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6.1 Introduction

This chapter is intended to identify grid operational management and control

strategies that should be available to deal with a large-scale deployment of electric

plug-in vehicles (EVs). EVs are high flexible loads that can be used as mobile

storage devices, thus being capable of providing several power system services [1].

In fact, EV batteries when in charging mode can behave as controllable loads,

providing spinning reserves as a result of a load decrease or even providing power

back to the grid under the so-called vehicle-to-grid (V2G) mode, helping peak load

demand management. In this way, the growing prospects of an EV market expan-

sion may strengthen the concepts that aim at the active grid management.

Future deployment of EV should also consider the fact that the power system of

the future is facing considerable challenges due to the large-scale integration of

distributed generation (DG) [2], which brought new technical, commercial, and

regulatory challenges to the power systems. In the beginning, DG integration to the

distribution system was made on the basis of a “fit-and-forget” policy. Conse-

quently, while the penetration of DG was moderate, these generation units were

regarded as passive elements within the power system.

In order to accommodate these changes, active management solutions were

sought to deal with more DG, breaking with the conventional paradigm, being

created new concepts such as those of microgrid (MG) and multi-microgrid (MMG)

[3, 4]. Within this new paradigm, MG can be defined as low-voltage (LV) feeders

with several microsources (such as microturbines, micro wind generators, photo-

voltaic panels, etc.) together with storage devices and controllable loads connected

on that same feeder and managed by a hierarchical control system. EV will then

become as an additional actor within these new grid concepts.
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Under this vision, the management and control architecture for the distribution

networks would then follow a hierarchical control structure, with a central control-

ler unit for each control level, one at the high voltage (HV), other at the MV, and the

other at the LV. So, if properly managed, EV may integrate these concepts and

create the opportunity of further DG integration expansion.

This chapter focuses on the effects and benefits of EV and EV active manage-

ment on the power systems, both in steady-state and dynamic operation modes.

Major synergies between utilities and EV owners are envisioned through means of

cost reduction for both parties. By adopting adequate strategies, several benefits for

the environment, quality of life, and social welfare may be achieved.

This chapter addresses the following issues:

• Definition of a specific EV integration framework: Moving from a “fit-and-

forget” policy to the active EV management and control implies the creation

of a conceptual framework. This framework should be able to deal with the

technical aspects of electricity grid operation, with market operation. This will

require an advanced communication infrastructure to link all the involved

players. The technical operation layer considered under this framework is

supposed to be managed by the distribution system operator (DSO) and expands

the concepts of MG and MMG to establish a hierarchical control structure, from

the central distribution management system (DMS) down to specific EV

controllers to be housed in EV charging points. For the market layer, a new

player will have to be considered for aggregating EV and represent them in the

electricity and reserve markets. This layer should have a similar hierarchical

structure to the technical layer, in order to be able to share the communication

path and control entities.

• Development of an approach to create different load scenarios to evaluate EV
grid impacts: This approach will include a stochastic model to simulate the EV

movement in a geographic region, as well as their owners’ behaviors, and a

Monte Carlo simulation method to create the different scenarios of EV load in a

given network. The analysis of a large number of scenarios generated with the

Monte Carlo simulation method is of utmost importance for an accurate evalua-

tion of the grid impacts provoked by EV presence, namely in what concerns

branches’ overload, voltage profiles, and networks’ energy losses.

• Development of charging management strategies, involving the exploitation of
the EV high controllability: These new strategies can be used in real-time

applications to solve the technical problems identified and to maximize the

number of EV that can be safely integrated in the system, without performing

any network reinforcements. These management strategies should, however,

take into account the drivers’ requests concerning the foreseen use of the

vehicles, assuming for that purpose the existence of some smart grid

functionalities, like smart-metering and a reliable and efficient communication

platform.

• Development of an approach to identify the maximum number of EV that can be
integrated in a given network without provoking violations of its components’
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technical limits: This approach will be developed taking into consideration both

uncontrolled and controlled EV charging modes.

• Participation of EV in primary frequency control: In isolated systems, load/

generation imbalances may lead to large frequency deviations. If EVs, when

connected to grid, are capable of adjusting their charging rates or even to inject

power into the grid as a response to frequency changes, increased robustness of

operation will be achieved. Such a control approach should be able to allow

further integration of intermittent RES in these systems.

• Participation of EV in the Automatic Generation Control (AGC): EV may be

integrated in the AGC operation, providing secondary frequency control and

reducing the dependency on the conventional secondary reserves, which may

also lead to an increase in variable renewable power sources into the electrical

system.

6.2 Models for Studies of Electric Vehicle Integration

in the Electrical Power System

6.2.1 Charging Methods

EV batteries are loads with unique characteristics, medium-to-high power con-

sumption over a given period of time and with some degree of predictability. Such

features can either be disregarded, and EVs are faced as regular loads, or they can

be exploited and then specific EV charging strategies might be defined to take

advantage of these unique characteristics.

There are several types of charging solutions being currently adopted [5], which

involve distinct power levels:

• Level 1: Around 3 kW charging power that can be obtained through common

domestic outlets.

• Level 2: 10–20 kW charging power that can be obtained only through dedicated

charging outlet and wiring.

• Level 3: More than 40 kW charging power that can be obtained only through

dedicated charging outlet and wiring and using a dedicated off-board charger for

DC fast charging.

The charging type commonly classified as slow charging refers to level 1,

whereas the fast charging refers to level 3. Level 2 is an intermediary level that

can be considered either as a slow or a fast charging type. Slow charging is assumed

to correspond to level 1, while fast charging includes both level 2 and 3.

Depending on the type of application, EV controllability may vary, and, there-

fore, several control schemes may be adopted. There are different solutions, which

may arise according to EV owners’ needs, namely the following:
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• Domestic or public individual charging points for slow charging: This solution
is the most suited for controlled charging, as EV parked in these places will

remain there for longer periods (overnight stays if it is a residential area or

during working period while in industrial/commercial areas). These charging

points are expected to use level 1 charging rates.

• Charging stations dedicated to fleets of EV: This solution presents high control-

lability potential if EV can be charged in level 1 charging mode, as fleets of

vehicles (such as buses or trucks) typically have well-known mobility patterns.

When level 2 or 3 charging is required, charging management cannot be

performed.

• Public individual charging points for medium charging rates: This solution is

not suited for controlled charging, as EV parked in these places will remain there

for relatively short periods (in public parking lots or in commercial areas like

malls). These charging points are expected to use level-2 charging rates.

• Battery swapping stations: For this solution, controlled charging procedures may

be defined depending on the existing battery stock on the station. Both slow

(level 1) and fast (level 2 or 3) charging methods can be used depending on the

specific demand patterns and on the available stock per station.

• Fast charging stations: As dedicated fast charging stations, this solution is not

suitable for control actions due to the need of having a full charge in the

minimum time span possible. The fast charging stations are expected to use

level-3 charging rates.

In the solutions involving fast charging (level 2 or 3), a full charge might take

<1 h [5]. Due to the urgent needs from the user of these types of services, especially

level-3 clients, no controllability is envisaged. On the other hand, depending on the

EV battery state of charge (SOC) and capacity, full charge solutions involving level

1 might take up to 12 h [5]. Within this charging alternative, it is assumed that EV

owners can choose between a set of four charging options, two passive or uncon-

trolled (dumb charging and multiple tariff) and two active or controlled (smart

charging and V2G), as shown in Fig. 6.1.

Level 1 charging modes

Uncontrolled Controlled

Multiple tariff Smart charging V2GDumb charging

Fig. 6.1 Level 1 charging modes

158 F.J. Soares et al.



6.2.1.1 Dumb Charging

This is an uncontrolled charging mode where EV can be freely operated having no

restrictions or incentives to modulate their charging. Therefore, EVs are regarded as

normal loads, like any other appliance. In dumb charging mode, it is then assumed

that EV owners are completely free to connect and charge their vehicles whenever

they want.

The charging starts automatically when EVs plug in and lasts until its battery is

fully charged or charge is interrupted by the EV owner.

In addition, electricity price for these EV users is assumed to be constant along

the day, what means that no economic incentives are provided in order to encourage

them to put their vehicles charging during the valley hour when the grid operating

conditions are more favorable to an increment in the energy consumption.

For scenarios of large EV deployment with a considerable number of dumb

charging adherents, it is very likely that EV load provokes several technical

problems on the grid (potential large voltage drops and branches overloading).

The only way to tackle the foreseen problems is then to reinforce the existing

generation system and grid infrastructures and plan new networks in such way that

they can fully handle EV grid integration. Yet this is a somewhat expensive solution

that will require high investments in network infrastructures and generation

facilities.

6.2.1.2 Multiple Tariff

As in the previous approach, the dual tariff policy assumes that EV owners are

completely free to charge their vehicles whenever they want.

However, electricity price is assumed not to be constant along the day for EV

users, existing some periods where its cost is lower.

This method is based on the already existing approach where, during valley

hours (normally during the night), electricity price is lower. However, as this is not

an active management strategy, the success of this method depends on the EV

owner willingness to take advantage of this policy. In this case only part of the EV

load eventually would shift toward valley hours.

This solution could have been included in the controlled EV charging/

discharging approaches, but as this type of control is not directly imposed to EV,

it is considered an uncontrolled charging approach.

It should be taken into account that the economic signals provided to EV owners

with the multiple tariff policy might have a perverse effect in scenarios

characterized by a high integration level of EV.

It might happen that a big number of EV connect simultaneously in the begin-

ning of the periods when the electricity cost is lower, making the grid reach its

technical limits.
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6.2.1.3 Smart Charging

The smart charging strategy envisions an active management system where there

exists a hierarchical control structure headed by an EV aggregating entity that is

used to control the EV charging rates.

However, as it will be explained later on this chapter, EV will only be exclu-

sively managed and controlled by the EV aggregators when the grid is operating in

normal conditions.

The EV aggregators’ main functionality will be grouping EV to exploit business

opportunities in the electricity markets, always taking into account the EV owners’

charging requests. They will monitor all the EV under their domain, providing

power or requesting from them the services that they need to cope with what was

previously defined in the markets’ negotiations.

As electricity markets are not usually present in small isolated systems, like the

ones from small islands, the existence of EV aggregators is not required. In these

situations, the smart charging should be controlled by the DSO.

This type of EV charging management is likely to provide the most efficient

usage of the resources available at each moment, since EV aggregators will

naturally try to buy electricity during valley hours in order to provide energy at a

lower cost to their clients. Therefore, the EV aggregators’ market actions are likely

to naturally enable overload prevention and excessive voltage drops, avoiding the

need to invest largely in network reinforcements.

This charging approach also enables EV to provide several ancillary services,

like reserves, since they can increase/decrease their charging rates in order to

deliver upward/downward reserves. EV aggregators are thus capable of also

negotiating reserve provision in the respective electricity markets.

6.2.1.4 Vehicle-to-Grid

This approach is an extension of the previous one where, besides the charging, the

EV aggregators control also the power that EV might inject into the grid.

In the V2G mode of operation, both EV load controllability and storage capabil-

ity are exploited. From the grid perspective, this is the most interesting way of using

EV capabilities given that besides helping managing branches’ overloading and

voltage-related problems in some problematic spots of the grid, EV have also the

capability of providing peak power in order to make the energy demand more

uniform along the day.

Nevertheless, there are also some drawbacks related to the batteries’ degradation

that need to be accounted for. Batteries have a finite number of charge/discharge

cycles, and its usage in a V2Gmode might represent an aggressive operation regime

due to frequent shifts from injecting to absorbing modes. Thus, the economic

incentives to be provided to EV owners must be even higher than that in the

smart charging approach, so that they cover the battery damages owed to its

extensive use.
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As in the smart charging, EVs that adhere to the V2G mode are also capable of

providing several ancillary services to the system. As besides adjusting their

charging rates, EVs are also capable of injecting power into the grid. This operating

mode provides then more flexibility to the EV aggregators regarding reserve

provision negotiations in the market, namely in what concerns downward reserves.

6.2.2 Structure of Control

6.2.2.1 Electric Vehicle Integration in Interconnected Systems

The technical management of an electric power system having a large-scale

deployment of EV will require, for their battery charging, a combination of a

centralized hierarchical management/control structure with a local control located

at the EV grid interface.

The simple use of a smart device interfacing the EV with the grid does not solve

all the problems arising from EV integration in distribution networks. These

interfaces can be rather effective when dealing with the likely occurrence of voltage

drops that may be caused by EV charging, by locally decreasing charging rates

through a voltage droop control approach. However, this local solution fails to

address issues that require a higher control level, such as managing branches’

congestion levels or enabling EV to participate in the electricity markets. For

these cases, coordinated control is required, and so a hierarchical management

and control structure responsible for the entire grid operation, including EV man-

agement, must be available. Therefore, the efficient operation of such a system

depends on the combination/coordination of local and centralized control modes.

The latter control approach relies on the creation of an adequate communication

infrastructure capable of handling all the information that needs to be exchanged

between EV and the central control entities organized in a hierarchical structure.

When operating the grid in normal conditions, EVs will be managed and

controlled by a new (central) entity—the aggregator—whose main functionality

will be grouping EV, according to their owners’ willingness, to exploit business

opportunities in electricity markets [6, 7]. If EV would enter this market individu-

ally, their visibility would be small and, due to their stochastic behavior, rather

unreliable. Nonetheless, if an aggregating entity exists, with the purpose of group-

ing EV to enter in the market negotiations, then the services provided would be

more significant and the confidence on its availability much more accurate.

Nevertheless, even considering the EV aggregators’ activities, a still high degree

of uncertainty will exist related to when and where EV will charge, namely in LV

grids. Due to these uncertainties and assuming that networks will evolve toward a

decentralized generation paradigm, the existence of a grid monitoring structure,

such as the one developed for MG and MMG, will be expected. This structure will

be controlled by the DSO and should be capable of acting over EV charging in
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abnormal operating conditions, i.e., when the grid is being operated near its

technical limits, or in emergency operating modes, e.g., islanded operation [8].

Normal System Operation

In order to manage a large amount of EV parked in a large geographical area, where

MV and LV grids exist, the existence of aggregators will be necessary, in order to

serve as an interface between EV and electricity markets. These aggregators will

have the capability of grouping EV so that together they represent a load/storage

device with the adequate size to participate in electricity markets, in a similar way

as described in [6]. It is important to stress that the aggregator will always take into

account the drivers requests, which will provide information about power demand

and connection period via the smart meter. In the same regional area, several

aggregators might coexist and compete to gather as much clients as possible. This

competition will be beneficial for the EV owner who will be able to choose for his

aggregator the company that better fits his needs.

Given the complexity of the information that an aggregator needs to collect and

process, a hierarchical management structure, independent of the DSO, is suggested

(Fig. 6.2).
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Since each aggregator develops its activities along a large geographical area,

e.g., a country, it will be composed of two different entities: the regional aggrega-

tion unit (RAU) and the micro-grid aggregation unit (MGAU). The RAU is

considered to be located at the HV/MV substation level, communicating with

several downstream MGAU, which, by their turn, will be located at the MV/LV

substation level. The RAU and the MGAU were created in order to decrease

communication and computational burden that a real implementation of the concept

would require. This will provide the aggregator preprocessed information regarding

groups of EV located in the LV and MV grids. Each EV must have a specific

interface unit—the vehicle controller (VC)—to enable bidirectional communica-

tion between the EV and the upstream aggregator. The VC may be located in the

smart meter to which EV will be connected and the smart metering communication

infrastructure should be used to support this architecture. In addition to the VC,

there is a new type of element, the cluster of vehicles controller (CVC), designed to

control the charging of large parking lots (e.g., shopping centers), and fed directly

from the MV network. Individual controllers of EV under a CVC management do

not need to have an active VC communicating with higher hierarchical controllers.

During normal operation, the VC will interact with the MGAU and the CVC

directly with the RAU [7].

The market operation column in the right-hand side of Fig. 6.3 presents an

overview of the aggregators’ market activities.

Based in historical data, the aggregators will forecast the market behavior for the

next day and will prepare their buy/sell bids. Having this defined, a prior negotia-

tion with the DSO might exist to prevent the occurrence of severe congestion and
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voltage problems in the distribution networks. The aggregators will thus present

their day-ahead proposal to the DSO, which will analyze it to evaluate its technical

feasibility. If valid, the aggregator can proceed to the market negotiation. If not, the

DSO will ask the aggregator to make the changes needed to guarantee a safe

operation of the distribution grid in the next day. It is foreseeable that in this

case, the DSO will have to compensate the aggregator for this service.

If market prices of electricity are cost reflective (i.e., include the cost of

electricity generation, transmission, and distribution), a direct consequence of the

hourly energy prices variation will be the flattening of the daily load diagram. As

response to the energy prices, aggregators will naturally perform load shifting in

order to provide energy at a lower cost to their clients. They will buy electricity

from the market mainly during the night, at lower prices, to charge their clients’ EV,

and they may sell it during the day, at peak hours, taking advantage of their clients’

EV storage capability. Aggregators will then compete directly with electricity

retailers for energy acquisition and with Generation Companies (GENCO) for

selling energy.

Taking advantage of EV capability to provide reserves, EV might also offer in

the electricity markets these systems’ services to the transmission system operators

(TSO), competing once again with the GENCO. Also with this approach, it will be

possible to have EV participating in secondary frequency control, through the link

TSO ! aggregator. After market closure, the TSO proceeds to the evaluation of

the load/generation schedules, and if problems on the transmission system are

foreseen, it requests modifications to these schedules until feasible operating

conditions are attained. Everyday the aggregator will manage the EV under its

domain, according to what was previously defined in the market negotiations and

validated by the TSO, by sending set points to VC or CVC related to rates of charge

or requests for provision of ancillary services. To accomplish such a complex task

successfully, it is required that every fixed period (likely to be defined around

15 min), the SOC of each EV battery is communicated to the aggregator, to assure

that, at the end of the charging period, batteries will be charged according to EV

owners’ requests [7].

Additionally, the aggregators can also negotiate with other entities parking and

battery supplying services for EV, as mentioned in [6] and included in Fig. 6.3. Yet

these parallel negotiations will not be addressed in this chapter.

For secondary control, the AGC operation is the centerpiece in the control

hierarchy. The TSO, who is responsible for the AGC, will acquire in the electricity

markets the secondary reserves that it needs from GENCO and aggregators. Then,

in accordance with the secondary reserve services negotiated in the market with the

TSO, the aggregator will receive requests from the AGC to participate in secondary

control. Each aggregator will receive a given set point value of regulation up/down,

split this participation value by EV willing to provide this service, and send set

points to these EV. The set points EV will receive from the aggregator will lead to a

load charging adaptation or to the injection of stored power into the network for the

period of time the AGC requires this service.
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Abnormal System Operation or Emergency Mode

When grid-normal technical operation is compromised, market management can be

overridden by the DSO, through the technical operation control hierarchy,

described in the left-hand side column of Fig. 6.3. For these abnormal or emergency

conditions, it makes sense to adapt the MG and MMG concepts [3, 4]. In fact, as

referred in Sect. 6.1 of this chapter, the MG and MMG already contemplate the

existence of a hierarchical monitoring and management solution that includes a

suitable communication infrastructure, capable of managing the presence of EV,

either individually connected at the LV level or as a cluster of EV (fleet charging

station or fast charging station cases) connected at the MV level. Within an LVMG,

a micro-grid central controller (MGCC) may control EV batteries through the VC.

As depicted in the “Technical Operation” column of Fig. 6.3, within an MMG

environment, the elements of the MV grid, including MG and CVC, can be

technically managed by a control entity, named Central Autonomous Management

Controller (CAMC), to be installed in the HV/MV substation. All the CAMC will

be under the supervision of a single DMS, which is directly controlled by the DSO.

It is important to stress that, in abnormal system operation conditions or in emer-

gency modes, all the technical management and control tasks are a responsibility of

the DSO, being performed by a main control entity, the DMS, and by the other

distributed entities, CAMC and MGCC [3].

6.2.2.2 Grid Control Architecture for Isolated Systems

In small isolated systems, the framework presented in the previous section may not

be applicable, as no real market participation is possible. For these cases, the

electricity supply chain remains vertically integrated. Yet these systems have

evolved by integrating whenever possible intermittent RES in their generation

mix. RES potential is, however, not usually fully explored in order to assure enough

security of operation.

The integration of EV in such systems is a natural occurrence as fossil fuel

scarcity, and environmental concerns are present in both interconnected and

isolated systems. Being low resilience electricity grids, the greatest beneficial and

adverse effects are expected from the integration of these new loads. When EVs are

regarded as common loads, then these systems may get even more fragile. Con-

versely, if properly controlled, these systems could even benefit from further

integration of RES.

The next two sections present the necessary adaptations of the previously

exposed concepts, in order to manage EV in isolated grids. On the one hand, the

MG and MMG concepts will still be required for these systems. On the other hand,

some of the functionalities that were shared among aggregators must now be

assured by the sole energy provider in the island, which typically is also the DSO.
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Normal System Operation

As previously mentioned, small isolated systems are vertically integrated.

Therefore, system operators are responsible for its management at the generation,

transmission, and distribution levels.

Therefore, only the existence of the hierarchical control structure presented in

the Technical Operation column (left hand side) of Fig. 6.3 is necessary. As it is

observable, the complexity of the control structure is smaller than that in

interconnected grids due to the inexistence of market players.

In normal system operation, VC and CVC are controlled by the system

operator’s sub-entities, MGCC and CAMC. Depending on the type of contract

established with EV owners, the system operator may be allowed to control EV

charging rate through those sub-entities. Day ahead, the system operator will run a

smart charging algorithm using forecasted data on load (both typical consumption

and EV) and generation profiles. During the day, it will update this solution,

eventually by providing real-time pricing, so that consumers shift EV charging

for cheaper electricity periods harmonizing the load/generation diagram.

In some cases, regulation may make EV response to the system operator’s

request mandatory, in order to not jeopardize the system operation and, eventually,

allow increased intermittent RES penetration. In these cases, the local government

or the system operator may have to be the co-owner of the EV batteries or provide a

large incentive on EV purchase.

All the ancillary services presented for interconnected systems may also be

provided by EV in isolated grids, provided that EV owners are granted sufficient

incentives. The system operator control structure will be responsible for managing

the provision of these ancillary services.

Abnormal System Operation or Emergency Mode

When grid-normal technical operation is compromised, the system will be

controlled in the same way as described for interconnected systems. The main

difference is that the system operator does not need to override market operation,

as it does not exist.

6.2.3 Modeling EV for Steady-State Studies

The process of modeling EV for steady-state studies can be divided into three main

categories: EV modeling for LV, for MV, and for HV/VHV network studies.

In what regards LV networks, as EV will charge in the majority of the situations

at level 1 power rates (~3 kW), they are very likely to be connected to the LV grids

using single-phase connections. For this reason, aiming at representing EV as

realistic as possible, they should be modeled as single-phase loads. The addition
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of these new single-phase loads to the conventional loads that already exist in LV

grids, which are typically three-phase unbalanced systems, will probably aggravate

the load and voltage imbalances in these networks.

Conversely, for MV network studies, the loads resulting from EV batteries

charging at level 2 and 3, directly connected to the MV grids, should be modeled

as three-phase balanced loads, as the power levels involved in these charging modes

(c.a. 12 and 40 kW, respectively) will probably require three-phase connections in

the majority of the situations. Concerning the load of EV charging at level 1, in the

LV grids downstream the MV network under analysis, they should be aggregated

and represented as a single load value, per LV grid, at the MV bus of the respective

MV/LV substation. This approximation is needed for MV network studies, as in this

type of analysis, the detailed modeling of the LV grids downstream the MV/LV

substations is not usually considered.

Regarding HV networks, the approach described for MV grids can be used to

compute the EV load in the system downstream a given HV network and generate

EV load profiles that can then be allocated to the respective node of the HV

network. This process is similar to the one described for MV grids in what concerns

the modeling of the load of EV charging at level 1 in LV grids. The full analysis of

the HV network under study can then be performed by adding, bus by bus, the

respective EV load profile to the conventional load profile. This procedure can also

be used to compute the EV load and perform impact studies in VHV networks.

In what concerns the modeling of the EV batteries, it was assumed that their

charging is performed always at a constant power rate for a given set point, as the

detailed modeling of the battery charging cycle and of the battery ageing due to the

charging/discharging cycles are not relevant for network impact studies.

6.2.4 Modeling EV for Dynamic Behavior Studies

In Europe, frequency regulation involves three layers of control: primary, second-

ary, and tertiary reserve provision. Primary frequency control is based on a

decentralized proportional control performed on turbine governors, while second-

ary frequency control, performed through an AGC (AGC), requires the calculation

of the integral of the area control error (ACE). Tertiary control is usually activated

manually by the TSO and can only provide upward reserve in case of observed or

expected sustained activation of secondary control [9]. This coordination depends

on an appropriate communication infrastructure through which frequency and

power measurements are obtained and set points are sent to the generation units

that participate in these services. The ultimate goal of the load-frequency coordi-

nated control is to stabilize frequency in the nominal value and keep inter-area

power flows as defined in the daily market negotiations.

When EVs are considered active participants in reserve provision, the currently

existing system should be adapted to include aggregators and EV, as depicted

in Fig. 6.4. Similar to the governors of the conventional generation units, the power
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electronic interfaces of individual EV may react to frequency deviations to

participate in primary control. Regarding secondary control, the AGC communicates

the participation value to the conventional generators and aggregators. The latter

must then divide and redistribute the participation value by the EV under its domain.

6.2.4.1 Electric Vehicles Participation in Primary Frequency Control

The control scheme for EV participation on primary frequency control may have

two loops:

• The droop control that mimics the governors of conventional generators.

• The inertial control that also emulates the behavior of conventional generator so

that EV can provide inertia to the system.

For both control loops, frequency must be read locally and the reaction to

frequency deviations is performed autonomously. This reaction should consist of

providing new set points for the electronic power converter that interfaces EV

batteries and the grid. The control scheme should be installed on every VC, which is

located next to the vehicle charger and has access to the smart grid communication

infrastructure. The latter enables the upstream controllers to be logged about the
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activity of the VC concerning primary control provision and if needed redefine the

droop control parameters or the settings for the inertial emulation.

So apart from the set point imposed by the aggregator or the charging control, the

load value of the EV may be influenced by one of or both the control loops.

Equation (6.1) presents the active power change requirement for the EV due to

the influence of the droop. The load will change by an amount that is obtained by

multiplying a proportional gain by the actual frequency change. The proportional

droop is characterized for being a measure of the sensitivity of the controller to

frequency deviations, expressed in units of power per unit of frequency. While a

frequency error is sustained, the proportional controller will always impose a

change in the load of the EV.

DPDroop ¼ kP � Df ; (6.1)

where DPDroop is the load change provoked by the droop control; kP is the

proportional gain; Df is the frequency deviation.

Equation (6.2) provides the amount of active power change, in case of a load/

generation imbalance, that results from the inertial emulation implementation in

the controllers of EV. In this case, the load will change by an amount equal to the

product of a gain by the derivative of frequency change in respect to time.

The derivative gain is a measure of the sensitivity of the controller to the rate of

change of frequency, expressed in units of power per units of frequency per unit of

time. The influence of this type of control is bigger for periods when frequency is

changing fast and will be null when frequency stabilizes, independently of how big

the absolute frequency error may be. Thus, the action of this control loop is

predominantly noticeable in the initial moments succeeding a disturbance.

DPInertial Emulation ¼ kin � d

dt
Df ; (6.2)

where kin is the derivative gain of the controller.

Considering that kP and kin are real positive values and that the frequency error is
calculated by Df ¼ f0 � f (where f0 is the nominal system frequency), being a real

positive value for underfrequency events and real negative value for overfrequency

events, the load value of an EV if both control loops are active is given by (6.3):

PEV
Load ¼ PEV

Set�point � DPDroop � DPInertial Emulation; (6.3)

wherePEV
Load is the load of the EV; P

EV
Set�point is the required EV load value defined by

the aggregator as a set point.

Yet EV should not react to every small mismatch in power, and so some extra

controls must be added to limit the participation of EV to the cases that really

matter. Figure 6.5 shows schematically a droop configuration that could be

implemented for enabling the EV grid interface control strategy. The plugged-in
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EV providing primary control in steady-state conditions is charging at a given

power rating, with a maximum value equal to its nominal charging power. It may

occur that the EV is not charging in steady state, but is still plugged-in ready to

provide primary control, if power delivery from the EV batteries to the grid is

allowed. The charging reference power, Pref, may be defined in two different ways:

• Set point from the aggregator or the DSO for EVs that adhere to smart charging

schemes

• Local decision of EV owners who do not adhere to smart charging

The charging reference power may change as a function of the set points sent by

the aggregator or the DSO, depending on the strategies for minimizing charging

costs and the occurrence of possible grids technical violations.

A margin between the actual power rating and the maximum power rating may

be imposed to EV participating in primary frequency control, in order to allow the

participation in regulation down.

The maximum power rating, Pmax , is the nominal charging power of the EV,

whereas the minimum power rating,Pmin, is the nominal discharging power, zero or

a value between the minimum and maximum power ratings.

For frequency deviations larger than a defined dead band, the EV battery will

respond according to one of the given slopes. If frequency suffers a negative

deviation, then the battery charging will, first, reduce its power consumption, and,

if frequency decreases further, it may inject power into the grid. Oppositely, if there

is a positive deviation, the battery will increase the power absorbed from the grid.

A dead band, where EVs do not respond to frequency deviations, should be

considered to guarantee longevity of the batteries and thus a beneficial synergy

between parties, the grid operator/aggregator, and the EV owners. This dead band,

as well as the slopes of the droops, should be defined according to not only the

composition of the system, but also the EV owners’ willingness to help with system

frequency regulation and the characteristics of the EV battery.

As to the inertial emulation loop, the implementation may be performed in

different ways in order to restrain the possible actions of EV. A dead band similar
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to the one implemented is also a possibility, but less interesting as the inertial

behavior should be mobilized very fast. So the dead band should be reduced, at least

for negative frequency values, as the most severe events are linked to the loss of

generation capacity, due to either variability of primary resource or tripping of

generation units. In this sense, it may be wise to introduce a saturation following the

derivative of the frequency deviation to block positive rates of change and conse-

quently prevent the action of the inertial emulation loop for periods where genera-

tion exceeds load.

In addition to the control techniques discussed so far, it is still possible to

introduce further control laws, such as voltage control loops. Dealing with fre-

quency and voltage at the same time might end with conflicting signals that may

result in worsening of the operating conditions. Therefore, in case of adoption of the

voltage and frequency controls simultaneously, a merit order should be established.

The frequency control should override the voltage control in case of conflict.

For EV to participate in primary frequency control, a proper electronic interface

control should be adopted, different from a simple diode bridge usually adopted for

charging purposes. Being the system frequency an instantaneous indication of the

power balance in a grid, the active power charging/discharging levels of the EV

batteries must be adaptable by being capable of receiving set points. In this way, a

smart EV grid interface, capable of responding locally to frequency changes, should

be adopted, instead of a passive battery charging solution.

Active and reactive power set points may be sent to the power electronic

converter interfacing EV and the electricity grid. To allow this, a current-controlled

voltage source, a PQ inverter, is suggested [10], as depicted in Fig. 6.6.

This method computes the instantaneous active and reactive components of the

inverter current: the active component is in phase with the voltage and the reactive

component with a 90� (lagging) phase shift, being both limited in the interval

�1; 1½ �, as described in [4].

The active component is used to control the DC link voltage and, consequently,

the inverter active power output, in order to balance the EV battery and inverter

active power output. The reactive component controls the inverter’s reactive power

output. Power variations in EV battery lead to a variation of the DC link voltage,

which is corrected via both proportional–integral regulators (PI-1 and PI-2), by

adjusting the active power output. The frequency control droop present on the VC

will adjust the active power set point of the PQ EV inverter interfaces ðPrefÞ.
To perform dynamic simulations, the model for EV participation on primary

frequency control might be easily implemented in any software that allows using

block diagrams.

Figure 6.7 presents the complete model implemented to provide local primary

frequency control and inertial emulation. In the droop control block diagram, the

frequency deviation signal, Df , goes through a dead band block to prevent EV

charging from being disturbed by minor frequency changes and gets multiplied by

the proportional gain, kP, to determine the contribution of the EV droop for primary

frequency control, DPDroop . In the block diagram of the inertial emulation loop,

the derivative of the input signal, the frequency deviation,Df , is calculated, then the
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Fig. 6.6 PQ inverter control type
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result goes through a saturation block to limit the rates of change and the derivative

gain is applied, kin , to determine the contribution of the EV for primary control

due to the action of the inertial emulation,DPInertial Emulation. Finally, the contribution

of both droop control and inertial emulation is added to the EV load set point,

PEV
Set�point , and a new saturation block assures that the request power for the EV is

within its operation limits. These limits in a real implementation would depend on

the contract established between EV owners and aggregators, being possible to

block V2G capability. The resulting signal will be the new active power set point

value for the power injector that represents the EV—PEV
Load.

There are some simplifications made to implement this model:

• The SOC of the EV battery is assumed to be neither fully discharged nor fully

charged, thus allowing neglecting SOC considerations for the implementation of

the model.

• The EV batteries are expected to react to new set points without delays.

• The state of health of the batteries was not accounted for in this model. It is

assumed that the batteries do not suffer significant damage from providing

primary frequency control.

• As the time periods being studied are of the order of a few seconds, these storage

elements can be modeled as constant DC voltage sources using power electronic

interfaces, DC/AC inverters, to couple them to the grid. These devices act as

controllable AC voltage sources (with very fast output characteristics) to face

sudden system frequency changes.

6.2.4.2 Automatic Generation Control with Electric Vehicles

In secondary frequency control, the AGC operation is the centerpiece in the control

hierarchy. In a scenario characterized by large-scale EV deployment, the TSO, who

is responsible for the AGC, will acquire in the electricity markets the secondary

reserves that it needs from GENCO and/or aggregators.

If a sudden loss of generation or load increase takes place in a control area, the

AGC exploits the available secondary reserves, guaranteed by the reserve market

negotiations, by sending set points to the participants in the secondary frequency

regulation service. If EV aggregators are participating in this service, the AGC will

send set points to aggregators that afterward will distribute their participation

among the EV providing this service by sending individual set points to these

EV. The set points EV will receive from the aggregators will lead to a load charging

adaptation for the period of time the AGC requires this service.

To perform AGC operation with EV, some modifications as presented in

Fig. 6.8, need to be introduced in conventional AGC systems in order to make

the regulation of EV power consumption/output possible in response to deviations

of system frequency, fi , in relation to its reference, fref , and of the tie-lines active

power flow, Pifi , in relation to the interchanges scheduling, Pifref . As in the

conventional AGC, B is the frequency bias that measures the importance of
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correcting the frequency error, when compared with the correction of the

interchange power error; kI is the gain of the integral controller; Peinim is the current

dispatch for machine m, fpm its participation factor; and Pref m is its new active

power set point value. Painik is the current load of EV aggregator k (entity whose

importance will be further developed in this section) and fpAk and Pref ak are the

aggregator k participation factor and new active power set point, respectively.

It should also be considered that the AGC with EV operation has a delay similar

to the conventional AGC, within the 5 s period available for the controller cycle [9].

Yet it may happen that once the aggregators receive the set points from the AGC

unit, there will be another delay to send the final set points to EV, and each EV will

then take some more time before outputting the required value. The former should

assume a value that should not exceed the controller cycle time of the AGC. Both

actions are nearly identical, and the computational burden that the aggregator

endures, distributing its set point among the participating EV possibly already

predetermined once the signal is received, is likely to be lower than that of the

AGC controller, integrating the error signals and distributing the set points

according to the participation factors of the controlled units. The delay on the

action of the individual EV is of the order of magnitude of utmost a 100 ms, being

caused by the electronic interface. This delay should be negligible in the context of

the AGC operation, whose deployment period starts 30 s after the disturbance

and lasts for 15 min. As a matter of fact, the delay caused to the machine response

by their inertia overthrows the full extra delay caused by the binomial aggregator

and EV.

For the purpose of dynamic simulation, EV charging can be modeled, as any

load, as constant power load, constant current load, constant admittance load, or a
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combination of those. The following equations present the mathematical formula-

tion of such a modeling [11]:

P ¼ P0½p1 �V2 þ p2 �V þ p3�; (6.4)

Q ¼ Q0½q1 �V2 þ q2 �V þ q3�; (6.5)

where P is the active power; Q is the reactive power; p1 to p3 and q1 to q3 are

coefficients that define the proportion of each component.

In addition to this dependency on voltage, loads may suffer the influence of

frequency and so (6.4) and (6.5) may be written as follows:

P ¼ P0½p1 �V2 þ p2 �V þ p3�ð1þ kpfDf Þ; (6.6)

Q ¼ Q0½q1 �V2 þ q2 �V þ q3�ð1þ kqfDf Þ; (6.7)

where Df is the frequency deviation; kpf and kqf are coefficients that reflect the

dependency of the load value to Df .
Typically, in dynamic simulation, a simplification is done and all loads are

considered to be of constant admittance type. This occurs due to the fact that is

virtually impossible to achieve perfect knowledge on the loads distributed through

the network that is being studied. Some particular cases, such as networks repre-

sentative of industrial areas, may consider certain portions of the load to have

specific behaviors, and consequently specific models are adopted to study their

influence. This happens in the case where large induction motors or air-

conditioning devices have a large presence, which requires additional load

modeling.

In this particular case, EVs are assumed to be a known proportion of the total

load and so EV load was distinguished from the conventional load. Being interfaced

with the electricity grid by power electronics, EV charging is controlled following

well-known patterns. The constant current, constant voltage charging process of a

lithium-ion battery cell [12], is depicted in Fig. 6.9.

It is observable that current is constant during most of the time, while voltage

slowly varies over time, except for very low values of SOC. When SOC reaches a

high value, then voltage is kept constant and current decreases tending to zero.

AGC operation regards time periods of 15 min. For these small periods of time,

one can assume a constant power load for the EV battery charging process, also

because variations of voltage at EV terminals are quite small during the large

majority of this period of time and can therefore be neglected.

When advanced management strategies are considered, to the adopted model,

extra control loops have to be added to EV loads, enabling them to respond to the

following:

• Frequency, when participating in primary frequency control

• Upstream active power set points, when participating in AGC operation
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6.3 Steady-State Studies of Electric Vehicles Integration

in Distribution Networks

The foreseen deployment of EV will considerably affect the way distribution grids

will be managed and operated. The extra amount of power they will demand from

the grid will oblige DSO to understand the impacts resulting from EV connection

into distribution networks. Several approaches to this problem have been pursued.

As an example, the works published in [14] and [15] present two strategies for

assessing EV grid integration impacts. The work presented in [14] follows a

deterministic strategy to locate EV along the network buses and, consequently,

determine EV loads during an entire day. Conversely, the work presented in [15]

introduced a probabilistic method for determining EV load. Both options proved to

be interesting approaches, though they were able to reveal only the effects of a

possible scenario for a given period. To overcome this limitation, it is important to

develop tools that allow exploring different scenarios in a coordinated way,

enabling the analysis of both average scenarios and extreme case scenarios that

may appear when EVs start being integrated in the networks. Such tools can be used

to enhance the current planning techniques of DSO, allowing them to obtain

additional knowledge on the impacts of a new type of load, so far unknown or

negligible to the electrical power systems, the EV battery charging. Given the fact

that EVs are mobile loads that may appear in almost any bus of a given electricity

network, voltage profiles, lines loading, peak power, and the variations of the

energy losses in the network need to be properly evaluated for the planning

exercise.
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In this sense, two approaches are presented in this section, henceforth referred to

as Methodology 1 and Methodology 2, aiming at performing a steady-state evalua-

tion of the EV impacts in distribution networks, both LV and MV networks. In both

methodologies, the EVs are modeled as described in Sect. 6.2.3. As it will be

discussed in the following sections, charging at levels 2 and 3 was only considered

in Methodology 2.

The first approach, Methodology 1, follows a deterministic method to distribute

EV along the network buses and determine EV loads during an entire day. Three

charging strategies are used to evaluate the EV impacts in the networks, one for

each charging strategy addressed: dumb charging, multiple tariff, and smart charg-

ing.1 An algorithm based in this methodology is also presented, for which main

characteristics are described further ahead in this chapter.

The second approach, Methodology 2, uses a Markov chain to simulate the

expected movement of EV during 1 week and a Monte Carlo simulation method

that allows exploring different scenarios in what regards the EV locations in the

grid and their power requirements [16]. This approach includes a set of manage-

ment and control strategies that may be used by DSO and aggregators to manage the

EV charging in real time, which allow attaining the following objectives:

• Minimizing the deviations between the energy bought in the markets by the

aggregators and the energy sold to EV owners

• Minimizing the renewable energy wasted in systems with a large integration of

intermittent RES

• Flattening, as far as possible, the load diagram of a given network

• Solving technical problems related to voltages outside the allowable limits and

branches’ overloading that might appear in the networks due to EV charging

An algorithm based in Methodology 2 is also presented further ahead in this

chapter.

6.3.1 Identification of EV Integration Limits: Methodology 1

This approach assumes that the load inherent to EV charging will appear in the grid

nodes proportionally to the residential power installed in each node. It allows

evaluating the maximum number of EV that can be safely integrated in a given

distribution network when the different charging strategies are implemented.

1 As the V2Gmode of operation (described in Sect. 6.2.1) is the most aggressive mode for charging

EV, due to possible implications with EV batteries’ life cycle, this option is not likely to be a

reality neither in the short run nor in the medium term. Only in the very long term, when battery

technology has reached a high maturation stage, this strategy may be adopted. For this reason, the

V2G mode of operation was neither considered in the development of Methodologies 1 and 2 nor

in the implementation of these approaches in the steady-state algorithms presented.
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The methods proposed for the dumb charging and multiple tariff are based on a

simple set of rules, whereas the smart charging methodology involves an optimiza-

tion problem with the objective of managing the EV load in order to minimize the

networks’ peak load.

It should be noted that in this methodology, the EV batteries charging was

assumed to be performed always at a constant power rate of 3 kW in all the charging

strategies addressed (at level 1 charging rate, as described in Sect. 6.2.1).

As in this approach it was not taken into account the real amount of energy spent

by EV during their daily journeys, being impossible to know their battery SOC in

the moment they plug in to the grid to recharge, an average charging time of 4 h was

assumed for all the EV. This means that all EV absorb 12 kWh from the grid during

the day under analysis. Assuming an energy consumption of 0.2 kWh/km [17], the

daily energy absorbed would be enough for traveling 60 km without needing to

recharge.

6.3.1.1 Formulation of the Approach

The formulation of this approach is essentially focused on the determination of the

locations and time periods during which EV will be plugged in to the grid for

charging purposes, when the three different charging strategies are adopted.

Thus, its first step is defining the period during which each EV will be connected

to the grid. For that, it is assumed that EVs make only two journeys per day and that

they are plugged in only in the periods between the last journey of 1 day and the first

journey of the next day. The two moments when EVs make their daily journeys are

drawn using the probability distribution presented in Fig. 6.10.

This procedure is constrained by the fact of the charging time being assumed to

be 4 h for all EV. Thus, it is always assured that the time period between the last and

the first journey of the day is at least 4 h.
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The probability distribution in Fig. 6.10 was obtained from a statistical study of

which the main goal was the characterization of the common traffic patterns in a

region in the north of Portugal, covering the city of Porto and other smaller

surrounding cities [18].

The following step of the approach is defining the periods during which EV will

effectively absorb power from the grid. These periods will vary in accordance with

the charging strategy under consideration.

When dumb charging is considered, it is assumed that EV owners are completely

free to connect and charge their vehicles whenever they want. Thus, the charging

starts automatically when EVs are plugged in, right after home arrival, and, as

previously referred, lasts for the following 4 h.

When considering the multiple tariff, it is supposed that the economic incentives

provided with this policy are enough to make the EV owners changing their

charging to the cheaper electricity period.2 Therefore, EV will preferably charge

in the period between 22 and 8 h. They will charge only outside it if they are not

plugged in the required 4 h in the period between 22 and 8 h.

Regarding smart charging, it is assumed the existence of an EV charging

management system that controls the EV charging in order to avoid, as far as

possible, increasing the networks’ peak load. This system provides high flexibility

to the EV charging, and thus it is possible to shift the EV load from the peak to the

valley periods. Following this assumption, the smart charging was formulated as an

optimization problem, as shown below, for which the main objective is the mini-

mization of the networks’ peak load.

min max
t¼1:24 h

Xm
j¼1

CLjt þ
Xn
i¼1

EVCi
t

� �� 3

 !$ %
; (6.8)

subject to

X24
t¼1

EVCi
t ¼ 4;

i 2 1; n½ �
t 2 1; 24½ �

�
; (6.9)

EVPi
t �EVCi

t;
i 2 1; n½ �
t 2 1; 24½ �

�
; (6.10)

where max CLjt þ
Pn

i¼1 EVCi
t

� �� 3
� �j k

represents the network’s peak power, in

kW, given by the maximum value registered along the 24 h of the sum of the

network conventional load and the EV load; CLjt is the conventional load in bus j,

2 The lower electricity price period assumed was that of the dual tariff policy currently

implemented in Portugal: 22–8 h. More information can be found in http://www.edpsu.pt/pt/

particulares/tarifasehorarios/ (in Portuguese).
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in kW, in time step t; EVCi
t is used to define the periods t when EV i will charge; if

EVCi
t ¼ 1, the EV i will charge in moment t, else if EVCi

t ¼ 0, the EV will not

charge; the n� 24 binary variables EVCi
t are the decision variables of the optimiza-

tion problem; t is the time step index; i is the EV index; n is the number of EV

assumed to be within the network’s geographical area; j is the bus index; m is the

number of buses in the network; EVPi
t is used to define the periods t when EV i is

parked and plugged in to the grid; if EVPi
t ¼ 1, the EV i is plugged in in moment t,

else ifEVPi
t ¼ 0, the EV is neither plugged in nor available for charging; the n� 24

binary values EVPi
t are parameters of the optimization problem.

The equality constraint presented in (6.9) assures that all EV will charge exactly

4 h along the day, whereas the condition implemented in (6.10) assures that EV will

only charge when they are plugged in to the grid. The number 3 presented in (6.8) is

referred to the charging rate, in kW, assumed for all the EV.

The problem formulated for the smart charging strategy is a pure integer

problem, as all the decision variables are restricted to be integers.

After determining the periods when EV will charge, in accordance with the

charging strategy addressed, the network buses where EVs plug in for charging are

calculated taking into account the proportion of residential power installed in each

node, as presented in (6.11).

Nr:EVj ¼
LoadRjPm
j¼1 Load

R
j

� n; j 2 1;m½ �; (6.11)

where Nr:EVj is the number of EV allocated to bus j; LoadRj is the residential load,

in kW, installed in bus j;
Pm

j¼1 Load
R
j is the total residential load, in kW, in the

network.

A consequence of (6.11) is that buses with a higher residential load will have

allocated a higher number of EV. Following the results obtained with this equation,

all the EVs are tagged with a bus number, indicating the bus where they plug in for

charging. This procedure allows computing the EV load in the system, node by

node and for each time step.

Finally, the total load in the network with the three charging strategies is

calculated by adding the conventional load to the respective EV load, as follows:

TLtj ¼ CLjt þ
XNr:EVj

k¼1

EVCk
t � 3;

j 2 1;m½ �
k 2 1;Nr:EVj

� �
t 2 1; 24½ �

8<
: ; (6.12)

where TLtj is the total load in bus j, in kW, in time instant t;EVCk
t is the EV charging

vector composed of 24 binary variables used to define the periods t when EV k will
charge; if EVCk

t ¼ 1, the EV k will charge in moment t, else if EVCk
t ¼ 0, the EV

will not charge; k is the index used for the EV allocated to bus j.

180 F.J. Soares et al.



6.3.1.2 Development of the Approach

An algorithm based in the approach proposed can be developed, with the objective

of characterizing the impacts provoked by a given EV integration level in a

distribution network or quantifying the maximum number of EV that can be

integrated in a given network, without violating its components’ technical limits.

The algorithm should include the following steps:

1. Definition of the type of study to be performed (evaluate the impacts of a given

level of EV integration or quantify the maximum number of EVs that can be

safely integrated in a given network).

2. Evaluation of the initial operating conditions of the network (power flow

analysis3), without considering the presence of EV (for comparison purposes).

3. Definition of the number of EVs assumed to be enclosed in the geographical

area covered by the network.

4. Definition of the periods during which each EV will be plugged in.

5. Definition, in accordance with the specificities of the charging strategy being

addressed, of the periods during which EV will effectively absorb power from

the grid (the analysis of the smart charging strategy demands the resolution of

the pure integer optimization problem formulated in (6.8)–(6.10)4).

6. Distribution of the EVs through the network nodes.

7. Calculation of the total load in the network, node by node and for each time

step, by adding the conventional load to the EV load.

8. Evaluation of the new grid operating conditions (power flow analysis).

9. If no technical violations are registered, increase the number of EVs and repeat

steps 4–9 (this step is only performed if the type of study selected in step 1 is

“quantify the maximum number of EVs that can be safely integrated in a given

network”).

10. Store all the relevant data.

The flowchart of the algorithm is presented in Fig. 6.11.

6.3.2 Spatial–Temporal EV Simulation Tool: Methodology 2

Methodology 2 is an improved version of Methodology 1. It fully copes with the

conceptual framework described in Sect. 6.2.2, namely in what regards the smart

charging, which was addressed assuming the possibility of adjusting the EV

3All the required power flows were run using the PSS/E software.
4 The optimization problem was solved using LINGO 13.0, which is an optimization modeling

software that includes a set of built-in solvers for linear, nonlinear, quadratic, quadratically

constrained, second-order cone, stochastic, and integer optimization. More information can be

found in http://www.lindo.com/index.php?option¼com_content&view¼article&id¼2&Itemid¼10
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charging rates between zero and the maximum power rate of the charging point

where a given EV is plugged in (3 kW for level 1, 12 kW for level 2, and 40 kW for

level 3 charging infrastructures, as described in Sect. 6.2.1). This methodology uses

a Markov chain to simulate the expected movement of EV during 1 week and a

Monte Carlo simulation method that allows exploring, in a coordinated way,

different scenarios in what regards the EV locations in the grid and their power

requirements.

Different from Methodology 1, where the period of only 1 day was considered,

with time steps of 1 h, the time horizon of 1 week was considered in Methodology 2,

with time steps of ½ h. This improvement allows not only evaluating the EV

impacts taking into account the load variations that usually occur between week

and weekend days, but also quantifying the EV impacts in time steps shorter than

1 h, as 1 h is a very long period of time during which the network operating

conditions can change considerably. It should be mentioned that the formulation

of this methodology can be easily adapted to analyze the EV impacts during

different periods of time, like 1 year, if the objective is evaluating other seasonal

load variations, like load changes between seasons.

As it will be described later on, this approach also includes a set of management

and control strategies that may be used by DSO and aggregators to manage the EV

charging in real time.

Define the number of EV assumed to be enclosed in the geographical area covered by the network

Read the type of study to be performed

Read network data

START

Compile and store results

Was any technical restriction violated?

No

Increase the number
of EV

No

The study selected was the quantification of the
maximum number of EV that can be safely integrated in the grid? 

Yes

Evaluate the initial grid operating conditions, without the presence of EV (run 24 power flows, one per hour, using PSS/E software)

Define the periods during which each EV will be plugged-in to the grid

Define the periods during which EV will effectively absorb power from the grid

Distribute the EV through the network nodes, proportionally to the residential power installed

Calculate the total load in the network, node by node and for each time step (conventional load + EV load)

Evaluate the new grid operating conditions (run 24 power flows, one per hour, using PSS/E software)

Yes

Fig. 6.11 Flowchart of the algorithm based in Methodology 1
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6.3.2.1 Mathematical Formulations

This section covers the mathematical formulation of the Markov chain used to

simulate the expected movement of the EV during 1 week in the geographical area

covered by a given network, as well as of the set of procedures created to manage

the EV charging in real time.

Electric Vehicle Motion Simulation

The EV movement during 1 week is simulated using a discrete-state and discrete-

time Markov chain [19–21], to define the states of all the EVs at each time step of

30 min. In this Markov chain, it was assumed that, at every unit of time, one and

only one event from a set of a finite number of events can occur to a given EV: EM,

ER, EC, and EI. When the event Ekðk ¼ M;R;C; IÞ occurs, it is said that the EV

passes into the state Ek:

• EM—The EV passes into the state “in movement”

• ER—The EV passes into the state “parked in a residential area”

• EC—The EV passes into the state “parked in a commercial area”

• EI—The EV passes into the state “parked in an industrial area”

As the time terminology will be used, i.e., it is considered that one trial is

performed at every unit of time, when the event Ek occurs at the moment t, it is
represented by Et

k . Besides this, it is assumed that at the initial moment t ¼ 0.

Therefore, E0
k denotes that the initial state of the EV was Ek.

This method is classified as a discrete-time process, given that t is finite and can
be enumerated [19]. As the objective is to simulate EV movement along 1 week

(7 days), 337 time steps of ½ h will be considered. Thus, t 2 0; 336½ �.
One trial is performed initially to define every EV state when t ¼ 0. In this trial,

an EV may be in the state Ek with probability PðEkÞ.
The conditional probability that at the moment t, for t 2 1; 336½ � , a given EV

passes into the state Ek is denoted by ptj!k provided that at t� 1 it was in the state

Ejðj ¼ M;R;C; IÞ:

ptj!k ¼ PðEt
kjEt�1

j Þ: (6.13)

As mentioned above, this sequence of trials forms a Markov chain, given that for

any j and k and for any t 2 1; 336½ �, the equalities

ptj!k ¼ PðEt
kjEt�1

j Þ ¼ PðEt
kjEt�1

j � Et�2
j � . . . � E1

j � E0
j Þ; (6.14)

are satisfied for arbitrary Et�2
j ; . . . ;E1

j ;E
0
j .

This Markov Chain is periodically stationary, or cyclostationary [22], as the

transition probabilities are periodically repeated. The period of this cycle is 1 week
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and will be represented by t. As time steps of ½ h are being considered, t ¼ 7� 4

8 ¼ 336. If the purpose of the study was evaluating the EV impacts during one

complete year (365 days), t would have to be repeated � 52:14 times.

ptj!k ¼ ptþt
j!k: (6.15)

One transition matrix can be created with the transition probabilities ptj!k for

each moment t, where t 2 1; 336½ �. This matrix is denoted by Mt , and given the

cyclostationary properties of this Markov chain, it will be periodically repeated

every t time steps, in accordance with (6.16):

Mt ¼ Mtþt: (6.16)

For a given moment t, the transition matrix assumes the following form:

Mt ¼
ptM!M ptM!R

ptR!M ptR!R

ptM!C ptM!I

ptR!C ptR!I

ptC!M ptC!R

ptI!M ptI!R

ptC!C ptC!I

ptI!C ptI!I

2
664

3
775; (6.17)

where the indexes M, R, C, and I stand for “in movement,” “parked in a residential

area,” “parked in a commercial area,” and “parked in an industrial area,”

respectively.

Logically, all the elements pj!k of the matrix, being probabilities, are

nonnegative.

Supposing that an EV is in the state Ej, the event where, as a result of one trial,

the EV remains in the stateEj or passes to any of the statesEk, where j 6¼ k is the sure
event. Since the events Ek are mutually exclusive, for k ¼ M;R;C; I, the following
equation can be obtained:

P½
X
k

Et
kjEt�1

j � ¼
X
k

ptj!k ¼ 1: (6.18)

Thus, the sum of the terms in each row of the matrixMt equals one. However, the

sum of the terms in a column might be different from one.

Figure 6.12 presents an overview of the Markov chain developed.

As denoted in Fig. 6.12, there are some restrictions when defining the EV states

for each time instant. While EV in movement can keep their state or change for one

of the others, parked EV can only remain in the same state or change to in

movement.

As mentioned previously, the Markov chain developed is cyclostationary and the

period of one complete cycle, t, is 1 week. This cycle is, in fact, a composition of

two sub-cycles with the duration of 1 day: one for the weekdays (repeated five times

in a row) and the other for the weekend days (repeated twice consecutively).
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Therefore, to have the Markov chain completely characterized, it is only needed to

define the initial probabilities, for t ¼ 0, and the state transition probabilities, for

t 2 1; 48½ �, of these to sub-cycles, as shown in (6.19) and (6.20), and then repeat

them to compose the full weekly cycle.

Initial probabilities:

PðEt
kÞ for

t ¼ 0

k ¼ M;R;C; I
:

�
(6.19)

Transition probabilities:

ptj!k ¼ P Et
k j Et�1

j

� �
for

t 2 1; 48½ �
k ¼ M;R;C; I
j ¼ M;R;C; I

8<
: : (6.20)

The required probabilities were determined by analyzing the results of the same

statistical study referred previously, of which the main goal was the characteriza-

tion of the common traffic patterns in a region in the north of Portugal [18].

The values obtained from the study presented in [18], for the EV initial-state

probabilities ðt ¼ 0Þ, were 0.89 for “parked in a residential area,” 0.04 for “parked

In Movement

Parked in
Industrial Area

Parked in
Residential

Area

Parked in
Commercial

Area

Fig. 6.12 Discrete-state and discrete-time Markov chain
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in a commercial area,” 0.02 for “parked in an industrial area,” and 0.05 for “in

movement.”

Regarding the state transition probabilities, the values obtained for the full

weekly cycle, which already includes the results of the weekday and weekend

day sub-cycles, are presented in Fig. 6.13.

Procedures to Define Which “Flexible EV5” Should Charge at Each Time Step

Taking into consideration the characteristics of the problem to be analyzed, two

procedures to define which of the “flexible EVs” should charge at each time step are

presented along the current section. These procedures were specifically developed

to accomplish the EV charging management performed by the aggregator for

interconnected systems or by the system operator for isolated systems.

Procedure 1
The main objective of Procedure 1 is to define which “flexible EV” should

charge at each time step, in order to minimize the deviations between the energy

bought in the market by the aggregators and the energy consumed by EV. It should

be stressed that it was assumed that the charging rate for level 1, in what regards

smart charging adherents, could vary between 0 and 3 kW.
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Fig. 6.13 EV state transition probabilities: full weekly cycle (Monday to Sunday)

5 “Flexible EVs” are the EVs whose owners adhered to the smart charging scheme.
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To achieve the intended objective, it is required to find a set of n load values,

being n the number of “flexible EV,” which can be defined as optimal in the sense

that they allow minimizing the deviations between the energy bought by the

aggregators and the energy consumed by EV.

This problem can be formulated as an optimization problem, as shown below:

min EBAt � TIEVLt �
Xn
i¼1

FEVLit

					

					; (6.21)

subject to

0	 SOCRi
td � SOCi

t 	
ðFEVLit þ ðtd � ðtþ 1ÞÞ � 3Þ � 1=2� EVce

EVbc
i

� 100; (6.22)

0	FEVLit 	 3; (6.23)

0	 SOCRi
td 	 100; (6.24)

0	 SOCi
t 	 100; (6.25)

tþ 1	 td; (6.26)

where i represents the “flexible EV” index; t represents the time index; n is the No.
of “flexible EV” under the aggregator control; EBAt represents the average power

along ½ h, in kW, related to the energy bought in the day-ahead market by the

aggregator for time period between t and t + 1; EBAtðkWÞ ¼ ðenergy boughtt!tþ1

ðkWhÞÞ=ð1=2 hÞ , which is a parameter of the optimization problem; TIEVLt
represents the total “inflexible EV6” load, in kW, in time step t, which is a

parameter of the optimization problem; FEVLit represents the power absorbed by

“flexible EV” i, in kW, in time step t; the nFEVLit are the decision variables of the

optimization problem, which can assume continuous values in the interval 0; 3½ �;
td represents the time step at which a given “flexible EV” disconnects from the

grid; SOCi
t represents the battery SOC of EV i, in percentage, in time step t; the

SOCi
t values are parameters of the problem; SOCRi

td represents the battery SOC

required by the owner of EV i, in percentage, in time step td; theSOCRi
td values are

parameters of the optimization problem; EVbc
i represents the battery capacity, in

kWh, of EV i; the nEVbc
i values are parameters of the optimization problem; EVce

is the efficiency of the EV charging process, which is a parameter of the optimi-

zation problem.

6 “Inflexible EVs” are the EVs whose owners adhered to the dumb charging or multiple tariff

schemes.
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Equation (6.22) is used to assure that the EV battery SOC required by the EV

owners at the moment of disconnection is possible to attain when considering a

maximum charging rate of 3 kW. The condition implemented in (6.23) assures that

only charging rates between 0; 3½ � kW will be attributed to “flexible EV,” as it was

assumed that a “flexible EV” is a smart charging adherent that is charging either in a

residential or in an industrial area at level 1. Equations (6.24) and (6.25) are used to

guarantee that the required EV battery SOC and EV battery SOC in the time step

t are always within the interval 0; 100½ � %. Equation (6.26) assures that the time of

disconnection is always posterior to time step tþ 1.

The objective of this optimization problem is to minimize the sum of the

absolute value of the deviations, as there can be positive deviations (energy bought

by the aggregators higher than energy consumed by “flexible EVs” and “inflexible

EVs”) and negative deviations (energy consumed higher than energy bought).

The problem formulated is a linear optimization problem, which is suitable for

real-time applications since it does not require any type of forecasted data. It is only

necessary to know, for the current time step (t), the energy bought by the

aggregators, the power consumed by the “inflexible EV,” the moment of discon-

nection of the “flexible EV” that are currently plugged in, and the amount of energy

required by their owners during the period they will stay connected to the grid.

It should be noted that the approach presented in this section can be easily

adapted for other cases, like the minimization of the renewable energy wasted in

systems characterized by a large integration of intermittent RES (e.g., wind). Under

these circumstances, the renewable power generated by intermittent RES that is in

risk of being wasted would be treated as parameters of the problem.

Procedure 2
The main objective of Procedure 2 is defining which “flexible EV” should

charge at each time step and with which charging rate, in order to flatten the

network load diagram as much as possible. As described next, this objective can

be accomplished in two distinct stages.

During the first stage, an optimization technique is used to find a set of 336

“flexible EV” load values, which can be defined as optimal in the sense that they

allow obtaining a load diagram as flat as possible for a given network. The value

336 is referred to the number of time steps of ½ h that compose 1 week.

The formulation of the optimization problem is shown below.

min
X336
t¼1

ðFLt þ ILtÞ2; (6.27)

subject to

FLt � 0; (6.28)

X336
t¼1

FLt ¼ TFL; (6.29)
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where t is the time step index; FLt represents the “flexible EV” load, in kW, in time

step t; the 336FLt values are the decision variables of the optimization problem; ILt
represents the “mandatory load7” in the network, in kW, in time step t; the 336 ILt
values are parameters of the optimization problem;TFL is the load consumed by the

“flexible EV,” in kW, during the 336 time steps considered and it is a parameter of

the problem.

In order to solve the formulated problem, there are some data that need to be

available, like ILt and TFL. In practical applications, and since the optimization

problem should be solved by the DSO, these data should be obtained using

forecasting techniques to predict the “mandatory load” and the “flexible EV” load

for the next week (the problem can also be formulated in a daily basis).

Figure 6.14 illustrates the type of results that can be obtained with the optimiza-

tion problem (considering the formulation for 1 week).

The second stage of Procedure 2 is dedicated to put the results obtained with the

optimization problem into practice. For this purpose, during this stage, a problem

analogous to that presented in (6.21) is formulated, as shown next:

min FLt �
Xn
i¼1

FEVLit

					

					; (6.30)

where i represents the “flexible EV” index; n is the No. of “flexible EV” assumed to

be under the DSO control; FLt represents the optimal “flexible EV” load, in kW, in

time step t; the 336 FLt values are parameters of the optimization problem; FEVLit
represents the power absorbed by “flexible EV” i, in kW, in time step t; the n� 3

36FEVLit are decision variables of the optimization problem, which can assume

continuous values in the interval 0; 3½ �.
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Fig. 6.14 Results obtained with the optimization problem presented in (6.27)

7 “Mandatory load” is the conventional load of the network plus the load from the EV whose

owners adhered to the dumb charging or multiple tariff schemes.
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This problem is subject to the same restriction of the problem presented in

(6.21). Its objective is minimizing the absolute value of the deviation between the

optimal amount of “flexible EV” load, determined with the optimization problem

presented in (6.27), and the real amount of load consumed by the “flexible EV.”

The absolute value of the deviations is considered as there can be positive

deviations (optimal load higher than load consumed) and negative deviations

(load consumed higher than optimal load).

It should be noted that unlike in the problem presented in (6.27), whereFLt were
the decision variables, in this problem, FLt are treated as fixed parameters.

The decision variables of the current problem are the power absorbed by the flexible

EV for each time step—FEVLit.

Procedures to Solve Network Operating Problems by Adjusting the EV Charging

Rates

After defining which “flexible EV” should charge and with which charging rate at

each time step, the network operating conditions should be analyzed to detect

eventual technical problems that may appear due to the EV load. The increase in

the power consumption might provoke LV or line overloading problems that

demand corrective measures in order to being solved. Under these circumstances,

it is necessary to define the amount of load that is required to decrease to bring

voltages and lines’ ratings again to the allowable limits and to define which of the

“flexible EVs” should decrease their charging rates in order to attain the desired

load reduction. A procedure to tackle these problems, Procedure 3, is presented in

this section. This procedure is capable of tackling simultaneously multiple LV and

line overloading problems, whether these problems occur in separate feeders or in

the same feeder of a given network, as both these problems require the same

measure: a load reduction.

It should be referred that the two problems referred above, LV and line

overloading, could be solved simultaneously using an (Optimal Power Flow)

OPF-like method. However, as the resolution of this type of problems is usually

very time-consuming, due to its high dimension, the expeditious approach provided

by Procedure 3 was chosen over the OPF-like option since the latter is rather

impractical for real-time applications.

Procedure 3
To achieve the intended objective, it is required to find a set of n load values,

being n the number of “flexible EV,” which can be defined as optimal in the sense

that they allow minimizing low bus voltages and line overloading problems

detected in the network in a given time instant t.
This problem can be formulated as an optimization problem, as shown below.

min NLVPt þ NLOPt; (6.31)

subject to
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0	SOCRi
td�SOCi

t	
ðFEVLitþðtd�ðtþ1ÞÞ�3Þ�ð1=2Þ�EVce

EVbc
i

�100; (6.32)

0	FEVLit 	 3; (6.33)

0	 SOCRi
td 	 100; (6.34)

tþ 1	 td; (6.35)

whereNLVPt represents the number of LV problems in time instant t; the number of

LV problems is determined by counting all the situations where Vj
t<Vmin, where Vj

t

is the voltage in bus j, in time step t, and Vmin is the minimum allowable voltage;

NLOPt represents the number of line overloading problems in time instant t; the
number of line overloading problems is determined by counting all the situations

where Sbt>Smax, where Sbt is apparent power flow in branch b, in percentage, in time

step t, and Smax is the maximum allowable apparent power flow, in percentage;

i represents the “flexible EV” index; t represents the time index; n is the No. of

“flexible EV” assumed to be under the DSO control; td represents the time step at

which a given “flexible EV” disconnects from the grid;FEVLit represents the power
absorbed by “flexible EV” i, in kW, at time step t; thenFEVLit are decision variables
of the optimization problem; they can assume continuous values in the interval 0; 3½ �
; SOCi

t represents the battery SOC of EV i, in percentage, in time step t; the n SOCi
t

values are parameters of the optimization problem; SOCRi
td is the battery SOC

required by the owner of EV i, in percentage, in time step td, which is the instant

when the EV disconnects from the grid; the n SOCRi
td values are parameters of the

problem;EVbc
i represents the battery capacity, in kWh, of EV i; then EVbc

i values are

parameters of the optimization problem; EVce is the efficiency of the EV charging

process, which is a parameter of the optimization problem.

The solution of this problem demands the resolution of the power flow equations

in order to check if the bus voltages and the apparent power flow in the branches are

off-limits. This becomes a complex optimization problem due to the nonlinearity

introduced by the power flow equations that might take a considerable amount of

time to solve, namely when the number of buses and branches of the network and

the number of “flexible EV” under consideration are very high.

These reasons make the optimization problem presented above rather impracti-

cal for real-time applications, as the amount of time required to solve it might not be

compatible with the time available to mitigate the problems detected.

In order to overcome these limitations, an expeditious approach can be used to

deal with this problem in an efficient way, which, despite not providing optimal

results, allows tackling the LV and line overloading problems quickly and with very

satisfactory results.

This approach is based in a heuristic that comprises two stages.

In the first stage, all the relevant network data are gathered, its topology is

processed, and a power flow is run to evaluate its operating conditions. Then, a list
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of problematic buses is created and the buses are sequentially analyzed. A given bus

is flagged as problematic if it has a voltage value belowVmin or if it is located in the

upstream end of a branch with a rating above Smax.

For each problematic bus, the feeder that contains the bus under analysis is

selected, and the amount of load that is required to decrease in each of the feeder’s

buses, which allows solving the problem identified, is calculated. This calculation

is performed iteratively, by decreasing in steps of a fixed value, in this case assumed

to be 10 %, the existing EV load in each of the feeder’s buses.

In the second stage, the “flexible EVs” that should reduce their charging rates are

selected, in order to decrease the amount of power calculated in the first stage that

allows solving all the problems identified. The “flexible EVs” whose charging rates

are decreased are selected taking into consideration their location in the grid, being

only chosen “flexible EVs” that are capable of effectively contribute to solve the

LV or line overloading problems identified.

It should be noted that in a first phase, this heuristic process reduces only the

charging rates of “flexible EV,” always taking into consideration their owners’

requests in what regards the battery SOC required in the moment they will discon-

nect from the grid. Nevertheless, when LV and line overloading problems are so

severe that the emergency operating state is triggered, this heuristic reduces the

charging rates of all the EV located in the problematic areas of the grid,

disregarding if they are “flexible EV” or “inflexible EV,” in order to avoid

jeopardizing global system security.

The implementation of this heuristic is briefly illustrated in Fig. 6.15.

After processing the network topology and running a power flow, the buses

31 and 45 are flagged as “problematic buses.” Bus 31 is flagged since it is the bus in

the upstream end of a branch with congestion problems, whereas bus 45 is flagged

due to its voltage value, which is assumed to be below the threshold that triggers the

abnormal operating state. Then, feeders 4 and 5 are flagged as “problematic

feeders,” as these are the feeders that contain the buses 31 and 45, respectively.

The total load that is required to decrease is then calculated (first stage), by

simulating that the EV load in the buses that belong to feeders 4 and 5 is decreased

by 10 %. Afterward, a power flow is run to verify if the LV and line overloading

problems were solved.

If so, the total amount of load that is required to decrease in the buses that belong

to feeders 4 and 5 is computed. It should be noted that two load values are computed

separately, one for feeder 4 and the other for feeder 5.

If not, the EV load in the buses that belong to feeders 4 and 5 continues to be

iteratively decreased in steps of 10 %, until feasible operating conditions are

attained. Then, the total amount of load that is required to decrease in the buses

that belong to feeders 4 and 5 is computed.

After having knowledge of the amount of power that is required to decrease in

the buses of the problematic feeders, it is defined which “flexible EV” should

decrease their charging rates to achieve the desired load reduction (second stage).

In order to avoid interfering repeatedly with the same EV charging in buses

31 and 45, as branches’ overloading and voltages under the allowed limits are
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problems that usually appear recurrently in the same locations of the grid, all the

“flexible EVs” charging in the “problematic feeders” are considered to be eligible

to decrease their charging rates in order to solve the network problems.

In the example presented in Fig. 6.16, all the “flexible EVs” charging in buses

29, 31, 33, 34, 37, 39, 41, 44, and 45 are considered to be eligible to decrease their

charging rates. Thus, their charging rates are iteratively decreased in steps of 10 %,

being run a power flow to evaluate the network operating conditions after each

reduction, until feasible operating conditions are attained.

6.3.2.2 Development of the Approach

An algorithm based in the approach proposed can be developed, aiming to evaluate

its efficiency when addressing EV impact studies. A Monte Carlo simulation

method can be included in the algorithm, to iteratively generate samples of EV

load in the network, terminating only when a predefined convergence criterion is

met. Each sample generated provides the total amount of load in the network

(conventional load plus EV load) in each time step of the week simulated,
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Fig. 6.15 Method used to select the EV whose charging will be decreased
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discriminated per bus. The sample evaluation, which corresponds to the evaluation

of the network operating conditions, is performed by running a power flow for each

time step of the week and by analyzing the respective results. This section presents

the algorithm’s functionalities, as well as the most important details related to the

implementation of the procedures described above.

The algorithm can be divided in six major stages, as depicted in Fig. 6.16:

1. Study definition: During this phase, the details related to the case study are

defined, namely the type of analysis to be performed.

2. Assessment of the initial network conditions: After gathering all the relevant

network data, the network’s operating conditions, without the presence of EV,

are evaluated by running consecutive power flows,8 one per time step, until the

end of the simulation period is reached. The results obtained (voltages, lines

ratings, energy losses in the network, and loads) are stored and used later for

comparison purposes.

Define case study

Run power flows for the network’s initial conditions, without EV

START
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of EV that can be integrated
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Increase the EV
integration
percentage

STOP
Compile and store

results
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Simulate the EV movement for the current time step

Run a powerflow for the current time step to evaluate the network conditions and defineits operating state: normal,
abnormal or emergency (this process refers to the grid monitoring performed by the system operator)

Validate the EV charging schedules if no problems are foreseen (normal operating state) or request changes incase of
problems being identified (abnormal or emergency operating states Æ Procedures 4)
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Fig. 6.16 Flowchart of the algorithm

8All the required power flows were run using the PSS/E software.
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3. Samples generation: In this stage of the algorithm, the following steps are

performed: (a) initial characterization of each EV in terms of battery capacity,

charging power, energy consumption, and battery SOC in the beginning of the

simulation [23]; (b) simulation of the EV movement and calculation of their

energy requirements (using the Markov chain previously described); (c) defini-

tion of which EVs are available for charging and which will effectively charge at

each time step (using Procedures 1 or 2); (d) evaluation of the grid operating

conditions (by running power flows); and (e) if technical problems are detected

by the DSO, the required changes in the EV charging schedules to solve them are

calculated (using Procedure 3). Each sample generated provides the total load in

the network (conventional load plus EV load) in each time step of the week

simulated, discriminated per bus. It should be noted that the optimization

problems of Procedures 1 and 2 were solved using LINGO 13.0 software.

4. Sample evaluation: The evaluation of the samples is made by running a power

flow for each time step, being gathered information regarding loads, voltages,

power flows in branches, and energy losses in the grid.

5. Termination criteria: To terminate the Monte Carlo simulation method, two

criteria are used: (a) number of iterations; and (b) variances obtained, along the

iterations of the Monte Carlo simulation method, of the aggregated grid load of

each one of the 336 time instants. The second termination criterion presented

means that one variance value is computed, during the iterations of the Monte

Carlo simulation method, for the total network load per time instant t, t 2 1; 336½ �
. The Monte Carlo simulation method is set to perform 4,000 iterations

(4,000 weeks) and check, in the end, if the variation of all the 336 variances in

the last five iterations is lower than 1e�6 . The variance variation is calculated

using the following equation:

DVariance ¼ Varianceth � Varianceth�5

		 		<1� 10�6; (6.36)

where t is the time instant index; h is the index used for the iterations of the Monte

Carlo simulation algorithm; DVariance represents the variance variation of the

aggregated network load, in time instant t, in the last five iterations of the Monte

Carlo simulation algorithm; Varianceth represents the variance of the aggregated

network load, in time instant t, in the hth iteration of the Monte Carlo simulation

algorithm; Varianceth�5 represents the variance of the aggregated network load, in

time instant t, in the ðh� 5Þth iteration of the Monte Carlo simulation algorithm.

If at least one of the 336 variances does not meet the referred convergence

criterion, the process keeps running more iterations until all the variance

variations are lower than the predefined value.

6. Algorithm outputs: The algorithm allows obtaining the EV fleet characteristics,

the EV state at each time step (parked or in movement), the periods during which

EVs are plugged in and available to charge, the network bus where EVs are

plugged in (only for parked EV), the power absorbed by each EV at each 30 min

interval (discriminated per network bus), the amount of energy provided at each
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time step by the aggregators or by the DSO (depending on whether the network

under analysis belongs to an interconnected or an isolated system), the total

network load at each time step, the energy losses in the network at each time

step, the network’s voltage profiles at each time step, the network’s branches

ratings at each time step, among other results.

6.4 Dynamic Studies of Electric Vehicles Integration

in the Power System

The implementation of the dynamic simulation models for EV may be performed

differently, according to the type of application that will be analyzed. Mainly, two

implementation methods can be followed, one for primary frequency control and

the other for AGC operation [24].

Regarding primary frequency control, most of the commercially available soft-

ware provides a module where the block diagram associated with the model that

represents EV can be implemented using a graphical user interface (GUI). Eurostag
or Matlab and even the very recent Graphical Module Builder add-on for PSS/E,
among others, allow GUI implementation of dynamic simulation models, by

drawing the block diagrams of the functionalities that may be required. Alterna-

tively, these functionalities can be coded, using, for instance, Fortran to perform

the classical implementation of the dynamic models in PSS/E. Being the most user-

friendly option, the GUI implementation tends to be the preferred method for

primary frequency control.

Concerning the modeling of AGC operation, a different strategy for implemen-

tation is followed, mainly due to the reason that AGC is a centralized control and

primary control is a distributed control. This fact implies that several measurements

from different points of the grid are provided to the AGC, like tie-line interconnec-

tion power flow, which computes new set points and distributes them across the

generation units that participate in secondary reserve provision.

PSS/E was the adopted simulation environment for the AGC operation

modeling, as it is widely used by TSO to model their networks, and so the

implementation of AGC control in this software provides reassurance regarding

the obtained results. In PSS/E, there are two approaches to the implementation of

the desired control actions:

• Conventional implementation, PSS/E focused: Internal to the simulation

procedures used by the software

• Python script focused, interacting with PSS/E: External to the simulation

procedures used by the software

To implement the first option, it is necessary to develop a model using Fortran,9

including specific Fortran–PSS/E routines and global variables, compile it, and

declare its usage in the dynamic simulation data input file for PSS/E.
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Following the typical implementation scheme, the developed model gets embed-

ded in the simulation.

This alternative is robust and does not delay the simulation time. The simulation

is stopped only when an event, such as load variation or bus fault, occurs. Event file

is coded using Python.
Figure 6.17 is a flowchart of the simulation process using the conventional

model implementation. On the left, the activities external to PSS/E operation are

presented, whereas PSS/E simulation is depicted on the right (this part was adapted

from PSS/E Operation Manual [25]).

To implement the second option, the dynamic data input file remains unchanged,

keeping all the data related to generation.

Advanced modeling is now executed using a Python script. Instead of being used
only to generate events, the Python file is also used to collect the system state

evolution and manage control variables.

In opposition to what happened with the Fortran modeling, the data collection

period, in this case, is user defined and can be as short as the integration period

defined internally by PSS/E.
To create fast controllers using this implementation, the script must stop the

simulation with time steps close to that used by PSS/E (using a larger time step

means that a larger delay is being introduced to the response time of the

controllers).
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voltages, turbine mechanical powers, stabilizer

outputs, minimum excitation limiter outputs, and
maximum excitation limiter outputs

Calculate all state variable time derivatives and set
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Fig. 6.17 Simulation scheme with conventional modeling, PSS/E focused
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Then, the state evolution is evaluated and used to update the control variables

that are passed into PSS/E.
Similar to Fig. 6.17, Fig. 6.18 depicts a flowchart of the simulation scheme with

Python script modeling, interacting with PSS/E. The highlighted text boxes are the

new functionalities necessary within this approach.

This method is as robust as the previous but more flexible regarding the control

options that may be taken. However, external state evaluations and control actions

may lead to an increase in simulation time that with nowadays processing capability

is not a real drawback.

If EV frequency control droop would be the aim for implementation, the

conventional modeling technique would likely be the easiest implementation

method, due to the fact that the power electronic interface that is being emulated

works in a decentralized way. It reads a local state variable and controls, locally, EV

power consumption.

Nevertheless, as AGC operation is sought, a centralized control unit is needed.

This unit requires the knowledge of state variables spread over the grid—intercon-

nection power flows and the frequency of the center of inertia of the system. The

implementation of such a control unit under the conventional approach is possible,

by programming a subroutine of the simulation process of PSS/E called CONET.

As previously explained, it would have to be compiled along with the rest of the
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Initialization

Calculate generator source currents, exciter field
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outputs, minimum excitation limiter outputs, and
maximum excitation limiter outputs

Calculate all state variable time derivatives and set
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Fig. 6.18 Simulation scheme with Python script modeling, interacting with PSS/E
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models, but the outputs would have to be treated in a different way when compared

with typical local models. In this case, the script included in the CONET subroutine

would not deal only with global state variables that allow direct observation in the

PSS/E post-simulation environment. Consequently, a post-processing work would

be necessary within the Python script to collect all the data to replicate the state

variables necessary to illustrate the reaction of the controller. If this activity is used

to implement the controller in the Python environment, then there is no need to

repeat it, as results get created along with the evolution of the script. Thus, Python
script modeling, interacting with PSS/E, was chosen to model the AGC, and as it

involved part of the variables needed to implement the EV droop control,

this functionality was also implemented using the same strategy.

6.5 Conclusions

6.5.1 Steady-State Studies

The integration of EV in distribution networks is expected to impact the manage-

ment and operation of distribution grids. For this reason, the DSO will have to

understand the impacts that the extra amount of power consumed by EV will

provoke in these systems.

In this sense, two approaches were presented in this chapter to evaluate the EV

impacts in distribution networks: Methodology 1 and Methodology 2.

The deterministic approach followed in Methodology 1 to distribute EV along

the network buses and determine the EV load during one entire day is appropriate to

perform studies in small distribution networks. Yet it is only able to reveal the

effects of a possible scenario in what regards the EV locations in the network. Even

with these limitations, it allows satisfactorily evaluating the network impacts of a

given integration percentage of EV and quantifying the maximum number of EVs

that can be safely integrated in a given network with the three charging strategies

addressed (dumb charging, multiple tariff, and smart charging).

These limitations were overcome in Methodology 2, which uses a more sophis-

ticated and consistent approach for the same purpose. This improved approach,

besides using a Markov chain tailored to simulate the EV movement, also uses a

Monte Carlo simulation method that allows exploring different scenarios in what

regards the EV locations in the grid and their power requirements. Moreover, this

approach allows quantifying the EV impacts in time steps shorter than 1 h, as 1 h is

a very long period of time during which the network operating conditions can

change considerably. Furthermore, instead of only 1 day, it also allows analyzing

the EV impacts in a longer time frame, like 1 week or 1 year.

The algorithm presented based in Methodology 2, besides being fitted for impact

assessment studies at a regional level and for the networks’ planning exercise, it

also includes EV charging management modules suitable to be used in real
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applications. The referred modules can be used to manage the EV charging in real

time by both aggregators and system operators.

From the DSO perspective, the algorithm can be used as a tool for the following

purposes:

• Evaluate the impacts of a given number of EVs in a specific regional distribution

network, taking into account the charging modes EVs have adhered to.

• Compute the maximum number of EVs that can be safely integrated in a

particular network, also taking into consideration their charging modes.

• Detect the network components that are subject to the more demanding

operating conditions and that might need to be upgraded.

• Validate the provisional bids of the aggregators.

• Perform grid monitoring and evaluate its operating conditions.

• Define the requests of load increase/decrease to mitigate voltage or line

overloading problems that might appear in the network.

• Manage the EV charging in real time (when the system is in the emergency

operating state).

• The algorithm might also be very helpful for the aggregators, since it allows.

• Defining the optimal bids for the day-ahead and intraday markets.

• Managing the EV charging in real time (when the system is in the normal

operating state).

6.5.2 Dynamic Studies

EVs may be valuable resources in the provision of primary and secondary fre-

quency control, either through the adjustment of their batteries’ load charging rates

or through the injection of active power into the grid. The activation time of such

participation is shorter than that of conventional generators, due to ramping

limitations. For that, EVs may be exploited as controllable loads or as storage

devices.

While providing ancillary services, the EV behavior on the event of short-circuit

disturbances is an important issue. Being the EV approximately constant power

loads from a grid-side perspective, this leads to a worst case scenario in terms of

voltage drops. As power requirements are constant to compensate for a voltage drop

caused by a short circuit, EV will request more current from the grid, contributing

for additional voltage drops. So in a future massive integration scenario, this issue

may have to be dealt with, by creating new control rules that prevent these

hazardous conditions. While EV integration is moderate, in the short to medium

term, such considerations are not necessary as the systems may cope with EV load

behavior. Additionally, when EVs are ancillary service providers, it is necessary to

guarantee their availability to react after disturbances. It was verified that while EVs

are regarded as controllable loads, the system behavior is controlled, but if the
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energy stored in the EV batteries is to be explored, then additional measures must

be taken with the inclusion of the fault ride through capabilities.

In primary frequency control, EV in pre-disturbance environment can be charg-

ing or in idle operation mode, and when the disturbance occurs, the consumed value

varies linearly with the frequency change. To perform primary frequency control,

EV should mimic the reaction of the governing systems of the generators,

implementing a power–frequency droop on the EV power electronic converter

control. The usage of EV in primary frequency control can be particularly important

in isolated systems with large amounts of RES that present great output variability

or small controllability.

The operation of the AGC is the centerpiece of secondary frequency control. The

AGC uses the resources that got committed with secondary reserve provision in the

reserve market, and in case of a disturbance, it distributes set points among the

participants. As individual EV would not be able to enter the reserve market alone,

the aggregator is needed for market negotiations. Aggregator providing secondary

reserves receives a set point from the AGC and splits it by the EV that established

contracts with the aggregator for secondary reserve provision. To create the set

points, the AGC must be constantly updated on frequency value and interconnec-

tion power deviations, integrating the error to define the set points that will fade

possible steady-state deviations in relation to nominal frequency and scheduled tie-

line power. The provision of secondary reserves by EV is potentially beneficial for

interconnected systems with limited reserve margins due to large-scale deployment

of uncontrollable RES or composed by generators with small ramping slopes.

Finally, simulation capability was described in this chapter with the develop-

ment of models for EV and an algorithm for recreating AGC operation. These

adaptations to existing dynamic simulation software allow testing the expected

effectiveness of these control schemes exploiting EV and comparing the global

system performance to the conventional approaches to the problem. In both cases,

EV controllability will add to existing system controllers, contributing for the

robustness and resilience of both isolated and interconnected systems.
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21. Rozanov YA (1973) Procesos Aleatorios: Editorial Mir Moscu

22. Bittanti S, De Nicolao G (1991) Markovian representations of cyclostationary processes. In:
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