
Mover Problems

Adrian Dumitrescu

Abstract Leo Moser asked what is the region of largest area that can be moved
around a right-angled corner in a corridor of unit width? Similarly, what is the region
of largest area that can be reversed in a T junction made up of roads of unit width?
Can a specific 3-dimensional object pass through a given door? Our survey aims at
showing that mover problems are no less challenging even if there are no obstacles
other than the objects themselves, but there are many objects to move. We survey
some recent results on motion planning and reconfiguration for systems of multiple
objects and for modular systems with applications in robotics, and collect some
open problems coming out of this line of research.

1 Introduction

The motion planning problem in its simplest form is that of finding a collision-free
movement for a single object from a given start position to another specified target
position in the presence of obstacles; see, e.g., [34]. Besides the pure algorithmic
aspect, a natural question is how large such an object can be moved through a given
corridor formed by the obstacles. For instance, Leo Moser asked for the region of
largest area that can be moved around a right-angled corner in a corridor of unit
width [36]; see also [19, G5]. The problem became known as the piano mover’s
problem, or more accurately (since any single mover would be overwhelmed by the
task), the piano movers’ problem.

The motion planning problem can also be formulated for systems of multiple
independent objects. Schwartz and Sharir present an algorithm that solves the
following motion planning problem that arises in robotics: Given a start and a
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target configuration of n disks, and a region bounded by a collection of walls,
find a continuous motion connecting the two configurations of these bodies during
which they avoid collision with the walls and with each other, or establish that
no such motion exists [46]. Motion planning for multiple objects has been also
addressed in [28]. Again, besides the pure algorithmic aspect, a natural question
is to estimate the number of moves (of a certain type) such a reconfiguration
requires in terms of n, the number of objects. In this survey we are primarily
concerned with this combinatorial aspect of moving multiple objects. We discuss
three related reconfiguration scenarios for systems of multiple objects. The reader
is also referred to the two surveys on related topics by Pach and Sharir [39, Chap. 9]
and by Demaine and Hearn [20].

1. A body (or object) in the plane is a compact connected set in R
2 with a nonempty

interior. Two initially disjoint bodies collide if they share an interior point at some
time during their motion. Consider a set of n pairwise interior-disjoint objects
in the plane that need to be brought from a given start (initial) configuration
S into a desired target (goal) configuration T , without causing collisions. The
reconfiguration problem for such a system is that of computing a sequence of
object motions (a schedule, or motion plan) that achieves this task. Depending on
the existence of such a sequence of motions, we call that instance of the problem
feasible and, respectively, infeasible.

Our reconfiguration problem is a simplified version of the multirobot motion
planning problem [32], in which a system of robots are operating together in
a shared workplace and from time to time need to move from their initial
positions to a set of target positions. The workspace is often assumed to extend
throughout the entire plane, with no obstacles other than the robots themselves.
In many applications, the robots are indistinguishable so any of them can
occupy any of the specified target positions. Another application that permits the
same abstraction is moving around large sets of heavy objects in a warehouse.
Typically, one is interested in minimizing the number of moves and in designing
efficient algorithms for carrying out the motion plan. There are several types of
moves, such as sliding, translation, or lifting, which lead to three different models
that will be discussed in Sect. 2.

2. A different kind of reconfiguration problem appears in connection to metamor-
phic or self-reconfigurable modular systems. A modular robotic system consists
of a number of identical robotic modules that can connect to, disconnect from,
and relocate relative to adjacent modules; see examples in [14, 18, 37, 38, 40, 45,
48–50, 53]. Typically, the modules have a regular symmetry so that they can be
packed densely, with small gaps between them. Such a system can be viewed as
a large swarm of physically connected robotic modules that behave collectively
as a single entity.

The system changes its overall shape and functionality by reconfiguring
into different formations. In most cases individual modules are not capable of
moving by themselves; however, the entire system may be able to move to a
new position when its members repeatedly change their positions relative to
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their neighbors, by rotating or sliding around other modules [13, 37, 52], or by
expansion and contraction [45]. In this way the entire system, by changing its
aggregate geometric structure, may acquire new functionalities to accomplish a
given task or to interact with the environment.

Shape changing in these composite systems is envisioned as a means to
accomplish various tasks, such as reconnaissance, exploration, satellite recovery,
or operation in constrained environments inaccessible to humans (e.g., nuclear
reactors, space, or deep water). For another example, a self-reconfigurable robot
can aggregate as a snake to traverse a tunnel and then reconfigure as a six-legged
spider to move over uneven terrain. A novel useful application is to realize
self-repair: A self-reconfigurable robot carrying some additional modules may
abandon the failed modules and replace them with spare units [45]. It is usually
assumed that the modules must remain connected all (or most) of the time during
reconfiguration.

The motion planning problem for such a system is that of computing a
sequence of module motions that brings the system in a given initial configuration
I into a desired goal configuration G. Reconfiguration for modular systems acting
in a grid-like environment, and where moves must maintain connectivity of the
whole system has been studied in [25–27], focusing on two basic capabilities of
such systems: reconfiguration and locomotion. We present details in Sect. 3.

3. In some cases the problem of bringing a set of pairwise disjoint objects (in the
plane or in the space) to a desired goal, configuration, admits the following
abstraction: We have an underlying finite or infinite connected graph; the start
configuration is represented by a set of n chips at n start vertices and the target
configuration by another set of n target vertices. A vertex can be both a start and
a target position. The case when the chips are labeled or unlabeled gives two
different variants of the problem. In one move a chip can follow an arbitrary path
in the graph and end up at another vertex, provided the path (including the end
vertex) is free of other chips [16].

The motion planning problem for such a system is that computing a sequence of
chip motions that brings the chips from their initial positions to their target positions.
Again, the problem may be feasible or infeasible. We address multiple aspects of
this variant in Sect. 4. We note that the three models mentioned earlier in (1) do not
fall in the above graph reconfiguration framework, because an object may partially
overlap several target positions.

2 Models of Reconfiguration for Systems of Objects
in the Plane

We formulate these models for systems of disks, since they are simpler and most
of our results are for this class of convex bodies. These rules can be extended
(not necessarily uniquely) for arbitrary convex bodies in the plane. The decision
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problems we refer to below, pertaining to various reconfiguration problems we
discuss here, are in standard form and concern systems of (arbitrary or congruent)
disks. For instance, the reconfiguration problem U-SLIDE-RP for congruent disks
is as follows: Given a start configuration and a target configuration, each with
n unlabeled congruent disks in the plane, and a positive integer k, is there a
reconfiguration motion plan with at most k sliding moves? It is worth clarifying
that for the unlabeled variant, if the start and target configuration contain subsets
of congruent disks, there is freedom is choosing which disks will occupy target
positions. However, in the labeled variant, this assignment is uniquely determined
by the labeling; of course, a valid labeling must respect the size of the disks.

1. Sliding model: One move is sliding a disk to another location in the plane without
colliding with any other disk, where the disk center moves along an arbitrary
continuous curve. This model was introduced in [8]. The labeled and unlabeled
variants are L-SLIDE-RP and U-SLIDE-RP, respectively.

2. Translation model: One move is translating a disk to another location in the
plane along a fixed direction without colliding with any other disk. This is a
restriction imposed to the sliding model above for making each move as simple
as possible. This model was introduced in [2]. The labeled and unlabeled variants
are L-TRANS-RP and U-TRANS-RP, respectively.

3. Lifting model: One move is lifting a disk and placing it back in the plane
anywhere in the free space, that is, at a location where it does not intersect
(the interior of) any other disk. This model was introduced in [7]. The labeled
and unlabeled variants are L-LIFT-RP and U-LIFT-RP, respectively.

It turns out that moving a set of objects from one place to another is related to
certain separability problems [12,17,29,31]; see also [44]. For instance, given a set
of disjoint polygons in the plane, may each be moved “to infinity” in a continuous
motion in the plane without colliding with the others? Often constraints are imposed
on the types of motions allowed, e.g., only translations, or only translations in a fixed
set of directions. Usually only one object is permitted to move at a time. Without the
convexity assumption on the objects, it is easy to show examples when the objects
are interlocked and could only be moved “together” in the plane; however, they
could be easily separated using the third dimension, i.e., in the lifting model.

It can be shown that for the class of disks, the reconfiguration problem in each
of these models is always feasible [2, 7, 8, 12, 29, 31]. This follows essentially from
the feasibility in the sliding model and the translation model; see Sect. 2.1. For the
more general class of convex objects, one needs to allow rotations. For simplicity,
we restrict ourselves mostly to the case of disks. We are thus led to the following
generic question: Given a pair of start and target configurations, each consisting of
n pairwise disjoint disks in the plane, what is the minimum number of moves that
suffice for transforming the start configuration into the target configuration for each
of these models?

If no target disk coincides with a start disk, so each disk must move at least
once, obviously at least n moves are required. In general, one can use (a variant
of) the following simple universal algorithm for the reconfiguration of n objects
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Fig. 1 2n−1 moves are
necessary (in the sliding or
the lifting model) to bring the
n segments from vertical
position to horizontal position

Table 1 Comparison summary: number of moves for disks in the plane/chips in
the grid

Model Type Lower bound Upper bound

Translating disks Congruent (unlabeled) 	5n/3
−1 2n−1
Arbitrary (unlabeled) 2n 2n

Sliding disks Congruent (unlabeled) 16n/15−o(n) 3n/2+o(n)
Arbitrary (unlabeled) 2n−o(n) 2n−1

Lifting disks Congruent (unlabeled) n+Ω(n1/2) n+O(n2/3)

Arbitrary (unlabeled) 	5n/3
 9n/5
Sliding chips (grid) Unlabeled n n

Labeled 3n/2 7n/4
Lifting chips (grid) Unlabeled n n

Labeled 3n/2 3n/2

using 2n moves. To be specific, consider the lifting model. In the first step
(n moves), move all the objects away anywhere in the free space. In the second step
(n moves), bring the objects “back” to target positions. For the class of segments
(or rectangles) as objects, it is easy to construct examples that require 2n−1 moves
for reconfiguration, in any of the three models, even for congruent objects; see
Fig. 1. A first goal is to estimate more precisely where in the interval [n,2n] the
answer lies for each of these models. The best current lower and upper bounds on
the number of moves necessary in the three models described earlier are listed in
Table 1. It is quite interesting to compare the bounds on the number of moves for
the three models, translation, sliding, and lifting, with those for the graph variants
discussed in Sect. 4. Table 1, which is constructed on the basis of the results in
[2, 7, 8, 16], facilitates this comparison.

Some remarks are in order. Clearly, any lower bound (on the number of moves)
for lifting is also valid for sliding, and any upper bound (on the number of moves) for
sliding is also valid for lifting. Another observation is that for lifting, those objects
whose target position coincides with their start position can be safely ignored, while
for sliding this is not true. A simple example is illustrated in Fig. 2: Assume that
we have a large disk surrounded by n− 1 smaller ones. The large disk has to be
moved to another location, while the n−1 smaller disks have to stay where they are.
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Fig. 2 One move is enough
in the lifting model, while
n−1 are needed in the sliding
model for this pair of start
and target configurations with
n disks each (here n = 8).
Start disks are white and
target disks are shaded

One move is enough in the lifting model, while n−1 are needed in the sliding model:
One needs to make space for the large disk to move out by moving out about half of
the small disks and then moving them back in to the same positions.

A move is a target move if it moves a disk to a final target position. Otherwise,
it is a nontarget move. Our lower bounds use the following argument: If no target
disk coincides with a start disk (so each disk must move), a schedule that requires x
nontarget moves must consist of at least n+ x moves.

2.1 The Sliding Model

It is not difficult to show that, for the class of disks, the reconfiguration problem in
the sliding model is always feasible. More generally, the problem remains feasible
for the class of all convex objects using sliding moves; this follows from Theorem 1.
This old result appears in the work of Fejes Tóth and Heppes [29], but it can be
traced back to de Bruijn [12]; some algorithmic aspects of the problem have been
addressed subsequently by Guibas and Yao [31].

Theorem 1 ([12,29,31]). Any set of n convex objects in the plane can be separated
via translations all parallel to any given fixed direction, with each object moving
once only. If the topmost and bottommost points of each object are given (or can
be computed in O(n logn) time), an ordering of the moves can be computed in
O(n logn) time.

The universal algorithm mentioned earlier can be adapted to perform th reconfig-
uration of any set of n convex objects. It performs 2n moves for the reconfiguration
of n disks. In the first step (n moves), in decreasing order of the x-coordinates of
their centers, slide the disks initially along a horizontal direction, one by one to the
far right. Observe that no collisions can occur. In the second step (n moves), bring
the disks “back” to target positions in increasing order of the x-coordinates of their
centers. (General convex objects may need rotations and translations in the second
step.) Already for the class of disks, Theorem 3 shows that one cannot do much
better in terms of the number of moves. The following bounds on the number of
moves for translating disks are due to Bereg et al. [8] (Theorems 2 and 3).
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step 1

step 2

step 3

l

Fig. 3 Algorithm with three steps for sliding congruent disks. The start disks are white and the
target disks are shaded

Theorem 2 ([8]). Given a pair of start and target configurations S and T , each
consisting of n congruent disks, 3n

2 +O(
√

n logn) sliding moves always suffice for
transforming the start configuration into the target configuration. The entire motion
can be computed in O(n3/2(logn)−1/2) time. On the other hand, there exist pairs of
configurations that require

(
1+ 1

15

)
n−O(

√
n) moves for this task.

We now briefly sketch the upper bound proof and the corresponding algorithm
in [8] for congruent disks. First, one shows the existence of a line bisecting the set
of centers of the start disks such that the strip of width 6 around this line contains a
small number of disks. More precisely, the following holds:

Lemma 2.1 ([8]). Let S be a set of n pairwise disjoint unit (radius) disks in the
plane. Then there exists a line � that bisects the centers of the disks such that the
parallel strip of width 6 around � (that is, � runs in the middle of this strip) contains
entirely at most O(

√
n logn) disks.

Let S′ and T ′ be the centers of the start disks and target disks, respectively, and
let � be the line guaranteed by Lemma 2.1. We can assume that � is vertical. Denote
by s1 = 	n/2
 and s2 = �n/2� the number of centers of start disks to the left and
right of � (centers on � can be assigned to the left or right). Let m = O(

√
n logn) be

the number of start disks contained entirely in the vertical strip of width 6 around �.
Denote by t1 and t2 the number of centers of target disks to the left and right of �,
respectively. By symmetry, we can assume that t1 ≤ n/2≤ t2.

Let R be a region containing all start and target disks, e.g., the smallest axis-
aligned rectangle that contains all disks. The algorithm has three steps. All moves
in the region R are taken along horizontal lines, i.e., perpendicularly to the line �.
The reconfiguration procedure is schematically shown in Fig. 3. This illustration
ignores the disks/targets in the center parallel strip.
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Fig. 4 A lower bound of
n+Ω(

√
n) moves: Θ(

√
n)

rings, each with Θ(
√

n) start
disk positions. Targets are
densely packed in a square
formation enclosed by the
rings

Step 1 Slide to the far right all start disks whose centers are to the right of �
and the (other) start disks in the strip, one by one, in decreasing order of their
x-coordinates (with ties broken arbitrarily). At this point all t2 ≥ n/2 target disk
positions whose centers lie right of � are free.

Step 2 In increasing order of their x-coordinates, fill free target positions whose
centers are right of � using all the s′1 ≤ s1 ≤ n/2 remaining disks whose centers
are to the left of �. These disks are taken in increasing order of their x-coordinates:
Each disk translates first to the left, then to the right on a wide arc, and to the left
again in the end. Note that s′1 ≤ n/2 ≤ t2. Now all the target positions whose
centers lie left of � are free.

Step 3 Move to place the far away disks: First continue to fill target positions whose
centers are to the right of �, in increasing order of their x-coordinates. When
done, fill target positions whose centers are left of �, in decreasing order of their
x-coordinates. Note that at this point all target positions whose centers lie left of
� are free.

The only nontarget moves are those done in step 1 and their number is
n/2+O(

√
n logn), so the total number of moves is 3n/2+O(

√
n logn).

A first idea in constructing a lower bound is as follows: The target configuration
consists of a set of n densely packed unit (radius) disks contained, for example,
in a square of side length ≈ 2

√
n. The disks in the start configuration enclose the

target positions using concentric rings, that is, Θ(
√

n) rings, each with Θ(
√

n) start
disk positions, as shown in Fig. 4. Now observe that for each ring, the first move
that involves a disk in that ring must be a nontarget move. The number of rings is
Θ(
√

n), from which a lower bound of n+Ω(
√

n) follows.
This basic idea of a cage-like construction can be further refined by redesigning

the cage [8]. The new design is more complicated and uses “rigidity” considerations,
which go back to stable disk packings of density 0 due to Böröczky [9]. A packing
C of unit (radius) disks in the plane is said to be stable if each disk is kept fixed
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of type 1

double bridges

one-way bridges

T

double bridges

one-way bridges

junctions
of type 2

a b

Fig. 5 Two start configurations based on hexagonal and triangular cage-like constructions. Targets
are densely packed in a square formation enclosed by the cage, as shown in (a); those in (b) are
labeled “T”

by its neighbors [11]. More precisely, C is stable if none of its elements can be
translated by any small distance in any direction without colliding with the others.
It is easy to see that any stable system of (unit) disks in the plane must have infinitely
many elements. Böröczky [9] showed that somewhat surprisingly, there exist stable
systems of unit disks with an arbitrarily small density (i.e., the total area of the disks
inside any sufficiently large axis-aligned square is arbitrarily small). These systems
can be adapted for the purpose of constructing a lower bound in the sliding model
for congruent disks. The details are quite technical, and we only sketch here the new
cage-like constructions depicted in Fig. 5.

Let’s refer to the disks in the start (respectively target) configuration as white
(respectively, black) disks. Now fix a large n, and take n white disks. Use O(

√
n)

of them to build three junctions connected by three “double-bridges” to enclose
a triangular region that can accommodate n tightly packed nonoverlapping black
disks, as shown in Fig. 5b. Divide the remaining white disks into three roughly equal
groups, each of size n

3−O(
√

n), and rearrange each group to form the initial section
of a “one-way bridge” attached to the unused sides of the junctions. Each of these
bridges consists of five rows of disks of “length” roughly n

15 , where the length of a
bridge is the number of disks along its side. The design of both the junctions and the
bridges prohibits any target move before one moves out a sequence of about 1

5 ·
n
3 =

n
15 white adjacent disks starting at the far end of one of the one-way bridges. The
reason is that with the exception of the at most 3×4= 12 white disks at the far ends
of the truncated one-way bridges, every white disk is fixed by its neighbors. The total
number of necessary moves is at least

(
1+ 1

15

)
n−O(

√
n) for this triangular ring

construction, and at least
(
1+ 1

30

)
n−O(

√
n) for the hexagonal ring construction.

Observe that the triangular cage yields a better bound.
For disks of arbitrary radii, the following result is obtained by the same

authors [8]:

Theorem 3 ([8]). Given a pair of start and target configurations, each consisting
of n disks of arbitrary radii, 2n sliding moves always suffice for transforming the
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Fig. 6 A simple
configuration that requires
about 3n/2 moves (basic step
for the recursive construction)

Fig. 7 Recursive lower-bound construction for sliding disks of arbitrary radii: m = 2 and k = 3

start configuration into the target configuration. The entire motion can be computed
in O(n logn) time. On the other hand, there exist pairs of configurations that require
2n− o(n) moves for this task.

The upper bound follows from the universal reconfiguration algorithm described
earlier. The lower bound is a recursive construction shown in Fig. 7. It is obtained
by iterating recursively the basic construction in Fig. 6, which requires about 3n/2
moves: Note that the target positions of the n− 1 small disks lie inside the start
position of the large disk. This means that no small disk can reach its target before
the large disk moves away, that is, before roughly half of the n−1 small disks move
away. So about n/2 nontarget moves are necessary; thus, about 3n/2 moves in total
are necessary.

In the recursive construction, the small disks around a large one are replaced
by the “same” construction scaled (see Fig. 7). All disks have distinct radii, so it
may be convenient to think of them as being labeled. There are one large disk and
2m+ 1 groups of smaller disks around it close to the vertices of a regular (2m+ 1)-
gon (m ≥ 1). The small disks on the last level or recursion have targets inside the
big ones they surround (the other disks have targets somewhere else). Let m≥ 1 be
fixed. If there are k levels in the recursion, then instead of about n/2 nontarget moves
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Fig. 8 A two-disk
configuration that requires 4
translation moves

Fig. 9 A configuration of 6
congruent disks that requires
9 translation moves

being necessary (as previously argued for Fig. 6), now about n/2+n/4+ · · ·+n/2k

nontarget moves are necessary. The precise calculation for m = 1 yields the lower
bound 2n−O(nlog3 2) = 2n−O(n0.631); see [8].

2.2 The Translation Model

This model, first studied by Abellanas et al. [2], is a constrained variant of the
sliding model in which each move is a translation along a fixed direction; that is,
the center of the moving disk traces a line segment. With some care, one can modify
the universal algorithm mentioned in the introduction and find a suitable order in
which disks can be moved “to infinity” and then moved “back” to target position
via translations almost parallel to any given fixed direction using 2n translation
moves [2].

That this bound is best possible for arbitrary radii disks can be easily seen in
Fig. 8. Consider a pair of start and target configurations with two disks each. The
two start disks and the two target positions are tangent to the same line. Note that
the first move cannot be a target move. Assume that the larger disk moves first,
and observe that its location must be above the horizontal line. If the second move
is again a nontarget move, we have accounted for 4 moves already. Otherwise,
no matter which disk moves to its target position, the other disk will require two
more moves to reach its target. The situation when the smaller disk moves first is
analogous. One can repeat this basic configuration with two disks, using different
radii, to obtain configurations with an arbitrary large (even) number of disks, which
require 2n translation moves.

Theorem 4 ([2]). Given a pair of start and target configurations, each consisting
of n disks of arbitrary radii, 2n translation moves always suffice for transforming
the start configuration into the target configuration. On the other hand, there exist
pairs of configurations that require 2n such moves.

For congruent disks, the configuration shown in Fig. 9 (the first lower bound
that was proposed) requires 3n/2 moves, since from each pair of tangent disks,
the first move must be a nontarget move [42]. A better lower bound, 	8n/5
, due
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Fig. 10 Reconfiguration of a system of 10 congruent disks that needs 16 translation moves. Start
disks are white and target disks are shaded

A

C

B

Fig. 11 Illustration of the lower-bound construction for translating congruent unlabeled disks,
for m = 3, n = 11. The disks are white and their targets are shaded. Two consecutive partially
overlapping parallel strips of width 2 are shown

to Abellanas et al. [2] is illustrated in Fig. 10. The construction is symmetric with
respect to the middle horizontal line. Here we have groups of five disks each, where
to “move” one group to some five target positions requires eight translation moves.
In each group, the disks S2, S4, and S5 are pairwise tangent, and S1 and S3 are
each tangent to S2; the tangency lines in the latter pairs are almost horizontal,
converging to the middle horizontal line. Here are two different ways for moving
one group, each requiring three nontarget moves: (a) S1 and S3 move out, S2 moves
to destination, S4 moves out, S5 moves to destinations followed by the rest. (b) S4,
S5, and S2 move out (to the left), S1 and S3 move to destinations followed by the rest.

The current best lower bound, 	5n/3
− 1, is due to Dumitrescu and Jiang [24].
Let n = 3m+ 2. The start and target configurations, each with n disks, are shown in
Fig. 11. The n target positions are all on a horizontal line �, with the disks at these
positions forming a horizontal chain, T1, . . . ,Tn, consecutive disks being tangent to
each other. Let o denote the center of the median disk, T	n/2
. Let r > 0 be very
large. The start disks are placed on two very slightly convex chains (two concentric
circular arcs):
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Fig. 12 Reconfiguration of
convex bodies with
translations. The start
positions are unshaded; the
target positions are shaded

• 2m+2 disks in the first layer (chain). Their centers are 2m+2 equidistant points
on a circular arc of radius r centered at o.

• m disks in the second layer. Their centers are m equidistant points on a concentric
circular arc of radius r cosα +

√
3. Each pair of consecutive points on the circle

of radius r subtends an angle of 2α from the center of the circle (α is very small).

The parameters of the construction are chosen to satisfy sinα = 1/r and
2nsinnα ≤ 2. Set, for instance, α = 1/n2, which results in r =Θ(n2). Alternatively,
the configuration can be viewed as consisting of m groups of three disks each,
plus two disks, one at the higher and one at the lower end of the chain along the
circle of radius r. We summarize the bounds for translation of congruent disks in
the following theorem.

Theorem 5 ([2, 24]). Given a pair of start and target configurations, each consist-
ing of n congruent disks, 2n− 1 translation moves always suffice for transforming
the start configuration into the target configuration. On the other hand, there exist
pairs of configurations that require 	5n/3
− 1 such moves.

Translating Convex Bodies. We briefly discuss the general problem of reconfigu-
ration of convex bodies with translations. Refer to Fig. 12. When the convex bodies
have different shapes, sizes, and orientations, we assume that the correspondence
between the start positions {S1, . . . ,Sn} and the target positions {T1, . . . ,Tn} is given
explicitly: Ti is a translated copy of Si. In other words, we deal with the labeled
variant of the problem. Theorem 6 can be easily extended to the unlabeled variant by
first computing a valid correspondence by shape matching. The 2n upper bound for
translating arbitrary disks can be extended to arbitrary convex bodies in the plane.

Theorem 6 ([24]). For the reconfiguration with translations of n labeled disjoint
convex bodies in the plane, 2n moves are always sufficient and sometimes necessary.
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Fig. 13 A lower bound of 	3n/2
 for translating axis-parallel unit squares. The start positions
(grouped in pairs) are tangent to the x-axis, which intersects the target positions (shaded). Each of
the target squares is symmetric about the x-axis

Translating Unlabeled Axis-Parallel Unit Squares. Throughout a translation
move, the moving square remains axis-parallel; however, the move can be in any
direction. The construction in Fig. 13 gives a lower bound of 	3n/2
 and we have
the following bounds.

Theorem 7 ([24]). For the reconfiguration with translations of n unlabeled axis-
parallel unit squares in the plane, 2n− 1 moves are always sufficient, and 	3n/2

moves are sometimes necessary.

Recently Garcı́a et al. estimated the number of moves necessary for the re-
configuration of n axis-parallel rectangles, where each move is a collision-free
axis-parallel translation [30].

2.3 The Lifting Model

For systems of n congruent disks, one can estimate the number of moves that are
always sufficient with higher accuracy. The following bounds were established by
Dumitrescu and Bereg [7]:

Theorem 8 ([7]). Given a pair of start and target configurations S and T , each
with n congruent disks, one can move the disks from S to T using n+O(n2/3) moves
in the lifting model. The entire motion can be computed in O(n logn) time. On the
other hand, for each n, there exist pairs of configurations that require n+Ω(n1/2)
moves for this task.

The lower-bound construction is illustrated in Fig. 14 for n = 25. Assume for
simplicity that n = m2, where m is odd. We place the disks of T onto a grid X×X
of size m×m, where X = {2,4, . . . ,2m}. We place the disks of S onto a grid of
size (m−1)× (m−1) so that they overlap with the disks from T . The grid of target
disks contains 4m−4 disks on its boundary. We “block” them with 2m−2 start disks
in S by placing them so that each start disk overlaps with two boundary target disks
as shown in the figure. We place the last start disk somewhere else, and we have
accounted for (m−1)2+(2m−2)+1=m2 start disks. As proved in [7], at least n+
	m/2
 moves are necessary for reconfiguration (it can be verified that this number
of lifting moves suffices for this construction).

The proof of the upper bound of n+O(n2/3) is technically more complicated.
It builds a binary space partition of the plane into convex polygonal (bounded or



Mover Problems 199

Fig. 14 A pair of start and
target configurations, each
with n = 25 congruent disks,
which require 27 lifting
moves. The start disks are
white and the target disks are
shaded

3
1

1

2

3 2

Fig. 15 A group of three disks (of distinct radii) that require five moves to reach their targets; part
of the lower-bound construction for lifting disks of arbitrary radii. The disks are white and their
targets are shaded

unbounded) regions satisfying certain properties. Once the partition is obtained, a
shifting algorithm moves disks from some regions to fill the target positions in other
regions; see [7] for details. Since the disks whose target position coincides with
their start position can be safely ignored in the beginning, the upper bound yields
an efficient algorithm that performs a number of moves close to the optimum (for
large n).

For arbitrary radius disks, the following result is obtained in [7].

Theorem 9 ([7]). Given a pair of start and target configurations S and T , each
with n disks with arbitrary radii, 9n/5 moves always suffice for transforming the
start configuration into the target configuration. On the other hand, for each n,
there exist pairs of configurations that require 	5n/3
 moves for this task.

The lower bound is very simple. We use disks of different radii (although the radii
can be chosen very close to the same value if desired). Since all disks have distinct
radii, one can think of the disks as being labeled. Consider the set of three disks,
labeled 1, 2, and 3 in Fig. 15. The two start and target disks labeled i are congruent,
for i = 1,2,3. To transform the start configuration into the target configuration takes
at least two nontarget moves, thus five moves in total. By repeatedly using groups
of three (with different radii), one gets a lower bound of 5n/3 moves, when n is a
multiple of three, and 	5n/3
 in general.

We now explain the approach in [7] for the upper bound for n disks of arbitrary
radii. Let S = {s1, . . . ,sn} and T = {t1, . . . , tn} be the start and target configurations.



200 A. Dumitrescu

We assume that for each i, disk si is congruent to disk ti; i.e., ti is the target position
of si. If the correspondence si → ti is not given (but only the two sets of disks), it can
be easily computed by sorting both S and T by radius.

In a directed graph D = (V,E), let dv = d+
v + d−v denote the degree of vertex

v, where d+
v is the out-degree of v and d−v is the in-degree of v. Let β (D) be the

maximum size of a subset V ′ of V such that D[V ′], the subgraph induced by V ′, is
acyclic. In [7] the following inequality is proved for any directed graph:

β (D)≥max

(

∑
v∈V

1

d+
v + 1

, ∑
v∈V

1

d−v + 1

)

.

For a disk ω , let
◦
ω denote the interior of ω . Let S be a set of k pairwise disjoint

red disks, and T be a set of l pairwise disjoint blue disks. Consider the bipartite red–

blue disk intersection graph G=(S,T,E), where E = {(s, t) : s∈ S, t ∈ T,
◦
s∩

◦
t �= /0}.

Using the triangle inequality (among sides and diagonals in a convex quadrilateral),
one can easily show that any red–blue disk intersection graph G=(S,T,E) is planar,
and consequently |E| ≤ 2(|S|+ |T |)− 4 = 4n− 4. We think of the start and target
disks being labeled from 1 to n, so that the target of start disk i is target disk i.
Consider the directed blocking graph D = (S,F) on the set S of n start disks, where

F = {(si,s j) : i �= j and
◦
si∩

◦
t j �= /0}.

If (si,s j)∈ F , we say that disk i blocks disk j. (Note that si∩ti �= /0 does not generate
any edge in D.) Since if (si,s j) ∈ F , then (si, t j) ∈ E , we have |F| ≤ |E| ≤ 4n− 4.
The algorithm first eliminates all the directed cycles from D using some nontarget
moves, and then fills the remaining targets using only target moves. Let

d+ =
∑v∈S d+

v

n
=
|F |
n

be the average out-degree in D. We have d+ ≤ 4, which further implies (by Jensen’s
inequality)

β (D)≥∑
v∈S

1

d+
v + 1

≥ n
d++ 1

≥ n
5
.

Let S′ ⊂ S be a set of disks of size at least n/5 and whose induced subgraph is
acyclic in D. Move out far away the remaining set S′′ of at most 4n/5 disks, and
note that the faraway disks do not block any of the disks in S′. Perform a topological
sort on the acyclic graph D[S′] induced by S′, and fill the targets of these disks
in that order using only target moves. Then fill the targets with the faraway disks
in any order. The number of moves is at most n+4n/5= 9n/5, as claimed. Figure 16
shows the bipartite intersection graph G and the directed blocking graph D for a
small example, with the corresponding reconfiguration procedure explained above.
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Fig. 16 The bipartite intersection graph G and the directed blocking graph D. Move out 4, 5, 7, 8;
no cycles remain in D. Fill targets 3, 2, 1, 6, and then 4, 5, 7, 8. The start disks are white and the
target disks are shaded

Similar to the case of congruent disks, the resulting algorithm performs a
number of moves that is not more than a constant times the optimum. Indeed, as
mentioned in the introduction, the disks whose target positions coincide with their
start positions can be safely ignored. So each of the remaining start disk needs to
be moved from its initial place. Without loss of generality, all disks need to move,
so the number of moves in any solution is at least n (the case when some disks
are ignored is only better). Since the algorithm above performs at most 9n/5 lifting
moves, it achieves a constant approximation ratio, 9/5.

Computational Complexity of Optimal Reconfiguration. While, as discussed,
reconfiguration with 2n or fewer moves is always possible in any of the three models
(sliding, translation, and lifting), optimal reconfiguration (employing a minimum
number of moves) is probably NP-hard in each of these models. This has been
confirmed for translation and sliding by Dumitrescu and Jiang [24]: (a) Both the
labeled and unlabeled versions of the disk reconfiguration problem with translations
U-TRANS-RP and L-TRANS-RP are NP-hard even for congruent disks. (b) Both
the labeled and unlabeled versions of the sliding disks reconfiguration problem in
the plane U-SLIDE-RP and L-SLIDE-RP are NP-hard even for congruent disks.

2.4 Further Questions

We list a few open problems concerning the three models discussed:

1. Reduce the gap between the 16n/15− o(n) lower bound and the 3n/2+ o(n)
upper bound on the number of moves for sliding n congruent disks.
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2. Consider the reconfiguration problem for congruent squares (with arbitrary
orientation) in the sliding model. It can be checked that the 3n/2+ o(n) upper
bound for congruent disks still holds in this case; however, the 16n/15− o(n)
lower bound based on stable disk packings cannot be used. Observe that the
n+Ω(n1/2) lower bound for congruent disks in the lifting model (Fig. 14) can
be realized with congruent (even axis-aligned) squares and therefore holds for
congruent squares in the sliding model as well. Can one deduce better bounds
for this variant?

3. Derive a (2− δ )n upper bound for translating congruent disks (where δ is a
positive constant), or improve the (multiplicative constant in the) 	5n/3
− 1
lower bound.

4. Consider the reconfiguration problem for congruent labeled disks in the sliding
model. It is easy to see that the 	5n/3
 lower bound holds, since the construction
in Fig. 15 can be realized with congruent disks. Find a (2− δ )n upper bound
(where δ is a positive constant), or improve the (multiplicative constant in the)
	5n/3
 lower bound.

5. The type of construction in Fig. 13 has been used previously for disks to obtain
the first lower bound of 	3n/2
 for translating unit disks [42]. It is interesting
to note that neither of the two subsequent improved constructions, 	8n/5
 of
Abellanas et al. [2], or ours 	5n/3
−1 in Theorem 5, seems to work for squares.

6. Reduce the gap between the 	5n/3
 lower bound and the 9n/5 upper bound on
the number of moves for lifting n disks of arbitrary radii.

7. What is the computational complexity of the reconfiguration problem in the
lifting model? Are U-LIFT-RP and L-LIFT-RP NP-hard for unit disks?

3 Modular and Reconfigurable Systems

A number of issues related to motion planning and analysis of rectangular metamor-
phic robotic systems are addressed in [26]. A distributed algorithm for reconfigura-
tion that applies to a relatively large subclass of configurations, called horizontally
convex configurations, is presented. Several fundamental questions in the analysis
of metamorphic systems have been also addressed. In particular, the following two
questions have been shown to be decidable: (a) whether a given set of motion rules
maintains connectivity; (b) whether a goal configuration is reachable from a given
initial configuration (at specified locations).

For illustration, we present the rectangular model of metamorphic systems
introduced in [25–27]. Consider a plane that is partitioned into an integer grid of
square cells indexed by their center coordinates in the underlying x–y coordinate
system. This partition of the plane is only a useful abstraction, as the module-size
determines the grid size in practice. At any time, each cell may be empty or occupied
by a module. The reconfiguration of a metamorphic system consisting of n modules
is a sequence of configurations of the modules in the grid at discrete time steps
t = 0,1,2, . . .; see below. Let Vt be the configuration of the modules at time t, where
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Fig. 17 Moves in the rectangular model: (a) clockwise NE rotation and (b) sliding in the E
direction. Fixed modules are shaded. The cells in which the moves take place are outlined in the
figure

we often identify Vt with the set of cells occupied by the modules or with the set
of their centers. A useful feature we insist on is maintaining connectivity; i.e., for
each t, the graph Gt = (Vt ,Et) must be connected, where for any t, Et is the set
of edges connecting pairs of cells in Vt that are side-adjacent. The following two
generic motion rules (Fig. 17) define the rectangular model [25–27]. These rules
can be applied in all axis-parallel orientations, in fact generating 16 rules, eight for
rotation and eight for sliding. A somewhat similar model is presented in [13].

• Rotation: A module m side-adjacent to a stationary module f rotates through an
angle of 90◦ around f either clockwise or counterclockwise. Figure 17a shows
a clockwise NE rotation. For rotation to take place, both the target cell and the
cell at the corresponding corner of f that m passes through (NW in the given
example) have to be empty.

• Sliding: Let f1 and f2 be stationary cells that are side-adjacent. A module m that
is side-adjacent to f1 and adjacent to f2 slides along the sides of f1 and f2 into
the cell that is adjacent to f1 and side-adjacent to f2. Figure 17b shows a sliding
move in the E direction. For sliding to take place, the target cell has to be empty.

The system may execute moves sequentially, when only one module moves
at each discrete time step, or concurrently (when more modules can move at
each discrete time step). Concurrent execution has the advantage to speed up the
reconfiguration process. If concurrent moves are allowed, additional conditions have
to be imposed, as in [26, 27]. In order to ensure motion precision, each move
is guided by one or two modules that are stationary during the same step. The
following result of Dumitrescu and Pach settles a conjecture formulated in [26].

Theorem 10 ([25]). The set of motion rules of the rectangular model guarantees
the feasibility of motion planning for any pair of connected configurations V and V ′

having the same number of modules. That is, following the above rules, V and V ′

can always be transformed into each other so that all intermediate configurations
are connected.

The algorithm in [25] is far from being intuitive or straightforward. The
main difficulties that have to be overcome are dealing with holes and avoiding
certain deadlock situations during reconfiguration. The proof of correctness of the
algorithm and the analysis of the number of moves (cubic in the number of modules,
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Fig. 18 A rotation move that
temporarily disconnects the
configuration

m

m

a bFig. 19 Moves in the weak
rectangular model: (a) NE
diagonal move and (b) side
move in the E direction. The
cells in which the moves take
place are outlined in the
figure

for sequential execution) are also quite involved. It is easy to construct examples so
that neither sliding nor rotation alone can reconfigure them to straight chains; here a
straight chain is a set of modules that form a straight line chain in the grid. However,
conform with Theorem 10, the motion rules of the rectangular model (rotation
and sliding, Fig. 17) are sufficient to guarantee reachability while maintaining the
system connected at each discrete time step. This had been proved earlier only for
the special class of horizontally convex systems [26].

A somewhat different model can be obtained if, instead of the connectedness
requirement at each time step, one imposes the single backbone condition [26]:
Each move of a module (sliding or rotation) is along the single connected backbone
formed by the other modules. If concurrent moves are allowed, additional conditions
have to be imposed, as in [26]. A subtle difference exists between requiring the
configuration to be connected at each discrete time step and requiring the existence
of a connected backbone along which a module slides or rotates. A one step motion
that does not satisfy the single backbone condition appears in Fig. 18: The initial
connected configuration temporarily disconnects during the move and reconnects at
the end of it. The algorithm from [25] has the nice property that the single backbone
condition is satisfied during the whole procedure.

It is worth briefly discussing another rectangular model for which the result in
Theorem 10 holds. The following two generic motion rules (Fig. 19) define the weak
rectangular model. These rules are again applicable in all axis-parallel orientations,
in fact generating eight rules, four diagonal moves and four side (axis-parallel)
moves. The only requirement is that the configurations must remain connected at
each discrete time step.

• Diagonal move: A module m moves diagonally to an empty cell corner adjacent
to cell(m).

• Side move: A module m moves to an empty cell side adjacent to cell(m).

The same result from Theorem 10 holds for this second model [25]; however, its
proof and corresponding reconfiguration algorithm are much simpler.
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3210

Fig. 20 Formation of 20 modules moving diagonally at a speed of 1
3 (diagonal formation)

Theorem 11 ([25]). The set of motion rules of the weak rectangular model guar-
antees the feasibility of motion planning for any pair of connected configurations
having the same number of modules.

It is worth mentioning that reconfigurations in the rectangular model can be also
viewed in the broader context of transformations of binary images. Bose et al.
recently studied several such transformations while insisting on maintaining the
connectivity of both the foreground and the background of the images in each
step [10].

A different variant of interrobot reconfiguration is useful in applications for
which there is no clear preference between the use of a single large robot versus
a group of smaller ones [15]. This leads to the merging of individual smaller robots
into a larger one or the splitting of a large robot into smaller ones. For example, in
a surveillance or rescue mission, a large robot is required to travel to a designated
location in a short time. Then the robot may create a group of small robots that are
to explore concurrently a large area. Once the task is complete, the robots might
merge back into the large robot that carried them.

As mentioned in [22], there is considerable research interest in the task of
having one autonomous vehicle follow another, and in general in studying robots
moving in formation. Dumitrescu et al. [27] examined the problem of dynamic self-
reconfiguration of a modular robotic system to a formation aimed at reaching a
specified target position as quickly as possible. A number of fast formations for
both rectangular and hexagonal systems are presented, achieving a constant-ratio
guarantee on the time to reach a given target in the asymptotic sense. For example,
a snake-like formation (with n≥ 4 modules, n even) can move at a speed of 1

3 in the
rectangular model. In Fig. 20 the formation at time 0 reappears at time 3 translated
diagonally by one unit. Thus, by repeatedly going through these configurations, the
modules can move in the NE direction at a speed of 1

3 .
We conclude this section with some remaining questions on modular and

reconfigurable systems related to the results presented. Preliminary results of Abel
and Kominers [1] suggest that the first two questions below have a positive answer.
This, however, remains to be confirmed.

1. The reconfiguration algorithm in the rectangular model makes at most 2n3 moves
in the worst case [26]. On the other hand, the reconfiguration of a vertical chain
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into a horizontal chain requires onlyΘ(n2) moves, and it is believed that no other
pair of configurations requires more. A quadratic upper bound on the number of
moves has been proved in the weak rectangular model [25], but it remains open
in the first model.

2. Study whether the analogous rules of rotation and sliding in three dimensions
permit the feasibility of motion planning for any pair of connected configurations
having the same number of modules.

3. If concurrent execution is permitted (under appropriate assumptions), what is the
smallest number of concurrent steps that suffices for the reconfiguration of any
pair of connected configurations V and V ′ with n modules—in the rectangular
model and in the weak variant? Is it O(n)? (This has been shown for a special
class of horizontally convex systems [26] and, e.g., in a related 3D rectangular
model studied in [4].)

4 Reconfigurations in Graphs and Grids

In certain applications, objects are indistinguishable, and the chips are therefore
unlabeled; for instance, a modular robotic system consists of a number of identical
modules (robots), each having identical capabilities [25–27]. In other applications
the chips may be labeled. The variant with unlabeled chips is easier and always
feasible, while the variant with labeled chips may be infeasible: A classical example
is the 15-puzzle on a 4× 4 grid—introduced by Sam Loyd in 1878—which admits
a solution if and only if the start permutation is an even permutation [33, 47]. Most
of the work done so far concerns labeled versions of the reconfiguration problem,
and here we give only a short account.

For the generalization of the 15-puzzle on an arbitrary graph (with k = v− 1
labeled chips in a connected graph on v vertices), Wilson [51] gave an efficiently
checkable characterization of the solvable instances of the problem. Kornhauser et
al. have extended his result to any k ≤ v− 1 and provided bounds on the number
of moves for solving any solvable instance [35]. Ratner and Warmuth showed that
finding a solution with a minimum number of moves for the (N ×N)-extension
of the 15-puzzle is NP-hard [43], so the reconfiguration problem in graphs with
labeled chips is NP-hard. Auletta et al. gave a linear-time algorithm for the pebble
motion on a tree problem [5]. This problem is the labeled variant of the same
reconfiguration problem studied in [16]; however, each move is along one edge only.
Papadimitriou et al. studied a problem of motion planning on a graph in which there
is a mobile robot at one of the vertices, say s, that has to reach a designated vertex
t using the smallest number of moves, in the presence of obstacles (pebbles) at
some of the other vertices [41]. Robot and obstacle moves are done along edges,
and obstacles have no destination assigned and may end up in any vertex of the
graph. The problem has been shown to be NP-complete even for planar graphs, and
a polynomial-time approximation algorithm with ratio O(

√
n) was given in [41].
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The following results are proved in [16] for the “chips in graph” reconfiguration
problem described in part (3) of Sect. 1. Recall that in one move a chip can follow a
path in the graph and end up at another vertex, provided the path (including the end
vertex) is free of other chips.

(a) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP is
NP-hard, and even APX-hard.

(b) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP is
APX-hard.

(c) For the infinite planar rectangular grid, both the labeled and unlabeled variants
L-GRID-RP and U-GRID-RP are NP-hard.

(d) There is a ratio-3 approximation algorithm for the unlabeled version in graphs
U-GRAPH-RP. Thereby one gets a ratio-3 approximation algorithm for the
unlabeled version U-GRID-RP in the (infinite) rectangular grid.

(e) It can be shown that n moves are always enough (and sometimes necessary)
for the reconfiguration of n unlabeled chips in graphs. For the case of trees, a
linear-time algorithm that performs an optimal (minimum) number of moves is
presented.

(f) It is shown that 7n/4 moves are always enough, and 3n/2 are sometimes
necessary, for the reconfiguration of n labeled chips in the infinite planar
rectangular grid (L-GRID-RP).

Next, we give some details showing that in the infinite grid, n moves always
suffice for the reconfiguration of n unlabeled chips, and of course it is easy to
construct tight examples. The result holds in a more general graph setting [item
(5) in the above list]: Let G be a connected graph, and let V and V ′ two n-element
subsets of its vertex set V (G). Imagine that we place a chip at each element of V
and we want to move them into the positions of V ′ (V and V ′ may have common
elements). A move is defined as shifting a chip from v1 to v2 [v1,v2 ∈V (G)] along
a path in G so that no intermediate vertices are occupied.

Theorem 12 ([16]). In G one can get from any n-element initial configuration V to
any n-element final configuration V ′ using at most n moves, so that no chip moves
twice.

It suffices to prove the theorem for trees, and we’d like to include the short
proof here. We argue by induction on the number of chips. Take the smallest tree
T containing V and V ′, and consider an arbitrary leaf l of T . Assume first that the
leaf l belongs to V : say l = v. If v also belongs to V ′, the result trivially follows
by induction, so assume that this is not the case. Choose a path P in T , connecting
v to an element v′ of V ′ such that no internal point of P belongs to V ′. Apply the
induction hypothesis to V \ {v} and V ′ \ {v′} to obtain a sequence of at most n− 1
moves, and add a final (unobstructed) move from v to v′.

The remaining case when the leaf l belongs to V ′ is symmetric: Say l = v′;
choose a path P in T , connecting v′ to an element v of V such that no internal
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point of P belongs to V . First move v to v′ and append the sequence of at most n−1
moves obtained from the induction hypothesis applied to V \{v} and V ′ \{v′}. This
completes the proof.

Theorem 12 implies that in the infinite rectangular grid, we can get from any
starting position to any ending position of the same size n in at most n moves. It is
interesting to compare this to the problem of sliding congruent unlabeled disks in the
plane, where one can come up with cage-like constructions that require about 16n

15
moves [8], as discussed in Sect. 2.1. We conclude this section with two remaining
questions on reconfigurations in graphs and grids:

1. Can the ratio-3 approximation algorithm for the unlabeled version in graphs
U-GRAPH-RP be improved? Is there an approximation algorithm with a better
ratio for the infinite planar rectangular grid?

2. Is it possible to close or reduce the gap between the 3n/2 lower bound and the
7n/4 upper bound on the number of moves for the reconfiguration of n labeled
chips in the infinite planar rectangular grid?

5 Conclusion

The different reconfiguration models discussed in this survey have raised new
interesting mathematical questions and revealed surprising connections with other
older ones. For instance, the key ideas in the reconfiguration algorithm in [25] were
derived from the properties of a system of maximal cycles, similar to those of the
block decomposition of graphs [21]. The lower-bound configuration with unit disks
for the sliding model in [8] uses “rigidity” considerations and properties of stable
packings of disks studied a long time ago by Böröczky [9]; in particular, he showed
the existence of stable systems of unit disks with arbitrarily small density. A suitable
modification of his construction yields our lower bound.

The study of the lifting model offered other interesting connections: The
algorithm for unit disks given in [7] is intimately related to the notion of a center
point of a finite point set and to the following property derived from it: Given two
sets each with n pairwise disjoint unit disks, there exists a binary space partition of
the plane into polygonal regions each containing roughly the same small number
(≈ n2/3) of disks and such that the total number of disks intersecting the boundaries
of the regions is small (≈ n2/3). The reconfiguration algorithm for disks of arbitrary
radius relies on a new lower bound on the maximum order of induced acyclic
subgraphs of a directed graph [7], analogous to the bound on the independence
number of an undirected graph given by Turán’s theorem [3]. Moreover, we have
used the crucial fact that a bipartite disk intersection graph (drawn as a geometric
graph on the set of disk centers) is planar, to obtain a linear upper bound on its
number of edges. Finally, the ratio-3 approximation algorithm for the unlabeled
version in graphs is obtained by applying the local ratio method of Bar-Yehuda [6]
to a graph H constructed from the given graph G.
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Regarding the various models of reconfiguration for systems of objects in the
plane, we have presented estimates on the number of moves that are necessary in the
worst case. From the practical viewpoint, one would like to convert these estimates
into approximation algorithms with a good ratio guarantee. As shown for the lifting
model, the upper-bound estimates on the number of moves give good approximation
algorithms for large values of n. However, further work is needed in this direction
for the sliding model and the translation model in particular.

Note. An earlier survey [23] on this topic came out with many misprints and errors
that were introduced by the publisher. This prompted the author to prepare the
current updated version.
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