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Abstract In the first part of this survey, we consider planar graphs that can be
represented by a dissections of a rectangle into rectangles. In rectangular drawings,
the corners of the rectangles represent the vertices. The graph obtained by taking
the rectangles as vertices and contacts as edges is the rectangular dual. In visibility
graphs and segment contact graphs, the vertices correspond to horizontal or to
horizontal and vertical segments of the dissection. Special orientations of graphs
turn out to be helpful when dealing with characterization and representation
questions. Therefore, we look at orientations with prescribed degrees, bipolar
orientations, separating decompositions, and transversal structures.

In the second part, we ask for representations by a dissections of a rectangle
into squares. We review results by Brooks et al. [The dissection of rectangles into
squares. Duke Math J 7:312–340 (1940)], Kenyon [Tilings and discrete Dirichlet
problems. Isr J Math 105:61–84 (1998)], and Schramm [Square tilings with
prescribed combinatorics. Isr J Math 84:97–118 (1993)] and discuss a technique
of computing squarings via solutions of systems of linear equations.
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1 Introduction

Questions around representations of graphs by geometric objects are intensively
studied. Motivation comes from practical applications and the fascinating exchange
between geometry and graph theory and other mathematical areas.
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Fig. 1 A circle contact
representation of a planar
graph

Fig. 2 A rectangular
dissection

One of the nicest results about representations of graphs by geometric objects is
Koebe’s “coin graph theorem” [6, 35, 48]. It asserts that every planar graph can be
represented by a set of disjoint discs, one for each vertex, such that two discs touch
exactly if there is an edge between the corresponding vertices. Such a representation
is called a circle contact representation. Figure 1 shows an example.

In the 1980s, Thurston observed a connection between circle packings and
the Riemann mapping theorem. From there the theory has developed into a
discrete analog of complex analysis; Stephenson’s book [51] gives a comprehensive
introduction.

In this chapter, we focus on representations of planar graphs based on rectangles.
We look at rectangular dissections as shown in Fig. 2 and graphs that can be derived
from it.

Suppose that φ : R→ Gφ (R) corresponds to a specific mapping that associates a
graph Gφ (R) with a rectangular dissection R and that Gφ (R) belongs to a class Gφ
of graphs. Then we can ask whether a given graph G from class Gφ is representable,
i.e., whether G is in the image of φ . The representability question can be treated as
a characterization problem or as an algorithmic problem. If G is representable, we
can also ask for a representation, i.e., for a dissection R such that G =Gφ (R). In this
survey we consider several graphs associated to a dissection and the corresponding
representability and representation problems.

In Sect. 2, we look at rectangular drawings and rectangular duals. Taking the
corners of a rectangular dissection as vertices and the connecting line segments as
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edges yields a rectangular drawing. In Sect. 2.1, we review the theory of rectangular
drawings, and in Sect. 2.3, we present an algorithm to decide whether a graph admits
such a drawing and, if so, we generate it. The algorithm is based on an orientation of
the angular graph with prescribed out-degrees. In some variants of the problem, this
approach yields the fastest-known algorithm. In Sect. 2.2, we consider rectangular
duals; in this model the vertices of the planar graph are represented by rectangles
and edges by contacts.

In Sect. 3, we take the horizontal and vertical segments or just the horizontal
segments of a rectangular dissection as vertices. Based on horizontal and vertical
segments, we define the segment contact graph of a dissection and then proceed
to consider more general segment contact graphs. With Theorem 3.2, we prove
an unpublished characterization of segment 2-contact graphs due to Thomassen.
In Sect. 3.1.1, segment contact graphs of rectangular dissections are shown to be
closely related to separating decompositions. In Sect. 3.2, we consider the visibility
graph of a dissection. This leads to the study of bipolar orientations. At the end of
the section, in Sect. 3.3, we look at the relation between bipolar orientations and
separating decompositions.

In the second part of the survey, we focus on square dissections, i.e., rectangular
dissections where all rectangles are squares. Section 4 deals with the square analogs
of visibility and segment contact graphs. We begin in Sect. 4.1 with the classical
connection between squarings and electricity. In Sect. 4.2, we study a system of
linear equations obtained from a separating decomposition and show that a solution
yields a squaring. Kenyon [30] developed a more general theory relating trapezoidal
dissections and Markov chains; it is the subject of Sect. 4.3.

Section 5 is based on Schramm [49]. The result is a characterization of graphs
admitting a square dual. Finally, in Sect. 5.1, we relate square duals and transversal
structures and propose an alternative method for computing square duals. The
method is simple but comes with the drawback that its correctness still depends
on a conjecture.

2 Rectangular Drawing and Rectangular Duals

2.1 Rectangular Drawing

Think of R as a union of interiorly disjoint rectangles. The union of the boundaries
of the rectangles is the skeleton skel(R) of the dissection R. Let C(R) be the set of
corners of the rectangles of R. The skeleton of R can be viewed as a graph Gskel(R).
The vertices of Gskel(R) are the points in C(R), and the edges of Gskel(R) are the
connecting line segments. More formally, the edges correspond to the connected
components of skel(R) \C(R). The skeleton graph Gskel(R) has four vertices of
degree 2 incident to the outer face. All the other vertices are of degree 3 or 4. The
edges are drawn as horizontal or vertical line segments.
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If a graph G is represented by R, i.e., G=Gskel(R), then we call the representation
a rectangular drawing of G. A characterization of graphs with Δ ≤ 3 that admit a
rectangular drawing was obtained by Thomassen [54]. Thomassen’s result is based
on an earlier result of Ungar [59], who gave a characterization in the model where
the corners of the outer face are regarded to be bends in an edge instead of vertices
of degree 2. Ungar’s characterization is dual to Theorem 2.2.

Algorithms for the construction of rectangular drawings have been considered by
various authors. One of the key results is the following.

Theorem 2.1. Let G be a plane graph with four distinguished corner vertices of
degree 2 and vertices of degrees at most 3 otherwise. There is an algorithm that
decides whether G is a skeleton graph and if so computes a rectangular drawing in
linear time.

A survey of algorithms and many references can be found in Chapter 6 of
the book of Nishiseki and Rhaman [43]. In Sect. 2.3, we present an approach to
rectangular drawings and a proof of Theorem 2.1 that is not covered there. This
leads to improvements in the running times of some variants of the problem.

In the graph drawing literature, rectangular drawings have been extended and
generalized in various directions.

• Edges are allowed to bend but remain constrained to the orthogonal drawing
mode, i.e., are composed of horizontal and vertical segments. A highlight of
the theory is the application of min-cost-flow algorithms for bend minimization
pioneered by Tamassia [53].

• To overcome the degree restriction, some authors allow that in the drawing
vertices are represented by boxes. With boxes and bends, every planar graph can
be represented. If bends are forbidden, the problem can be reduced to finding a
rectangular drawing of a derived graph [45].

For more on the topic, we refer to the books on graph drawing [10, 43] and the
survey about orthogonal graph drawing [15].

2.2 Rectangular Dual

Let F(R) be the set of rectangles of a rectangular dissection R. It is convenient
to include the enclosing rectangle in F(R). The dual of R is the graph G∗(R) with
vertex set F(R) and edges joining pairs of rectangles that share a boundary segment;
Fig. 3 shows an example. If a graph G allows a representation as dual of a rectangular
dissection R, i.e., G =G∗(R), then G is called a rectangular dual of R. It is tempting
to think that the graph G∗(R) is the dual graph of Gskel(R). This is almost true, but
there are some issues about the multiplicity of edges incident to the outer face of
Gskel(R), i.e., to the enclosing rectangle.
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Fig. 3 A rectangular dissection R, its dual G∗(R), and the dual of the framed dissection R+

Indeed, graphs admitting a rectangular dual may have unwanted features; e.g.,
a vertex represented by a corner rectangle may have degree 3 and there may
be a double-edge between an inner vertex w and the outer vertex v∞. A clean
characterization is obtained if we assume that the degree of v∞ is 4. In terms of
a rectangular dissection, this can be achieved by adding a frame of four rectangles,
one for each side; see Fig. 3.

Theorem 2.2. A planar triangulation with designated outer vertex v∞ of degree 4
admits a rectangular dual exactly if it has no separating triangle, i.e., if it is 4-
connected.

There are many related characterizations, e.g., Kozḿiński and Kinnen [33] or
the earlier result of Ungar [59] in the dual setting. Buchsbaum et al. [2] have many
pointers to the literature. An elegant approach to proving the theorem is to split the
task into two: In the first step, it is shown that the graph can be enriched with some
combinatorial structure. In the second step, this structure is used to construct the
geometric representation. Such an approach was taken by Bhasker and Sahni [5] and
later refined by He [25], Kant and He [31], and Fusy [22]. The latter two of these
papers use transversal structures (cf., Sect. 5.1) as the intermediate combinatorial
structure. The approach results in the linear-time construction of rectangular duals
with integer coordinates bounded by n.

Problems where some region is to be partitioned into subregions subject to
restrictions on the shapes of the subregions and some adjacency constraints are
denoted as floor-planning problems. They arise in applications in VLSI chip design
and cartography. In view of these applications, specific optimization tasks are of
interest. We mention two directions:

• Find a floor plan of a general planar graph such that the shapes of the modules
representing the vertices are simple (e.g., orthogonal with ≤ 8 corners) and the
total area of the floor plan is small. This problem is studied in [37].

• A rectilinear cartogram is a diagram in which geographic regions have been
replaced by orthogonal polygons. The neighbor relation on polygons and on
their corresponding regions has to be the same; in addition, the areas of
the polygons correspond to some numerical data associated with the regions.
Eppstein et al. [16] have studied cartograms where all polygons are rectangles
and with the flexibility that they can accommodate arbitrary area assignments.
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Fig. 4 A planar graph G and its trimmed angle graph Ǎ(G)

Alam et al. [1] show that a planar triangulation with area assignments can be
represented by a cartogram using polygons with 8 corners, which is the best
possible.

2.3 An Algorithm for Rectangular Drawings

Let G be the input graph. We assume that G is given with a planar embedding and
with four distinguished corner vertices of degree 2; all the other degrees are 3 or 4.
With G = (V,E), we consider its trimmed angle graph Ǎ(G). The vertex set of this
graph consists of the primal vertex set V together with the dual vertex set save the
dual of the unbounded face, i.e., V ∗ \{ f∞}. Edges of Ǎ(G) correspond to incidences
between vertices and bounded faces of G or equivalently to the internal angles of G.
To emphasize the bipartition of Ǎ(G), think of vertices from V as white and of
vertices corresponding to faces of G as black vertices; see Fig. 4.

If G has a rectangular drawing, i.e., G = Gskel(R) for some rectangular dissection
R, then we can classify the angles of G as either being a corner or being flat with
respect to R. We note the following:

• Each inner face is represented as a rectangle and thus has exactly four corner
angles.

• Each inner vertex of degree 3 has exactly one flat angle.

Orient the edges of Ǎ(G) such that {v, f} is oriented as f → v when v is a corner of
the rectangle corresponding to f and as v→ f when the angle is flat. Now consider
the out-degrees of this orientation and note that

• out-deg( f ) = 4 for all black vertices f . For a white vertex v, we have
out-deg(v) = 1 if v is an inner vertex of G with deg(v) = 3 and out-deg(v) = 0
if deg(v) = 4 or if v is a vertex of the outer face of G.

An orientation of Ǎ(G) obeying the above rules for the out-degrees is denoted an
αskel-orientation.
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Fig. 5 Consistent alignment of rectangles sharing a vertex v; the arrows indicate the underlying
αskel orientation of Ǎ(G)

Theorem 2.3. Let G be a plane graph with four distinguished corner vertices of
degree 2 at the outer face and vertices of degrees 3 or 4 otherwise. There is a
rectangular drawing of G if and only if Ǎ(G) has an αskel-orientation.

Proof. From the above we know that if G = Gskel(R) for some R, then there is an
αskel-orientation of Ǎ(G).

For the converse suppose that Ǎ(G) has an αskel-orientation. Identify the four
corners of a rectangular frame F with the degree-2 vertices of G in clockwise order.
From αskel, we can read off which vertices of G are corners of a given face f ; they
are the out-neighbors of f in the orientation. For faces f sharing an edge with the
outer face f∞ of G which is represented by F , we know which corner is top left, top
right, bottom right, and bottom left, i.e., the alignment of the rectangles R f . If we
know the alignment of R f and if faces f and f ′ share an edge in G, then we know
the alignment of R f ′ . Thus, the alignment can be passed through dual paths to all
faces. The claim is that the alignment of R f is independent of the dual path from f∞
to f that has been used. This can be established with a homotopy-type argument.
The key to the argument is to check that if v is a vertex and f , f ′ are faces incident
to v in G, then passing the alignment information from R f to R f ′ on either of the two
paths on the dual cycle around v yields the same result. This amounts to looking at
the pictures of Fig. 5 with all possible choices for f and f ′. ��

The alignment of the rectangles is equivalent to a red–blue coloring and
orientation of edges of G such that red edges are horizontal with orientation from
left to right and blue edges are vertical and oriented downward. The boundary of
each face consists of two directed paths in this orientation. The coloring of one of
the two paths has a sequence of red edges followed by a sequence of blue edges;
this is the upper path. The other path has blue edges followed by red edges and is
called the lower path.

We use the red–blue coloring in the following description of how to construct
the rectangular dissection R for G. Let p0 be the lower path of the outer face f∞.
Match the blue part of p0 to the left side of the frame F and the red part of p0

to the bottom side of F . This requires an arbitrary specification of positions for
the vertices of degree 3 contained in p0. The third edge of each such vertex will
have to be extended into the interior of F . From the coloring we know whether it
is horizontal or vertical, but we do not yet know its length. Such an initial piece of
an edge will be called a stump. Starting from p = p0 we add rectangles one by one,
always keeping the invariant that the boundary of the set of already placed rectangles
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Fig. 6 An αskel-orientation and a corresponding rectangular dissection

is a directed path p from the top left corner to the bottom right corner of F . We now
focus on the placement of a new rectangle. Figure 6 shows an αskel-orientation and
an intermediate stage of the algorithm.

Along the path p we see some stumps: The first is a red stump on the top side
of F , and the last is a blue stump on the right side of F . Therefore, somewhere
along p there is a red stump at a vertex v1 followed by a blue stump at v2. Let p′ be
obtained by restricting p to the part between v1 and v2. We claim that p′ consists of
a sequence of blue edges followed by a sequence of red edges. This can be verified
as follows: The stump at v1 is outgoing and red, and the edge of p′ incident to v1 is
also outgoing and hence must be blue. Similarly, the edge of p′ incident to v2 has
to be red. A vertex of p′ where a red edge is ingoing and a blue is outgoing would
have a stump, which is impossible since the stumps at v1 and v2 are consecutive.
This completes the proof of the claim. It follows that p′ is the lower path of some
rectangle R f . We place R f in the unique consistent way inside F and replace p′ in p
by the upper path of R f . We also have to choose positions for the noncorner vertices
contained in the upper path of R f . Unless the top right corner of R f is the top right
corner of F and the dissection is complete, there is at least one new stump at the
top right corner of R f and possibly some more along the upper path. Now the status
of the directed path p and its stumps is as before, and so the next rectangle can be
placed. ��

Algorithmically, the construction of Ǎ(G) from a given G and the construction of
the rectangle dissection R from a given αskel-orientation of Ǎ(G) are both easy and
can be done in linear time. The computation of an αskel-orientation can be modeled
as a flow problem [18] in Ǎ(G) and with methods from [41] be solved in O(n1.5).
In [58] it is shown that the computation of an αskel-orientation can be reduced to
a shortest-path problem. Using the currently fastest algorithm for planar shortest
paths [42] yields an overall running time of O(n log2 n/ loglogn). If the input graph
has no vertices of degree 4, we can do even better: We construct a suitably modified
dual G∗q of G having four vertices corresponding to the outer face of G, one for
each segment between degree-2 vertices on the outer face. The αskel-orientations of
Ǎ(G) are in bijection with transversal structures (a.k.a. regular edge labelings) of
G∗q as defined by Fusy [22, 23]. In his thesis [22], Fusy showed that if G∗q has no
separating triangle, then a transversal structure exists and can be computed in O(n)
time. This gives anαskel-orientation of Ǎ(G) in linear time. The result is summarized
in the following.
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Theorem 2.4. Let G be a plane graph with four distinguished corner vertices of
degree 2 and vertices of degrees 3 or 4 otherwise. There is an algorithm based on
αskel-orientations that decides whether G is a skeleton graph and if so computes a
rectangular drawing in O(n) time if Δ≤ 3 and in O(n log2 n/ loglogn) time if there
are vertices of degree 4.

Rahman et al. [44] have a linear-time algorithm for rectangular drawings of
graphs with maximum degree Δ ≤ 3 even in the case where no plane embedding
of the graph is prescribed.

Miura et al. [40] have an O(n2.5/ logn) algorithm to recognize whether a plane
graph G with Δ= 4 has a rectangular drawing. Their result is stated in a more general
form: They allow an outer face of more complex shape. Since they prescribe which
outer vertices are convex (resp., concave) corners, the shape of the outer face can be
modeled by adapting the out-degrees of αskel. Therefore, this generalization is also
covered by our approach. This yields a solution with O(n log2 n/ loglogn) running
time.

3 Segment Contact and Visibility Graphs

3.1 Segment Contact Graphs

Think of a rectangular dissection R as a set of segments, some horizontal and some
vertical. If R contains no point where four rectangles meet, intersections between
segments only occur between horizontal and vertical segments and they involve an
endpoint of one of the segments; i.e., they are contacts. Otherwise, we break one
of the two segments of each crossing point into two to get a system of interiorly
disjoint segments. The segment contact graph Gseg(R) of a rectangulation R is
the bipartite planar graph whose vertices are the segments of R and whose edges
correspond to contacts between segments. From Fig. 7 we see that Gseg(R) is indeed
planar and that the faces of Gseg(R) are in bijection with the rectangles of R and are
uniformly of degree 4. Hence, Gseg(R) is a maximal bipartite planar graph, i.e., a
quadrangulation.

If H is some subgraph of Gseg(R), then H can also be represented as segment
contact graph of some set of interiorly disjoint horizontal and vertical segments in
the plane; i.e., H is a segment contact graph. A segment contact representation for
H is obtained from R by removing some segments (vertex deletion) and slightly
pulling back the ends of some segments to get rid of contacts (edge deletion). The
next theorem states that the converse also holds.

Theorem 3.1. Every planar bipartite graph H admits a contact representation with
interiorly disjoint horizontal and vertical segments.
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Fig. 7 A rectangular dissection R and two drawings of its segment contact graph Gseg(R)

This was shown by Hartman et al. [27] and by de Fraysseix et al. [12]. In the
next subsection we sketch a proof of the theorem based on the concept of separating
decompositions of quadrangulations.

A contact representation with interiorly disjoint segments such that the intersec-
tion of any k+1 segments is empty is called a k-contact representation. Thomassen
characterized the class of graphs admitting a 2-contact representation.

Theorem 3.2. A planar graph G = (V,E) has a 2-contact representation if and
only if |E[W ]| ≤ 2|W |−3 for every subset W of the vertices. As usual, E[W ] denotes
the set of edges with both ends in W.

Thomassen presented the result at the Graph Drawing Conference 1993 but never
published his proof. Below we provide a simple proof based on rigidity theory.
The condition stated in the theorem can be efficiently checked; see, e.g., Lee and
Streinu [39]. Hliněný [26] showed that the recognition of general contact graphs of
segments is NP-complete. Actually, he showed that even the recognition of graphs
admitting a 3-contact representation is NP-complete.

A related class of graphs is the intersection graphs of segments. A longstanding
conjecture dating back to Scheinerman’s Ph.D. thesis was that every planar graph
is a segment intersection graph. The conjecture was finally resolved by Chalopin
and Gonçalves [8]. Kratochvı́l and Kuběna [34] asked whether all complements of
planar graphs are segment intersection graphs.

Proof of Theorem 3.2. The necessity of the condition is easily seen: Let SS be the
set of segments of a 2-contact representation of G. For W ⊂V , let XW be the set of
endpoints of segments in SS corresponding to vertices of W . We have |XW |= 2|W |.
There is an injection φ from edges in E[W ] to points in XW . Points belonging to
the convex hull of XW , however, cannot be in the image of φ . Since the convex hull
contains at least three points, we get |E[W ]| ≤ |XW |− 3 = 2|W |− 3. ��

For the converse, we need some prerequisites. A Laman graph is a graph G =
(V,E) with |E|= 2|V |− 3 and |E[W ]| ≤ 2|W |− 3 for all W ⊂V . Laman graphs are
of interest in rigidity theory; see, e.g., [17, 24]. Laman graphs admit a Henneberg
construction, i.e., an ordering v1, . . . ,vn of the vertices such that if Gi is the graph
induced by the vertices v1, . . . ,vi, then it holds that G3 is a triangle and Gi is obtained
from Gi−1 by one of the following two operations:
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Fig. 8 The addition of segment si

(H1) Choose vertices x �= y from Gi−1 and add vi with the two edges (vi,x) and
(vi,y).

(H2) Choose an edge (x,y) and a third vertex z from Gi−1, remove (x,y), and add
vi together with the three edges (vi,x), (vi,y), and (vi,z).

In [28] it is shown that planar Laman graphs admit a planar Henneberg construction
in the sense that the graph is constructed together with a plane straight-line em-
bedding and vertices stay at their position once they have been inserted. Moreover,
the Henneberg construction can start with an outer triangle that remains unchanged
throughout the construction.

Now let G be a planar graph fulfilling the condition of the theorem. We may
assume that G is Laman since we can easily get rid of edges in a segment
contact representation by retracting ends of segments. Consider a planar Henneberg
construction G3, . . . ,Gn = G. Starting from three pairwise touching segments
representing G3, we add segments one by one. For the induction we need the
following invariant:

• After adding the ith segment si, we have a 2-contact representation of Gi and
there is a correspondence between the cells of the segment representation and
the faces of Gi that preserves edges; i.e., if (x,y) is an edge of the face, then one
of the corners of the corresponding cell is a contact between sx and sy.

From the count of edges, it follows that the endpoints of all the segments except the
three outer segments are used in contacts. Therefore, all faces in the segment contact
representation are convex. Figure 8 shows how to add segment si in the cases where
vi is added by H1 (resp., H2). It is evident that the invariant for the induction is
maintained. ��

3.1.1 Separating Decompositions and Segment Contact Representations

Let Q be a quadrangulation. We call the color classes of the bipartition white and
black and name the two black vertices on the outer face s and t. A separating
decomposition of Q is an orientation and coloring of the edges of Q with colors
red and blue such that
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Fig. 9 Edge orientations and
colors at white and black
vertices

1. All edges incident to s are ingoing red and all edges incident to t are ingoing
blue.

2. Every vertex v �= s, t is incident to a nonempty interval of red edges and a
nonempty interval of blue edges. If v is white, then, in clockwise order, the first
edge in the interval of a color is outgoing and all the other edges of the interval are
incoming. If v is black, the outgoing edge is the last one in its color in clockwise
order (see Fig. 9).

Separating decompositions have been studied in [11, 19, 20]. To us they are of
interest because of the following lemma.

Lemma 3.3. A segment contact representation of Q with horizontal and vertical
segments induces a separating decomposition of Q.

Proof. We assume w.l.o.g. that the segment contact representation and the plane
embedding of Q are compatible in the sense that for every vertex v, the clockwise
order of the edges around v corresponds to the clockwise order of the contacts
around segment sv of v. We also assume that the segments representing s and t
are horizontal, s is the bottom and t is the top segment, and their endpoints have no
contact with another segment.

An edge of Q is represented by a contact where an endpoint of one segment
is touching the interior of another segment. Orient the edge such that the vertex
contributing the endpoint is the tail of the oriented edge. This yields a 2-orientation
of Q, i.e., an orientation where every vertex except s and t has out-degree 2. Since
s is horizontal, all neighbors of s have to be vertical. Tracing this kind of argument
through the graph, we conclude that all black vertices are represented by horizontal
segments and all white vertices by vertical segments. Color the edge corresponding
to the left contact of a horizontal segment blue and the edge of a right contact
red. Similarly, the edge induced by the top contact of a vertical segment is blue
and the edge of the bottom contact is red. This construction yields a separating
decomposition of Q. For an example, see Fig. 10. ��

In the following, we sketch a construction for the converse. We start with a
separating decomposition of Q and construct a segment contact representation. The
algorithm behind the construction may not be the fastest and the construction itself
not the most flexible tool for further applications. This author has decided to include
it because it nicely and unexpectedly combines some combinatorial structures.
Details can be found in [19]. To begin, we need some facts.
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Fig. 10 A quadrangulation Q, a segment contact representation of Q, and the induced separating
decomposition of Q

Fig. 11 A quadrangulation Q with a separating decomposition S, and the 2-book embedding
induced by the equatorial line of S

• Every quadrangulation admits a separating decomposition.
• The red edges of a separating decomposition form a tree rooted at s that spans all

vertices except for t. Symmetrically, the blue edges form a tree rooted at t that
spans all vertices except for s.

• There exists a simple closed curve that contains all vertices of Q except s and t
and avoids all edges of Q such that all red edges are in the interior of the curve
and all blue edges are in the exterior. Deleting the piece of this curve that runs in
the outer face, we obtain the equatorial line of the separating decomposition.

• By straightening the equatorial line, we obtain a 2-book embedding of Q; see
Fig. 11.

An alternating layout of a plane tree T is a noncrossing drawing of T such that the
vertices are placed on the x-axis and all edges are embedded in the half-plane above
the x-axis (or all below). Moreover, for every vertex v, it holds that all its neighbors
are on one side; either they are all left of v or all right of v.

It can bee shown that the 2-book embedding of Q obtained from S yields
alternating layouts of the two trees of S. The roots of the two trees are the extreme
vertices. In addition, black vertices have all their blue neighbors on the left and all
their red neighbors on the right, while for white vertices the converse holds.
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Fig. 12 A bijection between alternating trees and the binary trees

Fig. 13 The 2-book embedding from Fig. 11 after merging s and t with their respective neighbors
and the associated rectangulation

Figure 12 indicates a bijection between alternating trees and binary trees such
that left/right vertices of the alternating tree correspond to left/right leaves of the
binary tree.

Modify the 2-book embedding by merging s with its successor into a new vertex
s+ and symmetrically t with its predecessor into t+. Then apply the bijection of
Fig. 12 to each of the two trees on its side and tilt the picture by 45◦. The result is a
segment contact representation of Q; see Fig. 13.

3.2 Visibility Graphs

A family of disjoint horizontal segments in the plane defines a visibility graph. The
vertices of the graph are the segments and edges are based on vertical visibility:
A segment s′ is visible from segment s if there is a vertical ray r leaving s such
that s′ is the first segment in the family reached by r. The visibility graph is
undirected since if s′ is visible from s via an up-ray, then there is a down-ray
proving visibility of s from s′. However, if we only care about the up-rays, we get a
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Fig. 14 A dual pair B, B∗ of bipolar orientations and the rectangular dissection returned by the
algorithm when using B and B∗

natural orientation of the visibility graph; this orientation is a bipolar orientation.
Indeed, bipolar orientations and visibility representations of planar graphs are
intimately related. The study of this connection and its use for the construction
of visibility representations has been pioneered by Rosenstiehl-Tarjan [47] and
Tamassia-Tollis [55].

3.2.1 Bipolar Orientations

Let G be a graph with distinguished adjacent vertices s and t. A bipolar orientation
of G is an acyclic orientation of G such that s is the unique source and t is the
unique sink; the oriented edge (s, t) is the root of the orientation. A graph G
admits a bipolar orientation exactly if G is 2-connected. Actually, the root edge
of a 2-connected graph can be chosen arbitrarily. In the literature these facts are
frequently treated in the disguise of st-numberings. Sometimes it is convenient
to omit the root edge. In a slight abuse of notation, we also speak of a bipolar
orientation in this case. This is done, for instance, in the next paragraph and in
Fig. 14.

Bipolar orientations of a plane 2-connected (multi)graph G with designated s and
t on the outer face are characterized by two facts:

Fact F. Every face f of G has exactly two angles where the orientation of the edges
coincide. [The vertices incident to these angles are vsource( f ) and vsink( f ).]

Fact V. Every vertex v �= s, t of G has exactly two angles where the orientation of
the edges differ. [The faces incident to these angles are fsink(v) and fright(v).]

An orientation of a plane graph G induces an orientation on the dual graph G∗:
Define the orientation of a dual edge e∗ as left to right relative to the orientation of
e. That is, when looking in the direction of an oriented edge e, the dual edge e∗ is
oriented from the left face to the right face of e.

The bipolar dual of a plane bipolar orientation is this dual graph endowed with
this dual orientation rooted at (s∗, t∗), where s∗ is be the face on the right and t∗ is the
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face on the left of (s, t); i.e, the orientation of (s∗, t∗) is not dual to (s, t). Essentially,
facts V and F are dual and we have set up the orientation of the root edge (s∗, t∗)
such that the bipolar dual of a plane bipolar orientation is again a bipolar orientation.

A more comprehensive treatment, including proofs of the material in this
subsection, can be found in [13], for example.

3.2.2 From a Bipolar Orientation to a Rectangular Dissection

The input of the following algorithm is a 2-connected plane graph G with an oriented
root edge (s, t) on the outer face. The output is a rectangular dissection R such that
the visibility graph of the horizontal segments of R is G.

Algorithm Rectangular Dissection

• Compute a bipolar orientation B of G with root edge (s, t).
• Compute the bipolar dual B∗ with root edge (s∗, t∗) of B.
• For each primal vertex v, let y(v) be the length of the longest directed s→ v path

in B.

For each dual vertex f , let x( f ) be the length of the longest directed s∗ → f path
in B∗.

• With a primal vertex v �= s, t, associate the horizontal segment with left end at the
point (x( fleft(v)),y(v)) and right end at (x( fright(v)),y(v)). With a dual vertex
f �= s∗, t∗, associate the vertical segment with lower end (x( f ),y(vsource( f ))) and
upper end (x( f ),y(vsink( f ))).

The special vertices s, t, s∗, and t∗ need special treatment; as endpoints of
these four segments we can choose the four points (0,0), (0,y(t)), (x(t∗),y(t)),
and (x(t∗),0). If the visibility between s and t is required, the right endpoint of
these two segments can be shifted to the right by one unit.

From the algorithm, we obtain

Theorem 3.4. For a 2-connected planar graph G with n vertices and n∗ faces,
there is a visibility representation with horizontal segments whose endpoints are
on integer points (x,y) with 0 ≤ x ≤ n∗ and 0 ≤ y ≤ n− 1. Such a representation
can be computed in linear time.

A sketch of the proof of correctness for the algorithm can be found in [10].
A sweep-like proof may, however, be simpler. This could be accomplished by an
inductive proof of the statement that the set of segments with y-coordinate ≤ k is a
visibility representation of the graph induced by vertices v with y(v)≤ k.

The bound on the size of the representation accounted for a visibility between s
and t.
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Fig. 15 A quadrangulation Q and its black graph Gb

Quite some research has been put into more compact visibility representations.
The basic idea is that a carefully chosen bipolar orientation may have a longest s→ t
path of length much less than n. Almost optimal bounds are known:

• Zhang and He [60] show that there are planar graphs on n vertices requiring size
at least (	 2n

3 
)× (	 4n
3 
− 3) for a visibility representation.

• He and Zhang [29] show that every planar graph with n vertices has a visibility
representation with height at most 2n

3 + 2�
√

n/2�. They use properties of
Schnyder woods to construct an appropriate bipolar orientation.

• Fan et al. [21] show that every planar graph with n vertices has a visibility
representation with width at most 	 4n

3 
− 2.
• Sadasivam and Zhang [52] show that it is NP-hard to find the bipolar orientation

of G which minimizes the length of the longest s→ t path.

3.3 Bipolar Orientations and Separating Decompositions

Let again Q be a plane quadrangulation with color classes consisting of black and
white vertices. The black graph Gb of Q is the graph on the set Vb of black vertices
of G, where u,v ∈ Vb are connected by an edge for every face f of Q incident to u
and v; i.e., there is a bijection between faces of Q and edges of Gb. The graph Gb

inherits a plane embedding from the plane embedding of Q. Note that in general Gb

may have multiple edges.
Let G be a plane graph; the angle graph of G is the graph Q with vertex

set consisting of vertices and faces of G, and edges corresponding to incidences
between a vertex and a face, and Q inherits a plane embedding from G. If there
are no multiple incidences, i.e., if G is 2-connected, then Q is a quadrangulation.
The angle graph construction G→QG is the inverse of the black graph construction
Q→Gb. More precisely, Q↔Gb is a bijection between plane quadrangulations with
a black-white coloring and plane 2-connected multigraphs. An example is given in
Fig. 15.
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Fig. 16 From a bipolar orientation to a separating decomposition and back

Changing the role of the color classes we can associate the white graph Gw

with Q. By symmetry, Q↔Gw is again a bijection between plane quadrangulations
Q with a black-white coloring and plane 2-connected multigraphs. The induced
bijection Gb ↔ Gw is nothing more than the traditional plane duality.

The study of the oriented counterpart of these classical bijections goes at least
back to [47] and was continued in [11,13,19,46]. Let B be a plane bipolar orientation
on black vertices with the root edge (s, t) on the outer face. Let Q be the angle
graph of the underlying undirected graph of B. Facts V and F of bipolar orientations
yield two special angles for every v �= s, t of B and for every face of B. At vertices,
the special angles are the left and the right angle. At faces, the special angles are
the source and the sink angle. Using the correspondence between angles of B and
edges of Q, we define a separating decomposition on Q: The edge incident to v
in Q that corresponds to the left special angle is outgoing blue, and the edge that
corresponds to the right special angle is outgoing red. The edge incident to f in Q
that corresponds to the source is red outgoing and the edge corresponding to the
sink is blue outgoing. The rules are illustrated in Fig. 16. It is easily verified that
they yield a separating decomposition of Q as defined in Sect. 3.1.1.

Starting from a separating decomposition S on Q, we obtain the unique bipolar
orientation B on Gb inducing S by using the converse rules: At a vertex v, the
two outgoing edges of S split the edges of Gb into two blocks. The block where
Q may have blue edges is the block of incoming edges in the bipolar orientation,
and the edges of the other block are the outgoing edges in the bipolar orientation.
The oriented bijection fits together well with oriented duality; there is only a slight
asymmetry concerning the outer vertices and edges.

The correspondence between bipolar orientations and separating decomposition
allows us to use the construction from Sect. 3.1.1 for visibility representations and
the algorithm from Sect. 3.2.2 for segment contact representations.
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4 Square Dissections

In this section, we are mainly interested in square dissections, which are rectangular
dissections where all the small rectangles are squares. Again, we are going to look
at different graphs associated with such a dissection.

4.1 Squarings and Electricity

The theory of square layouts goes back to a seminal paper, ”The dissection of
rectangles into squares,” by Brooks, Smith, Stone and Tutte from 1940 [7]. The
story of the collaboration of the four students has been told several times. In [57]
Tutte tells his memories. The aim of the four students was to find squarings of a
square such that the sizes of all small squares are different. Such a squaring is called
perfect; see Fig. 17.

They based the search for perfect squarings on the following idea: Start with a
rectangular dissection and try to produce a combinatorially equivalent squaring.

The squaring process could be simplified with some observations: The initial
rectangular dissection R can be described by the visibility graph G of the horizontal
segments. The rectangles of the dissection are in bijection with the edges of G (this
may require multiple edges in G). On G there is the natural upward- pointing bipolar
orientation B [the root edge (s, t) can be omitted].

With an arc a of B, associate the width w(a) of the rectangle corresponding to a
in R. The function w on the arcs of B respects the flow conservation law in every
vertex except s and t; it is an st-flow.

Symmetrically, from the dual graph G∗ with the dual bipolar orientation B∗ and
the height h(a∗) of the rectangle associated with a∗, an s∗t∗-flow is obtained.

If the dissection R were a squaring, then w(a) = h(a∗) for every dual pair a↔ a∗

of arcs.

Fig. 17 The essentially
unique perfect squaring with
the smallest number of
squares. It was discovered in
1978 by A.J.W. Duijvestijn
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Fig. 18 A flow with primal and dual flow conservation and the corresponding squaring

It can be verified that if we find a function f on G such that with f (e∗) = f (e), we
have an st-flow on G and an s∗t∗-flow on the dual G∗, then orienting the edges such
that f (a)≥ 0 yields a bipolar orientation on G. Based on this bipolar orientation, a
squaring of G such that f describes the size of the squares can be constructed with a
weighted variant of the algorithm from Sect. 3.2.2. An example is shown in Fig. 18.

Physicists may recognize a flow with primal–dual flow conservation as an
electrical flow. Primal and dual flow conservation corresponds to the two Kirchhoff
laws. To find an appropriate f , we can thus build G as an electrical network such
that each edge has unit resistance and then attach the poles of a battery to s and t
and measure the electrical current in each edge. The solution can, of course, also
be obtained analytically. In fact, Kirchhoff’s theorem [32] relates the solution to the
enumeration of certain spanning trees.

Theorem 4.1. Let G be a plane graph with special vertices s and t on the outer
face. For an edge e = {u,v} of G, let we = |nuv− nvu|, where nxy is the number of
spanning trees T of G such that T contains a path s, ..,x,y, .., t. If we > 0 for all
e, then there is a square layout R with G as visibility graph such that the square
associated with e has side length we.

Sketch of a proof. We use the duality T ↔ T ∗ between spanning trees of Gb and its
dual G∗b = Gw. If a tree T contributes to nuv, then T ∗ contains the edge {s∗, t∗}. Let
fl and fr be the faces left and right of (u,v) in Gb, and define S = T −{u,v}+{s, t}
and S∗= T ∗−{s∗, t∗}+{ fl , fr}. The pair S,S∗ is again a dual pair of spanning trees.
The mapping (T,T ∗)↔ (S,S∗) yields a bijection between pairs contributing to nuv

and pairs contributing to the dual count n∗fl fr
. From the existence of this bijection, it

can be concluded that w{u,v} = w{ fl , fr}. ��

Our proof is taking advantage of the planarity of G. However, for general graphs,
the same definition of we yields the electrical current in e (up to normalization); see,
e.g., [4].

If we = 0 for some edge e, we still get a square layout R. In R the horizontal
segments corresponding to the two end vertices of e are merged into a single
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Fig. 19 A rectangular dissection R, the bipolar orientation of the visibility graph G obtained from
R and the squaring of G with five invisible zero squares in the center

segment. If all edges with zero flow are isolated, this may be tolerated as consistent
with the notion of visibility representation; however, as shown in Fig. 19, more
complex parts of a graph can disappear because all their edges have zero flow.
A sufficient condition that ensures that edges with zero flow are at least isolated
is that the graph is 3-connected (see Proposition 4.5).

4.2 Squarings and Separating Decompositions

We now come to a different approach to square layouts. Associate a variable with
every inner face of a quadrangulation Q. In these variables we set up a system of
linear equations such that a nonnegative solution of the system yields a squaring.
To define the system of equations, enhance the quadrangulation Q with a separating
decomposition S. We aim for a squaring that induces S with its segment contacts.

For a vertex v of Q, let Fr(v) be the set of faces incident to v in the angle between
the two outgoing edges of v where incoming edges are red, and letFb(v) be the other
incident faces of v, i.e., the faces in the angle with blue incoming edges.

Suppose that such a square representation inducing S exists, and let xa be the
sidelength of the square representing a face a of Q. Every inner vertex v implies an
equation that has to be fulfilled by the side lengths:

∑
a∈Fr(v)

xa = ∑
a∈Fb(v)

xa. (1)

A quadrangulation with n vertices has n− 2 faces; hence, we have a system of n−
4 linear equations (inner vertices) in n− 3 variables (inner faces). To forbid the
trivial solution of the homogenous system, we let Fr(t) be the set of bounded faces
incident to t and add the equation ∑a∈Fr(t) xa = 1. Rewriting the equations (1) as
∑a∈Fr(v) xa−∑a∈Fb(v) xa = 0 and collecting all of them in a matrix AS, we find that
the vector of side lengths is a solution to the system

AS · x = e1. (2)
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Given any separating decomposition S of Q, we can consider the corresponding
system (2). In the following, we show

• The matrix AS is nondegenerate; hence, there is a unique solution x to the system.
• If the solution vector x is nonnegative, then there is a squaring with side lengths

given by the components of x. If the solution vector x is positive, then the
separating decomposition induced by the segment contacts of the squaring is S.

Theorem 4.2. The matrix AS is nondegenerate; i.e., det(AS) �= 0.

Proof. The idea for the proof is to show that |det(AS)| is the number of perfect
matchings of an auxiliary graph HS. Let ÂS be the matrix obtained from AS by
replacing each −1 by 1 and note that ÂS only depends on Q and not on S. It has
a 1 for every incidence between an inner face (variable) and an inner vertex or t
(equation). Regard Â = ÂS as the adjacency matrix of a bipartite graph H. From
what we said before, the graph H is obtained from the angle graph A(Q) of Q by
removing the vertices s, s∗, t∗ and the vertex corresponding to the outer face of Q
together with the incident edges. This implies

• H is planar.
• All inner faces of H are quadrangles.

Consider the Leibniz-expansions of det(AS). The nonvanishing summands∏i ai σ(i)
are in bijection with the perfect matchings Mσ of H. The contribution of a
perfect matching M to det(AS) is either +1 or −1; it will be denoted signS(M) =
sign(πM)∏i j∈M[AS]i j. ��

The proof of the theorem relies on the following two claims:

Claim A. The graph H has a perfect matching.
Claim B. If M and M′ are perfect matchings of H, then signS(M) = signS(M

′).

We first prove Claim A by verifying the Hall condition for H. Let (X ,R) be
the vertex bipartition of H where X corresponds to the set of inner faces of Q and
R =V (Q)\ {s,s∗, t∗}.

The Hall condition for the full angle graph A(Q) is easily verified: Consider a set
F of inner faces of Q and let Z be the set of connected components of IR2 \⋃ f∈F f̄ ,
where f̄ is the closure of face f . The set F ∪Z is the set of faces of a planar bipartite
graph whose vertices and edges are those incident to elements of F in Q. This graph
has at least 1

2(4|F |+ 4|Z|) edges and hence, by Euler’s formula at least |F |+ |Z|+
2 ≥ |F |+ 3 vertices. This implies the Hall condition for H, as H equals A(Q) after
the removal of three vertices.

For the proof of Claim B, we need a slight extension of Claim A, namely,
that every edge of H takes part in some perfect matching. This can be verified
by showing that V (Q) \ {s,s∗, t∗} is the unique nonempty subset of vertices of Q
such that the Hall condition for the set is tight in H. Now we use some facts about
α-orientations of planar graphs from [18]:
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• Perfect matchings of H are in bijection with orientations of H with
out-deg(x) = 1 for all x ∈ X and out-deg(r) = deg(r)− 1 for all r ∈ R. We
refer to these orientations as αM-orientations.

• It is possible to move from any αM-orientation to any other αM-orientation by
flips of the following type: Select an inner face whose boundary is an oriented
cycle and revert the orientation of all edges of this cycle. This is true (see [18])
because αM-orientations have no rigid edges; this follows because every edge
takes part in some perfect matching.

Consider two perfect matchings M and M′ of H such that the corresponding
αM-orientations differ by a single flip. Since all the faces of H are quadrangles,
the permutations πM and πM′ differ by a single transposition, whence
sign(πM) = −sign(πM′). To obtain signS(M) = signS(M

′), we need ∏i j∈M[AS]i j =
−∏i j∈M′ [AS]i j. Since all entries of AS are +1 or −1, it is enough to show that if
we multiply the four entries of AS associated with the four edges of a face of H,
the result will always be −1. A face of H is a cycle of the form (x1,r1,x2,r2) with
xi ∈ X and r j ∈ R. In Q we have the edge r1r2, which is oriented in the separating
decomposition S, say as r1 → r2. From the definition of the equations based on
S, we find that [AS]r1x1 = −[AS]r1x2 and [AS]r2x1 = [AS]r2x2 . From this we obtain
∏i j=1,2[AS]rix j =−1. Since we can move between any two matchings with flips and
since flips leave the sign unaffected, we have proved Claim B. ��

The theorem tells us that the linear system (2) has a unique solution xS. The
solution, however, need not be nonnegative. What we do next is to show that based
on a solution xS containing negative entries, we can modify S to obtain a new
separating decomposition S′ such that the solution xS′ of the system corresponding
to S′ is nonnegative.

Consider a rectangular dissection R representing S and color gray all rectangles
whose value in the solution vector xS is negative. Let Γ be the boundary of the gray
area in R. Here is a simple but useful lemma.

Lemma 4.3. The boundary Γ contains no complete segment.

Proof. Suppose Γ contains the complete segment corresponding to a vertex v of Q.
Then we have xa < 0 for all a ∈ Fr(v) and xa ≥ 0 for all a ∈ Fb(v) or the converse.
In either case, we get a contradiction because the entries of xS satisfy Eq. (1). ��

Let s0 be any segment that contributes to Γ. From the lemma we know that at
some interior point of segment s0 the boundary snaps off and continues on another
segment s1. Again, the boundary has to leave s1 at some interior point to continue
on s2. Because this procedure always follows the boundary of the gray region, it has
to turn back to segment s0. Figure 20 shows an example.

Recall that a 2-orientation of a quadrangulation with white and black vertices is
an orientation of the edges such that the two black vertices s and t on the outer face
have out-degree 0 and all the other vertices have out-degree 2. In [11] it was shown
that separating decompositions and 2-orientations of Q are in bijection. Reverting a
directed cycle in a 2-orientation yields another 2-orientation.
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Fig. 20 The separating decomposition S corresponds to the rectangular layout R. In the solution
xS of AS · x = e1, the gray rectangles are those with a negative value. The boundary Γ consists of a
single cycle whose reversal yields S′. The dissection R′ corresponding to S′ can be squared; small
numbers are multiples of the entries of the solution xS′

Now Γ corresponds to some directed cycles in S reverting the cycles yields
another 2-orientation and via the bijection another separating decomposition S′.

Lemma 4.4. Let S′ be obtained from the separating decomposition S by reverting
the cycles of the boundary Γ between faces with positive and negative xS values.
There are no negative entries in the solution vector xS′ of the system AS′ · x = e1.

Proof. Let O be a 2-orientation of a quadrangulation Q and let C be a directed cycle
in O. Let O′ denote the 2-orientation obtained from O by reverting C. The relation
between the separating decompositions S and S′ corresponding to O and O′ was
investigated in [20]. There it is shown that all edges outside the cycle keep their
color while all edges in the interior of the cycle change their color. ��

Now consider the matrices AS and AS′ . The rows correspond to the outer vertex
t and the inner vertices of Q, and the columns correspond to bounded faces of Q.
An entry av, f is nonzero, more precisely av, f = ±1, if v is a boundary vertex of f .
Only the sign of an entry depends on the separating decomposition; it is positive
if f belongs to Fr(v) (the set of faces incident to v in the angle between the two
outgoing edges of v where incoming edges are red) and it is negative if f belongs to
Fb(v).

From the above it follows that if f is inside C and v is incident to f , then f
belongs to Fb(v) with respect to S if and only if f belongs to Fr(v) with respect to
S′. In other words, if AS = (av, f ) and AS′ = (a′v, f ), then

a′v, f =

{
−av, f f inside of C

av, f otherwise.

The solution xS′ of AS′ · x = e1 can, therefore, be obtained from the solution xS of
AS ·x = e1 by changing the sign of all entries of xS that correspond to faces f inside
C.

Since S′ was obtained by reversing the boundary enclosing all negative faces of
xS, it follows that xS′ is nonnegative. ��
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Given a nonnegative solution, it remains to actually construct the squaring with
the given sizes. We omit the details but note that the squaring can be constructed
using a weighted variant of the algorithm in Sect. 3.2.2.

The electricity approach to squarings implies that to a rectangular dissection there
corresponds a unique squaring. This must be the same as the squaring that we obtain
by following the approach of this subsection.

There is again the issue of squares of size 0. If we color faces of S corresponding
to zero squares gray and consider the boundaryΓ of the gray region, then Lemma 4.3
holds again. Hence, again, a cycle of Γ is a directed cycle in S. Looking at the
square representation, we see that a region of zero squares is incident to at most
four nonzero squares. A cycle in Γ must therefore be of length at most 4. As a
consequence, we get

Proposition 4.5. If Q contains no separating 4-cycle, then the square dissection
contains a segment contact representation of Q [we have to allow that two
horizontal (resp., vertical) segments share an endpoint].

4.3 Trapezoidal Dissections and Markov Chains

The connection between square dissections and electrical networks was used by
Dehn [9] in 1903 to show that if an A×B rectangle admits a squaring using finitely
many squares, then A/B is rational. Tutte used network methods in his investigations
of dissections using equilateral triangles [56]. In [50] dissections into triangles are
constructed using a generalized ”unsymmetrical” electricity. Since there is a well-
known connection between electrical networks and random walks (see e.g. [14]),
it is consequent to base the construction of dissections on random walks. This
approach has been taken by Kenyon [30].

For the description of Kenyon’s ideas, it is convenient to start with a tiling
of a rectangle into trapezoids with horizontal upper and lower sides, known as a
trapezoidal dissection. With a trapezoidal dissection T , associate the t-visibility
graph GT : The vertices of GT are the horizontal segments of the dissection, and
the edges of GT correspond to the trapezoids of T . The lower and upper segments
of the enclosing rectangle are denoted s and t. An example is shown in Fig. 21.

For a trapezoid T whose horizontal sides are on segments i and j, we let
height(T ) be the distance between segments i and j and widthi(T ) be the length
of the side of T contained in segment i; note that widthi(T ) = 0 is possible. Define

an unsymmetrical weighting on edges: m(i, j) = widthi(T )
height(T ) . These weights are used

to define a random walk (Markov chain) on GT by taking the probability p(i, j) of
a transition from i to j proportional to m(i, j); i.e., p(i, j) = 1

∑ j m(i, j)m(i, j).

Consider a stationary distribution π of p, that is, a distribution such that for all i:

π(i) = ∑ j π( j)p( j, i).
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Fig. 21 A trapezoidal dissection T and its t-visibility graph GT

In most cases the Markov chain p induced by T will be aperiodic; in that case p
is ergodic and π is unique. For an edge (i, j), define π(i, j) = π(i)p(i, j) and note
that π(i, j) is the probability of the presence of the edge in the random walk. More
formally, it is the stationary distribution for the induced random walk on the line
graph of GT .

Define a function ω on the faces of GT by

(W0) ω( f∞) = 0, where f∞ is the outer face.
(W1) ω( f )−ω( f ′) = π(i, j)−π( j, i) when (i, j) is an edge with f on the left and

f ′ on the right side.

Lemma 4.6. The function w is well defined.

Proof. First note that if edges (i, j) and (i′, j′) have f on the left and f ′ on the right,
then the removal of the two edges cuts GT into two components H and H ′ each
containing at least one vertex. The random walk has to commute in both directions
between these components equally often; i.e., π(i, j)+π( j′, i′) = π( j, i)+π(i′, j′).
Therefore, ω( f )−ω( f ′) is independent of the edge chosen for the definition. ��

The value of ω( f ) can be determined by taking a dual path from f∞ to f . To
show that the result is independent of the path, it is enough to show that summing
up the differences π(i, j)−π( j, i) on a dual path around vertex i results in zero. This
follows from

∑ j π(i, j) = ∑ j π( j, i).

To prove this, note that π(i) = π(i)∑ j p(i, j) = ∑ j π(i)p(i, j) = ∑ j π(i, j), and
because π is the stationary distribution, also π(i) = ∑ j π( j)p( j, i) = ∑ j π( j, i). ��

The function ω(x) is the expected relative counterclockwise winding number of
the random walk around face x. Clearly, the winding number has to comply with
the two properties (W0) and (W1), but as shown in the lemma, this determines the
function.

For a face f of GT , let s f be the corresponding line segment in T and
define w( f ) = 1/slope(s f ) and w( f ) = 0 if s f is vertical. Recall that m(i, j) =
widthi(T )/height(T ).
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Fig. 22 An example
trapezoid

Proposition 4.7. Up to a scalar factor, the functions w( f ) and m(i, j) defined on T
equal the winding number ω( f ) and the edge-stationary distribution π(i, j) of the
Markov chain.

Proof. Consider a trapezoid from T as shown in Fig. 22. Taking the coordinates
from there, we have

m(i, j)=
x2−x1

y4−y1
, m( j, i)=

x3−x4

y4−y1
, w( f )=

x4−x1

y4−y1
, w( f ′)=

x3−x2

y3−y2
=

x3−x2

y4−y1
.

It follows that w( f )−w( f ′) = m(i, j)−m( j, i). Summing up this equation along
the dual cycle around a vertex, we obtain ∑ j m(i, j) = ∑ j m( j, i). This implies that
m(i, j) is a scalar multiple of an edge-stationary distribution. In turn from (W0) and
(W1), it follows that the values w( f ) are multiples of the winding numbers. ��

Proposition 4.8. For a vertex i of GT , let y(i) be the y-coordinate of the corre-
sponding segment in T and let p(i, j) be as above. For all i �∈ {s, t}, the function y
is harmonic with respect to p; i.e.,

y(i) =∑
j

y( j)p(i, j).

Proof. Let I+ = { j : y( j)> y(i)} and I− = { j : y( j)< y(i)} and note that if Ti j is a
trapezoid connecting segments i and j, then height(Ti j) = y(i)− y( j) if j ∈ I− and
height(Ti j) =−(y(i)− y( j)) if j ∈ I+. We now have

y(i)−∑
j

y( j)p(i, j) =∑
j
(y(i)− y( j))p(i, j)

= ∑
j∈I−

(y(i)− y( j))p(i, j)+ ∑
j∈I+

(y(i)− y( j))p(i, j)

=
1

∑ j m(i, j)

(
∑

j∈I−
widthi(Ti j)− ∑

j∈I+
widthi(Ti j)

)
= 0.

The last equation follows because the trapezoids with segment i on the low side and
those with the segment on the high side can both be used to partition the segment. ��
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From the tiling T , we have obtained a Markov chain p on GT such that m(i, j)∼
π(i, j) and w( f )∼ω( f ) and the y-coordinates of the vertex segments are a function
that is p-harmonic for all vertices i �∈ {s, t} of GT .

To revert the process, let G = (V,E) be a planar graph with s and t on the outer
face and let p be a Markov chain on G. From these data, we obtain the edge-
stationary distribution π : E → IR, the winding numbers ω( f ) on the faces of G,
and the unique p-harmonic function y : V → IR with y(s) = 0 and y(t) = 1.

Note that the probability h(i) that a random walk started at i reaches t before
reaching s has the properties required for y(i). Uniqueness, i.e., the fact that
h(i) = y(i), follows from the maximum principle for discrete harmonic functions;
see, e.g., [3].

From the data, we build a trapezoidal dissection T such that the trapezoid Ti j

corresponding to an edge (i, j) of G with y(i)< y( j) is a horizontal translate of the
trapezoid with corners

(ω(x)(y( j)− y(i)),y( j)), ((π(i, j)+ω(x′))(y( j)− y(i)),y( j)),

(0,y(i)), (π(i, j)(y( j)− y(i)),y(i)).

The proof that these trapezoids fit nicely together to a tiling of a rectangle is done
inductively. For the organization of the inductive argument, the following lemma is
useful.

Lemma 4.9. The orientation B of G with (i, j) ∈ B iff y(i) < y( j) is a bipolar
orientation with source s and sink t.

Proof. This follows from the maximum principle for discrete harmonic functions,
i.e, from the fact that such a function assumes its maximum at boundary vertices. ��

As with squarings, it may happen that trapezoids degenerate and have zero area.
We say that a Markov chain p on G is generic if this does not happen. In particular,
this implies that p(i, j)+ p( j, i)> 0 for all edges (i, j) of G and y(i) �= y( j) for every
pair i, j of adjacent vertices.

Theorem 4.10 (Kenyon ’98). Let G be planar with s and t on the outer face. If p
is a generic Markov chain on G and T is the trapezoidal dissection associated with
(G, p) by the above construction, then G = GT and p can be recovered from T .

Some special cases are particularly interesting:

• If p is reversible, i.e., if π(i)p(i, j) = π( j)p( j, i) for all edges, then all trapezoids
in the dissection are rectangles. (This is the case of planar electrical networks
with edges of varying resistance.)

• If p(i, j) = 1
deg(i) , then π(i) = deg(i)

2m and the aspect ratios m(i, j) ∼ π(i)p(i, j) of
all rectangles are equal. Hence, after scaling the dissection, we obtain a squaring.
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Kenyon [30] also considers dissections of more general trapezoidal shapes than
rectangles. Markov chains that yield dissections into nontrapezoidal shapes are
considered in [36].

5 Square Duals

In this section, we review a result of Schramm [49]. He proves the existence of
rectangular duals where all rectangles are squares for a large class of triangulations.
The approach is based on extremal length. To begin, we need some definitions.
Throughout G = (V,E) is a prescribed graph.

• Any function m : V → IR+ is called a discrete metric on G.
• The length of a path γ in G is �m(γ) = ∑x∈γ m(x).
• For A,B⊂V , let Γ(A,B) be the set of A,B paths.

The distance between A and B is defined as �m(A,B) = min
γ∈Γ(A,B)

�m(γ).

• The extremal length of A,B is L(A,B) = sup
m

�m(A,B)2

||m||2 = sup
m

�m(A,B)2

∑v m(v)2 .

• A metric realizing the extremal length is an extremal metric.

Proposition 5.1. For G and A,B ⊂ V, there is a (up to scaling) unique extremal
metric.

Proof. If m is extremal, then so is every positive scalar multiple of m. Therefore, we
only have to look at metrics m with �m(A,B) = 1. ��

These metrics form a polyhedral set P described by the finitely many linear
inequalities of the form ∑x∈γ m(x)≥ 1 with γ ∈ Γ(A,B).

The extremal metric is the unique m ∈ P with minimal norm ||m||=
√
∑v m(v)2.

��

Proposition 5.2. A squaring with A and B representing the top and bottom of
the dissection induces an extremal metric on the rectangular dual graph G of the
squaring.

Proof. Let h = height(R) and w = width(R). We may assume h ·w = 1. Let s :
V → IR be the metric where s(v) is the side length of the square of vertex v. Since
||s||2 = ∑ s(v)2 = h ·w = 1, we have ||s||= 1. ��

Let m be any metric. For t ∈ [0,w], the squaring induces a path γt consisting of
the vertices v whose representing square is intersected by the vertical line x = t. By
definition, �m(A,B)≤ ∑v∈γt m(v).

w · �m(A,B) ≤
∫ w

0
∑
v∈γt

m(v)dt =
∫ w

0
∑
v∈V

m(v)δ[v∈γt ]dt = ∑
v∈V

m(v)
∫ w

0
δ[v∈γt ]dt

= ∑
v∈V

m(v)s(v) = 〈m,s〉 ≤ ||m|| · ||s||= ||m||
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Hence,

�m(A,B)2

||m||2 ≤ 1
w2 = h2 =

h2

||s||2 .

This shows that the metric s is extremal. ��

The proposition, together with the uniqueness of extremal metrics, implies that
for a given G, there can, up to scaling, only be a single square dual.

We next show the converse of the proposition: Extremal lengths can be used
to get squarings. Let G be an inner triangulation of a 4-gon, i.e., a triangulation
with one outer edge removed. Call the four vertices of the outer face s,a, t,b in
counterclockwise order.

Now let m be an extremal metric with respect to a and b such that ||m|| = 1 and
define h = lm(a,b). For an inner vertex v of G, let x(v) be the length of a shortest
s→ v path and y(v) be the length of a shortest a→ v path. The length of a path is,
of course, taken with respect to m.

Proposition 5.3 (Schramm ’93). The squares Zv = [x(v)−m(v),x(v)]× [y(v)−
m(v),y(v)] for inner vertices of G together with four appropriate squares for the
outer vertices yield a square contact representation of G in the rectangle R =
[0,h−1]× [0,h]. Moreover, if G has no separating 3- and 4-cycles, then there are
no degenerate squares; i.e., m(v)> 0 for all v.

Proof. The first claim is that all edges are represented as contacts or intersections.
Let (u,v) be an interior edge of G and u,v �= t. From x(v)≤ x(u)+m(v) and x(u)≤
x(v)+m(u) and the corresponding inequalities for y(u) and y(v), it follows that Zu∩
Zv �= /0. The same property for edges of the form (u, t) is nontrivial. Schramm [49]
has a direct argument, while Lovász [38] argues with blocking polyhedra and shows
that m is an extremal metric with respect to s and t. We skip this part of the proof. ��

The next claim is that the squares cover R; i.e., R ⊆ ⋃v Zv. Suppose that there
is a point p in R that is not contained in a Zv. For each v, choose a representative
point qv ∈ Zv and draw the edges of G such that an edge (u,v) is represented by a
curve connecting qu and qv that stays in Zu ∪Zv. The simplest choice for the edge
may be to represent it as union of straight segments [qu,quv] and [quv,qv] for some
quv ∈ Zu ∩ Zv. With triangle (u,v,w) in G, let T(u,v,w) be the topological triangle
enclosed by the edges connecting qu, qv, and qw in R. By following a generic ray
starting at p and considering situations where the ray crosses a curve representing an
edge, it can be verified that p is contained in an odd number of the triangles T(u,v,w).
Therefore, there is at least one triangle T(u,v,w) covering p. Consider S= Zu∪Zv∪Zw.
The boundary of T(u,v,w) is a closed curve γ contained in S such that p �∈ S is in the
interior of γ . Since this is impossible for a union S of three squares, we have a
contradiction. This proves the claim.

Since area(R) = 1= ||m||2 =∑v m(v)2 =∑v area(Zv), it follows that intersections
of the squares are confined to their boundaries, and we have a tiling of R with
squares. We also know that all edges of G are represented by contacts. With a
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counting argument, it can be shown that these have to be all contacts between the
squares except for

• Additional corner-to-corner contacts at points where four squares meet.
• Contacts where at least one of the two participating squares is a degenerate square

of size 0.

This shows that the extremal length yields a square contact representation of G.
Finally, we show that in the absence of separating 3- and 4-cycles, all squares

have nonzero area. Let W be the set of vertices of a connected component of the
subgraph of G induced by vertices with degenerate squares, i.e., with m(v) = 0. All
the vertices of W are represented by the same point p in R. This point p must also
be contained in all Zv, where v �∈W is a neighbor of some w ∈W . These at most
four vertices v form a cycle separating W from the outer vertices. ��

5.1 Square Duals and Transversal Structures

We now propose an alternative method to approach the problem of finding a square
dual for an inner triangulation of a 4-gon. The approach is similar to what we have
done in Sect. 4.2. First, we encode a rectangular dual as a graph with additional
structure, in this case a transversal structure. From the transversal structure, we
extract a system of linear equations such that a nonnegative solution yields the
metric information needed for the square dual. If the solution has negative variables,
we do not know how to use the solution to get a square dual. In this respect, the
situation is more complicated than in Sect. 4.2. However, the signs in the solution
provide a rule for changing the transversal structure. With the new transversal
structure, we can proceed as before. Unfortunately, we cannot yet prove that the
procedure stops, i.e., that at some iteration the solution is nonnegative and we get
the square dual we are looking for.

Let G be an inner triangulation of a 4-gon with outer vertices s,a, t,b in counter-
clockwise order. A transversal structure for G is an orientation and 2-colorings of
the inner edges of G such that

1. All edges incident to s, a, t, and b are blue outgoing, red outgoing, blue ingoing,
and red ingoing, respectively.

2. The edges incident to an inner vertex v come in clockwise order in four nonempty
blocks consisting solely of red ingoing, blue ingoing, red outgoing, and blue
outgoing edges, respectively.

Transversal structures have been studied in [22,23,31]. The relevance of transversal
structures in our context comes from the following simple proposition. See Fig. 23.

Proposition 5.4. Transversal structures of an inner triangulation G of a 4-gon with
outer vertices s,a, t,b are in bijection with combinatorially different rectangular
dissections R with rectangular dual G\ {s,a, t,b}, where the rectangles of vertices
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Fig. 23 The two local conditions and an example of a transversal structure together with a
corresponding dissection

adjacent to s, a, t, and b touch the left, lower, right, and upper boundary of R,
respectively.

Based on a transversal structure T , we want to write down a system of linear
equations such that a nonnegative solution of the system yields a square dissection
with T as the underlying transversal structure. For an inner vertex v, let xv be a
variable intended to represent the size of the square representing v. For a directed
edge (u,v) in T , let xuv be a variable representing the length of the contact between
the rectangles representing u and v. The edges incident to a vertex v are partitioned
into the four nonempty classes R+(v), B+(v), R−(v), and B−(v), where the letter
indicates the color of the edge and the sign denotes whether the edge is outgoing or
incoming. With vertex v, we associate four equations:

∑
(u,v)∈R+(v)

xuv = xv, ∑
(u,v)∈B+(v)

xuv = xv, ∑
(v,u)∈R−(v)

xvu = xv, ∑
(v,u)∈B−(v)

xvu = xv.

To forbid the trivial solution, we require that the width of the enclosing rectangle
be 1. This is done by adding the equation ∑(u,b)∈R−(b) xub = 1. Collecting the
coefficients of the equations in a matrix AT , we find that the vector x of lengths
of a square dissection is a solution to the system

AT · x = e1. (3)

Fact 1. If the solution vector x is nonnegative, then there is a square dissection with
the lengths given by x. If the solution vector x is positive, the transversal structure
corresponding to the square dissection is T .

Fact 2. The matrix AT is nondegenerate; hence, there is a unique solution x to the
system.
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A proof of Fact 2 can be given along the lines of the proof of Theorem 4.2. The
idea is to interpret AT as the adjacency matrix of a planar bipartite graph H. Terms
in the Leibniz expansion of det(AT ) correspond to perfect matchings in H. It can be
shown that H admits a perfect matching. Moreover, the sign of all perfect matchings
is equal because all inner faces of H have length 10, i.e., have residue 2 modulo 4.

To deal with the case where the solution vector x has negative entries, we need
more insight into transversal structures. Recall from Sect. 2.3 the definition of the
trimmed angle graph Ǎ(G) associated with a plane graph G. The vertex set of this
graph consists of the primal vertex set V together with the dual vertex set save the
dual of the unbounded face, i.e., V ∗ \{ f∞}. Edges of Ǎ(G) correspond to incidences
between vertices and bounded faces of G or equivalently to the internal angles of G.
Inner faces of Ǎ(G) correspond to the inner edges of G.

Given a transversal structure T on G, we define an orientation of Ǎ(G) as follows:
Orient the edge {v, f} as v→ f when the two edges incident to f and v have different
colors; otherwise, the edge is oriented f → v. It can be verified that

• out-deg(v) = 4 for all inner vertices of G, out-deg(v) = 0 for the four vertices of
the outer face, and out-deg( f ) = 1.

An orientation of Ǎ(G) obeying the above rules for the out-degrees is called an α4-
orientation (note that up to changing the role of the color classes, α4-orientations
are identical to the αskel orientations from Sect. 2.3).

Fact 3. Let G be an inner triangulation of a 4-gon with outer vertices s,a, t,b.
Transversal structures of G are in bijection with α4-orientations of Ǎ(G).

Fact 4. Let x be the solution to the system of equations corresponding to the
transversal structure T , and let E−(x) be the set of edges whose value in x is
negative. The boundary ∂−(x) of the union of all faces of Ǎ(G) corresponding to
edges in E−(x) decomposes into directed cycles with respect to the α4-orientation
corresponding to T .

Reverting a directed cycle in an α4-orientation yields another α4-orientation.
Hence, reverting all edges of ∂−(x) yields another α4-orientation, which corre-
sponds to a new transversal structure T ′ of G.
The approach for computing a square dual for G is this:

• Compute a transversal structure T of G and the matrix AT .
• Compute a solution xT of AT · x = e1.

If all entries of xT are nonnegative, we are done; based on xT , we can build the square
dissection for G. If there are negative entries in xT , we can use the α4-orientation
to transform T into another transversal structure T ′ and iterate. We conjecture that
independent of the choice of T , the sequence T → T ′ → T ′′ → has a finite length;
i.e., there is a k such that the solution xT (k) of the system corresponding to T (k) is
nonnegative.

There is strong experimental support for the truth of the conjecture.



246 S. Felsner

Acknowledgements I thank Thomas Picchetti for his implementation of the squaring algorithm
of Sect. 5.1 and Julia Rucker and Torsten Ueckerdt for helpful discussions and their continuing
interest in the topic. My thanks also go to Janos Pach for encouraging me to write about this topic
and to the Bernoulli Centre for its hospitality.

This work was partially supported by DFG Grant FE-340/7-2 and the EUROGIGA Project
GraDR.

References

1. M.J. Alam, T. Biedl, S. Felsner, M. Kaufmann, S.G. Kobourov, T. Ueckerdt, Computing car-
tograms with optimal complexity. In Proceedings of the 2012 symposuim on Computational
Geometry (SoCG’12). ACM, Chapel Hill, North Carolina, USA, pp. 21–30 (2012)

2. A.L. Buchsbaum, E.R. Gansner, C.M. Procopiuc, S. Venkatasubramanian, Rectangular
layouts and contact graphs. ACM Trans. Algorithms 4(1), 8–28 (2008)

3. I. Benjamini, L. Lovász, Harmonic and analytic functions on graphs. J. Geom. 76, 3–15
(2003)

4. B. Bollobas, Modern Graph Theory (Springer-Verlag, New york, 2002)
5. J. Bhasker, S. Sahni, A linear algorithm to find a rectangular dual of a planar triangulated

graph. Algorithmica 3, 247–278 (1988)
6. G.R. Brightwell, E.R. Scheinerman, Representations of planar graphs. SIAM J. Discr. Math.

6, 214–229 (1993)
7. R.L. Brooks, C.A.B. Smith, A.H. Stone, W.T. Tutte, The dissection of rectangles into squares.

Duke Math. J. 7, 312–340 (1940)
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