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Abstract In a convex n-gon, let d1 > d2 > · · · denote the set of all distances
between pairs of vertices, and let mi be the number of pairs of vertices at distance di

from one another. Erdős, Lovász, and Vesztergombi conjectured that ∑i≤k mi ≤ kn.
Using a new computational approach, we prove their conjecture when k ≤ 4 and
n is large; we also make some progress for arbitrary k by proving that ∑i≤k mi ≤
(2k− 1)n. Our main approach revolves around a few known facts about distances,
together with a computer program that searches all distance configurations of two
disjoint convex hull intervals up to some finite size. We thereby obtain other new
bounds, such as m3 ≤ 3n/2 for large n.

1 Introduction

Given a set S of n points in the plane, let d1 > d2 > · · · be the set of all distances
between pairs of points in S. It was shown by Hopf and Pannwitz in 1934 [5] that
the distance d1 (the diameter of S) can occur at most n times, which is tight (e.g., for
a regular polygon of odd order). In 1987, Vesztergombi [6] showed that the second-
largest distance, d2, can occur at most 3

2 n times; she subsequently [7] considered the
version of the problem when the points are in convex position and showed that in
this case the number of second-largest distances is at most 4

3 n. She also showed that
both results are tight up to additive constants.
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Let mi denote the number of times that di occurs. It is known that mk ≤ 2kn [6],
and moreover that mk ≤ kn for point sets in convex position [7], while the following
open conjecture would imply mk ≤ 2n.

Conjecture 1.1 (Erdős, Moser [2,7]). The number of unit distances generated by n
points in convex position cannot exceed 2n.

A lower bound of 2n− 7 for this conjecture is known due to Edelsbrunner and
Hajnal [3].

For the rest of the chapter, we consider only point sets in convex position. One
natural question is to find how large m≤k := ∑i≤k mi, i.e., the number of top-k
distances, can be in terms of n. The conjectured value is

Conjecture 1.2 (Erdős, Lovász, Vesztergombi [4]). The number of top-k distances
generated by n points in convex position is at most kn; i.e., m≤k ≤ kn.

Odd regular polygons prove m≤k = kn is possible. In [4], the bound m≤k ≤ 3kn is
proven, and m≤2 ≤ 2n was shown in [7], verifying Conjecture 1.2 for k = 2.

In this chapter, we give improved upper bounds on mk and m≤k for convex point
sets, and more generally bounds for sums of the form ∑t∈T mt . Our first result is the
following.

Theorem 3. For any k ≥ 1, the number of top-k distances generated by n points in
convex position is at most (2k− 1)n; i.e., m≤k ≤ (2k− 1)n.

Thus, we close about half of the gap toward Conjecture 1.2.
Next, by combining several known conditions on distances for convex point sets,

and by using a computer program to carry out an exhaustive search on a finite
abstract version of the problem, we prove the following.

Theorem 4. The distances generated by n points in convex position satisfy the
following bounds, for large enough n:

• m≤3 ≤ 3n,m≤4 ≤ 4n;
• m3 ≤ 3

2 n,m4 ≤ 13
8 n;

• m1 +m3 ≤ 2n,m2 +m3 ≤ 9
4 n.

In particular, we verify Conjecture 1.2 for k ≤ 4 and n large. For m3 and m2 +m3,
the bound is as good as can be obtained by our abstract version of the problem, as
witnessed by periodic patterns achieving m3 =

3
2 n and m2 +m3 =

9
4 n, but we do not

know if any convex polygon can realize these distances; we elaborate in Sect. 6.
The proof of Theorem 4 uses a computer program to make certain types of

automatic deductions, as well as the following lemma to eliminate long distances
“near” the boundary.

Lemma 1.5. For any k ≥ 1 and � ≥ 0, there is a constant C(k, �) such that the
following holds: In a convex polygon, if there are � or fewer vertices between some
vertices a and b such that |ab| ≥ dk, then the number of top-k distances satisfies
m≤k ≤ n+C(k, �).
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The detailed bound we obtain is of the form C(k, �) = O(k2(k+ �)2). In an earlier
version of this chapter,1 we proved results like “m≤3≤ 3n+O(1),” which are weaker
for large n but better for small n, using the following alternative lemma.

Lemma 1.6. For any k ≥ 1 and � ≥ 0, there is a constant C′(k, �) such that the
following holds. In a convex polygon, at most C′(k, �) diagonals ab have both (i) �
or fewer vertices between a and b and (ii) |ab| ≥ dk.

In the latter, C′(k, �) = O(k�2). We do not think either lemma is tight.
In Sect. 2, we describe levels, a key element in our approach. In Sect. 3, we collect

geometric facts used by the algorithm. We prove Lemma 1.5 in Sect. 3.1. The proof
of our main result, Theorem 4, consists of the algorithmic approach described in
Sect. 4 together with our computational results stated in Sect. 5. We conclude with
suggestions for future work.

2 Levels

We use the term diagonal to mean any line segment connecting two points of S,
including sides of the convex hull of S. We will partition the diagonals into n levels in
the following way. Let S = {a1,a2, . . . ,an} be the vertex set of our convex polygon,
ordered clockwise. Then level i is the set of diagonals

Li := {a jak | j+ k≡ i mod n},

where the index i can be taken modulo n. Equivalently, consider an auxiliary regular
n-gon b1b2 . . .bn; then two diagonals aia j and akal lie in the same level when the
corresponding segments bib j and bkbl are parallel. We illustrate this in Fig. 1a.

Levels are used in the following way to prove Theorem 3 (i.e., m≤k ≤ (2k−1)n).

Proof of Theorem 1.3. In the next section, we prove Lemma 3.5: In any level, there
are at most 2k− 1 diagonals of length ≥ dk. Since there are at most n levels,
we are done. ��

3 Geometric Facts

To begin this section, we collect four geometric facts from the literature [1, 4, 7],
which will be used in our computer program. For completeness, we include the
proofs. The first two facts were used in [4, 7].

Fact 3.1. If abcd is a convex quadrangle, then |ab|+ |cd|< |ac|+ |bd|.

1http://arxiv.org/abs/1103.0412v1.

http://arxiv.org/abs/1103.0412v1
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Fig. 1 (a) Three consecutive levels of diagonals in a convex decagon. (b) Proof of Fact 3.2

Proof. Let p be the intersection point of the diagonals ac,bd. Then, by the triangle
inequality,

|ab|+ |cd|< |ap|+ |bp|+ |cp|+ |d p|= |ac|+ |bd| . �

Fact 3.2. If a,b,c,d are vertices of a convex polygon in clockwise order, then at
least one of these four cases must occur:

• |ax|> |ad| for all vertices x of the polygon between c and d, including c;
• |bx|> |bc| for all vertices x of the polygon between c and d, including d;
• |cx|> |bc| for all vertices x of the polygon between a and b, including a;
• |dx|> |ad| for all vertices x of the polygon between a and b, including b.

Proof. Since the sum of the angles of quadrilateral abcd is 2π , at least one angle
is nonacute. Without loss of generality, let ∠cda ≥ π

2 . Then for any vertex x of the
polygon between c and d, we have that ∠xda ≥ ∠cda ≥ π

2 , and, thus, |ax| > |ad|
(see Fig. 1b). ��

The special case i = j of the following fact appears in [4].

Fact 3.3. If a,b,c,d are vertices of a convex polygon listed in clockwise order, such
that |bc| ≥ di and |ad| ≥ d j, where di and d j are the ith- and jth-largest distances
among vertices of the polygon, then either between a and b or between c and d there
are no more than i+ j− 3 other vertices of the polygon.

Proof. Let’s denote without loss of generality a = a1,b = ax,c = ay,d = az. We will
show min{x− 1,z− y} ≤ i+ j− 2, which proves the lemma. We use induction on
i+ j see Fig. 2. The base case i = j = 1 amounts to saying that any two noncrossing
d1’s must share a vertex, which follows by Fact 3.1.

For the inductive step, we apply Fact 3.2. Suppose that the first of the four
cases happens, so d′ := az−1 satisfies |ad′| > |ad|; the other cases are similar.
Consequently, |ad′| ≥ d j−1. By induction, min{x−1,(z−1)− y} ≤ i+( j−1)−3,
from which the desired result follows (Fig. 2). ��
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Fig. 2 (a) Proof of Fact 3.3, base case i = 2, j = 1; (b) proof of Fact 3.3, inductive step

a b

Fig. 3 (a) Proof of Fact 3.4; (b) proof of Lemma 1.5

The following is a strengthening of a result of Altman, obtained by removing all
nonessential conditions from the hypothesis of [1, Lemma 1] but using the same
proof. (He considered only the case where |a1am|= d1.)

Fact 3.4. Let a1 . . .an be a convex polygon. If 1 ≤ i < j ≤ k < � < m and |a1am| ≥
max{|a1ak|, |a jam|}, then |aia�|> min{|aiak|, |a ja�|}.

Proof. Suppose for the sake of contradiction that |aia�| ≤ min{|aiak|, |a ja�|}.
Denote by x and y the points where a1a j and amak intersect aia� (see Fig. 3a).
Repeatedly using the fact that when s,s′ are two sides of a triangle, |s| > |s′| iff
the angle opposite s is larger than the angle opposite s′, we have

∠a jxa�+∠akyai > ∠a jaia�+∠aka�ai ≥ ∠aia ja�+∠a�akai

> ∠a1a jam +∠a1akam ≥ ∠a ja1am +∠akama1 .

However,∠a jxa�+∠akyai =∠a ja1am+∠akama1, which gives a contradiction. ��
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3.1 Counting Lemmas

First, we complete the proof of Theorem 3, using Fact 3.3.

Lemma 3.5. In any level, there are at most 2k− 1 diagonals of length ≥ dk.

Proof. Without loss of generality (by relabeling), we consider the level L0. The
diagonals of this level are a ja− j, with indices modulo n, for 0 < j < n/2. Let m >
0 (resp., M) be the minimal (resp., maximal) j such that |a ja− j| ≥ dk. Then, by
Fact 3.3, we see that M−m−1≤ k+ k−3. So the number of top-k diagonals in L0

is bounded by |{m,m+1, . . . ,M}|= M−m+1≤ 2k−1, which gives the corollary.
��

Next, we give the proof of Lemma 1.5, which is needed in order to argue that our
computational approach is correct.

Proof. We want to show that if |ab| ≥ dk, and a and b are separated by at most �
vertices, then the number of top-k distances satisfies m≤k ≤ n+O(k2(k+ �)2). Let S
be the interval obtained from this [a,b] by extending onto 2k further points in both
directions. By Fact 3.3, all edges of length≥ dk have at least one endpoint in S. Note
|S|= O(k+ �).

We will show an upper bound of n+O(k2(k+ �)2) on the number of edges sx
of length ≥ dk, with s ∈ S,x ∈ V\S. This will complete the proof since the only
other top-k distance edges must lie with both endpoints in S, and there are at most
O(k+ �)2 such edges.

The key observation is that in the bipartite graph between S and V\S consisting of
these edges, all but a constant number of vertices in V\S have degree 1. Specifically,
if sx,s′x are both edges in this graph, then the location of x is uniquely determined
by s,s′, |sx|, and |s′x|; it follows that ∑x

(deg(x)
2

)
is at most O((k + �)2k2), and

consequently ∑x:deg(x)>1 deg(x) = O((k+ �)2k2). We are then done by counting the
endpoints of degree-1 vertices, of which there are at most n. ��

4 The Algorithm

The algorithm we use to prove Theorem 4 examines distances among finite configu-
rations of points in the plane. Informally, we examine all possible configurations of
a bounded size, where a configuration includes all occurrences of top-k distances in
a few consecutive levels, and we try to establish that not too many top-k distances
can occur per level, averaged over a small interval of levels. Thus, ultimately, the
argument in our proof decomposes any global point set into local configurations of
bounded size.
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4.1 The Goal

Our computational goal will be to bound the number of long distances that can occur
in a consecutive sequence of several levels. We begin by reproving (for large n)
Vesztergombi’s result on counting the second-largest distances; it illustrates the type
of computational result we need.

Proposition 4.1. We have m2 ≤ 4
3 n for large enough n.

Proof. We prove the theorem for n ≥ 3 ·C(16,2) with C as in Lemma 1.5. Let a
special diagonal be a diagonal of length d2 or longer, whose endpoints are separated
by at most 16 vertices. If there is any special diagonal, we are done by Lemma 1.5.
So we may assume there are no special diagonals.

Using our computer program, we establish the following lemma.

Lemma 4.2. In every point set S without special diagonals, for every level i, at
least one of the following is true:

• at most 1 = 	1 · 4
3
 diagonal in level i has length d2;

• at most 2 = 	2 · 4
3
 diagonals in levels i and i+ 1 have length d2;

• at most 4 = 	3 · 4
3
 diagonals in levels i, . . . , i+ 2 have length d2;

• at most 5 = 	4 · 4
3
 diagonals in levels i, . . . , i+ 3 have length d2.

Now let’s see how this gives the desired result. Taking i = 1, the four cases above
establish that for some 1 ≤ γ1 ≤ 4, the number of d2’s in levels 1, . . . ,γ1 is at most
4
3γ1. Applying the same logic to i = γ1+1, we get that there is some 1≤ γ2 ≤ 4 such
that the number of d2’s in levels γ1 + 1, . . . ,γ1 + γ2 is at most 4

3 γ2.
We continue to further define γi’s in the same way until∑x

i=1 γi≡∑y
i=1 γi (mod n)

for some x < y. Summing a contiguous subset of these bounds, the number of d2’s
in levels from 1+∑x

i=1 γi to ∑y
i=1 γi is at most 4

3 per level on average. But this sum
counts each of the n levels an equal number of times, so the number of d2’s overall
is at most 4

3 n. ��

The computer program’s goal is thus to prove a general version of Lemma 4.2:
Given a target ratio α and target distances (a subset of {d1,d2, . . . ,dk}), find a
constant m so that every level i admits 1≤ m′ ≤ m such that ≤ m′ ·α target lengths
occur in levels i, . . . , i+m′. The program searches for a point set with > α target
diagonals in level 1, > 2α in level 2, etc. If the search terminates, the above proof
shows the number of target distances is ≤ αn. The hypothesis that no special
diagonals exist is used only indirectly by the program, explained below.

Our algorithm works with configurations consisting of two disjoint intervals of
points, and an assignment of a distance from {d1,d2, . . . ,dk,“< dk} to each diagonal
spanning the two intervals. We thereby obtain analogues of Lemma 4.2 by checking
all possible configurations up to some finite size. For this to work, Fact 3.2 is crucial
since it implies that all of the top-k distances in � consecutive levels have all of
their endpoints in two intervals of bounded size. We use an incremental branch-
and-bound search: It exhaustively searches all possibilities, but in an efficient way
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where large sections of the search space can be eliminated at once. Each individual
step of the algorithm corresponds to an application of one of the Facts 3.1–3.4.
The lack of special diagonals allows us to focus on disjoint interval pairs. The Java
implementation is available at

http://sourceforge.net/projects/convexdistances/.

4.2 Configurations

In more detail, our algorithm maintains a set of configurations. Each configuration
has two disjoint intervals of points from S; then for each diagonal generated by
one point from each interval, the configuration stores a set of possible values for
the distance between those two points. Arbitrarily name one interval the top and
denote its points as {ti}i, with ti+1 following ti in clockwise order, and name the
other interval the bottom with points {bi}i, and bi−1 following bi in clockwise order.
Then we denote the set of possible distances between ti and b j as D[i, j]; in each
configuration D[i, j] is a subset of {1,2, . . . ,k,∞}, where x ∈ D[i, j] means that dx

is a possible value for the distance |tib j|, while ∞ ∈ D[i, j] means that it is possible
for |tib j| to be shorter than dk. (So typical steps in our program use special cases
to reason with “d∞” distances correctly.) Reiterating, a configuration consists of a
top interval of indices, a bottom interval of indices, and for each top-bottom pair a
subset of {1,2, . . . ,k,∞}.

We assume that tib j is in level number j− i (modulo n), which is without loss
of generality. To gain some intuition and exhibit the notation, it is helpful to look
at a couple of examples. Our examples will be drawn from actual point sets and
therefore each D[i, j] will be just a singleton, in contrast to the larger sets D[i, j]
typically occurring in the algorithm. The first example, shown in Fig. 4, is a regular
polygon of odd order. The second example, shown in Fig. 5, exhibits the extremal
construction of Vesztergombi for second distances [7].

4.3 Methodology

Here is an example of a typical step in the algorithm, shown in Fig. 6. Suppose
some configuration includes points t1, t2,b2,b1, suppose that D[1,1] =D[2,2] = {2},
D[1,2] = {2,3,∞} and that D[2,1] = {1,2,3,∞}. Then, using Fact 3.1, we know that
|t1b2|+ |t2b1|> |t1b1|+ |t2b2|. As the right-hand side equals 2d2 and the maximum
possible length of t1b2 is d2, we can deduce that |t2b1| > d2 and so we may update
the configuration via D[2,1] := {x ∈ D[2,1] | x < 2}= {1}.

The program uses Facts 3.1–3.4 in ways analogous to the above example.
Whenever one of the facts is applicable, we use it to reduce the size of one set
D in the configuration. We use Fact 3.4 only when a1,ai,a j lie in the top interval
and ak,al ,an lie in the bottom, or vice versa.

http://sourceforge.net/projects/convexdistances/
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Fig. 4 Left: an odd regular polygon, with a top and bottom interval. Right: the corresponding
values of D, where entry x in column i, row j indicates D[i, j] = {x}. One level is illustrated on the
left and circled on the right
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Fig. 5 Left: an illustration of Vesztergombi’s construction with m2 =
4
3 n−O(1). Some diagonals

of lengths d1 and d2 are shown (solid and dotted, respectively). Right: the corresponding
configuration; again, entry x in column i, row j indicates D[i, j] = {x}

Fig. 6 A typical step of the algorithm, using Fact 3.1

Our algorithm also makes use of another easy observation. In any instance S,
it cannot be true that both d1 + d3 > d2 + d2 and d1 + d3 < d2 + d2. Hence, using
Fact 3.1, a quadruple t, t ′,b′,b (in that cyclic order) with |tb| = |t ′b′| = d2, |tb′| =
d1, |t ′b|= d3 cannot co-exist with another quadruple t̂, t̂ ′, b̂′, b̂ with |t̂ b̂|= d1, |t̂ ′b̂′|=
d3, |t̂ b̂′|= |t̂ ′b̂|= d2. More generally, given a configuration, we can deduce from any
i, j, i′, j′ with each D[i, j],D[i, j′],D[i′, j],D[i′, j′] singletons other than {∞} that an
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inequality of the form dw+dx > dy+dz is true; in testing a configuration for validity,
our program will reject any configuration where a contradiction arises from the set of
all such pairwise inequalities. This is done by testing the associated digraph of

(k+1
2

)

pairs for acyclicity. (We also include arcs of the form dx + dy > dx + dz whenever
y < z.)

In some situations none of these facts is applicable; say, for example, if each
D[i, j] is equal to {1,2,∞}, we cannot conclude any further information. In this case,
we use an approach that is similar to recursion or branch-and-bound in this situation,
which works as follows. Find some i, j with |D[i, j]| > 1, and let X denote D[i, j].
We then replace this configuration with two new configurations: Each of the new
ones is almost identical to the original, except that in one we take D[i, j] = minx∈X x
and in the other we take D[i, j] = X\{minx∈X x}. In a little more detail, while we are
examining the levels from 1 to L, we only perform branching on diagonals in levels
1 to L, (i.e., only when 1 ≤ j− i ≤ L) and any other nonsingleton D[i, j] does not
entail branching. This was faster in practice than branching on every D[i, j].

4.4 Initializing and Growing Configurations

Recall that our theorems are all of the following form, for a set T of positive integers
and some real α:

∑
t∈T

mt ≤ αn+O(1). (♠)

We call a target distance any distance dt with t ∈ T . We use k to represent the largest
number in T .

We begin this detailed section by explaining why it suffices to examine config-
urations of bounded size to bound the number of target distances in L consecutive
levels. The key tool is Fact 3.3. Namely, suppose t0b1 is any diagonal in level 1
with length |t0b1| ≥ dk, and consider any top-k distance diagonal e in levels 1, . . . ,L.
If e crosses t0b1, then t0 (resp., b1) is within L steps along the boundary from an
endpoint of e (resp., the other endpoint of e). If e and t0b1 don’t cross, one endpoint
of e is at most 2k steps from t0 or b1 by Fact 3.3, and the other endpoint of e is at
most 2k+L points away from the other of t0 or b1. Summarizing, in either case, e
has one endpoint in the interval It consisting of vertices at most 2k+L steps from
t0, and e’s other endpoint lies in the interval Ib consisting of vertices at most 2k+L
steps from b1; and this holds for all top-k distance diagonals e in levels 1, . . . ,L.

Our program makes valid deductions whenever these intervals are disjoint, which
is false only when t0 and b1 are within 2(2k + L) steps of one another on the
boundary. Set � = 2(2k+ L) and define a special diagonal to be one with length
≥ dk and at most � vertices between its endpoints. Recall that |t0b1| ≥ dk, so the
program’s deductions are valid unless there was a special diagonal. This explains
the choice of 16 = 2(2 ·2+4) in Proposition 4.1 and justifies our general approach.

In the rest of this section, we explain some of the implementation details. The
program begins working with a configuration consisting of a single diagonal t0b1 of
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length ≥ dk, and we assume without loss of generality that there are no diagonals
tibi+1 such that i < 0 and |tibi+1| ≥ dk. Thus, the top and bottom intervals begins as
the singleton sets {t0},{b1}.

We will now enlarge these configurations. Reviewing our proof strategy, the
program must enumerate all possible configurations such that level 1 has more than
α diagonals of a target length, and levels 1 and 2 together have more than 2α , etc.,
with the hope being that once the number of levels is high enough, we find that no
such configurations exist, since this would give a result like Lemma 4.2.

Note that, by our choice of t0 and b1, which normalize our indices, in any convex
point set, all level-1 diagonals of the target distances are of the form tibi+1 for
i > 1, and by Fact 3.3, they also satisfy i ≤ 2k− 2. So crucially, their possible
positions are confined to an interval of bounded size. We now determine which of
these diagonals have target lengths by exhaustive guessing, a term that simply means
trying all possibilities. In detail, first, exhaustively guess the smallest i> 0 for which
tibi+1 is a target distance, then the second-smallest, etc. When the top and bottom
intervals are enlarged, each new D[i, j] is set to {1, . . . ,k,∞} by default, meaning
that no assumptions are made on the distance. When i is guessed as a minimal new
level-1 diagonal for which tibi+1 is a target distance, rather than the defaults, we set
D[i, i+ 1] = T and D[i′, i′+ 1] := {1, . . . ,k,∞}\T for all new i′ < i.

After each new diagonal is added, we reapply Facts 3.1–3.4 in order to make
additional deductions and eliminate any impossible configuration; and we split any
nonsingleton sets D in the first level, as described earlier.

After this exhaustive guessing, we have collected all possible configurations. We
keep only those for which level 1 has more than α diagonals of the target lengths.
If any exist, we grow them in all possible ways to 2-level configurations, using
exhaustive guessing like that explained above, except that we expand “to the left”
before expanding “to the right” (for level 1, only rightward expansion was needed
due to our choice of t0 and b1). Again, we prune those that have no more than 2α
target distance in the first two levels.

We repeat the process described in the previous paragraph over and over,
increasing the number of levels by 1 each time. If the program terminates eventually,
it implies a result of the form like Lemma 4.2 and consequently that (♠) holds for
this choice of T and α . We give a high-level review of the algorithm in Fig. 7.

5 Results: Proof of Theorem 4

Each row in Table 1 corresponds to an execution of our program that terminated.
In other words, each execution establishes that an analogue of Lemma 4.2 holds,
and we consequently deduce Theorem 4 using reasoning as in the proof of
Proposition 4.1. Each line proves

∑
t∈T

mt ≤ αn for n >C(k,2(2k+L))/(α− 1), (♣)
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Fig. 7 Sketch of the algorithm

Table 1 The terminating executions of our program, each one proving
(♣) for that α and T . Tight means convex point sets are known with
∑t∈T mt = αn−O(1), and abstractly tight means some periodic configu-
ration has ∑t∈T mt = αn, but we could not realize it convexly in the plane

T α L Time (s) Tightness of result

{1,2} 2 2 <1 Tight (odd regular)
{2} 4/3 4 <1 Tight [7]
{1,2,3} 3 3 <1 Tight (odd regular)
{3} 3/2 9 5 Abstractly tight, Fig. 8
{2,3} 9/4 6 1 Abstractly tight, Fig. 9
{1,3} 2 4 <1 Tight (odd regular)
{1,2,3,4} 4 3 68 Tight (odd regular)
{4} 13/8 27 50,890 Unknown

where k is the largest element of T , and C is the constant from Lemma 1.5. Note
that the first two lines of Table 1 correspond to results that were already known.
The running times are from a computer with a 2-GHz processor. The program was
written in Java and is available on SourceForge.2 For T = {1,2,3,4,5} or T = {5},
the program ran out of memory before obtaining any reasonable result.

6 Abstract Tightness

Our computer program can also generate tight examples. In Fig. 8, we show
two periodic configurations with m3 = 3

2 n with periods of six and eight levels,
respectively. (No other example has period lower than 14.) We were not able to
embed these examples as convex point sets in the plane, and at the same time we

2http://sourceforge.net/projects/convexdistances/.

http://sourceforge.net/projects/convexdistances/
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Fig. 8 Two unrealized periodic configurations with m3 =
3
2 n. Rows and columns are two intervals

of vertices, and entry i (resp., ∞) means distance di (resp., < d3)
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Fig. 9 An unrealized periodic configurations with m2 +m3 =
9
4 n

did not disprove that they were embeddable. Based on our attempts, it seems like
there is no simple periodic embedding respecting the natural symmetries of the
distance configurations. A disproof of realizability could be used in the program
to get stronger results. For m2 +m3 =

9
4 n, we also have an abstractly tight periodic

example that we could not realize (Fig. 9).

7 Future Directions

Our program is essentially a depth-first search; each configuration examined by the
program has a unique “parent” configuration from which it was grown. Thus, it
would be possible to rewrite the program so as to use a smaller amount of memory
and thereby possibly obtain results with smaller α or larger k; and a distributed
implementation should also be straightforward.

It would be good to come up with constructions exhibiting better lower bounds.
For example, no construction is known where m3/n is asymptotically greater
than 4/3.

Our approach constitutes an abstract generalization of the original problem of
bounding sums of the mi’s in convex point sets. Vesztergombi [7] considered
an abstraction as well, using only a subset of the facts we applied here. Can
Conjecture 1.1 of Erdős and Moser be violated in either of these abstractions?

Finally, can the functions C,C′ in Lemmas 1.5 and 1.6 be improved?
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