
Topological Hypergraphs

Sarit Buzaglo, Rom Pinchasi, and Günter Rote

Abstract Let P be a set of n points in the plane. A topological hypergraph G,
on the set of points of P, is a collection of simple closed curves in the plane that
avoid the points of P. Each of these curves is called an edge of G, and the points
of P are called the vertices of G. We provide bounds on the number of edges
of topological hypergraphs in terms of the number of their vertices under various
restrictions assuming the set of edges is a family of pseudo-circles.

1 Introduction

A topological graph is a graph drawn in the plane with its vertices drawn as points
and its edges drawn as Jordan arcs connecting corresponding points. In this chapter
we make an attempt to generalize the notion of a topological graph and consider
topological hypergraphs.

Definition 1.1. Let C be a simple closed Jordan curve in the plane. By Jordan’s
theorem, C divides the plane into two regions, only one of which is bounded. We
call the bounded region the disc bounded by C and we denote this region by disc(C).
Any point x inside disc(C) is said to be surrounded by C, and C is said to be
surrounding x.

We are now ready to define a topological hypergraph. A topological hypergraph
G is a pair (P,C), where P is a finite set of points in the plane, and C is a family of
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simple closed curves in the plane that avoid the points of P. For each curve C ∈ C,
we denote by PC the set of all points of P surrounded by C. C is called an edge of G
and the set PC is the set of vertices of the edge C. Two edges of G, C1 and C2, are
called parallel if PC1 = PC2 . We usually assume that any two curves from C intersect
in a finite number of points and that in each such intersection point the two curves
properly cross. G is called k-uniform if, for every C ∈ C, |PC|= k.

In what follows and throughout the rest of the chapter, we will always assume
that the topological hypergraph in question does not contain parallel edges.

A family of simple closed curves in the plane is a family of pseudo-circles if
every two curves in the family are either disjoint or properly cross at precisely two
points. Any collection of circles in the plane is an example of such a family.

The following simple lemma is a crucial observation.

Lemma 1. Suppose C1 and C2 are two pseudo-circles in the plane and x1,y1,x2,y2

are four distinct points satisfying the following condition: x1 and y1 are surrounded
by C1 but not by C2, and x2 and y2 are surrounded by C2 but not by C1. Let e1 be
a Jordan arc, entirely contained in disc(C1), connecting x1 and y1, and let e2 be a
Jordan arc, entirely contained in disc(C2), connecting x2 and y2. Then e1 and e2

cross an even number of times.

Proof. If C1 and C2 do not intersect, then disc(C1) and disc(C2) must be disjoint.
Indeed, otherwise one must contain the other; say disc(C1) contains disc(C2). This
is a contradiction to the assumption that x2 and y2 are two points surrounded by C2

but not by C1. However, if disc(C1) is disjoint from disc(C2), then clearly e1 and e2

cannot intersect.
Therefore, assume that C1 and C2 intersect in two points u and v. Let S1 be the

subarc of C1 delimited by u and v and contained in disc(C2). Denote by S2 the subarc
of C2 delimited by u and v and contained in disc(C1). Observe that S1 together with
S2 form a simple closed curve that surrounds exactly the points in Z = disc(C1)∩
disc(C2). Clearly, e1 and e2 may intersect only at points of Z (see Fig. 1). Since both
x1 and y1 do not belong to Z, as they are not surrounded by C2, the intersection of
e1 with Z consists of a finite number of arcs each of which has both endpoints lying
on S2. It is enough to show that each of these arcs crosses e2 an even number of
times. Let g be such an arc whose endpoints on S2 are k and �. Let S′2 be the subarc
of S2 delimited by k and �. g and S′2 form a simple closed curve contained in Z.
Consequently, both x2 and y2 are not surrounded by this closed curve. It follows that
e2, the Jordan arc connecting x2 and y2, intersects g∪ S′2 an even number of times.
However, e2 does not intersect S′2, as it is a subarc of C2. Therefore, e2 crosses g an
even number of times.

The next theorem is a simple consequence of Lemma 1.

Theorem 2. Let G = (P,C) be a topological 2-uniform hypergraph on n vertices. If
C is a family of pseudo-circles, then G, viewed as an abstract 2-graph, is a planar
graph. In particular, there are at most 3n− 6 curves in C.
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Proof. We draw the graph G as a topological graph in such a way that every pair of
edges that are not incident to the same vertex cross an even number of times. Then it
is a consequence of Hanani and Tutte’s theorem [2,9] that G is planar. The drawing
rule for G is as follows: For any curve C ∈ C, let x and y be the two points of P
surrounded by C. We draw a Jordan arc connecting x to y so that the arc is contained
in disc(C).

It remains to show that the above drawing rule provides the desired topological
graph. Let e and f be two edges in our drawing that do not share a common vertex.
Let x and y be the vertices of e, and let Ce ∈ C be the curve in C that surrounds
both x and y. Let a and b be the vertices of f , and let Cf ∈ C be the curve in C that
surrounds both a and b. Since Ce surrounds x and y and no other vertex, then in
particular it does not surround a or b. Similarly, Cf surrounds a and b but none of x
and y. Therefore, by Lemma 1, e and f cross an even number of times.

We will now bound the number of edges in a topological hypergraph with more
general settings. We use the following lemma [1] (see also [5]).

Lemma 3. Let A1, . . . ,An be connected sets in the plane, each of which is also
simply connected with boundaries that cross each other a finite number of times. If,
for every 1≤ i < j ≤ n, Ai∩A j is connected, then A1∩ . . .∩An is either connected
or empty.

As a consequence of Lemma 3, we obtain the following corollary:

Corollary 4. If C1, . . . ,Ct is any collection of pseudo-circles, then disc(C1)∩ . . .∩
disc(Ct) is either a connected set or the empty set.

Indeed, this is because disc(Ci) is a simply connected set for every Ci, and
disc(Ci)∩disc(Cj) is either empty or connected for every Ci and Cj .
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The next theorem provides a linear bound in terms of |P| on the number of edges
of a 3-uniform topological hypergraph G = (P,C), in the case where C is a family of
pseudo-circles.

Theorem 5. Let G = (P,C) be a 3-uniform topological graph on n vertices such
that C is a family of pseudo-circles. Then |C|= O(n).

Proof. We draw a topological graph H whose vertices are the points of P and whose
edges are all pairs of points that are surrounded by some curve in C. Let x and y be
two points of P surrounded by a curve in C, and let C1, . . . ,Cl be all the curves
in C that surround both x and y. By Corollary 4, Z = disc(C1)∩ . . .∩ disc(Cl) is a
connected set. We draw the edge in H between x and y as a Jordan curve inside the
connected region Z.

For every edge e in H, let d(e) denote the number of curves in C that surround
both endpoints of e (and therefore also the entire edge e).

Claim 1. Let e and f be two edges of H with no common vertex. If e and f cross
an odd number of times, then either d(e)≤ 2, or d( f )≤ 2, or both.

Proof. Assume to the contrary that both d(e) and d( f ) are greater than or equal to
3. Since d(e)≥ 3, there are at least three different curves from C that surround both
endpoints of e. Therefore, there is a curve Ce ∈ C that surrounds both endpoints of e
but no endpoint of f . Similarly, there is a curve Cf ∈ C that surrounds both endpoints
of f but no endpoint of e. By Lemma 1, e and f cross an even number of times, a
contradiction.

Let E ′ be the set of all edges e of H such that d(e) ≤ 2. By Claim 1, the set of
edges in E \E ′ forms a planar graph, as every two edges in E \E ′ that do not share
a common vertex cross an even number of times. In particular, the cardinality of
E \E ′ is linear in n. We will now show that the cardinality of E ′ is also linear in n.

In fact, we will prove even a slightly stronger statement that will be helpful for
the proof of Theorem 5.

Claim 7. Let V be any subset of the vertices of H and let E ′(V ) be those edges
in E ′ both of whose vertices are in V . Then |E ′(V )| ≤ c|V |, where c > 0 is some
absolute constant.

Proof. Let 0 < q < 1 be a positive number to be determined later. Pick every vertex
of V with probability q and consider only those edges of E ′(V ) both of whose
vertices are picked. We thus obtain a random subgraph of H, which we denote by
H̃, on a set of vertices Ṽ . Let e be an edge in H̃, and let x and y be its two vertices.
We know that d(e) ≤ 2. Therefore, there exist at most two vertices z ∈ V such that
x,y, and z are surrounded by some curve C ∈ C. We say that e is good if there is no
such vertex z in Ṽ .

Observe that every two good edges with no common vertex cross an even number
of times. Indeed, if e and f are two good edges with no common vertex, then there
is a curve Ce ∈ C that surrounds both vertices of e but no vertex of f (or else e would
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not be good). And similarly, there is a curve Cf ∈ C that surrounds both vertices of
f but no vertex of e. Hence, by Lemma 1, e and f cross an even number of times. It
follows now from the theorem of Hanani and Tutte [2, 9] that the good edges in H̃
constitute a planar graph. Therefore, the number of good edges in G̃ is at most 3|Ṽ |.
This inequality is true also for the expected values of the number of good edges and
|Ṽ |. Clearly, Ex(|Ṽ |) = q|V |. As for the expected number of good edges, observe
that any edge e ∈ E(V ) is a good edge in H̃ with probability of at least q2(1− q)2.
Indeed, this is the probability in case there are precisely two edges in G that include
the vertices of e. If there is only one such edge in G, this probability is be higher,
namely, q2(1− q).

It follows now that q2(1−q)2|E(V )| ≤ 3q|V |. Taking q = 1
3 , we obtain |E(V )| ≤

21|V |.

Considering the graph H again, we deduce that there is an absolute constant c′

such that the number of edges of H induced by any subset V of vertices of H is at
most c′|V |. Indeed, this is true for the subset E ′ of edges of H, by Claim 7, and also
to the subset of edges E \E ′, as they constitute a planar graph.

We now show that the number of triangles (that is, cycles of length 3) in the
graph H is at most linear in the number of vertices of H. This will be enough to
prove Theorem 5 because every pseudo-circle C ∈ C corresponds to precisely one
triangle in the graph G (the triangle whose vertices are surrounded by C). We prove
a more general lemma on abstract graphs:

Lemma 8. Let H be a graph on m vertices. Assume that there is an absolute
constant c′ such that the number of edges of H induced by any subset V of the
vertices of H is at most c′|V |. Then for every �≥ 2, the number of copies of K� (the

complete graph on � vertices) in H is at most c�m, where c� =
(2c′)�−1

�! .

Proof. We prove the lemma by induction on �. For �= 2, there is nothing to prove, as
this is the assumption in the lemma. Assume the lemma is true for �. Let v1, . . . ,vm

denote the vertices of H and let E denote the set of edges of H. We know that
|E| ≤ c′m. For every 1≤ i≤m, let di denote the degree of vi in H. Fix i and consider
the number of copies of K�+1 in H that include the vertex vi. Each such copy of K�+1

corresponds to a unique copy of K� among the neighbors of vi. Therefore, it follows
from the induction hypothesis, applied to the subgraph Hvi of H induced by the
neighbors of vi, that the number of copies of K� in Hvi is at most c�di. It follows
now that that vi is incident to at most c�di copies of K�+1 in H. Summing over all i
between 1 and m, every copy of K�+1 is counted exactly �+ 1 times. Therefore, the
number of copies of K�+1 in H is at most 1

�+1 ∑
m
i=1 c�di =

1
�+1 2c�|E| ≤ 1

�+1 2c�c′m =
c�+1m.

In particular, the number of triangles in our topological graph H is at most cn,
where c is some absolute constant independent of n. This concludes the proof of
Theorem 5.

If G = (P,C) is a topological hypergraph and C is a family of pseudo-circles, but
we do not assume that G is uniform, then a linear bound on the number of edges of



76 S. Buzaglo et al.

G is no longer valid. Nevertheless, it is possible to obtain a cubic (that is also tight)
bound on the number of edges in G in this case, as we shall now see.

Recall that for a family F of sets, the VC-dimension [10] of F is the largest
cardinality of a set S that is shattered by F , that is, the largest cardinality of a set S
such that for any subset B of S there exists F ∈ F with B = F ∩S.

Perhaps one of the most fundamental results on VC-dimension is the Perles–
Sauer–Shelah theorem [7, 8], which says that a family F of subsets of {1, . . . ,n}
that has VC-dimension d consists of at most

(n
0

)
+ · · ·+

(n
d

)
= O(nd) members.

Theorem 9. Let G = (P,C) be a topological hypergraph on n vertices such that C
is a family of pseudo-circles. Then the family F = {PC |C ∈ C} has VC-dimension
at most 3. In particular, by the Perles–Sauer–Shelah theorem, |C|= O(n3).

Proof. We show that F cannot shatter any set of 4 points. Assume to the contrary
that it does, and let {p1, p2, p3, p4} ⊂ P be a set of four points shattered by F . For
every 1 ≤ i < j ≤ 4, consider the family Ci j of all the curves in C that surround
both pi and p j. By Corollary 4, the set Ri j = ∩C∈Ci j disc(C) is a connected set. We
draw an edge (Jordan arc) ei j between pi and p j inside the region Ri j. We thus get
a drawing of K4 in the plane. We claim that in this drawing every two edges that
do not share a common vertex cross an even number of times. Indeed, consider the
edge ei j between pi and p j and the edge ekl between pk and pl (we assume that
{i, j,k, l} = {1,2,3,4}). As {p1, p2, p3, p4} is shattered by F , there is a curve Ci j ∈
Ci j that surrounds both pi and p j but neither pk nor pl . Similarly, there is a curve
Ckl ∈ Ckl that surrounds both pk and pl but neither pi nor p j. By our construction,
ei j ⊂ disc(Ci j) and ekl ⊂ disc(Ckl). It follows now from Lemma 1 that ei j and ekl

cross an even number of times.

It is easy to observe that by small modifications of the drawing of the edges in a
small neighborhood around each point pi, we may obtain a new drawing in which
also every two edges that share a common vertex cross an even number of times
(apart from meeting at the same vertex).

For a closed curve S in the plane, not necessarily simple, and a point x not on
S, we say that x is surrounded by S if the index of the curve S with respect to the
point x is odd. This is equivalent to that any ray (or just a Jordan curve that goes to
infinity) emanating from x meets S (as a curve, not as a set) an odd number of times.
Observe that this definition generalizes the notion of a point surrounded by a simple
closed curve.

Lemma 10. In any drawing of K4 in the plane in which every two edges cross an
even number of times, there is a vertex v of K4 that is surrounded by the closed curve
composed from the three edges of K4 not incident to v.

Proof. Assume not and once again let p1, p2, p3, and p4 denote the vertices of K4

drawn in the plane. For any three vertices pi, p j, and pk, denote by Si jk the closed
curve composed from the edges pi p j, p j pk, and pk pi. Consider a fixed vertex pi.
Any small enough circular disc D, centered at pi, is trisected by the edges going
from pi to the three other vertices. Fix such a disc D. We claim the section of D
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bounded by the edges pi p j and pi pk consists of points that are all surrounded by
Si jk. Indeed, otherwise the portion of the edge pi pl inside D is surrounded by Si jk.
As the edge pi pl crosses each of the edges pi p j, pi pk, and p j pk an even number of
times, it follows that pl is also surrounded by Si jk, a contradiction.

Consider now a point x far away, not surrounded by any of the curves Si jk. Draw
an arc g connecting x to p1. Once again let D be a small circular disc centered at p1.
D is trisected by the edges p1 pi for i = 2,3,4. Without loss of generality, assume
that g∩D lies in the portion of D delimited by p1 p2 and p1 p3. Hence, as x is not
surrounded by S123, it follows that g crosses S123 an odd number of times. For the
same reasons, it follows that g crosses both S124 and S134 an even number of times
because g∩D is not surrounded by S124 nor by S134.

Denote by ti j the number of crossings between g and the edge pi p j. Therefore,
t12 + t13 + t23 is odd and both t12 + t14 + t24 and t13 + t14 + t34 are even. Summing
them all up, we conclude that t23 + t34 + t24 is odd. Therefore, g crosses S234 an odd
number of times. Now since x is not surrounded by S234 and g connects x to p1, it
follows that p1 is surrounded by S234, a contradiction.

In view of Lemma 10, assume without loss of generality that p4 is surrounded by
the closed curve composed from the edges p1 p2, p2 p3, and p3 p1. As F shatters
{p1, p2, p3, p4}, let C ∈ C be a curve surrounding p1, p2, and p3 but not p4.
Therefore, each of the edges p1 p2, p2 p3, and p3 p1 is contained in disc(C). This
is a contradiction because now it is not possible that p4 is surrounded by the closed
curve composed from the edges p1 p2, p2 p3, and p3 p1, as it is not surrounded by C.
This completes the proof of Theorem 9.

For a set A and an integer r ≥ 0, we denote by
([A]
≤r

)
the family of all subsets of

A of cardinality at most r. We will need the following small variant of the original
Perles–Sauer–Shelah theorem [7].

Theorem 11. Let F = {A1, . . . ,Am} be a family of distinct subsets of {1,2, . . . ,n}
and assume that F has VC-dimension less than or equal to d. Then

m≤ |
m⋃

i=1

(
[Ai]

≤ d

)
|.

Proof. We prove the theorem by induction on d and n. The theorem is clearly true
for d = 0 and any n. For d > 0, assume that F has VC-dimension at most d and
define F1 = {A\{1} | A ∈F} and T = {A\{1} | 1∈ A and A\{1} ∈ F}. It is easy
to see that |F| = |F1|+ |T |. Let s denote the number of sets in F1 and let t denote
the number of sets in T . We rewrite F1 = {F1, . . . ,Fs} and T = {T1, . . . ,Tt}. As the
VC-dimension of F1 is at most d, we use the induction hypothesis on n to deduce
that the family

⋃s
i=1

([Fi]
≤d

)
contains at least s sets.

Observe that the VC-dimension of T is at most d− 1, for otherwise F has VC-
dimension at least d + 1. Therefore, by the induction hypothesis, there are at least
t sets in

⋃t
i=1

( [Ti ]
≤d−1

)
. To each of these sets add the element 1 to obtain t sets in
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⋃m
i=1

([Ai]
≤d

)
each containing the element 1 and thus each is different than any set in

⋃s
i=1

([Fi]
≤d

)
. The result follows from the fact that m = s+ t.

Corollary 12. Let F = {A1, . . . ,Am} be a family of distinct subsets of {1,2, . . . ,n}
with VC-dimension less than or equal to d. Then it is possible to assign to each set
Ai a subset of it of size at most d such that no two sets Ai and A j are assigned to the
same set.

Proof. Consider the bipartite graph in which one set of vertices corresponds to
the sets A1, . . . ,Am and the other set of vertices corresponds to the elements in
⋃m

i=1

([Ai]
≤d

)
. In this bipartite graph connect each set Ai to all its subsets of size at

most d. By Hall’s theorem [3, 4] and by Theorem 11, the desired matching exists.

Theorems 2 and 5 give a linear bound to the number of edges of a 2-uniform and
3-uniform, respectively, topological hypergraphs where the set of edges is a family
of pseudo-circles. The next theorem provides a bound to the number of edges in
a topological hypergraph G = (P,C) on n vertices, where C is a family of pseudo-
circles and that |PC| ≤ k for every C ∈ C and a fixed k > 3.

Theorem 13. Let G = (P,C) be a topological hypergraph on n vertices. Assume
that C is a family of pseudo-circles and that |PC| ≤ k for every C ∈ C and a fixed
integer k. Then |C|= O(k2n).

Proof. Consider the family F = {PC |C ∈ C}. By Theorem 9, F has VC-dimension
less than or equal to 3. We use Corollary 12 and assign to each member PC of F a
subset of it of size at most 3 that we denote by BC.

We fix a small number 0 < q< 1/2 to be determined later and pick every point of
P independently with probability q. We call a curve C ∈ C good if every point in BC

was picked and no point in PC \BC was picked. Observe that a curve C in C is good
with probability q|BC|(1−q)|PC|−|BC| ≥ q|BC|(1−q)k−|BC| ≥ q3(1−q)k−3, where the
last inequality is because q < 1/2 and |BC| ≤ 3.

By Theorems 2 and 5, the number of edges in a 2-uniform, or a 3-uniform
topological hypergraph on n vertices whose set of edges is a family of pseudo-
circles is O(n). Therefore, the number of good curves in C is at most some absolute
constant c times the number of points of P that were picked. Taking the expectation,
we see that |C|q3(1−q)k−3≤ cqn. Taking q= 1/k, we get the desired result, namely,
|C| ≤ c′k2n for some absolute constant c′ > 0.

Remark 1. It is not hard to show that the bound in Theorem 13 can indeed be
attained even by a family C of circles in the plane.

Definition 1.2. We denote by ft (n) the maximum number of edges in a topological
graph on n vertices with no t vertex-disjoint edges every two of which cross an odd
number of times.

We will need the following estimate on ft (n) from [6] (see Theorem 3 in [6]):

Theorem 14 ([6]). ft (n) = O(n log4t−8 n).
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In fact, in the sequel, we will only use the fact that ft(n) = o(n2).
The next theorem provides even better bounds on the size of {PC | C ∈ C},

assuming that the intersections of the sets PC with each other are ”small.”

Theorem 15. Let r,k1,k2 > 0 be fixed integers. Let G = (P,C) be a topological
hypergraph on n vertices and assume that C is a family of pseudo-circles. Assume
further that k1 ≤ |PC| ≤ k2 for every C ∈ C. If, for every r curves C1, . . . ,Cr ∈ C,

we have |PC1 ∩ . . . ∩ PCr | < r, then ∑C∈C |PC| = O(
k2

2
k2

1
n), where the constant of

proportionality depends only on r.

Proof. We define a topological graph H in the following way: The vertices of H are
the points of P. For any pair of vertices x and y that are surrounded by some curve
C ∈ C, consider all curves in C that surround x and y. Let those curves be C1, . . . ,Cl

and define Z = disc(C1)∩ . . .∩ disc(Cl). By Corollary 4, Z is a connected set. We
draw the edge in H between x and y as a Jordan curve entirely included in Z.

We call an edge of H bad if its endpoints, and hence the edge as well, are
surrounded by at least (r− 1)2r−2 + 1 different curves in C; otherwise, it is called
good.

Claim 6. There are no r2 bad edges in H every two of which cross an odd number
of times and no two of which share a common vertex.

Proof. Assume to the contrary that E is a collection of r2 bad edges every two of
which cross an odd number of times and no two of which share a common vertex.

Let e,e1, . . . ,er−2 be any r− 1 different edges in E . We claim that among all
curves in C surrounding e, there is at least one curve that does not surround any of
the two vertices of some edge among e1, . . . ,er−2. Indeed, otherwise any curve in C
that surrounds e must surround at least one vertex of each of e1, . . . ,er−2. Since e is
a bad edge, there are at least (r−1)2r−2 +1 curves in C that surround e. Therefore,
by the pigeon-hole principle, there must be at least r curves surrounding e as well
as the same set of r−2 vertices (each of which is the endpoint of some edge among
e1, . . . ,er−2). This is a contradiction to the assumption that no r curves in C surround
the same set of r vertices.

It follows that apart from at most r−3 edges in E , for every edge f in E , different
from e, there is a curve C ∈ C that surrounds e but not any of the two vertices of f .
This way, because E > (r− 1)(r− 2), we can find r− 1 edges e1, . . . ,er−1 with the
property that for every 1 ≤ i < j ≤ r− 1 there is a curve in C that surrounds ei but
not any of the two vertices of e j.

Using once again the argument above, there is a curve C ∈C and there is an index
j between 1 and r− 2 such that C surrounds er−1, but C does not surround any of
the vertices of e j. Since j < r− 1, there is a curve C′ ∈ C that surrounds e j but that
does not surround any of the vertices of er−1. By Lemma 1, this implies that e j and
er−1 cross an even number of times, contradicting our assumption.

It follows from Claim 6 and Theorem 14 that there exists k0 that depends only on
r such that if k1 > k0, then for every C ∈ C, C surrounds at least k2

1/4 good edges.
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Clearly, we may assume that k1 > k0 as by Theorem 13, the collection C′ of all
curves C ∈ C with |PC| ≤ k0 consists of O(k2

0n) curves and therefore, ∑C∈C′ |C| =
O(n).

Fix a probability 0 < q < 1, to be determined later, and pick every point in P
with probability q. Let H∗ be the random topological graph whose vertices are
those points that were picked and whose edges are those good edges of H both
of whose vertices were picked. Call an edge e of H∗ nice if there is a curve C ∈ C
that surrounds no other vertex of H∗ but the endpoints of e.

We claim that the subgraph of H∗, which consists only of the nice edges, is
planar. Indeed, let e and f be two nice edges that do not share a common vertex.
Because e is nice, there is a curve Ce ∈ C that surrounds e but does not surround any
of the vertices of f . Similarly, there is a curve Cf ∈ C that surrounds f but does not
surround any of the vertices of e. By Lemma 1, e and f cross an even number of
times. Therefore, by the Hanani–Tutte theorem, H∗ is planar. It follows that |E∗| is
less than or equal to 3|V ∗|−6, where E∗ is the set of all nice edges and V ∗ is the set
of vertices in H∗. This is true also when considering the expected values of |E∗| and
|V ∗|.

We have Ex(|V ∗|) = qn. We claim that Ex(|E∗|) ≥ |W |q2(1− q)k2−2, where W
is the set of all good edges. This is because each edge in W is nice with probability
of at least q2(1− q)k2−2. Indeed, suppose e ∈W , and let Ce be any curve in C that
surrounds e. e becomes nice if its two vertices are picked to V ∗ (which happens
with probability q2) and the other points surrounded by Ce are not picked. The latter
happens with probability of at least (1− q)k2−2 and independently of the event in
which the two vertices of e are picked.

Therefore, |W |q2(1−q)k2−2 < 3qn. Taking q= 1
k2−1 , we obtain |W |< 9(k2−1)n.

On the other hand, each good edge is surrounded by at most (r− 1)2r−1 curves
in C, and each curve in C surrounds at least k2

1/4 good edges. Therefore, |W | ≥
k2

1
4(r−1)2r−1 |C|. Hence, |C|< 36(r−1)2r−1k2

k2
1

n. The theorem now follows as ∑C∈C |PC| ≤

∑C∈C k2 ≤ 36(r− 1)2r−1 k2
2

k2
1
n.

Corollary 17. Let r > 0 be a fixed integer. Let G = (P,C) be a topological
hypergraph on n vertices, and assume that C is a family of pseudo-circles. If,
for every r curves C1, . . . ,Cr ∈ C, we have |PC1 ∩ . . .∩PCr | < r, then ∑C∈C |PC| =
O(n logn).

Proof. For every 0 ≤ i ≤ log2 n, let Ci denote those curves C ∈ C for which
2i ≤ |PC| ≤ 2i+1. By Theorem 15, for every 0 ≤ i ≤ log2 n, we have ∑C∈Ci

|PC| =
O(( 2i+1

2i )2n) = O(n). Therefore, ∑C∈C |PC|= ∑	log2 n

i=0 O(n) = O(n logn).

As an example, fix an integer r ≥ 2. Let G = (P,C) be a k-uniform topological
hypergraph on n vertices. Assume that for any two curves C1,C2 ∈ C, we have |PC1 ∩
PC2 |< r. Then, clearly, for every r curves C1, . . . ,Cr ∈C, we have |PC1∩. . .∩PCr |< r.
It follows now from Theorem 15 that
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k|C|= ∑
C∈C

|PC|= O(
k2

k2 n) = O(n).

Hence, |C|=O(n/k). This roughly says that the sets in the family {PC |C ∈ C}, each
having cardinality k, behave almost as if they were disjoint.
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3. E. Helly, Über Systeme abgeschlossener Mengen mit gemeinschaftlichen Punkten. Monat-
shefte Mathematik 37, 281–302 (1930)

4. P. Hall, On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)
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