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Abstract The crossing number CR(G) of a graph G is the minimum possible
number of edge crossings in a drawing of G, and the pair-crossing number
PAIR-CR(G) is the minimum possible number of crossing pairs of edges in a
drawing of G. Clearly, pair-cr(G)≤ cr(G). We show that for any graph G, cr(G) =
O(pair-cr(G)7/4 log3/2(pair-cr(G))).

1 Introduction

In a drawing of a graph G, vertices are represented by points and edges are
represented by Jordan curves, in a plane, connecting the corresponding points. We
assume that the edges do not pass through vertices, any two edges have finitely many
common points, and each of them is either a common endpoint, or a proper crossing.
We also assume that no three edges cross at the same point.

The crossing number CR(G) is the minimum number of edge crossings (i.e.,
crossing points) over all drawings of G. The pair-crossing number PAIR-CR(G) is
the minimum number of crossing pairs of edges over all drawings of G. Clearly, for
any graph G, we have

PAIR-CR(G)≤ CR(G).

It is still an exciting open question whether CR(G) = PAIR-CR(G) holds for all
graphs G.

Pach and Tóth [5] proved that CR(G) cannot be arbitrarily large if PAIR-CR(G)
is bounded; namely, for any G, if PAIR-CR(G) = k, then CR(G) ≤ 2k2. Valtr [9]
managed to improve this bound to CR(G) ≤ 2k2/ logk. Based on the ideas of Valtr,
the present author [8] improved it to CR(G)≤ 9k2/ log2 k.
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In this note, using a different approach, we obtain a further improvement.

Theorem. For any graph G, if PAIR-CR(G) = k, then CR(G) = O(k7/4 log3/2 k).

For the proof, we need some results about string graphs. These are introduced
in Sect. 2. In Sect. 3, we give the short proof of the theorem. There are many other
versions of the crossing number; for a survey, see [1, 6, 7].

2 String Graphs

A string graph is the intersection graph of continuous arcs in the plane. More
precisely, vertices of the graph correspond to continuous curves (strings) in the plane
such that two vertices are connected by an edge if and only if the corresponding
strings intersect each other.

Suppose that G(V,E) is a graph of n vertices. A separator in a graph G is a
subset S ⊂V for which there is a partition V = S∪A∪B, |A|, |B| ≤ 2n/3, and there
is no edge between A and B. According to the Lipton–Tarjan separator theorem, [4],
every planar graph has a separator of size O(

√
n). This result has been generalized

in several directions, for graphs drawn on a surface of bounded genus, graphs
with a forbidden minor, intersection graphs of balls in the d-dimensional space,
intersection graphs of Jordan regions, intersection graphs of convex sets in the plane,
and, finally, for string graphs [2, 3].

Theorem A ([3]). There is a constant c such that for any string graph G with m
edges, there is a separator of size at most cm3/4√logm.

3 Proof of Theorem

Let c be the constant in Theorem A. In a drawing D of a graph G in the plane,
call those edges that participate in a crossing crossing edges, and those that do not
participate in a crossing empty edges.

Lemma. Suppose thatD is a drawing of a graph G in the plane with l > 0 crossing
edges and k > 0 crossing pairs of edges. Then G can be redrawn such that (i)
empty edges are drawn the same way as before, (ii) crossing edges are drawn
in the neighborhood of the original crossing edges, and (iii) there are at most
6ck7/4 log3/2 l edge crossings.

Proof of Lemma. The proof is by induction on l. For l = 1, the statement is trivial.
Suppose that the statement has been proved for all pairs (l′,k′), where l′ < l, and
consider a drawing of G with k crossing pairs of edges, such that l edges participate
in a crossing. Obviously,

(l
2

)
≥ k, and 2k ≥ l; therefore, 2k≥ l >

√
k.
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Let V denote the vertex set of G and let E (resp., F) denote the set of empty (resp.,
crossing) edges of G. We define a string graph H as follows. The vertex set F of H
corresponds to the crossing edges of G. Two vertices are connected by an edge if the
corresponding edges cross each other. Note that the endpoints do not count; if two
edges do not cross, the corresponding vertices are not connected even if the edges
have a common endpoint. The graph H is a string graph; it can be represented by the
crossing edges of G, as strings, with their endpoints removed. It has l vertices and
k edges. By Theorem A, H has a separator of size ck3/4√logk. That is, the vertices
can be decomposed into three sets, F0, F1, and F2, such that (1) |F0| ≤ ck3/4√logk,
(2) |F1|, |F2| ≤ 2l/3, (3) there is no edge of H between F1 and F2.

This corresponds to a decomposition of the set of crossing edges F into three
sets, F0, F1, and F2, such that (1) |F0| ≤ ck3/4√logk, (2) |F1|, |F2| ≤ 2l/3, (3) in
drawingD, edges in F1 and in F2 do not cross each other.

For i = 0,1,2, let |Fi| = li. Let G1 = G(V,E ∪F1) and G2 = G(V,E ∪F2). Then
in the drawing D of the graph, Gi has li crossing edges. Denote by ki the number of
crossing pairs of edges of Gi in drawingD. Then we have k1 + k2 ≤ k, l1, l2 ≤ 2l/3,
and l1 + l2 + l0 = l.

For i = 1,2, apply the induction hypothesis for Gi and drawing D. We obtain a
drawingDi satisfying the conditions of the lemma: (1) Empty edges drawn the same
way as before; (2) crossing edges are drawn in the neighborhood of the original

crossing edges; and (3) there are at most 6ck7/4
i log3/2 li edge crossings.

Consider the following drawing D3 of G. (1) Empty edges are drawn the same
way as inD, D1, andD2; (2) for i = 1,2, edges in Fi are drawn as inDi; (3) edges in
F0 are drawn as in D. Now count the number of edge crossings (crossing points) in
the drawingD3. Edges in E are empty, edges in F1 and in F2 do not cross each other,

and there are at most 2ck7/4
i log3/2 li crossings among edges in Fi. The only problem

is that edges in F0 might cross edges in F1∪F2 and each other several times, so we
cannot give a reasonable upper bound for the number of crossings of this type. Color
edges in F1 and F2 blue, and edges in F0 red. For any piece p of an edge of G, let
BLUE(p) [resp., RED(p)] denote the number of crossings on p with blue (resp., red)
edges of G. We will apply the following transformations.

REDUCECROSSINGS(e, f ) Suppose that two crossing edges, e and f , cross twice,
say, in X and Y . Let e′ (resp., f ′) be the piece of e (resp., f ) between X and Y .
If BLUE(e′) < BLUE( f ′), or BLUE(e′) = BLUE( f ′) and RED(e′) ≤ RED( f ′), then
redraw f ′ along e′ from X to Y . Otherwise, redraw e′ along f ′ from X to Y . See
Fig. 1.

Observe that REDUCECROSSINGS might create self-crossing edges, so we need
another transformation.

REMOVESELFCROSSINGS(e) Suppose that an edge e crosses itself in X . Then
X appears twice on e. Remove the part of e between the first and last appearances
of X .

Start with drawing D3 of G, and apply REDUCECROSSINGS and REMOVE-
SELFCROSSINGS recursively, as long as there are two crossing edges that cross
at least twice, or there is a self-crossing edge.
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Fig. 1 REDUCECROSSINGS(e, f )

Let BB, (resp., BR, RR) denote the number of blue–blue (resp., blue–red, red–
red) crossings in the current drawing of G. Observe that the triple (BB,BR,RR)
lexicographically decreases with each of the transformations. Indeed,

• if e and f are both blue edges, then REDUCECROSSINGS(e, f ) decreases BB,
• if e is blue and f is red, then either BB decreases, or if it stays the same, then BR

decreases,
• if e and f are both red edges, then BB stays the same, and either BR decreases,

or if it also stays the same, then RR decreases,
• if e is blue, then REMOVESELFCROSSINGS(e) decreases BB,
• and finally, if e is red, then BB does not change, BR does not increase, and RR

decreases.

Therefore, after finitely many steps, we arrive at a drawing D4 of G, where any
two edges cross at most once, and (BB,BR,RR) is lexicographically not larger than

originally. That is, in the drawing D4, BB ≤ 2ck7/4
1 log l1 + 2ck7/4

2 log l2, and any
two edges cross at most once; therefore, BR+RR≤ l0l. So, for the total number of
crossings, we have

6ck7/4
1 log3/2 l1 + 6ck7/4

2 log3/2 l2 + l0l

≤ 6ck7/4
1

√
log l log(2l/3)+ 6ck7/4

2

√
log l log(2l/3)+ l0l

≤ 6c(k7/4
1 + k7/4

2 )
√

log l(log l + log(2/3))+ l0l

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + l0l

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + clk3/4
√

logk

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + 2ck7/4
√

logk

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + 3ck7/4
√

log l

= 6ck7/4 log3/2 l.
�
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Now consider a graph G and let PAIR-CR(G) = k. Take a drawing of G with
exactly k crossing pairs of edges. Let l be the total number of crossing edges. By
the lemma, G can be redrawn with at most 6ck7/4 log3/2 l crossings. Since 2k ≥ l,
CR(G)≤ 6ck7/4 log3/2 l < 18ck7/4 log3/2 k. This concludes the proof of the theorem.
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