

Alamouti’s transmit diversity scheme [11] uses two transmit antennas and one
receiver antenna, referred to as 2 × 1 diversity. With the Alamouti scheme, two
complex data symbols are transmitted over two successive baud intervals using
two transmit antennas. During the first baud interval, the complex symbol vectors
transmitted from Antennas 1 and 2 are denoted by s̃(1) and s̃(2), respectively. During
the next baud interval, the complex symbol vectors transmitted from Antennas 1 and
2 are −s̃∗(2) and s̃∗(1), respectively. Assuming a slow flat fading channel, the complex
channel gains associated with transmit Antennas 1 and 2 are g1 and g2, respectively,
The complex received vectors are

r̃(1) = g1s̃(1) + g2s̃(2) + ñ(1),

r̃(2) = −g1s̃∗(2) + g2s̃∗(1) + ñ(2), (6.137)

where r̃(1) and r̃(2) represent the received vectors during the first and second baud
intervals, respectively, and ñ(1) and ñ(2) are the corresponding complex Gaussian
noise vectors.

The diversity combiner for this scheme is shown in Fig. 6.19. The combiner
constructs the following two signal vectors

ṽ(1) = g∗
1r̃(1) + g2r̃∗(2),

ṽ(2) = g∗
2r̃(1)− g1r̃∗(2). (6.138)

Later, the receiver applies the vectors ṽ(1) and ṽ(2) in a sequential or parallel
fashion to the metric computer in Fig 6.4, to make decisions by maximizing the
decision metric

μ(s̃(1),m) = Re
(
ṽ(1), s̃(1),m

)−Em(|g1|2 + |g2|2),
μ(s̃(2),m) = Re

(
ṽ(2), s̃(2),m

)−Em(|g1|2 + |g2|2). (6.139)

Using (6.137) in (6.138) gives

ṽ(1) = (α2
1 +α2

2 )s̃(1) + g∗
1ñ(1) + g2ñ∗

(2),

ṽ(2) = (α2
1 +α2

2 )s̃(2)− g1ñ∗
(2) + g∗

2ñ(1). (6.140)
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Fig. 6.19 Space-time diversity receiver for 2×1 diversity

This is to be compared with the output of the MRC metric computer in Fig. 6.4.
With L = 2,

r̃ = g∗
1r̃1 + g∗

2r̃2

= (α2
1 +α2

2 )s̃m + g∗
1ñ1 + g∗

2ñ2. (6.141)

Comparison of (6.140) and (6.141) shows that the combined signals in each case are
the same. The only difference is the phase rotations of the Gaussian noise vectors
which will not matter due to their circular symmetry.

6.10.1.1 2×L diversity

We now consider the case of 2 × L diversity and show that the performance is
equivalent to 1× 2L diversity with MRC. The approach is illustrated for the case
of 2× 2 diversity, and the extension to 2×L diversity will be obvious. To describe
the scheme, we need to introduce the following notation:

gi, j = channel gain between transmit antenna i and receiver antenna j.
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Fig. 6.20 Space-time diversity receiver for 2×2 diversity

r̃(1), j = received signal at antenna j during the first baud interval.

r̃(2), j = received signal at antenna j during the second baud interval.

The encoding scheme remains the same as before: the complex symbol vectors s̃(1)
and s̃(2) are transmitted from Antennas 1 and 2 during the first baud interval, and
complex symbol vectors −s̃∗(2) and s̃∗(1) are transmitted from Antennas 1 and 2 during
the second baud interval. The complex received signal vectors are

r̃(1),1 = g1,1s̃(1) + g2,1s̃(2) + ñ(1),1,

r̃(2),1 = −g1,1s̃∗(2) + g2,1s̃∗(1) + ñ(2),1,

r̃(1),2 = g1,2s̃(1) + g2,2s̃(2) + ñ(1),2,

r̃(2),2 = −g1,2s̃∗(2) + g2,2s̃∗(1) + ñ(2),2.

The combiner shown in Fig. 6.20 constructs the following two signal vectors

ṽ(1) = g∗
1,1r̃(1),1 + g2,1r̃∗(1),2 + g∗

1,2r̃(2),1 + g2,2r̃∗(2),2, (6.142)

ṽ(2) = g∗
2,1r̃(1),1 − g1,1r̃∗(1),2 + g∗

2,2r̃(2),1 − g1,2r̃∗(2),2. (6.143)
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Again, the receiver applies the vectors ṽ(1) and ṽ(2) in a sequential or parallel fashion
to the metric computer in Fig 6.4, and decisions are made by maximizing the metric
in (6.139).

To compare the 2× 2 transmit diversity scheme to 1× 4 receive diversity with
MRC, we substitute appropriate equations to obtain

ṽ(1) = (α2
1,1 +α2

1,2 +α2
2,1 +α2

2,2)s̃(1)

+g∗
1,1ñ(1),1 + g2,1ñ∗

(2),1 + g∗
1,2ñ(1),2 + g2,2ñ∗

(2),2, (6.144)

ṽ(2) = (α2
1,1 +α2

1,2 +α2
2,1 +α2

2,2)s̃(2)

+g∗
2,1ñ(1),1 − g1,1ñ∗

(1),2 + g∗
2,2ñ(2),1 − g1,2ñ∗

(2),2. (6.145)

This is to be compared with the output of the MRC in Fig. 6.4. With L = 4,

r̃ = g∗
1r̃1 + g∗

2r̃2 + g∗
3r̃3 + g∗

4r̃4

= (α2
1 +α2

2 +α2
3 +α2

4 )s̃m + g∗
1ñ1 + g∗

2ñ2 + g∗
3ñ3 + g∗

4ñ4. (6.146)

Again, we see that Alamouti’s 2 × 2 transmit diversity scheme is equivalent to a
1× 4 receive diversity scheme with MRC. The extension to show that Alamouti’s
2×L transmit diversity scheme is equivalent to 1×2L diversity with MRC is left as
an exercise.

6.10.1.2 Implementation Issues

There are several key implementation issues with Alamouti’s transmit diversity
scheme, including the following:

• Since there are two transmit antennas, the power per antenna must be halved to
maintain a constant transmit power. Hence, the 2×L transmit diversity scheme
has a 3 dB performance loss when compared to a 1× 2L diversity scheme with
MRC.

• With two transmit antennas, twice as many pilot symbols are needed compared to
the case of one transmit antenna. The pilots must alternate between the antennas.
Alternatively, orthogonal pilot sequences can be transmitted simultaneously from
the two transmit antennas.

• The transmit antennas must be spaced sufficiently far apart to achieve sufficient
spatial decorrelation between the sub-channels g1,i and g2,i, i = 1, . . . ,L. We
have seen in Chap. 2 that the required separation can be on the order of a
half-wavelength with 2D isotropic scattering, but as much as several tens of
wavelengths at a cellular base station.
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Problems

6.1. Consider a Rayleigh random variable, X , with a pdf given by (2.51).

(a) Let {X1,X2, . . . ,XN} be a set of independent Rayleigh random variables each
with an rms value of 1/

√
N. Derive the pdf of

Y = max
(
X2

1 ,X
2
2 , . . . ,X

2
N

)
.

This result is useful for the study of selective combining diversity systems.
(b) Again, using the set {X1,X2, . . . ,XN}, derive the pdf of

Z = X2
1 +X2

2 + · · ·+X2
N .

This result is useful for the study of maximal ratio combining diversity systems.

6.2. Suppose that two-branch selective combining is used. However, the branches
are mismatched such that γ̄1 �= γ̄2 where the γ̄i, i = 1,2, are the average received
symbol energy-to-noise ratios for the two branches. Plot the cdf of γs

s against the
average normalized symbol energy-to-noise ratio 10 log10{γs

s/γ̄t}, where γ̄t = (γ̄1 +
γ̄2)/2. Show several curves while varying the ratio ξ = γ̄1/γ̄2.

6.3. Consider using selective combining with coherent BPSK. For coherent BPSK,
the probability of bit error is Pb(γs

b) = Q(
√

2γs
b) The instantaneous bit energy-to-

noise ratio is given by (6.8).

(a) Derive an expression for the average bit error probability

Pb =
∫ ∞

0
Pb(x)pγs

s
(x)dx.

(b) Repeat part (a) for two-branch switched diversity combining where the pdf of
γsw

s is given by (6.49).
(c) Plot and compare the results in parts (a) and (b) for two-branch diversity.

6.4. Suppose that binary DPSK signaling (xk ∈ {−1,+1}) is used on a flat
Rayleigh fading channel with three-branch diversity. The diversity branches are
assumed to experience uncorrelated fading. The signal that is received over each
diversity branch is corrupted with AWGN having a one-sided psd of No W/Hz.
The noise processes that are associated with the diversity branches are mutually
uncorrelated.

(a) Suppose that a separate differential detector is used on each diversity branch,
yielding three independent estimates of each transmitted bit, that is, for xk the
receiver generates the three independent estimates (x̂1

k , x̂
2
k , x̂

3
k). Majority logic

combining is then used to combine the three estimates together to yield the
final decision x̂k, that is,
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x̂k =

{−1 if two or more x̂i
k =−1

+1 if two or more x̂i
k =+1

Find an expression for the probability of bit error, Pb. Evaluate Pb for γ̄c =
20 dB, where γ̄c is the average received branch bit energy-to-noise ratio.

(b) Evaluate the probability of bit error for γ̄c = 20 dB if the receiver uses three-
branch diversity with postdetection EGC. Compare with the result in part (a).

(c) Generalize the expression for the probability of bit error in part (a) to L-branch
diversity.

6.5. Derive (6.28) for BPSK and MRC.

6.6. Derive (6.56) for DPSK with differential detection followed by EGC.

6.7. Consider an AWGN channel where the channel gain, α , has the following
probability density function

pα(x) = 0.2δ (x)+ 0.5δ (x− 1)+ 0.3δ (x−2).

(a) Determine the average probability of bit error for binary DPSK signaling over
a channel with gain α in terms over the average received bit energy-to-noise
ratio γ̄b. What value does the probability of bit error approach as γ̄b gets large?

(b) Now suppose that two-branch antenna diversity is used with predetection selec-
tive combining. Assume that the diversity branches are perfectly uncorrelated.
Determine the average probability of error in terms of the average bit energy-
to-noise ratio per diversity branch γ̄c. What value does the probability of error
approach as γ̄c gets large?

(c) Plot the probability of error for parts (a) and (b) on the same graph.

6.8. Consider digital transmission using BPSK modulation and L = 2 receiver
diversity. The channel gain for Antenna i, i = 1,2, and symbol epoch n, αi,n, has
the following probability density function

pαi,n(x) = 0.9δ (x− 1.0)+ 0.1δ (x− 0.05),

and the αi,n are independent for i = 1,2 and all n. Each receiver branch is affected
by independent complex AWGN with noise power spectral density No W/Hz. Derive
an expression for the bit error rate probability with MRC.

6.9. The bit error probability of MSK signaling on a Rayleigh fading channel with
AWGN is

Pb =
1
2

(

1−
√

γ̄b

1+ γ̄b

)

.

(a) Derive a Chernoff bound (see Appendix) on the probability of bit error and
compare the Chernoff bound with the exact error probability.
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(b) Repeat part (a) if the receiver uses L-branch diversity. Assume uncorrelated
diversity branches with γ̄1 = γ̄2 = . . .= γ̄L = γ̄c.

6.10. The bit error probability of binary orthogonal FSK signaling with noncoher-
ent square-law combining on a Rayleigh fading channel with AWGN is given by
(6.28), where the parameter μ is defined in (6.73).

(a) Derive a Chernoff bound (see Appendix) on the probability of bit error and
compare the Chernoff bound with the exact probability of error.

(b) Derive a union-Chernoff bound on the probability of bit error with M-ary
orthogonal FSK signaling and noncoherent square-law combining.

(c) Using the union-Chernoff bound obtained in part (b), determine the diversity
order L that will minimize the error probability.

6.11. Suppose that BPSK modulation is used with two-branch diversity and
coherent EGC. Assume uncorrelated diversity branches with γ̄1 = γ̄2 = γ̄c. Show
that the probability of bit error for a Rayleigh fading channel is given by (6.40).

6.12. Consider a system that uses L-branch selection diversity. The instantaneous
received signal power on each diversity branch, s0,i, i = 1, . . . ,L, has the noncentral
chi-square (Ricean fading) distribution in (2.59). The instantaneous received signal
power from each interferer on each diversity branch, sk,i, i = 1, . . . , L has the
exponential (Rayleigh fading) distribution in (2.52). Note that all the s0,i and sk,i are
independent. Let λi = s0,i/∑NI

k=1 sk,i, i = 1, . . . , L be the instantaneous carrier-to-
interference ratio for each diversity branch and λs = maxi λi. Derive an expression
for the probability of CCI outage

OI = P[λs < λth].

Plot OI against λth for various L.

6.13. Consider the reception of a desired signal in the presence of a single co-
channel interferer and neglect the effect of AWGN. The received signal power, s0,
and interference power, s1, due to Rayleigh fading have the exponential distributions

ps0(x) =
1

Ω0
e−x/Ω0 ,

ps1(y) =
1

Ω1
e−x/Ω1 ,

where Ω0 and Ω1 are the average received signal power and interference power,
respectively.

(a) Assuming that s0 and s1 are independent random variables, find the probability
density function for the carrier-to-interference ratio

λ =
s0

s1
.
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Hint: If X and Y are independent random variables, then the probability density
function of U = X/Y is

pU(u) =
∫

pXY (v,v/u)|v/u2|dv.

(b) What is the mean value of λ ?
(c) Now suppose that the system uses L-branch selection diversity. The branches

are independent and balanced (i.e., the distribution of λi, i= 1 . . . ,L, is the same
for each branch). What is the probability density function of

λs = max(λ1, λ2, . . . ,λL),

the carrier-to-interference ratio at the output of the selective combiner?

6.14. Suppose that two-branch antenna diversity is used with selective combining.
However, the branches have correlated fading so that the maximum diversity gain is
not achieved. Let γ1 and γ2 be the joint pdf for the instantaneous bit energy-to-noise
ratio for each diversity branch, and let γ̄c = E[γi]. It is known that joint pdf of γ1

and γ2 is

pγ1,γ2(x1,x2) =
1

γ̄2
c (1−|ρ |2) I0

(
2|ρ |√x1x2

γ̄c(1−|ρ |2)
)

exp

{

− x1 + x2

γ̄c(1−|ρ |2)
}

,

where |ρ | is the magnitude of the correlation coefficient of the two complex
Gaussian random variables that are associated with the two diversity branches.
Derive an expression for the cdf of the bit energy-to-noise ratio at the output of
the selective combiner

γs = max{γ1,γ2}.
Plot the cdf for various ρ . What conclusions can you make?

6.15. Suppose that a system uses selection diversity. The branches experience
independent Rayleigh fading. However, the average received bit energy-to-noise
ratio on each diversity branch is different, such that

γ̄i = 2−iγ̄o i = 1,2, . . . ,L.

(a) Find the probability density function of the bit energy-to-noise ratio at the
output of the selective combiner, denoted by γs

b.
(b) If DPSK modulation is used, write down an expression for the probability of

bit error. Obtain a closed-form expression if possible; otherwise leave your
expression in integral form.

6.16. Show that with optimal combining ∇wJ in (6.84) is given by

∇wJ =

(
∂J

∂w1
, · · · , ∂J

∂wL

)

= 4wT ΦR̃t R̃t
− 4Φs̃0R̃t

= 0.
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6.17. Suppose that the received signal consists of two strong multipath components
arriving from different directions. Explain how you would design a phased array to
capture the energy in both rays.

6.18. Consider Alamouti’s transmit diversity scheme. Section 6.10.1 shows how
to construct the combiner for the case of 2 × 1 and 2 × 2 diversity. Construct the
combiner for the case of 2×L diversity.

6.19. Describe how you would combine Alamouti’s transmit diversity scheme with
OFDM. Show a block diagram of the transmitter and receiver.



Chapter 7
Equalization and Interference Cancelation

Chapters 5 and 6 have considered digital signaling on frequency nonselective or flat
fading channels. Such channels are typical for low data rate systems that occupy a
bandwidth that is smaller than the channel coherence bandwidth. However, as the
data rate increases, the bandwidth of the transmitted waveform will typically be
larger than the channel coherence bandwidth. Under this condition, the channel is
nonideal and will exhibit frequency selectivity or time delay spread. Such time delay
spread causes interference between modulated symbols, a phenomenon known
as inter-symbol interference (ISI). This chapter concentrates on the modeling of
ISI channels and the various signal processing methods for recovering digital
information transmitted over such channels.

This chapter begins with a treatment of ISI channel modeling in Sect. 7.1 that
includes a vector representation of digital signaling on ISI channels. Section 7.2 then
develops the maximum likelihood receiver for ISI channels, leading to an equivalent
model of the ISI channel known as the discrete-time white noise channel model.
We also consider the effects of using fractional sampling or over-sampling at the
receiver, where the sampling rate is an integer multiple of the modulated symbol
rate. Section 7.3 provides a treatment of symbol-by-symbol equalizers, including the
linear zero-forcing and minimum mean-square-error (MMSE) equalizers, and the
nonlinear decision feedback equalizer. Section 7.4 provides a treatment of sequence
estimators beginning with maximum likelihood sequence estimation (MLSE) and
the Viterbi algorithm. Since the MLSE receiver can have high complexity for
channels that have a long impulse response, we consider some reduced complexity
sequence estimation techniques such as reduced state sequence estimation (RSSE)
and delayed decision feedback sequence estimation (DDFSE). Section 7.5 provides
an analysis of the bit error rate performance of MLSE on static ISI channels and
multipath fading ISI channels. Section 7.6 considers fractionally spaced MLSE
receivers for ISI channels.

Finally, Sect. 7.7 concludes the chapter with a discussion of co-channel demodu-
lation for digital signals on ISI channels. The basic idea is to simultaneously recover
the data from multiple users that transmit in the same bandwidth. The problem is
formulated as a multiple-input multiple-output (MIMO) channel, where the inputs

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 7,
© Springer Science+Business Media, LLC 2011

373
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are the waveforms transmitted by multiple users in the same bandwidth, and the
outputs are the signals received at multiple antenna elements. We first develop
a vector representation of the received signals, along with the optimum receiver
that uses joint maximum likelihood sequence estimation (J-MLSE). Similar to
the single-user case, we consider the effects of using fractional sampling as well.
Finally, we wrap up with a receiver structure that incorporates a combination of
optimal combining as discussed in Chap. 6 and sequence estimation as implemented
with the Viterbi algorithm.

7.1 Modeling of ISI Channels

Chapter 4 showed that the complex envelope of any modulated signal can be
expressed in the general form

s̃(t) = A∑
n

b(t − nT,xn). (7.1)

This chapter restricts attention to linear full-response modulation schemes where

b(t,xn) = xnha(t), (7.2)

ha(t) is the amplitude shaping pulse, and {xn} is the complex data symbol sequence.
Suppose that the signal in (7.2) is transmitted over a channel having a

time-invariant complex low-pass impulse response g(t). The received complex
envelope is

r̃(t) = ∑
n

xnh(t − nT )+ ñ(t), (7.3)

where
h(t) =

∫ ∞

−∞
ha(τ)g(t − τ)dτ, (7.4)

is the received pulse, given by the convolution of the transmitted pulse ha(t) and the
channel impulse response g(t), and ñ(t) is complex-valued additive white Gaussian
noise (AWGN) with a one-sided power spectral density (PSD) of No W/Hz. Since
the transmitted pulse ha(t) is causal (ha(t) = 0, t < 0), the lower limit of integration
can be replaced by zero, and since the physical channel is causal (g(t) = 0, t < 0),
the upper limit of integration in (7.4) can be replaced by t, so that

h(t) =
∫ t

0
ha(τ)g(t − τ)dτ , t ≥ 0. (7.5)

Finally, the received pulse h(t) is assumed to have a finite duration so that h(t) = 0
for t < 0 and t ≥ (L+ 1)T , where L is some positive integer.
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7.1.1 Vector Representation of Received Signals

Using a Gram–Schmidt orthonormalization procedure, the received signal r̃(t) in
(7.3) can be expressed in the form

r̃(t) = lim
N→∞

N

∑
k=1

r̃kϕk(t), (7.6)

where the {ϕn(t)} are a complete set of complex orthonormal basis functions. Note
that the basis functions span over the entire length of the waveform r̃(t), and for
the present purpose it is not necessary to actually generate the basis functions. Also,
this set of basis functions should not be confused with the set of basis functions that
is used to represent the signal set as in Sect. 5.1. It can be readily shown that

r̃k = ∑
n

xnhnk + ñk, (7.7)

where

hnk =

∫ ∞

−∞
h(t − nT)ϕ∗

k (t)dt,

ñk =

∫ ∞

−∞
ñ(t)ϕ∗

k (t)dt. (7.8)

The noise samples ñk are zero-mean complex Gaussian random variables with
covariance φñkñm = 1

2 E[ñ∗
kñm] = Noδkm. Hence, it follow that the observation vector

r̃ = (r̃1, r̃2, · · · , r̃N) has the conditional multivariate complex Gaussian distribution

p(r̃|x,h) =
N

∏
k=1

1
2πNo

exp

{

− 1
2No

∣
∣
∣
∣r̃k −∑

n
xnhnk

∣
∣
∣
∣

2
}

, (7.9)

where h = {hnk}.

7.2 Maximum Likelihood Receiver for ISI Channels
with AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x
that maximizes the likelihood function p(r̃|x,h) or the log-likelihood function
log{p(r̃|x,h)}, that is,

choose x if log{p(r̃|x,h)} > log{p(r̃|x̂,h)} ∀ x̂ �= x. (7.10)
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For an AWGN channel, p(r̃|x,h) has the form in (7.9) and the decision rule in (7.10)
is equivalent choosing x to maximize the quantity

μ(x) = −
N

∑
k=1

∣
∣
∣
∣r̃k −∑

n
xnhnk

∣
∣
∣
∣

2

= −
N

∑
k=1

|r̃k|2 +
N

∑
k=1

(

r̃∗k ∑
n

xnhnk + r̃k ∑
n

x∗nh∗
nk

)

−
N

∑
k=1

(

∑
n

xnhnk

)(

∑
m

x∗mh∗
mk

)

. (7.11)

Since the term ∑N
k=1 |r̃k|2 is independent of x, it may be omitted so that the maximum

likelihood receiver chooses x to maximize

μ(x) = 2Re

{

∑
n

x∗n
N

∑
k=1

r̃kh∗
nk

}

−∑
n

∑
m

xnx∗m
N

∑
k=1

hnkh∗
mk
, (7.12)

where Re{z} denotes the real part of z. In the limit as the number of observable
random variables N approaches infinity, we define the following:

yn
�
= lim

N→∞

N

∑
k=1

r̃kh∗
nk

=

∫ ∞

−∞
r̃(t)h∗(t − nT )dt, (7.13)

fm−n
�
= lim

N→∞

N

∑
k=1

hnk h∗
mk

=

∫ ∞

−∞
h(t − nT)h∗(t −mT )dt. (7.14)

Using (7.13) and (7.14) in (7.12), we have the final form

μ(x) = 2Re

{

∑
n

x∗nyn

}

−∑
n

∑
m

xnx∗m fm−n. (7.15)

The variables {yn} are obtained by passing the received complex low-pass
waveform r̃(t) through the matched filter h∗(−t) and sampling the output. Note that
the T -spaced samples at the output of the matched filter must be obtained with the
correct timing phase, and in the above development perfect symbol synchronization
is implied. Hence, the optimum front-end processing is as shown in Fig. 7.1. Finally
by changing the variable of integration, the { fm−n} in (7.14) can be rewritten in the
form

f� =
∫ ∞

−∞
h(t + �T)h∗(t)dt, (7.16)

where � = m − n. From (7.16), it is seen that the { f�} represent the sampled
autocorrelation function of the received pulse h(t) with sample spacing T , and have
the property that f ∗n = f−n. Sometimes the { f�} are called the ISI coefficients.
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Fig. 7.1 Digital signaling on an ISI channel. The optimum front-end processor implements a filter
that is matched to the received pulse h(t) followed by a symbol rate sampler
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Fig. 7.2 Discrete-time model for digital signaling on an ISI channel

7.2.1 Discrete-Time White Noise Channel Model

Sampling the output of the matched filter h∗(−t) in Fig. 7.1 every T seconds yields
the sample sequence {yk}, where

yk = ∑
n

xn fk−n +νk

=
L

∑
�=−L

xk−� f�+νk (7.17)

and
νk =

∫ ∞

−∞
ñ(τ)h∗(τ − kT )dτ, (7.18)

is the noise sample at the output of the matched filter. It follows that the overall
discrete-time system in Fig. 7.1 can be represented by a discrete-time transversal
filter with coefficients

f = ( f−L, f−L+1, . . . , f−1, f0, f1, . . . , fL−1, fL) . (7.19)

This representation is depicted in Fig. 7.2.
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As shown in (7.15), the maximum likelihood receiver uses the observation vector
y = {yk} and knowledge of the ISI coefficients { f�} to determine the most likely
transmitted sequence x. Equivalently, the maximum likelihood receiver decides in
favor of the symbol sequence x that maximizes the likelihood function p(y|x, f) or
the log-likelihood function log{p(y|x, f)}, that is,

choose x if log{p(y|x, f)}> log{p(y|x̂, f)} ∀ x̂ �= x. (7.20)

The noise samples at the matched filter output in (7.18), have the discrete
autocorrelation function

φνν (n) =
1
2

E[νk+nν∗
k ] = No fn. (7.21)

Hence, the noise sequence {νk} will be correlated unless fn = 0,n �= 0, meaning that
the overall pulse

f (t) =
∫ ∞

−∞
h(t + τ)h∗(τ)dτ, (7.22)

satisfies the first Nyquist criterion. Such a condition will not be true for ISI
channels due to the nonideal channel g(t), and the resulting correlation between
the noise samples {νk} results in a log-likelihood function log{p(y|x, f)} that has a
complicated form. This difficulty can be overcome by passing the sample sequence
at the output of the matched filter, {yk}, through a noise-whitening filter as described
below, to whiten the noise samples.

The z-transform of the vector f is

F(z) =
L

∑
n=−L

fnz−n. (7.23)

Using the property f ∗n = f−n, we can write

F∗(1/z∗) = F(z). (7.24)

This means that if z is a root of F(z), then 1/z∗ is a root of F(z), that is, the roots of
F(z) occur in conjugate reciprocal pairs. It follows that F(z) has 2L roots with the
factorization

F(z) = G(z)G∗(1/z∗), (7.25)

where G(z) and G∗(1/z∗) are polynomials each of degree L. The roots of G(z) are
z1,z2, . . . ,zL, while the roots of G∗(1/z∗) are 1/z∗1,1/z∗2, . . . ,1/z∗L. Hence, there are
2L possible choices for the roots of G∗(1/z∗), and any one will suffice for a noise-
whitening filter 1/G∗(1/z∗). However, some reduced state equalization techniques
such as RSSE and DDFSE require that the polynomial of the overall system
G(z) = F(z) · 1/G∗(1/z∗) be minimum-phase, meaning all the poles and zeroes of
G(z) lie inside the unit circle. . For such cases, the noise-whitening filter 1/G∗(1/z∗)
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will be a stable filter, but it is noncausal since all its poles are outside the unit circle.
In practice, such a noncausal noise-whitening filter can be approximated to sufficient
accuracy using a long enough filter delay. If the overall response G(z) need not have
minimum phase, then we can choose G∗(1/z∗) to have minimum phase, that is, all
the poles and zeros of the noise-whitening filter 1/G∗(1/z∗) are inside the unit cir-
cle. This choice will ensure that the noise-whitening filter is both causal and stable.

If the noise-whitening filter is chosen such that G(z) has minimum phase,
then the resulting discrete-time white noise channel satisfies the minimum energy-
delay property. To explain this further, let Gmin(ej2π f ) be the frequency response
function corresponding to the G(z) having minimum phase, and let gk min be the
corresponding time-domain impulse response. All 2L choices for G(z) will have
the same magnitude response, that is, |G(ej2π f )| = |Gmin(ej2π f )|. Consequently, all
impulse responses gk whose magnitude response |G(ej2π f )| is equal to |Gmin(ej2π f )|
will have the same total energy by Parseval’s theorem, that is,

∞

∑
n=0

|gk|2 =
∫ 1/2

−1/2
|G(ej2π f )|2d f =

∫ 1/2

−1/2
|Gmin(e

j2π f )|2d f =
∞

∑
n=0

|gk min|2. (7.26)

If we define the partial energy of the impulse response as

E(k)
�
=

k

∑
n=0

|gk|2, (7.27)

then it can be shown that [198],

E(k) =
k

∑
n=0

|gk|2 ≤
k

∑
n=0

|gk min|2 = Emin(k), (7.28)

for all impulse responses gk that have the same magnitude response. Accordingly,
the energy of the system having minimum phase is most concentrated around k = 0.
This means that the energy of the minimum phase system has the least delay among
all systems that have the same magnitude response function. For this reason, the
minimum phase system is said to satisfy the minimum energy-delay property.

Example 7.1:
Consider a simple T -spaced two-ray channel where the received pulse is

h(t) = ha(t)+ aha(t −T )

and the transmitted pulse ha(t) has duration T and is normalized to have unit
energy, that is,

∫ ∞
−∞ h2

a(t)dt = 1. The corresponding ISI coefficients are
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f� =
∫ ∞

−∞
h∗(t)h(t + �T)dt

=

⎧
⎨

⎩

1+ |a|2 �= 0
a �= 1
a∗ �=−1

and, hence,

F(z) = a∗z+(1+ |a|2)+ az−1

= (az−1 + 1)(a∗z+ 1).

There are two possible choices for the noise-whitening filter.

Case 1: Under the assumption that |a|< 1, suppose that the zero of G∗(1/z∗)
is chosen to be outside the unit circle. That is,

G(z) = 1+ az−1,

G∗(1/z∗) = 1+ a∗z.

In this case, the noise-whitening filter 1/G∗(1/z∗) is noncausal yet stable, and
the overall system is characterized by the minimum phase polynomial

G(z) = 1+ az−1.

Note that the zero of G(z) is inside the unit circle, with a pole at the origin.
Case 2: Under the assumption that |a|< 1, suppose that the zero of G∗(1/z∗)
is instead chosen to be inside the unit circle. That is,

G(z) = 1+ a∗z,

G∗(1/z∗) = 1+ az−1.

In this case, the noise-whitening filter 1/G∗(1/z∗) is a minimum phase
filter that is both stable and causal. However, the overall system G(z) is
characterized by the non-minimum phase polynomial

G(z) = 1+ a∗z.

Note that the zero of G(z) is outside the unit circle with a pole at infinity.
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Fig. 7.3 Block diagram of system that implements a filter matched to h(t) followed by a discrete-
time noise-whitening filter

We now show that the sequence of noise samples at the output of the noise-
whitening filter is indeed uncorrelated. From (7.17), the z-transform of the sample
sequence at the output of the noise-whitening filter is

V (z) = (X(z)F(z)+ν(z))
1

G∗(1/z∗)

= X(z)G(z)+ν(z)
1

G∗(1/z∗)

= X(z)G(z)+W (z). (7.29)

From (7.21), the psd of the noise samples {νk} at the input to the noise-whitening
filter is

Sνν(ej2π f T ) = NoF(ej2π f T ) , | f | ≤ 1
2T

. (7.30)

Therefore, the psd of the noise samples {wk} at the output of noise-whitening filter
1/G∗(1/z∗) is

Sww(ej2π f T ) = No
F(ej2π f T )

|G∗(ej2π f T )|2

= No
G(ej2π f T )G∗(ej2π f T )

G(ej2π f T )G∗(ej2π f T )

= No, | f | ≤ 1
2T

, (7.31)

which is clearly white.
The above development leads to the system shown in Fig. 7.3, and the discrete-

time white noise channel model shown in Fig. 7.4. Sometimes the concatenation of
the matched filter and noise-whitening filter in Fig. 7.3 is called a whitened matched
filter. The overall system system function G(z) can be viewed as a finite impulse
response (FIR) filter with tap coefficients {gn}. The discrete-time samples at the
output of the noise-whitening filter are

vk =
L

∑
n=0

gnxk−n +wk. (7.32)
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g0 g1 gL-1 gL

T T T T
xk

vk

ηk

Fig. 7.4 Discrete-time white noise channel model

The maximum likelihood receiver uses the observation vector v = {vk}L
k=0 to decide

in favor of the symbol sequence x that maximizes the likelihood function p(v|x,g)
or the log-likelihood function log{p(v|x,g)}, that is,

choose x if log{p(v|x,g)}> log{p(v|x̂,g)} ∀ x̂ �= x, (7.33)

where
g = (g0, g1, . . . , gL)

T, (7.34)

is the overall channel impulse response. Since the noise samples {wk} are white, the
likelihood function has the simple product form

p(v|x,g) = ∏
k

1
2πNo

exp

⎧
⎨

⎩
− 1

2No

∣
∣
∣
∣
∣
vk −

L

∑
n=0

gnxk−n

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
. (7.35)

The log-likelihood function log{p(v|x,g)} results in the decision rule

choose x if μ(x)> μ(x̂) ∀ x̂ �= x, (7.36)

where

μ(x) =−∑
k

∣
∣
∣
∣
∣
vk −

L

∑
n=0

gnxk−n

∣
∣
∣
∣
∣

2

. (7.37)

An efficient method for finding the sequence x is the Viterbi algorithm as discussed
in Sect. 7.4.1.

Finally, for an ISI channel, the received symbol energy-to-noise ratio is defined as

γs =
E[|xk|2]∑L

i=0 |gi|2
2No

=
E[|xk|2] f0

2No
=

2σ2
x Ehr

No
=

E
No

, (7.38)
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where

Ehr =
1
2

∫ ∞

−∞
|h(t)|2dt (7.39)

is the energy in the received pulse h(t). The bit energy-to-noise ratio is γb =
γs/ log2 M where M is the modulation alphabet size.

7.2.1.1 Slowly Fading ISI Channels with Diversity

Consider a fading channel with D-branch receiver diversity. The received pulse on
each diversity branch is equal to the convolution

hd(t) =
∫ ∞

−∞
gd(t,τ)ha(t − τ)dτ , d = 1, . . . ,D, (7.40)

where gd(t,τ) is the time-variant channel impulse response for branch d. For slow
fading, the channel impulse responses gd(t,τ) can be assumed to change slowly
with respect to the duration of the received pulses. When data is transmitted in short
frames, for example, 10–20 ms long, the channel may remain constant over the
duration of the frame. This is sometimes called a block fading channel or quasi-static
fading channel. In any case, at the kth epoch the received pulses can be accurately
approximated as

hd,k(t) =
∫ ∞

−∞
gd(kT,τ)ha(t − τ)dτ , d = 1, . . . ,D. (7.41)

The receiver then implements a matched filter on each diversity branch having the
impulse response h∗

d,k(−t), and samples are taken at the output of the matched
filter every T seconds. The samples at the output of each matched filter are passed
through a corresponding noise-whitening filter 1/G∗

d,k(1/z∗). This results in the
discrete-time white noise channel model shown in Fig. 7.5. At epoch k, the tap gains
associated with diversity branch d are described by the vector

gd(k) = (g0,d(k), g1,d(k), . . . gL,d(k))
T. (7.42)

The {gi,d(k)} are discrete-time complex Gaussian random processes that are
generally correlated with the correlation matrix

Φgd (m) =
1
2

E[gd(k)g
H
d (k+m)], (7.43)

where xH is the complex conjugate transpose of the vector x. The received sample
on branch d at epoch k is

vk,d =
L

∑
i=0

gi,d(k)xk−i +wk,d , (7.44)
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Fig. 7.5 Discrete-time white noise channel model with D-branch diversity

where the wk,d are independent complex zero-mean white Gaussian noise samples
with variance 1

2 E[|wk,d |2] = No.
For a fading ISI channel, the average received symbol energy-to-noise ratio for

branch d is

γ̄d
s =

E[|xk|2]∑L
i=0 E[|gi,d|2]

2No
=

E[|xk|2]E[ f0,d ]

No
=

2σ2
x E[Eh,d]

No
=

Ē
No

. (7.45)

In many cases, the branches are balanced so that γ̄d
s = γ̄s, d = 1, . . . ,D. The averaged

received branch bit energy-to-noise ratio is γ̄s/ log2 M.
Note that the matched filter and noise-whitening filter impulse responses change

slowly with time due to variations in the underlying channels. This presents a
practical difficulty because implementation and adjustment of the matched filter and
noise-whitening filter require knowledge of the underlying channel. Later we will
show that we can overcome this difficulty by implementing a filter that is matched
to the transmitted pulse ha(t), over-sampling the output, and processing the output
samples with a fractionally spaced noise-whitening filter. First, we consider the
effect of over-sampling the matched filter output.

7.2.1.2 T/2-Spaced Receiver

In practice, the matched filter outputs are often over-sampled for the purpose of
symbol timing synchronization and to mitigate the effects of timing errors. One
important example that will be considered at various points in this chapter is
when the output of the matched filter is sampled with rate 2/T . In this case, the
overall channel impulse response and sampler can be represented by a discrete-time
transversal filter with coefficients



7.2 Maximum Likelihood Receiver for ISI Channels with AWGN 385

f(2) =
(

f (2)−2L, f (2)−2L+1, . . . , f (2)−1 , f (2)0 , f (2)1 , . . . , f (2)2L−1, f (2)2L

)
, (7.46)

where ( · )(2) indicates rate 2/T sampling. If the samples in (7.46) are obtained with

the correct timing phase, that is, f (2)n = f (nT/2), then

f = ( f−L, f−L+1, . . . , f−1, f0, f1, . . . , fL−1, fL ) (7.47)

=
(

f (2)−2L, f (2)−2L+2, . . . , f (2)−2 , f (2)0 , f (2)2 , . . . , f (2)2L−2, f (2)2L

)
,

where f (2)n =
(

f (2)−n

)∗
and fn = f (2)2n . More details on timing phase sensitivity will

be provided in Sect. 7.6.3.
The T/2-spaced noise samples at the matched filter output have the discrete-time

autocorrelation function
φνν (n) = No f (2)n . (7.48)

The z-transform of f(2), denoted as F (2)(z), has 4L roots with the factorization

F(2)(z) = G(2)(z)G(2)∗(1/z∗), (7.49)

where G(2)(z) and G(2)∗(1/z∗) are polynomials of degree 2L having conjugate recip-
rocal roots. The correlated noise samples can be whitened using a filter with transfer
function 1/G(2)∗(1/z∗). Once again, G(2)∗(1/z∗) can be chosen as a noncausal stable
filter such that the overall system function G(2)(z) has minimum phase with all its
roots inside the unit circle. The output of the noise-whitening filter is

v(2)n =
2L

∑
k=0

g(2)k x(2)n−k +w(2)
n , (7.50)

where {w(2)
n } is a white Gaussian noise sequence with variance 1

2 E[|w(2)
n |2] = No

and the {g(2)n } are the coefficients of a discrete-time transversal filter having a

transfer function G(2)(z). The sequence {x(2)n } is the corresponding T/2-spaced
input symbol sequence and is given by

x(2)n =

{
xn/2 , n = 0,2,4, . . .
0 , n = 1,3,5, . . .

(7.51)

Note that each transmitted symbol is padded with a zero. In general, if rate K/T
sampling is used, then each input symbol is padded with K − 1 zeros. The overall
system and equivalent discrete-time white noise channel models are shown in
Figs. 7.6 and 7.7, respectively.
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Fig. 7.6 Block diagram of system that implements a filter matched to h(t) followed by a T/2-
spaced sampler and a discrete-time noise-whitening filter
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Fig. 7.7 Discrete-time white noise channel model with rate-2/T sampling

Comparing (7.25) and (7.49), we have

2L

∑
k=0

|g(2)k |2 =
L

∑
k=0

|gk|2 = f (2)0 = f0. (7.52)

Finally, we note that the samples v(2)2n and v(2)2n+1 correspond to the nth received baud,
where

v(2)2n =
L

∑
k=0

g(2)2k xn−k +w(2)
2n , (7.53)

v(2)2n+1 =
L−1

∑
i=0

g(2)2k+1xn−k +w(2)
2n+1. (7.54)

Finally, by comparing (7.32) and (7.54), we note that v(2)2n is not necessarily equal to
vn because a different noise-whitening filter is used to whiten the T/2-spaced noise
samples than that is used to whiten T -spaced noise samples.
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7.3 Symbol-by-Symbol Equalizers

7.3.1 Linear Equalizer

As shown in Fig. 7.8, a linear forward equalizer consists of a transversal filter with
adjustable tap coefficients. The tap coefficients of the equalizer are denoted by the
column vector

c = (c0, c1, · · · , cN−1)
T, (7.55)

where N is the number of equalizer taps. Assuming that the equalizer is preceded
by a whitened matched filter that outputs the sequence {vn}, the output of the
equalizer is

x̃n =
N−1

∑
j=0

c jvn− j, (7.56)

where the vn are given by (7.32). The equalizer output x̃k is quantized to the nearest
(in Euclidean distance) information symbol to form the decision x̂k.

Observe that the overall discrete-time white noise channel and equalizer can be
represented by a single filter having the sampled impulse response

q = (q0,q1, . . . , qN+L−1)
T, (7.57)

where

qn =
N−1

∑
j=0

c jgn− j,

= cT g(n) (7.58)

with
g(n) = (gn,gn−1,gn−2, . . . ,gn−N+1)

T, (7.59)

and gi = 0, i < 0, i > L. That is, q is the discrete convolution of g and c.

c0 c1

x̂n
xn
~

εn

T T T T

cN-2 cN-1

vn

Fig. 7.8 Linear transversal equalizer with adjustable T -spaced taps
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If the equalizer is preceded by a noise-whitening filter, then the discrete-time
white noise channel has a system function G(z) with minimum phase. Although the
minimum phase system function G(z) satisfies the minimum energy-delay property
as discussed previously, it is not necessarily true that |g0|2 ≥ |gk|2,∀k ≥ 1, that is,
the first tap g0 does not necessarily have the largest magnitude. Let the component
of g of greatest magnitude be denoted by gd1 . Also, let the number of equalizer taps
be equal to N = 2d2 + 1 where d2 is an integer. Perfect equalization means that

q = ed = (0, 0, . . . , 0
︸ ︷︷ ︸

d−1 zeroes

, 1, 0, . . . , 0, 0)T, (7.60)

where d−1 zeroes precede the “1” and d is an integer representing the overall delay.
Unfortunately, perfect equalization is difficult to achieve and does not always yield
the best performance.

7.3.1.1 Zero-Forcing Solution

Lucky [165, 166] was the first to develop an adaptive (linear) equalizer for digital
communication systems in the mid-1960s. This equalizer was based on the peak
distortion criterion, where the equalizer forces the ISI to zero, and it is called a
zero-forcing (ZF) equalizer. With a ZF equalizer, the tap coefficients c are chosen to
minimize the peak distortion of the equalized channel, defined as

Dp =
1

|qd|
N+L−1

∑
n=0
n �=d

|qn − q̂n|, (7.61)

where q̂ = (q̂0, . . . , q̂N+L−1)
T is the desired equalized channel, and the delay d is a

positive integer optimized to have the value d = d1 + d2 [57]. Lucky showed that if
the initial distortion before equalization is less than unity, that is,

D =
1

|gd1 |
L

∑
n=0

n �=d1

|gn|< 1, (7.62)

then Dp is minimized by those N tap values which simultaneously cause q j = q̂ j for
d − d2 ≤ j ≤ d + d2. However, if the initial distortion before equalization is greater
than unity, the ZF criterion is not guaranteed to minimize the peak distortion. For
the case when q̂ = ed , the equalized channel is given by

q = (q0, . . . ,qd1−1,0, . . . ,0,1,0, . . . ,0,qd1+N , . . . ,qN+L−1)
T. (7.63)

In this case the equalizer forces zeroes into the equalized channel, and hence the
name “zero-forcing equalizer.”
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Equalizer Tap Solution

For a known channel impulse response, the tap gains of the ZF equalizer can be
found by the direct solution of a simple set of linear equations [57]. To do so, we
form the matrix

G = [g(d1), . . . ,g(d), . . . ,g(N + d1 − 1)] (7.64)

and the vector
q̃ =
(
q̂d1 , . . . , q̂d , . . . , q̂N+d1−1

)T
. (7.65)

Then the vector of optimal tap gains, cop, satisfies

cT
opG = q̃T −→ cop = (G−1)Tq̃. (7.66)

Example 7.2:
Suppose that a system has the channel vector

g = (0.90,−0.15,0.20,0.10,−0.05)T,

where gi = 0, i < 0, i > 4. The initial distortion before equalization is

D =
1

|g0|
4

∑
n=1

|gn| = 0.5555

and, therefore, the minimum distortion is achieved with the ZF solution.
Suppose that we wish to design a three-tap ZF equalizer. Since g0 is the
component of g having the largest magnitude, d1 = 0 and the equalizer delay
is chosen as d = d1 +d2 = 1. Suppose that the desired response is q̂0 = eT

1, so
that q̃ = (0, 1, 0). We then construct the matrix

G = [g(0),g(1),g(2)]

=

⎡

⎣
0.90 −0.15 0.20
0.00 0.90 −0.15
0.00 0.00 0.90

⎤

⎦

and obtain the optimal tap solution

cop = (G−1)T q̃ = (0, 1.1111, −0.185185)T.

The overall response of the channel and equalizer is

q = (0.0, 1.0, 0, 0.194, 0.148, −0.037, −0.009, 0, . . .)T.
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Finally, the distortion after equalization is

Dp =
1

|q1|
6

∑
n=0
n �=1

|qn − q̂n|= 0.388.

Adaptive Solution

In practice, the channel impulse response is unknown to the receiver, and a known
finite length sequence x is used to train the equalizer. During this training mode,
the equalizer taps can be obtained using the following steepest-descent recursive
algorithm:

cn+1
j = cn

j +αεnx∗n− j−d1
, j = 0, . . . ,N − 1, (7.67)

where

εn = xn−d − x̃n

= xn−d −
N−1

∑
i=0

civn−i (7.68)

is the error sequence, {cn
j} is the set of equalizer tap gains at epoch n, and α is an

adaptation step-size that can be optimized to trade-off convergence rate and steady-
state bit error rate performance. Notice that adaptation rule in (7.67) attempts to
force the cross-correlations εnx∗n− j−d1

, j = 0, . . . ,N − 1, to zero. To see that (7.67)
leads to the desired solution, we use (7.32) and (7.68), along with the fact that the
symbol sequence {xn} is uncorrelated with the noise sequence {wn} to obtain

1
2

E[εnx∗n− j−d1
] =

1
2

E[xn−dx∗n− j−d1
]− 1

2

N−1

∑
i=0

L

∑
�=0

cig�E[xn−i−�x
∗
n− j−d1

]

= σ2
x

(

δd2− j −
N−1

∑
i=0

cig j+d1−i

)

= σ2
x (δd2− j − q j+d1), j = 0, 1, . . . , N − 1, (7.69)

where σ2
x = 1

2 E[|xk|2]. Note that the conditions 1
2 E[εnx∗n− j−d1

] = 0 are satisfied when
qd = 1 and qi = 0 for d − d2 ≤ i < d and d < i ≤ d + d2, which is the zero forcing
solution.

After training the equalizer, a decision-feedback mechanism is typically used
where the sequence of symbol decisions x̂ is used to update the tap coefficients.
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This mode is called the data mode and allows the equalizer to track variations in the
channel vector g. In the data mode,

cn+1
j = cn

j +αεnx̂∗n− j−d1
, j = 0, . . . ,N − 1, (7.70)

where the error term εn in (7.68) becomes

εn = x̂n−d −
N−1

∑
i=0

civn−i, (7.71)

and, again, x̂n−d is the decision on the equalizer output x̃n delayed by d samples.

Performance of the ZF Equalizer

If the ZF equalizer has an infinite number of taps, it is possible to select the tap
weights so that Dp = 0, that is, q = q̂. Assuming that q̂n = δn0, this condition means
that

Q(z) = 1 =C(z)G(z). (7.72)

Therefore,

C(z) =
1

G(z)
(7.73)

and the ideal ZF equalizer has a discrete transfer function that is simply the inverse
of overall channel G(z). The cascade of the noise-whitening filter with transfer
function

W (z) =
√

2Ehr/G∗(1/z∗), (7.74)

and the ZF equalizer with transfer function 1/G(z) results in an equivalent equalizer
with transfer function1

C′(z) =
√

2Ehr

G∗(1/z∗)G(z)
=

√
2Ehr

F(z)
. (7.75)

Recall from (7.30) that the noise sequence at the input to the equivalent equalizer
C′(z) has the discrete autocorrelation function φνν (n) =

No
2Ehr

fn and psd

Sññ( f ) =
No

2Ehr

F(ej2π f T ), | f | ≤ 1
2T

. (7.76)

Therefore, the psd of the noise sequence {ζn} at the output of the equalizer is

Sζζ ( f ) =
No

F(ej2π f T )
, | f | ≤ 1

2T
(7.77)

1The scaling of the noise-whitening filter gain by
√

2Ehr is not necessary in practice and is done
here for mathematical convenience.
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and the noise samples have variance

σ2
ζ = T

∫ 1/2T

−1/2T
Sζζ ( f )d f

= T
∫ 1/2T

−1/2T

No

F(ej2π f T )
d f . (7.78)

If σ2
x = 1

2 E[|xk|2] and q̂n = δn0, then the signal-to-noise ratio at the output of the
infinite-tap equalizer is

γ∞ =
σ2

x

σ2
ζ
. (7.79)

Finally, we can show that (Problem 7.1)

F(ej2π f T ) = FΣ ( f ), | f | ≤ 1
2T

, (7.80)

where FΣ ( f ) is the folded spectrum of F( f ) defined by

FΣ( f )
�
=

1
T

∞

∑
n=−∞

F
(

f +
n
T

)
(7.81)

and F( f ) is the Fourier transform of the pulse f (t) = h(t) ∗ h∗(−t). Hence, the
signal-to-noise ratio at the equalizer output can be written in the final form

γ∞ = σ2
x

⎛

⎝TNo

∫ 1/2T

−1/2T

(
1
T

∞

∑
n=−∞

F
(

f +
n
T

)
)−1

d f

⎞

⎠

−1

. (7.82)

It is clear from (7.82) that ZF equalizers are unsuitable for channels that have
severe ISI, where the folded spectrum FΣ( f ) has spectral nulls or very small values.
Under these conditions, the equalizer tries to compensate for the nulls in the folded
spectrum by introducing infinite gain at their frequencies. Unfortunately, this results
in severe noise enhancement at the output of the equalizer at these same frequencies.
Land mobile radio channels often exhibit spectral nulls, and, therefore, linear ZF
equalizers are not used for land mobile radio applications.

On the other hand, when the overall channel f (t) satisfies the conditions for
ISI-free transmissions as discussed in Sect. 4.2, then the ISI coefficients satisfy the
property fn = f0δn0, and the matched filter output is

r̃k =
√

2Ehrxk + ñk. (7.83)

The noise samples {ñk} in the case are white due to the fact that the overall pulse
f (t) satisfies the first Nyquist criterion. From Sect. 4.2, an equivalent condition in
the frequency-domain is that the folded spectrum FΣ ( f ) is flat, that is,
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FΣ( f ) =
1
T

∞

∑
n=−∞

F
(

f +
n
T

)
= f0 = 2Ehr . (7.84)

Under this condition, the signal-to-noise ratio in (7.82) reaches its maximum value
γ∞ = 2σ2

x Ehr/No.

7.3.1.2 Minimum Mean-Square-Error Solution

Soon after Lucky introduced the ZF equalizer, Proakis and Miller [216], Lucky et. al.
[167], and Gersho [109] developed the linear MMSE equalizer based on the least
mean square (LMS) criterion. The MMSE equalizer is more robust and superior to
the ZF equalizer in its performance and convergence properties [216, 217, 220]. By
defining the vector

vn = (vn, vn−1, . . . , vn−N+1), (7.85)

where vk is the output of the whitened matched filter in (7.32), the output of the
equalizer in (7.56) can be expressed in the form

x̃n = cT vn = vT
nc. (7.86)

An MMSE equalizer adjusts the tap coefficients to minimize the mean square error
(MSE)

J
�
=

1
2

E[|xn−d − x̃n|2]

=
1
2

E
[
cT vnvH

n c∗ − 2Re{vH
n c∗xn−d}+ |xn−d|2

]
, (7.87)

where, again, d is the equalizer delay assumed here to be chosen as d = d1 + d2.

Equalizer Tap Solution

If the channel impulse response is known, the optimum equalizer taps can be
obtained by direct solution. Define

Mv
�
=

1
2

E[vnvH
n ],

vH
x

�
=

1
2

E[vH
n xn−d] (7.88)

where Mv is an N ×N Hermitian matrix (meaning that Mv = MH
v ) and vx is a length

N column vector. Using these definitions and assuming that 1
2 E[|xn−d|2] = σ2

x , the
MSE is

J = cT Mvc∗ − 2Re{vH
x c∗}+σ2

x . (7.89)
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The tap vector c that minimizes the MSE can obtained by equating the gradient ∇cJ
to zero. It can be shown that (Problem 7.15)

∇cJ =

(
∂J
∂c0

, · · · , ∂J
∂cN−1

)

= 2cT Mv − 2vH
x . (7.90)

Setting ∇cJ = 0 gives the MMSE tap solution

cop = (MT
v )

−1v∗
x. (7.91)

By substituting (7.91) into (7.89), using the identity (A−1)T = (AT )−1 and the fact
that Mv is Hermitian, the MMSE can be expressed as

Jmin = cT
opMvc∗op − 2Re{vH

x c∗op}+σ2
x

= σ2
x − vH

x M−1
v vx. (7.92)

To proceed further, the ith component of the vector vH
x is

1
2

E[xn−dv∗n−i] = σ2
x

L

∑
�=0

g∗
�δd−i−� = σ2

x g∗
d−i , i = 0, . . . ,N − 1, (7.93)

so that
vH

x = σ2
x (g

∗
d,g

∗
d−1, . . . ,g

∗
0,0, . . . ,0)

T. (7.94)

Also,
1
2

E[vk−iv
∗
k− j] =

{
σ2

x f j−i +Noδi j, |i− j| ≤ L
0, otherwise

, (7.95)

where we have used the property

fn =
L−n

∑
k=0

g∗
kgk+n, n = 0, . . . ,L. (7.96)

Hence, the N ×N matrix Mv has the form

Mv = σ2
x

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f0 +No/σ2
x f1 f2 · · · fN−1

f ∗1 f0 +No/σ2
x f1 · · · fN−2

f ∗2 f ∗1 f0 +No/σ2
x · · · fN−3

...
...

... · · · ...
f ∗N−1 · · · f ∗2 f ∗1 f0 +No/σ2

x

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (7.97)



7.3 Symbol-by-Symbol Equalizers 395

Example 7.3:
Consider a system having the same channel vector g as in Example 7.2.

Suppose that we wish to design a three-tap MMSE equalizer. In this case,
gd1 = 0 and N = 2d2 + 1 = 3, so that d = d1 + d2 = 1. Hence,

vH
x = σ2

x (g
∗
1,g

∗
0,0) = σ2

x (−0.15, 0.90, 0.00)

and

Mv = σ2
x

⎡

⎣
β −0.1500 0.1550

−0.1500 β −0.1500
0.1550 −0.1500 β

⎤

⎦,

where β = 0.8850+No/σ2
x . The inverse of Mv is

M−1
v =

adj(Mv)

det(Mv)
,

where det(Mv) = (σ2
x )

3(β (β 2 − 0.069025)+ 0.006975) and

adj(Mv) = (σ2
x )

2

⎡

⎣
β 2 − 0.0225 0.15β − 0.02325 0.0225− 0.155β

0.15β − 0.02325 β 2 − 0.024025 0.15β − 0.02325
0.0225− 0.155β 0.15β − 0.02325 β 2 − 0.0225

⎤

⎦.

Hence,

cop =
(σ2

x )
3

det(Mv)

⎛

⎝
−0.15β 2+ 0.135β − 0.1755

0.90β 2 − 0.0225β − 0.018135
0.15825β − 0.0243

⎞

⎠.

With this tap solution,

Jmin = σ2
x

(

1− 0.8325β 2− 0.013689
β (β 2 − 0.069025)+ 0.006975

)

and as No → 0, Jmin = 0.001089424σ2
x .

Adaptive Solution

In practice, the channel impulse response is unknown beforehand so that the MMSE
solution cannot be obtained by the matrix inversion in (7.91). However, the equalizer
taps can be obtained using the stochastic gradient algorithm

cn+1
j = cn

j +αεnv∗n− j, j = 0, . . . ,N − 1, (7.98)
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where εn is given by (7.68). To show that (7.98) leads to the desired solution, note
from (7.90) that

∇cJ = E[cT vnvH
n − xn−dvH

n ]

= E[(cT vn − xn−d)v
H
n ]

= E[εnvH
n ] = 0. (7.99)

It follows that
1
2

E[εnv∗n− j] = 0, j = 0, . . . , N − 1, (7.100)

and, therefore, the adaptive solution tends to force the cross-correlations εnv∗n− j, j =
0, . . . , N − 1 to zero.

Performance of the MMSE Equalizer

The performance of an MMSE equalizer having an infinite number of taps provides
some useful insight. In this case

c = (c−∞, . . . , c0, . . . , c∞),

vn = (vn+∞, . . . , vn, . . . , vn−∞).

Since the decision delay d with an infinite-tap equalizer is irrelevant, we can choose
d = 0 so that

1
2

E[xnv∗n− j] =

{
σ2

x g∗− j, −L ≤ j ≤ 0
0, otherwise

. (7.101)

The equation for the optimal tap gain vector cT Mv = vH
x can be written in the form

∞

∑
i=−∞

ci ( f j−i +Noδi j) = g∗
− j, −∞ < j < ∞. (7.102)

Taking the z-transform of both sides of (7.102) gives

C(z)
(

G(z)G∗(1/z∗)+No

)
= G∗(1/z∗) (7.103)

and, therefore,

C(z) =
G∗(1/z∗)

G(z)G∗(1/z∗)+No
. (7.104)

The equivalent MMSE equalizer C′(z) = C(z)W (z) that includes the noise-
whitening filter in (7.74) is
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C′(z) =
√

2Ehr

G(z)G∗(1/z∗)+No
=

√
2Ehr

F(z)+No
. (7.105)

Notice that C′(z) has the same form as the ZF equalizer in (7.75), except for the
noise term No in the denominator. Clearly, the ZF and MMSE criterion lead to the
same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability.
However, for many equalization techniques, the bit error probability is a highly
nonlinear function of the equalizer coefficients. Another measure of performance
is the MSE. The MMSE of an infinite-length MMSE equalizer is given by [217]

Jmin = σ2
x T
∫ 1/2T

−1/2T

No

FΣ ( f )+No
d f , (7.106)

where σ2
x = 1

2 E[|xk|2]. Note that 0 ≤ Jmin ≤ σ2
x , and that Jmin = 0 when there is

no noise and Jmin = σ2
x when the folded spectrum FΣ ( f ) exhibits a spectral null.

Furthermore, the relationship between the signal-to-noise ratio at the equalizer
output and Jmin is

γ∞ = σ2
x · σ2

x − Jmin

Jmin
. (7.107)

When there is no ISI, FΣ ( f ) = f0 = 2Ehr , we have

Jmin =
σ2

x No

2Ehr +No
(7.108)

and the equalizer reaches its maximum output signal-to-noise ratio γ∞ = 2σ2
x Ehr/No.

Finally, another useful measure for the effectiveness of linear equalization tech-
niques is the signal-to-interference-plus-noise ratio (SINR) defined as

SINR =
2σ2

x |qd |2
2σ2

x ∑N+L−1
j=0
j �=d

|q j|2 +No ∑N−1
j=0 |c j|2

. (7.109)

Although the MMSE equalizer accounts for the effects of noise, satisfactory
performance still cannot be achieved for channels with severe ISI or spectral nulls,
because of the noise enhancement at the output of the equalizer [93, 217]. Another
problem with a linear equalizer is the adaptation of the equalizer during data mode.
This problem is especially acute when bandwidth efficient trellis-coded modulation
schemes are used with non-iterative receivers. In this case, equalizer-based decisions
are unreliable and inferior to those in uncoded systems due to the reduced separation
between the points in the enlarged signal constellation. This problem can be partially
alleviated using periodic training, where the equalizer taps are allowed to converge
in periodic training modes [81].
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Fig. 7.9 Decision feedback equalizer

7.3.2 Decision Feedback Equalizer

Linear equalizers have the drawback of enhancing channel noise while trying to
eliminate ISI, a characteristic known as noise enhancement. As a result, satisfactory
performance is unattainable with linear equalizers for channels having severe
amplitude distortion. In 1967, Austin [21] proposed the nonlinear decision feedback
equalizer (DFE) to mitigate noise enhancement. The DFE consists of two sections;
a feedforward section and a feedback section as illustrated in Fig. 7.9. The DFE is
nonlinear because the feedback path includes a decision device. The feedforward
section has an identical structure to the linear forward equalizer discussed earlier,
and its purpose is to reduce the precursor ISI. It has been shown that the optimum tap
setting of a zero-forcing DFE having infinite length feedforward and feedback filters
is such that the feedforward filter is identical to a noise-whitening filter with system
function 1/G∗(1/z∗), such that the system function G(z) has minimum phase [220].
Such a filter suppresses the postcursor of the channel response and whitens the
noise. The combination of the matched filter, sampler, and feedforward filter yields
an equivalent discrete-time white noise channel having the system function G(z).

To eliminate the postcursor ISI, decisions made on the equalizer outputs are
propagated through the feedback filter. The optimal coefficients of the feedback
filter are the sampled impulse response of the tail of the overall system impulse
response that includes the forward part of the DFE. This feedback mechanism
introduces error propagation which can degrade the performance of the DFE and
complicate its performance analysis.

The output of the DFE shown in Fig. 7.9 is

x̃n =
N−1

∑
i=0

cir̃n−i −
M

∑
i=1

Fix̂n−i, (7.110)
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where {cn} and {Fn} are the tap coefficients of the feedforward and feedback filters,
respectively, {yn} is the sample sequence at the output of the matched filter, and {x̂n}
is the sequence of previously detected data symbols. Recall that the overall channel
and feedforward portion of the equalizer can be represented by the sampled impulse
response q in (7.57). Hence, the DFE output can be written as

x̃n =
N+L−1

∑
i=0

qixn−i −
M

∑
i=1

Fix̂n−i + η̃n, (7.111)

where

η̃n =
N−1

∑
i=0

ciñn−i (7.112)

is the nth noise sample at the output of the feedforward filter. By adding and
subtracting terms, the output of the DFE can be rewritten as

x̃n = xnq0 +
M

∑
i=1

qi(xn−i − x̃n−i)+
M

∑
i=1

(qi −Fi)x̂n−i

+
N+L−1

∑
i=M+1

qixn−i + η̃n. (7.113)

If we choose

Fi = qi = cT g(i), i = 1,2, . . . ,M (7.114)

so that the second summation is zero, and if correct decisions are made so that the
first summation is zero, then

x̃n = xnq0 +
N+L−1

∑
i=M+1

qixn−i + η̃n. (7.115)

The summation in (7.115) represents the residual ISI that remains from the
feedforward filter, which is zero if M = N +L− 1.

Equalizer Tap Solution

The coefficients {ci} and {Fi} can be adjusted simultaneously to minimize the MSE,
resulting in an equalizer that is sometimes called a MMSE-DFE. Define

c = (c0, c1, . . . , cN−1)
T, (7.116)

r̃n = (r̃n, r̃n−1, . . . , r̃n−N)
T, (7.117)

x̂n = (x̂n−1, x̂n−2, . . . , x̂n−M)T, (7.118)

F = (F1, F2, . . . , FM)T (7.119)
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and define the error at the nth epoch, εn, as

εn = x̃n − xn

= cT r̃n −FT x̂n − xn. (7.120)

Now define

t̃
�
= vec(cT ,FT )T, (7.121)

ỹn
�
= vec(r̃T

n ,−x̂T
n)

T (7.122)

so that εn = t̃T ỹn − xn. Then the MSE can be expressed as

J =
1
2

E[|εn|2]

=
1
2

E
[
t̃T ỹnỹH

n t̃∗ − 2Re{ỹH
n t̃∗xn}+ |xn|2

]
. (7.123)

Notice that (7.123) and (7.87) have the exact same form. Therefore, the MMSE tap
solution can be obtained by defining

M̃y
�
=

1
2

E[ỹnỹH
n ], (7.124)

ỹH
x

�
=

1
2

E[ỹH
n xn]. (7.125)

Using the same argument that lead to (7.91), we have the MMSE-DFE tap solution

t̃op = (M̃T
y )

−1ỹ∗
x . (7.126)

Adaptive Solution

The feedforward taps of the DFE can be adjusted using

cn+1
j = cn

j +αεnv∗n+ j, j = 0, . . . ,N − 1, (7.127)

while the feedback coefficients can be adjusted according to

Fn+1
j = Fn

j +αεnx̂∗n− j, j = 1, . . . ,M, (7.128)

where α is the step size. To see that this leads to the desired solution, we use the
same argument that lead to (7.99). Then observe that ∇cJ = E[εnỹH

n ] = 0 implies that
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1
2

E[εnv∗n+ j] = 0, j = 0, . . . , N − 1, (7.129)

1
2

E[εnx̂∗n− j] = 0, j = 1, . . . , M, (7.130)

where the second expectation is zero under the assumption that the DFE makes
correct decision so that x̂∗n− j = x∗n− j.

Performance of the DFE

The performance of a DFE is complicated by the fact that incorrect decisions in
the feedback portion of the equalizer result in error propagation. Since the feedback
section of the DFE eliminates the postcursor residual ISI at the output of the forward
filter, it is apparent that the optimum setting for an infinite-length forward filter
is identical to a stable, noncausal, noise-whitening filter that results in an overall
system response G(z) having minimum phase [220]. The MMSE for the infinite
length DFE is [227]

Jmin = σ2
x exp

{

T
∫ 1/2T

−1/2T
ln

(
No

FΣ ( f )+No

)

d f

}

, (7.131)

where 0 ≤ Jmin ≤ σ2
x . The corresponding signal-to-noise ratio at the output of the

DFE is

γ∞ = σ2
x · σ2

x − Jmin

Jmin
. (7.132)

Once again, when there is no ISI FΣ ( f ) = f0 = 2Ehr and

Jmin =
σ2

x No

2Ehr +No
, (7.133)

and the equalizer reaches its maximum output signal-to-noise ratio γ∞ = 2σ2
x Ehr/No.

7.4 Sequence Estimation

7.4.1 Maximum Likelihood Sequence Estimation

The Viterbi algorithm was originally devised by Viterbi for maximum likelihood
decoding of convolutional codes [266,267]. Forney recognized the analogy between
an ISI channel and a convolutional encoder, and applied the Viterbi algorithm for
the detection of digital signals corrupted by ISI and AWGN [104]. Because of
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the efficiency of the Viterbi algorithm, the implementation of the optimum MLSE
optimum for detecting ISI-corrupted signals is feasible.

Recall that the overall discrete-time white noise channel with D-branch diversity
reception can be modeled by collection of D transversal filters that are T -spaced
and have (L+ 1)-taps, as shown in Fig. 7.5. From Fig. 7.5, it can be seen that the
channel has a finite number of states defined by contents of the L memory elements
in the tapped delay lines. If the size of the signal constellation is 2n, there are total
of NS = (2n)L states. The state at epoch k is

ρk = (xk−1,xk−2, · · · ,xk−L). (7.134)

Example 7.4:
Suppose that the binary sequence x, xn ∈ {−1,+1}, is transmitted over a

three-tap static ISI channel with channel vector g = (1, 1, 1). In this case,
there are four states (NS = 4) and the system can be described the state
diagram shown in Fig. 7.10. Note that there are two branches entering and
leaving each state since binary modulation is used. In general there are M = 2n

such branches for an M-ary modulation alphabet. The dashed lines correspond
to an input symbol equal to “−1,” while the solid lines correspond to an input
symbol equal to “1.”

The system state diagram can be used to construct the trellis diagram

shown in Fig. 7.11, where the initial zero state is assumed to be ρ (0)
0 =

(−1,−1). Again, state transitions with a solid line correspond to an input
symbol +1, while those with a dashed line correspond to an input symbol −1.

Suppose that the data sequence x = (−1, 1, 1, −1, 1, 1, −1, −1, . . .)
is transmitted over the channel g. Then the state sequence follows
the shaded path in Fig. 7.11. The noiseless received sequence is v =
(v0, v1, v2, v3, v4, . . .), where

vn = g0xn + g1xn−1 + g2xn−2

= xn + xn−1 + xn−2.

Hence, for the data sequence x = (−1, 1, 1, −1, 1, 1, −1, −1, . . .) the
noiseless received sequence is v = (−3, −1, 1, 1, 1, 1, 1, −1, . . .).

Assume that k symbols have been transmitted over the channel. Let Vn =
(vn,1, vn,2, . . . , vn,D) denote the vector of signals received on all D diversity
branches at epoch n. After receiving the sequence {Vn}k

n=1, the ML receiver decides
in favor of the sequence {xn}k

n=1 that maximizes the likelihood function

p(Vk, · · · , V1| xk, · · · , x1) (7.135)
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Fig. 7.10 State diagram for
binary signaling on a
three-tap ISI channel
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Fig. 7.11 Trellis diagram for binary signaling on a three-tap ISI channel

or, equivalently, the log-likelihood function

log{p(Vk, · · · , V1| xk, · · · , x1)}. (7.136)

Since the noise samples {wn,d} in (7.32) are mutually independent with respect to
the indices n and d, and Vn depends only on the L most recent transmitted symbols,
the log-likelihood function (7.136) can be rewritten as

log{p(Vk, · · · ,V1|xk, · · · ,x1)}

= log{p(Vk|xk, · · · ,xk−L)}+ log{p(Vk−1, · · · ,V1|xk−1, · · · ,x1)}, (7.137)
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where xk−L = 0 for k −L ≤ 0. If the second term on the right side of (7.137) has
been calculated previously at epoch k− 1 and stored in memory, then only the first
term, called the branch metric, has to be computed for the incoming signal vector
Vk at epoch k.

The model in Fig. 7.5 gives the conditional pdf

p(Vk|xk, · · · ,xk−L) =
1

(2πNo)D exp

⎧
⎨

⎩
− 1

2No

D

∑
d=1

∣
∣
∣
∣
∣
vk,d −

L

∑
i=0

gi,dxk−i

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
(7.138)

so that log p(Vk|xk, · · · ,xk−L) yields the branch metric

μk =−
D

∑
d=1

∣
∣
∣
∣
∣
vk,d −

L

∑
i=0

gi,dxk−i

∣
∣
∣
∣
∣

2

, (7.139)

using the same argument that was used to arrive at (7.37). Note that the receiver
requires knowledge of the set of channel vectors {gd,d = 1, . . . ,D} to compute the
branch metric. As discussed later, this can be obtained using a separate channel
estimator.

Based on the recursion in (7.137) and the branch metric in (7.139), the well-
known Viterbi algorithm [267] can be used to implement the ML receiver by
searching through the NS-state trellis for the most likely transmitted sequence
x = {xk} given the sequence of observation vectors V = {Vk}. This search process
is called MLSE. At epoch k, the Viterbi algorithm stores NS surviving sequences

known as survivors x̌(ρ (i)
k ) (paths through the trellis) along with their associated

path metrics Γ(ρ (i)
k ) (squared Euclidean distances from the received sequence) that

terminate at state ρ (i)
k , i = 0, . . . ,NS − 1. The path metric is defined as

Γ(ρ (i)
k ) =

k

∑
n=1

μ (i)
n , i = 0, . . . ,NS − 1, (7.140)

where {μ (i)
n } is the sequence of branch metrics along the surviving path x̌(ρ (i)

k ).
Here, we give an outline of MLSE as implemented by the Viterbi algorithm followed
by an example.

The Viterbi algorithm is initialized at time index k = 0, by setting all path metrics

to zero, that is, Γ(ρ (i)
0 ) = 0, i = 1, . . . ,NS − 1.

1. After the vector Vk+1 has been received, compute the set of path metrics Γ(ρ (i)
k →

ρ ( j)
k+1) = Γ(ρ (i)

k )+ μ(ρ (i)
k → ρ ( j)

k+1) for all possible paths through the trellis that

terminate in each state ρ ( j)
k+1, j = 0, . . . , NS − 1, where μ(ρ (i)

k → ρ ( j)
k+1) is the

branch metric defined below. For a modulation alphabet of size M, there will be

M such paths that terminate in each state ρ ( j)
k+1.
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2. Find Γ(ρ ( j)
k+1) = max

i
Γ(ρ (i)

k → ρ ( j)
k+1), j = 0, · · · , NS − 1 where, again, the

maximization is over all M possible paths through the trellis that terminate in

state ρ ( j)
k+1.

3. Store Γ(ρ ( j)
k+1) and its associated surviving sequence x̌(ρ ( j)

k+1). Drop all other paths

that terminate in state ρ ( j)
k+1.

4. Increment the time index k, goto Step 1, and repeat the entire algorithm.

In Step 1 above, μ(ρ (i)
k → ρ ( j)

k+1) is the branch metric associated with the state

transition ρ (i)
k → ρ ( j)

k+1 and is computed according to the following variation of
(7.139)

μ(ρ (i)
k → ρ ( j)

k+1) =−
D

∑
d=1

∣
∣
∣
∣
∣
vk,d − g0,dxk(ρ

(i)
k → ρ ( j)

k+1)−
L

∑
m=1

gm,dxk−m(ρ
(i)
k )

∣
∣
∣
∣
∣

2

,

(7.141)

where xk(ρ
(i)
k → ρ ( j)

k+1) is a symbol that is uniquely determined by the state transition

ρ (i)
k → ρ ( j)

k+1, and the L most recent symbols {xk−m(ρ
(i)
k )}L

m=1 are uniquely specified

by the state ρ (i)
k .

Example 7.5:
Consider again binary four-state system in Example 7.4. In the presence of

noise, the noise received sequence is

vn = g0xn + g1xn−1 + g2xn−2 +wk

= xn + xn−1 + xn−2 +wk,

where the wk are i.i.d. zero-mean Gaussian random variables with variance
No. Suppose that due to AWGN, the noisy received sequence is

v = (v0, v1, v2, v3, v4, . . .)

= (−3.2, −1.1, 0.9, 0.1, 1.2, 1.5, 0.7, −1.3, . . .).

The Viterbi algorithm is initialized with Γ(ρ (i)
0 ) = 0 for i= 0, . . . ,3. The initial

state is assumed to be ρ (0)
0 =(−1, −1). Executing the Viterbi algorithm yields

the result shown in Fig. 7.12, where the Xs on the branches in the trellis denote
dropped paths (the other path at each state is the survivor), and the numbers
in the trellis are the path metrics corresponding to the surviving sequences

at each state. The path metric at each state ρ ( j)
k , j = 0, . . . ,3, is equal to the



406 7 Equalization and Interference Cancelation

-1  1

1 -1

-1 -1

1  1

state

1=

0=

2=

3=

0 1 2 3 4 5 6 7 8

0.04

0.05 4.864.84

9.25 0.06
X

X

X

X

X

X

X

X
5.67

-

-

- - -

--

-

- - -

-

3.65 8.46 4.87

4.47

0.87-3.66-4.85

X

X

X

X

-5.71

-0.91

-5.71

-1.16-4.51

-4.76

-5.96

-11.96
X

X

X

X

-1.25

-4.85

-7.65
X

X

X

X X

X

X

X
-1.34

-6.54

-4.94

-10.14-6.05

epoch

Fig. 7.12 Cumulative path metrics and surviving sequences with the Viterbi algorithm

squared Euclidean distance between the corresponding surviving sequence

x̌(ρ ( j)
k ) and the received sequence v at the output of the noise-whitening filter.

As implied in (7.137), the ML receiver theoretically waits until the entire
sequence {Vn}∞

n=1 has been received before making a decision. In practice, such a
long delay (maybe infinite) is intolerable. One method for solving this problem is to
modify the Viterbi algorithm to introduce a fixed decoding delay. Typically, the NS

surviving sequences x̌(ρ (i)
k ), i = 1, . . . ,NS −1 at time index k will be identical for bit

(or symbol) indices k−Q or less where Q is some sufficiently large number. That is,
all the surviving sequences will share a common parent sequence for bit (or symbol)
indices k − Q or less. With this in mind, one possibility is to modify the Viterbi
algorithm to implement a finite fixed decoding delay, by storing only the Q most
recent bits or symbols for each surviving sequence. When the channel vector Vk is

received and the path metrics Γ(ρ ( j)
k+1), j = 1, . . . ,NS −1 are being calculated, the fi-

nal decision is made on the bit (or symbol) Q branches back in the trellis by deciding

in favor of the bit (or symbol) at index k−Q in the surviving sequence x̌(ρ (i)
k ) having

the largest path metric Γ(ρ (i)
k ). It is well known that if Q > 5L, the performance

degradation caused by the resulting path metric truncation is negligible [267].
Another possibility is to transmit the data in blocks x = (x1,x2, . . . ,xN) of length

N, and use tail symbols to terminate the trellis in a known state. Recall that the
state at epoch k is ρk = (xk−1,xk−2, . . . ,xk−L). Therefore, if each block of N data
symbols is appended with a known L-symbol tail sequence, the trellis will terminate
in a known state that is uniquely determined by the L-symbol tail sequence. After the
received vector VN+L has been processed, there will be only one surviving sequence
left, and this surviving sequence is then used to make a decision on the entire block
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of bits (or symbols). This approach suffers a loss in power and data rate by the factor
N/(N +L) due to the insertion of tail symbols.

7.4.1.1 Adaptive MLSE Receiver

The Viterbi algorithm requires knowledge of the channel vectors gd,d = 1, . . . ,D
to compute the branch metrics in (7.139) so that an adaptive channel estimator is
needed. Various channel estimators have been proposed in the literature [58,88,170].
Often the LMS algorithm is used for this purpose, because of its good performance,
numerical stability, and simplicity of implementation [130, 170]. Another possible
adaptation algorithm is the Recursive Least Squares (RLS) or the Kalman algorithm
[130]. The RLS algorithm has a very fast convergence rate as compared to the
LMS algorithm. However, it is very complicated to implement and it is sensitive
to roundoff noise that accumulates due to recursive computations which may cause
numerical instabilities in the algorithm [217]. It has also been reported that the
tracking properties of the LMS algorithm for the purpose of channel estimation
in a fast varying environment are quite similar to those of the RLS algorithm
[88, 158, 241]. For these reasons, the LMS algorithm is commonly used during the
tracking mode in adaptive MLSE receivers. During the training mode, it is possible
that the RLS algorithm could offer better performance than the LMS algorithm.

A straightforward method for adaptive channel estimation with an MLSE re-
ceiver is to use the final decisions at the output of the Viterbi algorithm to update the
channel estimator during the tracking mode. As mentioned previously, a decision on
the data symbol xk−Q, denoted by x̂k−Q, is made when the vector Vk is received and
processed. With the LMS algorithm, the tap coefficients are updated according to

ĝi,d(k+ 1) = ĝi,d(k)+αεk−Q,d x̂∗k−i−Q, i = 0, . . . ,L

d = 1, . . . ,D, (7.142)

where α is the adaptation step size, and

εk−Q,d = vk−Q,d −
L

∑
i=0

ĝi,d(k)x̂k−i−Q, (7.143)

is the error associated with branch d at epoch k. A major problem with this channel
estimator is that it lags behind the true channel vector by the decision delay Q that
is used in the Viterbi algorithm. To see this, we can write

vk−Q,d =
L

∑
i=0

gi,d(k−Q)xk−i−Q+ηk−Q,d , (7.144)
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and if correct decisions are made

εk−Q,d =
L

∑
i=0

(
gi,d(k−Q)− ĝi,d(k)

)
xk−i−Q +ηk−Q,d . (7.145)

Hence, channel time variations over the decision delay Q will cause the terms
{gi,d(k − Q)− ĝi,d(k)}L

k=1 to be nonzero, and this will degrade the tracking per-
formance. The decision delay Q could be reduced but this will unfortunately reduce
the reliability of the data decisions x̂k−i−Q. Since decision errors will also degrade
the performance of the channel estimator, the overall performance improvement
obtained by reducing Q is minimal at best.

One effective solution to this problem is to use per-survivor processing [157,
221, 237, 238], where each state maintains a separate channel estimator to track

the channel. After storing the path metrics Γ(ρ ( j)
k+1) and the associated surviving

sequences x̌(ρ ( j)
k+1) for each state j = 0, . . . ,NS − 1, the channel tap estimates are

updated according to

ĝ( j)
i,d (k+ 1) = ĝ( j)

i,d (k)+αε( j)
k,d x̌∗

k+1−i(ρ
( j)
k+1), i = 0, . . . ,L

d = 1, . . . ,D

j = 0, . . . ,NS − 1,

(7.146)

where

ε( j)
k,d = vk,d −

L

∑
i=0

ĝ( j)
i,d (k)x̌

∗
k+1−i(ρ

( j)
k+1) (7.147)

and x̌k+1−i(ρ
( j)
k+1) is element k+ 1− i of the surviving sequence x̌(ρ ( j)

k+1) associated

with state ρ ( j)
k+1. Notice that the individual channel estimators for each state use zero-

delay symbols in their adaptation algorithm and, therefore, good channel tracking
performance is expected. The zero-delay symbols that are used to update the channel

tap estimates associated with state ρ ( j)
k+1 are uniquely defined by surviving sequence

x̌(ρ ( j)
k+1) that is associated with ρ ( j)

k+1.

7.4.1.2 Fractionally Spaced MLSE Receiver

As mentioned previously, the matched filter outputs are often over-sampled to aid
symbol timing synchronization and to mitigate the effects of sample timing errors.
Suppose that the matched filter output is sampled at rate 2/T and the T/2-spaced
samples are processed with a T/2-spaced noise-whitening filter as shown in Fig. 7.6.
Once again, the channel can be modeled as a finite-state machine with the states
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defined in (7.134). However, the Viterbi decoder searches for the most likely path

in the trellis based on two samples per branch. For each state transition ρ ( j)
k → ρ (i)

k+1

at epoch k, the samples v(2)2k and v(2)2k+1 are used by the Viterbi algorithm to evaluate
the branch metric2

μ
(

ρ (i)
k →ρ ( j)

k+1

)
=

∣
∣
∣
∣
∣
v(2)2k − g(2)0 xk

(
ρ (i)

k → ρ ( j)
k+1

)
−

L

∑
m=1

g(2)2mxk−m(ρ
(i)
k )

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
v(2)2k+1 − g(2)1 xk

(
ρ (i)

k → ρ ( j)
k+1

)
−

L−1

∑
m=1

g(2)2m+1xk−m(ρ
(i)
k )

∣
∣
∣
∣
∣

2

.

(7.148)

Other than the change in the branch metric, the Viterbi algorithm proceeds as before.
Note also that the adaptive channel estimator must estimate and track two different

channel vectors; g(2)e = {g(2)0 ,g(2)2 , . . . ,g(2)2L } and g(2)o = {g(2)1 ,g(2)3 , . . . ,g(2)2L−1}.

7.4.2 Delayed Decision-Feedback Sequence Estimation

The complexity of the MLSE receiver grows exponentially with the channel
memory length. When the channel memory length becomes large, the MLSE
receiver quickly becomes impractical. Considerable research has been undertaken
to reduce the complexity of MLSE while retaining most of its performance. Duel-
Hallen and Heegard [82,83] proposed DDFSE, a technique that reduces the receiver
complexity by truncating the effective channel memory to μ terms, where μ is an
integer that can be varied from 0 to L. Thus, a suboptimum receiver is obtained with
a complexity that is controlled by the parameter μ .

The system function G(z) of the overall discrete-time white noise channel can be
written as

G(z) = Gμ(z)+ z−(μ+1)G+(z), (7.149)

where

Gμ(z) =
μ

∑
i=0

giz
−i, (7.150)

G+(z) =
L−μ−1

∑
i=0

gi+μ+1z−i. (7.151)

2For notational simplicity we assume D = 1.
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Let U(z) = G+(z)X(z), where X(z) is the z-transform of the input sequence. Then

uk =
L−μ−1

∑
i=0

gi+μ+1xk−i (7.152)

and

vk =
μ

∑
i=0

gixk−i + uk−μ−1 +wk. (7.153)

From (7.152) and (7.153), the system state at epoch k can be decomposed into the
state

ρ μ
k = (xk−1, . . . , xk−μ) (7.154)

and a partial state
κk = (xk−μ−1, . . . , xk−L). (7.155)

There are Nμ = 2nμ states in (7.154).
The DDFSE receiver can be viewed as a Viterbi algorithm with a decision

feedback mechanism. For each state transition ρ μ(i)
k → ρ μ( j)

k+1 , the DDFSE receiver
uses the branch metric

μk

(
ρ μ(i)

k → ρ μ( j)
k+1

)
= −

∣
∣
∣
∣
∣

vk − g0xk

(
ρ μ(i)

k → ρ μ( j)
k+1

)

−
μ

∑
�=1

g�xk−�(ρ
μ(i)
k )−

L

∑
�=μ+1

g�x̌k−�

(
ρ μ(i)

k

)
∣
∣
∣
∣
∣

2

, (7.156)

where x̌k−�(ρ
μ(i)
k ) is element k − � of the surviving sequence x̌(ρ μ(i)

k ). Since each
path uses decision feedback based on its own history, the DDFSE receiver avoids
using a single unreliable decision for feedback. Hence, error propagation with a
DDFSE receiver is not as severe as with a DFE receiver. When μ = 0, the DDFSE
receiver is equivalent to Driscoll’s decoder [81], and when μ = L, the DDFSE
receiver is equivalent to the MLSE receiver.

Finally, since only the μ most recent symbols are represented by the state in
(7.154), it is important to have most of the signal energy contained in these terms.
Hence, it is very important that the noise-whitening filter be selected so that the
overall channel G(z) has minimum phase. If G(z) does not have minimum phase,
DDFSE does not work as well.

Example 7.6:
Consider again the system in Example 7.4, where the received sequence is

v = (v0, v1, v2, v3, v4, . . .)

= (−3.2, −1.1, 0.9, 0.1, 1.2, 1.5, 0.7, −1.3, . . .)
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state

-1

+1

epoch

Fig. 7.13 Cumulative path metrics and surviving sequences with DDFSE

Recall that ρ (i)
k = (xk−1, xk−2), so there are four system states. However, we

wish to apply DDFSE with the state ρ μ(i)
k = xk−1, i = 0,1. The initial state is

assumed to be ρ μ(0)
0 = −1. Since the channel has finite length, (7.156) gives

the branch metric

μk

(
ρ μ(i)

k → ρ μ( j)
k+1

)
=
∣
∣
∣yk − xk

(
ρ μ(i)

k → ρ μ( j)
k+1

)
− xk−1(ρ

μ(i)
k )− x̌k−2

(
ρ μ(i)

k

)∣
∣
∣
2
.

Applying DDFSE with the Viterbi algorithm gives the result shown in
Fig. 7.13. Once again, the X ′s on the branches in the trellis denote the dropped
paths and the numbers on the trellis nodes denote the path metrics.

7.4.3 Reduced-State Sequence Estimation

For large signal constellations, the number of states with DDFSE, 2nμ , is substantial
even for small μ . Eyuboǧlu and Qureshi [94] proposed a reduced complexity
method called RSSE, a technique that is especially useful for systems with large
signal constellations. RSSE reduces the number of states using Ungerboeck-like set
partitioning principles that were developed for trellis-coded modulation [258]. As
described in [94], for each element xk−n in ρ μ

k = (xk−1, . . . ,xk−μ), a set partitioning
Ω(n),1 ≤ n ≤ μ ≤ L is defined where the signal set is partitioned into Ji subsets in
a way of increasing intrasubset minimum Euclidean distance.3

3If J1 = J2 = · · ·= Jμ = M and μ < L, then RSSE becomes DDFSE.
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The subset in the partitioning Ω(i) to which xk−i belongs is denoted by ci(xk−i).
The subset partitioning is constrained such that Ω(i) is a finer partition of Ω(i+
1), 1 ≤ i ≤ μ −1 and J1 ≥ J2 · · · ≥ Jμ . In this case this following subset-state can
be defined

tμ
k = (c1(xk−1), c2(xk−2), . . . , cμ(xk−μ)). (7.157)

Note that the RSSE subset-state does not completely specify the μ most recent
symbols {xk−i}μ

i=1. Rather, the subset-state only specifies the subset to which these
symbols belong.

The constraints on the subset partitioning ensure a properly defined subset-trellis.
Given the current subset-state tμ

k and the subset c0(xk) to which the current symbol
xk belongs, the next subset-state tμ

k+1 is uniquely determined. Since ci(xk−i) can only
assume Ji possible values, there are ∏μ

i=1 Ji subset-states which could be much less
than 2nμ . Note that if J1 < 2n, there are parallel transitions associated with each
subset-transition. The number of the parallel transitions is equal to the number of
symbols in the corresponding subset.

The Viterbi algorithm used to search the subset-trellis is the same one used for
MLSE, except for a different branch metric and the possibility of parallel transitions
associated with the subset-transitions.4 When there are parallel transitions, the
Viterbi algorithm chooses the parallel transition with the maximum branch metric
first5 and then the steps are executed as defined in Sect. 7.4.1.

With RSSE, the branch metric in (7.139) is not uniquely determined by the
associated pair of subset-states. This is solved by introducing a decision feedback
mechanism for the branch metric calculation [83, 94]. The RSSE branch metric for
a particular parallel transition associated with the subset-transition tμ(i)

k → tμ( j)
k+1 is

μ
(

tμ(i)
k → tμ( j)

k+1

)
=−

∣
∣
∣
∣
∣
vk − g0xk

(
tμ(i)
k → tμ( j)

k+1

)
−

L

∑
�=1

g�x̌k−�

(
tμ(i)
k

)
∣
∣
∣
∣
∣

2

, (7.158)

where xk

(
tμ(i)
k → tμ( j)

k+1

)
is the data symbol corresponding to the particular parallel

transition, and x̌k−�(t
μ(i)
k ) is element k − � of the surviving sequence x̌

(
tμ(i)
k

)

associated with the subset-state tμ(i)
k .

4With DDFSE there are no parallel transitions.
5If the signal constellation has some symmetries, this step can be done using a slicing
operation [94].
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7.5 Error Probability for MLSE on ISI Channels

We now consider the error probability performance of MLSE on ISI channels. We
will see that it is impossible to derive the exact error probability so that bounding
techniques, such as the union bound, must be used. Let x and x̂ be the transmitted
and estimated symbol sequences, respectively. For every pair x and x̂, an error
sequence ε = {εi} can be formed by defining εi = xi − x̂i. We arbitrarily assume
that the bit error probability at epoch j1 is of interest, so that ε j1 �= 0 for all error
sequences that are considered. For each error sequence ε , define the following useful
error events:

E ′(ε): The sequence x− ε is the maximum likelihood sequence.
E (ε): The sequence x− ε has a larger path metric than sequence x.

It is also convenient to define the events

E ′
G =

⋃

ε ∈ G
E ′(ε) (7.159)

and
EF =

⋃

ε ∈ F
E (ε), (7.160)

where G is the set of all possible error sequences having ε j1 �= 0 and F ⊂ G is the set
of error sequences containing no more than L− 1 consecutive zeroes amid nonzero
elements.

Let ρ = {ρk} and ρ̂ = {ρ̂k} be the system state sequences corresponding to the
symbol sequences x and x̂, respectively. An error event occurs between k1 and k2,
of length k2 − k1, if

ρk1 = ρ̂k1 , ρk2 = ρ̂k2 , and ρ j �= ρ̂ j for k1 < j < k2, (7.161)

where k1 ≤ j1 ≤ k2. The symbol error probability at epoch j1 is

Ps( j1) = P[x j1 �= x̂ j1 ]

= P[E ′
G]

= ∑
ε∈G

∑
x∈X (ε)

P[E ′(ε)|x]P[x], (7.162)

where X (ε) is the set of symbol sequences that can have ε as the error sequence.
For different ε , the set X (ε) might be different. The third equation in (7.162)
is obtained using the property that the events E ′(ε) are disjoint for ε ∈ G.
Unfortunately, (7.162) does not admit an explicit expression, and hence, upper
bounding techniques are needed for the performance evaluation. A union bound
on the error probability will be used in our analysis.
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xx

~x(2)x~(1)

x~(1)

x~(2)

Fig. 7.14 A typical error state trellis diagram

To obtain a tighter union bound, we now prove that the symbol error probability
at epoch j1 is

Ps( j1) = P[EF ]. (7.163)

Consider the typical trellis diagram as shown in Fig. 7.14, where x denotes the
transmitted symbol sequence, and x̃(1) and x̃(2) denote two different symbol
sequences. It can be seen that the error sequence ε(1) associated with x̃(1) and the
error sequence ε(2) associated with x̃(2) belong to sets F and G \ F , respectively.
For every ε (2) ∈ G \F , there always exists an ε(1) ∈ F . If the sequence x− ε(2) is
the ML sequence, that is, the event E ′

G has occurred, then the sequence x− ε(1) has
a larger path metric than the sequence x, that is, the event EF has occurred. This
means that E ′

G implies EF . On the other hand, if ε(1) ∈ F and the sequence x− ε(1)
has a larger path metric than sequence x, then there exists a sequence ε ∈ G such
that the sequence x− ε is the ML sequence. Therefore, EF implies E ′

G, and (7.163)
is proven.

The union bound on (7.163) yields

Ps( j1) ≤ ∑
ε∈F

P]E (ε)]

= ∑
ε∈F

∑
x∈X (ε)

P[E (ε)|x]P[x] (7.164)

or, equivalently,

Ps( j1) ≤ ∑
ε∈E

ws(ε) ∑
x∈X (ε)

P[E (ε)|x]P[x], (7.165)

where E ∈ F is the set of error sequences that have the first nonzero element starting
at time j1, and ws(ε) is the number of symbol errors associated with the error
sequence ε . To obtain (7.165), we have used the following observations; (1) there
are ws(ε) places for the error sequence ε to start such that ε j1 �= 0, and (2) the
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error probability P[E (ε)|x] is independent of the place where the error sequence
ε starts. If the transmitted symbol sequence is long enough, then the symbol error
probability Ps( j1) is independent of the time index j1 and, therefore, the time index
will be omitted hereafter. Finally, for a given transmitted symbol sequence x, the
events {E (ε)} for ε ∈ F in (7.164) might overlap. The reason is that there may be
multiple symbol sequences that simultaneously have a larger path metric than the
path metric of the transmitted symbol sequence. When the system is operating at
a low SNR, there are more overlapping events E (ε) and, hence, the union bound
(7.164) becomes looser.

From the definition of event E (ε), the union bound (7.165) becomes

Ps ≤ ∑
ε∈E

ws(ε) ∑
x∈X (ε )

P[Γ(x− ε)≥ Γ(x)|x]P[x], (7.166)

where Γ(x) is the path metric associated with the input sequence x. To obtain the bit
error probability, (7.166) can be easily modified as

Pb ≤ 1
n ∑

ε∈E

wb(ε) ∑
x∈X (ε)

P[Γ(x− ε)≥ Γ(x)|x]P[x], (7.167)

where n is the number bits transmitted per unit time, and wb(ε) is the number of bit
errors associated with the error sequence ε . The probability

P[Γ(x− ε)≥ Γ(x)|x] (7.168)

is called the pairwise error probability. We will see in the following two sections that
the pairwise error probability is independent of the transmitted symbol sequence x.
Therefore, the union bounds (7.166) and (7.167) simplify to

Ps ≤ ∑
ε∈E

ws(ε)P [Γ(x− ε)≥ Γ(x)|X (ε)]P [X (ε)] (7.169)

and

Pb ≤ 1
n ∑

ε∈E

wb(ε)P [Γ(x− ε)≥ Γ(x)|X (ε)]P [X (ε)] , (7.170)

respectively. The expressions in (7.169) and (7.170) are easier to calculate than
those in (7.166) and (7.167), because not all of the symbol sequences need to be
considered in the calculation.

7.5.1 Static ISI Channels

The pairwise error probability associated with the error event of length � = k2 − k1

in (7.161) is (Problem 7.16)
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P[Γ(x− ε)≥ Γ(x)|x] = Q

⎛

⎝

√

Δ2

4No

⎞

⎠, (7.171)

where

Δ2 =
k1+�−1

∑
k=k1

∣
∣
∣
∣
∣

L

∑
i=0

giεk−i

∣
∣
∣
∣
∣

2

(7.172)

and Δ2 is the squared Euclidean path distance. At high signal-to-noise ratios, the
error event probability is approximately

Pe ≈ NminQ

⎛

⎝

√

d2
min

4No

⎞

⎠, (7.173)

where d2
min is the minimum value of Δ2 and Nmin denotes the average number of

error events at distance dmin.
The squared Euclidean path distance in (7.172) can be rewritten as

Δ2 =
k1+�−1

∑
k=k1

Δ2
k, (7.174)

where
Δ2

k = gHEkg (7.175)

is the squared branch distance and

Ek = [(emn)k] (7.176)

is the (L + 1) × (L + 1) branch distance matrix with elements (emn)k =
ε∗

k−m+1εk−n+1. Define the error vector

ek = (εk,εk−1, . . . ,εk−L)
H . (7.177)

It follows that Ek = ekeH
k and, hence, Ek has rank one. Note that Ekek = (eHek)ek

and, therefore, ek is an eigenvector of Ek and the only eigenvalue of Ek is λ (k) =
∑L

i=0 |εk−i|2. The path distance matrix of the length � error event in (7.161) is defined
as

E
�
=

k1+�−1

∑
k=k1

Ek. (7.178)

Using (7.134) and (7.161), the elements of E are

emn = r�(n−m), (7.179)
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where

r�(i) =

{
∑k1+�−(L+1)−i

k=k1
εkε∗

k+i i ≥ 0

r∗� (−i) i < 0
. (7.180)

It follows that (7.174) has the Hermitian form Δ2 = gHEg. Since Δ2 > 0, E is a
positive definite matrix with all eigenvalues being real and positive. The matrix E
depends on the signal constellation and the length of the channel L+ 1.

By noting that gHg = f0 = 2Ehr , the squared Euclidean path distance can be
expressed in the form

Δ2 = 2Ehr

gHE g
gHg

= 2EhrR(g), (7.181)

where the ratio of the Hermitian form gHE g to the inner product gHg is called the
Rayleigh quotient of the vector g and is denoted as R(g) [130]. The eigenvalues
of E are equal to the Rayleigh quotient of the corresponding eigenvectors. The
Rayleigh quotient of E satisfies λmin ≤ R(g) ≤ λmax. The minimum value of R(g)
corresponds to the smallest possible Δ2 (or largest pairwise error probability) for a
given error sequence ε , and occurs when g = vmin. Likewise, the maximum value of
R(g) corresponds to the largest possible Δ2 (or smallest pairwise error probability)
for a given error sequence ε , and occurs when g = vmax. Note that the eigenvalues
of E are only a function of the error sequence ε and do not depend on the channel
vector g. While the eigenvalues of E can be calculated exactly for a given error
sequence ε , the eigenvalues of E are bounded by [130]

λmax ≤
L

∑
i=0

|r�(i)| and λmin ≥ r�(0)−
L

∑
i=1

|r�(i)|. (7.182)

The upper and lower bounds on the eigenvalues are easier to calculate than the

eigenvalues themselves. Finally, the condition number of E is defined as c(E)
�
=

λmax/λmin, and c(E) ≥ 1. If the condition number of a particular error sequence ε
is large (small), then the corresponding pairwise error probability will have a large
(small) variation with the channel vector g.

7.5.2 Fading ISI Channels

Consider the case of a fading ISI channel with D-branch diversity reception and
maximal ratio combining. The pairwise error probability is still given by (7.171),
but the squared Euclidean path distance associated with an error event of length � is
[240]

Δ2 =
D

∑
d=1

Δ2
d , (7.183)
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where

Δ2
d =

k1+�−1

∑
k=k1

∣
∣
∣
∣
∣

L

∑
i=0

gi,d(k)εk−i

∣
∣
∣
∣
∣

2

. (7.184)

The above expression can be written in the form

Δ2
d =

k1+�−1

∑
k=k1

gH
d (k)Ekgd(k). (7.185)

In general, the correlation matrix Φgd (0), where Φgd (m) is defined in (7.43)
is not diagonal. Although a nondiagonal Φgd (0) matrix is more realistic, it leads
to considerable analytical difficulty and loss of insight. Therefore, we restrict our
attention to the case where Φgd (0) is a diagonal matrix, meaning that the channel
tap gains are all mutually uncorrelated (assuming they have zero mean). In such a
case, a normalized channel vector ĝd(k) can be defined such that Φĝd (0) = IL+1. As
a result, (7.185) can be rewritten as

Δ2
d =

k1+�−1

∑
k=k1

ĝH
d (k)Ak,d ĝd(k), (7.186)

where
Ak,d = ΣdEkΣd (7.187)

and
Σd = diag[σ0,d , σ1,d, . . . , σL,d ] (7.188)

with σ2
i,d =

1
2 E[|gi,d|2]. It follows that Ak,d = uk,duH

k,d where uk,d = Σ dek and, hence,
Ak,d is a rank one matrix and uk,d is an eigenvector of Ak,d . The only nonzero
eigenvalue of Ak,d is λd = ∑L

i=0 σ2
i,d |εk−i|2.

For slowly time-variant channels, it is reasonable to assume that gd(k) remains
constant over the length of the dominant error events, that is, gd(k) ≡ gd . This
assumption holds even for relatively large Doppler frequencies and error event
lengths. For example, if the channel exhibits 2D isotropic scattering and fmT =
0.0025, then error events up to length 20 have J0(2π fm|k|T ) ≥ J0(2π fm20T ) =
0.9755 ≈ 1. Using the above assumption, (7.186) can be written as

Δ2
d = ĝH

d Ad ĝd, (7.189)

where

Ad =
k1+�−1

∑
k=k1

Ak,d

= ΣdEΣ d . (7.190)
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The matrix Ad is also positive definite with all its eigenvalues real and positive. The
elements of Ad are given by [(amn)]d = σm−1,d σn−1,d r�(n−m) where r�(i) is given
by (7.180). The trace of the matrix Ad is

tr(Ad) =
L

∑
i=0

λi,d = (Ē/σ2
x )r�(0), (7.191)

where the λi,d, i = 0, . . . ,L are the eigenvalues of Ad . The last equality in (7.191)
is obtained using (7.45). Since Ad is Hermitian, there exists a diagonalization
Ad = UdΛdUH

d such that Ud is a unitary matrix and Λd is a diagonal matrix
consisting of the eigenvalues of Ad . Let ωd = UH

d ĝd be the corresponding diagonal
transformation. Hence,

Δ2
d = ωH

d Λdωd =
L

∑
i=0

λi,d |ωi,d |2, (7.192)

where 1
2 E[ωdωH

d ] = IL+1 so that the {ωi,d} are independent zero-mean unit-variance
Gaussian random variables. Using (7.183) and (7.192) gives

Δ2 =
D

∑
d=1

L

∑
i=0

αi,d , (7.193)

where αi,d = λi,d |ωi,d |2. The αi,d are chi-square distributed with two degrees of
freedom and, therefore, the characteristic function of Δ2 is

ψΔ2(z) =
D

∏
d=1

L

∏
i=0

1
1−α i,dz

, (7.194)

where α i,d = 2λi,d . Finally, the pairwise error probability is

P[Γ(x− ε)≥ Γ(x)|x] =
∫ ∞

0
Q
(√

2x
)

fΔ2(x)dx, (7.195)

where fΔ2(x) is the probability density function of Δ2. Note that if some of the
eigenvalues λi,d are the same, then there will be repeated poles in the characteristic
function in (7.194). This will be the case for balanced diversity branches and will
also be the case if the channel vectors gd have some equal strength taps. Consider
the case where balanced D-branch diversity is used, but where the channel taps in
each diversity branch are not of equal strength. In this case, λi,d ≡ λi, d = 1, . . . ,D
and the characteristic function in (7.194) has the form

ψΔ2(z) =
L

∏
i=0

1
(1− zᾱi)D

=
L

∑
i=0

D

∑
d=1

Aid

(1− zᾱi)d , (7.196)
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where

Aid =
1

(D− d)!(−ᾱi)D−d

{
dD−d

dzD−d (1− zᾱi)
D ψΔ2(z)

}

z = 1/ᾱi

(7.197)

and ᾱi = 2λi. The pdf of Δ2 is

fΔ2(x) =
L

∑
i=0

D

∑
d=1

Aid
1

(d − 1)!(ᾱi)d
xd−1 e−x/ᾱi , x ≥ 0. (7.198)

From (7.195) and (7.198), the exact pairwise error probability is

P[Γ(x− ε)≥ Γ(x)|x] =
L

∑
i=0

D

∑
d=1

Aid

(
1− μi

2

)d d−1

∑
m=0

(
d − 1+m

m

) (
1+ μi

2

)m

,

(7.199)

where

μi =

√
ᾱi

1+ ᾱi
. (7.200)

From (7.191), the α i,d have the sum value constraint

L

∑
i=0

α i,d = 2
L

∑
i=0

λi,d = (2Ē/σ2
x )r�(0). (7.201)

Define S ⊆ RL+1 as the set of all (L + 1)-component vectors {ᾱd : ∑L
i=0 ᾱi,d =

(2Ē/σ2
x )r�(0)}. The set S is convex, since for any pair of vectors ᾱd,k and ᾱd, j

the convex combination θᾱd,k +(1−θ )ᾱd, j is contained in S for any 0 ≤ θ ≤ 1. If
the pairwise error probability is treated as a mapping from S to R, then it is a convex
function of ᾱd and, hence, has a unique minimum. For example, Fig. 7.15 shows
the pairwise error probability for a three-tap channel (L = 2, D = 1) with equal
strength taps (ᾱ0 = ᾱ1 = ᾱ2). Note that the value of ᾱ2 is determined uniquely by
the values of ᾱ0 and ᾱ1, and that is why a three-dimensional graph is used. Using
variational calculus, it can be shown (Appendix 1) that the pairwise error probability
is minimized when the ᾱi,d are all equal, that is, λi,d = λ = (Ē/σ2

x )r�(0)/(L+ 1),
resulting in the minimum pairwise error probability

Pmin =

(
1− μ

2

)D(L+1) D(L+1)−1

∑
m=0

(
D(L+ 1)− 1+m

m

)(
1+ μ

2

)m

, (7.202)

where

μ =

√
λ/4No

1+λ/4No
. (7.203)
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Fig. 7.15 Pairwise error probability for a three-tap fading ISI channel

For a given error event, the pairwise error probability is minimized when
Ad is perfectly conditioned, that is, c(Ad) = 1. Recall c(Ad) = c(ΣdEΣ d) ≤
(c(Σ d))

2 c(E), where (c(Σd))
2 represents the ratio of the maximum and minimum

channel tap variances (σ2
d )max/(σ2

d )min for diversity branch d. We have seen that E
depends only the signal constellation being used and the channel vector length L+1.
However, Ad has information about the signal constellation and power distribution
of the fading ISI channel. It follows that c(Ad) ≤ c(E) with equality if and only
if the channel has equal strength taps. This means that any system has the best
performance when the fading ISI channel has equal strength taps.

7.6 Error Probability for T/2-Spaced MLSE Receiver

Referring to Fig. 7.6, let X(z), V (z), and V (2)(z) be the z-transforms of the
input sequence x, the T -spaced received sequence v and the T/2-spaced received
sequence v(2), respectively. The mappings from X(z) to V (z) and from X(z) to
V (2)(z) are one-to-one, and both the T -spaced and T/2-spaced MLSE receivers
operate on received sequences that are corrupted by noise samples with variance
No. Therefore, we only need to compare the Euclidean distances between allowed
sequences of channel outputs to determine the relative performance of the T - and
T/2-spaced receivers.
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7.6.1 T-Spaced MLSE Receiver

From the definition of the error event in (7.161), the z-transform of the length-� error
sequence ε = {εk1 ,εk1+1, . . . ,εk1+�−1} is

E (z) = εk1 + εk1+1z−1 + · · ·+ εk1+�−1z−�+1, (7.204)

where εk = xk − x̂k. The z-transform of the received signal error sequence associated
with the length-� error sequence ε is

Ev(z) = (vk1 − v̂k1)+ (vk1+1 − v̂k1+1)z
−1 + . . .

· · ·+(vk1+�+L−1 − v̂k1+�+L−1)z
−(�+L−1) (7.205)

and we have
Ev(z) = E (z)G(z). (7.206)

From (7.172), the squared Euclidean distance Δ2 of the error event in (7.161) is
[104]

Δ2 =
k1+�−1

∑
k=k1

∣
∣
∣
∣
∣

L

∑
i=0

giεk−i

∣
∣
∣
∣
∣

2

= [ Ev(z)E
∗
v (1/z∗) ]0

= [ E (z)F(z)E ∗(1/z∗) ]0, (7.207)

where [ · ]0 is the coefficient of z0.

7.6.2 T/2-Spaced MLSE Receiver

For the same error event described in (7.161), the corresponding T/2-spaced error

sequence is ε(2) = {ε(2)k1
,ε(2)k1+1, . . . ,ε

(2)
k1+2�−1}, where

ε(2)k1+i =

{
εk1+i/2, i even
0, i odd

. (7.208)

The z-transform of ε(2) is

E (2)(z) = εk1 + εk1+1z−2 + · · ·+ εk1+�+L−1z−2(�+L−1) (7.209)
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and because ε(2) is zero in the odd coordinates E (2)(z) = E (z2). The corresponding
z-transform of the T/2-spaced received signal error sequence associated with the
error sequence ε(2) is

E
(2)
v (z) = E (2)(z)G(2)(z). (7.210)

From (7.172), the squared Euclidean distance of the error event in (7.161) is

(Δ(2))
2
=

k1+2�−1

∑
k=k1

∣
∣
∣
∣
∣

2L

∑
i=0

g(2)i ε(2)k−i

∣
∣
∣
∣
∣

2

=
[
E

(2)
v (z)E (2)

v
∗
(1/z∗)

]

0

=
[

E (2)(z)F (2)(z)E (2)∗(1/z∗)
]

0

=
[

E (z2)F (2)(z)E ∗(1/z∗2)
]

0
, (7.211)

where F (2)(z) = G(2)(z)(G(2)(1/z∗))∗. Note that the polynomial E (z2) E ∗(1/z∗2)
has the property that the odd powers of z have zero coefficients. Therefore,
the contributions to the coefficient [E (z2)F (2)(z)E ∗(1/z∗2)]0 arise only from the
coefficients of F (2)(z) associated with even powers of z. Note also from (7.46) and

(7.47) that the coefficients f (2)2k of F (2)(z) associated with even powers of z are equal

to the coefficients fk of F(z), that is, f (2)2k = fk. Therefore,

(Δ(2))
2
= [ E (z2)F (2)(z)E ∗(1/z∗2) ]0 = [ E (z)F(z)E ∗(1/z∗) ]0 = Δ2. (7.212)

Consequently, the T - and T/2-spaced MLSE receivers have identical error proba-
bility performance.

Example 7.9:
Let

E (z) = ε0 + ε1z−1 + ε2z−2,

F (2)(z) = f (2)−2 z2 + f (2)−1 z+ f (2)0 + f (2)1 z−1 + f (2)2 z−2.

Then

F(z) = f−1z+ f0 + f1z−1 = f (2)−2 z+ f (2)0 + f (2)2 z−1,

E (2)(z) = ε0 + ε1z−2 + ε2z−4.
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Therefore,

[ E (z)F(z)E ∗(1/z∗) ]0 =
(|ε0|2 + |ε1|2 + |ε2|2

)2
f0

+ε0ε∗
1 f1 + ε1ε∗

0 f−1

and

[ E (2)(z)F (2)(z)E (2)∗(1/z∗) ]0 =
(|ε0|2 + |ε1|2 + |ε2|2

)2
f (2)0

+ε0ε∗
1 f (2)2 + ε1ε∗

0 f (2)−2 .

Hence, Δ2 = (Δ(2))2.

7.6.3 Timing Phase Sensitivity

The conventional MLSE receiver based on T -spaced sampling at the output of the
matched filter suffers from sensitivity to the sampler timing phase [220]. We now
show that a T/2-spaced MLSE receiver is insensitive to the sampler timing phase.
This can be readily seen by examining the sampled spectrum at the output of the
matched filter. Suppose that the received pulse has less than 100% excess bandwidth,
that is, H( f ) = 0 for | f | > 1/T . With T -spaced sampling and a timing offset of to,
the sampled spectrum is equal to

FΣ( f ) =
1
T ∑

n
F
(

f +
n
T

)
ej2π( f+n/T)to . (7.213)

This spectrum exhibits aliasing for any received pulse having a bandwidth greater
than the Nyquist frequency of 1/(2T) Hz. Consider, for example, the sampled
spectrum at the Nyquist frequency f = 1/(2T)Hz. If there is no timing offset, then

FΣ(1/(2T )) =
1
T
(F(1/(2T))+F(−1/(2T))) .

In this case, the sampled spectrum at frequency f = 1/(2T)Hz adds constructively.
Now suppose there is a timing offset to = T/2. Then,

FΣ(1/(2T )) =
1
T

(
F(1/(2T))ejπ/2 +F(−1/(2T))e−jπ/2

)
= 0.

In this case, the sampled spectrum at frequency f = 1/(2T)Hz adds destructively
and there is a null. Hence, the folded spectrum is sensitive to the timing offset with
T -spaced sampling. With T/2-spaced sampling, on the other hand,
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FΣ( f ) =
2
T ∑

n
F

(

f +
2n
T

)

ej2π( f+2n/T)to . (7.214)

Notice that the sampled spectrum is a function of the timing offset to, but does not
exhibit aliasing since H( f ) has no more than 100% excess bandwidth.

For a given a timing offset t0, the sampled impulse response at the output of

the matched filter is represented by the vector f(2)t0 , where f (2)t0,k
= f (kT ′ ± t0) and

T ′ = T/2. Note that f (2)t0,n �=
(

f (2)t0,−n

)∗
when a timing offset is present. The discrete-

time Fourier transform (DTFT) of f(2)t0 is

F(2)
t0 (ejω) = F (2)(ejω )e± jωτ0 , (7.215)

where τ0 = t0/T ′. If the sampler phase is known, then a discrete-time filter with a
frequency response function e∓ jωτ0 after the sampler will give the sampled response
f(2) at its output. However, as we now show, there is no need to correct this phase
offset before performing MLSE equalization when T/2-spaced sampling is used.

The power spectrum of the noise at the output of the matched filter is independent
of the timing offset t0 and is given by

Sνν( f ) = NoF (2)(ejω ). (7.216)

Since the DTFT of the noise-whitening filter is

1/(G(2)(1/z∗))∗|z=ejω = 1/(G(2)(ejω))∗ (7.217)

and we have

F (2)(ejω) = G(2)(ejω) (G(2)(ejω ))∗ = |G(2)(ejω )|2, (7.218)

it follows that the noise samples are white at the output of the noise-whitening
filter with variance No. The DTFT of the message signal at the output of the noise-
whitening filter is

X (2)(ejω )G(2)
t0 (ejω ) = X (2)(ejω)G(2)(ejω)e± jωτ0 (7.219)

and we have

∑
i
|g(2)i |2 = ∑

i
|g(2)t0,i

|2 = 1
2π

∫ π

−π
|G(2)(ejω)|2dω , (7.220)

according to Parseval’s theorem. Also

G(2)
t0 (z)(G(2)

t0 (1/z∗))∗ = F (2)(z). (7.221)
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Hence, the distances between allowed sequences of channel outputs with the T/2-
spaced MLSE receiver in (7.211) remain the same and the performance is insensitive
to the sampler phase e± jωτ0 . The MLSE receiver just needs to estimate the set of tap

coefficients {g(2)t0,i
} instead of {g(2)i } for use in the branch metric calculations.

7.6.4 Practical T /2-Spaced MLSE Receiver

The receivers in Figs. 7.3 and 7.6 use a filter that is matched to the received
pulse h∗(−t). Since this filter requires knowledge of the unknown channel impulse
response, it is impractical. One solution is to implement an “ideal” low-pass filter
with a cutoff frequency of 1/T and sample the output at rate 2/T . The noise
samples at the output of this filter will be uncorrelated and, therefore, the T/2-
spaced MLSE receiver can be implemented. Vachula and Hill [260] showed that
this receiver is optimum; however, it has some drawbacks. First, it is not suitable
for bandwidth efficient systems that use frequency division multiplexing, because
the cutoff frequency of the low-pass filter will extend significantly into the adjacent
band and pass large amounts of adjacent channel interference. Second, the ideal
low-pass filter is noncausal and difficult to approximate. Another solution is to use
a receiver filter that is matched to the transmitted pulse ha(t) followed by a T/2-
spaced sampler and a noise-whitening filter [54, 126]. If the transmitted signals are
strictly bandlimited, for example, ha(t) is a root raised cosine pulse, such that the
received pulse h(t) has at most 100% excess bandwidth,6 then rate-2/T sampling
satisfies the Shannon sampling theorem and the T/2-spaced samples will provide
sufficient statistics as we now show.

For simplicity, consider a time-invariant channel with impulse response g(t).

Let H(2)
a (z), G(2)(z), and H(2)(z) be the z-transforms of the T/2-spaced discrete-

time signals corresponding to ha(t), g(t), and h(t), respectively. The z-transform of
the autocorrelation function of the noise samples at the output of the receive filter

h∗
a(−t) is NoF (2)

h (z), where F (2)
h (z) =H(2)

a (z)
(

H(2)
a (1/z∗)

)∗
. Using the factorization

F (2)
h (z) = G(2)

h (z)
(

G(2)
h (1/z∗)

)∗
, (7.222)

the T/2-spaced noise sequence can be whitened using a filter with transfer function

1/
(
G(2)

h (1/z∗)
)∗

such that G(2)
h (z) has minimum phase. The resulting system is

shown in Fig. 7.16. We now show that the receivers in Figs. 7.6 and 7.16 yield
identical performance.

The z-transform of the T/2-spaced discrete-time white noise channel in
Fig. 7.16 is

6The received pulse will a larger bandwidth due to Doppler spreading.
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Fig. 7.16 Block diagram of system that implements a filter matched to ha(t) followed by a T/2-
spaced noise-whitening filter. The structure of the noise-whitening filter depends only on the pulse
ha(t)

G(2)
eq (z) = H(2)

a (z)G(2)(z)
(

H(2)
a (1/z∗)

)∗
/
(

G(2)
h (1/z∗)

)∗

= G(2)
h (z)G(2)(z). (7.223)

On the other hand, referring to the conventional system shown in Fig. 7.6, we have

H(2)(z) = H(2)
a (z) G(2)(z) (7.224)

and
F (2)(z) = H(2)

a (z)
(

H(2)
a (1/z∗)

)∗
G(2)(z)

(
G(2)(1/z∗)

)∗
. (7.225)

Let
G(2)(z)

(
G(2)(1/z∗)

)∗
= G(2)

c (z)
(

G(2)
c (1/z∗)

)∗
, (7.226)

be a factorization of G(2)(z)
(

G(2)(1/z∗)
)∗

such that G(2)
c (z) has minimum phase.

Using (7.222), (7.225), and (7.226) yields

F(2)(z) = G(2)
h (z)

(
G(2)

h (1/z∗)
)∗

G(2)
c (z)

(
G(2)

c (1/z∗)
)∗

. (7.227)

If the system function of the noise-whitening filter is chosen as

1/
( (

G(2)
h (1/z∗)

)∗ (
G(2)

c (1/z∗)
)∗ )

, (7.228)

then the system function in Fig. 7.6 is

G(2)(z) = G(2)
h (z)G(2)

c (z). (7.229)

The system responses G(2)
eq (ejω ) and G(2)(ejω ) have the same amplitude response

but a different phase response. Also

G(2)
eq (z)

(
G(2)

eq (1/z∗)
)∗

= F(2)(z). (7.230)
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Therefore, the Euclidean distance between sequences of noise-whitening filter
outputs for the T -spaced and T/2-spaced systems is the same. It follows that the
systems shown in Figs. 7.6 and 7.16 yield identical performance. The main advan-
tage of the system in Fig. 7.16 is that the noise-whitening filter does not depend
on the unknown channel and has a fixed structure. Moreover, channel estimation
can be performed after the noise-whitening filter and the Viterbi algorithm can be
implemented using the metric in (7.148). Although the number of computations
needed in the T/2-spaced MLSE receiver is twice that of a T -spaced receiver, the
latter cannot be implemented for unknown channels. Moreover, a T -spaced MLSE
receiver has poor performance when it is implemented with a matched filter that is
derived from an inaccurate channel estimate [196].

7.7 Co-channel Demodulation

By extending Forney’s maximum likelihood receiver [104], Van Etten [92] proposed
MLSE for the joint detection of co-channel signals. In this section, we derive
optimum and suboptimum MLSE receivers for co-channel demodulation of digital
signals corrupted by ISI. By modeling the overall system as a discrete-time
MIMO channel, the optimum MIMO joint MLSE (J-MLSE) receiver is derived. By
following a parallel argument used for single-input single-output (SISO) channels, a
T/2-spaced MIMO J-MLSE receiver is shown to have the same performance as the
T -spaced receiver, but with insensitivity to timing phase errors. The optimality of a
practical T/2-spaced receiver is shown, which consists of a filter that is matched
to the transmitted pulse, followed by a rate-2/T sampler, a T/2-spaced noise-
whitening filter, and a Viterbi algorithm. The optimum MIMO J-MLSE receiver
requires complete knowledge of the complex channel gains associated with all co-
channel signals. In many cases, such complete knowledge is impractical or even
infeasible to obtain. For such cases, we discuss an interference rejection combining
MLSE (IRC-MLSE) receiver that only requires knowledge of the complex channel
gain for the desired signal but not the co-channel interferers.

7.7.1 System and Channel Model

Consider a system where the signals from K co-channel signals are received by J
antenna elements. This system can be modeled by a K × J MIMO channel, where
the MIMO channel inputs are the symbol sequences from the K co-channel users,
and the MIMO channel outputs are the combination of the signals that are received
from the co-channel users at each of the J receiver antenna elements. The co-channel
detection problem is mathematically very similar to the CDMA multiuser detection
problem. However, while the users in a CDMA system are distinguished by different
spreading sequences as discussed in Chap. 9, the K co-channel users will all use the
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same transmitter pulse shaping filter ha(t). The impulse response of the channel
between the kth user and the jth antenna element is denoted by g(k, j)(t,τ), where
we have assumed that the channels are modeled as time-variant linear filters. While
the channel introduces frequency and time selectivity into the received signals, it
also allows the co-channel signals to be distinguished at the receiver, since the
received pulses h(k, j)(t) = g(k, j)(t,τ) ∗ ha(t) are all distinct due to the different
channel impulse responses. The received pulses h(k, j)(t) are all assumed to have
a length of at most L(k, j)T , that is, h(k, j)(t) = 0 for t ≤ 0 and t ≥ (L(k, j) + 1)T . The
received complex envelope at the jth antenna element is

r̃( j)(t) =
K

∑
k=1

∑
�

x(k)� h(k, j)(t − �T − τk)+ ñ( j)(t), (7.231)

where τk, 0 ≤ τk ≤ T is the random transmission delay due to symbol asynchronous
users, and ñ( j)(t) is AWGN assumed to be independent on the different antenna
branches.

7.7.2 Joint Maximum Likelihood Co-channel Receiver

The J-MLSE receiver processes the total received vector

r̃(t) =
(

r̃(1)(t), r̃(2)(t), . . . , r̃(J)(t)
)
, (7.232)

to generate a ML estimate of the information sequence

x = (x(1),x(2), . . . ,x(K)), (7.233)

where x(k) = {x(k)n }. To derive the structure of the joint ML receiver, we follow the
same approach used in Sect. 7.1.1. Let {ϕn(t)} denote a complete set of complex
orthonormal basis functions that span the entire duration of the observation vector
r̃(t). Then

r̃( j)(t) =
N

∑
n=1

r̃( j)
n ϕn(t), (7.234)

where

r̃( j)
n =

K

∑
k=1

∑
�

x(k)� h(k, j)�n
+ ñ( j)

n (7.235)

and

h(k, j)�n
=

∫ ∞

−∞
h(k, j)(t − �T − τk)ϕ∗

n (t)dt, (7.236)

ñ( j)
n =

∫ ∞

−∞
ñ( j)(t)ϕ∗

n (t)dt. (7.237)
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Define the received vector

r̃ = vec(r̃(1), r̃(2), . . . ,r(J)), (7.238)

where r̃( j) = {r̃( j)
n }. Since the noise components ñ( j)

n associated with the J antenna
elements are uncorrelated zero-mean complex Gaussian random variables with

variance 1
2 E[|ñ( j)

n |2] = No, the received vector r̃ has the complex multivariate
Gaussian density

p(r̃|x,h) =
N

∏
n=1

1
2πNo

exp

⎧
⎨

⎩
− 1

2No

J

∑
j=1

∣
∣
∣
∣
∣
r̃( j)

n −
K

∑
k=1

∑
�

x(k)� h(k, j)�n

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
, (7.239)

where h = {h(k, j)�n
}.

The optimum receiver chooses x to maximize p(r̃|x,h) or, equivalently, the
metric

μ(x) =−
N

∑
n=1

J

∑
j=1

∣
∣
∣
∣
∣
r̃( j)

n −
K

∑
k=1

∑
�

x(k)� h(k, j)�n

∣
∣
∣
∣
∣

2

. (7.240)

Since ∑N
n=1 ∑J

j=1 |r̃( j)
n |2 is independent of x, maximizing (7.240) is equivalent to

maximizing

μ(x) =
J

∑
j=1

(

2Re

{
K

∑
k=1

∑
�

x(k)
∗

�

N

∑
n=1

r̃( j)
n h(k, j)

∗
�n

}

−
K

∑
k=1

K

∑
k′=1

∑
�

∑
�′

x(k)� x(k
′)∗

�′
N

∑
n=1

h(k, j)�n
h(k

′, j)∗
�′n

)

. (7.241)

In the limit as the number of observable random variables N approaches infinity, we
define

y(k, j)�

�
= lim

N→∞

N

∑
n=1

r̃( j)
n h(k, j)

∗
�n

=

∫ ∞

−∞
r̃( j)(t)h(k, j)

∗
(t − �T − τk)dt, (7.242)

f (k,k
′ , j)

�′−�

�
= lim

N→∞

N

∑
n=1

h(k, j)�n
h(k

′, j)∗
�′n

=

∫ ∞

−∞
h(k, j)(t − �T − τk)h

(k′, j)∗(t − �′T − τk′)dt. (7.243)
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Fig. 7.17 Overall MIMO system model for co-channel demodulation

Using (7.242) and (7.243) in (7.241), we arrive at the final form

μ(x) =
J

∑
j=1

{

2Re

(
K

∑
k=1

∑
�

x(k)
∗

� y(k, j)�

)

−
K

∑
k=1

K

∑
k′=1

∑
�

∑
�′

x(k)� x(k
′)∗

�′ f (k,k
′ , j)

�′−�

}

. (7.244)

The variables {y(k, j)� } in (7.242) are obtained by passing the received complex

envelope r̃( j)
n (t) through the matched filter h(k, j)

∗
(−t−τk) and sampling the output.7

Note that there are K such matched filters on each of the J receiver antenna elements,
and the samples must be taken with the timing delay τk,k = 1, . . . ,K. The above
development leads to the overall system model shown in Fig. 7.17. Finally, by

changing the variable of integration, the { f (k,k
′, j)

�′−� } in (7.243) can be rewritten in
the form

f (k,k
′ , j)

n =
∫ ∞

−∞
h(k, j)(t − nT − τk)h

(k′, j)∗(t − τk′)dt. (7.245)

where n = �′ − �. Using (7.245), it can be shown that the ISI coefficients have the
symmetric property

f (k,k
′ , j)

n = f (k
′ ,k, j)∗

−n . (7.246)

7It is assumed that the differential delay across the multiple receiver antenna elements is negligible.
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7.7.3 Discrete-Time MIMO Channel Model

Sampling the outputs of the matched filter h(k, j)
∗
(−t − τk) in Fig. 7.17 every T

seconds yields the sample sequence {y(k, j)� }, where

y(k, j)� =
K

∑
k′=1

∑
n

x(k
′)

n f (k
′ ,k, j)

�−n +ν(k, j)
�

=
K

∑
k′=1

Lj+1

∑
m=−Lj−1

x(k
′)

�−m f (k
′ ,k, j)

m +ν(k, j)
� (7.247)

and

ν(k, j)
� =

∫ ∞

−∞
ñ( j)(t)h(k, j)

∗
(t − �T − τk)dt, (7.248)

and where Lj = maxk L(k, j) is the maximum discrete-time channel length. This is
an extension of the result in (7.17) for SISO ISI channels. However, for MIMO
ISI channels, the range of summation must be expanded from (−Lj,Lj) to (−Lj −
1,Lj +1) to account for the random user delays in the case of symbol asynchronous
users. If we define

y( j)
�

�
=
(

y(1, j)� , . . . ,y(K, j)
�

)T
, (7.249)

x�
�
=
(

x(1)� , . . . ,x(K)
�

)T
, (7.250)

ν( j)
�

�
=
(

ν(1, j)
� , . . . ,ν(K, j)

�

)T
, (7.251)

F( j)
m

�
=
[

f (k
′ ,k, j)

m

]

K×K
, (7.252)

then (7.247) leads to the convenient matrix representation

y( j)
� =

Lj+1

∑
m=−Lj−1

F( j)
m x�−m +ν( j)

� . (7.253)

From (7.244) and (7.253), it follows that the joint maximum likelihood receiver uses

the entire set of J observation vectors y = {y( j)
� , j = 1, . . . ,J} along with knowledge

of the entire set of ISI coefficient matrices F = {F( j)
m ,m = −Lj − 1, . . . ,Lj + 1, j =

1, . . . ,J} to determine the most likely transmitted sequence x = {x�}. Hence, the
joint maximum likelihood receiver decides in favor of the symbol sequence x that
maximizes the joint likelihood function p(y|x,F) or the log-likelihood function
log{p(y|x,F)}.

The noise samples in (7.248) are zero-mean complex Gaussian variables that are
correlated by the matched filters h(k, j)

∗
(−t − τk),k = 1, . . . ,K. The vector of zero
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mean noise samples ν( j)
� has the covariance matrix

Φν ( j)ν ( j) (n) =
1
2

E
[
ν( j)
� ν( j)H

�+n

]
= NoF( j)

n . (7.254)

As is the case with SISO ISI channels, the correlation of the noise samples
complicates the implementation of various equalization schemes. However, a matrix

noise-whitening filter can be used to whiten the vector of noise samples ν( j)
� . The

z-transform of the noise covariance matrix for the jth antenna element can be
defined as Φν ( j)ν ( j) (z) = NoF( j)(z), where [84]

F( j)(z) =
Lj+1

∑
n=−Lj−1

F( j)
n z−n (7.255)

and, once again, Lj =maxk L(k, j) is the maximum discrete-time channel length. This
is a straightforward extension of the SISO ISI channels where F(z) = ∑L

n=−L fnz−n.
However, an MIMO channel is described by a covariance matrix, and the range
of summation in (7.255) must be expanded from (−Lj,Lj) to (−Lj − 1,Lj + 1) to
account for the random user delays in the case of symbol asynchronous users.

Using the symmetric property f (k,m, j)
n = f (m,k, j)∗

−n of the ISI coefficients, it follows

that F( j)
n = F( j)H

−n . Therefore, F( j)(z) has the symmetric form

F( j)(z) = F( j)H
(1/z∗). (7.256)

It follows that the matrix F( j)(z) can be factored as

F( j)(z) = G( j)(z)G( j)H
(1/z∗) (7.257)

and the filter [G( j)H
(1/z∗)]−1 will serve as a noise-whitening matrix filter.

Example 7.10:
Consider a two user system with a single receiver antenna. Since J = 1, we

can omit the index ( j). Let L = 1 and F(z) be

F(z) = FH
1 z+F0 +F1z−1

=

[
1 0.48+ 0.48z−1

0.48+ 0.48z 1

]

=

[
0 0

0.48 0

]

z+

[
1 0.48

0.48 1

]

+

[
0 0.48
0 0

]

z−1.



434 7 Equalization and Interference Cancelation

The matrix spectral factorization of F(z) has the form

F(z) = GH(1/z∗)G(z)

= [G0 +G1z∗]H
[
G0 +G1z−1] .

F0 and F1 can be represented by

F0 = GH
0 G0 +GH

1 G1,

F1 = GH
0 G1,

where G0 is lower triangular and F1 is upper triangular with zero diagonal.
In turn, G1 must be upper triangular with zero diagonal. This results in the
spectral factorization

F(z)=
[[

0.8 0
0.6 0.8

]

+

[
0 0.6
0 0

]

z∗
]H [[

0.8 0
0.6 0.8

]

+

[
0 0.6
0 0

]

z−1
]

.

The matrix noise-whitening filter [GH(1/z∗)]−1 is noncausal and stable with
an infinite length.

[GH(1/z∗)]−1
=

[
0.8 0.6
0.6z 0.8

]−1

=
1

0.64− 0.36z

[
0.8 −0.6

−0.6z 0.8

]

.

In practice, the filter [GH(1/z∗)]−1 can be approximated with a finite length
filter using a sufficient filter delay. Finally, the overall discrete-time white
noise matrix channel has transfer function

G(z) =

[
0.8 0
0.6 0.8

]

+

[
0 0.6
0 0

]

z−1.

Let x(z) = (x(1)(z),x(2)(z), . . . ,x(K)(z))T be the z-transform of the input se-

quence {xn} to the channel, where xn = (x(1)n ,x(2)n , . . . ,x(K)
n )T, and let v( j)(z) =

(v(1, j)(z),v(2, j)(z), . . . ,v(K, j)(z))T be the z-transform of the output sequence {v( j)
n }

from the noise-whitening filter on antenna j, where v( j)
n = (v(1, j)n ,v(2, j)n , . . . ,v(K, j)

n )T.
Then

v( j)(z) = G( j)(z)x(z)+w( j)(z), (7.258)
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Fig. 7.18 Discrete-time white noise MIMO channel model

where w( j)(z) = (w(1, j)(z),w(2, j)(z), . . . ,w(K, j)(z))T is the z-transform of the se-

quence of white Gaussian noise vectors w( j)
n = (w(1, j)

n ,w(2, j)
n , . . . ,w(K, j)

n )T . In the
time-domain

v( j)
n =

Lj

∑
k=0

G( j)
k xn−k +w( j)

n , (7.259)

where the zero mean noise vector w( j)
n has covariance matrix

Φ
w( j)

n w( j)
n
(n) =

1
2

E
[
w̃( j)
� w̃( j)H

�+n

]
= NoδnI. (7.260)

The optimum receiver consists of a bank of K matched filters at the output
of each antenna element, followed by a baud-rate sampler and a K × K matrix
noise-whitening filter. With J-branch diversity reception, the overall matrix channel
consisting of the transmit filters, channels, matched filters, samplers, and matrix
noise-whitening filters can be modeled as a parallel collection of J T -spaced matrix
filters with independent white noise sequences as shown in Fig. 7.18. To determine
the number of states in the overall channel model, we first define Lk = max j L(k, j)

as the length of the channel for the kth input. Then there are 2n∑K
k=1 Lk states, where

2n is the size of the signal constellation.

7.7.4 The Viterbi Algorithm

Suppose that m symbols from each of the K transmitters have been transmitted over

the channel. Let Vn = vec(v(1)
T

n ,v(2)
T

n , . . . ,v(J)
T

n )T, where v( j)
n = (v(1, j)n , . . . ,v(K, j)

n )T

denote the collection of vectors at the outputs of the matrix noise-whitening filters
for the J antenna branches at epoch n. After receiving the output sequence {Vn}m

n=1,
the ML receiver decides in favor of the sequence of input vectors {xn}m

n=1 that
maximizes the log-likelihood function
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log{p(Vm, . . . ,V1|xm, . . . ,x1)}
= log

{
p
(

Vm|x(1)m , . . . ,x(1)m−L1
;x(2)m , . . . ,x(2)m−L2

; . . . ;x(K)
m , . . . ,x(K)

m−LK

)}

+log{p(Vm−1, . . . ,V1|xm−1, . . . ,x1)}. (7.261)

The first term on the right-hand side of (7.261) is the branch metric used in the
Viterbi algorithm. The discrete-time white noise matrix channel model leads to the
conditional density function

log
{

p
(

Vm|x(1)m , . . . ,x(1)m−L1
;x(2)m , . . . ,x(2)m−L2

; . . . ;x(K)
m , . . . ,x(K)

m−LK

)}

=
1

(2πNo)KJ exp

{

− 1
2No

J

∑
j=1

‖v( j)
m −

L

∑
n=0

G( j)
n xm−n‖2

}

, (7.262)

where L = maxk Lk. Note that some elements in the matrix G( j)
n may be zero if

Lk �= L, k = 1, . . . ,K in which case the branch metric computation can be somewhat
simplified. The density in (7.262) leads to the branch metric

μm =−
J

∑
j=1

∥
∥
∥
∥
∥

v( j)
m −

L

∑
n=0

G( j)
n xm−n

∥
∥
∥
∥
∥

2

. (7.263)

7.7.5 Pairwise Error Probability

Let x and x̂ be the transmitted and estimated symbol sequences, respectively, and
define the error sequence ε = x− x̂. The pairwise error probability is the probability
that the receiver decides in favor of sequence x̂ when sequence x was transmitted,
and is equal to

P[Γ(x− ε)≥ Γ(x)|x] = P [Γ(x̂)> Γ(x)], (7.264)

where Γ(x) = ∑m μm is the path metric associated with the input sequence x with
the branch metric μm defined in (7.263). From (7.263),

P[Γ(x− ε)≥ Γ(x)|x] = P

[

∑
m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εm−n +w( j)

m ‖2 < ∑
m

J

∑
j=1

‖w( j)
m ‖2

]

= P

[

∑
m

J

∑
j=1

2Re

{
L

∑
n=0

w( j)H

m G( j)
n εm−n

}

<− ∑
m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εm−n‖2

]

. (7.265)
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Define

Δ2 �
= ∑

m

J

∑
j=1

‖
L

∑
n=0

G( j)
n εn−m‖2, (7.266)

χ �
= ∑

m

J

∑
j=1

2Re

{
L

∑
n=0

w( j)H

m G( j)
n εm−n

}

. (7.267)

It can be shown that χ is a zero-mean Gaussian random variable with variance
4NoΔ2. Therefore, the pairwise error probability becomes

P[Γ(x− ε)≥ Γ(x)|x] = Q

⎛

⎝

√

Δ2

4No

⎞

⎠. (7.268)

7.7.6 T/2-Spaced MIMO J-MLSE Receiver

Suppose that the matched filter outputs h(k, j)
∗
(−t − τk),k = 1, . . . ,K are sampled

every T/2 seconds at the correct timing phase. Again, the zero mean noise samples
at the output of the matched filters are correlated due to the matched filtering, and
their covariance matrix is

Φ̃ν̃ ( j)ν̃ ( j) (n) =
1
2

E
[
ν̃( j)
� ν̃( j)H

�+n

]
= NoF̃( j)

n , (7.269)

where the elements of the matrix F̃( j)
n are f̃ (k,k

′ , j)
n = f̃ (k,k

′ , j)(nT/2), the function
f (k,k

′ , j)(t) is defined in (7.245), and where the tilde denotes rate 2/T sampling.
It follows that the z-transform of the noise covariance matrix for the jth antenna
element can be defined as Φ̃ν̃ ( j)ν̃ ( j) (z) = NoF̃( j)(z), where

F̃( j)(z) =
2Lj+1

∑
n=−2Lj−1

F̃( j)
n z−n. (7.270)

Since f̃ (k,k
′ , j)

� = f̃ (k
′ ,k, j)∗

−� , it follows that F̃( j)(z) has the factorization

F̃( j)(z) = G̃( j)(z)G̃( j)H
(1/z∗). (7.271)

As with baud-rate sampling, the T/2-spaced noise samples can be whitened
using a stable noncausal matrix noise-whitening filter with the transfer function
[
G̃( j)H

(1/z∗)
]−1

. Analogous to (7.258), the z-transform of the output of the matrix
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noise-whitening filter is

ṽ( j)(z) = G̃( j)(z)x̃(z)+ w̃( j)(z) (7.272)

or in the time-domain

ṽ( j)
� =

2Lj

∑
n=0

G̃( j)
n x̃�−n + w̃( j)

� , (7.273)

where {w̃( j)
� } is a T/2-spaced white noise sequence with power spectrum Sw̃w̃( f ) =

NoI. The sequence {x̃n} is the corresponding T/2-spaced input symbol sequence
and is given by

x̃n =

{
xn/2, n = 0,2,4, . . .
0, n = 1,3,5, . . .

(7.274)

The overall system and equivalent discrete-time white noise models are shown in
Figs. 7.19 and 7.20, respectively.
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Note that the vector samples ṽ( j)
2� and ṽ( j)

2�+1 correspond to the �th received baud,
such that

ṽ( j)
2� =

Lj

∑
n=0

G̃( j)
2n x�−n + w̃( j)

2� (7.275)

ṽ( j)
2�+1 =

Lj−1

∑
n=0

G̃( j)
2n+1x�−n + w̃( j)

2�+1. (7.276)

With T/2-spaced fractional sampling, there are two samples per baud, and the
branch metric becomes

μm =−
J

∑
j=1

(

‖ṽ( j)
2m −

L

∑
n=0

G̃( j)
2n xm−n‖2 + ‖ṽ( j)

2m+1 −
L−1

∑
n=0

G̃( j)
2n+1xm−n‖2

)

. (7.277)

Once again, if Lk �= L,k = 1, . . . ,K then some of the G̃( j)
2n and G̃( j)

2n+1 may be zero.
Notice that T/2-spaced fractional sampling doubles the number of computations in
forming the branch metrics as compared to T -spaced sampling.

7.7.6.1 Error Probability

We now generalize the result for SISO channels and show that the T -spaced and
T/2-spaced MIMO J-MLSE receivers for co-channel demodulation have identical
performance. For T -spaced sampling, define

E(z)
�
= ∑

n
εnz−n, (7.278)

E( j)
v (z)

�
= ∑

n
v( j)

n z−n. (7.279)

Then
E( j)

v (z) = E(z)G( j)(z) (7.280)

and

Δ2 = ∑
m

J

∑
j=1

∥
∥
∥
∥
∥

L

∑
n=0

G( j)
n εn−m

∥
∥
∥
∥
∥

2

(7.281)

=
J

∑
j=1

[
E( j)

v (z)E( j)H
v (1/z∗)

]

0
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=
J

∑
j=1

[
E(z)G( j)(z)G( j)H

(1/z∗)E∗(1/z∗)
]

0

=
J

∑
j=1

[
E(z)F( j)(z)E∗(1/z∗)

]

0
. (7.282)

For T/2-spaced sampling, define

Ẽ(z)
�
= ∑

n
ε̃nz−2n. (7.283)

Since ε̃n = xn − x̂n is zero for even k, we have Ẽ(z) = E(z2). Also,

Ẽ( j)
v (z) = Ẽ(z)G̃( j)(z). (7.284)

Therefore,

Δ̃2 = ∑
m

J

∑
j=1

∥
∥
∥
∥
∥

L

∑
n=0

G̃( j)
n ε̃n−m

∥
∥
∥
∥
∥

2

(7.285)

=
J

∑
j=1

[
Ẽ( j)

v (z)Ẽ( j)H
v (1/z∗)

]

0

=
J

∑
j=1

[
Ẽ(z)G( j)(z)G( j)H

(1/z∗)Ẽ∗(1/z∗)
]

0

=
J

∑
j=1

[
Ẽ(z)F( j)(z)Ẽ∗(1/z∗)

]

0

=
J

∑
j=1

[
E(z2)F( j)(z)E∗(1/z∗

2
)
]

0
, (7.286)

where [ · ]0 is the coefficient of z0. Since the odd powers of E(z2)E∗(1/z∗2
) are zero

and F� = F̃2�, we have Δ̃2 = Δ2. Therefore, the T -spaced and T/2-spaced receivers
have identical bit error probability performance.

7.7.6.2 Timing Phase Sensitivity

The T -spaced MIMO J-MLSE receiver is sensitive to sampler timing phase due
to aliasing, similar to the SISO MLSE receiver. As a result, the T -spaced receiver
must accurately estimate the delays τk,k = 1, . . . ,K. A T/2-spaced MIMO J-MLSE
receiver will avoid aliasing (assuming that the received pulse exhibits less than
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100% excess bandwidth) and is insensitive to sampler timing phase as we now
show. Suppose that the timing phase offset for the kth sampler and the jth antenna
branch is t(k, j) seconds. The T/2-spaced sampled pulse f (k,k

′ , j)(t) at the output of

the matched filter h(k, j)
∗
(−t−τk) is denoted as f̃ (k,k

′ , j)
�,t = f̃ (k,k

′ , j)(�T ′±t(k, j)), where
T ′ = T/2. Due to the timing phase offset, the ISI coefficients are not symmetric, that

is, f̃ (k,k
′ , j)

�,t �= f̃ (k,k
′ , j)∗

−�,t . Define the matrices

F̃( j)
n

�
=
[

f̃ (k,k
′ , j)

n

]

K×K
, (7.287)

F̃( j)
n,t

�
=
[

f̃ (k,k
′ , j)

n,t

]

K×K
. (7.288)

The DTFT of F̃( j)
n,t is

F̃( j)
t (ejω) =

2Lj+1

∑
n=−2Lj−1

F̃( j)
n,t (e

jω)−n

= e± jωτ ( j)
F̃( j)(ejω), (7.289)

where e±jωτ ( j)
= (e±jωτ(1, j) , . . . ,e±jωτ(K, j)

) and τ(k, j) = t(k, j)/T ′.
Since the noise is circularly symmetric, the psd of the noise at the output of the

jth matched filter is independent of the timing offset vector t( j) = (t(1, j), . . . , t(K, j))
and is given by

Sw̃( j)w̃( j) ( f ) = NoF̃( j)(ejω). (7.290)

The DTFT of the noise-whitening matrix filter is

[
G̃( j)H

(1/z∗)
]−1

z=ejω
=
[
G̃( j)H

(ejω)
]−1

, (7.291)

and we have

F̃( j)(ejω ) = G̃( j)(ejω )G̃( j)H
(ejω ) = |G̃( j)H

(ejω )|2. (7.292)

Hence, the noise at the output of the matrix noise-whitening filter is white. The
DTFT of the message vector at the output of the noise-whitening filter is

x̃(ejω )G̃( j)
t (ejω ) = x̃(ejω )e± jωτ ( j)

G̃( j)(ejω), (7.293)

and we have

∑
n

G̃( j)
n G̃( j)H

n = ∑
n

G̃( j)
n,t G̃( j)H

n,t =
1

2π

∫ π

−π
|G̃( j)(ejω )|2dω (7.294)
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Fig. 7.21 Practical MIMO system with T/2-spaced sampling

by Parseval’s theorem. Also

G̃( j)
t (z)G̃( j)H

t (1/z∗) = F̃( j)(z). (7.295)

It follows that the distances between allowed sequences of channel outputs in
(7.286) remains the same and the T/2-spaced J-MLSE receiver is not sensitive to

the sampler phase e± jωτ ( j)
. The J-MLSE receiver just needs to estimate the {G̃( j)

n,t}
rather than the {G̃( j)

n } to calculate the branch metrics in the Viterbi algorithm.
Finally, we note that (7.294) does not hold for the T -spaced receiver due to aliasing
of the signal spectrum.

7.7.6.3 Practical Receiver

Section 7.6 showed that the optimal front-end processing for a SISO ISI channel can
be realized by a receiver filter that is matched to the transmitted pulse ha(t) followed
by a rate-2/T sampler and a noise-whitening filter. Here we generalize this concept
to MIMO ISI channels. For an MIMO system where all co-channel waveforms are
transmitted with the same pulse shape ha(t), a significant complexity reduction is
realized using this receiver since a matched filter bank is no longer required at each
antenna element. As shown in Fig. 7.21, the receiver simply consists of a single
matched filter for each antenna element followed by a rate-2/T sampler and a noise-
whitening filter. Although the T -spaced samples at the output of the filter h∗

a(−t) are
white since the pulse p(t) = ha(t) ∗ ha(−t) satisfies the first Nyquist criterion, the
T/2-spaced samples are not and, therefore, the noise-whitening filter is necessary.
However, the structure of the noise-whitening filter is completely known because it
only depends on the known filter h∗

a(−t).
We now establish that the systems shown in Figs. 7.19 and 7.21 yield identical

performance. Assuming that rate-2/T sampling satisfies the sampling theorem,
the two systems can be completely represented by their T/2-spaced discrete-time
signals. This is achieved, for example, using root raised cosine pulse shaping with
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less than 100% excess bandwidth. Once again, assume that the channels are time-
invariant and have impulse responses g(k, j)(t),k = 1, . . .K. Define

g( j)(t)
�
= (g(1, j)(t), . . . ,g(K, j)(t))T, (7.296)

h( j)(t)
�
= (h(1, j)(t), . . . ,h(K, j)(t))T, (7.297)

where h(k, j)(t) = ha(t)∗g(k, j)(t). Let H̃a(z), G̃( j)(z), and H̃( j)(z) be the z-transforms
of the T/2-spaced samples of the waveforms ha(t), and waveform vectors g( j)(t)
and h( j)(t), respectively, where the tilde indicates T/2-spaced sampling. The
z-transform of the autocorrelation function of the noise samples at the output
of the receive filter h∗

a(−t) is NoF̃h(z), where F̃h(z) = H̃a(z)H̃∗
a (1/z∗). Using the

factorization
F̃h(z) = G̃h(z)G̃

∗
h(1/z∗), (7.298)

the T/2-spaced noise sequence at the output of the matched filter h∗
a(−t) can

be whitened using a filter having the transfer function 1/G̃∗
h(1/z∗) as shown in

Fig. 7.21. Note that the noise-whitening filter is not a matrix filter, but just a scalar
filter.

The z-transform of the overall T/2-spaced discrete-time channel in Fig. 7.21 that
includes the noise-whitening filter is

G̃( j)
eq (z) = H̃a(z)G̃( j)(z)H̃∗

a (1/z∗)/G̃∗
h(1/z∗)

= G̃( j)(z)G̃h(z). (7.299)

On the other hand, referring to the conventional system shown in Fig. 7.19, we have

H̃( j)(z) = H̃a(z)G̃( j)(z) (7.300)

and

F̃( j)(z) = H̃a(z)G̃( j)(z)(H̃a(1/z∗)G( j)(1/z∗))H

= H̃a(z)G̃( j)(z)G̃( j)H
(1/z∗)H̃∗

a (1/z∗). (7.301)

Let
G̃( j)

c (z)G( j)H

c (1/z∗) = G̃( j)(z)G̃( j)H
(1/z∗), (7.302)

be a factorization of the matrix G̃( j)(z)G̃( j)H
(1/z∗) such that G̃( j)

c (z) has minimum
phase. Combining (7.298), (7.301), and (7.302) gives

F̃( j)(z) = G̃h(z)G̃
( j)H

c (z)G̃( j)H

c (1/z∗)G̃∗
h(1/z∗). (7.303)
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The transfer function of the matrix noise-whitening filter is chosen as

[
G̃( j)H

c (1/z∗)G̃∗
h(1/z∗)

]−1
. (7.304)

Therefore, the overall transfer function at the output of the matrix noise-whitening
filter is

G̃( j)(z) = G̃h(z)G̃
( j)
c (z). (7.305)

Finally, we note that

G̃( j)
eq (z)G̃

( j)H

eq (1/z∗) = F̃( j)(z) = G̃( j)(z)G̃( j)H
(1/z∗). (7.306)

Therefore, the Euclidean distance between sequences of noise-whitening filter
outputs for the MIMO receiver in Fig. 7.21 is the same as those for the T/2-spaced
MIMO J-MLSE receiver in Fig. 7.19. Consequently, the system shown in Fig. 7.21
achieves ML performance. The main advantage of the system in Fig. 7.21 is that
the noise-whitening filter does not depend on the unknown channel and has a fixed
structure.

The receiver shown in Fig. 7.21 has a scalar output, while the receiver in Fig. 7.19

has a vector output, and furthermore, G̃( j)
eq,n is a vector while G̃( j)

n is a matrix.
As a result, the branch metric used in the Viterbi algorithm needs to be modified
accordingly. From (7.277)

μm =−
J

∑
j=1

⎛

⎝

∣
∣
∣
∣
∣
ṽ( j)

2m −
Lj

∑
n=0

G̃( j)T

eq,2nxm−n

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
ṽ( j)

2m+1 −
Lj−1

∑
n=0

G̃( j)T

eq,2n+1xm−n

∣
∣
∣
∣
∣

2
⎞

⎠ . (7.307)

Although the T/2-spaced receiver is optimum, there are several key issues that
must be resolved before it can be implemented. First, the receiver must be trained

to derive an initial estimate of the channel vectors {G̃( j)
eq,n}. This synchronization

and training problem is particularly challenging for an asynchronous co-channel
waveforms where the training sequences are not coincident. Second, the receiver

must be able to track the channel vectors {G̃( j)
eq,n} during data demodulation if

necessary. Perhaps, a per-survivor processing approach such as the one suggested
in Sect. 7.4.1.1 could be used for such cases.

7.7.7 Interference Rejection Combining MLSE Receiver

In many cases, the structure of the co-channel interferers is often unknown. In other
cases, it is only necessary to recover the data from a single desired co-channel
user. Bottomley and Jamal [39] developed a scheme called the IRC-MLSE that
combines adaptive antenna arrays and MLSE equalization. Co-channel interference
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cancelation is performed in the Viterbi metric, and the receiver is equivalent to
Winter’s optimum linear combiner [283, 285] under flat fading channel conditions.

Once again, we assume that the receiver filter on each antenna element is matched
to the transmitted pulse and followed by a rate 2/T sampler. Since the co-channel
waveforms are assumed to have an unknown structure, a matched filter is only
required for the desired signal. The overall pulse response consisting of the transmit
filter, channel, and receiver filter is f ( j)(t) = ha(t)∗g(1, j)(t)∗h∗

a(−t). The vector of
matched filter outputs from the J receiver antenna elements is

ỹ(t) =
L

∑
�=0

x�f(t − �T)+ z̃(t), (7.308)

where

ỹ(t) =
(

y(1)(t), . . . ,y(J)(t)
)T

,

f(t) =
(

f (1)(t), . . . , f (J)(t)
)T

,

z̃(t) =
(

z(1)(t), . . . ,z(J)(t)
)T

(7.309)

and where LT is the length of the pulse f ( j)(t). The impairment vector z̃(t) at the
output of the matched filter is due to the K − 1 interfering co-channel signals plus
AWGN, and has the form

z̃(t) =
K−1

∑
k=1

Ĩk(t)+ ν̃(t), (7.310)

where

Ĩk(t) =
(

I(1)k (t), . . . , I(J)k (t)
)T

,

ν̃(t) =
(

ν(1)(t), . . . ,ν(J)(t)
)T

. (7.311)

The matched filter outputs are sampled at rate 2/T and passed to a noise-whitening
filter. The noise-whitening filter is suboptimum in the presence of co-channel
interference, since the co-channel interference at the input to the receiver filter
can be viewed as colored noise. However, the noise-whitening filter ensures
maximum likelihood performance in the absence of co-channel interference. The
noise-whitening filter is obtained using the same procedure leading to the overall
T/2-spaced discrete-time channel with the transfer function defined in (7.299). It
follows that the overall channel consisting of the transmit filter, channel, receiver
filter, T/2-spaced sampler, and noise-whitening filter can be modeled as a T/2-
spaced tapped delay line with tap coefficients

g̃( j) =
(

g̃( j)
0 , . . . , g̃( j)

2L

)T
.
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Define

g̃�
�
=
(

g̃(1)� , . . . g̃(J)�

)T
. (7.312)

Then the vectors ṽ2k = (ṽ(1)2k , . . . , ṽ
(J)
2k )

T and ṽ2k+1 = (ṽ(1)2k+1, . . . , ṽ
(J)
2k+1)

T at the output
of the noise-whitening filter corresponding to the kth received baud are

ṽ2k =
Lh

∑
�=0

x(k− �)g̃2�+ ñ2k, (7.313)

ṽ2k+1 =
Lh−1

∑
�=0

x(k− �)g̃2�+1+ ñ2k+1, (7.314)

where ñ2k = (ñ(1)2k , . . . , ñ
(J)
2k )

T and ñ2k+1 = (ñ(1)2k , . . . , ñ
(J)
2k )

T. Once again, we empha-
size that the noise vectors ñ2k and ñ2k+1 are not white due to the presence of the
co-channel signals.

To derive a feasible receiver structure, we now assume that the sampled
impairment vector ñ� at the output of the noise-whitening filter at epoch � is a vector
of J correlated zero-mean complex Gaussian random variables having the joint pdf

p(ñ�) =
1

(2π)J |R�| exp

{

−1
2

ñH
� R−1

� ñ�

}

, (7.315)

where |R�| is the determinant of R� and

R� =
1
2

E [ñ�ñ
H
� ] (7.316)

is the impairment correlation matrix. Assuming an MLSE-like algorithm, the branch
metric should be related to the likelihood of the impairment vector. For each state

transition ρ ( j)
k → ρ (i)

k+1 at epoch k, the samples ṽ2k and ṽ2k+1 are used by the Viterbi
algorithm to evaluate the branch metric

μk = (ṽ2k − û1
2k)

HR−1
2k (ṽ2k − û1

2k)

+(ṽ2k+1 − û2
2k+1)

HR−1
2k+1(ṽ2k+1 − û2

2k+1), (7.317)

where

û1
2k =

Lh

∑
�=0

x̂(k− �)g̃2�, (7.318)

û2
2k+1 =

Lh−1

∑
�=0

x̂(k− �)g̃2�+1. (7.319)

Notice that the metric calculation requires the impairment correlation matrix Rk and
its inverse, and the channel impulse vectors
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g̃1 = (g̃0, g̃2, . . . , g̃2Lh)
T (7.320)

g̃2 = (g̃1, g̃3, . . . , g̃2Lh−1)
T. (7.321)

Computing the inverse of the J × J matrix Rk can be computationally intensive
for large J, the number of computations required being proportional to J3. However,
when J = 2 (two receiver antenna elements) the inverse can be obtained using direct
matrix inversion (DMI), that is, the inverse of the matrix Rk is

R−1
k =

adj(Rk)

|Rk| =
1

rk11rk22 − rk12rk21

[
rk22 −rk12

−rk21 rk11

]

. (7.322)

Division by the determinant |Rk| is unnecessary, provided that Rk remains constant
over the decision delay in the Viterbi algorithm, since the determinant will just scale
all the path metrics. For such cases, the Viterbi algorithm can use the simplified
branch metric

μk = (ṽ2k − û1
2k)

Hadj(R2k)(ṽ2k − û1
2k)

+(ṽ2k+1 − û2
2k+1)

HadjR2k+1)(v2k+1 − û2
2k+1), (7.323)

which only requires multiplications and additions.
Finally, a metric combining MLSE (MC-MLSE) receiver is one that zeroes the

off diagonal elements of the matrix Rk. The metric combining receiver is equivalent
to maximal ratio combining when the additive impairment is white Gaussian noise.

7.7.8 Examples

The performances of the J-MLSE, IRC-MLSE, and MC-MLSE receivers discussed
in the previous sections are now compared and contrasted. For this purpose, an
EDGE burst format is assumed. The EGDE burst format is the same as the GSM
burst format described in Fig. 1.2. However, instead of the GMSK modulation used
in GSM, EDGE uses eight-PSK modulation with square-root raised cosine pulse
shaping with a roll-off factor of β = 0.5. For illustrative purposes, a T -spaced, two
equal ray, model is assumed for the desired signal. The interference impairment
consists of a single flat faded EDGE interferer. In all cases, the receiver front-end
consists of a receiver filter that is matched with the transmitted pulse followed by a
rate-2/T sampler and a noise-whitening filter. The J-MLSE receiver has 512 states,
as defined by two symbols for the desired signal and one symbol for the co-channel
interferer. The MC/IRC-MLSE receivers have 64 states, as defined by two symbols
for the desired signal. Each simulation run consists of 3,000 frames of 142 eight-
PSK symbols.

Figure 7.22 shows the Eb/No performance of the three receivers for a fixed
carrier-to-interference ratio C/I = 30 dB. Under this condition, the interference
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Fig. 7.22 Relative Eb/No
performance of the J-MLSE,
MC-MLSE and IRC-MLSE
receivers; C/I = 30 dB
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Fig. 7.23 Relative C/I
performance of the J-MLSE,
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receivers; Eb/No = 30 dB
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is very light. Perfect channel knowledge is assumed. The J-MLSE receiver is
the optimum receiver in the maximum likelihood sense and achieves the best
possible performance in AWGN. The MC-MLSE receiver is also optimum for
AWGN channels, but exhibits some degradation at higher Eb/No due to the co-
channel interference that is present. The IRC-MLSE receiver gives the worst Eb/No

performance.
Figure 7.23 shows the C/I performance of the three receivers for Eb/No =

30 dB. Observe that the MC-MLSE receiver gives the worst performance, while the
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J-MLSE receiver and IRC-MLSE receivers offer huge C/I performance gains. The
best performance is realized with the IRC-MLSE receiver. Hence, the IRC-MLSE
receiver sacrifices a small amount of Eb/No performance for a large gain in C/I
performance.

It is curious that the IRC-MLSE receiver outperforms the J-MLSE receiver. First,
the J-MLSE receiver that we have implemented does not have a sufficient number of
receiver states due to pulse truncation effects. Hence, there is some residual ISI that
is significant at low C/I. Second, the overall signal constellation produced by the
combination of the desired signal and the co-channel signal may degenerate when
the signal constellation points overlap. In this case, errors can occur even for large
Eb/No values.

Appendix 1: Derivation of (7.202)

Consider the case where D = 1 and suppose that the characteristic function in
(7.194) has L + 1 different poles ᾱ = (ᾱ0, ᾱ1, . . . , ᾱL). Then the pairwise error
probability is equal to

P(ᾱ) =
L

∑
i=0

((
1
2
− 1

2

√
ᾱi

1+ ᾱi

)

∏
j �=i

(

1− ᾱ j

ᾱi

)−1
)

. (7.324)

Define the function φ(ᾱ) = ∑L
i=0 ᾱi −C = 0, where C is a constant. The method of

Lagrange multipliers suggests that

∂P(ᾱ)

∂ᾱi
+λ

∂φ
∂ᾱi

= 0 i = 1, . . . , L (7.325)

for any real number λ . It can be shown by induction that

∂P(ᾱ)

∂ᾱk
= −

(
1
2
− 1

2

√
ᾱk

1+ ᾱk

)

∑
i�=k

(
ᾱi

ᾱ2
k

(

1− ᾱi

ᾱk

)−2

∏
j �=i,k

(

1− ᾱ j

ᾱk

)−1
)

+∑
i�=k

(
1
ᾱi

(

1− ᾱk

ᾱi

)−2(1
2
− 1

2

√
ᾱi

1+ ᾱi

)

∏
j �=i,k

(

1− ᾱ j

ᾱi

)−1
)

−
(

1

4ᾱ1/2
k

1

(1+ ᾱk)
3/2

)

∏
j �=k

(

1− ᾱ j

ᾱk

)−1

. (7.326)

By solving (7.325) and observing the symmetry of P(ᾱ) and the derivative (7.326)
with respect to the permutations of ᾱ , it is apparent that the minimum of P(ᾱ) is
achieved when ᾱ0 = ᾱ1 = · · ·= ᾱL.
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Problems

7.1. Starting with

fk =

∫ ∞

−∞
h∗(τ)h(τ + kT )dτ,

show that

F(ej2π f T ) = FΣ ( f ).

7.2. Suppose that the impulse response of an overall channel consisting of the
transmit filter, channel, and receive filter is

F( f ) =

{
1, | f | ≤ f�
fu−| f |
fu− f�

, f� ≤ | f | ≤ fu
.

(a) Find the overall impulse response f (t).
(b) Is it possible to transmit data without ISI?
(c) How do the magnitudes of the tails of the overall impulse response decay with

large values of t?
(d) Suppose that binary signaling is used with this pulse shape so that the noiseless

signal at the output of the receive filter is

y(t) = ∑
n

xn f (t − nT),

where xn ∈ {−1,+1}. What is the maximum possible magnitude that y(t) can
achieve?

7.3. Suppose a digital communication system operates over an “ideal channel” and
uses an overall pulse p(t) that has the Gaussian-shaped form

p(t) = e−πa2t2
.

(a) Explain why p(t) does not admit ISI-free transmission.
(b) To reduce the level of ISI to a relatively small amount, we impose the condition

that p(T ) = 0.01, where T is the symbol interval. The bandwidth W of the pulse
p(t) is defined as that value of W for which P(W )/P(0) = 0.01, where P( f ) is
the Fourier transform of p(t). Determine the value W and compare this value to
that of a raised cosine spectrum with 100% roll-off.

7.4. Show that the ISI coefficients { fn} may be expressed in terms of the channel
vector coefficients {gn} as

fn =
L−n

∑
k=0

g∗
kgk+n n = 0,1,2, . . . ,L.
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7.5. Suppose that BPSK is used on a static ISI channel. The complex envelope has
the form

s̃(t) = A
∞

∑
k=−∞

xkha(t − kT ),

where xk ∈ {−1,+1} and ha(t) is the amplitude shaping pulse. The full response
rectangular pulse ha(t) = uT (t) is used and the impulse response of the channel is

g(t) = g0δ (t)− g1δ (t − τ),

where g0 and g1 are complex numbers and 0 < τ < T .

(a) Find the received pulse h(t).
(b) What is the filter matched to h(t)?
(c) What are the ISI coefficients { fi}?

7.6. Suppose that BPSK signaling is used on a static ISI channel having impulse
response

g(t) = δ (t)+ 0.1δ (t −T ).

The receiver employs a filter that is matched to the transmitted pulse ha(t), and the
sampled outputs of the matched filter are

yk = xkq0 + ∑
n �=k

xnqk−n +νk,

where xn ∈ {−1,+1}. Decisions are made on the {yk} without any equalization.

(a) What is the variance of noise term νk?
(b) What are the values of the {qn}?
(c) What is the probability of error in terms of the average received bit-energy-to-

noise ratio?

7.7. A typical receiver for digital signaling on an ISI channel consists of a matched
filter followed by an equalizer. The matched filter is designed to minimize the effect
of random noise, while the equalizer is designed to minimize the effect of ISI. Using
mathematical arguments, show that (1) the matched filter tends to accentuate the
effect of ISI, and (2) the equalizer tends to accentuate the effect of random noise.

7.8. Consider an ISI channel, where fn = 0 for |n| > 1. Suppose that the receiver
uses a filter matched to the received pulse h(t) = ha(t) ∗ g(t), and the T -spaced
samples at the output of the matched filter, {yk}, are filtered as shown in Fig. 7.24.
The values of g0 and g1 are chosen to satisfy

|g0|2 + |g1|2 = f0,

g0g∗
1 = f1.

Find an expression for the filter output vk in terms of g0, g1, xk, xk−1, and the noise
component at the output of the digital filter, wk.
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Fig. 7.24 Digital filter
for Problem 7.8
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7.9. The z-transform of the channel vector g of a communication system is equal to

G(z) = 0.1+ 1.0z−1− 0.1z−2.

A binary sequence x is transmitted, where xn =∈ {−1,+1}. The received samples
at the output of the noise whitening filter are

vk =
2

∑
n=0

gnxk−n +wk,

where {wk} is a white Gaussian noise sequence with variance σ2
w = No.

a) Evaluate the probability of error if the demodulator ignores ISI.
b) Design a 3-tap zero-forcing equalizer for this system.
c) What is the response {vk} for the input sequence

{xn}= (−1)k, k = 0,1,2,3?

What is the response at the output of the equalizer?
d) Evaluate the probability of error for the equalized channel.

7.10. Suppose that a system is characterized by the received pulse

h(t) =
√

2ae−at , 0 ≤ t ≤ ∞.

A receiver implements a filter matched to h(t) and generates T -spaced samples at
the output of the filter. Note that the matched filter is actually noncausal.

(a) Find the ISI coefficients fi.
(b) What is the transfer function of the noise-whitening filter that yields a system

having an overall minimum phase response?
(c) Find the transfer function of the equivalent zero-forcing equalizer C′(z).
(d) Find the noise power at the output of the zero-forcing equalizer, and find the

condition when the noise power becomes infinite.
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7.11. Consider M-PAM on a static ISI channel, where the receiver uses a filter that
is matched to the received pulse. The sampled outputs of the matched filter are

yn = xn f0 + ∑
k �=n

xk fn−k +νn,

where the source symbols are from the set {±1, ±3, . . . , ±(M−1)}. Decisions are
made on the {yn} without any equalization using a threshold detector. The �th ISI
pattern can be written as

D(�) = ∑
k �=n

x�,k fn−k,

and D(�) is maximum when sgn(x�,k) = sgn( fn−k) and each of the x�,k takes on
the maximum signaling level, that is, x�,k = (M − 1)d for M even. The maximum
distortion is defined as

Dmax =
1
f0

∑
n �=0

| fn|.

(a) Discuss and compare error performance M-ary signaling (M > 2) with binary
signaling (M = 2), using Dmax as a parameter.

(b) Suppose that the channel has ISI coefficients

fi = 0.0, |i| ≥ 3,

f2 = f−2 = 0.1,

f1 = f−1 =−0.2,

f0 = 1.0.

Plot the probability of error against the signal-to-noise ratio and compare with
the ideal channel case, that is, f0 = δn0. Show your results for M = 2 and 4.

7.12. Consider a linear MSE equalizer and suppose that the tap gain vector c
satisfies

c = cop + ce,

where ce is the tap gain error vector. Show that the MSE that is achieved with the
tap gain vector c is

J = Jmin + cT
e Mvc∗e.

7.13. The matrix Mv has an eigenvalue λk and eigenvector xk if

xkMv = λkxk, k = 1, . . . ,N.

Prove that the eigenvectors are orthogonal, that is, xixT
j = δi j.
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7.14. Show that the relationship between the output SNR and Jmin for an infinite-tap
mean-square error linear equalizer is

γ∞ =
1− Jmin

Jmin
,

where γ∞ indicates that the equalizer has an infinite number of taps. Note that this
relationship between γ∞ and Jmin holds when there is residual ISI in addition to the
noise.

7.15. In this question, we will show in steps that

∇cJ = 2cT Mv − 2vH
x .

Define

Mv
�
= MvR + jMvI ,

c
�
= cR + jcI ,

vx
�
= vxR + jvxI .

(a) Using the Hermitian property Mv = MH
v , show that

MvR = MT
vR

and MvI =−MT
vI
.

(b) Show that

∇cR Re{vH
x c∗} = vT

xR
,

∇cI Re{vH
x c∗} = −vT

xI
,

∇cR cT Mvc∗ = 2cT
RMvR − 2cT

I MvI ,

∇cI c
T Mvc∗ = 2cT

I MvR + 2cT
RMvI ,

where ∇x is the gradient with respect to vector x.
(c) If we define the gradient of a real-valued function with respect to a complex

vector c as
∇c = ∇cR + j∇cI ,

show that

∇cRe{vH
x c∗} = vH

x ,

∇ccHMvc∗ = 2cT Mv.
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Fig. 7.25 Discrete-time
white noise channel model
for Problem 7.17
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7.16. Show that the pairwise error probability for digital signaling on an ISI channel
is given by (7.171).

7.17. Consider the transmission of the binary sequence x, xn ∈ {−1,+1} over the
equivalent discrete-time white noise channel model shown in Fig. 7.25. The received
sequence is

v0 = .70x0 +w1

v1 = .70x1 − .60x0 +w2

v2 = .70x2 − .60x1 +w3

...

vk = .70xk − .60xk−1+wk.

(a) Draw the state diagram for this system.
(b) Draw the trellis diagram.
(c) Suppose that the received sequence is

{vi}6
i=0 = {1.0, −1.5, 0.0, 1.5, 0.0, −1.5, 1.0}.

Show the surviving paths and their associated path metrics after v6 has been
received.

7.18. Suppose that BPSK signaling is used on a frequency selective fading channel.
The discrete-time system consisting of the transmit filter, channel, receiver filter, and
baud-rate sampler can be described by the polynomial

F(z) =
5

16
− 1

8
z−1 − 1

8
z.
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The samples at the output of the receiver filter are processed by a noise-whitening
filter such that the overall discrete-time white noise channel model G(z) has
minimum phase.

(a) Find G(z).
(b) Draw the state diagram and the trellis diagram for the discrete-time white noise

channel model.
(c) A block of ten symbols x = {xi}9

i=0 is transmitted over the channel and it is
known that x9 =−1. Assume that xi = 0, i < 0 and the suppose that the sampled
sequence at the output of the noise-whitening filter is

v = {v0,v1,v2,v3, . . .v9}
= {1/2,1/4,−3/4,3/4,−3/4,−1/4,3/4,−3/4,−1/4,−1/4}.

What sequence x was most likely transmitted?



Chapter 8
Error Control Coding

Channel coding and interleaving techniques have long been used for combating
noise, interference, jamming, fading, and other channel impairments. The basic
idea of channel coding is to introduce controlled redundancy into the transmitted
signals that is subsequently exploited at the receiver for error correction. Channel
coding can also be used for error detection in schemes that use automatic repeat
request (ARQ) strategies. ARQ strategies must have a feedback channel to relay
the retransmission requests from the receiver back to the transmitter when errors
are detected. ARQ schemes require buffering at the transmitter and/or receiver and,
therefore, are suitable for data applications but are not suitable for delay sensitive
applications such as voice or real-time video. Hybrid ARQ schemes use both error
correction and error detection; the code is used to correct the most likely error
patterns and to detect the more infrequently occurring error patterns. Upon detection
of errors, a retransmission is requested.

There are many different types of error correcting codes, but historically they
have been classified into block codes and convolutional codes. Both block codes
and convolutional codes find potential applications in wireless systems. To generate
a codeword of an (n,k) block code, a block of k data bits is appended by n − k
redundant parity bits that are algebraically related to the k data bits, thereby
producing a codeword consisting of n code bits. The ratio Rc = k/n is called the code
rate, where 0< Rc ≤ 1. Convolutional codes, on the other hand, are generated by the
discrete-time convolution of the input data sequence with the impulse response of
the encoder. The memory of the encoder is measured by the duration of the impulse
response. While block encoder operates on k-bit blocks of data bits, a convolutional
encoder accepts a continuous sequence of input data bits.

In the early application of coding to digital communications, the modulator and
coder were treated as separate entities. Hence, a block code or a convolutional
code was used to obtain a coding gain at the cost of bandwidth expansion or
data rate. Although this approach may be feasible for power limited channels
where bandwidth resources are plentiful, it is undesirable and sometimes not even
possible for bandwidth limited applications such as cellular radio. If no sacrifices
of data rate or bandwidth can be made, then schemes that separate the operations
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of coding and modulation require a very powerful code just to break even with
an uncoded system. In 1974, Massey [173] suggested that the performance of a
coded digital communication system could be improved by treating coding and
modulation as a single entity. Ungerboeck later developed the basic principles of
trellis-coded modulation (TCM) [258] and identified classes of trellis codes that
provide substantial coding gains on bandwidth limited additive white Gaussian noise
(AWGN) channels.

TCM schemes combine the operations of coding and modulation and can be
viewed as a generalization of convolutional codes. While convolutional codes
attempt to maximize the minimum Hamming distance between allowed code sym-
bol sequences, trellis-codes attempt to maximize the Euclidean distance between
allowed code symbol sequences. By jointly designing the encoder and modulator
Ungerboeck showed that, for an AWGN channel, coding gains of 3–6 dB could
be obtained relative to an uncoded system using trellis codes with 4–128 encoder
states, without sacrificing bandwidth or data rate. This property makes TCM very
attractive for wireless applications where high spectral efficiency is needed due to
limited bandwidth resources, and good power efficiency is needed to extend battery
life in portable devices. TCM experienced an almost immediate and widespread
application into high-speed power-efficient and bandwidth-efficient digital modems.
In 1984, a variant of the Ungerboeck eight-state 2D trellis code was adopted by
CCITT for both 14.4 kb/s leased-line modems and the 9.6 kb/s switched-network
modems [36]. In 1985, a TCM-based modem operating at 19.2 kb/s was introduced
by Codex [259].

Ungerboeck’s work [258] captured the attention of the coding community and
laid the foundation for intensified research. Calderbank and Mazo introduced
an analytic description of trellis codes [43]. They showed how to realize the
two operations (coding and mapping) in Ungerboeck’s codes using a single-step
procedure. Calderbank and Sloane [44] and Wei [278] proposed multidimensional
trellis codes. Spaces with larger dimensionality are attractive, because the signals
are spaced at larger Euclidean distances [36]. Calderbank and Sloan [44] and
Forney [105] made the observation that the signal constellation should be regarded
as a finite set of points taken from an infinite lattice, and the partitioning of
the constellation into subsets corresponds to the partitioning of the lattice into a
sublattice and its cosets. They then developed a new class of codes, called coset
codes, based on this principle.

Many studies have examined the performance of TCM on interleaved flat fading
channels [45, 76, 77, 85]. Divsalar and Simon [77, 78] constructed trellis codes that
are effective for interleaved flat Ricean and Rayleigh fading channels. Interleaving
randomizes the channel with respect to the transmitted symbol sequence and has
the effect of reducing the channel memory. Consequently, interleaving improves the
performance of codes that have been designed for memoryless channels. Moreover,
trellis codes that are designed for flat fading channels exhibit time diversity
when combined with interleaving of sufficient depth. It was reported in [45] that
interleaving with reasonably long interleaving depths is almost as good as ideal
infinite interleaving. The design of trellis codes for interleaved flat fading channels is
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not guided by the minimum Euclidean distance used for AWGN channels, but rather
by the minimum product squared Euclidean distance (MPSD) and the minimum
built-in time diversity (MTD) between any two allowed code symbol sequences. Wei
[279] introduced an additional design parameter called the minimum decoding depth
and proposed a set of efficient codes for interleaved flat Rayleigh fading channels.

Many studies have also considered the performance of trellis codes on inter-
symbol interference (ISI) channels [81, 93, 251, 286]. The coded performance on
static ISI channels may be significantly degraded compared to that on ISI-free
channels. Receivers for TCM on static ISI channels typically use a linear forward
equalizer followed by a soft decision Viterbi decoder. For channels with severe ISI,
a more appropriate approach is to use a decision feedback equalizer (DFE) in front
of the TCM decoder to avoid the problems of noise enhancement. However, the
feedback section of the DFE requires that decisions be available with zero delay.
Since the zero-delay decisions are unreliable, the performance improvement using
the DFE is marginal [50]. It is possible that the performance can be improved if
equalization and decoding is performed in a joint manner using maximum likelihood
sequence estimation (MLSE) or some other form of sequence estimator. However,
the complexity of an MLSE receiver grows exponentially with the number of
encoder states and the length of the channel vector.

In 1993, Berrou et al. introduced parallel concatenated convolutional codes
(PCCCs), called turbo coding [35]. When used in conjunction with an iterative
decoding scheme, PCCCs achieve near Shannon capacity limit performance on both
the AWGN channel and the interleaved flat fading channel. Simulations of a rate-
1/2 turbo code in [35] showed a bit error probability of 10−5 at an Eb/No = 0.5 dB,
which is only 0.5 dB from the Shannon capacity limit! Although, the performance
of turbo codes is remarkable at low Eb/No, their performance at high Eb/No is
unimpressive. There is a perceivable change in the slope of the bit error rate (BER)
curves, which has been loosely termed an “error floor.” In 1997, Benedetto et al.
showed that iterative decoding of serially concatenated interleaved convolutional
codes (SCCCs) can provide large coding gains without the problem of an error floor
[32]. In general, SCCCs outperform PCCCs at high Eb/No, whereas the opposite is
true for low Eb/No.

The remainder of this chapter is organized as follows. Section 8.1 gives an
introduction to block codes and space-time block codes. Section 8.2 introduces
convolutional codes, and decoding algorithms for convolutional codes, including
the Viterbi algorithm and BCJR algorithm. Section 8.3 introduces TCM. This is
followed the performance analysis of convolutional and trellis codes on AWGN
channels in Sect. 8.4. Section 8.5 considers block and convolutional interleavers that
are useful for coding on fading channels. This is followed by a consideration of the
design and performance analysis of trellis codes on interleaved flat fading channels
in Sect. 8.6. The performance of space-time codes and the decoding of space-time
codes is considered in Sect. 8.7. Finally, Sect. 8.8 provides a treatment of parallel
and serial turbo codes.
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8.1 Block Codes

8.1.1 Binary Block Codes

A binary block encoder accepts a length-k input vector a = (a1,a2, . . . ,ak), ai ∈
{0,1}, and generates a length-n codeword c = (c1,c2, . . . ,cn), ci ∈ {0,1}, through
the linear mapping c = aG, where G = [gi j]k×n is a k × n generator matrix. The
matrix G has full row rank k, and the code C is generated by taking all linear
combinations of the rows of the matrix G, where field operations are performed
using modulo-2 arithmetic. The code rate is Rc = k/n and there are 2k codewords.
The task of designing block codes reduces to one of finding generator matrices that
produce codes that are both powerful and easy to decode.

For any block code with generator matrix G, there exists an (n− k)× n parity
check matrix H = [hi j](n−k)×n such that GHT = 0k×(n−k). The matrix H has full row
rank n− k and is orthogonal to all codewords, that is, cHT = 0n−k. The matrix H is
the generator matrix of a dual code C T, consisting of 2n−k codewords. The parity
check matrix of C T is the matrix G.

A systematic block code is one having a generator matrix of the form

G = [Ik×k|P], (8.1)

where P is a k×(n−k) matrix. For a systematic block code, the first k coordinates of
each codeword are equal to the k-bit input vector a, while the last n− k coordinates
are the parity check bits. Using elementary row operations, the generator matrix of
any linear block code can be put into systematic form. A systematic block code has
the parity check matrix

H = [−PT|I(n−k)×(n−k)]. (8.2)

The parity check matrix in (8.2) is a general form that applies to both binary and
nonbinary systematic block codes. For binary codes, the negative sign in front of
the PT matrix is not necessary. For a binary systematic block code, GHT = Ik×kP⊕
PI(n−k)×(n−k) = P⊕P = 0k×(n−k), where ⊕ indicates modulo-2 addition.

Example 8.1:
The (n − k) × n parity check matrix of an (n,k) Hamming code is

constructed by listing as columns all nonzero binary (n − k)-tuples. There
are n = 2n−k −1 such nonzero (n− k)-tuples. For example, a systematic (7,4)
Hamming code has the parity check matrix

H =

⎡

⎢
⎢
⎢
⎣

1 0 1 1
... 1 0 0

1 1 1 0
... 0 1 0

0 1 1 1
... 0 0 1

⎤

⎥
⎥
⎥
⎦
, (8.3)
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where the columns of H consists of all nonzero binary three-tuples. Note
that the last three columns form a 3× 3 identity matrix since the code is in
systematic form, while the first four columns that constitute the PT matrix
may be placed in any random order with no effect on the performance of the
code. Such codes are said to be equivalent.

The generator matrix of this particular (7,4) systematic Hamming code is

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
... 1 1 0

0 1 0 0
... 0 1 1

0 0 1 0
... 1 1 1

0 0 0 1
... 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.4)

and it can be verified that GHT = 0k×(n−k). The 16 codewords of the (7,4)
Hamming code are generated by taking all linear combinations of the rows of
G using modulo-2 arithmetic.

8.1.1.1 Minimum Distance

Let d(c1,c2) denote the Hamming distance between the codewords c1 and c2, equal
to the number of coordinates in which they differ. For linear block codes d(c1,c2) =
w(c1⊕c2), where w(c1⊕c2) is the weight of c1⊕c2, equal to the number of nonzero
coordinates of c1 ⊕ c2. The free Hamming distance, dfree, of a linear block code is
the minimum number of coordinates in which any two codewords differ. For a linear
code, the sum of any two codewords c1⊕c2 is another codeword c, and the all zeroes
vector is a codeword. Hence, the free Hamming distance is

dfree = min
c1,c2

d(c1,c2) (8.5)

= min
c�=0

d(c,0) (8.6)

= min
c�=0

w(c). (8.7)

Therefore, dfree is equal to the weight of the minimum weight nonzero codeword.
To derive an upper bound on dfree, recall that the generator matrix of any linear

block code can be put into systematic form G = [Ik×k|P], where P is a k× (n− k)
matrix. It is certainly the case that the number of nonzero elements in any row of
P cannot exceed n − k. Hence, the number of nonzero elements in any row of G
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cannot exceed n− k+ 1. Since the rows of the generator matrix G are themselves
valid codewords, it must be true that

dfree ≤ n− k+ 1 (8.8)

a result known as the Singleton bound. A code that has dfree = n− k+ 1 is called a
maximum distance separable (MDS) code. Intuitively, this means that all codewords
are as far apart from each other as possible in Hamming distance, and such codes
should perform well.

An example of a simple block code that meets the Singleton bound is the binary
repetition code

0 −→ c0 = (0,0, . . . ,0)n,

1 −→ c1 = (1,1, . . . ,1)n.

In this case, dfree = d(c0,c1) = n−k+1. The repetition code happens to be the only
binary MDS code, and no other binary MDS codes exist. The well-known Reed–
Solomon codes are good examples of nonbinary MDS codes.

8.1.1.2 Syndromes

Suppose that the codeword c is transmitted and the vector y = c ⊕ e is received,
where e is defined as the error vector. The syndrome of the received vector y is
defined as the length n− k vector

s = yHT. (8.9)

If s = 0, then y is a codeword; conversely if s �= 0, then an error must have occurred.
Note that if y is a codeword, then s = 0. Hence, s = 0 does not mean that no errors
have occurred. They are just undetectable. Since the sum of any two codewords is
another codeword for a linear code, it follows that the number of undetectable error
vectors is equal to 2k − 1, the number of nonzero codewords. The syndrome only
depends upon the error vector because

s = yHT = cHT ⊕ eHT = 0⊕ eHT = eHT. (8.10)

In general, s = eHT is a system of n − k equations in n variables. Hence, for any
given syndrome s, there are 2k possible solutions having the same error vector e.
However, the most likely error pattern e is the one that has minimum Hamming
weight.
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8.1.1.3 Error Detection

A linear block code can detect all error patterns of dfree−1 or fewer errors. If e �= 0 is
a codeword, then no errors are detected. There are 2k−1 undetectable error patterns,
but there are 2n−1 possible nonzero error patterns. Hence, the number of detectable
error patterns is

2n − 1− (2k − 1) = 2n − 2k.

Usually, 2k−1 is a small fraction of 2n−2k. For the (7,4) Hamming code considered
in Example 8.1, there are 24 −1 = 15 undetectable error patterns and 27 −24 = 112
detectable error patterns.

8.1.1.4 Weight Distribution

Consider a block code C and let Ai be the number of codewords of weight i. The set
{A0,A1, . . . ,An} is called the weight distribution of C . The weight distribution can
be expressed as a weight enumerator polynomial

A(z) = A0z0 +A1z1 + . . .+Anzn. (8.11)

For the (7,4) Hamming code in Example 8.1,

A0 = 1,A2 = 0,A3 = 7,A4 = 7,A5 = 0,A6 = 0,A7 = 1.

Hence,
A(z) = 1+ 7z3 + 7z4 + z7.

The weight enumerator polynomial can be used to evaluate the exact performance
of a code. Unfortunately, weight enumerator polynomials are generally difficult to
find and are known only for a few classes of codes such as the Hamming codes.

8.1.1.5 Probability of Undetected Error

The probability of undetected error is

Pe[u] = P[e is a nonzero codeword]

=
n

∑
i=1

AiP[w(e) = i]. (8.12)

The error probability P[w(e) = i] depends on the coding channel, defined as that
portion of the communication system that is seen by the coding system. The simplest
coding channel is the binary symmetric channel (BSC), where

P[yi �= ci] = p = 1−P[yi = ci]. (8.13)
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For a BSC, P[w(e) = i] = pi(1− p)n−i and, hence,

Pe[u] =
n

∑
i=1

Ai p
i(1− p)n−i. (8.14)

The (7,4) Hamming code in Example 8.1 has an undetected error probability of

Pe[u] = 7p3(1− p)4 + 7p4(1− p)3 + p7. (8.15)

For a raw channel error rate of p = 10−2, we have Pe[u] = 7 × 10−6. Hence, the
undetected error rate can be very small even for a fairly simple block code.

8.1.1.6 Error Correction

A linear block code can correct all error patterns of t or fewer errors, where

t ≤ �dfree − 1
2

� (8.16)

and �x� is the largest integer contained in x. A code is usually capable of correcting
many error patterns of t +1 or more errors. In fact, up to 2n−k error patterns may be
corrected, which is equal to the number of syndromes.

For a BSC, the probability of codeword error is

P[e] ≤ 1−P[t or fewer errors]

= 1−
t

∑
i=0

(
n
i

)

pi(1− p)n−i. (8.17)

8.1.1.7 Standard Array Decoding

One conceptually simple method for decoding linear block codes is standard array
decoding. The standard array of an (n,k) linear block code is constructed as
follows:

1. Write out all 2k codewords in a row starting with c0 = 0.
2. From the remaining 2n − 2k n-tuples, select an error vector e2 of weight 1 and

place it under c0. Under each codeword put ci ⊕ e2, i = 1, . . . ,2k − 1.
3. Select a minimum weight error vector e3 from the remaining unused n-tuples and

place it under c0 = 0. Under each codeword put ci ⊕ e3, i = 1, . . . ,2k − 1.
4. Repeat Step 3 until all n-tuples have been used.

Note that every n-tuple appears once and only once in the standard array.
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Example 8.2:
Consider the (4,2) code with generator matrix

G =

[
1 1 0 0
0 1 0 1

]

.

The standard array is ⎡

⎢
⎢
⎣

e1 0000 1100 0101 1001
e2 0001 1101 0100 1000
e3 0010 1110 0111 1011
e4 0011 1111 0110 1010

⎤

⎥
⎥
⎦ .

The standard array consists of 2n−k disjoint rows of 2k elements. These rows are
called cosets and the ith row has the elements

Fi = {ei,ei ⊕ c1, . . . ,ei ⊕ c2k−1}.

The first element, ei, is called the coset leader. The standard array also consists of
2k disjoint columns. The jth column has the elements

D j = {c j,c j ⊕ e2, . . . ,c j ⊕ e2n−k}.

To correct errors, the following procedure is used. When y is received, find y in
the standard array. If y is in row i and column j, then the coset leader from row i, ei,
is the most likely error pattern to have occurred and y is decoded into y⊕ ei = c j.
A code is capable of correcting all error patterns that are coset leaders. If the error
pattern is not a coset leader, then erroneous decoding will result. Obviously, standard
array decoding is only useful for simple codes, since 2n vectors must be stored in
memory. A somewhat simpler decoding strategy is syndrome decoding.

8.1.1.8 Syndrome Decoding

Syndrome decoding relies on the fact that all 2k n-tuples in the same coset of the
standard array have the same syndrome. This is because the syndrome only depends
on the coset leader as shown in (8.10). To perform syndrome decoding:

1. Compute the syndrome s = yHT

2. Locate the coset leader e� where e�HT = s
3. Decode y into y⊕ e� = ĉ
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This technique can be used for any linear block code. The calculation in Step 2
can be done using a simple look-up table. However, for large n − k it becomes
impractical because 2n−k syndromes and 2n−k error patterns must be stored.

8.1.2 Space-Time Block Codes

Space-time block coding is a technique for coding across multiple antennas. In
Sect. 6.10, we discussed a simple transmit diversity scheme by Alamouti [11], which
uses two transmit antennas in a 2 × Lr arrangement, where Lr is the number of
receiver antennas. The Alamouti scheme achieves a diversity order of 2Lr and has a
very simple maximum likelihood decoding algorithm. It can be thought of as a very
simple 2× 2 space-time block code having the code matrix

S =

[
s̃(1) s̃(2)

−s̃∗(2) s̃∗(1)

]

, (8.18)

where the rows represent time slots and the columns represent the transmissions
from the antennas over time. For the Alamouti code, two symbols are transmitted
from two antennas over two time slots. The basic idea of the Alamouti code was
later generalized by Tarokh, Jafarkhani, and Calderbank to an arbitrary number, Lt,
of transmit antennas by applying orthogonal designs [249]. While a variety of space-
time block codes exist, here we concentrate on orthogonal space-time block codes.
Orthogonal space-time block codes achieve a diversity order LtLr, while allowing
for maximum likelihood based on computationally simple linear processing [250].

Let Lt be the number of transmit antennas and p represent the number of
time slots that are used to transmit one space-time codeword. This gives rise to
a p × Lt space-time code matrix. Each group of k information symbols, chosen
from an M = 2m-ary alphabet, is encoded according to the space-time code matrix
to generate a p × Lt space-time codeword. Since the codewords are transmitted
simultaneously from Lt transmit antennas in p time slots, the space-time code rate is
equal to R = k/p. Similar to the Alamouti code, the entries of the p×Lt code matrix
are chosen to be a combination of the block of k modulating symbols {s̃(1), . . . , s̃(k)}
and their complex conjugates {s̃∗(1), . . . , s̃

∗
(k)}. For orthogonal space-time codes, the

p×Lt code matrix S satisfies the following orthogonal property [249]:

SHS = ILt×Lt

k

∑
i=1

|s̃(i)|2. (8.19)

Depending on the type of signal constellation from which the symbols s̃(i) are drawn,
either real or complex valued orthogonal space-time block codes can be constructed.
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8.1.2.1 Real Orthogonal Space-Time Block Codes

A real orthogonal design is a p × Lt orthogonal matrix containing real-valued
elements satisfying the orthogonal property in (8.19). First consider the case where
S is a Lt ×Lt square matrix. It is known that real orthogonal designs having square
code matrices only exist for Lt = 2,4 or 8 transmit antennas. Examples of real
orthogonal space-time block codes are the 2× 2 design

S2 =

[
s̃(1) s̃(2)

−s̃(2) s̃(1)

]

, (8.20)

the 4× 4 design

S4 =

⎡

⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4)
−s̃(2) s̃(1) −s̃(4) s̃(3)
−s̃(3) s̃(4) s̃(1) −s̃(2)
−s̃(4) −s̃(3) s̃(2) s̃(1)

⎤

⎥
⎥
⎥
⎦
, (8.21)

and the 8× 8 design

S8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6) s̃(7) s̃(8)
−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5) −s̃(8) s̃(7)
−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8) −s̃(5) −s̃(6)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7) s̃(6) −s̃(5)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2) s̃(3) s̃(4)
−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1) −s̃(4) s̃(3)
−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4) s̃(1) −s̃(2)
−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3) s̃(2) s̃(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.22)

The reader can verify that the columns of these matrices are mutually orthogonal,
that is, their dot product is zero. Hence, the orthogonal property in (8.19) is satisfied.
Also, the rate achieved with these code matrices is R= 1. For example, with the 8×8
code matrix, k = 8 symbols are transmitted in p = 8 time slots so that R = k/p = 1.
Finally, these codes all achieve full transmit diversity of order Lt.

The above orthogonal space-time code designs are based on Lt × Lt square
matrices. Tarokh et al. [249] have developed generalized real orthogonal designs
for any number of transmit antennas that achieve rate R = 1. They have shown that
the minimum number of transmission periods p to achieve full rate is given by [249]

p = min
{

24c+d
}
, (8.23)

where the minimization is taken over the set
{

c,d | 0 ≤ c,0 ≤ d < 4 and 8c+ 2d ≥ Lt

}
. (8.24)



468 8 Error Control Coding

Based on (8.23) and (8.24), real orthogonal designs for Lt = 3,5,6 and 7 transmit
antennas can be constructed that have full transmit diversity of order Lt and rate
R = 1 as follows:

S3 =

⎡

⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3)
−s̃(2) s̃(1) −s̃(4)
−s̃(3) s̃(4) s̃(1)
−s̃(4) −s̃(3) s̃(2)

⎤

⎥
⎥
⎥
⎦
, (8.25)

S5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5)
−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6)
−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1)
−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2)
−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3)
−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.26)

S6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6)
−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5)
−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2)
−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1)
−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4)
−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.27)

and

S7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4) s̃(5) s̃(6) s̃(7)
−s̃(2) s̃(1) s̃(4) −s̃(3) s̃(6) −s̃(5) −s̃(8)
−s̃(3) −s̃(4) s̃(1) s̃(2) s̃(7) s̃(8) −s̃(5)
−s̃(4) s̃(3) −s̃(2) s̃(1) s̃(8) −s̃(7) s̃(6)
−s̃(5) −s̃(6) −s̃(7) −s̃(8) s̃(1) s̃(2) s̃(3)
−s̃(6) s̃(5) −s̃(8) s̃(7) −s̃(2) s̃(1) −s̃(4)
−s̃(7) s̃(8) s̃(5) −s̃(6) −s̃(3) s̃(4) s̃(1)
−s̃(8) −s̃(7) s̃(6) s̃(5) −s̃(4) −s̃(3) s̃(2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.28)

Taking S7 as an example, we see that k = 8 symbols are transmitted from Lt = 7
antennas in p = 8 time slots. Hence, S7 has rate R = k/p = 1. Since the columns are
mutually orthogonal the code achieves full transmit diversity of order Lt = 7.
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8.1.2.2 Complex Orthogonal Space-Time Block Codes

Complex orthogonal space-time codes have p × Lt code matrices containing the
elements {s̃(1), . . . , s̃(k)} and their complex conjugates {s̃∗(1), . . . , s̃

∗
(k)}, and they

satisfy the orthogonal property in (8.19). Such codes provide full transmit diversity
of order Lt and have rate R = k/p. The Alamouti space-time code matrix in (8.18)
is one such 2 × 2 scheme that achieves a transmit diversity of order 2 with a full
code rate R = 1. The Alamouti scheme is unique in which it is the only complex
orthogonal space-time block code having full transmit diversity and rate R = 1.
Tarkoh et al. [249] have constructed complex orthogonal space-time block codes
with rate R = 1/2 for Lt = 3 and 4 transmit antennas as follows:

C3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3)
−s̃(2) s̃(1) −s̃(4)
−s̃(3) s̃(4) s̃(1)
−s̃(4) −s̃(3) s̃(2)

s̃∗(1) s̃∗(2) s̃∗(3)
−s̃∗(2) s̃∗(1) −s̃∗(4)
−s̃∗(3) s̃∗(4) s̃∗(1)
−s̃∗(4) −s̃∗(3) s̃∗(2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.29)

and

C4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3) s̃(4)
−s̃(2) s̃(1) −s̃(4) s̃(3)
−s̃(3) s̃(4) s̃(1) −s̃(2)
−s̃(4) −s̃(3) s̃(2) s̃(1)

s̃∗(1) s̃∗(2) s̃∗(3) s̃∗(4)
−s̃∗(2) s̃∗(1) −s̃∗(4) s̃∗(3)
−s̃∗(3) s̃∗(4) s̃∗(1) −s̃∗(2)
−s̃∗(4) −s̃∗(3) s̃∗(2) s̃∗(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.30)

The reader can verify that the columns of these code matrices are all mutually
orthogonal. Thus, these schemes achieve full transmit diversity of order Lt, but lose
half of the theoretical bandwidth efficiency since they are only R = 1/2 codes.

By allowing linear processing at the transmitter, it is possible to construct
higher rate complex space-time block codes. Tarokh et al. [249] have identified the
following complex orthogonal designs: the Lt = 3 rate R = 3/4 code
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H3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3)√
2

−s̃∗
(2) s̃∗

(1)
s̃(3)√

2
s̃∗
(3)√

2

s̃∗
(3)√

2

(−s̃(1)−s̃∗
(1)+s̃(2)−s̃∗

(2))

2

s̃∗
(3)√

2
− s̃∗

(3)√
2

(s̃(2)−s̃∗
(2)+s̃(1)−s̃∗

(1))

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.31)

and the Lt = 4 rate R = 3/4 code

H4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃(1) s̃(2) s̃(3)√
2

s̃(3)√
2

−s̃(2) s̃(1) s̃(3)√
2

− s̃(3)√
2

s̃(3)√
2

s̃(3)√
2

(−s̃(1)−s̃∗
(1)+s̃(2)−s̃∗

(2))

2

(−s̃(2)+s̃∗
(2)+s̃(1)−s̃∗

(1))

2

s̃∗
(3)√

2
− s̃∗

(3)√
2

(s̃(2)+s̃∗
(2)+s̃(1)−s̃∗

(1))

2

(−s̃(1)−s̃∗
(1)−s̃(2)+s̃∗

(2))

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.32)

8.1.2.3 Decoding Orthogonal Space-Time Block Codes

The Alamouti space-time block code was shown to have an efficient and simple
maximum likelihood decoding method in Sect. 6.10. We now discuss the decoding
of orthogonal p×Lt space-time block codes. Following the notation in Sect. 6.10,
the received signal vector at antenna j and time t is given by

r̃(t), j =
Lt

∑
i=1

gi, j s̃(t),i + ñ(t), j, (8.33)

where gi, j is the complex channel gain from transmit antenna i to receiver antenna
j, s̃(t),i is the symbol vector transmitted from antenna i in time slot t, and the ñ(t), j
are independent zero-mean complex Gaussian random vectors with variance No in
each dimension of the signal space. Assuming perfect channel state information, the
maximum likelihood receiver computes the decision metric

μ(C) =
p

∑
t=1

Lr

∑
j=1

∥
∥
∥
∥
∥

r̃(t), j −
Lt

∑
i=1

gi, j s̃(t),i

∥
∥
∥
∥
∥

2

(8.34)

over all codewords C = [s̃(t),i]p×Lt and chooses the codeword with the minimum
metric.

First consider the real orthogonal space-time block codes with square matrices
S2, S4 and S8. Note that the rows of code matrices S2, S4, and S8 are all permutations
of the first row, possibly with different signs. Let ε1, . . . ,εLt denote the permutations

corresponding to these rows, and let δ (i)
t denote the sign of the entry in row t and
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column i of the code matrix. Then ε(i)t = q means that s̃(t),i is up to a sign change
equal to the element in row t and column q of the code matrix. Since the columns
of the space-time orthogonal code matrices S2, S4, and S8 are mutually orthogonal,
minimizing the metric in (8.34) is equivalent to minimizing [249]

μ(C) =
Lt

∑
i=1

Pi, (8.35)

where

Pi =

⎛

⎝

∥
∥
∥
∥
∥

[
Lt

∑
t=1

Lr

∑
j=1

r̃(t), jg
∗
ε(i)t , j

δ (i)
t

]

− s̃i

∥
∥
∥
∥
∥

2

+

(

−1+∑
i, j

|gi, j|2
)

‖s̃i‖2

⎞

⎠ . (8.36)

Note that Pi, i = 1, . . . ,Lt only depends on the choice of code symbol s̃i, the set of
received vectors {r̃(t), j, j = 1, . . . ,Lr}, the channel fading coefficients {gi, j}, and
the structure of the code matrix. It follows that minimizing the sum in (8.35) is
equivalent to minimizing Pi in (8.36) for each i,1 ≤ i ≤ Lt. This separable property
results in a very simple decoding strategy that provides spatial diversity of order
LtLr. The maximum likelihood receiver simply forms the Lt decision variables

Ri =
Lt

∑
t=1

Lr

∑
j=1

r̃(t), jg
∗
ε(i)t , j

δ (i)
t , i = 1, . . . ,Lt (8.37)

and decides in favor of symbol ŝi if

ŝi = argmin
s

‖Ri − s‖2 +

(

−1+∑
i, j

|gi, j|2
)

‖s̃‖2, i = 1, . . . ,Lt. (8.38)

Similar low complexity decoding strategies for the other space-time block codes C3,
C4, H3 and H4 in (8.29), (8.30), (8.31) and (8.32), respectively, are not presented
here but are available in [250].

8.2 Convolutional Codes

8.2.1 Encoder Description

The encoder for a rate-1/n binary convolutional code can be viewed as a finite-state
machine (FSM) that consists of a ν-stage binary shift register with connections
to n modulo-2 adders, and a multiplexer that converts the adder outputs to serial
codewords. The constraint length of a convolutional code is defined as the number
of shifts through the FSM over which a single input data bit can affect the encoder
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Fig. 8.1 Binary
convolutional encoder;
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output. For an encoder having a single ν-stage shift register, the constraint length
is equal to K = ν + 1. A very simple rate-1/2, constraint length K = 3, binary
convolutional encoder is shown in Fig. 8.1.

The above concept can be generalized to rate-k/n binary convolutional code
using k shift registers, n modulo-2 adders, along with input and output multiplexers.

For a rate-k/n code, the k-bit information vector a� = (a(1)� , . . . ,a(k)� ) is input to

the encoder at epoch � to generate the n-bit code vector b� = (b(1)� , . . . ,b(n)� ). If
Ki denotes the constraint length of the ith shift register, then the overall constraint
length is defined as K = maxi Ki. Figure 8.2 shows a simple rate-2/3, constraint
length-2 convolutional encoder.

A convolutional encoder can be described by the set of impulse responses, {g( j)
i },

where g( j)
i is the jth output sequence b( j) that results from the ith input sequence

a(i) = (1,0,0,0, . . .). The impulse responses can have a duration of at most K

and have the form g( j)
i = (g( j)

i,0 ,g
( j)
i,1 , . . . ,g

( j)
i,K−1). Sometimes the {g( j)

i } are called
generator sequences. For the encoder in Fig. 8.1

g(1) = (1, 1, 1) g(2) = (1, 0, 1) (8.39)

and for the encoder in Fig. 8.2

g(1)1 = (1, 1), g(2)1 = (0, 1), g(3)1 = (1, 1),

g(1)2 = (0, 1), g(2)2 = (1, 0), g(3)2 = (1, 0). (8.40)
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It follows that the jth output b( j)
i corresponding to the ith input sequence

a(i) is the discrete convolution b( j)
i = a(i) �∗ g( j)

i , where �∗ denotes modulo-
2 convolution. The time-domain convolutions can be conveniently replaced by
polynomial multiplications in a D-transform domain according to

b( j)
i (D) = a(i)(D)g( j)

i (D), (8.41)

where

a(i)(D) =
∞

∑
k=0

ai,kDk (8.42)

is the ith input data polynomial,

b( j)
i (D) =

∞

∑
k=0

b( j)
i,k Dk (8.43)

is the jth output polynomial corresponding to the ith input, and

g( j)
i (D) =

K−1

∑
k=0

g( j)
i,k Dk (8.44)

is the associated generator polynomial. It follows that the jth output sequence is

b( j)(D) =
k

∑
i=1

b( j)
i (D) =

k

∑
i=1

a(i)(D)g( j)
i (D). (8.45)

The above expression leads to the matrix form

(
b(i)(D), . . . ,b(n)(D)

)
=
(

a(1)(D), . . . ,a(k)(D)
)

G(D), (8.46)

where

G(D) =

⎡

⎢
⎢
⎣

g(1)1 (D), . . . , g(n)1 (D)
...

...

g(1)k (D), . . . , g(n)k (D)

⎤

⎥
⎥
⎦ (8.47)

is the generator matrix of the code. For the encoder in Fig. 8.1

G(D) =
[
1+D+D2 1+D2] , (8.48)

while for the encoder in Fig. 8.2

G(D) =

[
1+D D 1+D
D 1 1

]

. (8.49)
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Fig. 8.3 State diagram for
the binary convolutional
encoder in Fig. 8.1
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After multiplexing the outputs, the final codeword has the polynomial representation

b(D) =
n

∑
j=1

D j−1b( j)(Dn). (8.50)

Systematic convolutional codes are those where first k of the n encoder output
sequences, b(1), . . . ,b(k) are equal to the k encoder input sequences a(1), . . . ,a(k).

8.2.2 State and Trellis Diagrams, and Weight Distribution

Since the convolutional encoder is an FSM, its operation can be described by a state
diagram and trellis diagram in a manner very similar to the state- and trellis-diagram
descriptions of the discrete-time white noise channel model in Chap. 7. The state of
the encoder is defined by the shift register contents. For a rate-k/n code, the ith shift
register contains νi previous information bits. The state of the encoder at epoch � is
defined as

σ � =
(

a(1)�−1, . . . ,a
(1)
�−ν1

; . . . ;a(k)�−1, . . . ,a
(k)
�−νm

)
. (8.51)

There are a total of NS = 2νT encoder states, where νT
�
= ∑k

i=1 νi is defined as the
total encoder memory. For a rate-1/n code, the encoder state at epoch � is simply
σ � = (a�−1, . . . ,a�−ν).

Figures 8.3 and 8.4 show the state diagrams for codes in Figs. 8.1 and 8.2,
respectively. The states are labeled using the convention σ (i), i = 0, . . . ,νT − 1,
where σ (i) represents the encoder state (c0, . . . ,cνT−1) corresponding to the integer
i = ∑νT−1

j=0 c j2 j. In general, for a rate-k/n code there are 2k branches entering
and leaving each state. The branches in the state diagram are labeled with the
convention a/b = (a(1),a(2), . . . ,a(k))/(b(1),b(2), . . . ,b(n)). For example, the state
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Fig. 8.4 State diagram for
the binary convolutional
encoder in Fig. 8.2
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Fig. 8.5 Modified state diagram for the binary convolutional encoder in Fig. 8.1

transition σ (1) → σ (3) in Fig. 8.3 has the label 1/01. This means if the encoder in
Fig. 8.1 is in state σ (1) = (01) and the input bit is a 1, the encoder will output the
code bits 01 and transition to state σ (3) = (11).

Convolutional codes are linear codes, meaning that the sum of any two code-
words is another codeword and the all-zeroes sequence is a codeword. It follows
that the weight distribution and other distance properties of a convolutional code
can be obtained from the state diagram. Consider, for example, the encoder in
Fig. 8.1 along with its state diagram in Fig. 8.3. Since the self-loop at the zero state
σ (0) corresponds to the all-zeroes codeword, we can split the zero state σ (0) into
two nodes, representing the input and output of the state diagram. This leads to
the modified state diagram shown in Fig. 8.5. The branches in the modified state
diagram have labels of the form DiN jL, where i is the number of 1’s in the encoder
output sequence corresponding to a particular state transition, and j is the number of
input 1’s into the encoder for that transition. Every branch is labeled with the letter
L, and the exponent of L is unity because each branch has length one. Each possible
path through the modified state diagram corresponds to a non-all-zeroes codeword.
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The weight distribution of a convolutional code can be obtained by
computing the transfer function T (D,N,L) of the modified state diagram. Any
appropriate technique can be used to obtain the transfer function, including flow-
graph reduction techniques and Mason’s formula [172]. For the example shown in
Fig. 8.5, the transfer function is

T (D,N,L) =
D5NL3

1−DNL(L+ 1)

= D5L3N +D6N2L4(L+ 1)+D7N3L5(L+ 1)2

+ . . .+Dk+5Nk+1Lk+3(L+ 1)k + . . . (8.52)

where the second line was obtained using polynomial division. The terms in the
second line of (8.52) enumerate the weight distribution and distance properties of
the code. For example, consider the term Dk+5Nk+1Lk+3(L+ 1)k appearing in the
transfer function. Using the binomial expansion, this term can be rewritten as

Dk+5Nk+1
k

∑
n=0

(
k
n

)

Ln+k+3.

Hence, there are 2k paths through the modified state diagram that are at Hamming
distance k+5 from the all-zeroes path, that is, have k+5 output 1’s, that are caused
by k+ 1 input 1’s. Of these 2k paths,

(k
n

)
have length k+ n+ 3 branches.

Sometimes the transfer function can be simplified if we are only interested in
extracting certain distance properties of the convolutional code. For example, the
output weight distribution of the code can be obtained by setting N = 1 and L = 1
in the transfer function. For the particular transfer function in (8.52), this leads to

T (D) =
D5

1− 2D

= D5 + 2D6 + 4D7 + . . .+ 2kD5+k + . . . , (8.53)

meaning that there are 2k codewords at Hamming distance 5+ k from the all-zeroes
codeword. Notice that no nonzero codeword exists with a Hamming distance less
than 5 from the all-zeroes codeword. This means that the free Hamming distance of
the code is dfree = 5. The free Hamming distance for this simple example can also
be seen by inspecting the trellis diagram in Fig. 8.6, where the branches in the trellis
diagram are labeled with the encoder output bits that correspond to the various state
transitions.

Convolutional codes are designed to have the largest possible dfree for a given
code rate and total encoder memory. Tabulation of convolutional codes that are
optimal in this sense can be found in many references, for example, Proakis [217],
Lin and Costello [159], and Clark and Cain [59].
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Fig. 8.6 Trellis diagram for the binary convolutional encoder in Fig. 8.1

8.2.3 Recursive Systematic Convolutional Codes

Forney [102] and Costello [67] showed that it is possible to construct a recursive
systematic convolutional (RSC) encoder from every rate Rc = 1/n feedforward
nonsystematic convolutional encoder, such that the output weight distributions
of the codes are identical. Consider a rate-1/n code with generator polynomials
g1(D), . . . ,gn(D). The output sequences are described by the polynomials

b( j)(D) = a(D)g( j)(D), j = 1, . . . ,n. (8.54)

To obtain a systematic code, we need to have b(1)(D) = a(D). To obtain this,
suppose that both sides of (8.54) are divided by g(1)(D), so that

b̃(1)(D) =
b(1)(D)

g(1)(D)
= a(D), (8.55)

b̃( j)(D) =
b( j)(D)

g(1)(D)
= a(D)

g( j)(D)

g(1)(D)
, j = 2, . . . ,n. (8.56)

Sometimes the g( j)(D) are called the feedforward polynomials, while g(1)(D) is
called the feedback polynomial. Define a new input sequence ã(D) as

ã(D)
�
=

a(D)

g(1)(D)
(8.57)
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Fig. 8.7 Recursive
systematic convolutional
(RSC) encoder derived
from the feedforward
nonsystematic encoder
in Fig. 8.1
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D D

y1k

y2k
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+

so that

b̃(1)(D) = ã(D)g(1)(D), (8.58)

b̃( j)(D) = ã(D)g( j)(D) , j = 2, . . . ,n. (8.59)

Observe that the transformation between a(D) and ã(D) in (8.57) is that of
a recursive digital filter with modulo-2 operations. This transformation simply
reorders the input sequence a(D). Since the input sequences consist of all possible
binary sequences, the filtered sequences ã(D) also consist of all possible binary
sequences. Hence, the set of coded sequences b̃(D) is the same as the set of coded
sequences b(D), and thus the nonsystematic and systematic codes have the same
output weight distribution functions. However, the input weight distributions for the
two codes are completely different as we will see.

Example 8.3
Consider, for example, the rate-1/2 encoder in Fig. 8.1 with generators

g(1)(D) = 1+D+D2, (8.60)

g(2)(D) = 1+D2. (8.61)

By following the above-described procedure, an RSC code is obtained with
generators

ĝ(1)(D) = 1,

ĝ(2)(D) =
g(2)(D)

g(1)(D)
=

1+D2

1+D+D2 .

The RSC is shown in Fig. 8.7
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Similar to their feedforward counterparts, the weight distribution and other dis-
tance properties of RSC codes can be obtained by constructing their corresponding
modified state diagram and computing the transfer function T (D,N,L). The RSC
encoder in Fig. 8.7 has transfer function

T (D,N,L) =
D5N3L3 −D6N4L4 +D6N2L4

1−DNL−DNL2 −D2L3 +D2N2L3 (8.62)

= D5N3L3 +D6N2L4 +D6N4L5 + . . . (8.63)

By setting N = 1 and L = 1, we obtain the output weight distribution of the code,
T (D), which is identical to the output weight distribution of the corresponding
feedforward nonsystematic encoder in (8.53). However, by comparing the first few
terms in their respective transfer functions in (8.52) and (8.63), it can be observed
that the input weight distributions are completely different. In particular, codewords
can be generated by weight-1 input sequences for the feedforward nonsystematic
encoder, while the RSC requires input sequences having at least weight-2 to
generate codewords. In fact, any finite weight codeword for the RSC code in Fig 8.7
is generated by an input polynomial a(D) that is divisible by 1+D+D2. We will
see later that these properties are crucial for turbo codes.

Finally, both the feedforward nonsystematic and RSC codes are time invariant.
This means that if the input sequence a(D) produces codeword b(D), then the input
sequence Dia(D) produces the codeword Dib(D). Note that the codewords b(D) and
Dib(D) have the same weight.

8.2.4 Viterbi Algorithm

The Viterbi algorithm was devised by Viterbi for maximum likelihood decoding
of convolutional codes [266, 267]. We first note that the convolutional encoder
outputs n bits per branch that are subsequently mapped onto a M = 2k-point signal
constellation. Here, we assume that there are � = n/k modulated symbols per
branch where � is an integer. For example, a rate-1/2 code having two code bits
per branch may have the two code bits mapped onto either two binary symbols
or just one quaternary symbol. To derive the Viterbi algorithm, suppose that a
sequence of modulated symbols s̃ = {s̃n}k

n=1, s̃n = (s̃n,1, . . . , s̃n,�), corresponding to
k branches in the code trellis are transmitted over an interleaved flat fading channel
with AWGN.1 After receiving the sequence r̃ = {r̃n}k

n=1, r̃n = (r̃n,1, . . . , r̃n,�), the
maximum likelihood receiver uses knowledge of the sequence of complex channel

1Here, we are using the complex low-pass vector notation.
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gains g= {gn}k
n=1, gn = (gn,1, . . . ,gn,�) (obtained from a separate channel estimator)

to decide in favor of the sequence s̃ that maximizes the likelihood function

p(r̃k, . . . , r̃1| gk,�s̃k,�, . . . , g1,1s̃1,1) (8.64)

or, equivalently, the log-likelihood function

log{p(r̃k, . . . , r̃1| gk,�s̃k,�, . . . , g1,1s̃1,1)}. (8.65)

The log-likelihood function in (8.65) can be rewritten as

log{p(r̃k, . . . , r̃1|gk,�s̃k,�, . . . ,g1,1s̃1,1)}
= log{p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�)}+ log{p(r̃k−1, . . . , r̃1|gk−1,�s̃k−1,�, . . . ,g1,1s̃1,1)}.

(8.66)

If the second term on the right-hand side of (8.66) has been calculated previously at
epoch k−1 and stored in memory, then only the first term, called the branch metric,
has to be computed for the incoming signal vector rk at epoch k. From our treatment
in Chap. 5

p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�) =
1

(2πNo)N exp

{

− 1
2No

�

∑
m=1

‖r̃k,m − gk,ms̃k,m‖2

}

(8.67)

so that log{p(r̃k|gk,1s̃k,1, . . . ,gk,�s̃k,�)} yields the Euclidean branch metric

μk =−
�

∑
m=1

‖r̃k,m − gk,ms̃k,m‖2. (8.68)

Based on the recursion in (8.66) and the branch metric in (8.68), the Viterbi
algorithm searches through the NS-state code trellis for the most likely transmitted
sequence s̃ given the sequence of received vectors r̃ and knowledge of the sequence
of complex channel gains g. At epoch k, the Viterbi algorithm stores NS survivors

š(σ (i)
k ) along with their associated path metrics Γ(σ (i)

k ) that terminate at state

σ (i)
k , i = 0, . . . ,NS − 1. The path metric is defined as

Γ(σ (i)
k ) =

k

∑
n=1

μ (i)
n , i = 0, . . . ,NS − 1, (8.69)

where {μ (i)
n } is the sequence of branch metrics along the surviving path š(σ (i)

k ).
The Viterbi algorithm is initialized at time index k = 0, by setting all path metrics

to zero, that is, Γ(σ (i)
0 ) = 0, i = 1, . . . ,NS − 1.
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Fig. 8.8 Path metric update for the code trellis in Fig. 8.6

1. After the vector r̃k+1 has been received, compute the set of path metrics Γ(σ (i)
k →

σ ( j)
k+1) = Γ(σ (i)

k )+ μ(σ (i)
k → σ ( j)

k+1) for all possible paths through the trellis that

terminate in each state σ ( j)
k+1, j = 0, . . . , NS − 1, where μ(σ (i)

k → σ ( j)
k+1) is the

branch metric defined below. For a modulation alphabet of size M, there will be

M such paths that terminate in each state σ ( j)
k+1.

2. Find Γ(σ ( j)
k+1) = max

i
Γ(σ (i)

k → σ ( j)
k+1), j = 0, . . . , NS −1 where the maximization

is over all M possible paths through the trellis that terminate in state σ ( j)
k+1.

3. Store Γ(σ ( j)
k+1) and its associated surviving sequence š(σ ( j)

k+1), j = 0, . . . , NS −1.
Drop all other paths.

4. Increment the time index k, goto Step 1 and repeat the entire algorithm.

In Step 1 above, μ(σ (i)
k → σ ( j)

k+1) is the branch metric associated with the state

transition σ (i)
k → σ ( j)

k+1 and is computed according to the following variation of
(8.68)

μ
(

σ (i)
k → σ ( j)

k+1

)
=−

�

∑
m=1

∥
∥
∥r̃k,m − gk,ms̃k,m

(
σ (i)

k → σ ( j)
k+1

)∥
∥
∥

2
, (8.70)

where s̃k,m(σ
(i)
k → σ ( j)

k+1) is a symbol that is uniquely determined by the state

transition σ (i)
k → σ ( j)

k+1 and the symbol mapping being used.

The calculation of the path metric Γ(σ (0)
k+1) for state σ (0) at epoch k + 1 is

illustrated in Fig. 8.8 for the code trellis shown in Fig. 8.6. In this case, there are
two paths merging into state σ (0) at epoch k+ 1. The Viterbi algorithm determines

the path metric Γ(σ (0)
k+1) in this particular example as
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Γ
(

σ ( j)
0

)
= max

{
Γ(σ (0)

k )+ μ(σ (0)
k → σ (0)

k+1),Γ(σ
(2)
k )+ μ(σ (2)

k → σ (0)
k+1)
}

= Γ
(

σ (0)
k

)
+ μ(σ (0)

k → σ (0)
k+1).

Hence, the path that includes the state transition σ (0)
k → σ (0)

k+1 is the survivor and the

path that includes the state transition σ (2)
k → σ (0)

k+1 is “dropped” as indicated by the
“X” on the path.

8.2.5 BCJR Algorithm

The Viterbi algorithm uses MLSE to find the most likely input sequence. The BCJR
algorithm, named after Bahl, Cocke, Jelinek, and Raviv [25], is a symbol-by-symbol
maximum a posteriori probability (MAP) algorithm for decoding convolutional
codes. Here we describe the BCJR algorithm for rate-1/n convolutional codes with
binary modulation.

Having observed the received sequence r̃, the decoder calculates the a posteriori
probabilities (APPs) P[ak = +1|r̃] and P[ak = −1|r̃], and decides ak = +1 if
P[ak = +1|r̃] > P[ak = −1|r̃] and ak = −1 otherwise. Alternatively, the decoder
can calculate the a posteriori log-likelihood ratio (LLR)

L(ak|r̃) �
= log

(
P[ak =+1|r̃]
P[ak =−1|r̃]

)

, (8.71)

and make the decision âk = sign(L(ak|r̃)). We first note that code bit ak is output for
the state transition σk → σk+1, and there may be several such state transitions that
will output the same code bit. It follows that the APP is

P[ak = u|r̃] = p(r̃,ak = u)
p(r̃)

∝ p(r̃,ak = u)

= ∑
σk→σk+1:ak=u

p(r̃,σk,σk+1). (8.72)

Hence, the a posteriori LLR can be written as

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 p(r̃,σk,σk+1)

∑σk→σk+1:ak=−1 p(r̃,σk,σk+1)

}

. (8.73)

One elegant form of the APPs can be obtained by first defining the sequences

r̃ j<k = {r̃ j,1, . . . , r̃ j,n}k−1
j=1, (8.74)
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r̃ j>k = {r̃ j,1, . . . , r̃ j,n}N
j=k+1, (8.75)

r̃k = {r̃k,1, . . . , r̃k,n}, (8.76)

such that r̃ = (r̃ j<k, r̃k, r̃ j>k), where N is the block length (equal to the number of
input bits). Then the joint probability p(r̃,σk,σk+1) can be split as follows [124]:

p(r̃,σk,σk+1) = p(σk,σk+1, r̃ j<k, r̃k, r̃ j>k)

= p(σk,σk+1, r̃ j<k, r̃k)p(r̃ j>k|σk,σk+1, r̃ j<k, r̃k)

= p(σk, r̃ j<k)p(r̃k,σk+1|σk, r̃ j<k)p(r̃ j>k|σk,σk+1, r̃ j<k, r̃k)

= p(σk, r̃ j<k) · p(r̃k,σk+1|σk) · p(r̃ j>k|σk+1)

= αk(σk) · γk(σk → σk+1) ·βk+1(σk+1), (8.77)

leading to three terms; the branch metric γk(σk → σk+1), and the terms αk(σk) and
βk+1(σk+1). The second last equality in (8.77) comes from the properties of the
code trellis, which causes r̃ j>k to depend on σk,σk+1, r̃ j<k, r̃k only through the state
σk+1, and the pair r̃k,σk+1 depends on σk, r̃ j<k only through the state σk.

The terms αk(σk) and βk+1(σk+1) can be calculated according to a forward
recursion and a backward recursion, respectively. The forward recursion is given by

αk+1(σk+1) = p(σk+1, r̃ j<k+1)

= p(σk+1, r̃k, r̃ j<k)

= ∑
σk

p(σk+1,σk, r̃k, r̃ j<k)

= ∑
σk

p(r̃ j<k,σk)p(r̃k,σk+1|σk)

= ∑
σk

αk(σk) · γk(σk → σk+1) (8.78)

with the initial condition α0(σ0) = 1, that is, the all-zeroes state σ0 is the initial state
in the code trellis.

Similarly, the backward recursion is given by

βk(σk) = p(r̃ j>k−1|σk)

= ∑
σk+1

p(σk+1, r̃k, r̃ j>k|σk)

= ∑
σk+1

p(r̃k,σk+1|σk)p(r̃ j>k|σk+1)

= ∑
σk+1

γk(σk → σk+1) ·βk+1(σk+1) (8.79)
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with the initial condition βN(σ0) = 1, that is, the all-zeroes state σ0 is the ending
state of the code trellis. Note that tail bits are required to terminate the trellis in
state σ0.

The branch metric γk(σk → σk+1) has the form

γk(σk → σk+1) = p(σk, r̃i,σk+1)− p(σk+1|σk)p(r̃i|σk+1,σk)

= P[ak = u]p(r̃k|ak = u)

= P[ak = u]p(r̃k|gk,1s̃k,1, . . . ,gk,ns̃k,n), (8.80)

where s̃k = {s̃k,1, . . . , s̃k,n} is the sequence of binary modulated symbols transmitted
at epoch k, and gk = {gk,1, . . . ,gk,n} is the corresponding sequence of complex
channel gains at epoch k. The third line in (8.80) used the fact that there is a one-to-
one correspondence between the state transition σk → σk+1 in the code trellis and
the input bit ak = u, and where we have assumed that the state transition σk → σk+1

is possible in the code trellis. Note that the branch metric depends on the prior
probability P[ak = u] of the information bit at epoch k, and on the conditional
probability p(r̃k|gk,1s̃k,1, . . . ,gk,ns̃k,n) which is given by (8.67).

Finally, using (8.77) and (8.73) along with (8.78), (8.79), and (8.80), we obtain
the a posteriori LLR

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 αk(σk) · γk(σk → σk+1) ·βk+1(σk+1)

∑σk→σk+1:ak=−1 αk(σk) · γk(σk → σk+1) ·βk+1(σk+1)

}

, (8.81)

and make decisions according to âk = sign(L(ak|r̃)). Note that the L(ak|r̃) provide
a level of certainty of the decoder about the value of ak and are called soft outputs.
These soft outputs are essential for the decoding of turbo codes that will be discussed
later in this chapter.

8.2.5.1 Log-MAP Algorithm

The BCJR algorithm as described above exhibits numerical instability in the form of
underflows and overflows. An alternative to this algorithm is its log-domain version
known as the log-APP or log-MAP algorithm. Instead of using αk(σk), βk+1(σk+1)
and γk(σk → σk+1), we define their logarithms as follows:

α̃k(σk) = log{αk(σk)}, (8.82)

β̃k+1(σk+1) = log{βk+1(σk+1)}, (8.83)

γ̃k(σk → σk+1) = log{γk(σk → σk+1)}. (8.84)
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By examining (8.78) and (8.79), it can be seen that

α̃k+1(σk+1) = log

{

∑
σk

eα̃k(σk)+γ̃k(σk→σk+1)

}

, (8.85)

β̃k(σk) = log

{

∑
σk+1

eγ̃k(σk→σk+1)+β̃k+1(σk+1)

}

(8.86)

with the initial conditions α̃0(σ0) = 0 and β̃N(σ0) = 0, assuming that the code trellis
begins and ends in state σ0. The a posteriori LLR values are calculated according to

L(ak|r̃) = log

{
∑σk→σk+1:ak=+1 eα̃k(σk)+γ̃k(σk→σk+1)+β̃k+1(σk+1)

∑σk→σk+1:ak=−1 eα̃k(σk)+γ̃k(σk→σk+1)+β̃k+1(σk+1)

}

. (8.87)

To proceed further, we define the jacobian logarithm

max∗{x,y} �
= log{ex + ey}, (8.88)

max∗{x,y,z} �
= log{ex + ey + ez}. (8.89)

Note that

max∗{x,y}= max{x,y}+ log{1+ e−|x−y|}. (8.90)

The second term log{1 + e−|x−y|} is small when x and y are not close, and its
maximum value is equal to log{2} when x = y. Hence, when x and y are not close
we can use the approximation

max∗{x,y} ≈ max{x,y}. (8.91)

When the above approximation is used in place of the jacobian logarithm, we obtain
a suboptimal (but simpler) implementation the log-MAP algorithm called the max-
log-MAP algorithm.

Using the jacobian logarithm, we can write

α̃k+1(σk+1) = maxσk
∗ (α̃k(σk)+ γ̃k(σk → σk+1) , (8.92)

β̃k(σk) = maxσk+1
∗
(

γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)
, (8.93)
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and the a posteriori LLR values are

L(ak|r̃) = max
σk→σk+1

ak=+1

∗
(

α̃k(σk)+ γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)

(8.94)

− max
σk→σk+1

ak=−1

∗
(

α̃k(σk)+ γ̃k(σk → σk+1)+ β̃k+1(σk+1)
)
.

Example 8.4:
Consider the case of a rate-1/2 RSC code, for example, the encoder

shown in Fig. 8.7. In this case, the transmitted sequence of code symbols
is s̃ = {s̃n}k

n=1, where s̃n = (s̃n,s, s̃n,p) and the terms with subscripts s
and p correspond to the systematic (information bit) and parity check bit,
respectively. For binary modulation, s̃n,s, s̃n,p ∈ {−√

2Eh,
√

2Eh}, where Eh =
Ec is the energy per code bit. Likewise, the sequence of received vectors is
r̃ = {r̃n}k

n=1, where r̃n = (r̃n,s, r̃n,p).
Returning to the branch metric in (8.80), we have

γk(σk→σk+1) = P[ak = u]p(r̃k,s, r̃k,p|gk,ss̃k,s,gk,ps̃k,p)

=
P[ak = u]
(2πNo)N exp

{

− 1
2No

(|r̃k,s − gk,ss̃k,s|2 + |r̃k,p − gk,ps̃k,p|2
)
}

=
1

(2πNo)N exp

{

− 1
2No

(|r̃k,s|2 + |r̃k,p|2 + 4Ec
)
}

×P[ak = u]exp

{
1

No

(
Re{g∗

k,sr̃k,ss̃k,s}+Re{g∗
k,pr̃k,ps̃k,p}

)
}

.

(8.95)

Note that the term

1
(2πNo)N exp

{

− 1
2No

(|r̃k,s|2 + |r̃k,p|2 + 4Ec
)
}

is independent of ak and will cancel in the numerator and denominator of the
a posteriori LLR in (8.87) and, therefore, can be ignored. Also, the numerator
in (8.87) has s̃k,s =

√
2Ec corresponding to ak = +1, while the denominator

has s̃k,s = −√
2Ec corresponding to ak = −1. It follows that the a posteriori

LLR in (8.81) becomes
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L(ak|r̃) =
2
√

2Ecg∗
k,sr̃k,s

No
+ log

{
P[ak =+1]
P[ak =−1]

}

+log

⎧
⎪⎪⎨

⎪⎪⎩

∑σk→σk+1:ak=+1 αk(σk) · exp
{Re{g∗k,pr̃k,ps̃k,p}

No

}
·βk+1(σk+1)

∑σk→σk+1:ak=−1 αk(σk) · exp

{
Re{g∗k,pr̃k,ps̃k,p}

No

}

·βk+1(σk+1)

⎫
⎪⎪⎬

⎪⎪⎭

.

(8.96)

Note that the symbols s̃k,p are not conjugated in the above expression since they
are real-valued in this example. If the Log-MAP algorithm is used, then the a
posteriori LLR becomes

L(ak|r̃) = Lsys(ak|r̃s)+La(ak)+Le(ak|r̃p), (8.97)

where Lsys(ak|r̃s), La(ak) and Le(ak|r̃p) are, respectively, defined as

Lsys(ak|r̃s) =
2
√

2Ecg∗k,s r̃k,s

No
, (8.98)

La(ak) = log
{

P[ak=+1]
P[ak=−1]

}
, (8.99)

Le(ak|r̃p) = max
σk→σk+1

ak=+1

∗
(

α̃k(σk)+
Re{g∗

k,pr̃k,ps̃k,p}
No

+ β̃k+1(σk+1)

)

− max
σk→σk+1

ak=−1

∗
(

α̃k(σk)+
Re{g∗

k,pr̃k,ps̃k,p}
No

+ β̃k+1(σk+1)

)

. (8.100)

The a posteriori LLR consists of three terms; the first depends on the channel
output due to the systematic component, the second depends on the a priori
probabilities of the information bits, and the third depends on the channel outputs
due to the parity bits. Usually P[ak = +1] = P[ak = −1] = 1/2 for convolutional
decoders, so that the a priori term La(ak) is zero. However, for the iterative
decoders that are used with the turbo codes discussed later in this chapter, the
decoder will receive extrinsic of soft information for each ak which serves as
a priori information. Once the a posteriori LLR has been calculated, the extrinsic
information can be calculated as

Le(ak|r̃p) = L(ak|r̃)−Lsys(ak|r̃s)−La(ak). (8.101)
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8.3 Trellis Coded Modulation

8.3.1 Encoder Description

Conventional convolutional codes realize a coding gain at the expense of the
coded modulation efficiency or bits/s/Hz. Although convolutional codes may be
attractive for power-limited applications, they are less suitable for bandwidth-
limited applications. One approach for overcoming the loss of coded modulation
efficiency is to map the encoder output bits onto a higher-order signal constellation,
such as M-PSK or M-QAM. However, the symbol mapping that is used in this
case is very critical. Using a straight forward mapping, such as Gray mapping or
natural mapping, will give disappointing results because the decreased Euclidean
distance between the signals points in the higher-order constellation will tend to
offset the benefits gained from using the convolutional code. Ungerboeck showed
that a coding gain can be achieved without sacrificing data rate or bandwidth using a
rate-m/(m+r) convolutional encoder, and mapping the coded bits onto signal points
{xk} through a technique called mapping by set partitioning [258]. This combination
of coding and modulation, called TCM, has three basic features:

1. An expanded signal constellation is used that is larger than the one necessary
for uncoded modulation at the same data rate. The additional signal points allow
redundancy to be inserted without sacrificing data rate or bandwidth.

2. The expanded signal constellation is partitioned such that the intra-subset
minimum squared Euclidean distance is maximized at each step in the partition
chain.

3. Convolutional encoding and signal mapping is used so that only certain
sequences of signal points are allowed.

Figure 8.9 shows the basic encoder structure for Ungerboeck’s trellis codes. The

n-bit information vector ak = (a(1)k , . . . , a(n)k ) is transmitted at epoch k. At each
epoch k, m ≤ n data bits are encoded into m+ r code bits using a rate-m/(m+ r)

subset
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Fig. 8.9 Ungerboeck trellis encoder
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Fig. 8.10 Encoder and signal mapping for the 4-state 8-PSK Ungerboeck trellis code
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Fig. 8.11 Encoder and signal mapping for the eight-state 8-PSK Ungerboeck trellis code

linear convolutional encoder. The m+ r code bits select one of 2m+r subsets of a
2n+r-point signal constellation. The remaining n − m data bits are used to select
one of the 2n−m signal points within the selected subset. This principle is best
explained by example, and Fig. 8.10 shows a 4-state 8-PSK Ungerboeck trellis code.
The equivalent uncoded system is 4-PSK which has a rate of 2 bits/symbol. The
4-state 8-PSK code uses a rate-1/2 convolutional code along with one uncoded bit to
select signal points in an expanded 8-PSK signal constellation. Note that the overall
rate is still 2 bits/symbol. Figure 8.11 shows another example of an eight-state
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Fig. 8.12 Set partitioning for an 8-PSK signal constellation

8-PSK Ungerboeck trellis code. The equivalent uncoded system is again 8-PSK
with 2 bits/symbol. The eight-state 8-PSK code uses a rate-2/3 convolutional code
to select one of the points in an expanded 8-PSK signal constellation so that the
overall rate is again 2 bits/symbol.

8.3.2 Mapping by Set Partitioning

The critical step in the design of Ungerboeck’s codes is the method of mapping by
set partitioning. Figure 8.12 shows how the 8-PSK signal constellation is partitioned
into subsets such that the intra-subset minimum squared Euclidean distance is
maximized for each step in the partition chain. Here we assume a normalized 8-PSK
signal constellation having eight signal points uniformly spaced around a circle of
unit radius. Notice that the minimum Euclidean distance between signal points in the
normalized 8-PSK signal constellation is Δ0 = 0.765, while the minimum Euclidean
distances between signal points in the first and second level partitions are Δ1 =

√
2

and Δ2 = 2, respectively. Notice that the minimum Euclidean distance increases at
each level of partitioning.

The advantages of using TCM can most easily be seen by considering the trellis
diagram. For both the 4-state and eight-state 8-PSK trellis codes, the equivalent
uncoded system is 4-PSK. The trellis diagram for uncoded 4-PSK is shown in
Fig. 8.13. The trellis only has one state and there are four parallel transitions between
the states. The subsets D0, D2, D4, and D6 are used as the signal points. The label
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Fig. 8.13 Trellis diagram for
uncoded 4-PSK
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Fig. 8.14 Trellis diagram for
4-state 8-PSK Ungerboeck
trellis code
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D0,D2,D4,D6 means that the branches in the trellis diagram are labeled from top
to bottom with signal points taken from the sets D0,D2,D4,D6. The minimum
Euclidean distance between any two paths through the trellis is dmin =

√
2.

The trellis diagram for the 4-state 8-PSK code is shown in Fig. 8.14. Each branch
in the 4-state trellis is labeled with one of the four subsets C0, C1, C2, and C3. Again,
the label CiCj associated with a state means that the branches in the trellis diagram
originating from that state are labeled from top to bottom with the subsets Ci and
Cj. As shown in Fig. 8.12, each subset Ci contains two signal points. Thus, each
branch in the trellis diagram actually contains two parallel transitions. For example,
branches with the label C0 have two parallel transitions that are labeled with the
signal points 0 and 4. For the 4-state 8-PSK code, it is possible that two coded
sequences could differ by just a single parallel transition with a Euclidean distance
of d = 2. Also, any two signal paths that diverge from a state and merge with the
same state after more that one transition have a minimum Euclidean distance of
d =

√

Δ2
1 +Δ2

0 +Δ2
1 = 2.141. For example, the closest nonparallel code sequence

to the all-zeroes sequence x = (0,0,0) is the sequence x = (2,1,2) at Euclidean
distance d = 2.141. Hence, the minimum Euclidean distance of the code over all
parallel and nonparallel pairs of sequences for the 4-state 8-PSK code is dmin = 2.

The concept of mapping by set partitioning was developed by Ungerboeck
as a method for maximizing the minimum Euclidean distance of a code and
consequently to optimize its performance on an AWGN channel. Ungerboeck’s
construction of the optimum 4-state 8-PSK code was based on the following
heuristic rules [259]:

1. Parallel transitions (when they occur) are assigned signal points having the
maximum Euclidean distance between them.

2. The transition starting or ending in any state is assigned the subsets (C0,C2) or
(C1,C3) which have a maximum distance between them.

3. All signal points are used in the trellis diagram with equal frequency.



492 8 Error Control Coding

Fig. 8.15 Trellis diagram for
8-state 8-PSK Ungerboeck
trellis code. The dashed lines
show two minimum distance
paths
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It is clear that the performance of the 4-state 8-PSK code is limited by the
parallel transitions. Larger asymptotic coding gains can be obtained by introducing
more code states so that the parallel transitions are eliminated. For example, the
above design rules can be applied to the 8-state 8-PSK code to obtain the code
trellis shown in Fig. 8.15. In this case, the minimum Euclidean distance is dmin =√

Δ2
1 +Δ2

0 +Δ2
1 = 2.141.

8.4 Code Performance on AWGN Channels

Viterbi originally exploited the trellis structure of convolutional codes and devel-
oped the Viterbi algorithm for ML decoding of convolutional codes [266, 267].
Forney recognized the analogy between an ISI channel and a convolutional encoder,
and applied the Viterbi algorithm for the detection of digital signals corrupted by ISI
and AWGN as discussed in Sect. 7.4.1 [104]. Given the similarity between the trellis
structures of ISI channels, convolutional codes, and trellis codes (e.g., compare
Figs. 7.11, 8.6, and 8.14), it is not surprising that the union bounding techniques
that we used to evaluate the error probability of digital signaling on ISI channels
with an MLSE receiver in Sect. 7.5 can be applied, with appropriate modification,
to evaluate the error probability of convolutional and trellis codes with an MLSE
receiver.

To develop the union bound on decoded bit error probability, let a = {ak} denote
the transmitted information sequence. For any other sequence â �= a, define the
corresponding error sequence as e = {ek} = a ⊕ â, where ⊕ denotes modulo-2
addition. Since the bit error probability at epoch j1 is of interest, e j1 �= 0 for all error
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sequences. An error event occurs between k1 and k2 of length k2 − k1, if σ k1 = σ̂ k1

and σ k2 = σ̂ k2 , but σ j �= σ̂ j for k1 < j < k2, where k1 ≤ j1 < k2, and σ = {σk} and
σ̂ = {σ̂ k} are the system state sequences associated with a and â, respectively. Let
E be the set of error sequences that have the first nonzero element starting at time
j1. Then, the average bit error probability is bounded by

Pb ≤ 1
n ∑

e∈E
wb(e) ∑

a
P [a] P

[
Γ(a⊕ e )≥ Γ(a)

∣
∣
∣a
]
, (8.102)

where Γ(a) is the path metric of a, and wb(e) is the number of bit errors associated
with e. The factor 1/n appears in front of the first summation, because n information
bits are transmitted per epoch (or per branch in the trellis diagram). The second
summation is over all possible information sequences, because each sequence a can
have e as the error sequence. This is necessary for TCM because the signal mapping
and, hence, the codes are nonlinear.

Another way of writing the bound on the bit error probability in (8.102) is

Pb ≤ ∑̃
s∈C

∑
ŝ∈C

wb(s̃, ŝ)P[s̃]P[s̃ → ŝ], (8.103)

where C is the set of all coded symbol sequences, wb(s̃, ŝ) is the number of bit
errors that occur when the complex symbol sequence s̃ = {s̃i} is transmitted and
the complex symbol sequence ŝ �= s̃ is chosen by the decoder, P[s̃] is the a priori
probability of transmitting s̃, and P[s̃ → ŝ] is the pairwise error probability.

At high signal-to-noise ratio (SNR), the BER performance on an AWGN channel
is dominated by the minimum Euclidean distance error events. The pairwise error
probability between two coded symbol sequences s̃ and ŝ separated by Euclidean
distance dmin is

P[s̃ → ŝ] = Q

⎛

⎝

√

d2
min

4No

⎞

⎠ . (8.104)

The asymptotic coding gain (at high SNR) is defined by [36]

Ga = 10log10

(d2
min,coded/Eav,coded)

(d2
min,uncoded/Eav,uncoded)

dB (8.105)

where Eav is the average energy per symbol in the signal constellation. For the
4-state 8-PSK code shown in Fig. 8.10, the asymptotic coding gain is Ga = 3 dB over
uncoded 4-PSK. Likewise, the 8-state 8-PSK code in Fig. 8.11 has an asymptotic
coding gain of 3.6 dB over uncoded 4-PSK.
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8.4.1 Union Bound for Convolutional Codes

For convolutional codes, the upper bound in (8.102) simplifies because the codes
are linear, meaning that the sum of any two codewords is another codeword and that
all-zeroes sequence is a codeword [159]. Because of this property, we can assume
that the all-zeroes sequence was transmitted, that is, a = 0, so that the union bound
becomes

Pb ≤ 1
k ∑

e∈E
wb(e) P

[
Γ(e )≥ Γ(0)

]
. (8.106)

Note that we divide by k rather than n in front of the summation, because a
convolutional code transmits k bits per epoch, whereas a trellis code transmits n
bits per epoch.

For convolutional codes, the set E in (8.106) consists of all sequences that
begin and end at the zero-state in the state diagram. The enumeration of these
sequences (or codewords) along with their associated Hamming distances, in-
formation weights, and lengths was obtained earlier by computing the transfer
function, T (D,N,L), of the augmented state diagram. When a particular incorrect
path through the trellis is selected over the all-zeroes path at a given node in the
trellis, the corresponding number of bits errors, wb(e), is given by the exponent
of N in the transfer function. Multiplying wb(e) by the pairwise error probability
P
[

Γ(e )≥ Γ(0)
]

for that path and dividing by the number of input bits per branch,
k, give the bit error probability associated with that path. Summing over the set of
all possible incorrect sequences E yields a union bound on the bit error probability.

The pairwise error probability in (8.106) depends on the type of modulation,
detection, and decoding that is used. The code bits are mapped onto symbols taken
from a signal constellation and transmitted over the channel. Assuming an AWGN
channel and a coherent receiver, the received vector (see Sect. 5.1) at epoch n is

r̃n = s̃n + ñn, (8.107)

where s̃n is the transmitted symbol vector and ñn is the Gaussian noise vector
at epoch n. For convolutional codes, two types of decoding are commonly used:
hard decision decoding and soft decision decoding. Soft decision decoders use the
sequence of received signal vectors r = {rn} to make sequence decisions. For an
AWGN channel, the MLSE receiver searches for the sequence of symbol vectors
s̃ = {s̃n} that is closest in Euclidean distance to the received sequence of signal
vectors r. To do so, the MLSE receiver chooses the sequence ŝ that minimizes the
metric

μ(ŝ) = ‖r− ŝ‖2. (8.108)

The decided sequence ŝ maps one-to-one onto the data bit sequence â that is the
final estimate of the transmitted information sequence.
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In general, the pairwise error probability for an AWGN channel that is associated
with an error event of length � beginning at epoch k1 is

P2(�) = Q

⎛

⎝

√

Δ2

4No

⎞

⎠ , (8.109)

where

Δ2 =
k1+�+1

∑
k=k1

δ 2
k , (8.110)

δ 2
k = ‖s̃k − ŝk‖2 (8.111)

and s̃ = {s̃k} and ŝ = {ŝk} are the symbol sequences corresponding to the data bit
sequences ã and â, respectively. The parameter δ 2

k is the squared branch Euclidean
distance associated with branch k, and Δ2 is the squared path Euclidean distance
associated with the error event. Clearly, the pairwise error probability depends on
the particular mapping between the encoder output bits and the points in the signal
constellation. Suppose for example that code bits are mapped onto a BPSK signal
constellation. Then the pairwise error probability between the two codewords b̃ and
b̂ that differ in d positions is

P2(d) = Q(
√

2Rcdγb), (8.112)

where γb is the received bit energy-to-noise ratio.2 Note that we have explicitly
shown the pairwise error probability to be a function of the Hamming distance
between the codewords in (8.112). However, it is important to realize that this
property does not always apply. For example, if the outputs of the rate-2/3
convolutional encoder in Fig. 8.2 are mapped onto symbols from an 8-PSK signal
constellation, then the pairwise error probability depends not only on the Hamming
distance between codewords, but also upon the particular mapping between the
8-PSK symbols and the encoder outputs.

In general, the transfer function T (D,N) for a convolutional code has the form

T (D,N) =
∞

∑
d=dfree

adDdN f (d), (8.113)

where f (d) is the exponent of N as a function of d. For the example in (8.52),
ad = 2d−5 and f (d) = d − 4. Differentiating T (D,N) with respect to N and setting
N = 1 gives

dT (D,N)

dN

∣
∣
∣N=1 =

∞

∑
d=dfree

ad f (d)Dd . (8.114)

2The received symbol energy-to-noise ratio is γs = Rcγb
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Once again, for the example in (8.52) this leads to

dT (D,N)

dN

∣
∣
∣N=1 =

∞

∑
d=dfree

2d−5(d − 4)Dd. (8.115)

Using this notation, the union bound on bit error probability for convolutional
coding with BPSK modulation is

Pb ≤ 1
k

∞

∑
d=dfree

ad f (d)P2(d), (8.116)

where P2(d) is given by (8.112).
In contrast to soft decision decoders, hard decision decoders first make symbol-

by-symbol decisions on the sequence of received vectors r = {rk} to yield the
sequence of symbol decisions s̃ = {s̃k}. The decoder then operates on the sequence s̃
to estimate the most likely transmitted data sequence. A minimum distance decoder
is one that decides in favor of the symbol sequence ŝ that is closest in Hamming
distance to the received symbol sequence s̃. Again, the pairwise error probability
depends on the particular mapping between the encoder outputs and the points in
the signal constellation. If BPSK signaling is used, for example, then the pairwise
error probability between two codewords b̃ and b̂ at Hamming distance d is

P2(d) =

{
∑d

k=(d+1)/2

(d
k

)
pk(1− p)d−k , d odd

∑d
k=d/2+1

(d
k

)
pk(1− p)d−k + 1

2

( d
d/2

)
pd/2(1− p)d/2 , d even

, (8.117)

where

p = Q(
√

2Rcγb) (8.118)

is the probability of symbol error. Once again, the pairwise error probability for
BPSK is a function of the Hamming distance between the codewords.

8.4.1.1 Union-Chernoff Bound for Convolutional Codes

The union bound in (8.116) can be simplified by imposing a Chernoff bound (see
Appendix) on the pairwise error probability. First consider the case of soft decision
decoding. Suppose that sequence s̃ is transmitted and r is the received sequence.
Then the pairwise error probability between sequences s̃ and ŝ with an maximum
likelihood receiver can be Chernoff bounded by

P[s̃ → ŝ] = P
[‖r− ŝ‖2 < ‖r− s̃‖2]

≤ E
[
eλ(‖r−s̃‖2−‖r−ŝ‖2) |s̃

]
. (8.119)
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Substituting r = s̃+ n, taking the expectation over the complex Gaussian random
vector n, and simplifying gives

P[s̃ → ŝ]≤ e−λ‖s̃−ŝ‖2(1−λ 2No). (8.120)

The tightest upper bound is obtained with λ ∗ = 1/(4No) yielding

P[s̃ → ŝ]≤ e−‖s̃−ŝ‖2/8No . (8.121)

For the case of BPSK signaling on an AWGN channel, the Chernoff bound on the
pairwise error probability becomes

P2(d)≤ e−dγs = e−Rcdγb , (8.122)

where d is the number of coordinates in which the sequences s̃ and ŝ differ, γs =
Eh/No is the received symbol energy-to-noise ratio, Rc is the code rate, and γb is
the received bit energy-to-noise ratio. Likewise, if BPSK signaling is used with
hard decision decoding, it can be shown that the pairwise error probability has the
Chernoff bound

P2(d)≤ [4p(1− p)]d/2, (8.123)

where the code bit error probability p is given by (8.118).
Notice how the Hamming distance d appears in the exponent of the Chernoff

bound on pairwise error probability with either hard or soft decision decoding. From
(8.114) and (8.116), it is apparent that the decoded bit error probability has the
following union-Chernoff bound:

Pb ≤ 1
k

dT (D,N)

dN
|N=1,D=Z , (8.124)

where

Z =

{√
4p(1− p) , hard decision decoding

e−Rcγb , soft decision decoding
. (8.125)

At high SNR, the performance is dominated by the error events with minimum
Hamming distance. Since the minimum distance error events are not necessarily
mutually exclusive, the decoded bit error probability with BPSK at high SNR is
approximately

Pb ≈ 1
k

adfree f (dfree)P2(dfree)≤ 1
k

adfree f (dfree)Z
dfree . (8.126)

The above procedure for upper bounding the decoded bit error probability
is sometimes called the transfer function approach, because it uses the transfer
function of the augmented state diagram. However, the transfer function approach
has its limitations. First, as the number of encoder states becomes large, it becomes
difficult to compute the transfer function T (D,N). Second, for nonbinary signal
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constellations, the pairwise error probability will depend on the particular pair
of modulated symbol sequences, and not just on the Hamming distance between
them. In this case, the branch labeling in the augmented state diagram must be
done differently and the Chernoff bound cannot be used. These problems can be
overcome using a different approach to compute the upper bound, such as a stack
algorithm [240].

8.5 Interleaving

Most error control codes are designed for memoryless channels, where successively
transmitted code symbols experience independent channel conditions. Although
this memoryless property holds for AWGN channels, it is not usually the case for
wireless channels due to the temporal correlation of the channel, as discussed in
Chap. 2. An effective method for dealing with such channels is to use interleaving.
There are two basic approaches to interleaving, namely symbol interleaving and
bit interleaving. A symbol interleaver performs symbol-by-symbol interleaving of
the code symbols after they have been mapped onto a signal constellation. A bit
interleaver, on the other hand, performs bit-by-bit interleaving of the encoder
outputs before they are mapped onto a signal constellation.

The interleaving/deinterleaving operation serves to reduce the correlation be-
tween the fades experienced by successive code bits at the output of the en-
coder. Since, most error control codes are designed for memoryless channels,
this will generally improve the decoded BER performance. Indeed if the inter-
leaver/deinterleaver was eliminated and the channel fades slowly, it is possible that
entire codewords could be received with either a low or a high SNR. Under a low
instantaneous SNR condition even a very low-rate code will fail, while under a high
instantaneous SNR condition even very high-rate codes will succeed. Under such
conditions, the error control code is ineffective.

8.5.0.2 Block Interleaving

A block interleaver can be regarded as a buffer with J rows and M columns, where
J represents the interleaving depth and M represents the interleaving span. Such an
interleaver is called a (J,M) block interleaver, and the length of the interleaver is
JM. The block interleaver can be used to perform either symbol interleaving or bit
interleaving. In the case of symbol (bit) interleaving, the code symbols (bits) are
input to the buffer row-wise from top to bottom and output from the buffer column-
wise from left to right. The deinterleaver simply performs the reverse operation. The
block interleaver has the following characteristics:

1. Any burst of symbol (bit) errors of length j ≤ J results in single symbol (bit)
errors at the deinterleaver output that are each separated by at least M symbols
(bits).
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2. Any burst of symbol (bit) errors of length j = kJ,k > 1 results in bursts of no
more than  k! symbol (bit) errors that are separated by no less than M −  k!
symbols (bits).

3. A periodic sequence of single symbol (bit) errors that are spaced J code symbols
(bits) apart results in a single burst of symbol (bit) errors of length M at the
deinterleaver output.

4. The end-to-end interleaving delay is equal to 2JM code symbols (bits), and the
memory requirements for the interleaver and deinterleaver is equal to JM code
symbols (bits).

In practise, the interleaver depth J should be chosen so that successive code
symbols (bits), which are transmitted J code symbol (bit) durations apart, are
independently faded. Chapter 2 showed that the temporal autocorrelation function
of a cellular land mobile radio channel observed at either the mobile station or
the base station with 2D isotropic scattering around the mobile station is φgg(τ) =
Ωp
2 J0(2π fmτ), where fm = v/λc with v being the mobile station velocity and λc the

carrier wavelength. From Fig. 2.5, we can see that the temporal autocorrelation
is small provided that fmτ > 0.5. Hence, for effective interleaving, we should
have J > 0.5λc/vT , where T is the code symbol (bit) duration. The choice of the
parameter M depends on the type of coding used. For block codes M should be larger
than the block length. For convolutional and trellis codes, the interleaver should
separate any LD + 1 successive code symbols (bits) as far apart as possible, where
LD is the decoding depth. Hence, we should have M ≥ LD + 1. For convolutional
and trellis codes, it is well known that the decoding depth LD ≈ 5K, where K is the
constraint length.

Observe that the required interleaving depth is inversely proportional to the speed
of the mobile station and, therefore, slower moving mobile stations require larger
interleaving depths. Unfortunately, interleaving introduces delay into the link, since
we must fill the J×M interleaver array before the symbols (bits) can be transmitted,
and later fill the J×M deinterleaver array before the symbols (bits) can be decoded.
However, delay critical traffic such as real-time voice will impose a limit on the
interleaving delay defined as td = JMT and, therefore, the interleaving will be
insufficient at low speeds. For example, if fc = 900 MHz, R = 1/T = 24 × 103,
and v = 30 km/h, we require J > 478. For a constraint length K = 3 convolutional
code with a decoding depth LD = 5K = 15, the minimum required interleaving delay
satisfies

td = JMT > 0.5λc(LD + 1)/v = 319 ms.

Such a delay is quite large, especially for real-time voice applications, and the
problem is exasperated by lower mobile station speeds. One possible solution
is to use a code with a smaller decoding depth LD. The other solution is to
use improved interleaving techniques to reduce the interleaving delay. Once such
interleaver is the convolutional interleaver discussed below. However, at low speeds
the required interleaving delay may be excessive with any type of interleaver. Under
such conditions, adaptive closed loop power control techniques are effective for
combatting fading.
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Fig. 8.16 Convolutional interleaver implemented with shift registers

8.5.0.3 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [222] and Forney [103],
and here we discuss the structure proposed by Forney. Defining the parameter M =
LJ, the interleaver is referred to as a (J,M) interleaver and has properties that are
similar to a (J,M) block interleaver.

As shown in Fig. 8.16, the code symbols (bits) are input sequentially into the
bank of J registers of increasing lengths. With each new code symbol (bit), the
commutator switches to the next register, the code symbol (bit) is input to the
register and the oldest code symbol (bit) in that register is shifted out to the channel.
The input and output commutators of the interleaver operate in a synchronous
fashion. The deinterleaver performs the reverse operation, and the deinterleaving
commutators must be synchronized with the interleaving commutators. The most
important properties of the convolutional interleaver are as follows:

1. The minimum separation at the interleaver output is J symbols (bits) for any two
symbols that are separated by less than M symbols (bits) at the interleaver output.

2. Any burst of symbol (bit) errors of length j ≤ J results in single symbol (bit)
errors at the deinterleaver output that are each separated by at least M symbols
(bits).

3. A periodic sequence of single symbol (bit) errors that are spaced M + 1 code
symbols (bits) apart results in a single burst of symbol (bit) errors of length J at
the deinterleaver output.

4. The end-to-end interleaving delay is equal to M(J − 1) code symbols (bits), and
the memory requirements for both the interleaver and deinterleaver are equal to
M(J − 1)/2 code symbols (bits). This is half the delay and memory requirement
of a (J,M) block interleaver.

The parameters J and M are chosen in the same manner as for a block interleaver,
and the performance is very similar.
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8.6 Code Performance on Interleaved Flat Fading Channels

8.6.1 TCM with Symbol Interleaving

Figure 8.17 is a block diagram of a coded communication system operating on a flat
fading channel with symbol interleaving. The information sequence a is encoded
and mapped onto a signal set to generate the modulated symbol sequence s using
either a convolutional code or trellis code. The modulated symbol sequence is
then time interleaved (or scrambled) and the resulting sequence š is transmitted
over the channel. If a coherent detection is used, the receiver uses a correlator or
matched filter detector as discussed in Sect. 5.2 to generate the sequence of received
vectors r = {rk}. With hard decision decoding, the received vector rk at each epoch
k is applied to a decision device to yield an estimate of the transmitted symbol
sequence ŝ. The estimated symbol sequence ŝ is then deinterleaved and input to the
decoder. With soft decision decoding, on the other hand, the received vector r is
deinterleaved and applied directly to the decoder.

For analytical purposes, an infinite interleaving depth is often assumed so that the
deinterleaved sequence of complex channel gains g = α ·ejφ constitutes a sequence
of independent random variables. In this case the conditional density of r has the
product from

p(r|p(r|g · s̃) = ∏
k

p(rk|gks̃k), (8.127)

where g · s̃ is the vector dot product of g and s̃. Suppose that sequence s̃ is transmitted
and the sequence r = g · s̃+n is received. An ML receiver having perfect knowledge
of g chooses the sequence ŝ that minimizes the squared Euclidean distance metric

μ(ŝ) = ‖r− g · ŝ‖2. (8.128)

The pairwise error probability between the sequences s̃ and ŝ has the Chernoff bound
(see Appendix)

P[s̃ → ŝ]≤ exp

{

−‖α · (s̃− ŝ)‖2

8No

}

. (8.129)

Signal
mappingencoder modulator

Channel

demodulatordecoder 1

Fig. 8.17 TCM with symbol interleaving on a flat fading channel
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If we assume the normalization E[|xk|2] = 1 so that Es = 1
2 E[‖sk‖2] = EsE[|xk|2], that

is, sk =
√

2Esxk, then the Chernoff bound becomes

P[s̃ → ŝ]≤ exp

{

− Es

4No
‖α · (x̃− x̂)‖2

}

, (8.130)

where Es is the symbol energy.
Here we assume that the channel is characterized by flat Ricean fading, so that

the pdf of αk is

pα̌(x) =
2x(1+K)

Ωp
exp

{

−K − (K + 1)x2

Ωp

}

I0

(

2x

√
K(K + 1)

Ωp

)

, (8.131)

where Ωp = E[α̌2
k ] is the average envelope power. Averaging (8.130) over the

probability density function in (8.131) gives [76]

P[s → ŝ]≤ ∏
i∈A

1+K

1+K+ γ̄s
4 |xi − x̂i|2

exp

{

− K γ̄s
4 |xi − x̂i|2

1+K+ γ̄s
4 |xi − x̂i|2

}

, (8.132)

where γ̄s = E[α2]Es/No is the average received symbol energy-to-noise ratio, and
A = {i|xi �= x̂i}. At sufficiently high γ̄s, (8.132) simplifies to

P[s → ŝ] ≤ ∏
i∈A

4(1+K)

γ̄s|xi − x̂i|2
e−K . (8.133)

It follows that the bound in (8.102) will be dominated by the error event path having
the smallest number of elements in set A. Divsalar and Simon [76, 77] called this
path the shortest error event path and defined its length as Lmin. Based on previous
arguments, the bit error probability can be approximated as

Pb � C

(
(1+K)e−K

γ̄s

)Lmin

, γ̄s  K, (8.134)

where C is a constant that depends on the distance structure of the code. Observe
that Pb varies inversely with (γ̄s)

Lmin , yielding a diversity effect of order Lmin. Wei
[279] called Lmin the MTD. The MTD dominates the performance of TCM on an
interleaved flat fading channel, and the maximization of the MTD is the major
design criterion for TCM on interleaved flat fading channels.

The pairwise error probability in (8.132) can be written in the form

P[s → ŝ] , ≤ e−
γ̄s
4 d2

, (8.135)
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where

d2 = ∑
i∈A

|xi − x̂i|2K

1+K+ γ̄s
4 |xi − x̂i|2

+

(
γ̄s

4

)−1

ln

(
1+K+ γ̄s

4 |xi − x̂i|2
1+K

)

= ∑
i∈A

d2
1i + d2

2i. (8.136)

Two special cases are associated with (8.136), K = ∞ and K = 0. For K = ∞ (no
fading),

d2
1i = |xi − x̂i|2, d2

2i = 0 (8.137)

and, therefore, d2 becomes the sum of the squared Euclidean distances over the
error event path. Maximizing d2 under this condition is the TCM design criterion
for AWGN channels.

For K = 0 (Rayleigh fading),

d2
1i = 0, d2

2i =

(
γ̄s

4

)−1

ln

(

1+
γ̄s

4
|xi − x̂i|2

)

. (8.138)

For reasonably large SNR, d2 is the sum of the logarithms of the squared Euclidean
distances, each weighted by γ̄s. In this case, the pairwise error probability is given by

P[s → ŝ] ≤
(

∏
i∈A

γ̄s

4
|xi − x̂i|2

)−1

, (8.139)

which is inversely proportional to the product of the squared Euclidean distances
along the error event path. The MPSD between any two valid sequences,

min
x,x̂

∏
i∈A

|xi − x̂i|2 (8.140)

is another design parameter for Rayleigh fading channels. For values of K between
0 and ∞, the equivalent squared Euclidean distance in (8.136) becomes a mixture of
the two limiting cases given above.

If interleaving is not used, then the assumption that the fading is independent
from symbol to symbol is no longer valid. If the fading is slow enough to be
considered constant over the duration of the minimum distance error event path,
then for coherent detection with the metric in (8.128), the bit error probability at
high SNR is approximately,

Pb � C1E
[
e−γsd2

min/4
]
, (8.141)
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where C1 is a constant, γs = α2Es/No is the received symbol energy-to-noise ratio,
d2

min is the minimum Euclidean distance of the code, and the expectation is with
respect to the density in (8.131). Taking this average gives

Pb � C1
1+K

1+K+ d2
min

γ̄s
4 |xi − x̂i|2

exp

{

− Kd2
min

γ̄s
4 |xi − x̂i|2

1+K+ d2
min

γ̄s
4 |xi − x̂i|2

}

, (8.142)

which can be approximated at large γ̄s by

Pb � 4C1
1+K

d2
minγ̄s

e−K . (8.143)

Observe that without interleaving, Pb is asymptotically inverse linear with γ̄s,
independent of the trellis code. If follows that interleaving is required to achieve
diversity with TCM on a flat fading channel.

8.6.1.1 Design Rules for Symbol Interleaved TCM on Flat Fading Channels

According to the previous section, when symbol interleaved TCM is used on Ricean
fading channel, the design of the code for optimum performance is guided by the
MTD of the code. For Rayleigh fading channels, the design of the code is also
guided by the MPSD of the code. The minimum Euclidean distance, which is the
principal design criterion for TCM AWGN channels, plays a less significant role on
Ricean fading channels as the K factor decreases, and no role for Rayleigh fading
channels (K = 0). A third design criterion is to minimize the decoding depth of
the code.

The design of trellis codes for interleaved flat fading channels can be based on
Ungerboeck’s principle of mapping by set partitioning, but now the partitioning
is done to maximize the MTD and MPSD of the code. This can be accomplished
by maximizing the intra-subset MTD and MPSD, but it should be pointed out that
large MTD and MPSD can be sometimes achieved even if the partitioning is done
to maximize the minimum Euclidean distance.

In general, the following guidelines are followed when designing trellis codes for
symbol interleaved flat fading channels:

1. All signals occur with equal frequency and with regularity and symmetry.
2. Transitions originating from the even and odd numbered states are assigned

signals from the first and second subsets, respectively, of the first partitioning
level.

3. Whenever possible, the transitions joining in the same state receive signals from
either the first or second subset of the first partitioning level.

4. Parallel transitions receive signals from the same subset of the finest partitioning
level.
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5. The state transitions originating from each current state and going to even-
numbered next states are assigned signals from subsets whose inter-subset MTD
and MPSD are maximized. The same applies for the transition originating from
each current state and going to odd-numbered next states.

The first four rules are similar to those suggested by Ungerboeck [258], but now
the subsets used may be different. The fifth rule is used to reduce the decoding
depth of the code. Wei [279] developed several codes based on minimizing the
decoding depth of a code. He defined two minimum decoding depths (MDD1,
MDD2) to characterize a code. MDD1+1 is defined as the length (in symbols) of
the longest valid sequence of signal points, say x̃ = {x̃k}, which originates from the
same state as another valid sequence x = {xk} and merges into the same last state
as x and whose Hamming distance from x is the same as the MTD of the code.
Note that the performance of a code is mainly governed by the pairs of sequences
which determine the MTD of the code. Each such pair of sequences differ in at
most MDD1+1 successive symbols. The farther these symbols are separated, the
better the performance of the code. Hence, to benefit from the MTD of the code,
the symbol interleaver should separate the output symbols corresponding to each
sequence of MDD1+1 consecutive input symbols as far apart as possible.

MDD2 is defined as the length of the longest unmerged valid sequence of signal
points, say x̆, which originates from the same state as another valid sequence, say
x, and whose Hamming distance from x is not greater than the MTD of the code. In
case the Hamming distance between the two sequences is equal to the MTD of the
code, the squared product distance between the two sequences must be less than the
MPSD of the code. Since MDD2 is greater than MDD1, the decoding depth should
be at least equal to MDD2 to realize the MTD and MPSD of a code. It suffices if
the decoding depth is few symbols longer than MDD2. Finally, to benefit from both
the MTD and MPSD of a code, the symbol interleaver should separate the output
symbols corresponding to each sequence of MDD2+1 consecutive input symbols as
far apart as possible.

8.6.2 Bit Interleaved Coded Modulation

Bit interleaved coded modulation (BICM) interleaves the code bits at the output
of a convolutional encoder before symbol mapping, along with an appropriately
defined soft-decision metric as an input to the Viterbi decoder. The fundamental
idea of BICM is to separate the encoder and modulator to make the code diversity
equal to the number of distinct bits rather than the number of distinct modulated
symbols along any error event. Such an approach cannot achieve optimum Euclidean
distance. However, it will yield better performance on fading channels than TCM
with symbol interleaving due to the increased code diversity. The idea is to transform
the channel that is generated by a multilevel constellation of size M = 2k into a
parallel collection of k channels that each carry one binary symbol from the signal
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Fig. 8.18 Bit interleaved coded modulation (BICM) on a flat fading channel

mapping. To make the k channels independent, they are interleaved before the
signal mapping. The decoder in a BICM system must reflect the fact that we are
interleaving the bits before signal mapping. The basic structure of a BICM system
is shown in Fig. 8.18.

Suppose that we transmit the length-n codeword

s = (s1,s2, . . . ,sn) (8.144)

and we received the sequence

r = (r1,r2, . . . ,rn) (8.145)

at the output of the bank of receiver matched filters or correlators. With TCM on a
memoryless channel, we perform decoding using the log-likelihood metric

μ(ŝ) = log{p(r|α · ŝ)}= log

{
n

∏
k=1

p(rk|αk ŝk)

}

=
n

∑
k=1

log{p(rk|αk ŝk)}. (8.146)

When BICM is used, on the other hand, instead of the symbol metric p(rk|αk ŝk), we
must use the bit metric

μ(b) = log

{

∑
xi∈X (b, j)

p(ri|αisi)

}

, b = 0,1, j = 1,2, . . . ,k = log2M, (8.147)

where X (b, j) denotes the subset of the size M = 2k point signal constellation X
that has bit b in position j of its signal mapping label. The computation of this metric
may be complicated due to calculation of the logarithm. A suboptimum metric can
be defined based on

log

{

∑
j

z j

}

≈ max jlog{z j}, (8.148)
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which yields
μ(b) = maxxi∈X (b, j)log{p(ri|αisi)}. (8.149)

Except for the maximization operation, this metric is the same as the TCM
symbol metric. Finally, the performance of BICM strongly depends on the signal
mapping that is used. Gray mapping is known to perform better than mapping by
set partitioning.

8.7 Performance of Space-Time Codes

The orthogonal space-time block codes described in Sect. 8.1.2 are just one possible
construction for the space-time code matrix. We now discuss some useful criteria
for designing more general p×Lt space-time codes for quasi-static fading channels,
where the channel remains static over p time slots; the rank and determinant criteria.
These criteria are derived under the condition of independent fades, where the
complex channel gains gi, j are all independent.

To derive the rank and determinant criteria for space-time codes, we first need
to derive the pairwise error probability between any two space-time codewords.
Suppose that a space time codeword C = [s̃(t),i]p×Lt is transmitted over an Lt × Lr

MIMO channel in p time slots, where the modulated symbol vectors are chosen
from the symbol alphabet of a linear modulation scheme, such as QAM and PSK.
By observing the noisy received signal vectors in (8.33), the receiver decides which
space-time codeword was transmitted using the maximum likelihood metric in
(8.34). Suppose that the receiver erroneously decides in favor of another space-time
codeword Ĉ = [ŝ(t),i]p×Lt . This is the pairwise error probability P[C → Ĉ]. Assuming
ideal channel state information, the pairwise error probability can be written as

P[C → Ĉ] = P

⎡

⎣
Lr

∑
j=1

p

∑
t=1

∥
∥
∥
∥
∥

r̃(t), j −
Lt

∑
i=1

gi, j s̃(t),i

∥
∥
∥
∥
∥

2

>
Lr

∑
j=1

p

∑
t=1

∥
∥
∥
∥
∥

r̃(t), j −
Lt

∑
i=1

gi, j ŝ(t),i

∥
∥
∥
∥
∥

2
⎤

⎦

= P

⎡

⎣
Lr

∑
j=1

p

∑
t=1

2Re

{

ñH
(t), j

Lt

∑
i=1

gi, j(ŝ(t),i − s̃(t),i)

}

>
Lr

∑
j=1

p

∑
t=1

∥
∥
∥
∥
∥

Lt

∑
i=1

gi, j(ŝ(t),i − s̃(t),i)

∥
∥
∥
∥
∥

2
⎤

⎦

= Q

⎛

⎝

√

Δ2Es

4No

⎞

⎠ , (8.150)
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where

Δ2 =
1
Es

Lr

∑
j=1

p

∑
t=1

∥
∥
∥
∥
∥

Lt

∑
i=1

gi, j(s̃(t),i − ŝ(t),i)

∥
∥
∥
∥
∥

2

. (8.151)

Applying a Chernoff bound on the Gaussian Q function (see Appendix) gives

P[C → Ĉ]≤ 1
2

exp

{

−Δ2Es

4No

}

. (8.152)

We can rewrite (8.151) as

Δ2 =
1
Es

Lr

∑
j=1

Lt

∑
i=1

Lt

∑
i′=1

gi, jg
∗
i′, j

p

∑
t=1

(s̃(t),i − ŝ(t),i)(s̃(t),i′ − ŝ(t),i′)
H. (8.153)

Now let g j = (g1, j . . . ,gLt, j). After some manipulations, we can rewrite (8.153) as

Δ2 =
Lr

∑
j=1

g jA(C,Ĉ)gH
j , (8.154)

where A(C,Ĉ) = [Ap,q]Lt×Lt =
1
Es

spsT
q, and where

sp = (s̃(p),1 − ŝ(p),1, . . . , s̃(p),t − ŝ(p),t), (8.155)

sq = (s̃(q),1 − ŝ(q),1, . . . , s̃(q),t − ŝ(q),t). (8.156)

Hence, the Chernoff bound in (8.152) becomes

P[C → Ĉ]≤ 1
2

Lr

∏
j=1

exp

{

−g jA(C,Ĉ)gH
j Es

4No

}

. (8.157)

Since A(C,Ĉ) = AH(C,Ĉ), there exists a unitary matrix V, such that VVH = ILt×Lt ,
and a real diagonal matrix D such that VA(C,Ĉ)VH = D. The rows v1,v2, . . . ,vLt

of V are a complete complex orthonormal basis for an Lt-dimensional complex
vector space. Also, the diagonal elements of D are the eigenvalues, λi, i = 1, . . . ,Lt

of A(C,Ĉ) that may include repeated eigenvalues. By construction, the matrix

B(C,Ĉ) =
1√
Es

⎡

⎢
⎢
⎢
⎢
⎣

s̃(1),1 − ŝ(1),1 s̃(2),1 − ŝ(2),1 . . . s̃(p),1 − ŝ(p),1
s̃(1),2 − ŝ(1),2 s̃(2),2 − ŝ(2),2 . . . s̃(p),2 − ŝ(p),2

...
...

...
...

s̃(1),Lt − ŝ(1),Lt s̃(2),Lt − ŝ(2),Lt . . . s̃(p),Lt − ŝ(p),Lt

⎤

⎥
⎥
⎥
⎥
⎦

(8.158)
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is the matrix square root of A(C,Ĉ) that is, A(C,Ĉ) = B(C,Ĉ)B(C,Ĉ)H. Therefore,
the eigenvalues of A(C,Ĉ) are all nonnegative real numbers. Next, we express Δ2 as
a function of the eigenvalues of the matrix A(C,Ĉ). Let (β1, j,β2, j, . . . ,βLt, j) = g jVH.
Then

g jA(C,Ĉ)gH
j = g jVHDVgH

j =
Lt

∑
i=1

λi|βi, j|2. (8.159)

Next recall that gi, j are all complex Gaussian random variables. Since V is unitary,
the βi, j are independent complex Gaussian random variables with a normalized
variance 1/2 per dimension. Assuming that the gi, j have zero mean, the |βi, j| are
independent Rayleigh random variables with the density function

pβi, j
(x) = 2xex2

, x ≥ 0. (8.160)

Thus to obtain Chernoff bound on the pairwise error probability, we average

Lr

∏
j=1

exp

{

− Es

4No

Lt

∑
i=1

λi|βi, j|2
}

(8.161)

over the distribution of the |β i, j| in (8.160). This leads to the bound on the pairwise
error probability

P[C → Ĉ]≤ 1
2

(
1

∏Lt
i=1(1+λiEs/4No)

)Lr

. (8.162)

Let r denote the rank of the matrix A(C,Ĉ), where 1 ≤ r ≤ Lt. Then for
sufficiently high Es/No such that 1 + λiEs/4No ≈ λiEs/4No, it follows that the
pairwise error probability has the upper bound

P[C → Ĉ]≤ 1
2

⎡

⎣

(
r

∏
i=1

λi

)1/r
⎤

⎦

rLr (
Es

4No

)rLr

. (8.163)

Therefore, this space-time codeword pair provides diversity of order rLr and a
coding gain of (λ1 ·λ2 . . .λr)

1/r which is equal to the geometric mean of the nonzero
eigenvalues. The coding gain is measured with respect to an uncoded system with
maximal ratio combining that is operating with the same diversity order. Finally, we
note that the ranks of A(C,Ĉ) and B(C,Ĉ) are equal.

The above development leads to the following two simple design criteria for
space-time codes on quasi-static Rayleigh fading channels:

Rank Criterion: To achieve the maximum diversity order LtLr, the matrix B(C,Ĉ)
must have full rank Lt for all pairs of distinct codewords. If the minimum rank of
B(C,Ĉ) is equal to r, then a diversity order of rLr is achieved.
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Determinant Criterion: If a diversity order of LtLr is achieved, then the coding
gain is optimized by maximizing the minimum determinant of A(C,Ĉ) over all pairs
of distinct codewords. If a diversity order of rLr is achieved, then the minimum value
of (λ1 ·λ2 . . .λr)

1/r should be maximized over all pairs of distinct codewords.

8.7.1 Space-Time Trellis Codes

8.7.1.1 Encoder Description

A space-time trellis code (STTC) maps the information bit stream into Lt streams of
modulated symbols that are transmitted simultaneously from Lt transmit antennas.
The total transmission power is divided equally among the Lt transmit antennas.
STTCs can be designed according to the rank and determinant criteria as discussed
in Sect. 8.7, although other criteria exist as well.

SSTCs are an extension of TCM to multi-antenna systems. The encoder for a
STTC is similar to that for a trellis code, except that the encoder must begin and
end each frame in the all-zeroes state. The STTC encoder can be described in terms
of its generator sequences or generator polynomials. For a system with Lt transmit
antennas, the ith input sequence a(i), i = 1, . . . ,Lt has the polynomial representation

a(i)(D) =
∞

∑
k=0

ai,kDk , i = 1, . . . ,Lt, (8.164)

where the ai,k ∈ {0,1} are binary input data bits. The generator polynomial
corresponding to the ith input sequence, where i = 1, . . . ,Lt, and the jth transmit
antenna, where j = 1, . . . ,Lt, can be written as

g( j)
i (D) =

K−1

∑
k=0

g( j)
i,k Dk, (8.165)

where the g( j)
i,k are nonbinary coefficients chosen from the set {0,1, . . . ,M − 1},

where M is the size of the signal constellation, and K is the overall constraint length
of the encoder (similar to convolutional codes). Very often the generator sequences
for STTCs are tabulated in the following format:

gi = [(g(1)i,0 ,g
(2)
i,0 , . . . ,g

(Lt)
i,0 ),(g(1)i,1 ,g

(2)
i,1 , . . . ,g

(Lt)
i,1 ), . . .

. . . (g(1)i,K−1,g
(2)
i,K−1, . . . ,g

(Lt)
i,K−1)], i = 1, . . . ,Lt. (8.166)

A simple 2-transmit antenna, 16-state, STTC encoder is shown in Fig. 8.19. For the
constraint length K = 3 encoder shown in Fig. 8.19, we might have

g1 = [(0,1),(1,2),(2,0)], g2 = [(0,2),(2,0),(0,2)], (8.167)

which just happens to satisfy the rank and determinant criteria in Sect. 8.7.
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Fig. 8.19 Encoder for a 2-transmit antenna, 16-state, STTC

The multiplier outputs, as illustrated in Fig. 8.19, are summed with modulo-M
addition. Hence, the encoded sequence that is transmitted from antenna j is given by

b( j)(D) =
Lt

∑
i=1

a(i)(D)g( j)
i (D) modulo M , i = 1, . . . ,Lt. (8.168)

The above expression can be expressed in the matrix form

[
b(i)(D), . . . ,b(Lt)(D)

]
=
[
a(1)(D), . . . ,a(Lt)(D)

]

⎡

⎢
⎢
⎣

g(1)1 (D), . . . , g(Lt)
1 (D)

...
...

g(1)Lt
(D), . . . , g(Lt)

Lt
(D)

⎤

⎥
⎥
⎦ ,

(8.169)

where

G(D) =

⎡

⎢
⎢
⎣

g(1)1 (D), . . . , g(Lt)
1 (D)

...
...

g(1)Lt
(D), . . . , g(Lt)

Lt
(D)

⎤

⎥
⎥
⎦ (8.170)

is the generator matrix of the STTC. The elements of the code symbol sequences
bi = {bi,k}, i = 1, . . . ,Lt at the output of the encoder are mapped onto symbols
chosen from an M-ary signal constellation, such as M-PSK or M-QAM according
to a one-to-one mapping. This yields the sequence of modulated symbols si =
{si,k}, i = 1, . . . ,Lt that are transmitted from the Lt transmit antennas.
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Fig. 8.20 Encoder for a
2-transmit antenna, 4-state,
4-PSK STTC x
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Fig. 8.21 STTC trellis for the 2-transmit antenna, 4-state, 4-PSK STTC in Fig. 8.20

8.7.1.2 STTC Code Trellis and the Viterbi Algorithm

Similar to convolutional and trellis codes, the STTC encoder can be described by a
state diagram and trellis diagram. As an example, consider the 2-transmit antenna,
4-state, 4-PSK STTC shown in Fig. 8.20, where the generators are

g1 = [(0,1),(1,0)], g2 = [(0,2),(2,0)]. (8.171)

The corresponding trellis diagram for this code is shown in Fig. 8.21. The branch
label b1b2 means that symbol b1 is transmitted from the first antenna, while the
symbol b2 from the second antenna. The symbol pairs in each row label the branch
transitions out of a given state, in order, from top to bottom. The symbols b1,b2 ∈
{0,1,2,3} are mapped onto a 4-PSK signal constellation using the mapping shown
in Fig. 8.21, which can be expressed mathematically as si =

√
2Eh( j)bi . The encoder

is required to begin and end each frame in the zero-state. Beginning at State 0, if the
two input bits are 11, then the encoder outputs symbol 0 on Antenna 1 and symbol 3
on Antenna 2, and transitions to State 3.
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Given their trellis structure, it is apparent that STTCs can be efficiently decoded
using the Viterbi algorithm with an appropriately defined branch metric. For quasi-
static flat fading channels, the branch metric is

μ
(

ρ (i)
k → ρ ( j)

k+1

)
=−

Lr

∑
d=1

∥
∥
∥
∥
∥

r̃(t), j −
Lt

∑
i=1

gi, j ŝ(t),i
(

ρ (i)
k → ρ ( j)

k+1

)
∥
∥
∥
∥
∥

2

, (8.172)

where ŝ(t),i(ρ
(i)
k → ρ ( j)

k+1) is a symbol that is uniquely determined by the state

transition ρ (i)
k → ρ ( j)

k+1.

8.8 Turbo Codes

The principle of turbo coding or concatenated coding is to construct long random-
like codes that have a structure that permits practical decoding [26]. Turbo codes
are interleaved concatenated codes that are constructed from simple component
codes and pseudo-random interleavers. The interleaver makes the code appear
random. Since the component codes are easy to decode, the overall code can
be decoded by iteratively decoding the component codes. There are two basic
types of turbo codes depending on the type of concatenation, namely parallel
concatenated codes and serial concatenated codes. The component codes can be
either convolutional codes or block codes that are realized in systematic form.
Here we just consider convolutional component codes. PCCCs use RSC component
codes. SCCCs use a recursive or nonrecursive convolutional outer code along with
a recursive convolutional inner code.

8.8.1 PCCC Encoder

Figure 8.22 shows a PCCC encoder structure which is a parallel concatenation of
two RSC component codes.3 The component codes must be recursive for reasons
that we will see later. Notice that both the systematic and parity bits of the first
encoder are used, while only the parity bits of the second encoder are used. If

the component codes have rates R(1)
c = k/n1 and R(2)

c = k/n2, then the PCCC has
code rate

RT =
R(1)

c R(2)
c

R(1)
c +R(2)

c −R(1)
c R(2)

c

=
k

n1 + n2 − k
. (8.173)

3The parallel concatenation of more than two component codes is possible, but we will consider
only two component codes for simplicity.
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Fig. 8.22 PCCC encoder a b

RSC1 puncturing (1)b

s

p

RSC2 puncturing (2)
pb

The input data sequence a is first encoded by RSC1. Suppose, for example,
that RSC1 and RSC2 happen to be identical rate-1/2 codes. Then feedforward and

feedback generator polynomials of RSC1 and RSC2 are g(2)(D) = g(2)0 + g(2)1 D+

. . .+ g(2)ν Dν and g(1)(D) = g(1)0 + g(1)1 D+ . . .+ g(1)ν Dν , respectively, where ν is the
encoder memory. The outputs of RSC1 are the systematic component bs = {bsk}
and the parity component b(1)

p = {b(1)pk } defined by

bsk = ak,

b(1)pk =
ν

∑
i=0

g(1)i dk−i,

where

dk = ak ⊕
ν

∑
i=1

g(2)i dk−i. (8.174)

The data sequence a is interleaved by a turbo interleaver π of size N = kN′ into

the sequence ã and encoded using RSC2 to produce the parity sequence b(2)
p . The

interleaving operation can be defined by a mapping i → π(i) of the input bit position
i to output bit position π(i). For example, the interleaver might perform the mapping

{0,1,2,3, . . . ,N − 1}N → {23,12,6,7, . . . ,1}N .

For turbo codes the choice of interleaver is crucial. Interleavers that have a structure,
such as block interleavers, are not suitable. Usually, random interleavers are used,
where the interleaving mapping is randomly generated. In other cases, an S-random
interleaver is used, where interleaver inputs that are separated by less than S
positions, |i− j|< S, are interleaved into interleaver outputs that are separated by at
least S positions, |π(i)−π( j)| ≥ S.

A PCCC code word b = (bs,b
(1)
p ,b(2)

p ) is formed by the parallel concatenation
(or multiplexing) of the systematic component and the parity sequences. If higher
code rates are desired, then the parity outputs of the RSC component encoders can
be punctured according to a puncturing pattern. For example, if RSC1 and RSC2
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Fig. 8.23 PCCC decoder

in Fig. 8.22 are rate-1/2 codes and no puncturing is used, then the code rate will be
RT = 1/3. However, suppose that puncturing is used with the pattern

P =

[
1 0
0 1

]

, (8.175)

where, a “1” in the puncturing pattern means that the code bit is transmitted, while
a “0” means that the code bit is not transmitted. This particular puncturing pattern
means that the parity bits from RSC1 and RSC2 are transmitted in an alternate
fashion, and overall code rate is increased to RT = 1/2. Finally, tail bits are typically
added to the data sequence to terminate RSC1 in the all-zeroes state while the trellis
of RSC2 is left “open.”

8.8.2 PCCC Decoder

The turbo decoder is an iterative structure consisting of several identical stages, each
consisting of two soft-input soft-output (SISO) decoding units for the case of two

constituent codes. Suppose that the codeword b = (bs,b
(1)
p ,b(2)

p ) is transmitted and

the received vector is r̃ = (r̃s, r̃
(1)
p , r̃(2)p ). The decoder structure for PCCCs is shown

in Fig. 8.23. The SISO modules generate APPs

P(ak|r̃s, r̃
(1)
p , r̃(2)p ) (8.176)

or, for binary codes, aposteriori LLRs

L(ak|r̃s, r̃
(1)
p , r̃(2)p ) = log

{
P(ak =+1|r̃s, r̃

(1)
p , r̃(2)p )

P(ak =−1|r̃s, r̃
(1)
p , r̃(2)p )

}

(8.177)

of each information bit ak based on the received vector r̃ = (r̃s, r̃
(1)
p , r̃(2)p ) and the

extrinsic information passed between the two SISO modules.
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Fig. 8.24 Typical PCCC performance on an AWGN channel

The iterative decoding operation of parallel turbo codes can be explained as
follows, using LLRs as an example. At the mth iteration, m ≥ 1, the LLRs generated
by the SISO decoders for data bit ak are

L(m)
1 (ak|r̃(1)p ) = Lsys(ak|r̃s)+L(m−1)

ext2 (ak|r̃(2)p )+L(m)
ext1(ak|r̃(1)p ), (8.178)

L(m)
2 (ak|r̃(2)p ) = Lsys(ak|r̃s)+L(m)

ext1(ak|r̃(1)p )+L(m)
ext2(ak|r̃(2)p ), (8.179)

where Lsys(ak|r̃s) is the aposteriori LLR due to the systematic component, and

L(m)
ext1(ak|r̃(1)p ) and L(m)

ext2(ak|r̃(2)p ) are the extrinsic information for each bit gener-
ated at the mth decoding stage by SISO1 and SISO2, respectively, and can be
expressed as

L(m)
ext1(ak|r̃(1)p ) = f (Lsys(ak|r̃s),L

(m−1)
ext2 (ak|r̃(2)p )), (8.180)

L(m)
ext2(ak|r̃(2)p ) = f (Lsys(ak|r̃s),L

(m)
ext1(ak|r̃(1)p )), (8.181)

where f ( · ) denotes the SISO decoding unit. The extrinsic information can be
calculated using the BCJR algorithm as discussed in Sect. 8.2.5. For binary turbo
codes, Lsys(ak|r̃s) is given by (8.98). Note that the extrinsic information that is
generated by one SISO decoding unit serves at the a priori information for the
other SISO decoding unit. The iterative procedure is started with initial condition

L(0)
ext2(ak|r̃(2)p ) = 0, since the data symbols are assumed random and equally likely.

The final bit decision for ak is determined as âk = sign(L(m)
2 (ak)).

As mentioned previously, turbo codes can provide near Shannon limit perfor-
mance. Figure 8.24 shows the typical performance of a rate-1/2, 16-state, PCCC on
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an AWGN channel for different random interleaver sizes. The capacity limit for a
rate-1/2 binary turbo code is −0.817 dB. Also included is a 216-state convolutional
code for comparison. Observe that a simple 16-state PCCC can easily outperform a
very complex 216-state convolutional code, at low Eb/No. At high Eb/No, the BER
slope of PCCCs is shallow, loosely termed an error floor. The error floor is not
actually an error floor, but rather a change in the slope of the error rate curve due to
the relatively small free Hamming distance of turbo codes as we will see.

8.8.3 SCCC Encoder and Decoder

Figure 8.25 shows a SCCC encoder which is a serial concatenation of two
component codes separated by an interleaver. In a SCCC scheme, the input data
sequence of length N′ is first encoded by an outer convolutional code Co with rate
Ro = k/p. The output of Co is interleaved using a pseudo-random interleaver of
length N = N′/Ro, and then encoded using an inner convolutional code Ci with rate
Ri = p/n. The SCCC has code rate

RT = R(1)
c R(2)

c = (k/p)(p/n) = k/n. (8.182)

The codewords of the outer and inner codes are referred to as outer and inner
codewords, respectively. Consequently, the inner codewords are also the codewords
of the SCCC. With SCCCs, the inner encoder must be recursive for reasons to be
seen later. The outer code does not have to be recursive.

The structure of the SCCC decoder is shown in Fig. 8.26. It operates in an
iterative fashion similar to the PCCC decoder. However, the SISO modules now
produce APPs or LLRs for the information bits, ak, and the code bits ck from the
outer coder.
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Fig. 8.27 Random turbo
interleaver
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8.8.4 Weight Distribution

It is sometimes useful to view PCCCs and SCCCs as equivalent block codes with
input sequences of length N′ = N/k and N′ = Nk/p, respectively, where N is the
interleaver size. Like block codes, turbo codes can be described by a distance
spectrum (d,Ad), where Ad is the number of codewords of weight Hamming
weight d. The conditional weight enumerating function (CWEF) of a block code
is defined as [30]

Aw(z)
�
= ∑

d

Aw,dzd , (8.183)

where Aw,d is the number of weight-d codewords having information-weight w. Note
that Ad = ∑w Aw,d . The smallest nonzero value of d is the free Hamming distance of
the code, denoted by dfree. The union bound on the probability of bit error is

Pb(e)≤ 1
N′ ∑

w
∑

d=dfree

wAw,dP2(d), (8.184)

where P2(d) is the pairwise error probability between two coded sequences sepa-
rated by Hamming distance d.

To obtain a low Pb(e), there are generally two approaches; we can either decrease
Aw,d or increase dfree. With convolutional codes, Ad increases rapidly with d and, as
a result, convolutional codes are said to have a dense distance spectrum.4 Also,
Ad ∝ N′ with convolutional codes, due to their time invariant property. Hence, for
convolutional codes a decrease in Pb(e) is obtained by increasing dfree, which is
ultimately obtained by increasing the total encoder memory. Turbo codes take other
approach by drastically decreasing Ad . This property is called spectral thinning.

The spectral thinning property of turbo codes can be explained intuitively as
follows. Considering PCCCs, the total weight of a PCCC codeword is equal to the
weight of the systematic and parity components

w(b) = w(bs)+w(b(1)
p )+w(b(2)

p ). (8.185)

Consider, for example, an RSC with generator matrix
[
1, 1+D2

1+D+D2

]
and the random

interleaver shown in Fig. 8.27. Certain input sequences a will lead to low output

4It is important to realize that Ad is not equal to ad (in our earlier discussion of convolutional
codes), since the turbo codewords can consist of multiple error events.
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weights w(b(1)
p ) from the first encoder RSC1. For example, the input sequence

a(D) = 1+D3 produces the output b(1)
p (D) = 1+D+D2+D3 from the first encoder

RSC1. However, the interleaved sequence ã(D) will usually lead to a high output

weight w(b(2)
p ) from the second encoder RSC2. Consequently, most codewords have

large weight. However, some input sequences that produce low weight codewords
in one encoder, after interleaving will also produce low weight codewords in the
other encoder. Therefore, there are a few codewords with small weight. For most
random interleavers, this event occurs with high probability [80]. At high Eb/No,
the error events corresponding to these low-weight codewords dominate the BER
performance with the result that the BER curves of PCCCs flatten at high Eb/No.
This has been loosely termed as an error floor [30, 68].

In the sequel, convolutional codes, PCCC and SCCC are discussed simultane-
ously and, to avoid confusion, the quantities associated with them are distinguished
by the superscripts c, T , and S, respectively.

For convolutional codes, every nonzero codeword corresponds to an error event
or a concatenation of error events. The weight of a codeword equals the sum
of the weights of the error events. Let Ac

w,d,i denote the number of weight d
codewords having information weight w and formed by the concatenation of i error
events. Then, the number of weight d codewords with information weight w is
Ac

w,d = ∑nmax
i=1 Ac

w,d,i, where nmax is the maximum number of possible error events
for a length-N′ input sequence.

The distance spectrum of turbo codes is difficult to determine for a particular
turbo interleaver. Fortunately, Benedetto and Montorsi [30] solved this problem by
introducing a hypothetical interleaver called a uniform interleaver that permutes a
given weight-w sequence onto any of the

(N
w

)
possible interleaved sequences with

equal probability. The distance spectrum of a turbo code with a uniform interleaver
can be obtained by averaging the distance spectrum over all possible interleaver
mappings. At least half the random interleavers are guaranteed to yield a weight
distribution that is as good as the average weight distribution. Furthermore, most of
the randomly generated interleavers have a weight distribution that is close to the
average weight distribution. Hence, the typical performance of a turbo code with a
randomly chosen interleaver can be obtained from the average weight distribution
with a uniform interleaver.

8.8.4.1 Weight Distribution of PCCCs

With a uniform interleaver the number of weight-d turbo codewords with weight-w
input sequences is, for large N, [29]

AT
w,d ≈

d

∑
l=0

nmax

∑
n1=1

nmax

∑
n2=1

(N
n1

)(N
n2

)

(N
w

) Ac
w,l,n1

Ac
w,d−l,n2

. (8.186)
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Fig. 8.28 Bad random
interleaver mappings
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d

∑
l=0

nmax

∑
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nmax

∑
n2=1

w!
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Nn1+n2−wAc
w,l,n1

Ac
w,d−l,n2

. (8.187)

Observe that the multiplicity, AT
w,d , of the PCCC codewords is inversely proportional

to the interleaver length N. Consequently, increasing N results in very small
multiplicity, a phenomenon called spectral thinning, and is the reason for the
remarkable performance of turbo codes. In contrast, we note that the time-invariant
property of convolutional codes implies that Ac

d ∝ N.
The uniform interleaver is hypothetical and impractical. For reasonably large

interleaver sizes N, random interleavers perform very well [80]. To see why,
consider a rate-1/3, 8-state, PCCC code where the RSC component encoders have

generator matrices
[
1, 1+D2

1+D+D2

]
. Since the component codes are recursive, all

weight-1 input sequences produce infinite-weight output sequences. The minimum
distance error event at the output of each RSC encoder corresponds to an input error
sequence of the form Di(1+D+D2). However, the random interleaver permutes
such sequences very effectively so that the output of the other encoder has high
weight [80]. Weight-2 input error sequences to RSC1 of the form Di(1+D3) will
produce a finite-weight output sequence having the form Di(1 + D + D2 + D3).
However, the random interleaver permutes these sequences into sequences which
are not of the form D j(1+D3) with high probability [80]. However, an occasional
bad mapping occurs, where input sequences of the form Di(1+D3) are permuted
into input sequences of the form D j(1+D3) for some i, j. This is illustrated in
Fig. 8.28. Such input sequences produce low-weight outputs from both encoders
and define the minimum Hamming distance of the PCCC code. The probability that
an input sequence Dia of weight-w is interleaved into a sequence ã of the form
D ja for at least one pair i, j is proportional to Nw−2 [80]. Hence, bad mappings are
very likely to occur for weight-2 input sequences and very unlikely to occur for
weight w > 2 input sequences. So the minimum distance error event corresponds to
a weight-2 input sequence with very high probability. If the smallest weight RSC
output corresponding to all weight-2 input sequences is dceff, then the free Hamming
distance of the PCCC code is dT

free = 2+2dceff. For our example PCCC code, the free
distance is dfree = 2+ 4+ 4 = 10, which is rather small. This small free Hamming
distance is typical of PCCCs precisely the reason for the so-called BER and frame
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error rate (FER) floor of PCCCs. Finally, we note that other types of interleavers,
such as the S-random interleaver, are generally very difficult to analyze, but most of
the above arguments are valid.

PCCCs inherently provide unequal error protection, because the bad interleaver
mappings define certain bit positions are affected by the dominant error events. Such
bad mappings affect only a very few bit positions, but they nevertheless result in a
BER floor. In contrast, for convolutional codes all bit positions in the input sequence
are affected by the same error events. Consequently, all bit positions are equally
likely to be in error. So PCCCs are inherently unequal error-protecting codes.

It is instructive to understand how the expected number of bad mappings changes
with the interleaver size, N. The total number of possible interleaver mappings for
a block of N bits is N! The number of bad mappings, where a sequence of the form
Di(1+D3) is mapped into a sequence of the form D j(1+D3), is approximately N×
2×(N−2)! The approximation is due to the fact that edge effects have been ignored
which is a valid assumption for large N. Therefore, the probability that a sequence
of the form Di(1+D3) is mapped onto a sequence of the form D j(1+D3) is

P[Di(1+D3)→ D j(1+D3)] =
2N(N − 2)!

N!
=

2
N − 1

. (8.188)

Assuming that the mappings for the different bit positions are independent and
ignoring the edge effects, the distribution of the total number of such bad mappings
k, in a block of length N, can be approximated by a binomial distribution for small
k, that is,5

P[total number of bad mappings = k] =

(
N
k

)(
2

N − 1

)k(

1− 2
N − 1

)N−k

.

The mean number of bad mappings is N 2
N−1 , which converges to 2 for large N.

Therefore, the mean number of data bits affected by bad mappings converges to 4
for large N, since the bad mappings correspond to weight-2 input error sequences.

8.8.4.2 Weight Distribution of SCCCs

Consider the serial concatenation system in Fig. 8.25. Let the input block length is
N′ bits. The length of the outer codeword and, therefore, the interleaver size and
length of the input to the inner encoder is N = N′/Ro = N′p/k bits. Under the
assumption of a uniform interleaver, the number of weight h code words that are
generated by weight w input sequences is [31]

5The case of large k is not of interest because the probability of many bad mappings is extremely
small and, therefore, does not contribute significantly to the mean of the distribution.
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where do
f is the minimum free distance of the outer code, and no

M and ni
M refer

to the maximum number of error events possible for the outer and inner codes,
respectively. Using the approximation

(N
n

)≈ Nn

n! [31]
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Nno+ni−l−1 l!

pno+nino!ni!

1
n

Ao
w,l,noAi

l,h,ni , (8.190)

where wo
m is the minimum-weight of all input sequences that will produce an error

event for the outer code.
Observe from (8.190) that the contribution of each codeword to the BER is

multiplied by the term Nno+ni−l−1. Therefore, when no+ni− l−1< 0, increasing N
decreases the BER exponentially. This effect is called the interleaver gain. Consider
a weight-l outer codeword which is a result of no error events of the outer code.
If the inner encoder is nonrecursive, then a weight-l outer codeword can result in
a maximum of l error events (each “1” in the outer codeword can cause an error
event). Therefore, ni can be equal to l. In this case, the exponent of N will be no −1,
and, when no > 1, the exponent of N will be positive. Consequently, increasing N
increases the contribution of such codewords to the final BER [31]. When no = 1,
the exponent of N will be zero, implying that the interleaver does not impact the
multiplicity of such codewords or, equivalently, no interleaving gain is possible.

When the inner encoder is recursive, only input sequences having weight-2 or
greater can cause error events. Therefore, a weight-l outer codeword can cause at
most �l/2� error events for the inner code. Consequently, the exponent of N is no −
 l/2!−1. If all outer codewords corresponding to one error event of the outer code
(no = 1) have weight l > 2 or, equivalently, the free distance of the outer code is
greater than 2, the exponent of N is always negative. This implies that increasing N
will always decrease the BER.

Problems

8.1. Consider a simple repetition code that generates codewords by simply repeat-
ing each information symbol L times.

(a) What is the rate of the code?
(b) How many codewords are there in the code?
(c) What is the minimum distance of the code?
(d) How many channel errors would have to occur to confuse one codeword with

another?
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8.2. The generator matrix for a (6,3) linear binary block code is

G =

⎡

⎣
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎤

⎦

(a) What is the parity check matrix for this code?
(b) Generate the standard array for this code.
(c) Calculate the syndrome vector for all of the correctable error patterns.
(d) Decode the received sequence y = 101101.

8.3. The parity check matrix H for a linear block code is given as follows:

H =

⎡

⎣
1 0 0 1 1
0 1 0 1 1
0 0 1 0 1

⎤

⎦

(a) Construct a standard array decoding table for this code.
(b) How many error patterns can this code correct?
(c) If this code is used for error detection on a BSC with crossover probability p,

what is the probability of undetected error?

8.4. Consider a systematic (15,11) Hamming code.

(a) Construct a parity check matrix for a systematic (15,11) Hamming code.
(b) Construct a syndrome table for the code defined by the parity check matrix.
(c) If the (15,11) Hamming code is used for error detection on a BSC with crossover

probability p, what is the probability of undetected error?

8.5. Determine the decision variables for the separate maximum likelihood decod-
ing of the symbols in the following rate-3/4 space-time block code

C =

⎡

⎢
⎢
⎢
⎣

s(1) s(2) s(3)
−s∗(2) s∗(1) 0

s∗(3) 0 −s∗(1)
0 s∗(3) −s∗(2)

⎤

⎥
⎥
⎥
⎦
.

8.6. Determine the decision variables for the separate maximum likelihood de-
coding of the symbols in the following rate-1/2 orthogonal space-time block code
in (8.30).

8.7. The generator matrix for a rate-1 space-time block code is given as

C =

⎡

⎢
⎢
⎢
⎣

s(1) s(2) s(3) s(4)
−s∗(2) s∗(1) −s∗(4) s∗(3)
−s∗(3) −s∗(4) s∗(1) s∗(2)

s(4) −s(3) −s(2) s(1)

⎤

⎥
⎥
⎥
⎦
.
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(a) Determine the matrix CHC, and thus show that the code is not orthogonal.
(b) Show that the maximum likelihood decoder can perform pairwise maximum

likelihood detection
(c) What is the diversity order achieved by the code?

8.8. Consider a rate-1/3 convolutional code with generators g(1) = (111), g(2) =
(111), and g(3) = (101).

(a) Draw a block diagram of the encoder structure.
(b) Draw the state diagram and trellis diagram.
(c) Determine the output sequence corresponding to the input sequence 1110101.

8.9. The output of a rate-1/3 convolutional encoder with constraint length 3 to the
input a = (1,1,0, . . .) is b = (111,110,010, . . .)

(a) Determine the transfer function T (D,N,L).
(b) Determine the number of paths through the state diagram or trellis that diverge

from the all-zeroes state and merge with the all-zeroes state 7 branches later.
(c) Determine the number of paths of Hamming distance 20 from the all zeroes

sequence.

8.10. Consider the rate-1/3 code in Problem 8.8.

(a) Determine the transfer function T (D,N,L) of the code. What is the free
Hamming distance dfree?

(b) Assuming the use of BPSK signaling and an AWGN channel, derive a union-
Chernoff bound on the decoded bit error probability with (1) hard decision
decoding and (2) soft decision decoding.

(c) Repeat part (b) assuming an interleaved flat Rayleigh fading channel, where the
receiver has perfect knowledge of the channel.

8.11. Consider the 8-PAM and 32-CROSS signal constellations in Fig. 8.29.

(a) Construct the partition chain as in Fig. 8.12 and compute the minimum
Euclidean distance between signal points at each step in the partition chain.

(b) What is the average symbol energy for each of the signal constellations.

8.12. Consider the 2-state, rate-1/2, trellis encoder shown in Fig. 8.30. Using this
encoder with a 4-PAM and 8-PAM signal constellation, we can construct TCM
systems having bandwidth efficiencies of 1 bit/s/Hz and 2 bits/s/Hz, respectively.

(a) Determine the appropriate partitions for the signal constellation for the 2-state,
4-PAM and 8-PAM trellis codes.

(b) Construct and label the trellis diagrams for the 2-state 4-PAM and 8-PAM trellis
codes.

(c) Determine the minimum Euclidean distance for each trellis code, and the
asymptotic coding gain on an AWGN channel relative to the equivalent uncoded
systems.
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Fig. 8.29 Signal
constellations for Prob. 8.11.
(a) 8-PAM (b) 32-CROSS

2

8-PAM

32-CROSS

2

Fig. 8.30 Trellis encoder for
Prob. 8.12

a

b

b

(1)

(2)

8.13. To simplify the calculation of performance bounds, a Chernoff bound is often
imposed on the pairwise error probability.

(a) Derive the Chernoff bound on the pairwise error probability for an AWGN
channel with soft decision decoding, given by (8.122).

(b) Derive the Chernoff bound on the pairwise error probability for an AWGN
channel with hard decision decoding, given by (8.123).

(c) Derive the Chernoff bound on the pairwise error probability for an interleaved
flat fading channel with soft decision decoding, given by (8.132).



Chapter 9
Spread Spectrum Techniques

Spread spectrum systems were originally developed for military applications, to
provide anti-jam and low probability of intercept communications by spreading a
signal over a large frequency band and transmitting it with a low power per unit
bandwidth [79, 208, 244]. However, there are important commercial applications as
well. Code division multiple-access (CDMA) based on spread spectrum technology
is used in 3G cellular systems, including WCDMA and cdma2000. It is also used
in wireless local area network (WLAN) standards such as IEEE 801.11 (commonly
known as WiFi), and wireless personal area networks such as Bluetooth.

Spread spectrum signals have the distinguishing characteristic that the bandwidth
used to transmit a message is much greater than the message bandwidth. This band
spread is achieved using a spreading code or pseudo-noise (PN) sequence that is
independent of the message and is known to the receiver. This independent property
means that modulation schemes such as continuous phase modulation with a large
modulation index do not qualify as spread spectrum techniques. The receiver uses
a synchronized replica of the PN sequence to despread the received signal allowing
recovery of the message. The bandwidth expansion does not combat additive white
Gaussian noise (AWGN), but the wide band character of spread spectrum signals
can be used to mitigate the effects of intentional and non-intentional sources
of additive interference and to exploit the inherent diversity that is present in
frequency-selective fading channels.

While there are many different types of spread spectrum systems, the two
predominant types are direct sequence (DS) spread spectrum and frequency hopped
(FH) spread spectrum. DS spread spectrum achieves the band spread using the PN
sequence to introduce rapid phase transitions into the carrier containing the data,
while FH spread spectrum achieves the band spread using the PN sequence to
pseudo-randomly hop the carrier frequency throughout a large band. An excellent
tutorial treatment of spread spectrum concepts can be found in the books by Simon
et al. [244] and Ziemer and Peterson [308]. Some of the early proposals that applied
spread spectrum to cellular radio, such as the system proposed by Cooper and

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 9,
© Springer Science+Business Media, LLC 2011
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Nettleton [61], were based on FH spread spectrum. However, modern 3G cellular
systems use DS spread spectrum. As a result, the focus of this chapter is on DS
spread spectrum and DS-CDMA.

While it appears that any cellular system can be suitably optimized to yield a
competitive spectral efficiency regardless of the multiple-access technique being
used, CDMA offers a number of advantages along with some disadvantages. The
advantages of CDMA for cellular applications include (1) universal frequency
reuse, (2) narrow band interference rejection, (3) inherent multipath diversity in
DS spread spectrum, (4) ability to exploit variable rate speech coding, (5) soft
hand-off capability, (6) soft capacity limit, and (7) inherent message privacy. The
disadvantages of CDMA for cellular applications include (1) stringent power control
requirements with DS CDMA, and (2) difficulties in determining the base station
(BS) power levels for deployments that have cells of differing sizes.

This chapter begins with an introduction to DS and FH spread spectrum in
Sect. 9.1. PN sequences are fundamental to all spread spectrum systems and
are the subject of Sect.9.2. A variety of sequences are considered including
m-sequences, Gold sequences, Kasami sequences, Barker sequences, Walsh–
Hadamard sequences, variable length orthogonal codes, and complementary code
keying. The remainder of the chapter concentrates on DS spread spectrum. The
power spectral density (psd) of DS spread spectrum signals is considered in
Sect. 9.3. Section 9.4 considers the bit error rate performance of DS spread
spectrum signals in the presence of tone interference. Section 9.5 discusses the
performance of point-to-point DS spread spectrum on frequency selective fading
channels and shows how a RAKE receiver can be used to gain multipath diversity.
The chapter concludes with a discussion of CDMA multiuser detection techniques
in Sect. 9.6, including optimum CDMA multiuser detection, decorrelation detection,
and minimum mean square error (MMSE) detection.

9.1 Basic Principles of Spread Spectrum

9.1.1 Direct Sequence Spread Spectrum

A simplified direct sequence (DS) spread spectrum system with QPSK modulation,
termed DS/QPSK, is shown in Fig. 9.1. The pseudo-random (PN) sequence gen-
erator produces a spreading sequence a = {ak}, which is actually a deterministic
sequence with period N. This spreading sequence is used to generate the spreading
waveform

a(t) = A∑
k

akhc(t − kTc), (9.1)
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Fig. 9.1 Simplified DS/QPSK system

where a = {ak}, ak ∈ {±1 ± j}} is a complex spreading sequence, Tc is the PN
symbol or chip period, and hc(t) is a real-valued chip amplitude shaping pulse. The
energy per chip is

Ec = A2σ2
a

∫ ∞

−∞
h2

c(t)dt = A2
∫ ∞

−∞
h2

c(t)dt (9.2)

since σ2
a = 1

2 E[|ak|2] = 1. Notice that spectral control is achieved in the DS spread
spectrum waveform by shaping the PN chips rather than the data symbols.

The data symbol sequence {xn} is used to generate the waveform

x(t) = ∑
n

xnuT (t − nT), (9.3)

where A is the amplitude, x = {xn}, xn ∈ {±1/
√

2± j/
√

2} is the complex QPSK
data symbol sequence, and T is the data symbol duration. It is necessary that T be an
integer multiple of Tc, and the ratio G = T/Tc is called the processing gain, defined
as the number of PN chips per data symbol. Two categories of spreading codes can
be defined according to the relative values of N and G. A short code has G = N,
so that each data symbol is spread by a full period of the spreading sequence. A
long code has G � N, so that each data symbol is spread by a subsequence of the
spreading sequence.

The DS/QPSK complex envelope, obtained by multiplying a(t) and x(t), is

s̃(t) = A∑
n

xnhn(t − nT), (9.4)

where

hn(t) =
G−1

∑
k=0

anG+khc(t − kTc). (9.5)

The complex spreading operation is illustrated in Fig. 9.2. Notice that the DS/QPSK
signal can be thought of as a QPSK signal where the nth data symbol is shaped with
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Fig. 9.2 Complex spreading
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the amplitude shaping pulse hn(t) in (9.5). For short codes hn(t) is the same for all
data symbols. The advantage of complex spreading is a reduction in the peak-to-
average ratio of the magnitude of the complex envelope. Offset QPSK (OQPSK)
should not be used with complex spreading, since it will increase the peak-to-
average ratio. The complex envelope s̃(t) is applied to a quadrature modulator to
produce the bandpass waveform

s(t) = A∑
n

(
(xI,nhI,n(t − nT)− xQ,nhQ,n(t − nT))cos(2π fct)

−(xQ,nhI,n(t − nT )+ xI,nhQ,n(t − nT)) sin(2π fct)
)
, (9.6)

where

hn(t) = hI,n(t)+ jhQ,n(t), (9.7)

xn = xI,n + jxQ,n. (9.8)

During the time interval [nT,(n+1)T ), the DS/QPSK complex envelope can assume
one of the four possible values

s̃i(t) = Ahn(t)xi , i = 1, . . . ,4. (9.9)

Using the basis function

φn(t) =

√
A2

2E
hn(t), (9.10)

where E = GEc is the symbol energy, we can write

s̃i(t) =
√

2Exiφn(t), i = 1, . . . ,4 (9.11)
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Fig. 9.3 Dual-channel
quaternary spreading
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Fig. 9.4 Spreading binary data using (a) simple binary spreading, and (b) balanced quaternary
spreading

and it follows that the complex DS/QPSK signal vectors are

s̃i =
√

2Exi, i = 1, . . . ,4. (9.12)

Notice that the basis function φn(t) is indexed with the baud epoch n in the case of
long spreading codes.

Besides complex spreading, other types of PN spreading can be used. One
possibility is dual-channel quaternary spreading as shown in Fig. 9.3. Usually this
scheme is used with OQPSK modulation to reduce the peak-to-average ratio of the
magnitude of the complex envelope. If only one data sequence is to be transmitted,
then we could use either simple binary spreading or balanced quaternary spreading,
as shown in Fig. 9.4. Balanced quaternary spreading is known to be less sensitive to
interference than simple binary spreading.

Figure 9.1 also shows a simplified DS/QPSK receiver. In general, the DS spread
spectrum receiver must perform three functions: synchronize with the incoming
spreading sequence, despread the signal, and detect the data. Consider the received
complex envelope in the time interval [nT,(n+ 1)T). This signal can be despread
and detected using the correlator detector in Fig. 5.2 or the matched filter detector
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in Fig. 5.3, where φn(t) is defined in (9.10). The output of the correlator or matched
filter despreader/detector is

r̃ = s̃i + ñ, (9.13)

where ñ is a zero-mean Gaussian random variable with variance 1
2 E[|ñ|2] = No.

The ML receiver observes r̃ and decides in favor of the signal vector s̃m that
minimizes the squared Euclidean distance

μ(s̃m) = ‖r̃− s̃m‖2. (9.14)

It follows that the bit error probability of DS/QPSK with Gray coding is identical to
that of QPSK and is given by

Pb = Q(
√

2γb), (9.15)

where γb = Eb/No is the received bit energy-to-noise ratio. Note that spread
spectrum signaling does nothing to improve the error probability performance on an
AWGN channel. However, in the sequel we will see that spread spectrum signaling
offers significant error probability performance gains in the presence of additive
intentional and non-intentional interference, multipath-fading, and other channel
impairments.

9.1.2 Frequency Hop Spread Spectrum

Frequency hop (FH) spread spectrum systems hop the carrier frequency pseudo-
randomly throughout a finite set of hop frequencies. The most common type of
modulation with frequency hopping is orthogonal M-ary frequency shift keying
(MFSK). The MFSK complex envelope is

s̃(t) = A∑
n

ejxnπΔ f t uT (t − nT), (9.16)

where Δ f is the frequency separation, and xn ∈ {±1, ±3, . . . , ±M − 1}. An
FH/MFSK waveform can be generated using a digital frequency synthesizer whose
inputs consist of the complex envelope of the modulating waveform s̃(t) and the
contents of a pseudo-noise sequence generator. A conceptual FH/MFSK spread
spectrum system is shown in Fig. 9.5.

There are two basic types of FH spread spectrum modulation: fast frequency
hopping (FFH) and slow frequency hopping (SFH). SFH systems transmit one or
more (in general L) data symbols per hop. The SFH/MFSK complex envelope is

s̃(t) = A∑
n

L

∑
i=1

ejxnL+iπΔ f t+2π fntuT (t − (nL+ i)T), (9.17)
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Fig. 9.5 Simplified FH system operating on an AWGN channel

where the first sum indexes the sequence of hopped carrier frequencies { fn}, and the
second sum indexes the vector of L data symbols xn = (xnL+1,xnL+2, . . . ,x(n+1)L)
that are transmitted at the nth hop.

FFH systems transmit the same data symbol on multiple (in general L) hopped
carrier frequencies. If independent channel conditions are experienced on each of
the hop frequencies, then a diversity gain can be achieved using diversity combining.
The FFH/MFSK complex envelope is

s̃(t) = A∑
n

L

∑
i=1

ejxnπΔ f t+2π fnL+it uT/L(t − (nL+ i)T/L), (9.18)

where the first sum indexes the sequence of data symbols, {xn}, and the second sum
indexes the vector of hop frequencies fn = ( fnL+1, fnL+2, . . . , f(n+1)L) that are used
when transmitting the nth data symbol.

With orthogonal MFSK, the required frequency separation Δ f depends on the
type of detection that is used. Coherent detection requires a frequency separation
Δ f = 1/2T , while noncoherent detection requires Δ f = 1/T (Problem 4.7). If
coherent detection can be used, then the error probability of SFH/MFSK or
FFH/MFSK on an AWGN channel is given by (5.119). However, FH/MFSK is
often detected noncoherently because of the difficulty in achieving rapid carrier
synchronization when the carrier frequency is hopped. The error probability of
SFH/MFSK on an AWGN channel with noncoherent square-law detection is given
by (5.193). If FFH/MFSK is used on an AWGN channel, then the error probability
assumes a more complicated form due to a square-law combining loss [217].
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9.2 Spreading Sequences

CDMA systems achieve their multiple-access capability using sets spreading
sequences that are chosen to have three desirable attributes: (1) the sequences are
balanced so that each element of the sequence alphabet occurs with equal frequency,
(2) the autocorrelations have small off-peak values, to allow for rapid sequence acq-
uisition at the receiver and to minimize self interference due to multipath, and (3) the
cross-correlations are small at all delays, to minimize multiple-access interference.

Spreading sequences are often characterized in terms of their discrete-time corre-

lation properties. Let a(k) = {a(k)n } denote the kth complex spreading sequence.1 For
spread spectrum systems that use short codes, each data symbol is spread by a full
period of the spreading sequence. In this case the full period correlation properties
are of interest. The full period autocorrelation of the sequence a(k) is2

φk,k(n) =
1

2N

N−1

∑
i=0

a(k)i a(k)
∗

i+n (9.19)

and the full period cross-correlation between the sequences a(k) and a(m) is

φk,m(n) =
1

2N

N−1

∑
i=0

a(k)i a(m)∗
i+n , (9.20)

where N is the length or period of the spreading sequence(s).
The aperiodic autocorrelation of a(k) is defined as

φ a
k,k(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2N

∑N−n
i=1 a(k)i+na(k)

∗
i , 0 ≤ n ≤ N − 1

1
2N

∑N+n
i=1 a(k)i a(k)

∗
i−n , −N + 1 ≤ n ≤ 0

0, |n| ≥ N

. (9.21)

For spread spectrum systems that use long codes, each data symbol is spread
by only a length-G subsequence of the spreading code. In this case, the partial
period correlations are of interest. The partial period autocorrelation and cross-
correlation are

φ p
k,k(n) =

1
2G

G−1

∑
i=0

a(k)i a(k)
∗

i+n , (9.22)

φ p
k,m(n) =

1
2G

G−1

∑
i=0

a(k)i a(m)∗
i+n . (9.23)

1The following development also applies to real spreading sequences.
2Throughout this section complex spreading sequences are assumed. For real spreading sequences,
the correlation functions are similar but are normalized by N rather than 2N.
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The partial period correlations are not only a function of the delay n, but also depend
upon the point in the sequence(s) where the summation actually starts. The partial
period correlations are difficult to derive analytically, except for certain types of
sequences. Therefore, we often resort to a statistical treatment under the assumption
that the sequences are randomly generated, that is, the sequence elements are chosen
from the set {±1, ±j} independently and with equal probability. For random
sequences

1
2

E
[
a(k)n

]
= 0

1
2

E

[∣
∣
∣a

(k)
n

∣
∣
∣
2
]

= 1
1
2

E
[
a(k)n a(m)∗

n

]
= 0. (9.24)

Hence, the mean value of the partial period autocorrelation is

μφ p
k,k(n)

= E
[
φ p

k,k(n)
]
=

1
2G

G−1

∑
i=0

E
[
a(k)i a(k)

∗
i+n

]
= δn,�N , (9.25)

where

δn,�N =

{
1, n = �N
0, n �= �N

(9.26)

and � is an integer. The variance of the partial period autocorrelation is

σ2
φ p

k,k(n)
= E

[
|φ p

k,k(n)|2
]
− μ2

φ p
k,k(n)

=
1

(2G)2

G−1

∑
i=0

G−1

∑
j=0

E
[
a(k)i a(k)

∗
i+n a(k)j a(k)

∗
j+n

]
− μ2

φ p
k,k(n)

= (1− δn,�N)(1/G). (9.27)

Likewise, the mean and variance of the partial period cross-correlation are

μφ p
k,m(n)

= E
[
φ p

k,m(n)
]
= 0 , ∀n, (9.28)

σ2
φ p

k,m(n)
= E
[
|φ p

k,m(n)|2
]
− μ2

φ p
k,m(n)

= 1/G , ∀n. (9.29)

9.2.1 Spreading Waveforms

The full period cross-correlation between two spreading waveforms a(k)(t) and
a(m)(t), each of period T , is

Rk,m(τ) =
1
T

∫ T

0
a(k)(t) a(m)∗(t + τ)dt

=
1
T

∞

∑
i=−∞

∞

∑
j=−∞

a(k)i a(m)∗
j

∫ T

0
hc(t − iTc)hc(t + τ − jTc)dt. (9.30)
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The integral in (9.30) is nonzero only where the chip pulses hc(t − iTc) and hc(t +
τ − jTc) overlap. Since the delay τ can assume any value let τ = �Tc + δ , where
� = �τ/Tc� is an integer and 0 ≤ δ < Tc. If the chip pulses are chosen to have
duration Tc and τ = �Tc + δ , then the chip pulses overlap only for i = �+ j and
i = �+ j+ 1, so that

Rk,m(τ) =
1
N

N−1

∑
i=0

a(k)i a(m)∗
�+i

1
Tc

∫ Tc−δ

0
hc(t

′)hc(t
′+ δ )dt ′

+
1
N

N−1

∑
i=0

a(k)i a(m)∗
�+i+1

1
Tc

∫ Tc

Tc−δ
hc(t

′)hc(t
′ −Tc + δ )dt ′. (9.31)

The continuous-time partial autocorrelation functions of the chip waveform hc(t)
(of duration Tc) are defined as [218]

Rh(δ ) =
1
Tc

∫ Tc−δ

0
hc(t

′)hc(t
′+ δ )dt ′ (9.32)

R̂h(δ ) =
1
Tc

∫ Tc

Tc−δ
hc(t

′)hc(t
′ −Tc + δ )dt ′ (9.33)

allowing us to write

Rk,m(τ) = φk,m(�)Rh(δ )+φk,m(�+ 1)R̂h(δ ), (9.34)

where φk,m(�) is the full period cross-correlation defined in (9.20). For example, if
hc(t) = uTc(t), then

Rk,m(τ) = φk,m(�)

(

1− δ
Tc

)

+φk,m(�+ 1)
δ
Tc
. (9.35)

When G < N, the partial correlations in (9.22) and (9.23) must be used. In this
case the cross-correlation in (9.34) becomes a random variable that (for random
spreading sequences) has mean and variance

μRk,m(τ) = μφk,m(�)Rh(δ )+ μφk,m(�+1)R̂h(δ ) = 0, (9.36)

σ2
Rk,m(τ) = σ2

φk,m(�)
R2

h(δ )+σ2
φk,m(�+1)R̂

2
h(δ ) =

1
G

(
R2

h(δ )+ R̂2
h(δ )

)
. (9.37)

Likewise, the autocorrelation is also a random variable that (for random spreading
sequences) has mean and variance



9.2 Spreading Sequences 537

0 -> +1
1 -> -1

a i-1 a i-2 a i-3 - ( m )-1a i - ma i

p
m-1

p1 p
2

p3

a i aa~

Fig. 9.6 m-sequence generator

μRk,k(τ) = μφk,k(�)Rh(δ )+ μφk,k(�+1)R̂h(δ )

=

⎧
⎪⎨

⎪⎩

Rh(δ ), �= iG

R̂h(δ ), �+ 1 = iG

0, elsewhere

. (9.38)

σ2
Rk,k(τ) = σ2

φk,k(�)
R2

h(δ )+σ2
φk,k(�+1)R̂

2
h(δ )

=

⎧
⎪⎨

⎪⎩

R2
h(δ ), �= iG

R̂2
h(δ ), �+ 1 = iG

1/G, elsewhere

, (9.39)

where i is an integer.

9.2.2 m-Sequences

A very well-known and important class of spreading sequences are the maximal-
length sequences or m-sequences. As shown in Fig. 9.6, an m-sequence ã = {ãk},
ãk ∈ {0,1}, is generated using a linear feedback shift register (LFSR) of length m.
The sequence a = {ak} is obtained using the level shift ak = 2ãk − 1. The feedback
or connection polynomial in the LFSR is a primitive polynomial of degree m over
GF(2), having the form

p(x) = 1+ p1x+ p2x2 + p3x3 + . . .+ pm−1xm−1 + xm, (9.40)

where pi ∈{0,1}. Tables of primitive polynomials, p(x), are tabulated in many texts,
for example, [159]. Notice that p0 = 1, since this represents the feedback connection
tap. Also, pm = 1; otherwise, if pm = 0 we are effectively using a shift register of
length less than m.

Maximal length sequences are by definition the longest sequences that can be
generated by an LFSR of a given length. For a shift register of length m, a sequence
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Fig. 9.7 Typical full period autocorrelation function of an m-sequence spreading waveform

of length N = 2m − 1 is generated. As an m-sequence generator cycles through one
full period of length N = 2m−1, the contents of the m-stage shift register go through
all possible 2m − 1 nonbinary m-tuples values or states. The all-zeroes state is the
only forbidden m-tuple, since the LFSR would lock in this state.

The m-sequences have many remarkable properties, and every full period of an
m-sequence satisfies some important randomness properties. First, the sequence is
nearly balanced with 2m−1 ones and 2m−1 − 1 zeros. A run is defined as a string of
consecutive zeros or ones, and a sequence can be characterized in terms of its run
length distribution. For m-sequences the number of runs of length P, nP, is

nP =

{
2m−P−1, P = 1,2, . . . ,m− 1
1, P = m

. (9.41)

The full period autocorrelation of an m-sequence is

φ(n) =
{

1, n = �N
−1/N, n �= �N

. (9.42)

For large values of N, φ(n) ≈ δ (n) so that m-sequences are almost ideal in terms
of their full period autocorrelation. For a rectangular chip shaping function hc(t) =
uTc(t), the corresponding spreading waveform a(t) has autocorrelation function

R(τ) = φ(�)
(

1− δ
Tc

)

+φ(�+ 1)
δ
Tc
. (9.43)

This function is plotted in Fig. 9.7.
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Table 9.1 Best and worst
case average
cross-correlations
for m-sequences

Number of
m N m-sequences θ Worst θ Best

5 31 6 0.35 0.29
6 63 6 0.36 0.24
7 127 18 0.32 0.13
8 255 16 0.37 0.12
9 511 48 0.22 0.06
10 1,023 60 0.37 0.06
11 2,047 176 0.14 0.03
12 4,095 144 0.34 0.03

The mean and variance of the partial period autocorrelation of an m-sequence
can be obtained in a straightforward fashion by replacing the expectations in (9.25)
and (9.27) with averages over all possible starting positions. This gives

μφ(n) =

{
1, n = �N
−1/G, n �= �N

, (9.44)

σ2
φ(n) =

⎧
⎨

⎩

0, n = �N

1
G

(
1+ 1

N

)(
1− G

N

)
, n �= �N

. (9.45)

Unfortunately, m-sequences also have a number of undesirable properties. First,
the number of m-sequences that can be generated by a LFSR of length m is equal
to the number of primitive polynomials of degree m over GF(2), and is given by
Φ(2m − 1)/m, where Φ( · ) is the Euler Totient function

Φ(n) = n
n

∏
p|n

(

1− 1
p

)

, (9.46)

where the product is over all primes p that divide n. Hence, there are relatively few
m-sequences for a given shift register length m. Second, only for certain values of m,
do there exist a few pairs of m-sequences with low full period cross-correlations. In
general, m-sequences do not have good cross-correlation properties. Consider the
full period cross-correlation φk,m(n) between two m-sequences a(k) and a(m). Let us
define the average full period cross-correlation

θ =
1
N

N−1

∑
n=0

φk,m(n). (9.47)

The value of θ depends on the particular pair of m-sequences that are selected. The
best and worst case values of θ are shown in Table 9.1. Notice that the worst case
full period cross-correlations are very large even for long sequence lengths.
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Fig. 9.8 A Gold sequence
generator with
p1(x) = 1+ x2 + x5 and
p2(x) = 1+ x+ x2 + x4 + x5.
This sequence generator can
produce 32 Gold sequences
of length 31
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9.2.3 Gold Sequences

A set of Gold sequences [112] consists of 2m + 1 sequences each with a period of
N = 2m − 1 that are generated using a preferred pair of m-sequences obtained as
follows. Let GF(2m) be an extension field of GF(2). Let α be a primitive Nth root of
unity in the extension field GF(2m), where N = 2m−1. Let p1(x) and p2(x) be a pair
of primitive polynomials over GF(2) each having degree m such that p1(α) = 0 and
p2(αd) = 0 for some integer d. Consider the case when m �= 0 mod 4. If d = 2h +1
or d = 22h − 2h + 1 and if e = GCD(m,h) is such that m/e is odd, then p1(x)
and p2(x) constitute a preferred pair of polynomials. Note that p2(x) may not be
unique. For example, with m = 5, both h = 1 and h = 2 will work, so that we can
choose p2(x3) = 0 or p2(x5) = 0. To find the corresponding polynomials we can
refer to Peterson’s table of irreducible polynomials [207]. The two m-sequences
a(1) and a(2) that are generated using p1(x) and p2(x) are known as a preferred pair
of m-sequences. Their cross-correlation function is three-valued with the values
{−1, −t(m), t(m)− 2} where

t(m) =

{
2(m+1)/2 + 1, m odd

2(m+2)/2 + 1, m even
. (9.48)

Using the preferred pair of sequences a(1) and a(2), we can construct a set of Gold
sequences by taking the sum of a(1) with all cyclically shifted versions of a(2) or vice
versa. A typical Gold sequence generator is shown in Fig. 9.8, where the preferred
pair of polynomials are p1(x) = 1+ x2 + x5 and p2(x) = 1+ x+ x2 + x4 + x5. This
above procedure yields N new sequences each with period N = 2m − 1. These se-
quences along with the original two sequences gives a set of 2m+1 Gold sequences.

It is important to note that not all the 2m + 1 Gold sequences are balanced with
2m−1 ones and 2m−1 − 1 zeros. In fact, it can be shown that only 2m − 2m−e − 1
of the Gold sequences are so balanced. The balanced Gold sequences are the most
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Table 9.2 Peak cross-correlation of m-sequences and Gold sequences

Number Peak cross m-sequence Gold sequence
m N m sequences correlation φmax/φ (0) t(m) t(m)/φ (0)
3 7 2 5 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 6 11 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 41 0.32 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06
10 1,023 60 383 0.37 65 0.06
11 2,047 176 287 0.14 65 0.03
12 4,095 144 1,407 0.34 129 0.03

desirable. With the exception of the preferred pair of sequences a(1) and a(2), the
Gold sequences are not m-sequences and, therefore, their autocorrelations are not
two-valued. However, Gold sequences have three-valued off-peak autocorrelations
and cross-correlations, with possible values {−1,−t(m), t(m)− 2}, where t(m)
is defined in (9.48). The cross-correlation properties of m-sequences and Gold
sequences are summarized in Table 9.2. Notice that Gold sequences have much
smaller peak cross-correlations than m sequences.

9.2.4 Kasami Sequences

The construction of Kasami sequences proceed as follows [138,139]. Let m be even.
Let p1(x) be a primitive polynomial over the binary field GF(2) with degree m and
α as a root, and let p2(x) be the irreducible minimal polynomial of αd where d =
2m/2 + 1. Once again, these polynomials can be identified using Peterson’s table of
irreducible polynomials [207]. Let a(1) and a(2) represent the two m-sequences of
periods 2m − 1 and 2m/2 − 1 that are generated by p1(x) and p2(x), respectively.
The set of Kasami sequences is generated using the two m-sequences in a fashion
similar to the generation of Gold sequences, that is, the set of Kasami sequences
consists of the long sequence a(1) and the sum of a(1) with all 2m/2 − 1 cyclic shifts
of the short sequence a(2). The number of Kasami sequences in the set is 2m/2, each
having period N = 2m − 1. In fact, this set is known as the small set of Kasami
sequences. A typical Kasami sequence generator is shown in Fig. 9.9 with generator
polynomials p1(x) = 1+ x+ x6 and p2(x) = 1+ x+ x3. Like Gold sequences, the
off-peak autocorrelation and cross-correlation functions of Kasami sequences are
also three-valued; however, the possible values are {−1,−s(m),s(m)− 2}, where
s(m) = 2m/2 + 1.
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Fig. 9.9 A Kasami sequence
generator with
p1(x) = 1+ x+ x6 and
p2(x) = 1+ x+ x3. This
sequence generator can
produce eight Kasami
sequences of length 63
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9.2.5 Barker Sequences

Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13, given as follows:

a = (+1− 1),

a = (+1+ 1− 1),

a = (+1+ 1− 1+ 1),

a = (+1+ 1+ 1− 1+1),

a = (+1+ 1+ 1− 1−1+1−1),

a = (+1+ 1+ 1− 1−1−1+1−1−1+1−1),

a = (+1+ 1+ 1+ 1+1−1−1+1+1−1+1−1+1).

The mirror images (or time reversed) sequences are also Barker sequences. Barker
sequences of other lengths do not exist. Barker sequences are specially designed
sequences that have almost ideal aperiodic autocorrelation functions, as defined in
(9.21). For the Barker sequences

φ a
k,k(n) =

{
1, n = 0
0,1/N,or− 1/N, 1 ≤ |n| ≤ N − 1

. (9.49)

9.2.6 Walsh–Hadamard Sequences

Walsh–Hadamard sequences are obtained by selecting as sequences the rows of a
Hadamard matrix HM. For M = 2, the Hadamard matrix is

H2 =

[
+1 +1
+1 −1

]

. (9.50)
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Larger Hadamard matrices are obtained using the recursion

H2M =

[
HM HM

HM −HM

]

. (9.51)

For example,

H8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.52)

The rows in the Hadamard matrix define the Walsh–Hadamard sequences, and have
the property that they are mutually orthogonal.

The Walsh–Hadamard sequences can be used for orthogonal spreading, also
called orthogonal CDMA, where the users are distinguished by assigning them
different Walsh–Hadamard sequences, and the data symbols are sent using simple
binary spreading as shown in Fig. 9.4. With orthogonal CDMA, the data symbols
of the different users must be synchronized to within a small fraction of a chip
period. This is because the Walsh–Hadamard sequences have very poor cross-
correlations at nonzero lags. In fact, some of the Walsh–Hadamard sequences are
just cyclic shifts of each other. Finally, multipath will also destroy the orthogonality
of the received waveforms, because the Walsh–Hadamard sequences have large off-
peak autocorrelation values even at small lags. This will lead to multiple-access
interference in orthogonal CDMA systems.

9.2.6.1 Orthogonal and Bi-orthogonal Modulation

The Walsh–Hadamard sequences can be used for modulation rather than spreading.
There are several possibilities. One is M-ary orthogonal modulation, where k =
log2M bits are used to select one of the M orthogonal waveforms for transmission.
The signals can be detected coherently or noncoherently as discussed in Chap. 5.
Another possibility is a variant of biorthogonal modulation, where each row of the
Hadamard matrix is used to send one bit of information. In this case M bits are sent
at one time. This type of modulation requires coherent detection.

9.2.7 Variable Length Orthogonal Codes

In multimedia applications, it is necessary to support a variety of data services
ranging from low to very high bit rates. Quite often these services are used
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Fig. 9.10 Construction of orthogonal spreading codes with different spreading factors

concurrently and they all use the same spread bandwidth. Consider a system
where each data symbol in the highest bit rate stream R = Rmax is spread by an
orthogonal sequence of length N = 2m. Then the data symbols in a stream with bit
rate R = Rmax/2k are spread by a sequence of length 2m+k. One way to achieve
orthogonality between spreading sequences with different spreading factors is to
use tree structured orthogonal codes. The construction of these codes is illustrated
in Fig. 9.10. Tree-structured orthogonal codes are generated recursively according
to the following:

c2n =

⎡

⎢
⎢
⎢
⎣

c2n,1

c2n,2
...

c2n,2n

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
cn,1 cn,1

cn,1 −cn,1

]

...
[

cn,n cn,n

cn,n −cn,n

]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (9.53)

where c2n is an orthogonal code set of size 2n. The orthogonality properties are
similar to Walsh–Hadamard sequences. In fact the set of sequences is identical, and
only their order is different.

A code can be assigned for use if and only if no other code either on the path from
the specific code to the root of the tree, or on the subtree produced by the specific
code, is already being used. Hence, the total number of available codes is not fixed,
but depends on the rate or spreading factor of each physical channel.
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9.2.8 Complementary Code Keying

Complementary codes have the property that the sum of their aperiodic autocorre-
lation functions are zero for all delays except zero delay. That is,

1
M

M

∑
k=1

φ a
k,k(n) = δ (n). (9.54)

A variety of constructions exist for complementary codes and two examples are
given here. The IEEE 802.11b standard uses length-8 CCK sequences for 11 Mb/s
transmission. The eight complex chip values for CCK code words are

C =
{

ej(φ1+φ2+φ3+φ4),ej(φ1+φ3+φ4),ej(φ1+φ2+φ4),

−ej(φ1+φ4),ej(φ1+φ2+φ3),ej(φ1+φ3),− ej(φ1+φ2),ej(φ1)
}
, (9.55)

where the phases {φ1,φ2,φ3,φ4} are QPSK phases. The phases φ2,φ3, and φ4 each
take on four different values, leading to a code alphabet of size 64. The phase φ1 is
differentially encoded across successive codewords. Since each of the four phases
φ1 to φ4 represents 2 bits of information, 8 bits are transmitted per codeword. The
chip rate for IEEE 802.11 is 11 Mchips/s, so that the resulting bit rate is 11 Mb/s.

The IEEE 802.11b standard for 5.5 Mb/s transmission is similar but uses CCK
with length-4 sequences. The complex chip values for the CCK code words are

C =
{

ej(φ1+φ2+φ3),ej(φ1+φ3),ej(φ1+φ2),−ej(φ1)
}
, (9.56)

where, again, the phases {φ1,φ2,φ3} are QPSK phases.

9.3 Power Spectral Density of DS Spread Spectrum Signals

We have seen earlier that the DS/QPSK signal can be thought of as a QPSK signal
where the nth data symbol is transmitted with the amplitude shaping pulse in (9.5).
For uncorrelated zero-mean data symbols, the results in Sect. 4.9.1.2 showed that
the psd of the DS/QPSK complex envelope is c.f. (4.218)

Ss̃s̃( f ) =
A2

T
σ2

x |Ha( f )|2 , (9.57)

where ha(t) is the amplitude shaping pulse. In the case of a short code, the amplitude
shaping pulse is

ha(t) =
N−1

∑
k=0

akhc(t − kTc). (9.58)
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Taking the Fourier transform of ha(t) gives

Ha( f ) = Hc( f )
N−1

∑
k=0

ake−j2π f kTc (9.59)

and

|Ha( f )|2 = |Hc( f )|2
N−1

∑
k=0

N−1

∑
�=0

aka∗
�e−j2π f (k−�)Tc. (9.60)

The above expression can be put in a more convenient form using the aperiodic
autocorrelation defined in (9.21). It can be shown that

|Ha( f )|2 = |Hc( f )|2 2NΦa( f ), (9.61)

where Φa( f ) is the discrete-time Fourier transform (DTFT) of the aperiodic
autocorrelation function, defined by

Φa( f ) =
N−1

∑
n=−N+1

φ a(n)e−j2π f nTc . (9.62)

Using T = NTc and σ2
x = 1

2 E[|xi|2] = 1/2, we can write

Ss̃s̃( f ) =
A2

Tc
|Hc( f )|2 Φa( f ). (9.63)

Observe that the psd depends on both |Hc( f )| and Φa( f ). Suppose the spreading
sequence has an ideal “thumbtack” aperiodic autocorrelation function

φ a(n) =

{
1 , n = 0
0 , n �= 0

. (9.64)

Then Φa( f ) = 1 and

Ss̃s̃( f ) =
A2

Tc
|Hc( f )|2 . (9.65)

In this case, the psd depends only on the chip shaping response |Hc( f )|. For
example, if hc(t) = uTc(t), then Hc( f ) = Tcsinc( f Tc) and Ss̃s̃( f ) = A2Tcsinc2( f Tc).
Unfortunately, spreading sequences having the ideal aperiodic autocorrelation func-
tion in (9.64) do not exist for any nontrivial length. Consider the two sequences:

a(1) = (−1+ 1− 1− 1+1−1−1−1+1+1+1),

a(2) = (+1− 1− 1+ 1−1−1−1+1+1+1+1−1+1−1+1). (9.66)
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Fig. 9.11 Aperiodic
autocorrelation function for
the length-11 Barker
sequence
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Fig. 9.12 Aperiodic
autocorrelation function for
the length-15 m-sequence
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The first is a length-11 Barker sequence and the second is a length-15 m-sequence.
The scaled aperiodic autocorrelation functions Nφ a(n) for these sequences are
shown in Figs. 9.11 and 9.12, respectively. The corresponding psds with the
rectangular chip shaping function hc(t) = uTc(t) are plotted in Figs. 9.13 and 9.14,
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Fig. 9.13 Psd with the
length-11 Barker sequence
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Fig. 9.14 Psd with the
length-15 m-sequence
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respectively. Notice that the aperiodic autocorrelation of the m-sequence deviates
significantly from the ideal function in (9.64). This leads to peaks and nulls in the
spectrum shown in Fig. 9.14. For WLANs that operate in unlicensed bands, such
spectral peaks are highly undesirable. The length-11 Barker sequence is seen to
provide a much smoother psd without any large peaks. For this reason, among
others, the length-11 Barker sequence was chosen for the IEEE 802.11 WLAN
standard.
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It is interesting to note that complementary code keying is used; then the psd
depends on the DTFT of the average aperiodic autocorrelation function in (9.54). In
this case,

1
M

M

∑
k=1

Φa
k,k( f ) = 1, (9.67)

and the psd has the ideal form in (9.65). Finally, if a long code is used, then the
power spectrum must be obtained by averaging over all possible spreading code
subsequences of length G. Usually, this will result in a “smoother” power density
spectrum.

9.4 Performance of DS/QPSK in Tone Interference

Spread spectrum systems must often operate in the presence of narrowband
interference. Here we consider the effect of continuous wave (CW) tone interference
on the performance of DS/QPSK. Consider a DS/QPSK system with dual-channel
quaternary spreading as shown in Fig. 9.3. The bandpass DS/QPSK waveform is

s(t) = A∑
n
(xI,nhI,n(t − nT)cos(2π fct)− xQ,nhQ,n(t − nT)sin(2π fct)) , (9.68)

where A is the amplitude. During time interval [nT,(n + 1)T ), the transmitted
quaternary data symbol is xn = (xI,n,xQ,n), xI,n,xQ,n ∈ {+1/

√
2,−1/

√
2} and the

spreading waveforms are

hI,n(t) =
G−1

∑
k=0

aI,nG+khc(t − nTc), (9.69)

hQ,n(t) =
G−1

∑
k=0

aQ,nG+khc(t − nTc). (9.70)

With dual-channel quaternary spreading, the energy per modulated symbol is

E =

∫ T

0
s2(t)dt

= A2
∫ T

0

(
x2

I,nh2
I,n(t)cos2(2π fct)+ x2

Q,nh2
Q,n(t)sin2(2π fct)

)

=
A2

4

∫ T

0

(
h2

I,n(t)+ h2
Q,n(t)

)

=
A2

4

G−1

∑
k=0

(
a2

I,nG+k + a2
Q,nG+k

)∫ Tc

0
h2

c(t)dt
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Fig. 9.15 Quadrature demodulator for DS/QPSK

= G
A2

2

∫ Tc

0
h2

c(t)dt

= GEc, (9.71)

where

Ec =
A2

2

∫ Tc

0
h2

c(t)dt (9.72)

is the energy per PN chip. Note that (9.72) and (9.2) differ by a factor of 2, because
(9.2) assumes complex spreading while (9.72) assumes quadrature spreading. This
can be seen by comparing the energy of the bandpass waveforms in (9.6) and (9.68)
over the interval [nT,(n+ 1)T).

The received bandpass signal in the presence of tone interference and AWGN is

r(t) = s(t)+ n(t)+ J(t), (9.73)

where n(t) is AWGN with two-sided psd No/2 and J(t) is the tone interference of
the form

J(t) = AJ cos(2π fJt +θ ), (9.74)

where AJ is the tone amplitude, fJ is its frequency, and θ is a random phase
uniformly distribution on the interval [−π ,π). The tone energy in a time interval
of duration T is

EJ =
A2

J T
2

. (9.75)

The received signal is despread and processed with the quadrature demodulator
shown in Fig. 9.15 to generate the decision variables ZI and ZQ. To derive the values
of ZI and ZQ, we consider the signal, noise, and interference terms separately. During
the time interval [nT,(n+ 1)T), the contribution of the signal term to ZI and ZQ is



9.4 Performance of DS/QPSK in Tone Interference 551

ZI(s) =
∫ T

0
s̃I(t)

√
A2

4E
hI,n(t)dt

=

∫ T

0
AxI,nhI,n(t)

√
A2

4E
hI,n(t)dt

= xI,nA

√
A2

4E

∫ T

0
h2

I,n(t)dt

= xI,n

√
E, (9.76)

where we have used (9.71). Likewise

ZQ(s) = xQ,n

√
E. (9.77)

The contribution of the AWGN term to ZI and ZQ is

ZI(n) =
∫ T

0
ñI(t)

√
A2

4E
hI,n(t)dt (9.78)

ZQ(n) =
∫ T

0
ñQ(t)

√
A2

4E
hQ,n(t)dt. (9.79)

It can be shown that ZI(n) and ZQ(n) are independent zero-mean Gaussian random
variables with variance No/2.

Finally, the contribution of the tone interference term to ZI and ZQ can be
calculated as follows:

ZI(J) =
∫ T

0
J(t)2cos(2π fct)

√
A2

4E
hI,n(t)dt

=

∫ T

0
AJ cos(2π fJt)2cos(2π fct)

√
A2

4E
hI,n(t)dt

= AJ

√
A2

4E

∫ T

0
2hI,n(t)cos(2π fct)cos(2π fJt +θ )dt

= AJ

√
A2

4E

∫ T

0
hI,n(t)

{
cos(2πΣ f t +θ )+ cos(2πΔ f t +θ )

}
dt, (9.80)

where

Σ f = fc + fJ, (9.81)

Δ f = fJ − fc. (9.82)
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Using AJ =
√

2EJ/T , we can write

ZI(J) =
√

EJ

√
A2T
2E

1
T

∫ T

0
hI,n(t)

(
cos(2πΣ f t +θ )+ cos(2πΔ f t +θ )

)
dt. (9.83)

Finally, using

E = G
A2

2

∫ Tc

0
h2

c(t)dt, (9.84)

we can write

ZI(J) =
√

EJ/h̄c
1
T

∫ T

0
hI,n(t)

(
cos(2πΣ f t +θ )+ cos(2πΔ f t +θ )

)
dt, (9.85)

where

h̄c =
1
Tc

∫ Tc

0
hc(t)dt. (9.86)

Using further trigonometric identities, we can write

ZI(J) =
√

EJ/h̄c

(

cos(θ )
1
T

∫ T

0
hI,n(t)

(
cos(2πΣ f t)+ cos(2πΔ f t)

)
dt

− sin(θ )
1
T

∫ T

0
hI,n(t)

(
sin(2πΣ f t)+ sin(2πΔ f t)

)
dt

)

. (9.87)

In a similar fashion

ZQ(J) =
∫ T

0
J(t)2sin(2π fct)

√
A2

4E
hQ,n(t)dt

=
√

EJ/h̄c

(

cos(θ )
1
T

∫ T

0
hQ,n(t)

(
sin(2πΔ f t)− sin(2πΣ f t)

)
dt

+ sin(θ )
1
T

∫ T

0
hQ,n(t)

(
cos(2πΔ f t)− sin(2πΣ f t)

)
dt

)

. (9.88)

Combining the signal, noise, and tone interference terms gives

ZI = ZI(s)+ZI(n)+ZI(J),

ZQ = ZQ(s)+ZQ(n)+ZQ(J). (9.89)

Hence, ZI and ZQ are independent Gaussian random variables with means

E[ZI] = xI,n

√
E + II

√

EJ/h̄c,

E[ZQ] = xQ,n

√
E + IQ

√

EJ/h̄c, (9.90)
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and variance No/2, where

II = cos(θ )
1
T

∫ T

0
hI,n(t)

(
cos(2πΣ f t)+ cos(2πΔ f t)

)
dt

−sin(θ )
1
T

∫ T

0
hI,n(t)

(
sin(2πΣ f t)+ sin(2πΔ f t)

)
dt, (9.91)

IQ = cos(θ )
1
T

∫ T

0
hQ,n(t)

(
sin(2πΔ f t)− sin(2πΣ f t)

)
dt

+sin(θ )
1
T

∫ T

0
hQ,n(t)

(
cos(2πΔ f t)− sin(2πΣ f t)

)
dt. (9.92)

9.4.1 Short Code

For the purpose of illustration, assume a rectangular chip shaping pulse hc(t) =
uTc(t) so that h̄c = 1 in (9.90), and assume a short code (G = N) so that each
data symbol is spread by the same sequence. Furthermore, assume that the same
spreading sequence is used on the in-phase and quadrature components of the
modulated carrier such that

h(t) = hI,n(t) = hQ,n(t) =
G−1

∑
k=0

akuTc(t − kTc). (9.93)

It follows that

II = cos(θ )
1

NTc

∫ NTc

0

N−1

∑
k=0

akuTc(t − kTc)
(
cos(2πΣ f t)+ cos(2πΔ f t)

)
dt

−sin(θ )
1

NTc

∫ NTc

0

N−1

∑
k=0

akuTc(t − kTc)
(
sin(2πΣ f t)+ sin(2πΔ f t)

)
dt

=
1
N

N−1

∑
k=0

ak

(

cos(θ )
∫ k+1

k

(
cos(2πΣ f Tct)+ cos(2πΔ f Tct)

)
dt

− sin(θ )
∫ k+1

k

(
sin(2πΣ f Tct)+ sin(2πΔ f Tct)

)
dt

)

. (9.94)

Likewise,

IQ =
1
N

N−1

∑
k=0

ak

(

cos(θ )
∫ k+1

k

(
sin(2πΔ f Tct)− sin(2πΣ f Tct)

)
dt

+ sin(θ )
∫ k+1

k

(
cos(2πΔ f Tct)− sin(2πΣ f Tct)

)
dt

)

. (9.95)
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Fortunately, the above integrals exist in closed form. Defining

α �
= 2πΣ f Tc, (9.96)

β �
= 2πΔ f Tc (9.97)

we have

II =
1
N

N−1

∑
k=0

ak

(

cos(θ )
(

sin((k+ 1)α)− sin(kα)

α
+

sin((k+ 1)β )− sin(kβ )
β

)

−sin(θ )
(

cos(kα)−cos((k+ 1)α)

α
+

cos(kβ )−cos((k+1)β )
β

))

(9.98)

and

IQ =
1
N

N−1

∑
k=0

ak

(

cos(θ )
(

cos(kβ )−cos((k+1)β )
β

−cos(kα)−cos((k+ 1)α)

α

)

+ sin(θ )
(

sin((k+ 1)β )−sin(kβ )
β

−cos(kα)−cos((k+ 1)α)

α

))

.

(9.99)

Due to the random phase of the tone interferer, the tone interference is circularly
symmetric similar to AWGN. This allows us to rotate the signal constellation for the
purpose of calculating the bit error probability. The rotated constellation is shown
in Fig. 9.16. In the absence of tone interference, the probability of correct symbol
reception is

P[c] = (1−Pb)
2, (9.100)

where

Pb = Q
(√

2γb

)
(9.101)

is the bit error probability, and γb = Eb/No is the received bit energy-to-noise ratio.
When tone interference is present, the probability of correct reception is

PC|b0b1
= (1−Pb1)(1−Pb2). (9.102)

Observe that the error probability depends on the transmitted symbol and the
interference impairment II and IQ. Referring to Fig. 9.16

PC|00 = (1−Pb1)(1−Pb2), (9.103)
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Fig. 9.16 QPSK signal
constellation with tone
interference

EJ EJ
IcIc

EJ
Is

EJ
Is

decision

Z

Z

s

c
- + +

+

- +

boundaries

01

0011

10

E

E

E

E

where

Pb1 = Pb2 = Q

(√
2Eb
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I
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)

. (9.104)

Hence, we can write

Pb|00 = Q

(√
2Eb

No

(
1+ 2

√
EJ/EII +(EJ/E)2I2

I

)
)

. (9.105)

In a similar fashion,

Pb|01 = Q

(√
2Eb

No

(
1+ 2

√
EJ/EIQ +(EJ/E)2I2

Q

)
)

, (9.106)

Pb|11 = Q

(√
2Eb

No

(
1− 2

√
EJ/EII +(EJ/E)2I2

I

)
)

, (9.107)

Pb|10 = Q

(√
2Eb

No

(
1− 2

√
EJ/EIQ +(EJ/E)2I2

Q

)
)

. (9.108)

Since all symbols are equally likely, the bit error probability is

Pb =
1
4
(Pb|00 +Pb|11+Pb|10+Pb|01). (9.109)
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Fig. 9.17 Bit error
probability with length-15
m-sequence
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Observe that the bit error probability depends on II and IQ. However, II and IQ are
random variables due to the random phase θ . Therefore, the bit error probability
must be calculated by averaging (9.109) over random phase of the tone interferer.

Figure 9.17 shows the bit error probability when the length-15 m-sequence a(2)

in (9.66) is used as a short code (G = 15). Fig 9.17 arbitrarily assumes that fc =
280 MHz, and Tc = 191×10−9 s. Observe that the bit error probability varies greatly
with the frequency of the tone interferer. It is interesting to note that an interfering
tone placed at the carrier frequency fc does not give the worst case performance.
Also, the bit error probability is seen to exhibit an error floor due to the AWGN.

Figure 9.18 shows the bit error probability when the length-11 Barker sequence
a(1) in (9.66) is used as a short code (G = 11). Observe that the length-11 Barker
sequence generally has worse performance for the same E/EJ than the length-15 m-
sequence, except at frequencies where the length-15 m-sequence is highly sensitive
to tone interference. This is because the length-11 Barker sequence has a lower
processing gain compared to the length-15 m-sequence.

Figure 9.19 inverts Fig. 9.17 and plots the E/EJ required to achieve a bit error
rate of 10−6 with the length-15 m-sequence in the presence of a single tone interferer
and AWGN. Likewise, Fig. 9.20 inverts Fig. 9.18 for the length-11 Barker sequence.
Observe that the sensitivity to tone interference is much less with the Barker
sequence.

The sensitivity of the error probability to the frequency of the tone interferer can
be explained as follows. The data symbols on the in-phase and quadrature channels
are spread using the amplitude shaping pulse

h(t) =
N−1

∑
k=0

akhc(t − kTc), (9.110)
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Fig. 9.18 Bit error
probability with the length-11
Barker sequence
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Fig. 9.19 Required C/I to
achieve 10−6 bit error rate
with a length-15 m-sequence
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where {ak}N−1
k=0 is the periodic spreading sequence of length N. After quadrature

demodulation, the receiver uses a correlator or matched filter detector having
the impulse response3

3We assume the usual case where hc(−t) = hc(t).
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Fig. 9.20 Required C/I to achieve 10−6 bit error rate with a length-11 Barker sequence

hr(t) = h∗(NTc − t)

=
N−1

∑
k=0

aN−khc(t − kTc). (9.111)

The filter hr(t) has transfer function

Hr( f ) =
∫ ∞

−∞
hr(t)e−j2π f tdt

=
∫ ∞

−∞

N−1

∑
k=0

aN−khc(t − kTc)e−j2π f tdt

=
N−1

∑
k=0

aN−k

∫ ∞

−∞
hc(t − kTc)e

−j2π f tdt

= Hc( f )
N−1

∑
k=0

aN−ke−j2π f kTc

= Hc( f )A( f ), (9.112)
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where

A( f ) =
N−1

∑
k=0

aN−ke−j2π f kTc . (9.113)

For a rectangular chip shaping function hc(t) = uTc(t),

Hc( f ) = sinc( f Tc)e
−jπ f Tc . (9.114)

The corresponding amplitude response |Hr( f )| for the length-15 m-sequence and
the length-11 Barker sequence are identical in form to the corresponding transmitted
psds shown in Fig. 9.14 and 9.13, respectively. The frequencies where |Hr( f )| has
the highest relative gain are the exact same frequencies where the tone interferer
causes a large error probability. If the length of the short code is increased, the
sensitivity to tone interference will not necessarily diminish. To make the receiver
less sensitive to tone interference, we must ensure that the period autocorrelation
function in (9.21) is a close to ideal as possible. In other words, the power spectrum
Φk,k( f ) defined in (9.62) is as flat as possible. Although some types of sequences,
such as Gold and Kasami sequences, have excellent cross-correlation properties,
their aperiodic autocorrelation functions are usually far from ideal resulting in a
power spectrum Φk,k( f ) is typically full of peaks and nulls. The Barker sequences
have the best aperiodic autocorrelation properties for a given sequence length N
when they exist, and will result in the least sensitivity to tone interference.

9.4.2 Short Code Design

Sometimes it is desirable to construct short sequences of a given sequence length
N that have good aperiodic autocorrelation properties with a corresponding power
spectrum that is as flat as possible. One possibility is to design such sequences
based on a MMSE criterion baaed on their aperiodic autocorrelation function
in (9.21). The ideal aperiodic autocorrelation function is the perfect “thumb-tack”

function φ a (ideal)
k,k (n) = δ (n). In this case, the DTFT of φ a (ideal)

k,k (n) gives the flat
power spectrum Φa( f ) = 1. However, binary spreading codes having ideal aperiodic
autocorrelation functions do not exist for any length. However, we can design short
spreading sequences to minimize the mean square error (MSE)

ε =
1
N

N−1

∑
n=0

(
φ a

k,k(n)−φ a (ideal)
k,k (n)

)2
(9.115)

=
1
N

N−1

∑
n=1

(
φ a

k,k(n)
)2
, (9.116)



560 9 Spread Spectrum Techniques

where we can start the summation at n = 1 since φ a
k,k(0) = 1 for any sequence.

Unfortunately, there is no easy way to find such sequences. However, for relatively
small N the sequences can be found by an exhaustive computer search. For sequence
lengths N = 2,3,4,5,7,11 and 13, the above process will generate the Barker
sequences in Sect. 9.2.5, along with their mirror images (time reversed sequences).
So the Barker sequences are optimal in a minimum mean square sense.

Example 9.1:
Suppose that we wish to find MMSE binary spreading sequences of length

N = 15. In this case, the following four sequences will minimize the MSE in
(9.116):

x1 = {−1− 1− 1−1−1+1+1−1− 1+1+1−1+1−1+1},
x2 = {+1− 1+ 1−1+1+1−1−1+ 1+1−1−1−1−1−1},
x3 = {−1− 1− 1+1+1+1−1+1+ 1+1−1+1+1−1+1},
x4 = {+1− 1+ 1+1−1+1+1+1− 1+1+1+1−1−1−1}.

Observe that x1 and x3 are the mirror images (time reversals) of x2 and x4,
respectively. The aperiodic autocorrelation function for all four sequences is
identical and the scaled version Nφ a(n) is plotted in Fig. 9.21. Each sequence
has ε = 1 with a maximum “off-peak” aperiodic autocorrelation value equal
to maxnNφ a(n) = 3.

The corresponding psd achieved with these sequences is shown in Fig. 9.22
for the case of rectangular chip shaping, hc(t) = uTc(t). Note that the power
spectrum exhibits considerably less variation than that corresponding to the
length-15 m-sequence in Fig. 9.14, but is not as good as that corresponding to
the length-11 Barker sequence in Fig. 9.13.

9.4.3 Long Code

With a long code, each data symbol is spread with a subsequence of a long PN
sequence. In this case, the error probability must be averaged over the starting phase
of the PN subsequence that is used to spread each data symbol.

Figure 9.23 shows the effect of using a long PN sequence. Three cases are
considered; a length-31 m sequence with generator polynomial 1 + x2 + x5, a
length-127 m-sequence with generator polynomial 1+ x+ x7, and a length-2047 m-
sequence with generator polynomial 1+ x+ x11. Figure 9.24 shows the length-63
m-sequence with generator polynomial 1+ x+ x6. The processing gain in each case
is G = 15 chips/symbol. For the length-63 m-sequence, 15 and 63 have a common
factor of 3 and, therefore, there are three different sets of subsequences to consider.
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Fig. 9.21 Aperiodic
autocorrelation for optimized
length-15 sequences
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Fig. 9.22 Power spectrum
with optimized length-15
sequences
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Observe that the bit error probability with a long code is less sensitive to the
tone frequency as compared to a short code. For sequence lengths of 127 and 2,047,
the bit error probability is maximized when fJ = fc. For all three sequence lengths,
there are still some spectral irregularities, because the length of the shift register
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Fig. 9.23 Bit error
probability with length-31,
127, and 2,047 m-sequences
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Fig. 9.24 Bit error
probability with length-63
m-sequence
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(5, 7, and 11) that is used to generate the PN sequence is less than the processing
gain (15). Hence, the data symbols are not spread with all possible binary N-tuples,
thus leading to the irregularities observed in Fig. 9.23. It is interesting to note that
the length-2047 m-sequence seems to be more sensitive to an interfering tone at the
carrier frequency than the length-127 m-sequence. The reason is that the length-15



9.5 DS Spread Spectrum on Frequency-Selective Fading Channels 563

subsequences of the length-127 m-sequence tend to be more balanced (equal number
of −1’s and 1’s) than the length-15 subsequences of the length-2047 m-sequence.

Finally, comparison of Figs. 9.17 and 9.23 leads to the observation that the bit
error probability with the short length-15 PN sequence is worse than that realized
with a long PN sequence (e.g., the length-127 m-sequence) with a processing gain
of 15 only over four narrow ranges of interfering tone frequencies.

9.5 DS Spread Spectrum on Frequency-Selective
Fading Channels

Suppose that the DS complex envelope s̃(t) is strictly bandlimited to a bandwidth
of W/2 Hz using, for example, root-raised cosine pulse shaping. Since the low-pass
signal s̃(t) is band-limited to | f | ≤ W/2, the sampling theorem can be invoked and
s̃(t) can be completely described by the set of complex samples {s̃(n/W)}∞

n=−∞.
The sampled version of s̃(t) is

s̃δ (t) =
∞

∑
n=−∞

s̃
( n

W

)
δ
(

t − n
W

)
(9.117)

= s̃(t)
∞

∑
n=−∞

δ
(

t − n
W

)
. (9.118)

Taking the Fourier transform of both sides of (9.118) gives

S̃δ ( f ) = S̃( f )∗W
∞

∑
n=−∞

δ ( f − nW)

= W
∞

∑
n=−∞

S̃( f )∗ δ ( f − nW)

= W
∞

∑
n=−∞

S̃( f − nW). (9.119)

From (9.119), we can see that

S̃( f ) =
1

W
S̃δ ( f ) , 0 ≤ | f | ≤ W/2. (9.120)

Another useful expression can be obtained by taking the Fourier transform of
both sides of (9.117) giving

S̃δ ( f ) =
∞

∑
n=−∞

s̃
( n

W

)
e−j2πn f/W . (9.121)
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Combining (9.120) and (9.121) gives

S̃( f ) =
1

W

∞

∑
n=−∞

s̃
( n

W

)
e−jπn f/W , 0 ≤ | f | ≤ W/2. (9.122)

If the low-pass signal s̃(t) is transmitted over a multipath fading channel with
time-variant transfer function T ( f , t), the received (noiseless) complex envelope is

r̃(t) =
∫ ∞

−∞
S̃( f )T ( f , t)ej2π f t d f . (9.123)

Substituting S̃( f ) from (9.122) gives

r̃(t) =
1
W

∞

∑
n=−∞

s̃
( n

W

)∫ ∞

−∞
T ( f , t)e−j2π f (t−n/W )d f

=
1
W

∞

∑
n=−∞

s̃
( n

W

)
g
(

t − n
W

, t
)

=
1
W

∞

∑
n=−∞

s̃
(

t − n
W

)
g
( n

W
, t
)
, (9.124)

where g(τ, t) is the time-variant impulse response of the channel. By defining

gn(t) =
1

W
g
( n

W
, t
)
, (9.125)

the noiseless received complex envelope can be written as

r̃(t) =
∞

∑
n=−∞

gn(t)s̃
(

t − n
W

)
, (9.126)

and it follows that the complex low-pass impulse response of the channel is

g(t,τ) =
∞

∑
n=−∞

gn(t)δ
(

τ − n
W

)
. (9.127)

For WWSUS channels, the {gn(t)} in (9.125) are independent complex Gaussian
random processes. For all practical purposes, the channel will be causal with an
impulse response that is nonzero over a time interval of duration Tmax. In this case,
gn(t) = 0, n ≤ 0,n > L, where L = �Tmax/W�+ 1 and �x� is the smallest integer
greater than x. It follows that the channel impulse response is

g(t,τ) =
L

∑
n=1

gn(t)δ
(

τ − n
W

)
. (9.128)
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Fig. 9.25 Tapped delay line model of a frequency selective fading channel, from [217]

In conclusion, the frequency selective fading channel can be modeled as an L-tap,
1/W -spaced, tapped delay line with tap gain vector

g(t) = (g1(t),g2(t), . . . ,gL(t))

as shown in Fig. 9.25. It should be emphasized that the channel vector g(t) is not the
same as the channel vector gT(t) associated with the T -spaced discrete-time white
noise channel model in Sect. 2.5.6.

If ideal Nyquist chip amplitude pulse shaping is used such that hc(t) = sinc(t/Tc),
then W = 1/Tc and the channel can be represented as a Tc-spaced or chip-spaced
tapped delay line. Such a model is very convenient because it leads to a simplified
analysis. However, if any other pulse shape is used, such as a root-raised cosine
pulse, then the tapped delay line channel model in Fig. 9.25 is not Tc-spaced,
for example, a root-raised cosine pulse with β = 1 (or 100% excess bandwidth)
results a Tc/2-spaced tapped delay line. Moreover, the 1/W -spaced tapped delay
line model was derived under the assumption of a strictly band-limited (noncausal)
chip shaping pulse hc(t). Any time-limited (causal) chip shaping pulse leads to a
spectrum S̃( f ) that is not band-limited and, therefore, the underlying assumptions
in deriving the 1/W -spaced tapped delay line model are violated. Very often, the
channel is approximated as consisting of uncorrelated Tc-spaced rays, that is,

g(t,τ) =
∞

∑
n=−∞

gn(t)δ (τ − nTc) . (9.129)

9.5.1 RAKE Receiver

A variety of receiver structures can be used to detect DS spread spectrum signals.
For DS CDMA where multiple users share the same band, there are two broad types
of detectors. The first is a conventional correlator or matched filter detector. With a
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conventional detector the other user interference, or multiple-access interference, is
treated as additional unwanted noise. The second is a multiuser detector that uses
co-channel demodulation to simultaneously detect all the signals that are present.
In this section, we concentrate on conventional detectors for DS spread spectrum
signaling on multipath fading channels.

A simple type of conventional detector uses the autocorrelation properties of
the spreading sequences to reject the multipath interference [107, 108]. Sometimes
this is called a multipath rejection receiver. Another approach is to exploit the
autocorrelation properties of the spreading sequences to resolve the multipath
components and combine them together to obtain a diversity advantage. Since the
diversity is obtained from the multipath channel, it is sometimes called multipath
diversity.

To develop the multipath diversity receiver, suppose that one of M possible
waveforms having complex envelopes s̃m(t),m = 0, . . . ,M − 1 are transmitted at
each baud epoch. With the frequency-selective fading channel shown in Fig. 9.25,
the corresponding received complex envelope is

r̃(t) =
L

∑
�=1

g�(t)s̃m

(

t − �

W

)

+ ñ(t) = ŝm(t)+ ñ(t), (9.130)

where

ŝm(t) =
L

∑
�=1

g�(t)s̃m

(

t − �

W

)

. (9.131)

As discussed in Sect. 5.2, the maximum likelihood coherent receiver uses a correla-
tor or matched filter to the possible received pulses ŝm(t) to compute the metrics

μ(m) = Re

{∫ T

0
r̃(t)ŝ∗m(t)dt

}

−Em̂

= Re

{
∫ T

0
r̃(t)

L

∑
�=1

g∗
�(t)s̃

∗
m(t − �/W)dt

}

−Em̂, (9.132)

where Em̂ is energy in the received pulse ŝm(t). The receiver chooses the index m
that maximizes μ(m).

The receiver described by (9.132) correlates the received complex envelope r̃(t)
with delayed versions of the possible waveforms s̃m(t), followed by maximal ratio
combining. This leads to the receiver structure shown in Fig. 9.26. By changing the
variable of integration in (9.132), an alternate form of the RAKE receiver can be
obtained as shown in Fig. 9.27. In this case the waveform s̃m(t) is correlated with
delayed versions of the received complex envelope r̃(t). The receivers in Figs. 9.26
and 9.27 were first derived by Price and Green [215], and are commonly called
RAKE receivers due to their function and resemblance to a ordinary garden rake.
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9.5.2 Error Probability of DS/BPSK with a RAKE Receiver

Consider DS/BPSK signaling with a short PN code (G = N). The two possible
DS/BPSK waveforms that are transmitted at each baud epoch have the complex
envelopes

s̃0(t) =−s̃1(t) = Ah(t), (9.133)
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where

h(t) =
N−1

∑
k=0

akhc(t − nTc). (9.134)

With DS/BPSK the received waveforms ŝm(t) have equal energy, so the bias term
Em̂ in (9.132) is not needed. Assume that s̃0(t) is transmitted. Then using (9.132)

μ =
L

∑
m=1

L

∑
�=1

Re

{

gmg∗
�

∫ T

0
s̃0(t −m/W)s̃∗0(t − �/W)dt

}

+ ñ, (9.135)

where

ñ =
L

∑
m=1

Re

{

g∗
m

∫ T

0
ñ(t)s̃∗0(t −m/W)dt

}

(9.136)

and gm = αmejφm . The random variable ñ is Gaussian with zero-mean and variance

σ2
ñ = 2ENo

L

∑
m=1

α2
m. (9.137)

In general, the integral in (9.135) is a complicated function of the spreading
sequence and chip amplitude shaping pulse that is used. However, certain cases lead
to useful insight. For example, suppose the ideal Nyquist pulse hc(t) = sinc(t/Tc)
with bandwidth W = 1/Tc is used. Strictly speaking, this pulse is noncausal; so the
limits of integration in (9.135) must be from −∞ to ∞. This leads to4

I ≡
∫ ∞

−∞
s̃0(t −m/W)s̃∗0(t − �/W)dt

= A2
N−1

∑
k=0

N−1

∑
j=0

aka j

∫ ∞

−∞
hc(t − (m+ k)Tc)hc(t − (�+ j)Tc)dt

= A2
N−1

∑
k=0

akam+k−�

∫ ∞

−∞
h2

c(t)dt

= 2EcNφaa(m− �) = 2Eφaa(m− �), (9.138)

where the second last step follows under the assumption of a short code. Therefore,
(9.135) becomes

μ = 2E
L

∑
m=1

α2
m + 2E

L

∑
m=1

L

∑
�=1
� �=m

Re{gmg∗
�}φaa(m− �)+ ñ. (9.139)

The second term in the above expression is a self interference that arises from the
nonideal autocorrelation properties of the spreading sequence.

4Since DS/BPSK signaling is used, the spreading sequence a is real with autocorrelation function
φaa(n) = E[aiai+n].
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To demonstrate the effect of the self interference, assume a WSSUS Rayleigh
fading channel and consider the random variable

Ym,� = Re{gmg∗
�}

= αm cos(φm)α� cos(φ�)+αm sin(φm)α� sin(φ�). (9.140)

Define the new random variables

XI,k = αk cos(φk) XQ,k = αk sin(φk). (9.141)

Then

αk =
√

X2
I,k +X2

Q,k φk = Tan−1 XI,k

XQ,k
. (9.142)

Therefore,
Ym,� = XI,mXI,�+XI,mXI,�. (9.143)

Since the XI,k and XI,k are independent zero-mean Gaussian random variables with
variance σ2

k , Ym,� has the Laplacian density

pYm,�
(y) =

1
2σmσ�

exp

{

− |y|
σmσ�

}

. (9.144)

Making the substitution for Ym,� and rearranging the sum in the second term in
(9.139) give

μ = 2E
L

∑
m=1

α2
m + 4E

L−1

∑
k=1

L−1−k

∑
i=1

Yi,i+kφaa(k)+ ñ. (9.145)

It is difficult to evaluate the effect of the self-interference exactly, because the Ym,�

are non-Gaussian and correlated. However, the self-interference due to multipath
can be minimized using spreading codes that have small autocorrelation sidelobes in
the time intervals during which delayed signals with significant power are expected.
For large delays, the stringent requirements on the autocorrelation function can be
relaxed. For asynchronous CDMA applications, the spreading codes still must have
small cross-correlation sidelobes over all delays. It is easy to find reasonably large
sets of sequences that satisfy these properties. For example, a set of 2m + 1 Gold
sequences can be generated of length 2m−1. Of these 2m+1 sequences, 2m−n+1+1
will have their first autocorrelation off-peak (tm − 2 or tm) at least n chip durations
from the main autocorrelation peak. Consequently, these 2m−n+1+1 sequences will
introduce negligible self-interference if they are used on channels having impulse
responses up to nTc seconds long.

If the spreading sequences have an ideal autocorrelation function, that is,
φaa(n−m) = δnm, then there is no self-interference and (9.145) becomes

μ = 2E
L

∑
m=1

α2
m + ñ. (9.146)
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Under this condition, the probability of bit error is

Pb(γb) = Q
(√

2γb

)
, (9.147)

where γb is the received bit energy-to-noise ratio given by

γb =
1

σ2
ñ

(

2E
L

∑
m=1

α2
m

)2

=
L

∑
m=1

γm, (9.148)

where

γm =
α2

mE
No

. (9.149)

With Rayleigh fading, each of the γm are exponentially distributed with density
function

p(γm) =
1

γ̄m
exp

{

− γm

γ̄m

}

, (9.150)

where γ̄m is the average received bit energy-to-noise ratio for the kth channel tap. To
compute the density of γb, first note that the characteristic function of γm is

ψγm( jv) =
1

1− jvγ̄m
(9.151)

so that the characteristic function of γb is

ψγb( jv) =
L

∏
m=1

1
1− jvγ̄m

. (9.152)

Using a partial fraction expansion and taking the inverse characteristic function, the
density of γb is

pγb(x) =
L

∑
m=1

Am

γ̄m
exp

{

− x
γ̄k

}

, (9.153)

where

Am =
L

∏
i=1
i �=m

γ̄m

γ̄m − γ̄i
. (9.154)

Therefore, with Rayleigh fading the average probability of bit error is

Pb =
∫ ∞

0
Q
(√

2x
)

pγb(x)dx

=
1
2

L

∑
m=1

Am

(

1−
√

γ̄m

1+ γ̄m

)

. (9.155)
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Fig. 9.28 Bit error
probability with a RAKE
receiver for DS/BPSK
signaling on a multipath
fading channel. The channel
has L = 4 taps and a 4-tap
RAKE receiver is used
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In order to proceed further, the γ̄m must be specified. One plausible model assumes
an exponentially decaying power delay profile, for example,

γ̄m =Ce−k/ε , (9.156)

where ε controls the delay spread and C is chosen to satisfy the constraint
∑L

m=1 γ̄m = γ̄b. Solving for C yields

γ̄m =
(1− e−1/ε)e−k/ε

e−1/ε − e−(L+1)/ε γ̄b. (9.157)

The probability of bit error is plotted in Fig. 9.28 for L = 4 and various values
of ε . For small ε , the channel is not dispersive and very little multipath diversity is
obtained. However, as ε becomes large the channel becomes more dispersive and a
greater diversity gain is achieved.

Finally, we note that the number of taps actually used in the RAKE receiver can
be less than the channel length L. However, such a RAKE receiver will not capture
all the received signal energy and will suffer from some loss in performance.
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9.6 CDMA Multiuser Detection

The previous sections have considered the performance of DS CDMA with conven-
tional correlation detection where the multiple access interference was treated as
an unwanted impairment that can have a detrimental effect on system performance.
This section considers the use of CDMA multiuser detection to combat multiple-
access interference. The concept of DS CDMA multiuser detection is very similar
to the concept of co-channel demodulation discussed in Sect. 7.7. However, instead
of distinguishing users by their different received pulses due to their signals
propagation through different frequency-selective fading channels, DS CDMA
multiuser detection distinguishes the different users by assigning them different
spreading sequences. In any case, the mathematical development is very similar and
we will use results from Sect. 7.7 in our treatment of CDMA multiuser detection.

Once again, we consider a CDMA system consisting of K users that use short
spreading codes. The transmitted complex envelope for the ith user is given by

s̃(i)(t) = A
L

∑
n=1

x(i)n a(i)(t − nT ), (9.158)

where

a(i)(t) =
N−1

∑
k=0

a(i)k hc(t − kTc), (9.159)

and a(i) = {a(i)0 , . . . ,a(i)N−1} and x(i) = {x(i)1 , . . . ,x(i)L } are the ith user’s length-N
spreading sequence and length-L data sequence, respectively. The data symbols

x(i)n are assumed to be independently chosen from the set {−1,+1} with equal
probability. The received complex envelope is given by

r̃(t) = A
K

∑
i=1

gis̃
(i)(t − τi)+ ñ(t), (9.160)

where the {gi}, gi = αiejφi and {τi} are the sets of random complex gains and
delays that are introduced by the channel. The delays are assumed to satisfy the
condition 0 ≤ τi ≤ T for 1 ≤ i ≤ K, where T is the data symbol duration. In the
case of synchronous CDMA transmission, τi = 0 for 1 ≤ i ≤ K. Unlike the case of
conventional correlation detection, the CDMA signals are not power controlled and
may be received with different power levels due to the different channel gains αi for
1 ≤ i ≤ K. The fact that power control is not needed is a benefit of CDMA multiuser
detection.

9.6.1 Optimum CDMA Multiuser Detection

The optimum CDMA multiuser detector determines the most likely sequence of

transmitted bits x(i) = {x(i)1 , . . . ,x(i)L } for all users 1 ≤ i ≤ K, given the observation of
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the received waveform r̃(t). There are generally two cases to consider: synchronous
CDMA and asynchronous CDMA. However, for our purpose we only consider
synchronous CDMA where the received complex envelope is given by

r̃(t) = A
K

∑
i=1

gis̃
(i)(t)+ ñ(t). (9.161)

In this case, it is sufficient to consider the received pulse corresponding to the kth
baud interval, given by

r̃(t) = A
K

∑
i=1

gix
(i)a(i)(t)+ ñ(t), (9.162)

and to detect the corresponding data vector x = {x(1), . . . ,x(K)}. Similar to the
development in Sect. 7.7, we can use a complete set of complex orthonormal basis
functions to represent the received waveform r̃(t) as a vector r̃ = {r̃n}, such that

r̃n = A
K

∑
i=1

gix
(i)a(i)n + ñn, (9.163)

where

a(i)n =

∫ ∞

−∞
a(i)(t)ϕ∗

n (t)dt, (9.164)

ñn =
∫ ∞

−∞
ñ(t)ϕ∗

n (t)dt. (9.165)

The ñn are uncorrelated zero-mean complex Gaussian random variables with
variance 1

2 E[|ñn|2] = No, so that the received vector r̃ has the joint conditional
complex multivariate Gaussian density

p(r̃|x) =
N

∏
n=1

1
2πNo

exp

⎧
⎨

⎩
− 1

2No

∣
∣
∣
∣
∣
r̃n −A

K

∑
i=1

gix
(i)a(i)n

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
. (9.166)

The optimum receiver chooses vector of symbols x = {x(1), . . . , x(K)} to maximize
p(r̃|x) or, equivalently, to minimize the metric

μ(x) =
N

∑
n=1

∣
∣
∣
∣
∣
r̃n −A

K

∑
i=1

gix
(i)a(i)n

∣
∣
∣
∣
∣

2

. (9.167)
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Since ∑N
n=1 |r̃n|2 is independent of x, maximizing (9.167) is equivalent to

maximizing

μ(x) = 2Re

{

A
K

∑
i=1

g∗
i x(i)

∗ N

∑
n=1

r̃na(i)
∗

n

}

−A2
K

∑
i=1

K

∑
i′=1

gix
(i)g∗

i x(i
′)∗

N

∑
n=1

a(i)n a(i
′)∗

n .

(9.168)

In the limit as the number of observable random variables N approaches infinity, we
define

y(i)
�
= lim

N→∞

N

∑
n=1

r̃na(i)
∗

n =

∫ ∞

−∞
r̃(t)a(i)

∗
(t)dt, (9.169)

Ri,i′
�
= lim

N→∞

N

∑
n=1

a(i)n a(i
′)∗

n =

∫ ∞

−∞
a(i)(t)a(i

′)∗(t)dt. (9.170)

Using (9.169) and (9.170) in (9.168), we arrive at the final form

μ(x) = 2Re

{

A
K

∑
i=1

g∗
i x(i)

∗
y(i)
}

−A2
K

∑
i=1

K

∑
i′=1

gix
(i)g∗

i x(i
′)∗Ri,i′ . (9.171)

The variables {y(i)}, 1 ≤ i ≤ K in (9.169) are obtained by passing the received
complex envelope r̃(t) through a bank of K correlators or matched filters and
sampling the outputs. This essentially despreads and detects the received signal.
The parameter Ri,i′ in (9.170) is equal to the full period cross-correlation between

the spreading waveforms a(i)(t) and a(i
′)(t).

The decision metric in (9.171) can be put into a convenient vector product form
as follows:

μ(x) = 2Re
{

xHG∗y
}− xHG∗RGx, (9.172)

where

y =
(

y(1),y(2), . . . ,y(K)
)T

, (9.173)

x = (x(1),x(2), . . . ,x(K))T, (9.174)

G = diag[Ag1,Ag2, . . . ,AgK ], (9.175)

R =
[
Ri,i′
]

K×K (9.176)

and xH is the complex conjugate transpose of x. Note that the optimum detector
must know or estimate the complex channel gains gi, 1 ≤ i ≤ K to compute the
decision metrics. The matrix R can be assumed to be known, since the spreading
sequences are known. It is apparent that the complexity of the optimal detector
grows exponentially with the number of users K and becomes impractical for large
K. For this reason, a number of suboptimum CDMA multiuser detectors have been
suggested in the literature.
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9.6.2 Decorrelating Detector

The vector of samples at the output of the K correlators or matched filters is

y = GRx+ν, (9.177)

where the zero mean Gaussian noise vector

ν =
(

ν(1),ν(2), . . . ,ν(K)
)T

(9.178)

has covariance matrix

Φνν =
1
2

E
[
ννH
]
= NoR. (9.179)

It follows that the vector y has a joint conditional complex Gaussian distribution
with mean GRx and covariance matrix NoR. That is,

p(y|x) = 1

(πNo)K |R|1/2
exp

{

− 1
No

(y−GRx)HR−1(y−GRx)
}

. (9.180)

The best linear estimate of x is the one that minimizes the metric

μ(x) = (y−GRx)HR−1(y−GRx), (9.181)

which results in the solution

x̃ = R−1G−1y. (9.182)

To see how the decorrelator works, we can substitute (9.177) into (9.182) to obtain

x̃ = x+R−1G−1ν. (9.183)

Finally, the binary symbol decisions are obtained by

x̂ = sign(x̃). (9.184)

Note that the decorrelator detector removes the multiuser interference in the signal
terms, and this makes the detector near-far resistance so that power control is not
necessary. Also, the decorrelator detector inverts the channel G. This will result in
noise enhancement for users that have small channel gains, gi. Also, if one or more
pairs of spreading sequences are highly correlated, the matrix R is ill-conditioned
and will also cause noise enhancement.
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9.6.3 Minimum Mean Square Error Detector

The MMSE detector is one that chooses the linear solution x̃ = Ay to minimize
the MSE

J(x) =
1
2

Ex,ν [‖x− x̃‖2] =
1
2

E[‖x−Ay‖2], (9.185)

where the expectation is over both the random data and noise vectors. The MMSE
solution occurs when the error vector x − Ay is orthogonal to the observation
vector y, that is,

1
2

Ex,ν [(x−Ay)yH] = 0,

1
2

Ex,ν [xyH]−A
1
2

Ex,ν [yyH] = 0. (9.186)

For the case of synchronous CDMA, we have

1
2

Ex,ν [xyH] =
1
2

Ex[xxHRHG∗]+
1
2

Eν [xνH] =
1
2

RHG∗ =
1
2

RG∗, (9.187)

since Ex[xxH] = I with uncorrelated data, the noise vector ν has zero mean, and R
is a Hermitian matrix, that is, RH = R. Also,

1
2

AEx,ν [yyH] =
1
2

AEx,ν [(GRx+ν)(GRx+ν)H]

= A
(

1
2

Ex[GRxxHRHG∗]+
1
2

Eν [ννH]

)

= A
(

1
2

GRRHG∗+NoR
)

= A
(

1
2

GRRG∗+NoR
)

. (9.188)

Substituting (9.187) and (9.188) into (9.186) and solving for A gives the equation

1
2

RG∗ −A
(

1
2

GRRG∗+NoR
)

= 0, (9.189)

which leads to the solution

Aopt =
[
GR+ 2No(G∗)−1]−1

. (9.190)

Using Aopt, the MMSE receiver computes the vector

x̃ = Aopty (9.191)
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and makes the decisions
x̂ = sign(x̃). (9.192)

Like the decorrelator detector, the MMSE detector is near-far resistant. Also, from
(9.190), if the noise is negligible compared to the multiuser interference, that is,
No = 0, then Aopt = R−1G−1 and the MMSE detector reduces to the decorrelator
detector. On the other hand, if the noise is dominant compared to the multiuser
interference, that is, No is large, then from (9.190), Aopt = G∗/2No. In this case, the
MMSE detector reduces to the conventional correlation detector.

Problems

9.1. Suppose that a DS/BPSK spread spectrum signal is corrupted by a single,
phase-asynchronous, interfering tone at the carrier frequency. The received low-pass
waveform is

r̃(t) = s̃(t)+ ı̃(t),

where s̃(t) is defined in (9.4) and

ı̃(t) = Aiejφ ,

where φ is an arbitrary phase offset. Assume the use of a short Gold code (of
arbitrary length). Compute the probability of bit error with a simple correlation
detector.

9.2. Consider a DS/BPSK waveform that is subjected to broadband pulse jamming.
In particular, a jammer with total power J jams the DS/BPSK waveform a fraction
ρ of the time with AWGN having a two-sided psd

NJ

2ρ
=

J
2Wssρ

,

where Wss is the spread spectrum bandwidth, and NJ = J/Wss is the one-sided
spectral density achieved by spreading the total jammer power J over the spread
spectrum bandwidth Wss. During the remaining fraction of time 1−ρ , the jammer is
off and the received DS/BPSK waveform is assumed to be noise-free. It is assumed
that each modulated and spread BPSK symbol is either completely jammed or not
at all. The average received bit energy-to-jammer-noise ratio is defined as

γb =
Eb

NJ
=

WssS
RbJ

,

where S is the received desired signal power and Rb is the bit rate.
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(a) Obtain an expression for the probability of bit error as a function of the jamming
fraction ρ .

(b) Derive an expression for the jamming fraction ρ that will maximize the
probability of bit error. Note that jamming fraction must satisfy the constraint
0 < ρ ≤ 1.

(c) What is the maximum bit error probability corresponding to the worst case
jamming fraction found in part (b)?

9.3. Consider a noncoherently detected FH/BFSK waveform that is subjected to
partial band noise jamming. In particular, a jammer with total power J jams a
fraction ρ of the spread spectrum bandwidth Wss with AWGN having a two-
sided psd

NJ

2ρ
=

J
2Wssρ

,

where NJ = J/Wss is the one-sided spectral density achieved by spreading the total
jammer power J over the spread spectrum bandwidth Wss. The remaining fraction
1 − ρ of bandwidth is free of jamming and is also assumed to be noise-free. It
is assumed that each modulated and frequency-hopped BFSK symbol is either
completely jammed or not at all. The average received bit energy-to-jammer-noise
ratio is defined as

γb =
Eb

NJ
=

WssS
RbJ

,

where S is the received desired signal power and Rb is the bit rate.

(a) Obtain an expression for the probability of bit error as a function of the jamming
fraction ρ .

(b) Derive an expression for the jamming fraction ρ that will maximize the
probability of bit error. Note that jamming fraction must satisfy the constraint
0 < ρ ≤ 1.

(c) What is the maximum bit error probability corresponding to the worst case
jamming fraction found in part (b)?

9.4. The generator polynomials for constructing “Gold-like” code sequences of
length N = 7 are

p1(x) = 1+ x+ x3,

p2(x) = 1+ x2 + x3.

The sequences are said to be “Gold-like” because p1(x) and p2(x) are not a preferred
pair and, therefore, will not actually generate a set of Gold sequences. However, the
procedure used to construct the set sequences is similar to that used to construct
Gold sequences. Generate all the “Gold-like” codes of length 7 and determine the
cross-correlation functions of one sequence with each of the others.
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9.5. Consider the length-7 m-sequences that are generated by the polynomials

p1(x) = 1+ x+ x3,

p2(x) = 1+ x2 + x3.

(a) Find and sketch the full period autocorrelation functions of the sequences.
(b) Find and sketch the aperiodic autocorrelation function of the sequences.
(c) Find and sketch the full period cross-correlation function of the two sequences.
(d) Find the DTFT of the aperiodic autocorrelation function, Φa( f ), for each

sequence.

9.6. Consider the length-7 Barker sequence

a = (+1,+1,+1,−1,−1,+1,−1)

and its mirror image sequence

a = (−1,+1,−1,−1,+1,+1,+1).

(a) Find and sketch the full period autocorrelation functions of the sequences.
(b) Find and sketch the aperiodic autocorrelation function of the sequences.
(c) Find and sketch the full period cross-correlation function of the two sequences.
(d) Sketch the DTFT of the aperiodic autocorrelation function, Φa( f ), and find the

frequencies where it attains its maximum and minimum values.

9.7. Suppose that the following length-7 time-domain sequences are being pro-
posed for the synchronization word in an OFDM system having block size N = 7.

x1 = (+1,+1,+1,−1,−1,+1,−1),

x2 = (+1,+1,+1,−1,+1,−1,−1).

(a) Compute and plot the periodic autocorrelation function and aperiodic autocor-
relation function of these two sequences.

(b) Which sequence has better periodic autocorrelation characteristics for the
purpose of synchronization?

(c) By taking the DTFT of the aperiodic autocorrelation functions, compute the
power spectrum Φa( f ) in each case. Plot your results.

9.8. (Computer exercise) Write a computer program to generate a set of Gold
sequences of length 127.

(a) Plot the mean and variance of the partial period autocorrelation as a function of
the processing gain 10 ≤ G ≤ 20 for this set of Gold codes.

(b) Repeat part (a) for the partial period cross-correlation.
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9.9. (Computer exercise) Consider a DS/BPSK CDMA system that uses length-31
Gold codes. The kth user spreads their binary data using the Gold code

a(k) =
(

a(k)1 ,a(k)2 , . . . ,a(k)31

)
.

The complex envelope of the modulated waveform for the kth user is

s̃k(t) = A∑
n

x(k)n h(k)(t − nT ),

where

h(k)(t) =
31

∑
j=1

a(k)j uTc(t − jTc),

{x(k)n } is uncorrelated zero-mean binary data sequence, Tc is the chip duration, and
T = 31Tc is the data bit duration.

(a) Pick one of the length-31 Gold codes at random for the kth user and write down
the sequence. Plot the aperiodic autocorrelation function of sequence.

(b) Plot the power spectrum of the kth user S(k)s̃s̃ ( f ) against the normalized
frequency f Tb.

(c) Repeat parts (a) and (b) for a randomly chosen length-63 Gold code for the kth
user.

9.10. Plot the continuous-time partial autocorrelation functions of the chip wave-
form, Rh(δ ) and R̂h(δ ) in (9.32) and (9.33), respectively, as a function of the
fractional chip delay δ for the following chip shaping pulses:

ha(t) =

⎧
⎨

⎩

uTc(t) non-return-to-zero
sin(πt/Tc)uTc(t) half-sinusoid
1− 2|t −Tc/2|/TcuTc(t) triangular

9.11. Consider the set of Walsh–Hadamard sequences of length 16. Determine full
period autocorrelation φk,k(n) for this set of sequences. Tabulate your results in the
k× n matrix

ρ = [ρk,n]k×n,

where ρk,n = φk,k(n).

9.12. A WLAN system uses biorthogonal modulation based on the use of length-8
Walsh–Hadamard codewords. Following the discussion leading to (4.81), a set of 16
biorthogonal signals is constructed according to

s̃m(t) = A
8

∑
k=1

hmk hc(t − kTc) , m = 1, . . . ,8

= −s̃m(t) , m = 9, . . . ,16,
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where Tc is the “chip duration” and T = 8Tc is the symbol duration. Assume an
uncorrelated data sequence and assume that all 16 signals are used with equal
probability.

(a) Assuming that hc(t) = uTc(t), find the power density spectrum of the complex
envelope Ss̃s̃( f ).

(b) Plot the power spectrum Ss̃s̃( f ) against the normalized frequency f Tb, where Tb

is the bit duration.

9.13. A spread spectrum system transmits a binary data sequence x = {xk}, xi ∈
{−1,+1}, using the following length-3 short code spreading sequence

a = (−1,+1,+1).

(a) Compute and plot the full period autocorrelation of the sequence a.
(b) Compute and plot the aperiodic autocorrelation of the sequence a.
(c) Suppose the chip shaping function is

ha(t) = sin

(
πt
Tc

)

uTc(t).

What is the transmitted power density spectrum Ss̃s̃( f )?
(d) At which frequencies is the receiver most sensitive to tone interference?

9.14. (Computer exercise) Consider the four length-15 spreading sequences
identified in Example 9.1.

(a) Write a computer program to exhaustively search for and find the 4 sequences.
(b) The periodic autocorrelation and cross-correlation of these sequences are also

important to ensure rapid acquisition and to minimize multiuser interference.
Define the 4× 4 matrix Φ = [φk,k], where φk,k is defined as the maximum off-
peak periodic autocorrelation of sequence x(k) and φ j,k is the maximum cross-
correlation between x( j) and x(k). These quantities are defined by

φ j,k = max
n

∣
∣
∣
∣
∣

1
N

N

∑
i=1

x(k)i x( j)
i+n

∣
∣
∣
∣
∣

Find the 4× 4 matrix Φ.

9.15. (Computer exercise) Suppose that a DS/BPSK spread spectrum system uses
an m-sequence of length 127 as a long spreading code. The generator polynomial
for the m-sequence is

p(x) = 1+ x3 + x7.

The processing gain G is equal to 10, that is, there are ten chips per modulated
symbol.
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(a) Assuming that hc(t) = uTc(t), find the power density spectrum of the complex
envelope Ss̃s̃( f ). You must average over all possible subsequences of length 10.

(b) Plot the power spectrum Ss̃s̃( f ) against the normalized frequency f Tb, where Tb

is the bit duration. Comment on the effect of using a long code on the power
spectrum.

9.16. Suppose that the multipath intensity profile of a channel is given by

φg(τ) =
P
μτ

e−τ/μτ .

(a) What is the average delay and delay spread of the channel?
(b) Suppose DS/BPSK spread spectrum is used on the channel. The receiver uses

a two-tap RAKE receiver (assume ideal Nyquist pulses and maximal ratio
combining). The tap spacing of the RAKE tapped delay line is equal to the chip
duration Tc. Neglecting self-interference, write down an expression for the
probability of bit error in terms of the average delay of the channel and the
average received bit energy-to-noise ratio.

(c) If the bit error probability for a nondispersive channel (μτ = 0) is 10−3, what is
the value of delay spread μτ that will reduce the bit error probability from 10−3

to 10−4?

9.17. A multipath fading channel has the multipath intensity profile

φg(τ) =
P
μτ

e−τ/μτ .

Suppose that DS/BPSK spread spectrum is used on this channel. The receiver uses a
3-tap, Tc-spaced, RAKE receiver with selective diversity combining. Assume ideal
Nyquist pulses and the use of spreading sequences having an ideal autocorrelation
function. Find the probability of error in terms of the average received bit energy-
to-noise ratio.

9.18. Suppose that a 4-user synchronous CDMA system uses the following four
length-15 spreading sequences:

x1 = {−1− 1− 1−1−1+1+1−1− 1+1+1−1+1−1+1},
x2 = {+1− 1+ 1−1+1+1−1−1+ 1+1−1−1−1−1−1},
x3 = {−1− 1− 1+1+1+1−1+1+ 1+1−1+1+1−1+1},
x4 = {+1− 1+ 1+1−1+1+1+1− 1+1+1+1−1−1−1}.

Design a decorrelating detector, assuming an AWGN channel.



Chapter 10
Multi-carrier Techniques

Multi-carrier techniques are widely used in wireless LANs and fourth generation
cellular systems. Orthogonal frequency division multiplexing (OFDM) is widely
used modulation technique in high-rate wireless systems such as IEEE 802.11a/g
wireless local area network (WLAN) standard due to its robustness to frequency
selective fading. Multiple access with OFDM can be achieved using TDMA or ran-
dom access approaches. Orthogonal frequency division multiple-access (OFDMA)
is an extension of OFDM to accommodate multiple simultaneous users. OFDMA
was originally proposed by Sari and Karam for cable television networks [229].
Since then OFDMA has been adopted for the forward channel in 3GPP long term
evolution (LTE) and in both the forward and reverse channels for IEEE 802.16e
Worldwide Interoperability for Microwave Access (WiMAX) standard.

OFDMA achieves multiple access by dividing the available sub-carriers into mu-
tually exclusive sets that are assigned to distinct users for simultaneous transmission.
The orthogonality of the sub-carriers ensures protection against multiple-access
interference. There are three basic forms of OFDMA depending on how the
sub-carriers are allocated to the users. The first is clustered-carrier OFDMA (CC-
OFDMA) where each user is allocated a contiguous group of sub-carriers. The
second is spaced-carrier OFDMA (SC-OFDMA) where each user is assigned a
group of sub-carriers that is regularly spaced across the channel bandwidth. The
last is random interleaving OFDMA (RI-OFDMA) where sub-carriers are assigned
in a random fashion to each user.

OFDMA has essentially the same advantages and disadvantages as OFDM
when compared to single-carrier modulation schemes. It achieves robustness to
frequency-selective fading using closely spaced orthogonal sub-carriers, such that
frequency-domain equalization (FDE) can be used. However, it also suffers from
a high peak-to-average power ratio (PAPR) that requires the use of either PAPR
reduction techniques or a highly linear power amplifier. OFDMA is attractive for
use on the forward link of a cellular system, since all forward link transmissions can
all use the same RF local oscillator and sample clock reference in their digital-to-
analog converters (DACs). However, the use of OFDMA on the cellular reverse link

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 10,
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is complicated considerably by the fact that waveform received at the BS from each
MS will have a different carrier frequency offset, timing offset, and sampling clock
offset.

To overcome the difficulties of using OFDMA on the cellular reverse link, a
modified form of OFDMA, called single-carrier frequency division multiple access
(SC-FDMA) was introduced by Myung, Lim and Goodman [189]. SC-FDMA can
be viewed as DFT-spread OFDMA, where a block of time-domain data symbols are
first transformed to the frequency-domain using a discrete Fourier transform (DFT)
before being applied to an OFDMA modulator. Similar to OFDMA, multiple access
is achieved by assigning the users disjoint sets of sub-carriers. This can be done
using localized FDMA (L-FDMA) where contiguous sub-carriers are assigned to a
particular user, or interleaved FDMA (I-FDMA) where users are assigned regularly
spaced sub-carriers that are distributed over the entire bandwidth. The resulting SC-
FDMA waveform is a single-carrier modulated waveform having a characteristically
much lower PAPR than the corresponding multi-carrier OFDMA waveform. This
lower PAPR benefits the MS in terms of transmit power efficiency, thereby making
SC-FDMA very attractive for the cellular reverse link. For this reason SC-FDMA
has been adopted as the reverse channel multiple access scheme for 3GPP LTE.

Section 10.1 begins the chapter with a discussion of OFDM on frequency-
selective channels, and describes how a cyclic guard interval can be used to
completely remove any intersymbol interference (ISI) in a very efficient fashion,
provided that the length of the cyclic guard interval is at least as long as the
length of the overall discrete-time channel impulse response. We then consider
the performance of OFDM on static ISI channels and fading ISI channels, in
cases where the length of the guard interval is less than the length of the overall
discrete-time channel impulse response. In this case, residual ISI is present which is
shown to be devastating to the performance of OFDM. Section 10.1.2 then presents
an effective technique to mitigate residual ISI, called residual ISI cancelation
(RISIC) that uses a combination of tail cancelation and cyclic reconstruction.
Section 10.2 then considers the combination of single-carrier modulation with
FDE, a technique known as single-carrier frequency-domain equalization (SC-
FDE). FDE is especially attractive on channels having long impulse responses where
the complexity of time-domain equalizers can become prohibitive. Afterwards,
Sect. 10.3 treats a variety of issued related to OFDMA. The use of OFDMA on both
the forward and reverse link is covered, and issues such as sub-carrier allocation
and time-domain windowing are considered. Section 10.4 concludes the chapter
with SC-FDMA, including multiplexing methods and analysis of PAPR.

10.1 Orthogonal Frequency Division Multiplexing

Consider an OFDM system where the number of sub-carriers N is chosen to be large
enough so that the channel transfer function T (t, f ) is essentially constant across
sub-bands of width 1/T . Then
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T (t,k)
.
= T (t,kΔ f ), kΔ f − 1/(2T)≤ f ≤ kΔ f +(1/(2T) (10.1)

and no equalization is necessary because the ISI is negligible. Viewing the problem
another way, if the block length N is chosen so that N  L, where L is the length
of the discrete-time channel impulse response, then the ISI will only affect a small
fraction of the symbol transmitted on each sub-carrier. Weinstein and Ebert [280]
came up with an ingenious solution, whereby they inserted a guard interval in the
form of a length-G cyclic prefix or cyclic suffix to each IDFT output vector Xn =
{Xn,m}. In fact, if the discrete-time channel impulse response has duration L ≤ G,
their method can completely remove the ISI in a very efficient fashion as we now
describe.

Suppose that the IDFT output vector Xn = {Xn,m}N−1
m=0 is appended with a cyclic

suffix to yield the vector Xg
n = {Xg

n,m}N+G−1
m=0 , where

Xg
n,m = Xn,(m)N

(10.2)

= A
N−1

∑
k=0

xn,ke
j2πkm

N , m = 0, 1, . . . , N +G− 1, (10.3)

G is the length of the guard interval in samples, and (m)N is the residue of m modulo
N. To maintain the data rate Rs = 1/Ts, the DAC in the transmitter is clocked with
rate Rg

s =
N+G

N Rs, due to the insertion of the cyclic guard interval.
Consider a time-invariant ISI channel with impulse response g(t). The combi-

nation of the DAC, waveform channel g(t), anti-aliasing filter, and DAC yields an
overall discrete-time channel with sampled impulse response g = {gm}L

m=0, where
L is the length of the discrete-time channel impulse response. The discrete-time
linear convolution of the transmitted sequence {Xg

n} with the discrete-time channel
produces the discrete-time received sequence {Rg

n,m}, where

Rg
n,m =

{
∑m

i=0 giX
g
n,m−i +∑L

i=m+1 giX
g
n−1,N+G+m−i + ñn,m, 0 ≤ m < L,

∑L
i=0 giX

g
n,m−i + ñn,m, L ≤ m ≤ N +G− 1.

(10.4)

To remove the ISI introduced by the channel, the first G received samples
{Rg

n,m}G−1
m=0 are discarded and replaced with the last G received samples

{Rg
n,m}N+G−1

m=N , as shown in Fig. 10.1. If the length of the guard interval satisfies
G ≥ L, then we obtain the received sequence

Rn,m = Rg
n,G+(m−G)N

=
L

∑
i=0

giXn,(m−i)N
+ ñn,(m−i)N

, 0 ≤ m ≤ N − 1. (10.5)

Note that the first term in (10.5) represents a circular convolution of the
transmitted sequence Xn = {Xn,m} with the discrete-time channel g = {gm}L

m=0.
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Fig. 10.1 Removal of ISI
using the cyclic suffix
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Fig. 10.2 Block diagram of OFDM receiver

As shown in Fig. 10.2, the OFDM baseband demodulator computes the DFT of
the vector Rn. This yields the output vector

zn,i =
1
N

N−1

∑
m=0

Rn,me−j 2πmi
N

= TiAxn,i +νn,i, 0 ≤ i ≤ N − 1, (10.6)

where

Ti =
L

∑
m=0

gme−j 2πmi
N (10.7)

and the noise samples {νn,i} are i.i.d complex Gaussian random variables with
zero-mean and variance N0/(NT g

s ). Note that T = {Ti}N−1
i=0 is the DFT of the zero-

padded sequence g = {gm}N−1
m=0 and is equal to the sampled frequency response of

the channel. To be consistent with our earlier results in Chap. 5, we can multiply the
zn,i for convenience by the scalar

√
NT g

s . By following the same argument used in
Sect. 5.7, such scaling gives

z̃n,i = TiÂxn,i + ν̃n,i i = 0, . . . ,N − 1, (10.8)
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where Â =
√

2EhN/(N +G) and the ν̃n,i are i.i.d. zero-mean Gaussian random
variables with variance N0. Note that in this case, Eh is defined in (4.56). Observe
that each z̃n,i depends only on the corresponding data symbol xn,i and, therefore, the
ISI has been completely removed. Once again, for each of the z̃n,i, the receiver
decides in favor of the signal vector s̃m that minimizes the squared Euclidean
distance

μ(s̃m) = ‖z̃n,i −TiÂxn,i‖2. (10.9)

Thus, for each OFDM block, N symbol decisions must be made, one for each of the
N sub-carriers.

10.1.1 Performance of OFDM on ISI Channels

For channels having long delay spreads or with deployment of single frequency
simulcast networks (SFNs), the possibility exists that duration of the ISI will exceed
the length of the guard interval. Such ISI is called residual ISI, and is devastating
even in small amounts. Increasing the length of guard interval to reduce residual ISI
has its limitations, because it introduces bandwidth penalty. An attempt to equalize
residual ISI has been suggested in [269], but the technique has high complexity and
provides only a limited improvement. This section presents an effective technique
to mitigate residual ISI, called RISIC. The RISIC technique is based on a very
efficient method for echo cancelation [56]. The RISIC technique can be thought of
as an iterative version of the echo cancelation method in [56]. The RISIC technique
will be shown to be highly effective for combating residual ISI with reasonable
complexity.

10.1.1.1 Static ISI Channels

Once again, in an attempt to remove the ISI introduced by the channel, the first G
received samples {Rg

n,m}G−1
m=0 in (10.4) are discarded and replaced with the last G

received samples {Rg
n,m}N+G−1

m=N . If the length of the channel exceeds the length of
the guard interval such that G < L, then the received samples after removal of the
guard interval can be rewritten as the sum of two components, viz.,

Rn,m = Rn|n−1,m+Rn|n,m, (10.10)

where Rn|n−1,m is the received sample component with contributions only from
block n − 1 and Rn|n,m is the received sample component with contributions only
from block n. Then, in the absence of noise1

1Here we ignore noise to highlight the effect of ISI.
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Rn|n−1,m =
L

∑
i=G+1

giXn−1,(m−i)N
(1− u(m− i+G)), (10.11)

Rn|n,m =
L

∑
i=0

giXn,(m−i)N
u(m− i+G), (10.12)

where u(n) is the unit step function. The received sample sequence {Rn,m}N−1
m=0 is

demodulated by taking the N-point DFT

DFT{Rn,m}= DFT{Rn|n−1,m}+DFT{Rn|n,m}. (10.13)

We can express DFT{Rn|n−1,m} as

1
N

L

∑
i=G+1

gi

N−1

∑
�=0

xn−1,� exp

{

−j
2π�i

N

}N−1

∑
m=0

u(i−m−G−1)exp

{

j
2π(�− k)m

N

}

(10.14)

and DFT{Rn|n,m} by

xn,k

{
G

∑
i=0

gi exp

{

−j
2πki

N

}

+
L

∑
i=G+1

gi exp

{

−j
2πki

N

}(

1+
G
N

− i
N

)}

− 1
N

L

∑
i=G+1

gi

N−1

∑
l=0
� �=k

xn,� exp

{

−j
2π�i

N

}N−1

∑
m=0

u(i−m−G− 1)exp

{

j
2π(�− k)m

N

}

.

(10.15)

For symbol k of block n, (10.14) is the ISI contribution from block n − 1, the top
half of (10.15) is the useful signal term, and the bottom half of (10.15) is the ICI
term. We can express (10.13) as

zn,k = DFT{Rn,m} (10.16)

= ηkxn,k + Ik, (10.17)

where

ηk =
G

∑
i=0

gi exp

{

−j
2πki

N

}

+
L

∑
i=G+1

gi exp

{

−j
2πki

N

}(

1+
G
N

− i
N

)

, (10.18)

Ik = In,k + In−1,k (10.19)

and where In,k the ICI term and In−1,k the ISI term.
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Next we find the signal-to-interference ratio (SIR) for symbol k defined by

SIR(k) = Eu(k)/EI(k), (10.20)

where the useful signal energy is

Eu(k) =
1
2

E|ηkxn,k|2. (10.21)

Since the input symbols {xn,k} are assumed independent, xn,k and Ik are also
independent. Furthermore, In,k and In−1,k are independent, too. Then, interference
energy is

EI(k) =
1
2

E|Ik|2

=
1
2

E|In−1,k|2 + 1
2

E|In,k|2

= EISI(k)+EICI(k). (10.22)

The signal energy in (10.21) can be expressed as

Eu(k) = Es

∣
∣
∣
∣
∣

G

∑
i=0

gi exp

{

−j
2πki

N

}

+
L

∑
i=G+1

gi exp

{

−j
2πki

N

}(

1+
G
N

− i
N

)∣∣
∣
∣
∣

2

≈ Es

∣
∣
∣
∣
∣

L

∑
i=0

gi exp

{

−j
2πki

N

}∣∣
∣
∣
∣

2

, if L−G << N. (10.23)

From (10.22),

EISI(k) =
Es

N

{
L

∑
i=G+1

L

∑
i′=i

2(i−G)Re

{

gig
∗
i exp

{

−j
2πk(i− i′)

N

}}

−
L

∑
i=G+1

|gi|2(i−G)

}

, (10.24)

EICI(k) = EISI(k)− Es

N2

∣
∣
∣
∣
∣

L

∑
i=G+1

gi exp

{

−j
2πki

N
(i−G)

}∣∣
∣
∣
∣

2

. (10.25)

Note that the second term in (10.25) is relatively small when L−G � N, in which
case EI(k)≈ 2EISI(k).
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Table 10.1 Four-tap static
ISI channel models

Delay Fractional power Fractional power
tap # (μs) channel 1 channel 2

0 0.0 0.15 0.39
1 0.2 0.65 0.16
2 0.4 0.15 0.26
3 0.6 0.05 0.19

Fig. 10.3 Amplitude
spectrum of static ISI channel
with OFDM for N = 128
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QAM Performance

The symbol error rate (SER) for 16-QAM is

SER = 3Q

(√
1
5

γs

)(

1− 3
4

Q

(√
1
5

γs

))

, (10.26)

where γs is the received symbol energy-to-noise ratio. With OFDM, the SER on
static ISI channel is

SER =
1
N

N−1

∑
k=0

SER(k), (10.27)

where SER(k) is obtained from (10.26) with γs replaced by SIR(k) from (10.20).
Two static ISI channels are considered as shown in Table 10.1. Channel 1 has

sub-channels with a moderate null, whereas Channel 2 has several sub-channels
with a severe null, as shown in Fig. 10.3.

Figure 10.4 shows the SER floors due to ISI without noise for different block
sizes when a guard interval is not used (G = 0). As expected, the error floor due to
the ISI decreases with the increasing block size. However, when there exists deep
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Fig. 10.4 Performance of
OFDM signaling on static ISI
channels with different block
sizes; G = 0
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null sub-channels as in Channel 2, the improvement from increasing block size is
quite small. Therefore, increasing the OFDM block size is not always a very efficient
countermeasure against ISI.

10.1.1.2 Fading ISI Channel

On fading ISI channels, channel time variations during a block causes ICI. For large
block sizes, the central limit theorem can be invoked and the ICI can be treated like
AWGN as shown in Sect. 5.7.1. If we assume 2D isotropic scattering and Rayleigh
fading, then for large N the SIR is

SIR =
Eu

Es −Eu
, (10.28)

where Eu is

Eu =
Es

N2

(
G

∑
i=0

E|gi|2
(

N + 2
N−1

∑
m=1

(N −m)J0(2π fmTsm)

)

+
L

∑
i=G+1

E|gi|2
(

N−i+G+2
N−i−1+G

∑
m=1

(N−i−m+G)J0(2π fmTsm)

))

.

(10.29)
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The SER for a Rayleigh fading channel is obtained by averaging (10.26) over the
probability density function

pγs(x) =
1
γ̄s

e−γs/γ̄s, x ≥ 0, (10.30)

where γ̄s is replaced by the SIR. The SER obtained using the SIR in (10.28) is
actually an upper bound when the interference caused by ISI is a dominant factor.
This is due to the correlation between the useful signal and interference term.
An intuitive explanation is as follows. If the channel varies slowly, then we can
assume the channel impulse response is constant over a duration of a block. Hence,
from (10.20), the conditional SIR for the sub-channel k, given the channel impulse
response g = {gm}L

m=0, SIR(k|g), is

SIR(k|g) = E[|ηkxn,k|2|g]
E[|Ik|2|g] . (10.31)

For L−G � N SIR(k|g) is well approximated by

SIR(k|g) = Es

2

(
∑G

i=0 ∑G
i′=0 gig∗

i′ exp
{−j 2πk

N (i− i′)
}

EISI(k|g)

+
∑G

i=0 ∑L
i′=G+1 gig∗

i′ exp
{−j 2πk

N (i− i′)
}

EISI(k|g)

+
∑L

i=G+1 ∑L
i′=G+1 gig∗

i′ exp
{−j 2πk

N (i− i′)
}

EISI(k|g)

)

, (10.32)

where EISI(k|g) is from (10.24) but expressed differently as

EISI(k|g) = Es

N

L

∑
i=G+1

L

∑
i′=G+1

gig
∗
i′min[i−G, i′ −G]exp

{

−j
2πk(i− i′)

N

}

. (10.33)

In (10.32), the first and second fractions represent the portion of SIR for which
the Rayleigh assumption is valid in computing the SER, because the useful signal
term and the interference term are uncorrelated. However, the last fraction shows
that the useful signal term and the interference term are correlated. Hence, when
the useful signal term is faded, so is the interference. Consequently, the Rayleigh
assumption leads to pessimistic performance estimates, that is, the use of (10.28)
to compute the SER gives an upper bound. On the other hand, if the portion of the
energy contained within the guard interval is relatively large, then the last fraction
becomes insignificant relative to the first two fractions in (10.32) and, hence, the
SER found using the SIR from (10.28) is accurate.

Figure 10.5 shows the performance on a fading ISI channel that is based on the
COST207 6-tap reduced typical urban channel model (see Sect. 2.5.4.1). Similar
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Fig. 10.5 Performance of
OFDM signaling on fading
ISI channels with different
block sizes
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to the case of static ISI channels, the performance improves as the block size is
increased if the normalized Doppler frequency, fmNTs, is small. Unlike the static ISI
channels, however, the block size cannot be made too large since this increases the
ICI caused by channel time variations over block (Fig. 10.5). Therefore, the block
size must be small enough to keep the ICI small, while it must be large enough
to keep the ISI small for channels with a long impulse response. Also, as explained
above, the SER from the analysis when GTs = 2 μs agrees very well with simulation
result but gives an upper bound when G = 0.

10.1.2 Residual ISI Cancelation

If the channel changes little during the block duration and the guard interval is
sufficiently large, that is, G ≥ L, then the channel output is

R̃n,m =
L

∑
i=0

giXn,(m−i)N
, 0 ≤ m ≤ N − 1, (10.34)

where R̃n,m represents the desired channel output that is free of ISI. However, when
G < L there will be residual ISI. To achieve the desired channel output R̃n,m in the
presence of residual ISI, two steps must be followed. The first is to remove the
residual ISI from the received signal, and the second is use reconstruction to restore
cyclicity and avoid ICI. These two procedures are called tail cancelation and cyclic
reconstruction, respectively [56]. The procedure can be described by

R̃n,m = Rn,m −Rn|n−1,m+
L

∑
i=G+1

giXn,(m−i)N
(1− u(m− i+G)). (10.35)
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The residual ISI is removed from the received signal by subtracting the second term
in (10.35). Cyclicity is restored by the last term in (10.35).

The feasibility of implementing the tail cancelation and cyclic reconstruction
procedures depends on the availability of the transmitted sample sequence {Xn} at
the receiver. Echo cancelers have exact knowledge of the transmitted symbols and,
therefore, the above procedures have been successfully implemented [56]. However,
the vast majority of communication applications that require mitigation of ISI do not
enjoy this luxury. We now describe the method for reducing the effect of ISI using
aforementioned procedures when the transmitted symbols are not available to the
receiver a priori.

10.1.2.1 Residual ISI Cancelation Algorithm

We assume that the channel impulse response is constant over a block period, that
is, gn,k = gn, 0 ≤ k ≤ N +G− 1. The RISIC algorithm proceeds as follows:

1. An estimate of the channel impulse response, ĝn, is obtained from a training
sequence and updated in a decision-directed mode. Channel estimation will be
treated in more detail in Sect. 10.1.3.3.

2. Decisions on the transmitted data symbols {x̂n−1,k} from block n−1 are obtained
for use in tail cancelation. Since the decisions are affected by residual ISI, some
may be erroneous. These symbols are converted back to time-domain using an
IDFT giving {X̂n−1,m}.

3. For the block of index n, we perform tail cancelation by calculating the residual
ISI and subtracting it from Rn,m, that is,

R̃(0)
n,m = Rn,m −

L̂

∑
i=G+1

ĝiX̂n−1,(m−i)N
(1− u(m− i+G)) 0 ≤ m ≤ N − 1 (10.36)

where L̂ is the estimate of the maximum channel impulse response length.

4. The {R̃(0)
n,m} obtained in Step 3 are converted to the frequency-domain and

decisions are made. Afterwards, the decisions are converted back to time-domain
to give {X̂ (0)

n,m}.
5. Next we perform cyclic reconstruction by forming

R̃(I)
n,m = R̃(0)

n,m +
L̂

∑
i=G+1

ĝiX̂
(I−1)
n,(m−i)N

(1− u(m− i+G)), 0 ≤ m ≤ N − 1, (10.37)

where I represents an iteration number with an initial value of I = 1.

6. The {R̃(I)
n,m} are converted to the frequency-domain and decisions are made

yielding {x̂(I)n,k}. This completes the Ith iteration in the RISIC algorithm.
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Fig. 10.6 Performance of the
RISIC technique on
channel 1; G = 0, N = 128
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7. To continue iterations, convert the {x̂(I)n,k} to {X̂ (I)
n,m} and repeat Steps 5–7 with

I ← I + 1.
8. End of the RISIC algorithm for block n.

10.1.3 Performance of the RISIC Algorithm

We now evaluate the performance of the RISIC algorithm on both static and fading
ISI channels. The stability of the RISIC algorithm and the effect of using imperfect
estimates of the channel impulse response is also investigated. Here we assume that
L̂ = L, and note that choosing L̂ > L, for example, L̂ = 2L, will cause only a small
degradation in performance.

10.1.3.1 Static ISI Channel

Suppose that the receiver has perfect channel information. The two static ISI chan-
nels in Table 10.1 are considered. Figures 10.6 and 10.7 illustrate the performance
of the RISIC for Channels 1 and 2, respectively. RISIC offers a huge improvement
in SER even after the first iteration, especially at high SNR. Several orders of
magnitude improvement in SER are achievable for both channels after 2 or 3
iterations. The lower bounds shown in these figures are obtained by computing the
SER using (10.27) without ISI and with noise only. On Channel 1, 2 iterations are
required to effectively achieve the lower bound, while 3 iterations are required on
Channel 2.

A periodic pilot sequence is needed even if perfect channel information is
available, to prevent instability when feeding back a highly erroneous signal in the
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Fig. 10.7 Performance of the
RISIC technique on
channel 2; G = 0, N = 128
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Table 10.2 Effect of using pilot sequence with RISIC technique

Overhead (%) Without RISIC SER (I = 1) SER (I = 2) SER (I = 3)

0 0.17 0.84 0.84 0.85
2 0.17 7.5×10−3 2.9×10−4 5.8×10−5

5 0.17 7.5×10−3 2.6×10−4 3.1×10−5

tail cancelation procedure. Table 10.2 shows the performance of RISIC on Channel 1
in Table 10.1 with N = 64 for Es/N0 = 35 dB and various training sequence
overheads. Even with small overhead (2%), the SER improves dramatically, whereas
the algorithm diverges when a pilot sequence is not used. Furthermore, only small
degradation was observed with 2% overhead as compared to 5% overhead. If the
block size is increased to N = 128, the RISIC algorithm converged for Channel 1
even when a pilot sequence was not used. Since many communications systems do
utilize periodic training sequences for the purpose of synchronization or channel
estimation, the need for additional overhead to maintain stability when applying
RISIC may be unnecessary.

10.1.3.2 Fading ISI Channel

For fading ISI channels, the channel impulse response varies with time. However, if
the channel changes little over a block duration and L−G << N, then

{gm} ≈ 1√
N

IDFT{ηk}. (10.38)

When the channel variations are rapid, Fig. 10.5 shows that the performance is
dominated by ICI rather than residual ISI. Assume ηk is known at the receiver
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Fig. 10.8 Performance of the
RISIC technique on a fading
ISI channel; G = 0,
N = 1,024, fmNTs = 0.001
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Fig. 10.9 Performance of the
RISIC technique on a fading
ISI channel; G = 0,
N = 1,024, fmNTs = 0.005
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and the channel impulse response is found by (10.38). Figures 10.8 and 10.9 show
the performance of RISIC on a typical urban channel with fmNTs = 0.001 and
fmNTs = 0.005, respectively, and 5% training overhead.

10.1.3.3 Channel Estimation

All the remarkable improvements that RISIC has shown so far are achieved under
the premise of perfect channel information. For a strictly static ISI channel, the
channel estimation process needs to be carried out only once. In fact, almost perfect
channel estimates can be obtained using a training sequence [56]. Time-varying
channels present the real challenge for channel estimation.
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For fading ISI channels, we propose a channel estimation technique that can
provide accurate estimates even in the presence of residual ISI. An OFDM training
block can be used consisting of N/2 symbols chosen from a chirp sequence [56]

ck = exp

{

j
2π
N

k2
}

, 0 ≤ k ≤ N
2
− 1. (10.39)

The chirp sequence provides an optimal PAPR of 1 and weighs each sub-channel
equally in estimating the channel since the DFT of a chirp sequence is also chirp
sequence. Unlike [56], however, we modify the training sequence to increase
resilience to residual ISI, by inserting zeros in every odd sub-channel. The training
block symbols are

dk =

{√
2ck/2, k = 0,2, . . . ,N − 2,

0, k = 1,3, . . . ,N − 1,
(10.40)

where
√

2 is a normalization factor. The N-point IDFT of {dk} is2

Dm =C(m)N/2
, 0 ≤ m ≤ N − 1. (10.41)

From (10.41), the first half of the time-domain training sequence {Dm} is identical
to the second half. This is a valuable property for long channel impulse responses,
because the first half of {Dm} can be used just like a guard interval while {Dm}
still possesses a PAPR of 1. The channel estimation procedure using the proposed
training block is as follows:

1. After removal of the guard interval, the received samples are re-arranged as

R̄ts,m = Rts,m+N/2, 0 ≤ m ≤ N/2− 1, (10.42)

where the subscript ts indicates that the received samples are for a training block.
2. N/2 channel estimates, η̃k, are calculated by

η̃k =
zts,k

ck
, 0 ≤ k ≤ N/2− 1, (10.43)

where {zts,k} is the N/2-point DFT of {R̄ts,m}.
3. The estimates η̃k are converted to g̃m by

{g̃m}= 1
√

N/2
IDFT{η̃k}, (10.44)

2The Cn can also be obtained by the N/2-point IDFT of {ck}.
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Fig. 10.10 Effect of
imperfect channel estimation
with the RISIC technique for
static and slowly fading ISI
channels with N = 128 and
N = 1,024, respectively;
G = 0, I = 3
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where an N/2-point IDFT is used. Then, {g̃m} is passed through a rectangular
window to zero g̃m, m > L̂, and the result is {ĝm} which is used for RISIC.

4. {ĝm} is converted to {η̂k} by

η̂k =
√

N DFT{ĝm}, (10.45)

where this time an N-point DFT is used. The channel estimates for all N sub-
channels are now available for data demodulation.

When L is not known, the window size must be large enough to include the entire
channel impulse response yet as small as possible to minimize the effect of noise.

On static ISI channels, the channel estimation is performed only once at the
beginning of each simulation run and the channel estimates are averaged over four
blocks. On fading ISI channels, the channel estimation is performed by periodically
sending one training block out of every 20 blocks transmitted, while updating the
channel estimate in the remaining blocks in a decision-directed mode [177]. In
the decision directed mode, the decisions made after final iteration of the RISIC
algorithm are used to update the channel estimates. Decision errors do not degrade
the accuracy of the estimates excessively, because the rectangular window can
smooth out the aberrations caused by the decision errors.

Figure 10.10 shows the performance of RISIC technique with channel estimation
on static and very slowly fading ISI channels. For a static ISI channel, the SER
obtained is virtually identical to that obtained with perfect channel estimation. For
a slowly varying fading ISI channel ( fmNTs = 0.001), the RISIC technique works
well with the channel estimation, especially at high SNR. However, for faster fading
( fmNTs = 0.005), the degradation is severe as shown in Fig. 10.11. This suggests that
the proposed RISIC technique with channel estimation is well suited for static and
slowly time-varying ISI channels.



600 10 Multi-carrier Techniques

Fig. 10.11 Effect of
imperfect channel estimation
with the RISIC technique for
a fading ISI channel;
N = 1,024, G = 0, I = 3
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10.2 Single-Carrier Frequency-Domain Equalization

As discussed in Sect. 10.1, OFDM can easily mitigate ISI using a cyclic guard
interval. However, one of the major drawbacks of OFDM is its high PAPR and
high sensitivity to oscillator frequency offsets. An attractive alternative to OFDM
is the use of single-carrier (SC) modulation combined with FDE, simply known as
SC-FDE [95,230–232]. Such a system has the benefit of having the PAPR of single-
carrier modulation while at the same time the ease of equalization of OFDM. For
channels that span 10–20 data symbols, single-carrier systems with conventional
time-domain equalization will have a significantly higher processing complexity
than comparable OFDM approaches. However, the complexity of single-carrier
approaches becomes similar to OFDM if FDE is used in the single-carrier receiver.

A typical SC-FDE transmitter is shown in Fig. 10.12, while the receiver is shown
in Fig 10.13. In contrast to OFDM that uses an IDFT at the transmitter and a DFT
at the receiver, an SC-FDE system has both the DFT and IDFT at the receiver
side. SC-FDE can be used advantageously in wireless systems, using OFDM on
the downlink and SC modulation on the uplink. With this arrangement, the mobile
terminal transmits using SC modulation and, thus, it is simple to implement and
can use a more efficient power amplifier. Also, the signal processing complexity is
concentrated in the access point. For such full duplex operation, the access point
has two IDFT and one DFT operations, while the mobile terminal has just one DFT
operation.

One important difference between OFDM and SC-FDE is the exploitation of
frequency diversity. OFDM can achieve maximum likelihood (ML) performance
on a frequency selective channel through maximal ratio combining (MRC) of the
symbols that are transmitted on the various sub-carriers. SC-FDE approaches are
sub-optimal in this regard and do not achieve ML performance. Nevertheless,
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Fig. 10.13 SC-FDE receiver

OFDM only reaps the full benefits of frequency diversity by coding across the
sub-carriers or using receiver antenna diversity. Uncoded OFDM will lose the
inherent frequency diversity in the channel, since information data on the sub-
carriers affected by the frequency-selective fading cannot be recovered from the
other sub-carriers. On the other hand, the energy of each SC symbol is spread over
complete frequency band, providing inherent frequency diversity. Due to higher
frequency exploitation, uncoded SC-FDE outperforms uncoded OFDM . However,
for a single-user, multi-antenna system (receive diversity) the advantage of SC-FDE
over OFDM decreases as the number of receiver antennas increases.

Similar to the guard interval used in OFDM, with SC-FDE schemes a length-G
cyclic guard interval is appended to each block of N data symbols, such that G equals
or exceeds the maximum expected discrete-time channel length L. Here we assume a
cyclic prefix. The cyclic prefix is added to the sequence xn = {xn,k, k = 0, . . .N −1}
by simply copying the last G symbols of {xn,k} and appending them to the beginning
of {xn,k}. The symbol sequence with guard interval, denoted as {xg

n,k}, is

xg
n = {xn,(k)N

, k =−G,−G+ 1, · · · ,−1,0,1, · · · ,N − 1}, (10.46)

where (k)N is the residue of k modulo-N. The sequence of N +G symbols is then
transmitted using SC modulation. Here, we assume a linear modulation scheme such
as PSK or QAM, although SC-FDE can be applied with appropriate modification to
nonlinear CPM as well [248]. With this assumption, the transmitted SC waveform
has the form

s̃(t) = A∑
n

b(t − nT,xg
n), (10.47)

where

b(t,xg
n) =

N−1

∑
k=−G

xg
n,kha(t − kT g

s ), (10.48)

and T = (N +G)T g
s is the duration of each data block consisting of N data symbols

and G guard symbols.
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10.2.1 ZF and MMSE SC-FDE

Suppose that the waveform s̃(t) is transmitted over a time-invariant ISI channel with
impulse response g(t). We have established in Sect. 7.6.4 that the optimal front-
end processing may be implemented as a filter that is matched to the transmitted
pulse ha(t) followed by rate-2/T sampling and a T/2-spaced noise whitening filter

1/
(

G(2)
h (1/z∗)

)∗
. Similar to the development leading to (10.4), the received sample

sequence at the output of the T/2-spaced whitened matched filter is

vg(2)
n,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k+2G

∑
i=0

g(2)eq,ix
g(2)
n,k−i +

2L

∑
i=k+2G+1

g(2)eq,ix
g(2)
n−1,2N+2G+k−i + w̃(2)

n,k,

−2G ≤ k < 2(−G+L),
2L

∑
i=0

g(2)eq,ix
g(2)
n,k−i + w̃(2)

n,k, 2(−G+L)≤ k ≤ 2N − 1,

(10.49)

where the sequence xg(2)
n = {xg(2)

n,k } is the corresponding T/2-spaced input symbol
sequence given by

xg(2)
n,k =

{
xg

k/2, k =−2G, . . . ,0,2,4, . . . ,2N − 2

0, k =−2G+ 1 . . . ,1,3,5, . . . ,2N − 1
(10.50)

and {g(2)eq,i} is the T/2-spaced discrete-time channel impulse response with system

function G(2)
eq (z) = G(2)

h (z)G(2)(z).
The SC-FDE first removes the guard interval by simply deleting the first 2G

samples in each block, that is, samples in the range −2G ≤ k ≤ −1. Under the
assumption that G ≥ L, this yields the length-2N sequence

v(2)n,k =
2L

∑
i=0

g(2)eq,ix
g(2)
n,k−i + w̃(2)

n,k (10.51)

=
2L

∑
i=0

g(2)eq,ix
(2)
n,(k−i)N

+ w̃(2)
n,k, 0 ≤ k ≤ 2N − 1, (10.52)

where

x(2)n,k =

{
xk/2, k = 0,2,4, . . . ,2N − 2,
0, k = 1,3,5, . . . ,2N − 1.

(10.53)

Note that the length-2N vector v(2)n = {v(2)n,k} in (10.52) is the circular convolution

of the length-2N data sequence x(2)n = {x(2)n,k} with the length-2L channel vector

g(2)eq = {g(2)eq,i}.
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To perform FDE, the length-2N vector v(2)n is applied to a 2N-point DFT or fast
Fourier transform (FFT) to yield the output vector

V (2)
n,m =

1
2N

2N−1

∑
k=0

v(2)n,ke−j 2πkm
2N

= T (2)
eq,mX (2)

n,m +W (2)
n,m, 0 ≤ m ≤ 2N − 1, (10.54)

where

X (2)
n,m =

1
2N

2N−1

∑
k=0

x(2)n,ke−j 2πkm
2N , m = 0, . . . ,2N − 1 (10.55)

is the 2N-point DFT of the data symbol vector x(2)n ,

T (2)
eq,m =

L

∑
k=0

g(2)eq,me−j 2πkm
N , m = 0, . . . ,2N − 1 (10.56)

is the channel frequency response, and the noise samples {W (2)
n,m} are i.i.d complex

Gaussian random variables with zero-mean and variance N0/(2NT g
s ). Note that

T(2)
eq = {T (2)

eq,m}2N−1
m=0 is the DFT of the zero-padded sequence g(2)eq = {g(2)eq,k}N−1

k=0
and is equal to the sampled frequency response of the channel. Also, since every

other coordinate of the vector x(2)n is zero, we have the property X (2)
n,m = X (2)

n,m+N for

m = 0, . . . ,N − 1, that is, the first half of the length-2N vector X(2)
n = {X (2)

n,m}2N−1
m=0 is

identical to the last half.
FDE may now be carried out by processing the vector V(2)

n = {V (2)
n,m}. One option

is to estimate T (2)
eq,m and calculate

V̂ (2)
n,m =

V (2)
n,m

T (2)
eq,m

= X (2)
n,m +

W (2)
n,m

T (2)
eq,m

, m = 0, . . . ,2N − 1. (10.57)

This is sometimes called zero-forcing frequency-domain equalization (ZF-FDE),
because we try to invert the channel in the frequency-domain. Afterwards, the 2N-

point IDFT of the vector V̂(2)
n = {V̂ (2)

n,m}2N−1
m=0 is calculated to yield the length-2N

vector x̃(2)n = {x̃(2)n,k}, where

x̃(2)n,k = x(2)n,k + w̃(2)
n,k, k = 0, . . . ,2N − 1 (10.58)
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and

w̃(2)
n,k =

N−1

∑
m=0

(
W (2)

n,m

T (2)
eq,m

)

e
j2πmk

2N , k = 0, 1, . . . , 2N − 1. (10.59)

The length-2N vector x̃(2)n is then decimated by taking every other sample, that is,

x̃n,k = x̃(2)n,2k, k = 0, . . . ,N −1, and decisions are made from the resulting vector x̃n =

{x̃n,k}. For each of the x̃n,k, the receiver decides in favor of the data symbol xn,k that
minimizes the squared Euclidean distance

μ(xn,k) = ‖x̃n,k − xn,k‖2, k = 0, . . . ,N − 1. (10.60)

Observe that the noise samples W (2)
n,m/T (2)

eq,m in (10.57) are independent zero-mean

complex Gaussian random variables with variance N0/(2NT g
s |T (2)

eq,m|2)). Hence, the

noise is amplified in sub-bands where |T (2)
eq,m| is small, and if |T (2)

eq,m| is very small

V̂ (2)
n,m will be corrupted by heavy noise. This effect is similar to noise enhancement in

time-domain ZF linear equalizers and can severely degrade the bit error probability.
Another possibility is to account for the effects of noise enhancement by

performing minimum mean square error frequency-domain equalization (MMSE-
FDE). Assume that the MMSE-FDE has tap gains Cm,m = 0, . . . ,N − 1. Then the
output of the MMSE-FDE is

V̂ (2)
n,m = V (2)

n,mCm

= T (2)
eq,mX (2)

n,mCm +W (2)
n,mCm, 0 ≤ m ≤ 2N − 1. (10.61)

The mean square error is defined as

J =
1
2

E
[
|V̂ (2)

n,m −X (2)
n,m|2

]

= |T (2)
eq,mCm − 1|2σ2

x /(2N)+ |Cm|2N0/(2N)

=
(

T (2)
eq,mσ2

x +N0

)
|Cm|2/(2N)− 2Âσ2

x Re
{

T (2)
eq,mCm

}
/(2N)+σ2

x /(2N), (10.62)

where the second line uses 1
2 E[|X (2)

n,m|2] = σ2
x /(2N) as seen from Parseval’s theorem

1
2N

2N−1

∑
k=0

|x̃(2)n,k |2 =
2N−1

∑
m=0

|X (2)
n,m|2. (10.63)

The MMSE solution can be obtained by solving

dJ
dCm

=
dJ

C. R,m
+ j

dJ
dCI,m

= 0, m = 0, . . . ,N − 1, (10.64)
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where Cm =CR,m + jCI,m. This gives the solution

Cm =
σ2

x T (2) ∗
eq,m

σ2
x |T (2)

eq,m|2 +N0

, m = 0, . . . ,2N − 1. (10.65)

Note that under high signal-to-noise ratio conditions where N0 → 0, the tap solution

for the MMSE-FDE in (10.65) reduces to the ZF-FDE tap solution Cm = 1/T (2)
eq,m

used in (10.57). The output of the MMSE-FDE is

V̂ (2)
n,m = V (2)

n,mCm

=
σ2

x |T (2)
eq,m|

σ2
x |T (2)

eq,m|2 +N0

X (2)
n,m +

σ2
x T (2) ∗

eq,m

σ2
x |T (2)

eq,m|2 +N0

W (2)
n,m , m = 0, . . . ,2N − 1. (10.66)

Once again, the IDFT of the vector V̂(2)
n = {V̂ (2)

n,m}2N−1
i=0 is obtained to yield the

vector x̃(2)n , which is then decimated to yield the vector x̃n = {x̃n,k = x̃(2)n,2k,k =

0, . . . ,N −1}, and the vector x̃n is applied to a minimum distance decision device as
in (10.60).

Finally, we repeat that while decisions variables z̃n,k in (10.8) can be used to
implement maximum likelihood decisions in an OFDM receiver, the corresponding
decision variables x̃n,k in an SC-FDE receiver will not yield maximum likelihood
decisions. In this sense, the SC-FDE approach is sub-optimal.

10.3 Orthogonal Frequency Division Multiple Access

OFDMA achieves multiple access by assigning different users disjoint sets of sub-
carriers. Assume that there are a total of M sub-carriers that are evenly distributed
among Q users, such that each user is allocated N = M/Q sub-carriers. The overall
sub-carriers are labeled with indices from 0 to M − 1, while the N sub-carriers
allocated to the jth MS have indices that belong to the set T j. Clearly, the sets
T j must be disjoint such that each sub-carrier is assigned to at most one MS. The
sub-carrier allocation can be performed by extending the nth data vector for the jth
MS, denoted, by a j,n with the insertion of M−N zeros in the sub-carriers belonging
the set T̄ j which is the complement of T j, that is,

x j,n,i =

{
a j,n,i, if i ∈ T j,

0, otherwise,
(10.67)

where a j,n,i is the data symbol transmitted to the jth MS in block n on the ith
sub-carrier.
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Fig. 10.14 Baseband OFDMA forward link BS transmitter. There are M sub-carriers of which N
are occupied by the input data for each of Q users

10.3.1 OFDMA Forward Link

10.3.1.1 Transmitter

A block diagram of an OFDMA baseband forward link transmitter is shown in
Fig. 10.14. On the forward link, the vectors x j,n = {x j,n,i}M−1

i=0 are summed up to
produce the nth data block

xn =
Q

∑
j=1

x j,n (10.68)

that is subsequently applied to an M-point IDFT to produce the length-M time-
domain sequence Xn. After the IDFT, a length-G guard interval is appended to
each block in the form of a cyclic prefix or cyclic suffix, in the same manner
as conventional OFDM as described in Sect. 4.6.3, to yield the transmitted time-
domain sequence Xg

n. In the case of a cyclic prefix, the last G symbols of the
sequence Xn = {Xn,m, m = 0, . . . ,M−1} are copied and appended to the beginning
of Xn. The transmitted time-domain sequence for the nth block with a cyclic prefix,
denoted as Xg

n, is

Xg
n = {Xn,(m)M

, m =−G,−G+ 1, · · · ,−1,0,1, · · · ,M − 1}, (10.69)

where (m)M is the residue of m modulo-M.

10.3.1.2 Time-Domain Windowing

The elements of the vector Xg
n are converted into the continuous-time complex-

valued waveform using pair of balanced DACs, as discussed in Sect. 4.6.3. The
resulting continuous-time complex envelope corresponding to the nth block is

s̃n(t) =
M−1

∑
k=−G

Xg
n,khDAC(t − kT̃ g

s ), (10.70)
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where hDAC(t) is the impulse response of the DAC (reconstruction filter) and T̃ g
s

is the sample period. For OFDMA, the sample period is equal to T̃ g
s = (M/(M +

G))T̃s = (N/(M+G))Ts seconds.
For greater spectral control and to reduce out-of-band emissions, the vector of

samples Xg
n can be windowed prior to digital-to-analog conversion, such that

s̃n(t) =
M−1

∑
k=−G

Xg
n,kwkhDAC(t − kT̃ g

s ), (10.71)

where the vector w = (w−G, . . .,w−1, w0, w1, . . . ,wM−1) is the window function.
The corresponding continuous-time window function w(t) can be obtained by
passing the weighted impulse train

δT̃ g
s
(t) =

M−1

∑
k=−G

wkδ (t − kT̃ g
s ), (10.72)

through the reconstruction filter hDAC(t). Here, we assume an ideal DAC with
impulse response

hDAC(t) = sinc(t/T̃ g
s ). (10.73)

For a rectangular window, wn = 1, −G≤ n ≤ M−1. This yields the continuous-time
window function

w(t) =
M−1

∑
k=−G

sinc(t/T̃ g
s − k), (10.74)

which is plotted in Fig. 10.15 for the case M = 32,G= 4. Notice that the continuous-
time window function w(t) is noncausal, since the ideal DAC is itself a noncausal
ideal low-pass filter.

With an ideal DAC, the power spectrum of the baseband OFDMA waveform
is confined to −1/2T̃ g

s to +1/2T̃ g
s Hz. However, a practical DAC will produce

side lobes outside of this range of frequencies and, in some cases, the rectangular
window may result in large side lobes. Such out-of-band emissions can be reduced
using a time-domain window that smooths the ends of the OFDMA symbols. Such
windowing can be implemented by extending the OFDMA symbol with both a
cyclic prefix and cyclic suffix as shown in Fig. 10.16. That is,

Xg
n = {Xn,(m)M

, m =−Gp, · · · ,−1,0,1, · · · ,M − 1, , . . . ,M +Gs − 1}, (10.75)

where Gp and Gs are the length of the cyclic prefix and cyclic suffix, respectively,
and G = Gp +Gs is the total length of the guard interval. In this way, the required
extension to implement the time-domain window can absorbed into the guard
interval. This will save in bandwidth and power efficiency but will also reduce the
delay spread tolerance by 2Gs samples.
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Fig. 10.15 Continuous-time
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Fig. 10.16 OFDMA symbols with time-domain windowing. Note that B = Gs + 1, where Gs is
the length of the cyclic suffix and B is the length of the transition region

One commonly used time-domain window function with OFDM/OFDMA is the
raised cosine window

wrc
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 +

1
2 sin

[ π
B

(
k− B−1

2

)]
, 0 ≤ k < B,

1, B ≤ k < M+G−B,
1
2 − 1

2 sin
[ π

B

(
k−M−G+ B+1

2

)]
M+G−B ≤ k ≤ M+G−1,

0, elsewhere,

(10.76)

defined here on the interval 0 ≤ k ≤ M+G−1. For the sequence Xg
n in (10.75), the

required window is the raised cosine window in (10.76) left shifted by Gp samples,
such that

wk = wrc
k+Gp

. (10.77)
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Fig. 10.17 Continuous-time
raised cosine window
function w(t), M = 32,
Gp = 4, Gs = 4
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After passing through an ideal D/A converter, this will yield the continuous-time
pulse

w(t) =
M−1

∑
k=−G

wksinc(t/T̃ g
s − k), (10.78)

which is plotted in Fig. 10.17 for the case M = 32,Gp = 4,Gs = 4. Notice that the
raised cosine windowing has also significantly reduced the peaks on the amplitude
shaping pulse. Hence, the time-domain windowing not only produces a more
compact power spectral density, but it also reduces the PAPR of the transmitted
waveform.

10.3.1.3 Sub-carrier Allocation

Several different methods for sub-carrier allocation are used with OFDMA. The
choice of sub-carrier allocation will affect the sensitivity of the OFDMA waveform
to frequency-selective fading.

Clustered Carrier (CC-OFDMA)

With CC-OFDMA, the M sub-carriers are divided into Q groups where each group
consists of N contiguous sub-carriers called clusters. The set of sub-carrier indices
allocated to the kth user is {kN,kN + 1, . . . ,kN +N − 1}, where 0 ≤ k < Q. CC-
OFDMA is sensitive to frequency-selective fading, because all sub-carriers assigned
to a particular user may fade simultaneously.
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Fig. 10.18 Baseband
OFDMA forward link
receiver
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Spaced Carrier (SC-OFDMA)

With SC-OFDMA, the M sub-carriers are partitioned into N groups, where each
group has Q contiguous sub-carriers. Then the kth sub-carrier of each group is
assigned to the kth user. That is, the kth user is assigned the set of sub-carrier
indices {k,Q+k, . . . ,(N −1)Q+k}, where 0 ≤ k < Q. SC-OFDMA is less sensitive
to frequency-selective fading, since the sub-carriers assigned to each user span the
entire bandwidth.

Random Interleaving (RI-OFDMA)

RI-OFDMA has been adopted by IEEE802.16a. While the sub-carriers are parti-
tioned into N groups as in SC-OFDMA, the sub-carrier index in each of the N
groups that is assigned to a particular user is a random variable. The sub-carrier
indices allocated to the kth user are {εk,1,Q+ εk,2, . . . ,(M − 1)Q+ εk,M−1}, where
the εk,i are independent and identically distributed uniform random variables on the
set {0,1, . . . ,Q−1}. However, each sub-carrier can be assigned to at most one user.

10.3.1.4 Receiver

Similar to the case of OFDM in Sect. 10.1, consider the transmission of the OFDMA
waveform over a frequency-selective quasi-static fading channel. Assuming a
length-G cyclic prefix, the discrete-time linear convolution of the transmitted
sequence {Xg

n} = {Xn,m}M−1
m=−G with the discrete-time channel impulse response

g = {gm}L
m=0 produces the discrete-time received sequence Rg

n = {Rg
n,m}, where

Rg
n,m =

{
∑m+G

i=0 giX
g
n,m−i +∑L

i=m+G+1 giX
g
n−1,M+G+m−i + ñn,m, −G ≤ m <−G+L,

∑L
i=0 giX

g
n,m−i + ñn,m, −G+L ≤ m ≤ M − 1

(10.79)

and the ñn,m are complex-valued Gaussian noise samples having zero-mean and
variance σ2 = 1

2 E[|ñn,m|2] = N0/T g
s , where T g

s = NTs/(M + G), and Ts is the
modulation symbol rate for each user.

The OFDMA baseband receiver is shown in Fig. 10.18. To remove the ISI
introduced by the channel, the first G received samples {Rg

n,m}−1
m=−G of each block

are simply discarded. If the length of the cyclic prefix is at least as long as the
discrete-time channel length, that is, G ≥ L, then we obtain the received sequence
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Fig. 10.19 Baseband OFDMA reverse link MS transmitter. There are M sub-carriers of which N
are occupied by the input data

Rn,m = Rg
n,m

=
L

∑
i=0

giXn,(m−i)M
+ ñn,m, 0 ≤ m ≤ M − 1, (10.80)

which is just the circular convolution of the transmitted sequence Xn = {Xn,m} with
the channel g = {gm}L

m=0. Afterwards, an M-point IDFT is taken to transform to the
frequency-domain. This yields the output vector

zn,i =
1
M

M−1

∑
m=0

Rn,me−j 2πmi
M

= TiAxn,i +νn,i, 0 ≤ i ≤ M − 1, (10.81)

where

Ti =
L

∑
m=0

gme−j 2πmi
M , (10.82)

and the noise samples {νn,i} are i.i.d with zero-mean and variance N0/(MT g
s ).

On the forward link each MS will only be interested in the N data symbols that
are transmitted by the BS on its allocated sub-carriers. Hence, only the DFT
outputs with indices in the set T j are used by the jth MS for data detection. The
resulting time-domain sequence is further processed, using for example maximum
likelihood sequence estimation (MLSE) along with the estimates of the channel
gains {Ti}, i ∈ T j.

10.3.2 OFDMA Reverse Link

On the OFDMA reverse link, Q users transmit their signals to a central BS. The
reverse link MS transmitter is shown in Fig. 10.19, and is similar to the forward
link BS transmitter in Fig. 10.14. The main difference is that the MS transmitter
only transmits its own data stream, whereas the BS transmitter sends data streams
simultaneously for all the MSs. Similar to the OFDMA forward link, the jth MS
performs sub-carrier allocation according to (10.67), and the resulting vector x j,n is
applied to an M-point IDFT, and appended with a length-G cyclic guard interval.
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10.3.3 Peak-to-Average Power Ratio

One of the biggest drawbacks of OFDMA is its high PAPR. A high PAPR may
be tolerable on the forward link, since the BS can use a less power efficient linear
amplifier. However, for the reverse link, a high PAPR is undesirable since the MS is
often battery powered. For this reason, OFDMA is not used on the reverse link of
LTE and LTE-A.

10.4 Single-Carrier Frequency Division Multiple Access

A block diagram of an SC-FDMA transmitter is shown in Fig. 10.20. The SC-
FDMA transmitter groups the modulation symbols into blocks of N symbols. Let

xn = (xn,1,xn,2, . . . ,xn,N), (10.83)

denote the nth block of modulation symbols. An N-point DFT (N-DFT) is taken on
each block xn, to yield length-N vectors

Xn = (Xn,1,Xn,2, . . . ,Xn,N), (10.84)

that are the frequency-domain representation of the blocks of input symbols. The
sub-carrier mapper then maps the N components of the vector Xn onto a larger set of
M sub-carriers such that M = NQ, where Q is an integer. There are several different
types of sub-carrier mappings, including the interleaved (I-FDMA) and localized
(L-FDMA) mappings that are considered below. The sub-carrier mapping generates
the sequence X̃n. An M-point IDFT is then taken of the sequence X̃n to produce the
output sequence x̃n. The time-domain input symbols xn,k have duration Ts seconds.
However, after going through the SC-FDMA modulator the time-domain output
symbols x̃n,k are compressed and have duration T̃s = (N/M)Ts seconds.

The SC-FDMA baseband receiver is shown in Fig. 10.21. First, the cyclic guard
interval is removed. Afterwards, an M-point DFT is taken to transform to the
frequency-domain. Sub-carrier demapping and equalization is then performed in
the frequency-domain. Finally, an N-point IDFT is used to convert the samples back
to the time-domain for detection and further processing.

DFT Subcarrier IDFT
xn Xn X̃n x̃n Cyclic x̃g

n

(N point) Mapping (M point) guard

n

Fig. 10.20 Baseband SC-FDMA transmitter. There are M sub-carriers of which N are occupied
by the input data
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IDFT
Subcarrier

DFT
znR̃ n x̂ nRemover̃ g

n r̃ n

(N point)
Demapping/
Equalization

(M point)
Cyclic
guard

Fig. 10.21 Baseband SC-FDMA receiver with SC-FDE

input
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Q 1
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Q 1
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Q 1
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X̃ X̃ X̃ 2Q X̃ ( )Q X̃ Mn,0 n,Q n, n, N 1)Q n,

output

Fig. 10.22 Interleaved FDMA (I-FDMA) sub-carrier mapping

Interleaved (I-FDMA)

The I-FDMA sub-carrier mapping is illustrated in Fig. 10.22 and can be described
as follows:

X̃n,� =

{
Xn,�/Q, �= kQ, 0 ≤ k ≤ N − 1,
0, otherwise.

(10.85)

The time-domain vector x̃n is obtained by taking the M-point inverse DFT of the
vector X̃n. Let k = Nq+m, where 0 ≤ q ≤ Q− 1 and 0 ≤ m ≤ N − 1. Then

x̃n,k ≡ x̃n,Nq+m =
1
M

M−1

∑
�=0

X̃n,�e
j 2π�k

M

=
1

QN

N−1

∑
�=0

Xn,�e
j 2π�k

N

=
1

QN

N−1

∑
�=0

Xn,�e
j 2π�(Nq+m)

N

=
1
Q

(
1
N

N−1

∑
�=0

Xn,�e
j 2π�m

N

)

=
1
Q

xn,m. (10.86)

It follows that the time-domain vector x̃n is equal to

x̃n =
1
Q

vec(xn,xn, . . . ,xn), (10.87)
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Xn,1 Xn,2 Xn,N 1Xn,0
M N
zeros

˜ ˜ ˜
2

˜
( )

˜Xn,0 Xn,1 Xn, Xn, (N 1) Xn,M

Fig. 10.23 Localized FDMA (L-FDMA) sub-carrier mapping

which is just the Q-fold repetition of the time-domain vector xn. It also follows that
the PAPR of the time-domain sequence x̃n is exactly the same as that of the time-
domain sequence xn.

Localized (L-FDMA)

The L-FDMA, the sub-carrier mapping is illustrated in Fig. 10.23 and can be
described as follows:

X̃n,� =

{
Xn,� , 0 ≤ �≤ N − 1,
0 , N ≤ �≤ M − 1.

(10.88)

The time-domain vector x̃n is obtained by taking the M-point inverse DFT of the
vector X̃n. Let k = Qm+ q, where 0 ≤ m ≤ N − 1 and 0 ≤ q ≤ Q− 1. Then

x̃n,k ≡ x̃n,Qm+q =
1
M

M−1

∑
�=0

X̃n,�e
j 2π�k

M

=
1

QN

N−1

∑
�=0

Xn,�e
j 2π�(Qm+q)

QN . (10.89)

If q = 0, then

x̃n,k ≡ x̃n,Qm =
1
Q

(
1
N

N−1

∑
�=0

Xn,�e
j 2π�Qm

QN

)

=
1
Q

(
1
N

N−1

∑
�=0

Xn,�e
j 2π�m

N

)

=
1
Q

xn,m. (10.90)
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If q �= 0, then using

Xn,� =
N−1

∑
i=0

xn,iej 2πi�
N , (10.91)

in (10.89) gives [188]

x̃n,k ≡ x̃n,Qm+q =
1
Q

(
1− ej2π q

Q

) 1
N

N−1

∑
i=0

xn,i

1− e
j2π
(

m−p
N + q

QN

) . (10.92)

It follows that the time-domain vector x̃n has an exact copy of the time-domain
vector xn in N coordinates defined by k = Qm, 0 ≤ m ≤ N − 1. In between these
positions, the vector x̃n has values that depend on a complex weighted sum of all
the time-domain symbols in the time-domain vector xn. This will increase the PAPR
significantly.

L-OFDMA is the scheme adopted in 3GPP LTE. While it may seem that
L-OFDMA is less desirable due to the high PAPR, the waveform is less sensitive
to frequency offsets and phase noise, as compared to I-OFDMA. While it may
seem that L-OFDMA also looses the diversity advantages of I-OFDMA, it may be
possible that all sub-carriers fade together and only one channel estimator is needed.

Cyclic Guard Interval and SC-FDE

After performing sub-carrier mapping, the transmitter inserts a cyclic guard interval
of length-G, such that G equals or exceeds the maximum expected discrete-time
channel length L. The purpose of the cyclic guard interval is to isolate the
transmitted blocks and to permit SC-FDE at the receiver as discussed in Sect. 10.2.
Here we assume a length-G cyclic prefix. The cyclic prefix is added to the sequence
x̃n = {x̃n,m,m = 0, . . . ,M − 1} by simply copying the last G symbols of x̃n and
appending them to the beginning of x̃n. The symbol sequence with guard interval,
denoted as x̃g

n = {x̃g
n,m}, is

x̃g
n = {x̃n,(m)M

, m =−G,−G+ 1, · · · ,−1,0,1, · · · ,M − 1}, (10.93)

where (m)M is the residue of m modulo-M. When a cyclic guard is appended, the
time-domain output symbols x̃g

n,m have duration T̃ g
s = (M/(M +G))T̃s = (N/(M +

G))Ts seconds.
Once the cyclic guard is removed and a DFT taken on the received block, SC-

FDE can be applied. Typically, either a zero-forcing (ZF) or minimum mean square
error (MMSE) SC-FDE is used. The required algorithms are described in detail in
Sect. 10.2 and are not repeated here. ZF-FDE and MMSE-FDE can be applied to
OFDMA as well, but there are better solutions. These include MRC for flat fading
AWGN channels, and optimum combining (OC) with receiver antenna diversity.
With OC, we maximize the signal-to-interference-plus-noise ratio for a flat faded
desired signal in the presence of one or more flat faded and dominant co-channel
interferers.
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10.4.1 Peak-to-Average Power Ratio

One of the biggest advantages of SC-FDMA is its low PAPR. The PAPR for block
n can be defined in terms of the discrete-time SC-FDMA samples as

PAPRn =
maxm{|x̃g

n,m|2
(M+G)−1 ∑M−1

n=−G |x̃g
n,m|2

. (10.94)

The PAPR in this case depends only on the modulation signal constellation and sub-
carrier mapping. With SC-FDMA pulse shaping can be used to reduce the PAPR
and to reduce out-of-band emissions. Since each user in the SC-FDMA uplink uses
only a subset of the sub-carriers, different approaches for implementing the pulse
shaping have been suggested. With the conventional approach, the sample sequence
x̃g

n is transmitted using an amplitude shaping pulse ha(t) such that the continuous-
time complex envelope corresponding to the nth block is

s̃n(t) =
M+G−1

∑
m=0

x̃g
n,mha(t −mT̃ g

s ). (10.95)

For the continuous-time complex envelope s̃n(t), the PAPR for block n is defined as

PAPRn =
max0≤t≤(M+G)T̃ g

s
|s̃n(t)|2

1
(M+G)T̃ g

s

∫ (M+G)T̃ g
s

0 |s̃n(t)|2dt
. (10.96)

In this case, the PAPR depends not only on the modulation signal constellation
and sub-carrier mapping, but also on the pulse shaping waveform ha(t) as well.
For SC-FDMA, the shaping pulse ha(t) can be chosen to be a frequency-domain
root raised cosine pulse, since receiver matched filtering will yield an overall raised
cosine pulse that satisfies the first Nyquist criterion for ISI free transmission. The
required magnitude response is given by |Ha( f )|=

√
T̃ g

s |P( f )|1/2, where P( f ) is the
spectral raised cosine pulse defined in (4.47) with T = T̃ g

s . The root raised cosine
filtering can be implemented either in the time-domain or the frequency-domain.
With time-domain filtering, the sequence x̃n,m is passed through a digital filter ha,n

having the corresponding analog filter impulse response ha(t) in (4.50) with T =
T̃ g

s . Implementation of the root raised cosine time-domain filter requires that the
sequence x̃g

n = {x̃n,m}M−1
m=−G be upsampled prior to filtering, since the bandwidth of

the root raised cosine pulse exceeds the Nyquist frequency 1/2T̃ g
s . Assuming an

upsampling factor of F , the upsampled sequence is

x̃u
n,� =

{
x̃n,�/F , �= k ·F, k an integer,
0, otherwise.

(10.97)
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DFT Subcarrier IDFTxu
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Fig. 10.24 SC-FDMA with frequency-domain root raised cosine filtering

Fig. 10.25 Frequency-
domain root raised cosine
filtering
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If the roll-off factor β lies in the range 0 ≤ β ≤ 1, then an upsampling factor F = 2
will suffice. The upsampled digital filter impulse response in this case is given by
hu

a,n = ha(nT̃ g
s /F), where ha(t) is defined in (4.50) with T = T̃ g

s .
An entirely different approach is to implement the root raised cosine filtering

in the frequency-domain. This approach is feasible with SC-FDMA because of
the DFT/IDFT processing that is used in the transmitter. Figure 10.24 shows a
transmitter block diagram for SC-FDMA with a spectrum shaping filter in the
frequency-domain. As before, a block of data symbols xn = (xn,1,xn,2, . . . ,xn,N) is
input to an N-point DFT to yield the length-N vector Xn = (Xn,1,Xn,2, . . . ,Xn,N).
Once again, implementation of the root raised cosine filtering requires that the input
sequence xn be upsampled by a factor of F to yield the sequence xu

n = {xu
n,�}, where

xu
n,� =

{
xn,�/F , �= k ·F, k an integer,
0, otherwise.

(10.98)

Rather than implementing the upsampling process in the time-domain, the up-
sampling process can be emulated in the discrete frequency-domain by generating
periodic replicas of the vector Xn, that is,

Xu
n,�N+m = Xn,m, �= 0, . . . ,F − 1, 0 ≤ m ≤ N − 1. (10.99)

Once again, if the roll-off factor β lies in the range 0 ≤ β ≤ 1, then an upsampling
factor F = 2 will suffice, and we assume this value here. We then apply a cyclic shift
of N/2 positions to the vector Xu

n and, afterwards, apply frequency-domain raised
cosine filtering to generate the vector Xsh

n as shown in Fig. 10.25. After filtering, the
sub-carrier mapping is applied.
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The required frequency-domain pulse description can be obtained by modifying
the pulse description in (10.76), where the subscript k now refers to the sub-carrier
frequency. The pulse defined in (10.76) begins at index k = 0 and ends at k = M +
G − 1. However, the block size should be set to N rather than M, and the guard
interval in this case serves only to contain the required bandwidth expansion, which
is equal to B. Hence, we set M = N and G = B in (10.76) to give

W rc
k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
1
2 +

1
2 sin

(π
B

(
k− B−1

2

))
, 0 ≤ k < B,

1, B ≤ k < N,
√

1
2 − 1

2 sin
(π

B

(
k−N + B+1

2

))
, N ≤ k ≤ N +B− 1,

0, elsewhere.

(10.100)

The pulse in (10.100) has a flat-top of length N − B, and two roll-off sections of
length B. We just need to relate the parameters B and N to the roll-off factor β used
in the continuous-time root-raised cosine pulse description. The required values can
be obtained by noting that B = β/T̃ g

s and that the flat top portion has width N −
B = (1 − β )/T̃ g

s and, hence, we choose B according to β = B/N. The required
frequency-domain description can be obtained by right-shifting the pulse in (10.100)
by N − (N +B)/2 positions.

Note that the overall length of the frequency-domain root-raised cosine pulse
is N +B. Hence, with root-raised cosine filtering there are N +B samples that are
applied to the sub-carrier mapping, as opposed to just N samples without frequency-
domain filtering. The extra B frequency-domain samples per user is the bandwidth
cost that is required to implement the root-raised cosine filtering.

Problems

10.1. Consider an OFDM system having N = 1,024 sub-carriers that are spaced
4 kHz apart. Suppose that the waveform channel is a linear time-invariant channel
consisting of two nonfaded equal rays spaced τd seconds apart, that is,

g(t,τ) = gδ (τ)+ gδ (τd),

where g = αejφ is the gain associated with each of the two channel taps.
Find the value of the delay τd in the above channel model that will yield the worst

possible bit error rate performance for this OFDM system.

10.2. Suppose that an OFDM system is implemented with a guard interval that is a
cyclic extension of the IDFT coefficients as shown in (4.98).
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(a) Show that the output of the OFDM demodulator is given by (10.6).
(b) Now suppose that the guard interval simply consists of a blank interval where

nothing at all is transmitted. Assuming that G ≥ L > 0 can the data block xn be
recovered by taking an DFT of the received block Rn = {Rn,m}N−1

m=0?

10.3. Assume the transmission of a known OFDM symbol, cn = (cn,0, . . . ,cn,N−1),
given by the chirp sequence

cn,k = exp

{

j
2π
N

k2
}

, 0 ≤ k ≤ N − 1.

Coarse channel estimates can be obtained by computing

T̃n,i =
zn,i

cn,i

= Tn,i + ñn,i, i = 0, . . . ,N − 1,

where ñn = {ñn,i}N−1
i=0 is a vector of independent and identically distributed complex

Gaussian random variables with zero-mean and variance σ2
n . This yields the channel

estimate T̃n = {T̃n,i}N−1
i=0 . The receiver then computes the vector vn =(vn,1, . . . ,vn,N),

where vn = IDFT [Tn]. Afterwards, the {vn,m}N−1
m=0 are passed through a rectangular

window to zero vn,m, m ≥ G+ 1, and a DFT is taken of the resulting sequence to

yield the refined channel estimate T̄n = {T̄n,i}N−1
i=0 , such that

T̄n,i = Tn,i + nn,i, i = 0, . . . ,N − 1.

Show that the noise components nn,i are zero mean and have a variance equal to
σ2

n
G+1

N .

10.4. Derive the MMSE-FDE solution in (10.65).

10.5. Derive (10.92) for L-FDMA.



Chapter 11
Frequency Planning Techniques

This chapter considers cellular frequency planning techniques for TDMA and
OFDMA based cellular systems. System concepts for CDMA cellular systems
will be covered in Chap. 12. However, some schemes for high capacity, such as
cell sectoring, are flexible enough to be applied to any standard. Regardless of
the chosen access method, the ultimate goal is to achieve high capacity while
satisfying quality of Service (QoS) requirements. An architecture that will easily
accommodate system growth must also be implemented.

Microcells are a straight forward solution for achieving high capacity. However,
as microcells are introduced, a mixed cell architecture naturally evolves, consisting
of overlaid macrocells and underlaid microcells. We call such an arrangement a
hierarchical architecture. Hierarchical architectures can be implemented for TDMA,
CDMA, and OFDMA cellular systems. When microcells are introduced a key
issue is the partitioning of the frequency resources among the hierarchical layers.
The most attractive hierarchical systems are those that do not partition the system
bandwidth among the hierarchical layers. If the entire bandwidth is used in each
hierarchical layer, then both high capacity and high flexibility will be achieved.
CDMA systems use universal frequency reuse, but require sophisticated power
control algorithms if the bandwidth is not partitioned between the hierarchical
layers.

Macrodiversity architectures are another method for achieving high capacity,
where the signal transmitted by a mobile station (MS) is received by multiple base
stations (BSs). Likewise, the signal that is received by an MS may be transmitted
by multiple BSs. Macrodiversity is an effective method for combatting shadow
and envelope fading. In fact, cellular handoff algorithms implement a form of
macrodiversity. The soft handoff techniques used in CDMA systems are a well-
known method for realizing macrodiversity. TDMA systems that use hard handoff
algorithms will not yield as much macrodiversity gain due to latencies in the hard
handoff algorithms. The requirement for hard handoff in TDMA systems arises
a result of frequency planning with fixed channel assignment (FCA). However, if

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 11,
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dynamic channel assignment (DCA) techniques are used, then TDMA systems can
realize benefits from soft handoff similar to those obtained in CDMA systems. DCA
techniques do not permanently assign channels to cells.

The remainder of this chapter begins with a discussion of basic cellular frequency
planning techniques, including cell sectoring in Sect. 11.1 and cell splitting and
reuse partitioning in Sect. 11.2. Afterwards, Sect. 11.3 considers issues related
to frequency planning in OFDMA/SC-FDMA cellular networks. Section 11.4
considers a novel TDMA hierarchical cellular architecture based on the concept of
cluster planning, where macrocells and microcells can share the same frequencies.
Finally, Sect. 11.5 considers macrodiversity TDMA architectures, where a mobile
station is simultaneously served by multiple base stations.

11.1 Cell Sectoring

11.1.1 Cell Sectoring with Wide-beam Directional Antennas

One of the simplest and most practical methods for controlling co-channel in-
terference (CCI) is to use wide-beam directional antennas at the BSs. On the
forward channel, wide-beam directional antennas reduce the generation of CCI by
transmitting the signals to the MSs with a narrower angle-of-departure (AoD) spread
than omnidirectional antennas. On the reverse channel, wide-beam directional
antennas reduce the effect of the CCI because they respond to CCI that is received
within a narrower angle-of-arrival (AoA) spread about the target MS than would be
the case with omnidirectional antennas.

Consider a uniform deployment of hexagonal cells, where the BSs use om-
nidirectional antennas. Suppose that we ignore the effects of shadowing and
multipath-fading, and assume the following simple path loss model adapted from
(2.326), such that the received area mean power at distance d is

μΩp = ΩtGTGR
(hbhm)

2

dβ , (11.1)

where Ωt is the transmit power, GT and GR are the transmit and receiver antenna
gains, respectively, and hb and hm are the heights of the BS and MS antennas,
respectively. As illustrated in Fig. 11.1, the worst case forward channel CCI
situation occurs when the MS is located at the corner of a cell, furthest from its
serving BS. For N = 7, there are six first-tier co-channel BSs, located at distances
{√13R,4R,

√
19R,5R,

√
28R,

√
31R} from the MS. If the values of Ωt, GT, and hb

are assumed to be the same for all BS antennas, then it follows that the worst case
carrier-to-interference ratio, Λ , is
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Fig. 11.1 Worst case CCI
situation on the forward
channel

Λ =
R−β

(
√

13R)−β +(4R)−β +(
√

19R)−β +(5R)−β +(
√

28R)−β +(
√

31R)−β

=
1

(
√

13)−β +(4)−β +(
√

19)−β +(5)−β +(
√

28)−β +(
√

31)−β
. (11.2)

A similar expression can be derived for the case of N = 3 with co-channel
distances {2R,

√
7R,

√
7R,

√
13R,

√
13R,4R}, and N = 4 with co-channel distances

{√7R,
√

7R,
√

13R,
√

13R,
√

19R,
√

19R}. With a path loss exponent β = 3.5, the
worst case Λ is

Λ(dB) =

⎧
⎪⎨

⎪⎩

14.56 dB for N = 7,

9.98 dB for N = 4,

7.33 dB for N = 3.

The minimum allowable cluster size is determined by the threshold carrier-to-
interference ratio requirement, Λth, of the radio receiver. Unfortunately, the above
worst case Λ values may be too small to yield acceptable performance, especially
when we account for shadowing and multipath-fading.

Sectoring is a very common method that is used in cellular systems to improve
the worst case Λ , whereby the cells are divided into radial sectors with wide-beam
directional BS antennas. Cellular systems are quite often deployed with 120o and
sometimes 60o cell sectors. An N-cell reuse cluster with 120o sectors yields an
N/3N reuse plan (N cells and 3N sectors). As shown in Fig. 11.2, 120o cell sectoring
reduces the number of first-tier co-channel interferers from six to two. For N = 7,
the two first-tier interferers are located at distances

√
19R,

√
28R from the MS. The

resulting worst case carrier-to-interference ratio, Λ , is
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Fig. 11.2 Worst case CCI
situation on the forward
channel with 120o cell
sectoring

Λ =
R−β

(
√

19R)−β +(
√

28R)−β

=
1

(
√

19)−β +(
√

28)−β
. (11.3)

A similar expression can be derived for the case of N = 3 with co-channel distances
{√7R,

√
13R, and N = 4 with co-channel distances {√13R,

√
19R}. Hence,

Λ(dB) =

⎧
⎨

⎩

20.60 dB for N = 7,
17.69 dB for N = 4,
13.52 dB for N = 3.

For N = 7, 120o sectoring yields a 6.04 dB gain in the worst case Λ over the case
when omnidirectional antennas are used.

To derive a benefit from sectoring, the channel set that is assigned to each cell
must be further partitioned into disjoint sets, such that each sector uses a disjoint set
of channels. This finer partitioning of the channel sets results in a loss in trunking
efficiency, as discussed in Sect. 1.7.3. Hence, cell sectoring improves the worst case
carrier-to-interference ratio performance at the cost of reduced trunking efficiency.

11.2 Conventional Cell Splitting

Conventional cell splitting is a straight forward process of introducing new, smaller,
cells into an existing cellular deployment. By doing so, the cellular system can
be tailored to meet traffic growth. To illustrate conventional cell splitting, consider



11.2 Conventional Cell Splitting 625

Fig. 11.3 Conventional cell
splitting is used to
accommodate an increased
traffic load by introducing
smaller cells
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the uniform grid of hexagonal cells shown in Fig. 11.3. If heavy traffic loading is
experienced at the midpoint between the two cells labeled 1, then a split cell labeled
1’ is introduced at that location. The area of the split cell is 1/4 of the area of the
parent cells. Additional split cells can be introduced to accommodate traffic loading
in other locations throughout the system area. For example, the split cell labeled 2’
can be located at the midpoint between the two cells labeled 2.

Because the split cells are smaller, the transmit power can be reduced. To estimate
the transmit power requirements in the split cells, assume the simple path loss model
in (1.5). Then the received power for an MS located at the corner of a parent cell is

Ω(Ro) = kΩoR−β
o , (11.4)

while the received power at the boundary of a split cell is

Ω(Rs) = kΩsR
−β
s . (11.5)

where Ωo and Ωs, and Ro and Rs, are the transmit power and cell radius associated
with the parent cells and split cells, respectively, and k is a constant. To keep the
received signal power that is associated with an MS located on the cell boundary at
a constant value, the transmit power requirements of the split cell and parent cell are
related as follows:

Ωs = Ωo

(
Rs

Ro

)−β
. (11.6)

If β = 4, then Ωs = Ωo/16, since Rs = Ro/2. Hence, the split cells can reduce their
transmit power levels by 12 dB.

After introducing the split cells, changes in the frequency plan are required
to avoid violations of the reuse constraint. A very straight forward approach is
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Fig. 11.4 Overlaid inner
cells can be used to maintain
the frequency reuse constraint
when cell splitting is used
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channel segmenting, where the channel sets in the co-channel cells are divided
into two groups: the split cells are assigned one group of channels, while the
parent co-channel cells are assigned the other group of channels. Unfortunately,
this arrangement sacrifices trunking efficiency because the parent cells cannot
use the channels assigned to the split cells. Furthermore, if the parent cells are
already near capacity, then segmentation of the channels in these cells will require
the introduction of more split cells. Hence, a propagation of cell splitting occurs
throughout the system area, requiring the installation of a large number of additional
cell sites. Therefore, channel segmenting may not always be a good option.

Another solution is shown in Fig. 11.4, where overlaid inner cells are introduced
into the parent cells. Once again, the channels sets are divided into two groups.
MSs located within the overlaid inner cells and the split cells use one group of
channels, while MSs located within the outer cells use the other group of channels.
Whenever an MS moves between the inner and outer areas of a cell a hand-off must
be executed, to avoid violations of the co-channel reuse constraint.

11.2.1 Reuse Partitioning

Halpern [125] suggested an overlay/underlay scheme based on the concept of
reuse partitioning, where multiple co-channel reuse factors are used in the same
deployment. Sometimes this is called fractional reuse. An inner cell is created within
each of the existing cells as shown in Fig. 11.5. For the example in Fig. 11.5,
channels are assigned to the inner and outer cells according to a 3-cell and 7-cell
reuse plan, respectively, although other reuse plans could be used. Channels that are
assigned to the inner and outer cells can only be used by MSs located within the
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Fig. 11.5 Reuse partitioning
can be used to increase the
channel reuse efficiency,
from [125]
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inner and outer cells, respectively. Handoffs are required when an MS crosses the
boundary between an inner and outer cell. The reduced radii of the inner cells lead
to an increase in cell capacity. To quantify this increase let

Ri = radius of the inner cells.

Ro = radius of the outer cells.

Di = reuse distance for the inner cells.

Do = reuse distance for the outer cells.

Suppose that an acceptable link quality requires a co-channel reuse factor Di/Ri =
Do/Ro = 4.6. If a 7-cell and 3-cell reuse cluster is used for the outer and inner cells,
respectively, then Di/Ro = 3 and

Di/Ri

Di/Ro
=

4.6
3

. (11.7)

Hence, the inner and outer cell radii are related by Ri = 0.65Ro and, therefore, the
inner and outer cell areas are related by Ai = (0.65)2Ao = 0.43Ao. If a total of NT

channels are available, then 0.43NT channels should be assigned to the inner cells
and 0.57NT channels assigned to the outer cell area (assuming a homogenous traffic
distribution throughout the system area). The resulting cell capacity is

Nμ = 0.57NT/7+ 0.43NT/3 = 0.225NT channels/cell. (11.8)

On the other hand, with a conventional 7-cell reuse plan

Nμ = NT/7 channels/cell. (11.9)

Hence, an improvement of 1.575 in cell capacity is realized.
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Fig. 11.6 Cell splitting can
be used in combination with
reuse partitioning
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11.2.1.1 Cell Splitting with Reuse Partitioning

Cell splitting can also be used with reuse partitioning. An example is shown in
Fig. 11.6 where a split cell is added between the parent cells labeled B2. The split
cell also uses reuse partitioning. To maintain the C/I at an acceptable level, some
of the channels in the B2 cells are moved to the inner cells and are denoted by
B2’. Furthermore, the closest co-channel inner cells A1 must have their channels
partitioned in a similar fashion. Thus, we see a drawback when cell splitting is used
with the reuse partitioning, in that the cells must be divided into many concentric
rings that use disjoint channel sets and handoffs must occur when an MS crosses the
boundary between such rings.

11.3 OFDMA Radio Planning

Radio planning for OFDMA/SC-FDMA networks is more akin to radio planning in
TDMA cellular networks, such as GSM, than radio planning in CDMA networks,
such as WCDMA and cdma2000. The reason is that the intra-cell interference
is essentially eliminated due to the orthogonal property of the OFDMA sub-
carriers. However, to achieve high capacity with OFDMA/SC-FDMA networks,
aggressive frequency planning is necessary, and this will tend to increase the
level of inter-cell interference. For OFDMA/SC-FDMA networks adjacent channel
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Fig. 11.7 Deployment with
a sector reuse factor of 1
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Fig. 11.8 Deployment with
a sector reuse factor of 3
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interference is controlled by the orthogonal nature of the sub-carriers. However,
co-channel interference will be present. The reuse partitioning schemes discussed
in Sect. 11.2.1 can be used for deployment, along with the cell spitting techniques
in Sect. 11.2.1.1. The frequency reuse configurations that are of most interest for
OFDMA/SC-FDMA networks are BSs with 120o sectoring, and a sector reuse of
1 or 3.

With a sector reuse of 1, also known as universal frequency reuse, all sectors
can use the same sub-carrier frequencies, as shown in Fig. 11.7. With universal
frequency reuse, two different schemes can be used to mitigate the co-channel
interference between the cells and along the sector boundaries, namely interference
avoidance and interference randomization. Interference avoidance assigns sets of
sub-carriers dynamically so as to avoid interference. Randomization can be achieved
by scrambling the set of sub-carriers that are used within the same band, or by
frequency hopping over a larger band. In either case, the interference experienced
by the users is randomized and a strong interferer is shared by all the users.

With a sector reuse of three, the three reuse sectors in each cell are assigned
a disjoint set of sub-carrier frequencies, as shown in Fig. 11.8. Reuse three will
eliminate the co-channel interference that occurs along the sector boundaries in the
same cell. Furthermore, it also increases the co-channel reuse distance. This will
permit greater usage of the sub-carrier frequencies in each sector which will improve
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Fig. 11.9 Deployment with
reuse partitioning
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spectral efficiency. However, a sector reuse of three does require that the set of
frequencies be partitioned into three groups which will tend to decrease spectral
efficiency.

A third alternative is to use the concept of reuse partitioning as detailed in
Sect. 11.2.1. With reuse partitioning a cell is divided into multiple regions, for
example, an inner cell and three outer cell sectors as shown in Fig. 11.9. Users
that are located in the inner cells can reuse all the available sub-carrier frequencies.
Users that are located in the outer cell areas use a fraction of the available
sub-carriers according to a three-sector reuse. This arrangement will yield high
spectral efficiency using all the available sub-carrier frequencies in the inner cells,
while at the same time provide robustness against interference using a three-sector
reuse of sub-carrier frequencies in the outer cell areas. The spectral efficiency
will be somewhere between that of universal frequency reuse and three-sector
reuse. The scheme also requires that the locations of the users be tracked and
the set of sub-carriers allocated to the users be dynamically updated according to
a policy that promotes uniform sub-carrier-to-interference-plus-noise ratio (sub-
carrier CIR) while maximizing a metric such as the sum capacity. For cellular
downlink applications, power and sub-carrier allocation schemes can be used under
the assumption that the BS has complete channel state information for all forward
channels it serves, and the total BS transmit power is constrained. The uplink is
similar, but more complicated in the sense that each MS may have a different
transmit power constraint.

A variety of techniques described previously for single-carrier systems can
be applied with simple modification to multiuser multi-carrier systems. On the
forward channel beam-forming can be used to promote good spatial efficiency by
minimizing BS emissions. For line-of-sight (LoS) channels, classical beam-forming
is described in Sect. 6.9. In this case, it is possible that the same antenna weighting
vector could be used for all sub-carriers. On the reverse channel, multi-antenna
interference cancelation techniques can be performed, such as optimum combining
as described in Sect. 6.8. Since the channel varies each uplink user and each sub-
carrier, optimum combining would have to be used on a per user per sub-carrier
basis.
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11.4 Cluster-Planned Hierarchical Architecture

One drawback of conventional cell splitting and reuse partitioning is that the split
cells and overlaid cells can only be introduced at specific locations in the cellular
deployment. Unfortunately, these locations may not necessarly correspond to the
locations that are experiencing the highest traffic growth. We now describe a
TDMA hierarchical architecture based on the concept of cluster planning, where
macrocells and microcells reuse the same frequencies. Moreover, the microcells
can be gradually and extensively deployed at any location to increase the capacity
throughout the entire service area. With these flexibilities, the cluster planning
approach allows the smooth evolution of existing macrocellular systems into a
hierarchical mixed cell architecture.

11.4.1 System Architecture

A traditional 7/21 frequency reuse system is shown in Fig. 11.10. The channels
are partitioned into 21 sets and each set is reused in a diamond-shaped sector
with an adequate distance of separation. Unfortunately. the interfering regions

Fig. 11.10 Traditional 7/21 frequency reuse plan
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Fig. 11.11 Proposed 7/21 frequency reuse plan with cluster planning

for each channel cover the whole service area. This widely distributed CCI from
the macrocells makes it impossible to reuse the same channel frequencies in the
microcells.

Cluster planning can be used to change the conventional sectored arrangement
into one having some areas of very low interference for a specified set of carriers.
The basic cluster planning procedure is as follows:

1. Assign the same channels to each cell site as in the traditional 7/21 frequency
reuse plan shown in Fig. 11.10.

2. Divide the macrocell reuse clusters into three groups as shown in Fig. 11.11.
3. Let the first group be the reference group.
4. Rotate the channel sets of each cell in the second group 120o clockwise with

respect to the first group.
5. Rotate the channel sets of each cell in the third group 120o counter-clockwise

with respect to the first group.

The cluster planning procedure creates low-interference regions outside the areas
of the designated macrocell sectors for each channel set. These low-interference
regions are called micro-areas. Fig. 11.12 shows the result of rotating the sectors.
We see that zones A–F have a very low interference for channel set 4β , since they
are located in the back-lobe areas of the macrocell sectors using channel set 4β .
Thus, microcells can be introduced in these areas using channel set 4β .
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Fig. 11.12 Microcells can reuse low-interference macrocell channels in the proposed hierarchical
architecture. The macrocell channel set 4β can be reused in the micro-area A–F

11.4.2 Underlaid Microcell Planning Algorithm

In the cluster-planned hierarchical architecture, microcells are located in micro-
areas where certain macrocell channel sets can be reused. To have the greatest
flexibility in selecting the microcell BS locations, it is important to identify all
possible micro-areas and the associated channels sets that can be used by microcells
that are deployed in these areas. In the cluster-planned architecture, the front-lobe
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Fig. 11.13 Interference
neighborhood for micro-area
A in Fig. 11.12
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areas of the directional antennas are used by the macrocells, while the back-lobe
areas of the directional antennas are used by the microcells. In a conventional
frequency reuse system (see e.g., Fig. 11.10), the back-lobe area of each channel
set will still encounter some first-tier interferers. To protect the back-lobe areas from
the first-tier interferers, we rotate the sectors through the cluster planning procedure.
Cluster planning creates low-interference micro-areas as shown in Fig. 11.12, that
lie in the back-lobe areas of the first-tier interferers. For ease of indexing, a micro-
area denotes a region of three adjacent macrocell sectors, each of which belongs to
different BS. Figure 11.13 shows an example of a micro-area. Each micro-area has
an interference neighborhood, M, defined as the 18 neighboring macrocell sectors
that surround the micro-area.

The following algorithm systematically determines the channels that can be used
in each micro-area. To describe the algorithm, let c j

i represent the channel set in
sector i = α,β ,γ , of the cell site c, where c = 1, . . . ,7. The superscript j = 1,2,3
indexes the three groups of rotated clusters.

• Given a desired micro-area and a corresponding interference neighborhood,
M, let

Θ =
{

c j
i ∈ M

}

denote the union of channel sets c j
i in the interference neighborhood M.



11.4 Cluster-Planned Hierarchical Architecture 635

• From Θ , construct a 3 × 3 “indicator matrix” Bc = [bi j] for BSs c = 1, . . . ,7,
where

bi j =

{
1 if the channel set c j

i ∈ M;
0 otherwise.

• If the indicator matrix Bc for some cell site c has a row of ones and two rows of
zeroes, then the zero-rows of Bc indicate the low-interference macrocell channel
sets for the micro-area.

Example 11.1:
According to Fig. 11.13, the interference neighborhood for micro-area A is

Θ =
{

12
α ,1

2
β ,1

2
γ ,2

2
α ,2

2
β ,2

2
γ ,3

2
α ,3

3
α ,3

2
γ ,4

1
α ,4

2
α ,4

3
α ,5

1
α ,5

2
α ,5

1
γ ,6

2
α ,6

2
β ,6

3
β ,

72
α ,7

2
β ,7

2
γ

}
.

Then the indicating matrices are

B1 =

⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠ ; B2 =

⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠ ; B3 =

⎛

⎝
0 1 1
0 0 0
0 1 0

⎞

⎠ ;

B4 =

⎛

⎝
1 1 1
0 0 0
0 0 0

⎞

⎠ ; B5 =

⎛

⎝
1 1 0
0 0 0
1 0 0

⎞

⎠ ; B6 =

⎛

⎝
0 1 0
0 1 1
0 0 0

⎞

⎠ ;

B7 =

⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠ .

Examining the indicator matrices Bc,c = 1, . . . ,7, we find that B4 is the only
matrix having a row of ones and two rows of zeroes; the second and the
third rows of B4 are the zero rows. Based on the above algorithm, the low-
interference macrocell channel sets for micro-area A are 4β and 4γ .

To see if other micro-areas can be defined in the proposed system architecture,
consider the system in Fig. 11.14 having 100 micro-areas defined over the service
area. By applying the above algorithm, the available macrocell channel sets for each
micro-area are listed in Table 11.1. Note that the micro-areas are capable of reusing
two macrocell channel sets and microcells can be deployed throughout the whole
service area.

Since a micro-area consists of three macrocell sectors, each macrocell area has
five available channel sets; three are assigned to macrocells and two are assigned
to microcells. Within each micro-area the microcells are deployed according to
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Fig. 11.14 Channel reuse in the proposed three-sector cellular system, where each micro-area
consists of three sectors that belong to three different macrocells
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Table 11.1 The macrocell channel sets that can be used in the underlaid microcells

Zone Channel set Zone Channel set Zone Channel set Zone Channel set

1 7α ,7β 26 6α ,6γ 51 6α ,6β 76 3α ,3β
2 5β ,5γ 27 7α ,7γ 52 7α ,7β 77 6α ,6γ
3 1β ,1γ 28 5α ,5β 53 5β ,5γ 78 7α ,7γ
4 2β ,2γ 29 1α ,1β 54 1β ,1γ 79 5α ,5β
5 4α ,4γ 30 2α ,2β 55 2β ,2γ 80 1α ,1β
6 3α ,3γ 31 3α ,3β 56 4α ,4γ 81 4α ,4β
7 6β ,6γ 32 6α ,6γ 57 3α ,3γ 82 3α ,3β
8 7β ,7γ 33 7α ,7γ 58 6β ,6γ 83 6α ,6γ
9 5α ,5γ 34 5α ,5β 59 7β ,7γ 84 7α ,7γ
10 1α ,1γ 35 1α ,1β 60 5α ,5γ 85 5α ,5β
11 4α ,4γ 36 2α ,2β 61 2β ,2γ 86 1α ,1β
12 3α ,3γ 37 4β ,4γ 62 4α ,4γ 87 2α ,2β
13 6β ,6γ 38 3β ,3γ 63 3α ,3γ 88 4β ,4γ
14 7β ,7γ 39 6α ,6β 64 6β ,6γ 89 3β ,3γ
15 5α ,5γ 40 7α ,7β 65 7β ,7γ 90 6α ,6β
16 1α ,1γ 41 1α ,1β 66 5α ,5γ 91 5α ,5β
17 2α ,2γ 42 2α ,2β 67 1α ,1γ 92 1α ,1β
18 4α ,4β 43 4β ,4γ 68 2α ,2γ 93 2α ,2β
19 3α ,3β 44 3β ,3γ 69 4α ,4β 94 4β ,4γ
20 6α ,6γ 45 6α ,6β 70 3α ,3β 95 3β ,3γ
21 5α ,5γ 46 7α ,7β 71 7β ,7γ 96 6α ,6β
22 1α ,1γ 47 5β ,5γ 72 5α ,5β 97 7α ,7β
23 2α ,2γ 48 1β ,1γ 73 1α ,1γ 98 5β ,5γ
24 4α ,4β 49 2β ,2γ 74 2α ,2γ 99 1β ,1γ
25 3α ,3β 50 4α ,4γ 75 4α ,4β 100 2β ,2γ

a conventional frequency reuse plan. The microcells could use omnidirectional
antennas or sectored antennas. Let Cμ represent the number of the microcell clusters
that are deployed in a micro-area. Since each microcell cluster can reuse two sets
of low-interference macrocell channels as shown in the above example, the cell
capacity can be increased by factor of 1+ 2×Cμ/3 times. Later we will show that
Cμ = 6 is possible and, hence, giving a capacity increase of seven times.

11.4.3 Performance Analysis of Cluster-Planned Architecture

11.4.3.1 Propagation Model and System Assumptions

Our analysis uses the following path loss model from (2.326):

μΩp =
Ωt(hbhm)

2

dβ , (11.10)

where μΩp and Ωt are the received and transmitted powers, hb and hm are the BS
and MS antenna heights, respectively, d is the radio path length, and β is the path
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loss exponent. Although (11.10) is more suitable for a macrocell environment than
a microcell environment, it is still the characteristic of the path loss experienced
by the microcell links at locations that are well outside of the microcells. In other
words, the model is applicable when considering the CCI that is generated by distant
microcells.

CCI: In our two-tiered hierarchical architecture, four types of CCI must be
considered; macrocell-to-macrocell, microcell-to-microcell, macrocell-to-microcell
and microcell-to-macrocell CCI. Adjacent channel interference should also be
considered.

Antennas: The macrocell BSs are assumed to use 120o wide-beam directional
antennas, while microcell BSs use omni-directional antennas. It is possible to
improve the C/I performance by sectoring the microcells as well, but we do not
consider this here. The MSs use omnidirectional antennas.

Uplink power control: We adopt an uplink power control scheme such that the
transmitted power is adjusted in six levels from −22 dBW to −2 dBW in steps of
4 dB. Downlink power control is not required in the proposed architecture. Before
proceeding, we first clarify our notation. When the subscripts M and μ are used, they
refer to macrocells and microcells, respectively; when m and b are used, they denote
the MS and BS, respectively; when d and u are used, they indicate the downlink and
uplink, respectively.

11.4.3.2 Macrocell Performance

Section 11.4.2 showed that the cluster planning technique creates low interference
regions, thereby allowing the microcells to reuse macrocell frequencies. However,
some macrocells will experience higher interference after rotating the sectors. This
is the cost of cluster planning. To evaluate the influence of the sector rotations on
the macrocell performance, consider both the conventional macrocellular system in
Fig. 11.10 and the proposed hierarchical cellular system in Fig. 11.12 without the
underlaid microcells. Figure 11.15 shows the simulation results of the uplink C/I
performance for both systems, assuming that the MSs are uniformly distributed in
each sector and they transmit with the maximum power. We consider the uplink case
because the downlink performance is usually better than the uplink performance.
With respect to a 90% coverage probability, one can observe that the sector rotation
technique creates low interference regions at the cost of about 3.1, 3.3, and 3.5 dB
of C/I degradation for path loss exponent β = 3.6, 3.8, and 4.0, respectively. Even
after sector rotations, the macrocells can maintain a C/I greater than 20 dB over
90% of the coverage area. In the following, we will further include the effect of
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Fig. 11.15 Comparison of
the uplink C/I performance
of conventional macrocells
and the proposed hierarchical
cellular system without the
underlaid microcells for
different path loss exponent β
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underlaid microcells when analyzing the performance of the proposed hierarchical
cellular system. For ease of analysis, we hereafter adopt the worst case scenario
where an MS is situated on a cell boundary.

Downlink C/I Analysis

By applying (11.10) with β = 4, we express the C/I received by the MS at the
macrocell boundary as

Cd
M

Id
M + Jd

μM

=

Ω M
t,b
(hM

b hm)
2

R4
M

NM

∑
i=1

Ω M
t,b(h

M
b hm)

2

D4
i

+
Zμ

∑
j=1

Cμ

∑
k=1

Ω μ
t,b(h

μ
b hm)

2

d jk
4

(11.11)

where

Cd
M = MS received power from the desired macrocell BS

Id
M = downlink macrocell-to-macrocell CCI
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Jd
μM = downlink microcell-to-macrocell CCI

Ω M
t,b = macrocell BS transmitted power

Ω μ
t,b = microcell BS transmitted power

NM = the number of macrocell co-channel interferers

Zμ = the number of interfering micro-areas

Cμ = the number of microcell clusters in a micro-area

Di = MS distance to the ith interfering macrocell BS

d j,k = MS distance to the kth interfering microcell BS in the jth micro-area

hM
b = macrocell BS antenna height

hμ
b = microcell BS antenna height

hm = MS antenna height

RM = macrocell radius

Referring to Fig. 11.14 and Table 11.1, we examine the downlink interference
when a macrocell MS using channel set 1β is located at the macrocell boundary near
micro-area 56. One can find that the macrocell-to-macrocell downlink interference
Id
M mainly comes from two first-tier macrocell BSs located near micro-areas 77

and 68 with distances [D1,D2] = [4,3.61]RM, respectively. However, because the
objective of cluster planning is to carefully manage the C/I, the performance
may be sensitive to the C/I. Consequently, we also consider the three second-
tier interfering BSs located near micro-areas 11, 17, and 62, located at distances
[D3,D4,D5] = [8.89,8.89,8.72]RM, respectively. For the microcell-to-macrocell
downlink interference Jd

μM, one can find six interfering micro-areas 35, 48, 54, 80,

86, and 99 in the first tier with distances of [d1,d2,d3,d4,d5,d6] = [3,4.58,3.46,
6,5.2,6.25]RM, respectively. The second-tier interfering micro-areas 3, 29, 41, and
92 have distances [d7,d8,d9,d10] = [7.55,9,7.94, 12]RM, respectively. We assume
that each micro-area has Cμ microcell reuse clusters, and each of these clusters has
Kμ microcells. Through the channel selection algorithm in Sect. 11.4.2, each micro-
area is assigned two macrocell channel sets. We further partition these two sets of
channels into Kμ groups and then assign each group to the Kμ microcells in each
cluster. In this manner, a macrocell channel set is used Cμ times in a micro-area.
For ease of analysis, we assume that the distance d j approximates d j,k, where d j is
the distance from a macrocell MS to the center of the jth interfering micro-area and
d j,k is defined following (11.11). In our example, the microcell BS antenna height
is one-third of macrocell BS antenna height, i.e., hμ

b /hM
b = 1/3, although this ratio

can be easily varied. With the above assumptions in (11.11) we have
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Fig. 11.16 Macrocell downlink C/I performance against Ω μ
t,b/Ω M

t,b for different values of Cμ ,

where Ω μ
t,b/Ω M

t,b is the microcell to microcell BS transmit power, and Cμ is the number of microcell
clusters in a micro-area

Cd
M

Id
M + Jd

μM

=
1

1.02875× 10−2+Cμ

(
Ω μ

t,b

Ω M
t,b

)

× 2.79449× 10−3

. (11.12)

We show the downlink C/I performance in terms of Cμ and Ω μ
t,b/Ω M

t,b in Fig. 11.16
with consideration of only first-tier interfering BSs and in Table 11.2 with both
first- and second-tier interfering BSs. Observe that C/I ≥ 18 dB for Cμ = 6 and
Ω μ

t,b/Ω M
t,b ≤ 0.3. In other words, the channel set 4β can be reused six times in the

micro-area while still keeping the worst case macrocell downlink C/I greater than
18 dB. The reuse increases even further if the required C/I is smaller than 18 dB.
Furthermore, by comparing the results in Table 11.2 with Fig. 11.16, one can find
that the second-tier interfering BSs only degrade the C/I by an additional 0.5 dB
over the first-tier interfering BSs.

Uplink CCI Analysis

By modifying (11.11) slightly, we can formulate the uplink C/I as
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Table 11.2 Downlink C/I performance for overlaying macrocells,
where hμ

b /hM
b = 1/3

Cd
M/(Id

M + Jd
μM) (dB)

Ω μ
t,b/Ω M

t,b Cμ = 1 Cμ = 2 Cμ = 4 Cμ = 6

0 19.88 19.88 19.88 19.84
0.1 19.76 19.64 19.42 19.22
0.2 19.65 19.42 19.02 18.65
0.3 19.53 19.22 18.65 18.15
0.4 19.43 19.02 18.31 17.70
0.5 19.32 18.83 17.99 17.29
0.6 19.22 18.65 17.69 16.91
0.7 19.12 18.48 17.42 16.57
0.8 19.02 18.30 17.16 16.25
0.9 18.93 18.14 16.91 15.96
1.0 18.83 17.99 16.68 15.68

Cu
M

Iu
M + Ju

μM
=

Ω M
t,m

(hM
b hm)

2

R4
M

NM

∑
i=1

Ω M
t,m(h

M
b hm)

2

D4
i

+
Zμ

∑
j=1

Cμ

∑
k=1

Ω μ
t,m(h

M
b hm)

2

d jk
4

, (11.13)

where

Cu
M = macrocell BS received power from the desired MS

Iu
M = uplink macrocell-to-macrocell interference

Ju
μM = uplink microcell-to-macrocell interference

Ω M
t,m = macrocell MS transmitted power

Ω μ
t,m = microcell MS transmitted power

and where the remaining parameters have already been defined following (11.11).
With directional antennas, the macrocell BSs experience fewer interfering micro-
areas in the uplink direction as compared with the downlink direction. Consider the
macrocell sector that is assigned with channel set 2γ and located near micro-area 37.
This macrocell sector encounters two first-tier and four second-tier macrocell
interfering MSs at distances

[D1,D2,D3,D4,D5,D6] = [3.61,3.61,8.54,8.19,8.19,7.81]Rm,

and interfering micro-areas 23, 55, 61, 68, 74, 100, (i.e. Zμ = 6) at distances

[d1,d2,d3,d4,d5,d6] = [7.0,7.0,14.7,5.3,11.5,9.53]Rm.
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Fig. 11.17 Macrocell uplink
C/I performance against
Ω μ

t,m/Ω M
t,m for different values

of Cμ , where Ω μ
t,m/Ω M

t,m is the
ratio of the transmitted power
of the microcell MS to that of
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the number of microcell
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We can ignore the effect of the three other interfering micro-areas 4, 17, 49 because
they are located in the back-lobe area of the sector using channel set 2γ . By
substituting the above values into (11.13), the uplink C/I performance for this
example becomes

Cu
M

Iu
M + Ju

μM
=

1

1.2677× 10−2+Cμ

(
Ω μ

t,m

Ω M
t,m

)

× 2.11× 10−3

. (11.14)

Figure 11.17 shows the results. Suppose that a worst case target C/I of 18 dB is
chosen. Then it is observed that the C/I is greater than 18 dB for Cμ = 1–6 if

Ω μ
t,m

Ω M
t,m

≤ 0.2. (11.15)

Note that we obtained (11.15) under the assumption that the interfering macrocell
MSs are on the cell boundary and are transmitting with the maximum power. Thus
(11.15) can be used to determine the maximum microcell MS’s transmitted power.
For example, consider an MS that can adjust its transmitted power in six levels
from −22 dBW to −2 dBW. Then (11.15) implies that the maximum microcell MS
transmitted power is −9 dBW, which is still in the operational range of the MS.
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11.4.3.3 Microcell Performance

We now show how the microcell size should be chosen to achieve the required C/I
performance.

Downlink microcell size

A feasible microcell size should satisfy two conditions: (1) C-criterion: an MS will
receive stronger power, C, at the microcell boundary than at the macrocell boundary;
(2) C/I-criterion: the C/I at the microcell boundary equals or exceeds that at the
macrocell boundary.

C-criterion: From the path loss model in (11.10), the microcell radius Rμ can be
calculated as

Rμ ≤
⎛

⎝

(
Ω μ

t,b

Ω M
t,b

)(
hμ

b

hM
b

)2
⎞

⎠

1/4

RM, (11.16)

where RM, hμ
b , hM

b , Ω μ
t,b, and Ω M

t,b are defined in (11.11).

C/I-criterion: The C/I received by the MS at the microcell boundary can be
written as

Cd
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μ + Jd
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Ω μ
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2
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Ω M
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D4
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+
1
η

⎛

⎝
NMb

∑
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Ω M
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2

D4
Mb,i

⎞

⎠

,

(11.17)

where the parameters Ω μ
t,b, Ω M

t,b, hM
b , hμ

b , Cμ , and hm have already been defined in
(11.11) and

Cd
μ = MS received power from its desired microcell BS

Id
μ = downlink microcell-to-microcell interference

Jd
Mμ = downlink macrocell-to-microcell interference

NMf = the number of main-lobe macrocell interferers

NMb = the number of back-lobe macrocell interferers

DMf,i = MS distance to the ith main-lobe interfering BS

DMb, j = MS distance to the jth back-lobe interfering BS

Dμ,i = MS distance to the ith microcell interfering BS
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RM = macrocell radius

Rμ = microcell radius

η = the front-to-back ratio of the directional antenna in macrocells

Let (C/I)req denote the required C/I. Then (11.17) becomes
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(11.18)

where ̂DMf,i =DMf,i/RM, ̂DMb, j =DMb, j/RM, and D̂μi =Dμi/RM, are the normalized
distances of interferers with respect to macrocell radius RM. Here, we assume that
the microcells and macrocells have similar shapes, and that the microcell clusters are
adjacent to each other in a given micro-area. Suppose the distances from a microcell
MS to its interfering microcell BSs are equal and close to the microcell co-channel
reuse distance Dμ (i.e., Dμ,i = Dμ , for i = 1, · · · ,Cμ ). Then

Dμ

Rμ
=
√

3Kμ , (11.19)

where Kμ denotes the microcell cluster size. With Cμ microcell clusters and Kμ
microcells inside each cluster, a micro-area has in total Cμ Kμ microcells. Suppose
that taken together they are smaller than the area of a macrocell. Then

RM

Rμ
≥√CμKμ . (11.20)

Substituting (11.19) (11.20) into (11.18), we get
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(11.21)

Notice that we consider NMb back-lobe macrocell interferers in (11.21). The back-
lobe interference from the macrocell BSs can be ignored for the macrocell MS, but
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for the microcell MS, this kind of interference may be relatively strong compared
to the received signal strength from the “low-powered” microcell BS. For the same
reason, the macrocell interferers in the second ring are considered here.

Example 11.2:
Referring to Fig. 11.14 and Table 11.1, micro-area 56 can be assigned

channel sets [4α , 4γ ]. Take channel set 4γ as an example. Micro-area 56 will
experience three first-tier back-lobe interferers (NMb = 3), each of which has
the following distance:

[̂DMb],1
, ̂DMb,2 , ̂DMb,3 ] = [2.65,2.65,2.65] (11.22)

to the center of micro-area 56. Three main-lobe interfering macrocells in the
second tier are located near micro-areas 25, 79, 64 with the distances of

[
̂DM f ,1 , ̂DM f ,2 , ̂DM f ,3

]
= [5.29,5.29,5.29]. (11.23)

Furthermore, three main-lobe interfering macrocell BSs in the third tier are
located near micro-areas 13, 70, and 85 with distances of

[
̂DM f ,4 , ̂DM f ,5 ,

̂DM f ,6

]
= [7.0,7.0,7.0]. (11.24)

It is also important to determine if there exist interfering microcell BSs from
neighboring micro-areas. Figure 11.14 and Table 11.1 shows one feature
of the proposed system architecture; the adjacent micro-areas are assigned
different macrocell channel sets. For instance, micro-area 56 in Fig. 11.14
is assigned channel sets [4α , 4γ ], while the neighboring micro-areas 45, 46,
55, 57, 66, and 67 use channel sets [6α , 6β ], [7α , 7β ], [2β , 2γ ], [3α , 3γ ],
[5α , 5γ ], [1α , 1γ ]. Obviously, when considering the interfering microcell BSs,
a microcell MS will only be affected by the interfering microcell BSs in
the same micro-area. Assume that each micro-area consists of Cμ microcell
clusters. Then an MS will experience the interference from the remaining
Cμ −1 microcell BSs, excluding the desired one. Substituting (11.22), (11.23),
and (11.24) into (11.21), one can obtain
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(11.25)
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Fig. 11.18 Effect of front-to-back ratio η on the microcell radius based on downlink microcell
C/I performance analysis, where Rμ/RM and Ω μ

t,b/Ω M
t,b are the cell radius ratio and transmitted

power ratio of microcells over macrocells, respectively. With (C/I)req = 18 dB and hμ
b /hM

b = 1/3,
curves (a)–(e) are obtained by C/I-criterion for η = 0,5,10,15, and 20 dB, respectively, while
curve (f) is obtained by C-criterion

(a) Cμ = 1: We first consider the special case where only one microcell is
installed in each micro-area. This situation may occur with initial microcell
deployment. Figure 11.18 shows the effect of the front-to-back ratio η on
the microcell radius, in the case (C/I)req = 18 dB and hμ

b /hM
b = 1/3. If the

C/I- and C-criterion result in different microcell radii, then the smallest one
must be chosen. From Fig. 11.18, one can observe that if front-to-back ratio
η ≥ 10 dB, the microcell radius is determined by the C-criterion, but when
η ≤ 5 dB, the C/I-criterion dominates the C-criterion. For instance, in the case
of η = 10 dB and Ω μ

t,b/Ω M
t,b = 0.4, one can obtain Rμ ≤ 0.5RM by the C/I-

criterion and Rμ ≤ 0.46RM by the C-criterion, respectively. We must satisfy
the more stringent requirement and, therefore, the microcell radius is 0.46RM.
In this example, one can see that a larger front-to-back ratio η does not imply
a larger microcell size, since the C-criterion, which is independent of η , will
dominate the C/I-criterion when η is large.
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Fig. 11.19 Downlink microcell radius Rμ against Ω μ
t,b/Ω M

t,b for different values of Cμ in the case

η = 10 dB, (C/I)req = 18 dB, and hμ
b /hM

b = 1/3, whereby the microcell radius is normalized with

respect to the macrocell radius RM; Ω μ
t,b/Ω M

t,b represents the ratio of the transmitted power of
microcell BS to that of macrocell BS; Cμ is the number of clusters in a micro-area; η is the front-
to-back ratio of the directional antenna; hμ

b /hM
t,b is the ratio of the microcell BS antenna to the

macrocell BS antenna. Curves (a)–(e) are obtained by C/I-criterion for Cμ = 1,2,4,6, and 8, while
curve (f) is obtained by C-criterion

(b) Cμ ≥ 2: Next, we consider the case where many microcells are deployed
in each microarea. Figure 11.19 shows the downlink microcell size against
Ω μ

t,b/Ω M
t,b for different values of Cμ , where Ω μ

t,b/Ω M
t,b is the ratio of the

transmitted power of the microcell BS to that of the macrocell BS, and Cμ
is the number of microcell clusters in a micro-area. It is observed that if
Cμ ≥ 3, Ω μ

t,b/Ω M
t,b has little effect on the downlink microcell size. This is

because the interference from the microcells, Id
μ , will dominate the macrocell

interference, Jd
μ , when the number of co-channel microcells (Cμ −1) becomes

large in a given micro-area. In other words, if a large number of microcells
are installed, the C/I-criterion will become a dominating factor in determining
the microcell size. In the case of Cμ = 6, for example, one should follow the
C/I-criterion to get Rμ ≤ 0.165RM from Fig. 11.19.
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Uplink Microcell Size

Similar to the previous analysis for the downlink microcell size, the uplink microcell
size is derived from the C/I analysis. More specifically,
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2
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, (11.26)

where the parameters Ω μ
t,b, Ω M

t,b, Cμ hM
b , Dμ,i, RM, hμ

b , and hm have been defined in
(11.11) and (11.17) and

Cu
μ = microcell BS received power from the desired microcell MS

Iu
μM = uplink microcell-to-macrocell interference

Ju
Mμ = uplink macrocell-to-microcell interference

NM,f = the number of macrocell interfering MSs

DM,i = BS distance to the i-th interfering macrocell MS

Rμ,up = uplink microcell radius

Let DM,i = D̂M,iRM and (C/I)req denote the required C/I for a microcell BS. Using
the same assumptions for getting (11.18), one can simplify (11.26) as

Rμ,up

RM
≤

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(C/I)−1
req

(
Cμ − 1

)
C2

μ

9
+

⎛

⎝
NMf

∑
i=1

(
1

̂DMf,i

)4
⎞

⎠

(
Ω M

t,m

Ω μ
t,m

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
4

. (11.27)

We have shown that when the number of microcell clusters Cμ becomes large,
the downlink microcell size is insensitive to the interference from the macrocells.
This is also true for determining the uplink microcell size. This will be shown by a
later example. When microcell interference dominates the performance, (11.27) can
be approximated as

Rμ,up

RM
≤

⎛

⎜
⎜
⎝

1

(C/I)req

(
Cμ − 1

)
C2

μ

9

⎞

⎟
⎟
⎠

1
4

. (11.28)
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Fig. 11.20 Kμ against Cμ
with Rμ/RM as a parameter,
whereby Kμ is the microcell
cluster size, Cμ the number of
clusters in a micro-area, and
Rμ/RM is the ratio of the
microcell radius to the
macrocell radius. Curve (a)
represents the lower bound of
Kμ , while curves (b)–(g)
represent the upper bound of
Kμ for Rμ/RM = 0.13, 0.15,
0.20, 0.25, 0.30, 0.35,
respectively
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By combining (11.19), (11.20), and (11.28), we obtain upper and lower bounds on
Kμ as

1
3

√
(C/I)req(Cμ − 1)≤ Kμ ≤ 1

Cμ

(
RM

Rμ

)2

. (11.29)

The relation between Kμ and Cμ with Rμ/RM as a parameter is shown in Fig. 11.20.

Example 11.3:
Consider again micro-area 56 in Fig. 11.14. Referring to Table 11.1, micro-

area 56 can be assigned channel sets [4α ,4γ ]. Take channel set 4α for example.
The worst case interference occurs when interfering macrocell MSs transmit
maximum power, i.e., at the macrocell boundary. For the example considered,
the three first-tier interfering macrocell MSs near micro-areas 45, 47, and 77
are located at distances of [̂DM,1,̂DM,2,̂DM,3] = [2.0,2.0,2.0], respectively; the
three second-tier interfering macrocell MSs near micro-areas 26, 53, and 89
are located at distances [̂DM,4,̂DM,5,̂DM,6] = [4.36,4.36,4.36], respectively;
the three third-tier interfering macrocell MSs near micro-areas 32, 38, and
98 are located at distances [̂DM,7,̂DM,8,̂DM,9] = [6.0,6.0,6.0], respectively.
Substituting these values into (11.27) and then letting (C/I)req = 18 dB, we
show in Fig. 11.21 the ratio of microcell radius to macrocell radius Rμ/RM

against Ω μ
t,m/Ω M

t,m for different values of Cμ , where Ω μ
t,m/Ω M

t,m is the ratio of
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Fig. 11.21 Uplink microcell radius Rμ against Ω μ
t,m/Ω M

t,m for different values of Cμ , where the
microcell radius is normalized by the macrocell radius RM, Ω μ

t,m/Ω M
t,m is the ratio of the transmitted

power of the microcell MS to that of the macrocell MS, Cμ is the number of microcell clusters in
a micro-area, and (C/I)req = 18 dB

the transmitted power of the microcell MS to that of the macrocell MS, and
Cμ is the number of the microcell clusters in a micro-area. It is shown that as
Cμ increases, microcell size becomes insensitive to Ω μ

t,m/Ω M
t,m.

Suppose our objective is to implement six microcell clusters in each macro-
area (i.e. Cμ = 6) and still maintain (C/I)req = 18 dB. We first need to
know the feasible cluster size Kμ and the microcell radius. From Fig. 11.20,
we obtain Kμ = 7 and Rμ = 0.15 × RM. Then from Fig. 11.21, we find
the transmitted power for a microcell MS should be at least 0.017 times
that for a macrocell MS. Consider an interfering macrocell MS which is
transmitting at −2 dBW. The microcell MS transmitted power should be
larger than −20 dBW in this case. If the MS transmitted power ranges from
−22 dBW to −2 dBW as was assumed earlier, then the MS can be used in
both the macrocells and microcells of the cluster-planned architecture without
changing the MS transmit power specification.
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Table 11.3 Frequency management plan for avoiding adjacent channel interference
1α 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316
2α 2 23 44 65 86 107 128 149 170 191 212 233 254 275 296 317
3α 3 24 45 66 87 108 129 150 171 192 213 234 255 276 297 318
4α 4 25 46 67 88 109 130 151 172 193 214 235 256 277 298 319
5α 5 26 47 68 89 110 131 152 173 194 215 236 257 278 299 320
6α 6 27 48 69 90 111 132 153 174 195 216 237 258 279 300 321
7α 7 28 49 70 91 112 133 154 175 196 217 238 259 280 301 322
1β 8 29 50 71 92 113 134 155 176 197 218 239 260 281 302 323
2β 9 30 51 72 93 114 135 156 177 198 219 249 261 282 303 324
3β 10 31 52 73 94 115 136 157 178 199 220 250 262 283 304 325
4β 11 32 53 74 95 116 137 158 179 200 221 251 263 284 305 326
5β 12 33 54 75 96 117 138 159 180 201 222 252 264 285 306 327
6β 13 34 55 76 97 118 139 160 181 202 223 253 265 286 307 328
7β 14 35 56 77 98 119 140 161 182 203 224 254 266 287 308 329
1γ 15 36 57 78 99 120 141 162 183 204 225 255 267 288 309 330
2γ 16 37 58 79 100 121 142 163 184 205 226 256 268 289 310 331
3γ 17 38 59 80 101 122 143 164 185 206 227 257 269 290 311 332
4γ 18 39 60 81 102 123 144 165 186 207 228 258 270 291 312 333
5γ 19 40 61 82 103 124 145 166 187 208 221 251 271 292 313
6γ 20 41 62 83 104 125 146 167 188 209 222 252 272 293 314
7γ 21 42 63 84 105 126 147 168 189 210 223 253 273 294 315

11.4.3.4 Adjacent Channel Interference Analysis

To avoid excessive adjacent channel interference, it is desirable not to use the same
channel sets in adjacent sectors. We will first review a frequency plan designed
to avoid adjacent channel interference in the conventional macrocellular system.
Then we will show that the same plan works for the cluster-planned hierarchical
architecture. As shown in Fig. 11.10, a traditional 7/21 macrocellular system has 21
sectors. If the forward and reverse links each have 10 MHz of available spectrum,
and the channel bandwidth is 30 kHz, then a total of 333 carriers can be assigned
to the 21 sectors. A frequency plan that avoids adjacent channel interference is
shown in Table 11.3 [153]. Each row in the table represents a frequency set that is
designated to a sector. This scheme separates any two carriers assigned to adjacent
sectors by seven carriers.

If the frequency plan in Table 11.3 is applied to the cluster-planned architecture
in Fig. 11.14, there is no adjacent channel interference between macrocell sectors.
Even with the addition of underlaid microcells, a two-carrier separation is main-
tained between the carriers assigned to the microcells and the co-site macrocells
within a micro-area. For example, referring to Fig. 11.14 and Table 11.1, the channel
set [4α,4γ] is assigned to micro-area 56. The co-site macrocell sectors that use
channel set 1β ,2α, and 7γ have at least a two-carrier separation. This feature is
valid for all the micro-areas with channel assignment of Table 11.1.
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11.5 Macrodiversity Architectures

Microscopic diversity techniques are used to combat the effects of envelope fading.
Macrodiversity, or a large-scaled space diversity, has long been recognized as an
effective tool to combat shadowing [134, 153], although it is effective against
envelope fading as well. A TDMA macrodiversity system serves a mobile station
(MS) simultaneously by several BSs. At any time, the BS with the best quality
measure is chosen to serve the MS. The criterion for branch (or BS) selection
is a key issue when designing a macrodiversity system. Usually, the branch
selection is based on the local mean power rather than the instantaneous power
[4, 5, 134, 255, 275, 299], because the branch selection algorithm cannot react to
the rapidly varying instantaneous signal power. Here we focus on local-mean-based
branch selection schemes.

Previous studies on macrodiversity systems have evaluated the co-channel inter-
ference performance with shadowing only [34, 273, 295] and shadowed Rayleigh
fading channels [274]. The co-channel interference performance was also discussed
in [162], but it was assumed that the branch selection was based on the instantaneous
signal power. The error rate performance of macrodiversity systems has been
analyzed in Gaussian noise with both shadowing and Rayleigh (or Nakagami) fading
[4,5,255,256,299]. However, these studies did not consider co-channel interference.
The analysis in [276] carries this further by considering the effect of Ricean fading
on a local-mean-based macrodiversity system and by considering the correlation
effect of the wanted signal at different branches of a macrodiversity system.

11.5.1 Co-channel Interference Outage

We now consider an analytical model for calculating the probability of co-channel
interference outage, OI, for an L-branch local-mean-based macrodiversity system
with log-normal shadowing. The model assumes that the local mean envelope power
of the desired signal, Ωd,k, is available for each branch k, where k = 1, . . . ,L. In
practice, the desired signal power is mixed with the total interference power for
each branch ΩI,k, so that Ωd,k +ΩI,k is actually measured. However, the difference
is small for large Ωd,k/ΩI,k. If the branch having the largest Ωd,k is selected, then
the local-mean envelope power of the selected branch is

Ωd = max(Ωd,1,Ωd,2, · · · ,Ωd,L) . (11.30)

Let Fk(x) and pk(x) denote the cumulative distribution function (cdf) and the pdf of
Ωd,k, respectively. If the Ωd,k are treated as independent random variables with the
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pdf in (2.292), then Ωd has the pdf pΩd(x) = L [Fk(x)]
L−1 pk(x). The probability of

co-channel interference outage is

OI = P [Ωd/ΩI < Λth]

= 1−
∫ ∞

0

(
∫ x/Λth

−∞
pΩI(x)(y)dy

)

pΩd(x)dx, (11.31)

where Ωd and ΩI are the total powers of the desired and interfering signals for
the selected branch with pdfs pΩd(x) and pΩI(y), respectively, and Λth is the
threshold C/I.

The interfering signals add noncoherently so that the total interference power on
the kth branch is ΩI,k = ∑NI

i=1 ΩI,k,i, where NI is the number of interferers and ΩI,k,i

is the power of the ith interferer on the kth branch. It is widely accepted that ΩI,k can
be approximated by a log-normal random variable with area mean power μΩI,k and
standard deviation σΩI,k . As discussed in Sect. 3.1, the parameters σΩI,k and μΩI,k

can be calculated using a variety of methods, including the Fenton–Wilkinson and
Schwartz and Yeh methods.

If the {ΩI,k}n
k=1 are independent and identically distributed (i.i.d.), and the

{Ωd,k}L
k=1 are also i.i.d. and independent of the {ΩI,k}n

k=1, then [273, 295]

OI = 1−L
∫ ∞

0

(
∫ x/Λth

0

1√
2πσΩIξ y

exp

{
−(10log10{y}− μΩI (dB)

)2

2σ2
ΩI

}

dy

)

×
(

1−Q

(
10log10{x}− μΩd (dB)

σΩd

))L−1

× 1√
2πσΩdξ x

exp

{
−(10log10{x}− μΩd (dB)

)2

2σ2
Ωd

}

dx, (11.32)

where σΩd and μΩd(dB) are the shadowing standard deviation and area mean power
of the desired signal on the kth diversity branch, respectively.

For ease of evaluation, we let w = (10log10{x} − ln μΩd (dB))/
√

2σΩd and
transform (11.32) into a Hermite integration form. That is,

OI = 1−
∫ ∞

−∞
g(w)e−w2

dw � 1−
n

∑
i=1

g(wi)hi, (11.33)

where

g(w) =
L√
π

(

1−Q

(√
2σΩdw+ ξ (μΩd (dB)− μΩI (dB)−Λth(dB))

σΩI

))

×
(

1−Q
(√

2w
))L−1

, (11.34)

and wi and hi are the roots and weight factors of the nth-order Hermite polynomial,
respectively [2].
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11.5.2 Shadow Correlation

Until now, we have assumed independent shadowing on the macrodiversity
branches. However, in many cases the macrodiversity branches will be correlated.
Define

Ωd =
(
Ωd,1,Ωd,2, · · · ,Ωd,L

)
. (11.35)

For a correlated L-branch macrodiversity system, the joint pdf of Ωd is [72]

pΩd
(z) =

1
√
(2π)Ldet(M)ξ Lz1 · · · zL

exp

{

−1
2

YTM−1Y
}

, (11.36)

where z = (z1, · · · ,zL), YT = [y1, · · · ,yL] denotes the transpose of column vector

Y =

⎡

⎢
⎢
⎣

10log10(z1)− μΩd,1 (dB)
...

10log10(zL)− μΩd,L (dB)

⎤

⎥
⎥
⎦ (11.37)

and μΩd,1 (dB), · · · ,μΩd,L (dB) are the area means of each diversity branch. The
covariance matrix M is expressed as

M =

⎡

⎢
⎣

σ2
Ω1

· · · ν1L
...

. . .
...

νL1 · · · σ2
ΩL

⎤

⎥
⎦ , (11.38)

where σΩ is the shadowing standard deviation and νi j is the covariance of Ωd,i (dB)
and Ωd, j (dB)

νi j = E
[(

Ωd,i (dB)− μΩd,i (dB)

)(
Ωd, j (dB)− μΩd, j (dB)

)]
. (11.39)

It is convenient to define N = M−1 and express the matrix multiplication in (11.36)
in the form

YTNY =
L

∑
i=1

Niiy
2
i + 2

L−1

∑
i=1

L

∑
j=i+1

Ni jyiy j (11.40)

where Ni j is the element in the ith row and jth column.
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According to (11.30), (11.36) and (11.40), the probability that Ωd < y is

P[Ωd < y] =
∫ y

0
· · ·
∫ y

0

1
√
(2π)Ldet(M)ξ Lz1 · · · zL

×exp

{

−1
2

(
L

∑
i=1

Niiy
2
i + 2

L−1

∑
i=1

L

∑
j=i+1

Ni jyiy j

)}

dz, (11.41)

where Ni j and yi are defined in (11.40) and (11.37), respectively.
The key for obtaining the probability of co-channel interference outage of the

local-mean-based macrodiversity system is to find the pdf of the combiner output
power, pΩd(y). Unlike the uncorrelated case where there exists a closed-form
expression for pΩd(y), one cannot easily get a simple closed formula for the joint
distribution of more than two mutually correlated log-normal random variables.
However, for L = 2 and μΩd, j (dB) = μΩd (dB)

pΩd(z) =
1

√
2πdet(M)ξ 2

(
1√
N22

exp

{

− z2

2

(

N11 − N12

N22

)}

×
(

1−Q

((√
N22 +

N12√
N22

)

z

))

+
1√
N11

exp

{

− z2

2

(

N22 − N12

N11

)}

×
(

1−Q

((√
N11 +

N12√
N11

)

z

)))

, (11.42)

where z = (10log10y− μΩd (dB)). Consider the following covariance matrix M

M =

[
σ2 ν
ν σ2

]

(11.43)

and

N = M−1 =
1

σ4 −ν2

[
σ2 −ν
−ν σ2

]

. (11.44)
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By substituting (11.44) into (11.42), we express the pdf of the output local-mean
power of the dual macrodiversity system as

pΩd(y) =

√
2√

πσξ 2y

(

1−Q

((
1− r√
1− r2

)(
10log10y− μΩd (dB)

σ

))

× exp

{

− (10log10y− μΩd (dB))
2

2σ2

})

, (11.45)

where the correlation coefficient r is defined as r = ν/σ2. Combining (11.31) and
(11.45), gives

OI = 1−
∫ ∞

−∞
g(w)e−w2

dw � 1−
n

∑
i=1

g(wi)hi, (11.46)

where

g(w) =
2√
π

∫ ∞

−∞

(

1−Q

(√
2σdw+[μΩd (dB)− μΩI (dB)−Λth (dB)]

σΩI

))

×
(

1−Q

(
1− r√
1− r2

√
2w

))

. (11.47)

11.5.3 Numerical Examples

Consider a cellular system with nine cells per cluster. In this case, two co-channel
interferers are at 5.2R, where R is the cell radius. Assume the mobile unit is on the
boundary of the cell at a distance of R to the BS. Consider a dual slope path loss
model with a = b = 2 and g = 0.15R in (2.248).

Figure 11.22 shows the probability of co-channel interference outage perfor-
mance, while Table 11.4 lists the threshold Λth and diversity gain (D.G.) in terms
of 5% and 10% co-channel interference outage probabilities. Diversity gain here
is defined as the additional C/I (in dB) that is required by a system without
diversity to produce the same probability of co-channel interference outage. Some
general observations can be made: (1) a higher shadowing spread leads to a higher
diversity gain and a lower required threshold Λth; (2) the diversity gain per branch
is decreased as the number of diversity branches is increased; (3) the diversity gain
increases with the requirement of the system, e.g., the diversity gain for a 5% outage
probability is higher than that for a 10% outage probability.
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Fig. 11.22 Probability of co-channel interference outage, OI, against the required threshold, Λth,
at the receiver for the local-mean-based macrodiversity system, where the solid lines (——) denote
the case for shadowing standard deviation σ = 10 dB and the dashed lines (−−−) for σ = 6 dB;
a = b = 2, g = 0.15R; two interferers are located at a distance of 5.2R

Table 11.4 Macrodiversity gain (D.G.) and the
threshold Λth of C/I set at the receiver in terms of
5% and 10% probability of co-channel interference
outage, OI, over a pure shadowing channel; σ = 6 dB

OI = 5% OI = 10%

L Λth D.G. Λth D.G.

1 10.96 – 13.69 –
2 15.78 4.82 18.12 4.43
3 17.97 7.01 20.46 11.78
4 19.41 8.45 21.80 13.13

We evaluate the effects of correlation coefficient r on a two-branch macrodiver-
sity system with various σ ; σ = 6 dB in Fig. 11.23 and σ = 10 dB in Fig. 11.24.
With respect to a 10% outage, Table 11.5 lists Λth with different r. Observe that as
r approaches unity, the diversity gain becomes zero. Furthermore, for r = 0.7, the
diversity gain will be reduced to about 50% of the gain when r = 0.
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Fig. 11.23 Effect of branch correlation coefficient r on the local-mean-based macrodiversity
system with σ = 6 dB; a = b = 2, g = 0.15R; two interferers are located at a distance of 5.2R

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 24

Λ th (dB)

10−2

10−1

100

O
I r = 0

r = 0.1
r = 0.3
r = 0.5
r = 0.7
r = 0.9
r = 1.0

Fig. 11.24 Effect of branch correlation coefficient r on the local-mean-based macrodiversity
system with σ = 10 dB; a = b = 2, g = 0.15R; two interferers are located at a distance of 5.2R
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Table 11.5 Effects of branch
correlation on a two-branch
macrodiversity

σ = 6 dB σ = 10 dB

r Λth D. G. Λth D. G.

0 13.54 3.99 9.24 6.96
0.1 13.39 3.84 8.93 6.65
0.3 12.78 3.23 7.94 5.66
0.5 12.23 2.68 7.00 4.72
0.7 11.46 1.91 5.67 3.39
0.9 10.51 1.02 4.12 1.84
1.0 9.55 – 2.28 –

Problems

11.1. Consider a regular hexagonal cell deployment, where the MSs and BSs use
omnidirectional antennas. Suppose that we are interested in the forward channel
performance and consider only the first tier of co-channel interferers as shown in
Fig. 1.12. Ignore the effects of shadowing and multipath fading, and assume that the
propagation path loss is described by the inverse β law in (1.5).

(a) Determine the worst case carrier-to-interference ratio, Λ , as a function of the
reuse cluster size N, for β = 3,3.5, and 4.

(b) What is the minimum cluster size that is needed if the radio receivers have
Λth = 9 dB?

(c) Referring to Fig. 1.13, repeat parts (a) and (b) for the reverse channel.

Note: In this problem you must use exact radio path distances.

11.2. Consider a cellular system that uses a 7-cell hexagonal reuse cluster. The base
stations use 120o wide-beam directional antennas and they all have the same antenna
height and transmit with the same power level. Consider the forward channel (base-
to-mobile). Ignore shadowing and envelope fading and consider only the path loss.
A mobile station will experience the lowest co-channel interference ratio, Λ , when
it is located in the corner of a cell.

(a) Considering only the first tier of co-channel base stations, what is the worst case
Λ with a path loss exponent of 4?

(b) Considering the first two tiers of co-channel base stations, what is the worst
case Λ with path loss exponent of 4?

(c) From parts (a) and (b) what conclusions can you make about the effect of the
second-tier co-channel base stations?

(d) What happens if the path loss exponent is equal to 3?

Note: In this problem you must use exact radio path distances.

11.3. A cellular network provider uses a TDMA scheme that can tolerate a C/I of
9 dB in the worst case. The propagation environment is characterized by a path loss
exponent β = 4.
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Fig. 11.25 Cell division with
two-channel bandwidth
scheme

R

Ro

i

30 kHz channels

15 kHz channels

(a) Find the best value of N for (1) omnidirectional antennas, (2) 120o sectoring,
and (3) 60o sectoring.

(b) Suppose that the system bandwidth supports at total of Ntot voice channels. We
wish to maximize the “cell capacity” defined as the number of voice channels
per cell. Should sectoring be used?

(c) If sectoring is used, should you use 120o or 60o sectoring? Explain.

11.4. One method for improving the capacity of a cellular system uses a
“two-channel bandwidth” scheme as suggested by Lee [154], where a hexagonal
cell is divided into two concentric hexagons as shown in Fig. 11.25. The inner
hexagon is serviced by 15 kHz channels, while the outer hexagon is serviced by
30 kHz channels. Suppose that the 30 kHz channels require Λ = 18 dB to maintain
an acceptable radio link quality, while the 15 kHz channels require Λ = 24 dB.

Assume a fourth-law path loss model and suppose that the effects of envelope
fading and shadowing can be ignored. Consider the mobile-to-base link and suppose
that there are six co-channel interferers at distance D from the BS. For a 7-cell
reuse cluster, it follows that the worst case carrier-to-interference ratio, Λ , when a
mobile station (MS) is located at distance d from the BS is Λ = (D/d)4/6. Hence,
Λ = 18 dB requires D/Ro = 4.6, and Λ = 24 dB requires D/Ri = 6.3, where Ri and
Ro are the radii of the inner and outer cells, respectively.

(a) Use the values of D/Ri and D/Ro to determine the ratio of the inner and outer
cell areas, Ai/Ao.

(b) Let Ni and No be the number of channels that are allocated to the inner and
outer portions of each cell, and assume that the channels are assigned such
that Ni/No = Ai/(Ao − Ai). Determine the increase in capacity (as measured
in channels per cell) over a conventional “one-channel bandwidth” system that
uses only 30 kHz channels.

11.5. It has been suggested by [154] that the two-channel bandwidth scheme in
Problem 11.4 can be combined with Halpern’s reuse partitioning scheme. In this
case, 15 kHz channels are used in the inner cells and 30 kHz channels are used in
the outer cells. To have adequate performance in the inner or low bandwidth ring we
must have Di/Ri = 6.3, while the outer higher bandwidth ring can use Do/Ro = 4.6.
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Fig. 11.26 Highway cell reuse pattern for Prob. 11.6

Fig. 11.27 Microcellular
propagation environment for
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Compute the increase in capacity (as measured in channels per cell) that will
result from using this scheme, as compared to a conventional system using a 7-cell
reuse cluster.

11.6. You are asked to design a highway cell reuse pattern as shown in Fig. 11.26
Each cell has length 2R.

(a) A base station with an omnidirectional antenna is placed at the center of each
cell. Shadowing is ignored under assumed line-of-sight conditions. Derive an
expression for C/I in terms of the linear reuse cluster size N. Afterwards,
determine the minimum reuse factor needed to yield a worst case carrier-to-
interference ratio (C/I) of 9 dB or more. Consider only the nearest neighbour-
ing co-channel interferers and assume a propagation path loss exponent β = 4.

(b) Now suppose that directional antennas are used to divide each cell into two
semicircular sectors with boundaries perpendicular to the highway. Repeat
part (a).

(c) Consider again the sectored cell arrangement in part (b). However, log-normal
shadowing (due to heavy vehicle traffic) is now present with shadow standard
deviation of σΩ dB. Derive an expression for the C/I outage on a cell boundary,
again considering only the nearest neighbouring co-channel interferers.

11.7. Microcells are characterized by very erratic propagation environments. This
problem is intended to illustrate the imbalance in the forward and reverse channel
carrier-to-interference ratio that could occur in a street microcell deployment.
Consider the scenario shown in Fig. 11.27 that consists of two co-channel BSs,
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BS1, and BS2, communicating with two co-channel MSs, MS1, and MS2. Neglect
the effects of shadowing and multipath, and assume that the non-line-of-sight corner
path loss model in (2.351). Suppose that a= 2, b= 4, and g = 150 m. Plot Λ at BS1,
BS2, MS1, and MS2 as MS2 moves from A to C. When plotting your results, assume
a received power level of 1 dBm at a distance of 1 m.



Chapter 12
CDMA Cellular Systems

CDMA has been adopted in third generation (3G) cellular systems, notably in
the cdma2000 and WCDMA standards, due to its many benefits such as universal
frequency reuse, soft handoff capability, and the ability to exploit multipath fading
with RAKE receivers. CDMA waveforms are broadband and noise-like, so that the
multiple-access interference behaves in a manner that is approximately equivalent to
additional AWGN. CDMA cellular systems are interference limited and, therefore,
their capacities are closely related to the amount of multiple-access interference
that is generated by the transmitters on one hand and tolerated by the receivers on
the other. Because of the universal frequency reuse, multiple-access interference in
CDMA cellular systems is due to both intra-cell interference from transmissions in
the same cell and inter-cell interference from transmissions in neighboring cells. To
alleviate the level of multiple-access interference, and thus increase the capacity and
quality, CDMA systems must use power control in conjunction with soft handoff.
The fundamental idea behind power control is to limit the generation of multiple-
access interference by restraining mobile stations (MSs) and base stations (BSs)
from transmitting any more power than is necessary. With power control, each MS
and BS transmits just enough power to meet the required carrier-to-interference ratio
(CIR) at the intended receiver.

This chapter considers capacity and performance of CDMA cellular systems.
Section 12.1 begins the chapter with a discussion of the power control mechanism
in the CDMA reverse and forward links. We then consider the reverse and
forward link capacity of CDMA cellular systems, and demonstrate the impact of
imperfect power control in Sect. 12.2. Section 12.3 considers hierarchical CDMA
cellular architectures consisting of macrocells and underlaid macrocells, where both
hierarchical layers use the entire system bandwidth. On the reverse link, this is
accomplished using Macrodiversity maximal ratio combining (MMRC) where the
signals received at multiple BSs are coherently combined. On the forward link, only
one BS can transmit to a given MS at any given time. The forward link transmit
power is determined according to a neighboring cell pilot power scheme, where

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7 12,
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the forward transmit power to each MS is determined according to link conditions
between the MS and surrounding BSs. It is also shown that some improvement can
be gained using selective transmit diversity at the BSs on the forward link.

12.1 CDMA Power Control

CDMA cellular systems must use reverse channel power control to combat the
near-far effect, a phenomenon where the signals received from distant MSs will
experience excessive multiple-access interference from close-in MSs due to dif-
ferences in the propagation path loss. Shadowing and envelope fading will also
contribute significantly to the near-far effect, although these propagation factors
are not distance dependent. To combat variations in the received CIR due to
path loss, shadowing and envelope fading, the reverse link in CDMA cellular
systems uses a fast closed-loop power control algorithm. For cdma2000 cellular
systems, the transmit power from each MS is adjusted every 1.25 ms to equalize
the corresponding received CIR at the serving BS. Such adjustments are based on
measurements of the received Eb/Nt (bit energy to interference-plus-noise spectral
density ratio). The reverse closed-loop power control algorithm consists of outer and
inner power control loops. The outer power control loop occurs between the base
station controller and the BSs, and adjusts a “set point” or target received Eb/Nt

according to measurements of the frame error rate that is required to maintain a
desired quality of service. The outer loop adjustments are performed at the frame
interval, for example, every 20 ms in cdma2000. The inner power control loop
occurs between the BSs and MSs. The serving BS compares measurements of the
received Eb/Nt from each MS to the corresponding target Eb/Nt. Based on the
results of these comparisons the BS instructs each MS to either increase or decrease
its transmit power by a power increment at short periodic intervals, for example,
±1 dB every 1.25 ms in cdma2000.

CDMA cellular systems also use forward link power control to combat the corner
effect, a condition where an MS experiences a decrease in received CIR near the
corner of a cell. While the IS-95A/B cellular system uses open-loop power control
on the forward link, 3G CDMA cellular systems such as cdma2000 and WCDMA
also use fast closed-loop power control on the forward link based on measurements
of the received Ec/Io (chip energy to interference-plus-noise spectral density ratio)
that are obtained from the forward pilot channel. Once again, the forward closed-
loop power control algorithm consists of outer and inner power control loops. The
outer power control loop is carried out entirely within the MS, where the MS adjusts
a “set point” or target received Ec/Io according to measurements of the frame
error rate that is required to maintain a desired quality of service. The outer loop
adjustments can be performed at the frame interval, for example, every 20 ms in
cdma2000. The inner power control loop occurs between the MSs and BSs. The MS
compares measurements of the received Ec/Io from the BS to the corresponding
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target Ec/Io. Based on the results of these comparisons, the MS instructs the BS to
either increase or decrease its transmit power by a predetermined power increment
at short periodic intervals, for example, ±1 dB every 1.25 ms in cdma2000.

The basic idea of CDMA power control can be described as follows [150, 254].
We consider the CDMA reverse link where a BS serves K MSs (although the same
argument can be applied to forward link power control). The reverse link CIR
experienced by MS i, (C/I)i, is

(C/I)i =
GiPi

∑K
j=1
j �=i

G jPj + Io +No
, (12.1)

where Gi is the link gain (due to path loss, shadowing, and fading) between MSi

and the BS, and Pi is the reverse transmit power MSi. The term Io represents the out-
of-cell interference generated by the surrounding cells and No is the additive white
Gaussian noise (AWGN). The goal is to develop a recursive algorithm to adjust the
transmit power of MSi to drive (C/I)i to meet or exceed a desired target value,
(C/I)target,i, that is, we wish to have

(C/I)i ≥ (C/I)target,i , i ≤ i ≤ K. (12.2)

Rearranging (12.1) gives

Pi =
K

∑
j=1
j �=i

(C/I)i
G j

Gi
Pj +(C/I)i

Io +No

Gi
. (12.3)

Based on the above derivation, we define a K ×K matrix W = [Wi j] and a vector
U = (Ui) having elements

Wi j =

⎧
⎨

⎩

1, , i = j,

−(C/I)target,i
Gj
Gi

, i �= j,
(12.4)

Ui = (C/I)target,i
Io +No

Gi
, 1 ≤ i ≤ K. (12.5)

The existence of a power vector, P = (P1,P2, . . . ,PK)
T, such that WP = U implies

that (C/I)i ≥ (C/I)target,i,1 ≤ i ≤ K. When such a matrix P exists, W has only
strictly positive eigenvalues and, therefore, P is given by

P = W−1U. (12.6)

It is proven in [254] that whenever a unique power vector P satisfying (C/I)target,i,
1 ≤ i ≤ K, exists, P(n) converges to P = W−1U for any initial power vector P(0)
according to the following recursion:

P(n+ 1) = (I−W)P(n)+U. (12.7)
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The above recursion can be rewritten as

Pi(n+ 1) = Pi(n)
(C/I)target,i

(C/I)i(n)
, (12.8)

where Pi(n) and (C/I)i(n) are the transmit power of MSi and (C/I)i at step n,
respectively.

12.2 Capacity of Cellular CDMA

Numerous studies have investigated the capacity and performance of CDMA
cellular systems for radio propagation environments characterized by path loss and
shadowing, including Gilhousen et al. [110], Kudoh and Matsumoto [145], and
Newson and Heath [194]. Mokhtar and Gupta [182] considered reverse channel
capacity on shadowed Nakagami fading channels, where the desired and interfering
signals have the same statistical fading characteristics.

CDMA cellular systems use universal frequency reuse, where the bandwidth
is shared by all the cells and users are distinguished through the assignment of
unique spreading sequences. For such systems, multiple-access interference from
both in-cell and out-of-cell sources must be carefully accounted for. The propagation
path loss associated with out-of-cell interferers is relatively small due to the
short reuse distance and, hence, the associated interference is significant. With
cellular CDMA systems, any technique that reduces or mitigates multiple-access
interference translates directly into a capacity gain. For this reason CDMA systems
use voice activity detection along with variable rate speech coding, where the rate of
the speech coder is reduced when silent periods are detected in the speech waveform.

Our analysis of cellular CDMA capacity assumes a uniform plane of hexagonal
cells of radius R. Each cell contains a centrally located BS with 120o cell sectors.
It is further assumed that the MSs are uniformly distributed throughout the system
area with a density of K MSs per cell sector. For hexagonal cells of radius R, this
yields a subscriber density of

ρ =
2K

3
√

3R2
per unit area. (12.9)

The effects of variable rate speech coding can be modeled by assuming that each
transmitter is independently active at any time with probability p, so that the number
of active transmitters in each cell has a (K, p) binomial distribution. The average
number of active transmitters in a cell sector is K p.
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12.2.1 Reverse Link Capacity

Our analysis assumes a simple closed-loop reverse channel power control scheme
that equalizes the received power C at a BS from all MSs being served by that BS.
Let MSi, j denote the jth MS located in cell i. The power transmitted by MSi, j,
located at distance di, j from its serving BS, BSi, is Pi, j. The received power at BSi is

C = Pi, j10
ςi, j
10 , (12.10)

where ςi, j is a random gain (in decibel units) due to path loss, shadowing and fading.
MSi, j is also located at distance di,0 to the reference BS, BS0, and will produce an
out-of-cell interference equal to

Io(i, j)
C

= 10ςi,0/10 ·
(

1

10ςi, j/10

)

= 10(ςi,0−ςi, j)/10 ≤ 1. (12.11)

The first term is due to path loss, shadowing and fading to BS0, while the second
term is the effect of the power control to compensate for the random attenuation
between MSi, j and BS j. Note that Io(i, j)/C is always less than unity; otherwise the
MS will execute a handoff to another BS that will make it less than unity.

For our purpose, we assume log-normal shadowing with Nakagami fading, where
the received squared-envelope has the composite Gamma-log-normal pdf in (2.313).
The composite Gamma-log-normal pdf can be approximated by a purely log-normal
pdf with mean and standard deviation given by (2.314). Hence, the random variables
ςi, j and ςi,0 are treated as Gaussian random variables with means and variances,
respectively,

μi, j (dBm) = ξ−1(ψ(mi, j)− ln(mi, j))+ μΩp (dBm)
(i, j),

μi,0 (dBm) = ξ−1(ψ(mi,0)− ln(mi,0))+ μΩp (dBm)
(i,0),

σ2
i, j = ξ−2ζ (2,mi, j)+σ2

Ω ,

σ2
i,0 = ξ−2ζ (2,mi,0)+σ2

Ω , (12.12)

where ξ = ln(10)/10, mi, j and mi,0 are the Nakagami shape factors, and σΩ is
the shadow standard deviation. The parameters μΩp (dBm)

(i, j) and μΩp (dBm)
(i,0)

are determined by the path loss. Using the simple path loss model in (1.5), their
difference is

μΩp (dBm)
(i, j)− μΩp (dBm)

(i,0) = 10β log10

{
di, j/di,0

}
. (12.13)
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The total out-of-cell interference-to-signal ratio is equal to

Io

C
=

∫ ∫

χIo(i, j)Φ0, jρdA, (12.14)

where

Φ0, j =

{
1, if 10(ςi,0−ςi, j)/10 < 1
0, otherwise

, (12.15)

ρ is user density over the area A, and χ is the voice activity variable

χ =

{
1 , with probability p.
0 , with probability 1− p

. (12.16)

The total out-of-cell interference Io can be modeled as a Gaussian random variable
by invoking the central limit theorem. The mean of the total out-of-cell interference-
to-carrier ratio is

E[Io/C] =
∫ ∫

E[χ10(ςi,0−ςi, j)/10Φ0, j]ρdA

=

∫ ∫

pE[10(ςi,0−ςi, j)/10Φ0, j]ρdA. (12.17)

Let x = ςi,0 − ςi, j and define

μx (dB) = μi,0 (dBm)− μi, j (dBm),

σ2
x = σ2

i,0 +σ2
i, j. (12.18)

The expectation in the integrand of (12.17) is

E[10(ςi,0−ςi, j)/10Φ0, j] =

∫ 0

−∞
eξ x 1√

2πσx
exp

{

− (x− μx (dB))
2

2σ2
x

}

dx

= exp

{
ξ 2σ2

x

2
+ ξ μx (dB)

}
1√

2πσx

×
∫ 0

−∞
exp

{

−
(

x√
2σx

− ξ σx√
2

− μx (dB)√
2σx

)2
}

dx

= exp

{
ξ 2σ2

x

2
+ ξ μx (dB)

}(

1−Q

(

−ξ σx −
μx (dB)

σx

))

.

(12.19)
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Fig. 12.1 Reverse channel
transmissions from MSs
located in the shaded area
will cause out-of-cell
interference with the reverse
channel transmission from
the reference MS

x  reference MS

Therefore,

E[Io/C] = p
∫ ∫

exp

{
ξ 2σ2

x

2
+ ξ μx (dB)

}(

1−Q

(

−ξ σx −
μx (dB)

σx

))

ρdA.

(12.20)

In a similar fashion,

E[(Io/C)2] =

∫ ∫

E[χ210(ςi0−ςi j)/5Φ2
0, j]ρdA

= p
∫ ∫ ∫ 0

−∞
e2ξ x 1√

2πσx
exp

{

− (x− μx (dB))
2

2σ2
x

}

dxρdA

= p
∫ ∫

exp
{

2ξ 2σ2
x + 2ξ μx (dB)

}
(

1−Q

(

−2ξ σx −
μx (dB)

σx

))

ρdA.

(12.21)

Finally, the variance of Io/C is

Var[Io/C] = p
∫ ∫

exp
{

2ξ 2σ2
x + 2ξ μx (dB)

}
(

1−Q

(

−2ξ σx −
μx (dB)

σx

))

ρdA

−E2[Io/C]. (12.22)

The integrals in (12.20) and (12.22) must be evaluated numerically over the random
location of mobile locations in the area A, as defined by the set of shaded sectors
shown in Fig. 12.1 (minus the sector where the reference MS is located) where only
the adjacent cells are shown.
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With perfect power control, the in-cell interference Iin is

Iin =C
K−1

∑
i=1

χi, (12.23)

where χi is a Bernoulli random variable equal to 1 with probability p and 0 with
probability 1− p. Let I = Io+Iin be the total interference. The CIR C/I and baseband
Eb/No are related by

C/I =
Eb/No

Wss/W
, (12.24)

where Eb is bit energy, No the one-sided noise power spectral density, Wss the
spread spectrum bandwidth, and W is the data signal bandwidth. Many factors
must be considered to establish the required γb = Eb/No, denoted by γb req, such
as the channel characteristics, type of modulation, diversity, receiver structure,
and coding/interleaving techniques. In the cdma2000 cellular system with radio
configuration (RC1), γb req = 7 dB on the reverse link and γb req = 5 dB on the
forward link [110]. The difference in γb req for the forward and reverse links arises,
because the reverse link of cdma2000 RC1 uses noncoherent detection while the
forward link uses coherent detection.

From (12.24), we can write

(I/C)γb =
Wss/W

γb
. (12.25)

It follows that the probability that the received γb at a BS is below a required value,
γb req, is

Pout = P[γb < γb req]

= P[(I/C)γb > (I/C)γb req ]

= P

[
K−1

∑
i=1

χi + Io/C > (I/C)γb req

]

= P

[

Io/C > (I/C)γb req −
K−1

∑
i=1

χi

]

=
K−1

∑
k=0

P

[

Io/C > (I/C)γb req − k

∣
∣
∣
∣
∣

K−1

∑
i=1

χi = k

]

P

[
K−1

∑
i=1

χi = k

]

=
K−1

∑
k=0

(
K − 1

k

)

pk(1− p)K−1−kQ

(
(I/C)γb req − k−E[Io/C]

√
Var[Io/C]

)

.

(12.26)



12.2 Capacity of Cellular CDMA 673

Fig. 12.2 Reverse channel
capacity with Pout = 10−2 for
different γb req; the Nakagami
shape factors are md = 1 and
mI = 1 (Rayleigh fading), and
σΩ is the shadow standard
deviation
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We assume a chip rate of Wss = 1.25 MHz, W = 8 kHz, p = 3/8, and a required
outage probability of Pout = 10−2. Figure 12.2 shows the reverse channel capacity
for different γb req and shadow standard deviations. The reverse channel capacity is
greatly increased by a reduction in γb req and is slightly reduced when the shadow
standard deviation is increased. Figure 12.3 shows the reverse channel capacity with
different Nakagami shape factors for the desired and interfering signals. Observe
that a change in the Nakagami shape factor mI of interfering signals has very little
effect on the reverse channel capacity. Figure 12.4 further illustrates the effect of
fading and shadowing on the reverse channel capacity. As expected, shadowing
and fading have relatively little impact on the reverse channel capacity, since these
components of the received signal are power controlled. Therefore, fading and
shadowing variations mostly affect the out-of-cell interference.

The ratio of the mean out-of-cell interference to the mean in-cell interference is

θ =
E[Io]

E[Iin]
=

E[Io/C]
E[Iin/C]

=
E[Io/C]

pK
. (12.27)

With a fourth-order path loss exponent, Newson and Heath [194] showed that θ =
0.5 when no fading and shadowing are considered and θ ≈ 0.66 when shadowing
is considered with σΩ = 8 dB. This translates into a frequency reuse efficiency
f , defined as the ratio of mean in-cell interference to the total mean interference,
of 0.66 and 0.38, respectively. Table 12.1 tabulates the corresponding values of
θ and f = 1/(1+ θ ) for different propagation conditions. The calculations only
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Fig. 12.3 Reverse channel
capacity for different
propagation environments
with γb req = 7 dB. Solid lines
denote σΩ = 0 dB, dotted
lines denote σΩ = 4 dB,
and dot-dashed lines denote
σΩ = 8 dB
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Fig. 12.4 Reverse channel
capacity for different
Nakagami shape factors with
γb req = 7 dB, σΩ = 8 dB
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consider the first tier of interfering cells. Observe that the frequency reuse efficiency
decreases with the shadow standard deviation, σΩ , and slightly increases when md

increases or mI decreases.
To show that the values of θ and f in Table 12.1 do not depend on the number

of users per cell, K, we derive the cdf of the out-of-cell interference to the in-cell
interference Io/Iin for the reverse channel as
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Table 12.1 Ratio of the mean of out-of-cell interference to the mean in-cell
interference, θ , and frequency reuse efficiency, f , under different propagation
conditions

md mI σΩ , dB θ f = 1/(1+θ )(%)

8 8 8 60.14% 62.45
8 4 8 58.83% 62.96
8 2 8 56.20% 64.02
8 1 8 51.11% 66.1i8
4 1 8 52.36% 65.63
2 1 8 54.90% 64.56
1 1 8 59.73% 62.61
1 1 10 57.34% 63.56
1 1 6 60.16% 62.44
1 1 4 57.82% 63.36
1 1 No shadowing 51.76% 65.89
No fading No fading No shadowing 21.81% 82.10
No fading No fading 4 39.42% 71.73
No fading No fading 8 60.02% 62.49
No fading No fading 10 61.65% 61.86

P[Io/Iin < z] = P

[
Io/C
Iin/C

< z

]

= 1.0−P[Io/C > z Iin/C]

= 1.0−
K−1

∑
k=0

(
K − 1

k

)

ηk(1−η)K−1−kQ

(
kz−E[Io/C]
√

Var[Io/C]

)

. (12.28)

Figure 12.5 plots the distribution of Io/Iin (in dB) with different shadow standard
deviations. Although the distribution varies with K, the mean value E[Io/Iin] remains
almost the same, that is, all the curves cross at the 50% point. This implies that the
values of θ and f in Table 12.1 do not depend on K.

12.2.2 Forward Link Capacity

For the forward channel, a pilot signal is transmitted from each BS. The pilot signal
causes interference in every cell, thereby reducing the capacity. However, this is
offset by a decrease in γb req due to coherent demodulation. With forward channel
balancing power control, the mobile measures the received signal and periodically
transmits the measurement to its serving BS [110]. When the total power requested
by mobiles is below the maximum allowable transmit power, the BS will reduce its
transmit power, thereby reducing interference; otherwise, the BS will redistribute
the power from the forward links with good quality to those with poor quality.
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Fig. 12.5 Distribution of
out-of-cell interference to
in-cell interference, Io/Iin, for
the reverse channel. Solid
lines denote σΩ = 0 dB,
dotted lines denote
σΩ = 4 dB, and dot-dashed
lines denote σΩ = 8 dB;
md = 1,mI = 1 (Rayleigh
fading)
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In the worst case situation, each BS always transmits with the maximum
allowable power Pmax. From (12.24), the γb at the ith mobile under this condition is

γb,i =
Wss/W
(I/C)i

=
Wss/W

(∑M
j=0CTj − δφiCT0)/δφiCT0

, (12.29)

CTj = Pmax10
ς j
10 , (12.30)

where M is the number of surrounding BSs that are included in the calculation,
CTj the received power from BS j, 1 − δ the fraction of the total power allocated
to the pilot, and the weighting factor φi is the fraction of the remaining power
allocated to the ith mobile. Forward channel transmissions to MSs located in the
shaded sectors of Fig. 12.6 will cause multiple-access interference with the forward
channel transmission to the reference MS. As in [110] our results assume that 20%
of the total BS transmit power is allocated to the pilot signal. Once again, the ςi in
decibel units are Gaussian random variables due to shadow and fading variations,
with means and variances obtained from (2.314).

The BS distributes its transmit power proportionally according to the needs of
each mobile within its cell. This is accomplished by first obtaining the required φi

for each mobile, (φi)req, by setting γb = γb req in (12.29). To account for the voice
activity, we then calculate the modified weighting factor [145]

φi =
(φi)req

∑K
j=1
j �=i

χ j(φ j)req +(φi)req
. (12.31)
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Fig. 12.6 Forward channel
transmissions to MSs located
in the shaded areas will cause
multiple-access interference
with the forward channel
transmission to the
reference MS

x  reference MS

The power balancing scheme in [47] does the same thing, except that the voice
activity factors, χ j, are not considered. The outage probability then becomes

Pout = P
[
γb < γb req

]

= P
[
φi < (φi)req

]
. (12.32)

Numerical results can be obtained from the last equation in (12.32) using Monte
Carlo simulation techniques to account for the random user locations, and shadow
and fading variations. For each set of MS locations and propagation conditions,
we first determine the required fraction of power, (φi)req, needed to meet the γb req

requirement. Afterwards, we find if the actual power allocation for each MS, φi, is
sufficient.

Figure 12.7 shows how the forward channel capacity depends on γb req and the
shadow standard deviation. Shadowing has a slightly stronger effect on forward
channel capacity compared to the reverse channel. Figure 12.8 shows the forward
channel capacity for various Nakagami shape factors. The Nakagami shape factor
also plays a significant role in forward channel capacity, and overly optimistic
capacity estimates will be obtained if fading is neglected.

12.2.3 Imperfect Power Control

Any power control algorithm will inevitably be subject to some degree of error.
It has been experimentally verified that the power control error (in dB) can be
modeled as a zero-mean Gaussian random variable with variance σ2

E [145, 194].
For the reverse channel, (12.10) has the modified form

C10
ςE j

/10
= Pi, j10ςd/10, (12.33)
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Fig. 12.7 Forward channel
capacity with Pout = 10−2 for
different γb req; the Nakagami
shape factors are md = 1 and
mI = 1 (Rayleigh fading), and
σΩ is the shadow standard
deviation

0 50 100 150

users/sector, K

1

3

5

7

9

γ b
 r

eq
 (

dB
)

σ  = 8 dB

σ  = 4 dB

no shadowing

Fig. 12.8 Forward channel
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where ςE j is the power control error. The mean and variance of x = ςi,0 − ςi, j with
imperfect power control are similar to (12.18), but have the form

μx (dB) = μi,0 (dBm)− μi, j (dBm), (12.34)

σ2
x = σ2

i,0 +σ2
i, j +σ2

E. (12.35)
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Fig. 12.9 Forward and
reverse channel capacity with
imperfect power control. The
capacity is normalized with
respect to the capacity with
perfect power control; σE is
the standard deviation of the
power control error, md = 1,
mI = 1, and σΩ = 8 dB
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With imperfect power control, the in-cell interference experienced by MS0,i at the
reference BS, BS0, is Iin =Cκ , where

κ =
K

∑
j=1
j �=i

10ςE j /10χ j. (12.36)

Then

Pout = P[γb < γb req]

= P[Io/C+ Iin/C > (I/C)γb req ]

= P[Io/C > (I/C)γb req −κ ]

=
K−1

∑
k=0

(
K − 1

k

)

pk(1− p)K−1−k

×
∫ ∞

0
P
[
Io/C > (Io/C)γb req −κ |κ

]
p(κ |k)dκ . (12.37)

Note that the conditional pdf of κ given k, p(κ |k), is approximately log-normal.
The log-normal approximation can be calculated using the Fenton–Wilkinson or
Schwartz and Yeh methods discussed in Sect. 3.1. Observe from Fig. 12.9 that
the reverse channel capacity is dramatically decreased as the power control error
increases. For Pout = 0.01 and power control errors of σE = 1, 2, and 3 dB, the
reverse channel capacity is decreased by 24%, 50%, and 68%, respectively.
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To consider the effect of power control error on the forward channel, (12.31)
becomes

φi =
φi10ςEi/10

∑K
j=1
j �=i

χ jφ j10ςE j/10
+φi10ςEi

/10
. (12.38)

Figure 12.9 shows that the forward channel capacity is reduced by 31%, 64%, and
83% for σE = 1.0, 2.0, and 3.0 dB, respectively. Note that imperfect power control
has a more severe effect on the forward channel than the reverse channel for the
same propagation conditions.

12.3 Hierarchical Macrodiversity CDMA Cellular
Architectures

CDMA cellular systems often use hierarchical architectures consisting of macro-
cells with underlaid microcells. In such architectures, macrocells cover large areas
with sparse traffic densities, whereas microcells serve small areas with high traffic
densities. However, due to their effective frequency reuse factor of 1, hierarchical
CDMA systems must deal with cross interference between the hierarchical layers.
This cross-layer interference can be subdued by assigning distinct spectrum to each
layer, but this will make inefficient use of the available spectrum. A better approach
allows the hierarchical layers to share the same spectrum.

For the reverse link, one possibility is hierarchical maximum ratio combining
(HMRC), where the signal from each mobile station (MS) is received by several
BSs in both hierarchical layers and coherently combined. If we assume independent
interference at the different BS locations, the combined CIR is the algebraic sum of
the CIRs at each BS

(C/I)HMRC =
N

∑
i=1

(C/I)μ,i +
M

∑
j=1

(C/I)M,j, (12.39)

where N and M are the number of BSs involved in the combining, and the subscripts
μ and M designate “microcell” and “macrocell,” respectively.

MMRC has been proven to be an effective way of improving the capacity in
cellular CDMA systems [117, 127]. In [127], Hanly proved the existence of a
power control solution using MMRC, and showed that the capacity is unaffected by
outside interference. In [117], by assuming equal reverse interference level at each
BS in non-hierarchical settings, Gorricho and Paradells constructed a simple proof
showing that MMRC reverse link capacity is close to an isolated cell capacity. Here
we generalize the results in [117] and apply them to hierarchical CDMA systems.
We will derive an analytical solution for HMRC reverse performance without
assuming an equal level of reverse link interference among cells, and show that
both microcell and macrocell performances are nearly unaffected by each other’s
presence.
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The reverse link is commonly considered to limit the CDMA system capacity.
However, with the emergence of asymmetric wireless data services, the forward link
performance has become increasingly important. For the forward link, HMRC-like
combining schemes are not suitable because such schemes will increase the forward
link interference [135]. One possible solution is selective transmit diversity (STD)
where each BS provides multiple transmit paths by means of spatially separated
antennas, and the system allows each MS to connect to the most robust path among
the multiple paths [136, 168].

12.3.1 System Model

Consider a hierarchical CDMA deployment consisting of a group of omnidirec-
tional macrocells and a cluster of omnidirectional microcells embedded within the
macrocells. The MSs are assumed to be uniformly distributed in both macrocells
and microcells, yet the load condition of each cell might differ. Although we do
not assume any particular load conditions, microcells are generally more densely
populated by MSs than macrocells. We note that with macrodiversity, there are no
longer distinct boundaries between cells and hierarchical layers. Therefore, MSs are
referenced to their respective locations. For example, a microcell MS means that the
MS is physically located in the designated microcell area, but not necessarily served
by it.

The radio links are assumed to be affected by Rayleigh fading and log-normal
shadowing. The composite distribution of the link gain, G, is given by the Gamma-
log-normal density in (2.313) with m = 1, that is,

fG(x) =
∫ ∞

0

1
Ωp

e−x/Ωp
1√

2πξ σΩ Ωp
exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dΩp,

(12.40)

where σΩ is the shadow standard deviation, ξ = ln(10)/10 and μΩp (dBm)
is the area

mean that depends on the path loss model. Here, we use the simple path loss model

μΩp (dBm)
(d) = μΩp (dBm)

(do)− 10β log10{d/do} (dBm), (12.41)

where μΩp (dBm)
(do) is the area mean at a reference distance do, d the distance

between the MS and BS, β the path loss exponent. As shown in (2.314), the
composite Gamma-log-normal distribution in (12.40) can approximated by a log-
normal distribution with parameters

μ(dBm) = μΩp (dBm)
− 2.50675,

σ2 = σ2
Ω + 31.0215. (12.42)
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Fig. 12.10 Single cell model

Macrocell

Microcell

In other words, the link gain G in decibels, denoted by ς = 10log10{G} is normally
distributed with the mean μ(dBm) and variance σ2 in (12.42).

12.3.2 Reverse Link Analysis

We first consider a simple single macrocell and microcell system to introduce the
method of HMRC analysis. Then, we extend the analysis to a multicell system.

12.3.2.1 Single Cell Model

Consider a single microcell embedded within a macrocell as shown in Fig. 12.10.
Using HMRC, the reverse link CIR of MSi is

(C/I)i = (C/I)μ,i +(C/I)M,i

=
Cμ,i

Iμ,i
+

CM,i

IM,i
, (12.43)

where Cμ,i and CM,i are the received signal power at the microcell BS and macrocell
BS, respectively. Let λi = Iμ,i/IM,i be the ratio of the microcell interference to
macrocell interference. Then (C/I)i becomes

(C/I)i =
Cμ,i +λiCM,i

Iμ,i

=
(Gμ,i +λiGM,i)Pi

Iμ,i

=
Creverse,i

Iμ,i
, (12.44)

where Gμ,i and GM,i are the reverse link gains associated with the microcell BS and
macrocell BS.
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The HMRC reverse power control algorithm controls each MS transmit power,
Pi, so that all MS experience a uniform CIR level. The convergence of such power
control policy has been proven in [294]. Let us assume that the microcell BS
and macrocell BS both serve a large number of MSs such that the microcell and
macrocell interference levels experienced by each MS are nearly the same, that is,

Iμ,i ≈ Iμ, IM,i ≈ IM , ∀ i. (12.45)

Since the interference power is the difference between the total received power and
the desired signal power, the differences in the desired signal components have
minimal effect on interference values when the system load is relatively large. This
also suggests that the variation in λi is minimal. The above assumption is justified in
the numerical results section that follows below. Based on the assumption in (12.45),
HMRC power control now results in all MSs having the same uniform combined
signal power, Creverse.

Let N and M be the number of MSs located in the microcell and macrocell,
respectively, and express Iμ,i and IM,i as follows:

Iμ,i =
N

∑
j �=i

Cμ,j|μ +
M

∑
k=1

Cμ,k|M,

IM,i =
N

∑
j �=i

CM,j|μ +
M

∑
k=1

CM,k|M , i ∈ microcell (12.46)

and

Iμ,i =
N

∑
j=1

Cμ,j|μ +
M

∑
k �=i

Cμ,k|M,

IM,i =
N

∑
j=1

CM,j|μ +
M

∑
k �=i

CM,k|M , i ∈ macrocell, (12.47)

where CBS j,i|BSk is the received signal power at BS j from MSi given that MSi is
located in the cell served by BSk, and BS j, BSk ∈ {μ ,M}. Let us first consider
the case for the microcell MS. From (12.44) we can deduce that CM,i = (Creverse −
Cμ,i)/λi. Therefore,

λi =
Iμ,i

IM,i

=
Iμ,i

∑N
j �=iCM,j|μ +∑M

k=1 CM,k|M

=
Iμ,i

∑N
j �=i(Creverse −Cμ,j|μ)/λ j +∑M

k=1(Creverse −Cμ,k|M)/λk
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≈ λiIμ,i

∑N
j �=i(Creverse −Cμ,j|μ)+∑M

k=1(Creverse −Cμ,k|M)
,

=
λiIμ,i

(N +M− 1)Creverse − Iμ,i
. (12.48)

where the approximation in the second last line uses the fact that λ j ≈ λk ∀ j,k.
Solving the above equation for Iμ,i gives

Iμ,i ≈ (N +M− 1)Creverse

2
. (12.49)

Using the similar approach, one can see that the macrocell MS yields the same
result. Then, the reverse link CIR can be approximated as follows:

(C/I)i =
Creverse

Iμ,i
≈ 2

N +M− 1
. (12.50)

We make some important observations about HMRC from (12.50). First, the
CIR performance is independent of the microcell location. Without HMRC, the
overall performance suffers from increased level of inter-layer cross interference
in cases where the microcell is closer to the macrocell BS. For HMRC, however,
the combining effect is directly related to the proximity of the two BSs. Therefore,
the increase in combining effect compensates for the increase in interference due
to the microcell. Another noteworthy observation is that the HMRC performance
is only limited by the overall system load, N + M, and not by individual cell
loads. An overloaded microcell does not affect the system performance as long
as the overall system load is kept under check, whereas it can dictate the system
performance for non-HMRC systems. This suggests that HMRC is an effective way
to share available resources between hierarchical layers.

12.3.2.2 Multiple Cell Model

We now extend the above analysis to multiple cell environments. Our multicell
model consists of three macrocells and a cluster of K microcells embedded within
the macrocells as shown in Fig. 12.11. Then,

(C/I)i = (C/I)μ1,i + · · ·+(C/I)μK,i +(C/I)M1,i+ · · ·+(C/I)M3,i

=
Cμ1,i + · · ·+λμK,iCμK,i +λM1,iCM1,i + · · ·+λM3,iCM3,i

Iμ1,i

=
Creverse,i

Iμ1,i
, (12.51)
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Fig. 12.11 Multiple cell
model

Macrocell 1

dc

Microcell Cluster

Macrocell 2

Macrocell 3

where λBS j,i = Iμ1,i/IBS j,i. Let Ni and Mj be the number of MSs in microcell i and
macrocell j, respectively. Then, for the microcell 1 MSs,

IM1,i =
N1

∑
j �=i

CM1,j|μ1 + · · ·+
NK

∑
l=1

CM1,l|μK +
M1

∑
p=1

CM1,p|M1 + · · ·+
M3

∑
r=1

CM1,r|M3

≈ (N1 + · · ·+NK +M1 +M2 +M3 − 1)
Creverse

λM1,i
− (2+K)

Iμ1,i

λM1,i
. (12.52)

Therefore,

Iμ1,i ≈ (N1 + · · ·+NK +M1 +M2 +M3 − 1)Creverse

3+K
,

(C/I)i ≈ 3+K
N1 + · · ·+NK +M1 +M2 +M3 − 1

. (12.53)

Using MSs in other cells with their corresponding values of λ will yield the same
result. We can make the same important observations we made in the single cell
case for the multicell case also. Note also that if both microcells and macrocells are
loaded with an equal number of MSs, the result in (12.53) is the same as the result
obtained in [117]. This tells us that the macrocell capacity is nearly unaffected by
the introduction of microcells when inter-layer HMRC is allowed.

12.3.2.3 Numerical Results

Consider the deployment in Fig. 12.10 where the radii of the macrocell and
microcell regions are 1,500 m and 200 m, respectively. The propagation environment
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Table 12.2 Single cell
model result

N M CIRanal. dB CIRsim. dB

10 10 −9.60 −9.78
15 10 −10.66 −10.79
20 15 −12.21 −12.30
20 20 −12.82 −12.90

Fig. 12.12 Reverse link CIR
performance comparison
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is characterized by a path loss exponent of 4 and a shadow standard deviation of
8 dB. Table 12.2 shows the average performance comparison between analytical and
simulation results obtained using the single cell model. Small deviations between
the analytical and simulation results are most likely caused by the equal interference
assumption in (12.45) while deriving the analytical solution. The fact is that MSs
located close to a BS will experience less interference, while MSs further away
from the BS will face higher interference. However, the difference is marginal and
it becomes smaller as the system load increases.

Figure 12.12 shows the multicell reverse link CIR performance comparison
between HMRC and non-HMRC diversity power control schemes at various
microcell cluster locations (dc). A three-macrocell and three-microcell model is
used to obtain the simulation results. Both macrocells and microcells are loaded
with the same number of MSs. Two non-HMRC diversity schemes are compared;
intra-layer selection diversity (intra-SD) and inter-layer selection diversity (inter-
SD). With intra-SD the most robust link within each layer is selected, while inter-SD
allows each MS to connect the best BS in any layer. Clearly, HMRC performance
is superior to that of non-HMRC schemes. It is observed that both macrocell
and microcell capacities are nearly unaffected by each other’s presence (i.e., both
macrocells and microcells retain a near isolated cell capacity). The performances
of both SD schemes are dependent of the microcell cluster location, dc. For intra-
SD, the cross interference between the layers increases as the microcell cluster
gets closer to a macrocell BS, and causes overall system performance degradation.
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Fig. 12.13 Intra-SD CIR
performance against
microcell load
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For inter-SD, the diversity gain decreases as dc increases, which also causes the
performance to suffer. However, using HMRC eliminates the effect of the cluster
location on the CIR performance. From (12.51) one can see that the reverse CIR
performance of HMRC is proportional to the λi and macrocell gains. These two
factors balance the performance as the microcell cluster location changes. When dc

is small, the cross interference causes the λi to decrease, but the loss is compensated
by the increase in macrocell gains. Conversely, when dc is large the macrocell gains
decrease while the λi increase.

The analytical results indicate that the HMRC performance is a function of the
overall system load, and does not depend on either the load distribution between the
layers, or the cell sizes. Figures 12.13 and 12.14 show the effect of microcell load
and size on the reverse link CIR performance. The same three-multicell model is
used in this simulation also. The overall system load is kept at 156 MSs while the
microcell load percentage to the overall load is varied. It is observed that in nearly all
instances both non-HMRC schemes suffer performance losses with an increase in
the microcell load percentage and microcell radius, Rmicro. It can be understood that
the increase in the overall interference due to an increased microcell load cannot be
relieved entirely by a decreased macrocell load. Larger microcell sizes also increase
interference, since MSs belong to microcells need to transmit at higher power levels.
The performance of HMRC is not affected by the microcell load and size changes, as
predicted. The increase in microcell interference also increases the λi, which offsets
the negative effect of the microcell interference. Therefore, HMRC allows flexible
resource sharing between hierarchical layers.

Our observations suggest that implementing HMRC gives system planners
and administrators almost unlimited freedom and flexibility when contemplating
microcell placements. With HMRC, microcell(s) can be placed anywhere within the
existing macrocell layer, significant performance and capacity gains can be obtained
while guaranteeing robust resource sharing between the layers.
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Fig. 12.14 Inter-SD CIR
performance against
microcell load
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12.3.3 Forward Link Analysis

The forward power control scheme considered here is based on the neighboring-
cell pilot power (NPP) scheme proposed in [135], where the forward transmit
power to each MS is determined according to link conditions between the MS and
surrounding BSs. To see how the NPP scheme can be applied to a hierarchical
CDMA architecture, consider a deployment of K microcells surrounded by three
macrocells as in Fig. 12.11. Let Pt

Mj and Pt
μk be the total powers transmitted by

the BSs serving macrocell j and microcell k, respectively. Then, the interference
experienced by MSi can be estimated as

Ii ≈ GM1,iP
t
M1 + · · ·+GM3,iP

t
M3 +Gμ1,iP

t
μ1 + · · ·+GμK,iP

t
μK . (12.54)

Define the power ratio γBS j = Pt
μ1/Pt

BS j. Only one BS can transmit to MSi at any
given time and the transmit power is determined by

PBS j,i =

1
γM1

GM1,i + · · ·+ 1
γM3

GM3,i +Gμ1,i + · · ·+ 1
γμK

GμK,i

GBS j,i
PT, (12.55)

when MSi is connected to BS j and PT is the predetermined forward transmit power
constant. The resulting forward CIR for MSi is then

(C/I)i =
Ci

Ii

≈
( 1

γM1
GM1,i + · · ·+ 1

γM3
GM3,i +Gμ1,i + · · ·+ 1

γμK
GμK,i)PT

( 1
γM1

GM1,i + · · ·+ 1
γM3

GM3,i +Gμ1,i + · · ·+ 1
γμK

GμK,i)Pt
μ1

≈ PT

Pt
μ1
. (12.56)



12.3 Hierarchical Macrodiversity CDMA Cellular Architectures 689

Notice that with NPP, every MS experiences the same forward CIR regardless
of its location. While NPP does not offer any significant performance gain over
conventional power control schemes, it does guarantee that every MS experiences
the same forward link CIR.

The forward analysis consists of two parts; non-STD and STD cases. For non-
STD case, there is no transmit diversity; each BS has only one antenna and provides
single forward transmit path. Each MS connects to the BS which provides the most
robust path. We use a single cell hierarchical model as in Fig. 12.10 for the forward
analysis, since the concept can be readily extended to multicell environments. For
the single macrocell/microcell model,

PBS j,i =
Gμ,i +(1/γ)GM,i

GBS j,i
PT, (12.57)

where γ = Pt
μ1/Pt

M is the ratio between the microcell and macrocell total forward
transmit powers, and BS j ∈ {μ ,M}.

12.3.3.1 Nonselective Transmit Diversity

From the model in Sect. 12.3.1, the gain GBS j,i has a composite Gamma-log-normal
distribution that can be approximated by a purely log-normal distributed with the
parameters given in (12.42). The mean μ(dBm) in (12.42) depends on the distance
between base station BS j and MSi according to the path loss model in (12.41).
This distance can be expressed as a function of the polar coordinates (r,θ ) of the
MS location referenced to BS j, that is, dBS j(r,θ ). Hence, we can write GBS j,i =

10ςBS j(r,θ)/10, where ςBS j(r,θ ) is a normal random variable with mean μ(dBm) and
σ2 in (12.42).

Suppose that the location of MSi, (r,θ ), is referenced with respect to the BS it is
connected to. Then, the forward transmit power according to NPP is

Pμ,i(r,θ ) =
(1/γ)GM,i +Gμ,i

Gμ,i
PT

=

(
GM,i

γGμ,i
+ 1

)

PT

=

(
1
γ

10(ςM(r,θ)−ςμ(r,θ))/10 + 1

)

PT

=

(
1
γ

10x(r,θ)/10+ 1

)

PT , if Gμ,i > GM,i,

PM,j(r,θ ) =
(1/γ)GM,j +Gμ,j

GM,j
PT

=

(
1
γ
+

Gμ,j

GM,j

)

PT
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=

(
1
γ
+ 10(ςμ(r,θ)−ςM(r,θ))/10

)

PT

=

(
1
γ
+ 10y(r,θ)/10

)

PT , if Gμ,j < GM,j, (12.58)

where x(r,θ ) = ςM(r,θ )− ςμ(r,θ ), y(r,θ ) = ςμ(r,θ )− ςM(r,θ ), and PT is the
forward transmit power constant. Let us now compute the conditional cumulative
distribution functions (cdfs) of Z = 10x(r,θ)/10 and W = 10y(r,θ)/10 for the deploy-
ment shown in Fig. 12.10. First note that a microcell MS is physically located in the
microcell area but may be served by either the microcell or macrocell BS. Also, a
macrocell MS can be physically located anywhere in the macrocell area including
the microcell area, and may be served by either the microcell or macrocell BS. It
follows that:

FZ(z|r,θ ) = P[10x(r,θ)/10 < z|r,θ ]
P[10x(r,θ)/10 < 1|r,θ ] =

P[x(r,θ )< 10log10(z)|r,θ ]
P[x(r,θ )< 0|r,θ ]

= Φ
(

10log10{z}− μx(r,θ )
σx

)(

Φ
(−μx(r,θ )

σx

))−1

, 0 < z < 1,

(12.59)

FW (w|r,θ ) = Φ
(

10log10{w}− μy(r,θ )
σy

)(

Φ
(−μy(r,θ )

σy

))−1

, 0 < w < 1,

(12.60)

where

μx(r,θ ) = μςM(r,θ )− μςμ (r,θ )

= −β 10log10{dM(r,θ )}+β 10log10{dμ(r,θ )},
μy(r,θ ) = μςμ (r,θ )− μςM(r,θ )

= −β 10log10{dμ(r,θ )}+β 10log10{dM(r,θ )},
σ2

x = σ2
y = 2(σ2

Ω + 31.0254). (12.61)

Then the cdfs of Z and W are

FZ(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 2π

0

∫ Rμ

0

r
πR2

μ
FZ(z|r,θ )drdθ , if MS ∈ microcell,

∫ 2π

0

∫ RM

0

r

πR2
M

FZ(z|r,θ )drdθ , if MS ∈ macrocell,

(12.62)
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FW (w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 2π

0

∫ RM

0

r

πR2
M

FW (w|r,θ )drdθ , if MS ∈ macrocell,

∫ 2π

0

∫ Rμ

0

r
πR2

μ
FW (w|r,θ )drdθ , if MS ∈ microcell.

(12.63)

Since both Z and W are nonnegative random variables, their expected values are as
follows:

E[Z] =
∫ ∞

0
(1−FZ(z))dz =

∫ 1

0
(1−FZ(z))dz,

E[W ] =

∫ 1

0
(1−FW(w))dw. (12.64)

Let N and M be the number of MSs physically located in microcell and macrocell,
respectively. Assuming there are N′ microcell MS connected to microcell and M′
macrocell MSs connected to macrocell, the expected value of the total forward
transmit power by each BS is

E[Pμ|N′,M′] = N′PT

(
E[Z|MS ∈ microcell]

γ
+ 1

)

+(M −M′)PT

(
E[Z|MS ∈ macrocell]

γ
+ 1

)

,

E[PM|N′,M′] = (N −N′)PT

(
1
γ
+E[W |MS ∈ microcell]

)

+M′PT

(
1
γ
+E[W |MS ∈ macrocell]

)

. (12.65)

We know that N′ and M′ are (N,Prμ) and (M,PrM) binomial random variables,
respectively, where Prμ and PrM are the probabilities that an MS located in microcell
and macrocell will connect to microcell and macrocell, respectively. Then,

E[Pμ] =
N

∑
N′=0

(
N
N′

)

PrN′
μ (1−Prμ)

N−N′

×
M

∑
M′=0

(
M
M′

)

PrM′
M (1−PrM)M−M′

E[Pμ|N′,M′],

E[PM] =
N

∑
N′=0

(
N
N′

)

PrN′
μ (1−Prμ)

N−N′

×
M

∑
M′=0

(
M
M′

)

PrM′
M (1−PrM)M−M′

E[PM|N′,M′], (12.66)
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Fig. 12.15 Selective transmit
diversity

...

...

L Macrocell Transmit Paths

L Microcell Transmit Paths

Each BS has L antennas

where

Prμ = P
[
Gμ,i > GM,i|i ∈ microcell

]

= 1−
∫ 2π

0

∫ Rμ

0

r
πR2

μ
Φ

⎛

⎝
μM(r,θ )− μμ(r,θ )
√

2(σ2
Ω + 31.0254)

⎞

⎠drdθ , (12.67)

PrM = P
[
GM,j > Gμ,j| j ∈ macrocell

]

=

∫ 2π

0

∫ RM

0

r

πR2
M

Φ

⎛

⎝
μM(r,θ )− μμ(r,θ )
√

2(σ2
Ω + 31.0254)

⎞

⎠drdθ . (12.68)

We let γ = E[Pμ]/E[PM] and iterate until γ converges. Then the forward CIR is

CIRnon−STD =
PT

Pμ
≈ PT

E[Pμ]
. (12.69)

12.3.3.2 Selective Transmit Diversity

In STD, each BS has a number of spatially separated antennas and an orthogonal
pilot signal is transmitted from each antenna as shown in Fig. 12.15. In order for the
fading conditions associated with different antennas to be sufficiently decorrelated
(less than 0.7 correlation), the BS antenna separation needs to be on the order of
ten wavelengths as shown in Sect. 2.1.6.1. By way of monitoring the pilot signals,
an MS can select (mobile-assisted) the BS antenna that provides the most robust
forward link until a better BS antenna is found. Therefore, only one BS antenna is
selected to transmit at a time with STD, but the selected BS antenna will provide
the best link among the multiple BS antennas. The main difference between STD
and non-STD schemes is that STD provides multiple potential forward links per
BS each with uncorrelated fading, while non-STD provides one forward link per
BS. However, both STD and non-STD uses only one BS antenna to transmit at
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a time. Diversity gain through antenna separation is viable at BS sites where the
space and system complexity are less of limiting factors. We assume the antennas
are separated sufficiently far apart that all potential forward links from the same BS
have uncorrelated fading, but correlated shadowing.

Let us now assume that the microcell BS and macrocell BS each have L antennas,
which means that the MS selects the best antenna out of a total of 2L antennas. Let
P(l)

BS j be the total forward transmit power by the lth transmit branch of BS j, where
BS j ∈ {μ ,M}. Since the MSs are uniformly distributed, each transmit branch within
a cell has an equal probability of being selected by the MSs and, therefore, we can
assume that

P(i)
μ ≈ P( j)

μ ≈ PSTD
μ ,

P(i)
M ≈ P( j)

M ≈ PSTD
M , i �= j. (12.70)

Then, the forward transmit power for MSi located at (r,θ ) is

PSTD
μ,i (r,θ ) =

(1/γSTD)(G
(1)
M,i + · · ·+G(L)

M,i)+G(1)
μ,i + · · ·+G(L)

μ,i

max[G(1)
μ,i , · · · ,G(L)

μ,i ]
PT

if max[G(1)
μ,i , · · · ,G(L)

μ,i ]> max[G(1)
M,i, · · · ,G(L)

M,i].

PSTD
M,i (r,θ ) =

(1/γSTD)(G
(1)
M,i + · · ·+G(L)

M,i)+G(1)
μ,i + · · ·+G(L)

μ,i

max[G(1)
M,i, · · · ,G(L)

M,i]
PT

if max[G(1)
μ,i , · · · ,G(L)

μ,i ]< max[G(1)
M,i, · · · ,G(L)

M,i], (12.71)

where γSTD = PSTD
μ /PSTD

M and G(l)
BS j,i is the gain associated with lth transmit branch

of BS j to MSi. Let GBS j,i = max[G(1)
BS j,i, · · · ,G(L)

BS j,i], then the cdf of G(l)
BS j,i/GBS j,i is

P[G(l)
BS j,i/GBS j,i < x] =

P[G(l)
BS j,i/GBS j,i < x]

P[G(l)
BS j,i/GBS j,i < 1]

≈ 2x
x+ 1

, 0 < x < 1, (12.72)

where P[G(l)
BS j,i/GBS j,i < x] = x/(x+ 1). The above result is accurate for L = 2 and

adequate for L = 3 since the greatest diversity gain occurs between L = 1 and L = 2

as shown in Chap. 6. For two different cell locations, we can assume G(l)
BSk,i and

GBS j,i are independent. Because the transmit paths from the same BS experience
independent Rayleigh fading and the same shadowing, the conditional pdf and pdf
of GBS j,i are, respectively,

fGBS j,i(x|Ωp) =
L

Ωp
e−x/Ωp(1− e−x/Ωp)L−1 (12.73)
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and

fGBS j,i(x) =
∫ ∞

0
fGBS j,i(x|Ωp)

1√
2πξ σΩ Ωp

×exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dΩp. (12.74)

It is shown in Appendix 1 that fGBS j,i(x) can be approximated by a purely log-normal
distribution for L = 2 with mean and variance given by

μG = ξ−1(ln2−C)+ μΩ = 0.503552−β log10{d},
σ2

G = ξ−2(ζ (2,1)− 2(ln2)2)+σ2
Ω = 12.9016+σ2

Ω, (12.75)

where C � 0.5772 is Euler’s constant and ζ (2,1) = ∑∞
k=0 1/(1+ k)2 is Reimann’s

zeta function. Appendix 2 derives a similar approximation for L= 3 where we obtain
the following mean and variance:

μG = ξ−1(3ln2− ln3−C)+ μΩ = 1.75294−β log10{d},
σ2

G = ξ−2(ζ (2,1)− 12(ln2)2 + 6(ln2)(ln3))+σ2
Ω = 8.4592+σ2

Ω. (12.76)

Then the conditional cdf and cdf of G(l)
BSk,i/GBS j,i are

P[G(l)
BSk,i/GBS j,i < x|r,θ ] = P[G(l)

BSk,i/GBS j,i < x|r,θ ]
P[G(l)

BSk,i/GBS j,i < 1|r,θ ]

= Φ
(

10log10(x)− μk j(r,θ )
σk j

)(

Φ
(−μk j(r,θ )

σk j

))−1

.

(12.77)

P[G(l)
BSk,i/GBS j,i < x] =

∫ 2π

0

∫ RBS j

0

r

πR2
BS j

P[G(l)
BSk,i/GBS j,i < x|r,θ ]drdθ ,

0 < x < 1, (12.78)

where

μk j(r,θ ) = μςBSk(r,θ )− μGBS j (r,θ )

= −β 10log10{dBSk(r,θ )}− 2.50675+ μGBSj (r,θ ),

σ2
k j = σ2

BSk +σ2
G

= σ2
Ω + 31.0254+σ2

G. (12.79)



12.3 Hierarchical Macrodiversity CDMA Cellular Architectures 695

We can derive the expected values of PSTD
μ,i and PSTD

M,i using the same approach used
in the previous section and get

E[PSTD
μ,i ] =

(
L

γSTD
E[Z]+ (L− 1)E[X ]+ 1

)

PT,

E[PSTD
M,i ] =

(
L− 1
γSTD

E[Y ]+LE[W ]+
1

γSTD

)

PT, (12.80)

where

Z = G(l)
M,i/Gμ,i,

X = G(l)
μ,i/Gμ,i,

Y = G(l)
M,i/GM,i,

W = G(l)
μ,i/GM,i , 0 < Z,X ,Y,W < 1. (12.81)

Since each transmit branch has equal chance of being selected, the expected value
of the total forward transmit power by each BS branch, given N′ and M′, is

E[PSTD
μ |N′,M′] =

N′

L
PTE[PSTD

μ,i |MSi ∈ microcell]

+
M−M′

L
PTE[PSTD

μ,i |MSi ∈ macrocell], (12.82)

E[PSTD
M |N′,M′] =

N −N′

L
PTE[PSTD

M,i |MSi ∈ microcell]

+
M′

L
PTE[PSTD

M,i |MSi ∈ macrocell]. (12.83)

The expectations E[PSTD
μ ] and E[PSTD

M ] can now be computed as in (12.66) with the
following Prμ and PrM:

Prμ = P[max[G(1)
μ,i , · · · ,G(L)

μ,i ]> max[G(1)
M,i, · · · ,G(L)

M,i]|MSi ∈ microcell]

= P[Gμ,i > GM,i|MSi ∈ microcell],

PrM = P[GM,i > Gμ,i|MSi ∈ macrocell]. (12.84)

12.3.3.3 Numerical Results

Table 12.3 compares the analytical and simulation results of the single cell model.
These results are obtained with dc = 692 m. The analytical results require less than
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Table 12.3 Single cell model forward performance results

Non-STD STD, L = 2 STD, L = 3

N M CIRanal. dB CIRsim. dB CIRanal. dB CIRsim. dB CIRanal. dB CIRsim. dB

10 10 −11.54 −11.21 −9.99 −9.65 −9.31 −8.86
15 10 −12.80 −12.56 −11.25 −11.02 −10.57 −10.20
20 15 −14.19 −14.02 −12.64 −12.46 −11.96 −11.67
20 20 −14.56 −14.40 −13.01 −12.84 −12.34 −12.04

Fig. 12.16 Forward link
performance for different
microcell locations
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15 iteration loops for the γs to converge. The analytical and simulation results are
in good agreement, although the analytical results exhibit lower values than the
simulation results. This due to the analytical interference assumption in (12.54)
which results in a pessimistic interference level. However, the differences become
marginal as the number of MSs increases. Table 12.3 also shows the results obtained
with STD. Again, the analytical results closely follow the simulation results. One
can immediately see the benefit of using STD on forward link performance. With
two-branch transmit diversity the forward link CIR performance improves by
1.5 dB, and it improves by 2.5 dB with three-branch transmit diversity.

Figure 12.16 compares the analytical and simulation results as a function of the
microcell location, dc, while the system load is fixed at 24 MSs per cell. Again,
they are in good agreement. The differences between the analytical and simulation
results in the figure are larger for L = 3 than L = 2 due to the assumption in (12.72).
But, the differences are still small considering they are within 0.3 dB.

Figure 12.17 shows the average forward link performance results obtained from
the multicell model in Fig. 12.11 consisting of three macrocells and a cluster of three
microcells. The benefit of STD is more evident from these results where the system
benefits from the added diversity effect due to multiple cell locations. Although the
performance varies slightly, STD effectively neutralizes the effect of the microcell
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Fig. 12.17 Forward
performance for the multicell
model in Fig. 12.11
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Fig. 12.18 Forward
performance for different
microcell cluster sizes
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cluster location on forward performance. Without STD, the performance suffers
if the cluster is located too close to a macrocell BS. From Fig. 12.17 we observe
about 1.5 dB performance difference between the cluster locations, 346 and 1,385 m,
without STD. One interesting observation is that performance improves slightly
as dc decreases with STD, which is opposite of what we observe in non-STD
case. Although the cross interference between the hierarchical layers increases with
smaller dc, STD takes advantage of increased inter-layer diversity effect which
ultimately results in improved performance.

Figure 12.18 shows the effect of the microcell cluster size on the forward link
performance. The plot shows the performance comparison between a single cell
cluster and a three-cell cluster. We have observed in the previous section that HMRC
allows microcell(s) to be added without impacting the existing reverse link capacity.
With STD, however, the forward link performance does depend on the microcell
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cluster size, and an increase in the number of microcells in the cluster causes
the performance to suffer. The added diversity effect is apparently not enough to
fully compensate for increase in interference resulting from the microcell increase.
However, the performance degradation is negligible considering the capacity gain
obtained by adding microcell(s). For example, assuming the target CIR is set to
−14 dB, a three-macrocell system with a single cell cluster has capacity of 26 MSs
per cell at dc = 1,385 m with L = 3. With the same exact setting, the same system
with a three-cell cluster achieves 24 MSs per cell, yet its overall system capacity is
far greater due to the added microcells.

From Figs. 12.12 and 12.17, we observe that a forward link performance compa-
rable to the reverse link HMRC performance can be achieved by implementing STD
with L = 3. Not only does STD improve the forward performance, but it can also
benefit the reverse link performance by providing additional BS antenna elements
for stronger combining.

Appendix 1: Derivation of Equation (12.75)

The conditional pdf of the link gain, G, is

pG|Ωp(x) =
2

Ωp
e−x/Ωp(1− e−x/Ωp). (12.85)

Averaging over distribution of log-normal shadowing yields the composite pdf for
squared envelope

pG(g) =
∫ ∞

0

2
Ωp

e−g/Ωp(1− e−g/Ωp) (12.86)

× 1√
2πξ σΩ Ωp

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dΩp.

The mean of the approximate log-normal distribution is

μG (dBm) = E[10log10{g}]

=

∫ ∞

0

∫ ∞

0
(10log10{g}) 2

Ωp
e−g/Ωp(1− e−g/Ωp)

× 1√
2πξ σΩ Ωp

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dwdΩp
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=

∫ ∞

0

1√
2πσΩ ξ 2Ω 2

p

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭

×
∫ ∞

0
2 ln(g)e−g/Ωp

(
1− e−g/Ωp

)
dgdΩp. (12.87)

From [118, 4.352.1], the inner integral becomes

∫ ∞

0
2 ln(g)e−g/Ωp(1− e−g/wΩp)dg = Ωp(ln(2)+ ln(Ωp)−C), (12.88)

where C � 0.5772 is Euler’s constant. Hence,

μG (dBm) = ξ−1(ln(2)−C)+ μΩp (dBm)
. (12.89)

In a similar fashion, the mean square value is

E[(10log10{g})2] =
∫ ∞

0

∫ ∞

0
(10log10{g})2 2

Ωp
e−g/Ωp(1− e−g/Ωp)

× 1√
2πσΩ ξ Ωp

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dgdΩp

=

∫ ∞

0

1√
2πσΩ ξ 3Ω 2

p

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭

×
∫ ∞

0
2(lng)2e−g/Ωp(1− e−g/Ωp)dgdΩp. (12.90)

From [118, 4.358.2], the inner integrals become

∫ ∞

0
2(lng)2e−g/Ωpdg = 2Ωp

(
(lnΩp −C)+ ζ (2,1)

)
,

∫ ∞

0
(lng)2e−2g/Ωpdg = Ωp

(
(lnΩp − ln(2)−C)2 + ζ (2,1)

)
, (12.91)

where

ζ (2,m) =
∞

∑
k=0

1
(m+ k)2 (12.92)



700 12 CDMA Cellular Systems

is Reimann’s zeta function. Finally, the variance is

σ2
G (dBm) = E[(10log10{g})2]−E2[10log10{g}]

= ξ−2
(

ζ (2,1)− 2(ln2)2
)
+σ2

Ω . (12.93)

Appendix 2: Derivation of Equation (12.76)

For L = 3, the mean of log-normal approximation is

E[10log10{g}] =
∫ ∞

0

∫ ∞

0
10log10{g} 3

Ωp
e−g/Ωp(1− e−g/Ωp)2

× 1√
2πξ σΩ Ωp

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dgdΩp

=
∫ ∞

0

1√
2πξ 2σΩ Ω 2

p

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭

×
∫ ∞

0
3ln(g)(e−g/Ωp − 2e−2g/Ωp + e−3/Ωp)dgdΩp. (12.94)

Using [118, 4.352.1]

∫ ∞

0
3ln(g)(e−g/Ωp − 2e−2g/Ωp + e−3/Ωp)dg = Ωp(3ln(2)− ln(3)−C+ ln(Ωp))

(12.95)

and, therefore,

μG (dBm) = E[10log10{g}] = ξ−1(3ln(2)− ln(3)−C)+ μΩp (dBm)
. (12.96)

Similarly, the second moment of the approximation is

E[(10log10{g})2] =
∫ ∞

0

∫ ∞

0
(10log10{g})2 3

Ωp
e−g/Ωp(1− e−g/Ωp)2

× 1√
2πσΩ ξ Ωp

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭
dgdΩp
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=

∫ ∞

0

1√
2πσΩ ξ 3Ω 2

p

exp

⎧
⎪⎨

⎪⎩
−
(

10log10{Ωp}− μΩp (dBm)

)2

2σ2
Ω

⎫
⎪⎬

⎪⎭

×
∫ ∞

0
3(ln(g))2(e−g/Ωp − 2e−2g/Ωp + e−3/Ωp)dgdΩp. (12.97)

Using [118, 4.358.2]

∫ ∞

0
3(ln(g))2(e−g/Ωp − 2e−2g/Ωp + e−3/Ωp)dg = Ωp

(
− 6Cln(2)+ 6(2)ln(Ωp)

−3(ln(2))2+C2−2Cln(Ωp)

+(ln(Ωp))
2 + 2Cln(3)

−2ln(3)ln(Ωp)+ (ln(3))2

+ζ (2,1)
)

(12.98)

and, therefore,

E[(10log10{g})2] = ξ−2
(
− 6Cln(2)− 3(ln(2))2 +C2

+2Cln(3)+ (ln(3))2 + ζ (2,1)
)

+6ln(2)μΩp (dBm)
− 2CμΩp (dBm)

− 2ln(3)μΩp (dBm)

+σ2
Ω + μ2

Ωp (dBm)
. (12.99)

Therefore, the variance of the log-normal approximation is

σ2
G (dBm) = E[(10log10{g})2]− μ2

G (dBm)

= ξ−2
(

ζ (2,1)− 12(ln(2))2 + 6ln(2)ln(3)
)
+σ2

Ω. (12.100)
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Problems

12.1. Consider a CDMA cellular system where there are five in-cell interferers.
Each interferer is independently active with probability p, and is characterized by a
power control error ςE j . The power control errors, ςE j (in dB) are independent zero-
mean Gaussian random variables with variance σ2

E. Hence, the in-cell interference is

Iin =C
5

∑
j=1

10ςE j/10χ j,

where

χ j =

{
1 with probability p,
0 with probability 1− p.

(a) The in-cell interference can be approximated as a log-normal random variable
conditioned on the number of active interferers

k =
5

∑
j=1

χ j.

Determine the mean and variance of the log-normal approximation as a function
of k for σE = 1, 2, and 3 dB. Use the Fenton–Wilkinson approach.

(b) Assuming that the value of (Iin)dB is Gaussian when conditioned on the number
of active interferers, write down and expression for the pdf of (Iin)dB.

12.2. (Computer exercise) The purpose of this problem is to determine the relative
contribution of the first-, second- and third-tier cells to the out-of-cell interference
in a CDMA cellular system. Also, we wish to determine the impact of the path loss
exponent on the out-of-cell interference.

Consider a CDMA cellular system characterized by log-normal shadowing
with a shadow standard deviation σΩ dB and inverse β power path loss. Neglect
envelope fading. All other factors such as base-station antenna heights, cell sizes,
etc. are uniform. The ratio of the mean out-of-cell interference to mean in-cell
interference is

θ =
E[Io/C]

pK
,

where

E[Io/C] = p
∫ ∫

exp

{
ξ 2σ2

x

2
+ ξ μx

}(

1−Q

(

−ξ σx − μx

σx

))

ρdA

and
μx = μi0 − μi j,

σ2
x = 2σ2

Ω .
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For regular hexagonal cells, the subscriber density is

ρ =
2K

3
√

3R2
.

Hence,

θ =
2

3
√

3R2

∫ ∫

exp

{
ξ 2σ2

x

2
+ ξ μx

}(

1−Q

(

−ξ σx − μx

σx

))

ρdA,

where the double integral is over the two-dimensional out-of-cell area.

(a) Consider the first tier of interfering cells. For the case of σΩ = 8 dB, calculate
θ when β = 3 and β = 4.

(b) Repeat part (a), but this time consider only the second tier of interfering cells.
(c) Finally, repeat part (a), for the third tier of interfering cells.
(d) What conclusions can you draw?

12.3. CDMA systems use soft handoff, where the transmissions to/from multiple
BSs are combined to give a macro-diversity advantage. Suppose that the receive bit
energy-to-noise ratio for branch i, denoted by γi, has the probability density

pγi(x) =
1
γ̄i

e−x/γ̄i ,

where γ̄i = E[γi].

(a) The reverse link uses selection macro-diversity such that

γs
b = max{γ1,γ2, . . . ,γL} .

An outage occurs if γs
b < γth. What is the probability of outage?

(b) The forward link uses maximal ratio combining such that

γmr
b = γ1 + γ2 + · · ·+ γL.

Again, an outage occurs if γmr
b < γth. What is the probability of outage if γ̄1 =

γ̄2 = · · ·= γ̄L?
(c) For L = 2 and an outage probability of 10−4 what is the difference in the

required γth (in units of decibels) with selection and maximal ratio combining,
again assuming that γ̄1 = γ̄2?



Chapter 13
Radio Resource Management

When a new call arrives, mobile station (MS) must be connected to a suitable
base station (BS) or perhaps a set of BSs. Also, as an MS traverses from one
cell to the next handoffs are required so that an acceptable link quality can be
maintained; otherwise the required increase in transmit power to compensate for
path loss will result in excessive co-channel and adjacent channel interference. The
failure to handoff an MS as it moves from one cell to the next will also tend to
increase the call blocking probability, because some cells may carry more traffic
than planned. For TDMA cellular systems that do not use frequency hopping, an
intra-cell handoffs are sometimes desirable when the link with the serving BS is
affected by excessive interference, while another link with the same BS can provide
better quality. The handoff mechanism consists of two processes: (1) link quality
evaluation and handoff initiation, (2) allocation of radio and network resources.

In general, cellular systems with smaller cell sizes require faster and more
reliable link quality evaluation and handoff algorithms. Labedz [147] has shown
that the number of cell boundary crossings is inversely proportional to the cell size.
Furthermore, Nanda [192] has shown that the handoff rate increases with the only
square-root of the call density in macrocells, but it increases linearly with the call
density in microcells. Since the MS has a certain probability of handoff failure each
time a handoff is attempted, it is clear that handoff algorithms must become more
robust and reliable as the cell sizes decrease.

One of the major tasks in a cellular system is to monitor the link quality and
determine when handoff is required. If a handoff algorithm does not detect poor
signal quality fast enough, or makes too many handoffs, then capacity is diminished
due to increased co-channel interference and/or excessive control traffic. A variety
of parameters such as bit error rate (BER) [62], carrier-to-interference ratio (CIR),
C/I [99], distance [90,176], traffic load, signal strength [52,119,120,176,186,265],
and various combinations of these fundamental schemes have been suggested for
evaluating the link quality and deciding when a handoff should be performed.
One possibility is to measure the received carrier plus interference power, C + I.
However, a large C+ I does not necessary imply a large C/I. Since the radio link
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quality depends more on the C/I than the C+ I, it is apparent that C/I-based handoff
algorithms are necessary for high capacity cellular systems. A discussion of C/I
measurement techniques is included in this chapter.

Based on the roles that the BSs and MSs perform in the process of link quality
evaluation and handoff initiation, there are three categories of handoff algorithms.
The first is a network-controlled handoff (NCHO) algorithm, which was used
in first generation cellular systems. With an NCHO algorithm, the reverse link
quality is monitored by the serving BS and the surrounding BSs, typically using
measurements of the received C + I. The reverse link C + I measurements are
forwarded to a mobile switching center (MSC), which ultimately makes the handoff
decision. Typically, these centralized NCHO algorithms only supported intercell
handoffs, had handoff delays on the order of several seconds, and relied on relatively
infrequent measurements and reports of the reverse link C+ I values.

The second type of handoff algorithm is the mobile-assisted handoff (MAHO)
algorithm which is widely used in modern cellular systems. MAHO algorithms use
both the serving BS and the MS to measure the reverse and forward link quality,
respectively, usually based on the receivedC/I. However, link quality measurements
of the alternate BSs are only obtained by the MS. The MS periodically relays the
link quality measurements of the serving and alternate BSs back to the serving
BS, and the handoff decision is still made by the serving BS along with the MSC.
MAHO algorithms typically support both intracell and intercell handoffs. MAHO
algorithms typically use frequent updates of the link quality measurements, and have
much lower handoff delays than an NCHO algorithm.

The third type of handoff algorithm is the decentralized mobile-controlled
handoff (MCHO) algorithm. With MCHO algorithms, the link quality with the
serving BS is measured by both the serving BS and the MS. Like an MAHO
algorithm, the measurements of link quality for alternate BSs are done at the MS,
and both intracell and intercell handoffs are supported. However, unlike the MAHO
algorithms, the link measurements at the serving BS are relayed to the MS, and
the handoff decision is made by the MS. MCHO algorithms typically have the
lowest handoff network delays and are the most reliable. However, since the handoff
decisions are made by the MS, network-wide radio resource optimization is more
difficult. MCHO algorithms are typically used with cordless telephone systems.

Handoff algorithms can be categorized into forward and backward types depend-
ing on how the handoff process is initiated. Backward handoff algorithms initiate
the handoff process through the serving BS, and no access to the “new” channel
is made until the control entity of the new channel has confirmed the allocation of
resources. The advantage of backward algorithms is that the signaling information
is transmitted through an existing radio link and, therefore, the establishment of
a new signaling channel is not required during the initial stages of the handoff
process. The disadvantage is that the algorithm may fail in conditions where the link
quality with the serving BS is rapidly deteriorating. This type of handoff is widely
used in TDMA cellular systems such as GSM. Forward handoff algorithms initiate
the handoff process via a channel with the target BS without relying on the “old”
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channel during the initial phase of the handoff process. The advantage is a faster
handoff process, but the disadvantage is a reduction in handoff reliability. Finally,
handoffs can also be categorized as hard handoffs and soft handoffs.

Hard handoffs

With hard handoffs, an MS can connect to only one BS at a time. An absolute
(binary) decision is made to initiate and execute a handoff without making a number
of simultaneous connections among candidate BSs. The handoff is initiated based
on a hysteresis imposed on the current link. The target BS is already selected prior
to executing the handoff based on link measurements and the active connection is
transferred to the target BS instantly. The connection experiences a brief interruption
during the actual transfer because the MS can only connect to one BS at a time. Hard
handoffs do not take advantage of the diversity gain opportunity during handoff,
where the signals from two or more BSs arrive at comparable strengths. Yet, it is a
simple and inexpensive way to implement handoff. This type of handoff is used in
TDMA cellular systems such as GSM.

Hard handoff algorithms have been optimized by minimizing two conflicting
design criteria; the handoff delay and the mean number of handoffs between BSs. It
is important to keep the handoff delay small to prevent dropped calls and to prevent
an increase in co-channel interference due to distortion of the cell boundaries.
Likewise, it is important to keep the mean number of handoffs between BSs along
a handoff route at a reasonably low value to prevent excessive control signaling
and resource consumption on the network. Several authors [120, 176, 186, 265]
have applied these (or similar) design criteria while adjusting two important design
parameters; the required average signal strength difference, or hysteresis H, between
the BSs before a hard handoff is initiated, and the temporal window length T
over which the signal strength measurements are averaged. The handoff hysteresis
prevents excessive handoffs due to “ping-ponging” between BSs. The best choice of
T and H depends on the propagation environment. Usually, the averaging interval T
is chosen to correspond to a spatial distance of 20–40 carrier wavelengths, and the
hysteresis H is chosen on the order of the shadow standard deviation.

Murase [186] studied the tradeoff between the hysteresis and window length for
line-of-sight (LoS) and nonline-of-sight (NLoS) hard handoffs. For LoS handoffs,
the MS always maintains an LoS with both the serving and target BS. This would
be the case, for example, when an MS traverses along a route from BS0 to BS2

in Fig. 13.1. NLoS handoffs, on the other hand, arise when the MS suddenly loses
the LoS component with the serving BS while gaining an LoS component with the
target BS. This phenomenon is sometimes called the “corner effect” [52, 186] since
it occurs while turning corners in urban microcellular settings like the one shown
in Fig. 13.1, where the MS traverses along a route from BS0 to BS1. In this case,
the average received signal strength with the serving BS can drop by 25–30 dB over
distance as small as 10 m [186].
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Fig. 13.1 Typical NLoS
handoff scenario. The MS
rounds the corner, losing the
LoS from BS0 and gaining
the LoS from BS1

BS1

BS0

250m
250m

Corner effects may also cause link quality imbalances on the forward and reverse
channels due to the following mechanism. Quite often the co-channel interference
will arrive via an NLoS propagation path. Hence, as an MS rounds a corner,
the received signal strength at the serving BS suffers a large decrease while the
NLoS co-channel interference remains the same, that is, the corner effect severely
degrades the C/I on the reverse channel. Meanwhile, the corner will cause the same
attenuation to both the desired and interfering signals that are received at the MS.
Therefore, unless there are other sources of co-channel interference that become
predominant as the MS rounds the corner, the C/I on the forward channel will
remain about the same.

If the handoff requests from rapidly moving MSs in microcellular networks are
not processed quickly, then excessive dropped calls will occur. Fast temporal-based
hard handoff algorithms can partially solve this problem, where short temporal
averaging windows are used to detect large, sudden, drops in signal strength [186].
However, the shortness of a temporal window is relative to the MS velocity and,
furthermore, a fixed time averaging interval makes the hard handoff performance
sensitive to velocity with the best performance being achieved at only a particular
velocity. Velocity adaptive handoff algorithms can overcome these problem, and are
known to be robust to the severe propagation environments that are typical of urban
microcellular networks [18].

Soft Handoffs

With soft handoffs, an MS can connect to a number of candidate BSs during a
handoff process. Eventually, the handoff is completed when the MS selects the
best candidate BS as the target. Soft handoff is more careful in selecting the target
BS, because the target BS needs to be the best candidate from among the available
BSs. During the handoff process, soft handoff further enhances the system perfor-
mance through diversity reception. Unlike hard handoff, the necessary link quality
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Fig. 13.2 Soft handoff example, from [219]

measurements for handoff are done by the MS, where it constantly monitors the
signals from surrounding BSs. Soft handoff is a type of MAHO. However, all these
advantages do not imply that soft handoff is without its weaknesses. Soft handoff is
complex and expensive to implement. Also, forward interference actually increases
with soft handoff since several BSs, instead of one, can connect to the same MS.
This increase in forward interference can become a problem if the handoff region is
large, such that there are many MSs in soft handoff mode.

Soft handoff has a special importance in CDMA-based systems, due to its close
relationship with power control. CDMA systems are interference-limited meaning
their capacities are closely related to the amount of interference the systems can
tolerate. Due to universal frequency reuse, a CDMA system cell is affected by, not
only interference within its own cell, but also interference from its neighboring cells
also. To alleviate level of interference, and thus increase the capacity and quality,
CDMA systems use power control. Power control attempts to solve the near/far
problem by adjusting transmit power so that the target C/I is evenly satisfied. The
fundamental idea behind power control is to restrain MSs and BSs from transmitting
more power than is necessary to limit excess interference. With power control, each
MS (or BS) is disciplined to transmit just enough power to meet the target C/I
level. However, in order for the power control to work properly, the system must
ensure that each MS is connected to the BS having the least path attenuation at all
times; otherwise, a positive feedback problem can destabilize the entire system. Soft
handoff ensures that each MS is served by the best BS a majority of the time, by
allowing connections to multiple BSs with macroscopic selection diversity.

To illustrate the necessity for soft handoff in CDMA cellular systems, consider
a simple system consisting of two BSs and two MSs as shown in Fig. 13.2. Let us
assume that each MS must satisfy a target C/I = 1. Let C11, C12, C21, and C22 be
equal to 5, 6, 7, and 4, respectively. With soft handoff, each MS connects to the
best available BS; MS1 connects to BS2 and MS2 connects to BS1. Then (C/I)1 =
C12/C22 = 6/4 and (C/I)2 =C21/C11 = 7/5, and (C/I)1 and (C/I)2 both satisfy the
target C/I. However without soft handoff, the system can no longer guarantee that
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the MSs are connected to the best BSs. Assume that MS1 is connected to BS1 and
MS2 is connected to BS2. Then, (C/I)1 =C11/C21 = 5/7 and (C/I)2 =C22/C12 =
4/6. Since both (C/I)1 and (C/I)2 fail to meet the target C/I, power control will
attempt to increase the C/Is by increasing the MS transmit powers. But for the given
setting, increasing the MS transmit powers also increases the respective interference
levels and the C/I’s continue to stay below the target C/I, causing a positive power
feedback effect. Soft handoff does indeed ensure that each MS is served by the best
BS a majority of the time. For this reason, it is a required feature in CDMA cellular
systems.

Although the best handoff algorithm is the one that maximizes the capacity of the
network, there are many criterion to judge the performance of a handoff algorithm.
These include the probability of handoff initiation, probability of dropped call,
the mean number of handoff requests as an MS traverses over a handoff route,
and the delay before a handoff is initiated after an MS crosses an established
cell boundary. These quantities depend on the measure of link quality and the
propagation environment. Finally, network parameters such as the probabilities of
new call blocking, the probability of forced termination, and handoff queuing time
are important. Note that we may also wish to distinguish between dropped calls
that are due to a failed handoff mechanism, and forced terminations that are due to
the lack of an unavailable channel in the target cell after successful initiation of the
handoff process.

The remainder of this chapter is organized as follows. Section 13.1 presents sev-
eral different types of signal strength-based hard handoff algorithms. Section 13.2
introduces pilot-to-interference ratio based soft handoff algorithms. This is followed
by a detailed treatment of spatial signal strength averaging in Sect. 13.3. Guidelines
are developed on the window averaging length that is needed so that Ricean fading
can be neglected in analog and sampled averaging. These guidelines are necessary
for local mean and velocity estimation. Section 13.4 motivates the need for velocity
adaptive handoff algorithms and presents three velocity estimators. The velocity
estimators are compared in terms of their sensitivity to Rice factor, directivity, and
additive Gaussian noise. In Sect. 13.5, the velocity estimators are incorporated into
a velocity adaptive handoff algorithm. Section 13.6 provides an analytical treatment
of conventional signal strength-based hard handoff algorithms while Sect. 13.7 does
the same for soft handoff algorithms. Finally, Sect. 13.8, discusses methods for C/I
measurements in TDMA cellular systems.

13.1 Signal Strength-Based Hard Handoff Algorithms

Traditional MAHO algorithms use signal strength estimates that are obtained by
calculating time averages of the received squared envelope, 〈|r̃i(t)|2〉, from N
neighboring BSs, BSi, i = 0, · · · ,N − 1. An MS is reconnected to an alternate BS
whenever the signal strength estimate of the target BS exceeds that of the serving
BS by at least H dB. For example, a handoff is performed between two BSs, BS0

and BS1, when
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Ω̄p,1(n) > Ω̄p,0(n)+H if the serving BS is BS0,

Ω̄p,0(n) > Ω̄p,1(n)+H if the serving BS is BS1, (13.1)

where H denotes the hysteresis, and Ω̄p,0(n) and Ω̄p,1(n) are the estimated local
mean signal strengths of BS0 and BS1, given by

Ω̄p,0(n) = 10log10

{
1
N

n

∑
k=n−N+1

|r0(k)|2
}

(13.2)

Ω̄p,1(n) = 10log10

{
1
N

n

∑
k=n−N+1

|r1(k)|2
}

, (13.3)

respectively, where |r̃i(kTs)|2 is the kth sample of the received squared envelope, Ts

the sampling period, and N is the window length.
Many other variations of signal strength-based handoff algorithms have been

suggested in the literature. In one variation, handoffs are also triggered when the
measured signal strength of the serving BS drops below a threshold. For example, a
handoff could be performed between BS0 and BS1 when

Ω̄p,1(n) > Ω̄p,0(n)+H and Ω̄p,0(n)> ΩL, if the serving BS is BS0,

Ω̄p,1(n) > Ω̄p,0(n) and Ω̄p,0(n)< ΩL, if the serving BS is BS0,

Ω̄p,0(n) > Ω̄p,1(n)+H and Ω̄p,1(n)> ΩL, if the serving BS is BS1,

Ω̄p,0(n) > Ω̄p,1(n) and Ω̄p,1(n)< ΩL, if the serving BS is BS1. (13.4)

This scheme encourages a handoff whenever the received signal strength from the
serving BS drop below the threshold ΩL, thereby reducing the probability of a
dropped call.

Another variation discourages handoffs when the received signal strength from
the serving BS exceeds another threshold ΩU. For example, a handoff is performed
between BS0 and BS1 when

Ω̄p,1(n) > Ω̄p,0(n)+H and ΩL < Ω̄p,0(n)< ΩU, if the serving BS is BS0,

Ω̄p,1(n) > Ω̄p,0(n) and Ω̄p,0(n)< ΩL, if the serving BS is BS0,

Ω̄p,0(n) > Ω̄p,1(n)+H and ΩL < Ω̄p,1(n)< ΩU, if the serving BS is BS1,

Ω̄p,0(n) > Ω̄p,1(n) and Ω̄p,1(n)< ΩL, if the serving BS is BS1. (13.5)

This scheme avoids unnecessary handoffs, thereby reducing the network signaling
load and network delay.

Direction-biased handoff algorithms have also been suggested for improving
the handoff performance in urban microcells [23]. These algorithm incorporate
moving direction information into the handoff algorithm to encourage handoffs to
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BSs that the MS is approaching, and to discourage handoffs to BSs that the MS
is moving away from. Let BSs denote the serving BS. A direction biased handoff
algorithm can be defined by grouping all the BSs being considered as handoff
candidates, including BSs, into two sets based on their direction information. Define
the following sets:

A := the set of BSs the MS is approaching, (13.6)

R := the set of BSs the MS is moving away from. (13.7)

By introducing an encouraging hysteresis He, and a discouraging hysteresis Hd, a
direction-biased handoff algorithm requests a handoff to BS j if BS j ∈ R and

Ω̄p, j(n) > Ω̄p,s(n)+H, if BSs ∈ R,

Ω̄p, j(n) > Ω̄p,s(n)+Hd, if BSs ∈ A (13.8)

or if BS j ∈ A and

Ω̄p, j(n) > Ω̄p,s(n)+He, if BSs ∈ R,

Ω̄p, j(n) > Ω̄p,s(n)+H, if BSs ∈ A . (13.9)

To encourage handoffs to BSs in A and discourage handoffs to BSs in R, the
hysteresis values should satisfy He ≤ H ≤ Hd. When equality holds, the algorithm
reduces to the conventional method described in (13.1). Good values for He, H, and
Hd depend on the propagation environment and BS layout. In general, a direction
biased handoff algorithm can maintain a lower mean number of handoffs and
handoff delay, and provide better cell membership properties.

13.2 Pilot-to-Interference Ratio-Based Soft Handoff
Algorithms

In CDMA-based systems each BS transmits a pilot signal to assist soft handoff
[87]. In synchronous CDMA systems such as cdma2000, all BSs use the same
pilot sequence and the BS are distinguished using different phase shifts of the same
sequence. In asynchronous CDMA systems such as WCDMA, each cell is allocated
a distinct pilot sequence. In any case, the MSs use the pilot signals to initiate and
complete handoffs. Each pilot signal is used to measure the pilot-to-interference
ratio (PIR), which is the ratio of received pilot energy per chip to total interference
spectral density:

PIR =
Ec

Io
. (13.10)
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Fig. 13.3 Soft handoff
boundaries and region

Cell 1 Cell 2

Soft Handoff Region

TdropTadd

An active set refers to the set of BSs to which an MS is connected at any given time.
The active set contains a single BS most of time, but additional BSs are added to the
active set during soft handoff.

Soft handoffs are initiated based on a hysteresis imposed on the PIRs. An upper
threshold, Tadd, determines the pilot signal level for which qualifying BSs are added
to the active set, whereas a lower threshold, Tdrop, determines when the weak pilot
BSs are dropped from the active set. The handoff margin, the difference between
Tadd and Tdrop, is an indicator of how long a soft handoff will take on average.
A wider margin results in a longer average soft handoff duration. Figure 13.3
shows how changes in the handoff parameters affects the handoff region. Reducing
Tdrop and Tadd expands the cell boundaries and thus increases the soft handoff
region.

The soft handoff margin and thresholds are very important parameters in
determining system performance, and need to be carefully optimized for a given
situation. Allowing more MSs to be in soft handoff mode will decrease the reverse
link interference, by allowing more MSs to benefit from macrodiversity. That
is, the MSs in handoff are connected to the best available link and, therefore,
do not transmit excessive power. However, the increase in the number of MSs
in soft handoff and the increase in the average handoff duration can increase
system complexity and tie up already scarce system resources. Also, as mentioned
previously, soft handoff increases the forward link interference by allowing multiple
BSs to transmit to one MS. The challenge is to optimize the handoff parameters so
that the capacity and quality of service requirements are satisfied, while keeping
the operational cost and system complexity down. Other important soft handoff
parameters include the Tdrop timer and the ratio between the handoff region and
total cell area. The Tdrop timer is the length of time that a signal level must remain
below Tdrop to drop a BS from the active set.
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13.3 Signal Strength Averaging

The received squared-envelopes |r̃(t)|2 are affected by Ricean fading, log-normal
shadowing, and path loss attenuation. Here we consider the two Ricean fading
models discussed in Sect. 2.1.3.2. The first model assumes that the quadrature
components of the complex fading envelope g(t) = gI(t) + jgQ(t) are indepen-
dent Gaussian random processes with variance b0 and means mI(t) = mI and
mQ(t) = mQ, respectively. In this case, the envelope α(t) = |g(t)|, is Ricean
distributed with Rice factor K = s2/(2b0), where s2 =m2

I +m2
Q. The second model is

more realistic and uses the time-varying means mI(t) and mQ(t) in (2.55) and (2.56),
respectively. Once again, the envelope α(t) is Ricean distributed with Rice factor
K = s2/(2b0). Both models are equivalent for Rayleigh fading (K = 0). As suggested
in Sect. 2.6.1, shadow correlation can be described by the model in (2.6.1). Finally,
for LoS propagation, we assume the two-slope path loss model in (2.349). For NLoS
propagation, we assume the model in (2.351) yielding, for example, the received
signal strength profile in Fig. 2.56.

13.3.1 Choosing the Proper Window Length

When a time average of the received complex squared-envelope 〈|r̃i(t)|2〉 is calcu-
lated, an averaging interval or temporal window length must be chosen. One method
for determining the proper window length is to use analog averaging. The following
development extends the original work of Lee [155] by incorporating Aulin’s
Ricean fading model. With Lee’s multiplicative model, the squared-envelope of the
composite signal at position y is

α̂2
c (y) = α(y) ·Ωp(y), (13.11)

where α2(y) is a noncentral chi-square random variable with two degrees of
freedom (Ricean fading), and Ωp(y) is a log-normal random variable (log-normal
shadowing). Since the local mean remains constant over short spatial distances, we
assume that Ωp(y) = Ωp over the spatial averaging interval. However, if the spatial
averaging interval is too large, this assumption will no longer be valid since the
time-average 〈|r̃i(t)|2〉 will average over the shadowing process as well. Assuming
that the envelope fading is an ergodic random process, an integral spatial average of
α̂2

c (y) can be used to estimate the local mean Ωp, that is,

Ω̄p =
1

2L

∫ x+L

x−L
α̂2

c (y)dy =
Ωp

2L

∫ x+L

x−L
α2(y)dy, (13.12)

where the second equality holds since Ωp(y) is constant over the spatial interval
(x−L,x+L). The accuracy of the estimate can be determined from the variance of
(13.12), calculated as [152]
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σ2
Ω̄p

=
1
L

∫ 2L

0

(

1− �

2L

)

λα2α2(�)d�, (13.13)

where λα2α2(�) = E[α2(y)α2(y+ �)]−E[α2(y)]E[α2(y+ �)] is the spatial autoco-
variance of the squared envelope, and E[ x ] denotes the ensemble average of x. The
spatial autocovariance of the received squared-envelope at an MS with 2D isotropic
scattering can be obtained from (2.90) along with the time-distance transformation
fmτ = �/λc. Substituting (2.90) into (13.13) and using fmτ = �/λc yields

σ2
Ω̄p
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(
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K + 1

)2 1
L

∫ 2L

0

(
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×J0(2π�/λc)
(

J0(2π�/λc)+ 2K cos(2π�cos(θ0)/λc)
)

d�. (13.14)

As desired, σ2
Ω̄p

→ 0 as L → ∞. When L is large, Ω̄p can be considered Gaussian

since it is the summation of many independent random variables. However, if σ2
Ω̄p

is relatively large compared to Ωp (due to small L or small Ωp), then it is more
appropriate to treat Ω̄p as a noncentral chi-square random variable. In this case, it
may be more appropriate to approximate Ω̄p as a log-normal random variable which
has the same general shape as a noncentral chi square distribution (i.e., zero at the
origin with an infinitely long tail) [113, 114].

Proceeding under the assumption that Ω̄p is approximately Gaussian, the 1σ
spread can be calculated to measure the accuracy of the estimator, where

1σ spread = 10log10

{
Ωp +σΩ̄p

Ωp −σΩ̄p

}

, (13.15)

with the interpretation that P[|Ω̄p (dB) − Ωp (dB)| ≤ 1 σ spread] = 0.68.1 Observe
from (13.14) and (13.15) that the accuracy of the local mean estimate depends on K,
L, and θ0. Figure 13.4 shows the 1σ spread when θ0 = 60◦ for various values of K.
In general, Ω̄p approaches Ωp with increasing K. However, the angle θ0 also affects
the accuracy as shown in Fig. 13.5. When θ0 = 90◦ the 1 σ spread is minimized,
resulting in the best estimate of the local mean. Conversely, the worst estimates
occur for small θ0 (in the neighborhood of 10◦ in Fig. 13.5). The actual angle that
the maximum occurs is a function of L, and it can easily be shown that the 1 σ
spread has a local minimum at θ0 = 0◦ and global minimum at θ0 = 90◦ for all L. In
any case, the required spatial averaging distance for local mean estimation depends
on K and θ0.

1The probability of lying within one standard deviation of the mean of a Gaussian random variable
is 0.68.
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Fig. 13.4 Dependency of the
1σ spread for
squared-envelope samples on
the averaging distance (2L)
and Rice factor K when
θ0 = 60◦, from [18]
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Fig. 13.5 Dependency of the
1σ spread on the specular
angle θ0 mod 90◦, from [18]
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13.3.2 Choosing the Proper Number of Samples to Average

Most practical signal strength estimators use samples of the signal strength rather
than analog averaging. We must determine the number and spacing of samples to
provide a good estimate of the local mean. Consider the sampled composite squared-
envelope

α2
c [i]

�
= α2

c (iS), (13.16)
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where S is the spatial sampling period, and i is an integer. Then the spatial average

Ω̄p =
1
N

N−1

∑
i=0

α2
c [i], (13.17)

can be used to determine an unbiased estimate of the local mean Ωp. As with analog
averaging, the variance of this estimate can be used to measure its accuracy, where

σ2
Ω̄p

=
1

N2

N−1

∑
i=0

N−1

∑
j=0

E
[
α2

c [i]α
2
c [ j]
]− (E[Ω̄p

])2
. (13.18)

Using (2.90), the transformation fmτ = �/λc, and the symmetric properties of the
autocovariance function, (13.18) becomes
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J0(2πS j/λc)

×
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J0(2πS j/λc)+ 2K cos(2πS j cos(θ0)/λc)
)
)

, (13.19)

where S is measured in wavelengths (λc). Note that σΩ̄p
depends on N, K, S,

and θ0. Fortunately, the effect of each parameter is nearly independent of the
others. Figure 13.6 illustrates the relationship between S and K for θ0 = 0◦, where
N =  20λc/S! so that the averages are over 20λc (and  x! denotes the smallest
integer greater than or equal to x). Increasing N for a fixed S will increase the spatial
averaging distance, thereby lowering the 1 σ spread in a manner similar to analog
averaging in Fig. 13.4. The discontinuities in Fig. 13.6 are due to the  x! function.
Observe that if S < 0.5λc then the discrete local mean estimate is approximately
equivalent to the estimate from analog averaging (θ0 = 0◦ in Fig. 13.5) over the
same spatial distance. Similar to Fig. 13.5, we also observe that small Rice factors,
for example, K = 0.1 and K = 1, at θ0 = 0◦ increase the 1 σ spread. The spikes
at 0.5λc and 1λc, correspond to the location of the first lobe of the autocovariance
function given by (2.90) and plotted in Fig. 2.16.

Although we often assume θ0 = 0◦ in our treatment, Fig. 13.7 shows the
relationship between the 1 σ spread and S, for K = 1, N =  20λc/S!, and several
values of θ0. Increasing θ0 generally lowers the 1 σ spread except for some small
angles as shown in Fig. 13.5; it also shifts the spike at 0.5λc to the right, because the
first sidelobe of (2.90) shifts as θ0 increases.

To summarize, the spatial averaging distance that is needed to obtain the local
mean depends on K and θ0. If sample averaging is used, then the sample spacing
should be less than 0.5λc. As a rule of thumb, a spatial averaging distance of 20λc

should be sufficient for most applications.
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Fig. 13.6 1 σ spread versus
S for various K, with θ0 = 0◦,
distance averaged = 20λc,
from [18]
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Fig. 13.7 1 σ spread versus
S (in wavelengths) for various
θ0, K = 1, distance
averaged = 20λc, from [18]
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13.4 Velocity Estimation

Temporal-based hard handoff algorithms can yield poor handoff performance in
microcells due to the diverse propagation environment and the wide range of MS
velocities. Consider the NLoS handoff scenario shown in Fig. 13.1, where an MS
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traveling from BS0 has a log-normal shadowed Ricean faded LoS signal from BS0

and a log-normal shadowed Rayleigh faded NLoS signal from BS1, until it rounds
the corner where the situation is suddenly reversed. The loss (gain) of the LoS
component causes a rapid decrease (increase) in the signal strength. Effective hard
handoff algorithms for this scenario should use short temporal averaging window
and a large hysteresis, so that rapid changes in the mean signal strength are detected
and unnecessary handoffs are prevented [186]. Unfortunately, temporal averaging
with a short fixed window length gives optimal handoff performance for only a
single velocity. For example, consider again the handoff scenario in Fig. 13.1 along
with the received signal strength profile in Fig. 2.56. Assume log-normal shadowing
with σΩ = 6 dB and choose D so that φΩ(dB)Ω(dB)

(d) = 0.1σ2
Ω at d = 30 m in

(2.6.1). The simulation of a temporal power averaging hard handoff algorithm
with a hysteresis H = 8 dB, averaging window duration of 2.27 s, and a window
overlap of 2.27/2 = 1.135 s gives the handoff performance shown by the lines
in Fig. 13.13.2 The hard handoff performance is evaluated by the mean number
of handoffs, averaged over 1,000 runs, versus the distance from BS0 where 50%
(and 90%) of the MSs have made a handoff to BS1, that is, Pr(BS1) = 0.5 and
Pr(BS1) = 0.9 at the abscissa. This distance gives a measure of the handoff delay,
assuming that handoffs will occur between BS0 and BS1 only.

Figure 13.13 only shows the handoff request delay, while in a real system the
network delay should also be included. However, the performance of a velocity
adaptive handoff algorithm can still be evaluated without knowledge of the network
delay. For example, suppose that the receiver threshold is −90 dBm. Also, assume
that a good hard handoff algorithm should have at least 90% of the MSs handed
off before a distance dcutoff, where dcutoff is chosen as the distance where the mean
signal strength is 2σΩ above −90 dBm. If σΩ = 6 dB and the data from Fig. 2.56
is used, then a signal strength of −90+ 12 = −78 dBm occurs at 283 m for BS0.
Hence, if the velocity adaptive hard handoff algorithm can adapt to the point at
5 km/h in Fig. 13.13, corresponding to handoff requests at a distance 262 m, and
the maximum speed of an MS turning the corner is 40 km/h (40/3.6 m/s), then a
maximum network delay of

Max Network Delay =
3.6 s
40 m

(283− 262) m = 1.89 s,

can be tolerated. For macrocellular systems this network delay is acceptable,
implying the usefulness of velocity adaptive hard handoff algorithms discussed here.
In the above example, the 5 km/h point on the curve in Fig. 13.13 was chosen as the
desired operating point, because the best hard handoff performance occurs near the
knee of the curve where the mean number of handoffs and handoff delay are jointly
minimized. Other hysteresis and window lengths could possibly result in better per-
formance. However, the settings used here (H = 8 dB and a 20λc spatial window) are
adequate to illustrate the usefulness of velocity adaptive hard handoff algorithms.

2A 2.27 s window corresponds to a 20λc spatial window at a velocity of 5 km/h, assuming a carrier
frequency of 1.9 GHz. Section 13.5 further details the simulation.
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We note that hierarchical cellular architectures use microcells to serve high
density low mobility MSs and macrocells to serve low density high mobility
MSs. Velocity estimation is necessary so that MSs can be assigned to the proper
hierarchical layer depending on their mobility. If high mobility MSs are connected
to microcells, then excessive handoffs may occur. On the other hand if low mobility
MSs are connected to macrocells, then the overall system capacity will suffer.
Finally, for hierarchical TDMA cellular architectures the micro-to-macrocell and
micro-to-microcell handoffs must be performed quickly to prevent dropped calls,
especially for MSs that are connected to microcells and subsequently transition
from low to high mobility. For these cases, velocity adaptive handoff algorithms
are necessary to achieve the required low network handoff delay.

13.4.1 Level Crossing Rate Estimators

It is well known that the zero crossing rates (ZCRs) of the quadrature components
gI(t) and gQ(t) and the level crossing of the envelope α(t) = |g(t)|= |gI(t)+ jgQ(t)|
are functions of the MS velocity as discussed in Sect. 2.1.5. The envelope level
crossing rate (LCR) is defined as the average number of positive-going crossings per
second, that the fading envelope α(t) makes at a predetermined envelope level R.
Likewise, the ZCR is defined as the average number of positive going zero crossings
of the quadrature components ĝI(t) = gI(t)−mI(t) and ĝQ(t) = gQ(t)−mQ(t). Rice
has derived the ZCR of ĝI(t) or ĝQ(t) as (2.108)

LZCR1 =
1
π

√

b2

b0
(13.20)

and the envelope LCR with respect to the level R as, (2.96) and (2.97),

LR =

∫ ∞

0
α̇ p(R, α̇)dα̇ =

R(2π)−3/2
√

Bb0

∫ ∞

0

∫ π

−π
α̇

×exp

{

− 1
2Bb0

(
B
(
R2 − 2Rscos(θ )+ s2)+(b0α̇ + b1ssin(θ ))2

)}

dθdα̇,

(13.21)

where B = b0b2 − b2
1. The bn can be obtained from (2.99) with appropriate

modification to account for the presence of AWGN in the received complex
envelope. That is, the LCR is computed from the quadrature components of the
received complex envelope r̃I(t) = gI(t)+ ñI(t) and r̃Q(t) = gQ(t)+ ñQ(t) instead
of the quadrature components of the received fading envelope gI(t) and gQ(t). If we
assume an isotropic antenna such that G(θ ) = 1, then

bn = (2π)nb0

∫ 2π

0
p̂(θ )( fm cos(α)− fq)

ndθ +(2π)n
∫ Bw/2

−Bw/2

No

2
f nd f , (13.22)
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where 2b0 is the scatter power, v the velocity, λc the carrier wavelength, fm = v/λc

the maximum Doppler frequency, fs = fc + fq the frequency of the specular or LoS
component, and p̂(θ ) is the continuous AoA distribution of the scatter component
of the arriving plane waves [134]. The second term in (13.22) is due to AWGN,
centered at fc, with a two-sided power spectral density of No/2 W/Hz and a noise
bandwidth of Bw Hz, resulting in a total power of NoBw watts. Note that Bw is
determined by the receiver bandwidth and must be at least equal to the maximum
Doppler frequency fm to accurately estimate the LCR. However, if Bw is larger than
fm, then the LCR estimates will be corrupted by unnecessary noise. For the special
case when θ0 = 0◦ and there is 2D isotropic scattering, then p̂(θ ) = 1/(2π), −π ≤
θ ≤ π and (13.22) can be written as

bn = (2π)n b0

π

∫ fm

− fm

f n
√

f 2
m − f 2

d f +(2π)n
∫ Bw/2

−Bw/2

N0

2
f nd f . (13.23)

With Aulin’s Ricean fading model with the means of gI(t) and gQ(t) defined in
(2.55) and (2.56), respectively, the ZCR of gI(t) or gQ(t) is [225]

LZCR2 = LZCR1

(

e−γ I0(β )+
b2

2γ
Ie

(
β
γ
,γ
))

, (13.24)

where I0(x) is the zero-order modified Bessel function of the first kind, and

γ =
a2 + b2

4
, β =

a2 − b2

4
, a =

√
2K,

Ie(k,x) =
∫ x

0
e−uI0(ku)du, b = 2π fm cos(θ0)

√
2Kb0

b2
(13.25)

and LZCR1 was defined in (13.20).
For macrocells, 2D isotropic scattering is a reasonable assumption. However, for

microcells the scattering is often non-isotropic. Nevertheless, one approach is to
derive velocity estimators under the assumption of 2D isotropic scattering with no
AWGN, and afterwards study the effects of the mismatch caused by non-isotropic
scattering and noise. Using (13.20) along with the definition for the bn in (13.23)
and No = 0 gives

LZCR1 =
√

2v/λc (13.26)

and (2.105)

LR = (v/λc)
√

2π(K + 1)ρe−K−(K+1)ρ2
I0

(
2ρ
√

K(K + 1)
)
, (13.27)

where ρ = R/Rrms, where Rrms =
√

Ωp is the rms envelope level. Likewise, for
Aulin’s Ricean fading model with the means in (2.55) and (2.56), and θ0 = 0◦, we
have

γ =
3K
2
, β =−K

2
, a =

√
2K, b = 2

√
K (13.28)
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and LZCR2 reduces to

LZCR2 = (v/λc)
√

2

(

e−3K/2I0

(

−K
2

)

+
4
3

Ie

(

−1
3
,

3K
2

))

. (13.29)

Clearly, the LCR and ZCR are proportional to the velocity v and, hence, can be used
to derive a velocity estimate. However, it remains to be seen if they are robust to the
Rice factor K, non-isotropic scattering, additive noise, and other factors. We first
consider the robustness with respect to K and treat the other factors afterwards.

LZCR1 is not affected by K. Figure 2.17 in Sect. 2.1.5 compared the LCR LR

for different K with the conclusion that the LCR around ρ = 0 dB is roughly
independent of K. This attractive property suggests that the LCR can be used to
provide a velocity estimate that is robust to K. Consequently, the steps for using the
LCR (or ZCR) of α(t) (or gI(t) or gQ(t)), for velocity estimation are; determine Rrms

(or mI(t) or mQ(t)), estimate the number of crossings per second L̂Rrms (or L̂ZCR1),
and use (13.27) to solve for v, with ρ = 1 and K = 0 (or (13.26) for ZCR1). Thus,
the following velocity estimators are robust with respect to Rice factor K:

v̂ZCR1 ≈ λcL̂ZCR√
2

, v̂LCR ≈ λcL̂Rrms√
2πe−1

. (13.30)

Figure 13.8 shows the effect of K and θ0 on LZCR2 . Notice that if the angle of the
specular component is θ0 = 0◦ or 180◦, then LZCR2 can have up to 40% relative
error. Consequently, a nonzero value of K should be chosen as a default value to
minimize the effect of K. Choosing K ≈ 0.61 yields a maximum error of at most
20%. In this case, the velocity estimate from (13.29) becomes

v̂ZCR2 ≈ λcL̂ZCR2

1.2
√

2
. (13.31)

13.4.2 Covariance Approximation Methods

A velocity estimator has been proposed by Holtzman and Sampath [132, 228] that
relies upon an estimate of the autocovariance between faded samples r[i], where the
r[i] can be samples of the envelope, squared-envelope, or log-envelope. With this
method, referred to here as the covariance (COV) method, the statistic

V =
1
N

N

∑
k=1

(r[k+ τ]− r[k])2, (13.32)
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Fig. 13.8 Normalized zero
crossing rate versus K and θ0,
from [18]
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is calculated. If N is large and ergodicity applies, then V can be replaced by the
ensemble average

E[V ] = 2λrr(0)− 2λrr(τ) (13.33)

where λrr(τ) denotes the autocovariance of r[k]. The general form for λrr(τ),
assuming squared-envelope samples, can be derived from [16] and [228] as

λrr(τ) = 4a(τ)
(

a(τ)+ s2 · cos(2π fmτ cos(θ0))
)
+ 4c2(τ)+

2Noa(τ)sin(Bwπτ)
πτ

+
4KNob0 cos(2π fmτ cos(θ0))sin(Bwπτ)

πτ
+

No
2sin(Bwπτ)2

π2τ2 , (13.34)

where [16]

a(τ) = b0

∫ 2π

0
p̂(θ )cos(2π fmτ cos(θ ))dθ , (13.35)

c(τ) = b0

∫ 2π

0
p̂(θ )sin(2π fmτ cos(θ ))dθ . (13.36)

This estimator depends on p̂(θ ) and, hence, is also a function of the scattering
environment. Like the LCR estimator, we first assume isotropic scattering without
additive noise to derive a velocity estimator and afterwards evaluate the effect of
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non-isotropic scattering and noise.3 Consider the scattering environment shown in
Fig. 2.7, characterized by 2D isotropic scattering plus an LoS or specular component
arriving at angle θ0 = π/2. If squared-envelope samples are used, then using (2.90)
gives

V = E[V ] = 2

(
Ωp

K + 1

)2(
(1+ 2K)

−J0(2π fmτ)
(

J0(2π fmτ)+ 2K cos(2π fmτ cos(θ0))
) )

, (13.37)

which is dependent on K and θ0. If λrr(0) is known exactly, then the bias with
respect to K can be eliminated for small τ by the normalization [228]

V
λrr(0)

≈ (2πvτt/λc)
2 1+ 2K+K cos(2θ0)

(1+ 2K)
, (13.38)

so that [228]

v̂COV ≈ λc

2πτt

√

V
λrr(0)

, (13.39)

where τt is the sample spacing in seconds/sample.
In large co-channel interference situations it may be preferable to modify the

above scheme since the empirical average in (13.32), and in particular λrr(0), is
sensitive to co-channel interference as shown in [144]. Consequently, defining

U(τ) =
1
N

N

∑
k=1

r[k+ τ]r[k]−
(

1
N

N

∑
k=1

r[k]

)2

(13.40)

and V2 = 2U(τ1)− 2U(τ2), yields

E[V2] = 2λrr(τ1)− 2λrr(τ2), (13.41)

so that E[V2]/λrr(0) is equal to (13.38) with τt = τ2
2 − τ2

1 , and a result similar to
(13.39) follows.

Whether V or V2 is used, λrr(0) is never known exactly and must be estimated
by the MS in the same way that mI(t), mQ(t), and Rrms must be estimated in the
ZCR and LCR methods, respectively. Consequently, to actually use (13.39) it must
be shown or verified that

v ∝ E

⎡

⎣

√

V
λrr(0)

⎤

⎦ . (13.42)

3Only isotropic scattering was considered in [132, 228].
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This is analytically difficult, but simulation results in Sect. 13.5 suggest that (13.39)
is a useful approximation to (13.42).

It is also shown in Appendix 1 that

lim
τ→0

v̂COV = lim
τ→0

λc

2πτ

√

V
λrr(0)

= v

√
1+ 2K+K cos(2θ0)

1+ 2K
. (13.43)

It follows from (13.39) and (13.43) that K and θ0 cause at most 20% error in v [228],
thus providing a velocity estimator that is reasonably robust with respect to K.

13.4.3 Velocity Estimator Sensitivity

To illustrate the sensitivity of the velocity estimators, the ratio of the corrupted
velocity estimate to the ideal velocity estimate is used. For the LCR and ZCR
velocity estimators we have

ṽ
v
=

L̃Rrms(b̃0, b̃1, b̃2)

LRrms(b0,b1,b2)
(13.44)

and

ṽ
v
=

L̃ZCR1

LZCR1

=

√

b̃2

b̃0
· b0

b2
, (13.45)

respectively, where ṽ denotes the corrupted velocity estimate, and the LCRs
L̃Rrms(b̃0, b̃1, b̃2) and LRrms(b0,b1,b2) are given by (13.21) with the appropriate
values of b̃n and bn, respectively. Little simplification results for the LCR method in
general. However, when K = 0 (13.45) simplifies to [134]

ṽ
v
=

√
b̃2/b̃0 − b̃2

1/b̃2
0

b2/b0 − b2
1/b2

0

. (13.46)

For Aulin’s fading model with the means in (2.55) and (2.56), the sensitivity of
the ZCR is

ṽ
v
=

L̃ZCR2

LZCR2

=
L̃ZCR1

LZCR1

·
e−γ̃ I0(β̃ )+ b̃2

2γ̃ Ie

(
β̃
γ̃ , γ̃
)

e−γ I0(β )+ b2

2γ Ie

(
β
γ ,γ
) , (13.47)

where β̃ , γ̃ , and b̃ are given by (13.25) using (13.22) where appropriate. Likewise,
for the covariance method using squared-envelope samples we have

ṽ
v
=

√
2λ̃rr(0)−2λ̃rr(τ)

λ̃rr(0)
√

2λrr(0)−2λrr(τ)
λrr(0)

. (13.48)
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13.4.3.1 Effect of the Scattering Distribution

Here we study the sensitivity of the velocity estimators to the scattering distribution
using four different non-isotropic scattering models. With the first model S1, plane
waves arrive from one direction only with a varying degree of directivity as might
happen when signals are channelized along a city street. The probability density of
the scatter component of the arriving plane waves as a function of angle of arrival
has the form in (2.48), where the vehicle motion is in the direction of θ = 0◦, and
θm determines the directivity of the incoming plane waves. Figure 2.9 shows a polar
plot of p̂(θ ) for θm = 30◦,60◦ and 90◦. The second model S2, assumes that the
plane waves can arrive from either the front (θ = 0◦) or back (θ = 180◦), which
may be typical for city streets that dead end at another street. In this case p̂(θ )/2
and p̂(θ −π)/2 are combined to form the overall angle-of-arrival distribution. The
resulting density is similar to Fig. 2.9 but with lobes extending in both the 0◦ and
180◦ directions. The third and fourth models S3 and S4, respectively, are similar
to S1 and S2 except that the distributions are rotated by 90◦, so that the plane
waves tend to arrive perpendicular to the direction of travel. This may occur when
an MS passes through a street intersection. The effect of the scattering distribution
is determined for the cases when the velocity estimator has been designed for (1)
isotropic scattering and, (2) scattering model S1 with θm = 90◦. The scattering
model that the velocity estimator has been designed for will determine the values
of b0, b1, and b2 in the denominators of (13.44)–(13.47), while the values of b̃0, b̃1,
and b̃2 depend on the scattering environment that is actually present. The effect of
non-isotropic scattering on the COV estimate (13.48) can be found from the results
in Appendix 1 with No = 0, or using small values of τ in (13.48). Here we chose the
latter with τ = 1/50.

Figure 13.9 shows the effect of the scattering distribution on each of the velocity
estimators. Due to the very large number of possible scenarios, only the most
significant results are plotted in Fig. 13.9 and curves similar (but not equal) to the
plotted curves are simply asterisked in the accompanying table. Velocity estimators
with the subscript “d” in Fig. 13.9 correspond to those that are designed for
scattering model S1 with θm = 90◦. Using Fig. 13.9, the relative robustness of the
various velocity estimators to the scattering distribution has been summarized by
the ranking in Table 13.1.

For urban microcell deployments, robustness with respect to scattering models
S1 and S2 is important. The LCR and COV methods are very sensitive to the
directivity in scattering model S1 when K = 0 as shown by curve “h”. This
sensitivity can be partially mitigated using the velocity estimators LCRd and COVd

that have been designed for scattering model S1 with θm = 90◦ as shown by curve
“g.” However, the price for increased robustness to scattering model S1 is the
increased sensitivity of LCRd to scattering models S2, S3, and S4 when K = 0.
Fortunately, even the presence of a small specular component (K = 1) reduces the
sensitivity as seen in COV (K = 1) and LCRd . In contrast, a specular component
does not reduce the sensitivity of the LCR estimator in scattering models S2, S3, and
S4, because b1 = 0, and therefore the ratio of the crossing rates in (13.46) depends
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Fig. 13.9 Non-isotropic
scattering effects. –
corresponds to a curve that
had insufficient precision to
be reported. Superscript x∗
denotes that the curve is
approximately equal the
curve labeled x, from [18]
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Table 13.1 Robustness to
the scattering distribution

Curve Rank ṽ/v at θm = 10◦ ṽ/v at θm = 90◦

d Excellent 1.06 1.0
e, c Very good 0.66, 1.52 0.85, 1.24
b, f Good 0.34, 0.107 2.6, 0.82
a, g, h Poor 4.5, 0.014, 0.004 3.6, 1.0, 0.32

on b̃2 and b2 and is independent of K. Results are not shown for LCR or LCRd with
K = 1 scattering model S1, due to numerical difficulties in calculating (13.21) for
small θm. For large θm > 80◦ the results obtained were very close to curve “d.”

The ZCR velocity estimator is generally more robust than the LCR and COV
methods. The presence of a small specular component improves robustness to
the scattering distribution as seen in ZCR2 and ZCR2,d (ZCR1 and ZCR1d are
independent of K). Also, velocity estimators that have been designed for scattering
model S1 with θm = 90◦ perform slightly better than those designed for isotropic
scattering. However, the improvement obtained using these velocity estimators must
be weighed against the relative error that will be introduced if the scattering is
actually isotropic. For LCRd and COVd , ṽ/v = 0.316 and for ZCRd ṽ/v = 1.15.
Since all the velocity estimators seem to have some sensitivity to the scattering
distribution, and sensitivity is greatly reduced when K > 0, we conclude that those
designed for isotropic scattering should be adequate.

In summary, for very directive situations where the plane waves arrive from
either the front or back but not both, the ZCR, COVd , or LCRd methods are
the most robust. If the plane waves arrive from both the front and back, then all
the velocity estimators with the exception of LCRd are reasonably robust. The
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sensitivity to directivity is reduced when a specular component is present. In the
unlikely event that K = 0 and plane waves arrive from the perpendicular direction
with high directivity, all methods will have a significant bias. Finally, another
method for overcoming the sensitivity to the scattering distribution is to obtain
velocity estimates from the signals that arrive at an MS from a distant cell or an
umbrella cell, since they will tend to experience 2D isotropic scattering.

13.4.3.2 Effects of Additive Gaussian Noise

Since the effect of the scattering distribution has already been established, the
sensitivity to AWGN is determined using (13.44)–(13.48) under the assumption
of 2D isotropic scattering. With AWGN the rms value of the received complex
envelope is R̃ =

√
s2 + 2b0+NoBw, and the values of b̃n and bn in (13.44) are

b̃0 = b0 +
NoBw

2
, (13.49)

b̃2 = 2b0 (π fm)
2 +

NoB3
wπ2

6
, (13.50)

b2 = 2b0 (π fm)
2 . (13.51)

For the LCR velocity estimator, (13.44) and (13.21) yield, after considerable
algebra,

ṽ
v
=

(

1+
K + 1
6γS

(
Bw

fm

)2
) 1

2
√

γS(γS + 1)
γS +K+ 1

×
I0

(
2
√

γS(γS+1)K(K+1)
γS+K+1

)

I0

(
2
√

K(K + 1)
) exp

{

2K + 1− γS(2K + 1)+K+ 1
γS +K+ 1

}

, (13.52)

where

γS
�
=

s2 + 2b0

NoBw
=

Ωp

NoBw
(13.53)

is defined as the signal-to-noise ratio. Likewise, for the ZCR velocity estimator
ZCR1, (13.45) becomes

ṽ
v
=

√
√
√
√γS +

(
Bw
fm

)2
K+1

6

γS +K+ 1
. (13.54)

For Aulin’s fading model with the means in (2.55) and (2.56), the effect of AWGN
on ZCR2 can be obtained from (13.47) with L̃ZCR1/LZCR1 in (13.54),
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β̃ =
K
2

⎛

⎜
⎝1− 2cos2(θ0)

⎛

⎜
⎝

γS +K + 1

γS +
K+1

6

(
Bw
fm

)2

⎞

⎟
⎠

⎞

⎟
⎠, (13.55)

γ̃ =
K
2

⎛

⎜
⎝1+ 2cos2(θ0)

⎛

⎜
⎝

γS +K+ 1

γS +
K+1

6

(
Bw
fm

)2

⎞

⎟
⎠

⎞

⎟
⎠, (13.56)

b̃ = 2
√

K cos(θ )
√
√
√
√

γS +K+ 1

γS +
K+1

6

(
Bw
fm

)2 , (13.57)

and a, b, γ , and β given by (13.28).
In [228], the effect of AWGN on the COV velocity estimator has been derived as

a function of τ > 0. Here we provide a closed form analytic result for the effect of
AWGN on the COV velocity estimate for the limiting case when τ → 0. The limiting
case is important when analyzing the effects of AWGN, since (13.38) is only valid
for small τ . Consequently, the limτ→0 ṽ/v in (13.48) is found, and afterwards, the
effect of τ > 0 in (13.48) is compared. It is shown in Appendix 1 that

lim
τ→0

ṽ/v =

√
ζ

√
(1+2K+K cos(2θ0))

(1+2K)

, (13.58)

where ζ is given by (13.145), with a(0) = b0,a′(0) = c(0) = c′(0) = c′′(0) = 0 and
a′′(0) = 2b0(π fm)

2 for 2D isotropic scattering.
It is apparent from (13.52), and (13.54)–(13.58) that the effect of AWGN depends

on K, Bw, γS, v, and θ0. For a practical system, the bandwidth Bw can be chosen as
the maximum expected Doppler frequency over the range of velocities. However,
a smaller Bw in reference to the actual maximum Doppler frequency fm will result
in velocity estimates that are less sensitive to noise. Therefore, a better approach
is to use the velocity estimate v̂ to continuously adjust Bw to be just greater than
the current maximum Doppler frequency, that is, Bw

>∼ v̂/λc. Figure 13.10 shows
the effect of AWGN on each of the velocity estimators with respect to K, γS, and
v, assuming θ0 = 0◦ (head-on LoS specular component). A value of Bw = 357 Hz
is chosen which allows speeds up to 100 km/h at fc = 1.9 GHz. For K = 0, AWGN
has the same effect on all the velocity estimators. For larger velocities, for example,
20 km/h, the bias becomes insignificant because Bw/ fm is small. However, for small
velocities, for example, 1 km/h, a very large Bw/ fm results in a significant bias.
As mentioned above, this slow speed bias can be reduced by adapting the filter
bandwidth Bw. It must also be remembered that Fig. 13.10 shows the worst case
performance of the COV method as τ → 0. Any τ > 0 will reduce the bias of
the COV method due to AWGN. For example, if 2πvτ/λc = 0.5 in (13.48) then
a large reduction in the effect of AWGN is realized, as shown by the curves labeled
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Fig. 13.10 The effect of AWGN on the velocity estimates. COV(0.5)⇒ 2πvτ/λc = 0.5, from [18]

COV(0.5) in Fig. 13.10. However, the accuracy of the COV velocity estimate itself
improves with smaller τ , so that increasing τ for reduced noise sensitivity must be
weighed against the reduced accuracy of the velocity estimate itself. This will be
discussed further in Sect. 13.5.

13.5 Velocity Adaptive Hard Handoff Algorithms

To study velocity adaptive handoff algorithms, we assume Rayleigh fading (K = 0),
2D isotropic scattering, and no AWGN. A velocity adaptive handoff algorithm must
adapt the temporal window over which the mean signal strength estimates are taken
by either keeping the sampling period constant and adjusting the number of samples
per window, or vice versa. Here, we assume the latter. To reduce the variance in the
velocity estimate, a sum of weighted past velocity estimates is performed using an
exponential window average of past estimates, that is,

v̌(n) = av̌(n− 1)+ (1− a)v̂(n), (13.59)

where a controls the weighting of past estimates used in the average and v̂(n) is the
current velocity estimate. The accuracy of the velocity estimates will be affected by
the window length Wl used to obtain the velocity estimates (not to be confused with
the window length over which the signal strengths are averaged), and the number of
samples per wavelength Nλ .
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To show the effect of parameters a, Nλ , and Wl, simulation of the NLoS handoff
scenario shown in Fig. 13.1 along with the corresponding signal strength profile in
Fig. 2.56 was performed. The path loss was assumed to follow the model in (2.351)
with a = 2, b = 2, g = 150 m, and dc = 255 m. Spatially correlated log-normal
shadows were simulated having a standard deviation of σΩ = 6 dB and ζ30 = 0.1
using the approach in Sect. 2.6.1. Envelope fading was simulated using Jakes’
method in Sect. 2.5.2.2. Two-branch receiver antenna diversity was assumed, so that
the v̂(n) in (13.59) represent the average estimate out of the diversity branches at
position n, and a = 0.1 in (13.59) unless otherwise specified.

As mentioned earlier, Fig. 13.13 shows the performance of a temporal handoff
algorithm with H = 8 dB, signal strength averaging over 2.27 s, and overlapping
windows by 2.27/2 = 1.135 s. Slightly better temporal handoff performance can
probably be obtained by fine tuning these values. However, for purposes of studying
the velocity adaptive algorithms it is sufficient to maintain H = 8 dB and adapt
to some point near the knee of the performance curve. Consequently, the velocity
estimators were designed to adapt to the 5 km/h operating point which corresponds
to signal strength window averages over approximately 20λc with a window overlap
of approximately 10λc.

A total of 1,000 runs were made from BS0 to BS1, and the 95% confidence
intervals were calculated for (1) the velocity at 100 m, (2) the corner at 255 m,
and (3) the probability of being assigned to BS0 at 255 m. This resulted in a
95% confidence interval spread of v̂ ± 0.5 km/h and Pr(BS0)± 0.025. Likewise,
the mean number of handoff values had a 95% confidence interval spread of
approximately 0.05 (mean number of handoffs ±0.025).

13.5.1 Effect of Nλ

To examine the effect of Nλ , assume that a = 0.1 and Wl = 10λc for the LCR, ZCR,
and COV velocity estimators, and assume that the MS traverses the NLoS handoff
route in Fig. 13.1 at 30 km/h. Furthermore, assume that the velocity estimators are
initialized to 5 km/h, and that the MS is measuring signals from BS0 and BS1 only.
Figure 13.11 shows the effect of Nλ on the velocity estimate, in the first 90 m of
the trajectory as the MS moves from BS0 to BS1, in terms of the response time
and final velocity estimate. The LCR velocity estimator requires a higher sampling
density than the COV or ZCR methods and its final velocity and response time to an
incorrect startup value (5 km/h) improve dramatically when Nλ is increased from 10
to 30 samples/wavelength. For Nλ = 30 the COV method shows a slight overshoot
in the initial convergence, a characteristic seen with all the velocity estimators
as the sampling density is increased. It is interesting to note that for Nλ = 10
samples/wavelength 2π(vτ)/λc = 2π0.1λc/λc = .628 and the final COV velocity
estimate is close to the actual 30 km/h with a reasonable response time. This fact,
along with the results of the Sect. 13.4.3.2 where 2πvτ/λc = 0.5 confirm that the
effects of AWGN can be mitigated using a larger sample spacing without drastically
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Fig. 13.11 The effect of Nλ
on the mean response time to
a change in velocity. a = 0.1,
Wl = 10λc, from [18]
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affecting the velocity estimate. We also note that the simulations used an estimate
of the rms value Rrms in the LCR method and an estimate of the variance λrr(0) in
the COV method. Thus, the practicality of the velocity estimators that have been
derived assuming perfect knowledge of these values is confirmed. Although not
shown here, the Rice factor K has little effect, confirming the claimed robustness
of the estimators. Over the 1,000 runs, the ZCR had the smallest velocity estimate
error variance followed by the COV and LCR methods, respectively.

13.5.2 Corner Effects and Sensitivity to a and Wl

The sharp downward spike at the corner (255 m) for the LCR velocity estimate
in Fig. 13.12 is typical of the corner effects on the velocity estimators. The effect
is caused by a sudden change in path loss which lowers the local mean estimate
in the LCR method thus yielding fewer level crossings per second. This corner
effect is apparent, although less acute in the ZCR and COV methods due to their
quick adaptability. The LCR and ZCR methods may exhibit a drop in estimated
velocity when the average signal strength changes abruptly. Although not shown
here, the COV method has an upward bias with an abrupt increase in the average
signal strength, and a downward bias when the opposite occurs. These corner effect
properties could possibly be exploited to provide a combined corner detecting
velocity adaptive handoff algorithm [17].
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Fig. 13.12 The effect of a
and Wl on the mean response
and corner effects, from [18]
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Larger values of a reduce the variance of the velocity estimate while sacrificing
response time. Smaller values of a provide faster startup convergence and more
sensitivity to corner effects.

Although a velocity window length Wl less than 20λc will increase the variance
of the velocity estimates, it is beneficial for reducing the corner effect on the velocity
estimator, as shown for the LCR method. Although not shown, the same is true for
the ZCR and COV methods. The ZCR curve with Wl = 20λc and a = 0.5 shows an
overshoot in the initial convergence. This arises because the Wl = 20λc windows
that are used to obtain the velocity estimates overlap by 10λc. Hence, part of the
velocity estimate is derived from the previous window which may have a different
sampling period due to adaptation. Note that we have used overlapped windows
because they result in less handoff delay. Thus, it is probably better for initial startup
to derive velocity estimates from the non-overlapped portions of the signal strength
windows.

13.5.3 Velocity Adaptive Handoff Performance

Now that the effect of each parameter has been determined, the performance of the
velocity adapted handoff algorithm is shown by the various symbols in Fig. 13.13
for an MS traveling at 30 km/h. The estimators, were selected to adapt to the 5 km/h
operating point, the algorithm parameters were chosen as a = 0.1, Wl = 10λc with
an initial startup velocity of 5 km/h. The mean number of handoffs were found to
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Fig. 13.13 Handoff
performance of a 2.27 s
averaging handoff algorithm
in comparison with a velocity
adaptive handoff algorithm
using the LCR, ZCR, or
covariance method for
velocity control. H = 8 dB,
σΩ = 6 dB, from [18]
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have a 95% confidence interval with a span of about 0.05 (mean number of handoffs
±0.025) about the mean that is plotted. The velocity adaptive handoff algorithm
performs very well by maintaining the desired operating point near the 5 km/h point.

13.6 Hard Handoff Analysis

The classical signal strength-based hard handoff algorithm compares signal strength
averages measured over a time interval T (seconds), and executes a handoff if the
average signal strength of the target BS is at least H dB larger than that of the serving
BS [18, 120, 263, 264]. The analytical computation of the handoff characteristics
for this classical signal strength-based handoff algorithm is generally intractable.
However, for the case when the average signal strength decays smoothly along
a handoff route and the handoff hysteresis H is not too small compared to the
shadow standard deviation, Vijayan and Holtzman [263, 264] have developed an
analytical method to characterize the performance of the classical signal strength-
based handoff algorithm. They have also extended their results to include handoff
algorithms that use absolute measurements [305], similar to the one in (13.4).

Consider the case of an MS moving at a constant velocity along a straight
line between two BSs, BS0 and BS1, that are separated by a distance of D
meters. We neglect envelope fading under the assumption that the received signal
strength estimates are averaged using a window with an appropriate spatial length
as explained in Sect. 13.3 and using velocity adaptive averaging as discussed in
Sect. 13.5. In any case, however, the signal strength estimates will respond to path
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Fig. 13.14 Handoff initiation points with their associated hysteresis level crossings. The MS is
moving from BS0 to BS1 and assumed to be communicating with BS1 at the beginning of the
interval shown, from [264]

loss and shadowing variations. Considering the effects of path loss and shadowing,
the signal levels Ω0 (dB)(d) and Ω1 (dB)(d) that are received from BS0 and BS1,
respectively, are (1.3)

Ω0 (dB)(d) = Ω(dB)(d0)− 10β log10{d/d0}+ ε0 (dB), (13.60)

Ω1 (dB)(d) = Ω(dB)(d0)− 10β log10{(D− d)/d0}+ ε1 (dB), (13.61)

where d is the distance between BS0 and the MS. The parameters ε0 (dB) and ε1 (dB)

are independent zero-mean Gaussian random processes with variance σ2
Ω , reflecting

a log-normal shadowing model. The signal strength measurements are assumed to
be averaged using an exponential averaging window with parameter dav so that the
averaged signal levels from the two BSs are, respectively,

Ω 0 (dB)(d) =
1

dav

∫ d

0
Ω0 (dB)(d − x)e−x/davdx, (13.62)

Ω 1 (dB)(d) =
1

dav

∫ d

0
Ω1 (dB)(d − x)e−x/davdx. (13.63)

To describe the signal strength-based handoff algorithm, let

x(d) = Ω 0 (dB)(d)−Ω1 (dB)(d), (13.64)

denote the difference between the averaged signal strength estimates for BS0 and
BS1. Consider the crossings of x(d) with respect to the hysteresis levels ±H dB as
illustrated in Fig. 13.14. A handoff is triggered if x(d) has a down-crossing at −H dB
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given that the last level crossing was an up-crossing at H dB, or if x(d) has an up-
crossing at H dB given that the last level crossing was a down-crossing at −H dB.
Vijayan and Holtzman verified that the two point processes, up-crossings of H dB
and down-crossings of −H dB, can be modeled as independent Poisson processes
under the assumption that x(d) is a stationary zero-mean Gaussian random process,
that is, changes in the mean are ignored and the MS is moving along the boundary
between two cells [264]. This result also applies when x(d) has nonzero mean, but
in this case the up-crossing and down-crossing rates are not equal. The Poisson
assumption is asymptotically true for large H, but has been shown to hold true for
H values of practical interest, that is, those on the order of the shadow standard
deviation σΩ [264].

The handoff analysis proceeds by dividing up a handoff route into small spatial
intervals of length ds, such that only one level crossing is likely to occur within each
interval. The probability of handoff at distance d = nds is [264]

pho(n) = pd(n)plu(n)+ pu(n)(1− plu(n)), (13.65)

where pu(n) and pd(n) is the probability of an up-crossing or down-crossing in the
nth interval, and plu(n) is the probability that the last event was an up-crossing. In
other words, the MS was assigned to BS0 at the beginning of the nth interval. This
can happen in one of the two mutually exclusive ways: (1) there is an up-crossing
but no down-crossing in the (n− 1)th interval, and (2) there are no crossings in the
the (n − 1)th interval, and the last event before the (n − 1)th interval was an up-
crossing. By assuming plu(1) = 1, the following recursive equation for plu(n) can
be derived as a function of pu(n− 1), pd(n− 1) and plu(n− 1) [264]:

plu(n) = pu(n− 1)(1− pd(n− 1))+ (1− pu(n− 1))(1− pd(n− 1))plu(n− 1).
(13.66)

As detailed in [264], the probabilities pd(n) and pu(n) are functions of the mean
μx(d), variance σ2

x (d), and variance of the derivative σ2
ẋ (d) of x(d). These in turn

are functions of the statistics of Ω0 (dB)(d) and Ω1 (dB)(d), which depend on the path
loss and shadowing. We will first evaluate the statistics of Ω0 (dB)(d) and Ω1 (dB)(d)
and afterwards derive the appropriate expressions for pd(n) and pu(n).

As discussed in Chap. 3, co-channel interference can be assumed to add on a
power basis [210, 236]. Hence, in the presence of NI co-channel interferers the
signals received from BS0 and BS1 are, respectively,

Ω0 (dB)(d) = 10 log10

{
NI

∑
k=0

Ω0,k(dB)(d)

}

, (13.67)

Ω1 (dB)(d) = 10 log10

{
NI

∑
k=0

Ω1,k(dB)(d)

}

, (13.68)
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where Ω0,0(dB)(d) and Ω1,0(dB)(d) are the power of the desired signals from BS0 and
BS1, respectively, and Ω0,k(dB)(d) and Ω1,k(dB)(d), k = 1, . . . , NI are the powers
of the interfering co-channel signals received at the same BSs. Once again, the
Ω0,k(dB)(d) and Ω1,k(dB)(d) are log-normally distributed. As discussed in Sect. 3.1,
the sum of log-normal random variables can be approximated by another log-normal
random variable and, hence, Ω0 (dB)(d) and Ω1 (dB)(d) remain Gaussian. Here we
consider the approximations suggested by Fenton [210,236], and Schwartz and Yeh
[236]. As a further benefit, this will allow us to compare the usefulness of these two
log-normal approximations for this application.

Following the notation established in Sect. 3.1, define Ω̂ = ξ Ω(dB), where ξ =
ln(10)/10= 0.23026. If the NI interferers for BS0 have means μΩ̂0,k

(d) and variance

σ2
Ω̂ , then the mean and variance of Ω̂0(d) using the Fenton–Wilkinson approach are

μΩ̂0
(d) =

σ2
Ω̂ −σ2

Ω̂0
(d)

2
+ ln

(
NI

∑
k=0

e
μΩ̂0,k

(d)
)

, (13.69)

σ2
Ω̂0
(d) = ln

⎛

⎜
⎜
⎜
⎝

(
eσ 2

Ω̂ − 1
) ∑NI

k=0 e
2μΩ̂0,k

(d)

(

∑NI
k=0 e

μΩ̂0,k
(d)
)2 + 1

⎞

⎟
⎟
⎟
⎠
, (13.70)

where the conversion of μΩ̂0
(d) and σ2

Ω̂0
(d) to units of decibels is μΩ0(d) =

ξ−1μΩ̂0
(d) and σ2

Ω0
(d) = ξ−2σ2

Ω̂0
(d), respectively. Schwartz and Yeh’s approach

is a recursive technique that combines only two log-normal variates at a time. For
example, combining Ω̂0,0(d) and Ω̂0,1(d) gives the intermediate result

μΩ̂0
(d) = μΩ̂0,0

(d)+G1, (13.71)

σ2
Ω̂0
(d) = σ2

Ω̂ −G2
1 − 2σ2

Ω̂ G3 +G2, (13.72)

where G1, G2, and G3 are defined by (3.20), (3.23), and (3.24), respectively. The
final values of μΩ̂0

(d) and σ2
Ω̂0
(d) are obtained by recursion.

Using either of the two log-normal approximations, the mean μx(d) can be
determined. Since x(d) is modeled as a Gaussian random process, the probabilities
pd(n) and pu(n) can be computed using the same procedure used to determine the
envelope LCRs in Sect. 2.1.5. In particular,

pu(n) = ds

∫ ∞

0
ẋp(H, ẋ)dẋ,

pd(n) = ds

∫ 0

−∞
|ẋ|p(H, ẋ)dẋ, (13.73)
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where p(H, ẋ) is the joint density function of x(kds) and its derivative ẋ(kds). Since
x(kds) and ẋ(kds) are independent Gaussian random variables we have

pu(kds) =
ds√
2πb0

exp

{

− (H − μx(kds))
2

2b0

}

×
(

μẋ(kds)Q

(

−μẋ(kds)√
b2

)

+

√
b2

2π
exp

{

−−μ2
ẋ (kds)

2b2

})

, (13.74)

where, from (2.98) with fq = 0,

b0 = σ2
x (d) = 2

∫ ∞

0
Ŝxx( f )d f , (13.75)

b2 = σ2
ẋ (d) = 2(2π)2

∫ ∞

0
f 2Ŝxx( f )d f , (13.76)

and Ŝxx( f ) in this case represents the power spectrum of x(d) that includes the effect
of co-channel interference. Likewise,

pd(kds) =
ds√
2πb0

exp

{

− (H + μx(kds))
2

2b0

}

×
(

−μẋ(kds)Q

(
μẋ(kds)√

b2

)

+

√
b2

2π
exp

{

−−μ2
ẋ (kds)

2b2

})

. (13.77)

The autocorrelation of Ω0 (dB)(d) or Ω1 (dB)(d) (equal to the shadow autocorre-
lation) without co-channel interference is modeled by

φΩ(dB)Ω(dB)
(d) = σ2

Ω exp(−|d1 − d2|/d0), (13.78)

where d = d1−d2, and d0 controls the decorrelation with distance. Let φ̃Ω(dB)Ω(dB)
(d)

denote the same autocorrelation function when co-channel interference is present.
The value φ̃Ω(dB)Ω(dB)

(0) can be accurately approximated using either (13.70) or

(13.72). An approximation of φ̃Ω(dB)Ω(dB)
(d) for d > 0 can be obtained by substi-

tuting σ2
Ω in (13.78) with the value obtained in (13.70) or (13.72). The accuracy

of this approximation was tested through the simulation of mutually uncorrelated
log-normal interferers, each having the shadow autocorrelation in (13.78) with
σΩ = 6 dB and d0 = 20 m. Figure 13.15 shows the results and verifies that the
proposed approximation of φ̃Ω(dB)Ω(dB)

(d) is fairly accurate. Also, very accurate

modeling of φ̃Ω(dB)Ω(dB)
(d) is not essential in handoff analysis [263].
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Fig. 13.15 Shadow
autocorrelation with and
without co-channel
interference, from [22]
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Using the above approximation gives

Ŝxx( f ) =
2
(

σ2
Ω0
(d)+σ2

Ω1
(d)
)

d0
(
1+ d2

0(2π f )2
)
(1+ d2

av(2π f )2)
, (13.79)

where σ2
Ω0
(d) and σ2

Ω1
(d) are obtained using either (13.70) or (13.72). This leads to

σ2
x (d) =

(
σ2

Ω0
(d)+σ2

Ω1
(d)
)

d0

d0 + dav
, (13.80)

σ2
ẋ (d) =

σ2
x (d)

dav d0
. (13.81)

13.6.1 Simulation Results

Consider an MS traversing from BS0 to BS1 separated by 1,000 m with two co-
channel interferers as shown in Fig. 13.16.

Assume a square-law path loss with distance (used here to accentuate the co-
channel interference effects), dav = 10 m, d0 = 20 m, and choose σΩ = 4 dB so that
both the Fenton–Wilkinson and Schwartz and Yeh log-normal approximations are
accurate. Figure 13.17 compares analytical and simulation results for the handoff
probabilities in the presence and absence of co-channel interference.
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1000m
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Fig. 13.16 Base station layout, MS route (dotted line), and location of co-channel interferers

Fig. 13.17 Simulation versus
analytical model
performance. (a) Simulation
of LoS handoff with
co-channel interference, (b)
handoff analysis model in the
absence of co-channel
interference, (c) handoff
analysis model including
co-channel interference and
using the Fenton–Wilkinson
log-normal approximation,
(d) handoff analysis model
including co-channel
interference and using the
Schwartz and Yeh log-normal
approximation, from [22]
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Note that the presence of co-channel interference actually lowers the probability
of handoff. Schwartz and Yeh’s method leads to an accurate prediction of the
handoff probabilities while the Fenton-Wilkinson method leads to less accuracy.
Finally, the accuracy of the prediction of handoff probabilities leads us to conclude
that the assumptions made for φ̃Ω(dB)Ω(dB)

(d) were reasonable.

13.7 CDMA Soft Handoff Analysis

To successfully deploy CDMA cellular systems it is essential to understand soft
handoff behavior. As mentioned earlier, soft handoff has great impact on CDMA
cellular system performance/capacity and studying its performance can provide
crucial information on how the CDMA system performance can be optimized.
Here, we consider soft handoff in hierarchical CDMA architectures. The treatment
is divided into two main parts; interference analysis and handoff analysis. The
first part of this section introduces an interference analysis, where the emphasis
is on reverse link C/I performance and interference imbalance in hierarchical
CDMA systems. When microcells are introduced to an existing macrocell layer the
resulting interference imbalance between the layers can greatly impact the overall
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system performance. Therefore, it is important to characterize the interference
in hierarchical CDMA architectures, and the interference analysis presented here
provides a tool for studying the performance under soft handoff.

The second part of this section considers a soft handoff analysis method similar to
that proposed in [8,306], where a moving MS is tracked to determine its soft handoff
active set membership. Such analysis is useful for determining cell boundaries and
overall handoff efficiencies for a given set of handoff parameters. The studies in
[8, 306] are limited to single MS and are not accurate when interference is taken
into account. Here, we consider the soft handoff performance in the presence of
interference. This is accomplished by augmenting a user tracking soft handoff
model with the results obtained from the interference analysis. The resulting model
is useful for studying the impact of soft handoff parameters on soft handoff
performance measures, such as handoff error probability and average active set
membership. Finally, we consider the effect of dynamic soft handoff parameter
assignment, where the soft handoff parameters are dynamically adjusted based on
the given interference conditions. Dynamic parameter assignment offers a more
efficient soft handoff mechanism than fixed assignment by reducing unnecessary
soft handoff overhead.

13.7.1 System Model and Analysis

The channel model used here accounts for log-normal shadowing and path loss
attenuation with distance.4 The link gain between an MS located at (r,θ ) and BSi is

Gi(r,θ ) = di(r,θ )−β 10εi/10,

Gi(r,θ )(dB) = −β 10log10{di(r,θ )}+ εi, (13.82)

where di(r,θ ) is the distance between the MS and BSi, β the path loss exponent and
10εi/10 is the shadowing component such that εi has the normal distribution

εi ∼ N (0,σ2
Ω ), (13.83)

where σΩ is the shadow standard deviation. Therefore, Gi(r,θ ) also has log-normal
distribution

Gi(r,θ )(dB) ∼ N (μi(r,θ ),σ2
Ω ), (13.84)

where

μi(r,θ ) =−β 10log10{di(r,θ )}. (13.85)

4One can incorporate Rayleigh/Nakagami fading into our analysis using a log-normal approxima-
tion for the composite log-normal Rayleigh/Nakagami distribution.
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Fig. 13.18 Hierarchical
CDMA system model
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Since our analysis involves a multicell system, the propagation model also accom-
modates shadow correlation between the multiple BS links:

E[εiε j] = ρσ2
Ω , i �= j. (13.86)

13.7.1.1 Interference Analysis

The system model used here for illustration consists of three macrocells and single
microcell embedded within the macrocell layer as shown in Fig. 13.18, with the
understanding that the methodology can readily be extended to larger deployments.
Both the macrocells and microcell use omnidirectional BS antennas. The microcell
location is specified by the distance, dμ , and angle, θμ , with respect to BS1. Each
macrocell area contains N MSs and the microcell area contains M MSs. The MSs
are assumed to be uniformly distributed within each cell area. It is important to
realize that the MSs located within a macro- or microcell area are not necessarily
served by the BS located at the center of that macro- or microcell. Moreover, the
model is not restricted to uniform macrocells either. Different MS densities within
the macrocells can be realized by assigning different values of N to the macrocells
and, likewise, by assigning different values of M to the microcells should there
be more than one microcell. The introduction of the microcell in Fig. 13.18 will
introduce interference imbalance into the overall system. Additional interference
imbalance can be introduced by assigning different values of N to the macrocells



13.7 CDMA Soft Handoff Analysis 743

as well. However, for exemplary purposes we will assume that each macrocell area
contains N uniformly distributed MSs.

Suppose that each MS connects to the BS that provides the least attenuation link.
Given the location of a reference MS, r and θ in Cell 1, the probability that the MS
is connected to BSi is

PH1i(r,θ ) = P[Gi(r,θ )≥ G j(r,θ ), j = 1,2,3,μ ]

=
∫ ∞

−∞
∏
j �=i

Φ

(
εi − μ j(r,θ )−ρ [εi − μi(r,θ )]

√
(1−ρ2)σΩ

)

× 1√
2πσΩ

exp

{

− (εi − μi(r,θ ))2

2σ2
Ω

}

dεi. (13.87)

Therefore, the probability of the reference MS in Cell 1 being connected to BSi is

PH1i =

∫ 2π

0

∫ RM

0

r

πR2
M

PH1i(r,θ )drdθ . (13.88)

where RM is the macrocell radius. Similarly, we can calculate PH2, PH3, and PHmicro

for the MSs located in different cells.
It may be argued that (13.87) is not representative of CDMA systems that use

power control and soft handoff. For these systems, an MS will connect to the BS
that minimizes the transmit power required to achieve a target CIR. Looking at this
another way, if an MS were to transmit with a given power PT, it would connect
to the BS that provides the largest CIR. Hence, under the assumption of ideal soft
handoff, (13.87) becomes:

PH1i(r,θ ) = P[CIRi(r,θ )≥ CIR j(r,θ ), j = 1,2,3,μ ]

= P

[
Gi(r,θ )PT

Ii
≥ G j(r,θ )PT

I j
, j = 1,2,3,μ

]

. (13.89)

We will show later in Sect. 13.7.2 that there is barely any difference between the two
approaches in terms of handoff analysis. Moreover, we will show that handoff errors
sometimes occur where the MSs fail to connect to their ideal BSs. So an analysis
based on ideal soft handoff is really an approximation as well. For these reasons, we
will continue with the interference analysis based on (13.87). Later, we will justify
this approach by extending the analysis to ideal soft handoff, using (13.89) instead
of (13.87).

The total reverse link desired plus interfering signal power that is received by BSi

is equal to the sum of received power contributions from MSs located in different
cells, that is,

Si = Si(1)+ Si(2)+ Si(3)+ Si(μ), (13.90)
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where Si( j) is the signal contribution to BSi from all MSs located in Cell j. With
the introduction of a microcell, the level of interference that each BS experiences,
Ii, will be uneven. Define γi as the interference power ratio between BSi and the
microcell:

γi
�
=

Ii

Iμ
. (13.91)

Assuming a uniform CIR requirement and perfect power control, the signal power
that is received from an MS connected to BSi must satisfy

Ci = γiCμ , (13.92)

where Cμ is the power-controlled received power level of an MS connected to the
microcell, which is used as a reference. Therefore,

Ii = Si −Ci. (13.93)

We now investigate the power that is received at BSi from MSs that are located in
the Cell i cell, but are connected to BSs other than BSi. Let Ni j (Mμ j) be the number
of MSs in Cell i (Microcell) connected to BS j:

N = Ni1 +Ni2 +Ni3 +Niμ

M = Mμ1 +Mμ2 +Mμ3 +Mμμ . (13.94)

We define Ni as a vector containing the Ni j:

Ni = (Ni1,Ni2,Ni3,Niμ). (13.95)

Let us consider S1(1) as an example. Given N1,

S1(1) = N11C1 +
N12

∑
k=1

S12(1,k)+
N13

∑
k=1

S13(1,k)+
N1μ

∑
k=1

S1μ(1,k), (13.96)

where Si j(q,k) is the interference contribution to BSi from the kth MS located in
Cell q and connected to BS j. Under the assumption of perfect power control,

Si j(q,k) =
Gi(r,θ )
G j(r,θ )

Cj, 0 < Si j(q,k)<Cj. (13.97)

The cumulative distribution function of Si j(q,k) for any MS, Si j(q), is then,

FSi j(q)(z) =
1

PHqj

∫ 2π

0

∫ RM

0

r

πR2
M

×P

[
Gi(r,θ )
G j(r,θ )

Cj < z|MS connected to BS j

]

drdθ , (13.98)
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Using the Gaussian distribution in (13.84) gives

FSi j(q)(z) =
1

PHqj

∫ 2π

0

∫ RM

0

∫ ∞

−∞

r

πR2
M

1√
2πσΩ

exp

{

− (ε j − μ j(r,θ ))2

2σ2
Ω

}

×Φ

(
ε j − 10log10[Cj/z]− μi(r,θ )−ρ [ε j − μ j(r,θ )]

√
(1−ρ2)σs

)

× ∏
l �=i, j

Φ

(
ε j − μl(r,θ )−ρ [ε j − μ j(r,θ )]

√
(1−ρ2)σs

)

drdθdε j. (13.99)

Since Si j(q) is a nonnegative random variable, its expected value and the second
moment are given as follows:

E [Si j(q)] =
∫ ∞

0
(1−FSi j(q)(z))dz

=

∫ Cj

0
(1−FSi j(q)(z))dz,

E
[
S2

i j(q)
]
=

∫ Cj

0
2z(1−FSi j(q)(z))dz, (13.100)

and

Var [Si j(q)] = E
[
S2

i j(q)
]−E [Si j(q)]

2 . (13.101)

Then, given N1, the mean and second moment of S1(1) are

E[S1(1)|N1] = N11C1 +N12E[S12(1)]+N13E[S13(1)]+N1μE[S1μ(1)],

E[S2
1(1)|N1] = N12Var[S12(1)]+N13Var[S13(1)]+N1μVar[S1μ(1)]

+N2
11C2

1 +N2
12E[S12(1)]

2 +N2
13E[S13(1)]

2 +N2
1μE[S1μ(1)]

2

+∑
i=1

N1iE[S1i(1)]

(

∑
j �=i

N1 jE[S1 j(1)]

)

. (13.102)

The N1 j are binomial random variables with parameters PH1 j. Applying the chain
rule of probability gives

E[S1(1)] =
N

∑
N11=0

(
N

N11

)

PN11
H11(1−PH11)

N−N11

×
N−N11

∑
N12=0

(
N −N11

N12

)

P̄N12
H12(1− P̄H12)

N−N11−N12
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×
N−N11−N12

∑
N13=0

(
N −N11 −N12

N13

)

P̄N13
H13(1− P̄H13)

N−N11−N12−N13E[S1(1)|N1]

=
N

∑
N11=0

N−N11

∑
N12=0

N−N11−N12

∑
N13=0

N!
N11!N12!N13!N1μ !

PN11
H11(1−PH11)

N−N11

×P̄N12
H12(1− P̄H12)

N−N11−N12 P̄N13
H13(1− P̄H13)

N1μ E[S1(1)|N1], (13.103)

E[S2
1(1)] =

N

∑
N11=0

N−N11

∑
N12=0

N−N11−N12

∑
N13=0

N!
N11!N12!N13!N1μ !

PN11
H11(1−PH11)

N−N11

×P̄N12
H12(1− P̄H12)

N−N11−N12 P̄N13
H13(1− P̄H13)

N1μ E[S2
1(1)|N1] (13.104)

where

P̄H12 =
PH12

PH12 +PH13 +PH1μ
, (13.105)

P̄H13 =
PH13

PH13 +PH1μ
. (13.106)

Finally, the variance of S1(1) is

Var[S1(1)] = E[S2
1(1)]−E[S1(1)]

2. (13.107)

Similarly, we can obtain the means and variances of S1(2), S1(3), and S1(μ). Finally,

E[S1] = E[S1(1)]+E[S1(2)]+E[S1(3)]+E[S1(μ)],

Var[S1] = Var[S1(1)]+Var[S1(2)]+Var[S1(3)]+Var[S1(μ)],

E[I1] = E[S1]−C1,

Var[I1] = Var[S1]. (13.108)

Since I1 represents a power sum, we can model I1 as a log-normal random variable
with the probability density function

pI1(x) =
1

xσ
√

2π
exp

{

− (ln(x)− μ)2

2σ2

}

, (13.109)

where

E[I1] = eμ+σ 2/2, (13.110)

Var[I1] = (eσ 2 − 1)e2μ+σ 2
. (13.111)
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In a likewise fashion, the means and variances of I2, I3, and Iμ can be computed.
The interference analysis can be run using the following iterative steps:

1. Set C1 =C2 =C3 =Cμ
2. Compute means and variances of I1, I2, I3 and Iμ
3. Compute E[γi] = E[Ii/Iμ ]
4. Set Ci = E[γi]Cμ
5. Goto Step 2

Usually, 15 iteration loops are sufficient for the γi to converge. Then the reverse link
CIR becomes

(C/I)i =Ci/Ii =Cμ/Iμ . (13.112)

13.7.1.2 Soft Handoff Analysis

In CDMA cellular systems such as cdma2000 and WCDMA, each BS transmits a
pilot signal, consisting of an unmodulated spreading sequence, to assist soft handoff.
The MSs use the pilot signals to initiate and complete handoffs among other things.
An active set refers to a set of BSs to which an MS is connected to at any given
time. The active set contains multiple BSs when the MS is in soft handoff mode.

Suppose that the active set membership is based on the received pilot signal
power.5 The upper threshold, Tadd, is the pilot signal level where qualifying BSs
are added to the active set, whereas the lower threshold, Tdrop, determines when
the BSs are removed from the active set. The difference between Tadd and Tdrop

is an indicator of how long a soft handoff will take on average. This is illustrated
graphically in Fig. 13.19. Considering an MS that is traveling from BSi to BS j, the
soft handoff region is determined by Tdrop imposed on BSi and Tadd imposed on BS j.
We determine the values of Tadd and Tdrop by defining the reference boundary, Bref,
and adding a fade margin to combat the effect of shadow fading [268].

In this section, we introduce a hierarchical soft handoff analysis similar to the
analysis presented in [8, 306], which tracks a moving MS to observe its active
set membership while incorporating the spatial correlation property of shadow
fading. As mentioned previously, the introduction of microcell(s) into a macrocell
layer results in interference imbalance which can impact the soft handoff decisions
and performance. A handoff analysis based on received pilot signal strength and
a single MS will not accurately depict the actual system behavior. On the other
hand, a comprehensive analysis that includes multiple MSs while incorporating
interference effects is prohibitively complicated and computationally exhaustive.

5CDMA cellular systems actually use the forward link Ec/Io, the ratio of the received pilot chip
energy to total interference spectral density, to determine active set memberships. For the present
purpose, we use the received pilot signal power instead and later in Sect. 13.7.2 we will illustrate
the difference between these two methods for determining active set membership in terms of their
soft handoff performance.
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Fig. 13.19 Soft handoff parameters and corresponding handoff region

Here we present a soft handoff analysis model that allows the study of soft handoff
performance in conjunction with interference performance, by integrating the results
obtained in interference analysis in Sect. 13.7.1.1. The approach accurately depicts
the handoff performance of hierarchical systems, while being computationally
efficient. We omit some detailed derivations in the following section, referring the
reader to [8, 306].

We now consider an MS traveling along a specific path and study its active set
membership. Let A(n) be the active set membership at epoch n for the MS under
consideration. Let Pi(n) be the probability that BSi is in the active set at epoch n:

Pi(n) = P[BSi ∈ A(n)]. (13.113)

When A(n) contains more than two BSs, the MS connects to the BS in the set that
will minimize its transmit power, thereby limiting interference. This means that the
BS selection within the set depends not only on the forward link received pilot
strengths, but also the reverse link interference conditions. Let B(n) be the BS in
the active set that minimizes the MS transmit power. Since A(n) is constantly being
updated, the selection of B(n) is based on the active set membership at epoch n−1:

B(n) = max

{
Gi(n)
Ii(n)

∣
∣
∣
∣BSi ∈ A(n− 1)

}

= max

{
Gi(n)
γi(n)

∣
∣
∣
∣BSi ∈ A(n− 1)

}

. (13.114)
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As mentioned before CDMA systems measure the forward link Ec/Io to deter-
mine the active set memberships. However, for now we just use the received pilot
signal strength. We also assume that the BSs transmit their pilot signals with equal
power. A BS is added to an MS’s active set when its path gain exceeds its add
threshold, Tadd(i). Therefore, the probability that it will be added to the active set at
epoch n is:

PN→i(n) = P[Gi(n)> Tadd(i)|BSi �∈ A(n− 1)]. (13.115)

A BS is dropped from the active set using both absolute and relative thresholds.
First, the associated path gain must fall below the absolute drop threshold, Tdrop(i).
When it does, its gain is compared to the largest path gain in the active set, B(n).
When the difference between the two exceeds the relative drop threshold, Trel(i), the
BS is dropped from the active set. The relative threshold causes a BS to be dropped
from the active set only when its link has deteriorated far below the best link. This
also ensures that the active set contains at least one candidate BS at all times. The
probability that BSi is dropped from the active set at epoch n is:

Pi→N(n) = P[B(n)−Gi(n)> Trel(i), Gi(n)< Tdrop(i)|BSi ∈ A(n− 1)]. (13.116)

Finally,

Pi(n) = Pi(n− 1)[1−Pi→N(n)]+ [1−Pi(n− 1)]PN→i(n). (13.117)

The main purpose of soft handoff is to ensure that the MS is connected to the BS
which minimizes its transmit power. Therefore, a handoff error occurs when B(n) is
not the best available choice:

Herror(n) = P

[

B(n) �= max

{
G1(n)
I1(n)

,
G2(n)
I2(n)

,
G3(n)
I3(n)

,
Gμ(n)

Iμ(n)

}]

= P

[

B(n) �= max

{
G1(n)
γ1(n)

,
G2(n)
γ2(n)

,
G3(n)
γ3(n)

,Gμ(n)

}]

. (13.118)

Another measure of soft handoff efficiency is the average number of BSs in active
set at epoch n, Ā(n):

Ā(n) = P1(n)+P2(n)+P3(n)+Pμ(n). (13.119)

A smaller value of Ā(n) implies a lower infrastructure overhead to support soft
handoff.
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13.7.2 Numerical Results

A path loss exponent β = 4 and shadow standard deviation σΩ = 8 dB are used in
the simulation. Log-normal shadows are generated using the approach suggested in
Sect. 2.6.1, where the parameter ζD is the spatial shadow correlation between two
points separated by distance D m. The radii of the macrocell and microcell regions
are set to 1,500 and 100 m, respectively. Other important simulation parameters
include:

• ζ100 = 0.82
• ρ = 0 (uncorrelated shadowing)
• MS velocity = 60 km/h
• Sampling period = 1 s
• Trel = 3 dB

13.7.2.1 Interference Results

Tables 13.2 and 13.3 show the average CIR and interference performance com-
parisons between the analytical and simulation results. The microcell is placed at
dμ = 600 m and θμ = π/3. Table 13.2 contains the results for varying macrocell
load, N, while Table 13.3 shows the results when the microcell load, M, is varied.
It is observed that the analytical and simulation results are in very close agreement,
for both E[CIR] and E[γi]. It is also seen that the accuracy of the analytical results
improves as the interference discrepancy between the layers increases (smaller γi).
As expected, increasing the system load (N and M) results in a decrease in system
CIR performance, since it causes the overall interference to increase. Since the
density of MSs in the microcell is higher than the density of MSs in the macrocell by
nature, the microcell experiences a higher level of interference than the macrocells.
The γi indicate the degree of interference imbalance between the hierarchical layers,
and the obtained results agree with our basic intuition; a larger microcell load
increases the interference imbalance (smaller γi) while a smaller macrocell load
decreases the interference imbalance (larger γi).

Figures 13.20 and 13.21 show the effect of microcell location on the average
CIR and interference performance. The results are obtained by varying dμ while
θμ is fixed at π/3. Again, the analytical results are in close agreement with the
simulation results. Figure 13.20 shows that the average CIR performance varies
insignificantly with changes in microcell location, although it seems to benefit
somewhat from diversity gain when the microcell is located very close to a
macrocell BS. Figure 13.21 shows how the γi are affected by different microcell
locations. It is observed that the corresponding γi increases as the microcell moves
closer to a macrocell BS. This is expected since the level of inter-layer interference
between the microcell and macrocell increases as the microcell gets closer to a
macrocell BS, which in turn causes the macrocell interference to increase. Observe
from the Fig. 13.21 that as dμ increases γ1 decreases while γ2 and γ3 increase.
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Table 13.2 Comparison of analytical and numerical results. Microcell load (M) is fixed at 12
while macrocell load (N) is varied

Simulation Analysis

N M E[CIR] E[γ1] E[γ2] E[γ3] E[CIR] E[γ1] E[γ2] E[γ3]

12 12 −12.70 dB 0.135 0.096 0.093 −12.70 dB 0.136 0.096 0.090
13 12 −12.86 dB 0.148 0.110 0.107 −12.86 dB 0.148 0.108 0.102
14 12 −13.03 dB 0.162 0.128 0.125 −13.01 dB 0.160 0.120 0.115
15 12 −13.19 dB 0.176 0.145 0.142 −13.16 dB 0.171 0.134 0.129
16 12 −13.34 dB 0.188 0.163 0.162 −13.30 dB 0.183 0.149 0.143
17 12 −13.50 dB 0.203 0.181 0.182 −13.44 dB 0.195 0.164 0.159
18 12 −13.64 dB 0.219 0.204 0.208 −13.58 dB 0.207 0.180 0.177
19 12 −13.79 dB 0.232 0.225 0.229 −13.72 dB 0.219 0.198 0.195

Table 13.3 Comparison of analytical and numerical results. Macrocell load (N) is fixed at 12
while microcell load (M) is varied

Simulation Analysis

N M E[CIR] E[γ1] E[γ2] E[γ3] E[CIR] E[γ1] E[γ2] E[γ3]

12 10 −12.25 dB 0.164 0.141 0.138 −12.23 dB 0.164 0.126 0.120
12 11 −12.48 dB 0.146 0.113 0.111 −12.47 dB 0.146 0.109 0.103
12 12 −12.70 dB 0.135 0.096 0.093 −12.70 dB 0.136 0.096 0.090
12 13 −12.92 dB 0.122 0.084 0.080 −12.92 dB 0.126 0.085 0.079
12 14 −13.13 dB 0.117 0.074 0.070 −13.13 dB 0.117 0.077 0.071
12 15 −13.34 dB 0.105 0.067 0.063 −13.33 dB 0.109 0.070 0.065
12 16 −13.53 dB 0.100 0.062 0.058 −13.52 dB 0.102 0.064 0.059
12 17 −13.72 dB 0.093 0.057 0.053 −13.71 dB 0.096 0.059 0.054

Microcell location (dμ)

40 60 80 100 120 140 1600

)
Bd( ]

RI
C[

E

-14.0

-13.8

-13.6

-13.4

-13.2

-13.0

-12.8

-12.6

-12.4

N = 14 & M = 12, simulation
N = 12 & M = 17, simulation
N = 14 & M = 12, analysis
N = 12 & M = 17, analysis

Fig. 13.20 Average CIR performance as a function of microcell location
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Fig. 13.21 E[γi] as a function of microcell location

13.7.2.2 Soft Handoff Results

We have shown in Sect. 13.6 how various system loads and microcell locations
can affect the interference levels in hierarchical CDMA cellular systems. The
interference imbalance factors (γi) are important parameters for determining the
soft handoff performance since, along with the received pilot signal strengths,
they can be used to portray the system behavior during soft handoff and provide
information on how to improve the handoff performance. We first examine a fixed
parameter handoff algorithm where the values of Tadd and Tdrop are fixed regardless
of the changing interference conditions, and determined by defining Bref at an equal
distance location and assigning a fade margin of 8 dB6:

Tadd(i) = Bref(i, j)+ 8dB,

Tdrop( j) = Bref(i, j)− 8dB. (13.120)

Figure 13.22 shows the handoff error probability for fixed handoff parameter
assignment. The microcell is located at dμ = 600 m and θμ = π/3. The analytical
results are obtained using E[γi]analytical while the simulation results are obtained
using actual γi. The figure shows the handoff error probability for three traveling
paths, all starting from BS1 as shown in Fig. 13.18. It is observed that the analytical
and simulation results are in good agreement. Figure 13.22 also shows the handoff

6Other fade margins can be chosen.
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Fig. 13.22 Error performance of fixed handoff parameter assignment; N = 13 and M = 12

error probability for pilot strength-based handoff model [8, 306] and shows how
it grossly underestimates the actual handoff error probability when interference
levels are not uniform. By incorporating the interference analysis results, a far more
accurate handoff performance analysis is obtained. The handoff error probability
is observed to increase around the vicinity of physical cell boundaries. It is also
observed that the handoff error probability is significantly higher between 1,000
and 2,000 m. This phenomenon is largely due to the value of σΩ and the selection of
Tdrop for BS1 (Tdrop(1)). We have set Tdrop(1) so that BS1 is dropped from the active
set once the MS enters the microcell. However, with σΩ = 8 dB and with the effect
of γ1, BS1 provides the best connection in the 1,000–2,000m region a significant
number of times, and that is why high values of Herror(n) are observed. The handoff
error probability can be improved by relaxing Tdrop(1) to cover the region, but
this will definitely increase Ā(n), thereby leading to additional system resource
requirements. However, the handoff error probability depends on the microcell
location as shown in Fig. 13.23. The figure contains the handoff error probability
plots for path A at three different microcell locations. It is seen that the handoff
error probability decreases if dμ is increased without changing Tdrop(1).

Next, we examine the performance of dynamic handoff parameter assignment.
In dynamic parameter assignment Bref is not fixed, but is dynamically updated as
a function of the γi to improve the handoff performance. The concept is similar to
the phenomenon of “cell breathing” [46, 252] where a heavily loaded cell shrinks
in size and forces handoffs that will reduce interference. Our objective is to control
the microcell handoff region according to given interference imbalance condition
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Fig. 13.23 Effect of microcell location on soft handoff performance; N = 13 and M = 12

(as defined by the γi) to limit unnecessary overhead. This is accomplished by
defining Bref(i,μ) at the equilibrium point, de, where

d−β
e (μ)

γi
= d−β

e (i), (13.121)

where de(i) is the distance between de and BSi. It is easily observed that Bref(i,μ)
moves toward the microcell BS as γi decreases which reduces the microcell soft
handoff region accordingly. Figure 13.24 compares the performance between fixed
and dynamic parameter assignment for path A with the microcell location at dμ =
600 m and θμ = π/3. While dynamic handoff parameter assignment does not offer
any significant gain in handoff error probability, it provides a more efficient handoff
mechanism over fixed handoff parameter assignment by reducing Ā(n). Fixed
handoff parameter assignment requires a larger system overhead since it does not
incorporate the system interference information into its handoff decisions. Dynamic
handoff parameter assignment dynamically adjusts the microcell handoff region so
that the system can prevent MSs from being prematurely subjected to soft handoff.
Table 13.4 shows the average error probability and active set membership for three
specified MS paths. For all three paths, dynamic handoff parameter assignment
provides superior performance in E[Ā(n)] while slightly improving E[Herror(n)].

Figures 13.25 and 13.26 compare the performance of fixed and dynamic handoff
parameter assignment as the system load is varied. As was observed in Figs. 13.20
and 13.21, increasing the macrocell load, N, increases the γi while increasing the
microcell load, M, reduces the γi. It is seen that E[Ā(n)] stays nearly uniform
with various system loads for fixed handoff parameter assignment while it changes
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Table 13.4 Comparison of
fixed and dynamic soft
handoff parameter
assignment performances;
N = 13 and M = 12

Fixed Dynamic

Path E[Herror(n)] E[Ā(n)] E[Herror(n)] E[Ā(n)]

A 0.1043 1.8618 0.1033 1.7135
B 0.1598 1.7573 0.1584 1.6013
C 0.1406 1.8366 0.1314 1.6510

according to the γi for dynamic handoff parameter assignment. As expected, a larger
interference imbalance (lower γi) causes the microcell handoff region to shrink
and thereby reducing E[Ā(n)] for dynamic handoff parameter assignment. The
average handoff error probabilities for both fixed and dynamic handoff parameter
assignments do not change significantly with varying system load.

13.7.2.3 Ideal Handoff and Ec/Io-based Active Set Membership

The soft analysis to this point has used some simplifying assumptions regarding
soft handoff and its active set membership. We now examine the validity of these
assumptions. In Sect. 13.7.1.1 it was assumed that an MS connects to the BS
that provides the most robust path gain according to (13.87). However, during
ideal soft handoff, an MS connects to the BS that minimizes its transmit power
according to (13.89). Figures 13.27 and 13.28 compare the handoff error and the
active set membership performance between the soft handoff analysis based on
(13.87) and ideal soft handoff analysis based on (13.89). There is no significant
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Fig. 13.26 Effect of interference imbalance on soft handoff performance. Macrocell load (N) is
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performance difference between the two approaches. Also, dynamic handoff
parameter assignment yields a more efficient handoff mechanism than fixed handoff
parameter assignment in either case.
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Fig. 13.28 Handoff overhead comparison between our soft handoff assumption and ideal soft
handoff; N = 13 and M = 12

The analysis in Sect. 13.7.1.2 used the forward link received pilot signal power
to determine active set membership, while practical CDMA systems use forward
link Ec/Io measurements instead. We now examine the difference between these
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Fig. 13.29 Error performance comparison between pilot-strength and Ec/Io-based active set
membership; N = 13 and M = 12

two approaches. Let PT(i) be the total forward transmit power from BS i, including
its pilot power. Then, for an MS located at (r,θ ),

Ec(i)
Io(i)

≈ Gi(r,θ )Ppilot

∑2,3,μ
j=1 G j(r,θ )PT( j)

Gspread, (13.122)

where Gspread is the processing gain. There are two main difficulties when incorpo-
rating Ec/Io into the soft handoff analysis. First, it is difficult to model the Ec/Io

behavior mathematically. A power controlled forward link is harder to model than
its reverse link counterpart, especially with open loop power control. Second, the
total forward transmit power from each BS, PT(i), depends on the number of MSs
served by that BS including the MSs in soft handoff.

Once again the deployment in Fig. 13.18 introduces interference imbalance on
the forward link due to the presence of the microcell. This interference imbalance
will impact the received Ec/Io from each BS. Figures 13.29 and 13.30 compare
the pilot signal power and Ec/Io methods for determining active set membership,
in terms of the handoff error probability and average number of BSs in active
set. These Ec/Io-based results are obtained by assuming that PT(i) is same for
all BSs in the system, although this may not be true. There are some significant
differences in performance between received pilot power and Ec/Io-based active
set memberships. In particular, the Ec/Io method requires much less overhead for a
comparable handoff error performance. The observation may be attributed to the fact
that Ec/Io follows a slope up to d−2β and it has angular dependency. In either case,
however, dynamic handoff parameter assignment yields a more efficient handoff
mechanism than fixed handoff parameter assignment.
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13.8 CINR-based Link Quality Measurements

Cellular radio resource allocation algorithms have been developed for handoffs
[99], dynamic channel assignment [116, 193], and power control [14, 15], under
the assumption that the MSs and/or BSs have access to real time measurements of
the received carrier-to-interference plus noise ratio C/(I+N) or CINR. This section
presents a technique for estimating C+ I +N and C/(I +N) that could be used in
resource management algorithms [19, 20].

13.8.1 Discrete-Time Model for Signal Quality Estimation

As shown in Sect. 7.2.1, the overall channel consisting of the transmit filter,
waveform channel, matched filter, sampler, and noise whitening filter can be
modeled as a T -spaced, L + 1-tap, transversal filter.7 The overall discrete-time
channel is described by the channel vector g = (g0,g1, . . . ,gL)

T, where ( )T denotes
transpose. Let v = (v0, . . . ,vM)T denote the received signal vector consisting of M
samples, where vk = ∑L

i=0 gixk−i +wk. Assuming that the channel does not change

7If rate 2/T sampling is used, then the overall channel is a T/2-spaced, 2L+ 1-tap, transversal
filter.
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significantly over a block of L + M + 1 symbols, the received vector v can be
written as

v = Xg+w, (13.123)

where X is an (M + 1)× (L + 1) Toeplitz matrix consisting of the transmitted
symbols of the form

X = [xi, j] =

⎡

⎢
⎢
⎢
⎣

x0 x−1 · · · x−L

x1 x0 · · · x1−L
...

... · · · ...
xM xM−1 · · · xM−L

⎤

⎥
⎥
⎥
⎦

(13.124)

and w = (w0, . . . ,wM)T is an impairment vector consisting of the samples of the
received interference plus AWGN.

13.8.1.1 Estimation of I+N

An I+N or C/(I+N) estimator requires a method for separating g and w from the
observation of v. Consider the situation where M > L, so that X has more rows than
columns. Then, there exists a vector c = (c0, . . . ,cM)T in the null space of X such
that cTX = 0. If X is known, then c can be easily determined. Then

cTv = 0+ cTw, (13.125)

and, therefore, g and w are completely separated from the observation v. However,
with the exception of training and pilot sequences, X is not known exactly because
the data symbols comprising X must be obtained from symbol decisions. In such
cases, a matrix of symbol decisions X̂ must be used instead, where X̂ = X+Δ and
Δ = [δi, j] is the symbol error matrix. Nevertheless, a vector ĉ can still be found in
the null space of X̂ so that

ĉTv = ĉTXg+ ĉTw. (13.126)

Hence, an (I+N) estimate can be obtained from

σ̂2
I+N =

1
2

E

[
vH ĉ∗ĉTv
‖ĉ‖2

]

=
1
2

E

[
gHΔH ĉ∗ĉTΔg

‖ĉ‖2

]

+
1
2

E

[
wH ĉ∗ĉTw

‖ĉ‖2

]

=
1
2

(
L

∑
i=0

M

∑
j=0

L

∑
k=0

M

∑
�=0

E

[δ ∗
j,ig

∗
i ĉ∗jδ�,kgkĉ�
‖ĉ‖2

]

+
M

∑
i=0

M

∑
j=0

E

[
ĉiĉ∗j
‖ĉ‖2

]

E[wiw
∗
j ]

)

,

(13.127)
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where ( )H denotes complex conjugate transpose, and where the second equality is
obtained using X̂=X+Δ along with the reasonable assumption that the impairment
vector w has zero mean and is uncorrelated with X and g. It is also reasonable to
assume that the symbol errors are independent with a constant variance, that is,

1
2

E[|δ j,i|2] = σ2
Δ. (13.128)

We then have

σ̂2
I+N = Ωpσ2

Δ +
1
2

M

∑
i=0

M

∑
j=0

E

[
ĉiĉ∗j
‖ĉ‖2

]

E[wiw
∗
j ], (13.129)

where Ωp = ∑L
i=0 Ωi is the fading envelope power and Ωi = E[|gi|2] is the mean

square value of the ith channel tap. To determine E[wiw∗
j ], rewrite the impairment

vector w as

w =
NI

∑
k=1

Bkgk +η, (13.130)

where Bk is an (M + 1)× (L + 1) matrix consisting of the symbols from the kth
interferer with associated channel tap vector gk, NI the number of interferers, and η
is the vector of AWGN samples. The elements of w are

wi =
NI

∑
k=1

L

∑
�=0

bk,i,� gk,�+ηi, i = 0 , . . . , M, (13.131)

where Bk = [bk,i,�] and gk = (gk,0, . . . ,gk,�). We now assume that the data symbols
have zero mean, the data sequences comprising the Bk matrices for the interferers are
both uncorrelated and mutually uncorrelated, and the ηi are independent zero mean
Gaussian random variables with variance σ2

η . Then 1
2 E[wiw∗

j ] = 0 for i �= j and

σ2
w =

1
2

E[|wi|2] = 1
2

E

[
NI

∑
k=1

M

∑
�=0

|bk,i,�|2 |gk,�|2 + |ηi|2
]

=
NI

∑
k=1

σ2
b

L

∑
�=0

Ωk,�+σ2
η

= σ2
I +σ2

η

= σ2
I+N , (13.132)

where σ2
b = 1

2 E[|bk,i,�|2] is the interferer symbol variance, Ωk,� = E[|gk,�|2] denotes
the mean square value of the �th channel tap gain associated with the kth interferer,
and σ2

I denotes the total interference power. Using this result, (13.129) becomes

σ̂2
I+N = Ωpσ2

Δ +σ2
w = Ωpσ2

Δ +σ2
I+N . (13.133)
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In practice, the ensemble averaging in the first line of (13.127) is replaced by an
empirical average over P observation vectors vi to provide the unbiased estimate

σ̂2
I+N =

1
2P

P

∑
i=1

vH
i ĉ∗i ĉT

i vi

‖ĉi‖2 . (13.134)

13.8.1.2 Estimation of C/(I+N)

A C/(I +N) estimator can be formed using σ̂2
I+N as follows. The total received

signal power from the desired signal, interfering signals, and noise is

σ2
C+I+N =

1
M+ 1

1
2

E
[
vHv
]

=
1

M+ 1
1
2

E
[
gHXHXg+wHw

]

=
1

M+ 1

(
L

∑
j=0

Ω j

M

∑
i=0

1
2

E[|xi, j|2]+ (M+ 1)σ2
w

)

, (13.135)

where the second equality follows from the assumption that w has zero mean, and
the third equality requires that either the elements of the data sequence comprising
the X matrix or the channel tap gains be uncorrelated. Now let σ2

X = 1
2 E[|xi, j|2].

Then

σ2
C+I+N = σ2

X Ωp +σ2
w = σ2

C +σ2
I+N . (13.136)

Using (13.133) and assuming that σ2
Δ is sufficiently small such that Ωpσ2

Δ ≈ 0, we
obtain the C/(I +N) estimate

ĈIR =

(
σ2

C+I+N

σ̂2
I+N

− 1

)

≈ σ2
C

σ2
I+N

. (13.137)

The above approximation becomes exact when X is known exactly. This would be
the case if X is formed using elements from a known training sequence. Finally,
by replacing ensemble averages with empirical averages we obtain the empirical
C/(I+N) estimate

ĈIR =
1

M+1 ∑P
i=1 vH

i vi

∑P
i=1

vH
i c∗i cT

i vi

‖ĉi‖2

− 1. (13.138)
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13.8.2 Training Sequence Based C/(I+N) Estimation

The bursts in TDMA cellular systems contain known training and/or color code
sequences. The color code sequences are used for BS and sector identification, while
the training sequences are used for synchronization and channel estimation. As can
be seen from the previous section, the I +N and C/(I +N) estimators will only
work well when σ2

Δ is small. Fortunately, if the I +N and C/(I+N) estimators are
constructed from the training and color code sequences,8 then σ2

Δ = 0.
The I + N and C/(I + N) estimators of the previous section were evaluated

through the software simulation for an IS-54/136 cellular system [86]. Although
the IS-54/136 standard is now extinct, it is still serves as a useful example on how
the I +N and C/(I +N) estimators can be applied. The IS-54 baud rate is 24,300
symbols/s and each frame is composed of 6 bursts of 162 symbols so that the frame
rate is 25 frames/s. The MS is assumed to have correctly determined the serving BS,
that is, the color code is known, and is monitoring its half rate channel (one burst
per frame). Therefore, the known symbols within a burst consist of the 14-symbol
training sequence at the beginning of the burst, and a 6-symbol color code sequence
in the middle of the burst as shown in Fig. 1.2. For simulation purposes, a two-
equal-ray, T -spaced, Rayleigh fading channel was chosen with uncorrelated taps.
We note that if tap correlation is present, no changes are required to the proposed
I +N and C/(I +N) estimators because the estimates depend only on the fading
envelope power Ωp. Shadowing is assumed to remain constant over the estimates
and is neglected. Finally, it is assumed that the receiver has correctly synchronized
onto each of the received bursts, that is, perfect timing recovery is assumed.

Four consecutive symbols were used to form a 3 × 2 Toeplitz nonsymmetric
matrix X. Let {v1(i), . . . ,v14(i)} denote the 14 received samples corresponding
to the training sequence and {v15(i), . . . ,v21(i)} denote the 6 received samples
corresponding to the color code of the ith frame. From the training sequence 4
estimates of I +N and C/(I+N) were formed using the following four sets

{{v1(i), . . . ,v4(i)},{v5(i), . . . ,v8(i)},{v9(i), . . . ,v12(i)},{v11(i), . . . ,v14(i)}},
(13.139)

where the fourth set shares two samples with the third set. Likewise, 2 estimates of
I+N and C/(I+N) were formed from the 6-symbol color code sequence using the
two sets

{{v15(i), . . . ,v18(i)},{v17(i), . . . ,v21(i)}} (13.140)

which share two common samples. Although the I+N and C/(I+N) estimators in
(13.134) and (13.138) assume independent received sample vectors the additional
estimates of I +N and C/(I +N) which use overlapped symbols at the ends of the

8In the IS-54 and PDC cellular systems, the color code sequence is known provided that the MS
has correctly determined its serving BS.
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Fig. 13.31 Average absolute
percent error of the I +N
estimator against the
averaging time, from [19, 20].
The frame duration is 40 ms.
Legend: (a) NI = 1,
v = 5 km/h, (b) NI = 1,
v = 100 km/h, (c) NI = 2,
v = 5 km/h, (d) NI = 2,
v = 100 km/h, (e) NI = 6,
v = 5 km/h, ( f ) NI = 6,
v = 100 km/h
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training and color code sequences were found to improve the I +N and C/(I +N)
estimates. The channel tap gains associated with the interferers were assumed to be
constant during known symbol sequences. AWGN at 20 dB below the interference
power was also included.

To evaluate the performance of the I + N estimator, we define the average
absolute percentage error between the I +N estimate and the true interference plus
noise power as

∣
∣σ̂2

I+N −σ2
I+N

∣
∣

σ2
I+N

× 100. (13.141)

Figure 13.31 depicts the average absolute percentage error over 500 independent
averages for a specified averaging time (s), MS velocity (v), and number of
interferers (NI). Since the interference plus noise estimator is compared against σ2

I+N
under the assumption that the fading has been averaged out, it is natural to expect
the estimator to perform worse for lower MS velocities when the averaging length
is short, as Fig. 13.31 illustrates. Nevertheless, the presence of multiple interferers
can improve the estimate, since with multiple interferers it is less likely that the total
interference power will be small due to fading.

Figure 13.32 depicts the average absolute percentage error between the C+ I+N
estimate, σ̂2

C+I+N , and the true total received power, σ2
C+I+N . As before, the MS

velocity has a large effect on the estimator performance. Also, the C/I has a minor
effect. However, in contrast to the I+N estimator, the number of interferers has little
effect for C/I between 5–20 dB and, hence, variations in the number of interferers
are not shown in Fig. 13.32.
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Fig. 13.32 Average absolute
percent error of the C+ I +N
estimator against the
averaging time, from [19, 20].
The frame duration is 40 ms.
Legend: (a) NI = 1,
v = 5 km/h, C/I = 5 dB,
(b) NI = 1, v = 5 km/h,
C/I = 20 dB, (c) NI = 1,
v = 100 km/h, C/I = 5 dB,
(d) NI = 1, v = 100 km/h,
C/I = 20 dB
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Fig. 13.33 Average error of
the C/(I +N) estimator
against the averaging time,
from [19, 20]. The frame
duration is 40 ms. Legend:
(a) NI = 1, v = 5 km/h,
C/I = 5 dB, (b) NI = 1,
v = 100 km/h, C/I = 5 dB,
(c) NI = 6, v = 5 km/h,
C/I = 5 dB, (d) NI = 6,
v = 100 km/h, C/I = 5 dB
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Finally, Fig. 13.33 depicts performance of the C/(I +N) estimator for an actual
C/I of 5 dB. Only the performance with C/I = 5 dB is shown, since the estimator
was found insensitive to C/I variations when the actual C/I was between 5–20 dB.
For a high speed MS, the C/(I +N) can be estimated to within 2 dB in less than
a second. A slight improvement is also obtained when the MS uses two slots per
frame (a full rate channel) as shown in Fig. 13.34.
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Fig. 13.34 Average error of
the C/(I +N) estimator for
half rate and full rate channels
against the averaging time,
from [19, 20]. The frame
duration is 40 ms. Legend:
(a) NI = 1, v = 100 km/h,
C/I = 5 dB, half rate channel,
(b) NI = 6, v = 100 km/h,
C/I = 5 dB, half rate channel,
(c) NI = 1, v = 100 km/h,
C/I = 5 dB, full rate channel,
(d) NI = 6, v = 100 km/h,
C/I = 5 dB, full rate channel
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Appendix 1: Derivation of Equations (13.43) and (13.58)

The limit in (13.58) can be written as

lim
τ→0

λc
2πτ

√
2λ̃rr(0)−2λ̃rr(τ)

λ̃rr(0)

λc
2πτ

√
2λrr(0)−2λrr(τ)

λrr(0)

=

limτ→0
λc

2πτ

√
2λ̃rr(0)−2λ̃rr(τ)

λ̃rr(0)

limτ→0
λc

2πτ

√
2λrr(0)−2λrr(τ)

λrr(0)

. (13.142)

Note that the limit of the denominator gives (13.43) and is a special case of the
numerator limit with No = 0. To find the numerator limit, the following property
can be used [247].

If a function f (τ) has a limit as τ approaches a, then

lim
τ→a

n
√

f (t) = n
√

lim
τ→a

f (t) (13.143)

provided that either τ is an odd positive integer or n is an even positive integer and
limτ→a f (τ) > 0.

Therefore, if the limit

ζ = lim
τ→0

f 2(τ) = lim
τ→0

λ 2
c

(2πτ)2

2λ̃rr(0)− 2λ̃rr(τ)
λ̃rr(0)

(13.144)
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exists and is positive, the solution to (13.142) can be determined. It is apparent
that L’Hôpital’s Rule should be applied to determine the limit in (13.144). After
substituting λ̃rr(τ) from (13.34) and applying L’Hôpital’s Rule four times, the
limit is

ζ =
λc

2 (B4
w No

2 π2 + 3Bw K No (2π fm)
2 b0 + 2B3

w K No π2 b0 + 2B3
w No π2 a(0)

)

6π2 (Bw No + 2a(0)) (Bw No + 4K b0 + 2a(0))

+
λc

2 (6K (2π fm)
2 b0 a(0)+ 3Bw K No (2π fm)

2 b0 cos(2θ0)
)

6π2 (Bw No + 2a(0)) (Bw No + 4K b0 + 2a(0))

+
λc

2 (6K (2π fm)
2 b0 a(0) cos(2θ0)

)

6π2 (Bw No + 2a(0)) (Bw No + 4K b0 + 2a(0))

+
λc

2
(
−12a′(0)2 − 12c′(0)2 − 6Bw No a′′(0)− 12K b0 a′′(0)

)

6π2 (Bw No + 2a(0)) (Bw No + 4K b0 + 2a(0))

+
λc

2 (−12a(0)a′′(0)− 12c(0)c′′(0))
6π2 (Bw No + 2a(0)) (Bw No + 4K b0 + 2a(0))

, (13.145)

where a(τ) and c(τ) are given by (13.35) and (13.36), respectively, and x′(0) denotes
the derivative of x(t) evaluated at t = 0. Consequently, a(0) = b0, a′(0) = c(0) = 0,
and

a′′(0) = b0(2π fm)
2
∫ 2π

0
p̂(θ )cos2(θ )dθ ,

c′(0) = b02π fm

∫ 2π

0
p̂(θ )cos(θ )dθ . (13.146)

Using these, and the identity cos2(θ ) = (1 + cos(2θ ))/2, it can be shown
that (13.145) is positive for all θ for the scattering distributions considered in
Sect. 13.4.3.1. Consequently, applying the theorem in (13.143), the limit of the
numerator of (13.142) is the square root of (13.145), which if desired can be
expressed in terms of the signal-to-noise ratio γS using

b0 =
γSNoBw

2(K + 1)
(13.147)

from (13.53) with K = s2/2b0. The denominator of (13.142), which is also (13.43)
is obtained by assuming isotropic scattering and no noise, so that a(0) = b0, a′(0) =
c(0) = c′(0) = c′′(0) = 0, a′′(0) = 2b0(π fm)

2, and No = 0 in (13.145). After taking
the square root, the result is

lim
τ→0

λc

2πτ

√
2λrr(0)− 2λrr(τ)

λrr(0)
= v

√
(1+ 2K+K cos(2θ0))

(1+ 2K)
. (13.148)
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Problems

13.1. Suppose that an MS is traveling along a straight line from BS1 to BS2, as
shown in Fig. 13.35. The BSs are separated by distance D, and the MS is at distance
r from BS1 and distance D− r from BS2. Ignore the effects of fading and assume
that the signals from the two BSs experience independent log-normal shadowing.
The received signal power (in decibels) at the MS from each BS is given by (1.3).

• A handoff from BS1 to BS2, or vice versa, can never occur if |Ω1 (dB)−Ω2 (dB)|<
H but may or may not occur otherwise.

• A handoff from BS1 to BS2 will occur if the MS is currently assigned to BS1 and
Ω2 (dB) ≥ Ω1 (dB) +H.

(a) Find an expression for the probability that a handoff can never occur from
BS1 to BS2, or vice versa.

(b) Given that the MS is currently assigned to BS1 what is the probability that a
handoff will occur from BS1 to BS2.

13.2. A freeway with a speed limit of 120 km/h passes through a metropolitan area.
If the average call duration is 120 s:

(a) What will be the average number of handoffs in a cellular system that uses
omnidirectional cells having a 10 km radius.

(b) Repeat part (a) for a cellular system that uses 120◦ sectored cells having a 1 km
radius.

13.3. A MS is moving with speed 100 km/h along a straight line between two BSs,
BS1 and BS2. For simplicity ignore envelope fading and shadowing, and consider
only the path loss. The received power (in dBm) follows the characteristic

μΩp (dBm)
(di) = μΩp (dBm)

(do)− 10β log10(di/do) (dBm),

where di is distance from BSi in meters. Assume μo = 0 dBm at do = 1 m, and let
the path loss exponent be β = 3.0.

Assume that the minimum usable signal quality at the receiver (at either link
end) is μmin =−88 dBm. The MS is connected to BS1 and signal level at/from BS1

is measured. The measured signal level is compared to a threshold μHO; if it drops
below the threshold a handoff is initiated. Once the handoff is initiated it takes 0.5 s
to complete.

Fig. 13.35 MS traversing
from BS0 to BS1 along a
handoff route D-rr

x
SBSB MS 21
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(a) Determine the minimum margin Δ = μHO − μmin so that calls are not lost due
to weak signal strength during a handoff.

(b) What is the maximum allowable distance between BS1 and BS2?
(c) Describe the effects of the margin on the link quality performance and capacity

of a cellular system.

13.4. Derive (13.19).

13.5. Derive (13.21).

13.6. Derive (13.34).

13.7. Derive (13.52).



Appendix A
Probability and Random Processes

The theory of probability and random processes is essential in the design and
performance analysis of wireless communication systems. This Appendix presents a
brief review of the basic concepts of probability theory and random processes, with
emphasis on the concept needed to understand this book. It is intended that most
readers have already had some exposure to probability and random processes, so that
this Appendix is intended to provide a brief overview. A very thorough treatment of
this subject is available in a large number of textbooks, including [156, 200].

The Appendix begins in Sect. A.1 with the basic axioms of probability, condi-
tional probability, and Bayes’ theorem. It then goes onto means, moments, and
generating functions in Sect. A.2. Later, Sect. A.3 presents a variety of discrete
probability distributions and continuous probability density functions (pdfs). Par-
ticular emphasis is placed on Gaussian, complex Gaussian, multivariate Gaussian,
multivariate complex Gaussian density functions, and functions of Gaussian random
variables. After a brief treatment of upper bounds on probability in Sect. A.4, the
Appendix then goes onto a treatment of random processes, including means and
correlation functions in Sect. A.5.1, cross-correlation, and cross-covariance for joint
random processes in Sect. A.5.2, complex random processes in Sect. A.5.3, power
spectral density (psd) in Sect. A.5.4, and filtering of random processes in Sect. A.5.5.
We then consider the important class of cyclostationary random processes in
Sect. A.5.6 and wrap up with a brief treatment of discrete-time random processes
in Sect. A.5.7.

A.1 Conditional Probability and Bayes’ Theorem

Let A and B be two events in a sample space S. The conditional probability of A
given B is

P[A|B] = P[A
⋂

B]
P[B]

(A.1)

provided that P[B] �= 0. If P[B] = 0, then P[A|B] is undefined.

G.L. Stüber, Principles of Mobile Communication, DOI 10.1007/978-1-4614-0364-7,
© Springer Science+Business Media, LLC 2011
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There are several special cases.

• If A
⋂

B = /0, then events A and B are mutually exclusive, that is, if B occurs then
A could not have occurred and P[A|B] = 0.

• If B ⊂ A, then knowledge that event B has occurred implies that event A has
occurred and so P[A|B] = 1.

• If A and B are statistically independent, then P[A
⋂

B] = P[A]P[B] and so P[A|B] =
P[A].

There is a strong connection between mutually exclusive and independent events.
It may seem that mutually exclusive events are independent, but just the exact
opposite is true. Consider two events A and B with P[A]> 0 and P[B]> 0. If A and
B are mutually exclusive, then A

⋂
B = 0 and P[A

⋂
B] = 0 �= P[A]P[B]. Therefore,

mutually exclusive events with nonzero probability cannot be independent. Thus,
the disjointness of events is a property of the events themselves, while independence
is a property of their probabilities.

In general, the events Ai, i = 1, . . . ,n, are independent if and only if for all
collections of k distinct integers (i1, i2, . . . , ik) chosen from the set (1,2, . . . ,n), we
have

P
[
Ai1

⋂
Ai2

⋂
· · ·
⋂

Aik

]
= P[Ai1 ]P[Ai2 ] · · ·P[Aik ]

for 2 ≤ k ≤ n.
In summary:

• If Ai, i = 1, . . . ,n is a sequence of mutually exclusive events, then

P

[
n⋃

i=1

]

=
n

∑
i=1

P[Ai]. (A.2)

• If Ai, i = 1, . . . ,n is a sequence of independent events, then

P

[
n⋂

i=1

]

=
n

∏
i=1

P[Ai]. (A.3)

A.1.1 Total Probability

The collection of sets {Bi}, i = 1, . . . ,n forms a partition of the sample space S if
Bi
⋂

B j = /0, i �= j and
⋃n

i=1 Bi = S. For any event A ⊂ S, we can write

A =
n⋃

i=1

(A
⋂

Bi). (A.4)



A.2 Means, Moments, and Moment Generating Functions 773

That is, every element of A is contained in one and only one Bi. Since
(A
⋂

Bi)
⋂
(A
⋂

B j) = /0, i �= j, the sets A
⋂

Bi are mutually exclusive. Therefore,

P[A] =
n

∑
i=1

P[A
⋂

Bi]

=
n

∑
i=1

P[A|Bi]P[Bi]. (A.5)

This last equation is often referred to as the theorem of total probability.

A.1.2 Bayes’ Theorem

Let the events Bi, i = 1, . . . ,n be mutually exclusive such that
⋃n

i=1 Bi = S, where S
is the sample space. Let A be an event with nonzero probability. Then as a result of
conditional probability and total probability:

P[Bi|A] = P[Bi
⋂

A]
P[A]

=
P[A|Bi]P[Bi]

∑n
i=1 P[A|Bi]P[Bi]

a result known as Bayes’ theorem.

A.2 Means, Moments, and Moment Generating Functions

The kth moment of a random variable, E[Xk], is defined as

E[Xk]
�
=

⎧
⎨

⎩

∑xi∈RX
xk

i pX(xi) if X is discrete

∫

RX
xk pX (x)dx if X is continuous

, (A.6)

where pX(xi)
�
= P[X = xi] is the probability distribution function of X , and pX (x) is

the pdf of X . The kth central moment of the random variable X is E[(X −E[X ])k].
The mean is the first moment

μX = E[X ] (A.7)

and the variance is the second central moment

σ2
X = E[(X − μX)

2] = E[X2]− μ2
X . (A.8)
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The moment generating function or characteristic function of a random vari-
able X is

ψX(jv)
�
= E[ejvX ] =

⎧
⎨

⎩

∑xi∈RX
ejvxi pX (xi) if X is discrete

∫

RX
ejvx pX (x)dx if X is continuous

, (A.9)

where j =
√−1. Note that the continuous version is a Fourier transform, except for

the sign in the exponent. Likewise, the discrete version is a z-transform, except for
the sign in the exponent.

The probability distribution and pdfs of discrete and continuous random vari-
ables, respectively, can be obtained by taking the inverse transforms of the charac-
teristic functions, that is,

pX(x) =
1

2π

∫ ∞

−∞
ψX(jv)e−jvxdv (A.10)

and

pX(xk) =
1

2π

∮

C
ψX(jv)e−jvxk dv. (A.11)

The cumulative distribution function (cdf) of a random variable X is defined as

FX(x)
�
= P[X ≤ x] =

⎧
⎨

⎩

∑xi≤x pX(xi) if X is discrete

∫ x
−∞ pX(x)dx if X is continuous

(A.12)

and 0 ≤ FX(x)≤ 1. The complementary distribution function (cdfc) is defined as

Fc
X(x)

�
= 1−FX(x). (A.13)

The pdf of a continuous random variable X is related to the cdf by

pX(x) =
dFX(x)

dx
. (A.14)

A.2.1 Bivariate Random Variables

If we consider a pair of random variables X and Y , then the joint cdf of X and Y is

FXY (x,y) = P[X ≤ x,Y ≤ y], 0 ≤ FXY (x,y)≤ 1 (A.15)
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and the joint cdfc of X and Y is

Fc
XY (x,y) = P[X > x,Y > y] = 1−FXY (x,y), 0 ≤ Fc

XY (x,y) ≤ 1. (A.16)

The joint pdf of X and Y is

pXY (x,y) =
∂ 2FXY (x,y)

∂x∂y
, FXY (x) =

∫ x

−∞

∫ y

−∞
pXY (x,y)dxdy. (A.17)

The marginal pdfs of X and Y are

pX(x) =
∫ ∞

−∞
pXY (x,y)dy pY (x) =

∫ ∞

−∞
pXY (x,y)dx. (A.18)

If X and Y are independent random variables, then the joint pdf has the product form

pXY (x,y) = pX(x)pY (x). (A.19)

The conditional pdfs of X and Y are

pX |Y (x|y) =
pXY (x,y)

pY (y)
pY |X(y|x) =

pXY (x,y)
pX(x)

. (A.20)

The joint moments of X and Y are

E[XiY j] =

∫ ∞

−∞
xiy j pXY (x,y)dxdy. (A.21)

The covariance of X and Y is

λXY = E[(X − μX)(Y − μY )]

= E[XY −XμY −Y μX + μX μY ]

= E[XY ]− μX μY . (A.22)

The correlation coefficient of X and Y is

ρXY =
λXY

σX σY
. (A.23)

Two random variables X and Y are uncorrelated if and only if λX ,Y = 0. Two random
variables X and Y are orthogonal if and only if E[XY ] = 0.

The joint characteristic function is

ΦXY (v1,v2) = E[ejv1X+jv2Y ] =

∫ ∞

−∞

∫ ∞

−∞
pXY (x,y)ejv1x+jv2ydxdy. (A.24)
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If X and Y are independent, then

ΦXY (v1,v2) = E[ejv1X+jv2Y ]

=
∫ ∞

−∞
pX (x)ejv1xdx

∫ ∞

−∞
pY (y)ejv2ydy

= ΦX (v1)ΦY (v2). (A.25)

Moments can be generated according to

E[XY ] =−∂ 2ΦXY (v1,v2)

∂v1∂v2
|v1=v2=0 (A.26)

with higher order moments generated in a straightforward extension.

A.3 Some Useful Probability Distributions

A.3.1 Discrete Distributions

A.3.1.1 Binomial Distribution

Let X be a Bernoulli random variable such that X = 0 with probability 1 − p and
X = 1 with probability p. Although X is a discrete random variable with an
associated probability distribution function, it is possible to treat X as a continuous
random variable with a pdf using dirac delta functions. In this case, the pdf of X has
the form

pX(x) = (1− p)δ (x)+ pδ (x− 1). (A.27)

Let Y = ∑n
i=1 Xi, where the Xi are independent and identically distributed with

density pX(x). Then the random variable Y is an integer from the set {0,1, . . . ,n}
and the probability distribution of Y is the binomial distribution

pY (k)≡ P[Y = k] =

(
n
k

)

pk(1− p)n−k, k = 0,1, . . . ,n. (A.28)

The random variable Y also has the pdf

pY (y) =
n

∑
k=0

(
n
k

)

pk(1− p)n−kδ (y− k). (A.29)



A.3 Some Useful Probability Distributions 777

A.3.1.2 Poisson Distribution

The random variable X has a Poisson distribution if

pX(k) =
λ ke−λ

k!
, k = 0,1, . . . , ∞. (A.30)

A.3.1.3 Geometric Distribution

The random variable X has a geometric distribution if

pX(k) = (1− p)k−1 p, k = 1,2, . . . ,∞. (A.31)

A.3.2 Continuous Distributions

Many communication systems are affected by Gaussian random processes. There-
fore, Gaussian random variables and various functions of Gaussian random vari-
ables play a central role in the characterization and analysis of communication
systems.

A.3.2.1 Gaussian Distribution

A Gaussian or normal random variable X has the pdf

pX(x) =
1√

2πσ
exp

{

− (x− μ)2

2σ2

}

, (A.32)

where μ = E[X ] is the mean of X and σ2 = E[(X − μ)2] is the variance of X .
Sometimes we use the shorthand notation X ∼ N (μ ,σ2) meaning that X is a
Gaussian random variable with mean μ and variance σ2. The random variable X
is said to have a standard normal distribution if X ∼ N (0,1).

The cdf of a Gaussian random variable X is

FX(x) =
∫ x

−∞

1√
2πσ

exp

{

− (y− μ)2

2σ2

}

dy. (A.33)

The cdf of a standard normal distribution defines the Gaussian Q function

Q(x)
�
=

∫ ∞

x

1√
2π

e−y2/2dy (A.34)
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and the cdfc defines the Gaussian Φ function

Φ(x)
�
= 1−Q(x). (A.35)

If X is a nonstandard normal random variable, X ∼ N (μ ,σ2), then

FX(x) = Φ
(

x− μ
σ

)

, (A.36)

Fc
X(x) = Q

(
x− μ

σ

)

. (A.37)

Sometimes the cdf of a Gaussian random variable is described in terms of the
complementary error function erfc(x), defined as

erfc(x)
�
=

2√
π

∫ ∞

x
e−y2

dy. (A.38)

The complementary error function and the Gaussian Q function are related as
follows:

erfc(x) = 2Q(
√

2x), (A.39)

Q(x) =
1
2

erfc

(
x√
2

)

. (A.40)

These identities can be established using the Gaussian Q function in (A.34). The
error function of a Gaussian random variable is defined as

erf(x)
�
=

2√
π

∫ x

0
e−y2

dy (A.41)

and erfc(x)+ erf(x) = 1. Also, we can write

Q(x) =
1
2
− 1

2
erf

(
x√
2

)

, x ≥ 0. (A.42)

A.3.2.2 Multivariate Gaussian Distribution

Let Xi ∼ N (μi,σ2
i ), i = 1, . . . ,n, be a collection of n real-valued Gaussian random

variables having means μi = E[Xi] and covariances

λXiXj = E [(Xi − μi)(Xj − μ j)]

= E [XiXj]− μiμ j, 1 ≤ i, j ≤ n.
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Let

X = (X1,X2, . . . ,Xn)
T,

x = (x1,x2, . . . ,xn)
T,

μX = (μ1,μ2, . . . ,μn)
T,

Λ =

⎡

⎢
⎣

λX1X1 · · · · λX1Xn
...

...
λXnX1 · · · · λXnXn

⎤

⎥
⎦ ,

where XT is the transpose of X. The random vector X has the multivariate Gaussian
distribution

pX(x) =
1

(2π)n/2|Λ|1/2
exp

{

−1
2
(x− μX)

TΛ−1(x− μX)

}

, (A.43)

where |Λ| is the determinant of Λ.

A.3.2.3 Multivariate Complex Gaussian Distribution

Complex Gaussian distributions often arise in the treatment of fading channels and
narrow-band Gaussian noise. Let

X = (X1,X2, . . . ,Xn)
T,

Y = (Y1,Y2, . . . ,Yn)
T

be length-n vectors of real-valued Gaussian random variables, such that Xi ∼
N (μXi ,σ2

Xi
), i = 1, . . . ,n, and Yi ∼ N (μYi ,σ2

Yi
), i = 1, . . . ,n. The complex random

vector Z = X+ jY has a complex Gaussian distribution that can be described with
the following three parameters:

μZ = E[Z] = μX + jμY

Γ =
1
2

E[(Z− μZ)(Z− μZ)
H]

C =
1
2

E[(Z− μZ)(Z− μZ)
T] ,

where XT and XH are the transpose and complex conjugate transpose of X,
respectively. The covariance matrix Γ must be Hermitian (Γ = ΓH) and the relation
matrix C should be symmetric (C = CT). Matrices Γ and C can be related to the
covariance matrices of X and Y as follows:



780 A Probability and Random Processes

ΛXX =
1
2

E[(X− μX)(X− μX )
T] =

1
2

Re{Γ+C}, (A.44)

ΛXY =
1
2

E[(X− μX)(Y− μY )
T] =

1
2

Im{−Γ+C}, (A.45)

ΛYX =
1
2

E[(Y− μY )(X− μX)
T] =

1
2

Im{Γ+C}, (A.46)

ΛYY =
1
2

E[(Y− μY )(Y− μY )
T] =

1
2

Re{Γ−C} (A.47)

and, conversely,

Γ = ΛXX +ΛYY + j(ΛYX −ΛXY),

C = ΛXX −ΛYY + j(ΛYX +ΛXY). (A.48)

The complex random vector Z has the complex multivariate Gaussian distribution

pZ(z) =
1

2πn
√

det(Γ)det(P)

×exp

{

−1
4

(
(z− μZ)

H,(z− μZ)
T
)
(

Γ C
CH Γ∗

)−1(
(z− μZ)

(z∗ − μ∗
Z)

)}

, (A.49)

where
P = Γ∗ −CHΓ−1C. (A.50)

For a circular-symmetric complex Gaussian distribution C = 0 and the complex
multivariate Gaussian distribution simplifies considerably as

pZ(z) =
1

2πndet(Γ)
exp

{

−1
2
(z− μZ)

HΓ−1(z− μZ)

}

. (A.51)

The circular-symmetric scalar complex Gaussian random variable Z = X + jY has
the density

pZ(z) =
1

2πσ2
Z

exp

{

−|z− μZ|2
2σ2

Z

}

, (A.52)

where μZ = E[Z] and σ2
Z = 1

2 E[|z − μZ|2]. Sometimes we denote this with the
shorthand notation Zi ∼ CN (μZ ,σ2

Z ). The standard complex Gaussian distribution
Zi ∼ CN (0,1) has the density

pZ(z) =
1

2π
e−|z|2/2. (A.53)
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A.3.2.4 Rayleigh Distribution

Let X ∼ N (0,σ2) and Y ∼ N (0,σ2) be the independent real-valued normal
random variables. The random variable R =

√
X2 +Y 2 is said to be Rayleigh

distributed. To find the pdf and cdf of R, first define the auxiliary variable

V = Tan−1(Y/X).

Then

X = RcosV,

Y = RsinV.

Using a bivariate transformation of random variables

pRV (r,v) = pXY (r cosv,r sinv) |J(r,v)| ,

where

J(r,v) =

∣
∣
∣
∣
∣
∣
∣

∂x
∂ r

∂x
∂v

∂y
∂ r

∂y
∂v

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

cosv r sinv
sinv r cosv

∣
∣
∣
∣= r(cos2 v+ sin2 v) = r.

Since

pXY (x,y) =
1

2πσ2 exp

{

−x2 + y2

2σ2

}

,

we have

pRV (r,v) =
r

2πσ2 exp

{

− r2

2σ2

}

. (A.54)

The marginal pdf of R has the Rayleigh distribution

pR(r) =
∫ 2π

0
pRV (r,v)dv

=
r

σ2 exp

{

− r2

2σ2

}

, r ≥ 0. (A.55)

The cdf of R is

FR(r) = 1− exp

{

− r2

2σ2

}

, r ≥ 0. (A.56)
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The marginal pdf of V is

pV (v) =
∫ ∞

0
pRV (r,v)dr

=
1

2π
, π ≤ v ≤ π , (A.57)

which is a uniform distribution on the interval [−π ,π).

A.3.2.5 Rice Distribution

Let X ∼ N (μ1,σ2) and Y ∼ N (μ2,σ2) be independent normal random variables
with nonzero means. The random variable R =

√
X2 +Y2 has a Rice distribution

or is said to be Ricean distributed. To find the pdf and cdf of R, again define
the auxiliary variable V = Tan−1(Y/X). Then using a bivariate transformation
J(r,v) = r and

pRV (r,v) = r · pXY (r cosv,r sinv). (A.58)

However,

pXY (x,y) =
1

2πσ2 exp

{

− (x− μ1)
2 +(y− μ2)

2

2σ2

}

=
1

2πσ2 exp

{

−x2 + y2 + μ2
1 + μ2

2 − 2(xμ1 + yμ2)

2σ2

}

.

Hence,

pRV (r,v) =
r

2πσ2 exp

{

− r2 + μ2
1 + μ2

2 − 2r(μ1 cosv+ μ2 sinv)
2σ2

}

.

Now define s
�
=
√

μ2
1 + μ2

2 and t
�
= Tan−1μ2/μ1, −π ≤ t ≤ π , so that μ1 = scost

and μ2 = ssin t. Then

pRV (r,v) =
r

2πσ2 exp

{

− r2 + s2 − 2rs(cost cosv+ sint sinv)
2σ2

}

=
r

2πσ2 exp

{

− r2 + s2 − 2rscos(v− t)
2σ2

}

.

The marginal pdf of R is

PR(r) =
r

σ2 exp

{

− r2 + s2

2σ2

}
1

2π

∫ 2π

0
exp
{ rs

σ2 cos(v− t)
}

dv. (A.59)
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The zero order-modified Bessel function of the first kind is defined as

I0(x)
�
=

1
2π

∫ 2π

0
excosθ dθ . (A.60)

This gives the Rice distribution

PR(r) =
r

σ2 exp

{

− r2 + s2

2σ2

}

I0

( rs
σ2

)
, r ≥ 0. (A.61)

The cdf of R is

FR(r) =
∫ r

0
pR(r)dr

= 1−Q
( s

σ
,

r
σ

)
,

where Q(a,b) is called the Marcum Q-function.

A.3.2.6 Central Chi-Square Distribution

Let X ∼ N (0,σ2) and Y = X2. Then it can be shown that

pY (y) =
pX (

√
y)+ pX(−√

y)

2
√

y

=
1√

2πyσ
exp
{
− y

2σ2

}
, y ≥ 0.

The characteristic function of Y is

ψY (jv) =
∫ ∞

−∞
ejvy pY (y)dy

=
1

√
1− j2vσ2

. (A.62)

Now define the random variable Y = ∑n
i=1 X2

i , where the Xi are independent and
Xi ∼ N (0,σ2). Then

ψY (jv) =
1

(1− j2vσ2)n/2
. (A.63)
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Taking the inverse transform gives

pY (y) =
1

2π

∫ ∞

−∞
ψY (jv)e

−jvydv

=
1

(2σ2)n/2Γ(n/2)
yn/2−1exp

{
− y

2σ2

}
, y ≥ 0,

where Γ(k) is the Gamma function and

Γ(k) =
∫ ∞

0
uk−1e−udu = (k− 1)!

if k is a positive integer. If n is even (which is usually the case in practice) and we
define m = n/2, then the pdf of Y defines the central chi-square distribution with 2m
degrees of freedom

pY (y) =
1

(2σ2)m(m− 1)!
ym−1exp

{
− y

2σ2

}
, y ≥ 0. (A.64)

The cdf of Y is

FY (y) = 1− exp
{
− y

2σ2

}m−1

∑
k=0

1
k!

( y
2σ2

)k
, y ≥ 0. (A.65)

The exponential distribution is a special case of the central chi-square distribution
with m = 1 (2 degrees of freedom). In this case

pY (y) =
1

2σ2 exp
{
− y

2σ2

}
, y ≥ 0,

FY (y) = 1− exp
{
− y

2σ2

}
, y ≥ 0. (A.66)

A.3.2.7 Noncentral Chi-Square Distribution

Let X ∼ N (μ ,σ2) and Y = X2. Then

pY (y) =
pX(

√
y)+ pX(−√

y)

2
√

y

=
1√

2πyσ
exp

{

− (y+ μ2)

2σ2

}

cosh

(√
yμ

σ2

)

, y ≥ 0.
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The characteristic function of Y is

ψY (jv) =
∫ ∞

−∞
ejvy pY (y)dy

=
1

√
1− j2vσ2

exp

{
jvμ2

1− j2vσ2

}

.

Now define the random variable Y = ∑n
i=1 X2

i , where the Xi are independent normal
random variables and Xi ∼ N (μi,σ2). Then

ψY (jv) =
1

(1− j2vσ2)n/2
exp

{
jv∑n

i=1 μ2
i

1− j2vσ2

}

.

Taking the inverse transform gives

pY (y) =
1

2σ2

( y
s2

) n−2
4

exp

{

− (s2 + y)
2σ2

}

In/2−1

(√
y

s
σ2

)
, y ≥ 0,

where

s2 =
n

∑
i=1

μ2
i

and Ik(x) is the modified Bessel function of the first kind and order k, defined by

Ik(x)
�
=

1
2π

∫ 2π

0
excosθ cos(kθ )dθ .

If n is even (which is usually the case in practice) and we define m = n/2, then the
pdf of Y defines the noncentral chi-square distribution with 2m degrees of freedom

pY (y) =
1

2σ2

( y
s2

)m−1
2

exp

{

− (s2 + y)
2σ2

}

Im−1

(√
y

s
σ2

)
, y ≥ 0 (A.67)

and the cdf of Y is

FY (y) = 1−Qm

(
s
σ
,

√
y

σ

)

, y ≥ 0, (A.68)

where Qm(a,b) is called the generalized Q-function.

A.4 Upper Bounds on the cdfc

Several different approaches can be used to upper bound the tail area of a pdf
including the Chebyshev and Chernoff bounds.
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A.4.1 Chebyshev Bound

The Chebyshev bound is derived as follows. Let X be a random variable with mean
μX , variance σ2

X , and pdf pX(x). Then the variance of X is

σ2
X =

∫ ∞

−∞
(x− μX)

2 pX (x)dx

≥
∫

|x−μX |≥δ
(x− μX)

2 pX(x)dx

≥ δ 2
∫

|x−μX |≥δ
pX(x)dx

= δ 2P[|X − μX | ≥ δ ].

Hence,

P[|X − μX | ≥ δ ]≤ σ2
X

δ 2 . (A.69)

The Chebyshev bound is straightforward to apply but it tends to be quite loose.

A.4.2 Chernoff Bound

The Chernoff bound is more difficult to compute but is much tighter than the
Chebyshev bound. To derive the Chernoff bound, we use the following inequality

u(x)≤ eλ x, ∀ x and ∀ λ ≥ 0,

where u(x) is the unit step function. Then,

P[X ≥ 0] =
∫ ∞

0
pX(x)dx

=
∫ ∞

−∞
u(x)pX(x)dx

≤
∫ ∞

−∞
eλ xpX (x)dx

= E[eλ x].

The Chernoff bound parameter, λ ,λ > 0, can be optimized to give the tightest upper
bound. This can be accomplished by setting the derivative to zero

d
dλ

E[eλ x] = E

[
d

dλ
eλ x
]

= E[xeλ x] = 0.
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Let λ ∗ = argminλ≥0 E[eλ x] be the solution to the above equation. Then

P[X ≥ 0]≤ E[eλ ∗x]. (A.70)

Example A.1:
Let Xi, i = 1, . . . ,n be independent and identically distributed random

variables with density

pX(x) = pδ (x− 1)+ (1− p)δ (x+ 1).

Let

Y =
n

∑
i=1

Xi.

Suppose we are interested in the quantity P[Y ≥ 0]. To compute this probabil-
ity exactly, we have

P[Y ≥ 0] = P [ n/2! or more of the Xi are ones ]

=
n

∑
k= n/2!

(
n
k

)

pk(1− p)n−k.

For n = 10 and p = 0.1

P[Y ≥ 0] = 0.0016349. (A.71)

Chebyshev Bound

To compute the Chebyshev bound, we first determine the mean and variance
of Y .

μY = nE[Xi]

= n[p− 1+ p]

= n(2p− 1),

σ2
Y = nσ2

X

= n
(
E[X2

i ]−E2[Xi]
)

= n
(
1− (2p− 1)2)

= n
(
1− 4p2+ 4p− 1

)

= 4np(1− p).
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Hence,

P[|Y − μY | ≥ μY ]≤ σ2
Y

μ2
Y

=
4np(1− p)
n2(2p− 1)2 .

Then by symmetry

P[Y ≥ 0] =
1
2

P[|Y − μY | ≥ μY ]

≤ 2p(1− p)
n(2p− 1)2 .

For n = 10 and p = 0.1

P[Y ≥ 0]≤ 0.028125. (A.72)

Chernoff Bound

The Chernoff bound is given by

P[Y ≥ 0] ≤ E[eλ y]

=
(

E[eλ x]
)n

.

However,

E[eλ x] = peλ +(1− p)e−λ .

To find the optimal Chernoff bound parameter, we solve

d
dλ

E[eλ x] = peλ − (1− p)e−λ = 0

giving

λ ∗ = ln

(√
1− p

p

)

.

Hence,

P[Y ≥ 0] ≤
(

E[eλ ∗x]
)n

= (4p(1− p))n/2 .

For n = 10 and p = 0.1

P[Y ≥ 0)] ≤ 0.0060466.

Notice that the Chernoff bound is much tighter that the Chebyshev bound in
this case.
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A.5 Random Processes

A random process, or stochastic process, X(t), is an ensemble of sample functions
{X1(t),X2(t), . . . ,Xξ (t)} together with a probability rule which assigns a probability
to any meaningful event associated with the observation of these sample functions.
Consider the set of sample functions shown in Fig. A.1. The sample function xi

corresponds to the sample point s1 in the sample space and occurs with probability
P[s1]. The number of sample functions, ξ , in the ensemble may be finite or
infinite. The function Xi(t) is deterministic once the index i is known. Sample
functions may be defined at discrete or continuous instants in time, which define
discrete- or continuous-time random processes, respectively. Furthermore, their
values (or parameters) at these time instants may be either discrete or continuous
valued as well, which defines a discrete- or continuous-parameter random pro-
cess, respectively. Hence, we may have discrete-time discrete-parameter, discrete-
time continuous-parameter, continuous-time discrete-parameter, or continuous-time
continuous-parameter random processes.

Suppose that we observe all the sample functions at some time instant t1, and
their values form the set of numbers {Xi(t1)}, i = 1,2, . . . ,ξ . Since Xi(t1) occurs
with probability P[si], the collection of numbers {Xi(t1)}, i = 1,2, . . . ,ξ , forms a
random variable, denoted by X(t1). By observing the set of waveforms at another
time instant t2, we obtain a different random variable X(t2). A collection of n such
random variables, X(t1), X(t2), . . . , X(tn), has the joint cdf

FX(t1),..., X(tn)(x1, . . . , xn) = P[X(t1)< x1, . . . ,X(tn)< xn].

Fig. A.1 Ensemble of
sample functions for a
random process

s

s

s
ξ

t

t

t

2

1

X1(  )t

ξ

X

(  )t

2 t(  )

X

sample
space S
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A more compact notation can be obtained by defining the vectors

x
�
= (x1,x2, . . . ,xn)

T,

X(t)
�
= (X(t1),X(t2), . . . ,X(tn))

T.

Then the joint cdf and joint pdf of the random vector X(t) are, respectively,

FX(t)(x) = P(X(t)≤ x), (A.73)

pX(t)(x) =
∂ nFX(t)(x)

∂x1∂x2 . . .∂xn
. (A.74)

A random process is strictly stationary if and only if the joint density function
pX(t)(x) is invariant under shifts of the time origin. In this case, the equality

pX(t)(x) = pX(t+τ)(x) (A.75)

holds for all sets of time instants {t1, t2, . . . , tn} and all time shifts τ . Some important
random processes that are encountered in practice are strictly stationary, while many
are not.

A.5.1 Moments and Correlation Functions

To describe the moments and correlation functions of a random process, it is useful
to define the following two operators

E[ · ] �
= ensemble average,

〈 · 〉 �
= time average.

The ensemble average of a random process at time t is

μX (t) = E[X(t)] =
∫ ∞

−∞
xpX(t)(x)dx. (A.76)

Note that the ensemble average is generally a function of time. However, if the
ensemble average changes with time, then the process is not strictly stationary. The
time average of a random process is

〈X(t)〉 = lim
T→∞

1
2T

∫ T

−T
X(t)dt. (A.77)
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In general, the time average 〈X(t)〉 is also a random variable, because it depends on
the particular sample function that is selected for time averaging.

The autocorrelation of a random process X(t) is defined as

φXX (t1, t2) = E [X(t1)X(t2)] . (A.78)

The autocovariance of a random process X(t) is defined as

λXX(t1, t2) = E [(X(t1)− μX(t1))(X(t2)− μX(t2))]

= φXX (t1, t2)− μX(t1)μX (t2). (A.79)

A random process that is strictly stationary must have

E[Xn(t)] = E[Xn] ∀ t,n.

Hence, for a strictly stationary random process we must have

μX(t) = μ ,

σ2
X(t) = σ2

X ,

φXX (t1, t2) = φXX (t2 − t1)≡ φXX (τ),

λXX(t1, t2) = λXX(t2 − t1)≡ λXX (τ),

where τ = t2 − t1.
If a random process satisfies the following two conditions

μX(t) = μX ,

φXX (t1, t2) = φXX (τ), τ = t2 − t1,

then it is said to be wide sense stationary. Note that if a random process is strictly
stationary, then it is wide sense stationary; however, the converse may not be true.
A notable exception is the Gaussian random process which is strictly stationary if
and only if it is wide sense stationary. The reason is that a joint Gaussian density
of the vector X(t) = (X(t1),X(t2), . . . ,X(tn)) is completely described by the means
and covariances of the X(ti).

A.5.1.1 Properties of φXX(τ)

The autocorrelation function, φXX (τ), of a stationary random process satisfies the
following properties:

• φXX (0) = E[X2(t)]. This is the total power in the random process.
• φXX (τ) = φXX (−τ). The autocorrelation function must be an even function.
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• |φXX (τ)| ≤ φXX (0). This is a variant of the Cauchy–Schwartz inequality.
• φXX (∞) = E2[X(t)] = μ2

X . This holds if X(t) contains no periodic components
and is equal to the d.c. power.

Example A.2:
In this example we show that |φXX (τ)| ≤ φXX (0). This inequality can be

established through the following steps:

0 ≤ E[X(t)± (X(t+ τ))2]

= E[X2(t)+X2(t + τ)± 2X(t)X(t+ τ)]

= E[X2(t)]+E[X2(t + τ)]± 2E[X(t)X(t+ τ)]

= 2E[X2(t)]± 2E[X(t)X(t+ τ)]

= 2φXX (0)± 2φXX(τ).

Therefore,

±φXX (τ) ≤ φXX (0),

|φXX (τ)| ≤ φXX (0).

A.5.1.2 Ergodic Random Processes

A random process is ergodic if for all g(X) and X

E[g(X)] =

∫ ∞

−∞
g(X)pX(t)(x)dx

= lim
T→∞

1
2T

∫ T

−T
g[X(t)]dt

= 〈g[X(t)]〉. (A.80)

For a random process to be ergodic, it must be strictly stationary. However, not all
strictly stationary random processes are ergodic. A random process is ergodic in the
mean if 〈X(t)〉= μX and ergodic in the autocorrelation if 〈X(t)X(t + τ)〉= φXX (τ).
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Example A.3:
Consider the random process

X(t) = Acos(2π fct +Θ),

where A and fc are constants, and

pΘ(θ ) =

{
1/(2π), 0 ≤ θ ≤ 2π

0, elsewhere
.

The mean of X(t) is

μX (t) = EΘ[Acos(2π fct +θ )] = 0 = μX

and autocorrelation of X(t) is

φXX (t1, t2) = EΘ[X(t1)X(t2)]

= EΘ[A
2 cos(2π fct1 +θ )cos(2π fct2 +θ )]

=
A2

2
EΘ[cos(2π fct1 + 2π fct2 + 2θ )]+

A2

2
EΘ[cos(2π fc(t2 − t1))]

=
A2

2
cos(2π fc(t2 − t1))

=
A2

2
cos(2π fcτ), τ = t2 − t1.

It is clear that this random process is wide sense stationary.
The time-average mean of X(t) is

〈X(t)〉= lim
T→∞

1
2T

∫ T

−T
Acos(2π fct +θ )dt = 0

and the time average autocorrelation of X(t) is

〈X(t + τ)X(t)〉

= lim
T→∞

1
2T

∫ T

−T
A2 cos(2π fct +θ )cos(2π fct + 2π fcτ +θ )dt
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= lim
T→∞

A2

4T

∫ T

−T
A2 [cos(2π fcτ)+ cos(4π fct + 2π fcτ + 2θ )]dt

=
A2

2
cos(2π fcτ).

By comparing the ensemble and time average mean and autocorrelation, we
can conclude that this random process is ergodic in the mean and ergodic in
the autocorrelation.

Example A.4:
Consider the random process

Y (t) = X cost, X ∼ N (0,1).

In this example we will find the pdf of Y (0), the joint pdf of Y (0) and Y (π),
and determine whether Y (t) is strictly stationary.

1. To find the pdf of Y (0), note that

Y (0) = X cos0 = X .

Therefore,

pY (0)(y0) =
1√
2π

e−y2
0/2.

2. To find the joint density of Y (0) and Y (π), note that

Y (0) = X =−Y (π).

Therefore
pY (0)|Y(π)(y0|yπ) = δ (y0 + yπ)

and

pY (0)Y(π)(y0,yπ) = pY (0)|Y(π)(y0|yπ)pY (π)(yπ)

=
1√
2π

e−y2
π/2δ (y0 + yπ).
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3. To determine whether Y (t) is strictly stationary, note that

E[Y (t)] = E[X ]cost = 0,

E[Y 2(t)] = E[X2]cos2 t.

Since the second moment and, hence, the pdf of this random process varies
with time, the random process is not strictly stationary.

A.5.2 Cross-Correlation and Cross-Covariance

Consider two random processes X(t) and Y (t). The cross-correlation of X(t) and
Y (t) is

φXY (t1, t2) = E[X(t1)Y (t2)], (A.81)

φY X (t1, t2) = E[Y (t1)X(t2)]. (A.82)

The correlation matrix of X(t) and Y (t) is

Φ(t1, t2) =

[
φXX (t1, t2) φXY (t1, t2)
φY X(t1, t2) φYY (t1, t2)

]

. (A.83)

The cross covariance of X(t) and Y (t) is

λXY (t1, t2) = E [(X(t1)− μX(t1)) (X(t2)− μX(t2))]

= φXY (t1, t2)− μX(t1)μX (t2). (A.84)

The covariance matrix of X(t) and Y (t) is

Λ(t1, t2) =
[

λXX(t1, t2) λXY (t1, t2)
λY X(t1, t2) λYY (t1, t2)

]

. (A.85)

If X(t) and Y (t) are each wide sense stationary and jointly wide sense stationary,
then

Φ(t1, t2) = Φ(t2 − t1) = Φ(τ), (A.86)

Λ(t1, t2) = Λ(t2 − t1) = Λ(τ), (A.87)

where τ = t2 − t1.
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A.5.2.1 Properties of φXY(τ)

Consider two random processes X(t) and Y (t) are each wide sense stationary
and jointly wide sense stationary. The cross-correlation function φXY (τ) has the
following properties:

• φXY (τ) = φY X (−τ).
• |φXY (τ)| ≤ 1

2 [φXX (0)+φYY (0)].
• |φXY (τ)|2 ≤ φXX (0)φYY (0) if X(t) and Y (t) have zero mean.

A.5.2.2 Classifications of Random Processes

Two random processes X(t) and Y (t) are said to be:

• Uncorrelated if and only if λXY (τ) = 0
• Orthogonal if and only if φXY (τ) = 0
• Statistically independent if and only if

pX(t)Y(t+τ)(x,y) = pX(t)(x)pY(t+τ)(y)

Furthermore, if μX = 0 or μY = 0, then the random processes are also orthogonal
if they are uncorrelated. Statistically independent random processes are always
uncorrelated; however, not all uncorrelated random processes are statistically
independent. In the special case of Gaussian random processes, if the processes
are uncorrelated then they are also statistically independent.

Example A.5:
Find the autocorrelation function of the random process

Z(t) = X(t)+Y(t),

where X(t) and Y (t) are wide sense stationary random processes.
The autocorrelation function of Z(t) is

φZZ(τ) = E[Z(t)Z(t + τ)]

= E [(X(t)+Y(t)) (X(t + τ)+Y(t + τ))]

= φXX (τ)+φY X(τ)+φXY (τ)+φYY (τ).

If X(t) and Y (t) are uncorrelated, then

φY X(τ) = φXY (τ) = μX μY
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and
φZZ(τ) = φXX (τ)+φYY (τ)+ 2μX μY .

If X(t) and Y (t) are uncorrelated and at least one has zero mean, then

φZZ(τ) = φXX (τ)+φYY (τ).

Example A.6:
Can the following be a correlation matrix for two jointly wide sense

stationary zero-mean random processes?

Φ(τ) =
[

φXX (τ) φXY (τ)
φY X(τ) φYY (τ)

]

=

[
A2 cos(τ) 2A2 cos(3τ/2)

2A2 cos(3τ/2) A2 sin(2τ)

]

.

The answer is no, because the following two conditions are violated:

1. |φXY (τ)| ≤ 1
2 [φXX (0)+φYY (0)].

2. |φXY (τ)|2 ≤ φXX (0)φYY (0) if X(t) and Y (t) have zero mean.

A.5.3 Complex-Valued Random Processes

A complex-valued random process is given by

Z(t) = X(t) + jY (t),

where X(t) and Y (t) are real-valued random processes.

A.5.3.1 Autocorrelation Function

The autocorrelation function of a complex-valued random process is

φZZ(t1, t2) =
1
2

E[Z(t1)Z
∗(t2)]

=
1
2

E [(X(t1)+ jY (t1))(X(t2)− jY (t2))]

=
1
2

(
φXX (t1, t2)+φYY (t1, t2)+ j(φY X(t1, t2)−φXY (t1, t2))

)
. (A.88)
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The factor of 1/2 in included for convenience, when Z(t) is a complex-valued
Gaussian random process. If Z(t) is wide sense stationary, then

φZZ(t1, t2) = φZZ(t2 − t1) = φZZ(τ), τ = t2 − t1.

A.5.3.2 Cross-Correlation Function

Consider two complex-valued random processes

Z(t) = X(t)+ jY(t),

W (t) = U(t)+ jV(t).

The cross-correlation function of Z(t) and W (t) is

φZW (t1, t2) =
1
2

E[Z(t1)W
∗(t2)]

=
1
2

(
φXV (t1, t2)+φYV (t1, t2)+ j(φYU(t1, t2)−φXV (t1, t2))

)
. (A.89)

If X(t), Y (t), U(t) and V (t) are pairwise wide sense stationary random processes,
then

φZW (t1, t2) = φZW (t2 − t1) = φZW (τ). (A.90)

The cross-correlation of a complex wide sense stationary random process satisfies
the following property:

φ∗
ZW (τ) =

1
2

E[Z∗(t)W (t + τ)]

=
1
2

E[Z∗(t̂ − τ)W (t̂)]

=
1
2

E[W(t̂)Z∗(t̂ − τ)]

= φW Z(−τ), (A.91)

where the second line use the change of variable t̂ = t + τ . For a complex-valued
random process Z(t), it also follows that

φ∗
ZZ(τ) = φZZ(−τ). (A.92)
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A.5.4 Power Spectral Density

The psd of a wide-sense stationary random process X(t) is the Fourier transform of
the autocorrelation function, that is,

SXX( f ) = =

∫ ∞

−∞
φXX (τ)e−j2π f τ dτ, (A.93)

φXX (τ) =
∫ ∞

−∞
SXX( f )ej2π f τ d f . (A.94)

If X(t) is a real-valued wide-sense stationary random process, then its autocorrela-
tion function φXX (τ) is real and even. Therefore, SXX(− f ) = SXX ( f ) meaning that
the power spectrum SXX ( f ) is also real and even. If Z(t) is a complex-valued wide-
sense stationary random process, then φZZ(τ) = φ∗

ZZ(−τ), and S∗
ZZ( f ) = SZZ( f )

meaning that the power spectrum SZZ( f ) is real but not necessarily even.
The power, P, in a wide-sense stationary random process X(t) is

P = E[X2(t)]

= φXX (0)

=

∫ ∞

−∞
SXX( f )d f

a result known as Parseval’s theorem.
The cross psd between two random processes X(t) and Y (t) is

SXY ( f ) =
∫ ∞

−∞
φXY (τ)e−j2π f τ dτ. (A.95)

If X(t) and Y (t) are both real-valued random processes, then

φXY (τ) = φY X(τ)

and
SXY ( f ) = SYX (− f ).

If X(t) and Y (t) are complex-valued random processes, then

φ∗
XY (τ) = φY X (−τ)

and

S∗
XY ( f ) = SYX ( f ).
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Fig. A.2 Random process
through a linear system

A.5.5 Random Processes Filtered by Linear Systems

Consider the linear system with impulse response h(t), shown in Fig. A.2. Suppose
that the input to the linear system is a real-valued wide sense stationary random
process X(t), with mean μX and autocorrelation φXX (τ). The input and output are
related by the convolution integral

Y (t) =
∫ ∞

−∞
h(τ)X(t − τ)dτ.

Hence,
Y ( f ) = H( f )X( f ).

The output mean is

μY =

∫ ∞

−∞
h(τ)E[X(t − τ)]dτ = μX

∫ ∞

−∞
h(τ)dτ = μX H(0),

which is equal to the input mean multiplied by the d.c. gain of the filter.
The output autocorrelation function is

φYY (τ) = E[Y (t)Y (t + τ)]

= E

[∫ ∞

−∞
h(β )X(t −β )dβ

∫ ∞

−∞
h(α)X(t + τ −α)dα

]

=

∫ ∞

−∞

∫ ∞

−∞
h(β )h(α)φXX (τ −α +β )dβ dα

=

∫ ∞

−∞
h(α)

∫ ∞

−∞
h(β )φXX (τ +β −α)dβ dα

=

(∫ ∞

−∞
h(β )φXX (τ +β )dβ

)

∗ h(τ)

= h(−τ)∗φXX(τ)∗ h(τ).
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Taking the Fourier transform of both sides, the power density spectrum of the output
process Y (t) is

SYY ( f ) = H( f )H∗( f )SXX ( f )

= |H( f )|2 SXX( f ).

Example A.7:
Consider the linear system shown in Fig. A.2. In this example, we will find

the cross-correlation between the input process X(t) and the output Y (t). The
cross-correlation φXY (τ) is given by

φXY (τ) = E[X(t)Y (t + τ)]

= E

[

X(t)
∫ ∞

−∞
h(α)X(t + τ −α)dα

]

=

∫ ∞

−∞
h(α)E[X(t)X(t + τ −α)]dα

=

∫ ∞

−∞
h(α)φXX (τ −α)dα

= h(τ)∗φXX(τ).

Also,
SXY ( f ) = H( f )SXX ( f ).

Example A.8:
Suppose that a real-valued Gaussian random process X(t) with mean μX

and covariance function λXX(τ) is passed through the linear filter shown in
Fig. A.2. In this example, we will find the joint density of the random variables
X1 = X(t1) and X2 =Y (t2). We first note that if a Gaussian random process is
passed through a linear filter, then the output process will also be Gaussian.
This is due to the fact that a sum of Gaussian random variables will yield
another Gaussian random variable. Hence, X1 and X2 have a joint Gaussian
density function as defined in (A.43) that is completely described in terms of
their means and covariances.

Step 1: Obtain the mean and covariance matrix of X1 and X2.
The cross-covariance of X1 and X2 is

λX1X2(τ) = E [(X(t)− μX)(Y (t + τ)− μY )]

= E [X(t)Y (t + τ)]− μY μX .
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Now μY = H(0)μX . Also, from the previous example

E[X(t)Y (t + τ)] =
∫ ∞

−∞
h(α)φXX (τ −α)dα

=

∫ ∞

−∞
h(α)[λXX (τ −α)+ μ2

X ]dα

=
∫ ∞

−∞
h(α)λXX (τ −α)dα +H(0)μ2

X .

Therefore,

λX1X2(τ) =
∫ ∞

−∞
h(α)λXX(τ −α)dα = h(τ)∗λXX(τ).

Also

λX2X1(τ) = λX1X2(−τ) = λX1X2(τ),

λX1X1(τ) = λXX(τ),

λX2X2(τ) = h(τ)∗ h(−τ)∗λXX(τ),

where the first line follows from the even property of the autocovariance
function. Hence, the covariance matrix is

Λ =

[
λX1X1(0) λX1X2(τ)
λX2X1(τ) λX2X2(0)

]

=

[
λXX(0) h(τ)∗λXX(τ)

h(τ)∗λXX(τ) h(τ)∗ h(−τ)∗λXX(τ) |τ=0

]

Step 2: Write the joint density function of X1 and X2.
Let

X = (X1,X2)
T,

x = (x1,x2)
T,

μX = (μX ,μY )
T = (μX ,H(0)μX)

T.

Then

PX(x) =
1

2π |Λ|1/2
exp

{

−1
2
(z− μX )

TΛ−1(z− μX)

}

.



A.5 Random Processes 803

A.5.6 Cyclostationary Random Processes

Consider the random process

X(t) =
∞

∑
n=−∞

anψ(t − nT ),

where {an} is a sequence of complex random variables with mean μa and autocorre-
lation μa and autocorrelation φaa(n) = 1

2 E[aka∗
k+n], and ψ(t) is a pulse having finite

energy. Note that the mean of X(t)

μX(t) = μa

∞

∑
n=−∞

ψ(t − nT )

is periodic in t with period T . The autocorrelation function of X(t) is

φXX (t, t + τ) =
1
2

E[X(t)X∗(t + τ)]

=
1
2

E

[
∞

∑
n=−∞

anψ(t − nT)
∞

∑
m=−∞

a∗
mψ(t + τ −mT)

]

=
∞

∑
n=−∞

∞

∑
m=−∞

φaa(m− n)ψ(t − nT)ψ(t + τ −mT).

It is relatively straightforward to show that

φXX (t + kT, t + τ + kT ) = φXX (t, t + τ).

Therefore, the autocorrelation function φXX (t, t + τ) is periodic in t with period T .
Such a process with a periodic mean and autocorrelation function is said to be
cyclostationary or periodic wide sense stationary.

The power spectrum of a cyclostationary random process X(t) can be computed
by first determining the time-average autocorrelation

φXX (τ) = 〈φXX (t, t + τ)〉= 1
T

∫

T
φXX (t, t + τ)dt

and then taking the Fourier transform in (A.93).
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A.5.7 Discrete-Time Random Processes

Let Xn ≡ X(n), where n is an integer time variable, be a complex-valued discrete-
time random process. Then the mth moment of Xn is

E[Xm
n ] =

∫ ∞

−∞
xm

n pX (xn)dxn. (A.96)

The autocorrelation function of Xn is

φXX (n,k) =
1
2

E[XnX∗
k ] =

1
2

∫ ∞

−∞

∫ ∞

−∞
xnx∗k pXn,Xk (xn,xk)dxndxk (A.97)

and the autocovariance function is

λXX(n,k) = φ(n,k)− 1
2

E[Xn]E[X∗
k ]. (A.98)

If Xn is a wide sense stationary discrete-time random process, then

φXX (n,k) = φXX (k− n), (A.99)

λXX(n,k) = λXX(k− n) = φXX (k− n)− 1
2
|μX |2. (A.100)

From Parseval’s theorem, the total power in the process Xn is

P =
1
2

E[|Xn|2] = φXX (0). (A.101)

The power spectrum of a discrete-time random process Xn is the discrete-time
Fourier transform of the autocorrelation function

SXX( f ) =
∞

∑
n=−∞

φXX (n)e
−j2π f n (A.102)

and

φXX (n) =
∫ 1/2

−1/2
SXX ( f )ej2π f nd f . (A.103)

Note that SXX( f ) is periodic in f with a period of unity, that is, SXX ( f ) = SXX ( f +k)
for any integer k. This is a characteristic of any discrete-time random process. For
example, one obtained by sampling a continuous time random process Xn = x(nT ),
where T is the sample period.

Suppose that a wide-sense stationary complex-valued discrete-time random
process Xn is input to a discrete-time linear time-invariant system with impulse
response hn. The process is assumed to have mean μX and autocorrelation function
φXX (n) The transfer function of the filter is
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H( f ) =
∞

∑
n=−∞

hne−j2π f n. (A.104)

The input, Xn, and output, Yn, are related by the convolution sum

Yn =
∞

∑
k=−∞

hkXn−k. (A.105)

The output mean is

μY = E[Yn] =
∞

∑
k=−∞

hkE[Xn−k] = μX

∞

∑
k=−∞

hk = μX H(0). (A.106)

The output autocorrelation is

φYY (k) =
1
2

E[YnY ∗
n+k]

=
1
2

E

[
∞

∑
�=−∞

h�Xn−�

∞

∑
m=−∞

h∗
mX∗

n+k−m

]

=
∞

∑
�=−∞

∞

∑
m=−∞

h�h
∗
m

1
2

E[Xn−�X
∗
n+k−m]

=
∞

∑
�=−∞

∞

∑
m=−∞

h�h
∗
mφXX (k+ �−m)

=
∞

∑
m=−∞

h∗
m

∞

∑
�=−∞

h�φXX (k+ �−m)

= h∗
k ∗
{

∞

∑
�=−∞

h�φXX (k+ �)

}

= h∗
k ∗φXX(k)∗ h−k

= hk ∗φXX(k)∗ h∗
−k, (A.107)

where the convolution operation is understood to be a discrete-time convolution.
The output psd can be obtained by taking the discrete-time Fourier transform of the
autocorrelation function, resulting in

SYY ( f ) = H( f )SXX ( f )H∗( f )

= |H( f )|2 SXX( f ). (A.108)

Once again, SYY ( f ) is periodic in f with a period of unity, that is, SYY ( f ) = SYY

( f + k) for any integer k.
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204. C. S. Patel, G. L. Stüber, and T. G. Pratt, “Comparative Analysis of Statistical Models

for the Simulation of Rayleigh Faded Cellular Channels,” IEEE Trans. Commun., Vol. 53,
pp. 1017–1026, June 2005.

205. M. Pätzold, Mobile Fading Channels. West Sussex, England: Wiley, 2002.
206. M. Pätzold, U. Killat, F. Laue, and Y. Li, “On the statistical properties of determinis-

tic simulation models for mobile fading channels,” IEEE Trans. Veh. Technol., Vol. 47,
pp. 254–269, February 1998.

207. W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2/e. Cambridge, MA: MIT Press,
1972.

208. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communica-
tions – a tutorial,” IEEE Trans. Commun., Vol. 30, pp. 855–884, May 1982.

209. M. F. Pop and N. C. Beaulieu, “Limitations of Sum-of-Sinusoids Fading Channel Simulators,”
IEEE Trans. Commun., Vol. 49, pp. 699–708, April 2001.

210. R. Prasad and J. C. Arnbak, “Comments on “analysis for spectrum efficiency in single
cell trunked and cellular mobile radio”,” IEEE Trans. Veh. Technol., Vol. 37, pp. 220–222,
November 1988.



816 References

211. R. Prasad and A. Kegel, “Effects of Rician faded and log-normal shadowed signals on
spectrum efficiency in microcellular radio,” IEEE Trans. Veh. Technol., Vol. 42, pp. 274–281,
August 1993.

212. R. Prasad, A. Kegel, and J. C. Arnbak, “Analysis of system performance of high-capacity
mobile radio,” in IEEE Veh. Technol. Conf., San Francisco, CA, pp. 306–309, May 1989.

213. R. Prasad and A. Kegel, “Improved assessment of interference limits in cellular radio
performance,” IEEE Trans. Veh. Technol., Vol. 40, pp. 412–419, May 1991.

214. R. Prasad and A. Kegel, “Spectrum efficiency of microcellular systems,” Electronic Letters,
Vol. 27, pp. 423–425, February 1991.

215. R. Price and P. E. Green, “A communication technique for multipath channels,” Proc. IEEE,
Vol. 46, pp. 555–570, March 1958.

216. J. G. Proakis and J. Miller, “An adaptive receiver for digital signaling through channels with
intersymbol interference,” IEEE Trans. Inform. Theory, Vol. 15, pp. 484–497, July 1969.

217. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY: McGraw-Hill,
2007.

218. M. B. Pursley, F. D. Garber, and J. S. Lehnert, “Analysis of generalized quadriphase spread-
spectrum communications,” in IEEE Int. Conf. on Commun., Seattle, WA, pp. 15.3.1–15.3.6,
June 1980.

219. D. Qong and T. J. Lim, “Soft Handoff in CDMA Mobile Systems,” IEEE Personal Commun.
Mag., pp. 6–17, December 1997.

220. S. U. Qureshi, “Adaptive equalization,” Proc. IEEE, Vol. 73, pp. 1349–1387, September 1985.
221. R. Raheli, A. Polydoros, and C.-K. Tzou, “The principle of per-survivor processing: a general

approach to approximate and adaptive MLSE,” in IEEE Global Commun. Conf., pp. 33.3.1–
33.3.6, 1991.

222. J. L. Ramsey, “Realization of optimum interleavers,” IEEE Trans. Inform. Theory, Vol. 16,
pp. 338–345, May 1970.

223. T. Rappaport and L. Milstein, “Effects of path loss and fringe user distribution on CDMA
cellular frequency reuse efficiency,” in IEEE Global Commun. Conf., San Diego, CA,
pp. 500–506, December 1990.

224. Research & Development Center for Radio Communications (RCR), “Digital cellular
telecommunication systems,” April 1991. RCR STD-27.

225. S. Rice, “Statistical properties of a sine wave plus noise,” Bell System Tech. J., Vol. 27,
pp. 109–157, January 1948.

226. A. Rustako, N. Amitay, G. Owens, and R. Roman, “Radio propagation at microwave
frequencies for line-of-sight microcellular mobile and personal communications,” IEEE
Trans. Veh. Technol., Vol. 40, pp. 203–210, February 1991.

227. J. Salz, “Optimum mean-square decision-feedback equalization,” Bell System Tech. J.,
Vol. 52, pp. 1341–1373, October 1973.

228. A. Sampath and J. Holtzman, “Estimation of maximum Doppler frequency for handoff
decisions,” in IEEE Veh. Technol. Conf., Secaucus, NJ, pp. 859–862, May 1993.

229. H. Sari and G. Karam, “Orthogonal frequency-division multiple access and its application
to CATV networks,” European Transactions on Communications, Vol. 45, pp. 507–516,
December 1998.

230. H. Sari, G. Karam, and I. Jeanclaud, “Channel equalization and carrier synchronization in
OFDM systems,” in Audio and Video Digital Radio Broadcasting Systems and Techniques,
R. de Gaudenzi and M. Luise, Eds., Elsevier Science Publishers, Amsterdam, Netherlands,
pp. 191–202, 1994.

231. H. Sari, G. Karam, and I. Jeanclaud, “Frequency-domain equalization of mobile radio and
terrestrial broadcast channels,” in IEEE Global Commun. Conf., San Francisco, CA, pp. 1–5,
1994.

232. H. Sari, G. Karam, and I. Jeanclaud, “Transmission techniques for digital terrestrial TV
broadcasting,” IEEE Commun. Mag., Vol. 33, pp. 100–109, February 1995.

233. A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Acoutics, Speech
and Signal Proc., Vol. 50, pp. 2563–2579, October 2002.



References 817

234. D. Schleher, “Generalized Gram-Charlier series with application to the sum of lognormal
variates,” IEEE Trans. Inform. Theory, Vol. 23, pp. 275–280, March 1977.

235. T. A. Schonhoff, “Symbol error probabilities for M-ary CPFSK: Coherent and noncoherent
detection,” IEEE Trans. Commun., Vol. 24, pp. 644–652, June 1976.

236. S. Schwartz and Y. S. Yeh, “On the distribution function and moments of power sums with
log-normal components,” Bell System Tech. J., Vol. 61, pp. 1441–1462, September 1982.

237. M. Serizawa and J. Murakami, “Phase tracking Viterbi demodulator,” Electronics Letters,
Vol. 40, pp. 792–794, 1989.

238. N. Seshadri, “Joint data and channel estimation using fast blind trellis search techniques,” in
IEEE Global Commun. Conf., San Diego, CA, pp. 1659–1663, 1990.

239. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Tech. J., Vol. 27,
pp. 379–423 and 623–656, 1948.
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Reverse link, 683
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CDMA (cont.)
power control, 7
Reverse link capacity, 669

cdma2000, 9, 10
Cell breathing, 24
Cell capacity, 35
Cell Sectoring, 622

Directional Antennas, 622
Cell Splitting, 624
Cell splitting

channel segmenting, 626
overlaid cells, 626
power reduction, 625

Cellular Architectures
Cell Sectoring, 622
OFDMA, 621
TDMA, 621

Cellular architectures
CDMA, 665

Selective transmit diversity, 692
CDMA hierarchical, 680
Cell splitting, 624
Cluster planning, 631
Fractional reuse, 626
Hierarchical maximum ratio combining,

680
macrodiversity, 653
Multi-carrier, 583
OFDMA, 605
Reuse partitioning, 626

CINR estimation, 759
Discrete-time model, 759
Estimation of (I+N), 760

CIR estimation
Estimation of C/(I+N), 762
Training sequence based, 763

Classical beam forming, 357
Cluster Planning

Performance Analysis
Macrocell performance, 638

Adjacent channel interference, 652
Performance Analysis, 637

Downlink C/I analysis, 639
Microcell performance, 644
Uplink CCI analysis, 641

Cluster planning, 631
underlaid microcells, 633
procedure, 632
System architecture, 631

Co-channel demodulation, 428
T/2-spaced receiver, 437

Error probability, 439
Practical receiver, 442
Timing phase sensitivity, 440

Channel model, 428
Discrete-time channel model, 432
J-MLSE receiver, 429
Pairwise error probability, 436
Viterbi algorithm, 435

Co-channel interference, 21
Log-normal interferers, 167

Farley’s method, 172
Fenton-Wilkinson method, 168
Schwartz-and-Yeh method, 170

Multiple Log-normal Interferers, 175
Multiple log-normal Nakagami interferers,

179
outage, 165
Ricean/Multiple Rayleigh interferers, 176

Code Performance
Flat fading, 501

Coherence bandwidth, 95
Coherence time, 96
Coherent detection, 275

Correlation detector, 277
MAP receiver, 275
Matched filter detector, 277
Maximum likelihood receiver, 276
Quadrature demodulator, 277

Complementary codes, 545
Convolutional codes, 471

BCJR algorithm, 482
Encoder, 471

Constraint length, 471
Finite-state machine, 471
Modified state diagram, 475
Transfer function, 476

Encoder state, 474
Generator polynomials, 473
Generator sequences, 472
Recursive systematic codes, 477
State diagram, 474
Systematic, 474
Total encoder memory, 474
Trellis diagram, 474
Union bound, 494
Union-Chernoff bound, 496
Viterbi algorithm, 479

Convolutional Interleaver, 500
Correlation functions, 91
COST 207 models, 114, 146
COST 259 models, 115, 147
Coverage, 29
CPFSK, 221

Power spectrum, 257
CPM, 219

CPFSK, 221
Detection, 316



Index 823

Coherent detector, 317
Non-coherent detector, 317

excess phase, 220
Frequency Shaping function

Full response, 220
Partial response, 220

Frequency shaping function, 220
Full Response, 221
GMSK, 228
Laurent’s decomposition, 231
LGMSK, 231
Modulation index, 220
MSK, 222
Partial response, 223

Phase states, 226
Shaping functions, 223

Phase shaping function, 220
Phase tree, 221
Phase trellis, 222
Power spectrum, 251
TFM, 233

GTFM, 236
cyclostationary random process, 238

D
DDFSE, 409
Decision feedback equalizer, 398

Adaptive solution, 400
Performance, 401
Tap solution, 399

DECT, 13
Differential detection, 306

Binary DPSK, 307
Error Probability

π/4-DQPSK, 310
Error probability, 306

Binary DPSK, 307
Differential encoding, 293
Digital modulation

π/4-DQPSK, 208
Signal representation

Standard form, 190
CPFSK, 221
CPM, 219
GMSK, 228
LGMSK, 231
MSK, 222
Multiresolution modulation, 216
Nyquist pulse shaping, 198
OFDM, 213

ICI, 302
OQPSK, 207
Orthogonal modulation, 210
Power spectrum, 237

PSK, 206
QAM, 203
Signal representation, 190

Quadrature form, 191
Signal Correlation, 196
Complex envelope, 190
Correlation, 198
Envelope-phase form, 191
Euclidean distance, 198
Generalized shaping function, 191
Signal Energy, 196
Signal energy, 197
Vector space representation, 191

TFM, 233
Vector-space representation, 272
vector-space representation

Gram-Schmidt orthonormalization,
192

Directional antennas, 622
Diversity

Macrodiversity, 27
multipath diversity, 566

Diversity techniques, 325
Diversity combining, 326
Diversity combining

Equal gain, 335
Maximal ratio, 331
Postdetection equal gain, 340
Selective, 328
Square-Law Combining, 342
Switched, 337

Optimum Combining, 346
Performance, 350

Transmit Diversity, 362
Alamouti, 363

Types, 325
Doppler shift, 46
Doppler spectrum, 52

Bandpass, 53
DS spread spectrum, 528

Basic receiver, 531
frequency-selective fading, 563

RAKE receiver, 565
tapped delay line model, 565

long code, 529
PN chip, 529
Power spectrum, 545
processing gain, 529
short code, 529
Short code design, 559
spreading waveform, 528
Tone interference, 549

Long code, 560
Short code, 553

Duplexer, 3
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E
Envelope correlation, 49, 64
Envelope distribution, 58
Envelope fading, 44
Envelope phase, 63
Envelope spectrum, 64
Equalizers

Sequence estimation, 401
Symbol-by-symbol, 387

Decision feedback equalizer, 398
Minimum mean-square-error, 393
Linear, 387
Zero-forcing, 388

Erlang capacity, 36
Erlang-B formula, 34
Erlang-C formula, 40
Error probability, 280

PAM, 294
Biorthogonal signals, 299
Bit vs. symbol error, 284

Equally likely symbol errors, 285
Gray coding, 284

Differential PSK, 293
Lower bounds, 284
MSK, 306
OFDM, 300
Orthogonal signals

Coherent detection, 298
Pairwise error probability, 281
PSK, 287

Rayleigh fading, 291
QAM, 296

Rayleigh fading, 297
Rotational invariance, 285
Translational invariance, 286
Upper bounds, 282

Union bound, 282
EV-DO, 10
Events

Mutually exclusive, 772
Statistically independent, 772

F
Fading, 44
Fading Simulators

Clarke’s model, 103
Deterministic Model, 108
Jakes’ model, 103
Multiple faded envelopes, 107
Statistical Model, 109
Sum of sinusoids method, 102

Fading simulators, 96
Filtered Gaussian noise, 96

IDFT method, 97
IIR Filtering method, 101
Mobile-to-mobile channels, 117

Deterministic model, 118
Statistical model, 119

Wide-band channels, 111
COST 207 models, 114
COST 259 models, 115
Symbol-spaced model, 122

FH spread spectrum, 532
slow frequency hopped, 532
fast frequency hopped, 533

Flat fading, 49
Folded spectrum, 200
Fractional reuse, 626
Frequency reuse, 17

Co-channel reuse distance, 17
Co-channel reuse factor, 17
interference neighborhood, 634
Microcells, 17
Outage, 21
Reuse cluster, 17
universal, 668

Frequency selective fading, 49
Frequency spreading, 48
Frequency-selective fading, 89

correlation functions, 91
transmission functions, 89
Coherence bandwidth, 95
Coherence time, 96
Power delay profile, 94
Scattering function, 96
Uncorrelated scattering channel, 93
Wide sense stationary channel, 92
Wide sense stationary uncorrelated

scattering channel, 93
FSK, 210

G
Generalized tamed frequency modulation, 236
GMSK, 228

Frequency shaping pulse, 229
Gaussian filter, 229
Power spectrum, 260

Gold sequences, 540
Properties, 540

Gray coding, 284
GSM, 4

H
Hadamard matrix, 211, 542
Handoff algorithms, 706
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Velocity adaptive
Performance, 733

Backward, 706
Direction biased, 711
Forward, 706
Hard

Signal strength, 710
Mobile assisted, 706, 710
Mobile controlled, 706
Network-controlled, 706
Soft

C/I-based, 712
Velocity adaptive, 730

Handoff gain, 27
Handoffs

analysis
co-channel interference, 736

Hard, 707
Analysis, 734
Corner effect, 707
Hysteresis, 707

Intercell handoff, 705
Intracell handoff, 705
Signal strength averaging, 714
Soft, 708

Active set, 747
Analysis, 740, 747
Interference analysis, 742
Power control, 709

Velocity estimation, 718
Hard decision decoding, 494
Hard handoff, 27
HSPA, 11

I
IEEE802.11, 14
IEEE802.15, 15
Interference loading, 24
Interleaving, 498

S-random, 514
Bit interleaver, 498
Block Interleaver, 498
Convolutional Interleaver, 500
Random, 514
Symbol interleaver, 498

Intersymbol interference, 199
IS-54/136, 6
IS-95, 6
ISI channels

Discrete-time channel model, 377
Channel impulse response, 382
Diversity reception, 383
Minimum energy property, 379

Minimum phase, 378
Noise whitening filter, 378

Discrete-time white noise channel model,
381

Fractionally-spaced receiver, 384
ISI channel modeling, 374
ISI coefficients, 376
Optimum receiver, 375
quasi-static fading, 383
Vector-space representation, 375

Isotropic scattering, 51

K
Kasami sequences, 541

Construction, 541
Kronecker product, 87

L
Laurent’s decomposition, 231
Level crossing rate, 70
LGMSK, 231
Link Budget

Interference margin, 24
Link budget, 22

Cell breathing, 24
Handoff gain, 25
Interference loading, 24
Maximum path loss, 23
Receiver sensitivity, 23
Shadow margin, 25

Link imbalance, 33
Log-normal approximations

Farley’s method, 172
Fenton-Wilkonson method, 168
Schwartz-Yeh method, 170

LTE-A, 12

M
Macrodiversity, 653

Probability of outage, 653
Shadow correlation, 655

Microcells, 17
Highway microcells, 18
Manhattan microcells, 18

Microcellular systems
overlay/underlay

micro area, 632
MIMO

co-channel demodulation, 428
MIMO Channels, 84

Analytical models, 86
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MIMO Channels (cont.)
Kronecker model, 87
Physical models, 85
Weichselberger model, 88

Minimum mean-square error equalizer, 393
Adaptive solution, 395
Performance, 396
Tap solution, 393

MLSE, 401
T/2-spaced receiver

Practical receiver, 426
Timing phase sensitivity, 424

Adaptive receiver, 407
branch metric, 404
Error event, 413
Error probability, 413

T/2-spaced receiver, 421
Fading ISI channels, 417
Pairwise error probability, 415
Static ISI channels, 415
Union bound, 413

Fractionally-spaced receiver, 408, 426
Likelihood function, 402
LMS algorithm, 407
Log-likelihood function, 403
MIMO receivers

IRC receiver, 444
Per survivor processing, 408
RLS algorithm, 407
State diagram, 402
states, 402
Trellis diagram, 402
Viterbi algorithm, 404

Mobile-to-mobile channels
Reference model, 82

Modulation
bandwidth efficiency, 189
desirable properties, 189

Moments
Central moment, 773
Characteristic function, 774
Generating function, 774
Variance, 773

MSK, 222
Error Probability, 306
OQASK equivalent, 223
Power spectrum, 259

Multi-carrier, 583
Multi-path fading

Statistical characterization, 89
Multipath, 43
Multipath fading, 19

Flat
Rayleigh, 59

Multipath propagation, 43
Multipath-fading

Average fade duration, 73
Doppler spectrum, 52
Envelope correlation, 49, 64
Envelope distribution, 58
Flat fading, 49
Frequency selective fading, 49
Level crossing rate, 70
Nakagami fading, 60
Phase distribution, 58
Ricean fading, 59
Space-time correlation, 74
Squared-envelope correlation, 67
Zero crossing rate, 72

Multiple-input multiple-output channels, 84
Multiresolution modulation, 216
Multiuser Detection, 572

Decorrelator Detector, 575
MMSE Detector, 576
Optimum Detector, 572

N
Nakagami fading, 60

Shape factor, 61
Non-coherent detection

Error probability, 313
Square-law detector, 313

Noncoherent detection, 311
Nyquist frequency, 201
Nyquist Pulse shaping, 198
Nyquist pulse shaping

Folded spectrum, 200
Ideal Nyquist pulse, 201
Nyquist first criterion, 199
Raised cosine, 202

Roll-off factor, 202
Root-raised cosine, 202

O
OFDM, 213

Adaptive Bit Loading, 215
Channel estimation, 597
Complex envelope, 214
cyclic suffix, 218
Error probability, 300

Interchannel interference, 302
FFT implementation, 217
Guard interval, 585
ISI channels, 584
Power spectrum, 247

IDFT implementation, 248
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Residual ISI, 587
Residual ISI cancelation, 593

OFDMA, 605
Forward link, 606

Receiver, 610
Transmitter, 606

Frequency planning, 628
reuse partitioning, 630

PAPR, 612
Raised cosine windowing, 608
Reverse link, 611
Sub-carrier allocation, 609

Clustered carrier, 609
Random interleaving, 610
Spaced carrier, 610

Time-domain windowing, 606
OQPSK, 207

Power spectrum, 246
Orthogonal modulation

Bi-orthogonal signals, 212
Binary orthogonal codes, 211
FSK, 210
Orthogonal multipulse modulation, 213
Walsh-Hadamard sequences, 543

Orthogonal multipulse modulation, 213
Orthogonal signals

Error Probability
Coherent Detection, 298

Error probability
Non-coherent detection, 313

Outage, 21
Co-channel interference, 21
Thermal noise, 21

P
Pairwise error probability, 281
PAM, 206

Constellations, 206
Error probability, 294

Parseval’s theorem, 799
Path loss, 19

Path loss exponent, 19
Path loss Models

Empirical Models, 136
Path loss models, 132

CCIR model, 137
COST231-Hata model, 140
COST231-Walfish-Ikegami model, 141
flat Earth path loss, 133
free space path loss, 133
Indoor microcells, 146
Lee’s area-to-area model, 138
Okumura-Hata model, 136

Street microcells, 143
Corner effect, 144

Two-slope model, 143
Personal Digital Cellular, 8
Phase distribution, 58
PHS, 13
Power control, 709
Power delay profile, 94

average delay, 94
Delay spread, 94

Power spectral densities, 799
Cross, 799

Power spectrrum
CPFSK, 257

Power spectrum, 237
π/4-DQPSK, 246
Complex envelope, 238

Linear full response modulation, 242
Linear partial response modulation,

243
DS spread spectrum, 545
full response CPM, 251
GMSK, 260
MSK, 259
OFDM, 247

IDFT implementation, 248
OQPSK, 246
PSK, 246
QAM, 244
TFM, 260

Probability
Bayes’ theorem, 773
cdf, 774
cdfc, 774
Complementary error function, 778
Conditional, 771
Error function, 778
pdf, 773
Total probability, 772

Probability distributions, 776
Binomial, 776
Central chi-square, 783
Complex multivariate Gaussian, 779
Exponential, 784
Gaussian, 777
Geometric, 777
Multivariate Gaussian, 778
Non-central chi-square, 784
Poisson, 777
Rayleigh, 781
Rice, 782

PSK, 206
Error Probability, 287
Power spectrum, 246
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Pulse shaping
Partial response

Duobinary, 243
Modified duobinary, 244

Q
QAM, 203

Error probability, 296
Power spectrum, 244
Signal constellations, 204

R
Radio propagation

Diffraction, 19
Fixed-to-mobile Channels, 46
MIMO Channels, 84
Mobile-to-mobile channels, 81
Multipath fading, 19
Path loss, 19, 20
Reflections, 19
Scattering, 19

Raised cosine pulse, 202
RAKE receiver, 565

performance, 567
Random processes, 789

Autocorrelation, 791
Autocovariance, 791
Complex-valued, 797
Covariance matrix, 795
Crosscorrelation, 795
Crosscovariance, 795
Cyclostationary, 237, 803
Discrete-time, 804
Ergodic, 792

Autocorrelation, 792
Mean, 792

Linear systems, 800
Orthogonal, 796
Statistically independent, 796
Strictly stationary, 790
Uncorrelated, 796
Wide sense stationary, 791

Rayleigh fading, 58
Rayleigh quotient, 417
Receiver sensitivity, 23
Recursive systematic convolutional codes, 477
Reuse partitioning, 626

cell splitting, 628
Rice factor, 60
Ricean fading, 59

Aulin’s model, 59
Rice factor, 60

Root-raised cosine pulse, 202
RSSE, 411

subset transition, 412
subset trellis, 412
subset-state, 412

S
SC-FDE, 600

MMSE, 604
Zero forcing, 603

SC-FDMA, 612
Frequency-domain equalization, 615
PAPR, 616

Root-raised cosine filtering, 616
Receiver, 612
Sub-carrier allocation

Interleaved, 613
Localized, 614

Transmitter, 612
Scattering function, 96
Sequence estimation

DDFSE, 409
MLSE, 401
RSSE, 411

Shadowing, 20, 45, 126
area mean, 127
Composite shadow-fading distributions,

130
Gamma-log-normal, 132

local mean, 127
Location area, 127
Shadow standard deviation, 20
simulation, 129

Signal strength averaging, 714
Sample averaging, 716
Window length, 714

Single-carrier frequency-domain equalization,
600

Singleton bound, 462
Soft decision decoding, 494
Soft handoff, 7, 27
Space-time block codes, 466

Alamouti code, 466
Code rate, 466
Complex orthogonal codes, 469
Decoding orthogonal codes, 470
orthogonal codes, 466
Real orthogonal codes, 467

Space-time codes
design, 507
determinant criterion, 510
rank criterion, 509
Trellis codes, 510
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Space-time correlation, 74
base station, 77

Space-time trellis codes, 510
Decoder, 512
Encoder description, 510
Viterbi algorithm, 513

Spatial efficiency, 32
Spectral efficiency, 31

Bandwidth efficiency, 32
Spatial efficiency, 32
Trunking efficiency, 34

Spread spectrum, 527
Spreading

dual-channel quaternary, 531
balanced quaternary, 531
Complex, 529
simple binary, 531

Spreading sequences, 534
full period autocorrelation, 534
aperiodic autocorrelation, 534
full period cross-correlation, 534
partial period correlation, 534

Spreading waveforms, 535
m-sequences, 537
autocorrelation, 536
Barker sequences, 542
Complementary codes, 545
Gold sequences, 540
Kasami sequences, 541
variable length orthogonal codes, 543
Walsh-Hadamard sequences, 542

Squared-envelope correlation, 67
squared-envelope spectrum, 67
Standard array decoding, 464
Syndrome decoding, 465

T
Tamed frequency modulation, 233
TCM

Asymptotic coding gain, 493
TFM

Power spectrum, 260
Tone interference, 549
Transmission functions, 89

Delay Doppler-spread function, 91
Impulse response, 89
Output Doppler-spread function, 90
Transfer function, 90

Trellis coded modulation, 488
Design Rules, 504
Encoder, 488
Mapping by set partitioning, 490
Pairwise error probability, 493

Partition chain, 490
Performance AWGN channel, 492
Symbol interleaving, 501
Union bound, 493

Trellis coding
Minimum built-in time diversity, 502
Minimum product squared Euclidean

distance, 503
Trunking efficiency, 34

Erlang-B formula, 34
Turbo codes, 513

Error floor, 519
Parallel decoder, 515
Parallel encoder, 513
Serial Encoder, 517
Uniform interleaver, 519
Weight distribution, 518

Parallel codes, 519
Serial codes, 521
Spectral thinning, 518

U
UMTS, 9, 11
Uncorrelated scattering channel, 93
Upper bounds

Chebyshev bound, 786
Chernoff bound, 496, 786
union-Chernoff bound, 497

V
Variable length orthogonal codes, 543
Vector-space representation, 272

remainder process, 273
sufficient statistics, 275

Velocity estimation, 718
Level crossing rate, 720

Covariance method, 722
Envelope, 720
Zero crossing rate, 720

Sensitivity, 725
Gaussian noise, 728
Sampling density, 731
Scattering distribution, 726

Viterbi algorithm, 404, 479
branch metric, 481
path metric, 480
path metrics, 404
Surviving sequences, 404
survivors, 480

W
Walsh-Hadamard sequence

Orthogonal CDMA, 543
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Walsh-Hadamard sequences, 542
Orthogonal modulation, 543

WCDMA, 9
Wide sense stationary channel, 92
Wide sense stationary uncorrelated scattering

channel, 93
WiMAX, 11
Wireless systems and standards, 2

Third generation cellular systems
UMTS, 9
W-CDMA, 9

Analog cellular systems, 2
Cordless telephones

DECT, 13
PHS, 13

Fourth generation cellular systems,
12

LTE-A, 12
Second generation cellular systems, 3

GSM, 4
IS-54/136, 6

IS-95, 6
Personal Digital Cellular, 8

Third generation cellular systems, 9
cdma2000, 9, 10
EV-DO, 10
HSPA, 11
UMTS, 11
WiMAX, 11

Wireless LANS and PANs, 14
Bluetooth, 15
IEEE802.11, 14
IEEE802.15, 15

Z
Zero crossing rate, 72
Zero-forcing equalizer, 388

Adaptive solution, 390
Data mode, 391
Performance, 391
Tap solution, 389
Training mode, 390
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