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Università degli Studi di Perugia, Perugia, Italy

Adrian Dumitrescu Department of Computer Science, University of Wisconsin-
Milwaukee, Milwaukee, WI, USA

Stefan Felsner Institut für Mathematik, Technische Universität Berlin, Berlin,
Germany

Silvia Fernández-Merchant Department of Mathematics, California State Univer-
sity at Northridge, Los Angeles, CA, USA

Fabrizio Frati Chair of Combinatorial Geometry - École Polytechnique Fédérale
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Viola Mészáros Institute of Mathematics, Technical University of Berlin, Berlin,
Germany

Kevin G. Milans Department of Mathematics, University of South Carolina,
Columbia, SC, USA
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André Schulz Institut für Mathematische Logik und Grundlagenforschung,
Universität Münster, Münster, Germany



xii Contributors

Micha Sharir School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Courant Institute of Mathematical Sciences, New York University, New York, NY,
USA

Adam Sheffer School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Clifford Smyth Department of Mathematics and Statistics, University of North
Carolina Greensboro, Greensboro, NC, USA

Diane L. Souvaine Department of Computer Science, Tufts University, Medford,
MA, USA
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Introduction

János Pach

In the mathematical literature, the term “geometric graph theory” is often used in
a somewhat vague sense: to cover any area of graph theory in which geometric
methods seem to be relevant to the study of graphs defined by geometric means. In
the present volume, by a geometric graph we mean a graph drawn in the plane so
that its vertices are represented by distinct points and its edges by (possibly crossing)
straight-line segments between these points such that no edge passes through a
vertex different from its endpoints. Topological graphs are defined analogously,
except that their edges can be represented by simple Jordan arcs [17].

In this sense, the theory of geometric and topological graphs starts with the study
of planar graphs, initiated by Euler around 1750. For a long time it appeared that
planar graphs, that is, graphs that can be drawn without edge crossings, do not
have many interesting properties; they offer little excitement for mathematicians.
Kuratowski and Wagner found simple characterizations of planar graphs in terms of
forbidden subdivisions and minors, and it follows from Steinitz’s work on convex
polytopes that every planar graph can be drawn by noncrossing straight-line edges,
as a geometric graph. In other words, every planar graph can be “stretched.” This
fact is usually referred to as Fáry’s theorem [9]. One of the first really surprising
results on planar graphs was the Hanani–Tutte theorem [7, 21], which states that
if a graph can be drawn in such a way that any pair of its edges cross an even
number of times, then it can also be drawn without edge crossing; that is, it must be
a planar graph! It turns out that the reason why parity plays a role here lies in the
Jordan curve theorem: Any curve connecting two points, both of which belong to
the interior of a closed Jordan curve, must cross this curve an even number of times.

In the past quarter of a century, partially driven by the needs of computer graphics
and other techniques of visualization, graph drawing has become a separate new
area of research on the borderline of graph theory and computational geometry,

J. Pach (�)
Ecole Polytechnique Fédérale de Lausanne, Station 8, Lausanne 1015, Switzerland
e-mail: pach@renyi.hu
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2 J. Pach

with its annual international symposia and regular conference proceedings. The
first such conference took place in June 1992, in Marino (near Rome). The subject
has developed in close cooperation with industrial researchers developing software
for visualization. Many interesting mathematical questions were asked, which were
clearly motivated by potential applications. For instance, what is the size of the
smallest integer grid such that every planar graph of n vertices admits a crossing-
free straight-line drawing in which every vertex is mapped to a grid point [10]? Does
there exist a positive-valued function a(d) such that every planar graph of maximum
degree d admits a crossing-free straight-line drawing, in which the angle between
any two adjacent edges is at least a(d) [16]? Many other more realistic measures
of resolution were also considered. Geometric and topological graph theory has
become one of the theoretical pillars of graph drawing.

Most graphs G are not planar. Nevertheless, we often have to represent them in
the plane, and we may want to minimize the number of crossings in the resulting
drawing. The smallest number of crossings that we can achieve is called the crossing
number of G. Turán’s famous “brick factory problem” asks for the crossing number
of a complete bipartite graph with n vertices in each of its vertex classes [20]. In spite
of many attempts to solve this problem, we still do not have even an asymptotically
tight answer to this question. According to Zarankiewicz’s conjecture [12], this
quantity is equal to

( 1
16 + o(1)

)
n4. Many interesting related problems can be raised.

For example, one can define the pair-crossing number of G as the minimum number
of crossing pairs of edges over all possible drawings of G [8, 19]. Do the crossing
number and the pair-crossing number coincide for every graph? We know that if
we restrict our attention to straight-line drawings of G, we obtain a new parameter,
different from the crossing number. The minimum number of crossings over all
straight-line drawings of G is called the linear crossing number of G. It is known that
there are graphs with crossing number 4 and with arbitrarily large linear crossing
numbers [6]. According to a particularly useful inequality of Leighton [15] and,
independently, of Ajtai et al. [3], the crossing number of any graph with n vertices
and e > 3n− 6 edges is at least a positive constant times e3/n2. Apart from the
value of the constant, this bound is tight. It has found many interesting applications
in combinatorial geometry and number theory.

A topological graph is called a thrackle if any pair of its edges meet precisely
once, either at an endpoint or at a proper crossing [22]. According to Conway’s
celebrated thrackle conjecture, every thrackle has at most as many edges as vertices.
The conjecture is known to be true for straight-line thrackles (geometric graphs) and
for thrackles that can be drawn in such a way that that every vertical line meets every
edge in at most one point [13]. However, the best-known general upper bound for
the number of edges of an n-vertex thrackle is only 1.42n (see [11]). The fact that
this simply formulated puzzle has been open for almost half a century indicates
how little we know about crossing patterns of edges in a topological graph. A
topological graph is called simple if any pair of its edges meet at most once, either
at an endpoint or at a proper crossing. Conway’s conjecture can now be rephrased as
follows: Every simple topological graph with n vertices and more than n edges has
two disjoint edges (that is, two edges that do not cross and do not share an endpoint).
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In the same spirit, Erdős, Hanani, Kupitz, Perles, and others raised a number of
exciting extremal problems [4, 5, 14]. What is the maximum number of edges that a
simple topological graph of n vertices can have if it contains no k pairwise disjoint
edges for a fixed k > 2 or some other fixed forbidden configuration? There has been
a lot of activity in this area, yet most of the above questions are still open. For
instance, it is conjectured that, for any fixed k, the maximum number of edges of
a (simple) topological graph with n vertices and no k pairwise crossing edges is
O(n). The conjecture holds for k ≤ 4 (see [1, 2]). It would be true for every k if the
answer to the following question of Erdős were in the affirmative: Does there exist a
constant χ(k) for every k≥ 3 such that any system of segments in the plane, no k of
which are pairwise crossing, can be colored by χ(k) colors so that no two segments
that cross each other receive the same color? However, it has been proved that the
answer is no even for k = 3.

The first conference dedicated to geometric graph theory was held at Rutgers
University, New Jersey, in the framework of the DIMACS Special Focus on Discrete
and Computational Geometry, in the Fall of 2002 (see [18]). The second such
meeting took place eight years later, as part of the Special Semester on Discrete and
Computational Geometry organized by the Bernoulli Center at EPFL, Lausanne.
The progress in this area made during this period is striking. The present volume is
a careful selection of 30 invited and thoroughly refereed survey and research articles
reporting on significant recent achievements in geometric graph theory.
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The Rectilinear Crossing Number of Kn:
Closing in (or Are We?)

Bernardo M. Ábrego, Silvia Fernández-Merchant, and Gelasio Salazar

Abstract The calculation of the rectilinear crossing number of complete graphs is
an important open problem in combinatorial geometry, with important and fruitful
connections to other classical problems. Our aim in this chapter is to survey the
body of knowledge around this parameter.

Mathematics Subject Classification (2010): 52C30, 52C10, 52C45, 05C62, 68R10,
60D05, 52A22

1 Introduction

In a rectilinear (or geometric) drawing of a graph G, the vertices of G are
represented by points, and an edge joining two vertices is represented by the straight
segment joining the corresponding two points. Edges are allowed to cross, but an
edge cannot contain a vertex other than its endpoints. The rectilinear (or geometric)
crossing number cr(G) of a graph G is the minimum number of pairwise crossinsgs
of edges in a rectilinear drawing of G in the plane.
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6 B.M. Ábrego et al.

1.1 The Relevance of cr(Kn)

As with every graph theory parameter, there is a natural interest in calculating the
rectilinear crossing number of certain families of graphs, such as the complete
bipartite graphs Km,n and the complete graphs Kn. The estimation of cr(Kn) is
of particular interest, since cr(Kn) equals the minimum number �(n) of convex
quadrilaterals defined by n points in the plane in general position; the problem
of determining �(n) belongs to a collection of classical combinatorial geometry
problems, the so-called Erdős–Szekeres problems. For a comprehensive survey on
results and open questions on these and related problems, we refer the reader to the
monograph by Brass et al. [16].

Another important motivation to study cr(Kn) is its close connection with the
celebrated Sylvester four-point problem from geometric probability. Sylvester asked
what the probability is that four points chosen at random in the plane form a convex
quadrilateral [29]. After it became clear that this is an ill-posed question [30],
Sylvester put forward a related conjecture. Let R be a bounded convex open set
in the plane with finite area, and let q(R) be the probability that four points chosen
randomly from R define a convex quadrilateral. Then (Sylvester’s conjecture [20])
q(R) is minimized when R is a circle or an ellipse, and maximized when R is a
triangle. This conjecture was proved by Blashke in 1917 [15]. Scheinerman and
Wilf addressed in [27] the general problem when R is not required to be convex.
It is easy to see that in this case q(R) can be made arbitrarily close to 1 by choosing
R to be a very thin annulus. The remaining problem is to determine the infimum
q∗ := infq(R), taken over all open sets R with finite area. Scheinerman and Wilf
established the striking connection

q∗ = lim
n→∞

cr(Kn)(n
4

) , (1)

thus inextricably linking the estimation of Sylvester’s four-point constant q∗ to the
(asymptotic) behavior of cr(Kn).

As we shall see below, recent developments have unveiled a close relationship
between cr(Kn) and yet another classical combinatorial geometry parameter: the
number of (≤ k)-edges in an n-point set.

1.2 Purpose and Timeliness of This Survey

Up until 2000, very little was known about cr(Kn). Since then, our knowledge of
this problem has seen a tremendous growth. Surprising and useful connections to
other classical problems have been unveiled. The current estimates for cr(Kn) have
reached a point that would have seemed unlikely (to say the least) at the beginning
of the previous decade.

For instance, before 2000 the ratio between the best lower and upper bounds
for q∗ was about 0.755; at the time of writing this survey, this ratio has been
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raised above 0.998. The implied success in our understanding of the problem
cannot be understated—hence, the words “closing in” in the title of this chapter.
Moreover, as we have already mentioned above and shall see below in more detail,
the problem of estimating cr(Kn) has turned out to be intimately related to other
classical combinatorial geometry problems. Nowadays, anyone seriously interested
in (≤ k)-edges or in halving lines has no alternative but to take a careful look at the
literature on cr(Kn) that has been produced in the last seven or eight years.

On the more cautious side, we must also note that the steady progress achieved
on the estimation of cr(Kn), both from the lower and the upper bounds’ fronts, seems
to have reached an impasse. To a researcher not too familiar with the field, the ratio
0.998 mentioned in the previous paragraph might signal an imminent closure on the
determination of q∗. This is by no means the prevalent feeling among most (if not
all) researchers actively working on this problem. Hardly any relevant new insights
have been reported for some time. This humbling reality prompted us to include a
word of caution (“or are we?”) in the title of this chapter.

With this in mind, it makes sense to sit down and reflect on what has been
done, to highlight the key developments, and to record the state of the art of the
problem. We also see this as an opportunity to candidly (and, at times, informally)
explain the obstacles that seem to prevent any further substantial progress with the
current techniques, in the hopes that this will foster the development of refined or
substantially novel techniques to attack this fundamental problem.

1.3 Structure of This Survey

The problem of estimating cr(Kn) breaks into the two problems of establishing upper
and lower bounds for this parameter, with the problem of finding exact values of
cr(Kn) lying, evidently, within both realms.

Before moving on to separate discussions on the problems of lower and upper
bounding cr(Kn), we shall review one of the main foundations behind our current
knowledge of cr(Kn). The Rectilinear Crossing Number (RCN) project, led by
Aichholzer, has been a fruitful source of inspiration as well as an invaluable tool
for establishing results and testing conjectures. In Sect. 2 we describe the nature and
reach of the RCN project, which, as we will see, has both a claim and an impact on
both the lower- and upper-bounding fronts.

In Sect. 3 we give an overview of the state of the art of the problem of lower
bounding cr(Kn) circa 2003.

Besides Aichholzer’s RCN project, there seems to be a general consensus on
the other main foundation behind our current knowledge of cr(Kn). A major break-
through was achieved around 2003, when two independent teams of researchers
elucidated the close connection between cr(Kn) and the number of (≤ k)-edges in
an n-point set [4, 25]. A good estimate on the number of such (≤ k)-edges, also
given in these papers, yielded an impressively improved lower bound on cr(Kn).
We devote Sect. 4 to a review of these cornerstone results.
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In Sect. 5 we overview the subsequent efforts to refine the bounds for the number
of (≤ k)-edges given in [4, 25], in the quest for improved lower bounds for cr(Kn).

In Sect. 6 we discuss the different approaches to establishing upper bounds
for cr(Kn).

Section 7 contains a brief summary of the state of the art of the problem at the
time of writing this survey. We present the current best estimates (lower and upper
bounds) for q∗, as well as an annotated table with the values of n for which the exact
value of cr(Kn) is known.

We conclude this survey by reflecting on some possible future developments
around this fundamental problem. We discuss the difficulties that lie behind our
current impasse, and outline a somewhat promising approach that may pave the
way toward future improvements.

2 The RCN Project

Around 2000, a team of researchers led by Aichholzer undertook the task of building
databases with all the distinct (up to order type equivalence; see below) n-point
configurations in general position, for n ≤ 10 [8, 12, 24]. The raw knowledge of all
possible n-point configurations put Aichholzer and his collaborators in a position to
explore in depth several classical combinatorial geometry problems. In particular, it
allowed for the exact calculation of cr(Kn) for small values of n.

The criterion used by Aichholzer et al. to discriminate if two collections of points
are nonisomorphic is based on the concept of order types. Consider an (ordered)
n-point set P = {p1, p2, . . . , pn} in general position. To each three integers i, j,k
with 1 ≤ i < j < k ≤ n, associate a sign (or order type) sign(i jk) according to the
following rule. If, as we traverse the triangle defined by pi, p j, and pk by following
the edges pi p j, p j pk, and pk pi in the given order, the resulting closed curve has
a clockwise orientation, then let sign(i jk) := +. Otherwise, let sign(i jk) := −.
The collection of the order types of all the triples of points of P is the order type
of P. Now let Q be another n-point set in general position. If the elements of Q can
be ordered {q1,q2, . . . ,qn} so that the order types of P and Q are the same, then
P and Q are order type equivalent (under the mapping pi �→ qi for i = 1,2, . . . ,n).
We simply say that P and Q have the same order type.

Order type equivalence is a natural isomorphism criterion for point sets in general
position. For crossing number purposes, it is certainly the relevant paradigm. Indeed,
suppose that P and Q have the same order type. Then there is a bijection from the
points of P to the points of Q so that four points in P span a convex quadrilateral
if and only if the corresponding four points in Q span a convex quadrilateral.
Conversely, if this last condition holds, then P and Q have the same order type.

Aichholzer et al. constructed the complete database of all distinct order types on
n points, for all n ≤ 10. As an application, they verified that cr(K10) = 62 (this had
been proved by Brodsky et al. in [17]).

Without building the complete database for n = 11, the information gathered
by Aichholzer et al. for n ≤ 10 allowed them to calculate cr(K11) and cr(K12).
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To achieve this, taking their database for 10 points as a starting point, they analyzed
(for m = 10, and then for m = 11) which m-point order types may possibly
be extended to (m + 1)-point sets that correspond to crossing-minimal drawings
of Km+1.

The determination of the rectilinear crossing numbers of K11 and K12 marks
the beginning of the RCN project. As one of the major achievements of the RCN,
Aichholzer developed some impressively accurate heuristics to generate geometric
drawings of Kn with few crossings. Aichholzer set up a web page (http://www.ist.
tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/) to keep track of the
best geometric drawings of Kn available, as well as of the number of distinct (up to
order type equivalence) drawings achieving the current minimum.

The results reported by Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/
research/rp/triangulations/crossing/) have had a major lasting impact in the field.
As new results and techniques to find improved lower bounds have become
available (see Sects. 4 and 5), it has been possible to determine the exact value
of cr(Kn) for more values of n (see Sect. 7). The outstanding quality of the upper
bounds obtained by Aichholzer is evidenced by the fact that the drawings reported
in Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/
crossing/) turned out to be crossing-optimal for all n≤ 27 and for n= 30 (for n= 28
and 29 the exact value of cr(Kn) is still unknown). At the time of writing this chapter,
the best upper bounds available (see Sect. 6) are obtained from constructions that
build upon “base” drawings of Kn for relatively small values of n. As further
evidence of the influence of the RCN, we note that the base drawings used have
been obtained by small modifications of drawings given in Aichholzer (http://www.
ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/).

As a final note, we mention that Aichholzer and Krasser subsequently completed
the database of all distinct order types of 11-point sets [13] (http://www.ist.tugraz.
at/staff/aichholzer/research/rp/triangulations/ordertypes/). Using this database as a
starting point, they were able to compute cr(Kn) for all n ≤ 17. Building the
complete database of all the order type nonequivalent 12-point sets seems to be an
unfeasible task; not only it is estimated that the storage of these 12-point sets would
require several petabytes of memory, but there are also some important technical
difficulties.1

3 Lower Bounds I: Before 2004

In a paper published in 1972, Guy [22] gave the exact value of cr(Kn) for n ≤ 9.
Almost 30 years later, Brodsky et al. [17] pushed the existing techniques to their
limit, and introduced some clever new arguments, to calculate the exact value of
cr(K10).

1Aichholzer, personal communication.

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/ordertypes/
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As one of the first results of the RCN project (see Sect. 2), Aichholzer et al. [9]
gave computer-assisted proofs that cr(K11) = 102 and cr(K12) = 153.

Because each of the n subsets of size n− 1 of an n-point set P has at most
cr(Kn−1) crossings, and each crossing of P appears in exactly n− 4 such subsets,
it follows that (n− 4)cr(Kn)≥ ncr(Kn−1). This is equivalent to

1≥ cr(Kn)(n
4

) ≥ cr(Kn−1)(n−1
4

) ,

which shows that Sylvester’s four-point constant q∗ defined in (1) actually exists.
Starting from a lower bound for cr(Km) for any fixed m, one can obtain a lower
bound for cr(Kn) for every n > m (and consequently a lower bound for q∗) by
iterating cr(Kn) ≥ �cr(Kn−1)n/(n− 4)�. This technique was used by Brodsky et
al. [17] with cr(K10) = 62 to show that q∗> 0.3001. Adding to this argument the fact
that cr(Kn) and

(n
4

)
have the same parity when n is odd (this easily follows from (2)

but was proved for any nonnecessarily rectilinear drawing of Kn by Eggleton and
Guy [21]), and using cr(K11) = 102, Aichholzer et al. [9] showed that q∗ > 0.3115.

Building upon ideas from Welzl [34] and Wagner and Welzl [32], Wagner [31]
used a completely novel approach to show that q∗ > 0.3288. Wagner’s work is
particularly significant, since it deviates from the traditional approach of lower
bounding q∗ by using a particular lower bound and a counting argument. Indeed,
the ideas in [31] are prescient of the revolutionary approach that will be reviewed in
the next section.

4 Lower Bounds II: The Breakthrough

Our understanding of geometric drawings of Kn underwent a phase transition by
unveiling a close relationship with k-edges. We recall that if P is an n-point set, and
0 ≤ k ≤ n/2− 1, a k-edge of P is a line through two points of P leaving exactly
k points on one side. A (≤ k)-edge is a j-edge with j ≤ k. The number of k- and
(≤ k)-edges of P are denoted by Ek(P) and E≤k(P), respectively. Finally, let E≤k(n)
denote the minimum E≤k(P), taken over all n-point sets P in general position.

For an n-point set P in the plane in general position, let cr(P) denote the number
of crossings in the rectilinear drawing of Kn induced by P. The following was proved
independently by Lovász et al. [25], and by Ábrego and Fernández-Merchant [4]:

cr(P) =
	n/2
−2

∑
k=0

(n− 2k− 3)E≤k(P)−
3
4

(
n
3

)
+(1+(−1)n+1)

1
8

(
n
2

)
. (2)

The relevance of this connection between cr(P) and E≤k(P) was made evident in
both [4, 25] by proving that

E≤k(n)≥ 3

(
k+ 2

2

)
, for 0≤ k ≤ n/2− 1. (3)
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Substituting (3) into (2) yields

cr(Kn)≥
3
8

(
n
4

)
+Θ(n3), (4)

thus implying the remarkably improved bound q∗ ≥ 3/8 = 0.375.
We recall that the crossing number cr(G) of a graph G is the minimum

number of pairwise crossings of edges in a (nonnecessarily geometric)
drawing of G in the plane. There are drawings of Kn with exactly λn :=
(1/4)	n/2
	(n− 1)/2
	(n− 2)/2
 	(n− 3)/2
 crossings, and it is widely believed
that these drawings are crossing-minimal; that is, it is conjectured that cr(Kn) = λn

for every positive integer n. This conjecture has been verified for n ≤ 12 [22, 26].
Since cr(Kn)≤ λn, it follows at once that limn→∞ cr(Kn)/

(n
4

)
≤ 3/8.

This last upper bound gives an additional significance to (4). With this motiva-
tion, Lovász et al. pushed a little further, invoking the following from [33]:

E≤k(n)≥
(

n
2

)
− n
√

n2− 2n− 4k2+ 4k. (5)

This last bound is better than (3) for k > 0.4956n. Using (3) for k≤ 0.4956n, and (5)
for k > 0.4956n, Lovász et al. derived the slightly improved bound q∗ > (3/8)+
10−5. Although numerically marginal, this improvement is significant because it
shows that cr(Kn) and cr(Kn) differ in the asymptotically relevant term.

5 Lower Bounds III: Further Improvements

Since the key connection (2) was proved in [4, 25], all subsequent efforts to lower
bound cr(Kn) have been focused on finding better estimates for E≤k(n).

The first improvement was reported in [14], giving a lower bound for E≤k(n) that
is strictly better than (3) for k > 0.4651n. The bound given in [14] is in terms of a
complicated expression. For our current surveying purposes, it suffices to mention
that using this bound, Balogh and Salazar proved that cr(Kn)> 0.37553

(n
4

)
+Θ(n3).

Another significant improvement was achieved by Aichholzer et al. [10], who
proved that

E≤k(n)≥ 3

(
k+ 2

2

)
+ 3

(
k+ 2−	n/3


2

)
−max

{
0,(k+ 1−	n/3
)(n− 3	n/3
)

}
.

(6)
A shorter proof of (6), given in the more general context of pseudolinear

drawings, was given in [1].
Substituting (6) into (2), one obtains the improved estimate q∗ ≥ 41/108 >

0.37962. Moreover, it is possible to use the bound by Balogh and Salazar [14] in
the range k > 0.4864n to obtain the marginally better q∗ > 0.37968.
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The current best lower bound known for q∗ is derived using a result recently
reported by Ábrego et al. [3, 7]. They proved that for every k and n such that
�(4n− 11)/9�− 1≤ k ≤ (n− 2)/2,

E≤k(n)≥ uk(n)≥
(

n
2

)
− 1

9

√
1− 2k+ 2

n
(5n2 + 19n− 31). (7)

The function uk is asymptotic to the latter expression and it is better than all
previous bounds [including (5) (6), and the bound in [14]] across its full range
�(4n− 11)/9� ≤ k≤ (n−2)/2. In addition, Ábrego et al. [3] constructed point sets
achieving equality on (6) for all k < �(4n− 11)/9�. Using (6) for k < �(4n− 11)/9�,
and (7) for �(4n− 11)/9� ≤ k ≤ (n− 2)/2. It follows from (2) that cr(Kn) ≥
(277/729)

(n
4

)
+Θ(n3), thus implying that q∗ ≥ 277/729> 0.37997.

6 Upper Bounds

The literature on crossing numbers of particular families of graphs is vastly
dominated by papers that focus on establishing lower bounds. Most of the time, a
natural drawing suggests itself with relatively little effort. When successive attempts
to produce better drawings fail, this is seen as plausible evidence that the proposed
drawing is indeed optimal. The efforts are then directed in the opposite, and usually
remarkably harder, direction: proving nontrivial lower bounds for the crossing
numbers of the graphs upon consideration.

The problem of upper bounding the rectilinear crossing number of Kn is a notable
exception to this trend. The goal is to describe a way to draw Kn with as few
crossings as possible, for arbitrarily large values of n, so as to have at least an
educated guess at the asymptotic value q∗ = limn→∞ cr(Kn)/

(n
4

)
. Over the years,

several strategies to draw Kn with few crossings have been put forward. However,
to this day there has not been a clear candidate for an optimal drawing. The only
common characteristic is that almost all drawings with few crossings have (or
are really close to have) threefold symmetry with respect to a point. That is, the
underlying point set P of the drawing is partitioned into three sets (we call them
wings) of size n/3 each, with the property that rotating each wing 2π/3 and 4π/3
around a suitable point generates the other two wings.

In the early 1970s, Jensen [23] was the first to propose a way to draw Kn for
arbitrarily large values of n. His construction gave specific coordinates for n/3
points in a wing, and then he obtained the remaining two wings by rotating 2π/3
and 4π/3 around the origin. As a result, he obtained q∗ ≤ 7/18 < 0.38889.

At around the same time, Singer [28] started the trend of recursively constructing
drawings of Kn. His idea was to start with a good drawing of Kn/3, apply an affine
transformation to it to make the slope of each of its edges sufficiently close to zero,
and then add the 2π/3 and 4π/3 rotations of the resulting drawing to obtain the
other two wings (see Fig. 1a). This construction shows that



The Rectilinear Crossing Number of Kn: Closing in (or Are We?) 13

a b

Fig. 1 (a) Recursive construction by Singer. (b) Recursive construction by Brodsky et al.

cr(Kn)≤ 3cr(Kn/3)+ 3 · n
3

(
n/3

3

)
+ 3

(
n/3
2

)2

.

Indeed, the first term consists of the crossings obtained from four points in the same
wing, the next term counts the crossings from three points in one wing and the
remaining in one of the other two wings, and the last term counts the crossings
from two points in one wing and two points in another wing. Using cr(K3) = 0 as a
starting point, this inequality gives q∗ ≤ 5/13 < 0.38462.

Brodsky et al. [18] modified Singer’s construction by sliding three points in each
wing toward the center of rotation as shown in Fig. 1b. Their construction gives
q∗ ≤ 6,467/16,848< 0.38385.

Aichholzer et al. [9] devised a different replacement construction. They started
with an underlying set P with an even number of points N. Instead of triplicating P,
they replaced every point of P by a cluster of c points on a small arc of circle flat
enough so that all lines among these c points leave N/2 points of P on one side and
N/2− 1 on the other side (see Fig. 2a). Letting n = cN, their construction gives

cr(Kn)≤
(

24cr(P)+ 3N3− 7N2 + 6N
N4

)(
n
4

)
+Θ(n3).

Using a set P with N = 36 points and cr(P) = 21191 they obtained q∗ < 0.380858.
They explored further using different sizes for each of the clusters, which resulted
in an improvement of the latter bound to q∗ < 0.380739. This method of obtaining
lower bounds allowed for improvements by using better initial sets P. Aichholzer
and Krasser [13], as part of their computer-assisted search of the crossing numbers
cr(Kn) for small values of n, obtained a particular drawing of K54 that gives q∗ <
0.380601.

Ábrego and Fernández-Merchant [5] started with an underlying set P with an
even number of points N. They obtained a new set Q by replacing every point of P
by a pair of points close to each other and spanning a line that divides the rest of Q
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a b

Fig. 2 (a) Replacement construction by Aichholzer et al. (b) Recursive construction by Ábrego
and Fernández-Merchant

in half (see Fig. 2b). This property of having a halving-line matching is not satisfied
by an arbitrary point set P, but fortunately it is satisfied by most of the small sets
with optimal crossing number. Moreover, the resulting set Q inherits this property.
Thus, if n = 2kN, then iterating this construction k times gives

cr(Kn)≤
(

24cr(P)+ 3N3− 7N2 +(30/7)N
N4

)(
n
4

)
+Θ(n3). (8)

At the time, using the best-known drawing of K30 (now proved to be optimal)
yielded q∗ < 0.380559. To this date, (8) provides the currently best recursive
construction. The restrictions on the base set P were subsequently weakened [2]
in the sense that (8) also holds for arbitrary sets P with an odd number of points.
Applying this inequality to a drawing of K315 with 152,210,640 crossings gives the
currently best upper bound: q∗ <

83,247,328
218,791,125 < 0.380488.

To support the belief that the crossing-minimal sets have nearly threefold
symmetry, Ábrego et al. [2] constructed a threefold symmetric set of n points
for each n multiple of 3, n < 100 (see Fig. 3). Moreover, threefold symmetry is
inherited from the base set in all recursive constructions mentioned before. In fact,
the drawing of K315 used as a base set to obtain the best current upper bound has
threefold symmetry.

7 Summary

In this section we summarize, for quick reference, the state of the art on cr(Kn) and
q∗ at the time of writing this chapter.

7.1 Sylvester’s Four-Point Constant

0.379972<
277
729

≤ q∗ ≤
83,247,328

218,791,125
< 0.380488. (9)

The lower and upper bounds in (9) are derived in [2,3] (see also [7]), respectively.
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Fig. 3 The underlying vertex set of an optimal 3-symmetric geometric drawing of K24. This point
set contains optimal nested 3-symmetric drawings of K21,K18,K15,K12,K9,K6, and K3

Table 1 Exact rectilinear crossing numbers known

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cr(Kn) 1 3 9 19 36 62 102 153 229 324 447 603 798 1,029

n 19 20 21 22 23 24 25 26 27 30
cr(Kn) 1,318 1,657 2,055 2,528 3,077 3,699 4,430 5,250 6,180 9,726

7.2 Exact Values of cr(Kn)

The exact value of cr(Kn) is known for n≤ 27 and for n = 30 (see Table 1).
For n≤ 27, the lower bound for cr(Kn) is derived in [3] (see also [6]). The bound

cr(K30) ≥ 9726 is proved in [19]. In all cases, the upper bounds were obtained
by Aichholzer (http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/
crossing/).

8 Further Thoughts and Future Research

Since the introduction of (2) in [4, 25], all the progress achieved on lower bounding
q∗ has been contingent on the derivation of improved bounds for E≤k(n).

Although it may seem natural to expect the continuation of this trend, there is
some evidence that suggests that this approach alone will not lead to the correct
value of q∗. The reasons behind our caution lie in our own investigations of sets

http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/staff/aichholzer/research/rp/triangulations/crossing/
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that minimize the number of (≤ k)-edges. So far it has been possible to construct
n-point sets that simultaneously minimize E≤k(n) for all k up to a certain value. It is
not difficult to construct an n-point set that simultaneously achieves equality in (3)
for every k, 0≤ k ≤ n/3, and arbitrary n (along this discussion we assume that n is
a multiple of 3). To construct a similar set minimizing E≤k(n) for a larger range of
values of k is notably harder. Aichholzer et al. [11] constructed an n-point set that
simultaneously achieves equality in (6) for every k, 0 ≤ k ≤ 	 5n

12
− 1 and arbitrary
n. A different type of construction was used in [3] to simultaneously show that (6) is
tight for every k, 0≤ k≤ 4n/9−1. However, this construction is far from crossing-
optimal due to a dramatic increase in the number of (≤ k)-sets when k ≥ 4n/9, and
avoiding this seems impossible. That is, insisting on simultaneously minimizing
E≤k(n) for all k, for k as large as possible, seems to actually increase the crossing
number of the point sets under consideration. In view of this, a new paradigm might
be in order. It seems not only possible, but very likely, that the crossing-minimal
drawings of Kn for large values of n are attained by point sets that are not even
close to minimizing E≤k for every k < (4n/9)− 1. A proper understanding of this
intriguing behavior seems out of our reach at the present time.

Although (2) validates the efforts to lower bound cr(Kn) via lower bounding
E≤k(n), our previous remarks suggest that, no matter how good the estimates are,
this may not suffice in order to determine q∗. It is quite conceivable that the (exact or
asymptotic) value of E≤k(n) be known for every k, and still the estimate for cr(Kn)
obtained from plugging this into (6) does not correspond to the correct (at least
asymptotic) value of cr(Kn).

The outlook from the upper bounds front is also unclear. We might all be
just one clever idea away from a breakthrough construction that yields (at least
asymptotically) crossing-minimal geometrical drawings of Kn. Using best-case
heuristics, it can be shown that any recursive construction for large N, where each
point is replaced by a small cluster of points of the same size, can yield at best a
bound of the form

cr(Kn)≤
(

24cr(P)+ 3N3− 7N2 + 4N
N4

)(
n
4

)
+Θ(n3).

The improvement using the best drawing of K315 would be less than 10−8.
For all these reasons, we are inclined to think that there is more potential to close

the gap from below than from above; that is, we believe that q∗ is closer to the
current best upper bound than to the current best lower bound.

To end on an optimistic note, there is one more promising observation. Besides
threefold symmetry, the currently best-known constructions (including those pre-
sented in [2]) share another property called 3-decomposability. A set P is called
3-decomposable if there exists a balanced partition of P into three parts A,B, and C
and a triangle T enclosing P such that the orthogonal projections of P onto the sides
of T show A between B and C on one side, B between A and C on another side, and
C between A and B on the third side. As for threefold symmetry, 3-decomposability
is inherited from a base set in all recursive constructions mentioned before.
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Ábrego et al. [2] conjectured that all crossing-minimal sets are 3-decomposable. If
this conjecture happens to be true, then the lower bound for q∗ would be improved
to (2/27)(15−π2)> 0.380029, as proved in [2].
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3. B.M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, G. Salazar, On (≤ k)-edges,
crossings, and halving lines of geometric drawings of Kn. Discrete Comput. Geom. 48, 192–
215 (2012)
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15. W. Blaschke, Über Affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester aus
der Theorie der geometrischen Wahrscheinlichkeiten. Leipziger Berichte 69, 436–453 (1917)

16. P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry (Springer, New York,
2005)

17. A. Brodsky, S. Durocher, E. Gethner, The rectilinear crossing number of K10 is 62. Electron. J.
Comb. 8, R23 (2001)

18. A. Brodsky, S. Durocher, E. Gethner, Toward the rectilinear crossing number of Kn: new
drawings, upper bounds, and asymptotics. Discr. Math. 262, 59–77 (2003)
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The Maximum Number of Tangencies Among
Convex Regions with a Triangle-Free
Intersection Graph

Eyal Ackerman

Abstract Let t(C) be the number of tangent pairs among a set C of n Jordan regions
in the plane. Pach et al. [Tangencies between families of disjoint regions in the plane,
in Proceedings of the 26th ACM Symposium on Computational Geometry (SoCG
2010), Snowbird, June 2010, pp. 423–428] showed that if C consists of convex
bodies and its intersection graph is bipartite, then t(C)≤ 4n−Θ(1), and, moreover,
there are such sets that admit at least 3n−Θ(

√
n) tangencies. We close this gap and

generalize their result by proving that the correct bound is 3n−Θ(1), even when the
intersection graph of C is only assumed to be triangle-free.

1 Introduction

Erdős’s famous unit distance problem [3, 4] asks for the maximum number of pairs
of points that are at unit distance from each other among n distinct points in the
plane. This is equivalent to asking for the maximum number of tangency points
among n distinct unit disks in the plane.

Let C be a family of Jordan regions in the plane. We say that two regions
are tangent if they intersect at a single point, and denote by t(C) the number of
tangent pairs in C. It is easy to see that n (convex) regions might determine Θ

(
n2
)

tangency points: For instance, there are n2 tangency points (tangencies) between
the 2n regions consisting of the n sides of a convex n-gon and a set of n convex
n-gons each of which has a vertex on each of the sides of the first polygon. However,
more restricted families of regions might determine fewer tangencies. One example
are unit disks (Erdős’s unit distance problem): They are are known to admit at
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most O
(
n4/3
)

tangencies [6], and it is conjectured that the correct bound is Erdős’s

lower bound of Ω
(

ne
c logn

loglogn

)
[4] (see also [3] for the history of this problem and

additional references). Another example is regions such that the boundary curves
of every pair of them intersect exactly once or twice, and no three boundary curves
intersect at a point. Such regions admit only O(n) tangencies [1, 2].

For a set of regions C, denote by I(C) the intersection graph of C, that is, the
graph whose vertex set is C and whose edge set consists of all the intersecting pairs.
Ben-Dan and Pinchasi (2007, personal communication) observed that if I(C) is
bipartite, then t(C) = O

(
n3/2 logn

)
, and they suggested that the correct bound is

O(n). Pach et al. [5] proved this conjecture for the case of convex regions and found
almost matching lower and upper bounds for the maximum number of tangencies.

Theorem 1 ([5]). Let C be a set of n convex bodies in the plane. If I(C) is bipartite,
then t(C) ≤ 4n−Θ(1). Moreover, for every n, there is set C of n convex bodies in
the plane such that I(C) is bipartite and t(C)≥ 3n−Θ(

√
n).

They also suggested the following conjecture.

Conjecture 2 ([5]). For every fixed integer k > 2, if C is a set of n convex bodies
in the plane such that I(C) is Kk-free, then t(C) ≤ ckn, for some constant ck that
depends only on k.

In this note we close the gap in Theorem 1 and prove Conjecture 2 for k = 3.

Theorem 3. Let C be a set of n convex bodies in the plane. If I(C) is triangle-free,
then t(C) ≤ 3n−Θ(1). Moreover, for every n, there is set C of n convex bodies in
the plane such that I(C) is bipartite and t(C)≥ 3n−Θ(1).

2 Proof of Theorem 3

Most of the proof is devoted to the upper bound. For the lower bound, see
Proposition 2.13.

Let C be a set of n ≥ 4 convex bodies in the plane. We prove by induction on n
that if I(C) is triangle-free, then t(C) ≤ 3n− 6. The first steps of the proof follow
the proof of [5, Theorem 7]. Since t(C) ≤

(n
2

)
, for n = 4 there are at most

(4
2

)
=

6≤ 3n−6 tangencies. Suppose now that n≥ 5 and that the theorem holds for every
C′ as above, with 4 ≤ |C′| < n. Let C be a set of n convex bodies in the plane,
such that I(C) is triangle-free; that is, C does not contain three pairwise intersecting
bodies. We may assume that every body in C is tangent to at least four other bodies,
for otherwise we can conclude by induction. We begin by replacing every convex
body C ∈ C by a convex polygon whose vertices are the tangency points along the
boundary of C. Henceforth, C denotes the set of convex polygons.
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Proposition 2.1. There are no two polygons P,Q ∈ C such that a vertex of P is
inside Q.

Proof. Suppose there is such a vertex v. Then P touches another polygon R �= P,Q
at v. Therefore, P,Q,R are pairwise intersecting. ��

Denote by T the set of tangency points, and let m = |T |. Next, we define a planar
graph G = (V,E) by placing a vertex at every point in T and at every intersection
point between sides of two polygons. Note that this graph is 4-regular. Denote by
F the set of faces of G, and by | f | the size of a face f ∈ F . A k-face is a face of
size k. We write f ⊆ P when a face f is contained in a polygon P. Note that each
face f ∈ F is contained in exactly 0, 1, or 2 polygons, since I(C) is triangle-free.
Denote by Fi the set of faces that are contained in exactly i polygons, for i = 0,1,2.
We proceed with a few observations on G, most of them already appear in [5].

Proposition 2.2. Let v be a vertex of a face f ∈F1. If v /∈T , then one of its neighbors
in f is also a crossing point.

Proof. Suppose that v /∈ T is a vertex of f ∈ F1 and let P ∈ C be the polygon that
contains f . Then v is the intersection point of a side of P and a side of another
polygon Q. This side must intersect P at another point u, since by Proposition 2.1,
P does not contain a vertex of Q. The segment vu cannot be crossed by a side of
another polygon, since there are no three pairwise intersecting polygons. Therefore,
uv is an edge of f , and u /∈ T is a neighbor of v in f . ��

Proposition 2.3. If f ∈ F0∪F1 is a 3-face, then f ∈ F1 and f has exactly one vertex
from T.

Proof. The three edges of f must be contained in sides of two polygons. Indeed, if
all of them are contained in sides of one polygon, then this polygon is a triangle;
however, we assumed that any polygon has at least four vertices. Otherwise, if each
edge of f is contained in a side of a different polygon, then we have three pairwise
intersecting polygons.

Therefore, f has two edges that are contained in sides of the same polygon;
hence, they intersect at a vertex of this polygon and f ∈ F1. The third edge of f
must belong to a side of another polygon; thus, the remaining vertices of f are
crossing points. ��

Every tangency point t ∈ T is adjacent to two faces from F1 and to two faces

from F0. Define F(t)
def
= (| f1|, | f2|, | f3|, | f4|), where the faces fi, 1 ≤ i ≤ 4, are the

four faces adjacent to t, such that f1, f2 ∈ F1, | f1| ≤ | f2|, and f3, f4 ∈ F0, | f3| ≤ | f4|.
We may assume that all the faces adjacent to a tangency point are distinct, for
otherwise G has a cut vertex and we can conclude by induction. Call a vertex bad if
it is adjacent to at least one 3-face, and double bad if it is adjacent to two 3-faces.
The next observation follows from Proposition 2.3.
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Fig. 1 F(t) = (3,3,4,5)
yields three pairwise
intersecting polygons

Fig. 2 If f has | f |−1
(3, | f |,4,4)-vertices on its
boundary, then the remaining
vertex is concave

Observation 2.4. If t ∈ T is a bad vertex, then in each of the two faces from F0 that
are adjacent to t, at least one neighbor of t is a crossing point. If t is double bad,
then all of its neighbors are crossing points.

Proposition 2.5. If t ∈ T is a double bad vertex, then F(t) ∈ {(3,3,4,≥ 6),(3,3,≥
5,≥ 5)}.
Proof. Let F(t) = (| f1|, | f2|, | f3|, | f4|), such that | f1| = | f2| = 3. It follows from
Proposition 2.3 that | f3| ≥ 4. Since | f3| ≤ | f4|, then clearly if | f3| ≥ 5, then | f4| ≥ 5.
Suppose that | f3| = 4. For i = 1,2, let ei be the opposite edge to t in fi, and let si

be the side of the polygon Pi that contains ei. Since | f3| = 4, the vertex opposite t
in f3 must be an intersection point of s1 and s2. Clearly, s1 and s2 intersect once,
so | f4| ≥ 5. However, if | f4|= 5, then there must be a side of a polygon P �= P1,P2

that intersects s1 and s2; hence, we have three pairwise intersecting polygons (see
Fig. 1). Therefore, | f4| ≥ 6 in this case. ��

Proposition 2.6. Any face f ∈ F1 has at most | f |−2 vertices t ∈ T on its boundary
such that F(t) = (3, | f |,4,4).

Proof. Let f be a face in F1, and suppose there are two neighboring vertices on its
boundary u,v such that F(u) = F(v) = (3, | f |,4,4). Then there is one polygon side
that supports the 3-faces adjacent to u or v and the 4-faces from F0 that are adjacent
to u or v (see Fig. 2). Therefore, if f has | f | (3, | f |,4,4)-vertices on its boundary,
then there is a polygon side that surrounds f . If f has exactly | f |− 1 such vertices,
then the remaining vertex must be a concave vertex of a polygon (see Fig. 2). ��
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We proceed by assigning every face f ∈ F a weight w( f ) = | f |−4. Let W be the
total weight we assigned, and observe that by Euler’s polyhedral formula we have

W = ∑
f∈F

(| f |−4) = ∑
f∈F

(| f |−4)+ ∑
v∈V

(deg(v)−4) = 4(|E|− |F|− |V |) =−8. (1)

Proposition 2.7. For every polygon P ∈ C, it holds that w(P)
def
= ∑ f⊆P

w( f ) = |P|− 4.

Proof. Since there are no three pairwise intersecting polygons, the interior of P is
divided into faces by disjoint segments connecting pairs of interior points on the
sides of P. Assume that we add these segments one by one, while keeping track
of w(P). Every new segment we add increases the number of faces by one [thus
contributing −4 to w(P)] and increases by 4 the number of sides of faces in P.
Therefore, w(P) maintains its initial value, which is |P|− 4. ��
Every tangency point is a vertex of exactly two polygons. Therefore,

∑
P∈C

(|P|− 4) = 2m− 4n. (2)

Combining (1) and (2), we get

− 8 = W = ∑
f∈F1

w( f )+ ∑
f∈F2

w( f )+ ∑
f∈F0

w( f )

=
1
2 ∑

P∈C
w(P)+

1
2 ∑

f∈F1

w( f )+ ∑
f∈F0

w( f )

= m− 2n+
1
2 ∑

f∈F1

w( f )+ ∑
f∈F0

w( f ). (3)

Pach et al. [5] showed that if I(C) is bipartite, then

1
2 ∑

f∈F1

w( f )+ ∑
f∈F0

w( f ) ≥−m/2, (4)

which, when plugged into (3), gives m ≤ 4n− 16. We use the discharging method
to refine their analysis and replace the right-hand side of (4) by −m/3, and obtain
m≤ 3n− 12≤ 3n− 6. Namely, we prove

Lemma 2.8. 2
3 m+∑ f∈F1

(| f |− 4)+ 2∑ f∈F0
(| f |− 4)≥ 0.

Proof. We assign initial charges as follows.

• For every face f ∈ F1, we set ch0( f ) = w( f ) = | f |− 4.
• For every face f ∈ F0, we set ch0( f ) = 2w( f ) = 2| f |− 8.
• For every tangency point t ∈ T , we set ch0(t) = 2

3 .



24 E. Ackerman

It remains to show that the total initial charge is nonnegative. We do that by
redistributing the charges (discharging) in several rounds, such that the total charge
remains the same, and eventually, every element has a nonnegative final charge.
We denote by chi(x) the charge of an element x after the ith discharging round. Note
that the only elements with a negative initial charge are 3-faces, whose charge is −1.
A vertex is good if it has a positive charge.

Round 1. A face f ∈ F0 such that | f | ∈ {6,7} sends 4
3 units of charge (henceforth,

“units”) to each double bad vertex on its boundary and distributes the rest of its
charge evenly to every other tangency point on its boundary. Any other face f ′ ∈
F0∪F1 sends ch0( f ′)/k units to each of the k tangency points on its boundary.

Proposition 2.9. Let f ∈ F0 be a face and let t be a tangency point on its boundary.
Then the following holds in Round 1:

(i) If t is double bad and | f |= 5, then f sends at least 2
3 units to t.

(ii) If t is double bad and | f |> 5, then f sends at least 4
3 units to t.

(iii) If | f | = 5, then f sends at least 2
5 units to t, and at least 2

4 units if t is also
adjacent to a 3-face.

(iv) If | f | ≥ 6, then f sends at least 2
3 units to t.

Proof. The claims follow from the definition of Round 1 and from Observation 2.4.
��

Proposition 2.10. After Round 1, the following holds:

(i) Every face in F0∪F1 has a nonnegative charge.
(ii) For every vertex t ∈ T if ch1(t)< 0, then ch1(t) = − 1

3 or ch1(t) = − 2
15 . In the

first case F(t) = (3,4,4,4), while in the second case F(t) = (3,5,4,4).

Proof. Observe that by Proposition 2.3, every 3-face has one vertex from T to
which it sends its negative charge and ends up with charge zero. Every face f
has at most 	| f |/2
 double bad vertices on its boundary; therefore, 6- and 7-faces
from F0 remain with a nonnegative charge. Any other face clearly remains with a
nonnegative charge, and therefore (i) holds.

For the second claim, note that if ch1(t) < 0, then t must be a bad vertex. If t is
double bad, then it follows from Proposition 2.5 that F(t) = (3,3,4,≥ 6) or F(t) =
(3,3,≥ 5,≥ 5). By Proposition 2.9, in the first case ch1(t) ≥ 2

3 + 2 · (−1)+ 4
3 ≥ 0,

while in the second case, ch1(t)≥ 2
3 + 2 · (−1)+ 2 · 2

3 ≥ 0.
Finally, suppose that t is adjacent to exactly one 3-face. If t is adjacent to a face

f such that f is a 6-face or | f | = 5 and f ∈ F0, then t receives from f at least 1
3

units and ends up with a nonnegative charge. The other cases are listed (note that
by Proposition 2.2, a 5-face in F1 sends either 1

5 or at least 1
3 units to each tangency

point on its boundary). ��

Round 2. Let t ∈ T be a tangency point with ch1(t) < 0. Then t is adjacent to
a 3-face and therefore has at most two good neighbors. If t has exactly one good
neighbor or ch1(t) > − 2

3 , then t asks for −ch1(t) units from one of its good
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Fig. 3 Round 4: If
F(t) = (3,5,4,4) and
ch3(t) =− 2

15 , then t ask for
1
15 unit from each of its
nonneighbors in f

neighbors. If t has two good neighbors and ch1(t) = − 2
3 , then t asks for 1

6 units
from each of its good neighbors. If a good vertex q∈ T is being asked for ε units by
a vertex t, then q accepts t’s request and sends it ε units if and only if ε ≤ ch1(q)/ j,
where j is the number of requests q got.

Round 3. Repeat Round 2 with respect to ch2(·).

Round 4. Suppose that F(t)= (3,5,4,4) and let f be the 5-face that is adjacent to t.
If all the vertices of f are from T and ch3(t) = − 2

15 , then t asks for 1
15 units from

each of the two vertices of f that are not its neighbors (see Fig. 3). They accept t’s
requests if they can afford it (as in Round 2).

Clearly, for any t ∈ T and i ≥ 1, if chi(t) ≥ 0, then chi+1(t) ≥ 0. Thus, by
Proposition 2.10 it remains to verify that ch4(t) ≥ 0 for t ∈ T such that F(t) ∈
{(3,4,4,4),(3,5,4,4)}.

Proposition 2.11. If F(t) = (3,4,4,4), then ch3(t)≥ 0.

Proof. Let f1 be the 4-face from F1 that is adjacent to t, let p and q be the vertices
adjacent to t in f1, and let r be the vertex opposite to t in f1. If neither p nor q is
in T , then the local neighborhood of t looks like Fig. 4a. If r is a crossing point,
then we have three pairwise intersecting polygons. Otherwise, if r ∈ T , then it is a
concave vertex of a polygon. Therefore, we may proceed by considering the case in
which p,q ∈ T and the case that exactly one of p and q is in T . In the latter case we
assume, without loss of generality, that p ∈ T and q /∈ T .

Case 1: p ∈ T and q /∈ T . Since p is the only good neighbor of t, t asks 1
3 units

from p in Round 2 (and again in the next round if its first request is denied). Note
that in this case r /∈ T by Proposition 2.2, and therefore t is the only bad neighbor of
p. Let f2 be the other face from F1 that is adjacent to p. We consider four subcases,
according to whether | f2|= 3,4,5 or | f2| ≥ 6.

Subcase 1a: | f2| = 3. Refer to Fig. 4b and consider | f3|. If | f3| = 4, then the
segments s1 and s2 must intersect twice. If | f3| = 5, then there are three pairwise
intersecting polygons. Therefore, | f3| ≥ 6 and (by Proposition 2.9) it sends at least
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Fig. 4 Case 1 in the proof of Proposition 2.11

2
3 units to p in Round 1. Thus, ch1(p) ≥ 2

3 − 1+ 2
3 = 1

3 . Since t is the only bad
neighbor of p, p accepts t’s request in Round 2, and ch2(t) = 0.

Subcase 1b: | f2|= 4. Since F(p) = (4,4,4,≥ 4), we have ch1(p)≥ 2
3 . If p has at

most one other neighbor but t that asks for charge in Round 2, then p can accept t’s
request in this round and ch2(t) = 0. Otherwise, p has exactly three neighbors with
a negative charge after Round 1; refer to Fig. 4c. Since both a and b are adjacent
to f2, they must each be adjacent to a 3-face, and to two 4-faces from F0. That
is, F(a) = F(b) = (3,4,4,4). Observe that F(c) �= (3,4,4,4), by Proposition 2.6.
Therefore, ch1(c) ≥ 2

3 , and in Round 2 each of a and b asks (and receives) only 1
6

units from each of p and c. Thus, ch2(a),ch2(b) = 0 and in the next round p can
accept t’s request.

Subcase 1c: | f2|= 5. In this case ch1(p)≥ 13
15 . If p has at most one other neighbor

but t that requests charge in Round 2, then p can accept t’s request in this round
and ch2(t) = 0. Otherwise, p has exactly three bad neighbors asking for charge
in Round 2. Denote by a and b the other two, and observe that both of them are
adjacent to f2. Therefore, F(a) = F(b) = (3,5,4,4), and ch1(a) = ch1(b) = − 2

15 .
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Fig. 5 Subcase 2a: p,q ∈ T , F(t) = F(p) = (3,4,4,4)

If follows that in Round 2 p sends at most 2
15 units to each of them and 1

3 units to t
in the next round.

Subcase 1d: | f2| ≥ 6. In this case t is the only neighbor of p with a negative charge
at the beginning of Round 2, and so p can accept t’s request.

Case 2: p ∈ T and q ∈ T . Note that in this case r ∈ T as well. The first subcase
that we consider is when ch1(p)< 0. By symmetry the same arguments apply when
ch1(q)< 0, so the second subcase we need to consider is ch1(p),ch1(q)≥ 0.

Subcase 2a: ch1(p)< 0, that is, F(p) = (3,4,4,4). Since ch1(p)< 0, in Round 2
(and perhaps also in Round 3) t might only ask 1

3 units from q (if q has a
positive charge). Observe that ch1(q),ch1(r) ≥ 0. Indeed, if ch1(q) < 0, then
F(q) = (3,4,4,4). But then f1 has three (3,4,4,4)-vertices, which contradicts
Proposition 2.6. For the same reason, ch1(r)≥ 0.

Observe that F(q) �= (3,4,4,5), for otherwise there must be three pairwise
intersecting polygons (refer to Fig. 5a). If q is not adjacent to a 3-face or F(q) =
(3,4,4,> 6), then ch1(q)≥ 2

3 . Therefore, if ch1(q)< 2
3 , then F(q) = (3,4,4,6), in

which case ch1(q)≥ 1
3 . We now consider both possibilities.

Subcase 2a.i: F(q) = (3,4,4,6). Refer to Fig. 5a. Since q is adjacent to a 3-face,
its only neighbors from T are t and r. Because ch1(r)≥ 0, t in the only neighbor of
q that requests charge at Round 2, so q accepts t’s request and ch2(t) = 0.

Subcase 2a.ii: ch1(q) ≥ 2
3 . If q has at most two neighbors asking charge in

Round 2, then q can send 1
3 units to t in Round 2. Otherwise, let a and b be the

other two neighbors of q that ask charge in Round 2, and let f4 be the face that
is adjacent to a, b, and q (see Fig. 5b). Since ch1(a),ch1(b) < 0, either | f4| = 4 or
| f4|= 5. We consider these two possibilities.

• Suppose that | f4| = 4 and let c denote its remaining vertex. Then c ∈ T , and
observe that ch1(c) > 0. Indeed, if ch1(c) < 0, then F(c) = (3,4,4,4), which
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contradicts Proposition 2.6. Therefore, each of a and b asks only 1
6 units from q

at Round 2, and q is able to accept t’s request at the next round.
• Suppose that | f4|= 5. In this case we have ch1(q)≥ 13

15 and ch1(a),ch1(b)≥− 2
15 .

Therefore, q accepts t’s request in Round 3.

Subcase 2b: ch1(p),ch1(q) ≥ 0. Observe that in this case ch1(p),ch1(q) ≥ 1
6 .

Indeed, if p is not adjacent to a 3-face, then ch1(p) ≥ 2
3 . Otherwise, F(p) =

(3,4,4,≥ 5) and therefore ch1(p)≥ 2
3−1+ 2

4 = 1
6 . For the same reason ch1(q)≥ 1

6 .
Therefore, t asks in Round 2 for 1

6 units from each of p and q. Note that t’s requests
are accepted since, as we already observed, if p is not adjacent to a 3-face, then
ch1(p) ≥ 2

3 and, thus, it can accept t’s request since it has at most four asking
neighbors. Otherwise, ch1(p) ≥ 1

6 and t is the only bad neighbor of p (since r is
adjacent to a face from F0 of size at least 5). Therefore, both p and q accept t’s
request in Round 2.
This concludes the proof of Proposition 2.11. ��

Proposition 2.12. If F(t) = (3,5,4,4), then ch4(t)≥ 0.

Proof. Let f1 ∈F1 be the 5-face adjacent to t. If f1 has at most three tangency points,
then each of them gets at least 1

3 units in Round 1, and so ch2(t)≥ 0. It remains to
consider the case where all the vertices of f1 are from T ; i.e., f1 is a polygon from C.
(By Proposition 2.2, f1 cannot have exactly one vertex that is a crossing point.) Let
p and q be the neighbors of t in f1. If at least one of them has a positive charge after
Round 1, then t asks one of them for 2

15 units in Round 2. The other case to consider
is when ch1(p),ch1(q)< 0.

Case 1: ch1(p) > 0 or ch1(q) > 0. Assume, without loss of generality, that
ch1(p) > 0 and t asks p for 2

15 units in Round 2. If p is not adjacent to a 3-face,
then ch1(p) ≥ 13

15 . In this case, in Round 2 p accepts t’s request, since p may send
at least 13

15/4 > 2
15 to each of its at most four bad neighbors. Otherwise, since p

receives 1
5 units from f1 in Round 1 and ch1(p)> 0, it follows that p is adjacent to a

face of size at least 5 from F0. That is, F(p) = (3,5,4,≥ 5). By Proposition 2.9, this
face sends at least 2

4 units to p in Round 1; therefore, ch1(p)≥ 2
3 −1+ 1

5 +
2
4 = 11

30 .
Note that t is the only bad neighbor of p, and thus p accepts t’s request in Round 2.

Case 2: ch1(p),ch1(q) < 0. Then by Proposition 2.10, F(p) = F(q) = (3,5,4,4).
Let a,b ∈ T be the other vertices of f1 (see Fig. 6).

It follows from Proposition 2.6 that F(a),F(b) �= (3,5,4,4); therefore,
ch1(a),ch1(b) ≥ 0. Moreover, we claim that ch2(a) ≥ k

15 , where k ∈ {1,2} is
the number of 5-faces from F1 that are adjacent to a. Indeed, if F(a) = (3,5,4,≥ 5),
then ch1(a)≥ 11

30 , and only p requests charge ( 2
15 units) from a in Round 2. Hence,

ch2(a) ≥ 7
30 > 1

15 . Otherwise, if a is not adjacent to a 3-face, then ch1(a) ≥ 2
3 +

k
5

and ch2(a)≥ 2
3 +

k
5 − 2 · 1

3 −
2

15 = 3k−2
15 ≥ k

15 .
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Fig. 6 F(t) = F(p)
= F(q) = (3,5,4,4)

Fig. 7 A set of n convex hexagons with a bipartite intersection graph and 3n−Θ(1) tangencies.
This double grid is “wrapped” around a cylinder such that the pairs of black and hollow points
coincide, then projected back to the plane

Similarly, we have that ch2(b) ≥ l
15 , where l ∈ {1,2} is the number of 5-faces

from F1 that are adjacent to b. It follows that if ch2(t) =− 2
15 , then in Round 4 a and

b can each send 1
15 units to t and so ch4(t) = 0. ��

Lemma 2.8 now follows from Propositions 2.11 and 2.12. ��
The upper bound in Theorem 3 follows from (3) and Lemma 2.8.

Proposition 2.13. For any n there is a set C of n convex regions in the plane, such
that I(C) is bipartite and t(C)≥ 3n−Θ(1).

Proof. We use the same construction of Pach et al. [5] (see Fig. 7), which yields a set
C of n convex hexagons with t(C)≥ 3n−Θ(

√
n). However, we observe that one can
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take this double hexagonal grid with a constant number of rows, ”wrap” it around a
cylinder, and then project it back to the plane. Observe that in such a construction,
all but a constant number of hexagons touch exactly six other hexagons.

��
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Abstract This paper studies problems related to visibility among points in the
plane. A point x blocks two points v and w if x is in the interior of the line segment
vw. A set of points P is k-blocked if each point in P is assigned one of k colors,
such that distinct points v,w ∈ P are assigned the same color if and only if some
other point in P blocks v and w. The focus of this paper is the conjecture that each
k-blocked set has bounded size (as a function of k). Results in the literature imply
that every 2-blocked set has at most 3 points, and every 3-blocked set has at most
6 points. We prove that every 4-blocked set has at most 12 points, and that this
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bound is tight. In fact, we characterize all sets {n1,n2,n3,n4} such that some 4-
blocked set has exactly ni points in the ith color class. Among other results, for
infinitely many values of k, we construct k-blocked sets with k1.79... points.

1 Introduction

This paper studies problems related to visibility and blocking in sets of colored
points in the plane. A point x blocks two points v and w if x is in the interior of the
line segment vw. Let P be a finite set of points in the plane. Two points v and w are
visible with respect to P if no point in P blocks v and w. The visibility graph of P
has vertex set P, where two distinct points v,w ∈ P are adjacent if and only if they
are visible with respect to P. A point set B blocks P if P∩B = /0 and for all distinct
v,w ∈ P there is a point in B that blocks v and w. That is, no two points in P are
visible with respect to P∪B, or alternatively, P is an independent set in the visibility
graph of P∪B.

A set of points P is k-blocked if each point in P is assigned one of k colors,
such that each pair of points v,w ∈ P are visible with respect to P if and only if
v and w are colored differently. Thus, v and w are assigned the same color if and
only if some other point in P blocks v and w. A k-set is a multiset of k positive
integers. For a k-set {n1, . . . ,nk}, we say P is {n1, . . . ,nk}-blocked if it is k-blocked,
and for some labeling of the colors by the integers [k] := {1,2, . . . ,k}, the ith color
class has exactly ni points, for each i ∈ [k]. Equivalently, P is {n1, . . . ,nk}-blocked
if the visibility graph of P is the complete k-partite graph K(n1, . . . ,nk). A k-set
{n1, . . . ,nk} is representable if there is an {n1, . . . ,nk}-blocked point set. See Fig. 1
for an example.

g1

g2

g3

y1
y2

y3

r1

r2

r3

b1
b2

b3

Fig. 1 A {3,3,3,3}-blocked
point set



Blocking Colored Point Sets 33

Fig. 2 The 2-blocked and 3-blocked point sets

The following fundamental conjecture regarding k-blocked point sets is the focus
of this paper.

Conjecture 1. For each integer k, there is an integer n such that every k-blocked set
has at most n points.

As illustrated in Fig. 2, the following theorem is a direct consequence of the
characterization of 2- and 3-colorable visibility graphs by Kára et al. [5].

Theorem 2. {1,1} and {1,2} are the only representable 2-sets, and {1,1,1},
{1,1,2}, {1,2,2}, and {2,2,2} are the only representable 3-sets.

In particular, every 2-blocked point set has at most three points, and every
3-blocked point set has at most six points. This proves Conjecture 1 for k≤ 3.

This paper makes the following contributions. Section 2 introduces some back-
ground motivation for the study of k-blocked point sets and observes that results
in the literature prove Conjecture 1 for k = 4. Section 3 describes methods for
constructing k-blocked sets from a given (k− 1)-blocked set. These methods lead
to a characterization of representable k-sets when each color class has at most three
points. Section 4 studies the k = 4 case in more detail. In particular, we characterize
the representable 4-sets, and conclude that the example in Fig. 1 is in fact the largest
4-blocked point set. Section 5 introduces a special class of k-blocked sets (so-called
midpoint-blocked sets) that lead to a construction of the largest known k-blocked
sets for infinitely many values of k.

Before continuing, we prove some basic properties about k-blocked point sets.

Lemma 3. At most three points are collinear in every k-blocked point set.

Proof. Suppose that four points p,q,r,s are collinear in this order. Thus, (p,q,r,s) is
an induced path in the visibility graph. Thus, p is not adjacent to r and not adjacent
to s. Thus, p, r, and s have the same color. This is a contradiction since r and s are
adjacent. Thus, no four points are collinear. ��

A set of points P is in general position if no three points in P are collinear.
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Lemma 4. Each color class in a k-blocked point set is in general position.

Proof. Suppose on the contrary that three points from a single color class are
collinear. Then no other points are in the same line by Lemma 3. Thus, two of
the three points are adjacent, which is a contradiction. ��

Note that “convex position” in this paper means “strictly convex position.”

2 Some Background Motivation

Much recent research on blockers began with the following conjecture
by Kára et al. [5].

Conjecture 5 (Big-Line-Big-Clique Conjecture [5]). For all integers t and �, there
is an integer n such that for every finite set P of at least n points in the plane:

• P contains � collinear points, or
• P contains t pairwise visible points (that is, the visibility graph of P contains a

t-clique).

Conjecture 5 is true for t ≤ 5 but is open for t ≥ 6 or �≥ 4; see [1,9]. Given that, in
general, Conjecture 5 is challenging, Jan Kára suggested the following weakening.

Conjecture 6 ([9]). For all integers t and �, there is an integer n such that for every
finite set P of at least n points in the plane:

• P contains � collinear points, or
• The chromatic number of the visibility graph of P is at least t.

Conjecture 5 implies Conjecture 6 since every graph that contains a t-clique has
chromatic number at least t.

Proposition 7. Conjecture 6 with �= 4 and t = k+ 1 implies Conjecture 1.

Proof. Assume Conjecture 6 holds for � = 4 and t = k + 1. Suppose there is a
k-blocked set P of at least n points. By Lemma 3, at most three points are collinear
in P. Thus, the first conclusion of Conjecture 6 does not hold. By definition, the
visibility graph of P is k-colorable. Thus, the second conclusion of Conjecture 6
does not hold. This contradiction proves that every k-blocked set has fewer than n
points, and Conjecture 1 holds. ��

Thus, since Conjecture 5 holds for t ≤ 5, Conjecture 1 holds for k≤ 4. In Sect. 4
we take this result much further, by characterizing all representable 4-sets, thus
concluding a tight bound on the size of a 4-blocked set.

Part of our interest in blocked point sets comes from the following.

Proposition 8. For all k ≥ 3 and n ≥ 2, the edge set of the k-partite Turán graph
K(n,n, . . . ,n) can be partitioned into a set of “lines,” where
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• Each line is either an edge or an induced path on three vertices;
• Every pair of vertices is in exactly one line; and
• For every line L, there is a vertex adjacent to each vertex in L.

Proof. Let (i, p) be the pth vertex in the ith color class for i ∈ Zk and p ∈ Zn (taken
as additive cyclic groups). We introduce three types of lines. First, for i ∈ Zk and
distinct p,q ∈ Zn, let the triple {(i, p),(i + 1, p+ q),(i,q)} be a line. Second, for
i ∈ Zk and p ∈ Zn, let the pair {(i, p),(i + 1, p+ p)} be a line. Third, for p,q ∈
Zn and distinct nonconsecutive i, j ∈ Zk, let the pair {(i, p),( j,q)} be a line. By
construction, each line is either an edge or an induced path on three vertices.

Every pair of vertices in the same color class are in exactly one line (of the
first type). Consider vertices (i, p) and ( j,q) in distinct color classes. First, suppose
that i and j are consecutive. Without loss of generality, j = i+ 1. If q �= p+ p, then
(i, p) and ( j,q) are in exactly one line (of the first type). If q = p+ p, then (i, p) and
( j,q) are in exactly one line (of the second type). If i and j are not consecutive, then
(i, p) and ( j,q) are in exactly one line (of the third type). This proves that every pair
of vertices is in exactly one line. Moreover, every edge of K(n,n, . . . ,n) is in exactly
one line, and the lines partition the edges set.

Since every line L is contained in the union of two color classes, each vertex in
neither color class intersecting L is adjacent to each vertex in L. ��

Proposition 8 is significant for Conjecture 5 because it says that K(n, . . . ,n)
behaves like a “visibility space” with no four collinear points, but it has no large
clique (for fixed k). Conjecture 1, if true, implies that such a visibility space is not
“geometrically representable” for large n.

Let b(n) be the minimum integer such that some set of n points in the plane in
general position is blocked by some set of b(n) points. Matoušek [6] proved that
b(n) ≥ 2n− 3. Dumitrescu et al. [2] improved this bound to b(n) ≥ ( 25

8 − o(1))n.
Many authors have conjectured or stated as an open problem that b(n) is superlinear.

Conjecture 9 ([2, 6, 8, 9]). b(n)
n → ∞ as n→ ∞.

Pór and Wood [9] proved that Conjecture 9 implies Conjecture 6, and thus
implies Conjecture 1. That Conjecture 1 is implied by a number of other well-known
conjectures, yet remains challenging, adds to its interest.

3 k-Blocked Sets with Small Color Classes

We now describe some methods for building blocked point sets from smaller
blocked point sets.

Lemma 10. Let G be a visibility graph. Let i∈ {1,2,3}. Furthermore, suppose that
if i≥ 2, then V (G) �= /0, and if i = 3, then not all the vertices of G are collinear. Let
Gi be the graph obtained from G by adding an independent set of i new vertices,
each adjacent to every vertex in G. Then G1, G2, and G3 are visibility graphs.
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Proof. For distinct points p and q, let ←−pq denote the ray that is (1) contained in the
line through p and q, (2) starting at p, and (3) not containing q. Let L be the union
of the set of lines containing at least two vertices in G.

i = 1: Since L is the union of finitely many lines, there is a point p �∈ L. Thus,
p is visible from every vertex of G. By adding a new vertex at p, we obtain a
representation of G1 as a visibility graph.

i = 2: Let p be a point not in L. Let v be a vertex of G. Each line in L intersects
←−vp in at most one point. Thus, ←−vp \L �= /0. Let q be a point in ←−vp \L. Thus, p and
q are visible from every vertex of G, but p and q are blocked by v. By adding new
vertices at p and q, we obtain a representation of G2 as a visibility graph.

i = 3: Let u,v,w be noncollinear vertices in G. Let p be a point not in L and not
in the convex hull of {u,v,w}. Without loss of generality, uv∩ pw �= /0. There are
infinitely many pairs of points q ∈←−up and r ∈←−vp such that w blocks q and r. Thus,
there are such q and r both not in L. By construction, u blocks p and q, and v blocks
p and r. By adding new vertices at p, q, and r, we obtain a representation of G3 as a
visibility graph. ��

Since no (≥3)-blocked set is collinear, Lemma 10 implies

Corollary 11. If k ≥ 4 and {n1, . . . ,nk−1} is representable and nk ∈ {1,2,3}, then
{n1, . . . ,nk−1,nk} is representable.

The representable (≤ 3)-sets were characterized in Theorem 2. In each case,
each color class has at most three vertices. Now we characterize the representable
(≥ 4)-sets, assuming that each color class has at most three vertices.

Proposition 12. {n1, . . . ,nk} is representable whenever k ≥ 4 and each ni ≤ 3,
except for {1,3,3,3}.
Proof. Say the k-set {n1, . . . ,nk} contains the (k−1)-set {n1, . . . ,ni−1,ni+1, . . . ,nk}
for each i ∈ [k]. We proceed by induction on k ≥ 4. For the base case, assume
that k = 4. If {n1,n2,n3,n4} contains {1,1,1}, {1,1,2}, {1,2,2}, or {2,2,2}, then
{n1,n2,n3,n4} is representable by Theorem 2 and Corollary 11. In each remaining
case, the following table describes a construction, except for {1,3,3,3}, which is
not representable, as proved in Lemma 18.

{1,1,1,x} Contains {1,1,1} {1,1,2,x} Contains {1,1,2}
{1,1,3,3} Figure 1 minus {r1,g3, r3,g1} {1,2,2,x} Contains {1,2,2}
{1,2,3,3} Figure 1 minus {g1,g3, r3} {2,2,2,x} Contains {2,2,2}
{2,2,3,3} Figure 1 minus {g3, r3} {2,3,3,3} Figure 1 minus g3

{3,3,3,3} Figure 1

Now assume that k ≥ 5: Consider a k-tuple {n1, . . . ,nk} with each ni ≤ 3. Say
n1 ≤ ·· · ≤ nk. If {n1, . . . ,nk−1} �= {1,3,3,3}, then by induction {n1, . . . ,nk−1} is
representable, which implies that {n1, . . . ,nk} is representable by Corollary 11.
Otherwise, k = 5 and {n1, . . . ,n5}= {1,3,3,3,3}, which contains the representable
4-tuple {3,3,3,3}, implying {n1, . . . ,n5} is representable by Corollary 11. ��
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4 4-Blocked Point Sets

As we saw in Sect. 2, Conjecture 1 holds for k ≤ 4. In this section we study
4-blocked point sets in more detail. First, we derive explicit bounds on the size of
4-blocked sets from other results in the literature. Then, following a more detailed
approach, we characterize all representable 4-sets, to conclude a tight bound on the
size of 4-blocked sets.

Proposition 13. Every 4-blocked set has less than 2790 points.

Proof. Abel et al. [1] proved that every set of at least ES( (2�−1)�−1
2�−2 ) points in the

plane contains � collinear points or an empty convex pentagon, where ES(k) is the
minimum integer such that every set of at least ES(k) points in general position
in the plane contains k points in convex position. Let P be a 4-blocked set. The
visibility graph of P is 4-colorable, and thus contains no empty convex pentagon.
By Lemma 3, at most three points in P are collinear. Thus, |P| ≤ ES(400)−1 by the
above result with �= 4. Tóth and Valtr [12] proved that ES(k)≤

(2k−5
k−2

)
+1. Hence,

|P| ≤
(795

398

)
< 2790. ��

Lemma 14. If P is a blocked set of n points with m points in the largest color class,
then n≥ 3m− 3 and n≥ ( 33

8 − o(1))m.

Proof. If S is the largest color class, then P− S blocks S. By Lemma 4, S is in
general position. By the results of Matoušek [6] and Dumitrescu et al. [2] mentioned
in Sect. 2, n−m≥ 2m− 3 and n−m≥ ( 25

8 − o(1))m. ��

Proposition 15. Every 4-blocked set has fewer than 2578 points.

Proof. Let P be a 4-blocked set of n points. Let S be the largest color class in P. Let
m := |S| ≥ n

4 . By Lemma 14, n ≥ ( 33
8 − o(1))m ≥ ( 33

32 − o(1))n. Thus, o(n) ≥ n
32 .

Hence, n is bounded. A precise bound is obtained as follows. Dumitrescu et al. [2]
proved that S needs at least 25m

8 − 25m
2 lnm −

25
8 blockers, which come from the other

color classes. Thus, n−m≥ 25m
8 − 25m

2 lnm −
25
8 , implying n≥ 33m

8 − 25m
2 lnm −

25
8 . Since

n
4 ≤ m≤ n, we have 25n

2 lnn +
25
8 ≥

n
32 . It follows that n≤ 2578. ��

The next result is the simplest known proof that every 4-blocked point set has
bounded size.

Proposition 16. Every 4-blocked set has at most 36 points.

Proof. Let P be a 4-blocked set. Suppose that |P| ≥ 37. Let S be the largest
color class. Thus, |S| ≥ 10. By Lemma 4, S is in general position. By a theorem
of Harborth [4], some 5-point subset K ⊆ S is the vertex-set of an empty convex
pentagon conv(K). Let T := P ∩ (conv(K)− K). Since conv(K) is empty with
respect to S, each point in T is not in S. Thus, T is 3-blocked. K needs at least
eight blockers (five blockers for the edges on the boundary of conv(K), and three
blockers for the chords of conv(K)). Thus, |T | ≥ 8. But every 3-blocked set has at
most six points, which is a contradiction. Hence, |P| ≤ 36. ��



38 G. Aloupis et al.

Fig. 3 Cases 1.1, 1.2, and 2 in Lemma 18

We now set out to characterize all representable 4-sets. We need a few technical
lemmas.

Lemma 17. Let A be a set of three monochromatic points in a 4-blocked set P. Then
P∩ conv(A) contains a point from each color class.

Proof. P∩ conv(A) contains at least three points in A. If P∩ conv(A) contains no
point from one of the three other color classes, then P∩conv(A) is a (≤ 3)-blocked
set with three points in one color class (A), contradicting Theorem 2. ��

Let a∗b∗ c mean that b blocks a and c, and let a∗b∗ c∗d mean that a∗b∗ c and
b ∗ c∗ d. This allows us to record the order in which points occur on a line. Let

←→
ab

be the line through two points a and b. For three noncollinear points a,b,c, let Δabc
be the open triangle with vertices a,b,c.

Lemma 18. {3,3,3,1} is not representable.

Proof. Suppose that P is a {3,3,3,1}-blocked set of points, with color classes A =
{a1,a2,a3}, B = {b1,b2,b3}, C = {c1,c2,c3}, and D = {d}.

If d does not block some monochromatic pair, then P\D is a 3-blocked set of nine
points, contradicting Theorem 2. Therefore, d blocks some monochromatic pair,
which we may call a1,a2. Now ←−→a1a2 divides the remaining seven points of P into
two sets, P1 and P2, where without loss of generality, 4≤ |P1| ≤ 7 and 0≤ |P2| ≤ 3.
If |P1| ≥ 6, then P1∪{a1} is a 3-blocked set of more than six points, contradicting
Theorem 2. Thus, |P1| = 4 and |P2| = 3, or |P1| = 5 and |P2| = 2. Consider the
following cases, as illustrated in Fig. 3.

Case 1. |P1|= 4 and |P2|= 3.

By Theorem 2, P1 is a {1,1,2}-blocked set. Thus, without loss of generality,
P1 = {a3,b1,b2,c1} and P2 = {b3,c2,c3}, where c2∗b3∗c3. Some point in P1 blocks
b1 and b2. If b1∗a3∗b2, then neither b1 nor b2 can block a3a1 or a3a2; thus, c1 blocks
a3 from both a1 and a2, a contradiction. Therefore, b1 ∗ c1 ∗ b2. Since two of these
three points must block a3a1 and a3a2, we may assume that a1 ∗ b1 ∗ a3, and either
a2 ∗ b2 ∗ a3 or a2 ∗ c1 ∗ a3.
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Case 1.1. a2 ∗ b2 ∗ a3: Since c2 ∗ b3 ∗ c3, the only possible blockers for b1b3 are
on ←−→a1a2. We cannot have b3 ∗ a1 ∗ b1, for then b3 ∗ a1 ∗ b1 ∗ a3. We cannot have
b3 ∗ a2 ∗ b1, for then

←−→
b1b3 separates b2 from d, implying d /∈ conv(B), contradicting

Lemma 17. Therefore, b1 ∗ d ∗ b3. Similarly, b2 ∗ d ∗ b3, a contradiction.

Case 1.2. a2 ∗ c1 ∗ a3: Thus, a2 does not block c1c2 or c1c3. Therefore, a1 and d
block c1c2 and c1c3. Without loss of generality, c2 ∗ a1 ∗ c1 and c3 ∗ d ∗ c1. Since
c2 ∗ b3 ∗ c3, the blocker for b1b3 is on the same side of ←→c1c3 as a1, and on the same
side of

←−→
b1b2 as a1. The only such points are a1, c2, and b3. Thus, a1 or c2 blocks

b1b3. Now, c2 does not block b1b3, as otherwise b1 ∗ c2 ∗ b3 ∗ c3. Similarly, a1 does
not block b1b3, as otherwise b3 ∗a1 ∗b1 ∗a3. This contradiction concludes this case.

Case 2. |P1|= 5 and |P2|= 2.

We have a3 ∈ P1, as otherwise P1 is 2-blocked, contradicting Theorem 2. Without
loss of generality, P1 = {a3,b1,b2,c1,c2} and P2 = {b3,c3}. Note that a3 must block
at least one of b1b2 and c1c2, because P1\{a3} is too large to be 2-blocked; however,
it cannot block both, for then there would be no valid blockers left for a3. Thus,
without loss of generality, b1 ∗a3∗b2 and c1 ∗b1∗c2. Since a3 ∈ b1b2, neither b1 nor
b2 blocks a3a1 or a3a2. Thus, without loss of generality, a1 ∗ c1 ∗a3 and a2 ∗ c2 ∗a3.

By Lemma 17, P∩ conv{c1,c2,c3} contains some member of A, say a1. We
cannot have a1 ∈ c1c3, for then c3 ∗a1 ∗ c1 ∗a3. Therefore, a1 is on the same side of
←→c1c3 as c2; consequently, d and a2 are, as well. It follows that c1 ∗ b3 ∗ c3, and so b3

sees b2. ��

Lemma 19. Let P be a 4-blocked set. Suppose that some color class S of P contains
a subset K, such that |K| = 4 and K is the vertex-set of a convex quadrilateral
conv(K) that is empty with respect to S. Then P is {4,2,2,1}-blocked.

Proof. Let T := P∩ (conv(K)−K). Since conv(K) is empty with respect to S, each
point in T is not in S. Thus, T is 3-blocked. K needs at least five blockers (four
blockers for the edges on the boundary of conv(K), and at least one blocker for
the chords of conv(K)). The only representable 3-sets with at least five points are
{2,2,1} and {2,2,2}. At least four points in T are on the boundary of conv(T ).
Every {2,2,2}-blocked set contains three points on the boundary of the convex hull.
Thus, T is {2,2,1}-blocked. Hence, as illustrated in Fig. 4, one point c in T is at the
intersection of the two chords of conv(K), and exactly one point in T is on each
edge of the boundary of conv(K), such that the points on opposite edges of conv(K)
are collinear with c.

We claim that no other point is in P. Suppose otherwise, and let p be a point in P
outside conv(K) at a minimum distance from conv(K). Let x be a point in conv(K)
receiving the same color as p. Thus, p and x are blocked by some point b in conv(K).
Hence, b and x are collinear with no other point in P∩ conv(K), so x �= c. Since p
sees the nearest vertex in conv(K), we also have x �∈ K. Thus, x is in the interior of
one of the edges of the boundary of conv(K). Let y be the point in conv(K) receiving
the same color as x. Thus, x and y are on opposite edges of the boundary of conv(K).
Hence, p and y receive the same color, implying p and y are blocked. Since p is at a



40 G. Aloupis et al.
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yz

c

Fig. 4 A {4,2,2,1}-blocked
point set

minimum distance from conv(K), this blocker must be a point z of conv(K). Having
both p∗b∗ x and p∗ z∗ y implies that p,z,y and one other point of conv(K) are four
collinear points, which contradicts Lemma 3. Hence, no other point is in P, and P is
{4,2,2,1}-blocked. ��

Lemma 19 has the following corollary (let K := S).

Corollary 20. Let P be a 4-blocked set. Suppose that some color class S consists
of exactly four points in convex position. Then P is {4,2,2,1}-blocked.

The next lemma is a key step in our characterization of representable 4-sets.

Lemma 21. Each color class in a 4-blocked point set has at most four points.

Proof. Suppose that some 4-blocked point set P has a color class S with at least
five points. Esther Klein [3] proved that every set of at least five points in general
position in the plane contains an empty quadrilateral. By Lemma 4, S is in general
position. Thus, S contains a subset K, such that |K| = 4 and K is the vertex set of
a convex quadrilateral conv(K) that is empty with respect to S. By Lemma 19, P is
{4,2,2,1}-blocked, which is the desired contradiction. ��

Lemma 22. Let P be a 4-blocked point set with color classes A,B,C,D. Suppose
that no color class consists of exactly four points in convex position (that is,
Corollary 20 is not applicable). Furthermore, suppose that some color class A
consists of exactly four points in nonconvex position. Then P is {4,2,2,2}-blocked,
as in Fig. 5 for example.

Proof. By Lemma 21, each color class has at most four points. By assumption, every
4-point color class is in nonconvex position. We may assume that A is minimal in
the sense that no other 4-point color class is within conv(A).

Let Q := P∩ conv(A). Thus, Q is 4-blocked, and one color class is A. By the
minimality of A, each other color class in Q has at most three points. We first prove
that Q is {4,2,2,2}-blocked, and then show that this implies that P = Q.
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Fig. 5 A {4,2,2,2}-blocked
point set

Let A = {a1,a2,a3,a4}, where a4 is the interior point of conv(A). Note that the
edges with endpoints in A divide conv(A) into three triangles with disjoint interiors.
By Lemma 17, each color class of Q is represented in each of these triangles; this
requires at least two points of each color (one of which could sit on the edge shared
by two triangles).

We name a point with reference to its color class, such as b1 ∈ B; or we name a
point with reference to its position.

Let Q′ := Q\A. Let xi j be the unique member of Q′ that blocks aia j, for 1≤ i <
j ≤ 4. This accounts for exactly six points of Q′. For each case below we prove that
Q′ contains four mutually visible points (with respect to Q), which is a contradiction
since Q′ is 3-colored.

Q is not {4,3,3,3}-blocked, as otherwise we could delete the three outer
members of A to represent {3,3,3,1}, which contradicts Lemma 18. Thus, Q is
{4,3,2,2}-blocked, {4,3,3,2}-blocked, or {4,2,2,2}-blocked.

First, suppose that Q is {4,3,2,2}-blocked. Then Q′ consists of six points xi j and
one additional point, y. The following three cases arise, as illustrated in Fig. 6.

Case 1. y blocks two points xi4 and x j4: Without loss of generality, x24 ∗ y ∗ x34.
Now y is on one side or the other of ←−→x14a4, and therefore y sees x12 or x13. Without
loss of generality, y sees x12. Thus, x12, x14, x24, and y are mutually visible points
in Q′.

Case 2. y is collinear with, but does not block, two points xi4 and x j4. Without loss
of generality, y∗ x24 ∗ x34. Now x12 is on one side or the other of←→yx24; thus, x12 sees
some p ∈ {x14,x23}, which is mutually visible with x12, x24 and y; thus, we have
four mutually visible points in Q′.

Case 3. y is not collinear with two points xi4 and x j4: Then y sees all such points;
thus, x14, x24, x34, and y are mutually visible in Q′.

Now suppose that Q is {4,3,3,2}-blocked. Then Q′ consists of the six points xi j

and two additional points, y1 and y2. Let δ = {x14,x24,x34} and let δ2 be the set of
segments with both endpoints in δ . How many of the points yi block members of
δ2? The following cases arise.
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Fig. 6 Cases 1–3 when Q is {4,3,2,2}-blocked

Fig. 7 Case 1 when Q is
{4,3,3,2}-blocked

Case 1. Neither y1 nor y2 blocks a segment in δ2 (see Fig. 7).
Since y1 and y2 cannot block each other, without loss of generality, y2 does not

block y1. Thus, δ and y1 give four mutually visible points in Q′.

Case 2. At least one of y1 and y2 blocks a segment in δ2.
Without loss of generality, y1 blocks a segment in δ2 and x24 ∗ y1 ∗ x34. Neither

a1 nor a4 belongs to ←−→x14y1, because otherwise both do (since a1 ∗ x14 ∗ a4), yielding
four collinear points. Since y1 ∈Δa2a3a4⊂ Δa2a3x14, we know that a2 and a3 are on
opposite sides of ←−→x14y1 by the Crossbar Theorem. Thus, without loss of generality,
a4 is on the same side of←−→x14y1 as x24—call this side “west” and the other side “east.”

We now show that {x13,x14,x34,y1} is a set of four points in general position.
If not, then three of these points are collinear. Observe that x13, x14, and x34 are
noncollinear. Thus, y1 is one of the three collinear points. Since ←−→x34y1 already
contains a third point, namely x24, it contains neither x13 nor x14 by Lemma 3. Thus,
our three collinear points are {x13,x14,y1}. Since x24 ∗ y1 ∗ x34, the point x34 is east
of ←−→x14y1. Thus, a1 and a3 are also east of ←−→x14y1, so x13 must be as well. Therefore,
x13 is not collinear with x14 and y1. Thus, {x13,x14,x34,y1} is a set of four points in
general position.
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Fig. 8 Case 2a when Q is {4,3,3,2}-blocked

Since Q′ does not contain four mutually visible points, there is some blocker
in the midst of {x13,x14,x34,y1}. Because a4 and x24 are west of ←−→x14y1, the only
possible blocker—which must be an interior point of conv(Q)—is y2, which must
therefore belong to conv(x13,x14,x34,y1).

Case 2a. {x13,x14,x34,y1} is in convex position (see Fig. 8).
If y1 and x13 are on the same side of←−−→x14x34, then y1 and x24 would be on opposite

sides of←−−→x14x34, implying y1 would not block x24x34, which is a contradiction. Thus,
y1 and x13 are on opposite sides of ←−−→x14x34. It follows that conv(x13,x14,x34,y1) has
chords x14x34 and x13y1. If y2 blocks just one edge between {x13,x14,x34,y1} (as in
Fig. 8, left), then we may substitute y2 for one endpoint of that edge to build a
set of four mutually visible points in Q′. Thus, y2 must block two edges between
{x13,x14,x34,y1} (as in Fig. 8, right). Hence, x14 ∗ y2 ∗ x34 and y1 ∗ y2 ∗ x13. Now (1)
a4 is blocked by both x14 and x24, and therefore blocks neither of them; (2) a4 cannot
block y1y2, which is on the other side of←−→x14y1; (3) x34 is blocked by both y1 and y2,
and therefore cannot block either of them; (4) x34 cannot block x14x24, which is on
the other side of←−→x14y1. Thus, {x14,x24,y1,y2} is a set of four mutually visible points
in Q′.

Case 2b. {x13,x14,x34,y1} is not in convex position (see Fig. 9).
One of these four points lies inside the triangle formed by the other three. This

interior point cannot be x13, since it is on the boundary of conv(A). Nor can it be x14

or y1, as we previously showed that x13 and x34 are on the same side (east) of←−→x14y1.
Thus, x34 is in Δx13x14y1. Hence, x13 and x14 are on opposite sides of←−→x34y1. That is,
x13 and x23 are on the same side of←−→x34y1. This implies that x24 and y1 are boundary
points of conv(x23,x24,y1,x13). Moreover, x13 and x23 must also be boundary points
of conv(x23,x24,y1,x13), as they are boundary points of conv(A).

Now {x23,x24,y1,x13} is a set of four points in convex position. Note that
conv(x13,x14,x34,y1) meets conv(x23,x24,y1,x13) along only a single edge, y1x13.
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Fig. 9 Case 2b when Q is {4,3,3,2}-blocked

If y2 blocks y1x13, then {x23,x24,y1,y2} is a set of four mutually visible points in Q′

(as in Fig. 9, left). If y2 does not block y1x13, then {x23,x24,y1,x13} is a set of four
mutually visible points in Q′ (as in Fig. 9, right).

The only remaining case is that Q is {4,2,2,2}-blocked. This is possible,
as illustrated in Fig. 5. We now show that this point set is essentially the only
{4,2,2,2}-blocked set, up to betweenness-preserving deformations. There are
exactly enough points in color classes B, C, and D to block all edges between points
in A. As each of the three A-triangles with point a4 must contain a representative
from each of the other three color classes, it follows that of the six A-edges, B
blocks one interior edge and the opposite boundary edge, and likewise for C and
D. Without loss of generality b1 = x14, b2 = x23, c1 = x24, c2 = x13, d1 = x34, and
d2 = x12. Since b1 blocks a4, a4 cannot block b1. Since b1b2 can be blocked only
by an interior point of conv(A), it follows that either c1 or d1 blocks b1b2. As these
cases are symmetric, we may choose c1 ∈ b1b2. Now b1 cannot block c1, so c1 must
be blocked by d1, which must in turn be blocked by b1.

Now we show that P = Q. (This basically says that the point set in Fig. 5
cannot be extended without introducing a new color.) Suppose to the contrary that
P\ conv(A) �= /0. Let x be a point in P\ conv(A) closest to conv(A). Thus, x sees a
vertex of conv(A), and x �∈ A. Without loss of generality, x ∈ B. Recall that b2 is on
the line ←−→a2a3. Thus, x is in the same half-plane determined by ←−→a2a3 as the rest of
Q, as otherwise b2 would see x ∈ B. Which point blocks b1x? Not a2 or a3, for this
would put x in the wrong half-plane. Not a1, a4, c1, or c2, since b1 blocks each of
these. Not d1, which is on b1b2. Therefore, b1x can be blocked only by d2. Since
d1 ∈ b1b2 and d2 ∈ b1x, it follows that b2 and x (and any blocker between them) are
on the same side of

←−→
d1d2. But the only other points of Q in that open half-plane are

a2 and a3, which cannot block b2. Thus, x sees b2, which is a contradiction. Thus,
P = Q and P is {4,2,2,2}-blocked. ��

We now prove the main theorem of this section.

Theorem 23. A 4-set {a,b,c,d} is representable if and only if
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Fig. 10 Another
{3,3,3,3}-blocked point set

• {a,b,c,d}= {4,2,2,1}, or
• {a,b,c,d}= {4,2,2,2}, or
• All of a,b,c,d ≤ 3 except for {3,3,3,1}.

Proof. Figures 4 and 5 respectively show {4,2,2,1}-blocked and {4,2,2,2}-
blocked point sets. When a,b,c,d ≤ 3, the required constructions are described in
Proposition 12. Now we prove that these are the only representable 4-sets. Let P be
a 4-blocked point set. By Lemma 21, each color class has at most four points. Let
S be the largest color class. If |S| ≤ 3, then we are done by Proposition 12. Now
assume that |S|= 4. If S is in nonconvex position, then P is {4,2,2,2}-blocked by
Lemma 22. If S is in convex position, then P is {4,2,2,1}-blocked by Corollary 20.

��

Corollary 24. Every 4-blocked set has at most 12 points, and there is a 4-blocked
set with 12 points.

Note that in addition to the {3,3,3,3}-blocked set shown in Fig. 1, there is a
different {3,3,3,3}-blocked point set, as illustrated in Fig. 10.

5 Midpoint-Blocked Point Sets

A k-blocked point set P is k-midpoint-blocked if for each monochromatic pair of
distinct points v,w ∈ P the midpoint of vw is in P. Of course, the midpoint of vw
blocks v and w. A point set P is {n1, . . . ,nk}-midpoint-blocked if it is {n1, . . . ,nk}-
blocked and k-midpoint-blocked. For example, the point set in Fig. 1 is {3,3,3,3}-
midpoint-blocked.

Another interesting example is the projection1 of [3]d . With d = 1 this point
set is {2,1}-blocked, with d = 2 it is {4,2,2,1}-blocked, and with d = 3 it is

1If G is the visibility graph of some point set P ⊆ Rd , then G is the visibility graph of some
projection of P to R2 (since a random projection of P to R2 is occlusion-free with probability 1).
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{8,4,4,4,2,2,2,1}-blocked. In general, each set of points with exactly the same
set of coordinates equal to 2 is a color class. Each color class of points with exactly
i coordinates equal to 2 has size 2d−i, and there are

(d
i

)
such color classes. Hence,

[3]d is {
(d

i

)
× 2d−i : i ∈ [0,d]}-midpoint-blocked and 2d-midpoint-blocked.

We now prove Conjecture 1 when restricted to k-midpoint-blocked point sets.
(Finally, we have weakened Conjecture 5 to something provable!)

A. Hernández-Barrera, F. Hurtado, J. Urrutia, and C. Zamora (On the midpoints
of a plane point set, 2001, unpublished manuscript) introduced the following
definition. Let m(n) be the minimum number of midpoints determined by some
set of n points in general position in the plane. Since the midpoint of vw blocks
v and w, we have b(n) ≤ m(n). A. Hernández-Barrera, F. Hurtado, J. Urrutia, and
C. Zamora (On the midpoints of a plane point set, 2001, unpublished manuscript)
constructed a set of n points in general position in the plane that determine at
most cnlog3 midpoints for some constant c. (All logarithms here are binary.) Thus,
b(n)≤m(n)≤ cnlog3 = cn1.585.... This upper bound was improved independently by
Pach [7] and Stanchescu [11] (and later by Matoušek [6]) to

b(n)≤ m(n)≤ nc
√

logn.

A. Hernández-Barrera, F. Hurtado, J. Urrutia, and C. Zamora (On the midpoints of a
plane point set, 2001, unpublished manuscript) conjectured that m(n) is superlinear

(that is, m(n)
n → ∞ as n→ ∞), which was verified by Pach [7]. More precise bounds

were obtained by Stanchescu [11] and Sanders [10]. Applying the latest results on
Freiman’s Theorem, Pór and Wood [9] observed that for all ε > 0 there is an integer
N(ε) such that m(n)≥ n(logn)4/11−ε for all n≥ N(ε).

Theorem 25. For each k, there is an integer n such that every k-midpoint-blocked
set has at most n points. More precisely, for all ε > 0 and for all k, every k-midpoint-

blocked set has at most k max{N(ε),2(k−1)11/(4−11ε)} points.

Proof. Let P be a k-midpoint-blocked set of n points. If n ≤ kN(ε), then we are
done. Now assume that n

k > N(ε). Let S be a set of exactly s := � n
k �monochromatic

points in P. Thus, S is in general position by Lemma 4. And for every pair of distinct
points v,w ∈ S, the midpoint of vw is in P− S. Thus,

n
k (log n

k )
4/11−ε ≤ m(s)≤ n− s≤ n(1− 1

k ).

Hence, (log n
k )

4/11−ε ≤ k− 1, implying n≤ k2(k−1)11/(4−11ε)
. The result follows. ��

We now construct k-midpoint-blocked point sets with a ”large” number of points.
The method is based on the following product of point sets P and Q. For each point
v ∈ P∪Q, let (xv,yv) be the coordinates of v. Let P×Q be the point set {(v,w) : v ∈
P,w∈Q}, where (v,w) is at (xv,yv,xw,yw) in 4-dimensional space. For brevity we do
not distinguish between a point in R4 and its image in an occlusion-free projection
of the visibility graph of P×Q into R2.
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Lemma 26. If P is a {n1, . . . ,nk}-midpoint-blocked point set and Q is a
{m1, . . . ,m�}-midpoint-blocked point set, then P×Q is {nim j : i ∈ [k], j ∈ [�]}-
midpoint-blocked.

Proof. Color each point (v,w) in P×Q by the pair (col(v),col(w)). Thus, there are
nim j points for the (i, j)th color class. Consider distinct points (v,w) and (a,b) in
P×Q.

Suppose that col(v,w) = col(a,b). Thus, col(v) = col(a) and col(w) = col(b).
Since P and Q are midpoint-blocked, 1

2(v+a) ∈ P and 1
2 (w+b) ∈ Q. Thus, ( 1

2 (v+
a), 1

2(w+b)), which is positioned at ( 1
2 (xv+xa),

1
2 (yv+ya),

1
2(xw+xb),

1
2(yw+yb)),

is in P×Q. This point is the midpoint of (v,w)(a,b). Thus, (v,w) and (a,b) are
blocked by their midpoint in P×Q.

Conversely, suppose that some point (r,s) ∈ P×Q blocks (v,w) and (a,b). Thus,
xr = αxv+(1−α)xa for some α ∈ (0,1), yr = β yv +(1−β )ya for some β ∈ (0,1),
xs = δxw +(1− δ )xb for some δ ∈ (0,1), and ys = γyw +(1− γ)yb for some γ ∈
(0,1). Hence, r blocks v and a in P, and s blocks w and b in Q. Thus, col(v) =
col(a) �= col(r) in P, and col(w) = col(b) �= col(s) in Q, implying (col(v),col(w)) =
(col(a),col(b)).

We have shown that two points in P×Q are blocked if and only if they have
the same color. Thus, P×Q is blocked. Since every blocker is a midpoint, P×Q is
midpoint-blocked. ��

Say P is a k-midpoint blocked set of n points. By Lemma 26, the i-fold product
Pi := P× ·· · × P is a ki-blocked set of ni = (ki)logk n points. Taking P to be the
{3,3,3,3}-midpoint-blocked point set in Fig. 1, we obtain the following result:

Theorem 27. For all k a power of 4, there is a k-blocked set of klog4 12 = k1.79...

points.

This result describes the largest known construction of k-blocked or k-midpoint-
blocked point sets. To promote further research, we make the following strong
conjectures:

Conjecture 28. Every k-blocked point set has O(k2) points.

Conjecture 29. In every k-blocked point set there are at most k points in each color
class.

Conjecture 29 would be tight for the projection of [3]d with k = 2d . Of course,
Conjecture 29 implies Conjecture 28, which implies Conjecture 1.
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Constrained Tri-Connected Planar Straight
Line Graphs

Marwan Al-Jubeh, Gill Barequet, Mashhood Ishaque, Diane L. Souvaine,
Csaba D. Tóth, and Andrew Winslow

Abstract It is known that for any set V of n ≥ 4 points in the plane, not in convex
position, there is a 3-connected planar straight line graph G = (V,E) with at most
2n− 2 edges, and this bound is the best possible. We show that the upper bound
|E| ≤ 2n continues to hold if G = (V,E) is constrained to contain a given graph
G0 = (V,E0), which is either a 1-factor (i.e., disjoint line segments) or a 2-factor
(i.e., a collection of simple polygons), but no edge in E0 is a proper diagonal of
the convex hull of V . Since there are 1- and 2-factors with n vertices for which any
3-connected augmentation has at least 2n− 2 edges, our bound is nearly tight in
these cases. We also examine possible conditions under which this bound may be
improved, such as when G0 is a collection of interior-disjoint convex polygons in a
triangular container.

1 Introduction

A graph is k-connected if it remains connected upon deleting any k−1 vertices along
with all incident edges. Connectivity augmentation problems are an important area
in optimization and network design. The k-connectivity augmentation problem asks
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for the minimum number of edges needed to augment an input graph G0 = (V,E0)
to a k-connected graph G = (V,E), E0 ⊆ E . In abstract graphs, the connectivity
augmentation problem can be solved in O(|V |+ |E|) time for k = 2 [3,6,7,11], and
in polynomial time for any fixed k [9].

Researchers have considered the connectivity augmentation problems over planar
graphs where both the input G0 and the output G have to be planar (that is, they
have no K5 or K3,3 minors). Kant and Bodlaender [10] proved that already the
2-connectivity augmentation over planar graphs is NP-hard, and they devised a
2-approximation algorithm that runs in O(n logn) time. We consider 3-connectivity
augmentation over planar geometric graphs, where the given straight-line embed-
ding of the input graph has to be preserved.

A planar straight-line graph (for short, PSLG) is a graph with a straight-line
embedding in the plane. That is, the vertices are distinct points in the plane and the
edges are straight-line segments between the incident endpoints (that do not pass
through any other vertices). The k-connectivity augmentation for PSLGs asks for
the minimum number of edges needed to augment an input PSLG G0 = (V,E0)
to a k-connected PSLG G = (V,E), E0 ⊆ E . Rutter and Wolff [12] showed that this
problem is NP-hard for every integer k, 2≤ k≤ 5. Note that the problem is infeasible
for k ≥ 6, since every planar graph has a vertex of degree at most 5. There are two
possible approaches to get around the NP-hardness of the augmentation problem:
(a) approximation algorithms, as was done for planarity-preserving 2-connectivity
augmentation; and (b) proving extremal bounds for the minimum number of edges
sufficient for the augmentation in terms of the number of vertices, which we do here.

It is easy to see that for every n ≥ 4, there is a 3-connected planar graph with
n vertices and �3n/2� edges, where all but at most one vertex have degree 3. On a
set V of n≥ 4 points in the plane, however, a 3-connected PSLG may require many
more edges. Garcı́a et al. [4] proved that if 3 ≤ h < n points lie on the convex hull
of V , then it admits a 3-connected PSLG G = (V,E) with at most max(�3n/2�,n+
h− 1)≤ 2n− 2 edges, and this bound is the best possible. If the points in V are in
convex position (that is, h = n), then V does not admit any 3-connected PSLG.

Tóth and Valtr [13] characterized the 3-augmentable planar straight-line graphs,
that is, graphs that can be augmented to 3-connected PSLGs. Specifically, a PSLG
G0 = (V,E0) is 3-augmentable if and only if E0 does not contain any edge that
is a proper diagonal of the convex hull of V . Every 3-augmentable PSLG on n
vertices can be augmented to a 3-connected triangulation, which has up to 3n− 6
edges, but in some cases significantly fewer edges are sufficient. As mentioned
above, the 3-connectivity augmentation problem for PSLGs is NP-hard, and no
approximation is known. It is also not known how many new edges are sufficient
for augmenting any 3-augmentable PSLG with n vertices. Such a worst-case bound
is known only for edge-connectivity: Al-Jubeh et al. [2] proved recently that every
3-edge-augmentable PSLG with n vertices can be augmented to a 3-edge-connected
PSLG by adding at most 2n− 2 new edges, and this bound is the best possible.
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a b c

Fig. 1 (a, b) 1- and 2-regular PSLGs whose only 3-connected augmentation is the wheel graph.
(c) Nested copies of K4, for which every 3-connected augmentation has at least 9

4 n−3 edges

Our Results. In the 3-connectivity augmentation problem for PSLGs, we are
given a PSLG G0 = (V,E0), and asked to augment it to a 3-connected PSLG
G = (V,E), E0 ⊆ E . Intuitively, the edges in E0 are either “useful” for constructing
a 3-connected graph or they are “obstacles” that prevent the addition of new edges
that would cross them. In this chapter, we explore some classes of 3-augmentable
PSLGs with n ≥ 4 vertices that can be augmented to 3-connected PSLGs that have
at most 2n edges. Recall that 2n− 2 edges may be necessary even for a completely
“unobstructed” input G0 = (V, /0). We prove that if G0 is 1-regular (that is, a
crossing-free perfect matching) or 2-regular (a collection of pairwise noncrossing
simple polygons), then it can be augmented to a 3-connected PSLG that has at most
2n− 2 or 2n edges, respectively.

Theorem 1. Every 1-regular 3-augmentable PSLG G0 =(V,E0) with n≥ 4 vertices
can be augmented to a 3-connected PSLG G = (V,E), E0 ⊆ E, with |E| ≤ 2n− 2
edges.

Theorem 2. Every 2-regular 3-augmentable PSLG G0 = (V,E) with n≥ 4 vertices
can be augmented to a 3-connected PSLG G = (V,E), E0 ⊆ E, with |E| ≤ 2n edges.

Figure 1a, b depicts 1- and 2-regular PSLGs, respectively, where all but one of
the vertices are on the boundary of the convex hull. Clearly, the only 3-connected
augmentation is the wheel graph, which has 2n− 2 edges. We conjecture that
Theorems 1 and 2 can be generalized to PSLGs with maximum degree at most 2.

Conjecture 1.1. Every 3-augmentable PSLG G0 = (V,E) with n ≥ 4 vertices and
maximum degree at most 2 can be augmented to a 3-connected PSLG G = (V,E),
E0 ⊆ E , with |E| ≤ 2n− 2 edges.

It is not possible to extend Theorems 1 and 2 to 3-regular PSLGs. For example, if
G0 = (V,E0) is a collection of nested 4-cliques as in Fig. 1c, then every 3-connected
augmentation requires 3( n

4 − 1) new edges, which gives a total of 9
4 n− 3 edges.

As mentioned above, every set of n ≥ 4 points in the plane h ≤ n that lies
on the boundary of the convex hull admits a 3-connected PSLG with at most
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a b c

Fig. 2 (a) A 1-regular PSLG on n vertices with a triangular convex hull whose 3-connected
augmentations have at least 7

4 (n−2) edges. (b) A 2-regular PSLG on n vertices with a triangular
convex hull such that every 3-connected augmentation has at least 2n−3 edges. (c) Interior-disjoint
simple polygons in a triangular container, for which every 3-connected augmentation has 2n− 3
edges

max(�3n/2�,n+h−1)≤ 2n−2 edges [4]. We could not strengthen our Theorems 1
and 2 to be sensitive to the number of hull vertices. Some improvement may be
possible for 1-regular PSLGs with fewer than n− 1 vertices on the convex hull;
the best lower bound construction we found with a triangular convex hull requires
only 7

4(n− 2) edges in total (Fig. 2a). For 2-regular PSLGs, however, one cannot
expect significant improvement even if h = 3. If G0 = (V,E0) consists of n

3 nested
triangles (Fig. 2b), then any augmentation to a 3-connected PSLG has at least 2n−3
edges.

Obstacles in a Container. We have considered whether Theorem 2 can be
improved for collections of simple polygons, where the convex hull is a triangle,
and there is no nesting among the remaining polygons. We model such 2-regular
PSLGs as a collection of interior-disjoint simple polygons in a triangular container.
Figure 2c shows a construction where every 3-connected augmentation still requires
2n− 3 edges. In this example the polygons are nonconvex, and they are “nested” in
the sense that each polygon is visible from at most one larger polygon.

In Sect. 5, we derive lower bounds for the 3-connectivity augmentation of
2-regular PSLGs G0, where G0 is a collection of interior-disjoint convex polygons
(called obstacles) lying in a triangular container. All our lower bounds in this section
are below 2n− 2, which suggests that Theorem 2 may be improved in this special
case.

Organization. In Sect. 2, we introduce a general framework for 3-connectivity
augmentation, and prove that every nonconvex simple polygon with n vertices
can be augmented to a 3-connected PSLG that has at most 2n− 2 edges. We
prove Theorems 1 and 2 in Sects. 3 and 4, respectively. Lower bounds for the
model of disjoint convex obstacles in a triangular container are presented in Sect. 5.
We conclude with open problems in Sect. 6.
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2 Preliminaries

In this section, we prove two preliminary results about abstract graphs, which are
directly applicable to the 3-connectivity augmentation of simple polygons. In an
(abstract) graph G = (V,E), a subset U ⊆V is called 3-linked if G contains at least
three independent paths between any two vertices of U . (Two paths are independent
if they do not share any edges or vertices apart from their endpoints.) By Menger’s
theorem, a graph G = (V,E) is 3-connected if and only if V is 3-linked in G. The
following lemma gives a criterion for incrementing a 3-linked set of vertices with
one new vertex.

Lemma 2.1. Let G = (V,E) be a graph such that U ⊂ V is 3-linked. If G contains
three independent paths from v ∈V \U to three distinct vertices in U, then U ∪{v}
is also 3-linked.

Proof. Assume that G contains three independent paths from v ∈ V \U to distinct
vertices u1,u2,u3 ∈ U . We need to show that for every u ∈ U , there are three
independent paths between v and u. By Menger’s theorem, it is enough to show that
if we delete any two vertices w1,w2 ∈ V \ {u,v}, the remaining graph G\ {w1,w2}
still contains a path between v and u. Since there are three independent paths from
v to u1, u2, and u3, the graph G \ {w1,w2} contains a path from v to ui for some
i ∈ {1,2,3}. If ui = u, then we are done. Otherwise, G \ {w1,w2} contains a path
from ui to u, since U is 3-linked. The union of these two paths (from v to ui and
from ui to u) contains a path from v to u. ��

Lemma 2.2. Let GA = (V,A) be a 2-connected graph, and let GC = (V,C) be a
3-connected graph with A⊆C. Let UA ⊆V be the set of vertices that have degree 3
or higher in GA, and assume that UA is 3-linked in GA. Then GA = (V,A) can be
augmented to a 3-connected graph GB = (V,B) with A⊆ B⊆C, by adding at most
|V \UA| new edges. Furthermore, if UA = /0, then |V |−2 new edges are sufficient for
the augmentation.

Proof. We describe an algorithm that augments GA = (V,A) to a 3-connected graph
GB = (V,B), A⊆ B⊆C. We maintain a graph Gi = (V,Ei) with A⊆ Ei⊆C. Initially,
we start with i = 0 and E0 = A. We augment Gi incrementally by adding new edges
from C until Gi becomes 3-connected, and then output GB = Gi. We also increment
the set Ui ⊆ V of vertices that have degree 3 or higher in Gi, and maintain the
property that Ui is 3-linked in Gi. In each step, we will increment Gi with one new
edge such that Ui increases with at least one new vertex (since the endpoints of the
new edge will have degree 3 or higher). If Ui = /0 or |Ui| = 2, then Ui will increase
with two new vertices in a single step. Our algorithm terminates with Ui = V , and
the above properties guarantee that altogether at most |V \U0| new edges are added,
and if U0 = /0, then at most |V |− 2 new edges are added.

It remains to describe one step of the augmentation, in which we increment Ei

with one new edge from C. We distinguish among three cases.
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Fig. 3 Illustration for the proof of Lemma 2.2. Edges of GA are black, additional edges of GC are
gray, and vertices in Ui are marked with large dots. (a) GA is a Hamiltonian cycle. (b) GA has two
vertices of degree 3. (c) Both p and q lie in the interior of some paths between vertices of Ui. (d)
Vertex q is in Ui

Case 1. Ui = /0. Since Gi is 2-connected, all vertices have degree 2 in Gi, and so it
is a Hamiltonian cycle (Fig. 3a). Pick an arbitrary edge pq ∈C \Ei, and set Ei+1 =
Ei ∪{pq}. Let Ui+1 = {p,q} be the set of the two vertices of degree 3. Note that
Ui+1 is indeed 3-linked in Gi+1, as required.

Case 2. |Ui|= 2. Denote the vertices in Ui by u and v. Every edge in Ei is part of a
path between u and v (Fig. 3b). LetPi denote the set of all (at least three) paths of Gi

between u and v. Note that every vertex in V \Ui lies in the interior of a path in Pi.
Since Gi is a simple graph, at least two paths in Pi have interior vertices. Let P ∈ Pi

be a path with at least one interior vertex. Graph GC contains some edge pq ∈ C
between an interior vertex p of P and a vertex q outside P; otherwise, the deletion
of u and v would disconnect GC. Set Ei+1 = Ei ∪ {pq} and Ui+1 = Ui ∪ {p,q}.
Note that Gi+1 now contains three independent paths between any two vertices of
Ui+1 = {u,v, p,q}.

Case 3. |Ui| ≥ 3. In this case, every edge in Ei is part of a path between two vertices
in Ui. Let Pi denote the set of all paths of Gi between vertices in Ui with no interior
vertices in Ui. Note that every vertex in V \Ui lies in the interior of a path in Pi. Pick
two vertices u,v ∈Ui connected by a path in Pi with at least one interior vertex, and
let Vuv be the set of interior vertices of all paths in Pi between u and v (Fig. 3c, d).
Graph GC contains some edge pq∈C between a vertex p∈Vuv and a vertex q outside
Vuv ∪ {u,v}; otherwise, the deletion of u and v would disconnect GC. Set Ei+1 =
Ei ∪{pq}. Now Gi+1 contains three independent paths from p to three vertices of
Ui: independent paths to u and v along a path in Pi, and a third path starting with
edge pq and if q �∈Ui, then continuing along a path containing q to a third vertex in
Ui \ {u,v}. Similarly, if q �∈Ui, then Gi+1 contains three independent paths from q
to three vertices of Ui∪{p}. By Lemma 2.1, Ui∪{p,q} is 3-linked in Gi+1. So we
can set Ui+1 =Ui∪{p,q}. ��

We show next that every simple polygon in the plane with n ≥ 3 vertices can be
augmented to a 3-connected PSLG that has at most 2n− 2 edges.
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Corollary 2.3. Every simple polygon with n≥ 4 vertices, not all in convex position,
can be augmented to a 3-connected PSLG that has at most 2n− 2 edges.

Proof. The edges and vertices of a simple polygon form a Hamiltonian cycle GA =
(V,A). By the results of Valtr and Tóth [13], if the polygon is nonconvex, then it
is 3-augmentable, so there is a 3-connected PSLG GC = (V,C), A⊂C. Lemma 2.2
completes the proof. ��

3 Disjoint Line Segments

In this section, we prove Theorem 1. Let GA = (V,A) be a straight-line embedding
of a perfect matching with n ≥ 4 vertices, not all in convex position. We show that
if no edge in A is a proper chord of the convex hull of the vertices, then GA can be
augmented to a 3-connected PSLG that has at most 2n− 2 edges. We use the result
by Hoffmann and Tóth [5] that GA can be augmented to a Hamiltonian PSLG GH .
If GA is 3-augmentable, then GH is also 3-augmentable and can be augmented to a
3-connected Hamiltonian PSLG GC. In the following lemma, we use such a graph
GC, but we no longer rely on its straight-line embedding; our argument works for
any plane drawing (where the edges are represented by Jordan arcs).

Lemma 3.1. Let GA = (V,A) be a perfect matching with n ≥ 4 vertices, and let
GC = (V,C) be a 3-connected Hamiltonian planar graph with A⊆C. Then there is
a 3-connected graph GB = (V,B) such that A⊆ B⊆C and |B| ≤ 2n− 2.

Proof. Fix an arbitrary plane embedding of GC. Let (V,H) be an arbitrary
Hamiltonian cycle in GC. If A ⊂ H, then the result follows from Lemma 2.2.
Assume that A �⊂H.

We construct a 3-connected graph GB = (V,B), A ⊆ B ⊆ C, incrementally.
We maintain a 2-connected graph Gi = (V,Ei) with Ei ⊆ C (but Ei does not
necessarily contain A). Let Ui ⊆ V denote the set of all vertices that have degree
at least 3 in Gi, which are called hubs. The hubs decompose Gi into a set Pi of paths
between hubs. We maintain the following invariants for Gi.

I1 Ui ⊆V is 3-linked in Gi.
I2 Between any two hubs in Ui, there are at most two paths in Pi, at most one of

which has interior vertices.
I3 If there is an edge uv ∈ A \Ei between two hubs u,v ∈Ui, then there is also a

path in Pi between u and v (such a path is called a lens).
I4 |Ei| ≤ (n− 2) + |Ui| − bi, where bi is the number of bad paths in Pi (defined

below).

In the next paragraphs, we define three families of so-called bad paths in
Pi (lenses, diamonds, and monsters). Some of the definitions are formulated for
subpaths of a path P ∈ Pi in order to keep track of subpaths that may become
a bad path in Pi+1 when some interior vertices of P become hubs. We begin by
introducing some notation for paths. For two vertices, p and q, of a path P ∈ Pi, let
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Fig. 4 A lens P1[p,q]. A diamond path P2[u1,u4]. Monsters P3[v1,v4], P4[v′1,v
′
4], and P5[v′′1 ,v

′′
4 ].

The vertices p, u1, v1, v′1, and v′′1 are dangerous. Large dots are hubs in Ui , solid edges are in Ei,
dashed edges are in A\Ei , and gray edges are in C \Ei , respectively. Gray ovals represent a lens,
a diamond, or a monster

P[p,q] denote the subpath of P between p and q (if p and q are the two endpoints of
P, then P = P[p,q]). We say that the edges between interior vertices of P[p,q] and
vertices outside P[p,q] go out of P[p,q].

Let P be a path in Pi. Refer to Fig. 4. A subpath P[u,v]⊆ P is a lens if uv∈ A\Ei.
A subpath P[u1,u4] ⊆ P is a diamond if there are vertices u1,u2,u3,u4 along P in
this order such that

(1) u1u3,u2u4 ∈ A\Ei, and
(2) Every edge going out of P[u1,u4] is incident to u2 or u3.

The third family of subpaths, called monsters, is defined recursively. A subpath
P[v1,v4] ⊆ P is a monster if there are vertices v1,v2,v3,v4 along P in this order
such that

(1) Each of P[v1,v2] and P[v3,v4] is a lens, a diamond, or a smaller monster.
(2) P[v2,v3] has at least one interior vertex.
(3) Every edge going out of P[v1,v4] is incident to v2.
(4) Every edge going out of P[v1,v2] is incident to v3, every edge going out of

P[v2,v3] is incident to v4, and every edge going out of P[v3,v4] is incident to v1.

In a minimal monster, each of P[v1,v2] and P[v3,v4] is either a lens or a diamond. We
say that a (sub)path P′ ⊆ P ∈Pi is dangerous if it is a lens, a diamond, or a monster.
Note that every dangerous path has at least one interior vertex. A key property of a
dangerous path P′ is that each endpoint of P′ is incident to some edge in A\Ei that
goes to some other vertex of P′. For example, this implies that the middle portion
P[v2,v3] of a monster is not dangerous. A vertex p is called dangerous if p is an
interior vertex of a path P ∈ Pi with endpoints u and v, and either P[p,u] or P[p,v]
is a dangerous path. Note that at most one of P[p,u] and P[p,v] can be dangerous,
since p is incident to at most one edge of A\Ei.

We are now ready to define bad and good paths in Pi. A path P ∈ Pi is bad if it
is dangerous, and good otherwise. We denote by bi the number of bad paths in Pi.
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In each step of our algorithm, we modify Ei so that the set of hubs Ui strictly
increases and invariants I1–I4 are maintained. The algorithm terminates when
Ui =V . At that time, Gi is a 3-connected subgraph of GC by invariant I1, every path
in Pi is a single edge (hence there is no bad path in Pi), all edges of A are contained
in Ei by invariant I3, and |Ei| ≤ 2n− 2 by invariant I4. So we can output GB = Gi.
We note here that the set of edges, Ei, does not always increase. Sometimes we may
delete an edge from Ei (and add several edges from C \Ei) to obtain Ei+1.

Initialization. Recall that (V,H) is a Hamiltonian cycle in GC, with n edges, such
that A �⊂ H. Let pq ∈ A be an arbitrary chord of H. Vertices p and q decompose
the Hamiltonian cycle into two paths, each of which has some interior vertices.
Since GC is 3-connected, it contains an edge st ∈ C between two interior vertices
of the two paths. Let G0 = (V,E0) with E0 = H ∪{pq,st}. Then the set of hubs is
U0 = {p,q,s, t}, which is 3-linked in G0. The matching A contains pq and possibly
st, so E0 contains all edges of A induced by U0. There are six paths in P0 between
hubs. Two of these paths, pq and st, have no interior vertices; hence they are good.
The other four paths are incident to p or q, where the incident edge of the matching
is pq ∈ A, and so these paths are good as well. We have |E0| = n+ 2, |U0| = 4,
and b0 = 0, which gives |E0| = (n− 2)+ |U0| − b0. The initial graph G0 satisfies
invariants I1–I4.

General Step i. We are given a graph Gi = (V,Ei) satisfying invariants I1–I4 and
Ui �= V . We construct a graph Gi+1 maintaining invariants I1–I4 so that the set of
hubs strictly increases. Let Xi be the set of vertices x∈V \Ui such that x is an interior
vertex of some path Px ∈ Pi, and it is adjacent to a vertex outside Px.

Remark 3.2. In all cases discussed below, we augment Gi with an edge xy, where
x∈ Xi is an interior vertex of a path Px ∈Pi and y is outside path Px. Vertex y is either
a hub already in Ui or an interior vertex of some path Py ∈ Pi. In the latter case, y
becomes a hub with three independent paths to to three hubs in Ui by invariants I1

and I2. It decomposes Py into two paths satisfying I2 and I3, and at most one of them
can be dangerous. One additional hub at y and one possible new bad path cannot
decrease the right-hand side of inequality |Ei| ≤ (n− 2)+ |Ui|− bi in Invariant I4.
For verifying that invariants I1–I4 are maintained, we may assume that y is already
a hub in Ui, unless stated otherwise. In all cases below we focus on x and the path
Px ∈ Pi.

Dispersing Dangerous Paths. We first show that if there is a bad path P ∈ Pi,
then we can always augment Gi so that the new hubs break P into good paths. The
augmentation operation Disperse below is formulated in a more general setting,
since it is a basic building block in several cases below. In certain cases, it is applied
for a graph that satisfies invariants I1–I3 only.

Disperse (Gi,P′,xy).
Input: Gi = (V,Ei) is graph satisfying invariants I1–I3, P′ is a dangerous subpath
of some path P ∈ Pi (possibly, P′ = Px), and xy ∈C is an edge between a vertex
x ∈ Xi in the interior of P′ and a vertex outside P, such that either xy ∈ A\Ei or
none of the edges incident to x and going out of P′ is in A\Ei.
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Fig. 5 Operation Disperse(Gi ,P′,xy) where P′ = P and P is a lens (a), a diamond (b), and
a monster (c). The top row shows Gi, and the bottom row Gi+1. Vertex x is in the interior of a
dangerous path P′ ⊆ P and y is a hub outside path P. Solid edges are in Ei, dashed edges are in
A\Ei, and dotted edges are in C \ (A∪Ei)

1. If P′ is a lens with endpoints u and v, then Ei := Ei∪{xy,uv} (see Fig. 5a).
2. If P′ is a diamond defined by vertices (u1,u2,u3,u4) such that x = u2, then

Ei := Ei+1∪{xy,u1u3,u2u4} (see Fig. 5b).
3. If P′ is a monster defined by vertices (v1,v2,v3,v4), then augment Gi in three

steps (Fig. 5c): set Ei := Ei ∪{xy}; call Disperse(Gi,P[v1,v2],sv3) for an
edge sv3 going out of P[v1,v2]; and call Disperse(Gi,P[v3,v4], tv1) for an
edge tv1 going out of P[v3,v4].

Let Ei+1 = Ei and return Gi+1 = (V,Ei+1).

We show that operation Disperse maintains invariants I1–I3. Instead of
maintaining invariant I4, and we show that the value of |Ei| − |Ui|+ bi does not
increase.

Proposition 3.3. Operation Disperse(Gi,P′,xy) augments Gi to Gi+1 such
that

• Invariants I1–I3 are maintained;
• |Ei+1|− |Ui+1|+ bi+1 ≤ |Ei|− |Ui|+ bi;
• the subgraph of Gi+1 induced by the vertices of P′ contain a simple cycle σx

passing through vertex x and the two endpoints of P′.

The second condition implies, in particular, that invariant I4 is maintained if Gi

satisfies I4.

Proof. We proceed by induction on the length of P′. We distinguish three cases,
depending upon whether P′ is a lens, a diamond, or a monster. We may assume
y ∈Ui by Remark 3.2.
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Case (α): P′ is a lens. In this case, Ui+1 =Ui∪{x,u,v}. The vertices of P′ induce
a cycle σx = P′ ∪{uv} in Gi+1. The vertices u, v, and x each have three independent
paths to the two endpoints of P and to y in Gi+1. By invariants I1, I2, and Lemma 2.1,
Ui+1 is 3-linked in Gi+1. It is easy to verify that invariants I2–I3 are also maintained.
All new paths in Pi+1 are good. We have added two new edges. Vertex x is always
a new hub. If x is the only new hub, then P′ = Px and so bi+1 = bi− 1. At any rate,
we have |Ei+1|− |Ui+1|+ bi+1 ≤ |Ei|− |Ui|+ bi.

Case (β ): P′ is a diamond. In this case, Ui+1 = Ui ∪{u1,u2,u3,u3}. The vertices
u1,u2,u3,u4 are in the simple cycle σx = P[u1,u2]∪{u2u4}∪P[u4,u3]∪{u3u1} in
Gi+1. Each new hub has three independent paths to the two endpoints of P and to y.
By I1, I2, and Lemma 2.1, Ui+1 is 3-linked in Gi+1. It is easy to verify that invariants
I2–I3 are also maintained. All new paths in Pi+1 are good. We have added three new
edges. Vertices u2,u3 are always new hubs. If u2 and u3 are the only new hubs, then
P′ = P and bi+1 = bi− 1. Hence, we have |Ei+1|− |Ui+1|+ bi+1 ≤ |Ei|− |Ui|+ bi.

Case (γ): P′ is a monster. It is easy to verify that the first step maintains I1–I3, and
the last two steps maintain I1–I3 by induction. We construct a simple cycle σx in
the subgraph of Gi+1 induced by the vertices of P′ that passes through v1, v2, and
v4. We construct σx explicitly as a union of two independent arcs between v1 and
v3, one of which passes through v2 = x, the other one through v4. Refer to Fig. 5c.
In the second step, we added an edge sv3 for some interior vertex s of path P[v1,v2],
and there is a simple cycle σs through v1, v2, and s by indiction. Let one arc of σx

be the union of v3s and the part of σs from s to v1 passing through v2. In the third
step, we added an edge tv1 for some interior vertex t of path P[v3,v4], and there is a
simple cycle σt through v3, v4, and t by induction. Let the second arc of σx be the
union of v1t and the part of Ct from t to v3 passing through v4.

To verify |Ei+1|− |Ui+1|+ bi+1 ≤ |Ei|− |Ui|+ bi, we distinguish two subcases.

Case (γ1): P′ = P. If P′ = P, then the first two steps preserve the number of bad
paths (P is bad initially, P[v1,v2] is bad after the first step, and Px[v3,v4] is bad
after the second step); however, all new paths in Pi+1 are good. Altogether, we
have bi+1 < bi. The quantity |Ei|+ bi−|Ui| is unchanged in the first step, and it
can only decrease in the last two steps by induction.

Case (γ2): P′ �= P. If P′ �= P, then at least one endpoint of P′ is an interior vertex
of P and becomes a hub in Gi+1. Path P ∈ Pi may be either good or bad, and all
new paths in Pi+1 are good. Compared to case 3(a), the number of hubs increases
by one, while the first step may increase the number of bad paths; that is, bi+1 ≤
bi + 1. Altogether, invariant I4 is maintained. ��

Case Analysis. We are given a graph Gi = (V,Ei) satisfying invariants I1–I4 and
Ui �= V , and we would like to construct a graph Gi+1 maintaining invariants I1–I4

such that |Ui|< |Ui+1|. We proceed with a case analysis, distinguishing among three
main cases.

Case 1. There is a vertex x ∈ Xi that is not dangerous. Refer to Fig. 6a. If there
is an edge in A \ Ei between x and a vertex outside Px, then let this edge be xy;
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Fig. 6 Step i of the algorithm. The top row shows Gi, and the bottom row Gi+1. (a) Case 1: vertex
x ∈ Xi is not dangerous. (b) Case 2: x ∈ Xi is an interior vertex of a dangerous subpath P′x ⊆ Px,
and it is incident to an edge xzx ∈ A\Ei . (c) Case 3(a): x ∈ Xi is a dangerous vertex of Px because
subpath Px[ux,x]⊂ Px is dangerous, but tx is not a dangerous vertex

otherwise, let xy be an arbitrary edge between x and a vertex outside Px. Let Ei+1 =
Ei∪{xy}. For verifying that invariants I1–I4 are maintained, we may assume y ∈Ui

by Remark 3.2. Then we have Ui+1 = Ui∪{x}, and Ui+1 is 3-linked in Gi+1 by I1,
I2, and Lemma 2.1. The new hub x subdivides Px into two good paths in Pi+1 (even
if Px ∈ Pi is bad). It is easily checked that invariants I1–I4 are maintained.

Case 2. There is a dangerous vertex x ∈ Xi such that x is in the interior of a
dangerous path P′x, P′x ⊆ Px ∈ Pi. Let X̂i ⊆ Xi be the set of all vertices x ∈ Xi that
are dangerous and lie in the interior of some dangerous subpath P′x ⊂ Px ∈ Pi.

For every x ∈ X̂i, let yx be an arbitrary edge between x and a vertex yx outside
Px. Let P′x ⊆ Px be a maximal dangerous subpath of Px that contains x in its interior.
If there is a vertex x ∈ X̂i such that A \ Ei contains no edge incident to x going
out of P′x, then we apply operation Disperse(Gi,P′x,xy), and invariants I1–I4 are
maintained by Proposition 3.3.

Assume now that for every x ∈ X̂i, there is an edge xzx ∈ A \Ei such that zx is
outside P′x. Note that zx is a vertex of Px; otherwise, x would not be a dangerous
vertex. Note that P′x must be a lens since the edges going out of a diamond or a
monster are not in A \Ei. Denote the endpoints of P′x by ux and vx, where uxvx ∈
A \Ei. The vertices ux,vx,x,zx are pairwise distinct (they are the endpoints of two
edges in the matching A). Refer to Fig. 6b.

We show that there is an x∈ X̂i such that at least three vertices in {ux,vx,x,yx} are
in the interior of Px. Suppose, to the contrary, that for every x∈ X̂i, the two endpoints
of Px are in {ux,vx,x,yx}. Without loss of generality, the endpoints of Px are ux and
zx. Then each interior vertex of Px lies in the interior of lens Px[ux,vx] or lens Px[x,zx].
So every edge going out of Px is incident to a vertex in X̂i. Moreover, every x ∈ X̂i

is joined to an endpoint of Px. Therefore, Px is a diamond for every x ∈ X̂i, and the
maximum dangerous subpath containing x in its interior is P′x = Px, contradicting
our assumption that P′x = Px[ux,vx].
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Let x ∈ X̂i such that at least three vertices in {ux,vx,x,yx} are in the interior of Px.
Set Ei+1 = Ei∪{uxvx,xyx,xzx}. For the verifying invariants I1–I4 for Gi+1, we may
assume y ∈Ui by Remark 3.2. Then Ui+1 =Ui∪{ux,vx,x,zx}. We have added three
new edges and at least three new hubs. The new hubs subdivide Px into good paths,
and so we have bi+1 ≤ bi. It is easily checked that invariants I1–I4 are maintained.

Case 3. Every x ∈ Xi is a dangerous vertex of Px but not an interior vertex of
any dangerous subpath of Px. We introduce some notation and then distinguish
among four subcases. For every x ∈ Xi, denote the endpoints of Px by ux,vx ∈Ui.
Assume, without loss of generality, that the subpath Px[ux,x] of Px is dangerous
(hence Px[vx,x] is not dangerous).

There is no vertex x′ ∈ Xi in the interior of Px[ux,x] since Px[ux,x] is a dangerous
subpath of Px. It follows that every path P ∈ Pi contains at most two vertices from
Xi. Moreover, if x,x′ ∈ Xi are two distinct interior vertices of some path P ∈ Pi, then
the two endpoints of P are ux and ux′ , and the subpaths P[ux,x] and P[ux′ ,x

′] are
disjoint.

For every x ∈ Xi, the subpath Px[ux,x] has at least one interior vertex (because
Px[ux,x] is dangerous). Since GC is 3-connected, there must be at least one edge
going out of Px[ux,x]. Let Cx denote the set of edges in C going out of Px[ux,x].
As noted above, all edges in Cx are incident to some vertex of Px outside Px[ux,x].
For every edge sxtx ∈Cx, we use the convention that sx denotes an interior vertex of
Px[ux,x] and tx denotes a vertex of Px outside Px[ux,x].

Note that if an edge sxtx ∈Cx is in A\Ei, then tx is not a dangerous vertex. Indeed,
if tx is dangerous, then either Px[ux, tx] or Px[vx, tx] is a dangerous subpath. However,
Px[ux, tx] cannot be dangerous, since it contains x in its interior, and we assumed that
x is not in the interior of any dangerous subpath of Px. Hence, Px[vx, tx] is dangerous,
and so an edge in A\Ei joins tx to some other vertex in Px[vx, tx].

Case 3(a): There are x ∈ Xi and sxtx ∈ Cx such that tx is not a dangerous
vertex. If Cx contains an edge in A \Ei, then let sxtx be such an edge; otherwise,
let sxtx ∈ Cx be an arbitrary edge such that tx is not dangerous. Refer to Fig. 6c.
Construct Ei+1 from Ei in two steps as follows: Set Ei := Ei ∪ {xy}, and call
Disperse(Gi,Px[ux,x],sxtx). It is easily checked that the first step maintains I1–I4,
and the second step maintains I1–I4 by Proposition 3.3.

In the remaining cases [Cases 3(b)–(d)], we assume that for every x ∈ Xi, the
edges sxtx ∈Cx are not in A\Ei; otherwise, Case 3(a) would apply.

Case 3(b): There are x ∈ Xi and sxtx ∈ Cx such that tx is in the interior
of a dangerous subpath P′′ of Px[x,vx]. Refer to Fig. 7a. Construct Ei+1 from
Ei in two steps as follows: Set Ei := Ei ∪ {xy}, and then apply independently
Disperse(Gi,Px[ux,x],sxtx), and Disperse(Gi,P′′,sxtx). The first step increases
|Ei| − |Ui|+ bi. However, the two independent calls to Disperse add the same
edge sxtx, and so |Ei| − |Ui|+ bi decreases by at least one. Altogether, invariants
I1–I4 are maintained.

Case 3(c): There are x ∈ Xi and sxtx ∈Cx such that tx is a dangerous vertex but
Px[x, tx] has no interior vertices. Refer to Fig. 7b. Construct Ei+1 from Ei in three
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Fig. 7 Step i of the algorithm. The top row shows Gi, and the bottom row Gi+1. (a) Case 3b:
subpaths Px[ux,x]⊂ Px and Px[vx, tx] are dangerous and tx is in the interior of Px[vx,x]. (b) Case 3c:
subpath Px[ux,x] ⊂ Px is dangerous, but Px[x, tx] has no interior vertices. (c) Case 3d: tx is not
adjacent to any vertex outside Px. There is an edge s′t ′ where s′ is an interior vertex of Px[vx, tx] and
t ′ is an interior vertex of Px[x, tx]

steps as follows: Set Ei := Ei∪{xy}, call operationDisperse for path Px[ux,x] and
edge sxtx, and then delete edge xtx. The first two steps clearly maintain invariants
I1–I3, but we need to be careful about the edge deletion. We show that after the
deletion of xtx, the original hubs in Ui remain 3-linked, vertex x becomes a hub
with three independent paths to hubs in Ui; and tx will be a hub in Gi+1 if and only
if it was already a hub in Gi. Indeed, the two endpoints of Px are connected by
Px[ux,sx]∪ {sxtx}, so Ui remains 3-linked. In the second step, we create a simple
cycle σsx passing through x, sx, and ux by Proposition 3.3. Hence, the degree of x
is at least 3 in Gi+1, and it has three independent paths to ux, vx, and y. Finally, the
degree of tx does not change, and so it is a hub if and only if tx ∈Ui. So the third
step also maintains invariants I1–I3.

For invariant I4, notice that the number of dangerous paths can only decrease by
Proposition 3.3 (that is bi+1 ≤ bi), and the effects of inserting edge xy and deleting
edge xtx cancel each other. Hence, invariant I4 is maintained.

Case 3(d): For every x ∈ Xi and sxtx ∈ Cx, vertex tx is dangerous, it is not in
the interior of any dangerous subpath of Px[x,vx], and Px[x, tx] has some interior
vertices. For every x ∈ Xi, we choose an edge sxtx ∈Cx as follows. Let sxtx ∈Cx be
an edge such that tx is the closest vertex to x along Px. Fix a vertex x ∈ Xi such that
the length of Px[x, tx] is minimal.

Path Px with vertices ux,x, tx,vx satisfies conditions (1)–(2) in the definition of
monsters. The vertices ux,x, tx,vx appear in this order along Px such that Px[ux,x]
and Px[tx,vx] are dangerous and Px[x, tx] has at least one interior vertex. We show
next that it satisfies condition (3) as well.

We show that every vertex going out of Px is incident to x. Suppose to the contrary
that there is a vertex x′ ∈ Xi, x′ �= x, in Px. Then Px[x′,vx] is a dangerous subpath,
which is disjoint from Px[ux,x]. Vertex x′ ∈ Xi is not in the interior of any dangerous
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subpath of Px. So x′ is in Px[x, tx] (possibly, x′ = tx). Note that x′ is not in the interior
of Px[x, tx]; otherwise, tx would be in the interior of the dangerous subpath Px[x′,vx]
of Px[x,vx]. The only remaining possibility is x′ = tx. For vertex x′ ∈ Xi, we have
defined an edge sx′ tx′ , where sx′ is an interior vertex of Px[x′,vx] = Px[tx,vx] and tx′ is
a vertex of Px outside Px[vx,x′]. However, tx′ cannot be at ux or in the interior of the
dangerous path Px[ux,x]; otherwise, Case 3(a) or 3(b) would apply for x′. Also, tx′
cannot be in the interior of Px[x,x′] because then subpath Px′ [x

′, tx′ ] would be strictly
shorter than Px[x, tx], contradicting the choice of x ∈ Xi (Fig. 8, left). Therefore, we
have tx′ = x (Fig. 8, middle). Now consider the interior vertices of Px[x,x′]. These
vertices are adjacent to the interior of neither Px[ux,x] nor Px[x′,vx] by the choice of
the edges sxtx and sx′ tx′ . They are separated from all other vertices outside Px[x,x′]
by the cycle {sxx′} ∪Px[x′,sx′ ]∪ {sx′x}∪Px[xsx]. There are no edges going out of
Px[x,x′], contradicting the 3-connectivity of GC. We conclude that every vertex going
out of Px is incident to x.

We also show that every edge going out of Px[ux,x] is incident to tx. Indeed, as
noted above, all edges in Cx are incident to a vertex in Px outside Px[ux,x]. They
cannot be incident to interior vertices of Px[x, tx] by the choice of sxtx. They also
cannot be incident to vx or any interior vertex of Px[tx,vx]; otherwise, Case 3(a)
or 3(b) would apply.

Next we show that there is an edge between the interior of Px[x, tx] and the
interior of Px[tx,vx]. Suppose to the contrary that there is no such edge. Consider
the edges going out of Px[x, tx]. They are not incident to any vertex outside Px. By
our assumption, they are not incident to any interior vertex of Px[tx,vx]. They are not
incident to any interior vertex of Px[ux,x] by the choice of sxtx. They are also not
incident to ux because of planarity: Path Px[vx, tx]∪{sxtx}∪Px[sx,x]∪{xy} separates
them from ux. Hence, all edges out of Px[x, tx] are incident to vx. Note that sxtx and
the edges out of Px[x, tx] lie on opposite sides of path Px by planarity. Now consider
the edges out of Px[tx,vx]. They are not incident to any interior vertex of Px[ux,x] as
noted above. They are not incident to interior vertices of Px[x, tx] by our assumption.
They are also not incident to x because sxtx and an edge going out of Px[x, tx] to vx

separate them from x. Therefore, all edges going out of Px[tx,vx] are incident to ux.
(Fig. 8, right). This means that Px is a monster, and Case 2 would apply. We conclude
that some edge goes out of Px[tx,vx] to an interior vertex of Px[x, tx].
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Let s′t ′ be an edge between an interior vertex s′ of Px[tx,vx] and an interior vertex
t ′ of Px[x, tx]. If any edge going out of Px[x, tx] is in A \ Ei, then let one of them
be s′t ′; otherwise, we can choose s′t ′ arbitrarily. Refer to Fig. 7c. Construct Ei+1

from Ei in three steps as follows: Set Ei := Ei ∪{xy}, call operation Disperse
for path Px[ux,x] and edge sxtx, and then call Disperse for path Px[tx,vx] and edge
s′t ′ (which introduces a new hub at t ′). Invariants I1–I3 are maintained in all three
steps by Proposition 3.3. For invariant I4, the first step increases |Ei|− |Ui|+ bi by
one, the second step maintains it by Proposition 3.3, and the third step decreases it
because of the extra hub at t ′. Altogether, invariant I4 is maintained. This completes
the description of Case 3(d).

While Ui �= V , we can apply Case 1, 2, or 3 and increase the number of hubs. If
Ui =V , then Gi = (V,Gi) is a 3-connected graph such that A⊆ Ei ⊆C, as discussed
above. This completes the proof of Lemma 3.1. ��
Corollary 3.4. Every 3-augmentable planar straight-line matching with n ≥ 4
vertices can be augmented to a 3-connected PSLG that has at most 2n− 2 edges.

Proof. Let GA = (V,A) be a 3-augmentable planar straight-line matching with n≥ 4
vertices. By the results of Hoffmann and Tóth [5], there is a PSLG Hamiltonian
cycle H on the vertex set V that does not cross any edge in A. Since the Hamiltonian
cycle H is crossing-free, none of its edges is a chord of the convex hull of vertices
(otherwise, the removal of this edge would disconnect H). Hence, both (V,H) and
(V,A∪H) are 3-augmentable [13]. That is, there is a 3-connected PSLG GC =(V,C)
such that A∪H ⊂C. Lemma 3.1 completes the proof. ��

4 A Collection of Simple Polygons

In this section, we prove Theorem 2. We are given a 2-regular PSLG GA = (V,A)
with n ≥ 4 vertices and n edges. If GA is 3-augmentable, then it is contained in
some 3-connected PSLG GC = (V,C), say a triangulation of GA, which may have
up to 3n−6 edges. We will construct an augmentation GB = (V,B), A⊆ B⊆C, with
|B| ≤ 2n edges.

Lemma 4.1. Let GA = (V,A) be a 2-regular graph with n ≥ 4 vertices, and let
GC = (V,C) be a 3-connected PSLG with A ⊆ C such that all bounded faces are
triangles. Then GA = (V,A) can be augmented to a 3-connected graph GB = (V,B)
with A⊆ B⊆C, such that |B| ≤ 2n.

Proof. Since GC is 3-connected, its outer face is a simple polygon, which we denote
by QC, and at least one vertex of V lies in the interior of QC. We construct a
3-connected graph GB, A⊆ B⊆C, incrementally. We maintain a 2-connected graph
Gi = (Vi,Ei) with Vi ⊆ V and Ei ⊆ C. We also maintain a set Ui ⊆ V of vertices,
called hubs, which is the set of all vertices in Vi with degree 3 or higher in Gi. The
hubs naturally decompose Gi into a set Pi of paths in Gi between hubs. We maintain
the following invariants for Gi.



Constrained Tri-Connected Planar Straight Line Graphs 65

v v
u

w

a

b

v
u

w

p1

p2

p3

a b c

Fig. 9 (a) A 2-regular PSLG GA (black) in a 3-connected triangulation GC (gray). (b) Graph G∗C
with two auxiliary vertices, a and b, is also 3-connected. (c) Three independent paths from v to
three boundary points p1, p2, and p3

J1 QC ⊆ Ei ⊆C.
J2 Ui is 3-linked in Gi.
J3 every bounded face of Gi is incident to at least three vertices in Ui.
J4 no edge of C \Ei joins a pair of vertices of any path in Pi.

Initially, G0 will have four vertices, and we incrementally augment it with new edges
and vertices, until we have Ui = V . The vertex sets Vi, Ui, and the edge set Ei will
monotonically increase during this algorithm, and we gradually add all edges of A
to Ei. When our algorithm terminates and Ui = V , the graph Gi is a 3-connected
subgraph of GC, which contains all edges of A. Whenever we add an edge e ∈C \A
to Ei, we charge e to one of the endpoints of e so that every vertex is charged at
most once. This charging scheme ensures that we add at most n edges from C \A.
Together with the n edges of GA, we obtain a 3-connected augmentation with at
most 2n edges.

Initialization. We construct the initial graph G0 with |U0| = 4 hubs. Consider the
3-connected PSLG GC where QC is the boundary of the outer face. Let v ∈ V be a
vertex in the interior of QC, and let u and w be its two neighbors in the 2-regular
graph GA.

Construct an auxiliary graph G∗C = (V ∪ {a,b},C∗), with C ⊂ C∗, as follows.
The edges of G∗C are all edges in C, edges au, av, and aw, and edges connecting the
auxiliary vertex b to all vertices of the outer face QC (Fig. 9b). By Lemma 2.1, G∗C is
3-connected (albeit not necessarily planar). Hence, G∗C contains three independent
paths between a and b. Fix three independent paths of minimal total length.
The minimality implies that no two nonconsecutive vertices in any of the three
paths are joined by an edge of C. Replace the edges au and aw with vu and vw,
respectively, to obtain three independent paths in C from v ∈ V to three distinct
vertices of the outer face QC, such that two of these paths leave v along edges of A.
Denote by P1,P2,P3 the three paths, with endpoints p1, p2, p3 along QC, respectively.
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Let our initial graph G0 = (V0,E0) consist of all edges and vertices of QC ∪P1∪
P2 ∪P3. There are exactly four vertices of degree 3, namely, U0 = {v, p1, p2, p3},
which are 3-linked in G0. Each of the three bounded faces of G0 is incident to 3
hubs. So G0 satisfies invariants J1–J3. For invariant J4, note also that no edge in C
joins nonadjacent vertices of QC; otherwise, GC would not be 3-connected.

Let’s estimate how many edges of G0 are from C \A. Orient QC counterclock-
wise, and charge every edge e ∈C\A along QC to its origin. Clearly, every vertex in
QC is charged at most once. Direct the paths P1, P2, and P3 from v to p1, p2, and p3,
and charge each edge e ∈C \A along the paths to its origin. Since two paths leave v
along edges of A, vertex v is charged exactly once. All interior vertices of the three
paths are charged at most once because the paths are independent.

Our algorithm proceeds in three phases.

Phase 1. In the first phase of our algorithm, we augment Gi = (Vi,Ei) until Vi =V ,
but at the end of this phase some edges of A may still not be contained in Ei. We
augment Gi = (Vi,Ei) with new edges and vertices incrementally. It is enough to
describe a general step of this phase.

Pick an arbitrary vertex v ∈V \Vi. We will augment Gi to include v (and possibly
other vertices). Our argument is similar to the initialization. Let Qv denote the
boundary of the face of Gi that contains v. Let Uv denote the set of hubs along
Qv. We have |Uv| ≥ 3 by J3, and Qv consists of at least three paths from Pi between
consecutive hubs along Qv. Let Gv be the subgraph of C that contains all edges
and vertices of GC lying in the closed polygonal domain bounded by Qv. Note that
Gv is a (Steiner) triangulation of the simple polygon Qv. This implies that Gv is
2-connected and every 2-cut of Gv consists of a pair of vertices joined by a chord
of Qv. By invariant J4, however, there is a hub in Uv on each side of every chord
of Qv.

Let u and w be the neighbors of v in the 2-regular graph GA. Note that both u and
w must be vertices of Gv. Construct an auxiliary graph G∗v as follows. The vertices
of G∗v are the vertices of Gv and two auxiliary vertices, a and b. The edges of G∗v are
the edges of Gv; the edges au, av, and aw; and edges between b and every hub in Uv.
We show that G∗v is 3-connected. First note that none of the 2-cuts of Gv is a 2-cut
in G∗v , since the hubs on the two sides of a chord of Qv are now joined to b. This
implies that the vertices of Gv are 3-linked in G∗v . Vertices a and b are each joined to
three vertices of Gv, and by Lemma 2.1 there are three independent paths between
any two vertices of G∗v .

Choose three independent paths in G∗v between a and b of minimal total length.
The minimality implies that each path goes from a to a vertex along Qv, then follows
Qv to a hub in Uv, and reaches b along a single edge from Qv. In particular, no
two nonconsecutive vertices of any of the three paths are joined by an edge of G∗v
(i.e., no shortcuts). Replace the edges au and aw with edges vu and vw, respectively,
to obtain three independent paths from v to three distinct hubs along Qv, such that
two of these paths leave v along edges of A. Denote by P1, P2, and P3 the initial
portions of the paths between a and Qv; and let p1, p2, and p3 be their endpoints on
Qv (these endpoints are not necessarily in Ui).
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We construct Gi+1 by augmenting Gi with all vertices and edges of the paths P1,
P2, and P3. The new vertices of degree 3 are v and, if they were not hubs already, p1,
p2, and p3. In Gi+1, three independent paths connect v to three hubs in Ui, so Ui∪{v}
is 3-linked in Gi+1. Similarly, p1, p2, and p3 are each connected to three hubs in
Ui∪{v} along three independent paths. We conclude that Ui+1 =Ui∪{u, p1, p2, p3}
is 3-linked in Gi+1. We can construct Pi+1 from Pi by adding the three new paths
P1, P2, and P3; and splitting the paths in Pi containing p1, p2, and p3 into two pieces
if necessary.

Paths P1, P2, and P3 decompose a face of Gi into three faces, each of which is
incident to at least three hubs of Ui+1. So invariants J1–J4 hold for Gi+1. It remains
to charge the new edges of Ei+1 taken from C \ A to some new vertices in Vi+1.
Direct the paths P1, P2, and P3 from v to p1, p2, and p3, respectively, and charge any
new edge e ∈ C \A to its origin. Each new vertex of Vi+1 is charged at most once:
v is charged at most once because two incident new edges are contained in A; and
any other new vertex is charged at most once because the paths P1, P2, and P2 are
independent.

Phase 2. In the second phase, we augment Gi = (V,Ei) with edges of A \ Ei

successively until A ⊆ Ei. We can add all edges of A at no charge; we only
need to check that that invariants J1–J4 are maintained. We describe a single step
of the augmentation. Consider an edge pq ∈ A \ Ei. Let Gi+1 = (V,Ei+1) with
Ei+1 = Ei∪{pq} and Ui+1 =Ui∪{p,q}. By J2−−J4, and Lemma 2.1, Ui+1 is 3-
linked in Gi+1. The edge pq subdivides a bounded face of Gi into two faces of Gi+1.
Since pq does not join two vertices of the same path in Pi by invariant J4, both new
faces are incident to at least three hubs in Ui+1 (including p and q). The paths in
Pi+1 are obtained from Pi by adding the 1-edge path pq and possibly decomposing
the paths containing p and q into two. Since Pi satisfies J4, no edge in C joins
two nonconsecutive vertices of any path in Pi+1 either. So invariants J1–J4 hold for
Gi+1.

Phase 3. We have a graph Gi = (V,Ei) with A ⊆ Ei ⊆ C, where Ui is the set of
vertices of degree 3 or higher. Let W =V \Ui be the set of vertices that have degree
2 or less than 2 in Gi. Since GA is 2-regular, and A ⊆ Ei, every vertex in W has
degree 2 and is incident to two edges in A. Since we charged every edge Ei∩ (C \A)
to an incident vertex, no vertex in W has been charged so far. Apply Lemma 2.2 to
augment Gi = (V,Ei) to a 3-connected graph GB with |W | additional edges. Charge
the new edges to the vertices in W . At the end of phase 3, every vertex is charged at
most once, and we obtain a 3-connected PSLG with at most |A|+ n = 2n edges. ��

5 Obstacles in a Container

In this section, we consider augmenting a PSLGs G0 = (V,E0) with n ≥ 6 vertices
that consists of a set of interior-disjoint convex polygons (obstacles) in the interior
of a triangular container. Since no edge is a proper chord of the convex hull, every
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a b

Fig. 10 (a) 3-Connectivity augmentation for k interior-disjoint convex obstacles in a triangular
container requires 3k−1 new edges. (b) For k interior-disjoint triangular obstacles in a triangular
container, we need (5k+1)/2 new edges

such PSLG is 3-augmentable [13], and by Theorem 2 it can be augmented to a
3-connected PSLG with at most 2n edges. We believe, however, that significantly
fewer edges are sufficient for 3-connectivity augmentation. The best lower bounds
we were able to construct require fewer than 2n− 2 edges.

When there is only one convex obstacle, three edges are obviously required for
connecting it to the container. However, for k ∈ N convex obstacles at least 3k− 1
edges are necessary in the worst case. Our lower bound construction is depicted
in Fig. 10a. It includes one large convex obstacle, which hides one small obstacle
behind each side (except the base) such that each small obstacle can “see” only
three different vertices (the top vertex of the container and two adjacent vertices of
the large obstacle). Thus, we need three edges for each small obstacle and only two
edges for the larger obstacle, connecting its two bottom vertices to the two endpoints
of the base of the container.

The large obstacle in the above construction is a convex k-gon, and so the lower
bound 3k− 1 does not hold if every obstacle has at most s sides, for some fixed
3 ≤ s < k. In that case we use a similar construction, in which a big s sided,
obstacle hides s− 1 smaller obstacles behind all its sides except one, and the
construction is repeated recursively. This construction corresponds to a complete
tree with branching factor s− 1, in which the smaller obstacles are the children of
a larger obstacle. For a fixed value of s, we set h as the height of the complete
(s− 1)-ary tree. Thus, the number of obstacles,

k =
(s− 1)h− 1

s− 2
,

can be as high as we desire. The number of leaves in the tree is (s−1)h−1. A simple
manipulation of this equation shows that this number equals k− k−1

s−1 . Hence, the

number of internal nodes in the tree is k−1
s−1 . For the 3-connectivity augmentation,
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each leaf obstacle needs at least s new edges and each nonleaf obstacle needs at
least two new edges. The total number of edges required is at least

s

(
k− k− 1

s− 1

)
+ 2

(
k− 1
s− 1

)
= sk− s− 2

s− 1
(k− 1) = (n− 3)− s− 2

s− 1
·
(

n− 3
s
− 1

)
,

which ranges from 5
6 n− 5

2 to n−O(
√

n) for 3≤ s≤
√

n− 3. Figure 10b depicts this
lower bound construction for s = 3.

6 Discussion

We have shown that a 1-regular (respectively, 2-regular) PSLG with n vertices,
where no edge is a chord of the convex hull, can be augmented to a 3-connected
PSLG that has at most 2n−2 (respectively, 2n) edges. We conjecture that our results
generalize to PSLGs with maximum degree at most 2 (Conjecture 1.1).

The bound of 2n− 2 for the number of edges is the best possible in general, but
it may be improved if few vertices lie on the convex hull, and the components of
the input graph are interior-disjoint convex obstacles, possibly with a container.
It remains an open problem to derive tight extremal bounds for 3-connectivity
augmentation for (a) 1-regular PSLGs with n vertices, h of which lie on the convex
hull; and (b) 2-regular PSLGs formed by n

s interior-disjoint convex polygons, each
with s vertices for s≥ 3.

The 3-connectivity augmentation problem (finding the minimum number of new
edges for a given PSLG) is known to be NP-hard [12]. However, the hardness
proof does not apply to 1- or 2-regular polygons. It is an open problem whether
the connectivity augmentation remains NP-hard restricted to these cases.

We have compared the number of edges in the resulting 3-connected PSLGs
with the benchmark 2n− 2, which is the best possible bound for 0-, 1-, and
2-regular PSLGs. More generally, for a 3-augmentable PSLG G0 = (V,E0) with
n≥ 4 vertices, let f (G0) = |E1| be the minimum number of edges in a 3-connected
augmentation (V,E1) of the empty PSLG (V, /0); and let g(G0) = |E2| be the mini-
mum number of edges in a 3-connected augmentation (V,E2), E0⊆ E2, of the PSLG
G0. It is clear that f (G0)≤ g(G0). With this notation, we can characterize the PSLGs
G0, where all edges in E0 are “useful” for 3-connectivity: These are the PSLGs for
which f (G0) = g(G0) is possible. In general, it would be interesting to study the
behavior of the difference g(G0)− f (G0).

Finally, we note here that augmenting a 1-regular PSLG to a 2-regular PSLG has
been considered by Aichholzer et al. [1] and Ishaque et al. [8]. The problem is not
always feasible if the input graph has an odd number of edges, but neither com-
binatorial characterizations nor hardness results are known for the corresponding
decision problem.
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Topological Hypergraphs

Sarit Buzaglo, Rom Pinchasi, and Günter Rote

Abstract Let P be a set of n points in the plane. A topological hypergraph G,
on the set of points of P, is a collection of simple closed curves in the plane that
avoid the points of P. Each of these curves is called an edge of G, and the points
of P are called the vertices of G. We provide bounds on the number of edges
of topological hypergraphs in terms of the number of their vertices under various
restrictions assuming the set of edges is a family of pseudo-circles.

1 Introduction

A topological graph is a graph drawn in the plane with its vertices drawn as points
and its edges drawn as Jordan arcs connecting corresponding points. In this chapter
we make an attempt to generalize the notion of a topological graph and consider
topological hypergraphs.

Definition 1.1. Let C be a simple closed Jordan curve in the plane. By Jordan’s
theorem, C divides the plane into two regions, only one of which is bounded. We
call the bounded region the disc bounded by C and we denote this region by disc(C).
Any point x inside disc(C) is said to be surrounded by C, and C is said to be
surrounding x.

We are now ready to define a topological hypergraph. A topological hypergraph
G is a pair (P,C), where P is a finite set of points in the plane, and C is a family of
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simple closed curves in the plane that avoid the points of P. For each curve C ∈ C,
we denote by PC the set of all points of P surrounded by C. C is called an edge of G
and the set PC is the set of vertices of the edge C. Two edges of G, C1 and C2, are
called parallel if PC1 = PC2 . We usually assume that any two curves from C intersect
in a finite number of points and that in each such intersection point the two curves
properly cross. G is called k-uniform if, for every C ∈ C, |PC|= k.

In what follows and throughout the rest of the chapter, we will always assume
that the topological hypergraph in question does not contain parallel edges.

A family of simple closed curves in the plane is a family of pseudo-circles if
every two curves in the family are either disjoint or properly cross at precisely two
points. Any collection of circles in the plane is an example of such a family.

The following simple lemma is a crucial observation.

Lemma 1. Suppose C1 and C2 are two pseudo-circles in the plane and x1,y1,x2,y2

are four distinct points satisfying the following condition: x1 and y1 are surrounded
by C1 but not by C2, and x2 and y2 are surrounded by C2 but not by C1. Let e1 be
a Jordan arc, entirely contained in disc(C1), connecting x1 and y1, and let e2 be a
Jordan arc, entirely contained in disc(C2), connecting x2 and y2. Then e1 and e2

cross an even number of times.

Proof. If C1 and C2 do not intersect, then disc(C1) and disc(C2) must be disjoint.
Indeed, otherwise one must contain the other; say disc(C1) contains disc(C2). This
is a contradiction to the assumption that x2 and y2 are two points surrounded by C2

but not by C1. However, if disc(C1) is disjoint from disc(C2), then clearly e1 and e2

cannot intersect.
Therefore, assume that C1 and C2 intersect in two points u and v. Let S1 be the

subarc of C1 delimited by u and v and contained in disc(C2). Denote by S2 the subarc
of C2 delimited by u and v and contained in disc(C1). Observe that S1 together with
S2 form a simple closed curve that surrounds exactly the points in Z = disc(C1)∩
disc(C2). Clearly, e1 and e2 may intersect only at points of Z (see Fig. 1). Since both
x1 and y1 do not belong to Z, as they are not surrounded by C2, the intersection of
e1 with Z consists of a finite number of arcs each of which has both endpoints lying
on S2. It is enough to show that each of these arcs crosses e2 an even number of
times. Let g be such an arc whose endpoints on S2 are k and �. Let S′2 be the subarc
of S2 delimited by k and �. g and S′2 form a simple closed curve contained in Z.
Consequently, both x2 and y2 are not surrounded by this closed curve. It follows that
e2, the Jordan arc connecting x2 and y2, intersects g∪ S′2 an even number of times.
However, e2 does not intersect S′2, as it is a subarc of C2. Therefore, e2 crosses g an
even number of times.

The next theorem is a simple consequence of Lemma 1.

Theorem 2. Let G = (P,C) be a topological 2-uniform hypergraph on n vertices. If
C is a family of pseudo-circles, then G, viewed as an abstract 2-graph, is a planar
graph. In particular, there are at most 3n− 6 curves in C.
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Fig. 1 Lemma 1

Proof. We draw the graph G as a topological graph in such a way that every pair of
edges that are not incident to the same vertex cross an even number of times. Then it
is a consequence of Hanani and Tutte’s theorem [2,9] that G is planar. The drawing
rule for G is as follows: For any curve C ∈ C, let x and y be the two points of P
surrounded by C. We draw a Jordan arc connecting x to y so that the arc is contained
in disc(C).

It remains to show that the above drawing rule provides the desired topological
graph. Let e and f be two edges in our drawing that do not share a common vertex.
Let x and y be the vertices of e, and let Ce ∈ C be the curve in C that surrounds
both x and y. Let a and b be the vertices of f , and let Cf ∈ C be the curve in C that
surrounds both a and b. Since Ce surrounds x and y and no other vertex, then in
particular it does not surround a or b. Similarly, Cf surrounds a and b but none of x
and y. Therefore, by Lemma 1, e and f cross an even number of times.

We will now bound the number of edges in a topological hypergraph with more
general settings. We use the following lemma [1] (see also [5]).

Lemma 3. Let A1, . . . ,An be connected sets in the plane, each of which is also
simply connected with boundaries that cross each other a finite number of times. If,
for every 1≤ i < j ≤ n, Ai∩A j is connected, then A1∩ . . .∩An is either connected
or empty.

As a consequence of Lemma 3, we obtain the following corollary:

Corollary 4. If C1, . . . ,Ct is any collection of pseudo-circles, then disc(C1)∩ . . .∩
disc(Ct) is either a connected set or the empty set.

Indeed, this is because disc(Ci) is a simply connected set for every Ci, and
disc(Ci)∩disc(Cj) is either empty or connected for every Ci and Cj .
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The next theorem provides a linear bound in terms of |P| on the number of edges
of a 3-uniform topological hypergraph G = (P,C), in the case where C is a family of
pseudo-circles.

Theorem 5. Let G = (P,C) be a 3-uniform topological graph on n vertices such
that C is a family of pseudo-circles. Then |C|= O(n).

Proof. We draw a topological graph H whose vertices are the points of P and whose
edges are all pairs of points that are surrounded by some curve in C. Let x and y be
two points of P surrounded by a curve in C, and let C1, . . . ,Cl be all the curves
in C that surround both x and y. By Corollary 4, Z = disc(C1)∩ . . .∩ disc(Cl) is a
connected set. We draw the edge in H between x and y as a Jordan curve inside the
connected region Z.

For every edge e in H, let d(e) denote the number of curves in C that surround
both endpoints of e (and therefore also the entire edge e).

Claim 1. Let e and f be two edges of H with no common vertex. If e and f cross
an odd number of times, then either d(e)≤ 2, or d( f )≤ 2, or both.

Proof. Assume to the contrary that both d(e) and d( f ) are greater than or equal to
3. Since d(e)≥ 3, there are at least three different curves from C that surround both
endpoints of e. Therefore, there is a curve Ce ∈ C that surrounds both endpoints of e
but no endpoint of f . Similarly, there is a curve Cf ∈ C that surrounds both endpoints
of f but no endpoint of e. By Lemma 1, e and f cross an even number of times, a
contradiction.

Let E ′ be the set of all edges e of H such that d(e) ≤ 2. By Claim 1, the set of
edges in E \E ′ forms a planar graph, as every two edges in E \E ′ that do not share
a common vertex cross an even number of times. In particular, the cardinality of
E \E ′ is linear in n. We will now show that the cardinality of E ′ is also linear in n.

In fact, we will prove even a slightly stronger statement that will be helpful for
the proof of Theorem 5.

Claim 7. Let V be any subset of the vertices of H and let E ′(V ) be those edges
in E ′ both of whose vertices are in V . Then |E ′(V )| ≤ c|V |, where c > 0 is some
absolute constant.

Proof. Let 0 < q < 1 be a positive number to be determined later. Pick every vertex
of V with probability q and consider only those edges of E ′(V ) both of whose
vertices are picked. We thus obtain a random subgraph of H, which we denote by
H̃, on a set of vertices Ṽ . Let e be an edge in H̃, and let x and y be its two vertices.
We know that d(e) ≤ 2. Therefore, there exist at most two vertices z ∈ V such that
x,y, and z are surrounded by some curve C ∈ C. We say that e is good if there is no
such vertex z in Ṽ .

Observe that every two good edges with no common vertex cross an even number
of times. Indeed, if e and f are two good edges with no common vertex, then there
is a curve Ce ∈ C that surrounds both vertices of e but no vertex of f (or else e would
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not be good). And similarly, there is a curve Cf ∈ C that surrounds both vertices of
f but no vertex of e. Hence, by Lemma 1, e and f cross an even number of times. It
follows now from the theorem of Hanani and Tutte [2, 9] that the good edges in H̃
constitute a planar graph. Therefore, the number of good edges in G̃ is at most 3|Ṽ |.
This inequality is true also for the expected values of the number of good edges and
|Ṽ |. Clearly, Ex(|Ṽ |) = q|V |. As for the expected number of good edges, observe
that any edge e ∈ E(V ) is a good edge in H̃ with probability of at least q2(1− q)2.
Indeed, this is the probability in case there are precisely two edges in G that include
the vertices of e. If there is only one such edge in G, this probability is be higher,
namely, q2(1− q).

It follows now that q2(1−q)2|E(V )| ≤ 3q|V |. Taking q = 1
3 , we obtain |E(V )| ≤

21|V |.

Considering the graph H again, we deduce that there is an absolute constant c′

such that the number of edges of H induced by any subset V of vertices of H is at
most c′|V |. Indeed, this is true for the subset E ′ of edges of H, by Claim 7, and also
to the subset of edges E \E ′, as they constitute a planar graph.

We now show that the number of triangles (that is, cycles of length 3) in the
graph H is at most linear in the number of vertices of H. This will be enough to
prove Theorem 5 because every pseudo-circle C ∈ C corresponds to precisely one
triangle in the graph G (the triangle whose vertices are surrounded by C). We prove
a more general lemma on abstract graphs:

Lemma 8. Let H be a graph on m vertices. Assume that there is an absolute
constant c′ such that the number of edges of H induced by any subset V of the
vertices of H is at most c′|V |. Then for every �≥ 2, the number of copies of K� (the

complete graph on � vertices) in H is at most c�m, where c� =
(2c′)�−1

�! .

Proof. We prove the lemma by induction on �. For �= 2, there is nothing to prove, as
this is the assumption in the lemma. Assume the lemma is true for �. Let v1, . . . ,vm

denote the vertices of H and let E denote the set of edges of H. We know that
|E| ≤ c′m. For every 1≤ i≤m, let di denote the degree of vi in H. Fix i and consider
the number of copies of K�+1 in H that include the vertex vi. Each such copy of K�+1

corresponds to a unique copy of K� among the neighbors of vi. Therefore, it follows
from the induction hypothesis, applied to the subgraph Hvi of H induced by the
neighbors of vi, that the number of copies of K� in Hvi is at most c�di. It follows
now that that vi is incident to at most c�di copies of K�+1 in H. Summing over all i
between 1 and m, every copy of K�+1 is counted exactly �+ 1 times. Therefore, the
number of copies of K�+1 in H is at most 1

�+1 ∑m
i=1 c�di =

1
�+1 2c�|E| ≤ 1

�+1 2c�c′m =
c�+1m.

In particular, the number of triangles in our topological graph H is at most cn,
where c is some absolute constant independent of n. This concludes the proof of
Theorem 5.

If G = (P,C) is a topological hypergraph and C is a family of pseudo-circles, but
we do not assume that G is uniform, then a linear bound on the number of edges of
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G is no longer valid. Nevertheless, it is possible to obtain a cubic (that is also tight)
bound on the number of edges in G in this case, as we shall now see.

Recall that for a family F of sets, the VC-dimension [10] of F is the largest
cardinality of a set S that is shattered by F , that is, the largest cardinality of a set S
such that for any subset B of S there exists F ∈ F with B = F ∩S.

Perhaps one of the most fundamental results on VC-dimension is the Perles–
Sauer–Shelah theorem [7, 8], which says that a family F of subsets of {1, . . . ,n}
that has VC-dimension d consists of at most

(n
0

)
+ · · ·+

(n
d

)
= O(nd) members.

Theorem 9. Let G = (P,C) be a topological hypergraph on n vertices such that C
is a family of pseudo-circles. Then the family F = {PC |C ∈ C} has VC-dimension
at most 3. In particular, by the Perles–Sauer–Shelah theorem, |C|= O(n3).

Proof. We show that F cannot shatter any set of 4 points. Assume to the contrary
that it does, and let {p1, p2, p3, p4} ⊂ P be a set of four points shattered by F . For
every 1 ≤ i < j ≤ 4, consider the family Ci j of all the curves in C that surround
both pi and p j. By Corollary 4, the set Ri j = ∩C∈Ci j disc(C) is a connected set. We
draw an edge (Jordan arc) ei j between pi and p j inside the region Ri j. We thus get
a drawing of K4 in the plane. We claim that in this drawing every two edges that
do not share a common vertex cross an even number of times. Indeed, consider the
edge ei j between pi and p j and the edge ekl between pk and pl (we assume that
{i, j,k, l} = {1,2,3,4}). As {p1, p2, p3, p4} is shattered by F , there is a curve Ci j ∈
Ci j that surrounds both pi and p j but neither pk nor pl . Similarly, there is a curve
Ckl ∈ Ckl that surrounds both pk and pl but neither pi nor p j. By our construction,
ei j ⊂ disc(Ci j) and ekl ⊂ disc(Ckl). It follows now from Lemma 1 that ei j and ekl

cross an even number of times.

It is easy to observe that by small modifications of the drawing of the edges in a
small neighborhood around each point pi, we may obtain a new drawing in which
also every two edges that share a common vertex cross an even number of times
(apart from meeting at the same vertex).

For a closed curve S in the plane, not necessarily simple, and a point x not on
S, we say that x is surrounded by S if the index of the curve S with respect to the
point x is odd. This is equivalent to that any ray (or just a Jordan curve that goes to
infinity) emanating from x meets S (as a curve, not as a set) an odd number of times.
Observe that this definition generalizes the notion of a point surrounded by a simple
closed curve.

Lemma 10. In any drawing of K4 in the plane in which every two edges cross an
even number of times, there is a vertex v of K4 that is surrounded by the closed curve
composed from the three edges of K4 not incident to v.

Proof. Assume not and once again let p1, p2, p3, and p4 denote the vertices of K4

drawn in the plane. For any three vertices pi, p j, and pk, denote by Si jk the closed
curve composed from the edges pi p j, p j pk, and pk pi. Consider a fixed vertex pi.
Any small enough circular disc D, centered at pi, is trisected by the edges going
from pi to the three other vertices. Fix such a disc D. We claim the section of D
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bounded by the edges pi p j and pi pk consists of points that are all surrounded by
Si jk. Indeed, otherwise the portion of the edge pi pl inside D is surrounded by Si jk.
As the edge pi pl crosses each of the edges pi p j, pi pk, and p j pk an even number of
times, it follows that pl is also surrounded by Si jk, a contradiction.

Consider now a point x far away, not surrounded by any of the curves Si jk. Draw
an arc g connecting x to p1. Once again let D be a small circular disc centered at p1.
D is trisected by the edges p1 pi for i = 2,3,4. Without loss of generality, assume
that g∩D lies in the portion of D delimited by p1 p2 and p1 p3. Hence, as x is not
surrounded by S123, it follows that g crosses S123 an odd number of times. For the
same reasons, it follows that g crosses both S124 and S134 an even number of times
because g∩D is not surrounded by S124 nor by S134.

Denote by ti j the number of crossings between g and the edge pi p j. Therefore,
t12 + t13 + t23 is odd and both t12 + t14 + t24 and t13 + t14 + t34 are even. Summing
them all up, we conclude that t23 + t34 + t24 is odd. Therefore, g crosses S234 an odd
number of times. Now since x is not surrounded by S234 and g connects x to p1, it
follows that p1 is surrounded by S234, a contradiction.

In view of Lemma 10, assume without loss of generality that p4 is surrounded by
the closed curve composed from the edges p1 p2, p2 p3, and p3 p1. As F shatters
{p1, p2, p3, p4}, let C ∈ C be a curve surrounding p1, p2, and p3 but not p4.
Therefore, each of the edges p1 p2, p2 p3, and p3 p1 is contained in disc(C). This
is a contradiction because now it is not possible that p4 is surrounded by the closed
curve composed from the edges p1 p2, p2 p3, and p3 p1, as it is not surrounded by C.
This completes the proof of Theorem 9.

For a set A and an integer r ≥ 0, we denote by
([A]
≤r

)
the family of all subsets of

A of cardinality at most r. We will need the following small variant of the original
Perles–Sauer–Shelah theorem [7].

Theorem 11. Let F = {A1, . . . ,Am} be a family of distinct subsets of {1,2, . . . ,n}
and assume that F has VC-dimension less than or equal to d. Then

m≤ |
m⋃

i=1

(
[Ai]

≤ d

)
|.

Proof. We prove the theorem by induction on d and n. The theorem is clearly true
for d = 0 and any n. For d > 0, assume that F has VC-dimension at most d and
define F1 = {A\{1} | A ∈F} and T = {A\{1} | 1∈ A and A\{1} ∈ F}. It is easy
to see that |F| = |F1|+ |T |. Let s denote the number of sets in F1 and let t denote
the number of sets in T . We rewrite F1 = {F1, . . . ,Fs} and T = {T1, . . . ,Tt}. As the
VC-dimension of F1 is at most d, we use the induction hypothesis on n to deduce
that the family

⋃s
i=1

([Fi]
≤d

)
contains at least s sets.

Observe that the VC-dimension of T is at most d− 1, for otherwise F has VC-
dimension at least d + 1. Therefore, by the induction hypothesis, there are at least
t sets in

⋃t
i=1

( [Ti ]
≤d−1

)
. To each of these sets add the element 1 to obtain t sets in
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⋃m
i=1

([Ai]
≤d

)
each containing the element 1 and thus each is different than any set in⋃s

i=1

([Fi]
≤d

)
. The result follows from the fact that m = s+ t.

Corollary 12. Let F = {A1, . . . ,Am} be a family of distinct subsets of {1,2, . . . ,n}
with VC-dimension less than or equal to d. Then it is possible to assign to each set
Ai a subset of it of size at most d such that no two sets Ai and A j are assigned to the
same set.

Proof. Consider the bipartite graph in which one set of vertices corresponds to
the sets A1, . . . ,Am and the other set of vertices corresponds to the elements in⋃m

i=1

([Ai]
≤d

)
. In this bipartite graph connect each set Ai to all its subsets of size at

most d. By Hall’s theorem [3, 4] and by Theorem 11, the desired matching exists.

Theorems 2 and 5 give a linear bound to the number of edges of a 2-uniform and
3-uniform, respectively, topological hypergraphs where the set of edges is a family
of pseudo-circles. The next theorem provides a bound to the number of edges in
a topological hypergraph G = (P,C) on n vertices, where C is a family of pseudo-
circles and that |PC| ≤ k for every C ∈ C and a fixed k > 3.

Theorem 13. Let G = (P,C) be a topological hypergraph on n vertices. Assume
that C is a family of pseudo-circles and that |PC| ≤ k for every C ∈ C and a fixed
integer k. Then |C|= O(k2n).

Proof. Consider the family F = {PC |C ∈ C}. By Theorem 9, F has VC-dimension
less than or equal to 3. We use Corollary 12 and assign to each member PC of F a
subset of it of size at most 3 that we denote by BC.

We fix a small number 0 < q< 1/2 to be determined later and pick every point of
P independently with probability q. We call a curve C ∈ C good if every point in BC

was picked and no point in PC \BC was picked. Observe that a curve C in C is good
with probability q|BC|(1−q)|PC|−|BC| ≥ q|BC|(1−q)k−|BC| ≥ q3(1−q)k−3, where the
last inequality is because q < 1/2 and |BC| ≤ 3.

By Theorems 2 and 5, the number of edges in a 2-uniform, or a 3-uniform
topological hypergraph on n vertices whose set of edges is a family of pseudo-
circles is O(n). Therefore, the number of good curves in C is at most some absolute
constant c times the number of points of P that were picked. Taking the expectation,
we see that |C|q3(1−q)k−3≤ cqn. Taking q= 1/k, we get the desired result, namely,
|C| ≤ c′k2n for some absolute constant c′ > 0.

Remark 1. It is not hard to show that the bound in Theorem 13 can indeed be
attained even by a family C of circles in the plane.

Definition 1.2. We denote by ft (n) the maximum number of edges in a topological
graph on n vertices with no t vertex-disjoint edges every two of which cross an odd
number of times.

We will need the following estimate on ft (n) from [6] (see Theorem 3 in [6]):

Theorem 14 ([6]). ft (n) = O(n log4t−8 n).
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In fact, in the sequel, we will only use the fact that ft(n) = o(n2).
The next theorem provides even better bounds on the size of {PC | C ∈ C},

assuming that the intersections of the sets PC with each other are ”small.”

Theorem 15. Let r,k1,k2 > 0 be fixed integers. Let G = (P,C) be a topological
hypergraph on n vertices and assume that C is a family of pseudo-circles. Assume
further that k1 ≤ |PC| ≤ k2 for every C ∈ C. If, for every r curves C1, . . . ,Cr ∈ C,

we have |PC1 ∩ . . . ∩ PCr | < r, then ∑C∈C |PC| = O(
k2

2
k2

1
n), where the constant of

proportionality depends only on r.

Proof. We define a topological graph H in the following way: The vertices of H are
the points of P. For any pair of vertices x and y that are surrounded by some curve
C ∈ C, consider all curves in C that surround x and y. Let those curves be C1, . . . ,Cl

and define Z = disc(C1)∩ . . .∩ disc(Cl). By Corollary 4, Z is a connected set. We
draw the edge in H between x and y as a Jordan curve entirely included in Z.

We call an edge of H bad if its endpoints, and hence the edge as well, are
surrounded by at least (r− 1)2r−2 + 1 different curves in C; otherwise, it is called
good.

Claim 6. There are no r2 bad edges in H every two of which cross an odd number
of times and no two of which share a common vertex.

Proof. Assume to the contrary that E is a collection of r2 bad edges every two of
which cross an odd number of times and no two of which share a common vertex.

Let e,e1, . . . ,er−2 be any r− 1 different edges in E . We claim that among all
curves in C surrounding e, there is at least one curve that does not surround any of
the two vertices of some edge among e1, . . . ,er−2. Indeed, otherwise any curve in C
that surrounds e must surround at least one vertex of each of e1, . . . ,er−2. Since e is
a bad edge, there are at least (r−1)2r−2 +1 curves in C that surround e. Therefore,
by the pigeon-hole principle, there must be at least r curves surrounding e as well
as the same set of r−2 vertices (each of which is the endpoint of some edge among
e1, . . . ,er−2). This is a contradiction to the assumption that no r curves in C surround
the same set of r vertices.

It follows that apart from at most r−3 edges in E , for every edge f in E , different
from e, there is a curve C ∈ C that surrounds e but not any of the two vertices of f .
This way, because E > (r− 1)(r− 2), we can find r− 1 edges e1, . . . ,er−1 with the
property that for every 1 ≤ i < j ≤ r− 1 there is a curve in C that surrounds ei but
not any of the two vertices of e j.

Using once again the argument above, there is a curve C ∈C and there is an index
j between 1 and r− 2 such that C surrounds er−1, but C does not surround any of
the vertices of e j. Since j < r− 1, there is a curve C′ ∈ C that surrounds e j but that
does not surround any of the vertices of er−1. By Lemma 1, this implies that e j and
er−1 cross an even number of times, contradicting our assumption.

It follows from Claim 6 and Theorem 14 that there exists k0 that depends only on
r such that if k1 > k0, then for every C ∈ C, C surrounds at least k2

1/4 good edges.
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Clearly, we may assume that k1 > k0 as by Theorem 13, the collection C′ of all
curves C ∈ C with |PC| ≤ k0 consists of O(k2

0n) curves and therefore, ∑C∈C′ |C| =
O(n).

Fix a probability 0 < q < 1, to be determined later, and pick every point in P
with probability q. Let H∗ be the random topological graph whose vertices are
those points that were picked and whose edges are those good edges of H both
of whose vertices were picked. Call an edge e of H∗ nice if there is a curve C ∈ C
that surrounds no other vertex of H∗ but the endpoints of e.

We claim that the subgraph of H∗, which consists only of the nice edges, is
planar. Indeed, let e and f be two nice edges that do not share a common vertex.
Because e is nice, there is a curve Ce ∈ C that surrounds e but does not surround any
of the vertices of f . Similarly, there is a curve Cf ∈ C that surrounds f but does not
surround any of the vertices of e. By Lemma 1, e and f cross an even number of
times. Therefore, by the Hanani–Tutte theorem, H∗ is planar. It follows that |E∗| is
less than or equal to 3|V ∗|−6, where E∗ is the set of all nice edges and V ∗ is the set
of vertices in H∗. This is true also when considering the expected values of |E∗| and
|V ∗|.

We have Ex(|V ∗|) = qn. We claim that Ex(|E∗|) ≥ |W |q2(1− q)k2−2, where W
is the set of all good edges. This is because each edge in W is nice with probability
of at least q2(1− q)k2−2. Indeed, suppose e ∈W , and let Ce be any curve in C that
surrounds e. e becomes nice if its two vertices are picked to V ∗ (which happens
with probability q2) and the other points surrounded by Ce are not picked. The latter
happens with probability of at least (1− q)k2−2 and independently of the event in
which the two vertices of e are picked.

Therefore, |W |q2(1−q)k2−2 < 3qn. Taking q= 1
k2−1 , we obtain |W |< 9(k2−1)n.

On the other hand, each good edge is surrounded by at most (r− 1)2r−1 curves
in C, and each curve in C surrounds at least k2

1/4 good edges. Therefore, |W | ≥
k2

1
4(r−1)2r−1 |C|. Hence, |C|< 36(r−1)2r−1k2

k2
1

n. The theorem now follows as ∑C∈C |PC| ≤

∑C∈C k2 ≤ 36(r− 1)2r−1 k2
2

k2
1
n.

Corollary 17. Let r > 0 be a fixed integer. Let G = (P,C) be a topological
hypergraph on n vertices, and assume that C is a family of pseudo-circles. If,
for every r curves C1, . . . ,Cr ∈ C, we have |PC1 ∩ . . .∩PCr | < r, then ∑C∈C |PC| =
O(n logn).

Proof. For every 0 ≤ i ≤ log2 n, let Ci denote those curves C ∈ C for which
2i ≤ |PC| ≤ 2i+1. By Theorem 15, for every 0 ≤ i ≤ log2 n, we have ∑C∈Ci

|PC| =
O(( 2i+1

2i )2n) = O(n). Therefore, ∑C∈C |PC|= ∑	log2 n

i=0 O(n) = O(n logn).

As an example, fix an integer r ≥ 2. Let G = (P,C) be a k-uniform topological
hypergraph on n vertices. Assume that for any two curves C1,C2 ∈ C, we have |PC1 ∩
PC2 |< r. Then, clearly, for every r curves C1, . . . ,Cr ∈C, we have |PC1∩. . .∩PCr |< r.
It follows now from Theorem 15 that
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k|C|= ∑
C∈C

|PC|= O(
k2

k2 n) = O(n).

Hence, |C|=O(n/k). This roughly says that the sets in the family {PC |C ∈ C}, each
having cardinality k, behave almost as if they were disjoint.
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On Edge-Disjoint Empty Triangles of Point Sets

Javier Cano, Luis F. Barba, Toshinori Sakai, and Jorge Urrutia

Abstract Let P be a set of points in the plane in general position. Any three points
x,y,z ∈ P determine a triangle Δ(x,y,z) of the plane. We say that Δ(x,y,z) is empty
if its interior contains no element of P. In this chapter, we study the following
problems: What is the size of the largest family of edge-disjoint triangles of a point
set? How many triangulations of P are needed to cover all the empty triangles of P?
We also study the following problem: What is the largest number of edge-disjoint
triangles of P containing a point q of the plane in their interior? We establish upper
and lower bounds for these problems.

1 Introduction

Let P be a set of n points in the plane in general position. A geometric graph on P
is a graph G whose vertices are the elements of P, two of which are adjacent if they
are joined by a straight-line segment. We say that G is a plane if it has no edges
that cross each other. A triangle of G consists of three points x,y,z ∈ P such that
xy, yz, and zx are edges of G; we will denote it as Δ(x,y,z). If, in addition, Δ(x,y,z)
contains no elements of P in its interior, we say that it is empty.
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In a similar way, we say that if x,y,z ∈ P, then Δ(x,y,z) is a triangle of P, and that
xy, yz, and zx are the edges of Δ(x,y,z). If Δ(x,y,z) is empty, it is called a 3-hole of
P. A 3-hole of P can be thought of as an empty triangle of the complete geometric
graphKP on P. We remark that Δ(x,y,z) will denote a triangle of a geometric graph
and also a triangle of a point set.

A well-known result in graph theory says that for n = 6k + 1 or n = 6k + 3,
the edges of the complete graph Kn on n vertices can be decomposed into a set
of
(n

2

)
/3 edge-disjoint triangles. These decompositions are known as Steiner triple

systems [23]; see also Kirkman’s schoolgirl problem [17, 22]. In this chapter, we
address some variants of that problem, but for geometric graphs.

Given a point set P, let δ (P) be the size of the largest set of edge-disjoint empty
triangles of P. It is easy to see that for point sets in convex position with n = 6k+1
or n = 6k+ 3 elements, δ (P) =

(n
2

)
/3. Indeed, any triangle of P is empty, and the

problem is the same as that of decomposing the edges of the complete geometric
graph K(P) on P into edge-disjoint triangles. On the other hand, we prove that for
some point sets, namely Horton point sets, δ (P) is O(n logn).

We then study the problem of covering the empty triangles of point sets with
as few triangulations of P as possible. For point sets in convex position, we prove
that we need essentially

(n
3

)
/4 triangulations; our bound is tight. We also show that

there are point sets P for which O(n logn) triangulations are sufficient to cover all
the empty triangles of P for a given point set P.

Finally, we consider the problem of finding a point q not in P contained in the
interior of many edge-disjoint triangles of P. We prove that for any point set, there
is a point q /∈ P contained in at least n2/12 edge-disjoint triangles. Furthermore, any
point in the plane, not in P, is contained in at most n2/9 edge-disjoint triangles of
P, and this bound is sharp. In particular, we show that this bound is attained when P
is the set of vertices of a regular polygon.

1.1 Preliminary Work

The study of counting and finding k-holes in point sets has been an active area of
research since Erdős and Szekeres [11, 12] asked about the existence of k-holes in
planar point sets. It is known that any point set with at least 10 points contains
5-holes; e.g., see [14]. Horton [15] proved that for k ≥ 7, there are point sets
containing no k-holes. The question of the existence of 6-holes remained open for
many years, but recently Nicolás [19] proved that any point set with sufficiently
many points contains a 6-hole. A second proof of this result was subsequently given
by Gerken [13].

The study of properties of the set of triangles generated by point sets on the plane
has been of interest for many years. Let fk(n) be the minimum number of k-holes
that a point set has. Katchalski and Meir [16] proved that

(n
2

)
≤ f3(n)≤ cn2 for some

c < 200; see also Purdy [21]. Their lower bounds were improved by Dehnhardt [9]
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to n2− 5n+ 10 ≤ f3(n). He also proved that
(n−3

2

)
+ 6 ≤ f4(n). Point sets with

few k-holes for 3 ≤ k ≤ 6 were obtained by Bárány and Valtr [2]. The interested
reader can read [18] for a more accurate picture of the developments in this area of
research.

Chromatic variants of the Erdős–Szekeres problem have recently been studied
by Devillers, Hurtado, Károly, and Seara [10]. They proved among other results
that any bichromatic point set contains at least n

4 − 2 compatible monochromatic
empty triangles. Aichholzer et al. [1] proved that any bichromatic point set always
contains Ω(n5/4) empty monochromatic triangles; this bound was improved by Pach
and Tóth [20] to Ω(n4/3).

2 Sets of Edge-Disjoint Empty Triangles in Point Sets

Let P be a set of points in the plane, and let δ (P) be the size of the largest set of
edge-disjoint empty triangles of the complete graph K(P) on P. In this section we
study the following problem:

Problem 1. How small can δ (P) be?

We show that if P is a Horton set, then δ (P) is O(n logn). By Kirkman’s result,

for points in convex position with n = 6k+ 1 and n = 6k+ 3, δ (P) is
(n

3)
3 .

For any integer k ≥ 1, Horton [15] recursively constructed a family of point sets
Hk of size 2k as follows:

(a) H1 = {(0,0),(1,0)}.
(b) Hk consists of two subsets of points H−

k−1 and H+
k−1 obtained from Hk−1 as

follows: If p = (i, j) ∈Hk−1, then p′= (2i, j) ∈H−
k−1 and p′′ = (2i+1, j+dk)∈

H+
k−1

H−
k−1

Fig. 1 H4. The edges of H+
3 (respectively, H−

3 ) visible from below (respectively, above), are
shown
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H+
k−1. The value dk is chosen large enough such that any line � passing through

two points of H+
k−1 leaves all the points of H−

k−1 below it; see Fig. 1.

We say that a line segment pq joining two elements p and q of Hk is visible from
below (respectively, above) if there is no point of Hk below it (respectively, above it);
that is there is no element r of Hk such that the vertical line through r intersects pq
above r (respectively, below r). Let B(Hk) be the set of line segments of Hk visible
from below. The following result, which we will use later, was proved by Bárány
and Valtr in [2]; see also [3]:

Lemma 1. |B(Hk)|= 2k+1− (k+ 2).

The following result is proved in [3] by using this lemma:

Theorem 1. For every n= 2k, k≥ 1, there is a point set (namely, Hk) such that there
is a geometric graph on Hk with

(n
2

)
−O(n logn) edges with no empty triangles.

In other words, it is always possible to remove O(n logn) edges from the
complete graph KHk in such a way that the remaining graph contains no empty
triangles. The main idea is that by removing from KHk all the edges of H+

k−1
(respectively, H−

k−1) visible from below (respectively, above), no empty triangle
remains with vertices in both H+

k−1 and H−
k−1.

Observe now that if a geometric graph has k edge-disjoint empty triangles, then
we need to take at least k edges away from G for the graph that remains to contain no
empty triangles. It follows now that the complete graph KHk has at most O(n logn)
edge-disjoint empty triangles. Thus, we have proved

Theorem 2. There is a point set, namely, Hk, such that any set of edge-disjoint
empty triangles of Hk contains at most O(n logn) elements.

Clearly, for any point set P, the size of the largest set of edge-disjoint triangles
of P is at least linear. We conjecture

Conjecture 1. Any point set P in general position always contains a set with at least
O(n logn) edge-disjoint empty triangles.

3 Covering the Triangles of Point Sets with Triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of
the faces of T is t. In this section, we consider the following problem:

Problem 2. How many triangulations of a point set are needed such that each
empty triangle of P is covered by at least one triangulation?

This problem, which is interesting in its own right, will help us in finding point
sets for which δ (P) is large. We start by studying Problem 2 for point sets in convex
position, and then for point sets in general position.
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3.1 Points in Convex Position

All point sets P considered in this subsection will be assumed to be in convex
position, and their elements labeled {p0, . . . , pn−1} in counterclockwise order
around the boundary of CH(P). Since any triangulation of a point set of n points in
convex position corresponds to a triangulation of a regular polygon with n vertices,
solving Problem 2 for point sets in convex position is equivalent to solving it for
point sets whose elements are the vertices of a regular polygon. Suppose then that P
is the set of vertices of a regular polygon and that c is the center of such a polygon.

A triangle is called an acute triangle if all of its angles are smaller than π
2 . We

recall the following result in elementary geometry given without proof.

Observation 1. A triangle with vertices in P is acute if and only if it contains c in
its interior.

The following result is relatively well known.

Lemma 2. Let P be the set of vertices of a regular n-gon Q and c the center of Q.
Then

• If n is even, c is contained in the interior of 1
4

[(n
3

)
− n(n−2)

2

]
acute triangles of P.

• If n is odd, c is contained in
[(n

3

)
− n(n−1)(n−3)

8

]
= 1

4

[(n
3

)
+

n(n−1)
2

]
acute

triangles of P.

Let f (n) = 1
4

[(n
3

)
+ n(n−2)

2

]
for n even and f (n) = 1

4

[(n
3

)
+ n(n−1)

2

]
for n odd.

We now prove

Theorem 3. f (n) triangulations are always sufficient, and always necessary, to
cover all the triangles of a regular polygon.

Proof. Suppose first that n is even. For each vertex pi of P, let α(pi) = pi+ n
2

be the antipodal vertex of pi in P, where addition is taken mod n. Suppose that
Δ(pi, p j, pk) is an acute triangle of P (i.e., it contains c in its interior), i < j < k. Let
t4(i, j,k) be the following set of four triangles:

t4(i, j,k) = {Δ(pi, p j, pk),Δ(α(pi), p j, pk),Δ(pi,α(p j), pk),Δ(pi, p j,α(pk))};

see Fig. 2a.
It is easy to see that all the triangles of P except those that have a right angle

are in ⋃
t4(i, j,k),

where i, j,k range over all triples such that Δ(pi, p j, pk) contains c in its interior.
On the other hand, it is easy to see that if a triangle t of P contains c in the middle

of one of its edges (clearly, t is a right triangle), this edge joins two antipodal vertices
of P; see Fig. 2b). Thus, we have exactly
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c
c

baFig. 2 (a) Constructing
t4(i, j,k), and (b) pairing
triangles sharing an edge,
which contains c in the
middle

n
2
× (n− 2)

such triangles. It is easy to find
n(n− 2)

4
triangulations of P such that each of them cover two of these triangles. Since each
triangulation of P contains exactly one acute triangle of P or two triangles sharing
an edge that contains c at its middle point, it follows that

1
4

[(
n
3

)
− n(n− 2)

2

]
+

n(n− 2)
4

=
1
4

[(
n
3

)
+

n(n− 2)
2

]
triangulations are necessary and sufficient to cover all the triangles of P. To show
that this number of triangulations is needed, we point out that any two acute triangles
of P cannot belong to the same triangulation (note that they intersect at c). Moreover,
these triangulations are different from those containing right triangles. Our result
follows.

A similar argument follows for n odd, except that some extra care has to be paid
to the way in which we group the nonacute triangles of P around the acute triangles
of P. ��

Thus, the number of triangulations needed to cover all the triangles of P is
asymptotically

(n
3

)
/4. The next result follows trivially.

Corollary 1. Let P be a set of n points in convex position and p any point in the

interior of CH(P). Then p belongs to the interior of at most
(n

3)
4 +O(n2) triangles

of P.

3.2 Covering the Empty Triangles on the Horton Set

We will now show that all the empty triangles in Hk can be covered with O(n logn)
triangulations. The bound is tight.
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Depth = 3 Depth = 2 Depth = 1

Depth = 0

Fig. 3 The depth of an edge

Consider an edge e of Hk that is visible from below, and a vertical line � that
intersects e at a point q in the interior of e. The depth of e is the number of edges
of Hk, visible from below, intersected by � below q. It is not hard to see that the
maximal depth of an edge of Hk visible from below is at most logn−1 and that this
bound is tight; see Fig. 3. Moreover, it is easy to see that the union of all edges of
Hk with the same depth is an x-monotone path. Now we can prove

Theorem 4. Θ(n logn) triangulations of Hk are necessary and sufficient to cover
the set of empty triangles of Hk.

Proof. Consider the sets H+
k−1 and H−

k−1. We will show how to cover all the
empty triangles of Hk with two vertices in H+

k−1 and one in H−
k−1 with O(n logn)

triangulations. Label the elements of H−
k−1 from left to right as p0, . . . , p n

2−1.

For each 0 ≤ d ≤ k− 1, proceed as follows: For every p j ∈ H−
k−1, join p j to the

endpoints of all the edges of H+
k−1 of depth d. This gives us a set ID+

d, j of interior-

disjoint empty triangles. It is not hard to see that if (d, j) �= (d′, j′), then ID+
d, j ∩

ID+
d′, j′ = /0.
It is easy to see that the union of these sets covers all the empty triangles with

two vertices in H+
k−1 and one in H−

k−1. In a similar way, cover all the triangles with
two vertices in H−

k−1, and one in H+
k−1 with a family of sets ID−d, j.

Let �1 be the straight line connecting the leftmost point in H+
k−1 to the rightmost

point in H−
k−1, and �2 the straight line that connects the rightmost point in H+

k−1 with
the leftmost point of H−

k−1. Let q be a point slightly above the intersection point of
�1 with �2.

It is clear that for each ID+
d, j there is exactly one empty triangle that contains q in

its interior. This implies that q is contained in Ω(n logn) empty triangles, and thus
Ω(n logn) triangulations are necessary to cover all the empty triangles in Hk.

Now we show that O(n logn) of Hk triangulations are sufficient. Consider each
set ID+

d, j and ID−d, j, and complete it to a triangulation. This gives us O(n logn)

triangulations that cover all the triangles with vertices in both H+
k−1 and H−

k−1.
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Take a set of triangulations T +
k−1 = {T+

1 , . . . ,T+
m } of H+

k−1 that covers all of
its empty triangles. Since H+

k−1 and H−
k−1 are isomorphic, we can find a set of

triangulations T −k−1 = {T−1 , . . . ,T−m } of H−
k−1 that covers all the empty triangles of

H−
k−1 such that T+

i is isomorphic to T−i . For each i, we can find a triangulation Ti of
Hk that contains T+

i and T−i as induced subgraphs.
Thus, if T (n) is the number of triangulations required to cover the empty triangles

of Hk, the following recurrence holds for n = 2k:

T (n) = T
(n

2

)
+O(n logn).

This solves to T (n) = O(n logn), and our result follows. ��

We conclude this section with the following conjecture.

Conjecture 2. At least Ω(n logn) triangulations are needed to cover all the empty
triangles of any point set with n points.

4 A Point in Many Edge-Disjoint Triangles

The problem of finding a point contained in many triangles of a point set was solved
by Boros and Füredi [4]; see also Bukh [6]. They proved

Theorem 5. For any set P of n points in general position, there is a point in the
interior of the convex hull of P contained in 2

9

(n
3

)
+O(n2) triangles of P. The bound

is tight.

We now study a variant to this problem, in which we are interested in finding a point
in many edge-disjoint triangles. We consider the following.

Problem 3. Let P be a set of points in the plane in general position, and q �∈ P a
point of the plane. What is the largest number of edge-disjoint triangles of P such
that q belongs to the interior of all of them?

We start by giving some preliminary results, and then we study Problem 3 for
point sets in general position and sets of vertices of regular polygons.

Given a point set P, and a point q not in P, let T (P,q) [or T (q) for short] be the
set of triangles of P that contain q. We define the graph G(P,q) whose vertex set is
T (q) in which two triangles are adjacent if they share an edge; see Fig. 4. We may
assume that q does not belong to any line passing through two elements of P. We
now prove

Lemma 3. The degree of every vertex of G(P,q) is exactly n− 3.

Proof. Let Δ(x,y,z) be a triangle that contains q in its interior. Let p be any point
in P \ {x,y,z}. Then exactly one of the triangles Δ(x,y, p), Δ(x, p,z), or Δ(p,y,z)
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q

p0

p1

p2

p3

p4

Δ(p0,p1,p3) Δ(p0,p1,p2)

Δ(p0,p1,p4)Δ(p0,p3,p4)

Fig. 4 G(P,q)

q

x

y

z

p

Fig. 5

contains q; see Fig. 5. That is, exactly one of Δ(x,y, p), Δ(x, p,z), or Δ(p,y,z)
belongs to T (q). Our result follows. ��

Observe now that finding sets of edge-disjoint triangles that contain q is
equivalent to finding independent sets in G(P,q). Let τ(P,q) (or τ(q) for short) be
the largest number of edge-disjoint triangles on P containing q. We now prove

Lemma 4.
|T (q)|
n− 2

≤ τ(q)≤ 3|T (q)|
n

.

Proof. It follows from Lemma 3 that the size of the largest independent set of
G(P,q) is at least |T (q)|

n−2 . To prove our upper bound, it is sufficient to observe that if
a vertex of G(P,q) is not in an independent set I of G(P,q), then it is adjacent to at
most three vertices in it, one per each of its edges. Hence, by counting the number
of edges connecting a vertex in I to another in T (q)\ I, we obtain

(n− 3)|I| ≤ 3|T (q)\ I|.

Our result follows. ��

From Theorem 5 and Lemma 4, it is easy to see that in any set of n points in general
position on the plane, there is a point q such that

n2

27
+O(n)≈

2
9

(n
3

)
+O(n2)

n− 2
≤ τ(q)≤

3 · 2
9

(n
3

)
+O(n2)

n
≈ n2

9
+O(n).
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Fig. 6 Partitions of P

Thus, we have

Corollary 2. For any point set in general position on the plane, there is a point q
such that τ(q)≤ n2

9 +O(n).

We now prove an even stronger result. We now prove

Proposition 1. Let P a set of n points in general position on the plane. Then for
any point q /∈ P of the plane, τ(q)≤ n2/9.

Proof. Let q /∈ P be any point of the plane. If q is on a straight line passing through
two elements of P, then by slightly moving it, q could be moved to a position in
which it is contained in more edge-disjoint triangles. Thus, assume that q is not on
any straight line through two elements of P.

First, we show the following lemma:

Lemma 5. There exist three straight lines passing through q such that they partition
P into six subsets P0,P1, . . . ,P5 in counterclockwise order around q, with |P0| =
|P2|= |P4| (we allow the possibility that Pi = /0 for some i).

Proof. Let l0 be a straight line passing through q such that one of the half-planes
bounded by l0, say the one on top of it, contains an even number of elements of P.
Take other straight lines l1 and l2 passing through q, and define the subsets Pi of P,
0 ≤ i≤ 5, as shown in Fig. 6a, where |P0∪P1∪P2| is even. Let l∗ be a straight line
passing through q, equipartitioning the elements of P0∪P1∪P2.

Choose l1 and l2 such that initially |P0|= |P2|= |P3|= |P5|= 0. From their initial
positions, rotate l1 counterclockwise and l2 clockwise around q in such a way that
P0 and P2 always contain the same number of elements, and until they both reach
the position of l∗ at the same time, and the boundary of P4 always contains no more
than one element of P.

Initially, |P4| ≥ 0 = |P0|. On the other hand, we have |P4|= 0≤ |P0| when l1 and
l2 reach the position of l∗. Hence, at some point while rotating l1 and l2, we have
that |P0|= |P2|= |P4|; see Fig. 6b. ��
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Fig. 7 Triangles in the Ti jk’s

Let P0,P1, . . . ,P5 be as in Lemma 5. Write |Pi| = ni for 0 ≤ i≤ 5 (we have n0 =
n2 = n4). We henceforth read indices modulo 6. Let T be a set of edge-disjoint
triangles with vertices in P, containing q in its interior. For integers i, j,k, let Ti jk

denote the set of elements of T such that it has one vertex in Pi, another in Pj and
the other in Pk, and let ti jk = |Ti jk|; see Fig. 7.

Then

T=
[
∪5

i=0Tii(i+3)

]
∪
[
∪5

i=0Ti(i+1)(i+3)

]
∪
[
∪5

i=0Ti(i+1)(i+4)

]
∪
[
∪5

i=0Ti(i+2)(i+4)

]
=
[
∪5

i=0Tii(i+3)

]
∪
[
∪5

i=0Ti(i+2)(i+5)

]
∪
[
∪5

i=0Ti(i+2)(i+3)

]
∪
[
∪5

i=0Ti(i+2)(i+4)

]
.

For integers i, j, let Ei j denote the set of all segments connecting an element of
Pi and another of Pj. Then for each integer i, |Ei(i+2)| = nini+2 and Ti(i+2)(i+3) ∪
Ti(i+2)(i+4) ∪ Ti(i+2)(i+5) is the set of elements of T that has a side belonging to
Ei(i+2). Hence, we have

f (i) ≡ ti(i+2)(i+3) + ti(i+2)(i+4)+ ti(i+2)(i+5) ≤ nini+2 (1)

for each i. Similarly, by considering the cardinality of Ei(i+3), we obtain

g(i) ≡ 2tii(i+3) + ti(i+1)(i+3)+ ti(i+2)(i+3)

+2ti(i+3)(i+3)+ ti(i+3)(i+4) + ti(i+3)(i+5) ≤ nini+3 (2)

for each i. By (1) and (2), we have

5

∑
i=0

f (i)+ 2
2

∑
i=0

g(i)≤
5

∑
i=0

nini+2 + 2
2

∑
i=0

nini+3. (3)

Since g(i) = (ti(i+2)(i+3) + t j( j+2)( j+3)) + (t j′( j′+2)( j′+5) + t j′′( j′′+2)( j′′+5)) +
2(tii(i+3) + t j j( j+3)), where j = i+ 3, j′ = i+ 1, j′′ = j′+ 3,

5

∑
i=0

f (i)+ 2
2

∑
i=0

g(i) =
5

∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+4)+ ti(i+2)(i+5))

+2
5

∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+5))+ 4
5

∑
i=0

tii(i+3)

= 3|T |+
5

∑
i=0

tii(i+3) ≥ 3|T |. (4)
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Fig. 8 A vertex set of a regular 27-gon

On the other hand, if we denote the right-hand side of (3) by S,

S = (n0n2 + n2n4 + n4n0)+ (n1n3 + n3n5 + n5n1)

+2(n0n3 + n2n5 + n4n1)

=
l2

3
+

2lm
3

+(n1n3 + n3n5 + n5n1), (5)

where l = n0+n2+n4 (recall that n0 = n2 = n4) and m = n1+n3+n5. Since n1n3+
n3n5 +n5n1 = [m2− (n2

1 +n2
3 +n2

5)]/2 and since n2
1 +n2

3 +n2
5 ≥ m2/3 with equality

if and only if n1 = n3 = n5, we have n1n3 +n3n5 +n5n1 ≤m2/3. From this and (5),
it follows that

S≤ l2

3
+

2lm
3

+
m2

3
=

(l +m)2

3
=

n2

3
. (6)

Now combining (3), (4) and (6), we obtain |T | ≤ n2/9, as desired. ��

To achieve the equality, it is necessary that n0 = n2 = n4 and n1 = n3 = n5 for
some partition (Fig. 8).

We now prove

Proposition 2. Let n be a positive integer and P a set of n points in general position
on the plane. Then there exists a point q on the plane such that τ(q)≥ n2

12 .

Proof. We use the following lemma, which was proved by Ceder [7] (see also [5])
and applied by Bukh [6] to obtain a lower bound of maxq |T (q)| for given P:

Lemma 6. There exist three straight lines such that they intersect at a point q and
partition the plane into six open regions each of which contains at least n/6− 1
elements of P.
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Fig. 9 Matching Mi (bold
lines) and triangles using
edges of Mi

Let q be as in Lemma 6. We may assume that q is not on any straight line passing
through two elements of P. Let m = �n/6�−1 and denote by D0,D1, . . . ,D5 the six
regions in counterclockwise order around q. For each 0≤ i≤ 5, let Pi be a subset of
P∩Di with |Pi|= m; see Fig. 9.

Now consider the geometric complete bipartite graph with vertex set P0∪P3 and
edge set E = {pp′ | p ∈ P0, p′ ∈ P3}. As a consequence of a well-known result in
graph theory, E can be decomposed into m subsets Mi, 0 ≤ i ≤ m− 1, such that
each Mi is a perfect matching, i.e., consisting of m independent edges. Let P1 =
{s1,s2, . . . ,sm} and P4 = {t1, t2, . . . , tm}. For each i and each element e = pp′ ∈Mi,
where p∈P0 and p′ ∈P3, let ui denote either si or ti according to whether pp′ ∩D1 =
/0 or pp′ ∩D4 = /0. Then�(p, p′,ui) contains q in its interior. Observe that all of the
m triangles in Ti = {�(p, p′,ui) |e = pp′ ∈Mi} are edge-disjoint, and all of the m2

triangles in T03 = ∪m
i=0Ti are edge-disjoint as well.

Define the sets T14 and T25 of triangles similarly (the elements of T14 are triangles
with one vertex in P1, another in P4, and the other in P2∪P5, while the elements of
T25 are triangles with one vertex in P2, another in P5, and the other in P3 ∪P0). It
can be observed that all of the 3m2 = n2/12−O(n) triangles in T03∪T14 ∪T25 are
edge-disjoint. ��

Thus by using Corollary 2, Proposition 1, and Proposition 2, we have

Theorem 6. In any point set in general position, there is a point q such that n2

12 ≤
τ(q)≤ n2

9 . Moreover, for any q, τ(q)≤ n2

9 .

4.1 Regular Polygons

By Theorem 6, any point in the interior of the convex hull of a point set is contained
in at most n2/9 edge-disjoint triangles of P. It is also easy to construct point sets
for which that bound is tight; see Fig. 8a). In fact, the point sets in that figure can be
chosen in convex position.
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Fig. 10 (a) The triple (1,2,3), and p0 determine Δ(p0 , p2, p5). (b) S(1,2,3) is obtained by rotating
Δ(p0, p2, p5), obtaining a set of 9 edge-disjoint triangles

We now show that the bound in Theorem 6 is also achieved when P is the set
of vertices of a regular polygon. We found proving this result to be a challenging
problem. In what follows, we will assume that n = 9m, m≥ 1.

Let (ai,bi,ci) be an ordered set of integers. We call (ai,bi,ci) a triangular triple
if it satisfies the following conditions:

(a) ai, bi, and ci are all different,
(b) ai + bi+ ci = n− 3, and
(c) 1≤ ai,bi,ci ≤ n−3

2 .

Observe that for any vertex pr of P, a triangular triple (ai,bi,ci), defines a
triangle Δ(pr, pr+ai+1, pr+ai+bi+2) of P. Moreover, condition c) above ensures that
Δ(pr, pr+ai+1, pr+ai+bi+2) is acute, and hence it contains the center c of P. Note
that since ai + bi + ci = n− 3, pr = pr+ai+bi+ci+3, addition taken mod n. Thus, the
edges of Δ(pr, pr+ai+1, pr+ai+bi+2) skip ai, bi, and ci vertices of P, respectively; see
Fig. 10a.

Let S(ai,bi,ci) = {Δ(pr, pr+ai+1, pr+ai+bi+2) : pr ∈ P}. The set S(ai,bi,ci) can be
seen as the set of triangles obtained by rotating Δ(p0, p0+ai+1, p0+ai+bi+2) around
the center of P; see Fig. 10b. The next observation will be useful.

Observation 2. Let (ai,bi,ci) and (a j,b j,c j) be triangular triples of P such that
{ai,bi,ci} ∩ {a j,b j,c j} = /0, i �= j. Then all of the triangles in S(ai,bi,ci) ∪
S(a j,b j,c j) are edge-disjoint.

Consider a set C = {(a0,b0,c0), . . . ,(ak−1,bk−1,ck−1)} of ordered triangular
triples. We say that C is a generating set of triangular triples if the following
condition holds:

{ai,bi,ci}∩{a j,b j,c j}= /0, i �= j.
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(4, 8, 12)
(5, 9, 10)
(6, 7, 11)

(10, 22, 28)
(11, 20, 29)
(12, 18, 30)
(13, 23, 24)
(14, 21, 25)
(15, 19, 26)
(16, 17, 27)

(13, 29, 36)
(14, 27, 37)
(15, 25, 38)
(16, 23, 39)
(17, 30, 31)
(18, 28, 32)
(19, 26, 33)
(20, 24, 34)
(21, 22, 35)

(16, 36, 44)
(17, 34, 45)
(18, 32, 46)
(19, 30, 47)
(20, 28, 48)
(21, 37, 38)
(22, 35, 39)
(23, 33, 40)
(24, 31, 41)
(25, 29, 42)
(26, 27, 43)

( 7, 15, 20)
( 8, 13, 21)
( 9, 16, 17)
(10, 14, 18)
(11, 12, 19)

Fig. 11 Triangular triples for n = 27,45,63,81 and 99

Note that |S(ai,bi,ci)|= n, and thus⋃
(ai,bi,ci)∈C

S(ai,bi,ci)

contains nk edge-disjoint triangles containing the center P. Our task is now that of
finding a generating set of as many triangular triples as possible.

Theorem 7. Let P be the set of vertices of a regular polygon with n = 9m vertices,
and let c be its center. Then if m is odd, then |τ(c)| ≥ n2

9 , and if m is even, then

|τ(c)| ≥ n2

9 − n.

Proof. The proof when m is odd proceeds by constructing a generating set C with n
9

triangular triples. Let k = 9m−3
6 and k′ = k+2m−1. Given i ∈ {0,1, . . . ,m−1}, we

define the ith ordered triple (ai,bi,ci) as follows (see Fig. 11):

ai = k+ i,

bi =

{
k′ − 2i− 1 if i < m−1

2 ,

k′ − 2i+m− 1 if i≥ m−1
2 ,

ci =

{
k′+ i+ 1+ m+1

2 if i < m−1
2 ,

k′+ i+ 1− m−1
2 if i≥ m−1

2 .

We now prove that the triples (ai,bi,ci) are triangular; that is, ai+bi+ci = n−3.
Since bi + ci = 2k′ − i+ m+1

2 for all i,

ai + bi+ ci = k+ 2k′+
m+ 1

2
= 9m− 3.
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c

a bFig. 12 (a) Triangular triples
(ai,bi,ci) for n = 9 ·3 = 27
and (b) triples (a′i,b

′
i,c
′
i) =

(ai−3,bi−3,ci−3) for
n = 9 ·2 = 18

It is easy to see that

k ≤ ai ≤ k+m− 1,
k+m = k′ −m+ 1≤ bi ≤ k′,

k′+ 1≤ ci.

Therefore, ai < b j < ck for every i, j,k. Also, by construction it can be verified that
ai �= a j, bi �= b j, and ci �= c j for every i �= j.

Thus, the set
⋃

(ai,bi,ci)∈C

{ai,bi,ci} contains no repeated elements.

Finally, note that the maximum value that can be reached by ci occurs when
i = m−3

2 , and thus,

ci ≤ k′+ 1+
m− 3

2
+

m+ 1
2

= k′+m =
9m− 3

2
.

Therefore, C is a generating set of triangular triples. Thus, c is contained in at
least n2

9 edge-disjoint triangles.
The proof when m is even proceeds by also constructing a set of m triples. We

use the set of triples just constructed for m+ 1 and modify it as follows: Suppose
that the set of m+ 1 triples is {(a0,b0,c0), . . . ,(am,bm,cm)}.

Let a′i = ai− 3, b′i = bi− 3, and c′i = ci− 3, and consider C′ = {(a′i,b′i,c′i) | 0 ≤
i≤ m}. C′ induces a set of triangles in P. Nevertheless, 2n triangles do not contain
the point c in their interior; see Fig. 12. Therefore, this construction guarantees that
c is contained in at least (m+ 1)n− 2n= n2

9 − n edge-disjoint triangles. ��

5 A Point in Many Edge-Disjoint Empty Triangles

We conclude our chapter by briefly studying the problem of the existence of a point
contained in many edge-disjoint empty triangles of a point set. We point out that if
we are interested only in empty triangles containing a point, it is easy to see that



On Edge-Disjoint Empty Triangles of Point Sets 99

for any point set P, there is always a point q contained in a linear number of (not
necessarily edge-disjoint) empty triangles. This follows directly from the following
facts:

1. Any point set P with n elements always determines at least a quadratic number
of empty triangles [2, 16].

2. We can always choose 2n−c−2 points in the plane such that any empty triangle
of P contains one of them, where c is the number of vertices of the convex hull
of P; see [8, 16].

We now prove

Theorem 8. There are point sets P such that every q /∈ P is contained in at most a
linear number of empty edge-disjoint triangles of P.

Proof. Let Hk, H+
k−1, and H−

k−1 be as defined in Sect. 2. Consider any set T+
k

(respectively, T−k ) of empty edge-disjoint triangles such that each of them has two
vertices in H+

k−1 (respectively, H−
k−1) and the other in H−

k−1 (respectively, H+
k−1). Let

t ∈ T+
k . Then the edge of t with both endpoints in H+

k−1 is an edge of H+
k−1 visible

from below. Since the triangles in T+
k are edge-disjoint, the number of elements of

T+
k is at most the number of edges of H+

k−1 visible from below, which is a linear
function in n. Thus, |T+

k | ∈ O(n). Similarly, we can prove that |T−k | ∈O(n).
Consider a point q ∈ CH(Hk) \ CH(H+

k−1) ∪ CH(H−
k−1). Clearly, any empty

triangle containing q belongs to some T+
k ∪ T−k , and thus it belongs to at most a

linear number of edge-disjoint triangles of Hk.
Suppose next that q∈CH(H+

k−1)∪CH(H−
k−1). Suppose without loss of generality

that q ∈ CH(H+
k−1) and that q belongs to a set S of edge-disjoint triangles of Hk. S

may contain some triangles with vertices in both of H+
k−1 and H−

k−1. There are at
most a linear number of such triangles. The remaining elements in S have all of their
vertices in H+

k−1. Thus, the number of edge-disjoint triangles containing q satisfies

T (n)≤ T
(n

2

)
+Θ(n),

and thus q belongs to at most a linear number of edge-disjoint triangles.
The first part of our result follows. To show that our bound is tight, let q be as

in the proof of Theorem 4. It is easy to see that q belongs to a linear number of
triangles with vertices in both H+

k and H−
k , and our result follows. ��

We conclude with the following.

Conjecture 3. Let P be a set of n points in general position on the plane. Then
there is always a point q /∈ P on the plane such that it is contained in at least logn
edge-disjoint triangles of P.
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theorem. Comput. Geom. Theor. Appl. 26(3), 193–208 (2003)
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Universal Sets for Straight-Line Embeddings
of Bicolored Graphs
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Abstract A set S of n points is 2-color universal for a graph G on n vertices if, for
every proper 2-coloring of G and for every 2-coloring of S with the same sizes of
color classes as G, G is straight-line embeddable on S.

We show that the so-called double-chain is 2-color universal for paths if each of
the two chains contains at least one fifth of all the points, but not if one of the chains
is more than approximately 28 times longer than the other.

A 2-coloring of G is equitable if the sizes of the color classes differ by at most 1.
A bipartite graph is equitable if it admits an equitable proper coloring. We study the
case when S is the double-chain with chain sizes differing by at most 1 and G is an
equitable bipartite graph. We prove that this S is not 2-color universal if G is not a
forest of caterpillars and that it is 2-color universal for equitable caterpillars with at
most one half nonleaf vertices. We also show that if this S is equitably 2-colored,
then equitably properly 2-colored forests of stars can be embedded on it.
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11800 Prague, Czech Republic
e-mail: cibulka@kam.mff.cuni.cz; ruda@kam.mff.cuni.cz
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1 Introduction

1.1 Previous Results

It is frequently asked in geometric graph theory whether a given graph G can be
drawn without edge crossings on a given planar point set S under some additional
constraints on the drawing. In this chapter, we always assume |V (G)|= |S|.

One possibility is to prescribe a fixed position for each vertex of G. If the edges
are allowed to be arbitrary curves, then we can obtain a planar drawing of an
arbitrary graph G by moving vertices from an arbitrary planar drawing of G to the
given points. Pach and Wenger showed [17] that every planar G with prescribed
vertex positions can be drawn so that each edge is a piecewise-linear curve with
O(n) bends and that this bound is tight even if G is a path.

In another setting, we are only given the graph G and the set of points S, but we
are allowed to choose the mapping between V (G) and S. Kaufmann and Wiese [15]
showed that two bends per edge are then always enough and for some graphs
necessary. An outerplanar graph is a graph admitting a planar drawing where one
face contains all vertices. By a result of Gritzmann et al. [11], outerplanar graphs are
exactly the graphs with a straight-line planar drawing on an arbitrary set of points
in general position.

In this chapter, we are dealing with a combination of these two versions.
The vertices and points are colored with two colors and each vertex has to be placed
on a point of the same color. An obvious necessary condition to find such a drawing
is that each color class has the same number of vertices as points. We then say that
the 2-coloring of S is compatible with the 2-coloring of V (G).

A caterpillar is a tree in which the nonleaf vertices induce a path. The coloring
of V (G) is proper if it doesn’t create any monochromatic edge. It is known that
drawing some bicolored planar graphs on some bicolored point sets requires at least
Ω(n) bends per edge [9], but caterpillars can be drawn with two bends per edge [9],
and one bend per edge is enough for paths [10] and properly colored caterpillars [9].

We restrict our attention to the proper 2-colorings of a bipartite graph G. Then
the question of the embeddability of G on a bicolored point set is very similar to
finding a noncrossing copy of G in a complete geometric graph from which we
removed edges of the two complete subgraphs on points of the two color classes.
The only difference is that in the latter case, we can swap colors on some connected
components of G. A related question was posed by Micha Perles in the DIMACS
Workshop on Geometric Graph Theory in 2002. He asked what the maximum
number h(n) is such that if we remove arbitrary h(n) edges from a complete
geometric graph on an arbitrary set of n points in general position, we can still
find a noncrossing Hamiltonian path. Černý et al. [6] showed that h(n) = Ω(

√
n)

and also that it is safe to remove the edges of an arbitrary complete graph on
Ω(
√

n) vertices and that this bound is asymptotically optimal. Aichholzer et al. [3]
summarize history and results of this type also for graphs different from the path.
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It is thus impossible to find a noncrossing Hamiltonian alternating (that is, prop-
erly colored) path (NHAP for short) on some bicolored point sets. Kaneko et al. [14]
proved that the smallest such point set has 16 points if we allow only an even number
n of points and 13 for arbitrary n.

Several sufficient conditions are known under which a bicolored point set admits
an NHAP. An NHAP exists whenever the two color classes are separable by a
line [1] or if one of them is composed of the points of the convex hull of S [1].

The result on sets with color classes separable by a line readily implies that any
2-colored set S with each color class of size n/2 admits a noncrossing alternating
path (NAP) on at least n/2 points of S. It is an open problem if this lower bound
can be improved to n/2+ f (n), where f (n) is unbounded (see also Sect. 9.7 of the
book [5]). On the other hand, there are such 2-colored sets admitting no NAP of
length more than ≈ 2n/3 [2, 16]. This upper bound is proved for certain colorings
of points in convex position. The above general lower bound n/2 can be slightly
improved for sets in convex position [12, 16]; the best bound is currently n/2+
Ω(
√

n) by Hajnal and Mészáros [12].
The main result of this chapter is that some point sets contain an NHAP for any

equitable 2-coloring of their points. We call such point sets 2-color universal for
a path.

See the survey of Kaneko and Kano [13] for more results on embedding graphs
on bicolored point sets. One of the results mentioned in the survey is the possibility
to embed some graphs with a fixed 2-coloring on an arbitrary compatibly 2-colored
point set. Let G be a forest of stars with centers colored black and leaves white,
and let S be a 2-colored point set. If we map the centers of stars arbitrarily and then
we map the leaves so that the sum of lengths of edges is minimized, then no two
edges cross.

Previously, a different notion of universality was considered in the context of
embedding colored graphs on colored point sets. A k-colored set S of n points
is universal for a class G of graphs if every (not necessarily proper) coloring of
vertices of G∈ G on n vertices admits an embedding on S. Brandes et al. [4] find, for
example, universal k-colored point sets for the class of caterpillars for every k ≤ 3.

1.2 Our Results

A convex or a concave chain is a finite set of points in the plane lying on the graph of
a strictly convex or a strictly concave function, respectively. A double-chain (C1,C2)
consists of a convex chain C1 and a concave chain C2 such that each point of C2

lies strictly below every line determined by C1, and similarly, each point of C1 lies
strictly above every line determined by C2 (see Fig. 1). Double-chains were first
considered in [8].

The size of a chain Ci is the number |Ci| of its points. Note that we allow different
sizes of the chains C1 and C2. If the sizes |C1|, |C2| of the chains differ by at most 1,
we say that the double-chain is balanced.
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C1

C2

Fig. 1 An equitable
2-coloring of a double-chain
(C1,C2)

We consider only 2-colorings and we use black and white as the colors.
A 2-coloring of a set S of n points in the plane is compatible with a 2-coloring
of a graph G on n vertices if the number of black points of S is the same as the
number of black vertices in G. This implies the equality of numbers of white points
and white vertices as well.

A graph G with 2-colored vertices is embeddable on a 2-colored point set S if the
vertices of G can be mapped to the points of S so that the colors match and no two
edges cross if they are drawn as straight-line segments.

A set S of points is 2-color universal for a bipartite graph G if, for every proper
2-coloring of G and for every compatible 2-coloring of S, G is embeddable on S.

If the properly colored path on n vertices, Pn, can be embedded on a 2-colored set
S of n points, then we say that S has an NHAP (noncrossing Hamiltonian alternating
path).

A 2-coloring of a set S of n points is equitable if it is compatible with some proper
2-coloring of Pn, that is, if the sizes of the two color classes differ by at most 1.

Section 2 contains the proof of the following theorem.

Theorem 1. Let (C1,C2) be a double-chain satisfying |Ci| ≥ 1/5(|C1|+ |C2|) for
i = 1,2. Then (C1,C2) is 2-color universal for Pn, where n = |C1|+ |C2|. Moreover,
an NHAP on an equitably colored (C1,C2) can be found in linear time.

Note that this doesn’t always hold if we don’t require the coloring of the path to
be proper. For example, if we color first two vertices of P4 black and the other two
white, then it cannot be embedded on the double-chain with both chains of size 2 if
the two black points are the top left one and the bottom right one.

In Sect. 3, we show that double-chains with highly unbalanced sizes of chains do
not admit an NHAP for some equitable 2-colorings.

Theorem 2. Let (C1,C2) be a double-chain, and let C1 be periodic with the
following period of length 16: 2 black, 4 white, 6 black, and 4 white points.
If |C1| ≥ 28(|C2|+ 1), then (C1,C2) has no NHAP.

An equitable coloring of a graph is a coloring where the sizes of any two color
classes differ by at most 1. A bipartite graph is equitable if it admits a proper
equitable 2-coloring.

Section 4 mainly studies other graphs for which the balanced double-chain is
2-color universal.
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Theorem 3. The balanced double-chain is 2-color universal for equitable
caterpillars with at least as many leaves as nonleaf vertices.

If a forest of stars is 2-colored equitably and properly, then it can be embedded
on every compatibly 2-colored balanced double-chain.

If the balanced double-chain is 2-color universal for an equitable bipartite graph
G, then G is a forest of caterpillars.

We also present examples of equitable bipartite planar graphs for which no set of
points is 2-color universal.

2 Proof of Theorem 1

The main idea of our proof is to cover the chains Ci by a special type of pairwise
non-crossing paths, so called hedgehogs, and then to connect these hedgehogs into
an NHAP by adding some edges between C1 and C2.

2.1 Notation Used in the Proof

For i = 1,2, let bi be the number of black points of Ci and let wi := |Ci|− bi denote
the number of white points of Ci.

Since the coloring is equitable, we may assume that b1 ≥ w1 and w2 ≥ b2. Then
black is the major color of C1 and the minor color of C2, and white is the major
color of C2 and the minor color of C1. Points in the major color, i.e., black points
on C1 and white points on C2, are called major points. Points in the minor color are
called minor points.

Points on each Ci are linearly ordered according to the x-coordinate. An interval
of Ci is a sequence of consecutive points of Ci. An inner point of an interval I is any
point of I that is neither the leftmost nor the rightmost point of I.

A body D is a nonempty interval of a chain Ci (i = 1,2) such that all inner points
of D are major. If the leftmost point of D is minor, then we call it a head of D.
Otherwise, D has no head. If the rightmost point of D is minor, then we call it a tail
of D. Otherwise, D has no tail. If a body consists of just one minor point, this point
is both the head and the tail.

Bodies are of the following four types. A 00-body is a body with no head and
no tail. A 11-body is a body with both head and tail. The bodies of the remaining
two types have exactly one endpoint major and the other one minor. We will call the
body a 10-body or a 01-body if the minor endpoint is a head or a tail, respectively.

Let D be a body on Ci. A hedgehog (built on the body D ⊆Ci) is a noncrossing
alternating path H with vertices in Ci satisfying the following three conditions:
(1) H contains all points of D; (2) H contains no major points outside D; (3) the
endpoints of H are the first and last points of D. A hedgehog built on an αβ -body
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Fig. 2 A hedgehog in C1

00-hedgehogs

01-hedgehogs

10-hedgehogs

11-hedgehogs

Fig. 3 Examples of hedgehogs

is an αβ -hedgehog (α,β = 0,1). See Fig. 2. If a hedgehog H is built on a body D,
then D is the body of H and the points of H that do not lie in D are spines. Note that
each spine is a minor point. All possible types of hedgehogs can be seen in Fig. 3
(for better lucidity, we will draw hedgehogs with bodies on a horizontal line and
spines indicated only by a “peak” from now on).

On each Ci, maximal intervals containing only major points are called runs.
Clearly, runs form a partition of major points. For i = 1,2, let ri denote the number
of runs in Ci.

2.2 Proof in the Even Case

Throughout this subsection, (C1,C2) denotes a double-chain with |C1|+ |C2| even.
Since the coloring is equitable, we have b1 + b2 = w1 +w2. Set

Δ := b1−w1 = w2− b2.

First, we give a lemma characterizing collections of bodies on a chain Ci that are
bodies of some pairwise noncrossing hedgehogs covering the whole chain Ci.

Lemma 2.1. Let i ∈ {1,2}. Let all major points of Ci be covered by a set D of
pairwise disjoint bodies. Then the bodies of D are the bodies of some pairwise
noncrossing hedgehogs covering the whole Ci if and only if Δ = d00− d11, where
dαα is the number of αα-bodies in D.
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Fig. 4 A noncrossing
matching of minor points and
midpoints (in C1)

C2

C1

Fig. 5 00-Hedgehogs connected to an NHAP

Proof. An αβ -hedgehog containing t major points contains (t− 1)+α +β minor
points. It follows that the equality Δ = d00− d11 is necessary for the existence of a
covering of Ci by disjoint hedgehogs built on the bodies of D.

Suppose now that Δ = d00− d11. Let F be the set of minor points on Ci that lie
in no body of D, and let M be the set of the midpoints of straight-line segments
connecting pairs of consecutive major points lying in the same body. It is easily
checked that |F | = |M|. Clearly, F ∪M is a convex or a concave chain. Now it
is easy to prove that there is a noncrossing perfect matching formed by |F| = |M|
straight-line segments between F and M (for the proof, take any segment connecting
a point of F with a neighboring point of M, remove the two points, and continue by
induction); see Fig. 4.

If f ∈ F is connected to a point m ∈ M in the matching, then f will be a spine
with edges going from it to those two major points that determined m. Obviously,
these spines and edges define noncrossing hedgehogs with bodies in D and with all
the required properties. ��

The following three lemmas and their proofs show how to construct an NHAP in
some special cases.

Lemma 2.2. If Δ≥max{r1,r2}, then (C1,C2) has an NHAP.

Proof. Let i ∈ {1,2}. Since ri ≤ Δ≤max(bi,wi), the runs in Ci may be partitioned
into Δ 00-bodies. By Lemma 2.1, these 00-bodies may be extended to pairwise
noncrossing hedgehogs covering Ci. This gives us 2Δ hedgehogs on the double-
chain. They may be connected into an NHAP by 2Δ− 1 edges between the chains
in the way shown in Fig. 5. ��

Lemma 2.3. If r1 = r2, then (C1,C2) has an NHAP.
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······
C2

C1

Fig. 6 An NHAP in the case r1 = r2 > Δ≥ 1

Proof. Set r := r1 = r2. If r ≤ Δ, then we may apply Lemma 2.2. Thus, let r > Δ.
Suppose first that Δ ≥ 1. We cover each run on each Ci by a single body whose

type is as follows. On C1 we take Δ 00-bodies followed by (r−Δ) 10-bodies. On C2

we take (from left to right) (Δ− 1) 00-bodies, (r−Δ) 01-bodies, and one 00-body.
By Lemma 2.1, the r bodies on each Ci can be extended to hedgehogs covering Ci.
Altogether we obtain 2r hedgehogs. They can be connected to an NHAP by 2r− 1
edges between C1 and C2 (see Fig. 6).

Suppose now that Δ = 0. We add one auxiliary major point on each Ci as follows.
On C1, the auxiliary point extends the leftmost run on the left. On C2, the auxiliary
point extends the rightmost run on the right. This does not change the number of
runs and increases Δ to 1. Thus, we may proceed as above. The NHAP obtained has
the two auxiliary points on its ends. We may remove the auxiliary points from the
path, obtaining an NHAP for (C1,C2). ��

A singleton s ∈Ci is an inner point of Ci (i = 1,2) such that its two neighbors on
Ci are colored differently from s.

Lemma 2.4. Suppose that C1 has no singletons and C2 can be covered by r1− 1
pairwise disjoint hedgehogs. Then (C1,C2) has an NHAP.

Proof. For simplicity of notation, set r := r1. We denote the r− 1 hedgehogs on C2

by P1,P2, . . . ,Pr−1 in the left-to-right order in which the bodies of these hedgehogs
appear on C2. For technical reasons, we enlarge the leftmost run of C1 from the left
by an auxiliary major point σ .

Our goal is to find r hedgehogs H1,H2, . . . ,Hr on C1∪{σ} such that they may be
connected with the hedgehogs P1,P2, . . . ,Pr−1 into an NHAP. For each j = 1, . . . ,r,
the body of the hedgehog Hj will be denoted by D j. For each j = 1, . . . ,r, D j covers
the jth run of C1 ∪{σ} (in the left-to-right order). We now finish the definition of
the bodies D j by specifying for each D j if it has a head and/or a tail. The body D1 is
without a head. For j > 1, D j has a head if and only if Pj−1 has a tail. The last body
Dr is without a tail and D j, j < r has a tail if and only if Pj has a head.

It follows from Lemma 2.1 that we may add or remove some minor points on
C1∪{σ} so that D1, . . . ,Dr can then be extended to pairwise noncrossing hedgehogs
H1, . . . ,Hr covering the “new” C1. More precisely, there is a double-chain (C′1,C2)
such that D1, . . . ,Dr can be extended to pairwise noncrossing hedgehogs H1, . . . ,Hr

covering C′1, where either C′1 =C1∪{σ} or C′1 is obtained from C1∪{σ} by adding
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· · ·
C2

C1

Fig. 7 An NHAP in the case of no singletons on C1

some minor (white) points on the left of C1∪{σ} (say) or C′1 is obtained from C1∪
{σ} by removing some minor (white) points lying in none of the bodies D1, . . . ,Dr.
Then the concatenation H1P1H2P2 · · ·Hr−1Pr−1Hr shown in Fig. 7 gives an NHAP on
(C′1,C2). This NHAP starts with the point σ . Removing σ from it gives an NHAP P
for the double-chain (C′1 \{σ},C2). The endpoints of P have different colors. Thus,
P covers the same number of black and white points. Black points on P are the
(|C1|+ |C2|)/2 black points of (C1,C2). Thus, P covers exactly |C1|+ |C2| points.
It follows that |C′1 \ {σ}|= |C1|, and thus C′1 \ {σ} = C1. The path P is an NHAP
on the double-chain (C1,C2). ��

The following lemma will be used to find the type of covering given in the
assumption of Lemma 2.4.

Lemma 2.5. Suppose that |Ci| ≥ k, ri ≤ k, and Δ ≤ k for some i ∈ {1,2} and for
some integer k. Then Ci can be covered by k pairwise disjoint hedgehogs.

Proof. The idea of the proof is to start with the set D of |Ci| bodies, each of them
being a single point, and then gradually decrease the number of bodies in D by
joining some of the bodies together. We see that Δ = d00− d11, where dαα is the
number of αα-bodies in D. If we join two neighboring 00-bodies to one 00-body
and withdraw a single-point 11-body fromD (to let the minor point become a spine)
at the same time, the difference between the number of 00-bodies and the number
of 11-bodies remains the same and |D| decreases by 2. We can reduce |D| by 1
while preserving the difference d00− d11 by joining a 00-body with a neighboring
single-point 11-body into a 01- or a 10-body. Similarly, we can join a 01- or 10-body
with a neighboring (from the proper side) single-point 11-body into a new 11-body
to decrease |D| by 1 as well. When we are joining two 00-bodies, we choose the
single-point 11-body to remove in such a way to keep as many single-point 11-
bodies adjacent to 00-bodies as possible. This guarantees that we can use up to ri of
them for heads and tails.

We start with joining neighboring 00-bodies, and we do this as long as |D|> k+1
and d00 > ri. Note that by the assumption Δ ≤ k, we will have enough single-point
11-bodies to do that. When we end, one of the following conditions holds: |D|= k,
|D| = k+ 1, or d00 = ri. In the first case, we are done. If |D| = k+ 1, we just add
one head or one tail (we can do this since d00 + d11 = |D| = k+ 1 ≥ d00− d11 + 1,
which implies d11 > 0). If d00 = ri, then each run is covered by just one 00-body.
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We need to add |D|−k heads and tails. We have enough single-point 11-bodies to do
that since d11 = |D|−d00 = |D|− ri ≥ |D|−k. On the other hand, ri−d11 = Δ≥ 0,
so the number of heads and tails needed is at most ri. Therefore, all the single-point
11-bodies are adjacent to 00-bodies, and we can use them to form heads and tails.

In all cases we get a set D of k bodies. Now we can apply Lemma 2.1 to obtain k
pairwise disjoint hedgehogs covering Ci. ��

By a contraction we mean removing a singleton with both its neighbors and
putting a point of the color of its neighbors in its place instead. It is easy to verify
that if there is an NHAP in the new double-chain obtained by this contraction, it can
be expanded to an NHAP in the original double-chain.

Now we can prove our main theorem in the even case.

proof of theorem 1.1 (even case). Without loss of generality, we may assume that
r1 ≥ r2. In the case r1 = r2, we get an NHAP by Lemma 2.3. In the case Δ≥ r1, we
get an NHAP by Lemma 2.2. Therefore, the only case left is r1 > r2, r1 > Δ.

If there is a singleton on C1, we make a contraction of it. The contraction decrease
r1 by 1 and both r2 and Δ remain unchanged. If now r1 = r2 or r1 = Δ, we again get
an NHAP; otherwise, we keep making contractions until one of the previous cases
appears or there are no more singletons to contract.

If there is no more singleton to contract on C1 and still r1 > r2 and r1 > Δ, we try
to cover C2 by r1− 1 pairwise disjoint paths. Before the contractions, |C2| ≥ |C1|/4
did hold, and by the contractions we could just decrease |C1|; therefore, it still holds.

All the maximal intervals on the chain C1 (with possible exception of the first and
the last one) have now length at least 2, which implies that r1 ≤ |C1|/4+ 1. Hence,
|C2| ≥ |C1|/4≥ r1−1, so we can create r1−1 pairwise disjoint hedgehogs covering
C2 using Lemma 2.5. Then we apply Lemma 2.4 and expand the NHAP obtained
by Lemma 2.4 to an NHAP on the original double-chain.

There is a straightforward linear-time algorithm for finding an NHAP on (C1,C2)
based on the above proof. ��

2.3 Proof in the Odd Case

In this subsection, we prove Theorem 1 for the case when |C1|+ |C2| is odd. We set
Δ = w2−b2 and proceed similarly as in the even case. In several places in the proof,
we will add one auxiliary point ω to get the even case (its color will be chosen to
equalize the numbers of black and white points). We will be able to apply one of the
Lemmas 2.2–2.4 to obtain an NHAP. The point ω will be at some end of the NHAP,
and by removing ω , we obtain an NHAP for (C1,C2).

Without loss of generality, we may assume that r1 ≥ r2. In the case r1 = r2, we
add an auxiliary major point ω , which is placed either as the left neighbor of the
leftmost major point on C1 or as the right neighbor of the rightmost major point on
C2. Then we get an NHAP by Lemma 2.3, and the removal of ω gives us an NHAP
for (C1,C2).
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In the case Δ≥ r1, we add an auxiliary point ω to the same place and we get an
NHAP by Lemma 2.2. Again, the removal of ω gives us an NHAP for (C1,C2).

Now, the only case left is r1 > r2, r1 > Δ. If there are any singletons on C1,
we make the contractions exactly the same way as in the proof of the even case.
If Lemma 2.2 or 2.3 needs to be applied, we again add an auxiliary point ω and
proceed as above.

If there is no more singleton to contract on C1 and still r1 > r2 and r1 > Δ,
we have |C2| ≥ |C1|/4 ≥ r1− 1 as in the proof of the even case and we can use
Lemma 2.5 to get r1− 1 pairwise disjoint hedgehogs covering C2. Now we need to
consider two cases: (1) If b1 + b2 > w1 +w2, then we find an NHAP for (C1,C2) in
the same way as in the proof of Lemma 2.4, except we do not add the auxiliary point
σ . (2) If b1 +b2 < w1 +w2, we add an auxiliary point ω as the right neighbor of the
rightmost major point on C1. The number r1 didn’t change, so Lemma 2.4 gives us
an NHAP. Again, the removal of ω gives us an NHAP for (C1,C2).

There is a straightforward linear-time algorithm for finding an NHAP on (C1,C2)
based on the above proof. ��

3 Unbalanced Double-Chains with No NHAP

In this section, we prove Theorem 2. Let (C1,C2) be a double-chain whose points are
colored by an equitable 2-coloring, and let C1 be periodic with the following period:
2 black, 4 white, 6 black, and 4 white points. Let |C1| ≥ 28(|C2|+ 1). We want to
show that (C1,C2) has no NHAP.

Suppose on the contrary that (C1,C2) has an NHAP. Let P1,P2, . . . ,Pt denote the
maximal subpaths of the NHAP containing only points of C1. Since between every
two consecutive paths Pi, Pj in the NHAP there is at least one point of C2, we have
t ≤ |C2|+ 1. In the following we think of C1 as a cyclic sequence of points on the
circle. Note that we get more intervals in this way. Theorem 2 now directly follows
from the following theorem, which will be proven in the rest of this section.

Theorem 3.1. Let C1 be a set of points on a circle periodically 2-colored with
the following period of length 16: 2 black, 4 white, 6 black, and 4 white points.
Suppose that all points of C1 are covered by a set of t noncrossing alternating and
pairwise disjoint paths P1,P2, . . . ,Pt. Then t > |C1|/28.

Each maximal interval spanned by a path Pi on the circle is called a base.
Let b(Pi) denote the number of bases of Pi. A path with one base only is called a leaf.
We consider the following special types of edges in the paths. Long edges connect
points that belong to different bases. Short edges connect consecutive points on C1.
Note that short edges cannot be adjacent to each other. A maximal subpath of a path
Pi spanning two subintervals of two different bases and consisting of long edges only
is called a zigzag. A path is separated if all of its edges can be crossed by a line.
Note that each zigzag is a separated path. A maximal separated subpath of Pi that
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contains an endpoint of Pi and spans one interval only is a rainbow. We find all the
zigzags and rainbows in each Pi, i= 1,2, . . . , t. Note that two zigzags, or a zigzag and
a rainbow, are either disjoint or share an endpoint. A branch is a maximal subpath
of Pi that spans two intervals and is induced by a union of zigzags.

For each path Pi that is not a leaf, construct the following graph Gi. The vertices
of Gi are the bases of Pi. We add an edge between two vertices for each branch
that connects the corresponding bases. If Gi has a cycle (including the case of a
“2-cycle”), then one of the corresponding branches consists of a single edge that
lies on the convex hull of Pi. We delete such an edge from Pi and no longer call it a
branch. By deleting a corresponding edge from each cycle of Gi, we obtain a graph
G′i, which is a spanning tree of Gi. The branch graph G′ is a union of all graphs G′i.

Let L denote the set of leaves and B the set of branches. Let P = {P1,P2, . . . , Pt}.

Observation 3.2. The branch graph G′ is a forest with components G′i. Therefore,

|B|= ∑
i,Pi /∈L

(b(Pi)− 1). ��

The branches and rainbows in Pi do not necessarily cover all the points of Pi.
Each point that is not covered is adjacent to a deleted long edge and to a short
edge that connects this point to a branch or a rainbow. It follows that between two
consecutive branches (and between a rainbow and the nearest branch), there are at
most two uncovered points, which are endpoints of a common deleted edge. By an
easy case analysis, it can be shown that this upper bound can be achieved only if
one of the nearest branches consists of a single zigzag.

In the rest of the chapter, a run will be a maximal monochromatic interval of
any color. In the following, we will count the runs that are spanned by the paths
Pi. The weight of a path P, w(P), is the number of runs spanned by P. If P spans
a whole run, it adds one unit to w(P). If P partially spans a run, it adds half a unit
to w(P).

Observation 3.3. The weight of a zigzag or a rainbow is at most 1.5. A branch
consists of at most two zigzags; hence, it weighs at most three units. ��

Lemma 3.4. A path Pi that is not a leaf weighs at most 3.5k+ 3.5 units, where k is
the number of branches in Pi.

Proof. According to the above discussion, for each pair of uncovered points that
are adjacent on Pi, we can join one of them to the adjacent branch consisting of a
single zigzag. To each such branch we join at most two uncovered points; hence,
its weight increases by at most one unit to at most 2.5 units. The number of the
remaining uncovered points is at most k+1. Therefore, w(Pi)≤ 3k+3+0.5 ·(k+1)
= 3.5k+ 3.5. ��
Lemma 3.5. A leaf weighs at most 3.5 units.
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Proof. Let L be a leaf spanning at least two points. Consider the interval
spanned by L. Cut this interval out of C1 and glue its endpoints together to form as
circle. Take a line l that crosses the first and last edges of L. Note that the line l
doesn’t separate any of the runs. Exactly one of the arcs determined by l contains
the gluing point γ .

Each of the ending edges of L belongs to a rainbow, all of whose edges cross l.
It follows that if L has only one rainbow, then this rainbow covers the whole leaf L
and w(L) ≤ 1.5. Otherwise, L has exactly two rainbows, R1 and R2. We show that
R1 and R2 cover all edges of L that cross the line l. Suppose there is an edge s in L
that crosses l and does not belong to any of the rainbows R1, R2. Then one of these
rainbows, say R1, is separated from γ by s. Then the edge of L that is the second-
nearest to R1 also has the same property as the edge s. This would imply that R1

spans two whole runs, a contradiction. It follows that all the edges of L that are not
covered by the rainbows are consecutive and connect adjacent points on the circle.
There are at most three such edges; at most one connecting the points adjacent to γ ,
the rest of them being short on C1. But this upper bound of three cannot be achieved
since it would force both rainbows to span two whole runs. Therefore, there are
at most two edges and hence at most one point in L uncovered by the rainbows.
The lemma follows. ��

Lemma 3.6. |L| ≥ ∑i,Pi /∈L(b(Pi)− 2)+ 2.

Proof. The number of runs in C1 is at least 4. By Lemma 3.5, if all the paths Pi are
leaves, then at least 2 of them are needed to cover C1, and the lemma follows.

If not all the paths are leaves, we order the paths so that all the leaves come at
the end of the ordering. The path P1 spans b(P1) bases. Shrink these bases to points.
These points divide the circle into b(P1) arcs, each of which contains at least one
leaf. If P2 is not a leaf, then continue. The path P2 spans b(P2) intervals on one of
the previous arcs. Shrink them to points. These points divide the arc into b(P2)+ 1
subarcs. At least b(P2)− 1 of them contain leaves. This increased the number of
leaves by at least b(P2)−2. The case of Pi, i > 2, is similar to P2. The lemma follows
by induction. ��
Corollary 3.7. |B| ≤ |P|− 2.

Proof. Combining Lemma 3.6 and Observation 3.2, we get the following:

|B|= ∑
i,Pi /∈L

(b(Pi)− 1) = ∑
i,Pi /∈L

(b(Pi)− 2)+ |P|− |L|+ 2−2≤ |P|− 2. ��

Now we are in position to finish the proof of Theorem 3.1. If the whole C1 is
covered by the paths Pi, then ∑t

i=1 w(Pi)≥ |C1|/4. Therefore,

|C1| ≤ 4 · (3.5|B|+ 3.5(|P|− |L|)+3.5|L|)< 4 ·7|P|= 28|P|.



114 J. Cibulka et al.

4 Embedding Equitable Bipartite Graphs

4.1 Embedding on Balanced Double-Chains

We already know that the balanced double-chain is 2-color universal for the path
Pn. In this subsection, we further study the class of graphs for which the balanced
double-chain is 2-color universal. The three lemmas of this subsection prove the
three claims of Theorem 3.

Lemma 4.1. If the balanced double-chain is 2-color universal for an equitable
bipartite graph G, then G is a forest of caterpillars.

Proof. Let K+
1,3 be the 3-star with subdivided edges (see Fig. 8). A connected graph

is a caterpillar if and only if it contains no cycle and no K+
1,3 as a subgraph.

We will color all points of one chain white and points of the other chain black
so that the resulting coloring is compatible with the 2-coloring of G. We assume for
contradiction that G can be embedded on it and that it contains either a cycle or K+

1,3.
As the double-chain has monochromatic chains, all the edges connect the two

chains. Because the embedding has no edge crossings, we can consider the leftmost
edge of the cycle and let u and v be its end vertices. Then the two edges of the cycle
incident to exactly one of u and v cross.

We now assume that K+
1,3 can be embedded on the double-chain and let the color

of its root vertex be white. Let ω1 be the white point where the root of K+
1,3 is

mapped, and let β1, β2, β3 be (from left to right) the three black points where the
middle vertices are mapped. Then β2 is connected by an edge to some white leaf
vertex of K+

1,3, but this edge is crossed either by the segment ω1β1 or by ω1β3.
See Fig. 8. ��

The central path in a caterpillar is the set of nonleaf vertices.

Lemma 4.2. If an equitable bipartite graph G on n vertices is a caterpillar with at
most 	n/2
 vertices on the central path, then the balanced double-chain is 2-color
universal for G.

root

middle vertices

leaves C2

C1

ω1

b1 b2 b3a b

Fig. 8 (a) K+
1,3 and (b) impossibility of its embedding on the double-chain with monochromatic

chains
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C1

C2

Fig. 9 Embedding a
caterpillar on a balanced
double-chain; the bold edges
form the central path

Proof. Let bi be the number of black points on the chain Ci and wi the number of
white points on Ci. Since the coloring is equitable, we may assume that b1 ≥w1 and
w2 ≥ b2.

Observe that the number of minor points on each chain is at most the number of
leaves of G of that color. Let G′ be the graph with b1 black and w1 white vertices
obtained from G by removing some b2 black and w2 white leaves.

In the first phase, we embed G′ on the set of major points of the two chains.
We take the vertices of the central path of G′ starting from one of its ends. A vertex
v of the central path is placed on the leftmost unused major point on the chain
where the color of v is major. The leaves of v in G′ are then successively placed on
the leftmost unused major points of the other chain.

In the second phase, we map all the leaves removed in the first phase on minor
points. In the same greedy way as in the proof of Lemma 2.1, we keep connecting
the closest pair of an unused white point of C1 and a black point of the central path
that still misses at least one leaf. The same is done on C2.

This guarantees that no crossing appears and that every vertex is mapped to some
point. See Fig. 9. ��

Lemma 4.3. If a forest of stars G is 2-colored equitably and properly, then G can
be embedded on every compatibly 2-colored balanced double-chain.

Proof. We take some fixed proper equitable 2-coloring of G.
We show that by adding edges to G, we are able to create a properly 2-colored

caterpillar on the set of all vertices of G and with at most 	n/2
 nonleaf vertices.
By Lemma 4.2, this caterpillar can be embedded on every compatibly 2-colored
balanced double-chain, and thus G can be embedded.

The cases when n≤ 3 and when G has no edges are trivial.
For every i ≥ 3, let ki (hi) be the number of stars on i vertices and with black

(white) central vertex. In case of 2-vertex components of G, we cannot distinguish
the central vertex, and we let n2 be their number. We also let n1 be the total number
of 1-vertex components of G, as it is not necessary for the proof to count black and
white ones separately.

We assume without loss of generality that at least half of the stars on at least
three vertices have a black central vertex. We start connecting the central vertices of
stars on at least three vertices into an alternating path starting with a black vertex.
At some point we run out of stars with a white central vertex. We then use the stars
on two vertices as stars with a white central vertex. If we run out of stars with a black
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Fig. 10 Connecting stars to form a caterpillar

central vertex, we use every second star on two vertices as a star with a black central
vertex. Otherwise, we run out of stars on two vertices. Then we start connecting
each of the remaining stars on at least three vertices by an edge between one of its
white leaves and the last black vertex on the path.

The resulting graph is composed of a connected graph T and all 1-vertex
components of G. The graph T is a properly colored caterpillar and the created
path is its central path P. Since G has some edges, P is not empty.

If P contains only one vertex v, we pick one of its leaves, u, and connect every
1-vertex component of G either to u or to v, depending on its color. The central path
then has 2 vertices, which is at most 	n/2
.

If P has at least two vertices, we connect every 1-vertex component of G to a
vertex of the other color on the central path. See Fig. 10.

It remains to show that the central path is not too long. The total number of
vertices is

n = n1 + 2n2+
n

∑
i=3

i(ki + hi). (1)

If ∑n
i=3 ki ≤ n2 +∑n

i=3 hi, then every vertex of the central path has at least one
leaf, and thus the caterpillar has at most 	n/2
 nonleaf vertices.

Otherwise, the central path starts and ends with a black vertex, and the black
vertices of the central path are exactly the black centers of stars on at least three
vertices. The central path thus has 2∑n

i=3 ki− 1 vertices.
Because the 2-coloring of G is equitable, the number of black vertices of G is at

least 	n/2
, and thus

n

∑
i=3

ki +
n

∑
i=3

(i− 1)hi+ n2 + n1 ≥
⌊n

2

⌋
.

At most 	n/2
+ 1 vertices of G are white, which leads to⌊n
2

⌋
+ 1≥

n

∑
i=3

hi +
n

∑
i=3

(i− 1)ki+ n2.

Putting the two inequalities together gives us

n

∑
i=3

(i− 2)hi+ n1 ≥
n

∑
i=3

(i− 2)ki− 1. (2)
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Fig. 11 Colorings of double-chains not admitting K+
1,4

The number of vertices of the central path is at most 	n/2
, because

2

(
2

n

∑
i=3

ki− 1

)
≤

n

∑
i=3

2(i− 1)ki− 2

<
n

∑
i=3

iki +
n

∑
i=3

(i− 2)ki− 1

≤
n

∑
i=3

iki +
n

∑
i=3

(i− 2)hi+ n1 by (2)

≤
n

∑
i=3

i(ki + hi)+ n1

≤ n by (1). ��

4.2 Open Problems

It seems plausible that the balanced double-chain is 2-color universal for all
equitable forests of caterpillars.

Conjecture 1. The balanced double-chain is 2-color universal for an equitable
bipartite graph G if and only if G is a forest of caterpillars.

Some graphs for which the balanced double-chain is not 2-color universal have
a different 2-color universal set. For example, the balanced double-chain is not 2-
color universal for K+

1,3 by Lemma 4.1, but it is easy to verify that the double-chain
with one chain composed of only one vertex is.

There even exist graphs with a 2-color universal set of points, but no double-chain
is 2-color universal for them. Consider the properly colored K+

1,4 with a black
central vertex. It is not embeddable on double-chains colored as in Fig. 11. But a
modification of the double-chain in Fig. 12 is 2-color universal for K+

1,4.
Some equitable bipartite planar graphs have no 2-color universal set of points.

Claim 4.4. If G is a bipartite planar quadrangulation on at least five vertices, then
G has no 2-color universal set of points.
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Fig. 12 A 2-color universal
point set for K+

1,4

Proof. Because the bipartite graph G has no 3-cycle, each of its faces has at
least four vertices. Then, by Euler’s formula, every planar drawing of G is a
quadrangulation.

Take a set S of points and let H(S) be the set of points of S on its convex hull. In a
straight-line planar drawing of a graph on a set S of points, the points of H(S) all lie
on the outer face of the drawing. Thus, G can only be drawn on S if 3≤ |H(S)| ≤ 4.
In a proper coloring of G on at least five vertices, one color class contains at least
three vertices. If we color three points of H(S) by this color and the rest arbitrarily,
G cannot be embedded, because no face in a drawing of G can contain three vertices
of one color. ��

The results of this chapter solve only a few particular cases of the following
general question.

Question. Which planar bipartite graphs have a 2-color universal set of points?
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Drawing Trees, Outerplanar Graphs,
Series-Parallel Graphs, and Planar Graphs
in a Small Area

Giuseppe Di Battista and Fabrizio Frati

Abstract In this chapter, we survey algorithms and bounds for constructing planar
drawings of graphs in a small area.

1 Introduction

It is typical of computer science to classify problems according to the amount of
resources that are needed to solve them. Hence, problems are usually classified
according to the amount of time or the amount of memory that a specific model
of computation requires for their solution.

This epistemological need of classifying problems finds, in the graph drawing
field, a very original interpretation. A graph drawing problem can be broadly
described as follows: Given a graph of a certain family and a drawing convention
(e.g., all edges should be straight-line segments), draw the graph optimizing some
specific features. Among those features, a fundamental one is the amount of
geometric space that the drawing spans, and a natural question is: What amount
of space s required to draw a planar graph, or a tree, or a bipartite graph? Hence,
besides classifying problems according to the above classical coordinates, graph
drawing classifies problems according to the amount of geometric space that a
drawing that solves that problem requires.

Of course, such a space requirement can be influenced by the class of graphs
(one can expect that the area required to draw an n-vertex tree is less than that

G. Di Battista (�)
Dipartimento di Informatica e Automazione - Roma Tre University, Rome, Italy
e-mail: gdb@dia.uniroma3.it

F. Frati
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required to draw an n-vertex general planar graph) and by the drawing convention
(straight-line drawings look more constrained than drawings where edges can be
polygonal lines).

The attempt of classifying graph drawing problems with respect to the space
required spurred, over the last 50 years, a large body of research. On the one
hand, techniques have been devised to compute geometric lower bounds that
are completely original and do not find counterparts in the techniques adopted
in computer science to find time or memory lower bounds. On the other hand,
the uninterrupted upper bound hunting has produced several elegant algorithmic
techniques.

In this chapter, we survey the state of the art on such algorithmic and lower-
bound techniques for several families of planar graphs. Indeed, drawing planar
graphs without crossings is probably the most classical graph drawing topic, and
many researchers have given fundamental contributions to the planar drawings of
trees, outerplanar graphs, series-parallel graphs, and so forth.

We survey the state of the art, focusing on the impact of the most popular drawing
conventions on the geometric space requirements. In Sect. 3, we discuss straight-
line drawings. In Sect. 4, we analyze drawings where edges can be polygonal
lines. In Sect. 5, we describe upward drawings, i.e., drawings of directed acyclic
graphs where edges follow a common vertical direction. In Sect. 6, we describe
convex drawings, where the faces of a planar drawing are constrained to be convex
polygons. Proximity drawings, where vertices and edges should enforce some
proximity constraints, are discussed in Sect. 7. Section 8 is devoted to drawings
of clustered graphs.

We devote special attention to put in evidence those that we consider the main
open problems of the field.

2 Preliminaries

In this section, we present preliminaries and definitions. For more about graph
drawing, see [40, 91].

2.1 Planar Drawings, Planar Embeddings, and Planar Graphs

All the graphs that we consider are simple; i.e., they contain no multiple edges and
loops. A drawing of a graph G(V,E) is a mapping of each vertex of V to a point
in the plane and of each edge of E to a Jordan curve connecting its endpoints.
A drawing is planar when no two edges intersect except, possibly, at common
endpoints. A planar graph is a graph admitting a planar drawing.

A planar drawing of a graph determines a circular ordering of the edges incident
to each vertex. Two drawings of the same graph are equivalent if they determine
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the same circular ordering around each vertex, and a planar embedding is an
equivalence class of planar drawings. A graph is embedded when an embedding
of it has been decided. A planar drawing partitions the plane into topologically
connected regions, called faces. The unbounded face is the outer face, while the
bounded faces are the internal faces. The outer face of a graph G is denoted by f (G).
A graph together with a planar embedding and a choice for its outer face is a plane
graph. In a plane graph, external and internal vertices are defined as the vertices
incident and not incident to the outer face, respectively. Sometimes the distinction
is made between a planar embedding and plane embedding, where the former is an
equivalence class of planar drawings and the latter is a planar embedding together
with a choice for the outer face. The dual graph of an embedded planar graph G has
a vertex for each face of G and has an edge ( f ,g) for each two faces f and g of G
sharing an edge.

2.2 Maximality and Connectivity

A plane graph is maximal (or equivalently is a triangulation) when all its faces are
delimited by 3-cycles, that is, by cycles of three vertices. A planar graph is maximal
when it can be embedded as a triangulation. Algorithms for drawing planar graphs
usually assume we are dealing with maximal planar graphs. In fact, any planar graph
can be augmented to a maximal planar graph by adding some “dummy” edges to
the graph. Then the algorithm can draw the maximal planar graph, and finally the
inserted dummy edges can be removed, obtaining a drawing of the input graph.

A graph is connected if every pair of vertices is connected by a path. A graph with
at least k+ 1 vertices is k-connected if removing any (at most) k− 1 vertices leaves
the graph connected; 3-connected, 2-connected, and 1-connected graphs are also
called triconnected, biconnected, and connected graphs, respectively. A separating
cycle is a cycle whose removal disconnects the graph.

2.3 Classes of Planar Graphs

A tree is a connected acyclic graph. A leaf in a tree is a node of degree 1.
A caterpillar C is a tree such that the removal from C of all the leaves and of their
incident edges turns C into a path, called the backbone of the caterpillar.

A rooted tree is a tree with one distinguished node called the root. In a rooted
tree, each node v at distance (i.e., length of the shortest path) d from the root is
the child of the only node at distance d− 1 from the root to which v is connected.
A binary tree (a ternary tree) is a rooted tree such that each node has at most two
children (respectively, three children). Binary and ternary trees can be supposed to
be rooted at any node of degree at most 2 and 3, respectively. The height of a rooted
tree is the maximum number of nodes in any path from the root to a leaf. Removing
a nonleaf node u from a tree disconnects the tree into connected components. Those
containing children of u are the subtrees of u.
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A complete tree is a rooted tree such that each nonleaf node has the same number
of children and such that each leaf has the same distance from the root. Complete
trees of degree 3 and 4 are also called complete binary trees and complete ternary
trees, respectively.

A rooted tree is ordered of a clockwise order of the neighbors of each node (i.e., a
planar embedding) is specified. In an ordered binary tree and in an ordered ternary
tree, fixing a linear ordering of the children of the root defines the left and right child
of a node, and the left, middle, and right child of a node, respectively. If the tree is
ordered and binary (ternary), the subtrees rooted at the left and right child (at the left,
middle, and right child) of a node u are the left and the right subtree of u (the left,
the middle, and the right subtree of u), respectively. Removing a path P from a tree
disconnects the tree into connected components. The ones containing children of
nodes in P are the subtrees of P. If the tree is ordered and binary (ternary), then each
component is a left or right subtree (a left, middle, or right subtree) of P , depending
on whether the root of such subtree is a left or right child (is a left, middle, or right
child) of a node in P , respectively.

An outerplane graph is a plane graph such that all the vertices are incident
to the outer face. An outerplanar embedding is a planar embedding such that all
the vertices are incident to the same face. An outerplanar graph is a graph that
admits an outerplanar embedding. A maximal outerplane graph is an outerplane
graph such that all its internal faces are delimited by cycles of three vertices.
A maximal outerplanar embedding is an outerplanar embedding such that all its
faces, except for the one to which all the vertices are incident, are delimited by cycles
of three vertices. A maximal outerplanar graph is a graph that admits a maximal
outerplanar embedding. Every outerplanar graph can be augmented to maximal by
adding dummy edges to it.

If we do not consider the vertex corresponding to the outer face of G and its
incident edges, then the dual graph of an outerplane graph G is a tree. Hence, when
dealing with outerplanar graphs, we talk about the dual tree of an outerplanar graph
(meaning the dual graph of an outerplane embedding of the outerplanar graph).
The nodes of the dual tree of a maximal outerplane graph G have degree at most 3.
Hence, the dual tree of G can be rooted to be a binary tree.

Series-parallel graphs are the graphs that can be inductively constructed as follows.
An edge (u,v) is a series-parallel graph with poles u and v. Denote by ui and vi

the poles of a series-parallel graph Gi. Then a series composition of a sequence
G1,G2, . . . ,Gk of series-parallel graphs, with k ≥ 2, constructs a series-parallel
graph that has poles u = u1 and v = vk, that contains graphs Gi as subgraphs, and
such that vertices vi and ui+1 have been identified to be the same vertex, for each
i = 1,2, . . . ,k− 1. A parallel composition of a set G1,G2, . . . ,Gk of series-parallel
graphs, with k ≥ 2, constructs a series-parallel graph that has poles u = u1 = u2 =
· · · = uk and v = v1 = v2 = · · · = vk, that contains graphs Gi as subgraphs, and
such that vertices u1,u2, . . . ,uk (vertices v1,v2, . . . ,vk) have been identified to be the
same vertex. A maximal series-parallel graph is such that all its series compositions
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construct a graph out of exactly two smaller series-parallel graphs G1 and G2, and
such that all its parallel compositions have a component that is the edge between
the two poles. Every series-parallel graph can be augmented to maximal by adding
dummy edges to it. The fan-out of a series-parallel graph is the maximum number
of components in a parallel composition.

A graph G is bipartite if its vertex set V can be partitioned into two subsets V1

and V2 so that every edge of G is incident to a vertex of V1 and to a vertex of V2.
A bipartite planar graph is both bipartite and planar. A maximal bipartite planar
graph admits a planar embedding in which all its faces have exactly four incident
vertices. Every bipartite planar graph with at least four vertices can be augmented
to maximal by adding dummy edges to it.

2.4 Drawing Standards

A straight-line drawing is a drawing such that each edge is represented by a
segment. A polyline drawing is a drawing such that each edge is represented
by a sequence of consecutive segments. The points in which two consecutive
segments of the same edge touch are called bends. A grid drawing is a drawing
such that vertices and bends have integer coordinates. An orthogonal drawing is
a polyline drawing such that each edge is represented by a sequence of horizontal
and vertical segments. A convex drawing (respectively, strictly-convex drawing) is
a planar drawing such that each face is delimited by a convex polygon (respectively,
strictly-convex polygon); that is, every interior angle of the drawing is at most 180◦

(respectively, less than 180◦) and every exterior angle is at least 180◦ (respectively,
more than 180◦). An order-preserving drawing is a drawing such that the order of
the edges incident to each vertex respects an order fixed in advance. An upward
drawing (respectively, strictly-upward drawing) of a rooted tree is a drawing such
that each edge is represented by a nondecreasing curve (respectively, increasing
curve). A visibility representation is a drawing such that each vertex is represented
by a horizontal segment σ(u), each edge (u,v) is represented by a vertical segment
connecting a point of σ(u) with a point of σ(v), and no two segments cross, except
if they represent a vertex and one of its incident edges.

2.5 Area of a Drawing

The bounding box of a drawing is the smallest rectangle with sides parallel to the
axes that contains the drawing completely. The height and width of a drawing are
the height and width of its bounding box. The area of a drawing is the area of its
bounding box. The aspect ratio of a drawing is the ratio between the maximum
and the minimum of the height and width of the drawing. Observe that the concept



126 G. Di Battista and F. Frati

of area of a drawing only makes sense once a resolution rule is fixed, i.e., a rule
that does not allow vertices to be arbitrarily close (vertex resolution rule), or edges
to be arbitrarily short (edge resolution rule). Without any such rules, one could
just construct drawings with an arbitrarily small area. It is usually assumed in the
literature that graph drawings in a small area have to be constructed on a grid. In fact,
all the algorithms we will present in Sects. 3–6 and 8 assign integer coordinates to
vertices. The assumption of constructing drawings on the grid is usually relaxed in
the context of proximity drawings (hence in Sect. 7), where in fact it is assumed that
no two vertices have distance less than one unit.

2.6 Directed Graphs and Planar Upward Drawings

A directed acyclic graph (DAG for short) is a graph whose edges are oriented and
containing no cycle (v1, . . . ,vn) such that edge (vi,vi+1) is directed from vi to vi+1,
for i = 1, . . . ,n−1, and edge (vn,v1) is directed from vn to v1. The underlying graph
of a DAG G is the undirected graph obtained from G by removing the directions on
its edges. An upward drawing of a DAG is such that each edge is represented by an
increasing curve. An upward planar drawing is a drawing that is both upward and
planar. An upward planar DAG is a DAG that admits an upward planar drawing. In a
directed graph, the outdegree of a vertex is the number of edges leaving the vertex,
and the indegree of a vertex is the number of edges entering the vertex. A source
(respectively, sink) is a vertex with indegree zero (respectively, with outdegree zero).
An st-planar DAG is a DAG with exactly one source s and one sink t that admits
an upward planar embedding in which s and t are on the outer face. Bipartite DAGs
and directed trees are DAGs whose underlying graphs are bipartite graphs and trees,
respectively. A series-parallel DAG is a DAG that can be inductively constructed as
follows. An edge (u,v) directed from u to v is a series-parallel DAG with starting
pole u and ending pole v. Denote by ui and vi the starting and ending poles of
a series-parallel DAG Gi, respectively. Then a series composition of a sequence
G1,G2, . . . ,Gk of series-parallel DAGs, with k≥ 2, constructs a series-parallel DAG
that has starting pole u = u1, that has ending pole v = vk, that contains DAGs Gi

as subgraphs, and such that vertices vi and ui+1 have been identified to be the same
vertex, for each i = 1,2, . . . ,k− 1. A parallel composition of a set G1,G2, . . . ,Gk

of series-parallel DAGs, with k ≥ 2, constructs a series-parallel DAG that has
starting pole u = u1 = u2 = · · · = uk, that has ending pole v = v1 = v2 = · · · = vk,
that contains DAGs Gi as subgraphs, and such that vertices u1,u2, . . . ,uk (vertices
v1,v2, . . . ,vk) have been identified to be the same vertex. We remark that series-
parallel DAGs are a subclass of the upward planar DAGs whose underlying graph
is a sseries-parallel graph.
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2.7 Proximity Drawings

A Delaunay drawing of a graph G is a straight-line drawing such that no three
vertices are on the same line, no four vertices are on the same circle, and three
vertices u, v, and z form a 3-cycle (u,v,z) in G if and only if the circle passing
through u, v, and z in the drawing contains no vertex other than u, v, and z.
A Delaunay triangulation is a graph that admits a Delaunay drawing.

The Gabriel region of two vertices x and y is the disk having segment xy as
diameter. A Gabriel drawing of a graph G is a straight-line drawing of G having the
property that two vertices x and y of the drawing are connected by an edge if and
only if the Gabriel region of x and y does not contain any other vertex. A Gabriel
graph is a graph admitting a Gabriel drawing.

A relative neighborhood drawing of a graph G is a straight-line drawing such
that two vertices x and y are adjacent if and only if there is no vertex whose distance
to both x and y is less than the distance between x and y. A relative neighborhood
graph is a graph admitting a relative neighborhood drawing.

A nearest-neighbor drawing of a graph G is a straight-line drawing of G such
that each vertex has a unique closest vertex and such that two vertices x and y of
the drawing are connected by an edge if and only if x is the vertex of G closest to
y, or vice versa. A nearest-neighbor graph is a graph admitting a nearest-neighbor
drawing.

A β -drawing is a straight-line drawing of G having the property that two vertices
x and y of the drawing are connected by an edge if and only if the β -region of x
and y does not contain any other vertex. The β -region of x and y is the line segment
xy if β = 0, it is the intersection of the two closed disks of radius d(x,y)/(2β )
passing through both x and y if 0 < β < 1, it is the intersection of the two closed
disks of radius d(x,y)/(2β ) that are centered on the line through x and y and that
respectively pass through x and through y if 1 ≤ β < ∞, and it is the closed infinite
strip perpendicular to the line segment xy if β = ∞.

Weak proximity drawings are such that there is no geometric requirement on the
pairs of vertices not connected by an edge. For example, a weak Gabriel drawing
of a graph G is a straight-line drawing of G having the property that if two vertices
x and y of the drawing are connected by an edge, then the Gabriel region of x and
y does not contain any other vertex, while there might exist two vertices whose
Gabriel region is empty and that are not connected by an edge.

A Euclidean minimum spanning tree T of a set P of points is a tree spanning the
points in P (that is, the nodes of T coincide with the points of P and no “Steiner
points” are allowed) and having minimum total edge length.

A greedy drawing of a graph G is a straight-line drawing of G such that, for
every pair of nodes u and v, there exists a distance-decreasing path, where a path
(v0,v1, . . . ,vm) is distance-decreasing if d(vi,vm) < d(vi−1,vm), for i = 1, . . . ,m,
where d(p,q) denotes the Euclidean distance between two points p and q.

For more about proximity drawings, see Chap. 7 in [115].
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2.8 Clustered Graphs and c-Planar Drawings

A clustered graph is a pair C(G,T ), where G is a graph, called an underlying graph,
and T is a rooted tree, called an inclusion tree, such that the leaves of T are the
vertices of G. Each internal node ν of T corresponds to the subset of vertices of
G, called a cluster, that are the leaves of the subtree of T rooted at ν . A clustered
graph C(G,T ) is c-connected if each cluster induces a connected subgraph of G; it
is non-c-connected otherwise.

A drawing Γ of a clustered graph C(G,T ) consists of a drawing of G (each vertex
is a point in the plane and each edge is a Jordan curve between its end vertices) and
of a representation of each node μ of T as a simple closed region containing all
and only the vertices that belong to μ . A drawing is c-planar if it has no edge
crossings (i.e., the drawing of the underlying graph is planar), no edge–region
crossings (i.e., an edge intersects the boundary of a cluster at most once), and no
region–region crossings (i.e., no two cluster boundaries cross).

A c-planar embedding is an equivalence class of c-planar drawings of C, where
two c-planar drawings are equivalent if they have the same order of the edges
incident to each vertex and the same order of the edges incident to each cluster.

3 Straight-Line Drawings

In this section, we discuss algorithms and bounds for constructing small-area planar
straight-line drawings of planar graphs and their subclasses. In Sect. 3.1 we deal with
general planar graphs, in Sect. 3.2 we deal with 4-connected and bipartite graphs, in
Sect. 3.3 we deal with series-parallel graphs, in Sect. 3.4 we deal with outerplanar
graphs, and in Sect. 3.5 we deal with trees. Table 1 summarizes the best-known
area bounds for straight-line planar drawings of planar graphs and their subclasses.
Observe that the lower bounds of the table that refer to general planar graphs,
4-connected planar graphs, and bipartite planar graphs have been obtained consid-
ering plane graphs.

Table 1 A table summarizing the area requirements for straight-line planar drawings of several
classes of planar graphs

Upper bound Refs. Lower bound Refs.

General planar graphs 8n2

9 +O(n) [20, 37, 110] 4n2

9 −O(n) [37, 69, 100, 121]
4-Connected planar graphs 	 n

2 
× ( n
2 �−1) [99] 	 n

2 
× ( n
2 �−1) [99]

Bipartite planar graphs 	 n
2 
× ( n

2 �−1) [14] 	 n
2 
× ( n

2 �−1) [14]
Series-parallel graphs O(n2) [37, 110, 126] Ω(n2

√
logn) [67]

Outerplanar graphs O(n1.48) [42] Ω(n) Trivial
Trees O(n logn) [34] Ω(n) Trivial

Notice that 4-connected planar graphs have been studied only with the additional constraint of
having at least four vertices on the outer face.
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a b c

Fig. 1 (a) Induction in Fáry’s algorithm if G contains a separating 3-cycle. (b, c) Induction in
Fáry’s algorithm if G contains no separating 3-cycle

3.1 General Planar Graphs

In this section, we discuss algorithms and bounds for constructing small-area planar
straight-line drawings of general planar graphs. Observe that in order to derive
bounds on the area requirements of general planar graphs, it suffices to restrict
the attention to maximal planar graphs, as every planar graph can be augmented
to maximal by the insertion of “dummy” edges. Moreover, such an augmentation
can be performed in linear time [108].

We start by proving that every plane graph admits a planar straight-line drawing
[113, 122]. The simplest and most elegant proof of such a statement is, in our
opinion, the one presented by Fáry in 1948 [59].

Fáry’s algorithm works by induction on the number n of vertices of the plane
graph G; namely, the algorithm inductively assumes that a straight-line planar
drawing of G can be constructed with the further constraint that the outer face f (G)
is drawn as an arbitrary triangle Δ. The inductive hypothesis is trivially satisfied
when n = 3. If n > 3, then two cases are possible. In the first case, G contains
a separating 3-cycle c. Then let G1 (respectively, G2) be the graph obtained from
G by removing all the vertices internal to c (respectively, external to c). Both G1

and G2 have less than n vertices; hence, the inductive hypothesis applies first to
construct a straight-line planar drawing Γ1 of G1 in which f (G1) is drawn as an
arbitrary triangle Δ, and second to construct a straight-line planar drawing Γ2 of
G2 in which f (G2) is drawn as Δ(c), where Δ(c) is the triangle representing c in Γ1

(see Fig. 1a). Thus, a straight-line drawing Γ of G in which f (G) is represented by Δ
is obtained. In the second case, G does not contain any separating 3-cycle; i.e., G is
4-connected. Then, consider any internal vertex u of G and consider any neighbor v
of u. Construct an (n−1)−vertex plane graph G′ by removing u and all its incident
edges from G, and by inserting “dummy” edges between v and all the neighbors of
u in G, except for the two vertices v1 and v2 forming faces with u and v. The graph
G′ is simple, as G contains no separating 3-cycle. Hence, the inductive hypothesis
applies to construct a straight-line planar drawing Γ′ of G′ in which f (G′) is drawn
as Δ. Further, dummy edges can be removed and vertex u can be introduced in Γ′
together with its incident edges, without altering the planarity of Γ′. In fact, u can be



130 G. Di Battista and F. Frati

u v

vk

Gk-1

wp

w2

wp+1 wqwq-1 wq+1

wmw1

Gk

wp

w2

vk+1

wq

wq+1

wmw1

Gk

a b c

Fig. 2 (a) The canonical ordering of a maximal plane graph G. (b) The drawing of Gk constructed
by the algorithm of de Fraysseix et al. (c) The drawing of Gk+1 constructed by the algorithm of de
Fraysseix et al.

placed at a suitable point in the interior of a small disk centered at v, thus obtaining
a straight-line drawing Γ of G in which f (G) is represented by Δ (see Fig. 1b, c).

The first algorithms for constructing planar straight-line grid drawings of planar
graphs in a polynomial area were presented (50 years later than Fáry’s algorithm!)
by de Fraysseix et al. [36, 37] and, simultaneously and independently, by Schny-
der [110]. The approaches of the two algorithms, which we sketch below, are today
still the basis of every algorithm to construct planar straight-line grid drawings of
triangulations.

The algorithm by de Fraysseix et al. [36, 37] relies on two main ideas.
First, any n-vertex maximal plane graph G admits a total ordering σ of its

vertices, called a canonical ordering, such that (see Fig. 2a): (a) the subgraph Gk

of G induced by the first k vertices in σ is biconnected, for each k = 3, . . . ,n; and
(b) the kth vertex in σ lies in the outer face of Gk−1, for each k = 4, . . . ,n.

Second, a straight-line drawing of an n-vertex maximal plane graph G can be
constructed starting from a drawing of the 3-cycle induced by the first three vertices
in a canonical ordering σ of G and incrementally adding vertices to the partially
constructed drawing in the order defined by σ . To construct the drawing of G one
vertex at a time, the algorithm maintains the invariant that the outer face of Gk is
drawn as a sequence of segments having slopes equal to either 45◦ or −45◦. When
the next vertex vk+1 in σ is added to the drawing of Gk to construct a drawing of
Gk+1, a subset of the vertices of Gk undergoes a horizontal shift that allows for vk+1

to be introduced in the drawing while still maintaining the invariant that the outer
face of Gk+1 is drawn as a sequence of segments having slopes equal to either 45◦

or −45◦ (see Fig. 2b, c).
The area of the constructed drawings is (2n− 4)× (n − 2). The described

algorithm has been proposed by de Fraysseix et al. together with an O(n logn)-time
implementation. The authors conjectured that its complexity could be improved to
O(n). This bound was in fact achieved a few years later by Chrobak and Payne
in [29].

The ideas behind the algorithm by Schnyder [110] are totally different from the
ones of de Fraysseix et al. In fact, Schnyder’s algorithm constructs the drawing by
determining the coordinates of all the vertices in one shot. The algorithm relies on
results concerning planar graph embeddings that are indeed less intuitive than the
canonical ordering of a plane graph used by de Fraysseix et al.
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v

a b

Fig. 3 (a) A realizer for a plane graph G. (b) Paths P1(v), P2(v), and P3(v) (represented by green,
red, and blue edges, respectively) and regions R1(v), R2(v), and R3(v) [delimited by P1(v), P2(v),
and P3(v), and by the edges incident to the outer face of G]

First, Schnyder introduces the concept of the barycentric representation of a
graph G as an injective function v ∈ V (G) → (x(v),y(v),z(v)) such that x(v) +
y(v)+ z(v) = 1, for all vertices v ∈V (G), and such that, for each edge (u,v) ∈ E(G)
and each vertex w /∈ {u,v}, x(u) < x(w) and x(v) < x(w) hold, or y(u) < y(w) and
y(v)< y(w) hold, or z(u)< z(w) and z(v)< z(w) hold. Schnyder proves that, given
any graph G, given any barycentric representation v→ (x(v),y(v),z(v)) of G, and
given any three noncollinear points α , β , and γ in the three-dimensional space, the
mapping f : v ∈ V (G)→ v1α + v2β + v3γ is a straight-line planar embedding of G
in the plane spanned by α , β , and γ .

Second, Schnyder introduces the concept of a realizer of G as an orientation and
a partition of the interior edges of a plane graph G into three sets T1, T2, and T3

such that (a) the set of edges in Ti, for each i = 1,2,3, is a tree spanning all the
internal vertices of G and exactly one external vertex; (b) all the edges of Ti are
directed toward this external vertex, which is the root of Ti; (c) the external vertices
belonging to T1, to T2, and to T3 are distinct and appear in counterclockwise order
on the border of the outer face of G; and (d) the counterclockwise order of the edges
incident to v is as follows: Leaving T1, entering T3, leaving T2, entering T1, leaving
T3, and entering T2. Figure 3a illustrates a realizer for a plane graph G. Trees T1, T2,
and T3 are sometimes called Schnyder woods.

Third, Schnyder describes how to get a barycentric representation of a plane
graph G starting from a realizer of G; this is essentially done by looking, for each
vertex v ∈ V (G), at the paths Pi(v)—they are the only paths composed entirely
of edges of Ti connecting v to the root of Ti (see Fig. 3b)—and by counting the
number of faces or the number of vertices in the regions R1(v), R2(v), and R3(v)
that are defined by P1(v), P2(v), and P3(v). The area of the constructed drawings is
(n− 2)× (n− 2).

Schnyder’s upper bound has been unbeaten for almost 20 years. Only recently,
Brandenburg [20] proposed an algorithm for constructing planar straight-line
drawings of triangulations in 8n2

9 + O(n) area. Such an algorithm is based on a
geometric refinement of the de Fraysseix et al. [36, 37] algorithm combined with
some topological properties of planar triangulations due to Bonichon et al. [18],
which will be discussed in Sect. 4.
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a b c

Fig. 4 (a) A graph [121] requiring quadratic area in any straight-line and polyline drawing. (b)
A graph [37] requiring

(
2n
3 −1

)
×
(

2n
3 −1

)
area in any straight-line and polyline drawing. (c) A

graph [69] requiring 4n2

9 − 2n
3 area in any straight-line drawing

A quadratic-area upper bound for straight-line planar drawings of plane graphs
is asymptotically optimal. In fact, almost 10 years before the publication of
such algorithms, Valiant observed in [121] that there exist n-vertex plane graphs
(see Fig. 4a) requiring Ω(n2) area in any straight-line planar drawing (in fact, in
every polyline planar drawing). It was then proved by de Fraysseix et al. in [37]
that nested triangles graphs (see Fig. 4b) require

( 2n
3 − 1

)
×
( 2n

3 − 1
)

area in any
straight-line planar drawing (in fact, in every polyline planar drawing). Such a lower
bound was only recently improved to 4n2

9 −
2n
3 by Frati and Patrignani [69], for all n

multiples of 3 (see Fig. 4c), and then by Mondal et al. [100] to
⌊

2n
3 − 1

⌋
×
⌊

2n
3

⌋
, for

all n≥ 6.
However, the following remains open:

Open Problem 1. Close the gap between the 8n2

9 + O(n) upper bound and the
4n2

9 −O(n) lower bound for the area requirements of straight-line drawings of plane
graphs.

3.2 4-Connected and Bipartite Planar Graphs

In this section, we discuss algorithms and bounds for constructing planar
straight-line drawings of 4-connected and bipartite planar graphs. Such different
families of graphs are discussed in the same section since the best-known upper
bound for the area of bipartite planar graphs was obtained using an augmentation to
4-connectivity.

Concerning 4-connected plane graphs, tight bounds are known for the area
requirements of planar straight-line drawings if the graph has at least four vertices
incident to the outer face. Namely, Miura et al. proved in [99] that every such a
graph has a planar straight-line drawing in ( n

2�− 1)× (	 n
2
) area, improving upon
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a b

Fig. 5 (a) A 4-connected plane graph requiring ( n
2 �−1)× (	 n

2 
) area in any straight-line planar
drawing. (b) A bipartite plane graph requiring ( n

2 �− 1)× (	 n
2 
) area in any straight-line planar

drawing

G

G

Fig. 6 The algorithm by
Miura et al. to construct
straight-line drawings of
4-connected plane
graphs [99]

previous results of He [82]. The authors show that this bound is tight, by exhibiting
a class of 4-connected plane graphs with four vertices incident to the outer face
requiring ( n

2�− 1)× (	 n
2
) area (see Fig. 5a).

The algorithm of Miura et al. divides the input 4-connected plane graph G
into two graphs G′ and G′′ with the same number of vertices. This is done by
performing a 4-canonical ordering [89] of G. The graph G′ (G′′, respectively) is
then drawn inside an isosceles right triangle Δ′ (respectively, Δ′′) whose width is
n
2−1 and whose height is half of its width. To construct such drawings of G′ and G′′,
Miura et al. designed an algorithm that is similar to the algorithm by de Fraysseix et
al. [37]. In the drawings produced by their algorithm, the slopes of the edges incident
to the outer faces of G′ and G′′ have absolute value at most 45◦. The drawing of
G′′ is then rotated by 180◦ and placed on top of the drawing of G′. This allows
for drawing the edges connecting G′ with G′′ without creating crossings. Figure 6
depicts the construction of Miura et al.’s algorithm.
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As far as we know, no bound better than the one for general plane graphs is
known for 4-connected plane graphs (possibly having three vertices incident to the
outer face); hence, the following is open:

Open Problem 2. Close the gap between the 8n2

9 + O(n) upper bound and the
n2

4 −O(n) lower bound for the area requirements of straight-line drawings of 4-
connected plane graphs.

Biedl and Brandenburg [14] show how to construct planar straight-line drawings
of bipartite planar graphs in ( n

2�− 1)× (	 n
2
) area. To achieve such a bound, they

exploit a result of Biedl et al. [16] stating that all planar graphs without separating
triangles—except those “containing a star” (see [14] and observe that in this case
a star is not just a vertex plus some incident edges)—can be augmented to 4-
connected by the insertion of dummy edges; once such an augmentation is done,
Biedl and Brandenburg use the algorithm of Miura et al. [99] to draw the resulting
4-connected plane graph. In order to be able to use Miura et al.’s algorithm, Biedl
and Brandenburg prove that no bipartite plane graph “contains a star” and that
Miura et al.’s algorithm works more in general for plane graphs that become 4-
connected if an edge is added to them. The upper bound of Biedl and Brandenburg
is tight, as the authors show a bipartite plane graph requiring ( n

2�−1)× (	 n
2
) area

in any straight-line planar drawing (see Fig. 5b).

3.3 Series-Parallel Graphs

In this section, we discuss algorithms and bounds for constructing small-area planar
straight-line drawings of series-parallel graphs.

No subquadratic-area upper bound is known for constructing small-area planar
straight-line drawings of series-parallel graphs. The best-known quadratic upper
bound for straight-line drawings is provided in [126].

In [67] Frati proved that series-parallel graphs exist that require Ω(n2
√

logn) area
in any straight-line or polyline grid drawing. Such a result is achieved in two steps.
In the first one, an Ω(n) lower bound for the maximum between the height and
width of any straight-line or polyline grid drawing of K2,n is proved, thus answering
a question of Felsner et al. [60] and improving upon previous results of Biedl
et al. [15]. In the second one, an Ω(2

√
logn) lower bound for the minimum between

the height and width of any straight-line or polyline grid drawing of certain series-
parallel graphs is proved.

The proof that K2,n requires Ω(n) height or width in any straight-line or polyline
drawing has several ingredients. First, a simple “optimal” drawing algorithm for
K2,n is exhibited; that is, an algorithm is presented that computes a drawing of K2,n

inside an arbitrary convex polygon if such a drawing exists. Second, the drawings
constructed by the mentioned algorithm inside a rectangle are studied. Such a study
reveals that the slopes of the segments representing the edges of K2,n have a strong
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Fig. 7 The Stern–Brocot tree is a tree containing all the pairs of relatively prime numbers

a b c

Fig. 8 The inductive construction of series-parallel graphs requiring Ω(2
√

logn) height and width
in any straight-line or polyline grid drawing

relationship with the relatively prime numbers as ordered in the Stern-Brocot tree
(see [21, 114] and Fig. 7). Such a relationship leads to deriving some arithmetical
properties of the lines passing through infinite grid points in the plane and to achieve
the Ω(n) lower bound.

The results on the area requirements of K2,n are then used to construct series-
parallel graphs (shown in Fig. 8) out of several copies of K2,2

√
logn and to prove that

such a graph requires Ω(2
√

logn) height and width in any straight-line or polyline
grid drawing.

As no subquadratic-area upper bound is known for straight-line planar drawings
of series-parallel graphs, the following is open.

Open Problem 3. Close the gap between the O(n2) upper bound and the
Ω(n2

√
logn) lower bound for the area requirements of straight-line drawings of

series-parallel graphs.

Related to the above problem, Wood (Private Communication, 2008) conjectures
the following: Let p1, . . . , pk be positive integers. Let G(p1) be the graph obtained
from K3 by adding p1 new vertices adjacent to v and w for each edge (v,w) of K3.
For k ≥ 2, let G(p1, p2, . . . , pk) be the graph obtained from G(p1, p2, . . . , pk−1)
by adding pk new vertices adjacent to v and w for each edge (v,w) of
G(p1, p2, . . . , pk−1). Observe that G(p1, p2, . . . , pk) is a sseries-parallel graph.
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rFig. 9 A star-shaped
drawing Γ of a binary tree T
(with thick edges and black
vertices). The dashed edges
and white vertices augment Γ
into a straight-line drawing of
the outerplanar graph to
which T is dual

Conjecture 1 (D. R. Wood). Every straight-line grid drawing of G(p1, p2, . . . , pk)
requires Ω(n2) area for some choice of k and p1, p2, . . . , pk.

3.4 Outerplanar Graphs

In this section, we discuss algorithms and bounds for constructing small-area planar
straight-line drawings of outerplanar graphs.

The first nontrivial bound appeared in [74], where Garg and Rusu proved that
every outerplanar graph with maximum degree d has a straight-line drawing with
O(dn1.48) area. Such a result is achieved by means of an algorithm that works by
induction on the dual tree T of the outerplanar graph G. Namely, the algorithm finds
a path P in T , it removes from G the subgraph GP that has P as a dual tree, it
inductively draws the outerplanar graphs that are disconnected by such a removal,
and it puts all the drawings of such outerplanar graphs together with a drawing of
GP, obtaining a drawing of the whole outerplanar graph.

The first subquadratic-area upper bound for straight-line drawings of outerplanar
graphs has been proved by Di Battista and Frati in [42]. The result in [42] uses the
following ingredients. First, it is shown that the dual binary tree T of a maximal
outerplanar graph G is a subgraph of G itself. Second, a restricted class of straight-
line drawings of binary trees, called star-shaped drawings, is defined. Star-shaped
drawings are straight-line drawings in which special visibility properties among the
nodes of the tree are satisfied (see Fig. 9). Namely, if a tree T admits a star-shaped
drawing Γ, then the edges that augment T into G can be drawn in Γ without creating
crossings, thus resulting in a straight-line planar drawing of G. Third, an algorithm is
shown to construct a star-shaped drawing of any binary tree T in O(n1.48) area. Such
an algorithm works by induction on the number of nodes of T . Figure 10 depicts
two inductive cases of such a construction, making use of a strong combinatorial
decomposition of ordered binary trees introduced by Chan in [24] (discussed in
Sect. 3.5).

Frati used in [64] the same approach of [42], together with a different geometric
construction (shown in Fig. 11), to prove that every outerplanar graph with degree d
has a straight-line drawing with O(dn logn) area.
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r

r

Fig. 10 Two inductive cases of the algorithm to construct star-shaped drawings of binary trees
yielding an O(n1.48) upper bound for straight-line drawings of outerplanar graphs. The rectangles
and the half-circles represent subtrees recursively drawn by the construction on the right and on
left part of the figure, respectively

r

Fig. 11 The inductive construction of star-shaped drawings of binary trees yielding an O(dn logn)
upper bound for straight-line drawings of outerplanar graphs with degree d. The rectangles
represent recursively constructed star-shaped drawings of subtrees

As far as we know, no superlinear-area lower bound is known for straight-
line drawings of outerplanar graphs. In [12] Biedl defined a class of outerplanar
graphs, called snowflake graphs, and conjectured that such graphs require Ω(n logn)
area in any straight-line or polyline drawing. However, Frati disproved such a
conjecture in [64] by exhibiting O(n) area straight-line drawings of snowflake
graphs. In the same paper, he conjectured that an O(n logn) area upper bound for
straight-line drawings of outerplanar graphs cannot be achieved by squeezing the
drawing along one coordinate direction, as stated in the following.

Conjecture 2 (F. Frati). There exist n-vertex outerplanar graphs for which, for any
straight-line drawing in which the longest side of the bounding box is O(n), the
smallest side of the bounding box is ω(logn).

The following problem remains wide open.

Open Problem 4. Close the gap between the O(n1.48) upper bound and the Ω(n)
lower bound for the area requirements of straight-line drawings of outerplanar
graphs.
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T1 T2 T3 T4

Fig. 12 Inductive
construction of a straight-line
drawing of a tree in O(n logn)
area

3.5 Trees

In this section, we present algorithms and bounds for constructing planar straight-
line drawings of trees.

The best bound for constructing general trees is, as far as we know, the O(n logn)
area upper bound provided by a simple modification of the hv-drawing algorithm of
Crescenzi et al. [34]. Such an algorithm proves that a straight-line drawing of any
tree T in O(n)×O(logn) area can be constructed with the further constraint that the
root of T is placed at the bottom-left corner of the bounding box of the drawing.
If T has one node, such a drawing is trivially constructed. If T has more than one
node, then let T1, . . . ,Tk be the subtrees of T , where we assume, w.l.o.g., that Tk is
the subtree of T with the greatest number of nodes. Then the root of T is placed at
(0,0), the subtrees T1, . . . ,Tk−1 are placed one beside the other, with the bottom side
of their bounding boxes on the line y = 1, and Tk is placed beside the other subtrees,
with the bottom side of its bounding box on the line y = 0. The width of the drawing
is clearly O(n), while its height is h(n) = max{h(n− 1),1+ h(n/2)} = O(logn),
where h(n) denotes the maximum height of a drawing of an n-node tree constructed
by the algorithm. See Fig. 12 for an illustration of such an algorithm. Interestingly,
no superlinear-area lower bound is known for the area requirements of straight-line
drawings of trees.

For the special case of bounded-degree trees, linear-area bounds have been
achieved. In fact, Garg and Rusu presented an algorithm to construct straight-line
drawings of binary trees in O(n) area [73] and an algorithm to construct straight-
line drawings of trees with degree O(

√
n) in O(n) area [72]. Both algorithms rely on

the existence of simple separators for bounded degree trees. Namely, every binary
tree T has a separator edge, that is, an edge whose removal disconnects T into
two trees both having at most 2n/3 vertices [121], and every degree-d tree T has a
vertex whose removal disconnects T into at most d trees, each having at most n/2
nodes [72]. Such separators are exploited by Garg and Rusu to design quite complex
inductive algorithms that achieve linear-area bounds and an optimal aspect ratio.

The following problem remains open.

Open Problem 5. Close the gap between the O(n logn) upper bound and the Ω(n)
lower bound for the area requirements of straight-line drawings of trees.

A lot of attention has been devoted to studying the area requirements of
straight-line drawings of trees satisfying additional constraints. Table 2 summarizes
the best-known area bounds for various kinds of straight-line drawings of trees.
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Table 2 Summary of the best-known area bounds for straight-line drawings of trees

Ord. Pres. Upw. Str. Upw. Orth. Upper bound Refs. Lower bound Refs.

Binary O(n) [73] Ω(n) Trivial
Binary � O(n log logn) [71] Ω(n) Trivial
Binary � O(n log logn) [112] Ω(n) Trivial
Binary � O(n logn) [34] Ω(n logn) [34]
Binary � � O(n logn) [71] Ω(n logn) [34]
Binary � O(n log logn) [23, 112] Ω(n) Trivial
Binary � � O(n logn) [23, 34] Ω(n logn) [23]
Binary � � O(n1.5) [66] Ω(n) Trivial
Ternary � O(n1.631) [66] Ω(n) Trivial
Ternary � � O(n2) [66] Ω(n2) [66]
General O(n logn) [34] Ω(n) Trivial
General � O(n logn) [71] Ω(n) Trivial
General � O(n logn) [34] Ω(n) Trivial
General � O(n logn) [34] Ω(n logn) [34]
General � � O(n4

√
2logn) [24] Ω(n logn) [34]

“Ord. Pres.,” “Upw.,” “Str. Upw.,” and “Orth.” stand for order-preserving, upward, strictly upward,
and orthogonal, respectively.

Concerning straight-line upward drawings, the illustrated algorithm of Crescenzi
et al. [34] achieves the best-known upper bound of O(n logn). For trees with
constant degree, Shin et al. prove in [112] that upward straight-line drawings in
O(n loglogn) area can be constructed. Their algorithm is based on nice inductive
geometric constructions and suitable tree decompositions. No superlinear-area
lower bound is known, neither for binary nor for general trees; hence, the following
are open.

Open Problem 6. Close the gap between the O(n logn) upper bound and the Ω(n)
lower bound for the area requirements of upward straight-line drawings of trees.

Open Problem 7. Close the gap between the O(n loglogn) upper bound and the
Ω(n) lower bound for the area requirements of upward straight-line drawings of
binary trees.

Concerning straight-line strictly upward drawings, tight bounds are known.
In fact, the algorithm of Crescenzi et al. [34] can be suitably modified in order
to obtain strictly upward drawings (instead of aligning the subtrees of the root with
their bottom sides on the same horizontal line, it is sufficient to align them with their
left sides on the same vertical line). The same authors also showed a binary tree T ∗

requiring Ω(n logn) area in any strictly upward drawing, and hence their bound is
tight. The tree T ∗, which is shown in Fig. 13, is composed of a path with Ω(n) nodes
[forcing the height of the drawing to be Ω(n)] and of a complete binary tree with
Ω(n) nodes [forcing the width of the tree to be Ω(logn)].
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Fig. 13 A binary tree T ∗

requiring Ω(n logn) area in
any strictly upward drawing
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Fig. 14 (a) The inductive construction of a straight-line order-preserving drawing of a tree in
O(n logn) area. (b, c) The inductive construction of a straight-line strictly upward order-preserving
drawing of a binary tree in O(n logn) area. The construction in (b) [respectively, in (c)] refers to
the case in which the left (respectively, the right) subtree of r contains more nodes than the right
(respectively, the left) subtree of r. (d) The geometric construction of the algorithm of Chan

Concerning straight-line order-preserving drawings, Garg and Rusu have shown
in [71] how to obtain an O(n logn) area upper bound for general trees. The algorithm
of Garg and Rusu inductively assumes that an α-drawing of a tree T can be
constructed; that is, a straight-line order-preserving drawing of T can be constructed
with the further constraints that the root r of T is on the upper left corner of the
bounding box of the drawing, that the children of r are placed on the vertical line
one unit to the right of r, and that the vertical distance between r and any other
node of T is at least α . Refer to Fig. 14a. To construct a drawing of T , the algorithm
considers inductively constructed drawings of all the subtrees rooted at the children
of r, except for the node u that is the root of the subtree of r with the greatest
number of nodes, and place such drawings one unit to the right of r, with their left
side aligned. Further, the algorithm considers inductively constructed drawings of
all the subtrees rooted at the children of u, except for the node v that is the root of
the subtree of u with the greatest number of nodes, and place such drawings two
units to the right of r, with their left side aligned. Finally, the subtree rooted at v is
inductively drawn, and then the drawing is reflected and placed with its left side on
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the same vertical line as r. Thus, the height of the drawing is clearly O(n), while
its width is w(n) = max{w(n−1),3+w(n/2)}= O(logn), where w(n) denotes the
maximum width of a drawing of an n-node tree constructed by the algorithm. Garg
and Rusu also show how to combine their described result with a decomposition
scheme of binary trees due to Chan et al. [23] to obtain O(n loglogn) area straight-
line order-preserving drawings of binary trees. As no superlinear lower bound is
known for the area requirements of straight-line order-preserving drawings of trees,
the following problems remain open.

Open Problem 8. Close the gap between the O(n logn) upper bound and the Ω(n)
lower bound for the area requirements of straight-line order-preserving drawings of
trees.

Open Problem 9. Close the gap between the O(n loglogn) upper bound and the
Ω(n) lower bound for the area requirements of straight-line order-preserving
drawings of binary trees.

Concerning straight-line strictly upward order-preserving drawings, Garg and
Rusu have shown in [71] how to obtain an O(n logn) area upper bound for binary
trees. Observe that such an upper bound is still matched by the described Ω(n logn)
lower bound of Crescenzi et al. [34]. The algorithm of Garg and Rusu, shown in
Figs. 14b, c, is similar to their described algorithm for constructing straight-line
order-preserving drawings of trees. The results of Garg and Rusu improved upon
previous results by Chan in [24]. In [24], the author proved that every binary tree
admits a straight-line strictly upward order-preserving drawing in O(n1+ε) area, for
any constant ε > 0. In the same paper, the author proved the best-known upper
bound for the area requirements of straight-line strictly upward order-preserving
drawings of trees, namely, O(n4

√
2 logn). The approach of Chan consists of using

very simple geometric constructions together with nontrivial tree decompositions.
The simplest geometric construction discussed by Chan consists of selecting a
path P in the input tree T , of drawing P on a vertical line l, and of inductively
constructing drawings of the subtrees of P to be placed to the left and right of l (see
Fig. 14d). Thus, denoting by w(n) the maximum width of a drawing constructed by
the algorithm, w(n) = 1+w(n1)+w(n2) holds, where n1 and n2 are the maximum
number of nodes in a left subtree of P and in a right subtree of P, respectively
[assuming that w(n) is monotone with n]. Thus, depending on the way in which P is
chosen, different upper bounds on the asymptotic behavior of w(n) can be achieved.
Chan proves that P can be chosen so that w(n) = n0.48. Such a bound is at the base of
the best upper bound for constructing straight-line drawings of outerplanar graphs
(see [42] and Sect. 3.4). An improvement on the following problem would be likely
to improve the area upper bound on straight-line drawings of outerplanar graphs.

Open Problem 10. Let w(n) be the smallest function such that w(1) = 1 and such
that, for every n-node ordered binary tree T , there exists a path P in T such w(n)≤
1+w(n1)+w(n2), where every left subtree of P has at most n1 nodes and every
right subtree of P has at most n2 nodes. What is the asymptotic behavior of w(n)?
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Fig. 15 A binary tree requiring Ω(n logn) area in any straight-line upward orthogonal drawing.
The tree is composed of a path P and of complete binary trees with size nα/2, where α is some
constant greater than 0, attached to the ith node of P, for each i multiple of nα/2

It is easy to observe an Ω(logn) lower bound for w(n). We believe that in fact
w(n) = Ω(2

√
logn), but it is not clear to us whether the same bound can be achieved

from above.
Turning the attention back to straight-line strictly upward order-preserving

drawings, the following problem remains open.

Open Problem 11. Close the gap between the O(n4
√

2 logn) upper bound and the
Ω(n logn) lower bound for the area requirements of straight-line strictly upward
order-preserving drawings of trees.

Concerning straight-line orthogonal drawings, Chan et al. in [23] and Shin et
al. in [112] have independently shown that O(n loglogn) area suffices for binary
trees. Both algorithms are based on nice inductive geometric constructions and on
nontrivial tree decompositions. Frati proved in [66] that every ternary tree admits
a straight-line orthogonal drawing in O(n1.631) area. The following problems are
still open.

Open Problem 12. Close the gap between the O(n loglogn) upper bound and the
Ω(n) lower bound for the area requirements of straight-line orthogonal drawings of
binary trees.

Open Problem 13. Close the gap between the O(n1.631) upper bound and the Ω(n)
lower bound for the area requirements of straight-line orthogonal drawings of
ternary trees.

Concerning straight-line upward orthogonal drawings, Crescenzi et al. [34] and
Chan et al. in [23] have shown that O(n logn) area suffices for binary trees. Such an
area bound is worst-case optimal, as proved in [23]. The tree providing the lower
bound, shown in Fig. 15, consists of a path to which some complete binary trees are
attached.

Concerning straight-line order-preserving orthogonal drawings, O(n1.5) and
O(n2) area upper bounds are known [66] for binary and ternary trees, respectively.
Once again, such algorithms are based on simple inductive geometric constructions.
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While the bound for ternary trees is tight, no superlinear lower bound is known
for straight-line order-preserving orthogonal drawings of binary trees. Hence, the
following is open.

Open Problem 14. Close the gap between the O(n1.5) upper bound and the Ω(n)
lower bound for the area requirements of straight-line order-preserving orthogonal
drawings of binary trees.

4 Polyline Drawings

In this section, we discuss algorithms and bounds for constructing small-area planar
polyline drawings of planar graphs and their subclasses. In Sect. 4.1 we deal with
general planar graphs, in Sect. 4.2 we deal with series-parallel and outerplanar
graphs, and in Sect. 4.3 we deal with trees. Table 3 summarizes the best-known area
bounds for polyline planar drawings of planar graphs and their subclasses. Observe
that the lower bound of the table referring to general planar graphs has been obtained
considering plane graphs.

4.1 General Planar Graphs

Every n-vertex plane graph admits a planar polyline drawing on a grid with O(n2)
area. In fact, this has been known since the beginning of the 1980s [123]. Tamassia
and Tollis introduced in [116] a technique that later became pretty much a standard
for constructing planar polyline drawings. Namely, the authors showed that a
polyline drawing Γ of a plane graph G can be easily obtained from a visibility
representation R of G; moreover, Γ and R have asymptotically the same area. In
order to obtain a visibility representation R of G, Tamassia and Tollis design a very
nice algorithm (an application is shown in Fig. 16). The algorithm assumes that G is
biconnected (if it is not, it suffices to augment G to biconnected by inserting dummy
edges, apply the algorithm, and then remove the inserted dummy edges to obtain a
visibility representation of G). The algorithm consists of the following steps: (1)
Consider an orientation of G induced by an st-numbering of G, that is, a bijective

Table 3 A table summarizing the area requirements for polyline planar
drawings of several classes of planar graphs

Upper bound Refs. Lower bound Refs.

General planar graphs 4(n−1)2

9 [18] 4(n−1)2

9 [37]
Series-parallel graphs O(n1.5) [13] Ω(n2

√
logn) [67]

Outerplanar graphs O(n logn) [12, 13] Ω(n) Trivial
Trees O(n logn) [34] Ω(n) Trivial
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Fig. 16 An illustration for the algorithm of Tamassia and Tollis [116]. (a) White circles and solid
edges represent G. Black circles and dashed edges represent G∗. An st-numbering of G (and the
corresponding orientation) is shown. An orientation of G∗ and the number 2ψ( f ) for each each
face f of G is shown. (b) A visibility representation of G

mapping φ : V (G)→ {1, . . . ,n} such that, for a given edge (s, t) incident to the
outer face of G, φ(s) = 1, φ(t) = n, and for each u ∈ V (G) with u �= s, t, there
exist two neighbors of u, say v and w, such that φ(v) < φ(u) < φ(w); (2) consider
the orientation of the dual graph G∗ of G induced by the orientation of G; (3) the
y-coordinate of each vertex segment u is given by φ(u); (4) the y-coordinates of
the endpoints of each edge segment (u,v) are given by φ(u) and φ(v); (5) the x-
coordinate of edge segment (s, t) is set equal to −1; (6) the x-coordinate of each
edge segment (u,v) is chosen to be any number strictly between 2ψ( f ) and 2ψ(g),
where f and g are the faces adjacent to (u,v) in G and ψ( f ) denotes the length of the
longest path from the source to f in G∗; (7) finally, the x-coordinates of the endpoints
of each vertex segment u are set equal to the smallest and largest x-coordinates of
its incident edges.

Since the algorithm of Tamassia and Tollis, a large number of algorithms have
been proposed to construct polyline drawings of planar graphs (see, e.g., [25, 79,
81, 124, 125]), proposing several tradeoffs among the area requirements, number
of bends, and angular resolution. Here we briefly discuss an algorithm proposed

by Bonichon et al. in [18], the first one to achieve optimal area, namely, 4(n−1)2

9 .
The algorithm consists of two steps. In the first one, a deep study of Schnyder
realizers (see [110] and Sect. 3.1 for the definition of Schnyder realizers) leads to the
definition of a weak-stratification of a realizer. Namely, given a realizer (T0,T1,T2)
of a triangulation G, a weak stratification is a layering L of the vertices of G such that
T0 (which is rooted at the vertex incident to the outer face of G) is upward, while T1

and T2 (which are rooted at the vertices incident to the outer face of G) are downward
and some further conditions are satisfied. Each vertex will get a y-coordinate, which
is equal to its layer in the weak stratification. In the second step, x-coordinates for
vertices and bends are computed. The conditions of the weak stratification ensure
that a planar drawing can in fact be obtained.
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4.2 Series-Parallel and Outerplanar Graphs

Biedl proved in [13] that every series-parallel graph admits a polyline drawing
with O(n1.5) area and a polyline drawing with O( f n logn) area, where f is the
fan-out of the series-parallel graph. In particular, since outerplanar graphs are series-
parallel graphs with fan-out 2, the last result implies that outerplanar graphs admit
polyline drawings with O(n logn) area. Biedl’s algorithm constructs a visibility
representation R of the input graph G with O(n1.5) area; a polyline drawing Γ with
asymptotically the same area of R can then be easily obtained from R. In order to
construct a visibility representation R of the input graph G, Biedl relies on a strong
inductive hypothesis, namely, that a small-area visibility representation R of G can
be constructed with the further constraint that the poles s and t of G are placed at the
top right corner and at the bottom right corner of the representation. Figures 17a, b
show how this is accomplished in the base case. The parallel case is also pretty
simple, as the visibility representations of the components of G are just placed
one beside the other (as in Figs. 17c, d). The series case is much more involved.
Namely, assuming w.l.o.g. that G is the series of two components H1 and H2, where
H1 has poles s and x and H2 has poles x and t, and assuming w.l.o.g. that H2 has
more vertices than H1, then if H2 is the parallel composition of a “small” number
of components, the composition shown in Fig. 17e, f is applied, while if H2 is the
parallel composition of a “large” number of components, the composition shown in
Fig. 17g, h is applied. The rough idea behind these constructions is that if H2 is the
parallel composition of a small number of components, then a vertical unit can be
spent for each of them without increasing the height of the drawing much. On the
other hand, if H2 is the parallel composition of a large number of components, then
lots of such components have few vertices; hence, two of them can be placed one
above the other without increasing the height of the drawing much.
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Fig. 17 Biedl’s algorithm for constructing visibility representations of series-parallel graphs. (a,
b) The base case. (c, d) The parallel case. (e, h) The series case
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Table 4 Summary of the best-known area bounds for polyline drawings of trees

Ord. Pres. Upw. Str. Upw. Orth. Upper bound Refs. Lower bound Refs.

Binary O(n) [70] Ω(n) Trivial
Binary � O(n log logn) [71] Ω(n) Trivial
Binary � O(n) [70] Ω(n) Trivial
Binary � O(n logn) [34] Ω(n logn) [34]
Binary � � O(n logn) [70] Ω(n logn) [34]
Binary � O(n) [121] Ω(n) Trivial
Binary � � O(n log logn) [70] Ω(n log logn) [70]
Binary � � O(n) [53] Ω(n) Trivial
Binary � � � O(n logn) [92] Ω(n logn) [70]
Ternary � O(n) [121] Ω(n) Trivial
Ternary � � O(n logn) [92] Ω(n logn) [92]
Ternary � � O(n) [53] Ω(n) Trivial
Ternary � � � O(n logn) [92] Ω(n logn) [70]
General O(n logn) [34] Ω(n) Trivial
General � O(n logn) [71] Ω(n) Trivial
General � O(n logn) [34] Ω(n) Trivial
General � O(n logn) [34] Ω(n logn) [34]
General � � O(n4

√
2logn) [24] Ω(n logn) [34]

“Ord. Pres.,” “Upw.,” “Str. Upw.,” and “Orth.” stand for order-preserving, upward, strictly upward,
and orthogonal, respectively.

The following problems remain open.

Open Problem 15. Close the gap between the O(n1.5) upper bound and the
Ω(n2

√
logn) lower bound for the area requirements of polyline drawings of series-

parallel graphs.

Open Problem 16. Close the gap between the O(n logn) upper bound and the
Ω(n) lower bound for the area requirements of polyline drawings of outerplanar
graphs.

4.3 Trees

No algorithms are known that exploit the possibility of bending the edges of a tree to
get area bounds better than the corresponding ones shown for straight-line drawings.

Open Problem 17. Close the gap between the O(n logn) upper bound and the
Ω(n) lower bound for the area requirements of polyline drawings of trees.

However, better bounds can be achieved for polyline drawings satisfying further
constraints. Table 4 summarizes the best-known area bounds for various kinds of
polyline drawings of trees.
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a bFig. 18 (a) The construction
of Garg et al. [70] to obtain
O(n log n) area polyline
order-preserving strictly
upward drawings of
bounded-degree trees. (b) A
tree requiring Ω(n log n) area
in any upward
order-preserving drawing.
The triangle represents a
complete binary tree with n/3
nodes

Concerning polyline upward drawings, a linear area bound is known, due to Garg
et al. [70], for all trees whose degree is O(nδ ), where δ is any constant less than 1.
The algorithm of Garg et al. first constructs a layering γ(T ) of the input tree T ; in
γ(T ) each node u is assigned a layer smaller than or equal to the layer of the leftmost
child of u and smaller than the layer of any other child of u; second, the authors
show that γ(T ) can be converted into an upward polyline drawing whose height is
the number of layers and whose width is the maximum width of a layer, that is, the
number of nodes of the layer plus the number of edges crossing the layer; third, the
authors show how to construct a layering of every tree whose degree is O(nδ ) so
that the number of layers times the maximum width of a layer is O(n). No upper
bound better than O(n logn) (from the results on straight-line drawings; see [34]
and Sect. 3.5) and no superlinear lower bound is known for trees with unbounded
degree.

Open Problem 18. Close the gap between the O(n logn) upper bound and the
Ω(n) lower bound for the area requirements of polyline upward drawings of trees.

Concerning polyline order-preserving strictly upward drawings, Garg et al. [70]
show a simple algorithm to achieve O(n logn) area for bounded-degree trees.
The algorithm, whose construction is shown in Fig. 18a, consists of stacking
inductively constructed drawings of the subtrees of the root of the input tree T in
such a way that the tree with the greatest number of nodes is the bottommost in
the drawing. The edges connecting the root to its subtrees are then routed beside
the subtrees. The O(n logn) area upper bound is tight. Namely, there exist binary
trees requiring Ω(n logn) area in any strictly-upward order-preserving drawing [34]
and binary trees requiring Ω(n logn) area in any (even nonstrictly) upward order-
preserving drawing [70]. The lower-bound tree of Garg et al. is shown in Fig. 18b.
As far as we know, no area bounds better than the ones for straight-line drawings
have been proved for general trees; hence, the following are open.
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Open Problem 19. Close the gap between the O(n logn) upper bound and the
Ω(n) lower bound for the area requirements of polyline order-preserving drawings
of trees.

Open Problem 20. Close the gap between the O(n4
√

logn) upper bound and the
Ω(n logn) lower bound for the area requirements of polyline order-preserving
strictly upward drawings of trees.

Concerning orthogonal drawings, Valiant proved in [121] that every n-node
ternary tree (and every n-node binary tree) admits a Θ(n) area orthogonal drawing.
Such a result was strengthened by Dolev and Trickey in [53], who proved
that ternary trees (and binary trees) admit Θ(n) area order-preserving orthogonal
drawings. The technique of Valiant is based on the use of separator edges (see [121]
and Sect. 3.5). The result of Dolev and Trickey is a consequence of a more general
result on the construction of linear-area embeddings of degree-4 outerplanar graphs.

Concerning orthogonal upward drawings, an O(n log logn) area bound for binary
trees was proved by Garg et al. in [70]. The algorithm has several ingredients. (1)
A simple algorithm is shown to construct orthogonal upward drawings in O(n logn)
area; such drawings exhibit the further property that no vertical line through a node
of degree at most 2 intersects the drawing below such a node. (2) The separator
tree S of the input tree T is constructed; such a tree represents the recursive
decomposition of a tree via separator edges; namely, S is a binary tree that is
recursively constructed as follows: The root r of S is associated with tree T and
with a separator edge of T that splits T into subtrees T1 and T2; the subtrees of r
are the separator trees associated with T1 and T2; observe that the leaves of S are
the nodes of T . (3) A truncated separator tree S′ is obtained from S by removing
all the nodes of S associated with subtrees of T with less than logn nodes. (4)
Drawings of the subtrees of T associated with the leaves of S′ are constructed via the
O(n logn) area algorithm. (5) Such drawings are stacked one on top of the other and
the separator edges connecting them are routed (see Fig. 19a). The authors prove that
the constructed drawings have O( n loglogn

logn ) height and O(logn) width, thus obtaining
the claimed upper bound. The same authors also proved that the O(n log logn) bound
is tight, by exhibiting the class of trees shown in Fig. 19b. In [92] Kim showed
that Θ(n logn) area is an optimal bound for upward orthogonal drawings of ternary
trees. The upper bound comes from a stronger result on orthogonal order-preserving
upward drawings cited below, while the lower bound comes from the tree shown
in Fig. 19c.

Concerning orthogonal order-preserving upward drawings, Θ(n logn) is an
optimal bound both for binary and ternary trees. In fact, Kim [92] proved the upper
bound for ternary trees (such a bound can be immediately extended to binary trees).
The simple construction of Kim is presented in Fig. 20. The lower bound comes
directly from the results of Garg et al. on order-preserving upward (nonorthogonal)
drawings [70].
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a

b c

Fig. 19 (a) The construction of Garg et al. [70] to obtain O(n log logn) area orthogonal upward
drawings of binary trees. Rectangles represent drawings of small subtrees constructed via an
O(n logn) area algorithm. (b) A binary tree requiring Ω(n log logn) area in any upward orthogonal
drawing. The tree is composed of a chain with n/3 nodes, a complete binary tree with n/3 nodes
(the large triangle in the figure), and n

3
√

logn
subtrees (the small triangles in the figure) with

√
logn

nodes rooted at the child of each
√

lognth node of the chain. (c) A ternary tree requiring Ω(n logn)
area in any upward orthogonal drawing. The tree is composed of a chain with n/4 nodes, two other
children for each node of the chain, and a complete binary tree with n/4 nodes (the large triangle
in the figure)
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Fig. 20 An algorithm to
construct O(n logn) area
orthogonal order-preserving
upward drawings of ternary
trees. The figures illustrate
the cases in which: (a) the
right subtree has the greatest
number of nodes; (b) the
middle subtree has the
greatest number of nodes; and
(c) the left subtree has the
greatest number of nodes

5 Upward Drawings

In this section, we discuss algorithms and bounds for constructing small-area planar
straight-line/polyline upward drawings of upward planar directed acyclic graphs.
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Table 5 A table summarizing the area requirements for straight-line upward planar
drawings of upward planar DAGs; b and c denote constants greater than 1

Upper bound Refs. Lower bound Refs.

General upward planar DAGs O(cn) [75] Ω(bn) [48]
Fixed-embedding series-parallel DAGs O(cn) [75] Ω(bn) [10]
Series-parallel DAGs O(n2) [10] Ω(n2) Trivial
Bipartite DAGs O(cn) [75] Ω(bn) [65]
Fixed-embedding directed trees O(cn) [75] Ω(bn) [65]
Directed trees O(n logn) [65] Ω(n logn) [65]
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Fig. 21 (a, b) Inductive construction of a class Gn of upward planar DAGs requiring exponential
area in any planar straight-line upward drawing. (c) Inductive construction of a class of series-
parallel DAGs requiring exponential area in any planar straight-line upward drawing respecting a
fixed embedding. (d) A class of directed trees requiring exponential area in any planar straight-line
upward drawing respecting a fixed embedding

Table 5 summarizes the best-known area bounds for straight-line upward planar
drawings of upward planar DAGs and their subclasses.

It is known that testing the upward planarity of a DAG is an NP-complete
problem if the DAG has a variable embedding [76], while it is polynomial-time
solvable if the embedding of the DAG is fixed [11], if the underlying graph is an
outerplanar graph [104], if the DAG has a single source [84], or if it is bipartite [45].
Di Battista and Tamassia [46] showed that a DAG is upward planar if and only if
it is a subgraph of an st-planar DAG. Some families of DAGs are always upward
planar, like the series-parallel DAGs and the directed trees.

Di Battista and Tamassia proved in [46] that every upward planar DAG admits
an upward straight-line drawing. Such a result is achieved by means of an algorithm
similar to Fáry’s algorithm for constructing planar straight-line drawings of undi-
rected planar graphs (see Sect. 3.1). However, while planar straight-line drawings of
undirected planar graphs can be constructed in polynomial area, Di Battista et al.
proved in [48] that there exist upward planar DAGs that require exponential area in
any planar straight-line upward drawing. Such a result is achieved by considering
the class Gn of DAGs whose inductive construction is shown in Figs. 21a, b and by
using some geometric considerations to prove that the area of the smallest region
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containing an upward planar straight-line drawing of Gn is a constant number of
times larger than the area of a region containing an upward planar straight-line
drawing of Gn−1. The techniques introduced by Di Battista et al. in [48] to prove
the exponential lower bound for the area requirements of upward planar straight-
line drawings of upward planar DAGs have later been strengthened by Bertolazzi
et al. in [10] and by Frati in [65] to prove, respectively, that there exist series-
parallel DAGs with fixed embedding (see Fig. 21c) and there exist directed trees
with fixed embedding (see Fig. 21d) requiring exponential area in any upward planar
straight-line drawing. Similar lower-bound techniques have also been used to deal
with straight-line drawings of clustered graphs (see Sect. 8).

On the positive side, area-efficient algorithms exist for constructing upward
planar straight-line drawings for restricted classes of upward planar DAGs. Namely,
Bertolazzi et al. in [10] have shown how to construct upward planar straight-line
drawings of series-parallel DAGs in optimal Θ(n2) area, and Frati [65] has shown
how to construct upward planar straight-line drawings of directed trees in optimal
Θ(n logn) area. Both algorithms are based on the inductive construction of upward
planar straight-line drawings satisfying some additional geometric constraints. We
remark that for upward planar DAGs whose underlying graph is a series-parallel
graph, neither an exponential lower bound nor a polynomial upper bound is known
for the area requirements of straight-line upward planar drawings. Observe that
testing upward planarity for this family of graphs can be done in polynomial
time [50].

Open Problem 21. What are the area requirements of straight-line upward planar
drawings of upward planar DAGs whose underlying graph is a series-parallel
graph?

Algorithms have been provided to construct upward planar polyline drawings of
upward planar DAGs. The first Θ(n2) optimal area upper bound for such drawings
has been established by Di Battista and Tamassia in [46]. Their algorithm consists
of first constructing an upward visibility representation of the given upward planar
DAG and then of turning such a representation into an upward polyline drawing.
Such a technique has been discussed in Sect. 4.

6 Convex Drawings

In this section, we discuss algorithms and bounds for constructing small-area convex
and strictly convex drawings of planar graphs. Table 6 summarizes the best-known
area bounds for convex and strictly convex drawings of planar graphs.

Not every planar graph admits a convex drawing. Tutte [119, 120] proved that
every triconnected planar graph G admits a strictly convex drawing in which its outer
face is drawn as an arbitrary strictly convex polygon P. His algorithm consists of
first drawing the outer face of G as P and then placing each vertex at the barycenter
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Table 6 A table summarizing the area requirements for convex and strictly convex drawings of
triconnected plane graphs

Upper bound Refs. Lower bound Refs.

Convex n2 +O(n) [17, 28, 47, 111] 4n2

9 −O(n) [37, 69, 100, 121]
Strictly convex O(n4) [8] Ω(n3) [1, 7, 9, 106]
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vk,3vk,2

Gk

Fig. 22 An illustration of the
canonical ordering of a
triconnected plane graph

of the positions of its adjacent vertices. This results in a set of linear equations that
always admits a unique solution.

Characterizations of the plane graphs admitting convex drawings were given
by Tutte in [119, 120], by Thomassen in [117, 118], by Chiba et al. in [26], by
Nishizeki and Chiba in [102], and by Di Battista et al. in [49]. Roughly speaking, the
plane graphs admitting convex drawings are biconnected, their separation pairs are
composed of vertices both incident to the outer face, and distinct separation pairs do
not “nest.” Chiba et al. presented in [26] a linear-time algorithm for testing whether a
graph admits a convex drawing and producing a convex drawing if the graph allows
for one. The area requirements of convex and strictly convex grid drawings have
been widely studied, especially for triconnected plane graphs.

Convex grid drawings of triconnected plane graphs can be realized on a
quadratic-size grid. This was first shown by Kant in [88]. In fact, Kant proved
that such drawings can always be realized on a (2n− 4)× (n− 2) grid. The result
is achieved by defining a stronger notion of canonical ordering of a plane graph
(see Sect. 3.1). Such a strengthened canonical ordering allows us to construct every
triconnected plane graph G starting from a cycle delimiting an internal face of G
and repeatedly adding to the previously constructed biconnected graph Gk a vertex
or a path in the outer face of Gk so that the newly formed graph Gk+1 is also
biconnected (see Fig. 22). Observe that this generalization of the canonical ordering
allows us to deal with plane graphs containing nontriangular faces. Similarly to de
Fraysseix et al.’s algorithm [37], Kant’s algorithm exploits a canonical ordering of
G to incrementally construct a convex drawing of G in which the outer face of the
currently considered graph Gk is composed of segments whose slopes are −45◦, or
0◦, or 45◦.

The bound of Kant was later improved down to (n− 2)× (n− 2) by Chrobak
and Kant [28], and independently by Schnyder and Trotter [111]. The result of
Chrobak and Kant again relies on a canonical ordering. On the other hand, the result
of Schnyder and Trotter relies on a generalization of the Schnyder realizers (see
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Sect. 3.1) in order to deal with triconnected plane graphs. Such an extension was
independently shown by Di Battista et al. [47], who proved that every triconnected
plane graph has a convex drawing on an ( f − 2)× ( f − 2) grid, where f is the
number of faces of the graph. The best bound is currently, as far as we know, an
(n−2−Δ)×(n−2−Δ)bound achieved by Bonichon, Felsner, and Mosbah in [17].
The bound is again achieved using Schnyder realizers. The parameter Δ is dependent
on the Schnyder realizers and can vary among 0 and n

2 − 2. The following remains
open.

Open Problem 22. Close the gap between the (n− 2− Δ)× (n− 2− Δ) upper

bound and the 4n2

9 −O(n) lower bound for the area requirements of convex drawings
of triconnected plane graphs.

Strictly convex drawings of triconnected plane graphs might require Ω(n3) area.
In fact, an n-vertex cycle needs Ω(n3) area in any grid realization (see, e.g., [1,7,9]).
The current best lower bound for the area requirements of a strictly convex polygon
drawn on the grid, which has been proved by Rabinowitz in [106], is n3

8π2 . The
first polynomial upper bound for strictly convex drawings of triconnected plane
graphs has been proved by Chrobak et al. in [27]. The authors showed that every
triconnected plane graph admits a strictly convex drawing in an O(n3)×O(n3)
grid. Their idea consists of first constructing a (non strictly) convex drawing of the
input graph and of then perturbing the positions of the vertices in order to achieve
strict convexity. A more elaborate technique relying on the same idea allowed Rote
to achieve an O(n7/3)×O(n7/3) area upper bound in [109], which was further
improved by Bárány and Rote to O(n2)×O(n2) and to O(n)×O(n3) in [8]. The
last ones are, as far as we know, the best-known upper bounds. One of the main
differences between Chrobak et al.’s algorithm and Bárány and Rote’s ones is that
the former one constructs the intermediate nonstrictly convex drawing by making
use of a canonical ordering of the graph, while the latter ones by making use of the
Schnyder realizers. The following is, in our opinion, a very nice open problem.

Open Problem 23. Close the gap between the O(n4) upper bound and the Ω(n3)
lower bound for the area requirements of strictly convex drawings of triconnected
plane graphs.

7 Proximity Drawings

In this section, we discuss algorithms and bounds for constructing small-area
proximity drawings of planar graphs.

Characterizing the graphs that admit a proximity drawing, for a certain definition
of proximity, is a difficult problem. For example, despite several research efforts
(see, e.g., [51, 52, 95]), characterizing the graphs that admit a realization (a word
that often substitutes drawing in the context of proximity graphs) as Delaunay
triangulations is still an intriguing open problem. Dillencourt showed that every



154 G. Di Battista and F. Frati

Gn−1

Fig. 23 Inductive construction of a class Gn of graphs requiring exponential area in any Gabriel
drawing, in any weak Gabriel drawing, and in any β -drawing

maximal outerplanar graph can be realized as a Delaunay triangulation [51] and
provided examples of small triangulations that cannot. The decision version of
several realizability problems (that is, given a graph G and a definition of proximity,
can G be realized as a proximity graph?) is NP-hard. For example, Eades and
Whitesides proved that deciding whether a tree can be realized as a minimum
spanning tree is an NP-hard problem [57], and that deciding whether a graph can
be realized as a nearest-neighbor graph is an NP-hard problem [56] as well. Both
proofs rely on a mechanism for providing the hardness of graph-drawing problems,
called a logic engine, which is interesting by itself. On the other hand, for several
definitions of proximity graphs (such as Gabriel graphs and relative neighborhood
graphs), the realizability problem is polynomial-time solvable for trees, as shown by
Bose et al. [19]; further, Lubiw and Sleumer proved that maximal outerplanar graphs
can be realized as relative neighborhood graphs and Gabriel graphs [98], a result
later extended by Lenhart and Liotta to all biconnected outerplanar graphs [95]. For
more results about proximity drawings, see [43, 96].

Most of the known algorithms to construct proximity drawings produce repre-
sentations whose size increases exponentially with the number of vertices (see,
e.g., [19, 44, 95, 98]). This seems to be unavoidable for most kinds of proximity
drawings, although few exponential-area lower bounds are known. Liotta et al. [97]
showed a class of graphs (whose inductive construction is shown in Fig. 23)
requiring exponential area in any Gabriel drawing, in any weak Gabriel drawing,
and in any β -drawing. Their proof is based on the observation that the circles
whose diameters are the segments representing the edges incident to the outer
face of Gn cannot contain any point in their interior. Consequently, the vertices of
Gn−1 are allowed only to be placed in a region whose area is a constant number
of times smaller than the area of Gn. On the other hand, Penna and Vocca [105]
showed algorithms to construct polynomial-area weak Gabriel drawings and weak
β -drawings of binary and ternary trees.

Particular attention has been devoted to the area requirements of Euclidean
minimum spanning trees. In their seminal paper on Euclidean minimum spanning
trees, Monma and Suri [101] proved that any tree of maximum degree 5 admits a
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Fig. 24 An illustration of the
algorithm of Monma and Suri
to construct realizations of
degree-5 trees as Euclidean
minimum spanning trees

planar embedding as a Euclidean minimum spanning tree. Their algorithm, whose
inductive construction is shown in Fig. 24, consists of placing the neighbors ri of
the root r of the tree on a circumference centered at r, of placing the neighbors of ri

on a much smaller circumference centered at ri, and so on. Monma and Suri [101]
proved that the area of the realizations constructed by their algorithm is 2Ω(n2) and
conjectured that exponential area is sometimes required to construct realizations of
degree-5 trees as Euclidean minimum spanning trees. Kaufmann [90] and Frati and
Kaufmann [68] showed how to construct polynomial-area realizations of degree-
4 trees as Euclidean minimum spanning trees. Their technique consists of using
a decomposition of the input tree T (similar to the ones presented in Sects. 3.4
and 3.5) in which a path P is selected such that every subtree of P has at most
n/2 nodes. Euclidean minimum spanning tree realizations of such subtrees are then
inductively constructed and placed together with a drawing of P to get a drawing
of T . Suitable angles and lengths for the edges in P have to be chosen to ensure
that the resulting drawing is a Euclidean minimum spanning tree realization of T .
The sketched geometric construction is shown in Fig. 25. Very recently, Angelini et
al. proved in [3] that in fact there exist degree-5 trees requiring exponential area in
any realization as a Euclidean minimum spanning tree. The tree T ∗ exhibited by
Angelini et al., which is shown in Fig. 26, consists of a degree-5 complete tree Tc

with a constant number of vertices and of a set of degree-5 caterpillars, each one
attached to a distinct leaf of Tc. The complete tree Tc forces the angles incident to an
end vertex of the backbone of at least one of the caterpillars to be very small, that is,
between 60◦ and 61◦. Using this as a starting point, Angelini et al. prove that each
angle incident to a vertex of the caterpillar is either very small, that is, between 60◦

and 61◦, or is very large, that is, between 89.5◦ and 90.5◦. As a consequence, the
lengths of the edges of the backbone of the caterpillar decrease exponentially along
the caterpillar, thus obtaining the area bound. There is still some distance between
the best-known lower and upper bounds; hence, the following is open.

Open Problem 24. Close the gap between the 2O(n2) upper bound and the 2Ω(n)

lower bound for the area requirements of Euclidean minimum spanning tree
realizations.

Greedy drawings are a kind of proximity drawings that have recently attracted lot
of attention due to their application to network routing. Namely, consider a network
in which each node a that has to send a packet to some node b forwards the packet
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Fig. 25 An illustration of the algorithm of Frati and Kaufmann to construct polynomial-area
realizations of degree-4 trees as Euclidean minimum spanning tree realizations

Fig. 26 A tree T ∗ requiring 2Ω(n) area in any Euclidean minimum spanning tree realization

to any node c that is closer to b than a itself. If the position of any node u is not
its real geographic location, but rather the pair of coordinates of u in a drawing Γ
of the network, it is easy to see that routing protocol never gets stuck if and only if
Γ is a greedy drawing. Greedy drawings were introduced by Rao et al. in [107].
A lot of attention has been devoted to a conjecture of [103] stating that every
triconnected planar graph has a greedy drawing. Dhandapani verified the conjecture
for triangulations in [38], and later Leighton and Moitra [94] and independently
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Angelini et al. [4] completely settled the conjecture in the positive. The approach
of Leighton and Moitra (the one of Angelini et al. is amazingly similar) consists of
finding a certain subgraph of the input triconnected planar graph, called a cactus
graph, and of constructing a drawing of the cactus by induction. Greedy drawings
have been proved to exist for every graph if the coordinates are chosen in the
hyperbolic plane [93]. Research efforts have also been devoted to construct greedy
drawings in a small area. More precisely, because of the routing applications,
attention has been devoted to the possibility of encoding the coordinates of a
greedy drawing with a small number of bits. When this is possible, the drawing is
called succinct. Eppstein and Goodrich [58] and Goodrich and Strash [78] showed
how to modify the algorithm of Kleinberg [93] and the algorithm of Leighton
and Moitra [94], respectively, in order to construct drawings in which the vertex
coordinates are represented by a logarithmic number of bits. On the other hand,
Angelini et al. [2] proved that there exist trees requiring exponential area in any
greedy drawing (or equivalently requiring a polynomial number of bits to represent
their Cartesian coordinates in the Euclidean plane). The following is open, however.

Open Problem 25. Is it possible to construct greedy drawings of triconnected
planar graphs in the Euclidean plane in polynomial area?

Partially positive results on the mentioned open problem were achieved by He
and Zhang, who proved in [83] that succinct convex weekly greedy drawings exist
for all triconnected planar graphs, where ”weakly greedy” means that the distance
between two vertices u and v in the drawing is not the usual Euclidean distance
D(u,v) but a function H(u,v) such that D(u,v) ≤ H(u,v) ≤ 2

√
2D(u,v). On the

other hand, Cao et al. proved in [22] that there exist triconnected planar graphs
requiring exponential area in any convex greedy drawing in the Euclidean plane.

8 Clustered Graph Drawings

In this section, we discuss algorithms and bounds for constructing small-area c-
planar drawings of clustered graphs. Table 7 summarizes the best-known area
bounds for c-planar straight-line drawings of clustered graphs.

Given a clustered graph, testing whether it admits a c-planar drawing is a problem
of unknown complexity and has perhaps been the most studied problem in the graph
drawing community during the last 10 years [6,30–33,35,41,61,63,77,80,85–87].

Table 7 A table summarizing the area requirements for c-planar straight-
line drawings of clustered graphs in which clusters are convex regions; b
and c denote constants greater than 1

Upper bound Refs. Lower bound Refs.

Clustered graphs O(cn) [5, 54] Ω(bn) [62]
c-Connected trees O(n2) [39] Ω(n2) [39]
Non-c-connected trees O(cn) [5, 54] Ω(bn) [39]
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a b

Fig. 27 (a) A planar straight-line drawing of a hierarchical graph H. Graph H is obtained from a
clustered graph C by assigning consecutive layers to vertices of the same cluster. (b) A straight-line
c-planar drawing of C

Suppose that a c-planar clustered graph C is given together with a c-planar
embedding. How can the graph be drawn? Such a problem has been intensively
studied in the literature, and a number of papers have been presented for constructing
c-planar drawings of c-planar clustered graphs within many drawing conventions.

Eades et al. show in [54] an algorithm for constructing c-planar straight-line
drawings of c-planar clustered graphs in which each cluster is drawn as a convex
region. Such a result is achieved by first studying how to construct planar straight-
line drawings of hierarchical graphs. A hierarchical graph is a graph such that each
vertex v is assigned a number y(v), called the layer of v; a drawing of a hierarchical
graph has to place each vertex v on the horizontal line y = y(v). Eades et al. show an
inductive algorithm to construct a planar straight-line drawing of any hierarchical
planar graph. Second, Eades et al. show how to turn a c-planar clustered graph C
into a hierarchical graph H such that, for each cluster μ in C, all the vertices in
μ appear in consecutive layers of the hierarchy. This implies that, once a planar
straight-line drawing of H has been constructed, as in Fig. 27a, each cluster μ can
be drawn as a region surrounding the convex hull of the vertices in μ , resulting in
a straight-line c-planar drawing of C in which each cluster is drawn as a convex
region, as in Fig. 27b.

Angelini et al., improving upon the described result of Eades et al. in [54] and
answering a question posed in [54], show in [5] an algorithm for constructing
a straight-line rectangular drawing of any clustered graph C, that is, a c-planar
straight-line drawings of C in which each cluster is drawn as an axis-parallel
rectangle (more in general, the algorithm of Angelini et al. constructs straight-
line c-planar drawings in which each cluster is an arbitrary convex shape). The
algorithm of Angelini et al. is reminiscent of Fáry’s algorithm (see [59] and
Sect. 3.1). Namely, the algorithm turns a clustered graph C into a smaller clustered
graph C′ by removing a cluster, or splitting C in correspondence of a separating
3-cycle, or contracting an edge of C. A straight-line rectangular drawing of C′ can
then be inductively constructed and easily augmented to a straight-line rectangular
drawing of C. When none of the inductive cases applies, the clustered graph is an
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Fig. 28 (a) An outerclustered graph. (b) A linearly ordered outerclustered graph. Any two
consecutive clusters in the sequence μ1, . . . ,μ12 are the parent of each other

outerclustered graph; that is, every cluster contains a vertex incident to the outer face
(see Fig. 28a). In order to draw an outerclustered graph C, Angelini et al. show how
to split C into three linearly ordered outerclustered graphs, which are outerclustered
graphs such that the graph induced by the “direct containment” relationship among
clusters is a path (see Fig. 28b), where a cluster μ directly contains a cluster ν
if μ contains ν and μ contains no cluster ρ containing ν . Moreover, they show
how to combine the drawings of such graphs to get a straight-line rectangular
drawing of C. Finally, Angelini et al. show an inductive algorithm for constructing
a straight-line rectangular drawing of any linearly ordered outerclustered graphs C.
Such an algorithm finds a subgraph of C (a path plus an edge) that splits G into
smaller linearly ordered outerclustered graphs, inductively draws such subgraphs,
and combines their drawings to get a straight-line rectangular drawing of C.

Both the algorithm of Eades et al. and the algorithm of Angelini et al. construct
drawings requiring, in general, exponential area. However, Feng et al. proved in [62]
that there exists a clustered graph C requiring exponential area in any straight-line
c-planar drawing in which the clusters are represented by convex regions. The proof
of such a lower bound is strongly based on the proof of Di Battista et al. that there
exist directed graphs requiring exponential area in any upward straight-line drawing
(see [48] and Sect. 5). Eades et al. showed in [55] how to construct O(n2) area c-
planar orthogonal drawings of clustered graphs with maximum degree 4; the authors
first construct a visibility representation of the given clustered graph and then turn
such a representation into an orthogonal drawing. Di Battista et al. [39] show
algorithms for drawing clustered trees in a small area. In particular, they show an
inductive algorithm to construct straight-line rectangular drawings of c-connected
clustered trees in O(n2) area; however, they prove that there exist non-c-connected
trees requiring exponential area in any straight-line drawing in which the clusters are
represented by convex regions, again using the tools designed by Di Battista et al.
in [48]. The following problem has been left open by Di Battista et al. [48].
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Open Problem 26. What are the area requirements of order-preserving straight-
line c-planar drawings of clustered trees in which clusters are represented by convex
regions?
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The Crossing-Angle Resolution in Graph
Drawing

Walter Didimo and Giuseppe Liotta

Abstract The crossing-angle resolution of a drawing of a graph measures the
smallest angle formed by any pair of crossing edges. In this chapter, we survey
some of the most recent results and discuss the current research agenda on drawings
of graphs with good crossing-angle resolution.

1 Introduction

An emerging line of research in graph drawing studies nonplanar drawings of
graphs. The growing interest into this subject can be partly justified by the following
two observations.

The planarity handicap. A large part of the existing literature on graph drawing
showcases elegant algorithms and sophisticated data structures under the
assumption that the input graph is planar (see, e.g., [13,36,37]). This assumption
finds its natural justification in the numerous experimental studies establishing
that the human ability of understanding a diagram is strongly affected by the
number of edge crossings (see, e.g., [44, 45, 50]). Unfortunately, many graphs
are nonplanar in practice. Hence, there is an increasing need for efficient and
effective systems that can visually explore the torrents of nonplanar relational
data sets generated in a variety of application domains (see, e.g., [48]).

Turán-type problems and algorithmic problems. The study of Turán-type problems
about the edge density of graphs with forbidden subgraphs has a long tradition in
combinatorial and discrete geometry (see, e.g. [40]). The need for designing new
drawing paradigms for nonplanar representations of graphs leads to “Turán-type
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algorithmic problems,” that is, to the problem of designing algorithms that
compute nonplanar drawings where subdrawings of certain types are forbidden
because they are considered visually confusing.

In this context, a recent series of experiments by Huang et al. [32, 33, 35] shows
that crossing edges significantly affect the human understanding of a diagram if
they form acute angles, while those edge crossings that form angles from about π

3
to π

2 guarantee good readability properties. As a result, a growing number of papers
in the graph drawing literature study nonplanar representations where such “sharp
angle crossings” are forbidden. The aim of this chapter is to survey this literature,
emphasizing both combinatorial and algorithmic results.

The terminology throughout the chapter is as follows. A drawing of a graph G
(a) injectively maps each vertex u of G to a point pu in the plane, (b) maps each
edge (u,v) of G to a Jordan arc connecting pu and pv that does not pass through any
other vertex, (c) is such that any two edges have at most one point in common. The
angle resolution of a drawing D of a graph is the minimum angle formed by any
pair of crossing edges in G. By using the above terminology, this chapter considers
the following types of drawings of graphs.

• Drawings with optimum crossing-angle resolution, i.e., where every pair of
crossing edges forms angle π

2 . We call these drawings right angle-crossing
drawings (or simply RAC drawings).

• Drawings that have crossing-angle resolution (at least) a given α , for
0 < α < π/2.

The remainder of the chapter is organized as follows. Section 2 considers
extremal problems on straight-line RAC drawings; straight-line drawings of graphs
are often called geometric graphs. Hence, straight-line RAC drawings will be
also referred to as geometric RAC graphs. Section 3 considers the problem of
recognizing and computing geometric RAC graphs. Variants and generalizations
of geometric RAC graphs are considered in Sect. 4; we shall talk about drawings
where bends along the edges are allowed and about drawings such that, for a given
angle α where 0 < α < π/2, the edge crossings form angles that are either exactly
α or at least α . Finally, Sect. 5 discusses future research directions.

2 Geometric RAC Graphs

The notion of RAC drawings was first introduced in [19, 21], where the following
Turán-type result is also proved. The first part of the theorem provides an upper
bound on the number of edges in a geometric RAC graph, while the second part
implies that this bound is tight.

Theorem 1 ([19, 21]). Every geometric RAC graph with n vertices has at most
4n− 10 edges. Also, for any k≥ 3 there exists a RAC graph with n = 3k−5 vertices
and 4n− 10 edges.
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a b

Fig. 1 (a) A geometric RAC graph with n = 7 vertices and m = 4n−10 edges. (b) Two different
straight-line RAC drawings of the square antiprism graph; the two drawings have a different
combinatorial embedding

The proof of the upper bound in Theorem 1 is based on the following ideas
(see [19,21] for details). Let D be a geometric RAC graph; first, it is shown that the
edges of D can be colored with three colors, say red, blue, and green, in such a way
that red edges do not cross any other edge in D, while each blue (green) edge always
crosses some green (blue) edges. Such a coloring defines two geometric graphs, Drb

and Drg, the first consisting of the red and blue edges, and the second consisting of
the red and green edges. Both Drb and Drg are planar and share the external face.
This immediately implies that D has at most 6n−12 edges. The upper bound 4n−10
is then proved with a case analysis on the degree of the external face of Drb and of its
adjacent internal faces. More precisely, it is shown that in a geometric RAC graph of
maximum edge density, every internal face of Drb has at least two red edges, while
the external face consists of red edges only. This observation, together with counting
arguments based on Euler’s formula, leads to proving that the number of edges of a
geometric RAC graph with n vertices cannot exceed 4n− 10. In order to show the
tightness of this upper bound, it is proved that for any k≥ 3, there exists a graph Gk

with n = 3k−5 vertices and 4n−10 edges that admits a straight-line RAC drawing.
Graph Gk is constructed as follows (refer also to Fig. 1a): Start from an embedded
maximal planar graph with k vertices and add to this graph its dual planar graph
without the face node corresponding to the external face (in Fig. 1a the primal graph
has white vertices and the dual graph has black vertices). Also, for each face node
u, add to Gk three edges that connect u to the three vertices of the face associated
with u. The fact that Gk is realizable as a geometric RAC graph is a consequence of
a disk-packing theorem of Brightwell and Scheinerman [11].

A maximally dense RAC graph is a geometric RAC graph having n vertices and
4n− 10 edges. In [27], the relationship between maximally dense RAC graphs and
another well-known family of geometric graphs is studied. A graph is 1-planar if
it admits a drawing where every edge is crossed at most once. A list of references
about 1-planar graphs is included in [10, 29, 38, 42, 47].

Theorem 2 ([27]). Every maximally dense RAC graph is 1-planar. Also, for every
integer i such that i≥ 0, there exists a 1-planar graph with n = 8+ 4i vertices and
4n− 10 edges that is not a RAC graph.
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Dujmović et al. [24, 25] present an alternative proof of the upper bound given
in Theorem 1. Instead of exploiting edge-coloring arguments, their proof relies
on charging techniques similar to those used by Ackerman and Tardos [3] and
Ackerman [1], but it still applies a case analysis on the degree of the external
face and of its adjacent faces, as in the proof of Theorem 1. Roughly speaking,
charging techniques are based on assigning suitable charges to the faces and/or to
the vertices of a plane subdivision defined by a nonplanar drawing. These charges
can be expressed, for example, as functions of the degree of faces and vertices of
the subdivision. Charges are often redistributed to guarantee desired properties and
so that the sum of all charges remains the same. Using Euler’s formula, it is possible
to establish equations that relate the sum of all charges to some functions of the
number of vertices of the graph, and the number of edges to the number of vertices
of the graph.

In addition to (and partially motivated by) Theorem 1, many recent papers
concerning drawings of graphs with good crossing-angle resolution have been
published. Essentially, the following two questions have been investigated.

• What is the complexity of recognizing geometric RAC graphs?
• Can one draw nonsparse graphs with good crossing-angle resolution either by

allowing crossing angles smaller than π
2 or by allowing bends along the edges,

or both?

The next sections both survey the most relevant known results about the two
problems above and discuss some future research directions.

3 Complexity Questions About Geometric RAC Graphs

Argyriou et al. [7] show that recognizing those graphs that are realizable as
geometric RAC graphs is computationally difficult.

Theorem 3 ([7]). Let G be a graph. It is NP-hard to decide whether G admits a
straight-line RAC drawing.

The proof of Theorem 3 uses a reduction from the well-known 3-SAT problem.
The building block of the reduction is a small graph of nine vertices, called an
augmented square antiprism graph, whose straight-line RAC drawings have only
two possible combinatorial embeddings (see Fig. 1b).

One can wonder whether results similar to Theorem 3 hold if additional
geometric constraints are added to a geometric RAC graph. Angelini et al. [4, 5]
study straight-line upward RAC drawings of digraphs, that is, RAC drawings where
the edges are monotone in the upward direction according to their orientation.
They show that the problem of recognizing those digraphs that admit a straight-line
upward RAC drawing remains computationally difficult.

Theorem 4 ([4]). Let G be a digraph. It is NP-hard to decide whether G admits a
straight-line upward RAC drawing.
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Fig. 2 (a) A planar digraph G. (b) A digraph G′ that has a straight-line upward RAC drawing
if and only if G is upward planar. In this case, G is not upward planar and G′ does not have a
straight-line upward RAC drawing

The proof of Theorem 4 is based on the following idea. Consider any planar
digraph G and construct a digraph G′ obtained from G by replacing each edge (u,v)
with the complete graph K4 whose edges are oriented from u to v (see Fig. 2). It is
proved that G is upward planar if and only if G′ admits a straight-line upward RAC
drawing [4]. Since the problem of deciding whether a digraph is upward planar is
NP-hard [31], the above reduction immediately implies the hardness of deciding
whether a digraph has a straight-line upward RAC drawing.

On the positive side, Di Giacomo et al. [16] prove that recognizing the bipartite
graphs that admit a straight-line RAC drawing where vertices of different bipartite
sets lie on two distinct horizontal levels can be recognized in polynomial time.

Theorem 5 ([16]). Let G = (V1,V2,E) be a bipartite graph. There exists a linear-
time algorithm that tests whether G admits a straight-line RAC drawing such that
the vertices of V1 and those of V2 lie on two distinct horizontal layers. Also, such a
drawing can be computed in linear time if it exists.

Theorem 5 exploits a characterization of the family of geometric RAC graphs
on two layers. Roughly speaking, the graphs in this family consist of nontrivial
biconnected components that are spanning subgraphs of ladders plus tree-like
components with special properties. A ladder is a biconnected bipartite graph
consisting of two paths of the same length 〈u1,u2, . . . ,u n

2
〉 and 〈v1,v2, . . . ,v n

2
〉, plus

the edges (ui,vi) (i = 1,2, . . . , n
2 ) (see Fig. 3). We observe that since ladders are the

densest graphs admitting a straight-line RAC drawing on two layers, the maximum
number of edges of a geometric RAC graph on two layers is 1.5n− 2 (i.e., the
number of vertices of a ladder).

In the same paper, the followingNP-hardness result is also proved.

Theorem 6 ([16]). Let G be a bipartite graph and let k be a positive integer. It is
NP-complete to decide whether G admits a subgraph with at least k edges that
admits a straight-line RAC drawing on two layers.
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Fig. 3 (a) A ladder. (b) A straight-line RAC drawing of the ladder on two layers

The complete bipartite graphs that admit a straight-line RAC drawing with no
constraint on the vertex position are characterized in [20]. The characterization
immediately leads to an efficient recognition algorithm for the straight-line RAC
drawable bipartite graphs.

Theorem 7 ([20]). A complete bipartite graph Kn1,n2 (n1 ≤ n2) admits a straight-
line RAC drawing if either n1 ≤ 2, or n1 = 3 and n2 ≤ 4.

We conclude this section by observing that complexity issues in graph drawing
are often not just evaluated in computational terms but also in terms of visual
complexity. The visual complexity of a drawing can be expressed by means
of different parameters, often called aesthetics, such as, for example, the area
requirement, the total edge length, and the angular resolution. Van Kreveld [49] has
recently studied how much better a straight-line RAC drawing of a planar graph can
be than any planar drawing of the same graph. He defines the following measure,
called the quality ratio:

QR(Φ) = sup
G planar

ΦRAC(G)

Φplanar(G)
,

where ΦRAC(G) is the optimum value of measure Φ over all RAC drawings of
G, and Φplanar(G) is the optimum value of measureΦ over all planar drawings of G.
The optimum value of a measure can be either its maximum or its minimum value,
depending on the kind of measure. In particular, denoted by ΦA, ΦE , and Φα the
area requirement, the total edge length, and the angular resolution, respectively,
the following result has been proven.

Theorem 8 ([49]). QR(ΦA) = QR(ΦE) = ∞. QR(Φα)≥ 2.75.

The optimum values for ΦA and ΦE are their minimum values, while the
optimum value for Φα is its maximum value.

Theorem 8 essentially implies that in many cases a planar graph G can be drawn
nonplanarly, with optimum crossing-angle resolution, in order to improve some
other important aesthetics rather than the number of crossings. On the negative
side, however, there are results showing that RAC drawings do not always help
in this sense. Angelini et al. [5] prove that the area requirement of geometric RAC
graphs is Ω(n2); that is, there exist infinitely many graphs whose straight-line RAC
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a b

Fig. 4 (a) A nested-triangles graph G. (b) The graph G′ obtained by replacing each edge (a,b) of
G with a copy of K4

drawings always require quadratic area. More precisely, consider a nested-triangles
graph G, that is, a triconnected graph composed of n

3 3-cycles nested one into the
other (see Fig. 4a). Graph G is known to require Ω(n2) area in any straight-line
planar drawing [12]. Replace each edge (a,b) of G with a copy of K4 , by identifying
vertices a and b of G with vertices u and v of K4 , respectively. Let G′ be the resulting
planar graph (see Fig. 4b). G′ has O(n) vertices since, for every edge of G, two new
vertices are introduced in G. The following theorem is proved.

Theorem 9 ([5]). Any straight-line RAC drawing of G′ requires Ω(n2) area.

The idea of the proof is based on the observation that G is a subgraph of G′ and
that any straight-line RAC drawing D′ of G′ is such that no two edges of G in D′

cross each other. This implies that if D′ had subquadratic area, then G would admit
a straight-line planar drawing with subquadratic area, which is impossible.

4 Curve Complexity and Crossing-Resolution Tradeoffs

Theorem 1 restricts the geometric RAC graphs to being sparse. In order to compute
drawings of graphs with good crossing-angle resolution and with superlinear edge
density, variants and relaxations of RAC graphs must be considered. For example,
one can study either RAC drawings where bends along the edges are allowed, or
drawings where the edge crossings may not be orthogonal. The next subsection
concentrates on RAC drawings with bends along the edges. Section 4.2 considers
drawings where crossing angles can be smaller than π

2 .

4.1 Allowing Bends Along the Edges

The curve complexity of a drawing D is the maximum number of bends along an
edge of D (therefore, straight-line drawings have curve complexity 0). In [19, 21]
the study of RAC drawings with bent edges is initiated. The following result is
given.
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Fig. 5 (a) A RAC drawing of K7 with curve complexity 3. (b) A regular directed multigraph G′

with in-degree and out-degree equal to 3 and its cycle covers C1, C2, and C3. The edges of C1 are
represented by solid thin lines, the ones of C2 are represented by solid thick lines, and the ones of
C3 are represented by dashed lines. (c) A RAC drawing of G′ with two bends per edge constructed
by the algorithm of Theorem 13

Theorem 10 ([19, 21]). Every graph admits a RAC drawing with curve
complexity 3.

There are different ways of proving Theorem 10. For example, one can place
all vertices on a horizontal line with an arbitrary order, and use exactly three bends
per edge so that any two crossing segments have slopes 1 and −1, respectively (see
Fig. 5a). In [19, 21] it is also proved that not all graphs can be drawn with optimum
crossing-angle resolution and curve complexity smaller than 3; indeed, it is shown
that RAC drawings with curve complexity 1 have O(n4/3) edges, while those with
curve complexity 2 have O(n7/4) edges. These last upper bounds on the edge density
are significantly improved by Arikushi et al. [8].

Theorem 11 ([8]). An RAC drawing with n vertices and curve complexity 1 has at
most 6.5n− 13 edges.

Theorem 12 ([8]). An RAC drawing with n vertices and curve complexity 2 has
less than 74.2n edges.

The proof of Theorem 11 still relies on charging arguments on the plane
subdivision defined by an RAC drawing with curve complexity 1. The proof of
Theorem 12 is based on a completely different argument. It combines the new
concept of block graph, defined on the set of crossing segments in an RAC drawing
with curve complexity 2, with the strongest-known version of the crossing lemma,
due to Pach et al. [41].

Lemma 4.1 ([41]). Let G be a graph with n vertices and m edges. If m ≥ 103
6 n ≈

17.167n, then

cr(G)≥ 1024
31827

· m3

n2 ≈ 0.032
m3

n2 .

In the lemma above, cr(G) denotes the minimum number of crossings in a plane
drawing of G.
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Angelini et al. [4, 5] study RAC drawings with bends along the edges for graphs
with a bounded vertex degree. They prove the following results.

Theorem 13 ([4]). Let G be a graph with n vertices and vertex degree at most 6.
There always exists a RAC drawing of G with curve complexity 2 and area O(n2).
Such a drawing can be computed in O(n) time.

Theorem 14 ([4]). Let G be a graph with n vertices and vertex degree at most three.
There always exists an RAC drawing of G with curve complexity 1 and area O(n2).
Such a drawing can be computed in O(n) time.

The algorithms in Theorems 13 and 14 are based on the decomposition of a
regular directed multigraph into directed 2-factors. A 2-factor of an undirected
graph G is a spanning subgraph of G consisting of vertex-disjoint cycles (see,
e.g., [9]). Analogously, a directed 2-factor of a directed graph is a spanning
subgraph consisting of vertex-disjoint directed cycles. The decomposition of a
regular directed multigraph into directed 2-factors follows from a classical result
for undirected graphs, stating that “a regular multigraph of degree 2k has k edge-
disjoint 2-factors” [43]. Given a graph G with vertex degree at most Δ, Eades,
Symvonis, and Whitesides [28] show how to construct a digraph G′ such that (a)
each vertex of G has in-degree and out-degree at d = 
Δ/2�, (b) G is a subgraph of
the undirected underlying graph of G′, (c) the edges of G′ can be partitioned into d
edge-disjoint directed 2-factors. If Δ = 6, the algorithm in Theorem 13 constructs
an RAC drawing of G′ with curve complexity 2, placing all vertices on a line � of
slope 1, almost all the edges of one of the three 2-factors along �, and one of the
edge sets of the two remaining 2-factors is “above” � while the other is “below” �
(see, Fig. 5b, c). A similar technique is used if Δ= 3.

Area-curve complexity tradeoffs of RAC drawings are further studied by Di
Giacomo et al. [17, 18]. They observe that the constructive technique described for
proving Theorem 10 gives rise to RAC drawings with area O(n4), and prove that
by allowing curve complexity larger than 3, one can reduce the area of an RAC
drawing.

Theorem 15 ([17,18]). Every graph admits an RAC drawing with curve complexity
4 and area O(n3).

The proof of Theorem 15 is constructive. It describes how to compute an RAC
drawing of the complete graph Kn with exactly four bends per edge and cubic area.
Arbitrarily number the vertices of Kn from 0 to n− 1. Vertex i with 0 ≤ i ≤ n− 1
is placed at point pi = (in− 3,2n). For each pair of vertices i and j, with i < j, the
four bends of edge (i, j) are placed at the following points (in this order):

• ai, j = (in− 2,( j− i)− 1+ 2(n−1)),
• bi, j = (in,( j− i)− 1),
• ci, j = ( jn− ( j− i),2( j− i)− 1),
• di, j = ( jn− ( j− i)− 2,2( j− i)− 1+2(n−1)).

An RAC drawing of K6 constructed with this technique is shown in Fig. 6.
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Fig. 6 An RAC drawing of K6 with curve complexity 4

4.2 Drawings with Nonorthogonal Edge Crossings

In the last couple of years, several papers have been devoted to drawings of graphs
where the crossing angles are not required to be orthogonal, but a lower bound on
the crossing-angle resolution is given as part of the input and the curve complexity
is kept low. Since the existing papers often adopt a nonuniform and somewhat
confusing notation, for the sake of clarity, we redefine these drawings as follows.

Let α be an angle value such that 0 < α < π
2 . An ACEα drawing is a polyline

drawing such that any two edges cross at an angle that is exactly α . An ACLα
graph is a polyline drawing such that any two edges cross at an angle that is at
least α . When the edges of an ACEα drawing (ACLα drawing) are all straight-line
segments, the drawing is a geometric graph that we also call a geometric ACEα
graph (a geometric ACLα graph). For completeness, we recall that ACLα drawings
have been independently introduced by Di Giacomo et al. [17, 18], who call them
LACα drawings, and by Dujmović et al. [24, 25], who call them αAC drawings.
Ackerman et al. [2] introduced and studied ACEα drawings with the name of
αAC=

b (b is used to denote the maximum number of bends per edge in the drawing).
Dujmović et al. [24, 25] prove the following result.

Theorem 16 ([24, 25]). A geometric ACLα graph with n vertices has at most
π
α (3n− 6) edges.

The idea behind the proof of Theorem 16 uses a bucketing argument. Namely,
assume for simplicity that k = π

α is an integer number, and let D be a geometric
ACLα graph. Partition the edge set of D into k subsets called buckets; bucket i
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(1≤ i≤ k) contains all edges that have their direction in the interval [α(i− 1),αi).
The direction of an edge e is the angle formed by a horizontal line and a line that
contains e in the counterclockwise direction; it ranges in the interval [0,π). Denote
by Di the subgraph of D consisting of the edges in the bucket i only. Since the
crossing-angle resolution of D is at least α , each Di is planar; indeed, two crossing
edges of Di would form an angle smaller than α . It follows that each Di has at most
3n−6 edges, and hence the number of edges of D is at most k(3n−6) = π

α (3n−6).
The proof is slightly refined with some probabilistic arguments if k is not an integer,
but the bucketing argument remains the same.

Ackerman et al. [2] prove a similar result as the one of Theorem 16 for geometric
ACEα graphs.

Theorem 17 ([2]). A geometric ACEα graph with n vertices has at most 3(3n−6)
edges.

The proof of Theorem 17 is based on an edge-coloring argument that generalizes
the one used for proving the 4n− 10 bound for geometric RAC graphs given in
Theorem 1. Namely, suppose that D is a geometric ACEα graph with n vertices.
One can partition the set of edges of D into maximal subsets Si of pairwise parallel
edges. Let S = {Si} and let GS = (S,ES ) be a graph such that (Si,S j) ∈ ES if and
only if the direction of the edges in Si differs from the direction of the edges in S j

by an angle α . Since each vertex of GS has degree at most 2, the vertex set of GS
is 3-colorable. This vertex coloring corresponds to an edge coloring of D such that
all the edges with the same color do not cross each other, and hence they induce a
planar graph. Thus, the total number of edges of D is at most 3(3n−6). Concerning
ACEα drawings with curve complexity larger than 0, Ackerman et al. prove the
following results.

Theorem 18 ([2]). An ACEα drawing with n vertices and curve complexity 1 has
at most 27n edges.

Theorem 19 ([2]). An ACEα drawing with n vertices and curve complexity 2 has
at most 477n edges.

The key idea for the proofs of Theorems 18 and 19 is to partition the set of
edge segments into two subsets: The end-segments are those incident to some
vertex of the drawing; the middle-segments are the remaining edge segments. Then
the bounds are derived counting the number of crossings that involve either two
end segments or an end segment and a middle segment. We remark that a similar
argument, combined with the crossing lemma, has been previously used in [19, 21]
to derive the subquadratic bounds on the number of edges of RAC drawings with
curve complexities 1 and 2.

Theorems 12 and 19 imply that curve complexity 2 is not sufficient to draw all
graphs when the crossing angle is required to be a given α ∈ (0, π2 ]. On the other
hand, three bends per edge always suffice, as the proof of Theorem 10 immediately
extends to any other value of α (consider edges with middle segments that form an
angle of ±α

2 with the horizontal line).



178 W. Didimo and G. Liotta

p0

p1

p2

p3

p4

p5

a0,1 a0,2 a0,3 a0,4 a0,5

a1,2 a1,3 a1,4 a1,5

a2,3 a2,4 a2,5

a3,4 a3,5

a4,5

β

Fig. 7 An ACLα-drawing of
K6 with curve complexity 1
and α = 0.93. In this drawing
c = 2 (which guarantees that
the crossing resolution is at
least 0.93). Indeed, the
smallest crossing angle in the
drawing is β ′, and its value is
1.05

The edge density/curve complexity tradeoff turns out to be quite different for
ACLα drawings. Namely, Di Giacomo et al. [17, 18] prove the following.

Theorem 20 ([17, 18]). Every graph with n vertices has an ACLα drawing with
curve complexity 1 and area O(n2).

The proof of Theorem 20 describes how to construct an ACLα drawing of Kn

with exactly one bend per edge and area O(n2). Let c be an integer such that
the angle between a line of slope c+ 1 and a line of slope 1

c+1 is larger than α .
Arbitrarily number the vertices of Kn from 0 to n− 1. Vertex i (0 ≤ i ≤ n− 1) is
placed at point pi = (ic,(n− i−1)c). For each pair of vertices i and j, with i < j, the
bend of edge (i, j) is placed at point ai, j = ( jc+1,(n− i−1)c+1). Figure 7 shows
an example of such a drawing for n = 6 and c = 2. Finally, the optimality of the area
upper bound is an immediate consequence of Theorem 16, which implies that any
ACLα drawing of a complete graph must have a quadratic number of edges with at
least one bend (and therefore any drawing contains at least a quadratic number of
points that represent such bends).

It may be worth comparing Theorem 15 with Theorem 20: While the best general
upper bound on the area of an RAC drawing is O(n3) and requires curve complexity
4, for any arbitrarily small ε > 0 one can compute an ACLα drawing with α = π

2 −ε
having curve complexity 1 and quadratic area.

5 Future Research Directions

This chapter has surveyed recent results about nonplanar drawings with good
crossing-angle resolution. The study of the subject is partly motivated by ap-
plications of information visualization and partly by its interest in the fields of
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Table 1 Summary of Turán-type results for RAC, ACEα , and ACLα drawings

Straight-line 1 bend/edge 2 bends/edge 3 bends/edge

RAC drawing M = 4n−10 M ≤ 6.5n−13∗ M ≤ 74.2n∗ M = n(n−1)
2

(Theorem 1) (Theorem 11) (Theorem 12) (Theorem 10)

ACEα drawing M ≤ 3(3n−6)∗ M ≤ 27n∗ M ≤ 477n∗ M = n(n−1)
2

(Theorem 17) (Theorem 18) (Theorem 19) (Theorem 10)

ACLα drawing M ≤ π
α (3n−6)∗ M = n(n−1)

2 M = n(n−1)
2 M = n(n−1)

2
(Theorem 16) (Theorem 20) (Theorem 20) (Theorem 20)

The symbol “*” indicates that it is not known whether the bound is tight.

geometric graph theory and graph drawing. We conclude this survey by listing some
research directions that, in our opinion, are among the most promising. We shall
distinguish among Turán-type problems, recognition and characterization problems,
optimization problems, and algorithm engineering problems.

5.1 Turán-Type Problems

Table 1 summarizes the Turán-type results described in this survey chapter. In the
table, M denotes the maximum number of edges in a drawing of a specific type.
Every entry of the table contains an upper bound to the value M for a different
type of drawing (row), with a specific curve complexity (column). Not all bounds in
Table 1 are known to be tight. A natural question is therefore the following.

Open Problem 1. Improve the upper bounds for those entries marked with the
symbol “*” in Table 1 or show that these bounds are tight.

5.2 Recognition and Characterization Problems

As stated in Theorem 3, recognizing those graphs that can be realized as geometric
RAC graphs is NP-hard.

Open Problem 2. What is the complexity of recognizing graphs that admit a
geometric ACEα drawing or a geometric ACLα drawing, for a given angle
α ∈ (0, π2 )?

By Theorem 10, every graph admits an RAC drawing with at most three bends
per edge. Also, by Theorem 20, every graph admits an ACLα drawing with at most
one bend per edge, for a given α ∈ (0, π2 ).

Open Problem 3. What is the complexity of recognizing graphs that admit an RAC
drawing with at most one bend per edge? And for those having an RAC drawing
with at most two bends per edge?
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Open Problem 4. What is the complexity of recognizing graphs that admit an
ACEα drawing with at most one or at most two bends per edge, for a given
α ∈ (0, π2 )?

Strictly related problems consider the characterization of families of graphs that
admit drawings with good crossing-angle resolution. For example, one can study
the following extremal problem (Theorem 2 may be a starting point for studying
this problem).

Open Problem 5. What graphs having exactly 4n− 10 edges (i.e., of maximum
edge density) can be realized as geometric RAC graphs?

Another characterization problem considers low-degree graphs. Duncan
et al. [26] prove that graphs with maximum vertex degree 4 have geometric
thickness 2. As explained in Sect. 2, straight-line RAC drawings also have geometric
thickness 2. However, an immediate consequence of Theorem 7 is that not all
graphs with maximum vertex degree 4 can be realized as geometric RAC graphs
(for example, K4,4 cannot be a geometric RAC graph). Note that, by Theorem 14,
any graph with maximum vertex degree 3 admits an RAC drawing with curve
complexity 1.

Open Problem 6. Can all graphs with maximum vertex degree 3 be realized as
geometric RAC graphs?

5.3 Optimization Problems

Many of the typical optimization questions that have been asked in the literature for
planar drawings can also be asked for drawings with good crossing-angle resolution.
For example, it is well known that a quadratic size grid is always sufficient and
sometimes necessary for straight-line planar drawings [12]. On the other hand, if
edge crossings are allowed, then every planar graph admits a drawing in linear
area [51]. Theorem 9 proves that Ω(n2) area may also be required by geometric
RAC graphs.

Open Problem 7. What is the area requirement of polyline RAC drawings of
planar graphs? What about the area requirement of polyline ACEα or ACLα
drawings of planar graphs?

The above open problem can be made more specific by looking at subfamilies of
planar graphs. For example, Frati [30] shows anΩ(n2

√
logn) lower bound to the area

requirement of polyline drawings of series-parallel graphs.

Open Problem 8. Can one compute polyline RAC drawings (or ACEα or ACLα
drawings) of series-parallel graphs with low curve complexity and area o(n2

√
logn)?

Finally, Theorem 15 establishes a tradeoff between the area and curve complexity
of RAC drawings of nonplanar graphs.
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Open Problem 9. Is it possible to compute RAC drawings of graphs in o(n3) area
and curve complexity at most 4?

Another natural research direction is to investigate the problem of computing
drawings such that the crossing-angle resolution is maximized. More precisely, we
ask the following.

Open Problem 10. Compute straight-line drawings that optimize one of the
following functions:

• The crossing-angle resolution.
• The sum of all crossing angles.
• The average value over all crossing angles.
• The total angle resolution, the minimum between crossing- and vertex-angle

resolution.

Results related to Open Problem 10 can be found in [6, 14, 15]. In [14, 15],
upper and lower bounds on the crossing-angle resolution of straight-line drawings
of complete graphs are presented; in [6], asymptotically optimal bounds on the total
angle resolution of circular drawings of complete graphs and of two-layer drawings
of complete bipartite graphs are presented.

5.4 Algorithm Engineering Problems

The need to visually analyze large relational datasets justifies a significant effort
into the technology transfer of algorithmic solutions for drawing nonplanar graphs.
In this context, the development of libraries and experimental platforms devoted to
algorithms that compute drawings with good crossing angle and total angle reso-
lution is an interesting research direction. Different heuristics have been designed
and experimentally tested that perform well in terms of crossing-angle or total
angle resolution. Extensions of classical force-directed algorithms that take into
account the optimization of the crossing-angle resolution are described in [22, 34].
The algorithm in [22] allows bent edges, and it is used to compute simultaneous
drawings of graphs of concepts in a system for the visual analysis of web-traffic data.
A force-directed algorithm that attempts to optimize the total angle resolution is
described in [6]. Experimental evaluations of classical and enhanced force-directed
algorithms that take into account different aesthetic criteria, including crossing-
and vertex-angle resolutions, are presented in [34]. A graph drawing framework
combining the topology-shape-metrics and the force-directed approaches with the
goal of computing drawings with good tradeoffs among the number of crossings,
vertex-angle resolution, crossing-angle resolution, and geodesic edge tendency is
described and experimentally evaluated in [23]. A postprocessing algorithm, based
on quadratic programming, that improves the crossing-angle resolution of a circular
layout is described in [39].
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Besides force-directed techniques, it would be interesting to design and
experimentally evaluate other algorithmic approaches. For example, Theorem 6
motivates the following open problem, which can be used as a building block
to implement a variant of the well-known Sugiyama algorithmic framework for
layered graph drawing (see, e.g., [46]).

Open Problem 11. Design and experimentally evaluate heuristics and/or
approximation algorithms for extracting the maximum two-layer RAC drawable
subgraph of a given bipartite graph.
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Mover Problems

Adrian Dumitrescu

Abstract Leo Moser asked what is the region of largest area that can be moved
around a right-angled corner in a corridor of unit width? Similarly, what is the region
of largest area that can be reversed in a T junction made up of roads of unit width?
Can a specific 3-dimensional object pass through a given door? Our survey aims at
showing that mover problems are no less challenging even if there are no obstacles
other than the objects themselves, but there are many objects to move. We survey
some recent results on motion planning and reconfiguration for systems of multiple
objects and for modular systems with applications in robotics, and collect some
open problems coming out of this line of research.

1 Introduction

The motion planning problem in its simplest form is that of finding a collision-free
movement for a single object from a given start position to another specified target
position in the presence of obstacles; see, e.g., [34]. Besides the pure algorithmic
aspect, a natural question is how large such an object can be moved through a given
corridor formed by the obstacles. For instance, Leo Moser asked for the region of
largest area that can be moved around a right-angled corner in a corridor of unit
width [36]; see also [19, G5]. The problem became known as the piano mover’s
problem, or more accurately (since any single mover would be overwhelmed by the
task), the piano movers’ problem.

The motion planning problem can also be formulated for systems of multiple
independent objects. Schwartz and Sharir present an algorithm that solves the
following motion planning problem that arises in robotics: Given a start and a
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target configuration of n disks, and a region bounded by a collection of walls,
find a continuous motion connecting the two configurations of these bodies during
which they avoid collision with the walls and with each other, or establish that
no such motion exists [46]. Motion planning for multiple objects has been also
addressed in [28]. Again, besides the pure algorithmic aspect, a natural question
is to estimate the number of moves (of a certain type) such a reconfiguration
requires in terms of n, the number of objects. In this survey we are primarily
concerned with this combinatorial aspect of moving multiple objects. We discuss
three related reconfiguration scenarios for systems of multiple objects. The reader
is also referred to the two surveys on related topics by Pach and Sharir [39, Chap. 9]
and by Demaine and Hearn [20].

1. A body (or object) in the plane is a compact connected set in R2 with a nonempty
interior. Two initially disjoint bodies collide if they share an interior point at some
time during their motion. Consider a set of n pairwise interior-disjoint objects
in the plane that need to be brought from a given start (initial) configuration
S into a desired target (goal) configuration T , without causing collisions. The
reconfiguration problem for such a system is that of computing a sequence of
object motions (a schedule, or motion plan) that achieves this task. Depending on
the existence of such a sequence of motions, we call that instance of the problem
feasible and, respectively, infeasible.

Our reconfiguration problem is a simplified version of the multirobot motion
planning problem [32], in which a system of robots are operating together in
a shared workplace and from time to time need to move from their initial
positions to a set of target positions. The workspace is often assumed to extend
throughout the entire plane, with no obstacles other than the robots themselves.
In many applications, the robots are indistinguishable so any of them can
occupy any of the specified target positions. Another application that permits the
same abstraction is moving around large sets of heavy objects in a warehouse.
Typically, one is interested in minimizing the number of moves and in designing
efficient algorithms for carrying out the motion plan. There are several types of
moves, such as sliding, translation, or lifting, which lead to three different models
that will be discussed in Sect. 2.

2. A different kind of reconfiguration problem appears in connection to metamor-
phic or self-reconfigurable modular systems. A modular robotic system consists
of a number of identical robotic modules that can connect to, disconnect from,
and relocate relative to adjacent modules; see examples in [14, 18, 37, 38, 40, 45,
48–50, 53]. Typically, the modules have a regular symmetry so that they can be
packed densely, with small gaps between them. Such a system can be viewed as
a large swarm of physically connected robotic modules that behave collectively
as a single entity.

The system changes its overall shape and functionality by reconfiguring
into different formations. In most cases individual modules are not capable of
moving by themselves; however, the entire system may be able to move to a
new position when its members repeatedly change their positions relative to
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their neighbors, by rotating or sliding around other modules [13, 37, 52], or by
expansion and contraction [45]. In this way the entire system, by changing its
aggregate geometric structure, may acquire new functionalities to accomplish a
given task or to interact with the environment.

Shape changing in these composite systems is envisioned as a means to
accomplish various tasks, such as reconnaissance, exploration, satellite recovery,
or operation in constrained environments inaccessible to humans (e.g., nuclear
reactors, space, or deep water). For another example, a self-reconfigurable robot
can aggregate as a snake to traverse a tunnel and then reconfigure as a six-legged
spider to move over uneven terrain. A novel useful application is to realize
self-repair: A self-reconfigurable robot carrying some additional modules may
abandon the failed modules and replace them with spare units [45]. It is usually
assumed that the modules must remain connected all (or most) of the time during
reconfiguration.

The motion planning problem for such a system is that of computing a
sequence of module motions that brings the system in a given initial configuration
I into a desired goal configuration G. Reconfiguration for modular systems acting
in a grid-like environment, and where moves must maintain connectivity of the
whole system has been studied in [25–27], focusing on two basic capabilities of
such systems: reconfiguration and locomotion. We present details in Sect. 3.

3. In some cases the problem of bringing a set of pairwise disjoint objects (in the
plane or in the space) to a desired goal, configuration, admits the following
abstraction: We have an underlying finite or infinite connected graph; the start
configuration is represented by a set of n chips at n start vertices and the target
configuration by another set of n target vertices. A vertex can be both a start and
a target position. The case when the chips are labeled or unlabeled gives two
different variants of the problem. In one move a chip can follow an arbitrary path
in the graph and end up at another vertex, provided the path (including the end
vertex) is free of other chips [16].

The motion planning problem for such a system is that computing a sequence of
chip motions that brings the chips from their initial positions to their target positions.
Again, the problem may be feasible or infeasible. We address multiple aspects of
this variant in Sect. 4. We note that the three models mentioned earlier in (1) do not
fall in the above graph reconfiguration framework, because an object may partially
overlap several target positions.

2 Models of Reconfiguration for Systems of Objects
in the Plane

We formulate these models for systems of disks, since they are simpler and most
of our results are for this class of convex bodies. These rules can be extended
(not necessarily uniquely) for arbitrary convex bodies in the plane. The decision
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problems we refer to below, pertaining to various reconfiguration problems we
discuss here, are in standard form and concern systems of (arbitrary or congruent)
disks. For instance, the reconfiguration problem U-SLIDE-RP for congruent disks
is as follows: Given a start configuration and a target configuration, each with
n unlabeled congruent disks in the plane, and a positive integer k, is there a
reconfiguration motion plan with at most k sliding moves? It is worth clarifying
that for the unlabeled variant, if the start and target configuration contain subsets
of congruent disks, there is freedom is choosing which disks will occupy target
positions. However, in the labeled variant, this assignment is uniquely determined
by the labeling; of course, a valid labeling must respect the size of the disks.

1. Sliding model: One move is sliding a disk to another location in the plane without
colliding with any other disk, where the disk center moves along an arbitrary
continuous curve. This model was introduced in [8]. The labeled and unlabeled
variants are L-SLIDE-RP and U-SLIDE-RP, respectively.

2. Translation model: One move is translating a disk to another location in the
plane along a fixed direction without colliding with any other disk. This is a
restriction imposed to the sliding model above for making each move as simple
as possible. This model was introduced in [2]. The labeled and unlabeled variants
are L-TRANS-RP and U-TRANS-RP, respectively.

3. Lifting model: One move is lifting a disk and placing it back in the plane
anywhere in the free space, that is, at a location where it does not intersect
(the interior of) any other disk. This model was introduced in [7]. The labeled
and unlabeled variants are L-LIFT-RP and U-LIFT-RP, respectively.

It turns out that moving a set of objects from one place to another is related to
certain separability problems [12,17,29,31]; see also [44]. For instance, given a set
of disjoint polygons in the plane, may each be moved “to infinity” in a continuous
motion in the plane without colliding with the others? Often constraints are imposed
on the types of motions allowed, e.g., only translations, or only translations in a fixed
set of directions. Usually only one object is permitted to move at a time. Without the
convexity assumption on the objects, it is easy to show examples when the objects
are interlocked and could only be moved “together” in the plane; however, they
could be easily separated using the third dimension, i.e., in the lifting model.

It can be shown that for the class of disks, the reconfiguration problem in each
of these models is always feasible [2, 7, 8, 12, 29, 31]. This follows essentially from
the feasibility in the sliding model and the translation model; see Sect. 2.1. For the
more general class of convex objects, one needs to allow rotations. For simplicity,
we restrict ourselves mostly to the case of disks. We are thus led to the following
generic question: Given a pair of start and target configurations, each consisting of
n pairwise disjoint disks in the plane, what is the minimum number of moves that
suffice for transforming the start configuration into the target configuration for each
of these models?

If no target disk coincides with a start disk, so each disk must move at least
once, obviously at least n moves are required. In general, one can use (a variant
of) the following simple universal algorithm for the reconfiguration of n objects
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Fig. 1 2n−1 moves are
necessary (in the sliding or
the lifting model) to bring the
n segments from vertical
position to horizontal position

Table 1 Comparison summary: number of moves for disks in the plane/chips in
the grid

Model Type Lower bound Upper bound

Translating disks Congruent (unlabeled) 5n/3�−1 2n−1
Arbitrary (unlabeled) 2n 2n

Sliding disks Congruent (unlabeled) 16n/15−o(n) 3n/2+o(n)
Arbitrary (unlabeled) 2n−o(n) 2n−1

Lifting disks Congruent (unlabeled) n+Ω(n1/2) n+O(n2/3)

Arbitrary (unlabeled) 5n/3� 9n/5
Sliding chips (grid) Unlabeled n n

Labeled 3n/2 7n/4
Lifting chips (grid) Unlabeled n n

Labeled 3n/2 3n/2

using 2n moves. To be specific, consider the lifting model. In the first step
(n moves), move all the objects away anywhere in the free space. In the second step
(n moves), bring the objects “back” to target positions. For the class of segments
(or rectangles) as objects, it is easy to construct examples that require 2n−1 moves
for reconfiguration, in any of the three models, even for congruent objects; see
Fig. 1. A first goal is to estimate more precisely where in the interval [n,2n] the
answer lies for each of these models. The best current lower and upper bounds on
the number of moves necessary in the three models described earlier are listed in
Table 1. It is quite interesting to compare the bounds on the number of moves for
the three models, translation, sliding, and lifting, with those for the graph variants
discussed in Sect. 4. Table 1, which is constructed on the basis of the results in
[2, 7, 8, 16], facilitates this comparison.

Some remarks are in order. Clearly, any lower bound (on the number of moves)
for lifting is also valid for sliding, and any upper bound (on the number of moves) for
sliding is also valid for lifting. Another observation is that for lifting, those objects
whose target position coincides with their start position can be safely ignored, while
for sliding this is not true. A simple example is illustrated in Fig. 2: Assume that
we have a large disk surrounded by n− 1 smaller ones. The large disk has to be
moved to another location, while the n−1 smaller disks have to stay where they are.
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Fig. 2 One move is enough
in the lifting model, while
n−1 are needed in the sliding
model for this pair of start
and target configurations with
n disks each (here n = 8).
Start disks are white and
target disks are shaded

One move is enough in the lifting model, while n−1 are needed in the sliding model:
One needs to make space for the large disk to move out by moving out about half of
the small disks and then moving them back in to the same positions.

A move is a target move if it moves a disk to a final target position. Otherwise,
it is a nontarget move. Our lower bounds use the following argument: If no target
disk coincides with a start disk (so each disk must move), a schedule that requires x
nontarget moves must consist of at least n+ x moves.

2.1 The Sliding Model

It is not difficult to show that, for the class of disks, the reconfiguration problem in
the sliding model is always feasible. More generally, the problem remains feasible
for the class of all convex objects using sliding moves; this follows from Theorem 1.
This old result appears in the work of Fejes Tóth and Heppes [29], but it can be
traced back to de Bruijn [12]; some algorithmic aspects of the problem have been
addressed subsequently by Guibas and Yao [31].

Theorem 1 ([12,29,31]). Any set of n convex objects in the plane can be separated
via translations all parallel to any given fixed direction, with each object moving
once only. If the topmost and bottommost points of each object are given (or can
be computed in O(n logn) time), an ordering of the moves can be computed in
O(n logn) time.

The universal algorithm mentioned earlier can be adapted to perform th reconfig-
uration of any set of n convex objects. It performs 2n moves for the reconfiguration
of n disks. In the first step (n moves), in decreasing order of the x-coordinates of
their centers, slide the disks initially along a horizontal direction, one by one to the
far right. Observe that no collisions can occur. In the second step (n moves), bring
the disks “back” to target positions in increasing order of the x-coordinates of their
centers. (General convex objects may need rotations and translations in the second
step.) Already for the class of disks, Theorem 3 shows that one cannot do much
better in terms of the number of moves. The following bounds on the number of
moves for translating disks are due to Bereg et al. [8] (Theorems 2 and 3).
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step 1

step 2

step 3

l

Fig. 3 Algorithm with three steps for sliding congruent disks. The start disks are white and the
target disks are shaded

Theorem 2 ([8]). Given a pair of start and target configurations S and T , each
consisting of n congruent disks, 3n

2 +O(
√

n logn) sliding moves always suffice for
transforming the start configuration into the target configuration. The entire motion
can be computed in O(n3/2(logn)−1/2) time. On the other hand, there exist pairs of
configurations that require

(
1+ 1

15

)
n−O(

√
n) moves for this task.

We now briefly sketch the upper bound proof and the corresponding algorithm
in [8] for congruent disks. First, one shows the existence of a line bisecting the set
of centers of the start disks such that the strip of width 6 around this line contains a
small number of disks. More precisely, the following holds:

Lemma 2.1 ([8]). Let S be a set of n pairwise disjoint unit (radius) disks in the
plane. Then there exists a line � that bisects the centers of the disks such that the
parallel strip of width 6 around � (that is, � runs in the middle of this strip) contains
entirely at most O(

√
n logn) disks.

Let S′ and T ′ be the centers of the start disks and target disks, respectively, and
let � be the line guaranteed by Lemma 2.1. We can assume that � is vertical. Denote
by s1 = n/2� and s2 = 
n/2� the number of centers of start disks to the left and
right of � (centers on � can be assigned to the left or right). Let m = O(

√
n logn) be

the number of start disks contained entirely in the vertical strip of width 6 around �.
Denote by t1 and t2 the number of centers of target disks to the left and right of �,
respectively. By symmetry, we can assume that t1 ≤ n/2≤ t2.

Let R be a region containing all start and target disks, e.g., the smallest axis-
aligned rectangle that contains all disks. The algorithm has three steps. All moves
in the region R are taken along horizontal lines, i.e., perpendicularly to the line �.
The reconfiguration procedure is schematically shown in Fig. 3. This illustration
ignores the disks/targets in the center parallel strip.
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Fig. 4 A lower bound of
n+Ω(

√
n) moves: Θ(

√
n)

rings, each with Θ(
√

n) start
disk positions. Targets are
densely packed in a square
formation enclosed by the
rings

Step 1 Slide to the far right all start disks whose centers are to the right of �
and the (other) start disks in the strip, one by one, in decreasing order of their
x-coordinates (with ties broken arbitrarily). At this point all t2 ≥ n/2 target disk
positions whose centers lie right of � are free.

Step 2 In increasing order of their x-coordinates, fill free target positions whose
centers are right of � using all the s′1 ≤ s1 ≤ n/2 remaining disks whose centers
are to the left of �. These disks are taken in increasing order of their x-coordinates:
Each disk translates first to the left, then to the right on a wide arc, and to the left
again in the end. Note that s′1 ≤ n/2 ≤ t2. Now all the target positions whose
centers lie left of � are free.

Step 3 Move to place the far away disks: First continue to fill target positions whose
centers are to the right of �, in increasing order of their x-coordinates. When
done, fill target positions whose centers are left of �, in decreasing order of their
x-coordinates. Note that at this point all target positions whose centers lie left of
� are free.

The only nontarget moves are those done in step 1 and their number is
n/2+O(

√
n logn), so the total number of moves is 3n/2+O(

√
n logn).

A first idea in constructing a lower bound is as follows: The target configuration
consists of a set of n densely packed unit (radius) disks contained, for example,
in a square of side length ≈ 2

√
n. The disks in the start configuration enclose the

target positions using concentric rings, that is, Θ(
√

n) rings, each with Θ(
√

n) start
disk positions, as shown in Fig. 4. Now observe that for each ring, the first move
that involves a disk in that ring must be a nontarget move. The number of rings is
Θ(
√

n), from which a lower bound of n+Ω(
√

n) follows.
This basic idea of a cage-like construction can be further refined by redesigning

the cage [8]. The new design is more complicated and uses “rigidity” considerations,
which go back to stable disk packings of density 0 due to Böröczky [9]. A packing
C of unit (radius) disks in the plane is said to be stable if each disk is kept fixed
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H

junctions
of type 1

double bridges

one-way bridges

T

double bridges

one-way bridges

junctions
of type 2

a b

Fig. 5 Two start configurations based on hexagonal and triangular cage-like constructions. Targets
are densely packed in a square formation enclosed by the cage, as shown in (a); those in (b) are
labeled “T”

by its neighbors [11]. More precisely, C is stable if none of its elements can be
translated by any small distance in any direction without colliding with the others.
It is easy to see that any stable system of (unit) disks in the plane must have infinitely
many elements. Böröczky [9] showed that somewhat surprisingly, there exist stable
systems of unit disks with an arbitrarily small density (i.e., the total area of the disks
inside any sufficiently large axis-aligned square is arbitrarily small). These systems
can be adapted for the purpose of constructing a lower bound in the sliding model
for congruent disks. The details are quite technical, and we only sketch here the new
cage-like constructions depicted in Fig. 5.

Let’s refer to the disks in the start (respectively target) configuration as white
(respectively, black) disks. Now fix a large n, and take n white disks. Use O(

√
n)

of them to build three junctions connected by three “double-bridges” to enclose
a triangular region that can accommodate n tightly packed nonoverlapping black
disks, as shown in Fig. 5b. Divide the remaining white disks into three roughly equal
groups, each of size n

3−O(
√

n), and rearrange each group to form the initial section
of a “one-way bridge” attached to the unused sides of the junctions. Each of these
bridges consists of five rows of disks of “length” roughly n

15 , where the length of a
bridge is the number of disks along its side. The design of both the junctions and the
bridges prohibits any target move before one moves out a sequence of about 1

5 ·
n
3 =

n
15 white adjacent disks starting at the far end of one of the one-way bridges. The
reason is that with the exception of the at most 3×4= 12 white disks at the far ends
of the truncated one-way bridges, every white disk is fixed by its neighbors. The total
number of necessary moves is at least

(
1+ 1

15

)
n−O(

√
n) for this triangular ring

construction, and at least
(
1+ 1

30

)
n−O(

√
n) for the hexagonal ring construction.

Observe that the triangular cage yields a better bound.
For disks of arbitrary radii, the following result is obtained by the same

authors [8]:

Theorem 3 ([8]). Given a pair of start and target configurations, each consisting
of n disks of arbitrary radii, 2n sliding moves always suffice for transforming the
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Fig. 6 A simple
configuration that requires
about 3n/2 moves (basic step
for the recursive construction)

Fig. 7 Recursive lower-bound construction for sliding disks of arbitrary radii: m = 2 and k = 3

start configuration into the target configuration. The entire motion can be computed
in O(n logn) time. On the other hand, there exist pairs of configurations that require
2n− o(n) moves for this task.

The upper bound follows from the universal reconfiguration algorithm described
earlier. The lower bound is a recursive construction shown in Fig. 7. It is obtained
by iterating recursively the basic construction in Fig. 6, which requires about 3n/2
moves: Note that the target positions of the n− 1 small disks lie inside the start
position of the large disk. This means that no small disk can reach its target before
the large disk moves away, that is, before roughly half of the n−1 small disks move
away. So about n/2 nontarget moves are necessary; thus, about 3n/2 moves in total
are necessary.

In the recursive construction, the small disks around a large one are replaced
by the “same” construction scaled (see Fig. 7). All disks have distinct radii, so it
may be convenient to think of them as being labeled. There are one large disk and
2m+ 1 groups of smaller disks around it close to the vertices of a regular (2m+ 1)-
gon (m ≥ 1). The small disks on the last level or recursion have targets inside the
big ones they surround (the other disks have targets somewhere else). Let m≥ 1 be
fixed. If there are k levels in the recursion, then instead of about n/2 nontarget moves
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Fig. 8 A two-disk
configuration that requires 4
translation moves

Fig. 9 A configuration of 6
congruent disks that requires
9 translation moves

being necessary (as previously argued for Fig. 6), now about n/2+n/4+ · · ·+n/2k

nontarget moves are necessary. The precise calculation for m = 1 yields the lower
bound 2n−O(nlog3 2) = 2n−O(n0.631); see [8].

2.2 The Translation Model

This model, first studied by Abellanas et al. [2], is a constrained variant of the
sliding model in which each move is a translation along a fixed direction; that is,
the center of the moving disk traces a line segment. With some care, one can modify
the universal algorithm mentioned in the introduction and find a suitable order in
which disks can be moved “to infinity” and then moved “back” to target position
via translations almost parallel to any given fixed direction using 2n translation
moves [2].

That this bound is best possible for arbitrary radii disks can be easily seen in
Fig. 8. Consider a pair of start and target configurations with two disks each. The
two start disks and the two target positions are tangent to the same line. Note that
the first move cannot be a target move. Assume that the larger disk moves first,
and observe that its location must be above the horizontal line. If the second move
is again a nontarget move, we have accounted for 4 moves already. Otherwise,
no matter which disk moves to its target position, the other disk will require two
more moves to reach its target. The situation when the smaller disk moves first is
analogous. One can repeat this basic configuration with two disks, using different
radii, to obtain configurations with an arbitrary large (even) number of disks, which
require 2n translation moves.

Theorem 4 ([2]). Given a pair of start and target configurations, each consisting
of n disks of arbitrary radii, 2n translation moves always suffice for transforming
the start configuration into the target configuration. On the other hand, there exist
pairs of configurations that require 2n such moves.

For congruent disks, the configuration shown in Fig. 9 (the first lower bound
that was proposed) requires 3n/2 moves, since from each pair of tangent disks,
the first move must be a nontarget move [42]. A better lower bound, 8n/5�, due



196 A. Dumitrescu

Fig. 10 Reconfiguration of a system of 10 congruent disks that needs 16 translation moves. Start
disks are white and target disks are shaded

A

C

B

Fig. 11 Illustration of the lower-bound construction for translating congruent unlabeled disks,
for m = 3, n = 11. The disks are white and their targets are shaded. Two consecutive partially
overlapping parallel strips of width 2 are shown

to Abellanas et al. [2] is illustrated in Fig. 10. The construction is symmetric with
respect to the middle horizontal line. Here we have groups of five disks each, where
to “move” one group to some five target positions requires eight translation moves.
In each group, the disks S2, S4, and S5 are pairwise tangent, and S1 and S3 are
each tangent to S2; the tangency lines in the latter pairs are almost horizontal,
converging to the middle horizontal line. Here are two different ways for moving
one group, each requiring three nontarget moves: (a) S1 and S3 move out, S2 moves
to destination, S4 moves out, S5 moves to destinations followed by the rest. (b) S4,
S5, and S2 move out (to the left), S1 and S3 move to destinations followed by the rest.

The current best lower bound, 5n/3�− 1, is due to Dumitrescu and Jiang [24].
Let n = 3m+ 2. The start and target configurations, each with n disks, are shown in
Fig. 11. The n target positions are all on a horizontal line �, with the disks at these
positions forming a horizontal chain, T1, . . . ,Tn, consecutive disks being tangent to
each other. Let o denote the center of the median disk, Tn/2�. Let r > 0 be very
large. The start disks are placed on two very slightly convex chains (two concentric
circular arcs):
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Fig. 12 Reconfiguration of
convex bodies with
translations. The start
positions are unshaded; the
target positions are shaded

• 2m+2 disks in the first layer (chain). Their centers are 2m+2 equidistant points
on a circular arc of radius r centered at o.

• m disks in the second layer. Their centers are m equidistant points on a concentric
circular arc of radius r cosα +

√
3. Each pair of consecutive points on the circle

of radius r subtends an angle of 2α from the center of the circle (α is very small).

The parameters of the construction are chosen to satisfy sinα = 1/r and
2nsinnα ≤ 2. Set, for instance, α = 1/n2, which results in r =Θ(n2). Alternatively,
the configuration can be viewed as consisting of m groups of three disks each,
plus two disks, one at the higher and one at the lower end of the chain along the
circle of radius r. We summarize the bounds for translation of congruent disks in
the following theorem.

Theorem 5 ([2, 24]). Given a pair of start and target configurations, each consist-
ing of n congruent disks, 2n− 1 translation moves always suffice for transforming
the start configuration into the target configuration. On the other hand, there exist
pairs of configurations that require 5n/3�− 1 such moves.

Translating Convex Bodies. We briefly discuss the general problem of reconfigu-
ration of convex bodies with translations. Refer to Fig. 12. When the convex bodies
have different shapes, sizes, and orientations, we assume that the correspondence
between the start positions {S1, . . . ,Sn} and the target positions {T1, . . . ,Tn} is given
explicitly: Ti is a translated copy of Si. In other words, we deal with the labeled
variant of the problem. Theorem 6 can be easily extended to the unlabeled variant by
first computing a valid correspondence by shape matching. The 2n upper bound for
translating arbitrary disks can be extended to arbitrary convex bodies in the plane.

Theorem 6 ([24]). For the reconfiguration with translations of n labeled disjoint
convex bodies in the plane, 2n moves are always sufficient and sometimes necessary.
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Fig. 13 A lower bound of 3n/2� for translating axis-parallel unit squares. The start positions
(grouped in pairs) are tangent to the x-axis, which intersects the target positions (shaded). Each of
the target squares is symmetric about the x-axis

Translating Unlabeled Axis-Parallel Unit Squares. Throughout a translation
move, the moving square remains axis-parallel; however, the move can be in any
direction. The construction in Fig. 13 gives a lower bound of 3n/2� and we have
the following bounds.

Theorem 7 ([24]). For the reconfiguration with translations of n unlabeled axis-
parallel unit squares in the plane, 2n− 1 moves are always sufficient, and 3n/2�
moves are sometimes necessary.

Recently Garcı́a et al. estimated the number of moves necessary for the re-
configuration of n axis-parallel rectangles, where each move is a collision-free
axis-parallel translation [30].

2.3 The Lifting Model

For systems of n congruent disks, one can estimate the number of moves that are
always sufficient with higher accuracy. The following bounds were established by
Dumitrescu and Bereg [7]:

Theorem 8 ([7]). Given a pair of start and target configurations S and T , each
with n congruent disks, one can move the disks from S to T using n+O(n2/3) moves
in the lifting model. The entire motion can be computed in O(n logn) time. On the
other hand, for each n, there exist pairs of configurations that require n+Ω(n1/2)
moves for this task.

The lower-bound construction is illustrated in Fig. 14 for n = 25. Assume for
simplicity that n = m2, where m is odd. We place the disks of T onto a grid X×X
of size m×m, where X = {2,4, . . . ,2m}. We place the disks of S onto a grid of
size (m−1)× (m−1) so that they overlap with the disks from T . The grid of target
disks contains 4m−4 disks on its boundary. We “block” them with 2m−2 start disks
in S by placing them so that each start disk overlaps with two boundary target disks
as shown in the figure. We place the last start disk somewhere else, and we have
accounted for (m−1)2+(2m−2)+1=m2 start disks. As proved in [7], at least n+
m/2� moves are necessary for reconfiguration (it can be verified that this number
of lifting moves suffices for this construction).

The proof of the upper bound of n+O(n2/3) is technically more complicated.
It builds a binary space partition of the plane into convex polygonal (bounded or
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Fig. 14 A pair of start and
target configurations, each
with n = 25 congruent disks,
which require 27 lifting
moves. The start disks are
white and the target disks are
shaded
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Fig. 15 A group of three disks (of distinct radii) that require five moves to reach their targets; part
of the lower-bound construction for lifting disks of arbitrary radii. The disks are white and their
targets are shaded

unbounded) regions satisfying certain properties. Once the partition is obtained, a
shifting algorithm moves disks from some regions to fill the target positions in other
regions; see [7] for details. Since the disks whose target position coincides with
their start position can be safely ignored in the beginning, the upper bound yields
an efficient algorithm that performs a number of moves close to the optimum (for
large n).

For arbitrary radius disks, the following result is obtained in [7].

Theorem 9 ([7]). Given a pair of start and target configurations S and T , each
with n disks with arbitrary radii, 9n/5 moves always suffice for transforming the
start configuration into the target configuration. On the other hand, for each n,
there exist pairs of configurations that require 5n/3� moves for this task.

The lower bound is very simple. We use disks of different radii (although the radii
can be chosen very close to the same value if desired). Since all disks have distinct
radii, one can think of the disks as being labeled. Consider the set of three disks,
labeled 1, 2, and 3 in Fig. 15. The two start and target disks labeled i are congruent,
for i = 1,2,3. To transform the start configuration into the target configuration takes
at least two nontarget moves, thus five moves in total. By repeatedly using groups
of three (with different radii), one gets a lower bound of 5n/3 moves, when n is a
multiple of three, and 5n/3� in general.

We now explain the approach in [7] for the upper bound for n disks of arbitrary
radii. Let S = {s1, . . . ,sn} and T = {t1, . . . , tn} be the start and target configurations.
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We assume that for each i, disk si is congruent to disk ti; i.e., ti is the target position
of si. If the correspondence si → ti is not given (but only the two sets of disks), it can
be easily computed by sorting both S and T by radius.

In a directed graph D = (V,E), let dv = d+
v + d−v denote the degree of vertex

v, where d+
v is the out-degree of v and d−v is the in-degree of v. Let β (D) be the

maximum size of a subset V ′ of V such that D[V ′], the subgraph induced by V ′, is
acyclic. In [7] the following inequality is proved for any directed graph:

β (D)≥max

(
∑
v∈V

1

d+
v + 1

, ∑
v∈V

1

d−v + 1

)
.

For a disk ω , let
◦
ω denote the interior of ω . Let S be a set of k pairwise disjoint

red disks, and T be a set of l pairwise disjoint blue disks. Consider the bipartite red–

blue disk intersection graph G=(S,T,E), where E = {(s, t) : s∈ S, t ∈ T,
◦
s∩

◦
t �= /0}.

Using the triangle inequality (among sides and diagonals in a convex quadrilateral),
one can easily show that any red–blue disk intersection graph G=(S,T,E) is planar,
and consequently |E| ≤ 2(|S|+ |T |)− 4 = 4n− 4. We think of the start and target
disks being labeled from 1 to n, so that the target of start disk i is target disk i.
Consider the directed blocking graph D = (S,F) on the set S of n start disks, where

F = {(si,s j) : i �= j and
◦
si∩

◦
t j �= /0}.

If (si,s j)∈ F , we say that disk i blocks disk j. (Note that si∩ti �= /0 does not generate
any edge in D.) Since if (si,s j) ∈ F , then (si, t j) ∈ E , we have |F| ≤ |E| ≤ 4n− 4.
The algorithm first eliminates all the directed cycles from D using some nontarget
moves, and then fills the remaining targets using only target moves. Let

d+ =
∑v∈S d+

v

n
=
|F |
n

be the average out-degree in D. We have d+ ≤ 4, which further implies (by Jensen’s
inequality)

β (D)≥∑
v∈S

1

d+
v + 1

≥ n
d++ 1

≥ n
5
.

Let S′ ⊂ S be a set of disks of size at least n/5 and whose induced subgraph is
acyclic in D. Move out far away the remaining set S′′ of at most 4n/5 disks, and
note that the faraway disks do not block any of the disks in S′. Perform a topological
sort on the acyclic graph D[S′] induced by S′, and fill the targets of these disks
in that order using only target moves. Then fill the targets with the faraway disks
in any order. The number of moves is at most n+4n/5= 9n/5, as claimed. Figure 16
shows the bipartite intersection graph G and the directed blocking graph D for a
small example, with the corresponding reconfiguration procedure explained above.
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Fig. 16 The bipartite intersection graph G and the directed blocking graph D. Move out 4, 5, 7, 8;
no cycles remain in D. Fill targets 3, 2, 1, 6, and then 4, 5, 7, 8. The start disks are white and the
target disks are shaded

Similar to the case of congruent disks, the resulting algorithm performs a
number of moves that is not more than a constant times the optimum. Indeed, as
mentioned in the introduction, the disks whose target positions coincide with their
start positions can be safely ignored. So each of the remaining start disk needs to
be moved from its initial place. Without loss of generality, all disks need to move,
so the number of moves in any solution is at least n (the case when some disks
are ignored is only better). Since the algorithm above performs at most 9n/5 lifting
moves, it achieves a constant approximation ratio, 9/5.

Computational Complexity of Optimal Reconfiguration. While, as discussed,
reconfiguration with 2n or fewer moves is always possible in any of the three models
(sliding, translation, and lifting), optimal reconfiguration (employing a minimum
number of moves) is probably NP-hard in each of these models. This has been
confirmed for translation and sliding by Dumitrescu and Jiang [24]: (a) Both the
labeled and unlabeled versions of the disk reconfiguration problem with translations
U-TRANS-RP and L-TRANS-RP are NP-hard even for congruent disks. (b) Both
the labeled and unlabeled versions of the sliding disks reconfiguration problem in
the plane U-SLIDE-RP and L-SLIDE-RP are NP-hard even for congruent disks.

2.4 Further Questions

We list a few open problems concerning the three models discussed:

1. Reduce the gap between the 16n/15− o(n) lower bound and the 3n/2+ o(n)
upper bound on the number of moves for sliding n congruent disks.
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2. Consider the reconfiguration problem for congruent squares (with arbitrary
orientation) in the sliding model. It can be checked that the 3n/2+ o(n) upper
bound for congruent disks still holds in this case; however, the 16n/15− o(n)
lower bound based on stable disk packings cannot be used. Observe that the
n+Ω(n1/2) lower bound for congruent disks in the lifting model (Fig. 14) can
be realized with congruent (even axis-aligned) squares and therefore holds for
congruent squares in the sliding model as well. Can one deduce better bounds
for this variant?

3. Derive a (2− δ )n upper bound for translating congruent disks (where δ is a
positive constant), or improve the (multiplicative constant in the) 5n/3�− 1
lower bound.

4. Consider the reconfiguration problem for congruent labeled disks in the sliding
model. It is easy to see that the 5n/3� lower bound holds, since the construction
in Fig. 15 can be realized with congruent disks. Find a (2− δ )n upper bound
(where δ is a positive constant), or improve the (multiplicative constant in the)
5n/3� lower bound.

5. The type of construction in Fig. 13 has been used previously for disks to obtain
the first lower bound of 3n/2� for translating unit disks [42]. It is interesting
to note that neither of the two subsequent improved constructions, 8n/5� of
Abellanas et al. [2], or ours 5n/3�−1 in Theorem 5, seems to work for squares.

6. Reduce the gap between the 5n/3� lower bound and the 9n/5 upper bound on
the number of moves for lifting n disks of arbitrary radii.

7. What is the computational complexity of the reconfiguration problem in the
lifting model? Are U-LIFT-RP and L-LIFT-RP NP-hard for unit disks?

3 Modular and Reconfigurable Systems

A number of issues related to motion planning and analysis of rectangular metamor-
phic robotic systems are addressed in [26]. A distributed algorithm for reconfigura-
tion that applies to a relatively large subclass of configurations, called horizontally
convex configurations, is presented. Several fundamental questions in the analysis
of metamorphic systems have been also addressed. In particular, the following two
questions have been shown to be decidable: (a) whether a given set of motion rules
maintains connectivity; (b) whether a goal configuration is reachable from a given
initial configuration (at specified locations).

For illustration, we present the rectangular model of metamorphic systems
introduced in [25–27]. Consider a plane that is partitioned into an integer grid of
square cells indexed by their center coordinates in the underlying x–y coordinate
system. This partition of the plane is only a useful abstraction, as the module-size
determines the grid size in practice. At any time, each cell may be empty or occupied
by a module. The reconfiguration of a metamorphic system consisting of n modules
is a sequence of configurations of the modules in the grid at discrete time steps
t = 0,1,2, . . .; see below. Let Vt be the configuration of the modules at time t, where
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Fig. 17 Moves in the rectangular model: (a) clockwise NE rotation and (b) sliding in the E
direction. Fixed modules are shaded. The cells in which the moves take place are outlined in the
figure

we often identify Vt with the set of cells occupied by the modules or with the set
of their centers. A useful feature we insist on is maintaining connectivity; i.e., for
each t, the graph Gt = (Vt ,Et) must be connected, where for any t, Et is the set
of edges connecting pairs of cells in Vt that are side-adjacent. The following two
generic motion rules (Fig. 17) define the rectangular model [25–27]. These rules
can be applied in all axis-parallel orientations, in fact generating 16 rules, eight for
rotation and eight for sliding. A somewhat similar model is presented in [13].

• Rotation: A module m side-adjacent to a stationary module f rotates through an
angle of 90◦ around f either clockwise or counterclockwise. Figure 17a shows
a clockwise NE rotation. For rotation to take place, both the target cell and the
cell at the corresponding corner of f that m passes through (NW in the given
example) have to be empty.

• Sliding: Let f1 and f2 be stationary cells that are side-adjacent. A module m that
is side-adjacent to f1 and adjacent to f2 slides along the sides of f1 and f2 into
the cell that is adjacent to f1 and side-adjacent to f2. Figure 17b shows a sliding
move in the E direction. For sliding to take place, the target cell has to be empty.

The system may execute moves sequentially, when only one module moves
at each discrete time step, or concurrently (when more modules can move at
each discrete time step). Concurrent execution has the advantage to speed up the
reconfiguration process. If concurrent moves are allowed, additional conditions have
to be imposed, as in [26, 27]. In order to ensure motion precision, each move
is guided by one or two modules that are stationary during the same step. The
following result of Dumitrescu and Pach settles a conjecture formulated in [26].

Theorem 10 ([25]). The set of motion rules of the rectangular model guarantees
the feasibility of motion planning for any pair of connected configurations V and V ′

having the same number of modules. That is, following the above rules, V and V ′

can always be transformed into each other so that all intermediate configurations
are connected.

The algorithm in [25] is far from being intuitive or straightforward. The
main difficulties that have to be overcome are dealing with holes and avoiding
certain deadlock situations during reconfiguration. The proof of correctness of the
algorithm and the analysis of the number of moves (cubic in the number of modules,
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Fig. 18 A rotation move that
temporarily disconnects the
configuration

m

m

a bFig. 19 Moves in the weak
rectangular model: (a) NE
diagonal move and (b) side
move in the E direction. The
cells in which the moves take
place are outlined in the
figure

for sequential execution) are also quite involved. It is easy to construct examples so
that neither sliding nor rotation alone can reconfigure them to straight chains; here a
straight chain is a set of modules that form a straight line chain in the grid. However,
conform with Theorem 10, the motion rules of the rectangular model (rotation
and sliding, Fig. 17) are sufficient to guarantee reachability while maintaining the
system connected at each discrete time step. This had been proved earlier only for
the special class of horizontally convex systems [26].

A somewhat different model can be obtained if, instead of the connectedness
requirement at each time step, one imposes the single backbone condition [26]:
Each move of a module (sliding or rotation) is along the single connected backbone
formed by the other modules. If concurrent moves are allowed, additional conditions
have to be imposed, as in [26]. A subtle difference exists between requiring the
configuration to be connected at each discrete time step and requiring the existence
of a connected backbone along which a module slides or rotates. A one step motion
that does not satisfy the single backbone condition appears in Fig. 18: The initial
connected configuration temporarily disconnects during the move and reconnects at
the end of it. The algorithm from [25] has the nice property that the single backbone
condition is satisfied during the whole procedure.

It is worth briefly discussing another rectangular model for which the result in
Theorem 10 holds. The following two generic motion rules (Fig. 19) define the weak
rectangular model. These rules are again applicable in all axis-parallel orientations,
in fact generating eight rules, four diagonal moves and four side (axis-parallel)
moves. The only requirement is that the configurations must remain connected at
each discrete time step.

• Diagonal move: A module m moves diagonally to an empty cell corner adjacent
to cell(m).

• Side move: A module m moves to an empty cell side adjacent to cell(m).

The same result from Theorem 10 holds for this second model [25]; however, its
proof and corresponding reconfiguration algorithm are much simpler.
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3210

Fig. 20 Formation of 20 modules moving diagonally at a speed of 1
3 (diagonal formation)

Theorem 11 ([25]). The set of motion rules of the weak rectangular model guar-
antees the feasibility of motion planning for any pair of connected configurations
having the same number of modules.

It is worth mentioning that reconfigurations in the rectangular model can be also
viewed in the broader context of transformations of binary images. Bose et al.
recently studied several such transformations while insisting on maintaining the
connectivity of both the foreground and the background of the images in each
step [10].

A different variant of interrobot reconfiguration is useful in applications for
which there is no clear preference between the use of a single large robot versus
a group of smaller ones [15]. This leads to the merging of individual smaller robots
into a larger one or the splitting of a large robot into smaller ones. For example, in
a surveillance or rescue mission, a large robot is required to travel to a designated
location in a short time. Then the robot may create a group of small robots that are
to explore concurrently a large area. Once the task is complete, the robots might
merge back into the large robot that carried them.

As mentioned in [22], there is considerable research interest in the task of
having one autonomous vehicle follow another, and in general in studying robots
moving in formation. Dumitrescu et al. [27] examined the problem of dynamic self-
reconfiguration of a modular robotic system to a formation aimed at reaching a
specified target position as quickly as possible. A number of fast formations for
both rectangular and hexagonal systems are presented, achieving a constant-ratio
guarantee on the time to reach a given target in the asymptotic sense. For example,
a snake-like formation (with n≥ 4 modules, n even) can move at a speed of 1

3 in the
rectangular model. In Fig. 20 the formation at time 0 reappears at time 3 translated
diagonally by one unit. Thus, by repeatedly going through these configurations, the
modules can move in the NE direction at a speed of 1

3 .
We conclude this section with some remaining questions on modular and

reconfigurable systems related to the results presented. Preliminary results of Abel
and Kominers [1] suggest that the first two questions below have a positive answer.
This, however, remains to be confirmed.

1. The reconfiguration algorithm in the rectangular model makes at most 2n3 moves
in the worst case [26]. On the other hand, the reconfiguration of a vertical chain
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into a horizontal chain requires onlyΘ(n2) moves, and it is believed that no other
pair of configurations requires more. A quadratic upper bound on the number of
moves has been proved in the weak rectangular model [25], but it remains open
in the first model.

2. Study whether the analogous rules of rotation and sliding in three dimensions
permit the feasibility of motion planning for any pair of connected configurations
having the same number of modules.

3. If concurrent execution is permitted (under appropriate assumptions), what is the
smallest number of concurrent steps that suffices for the reconfiguration of any
pair of connected configurations V and V ′ with n modules—in the rectangular
model and in the weak variant? Is it O(n)? (This has been shown for a special
class of horizontally convex systems [26] and, e.g., in a related 3D rectangular
model studied in [4].)

4 Reconfigurations in Graphs and Grids

In certain applications, objects are indistinguishable, and the chips are therefore
unlabeled; for instance, a modular robotic system consists of a number of identical
modules (robots), each having identical capabilities [25–27]. In other applications
the chips may be labeled. The variant with unlabeled chips is easier and always
feasible, while the variant with labeled chips may be infeasible: A classical example
is the 15-puzzle on a 4× 4 grid—introduced by Sam Loyd in 1878—which admits
a solution if and only if the start permutation is an even permutation [33, 47]. Most
of the work done so far concerns labeled versions of the reconfiguration problem,
and here we give only a short account.

For the generalization of the 15-puzzle on an arbitrary graph (with k = v− 1
labeled chips in a connected graph on v vertices), Wilson [51] gave an efficiently
checkable characterization of the solvable instances of the problem. Kornhauser et
al. have extended his result to any k ≤ v− 1 and provided bounds on the number
of moves for solving any solvable instance [35]. Ratner and Warmuth showed that
finding a solution with a minimum number of moves for the (N ×N)-extension
of the 15-puzzle is NP-hard [43], so the reconfiguration problem in graphs with
labeled chips is NP-hard. Auletta et al. gave a linear-time algorithm for the pebble
motion on a tree problem [5]. This problem is the labeled variant of the same
reconfiguration problem studied in [16]; however, each move is along one edge only.
Papadimitriou et al. studied a problem of motion planning on a graph in which there
is a mobile robot at one of the vertices, say s, that has to reach a designated vertex
t using the smallest number of moves, in the presence of obstacles (pebbles) at
some of the other vertices [41]. Robot and obstacle moves are done along edges,
and obstacles have no destination assigned and may end up in any vertex of the
graph. The problem has been shown to be NP-complete even for planar graphs, and
a polynomial-time approximation algorithm with ratio O(

√
n) was given in [41].
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The following results are proved in [16] for the “chips in graph” reconfiguration
problem described in part (3) of Sect. 1. Recall that in one move a chip can follow a
path in the graph and end up at another vertex, provided the path (including the end
vertex) is free of other chips.

(a) The reconfiguration problem in graphs with unlabeled chips U-GRAPH-RP is
NP-hard, and even APX-hard.

(b) The reconfiguration problem in graphs with labeled chips L-GRAPH-RP is
APX-hard.

(c) For the infinite planar rectangular grid, both the labeled and unlabeled variants
L-GRID-RP and U-GRID-RP are NP-hard.

(d) There is a ratio-3 approximation algorithm for the unlabeled version in graphs
U-GRAPH-RP. Thereby one gets a ratio-3 approximation algorithm for the
unlabeled version U-GRID-RP in the (infinite) rectangular grid.

(e) It can be shown that n moves are always enough (and sometimes necessary)
for the reconfiguration of n unlabeled chips in graphs. For the case of trees, a
linear-time algorithm that performs an optimal (minimum) number of moves is
presented.

(f) It is shown that 7n/4 moves are always enough, and 3n/2 are sometimes
necessary, for the reconfiguration of n labeled chips in the infinite planar
rectangular grid (L-GRID-RP).

Next, we give some details showing that in the infinite grid, n moves always
suffice for the reconfiguration of n unlabeled chips, and of course it is easy to
construct tight examples. The result holds in a more general graph setting [item
(5) in the above list]: Let G be a connected graph, and let V and V ′ two n-element
subsets of its vertex set V (G). Imagine that we place a chip at each element of V
and we want to move them into the positions of V ′ (V and V ′ may have common
elements). A move is defined as shifting a chip from v1 to v2 [v1,v2 ∈V (G)] along
a path in G so that no intermediate vertices are occupied.

Theorem 12 ([16]). In G one can get from any n-element initial configuration V to
any n-element final configuration V ′ using at most n moves, so that no chip moves
twice.

It suffices to prove the theorem for trees, and we’d like to include the short
proof here. We argue by induction on the number of chips. Take the smallest tree
T containing V and V ′, and consider an arbitrary leaf l of T . Assume first that the
leaf l belongs to V : say l = v. If v also belongs to V ′, the result trivially follows
by induction, so assume that this is not the case. Choose a path P in T , connecting
v to an element v′ of V ′ such that no internal point of P belongs to V ′. Apply the
induction hypothesis to V \ {v} and V ′ \ {v′} to obtain a sequence of at most n− 1
moves, and add a final (unobstructed) move from v to v′.

The remaining case when the leaf l belongs to V ′ is symmetric: Say l = v′;
choose a path P in T , connecting v′ to an element v of V such that no internal
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point of P belongs to V . First move v to v′ and append the sequence of at most n−1
moves obtained from the induction hypothesis applied to V \{v} and V ′ \{v′}. This
completes the proof.

Theorem 12 implies that in the infinite rectangular grid, we can get from any
starting position to any ending position of the same size n in at most n moves. It is
interesting to compare this to the problem of sliding congruent unlabeled disks in the
plane, where one can come up with cage-like constructions that require about 16n

15
moves [8], as discussed in Sect. 2.1. We conclude this section with two remaining
questions on reconfigurations in graphs and grids:

1. Can the ratio-3 approximation algorithm for the unlabeled version in graphs
U-GRAPH-RP be improved? Is there an approximation algorithm with a better
ratio for the infinite planar rectangular grid?

2. Is it possible to close or reduce the gap between the 3n/2 lower bound and the
7n/4 upper bound on the number of moves for the reconfiguration of n labeled
chips in the infinite planar rectangular grid?

5 Conclusion

The different reconfiguration models discussed in this survey have raised new
interesting mathematical questions and revealed surprising connections with other
older ones. For instance, the key ideas in the reconfiguration algorithm in [25] were
derived from the properties of a system of maximal cycles, similar to those of the
block decomposition of graphs [21]. The lower-bound configuration with unit disks
for the sliding model in [8] uses “rigidity” considerations and properties of stable
packings of disks studied a long time ago by Böröczky [9]; in particular, he showed
the existence of stable systems of unit disks with arbitrarily small density. A suitable
modification of his construction yields our lower bound.

The study of the lifting model offered other interesting connections: The
algorithm for unit disks given in [7] is intimately related to the notion of a center
point of a finite point set and to the following property derived from it: Given two
sets each with n pairwise disjoint unit disks, there exists a binary space partition of
the plane into polygonal regions each containing roughly the same small number
(≈ n2/3) of disks and such that the total number of disks intersecting the boundaries
of the regions is small (≈ n2/3). The reconfiguration algorithm for disks of arbitrary
radius relies on a new lower bound on the maximum order of induced acyclic
subgraphs of a directed graph [7], analogous to the bound on the independence
number of an undirected graph given by Turán’s theorem [3]. Moreover, we have
used the crucial fact that a bipartite disk intersection graph (drawn as a geometric
graph on the set of disk centers) is planar, to obtain a linear upper bound on its
number of edges. Finally, the ratio-3 approximation algorithm for the unlabeled
version in graphs is obtained by applying the local ratio method of Bar-Yehuda [6]
to a graph H constructed from the given graph G.
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Regarding the various models of reconfiguration for systems of objects in the
plane, we have presented estimates on the number of moves that are necessary in the
worst case. From the practical viewpoint, one would like to convert these estimates
into approximation algorithms with a good ratio guarantee. As shown for the lifting
model, the upper-bound estimates on the number of moves give good approximation
algorithms for large values of n. However, further work is needed in this direction
for the sliding model and the translation model in particular.

Note. An earlier survey [23] on this topic came out with many misprints and errors
that were introduced by the publisher. This prompted the author to prepare the
current updated version.
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Rectangle and Square Representations
of Planar Graphs

Stefan Felsner

Abstract In the first part of this survey, we consider planar graphs that can be
represented by a dissections of a rectangle into rectangles. In rectangular drawings,
the corners of the rectangles represent the vertices. The graph obtained by taking
the rectangles as vertices and contacts as edges is the rectangular dual. In visibility
graphs and segment contact graphs, the vertices correspond to horizontal or to
horizontal and vertical segments of the dissection. Special orientations of graphs
turn out to be helpful when dealing with characterization and representation
questions. Therefore, we look at orientations with prescribed degrees, bipolar
orientations, separating decompositions, and transversal structures.

In the second part, we ask for representations by a dissections of a rectangle
into squares. We review results by Brooks et al. [The dissection of rectangles into
squares. Duke Math J 7:312–340 (1940)], Kenyon [Tilings and discrete Dirichlet
problems. Isr J Math 105:61–84 (1998)], and Schramm [Square tilings with
prescribed combinatorics. Isr J Math 84:97–118 (1993)] and discuss a technique
of computing squarings via solutions of systems of linear equations.
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Fig. 1 A circle contact
representation of a planar
graph

Fig. 2 A rectangular
dissection

One of the nicest results about representations of graphs by geometric objects is
Koebe’s “coin graph theorem” [6, 35, 48]. It asserts that every planar graph can be
represented by a set of disjoint discs, one for each vertex, such that two discs touch
exactly if there is an edge between the corresponding vertices. Such a representation
is called a circle contact representation. Figure 1 shows an example.

In the 1980s, Thurston observed a connection between circle packings and
the Riemann mapping theorem. From there the theory has developed into a
discrete analog of complex analysis; Stephenson’s book [51] gives a comprehensive
introduction.

In this chapter, we focus on representations of planar graphs based on rectangles.
We look at rectangular dissections as shown in Fig. 2 and graphs that can be derived
from it.

Suppose that φ : R→ Gφ (R) corresponds to a specific mapping that associates a
graph Gφ (R) with a rectangular dissection R and that Gφ (R) belongs to a class Gφ
of graphs. Then we can ask whether a given graph G from class Gφ is representable,
i.e., whether G is in the image of φ . The representability question can be treated as
a characterization problem or as an algorithmic problem. If G is representable, we
can also ask for a representation, i.e., for a dissection R such that G =Gφ (R). In this
survey we consider several graphs associated to a dissection and the corresponding
representability and representation problems.

In Sect. 2, we look at rectangular drawings and rectangular duals. Taking the
corners of a rectangular dissection as vertices and the connecting line segments as
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edges yields a rectangular drawing. In Sect. 2.1, we review the theory of rectangular
drawings, and in Sect. 2.3, we present an algorithm to decide whether a graph admits
such a drawing and, if so, we generate it. The algorithm is based on an orientation of
the angular graph with prescribed out-degrees. In some variants of the problem, this
approach yields the fastest-known algorithm. In Sect. 2.2, we consider rectangular
duals; in this model the vertices of the planar graph are represented by rectangles
and edges by contacts.

In Sect. 3, we take the horizontal and vertical segments or just the horizontal
segments of a rectangular dissection as vertices. Based on horizontal and vertical
segments, we define the segment contact graph of a dissection and then proceed
to consider more general segment contact graphs. With Theorem 3.2, we prove
an unpublished characterization of segment 2-contact graphs due to Thomassen.
In Sect. 3.1.1, segment contact graphs of rectangular dissections are shown to be
closely related to separating decompositions. In Sect. 3.2, we consider the visibility
graph of a dissection. This leads to the study of bipolar orientations. At the end of
the section, in Sect. 3.3, we look at the relation between bipolar orientations and
separating decompositions.

In the second part of the survey, we focus on square dissections, i.e., rectangular
dissections where all rectangles are squares. Section 4 deals with the square analogs
of visibility and segment contact graphs. We begin in Sect. 4.1 with the classical
connection between squarings and electricity. In Sect. 4.2, we study a system of
linear equations obtained from a separating decomposition and show that a solution
yields a squaring. Kenyon [30] developed a more general theory relating trapezoidal
dissections and Markov chains; it is the subject of Sect. 4.3.

Section 5 is based on Schramm [49]. The result is a characterization of graphs
admitting a square dual. Finally, in Sect. 5.1, we relate square duals and transversal
structures and propose an alternative method for computing square duals. The
method is simple but comes with the drawback that its correctness still depends
on a conjecture.

2 Rectangular Drawing and Rectangular Duals

2.1 Rectangular Drawing

Think of R as a union of interiorly disjoint rectangles. The union of the boundaries
of the rectangles is the skeleton skel(R) of the dissection R. Let C(R) be the set of
corners of the rectangles of R. The skeleton of R can be viewed as a graph Gskel(R).
The vertices of Gskel(R) are the points in C(R), and the edges of Gskel(R) are the
connecting line segments. More formally, the edges correspond to the connected
components of skel(R) \C(R). The skeleton graph Gskel(R) has four vertices of
degree 2 incident to the outer face. All the other vertices are of degree 3 or 4. The
edges are drawn as horizontal or vertical line segments.
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If a graph G is represented by R, i.e., G=Gskel(R), then we call the representation
a rectangular drawing of G. A characterization of graphs with Δ ≤ 3 that admit a
rectangular drawing was obtained by Thomassen [54]. Thomassen’s result is based
on an earlier result of Ungar [59], who gave a characterization in the model where
the corners of the outer face are regarded to be bends in an edge instead of vertices
of degree 2. Ungar’s characterization is dual to Theorem 2.2.

Algorithms for the construction of rectangular drawings have been considered by
various authors. One of the key results is the following.

Theorem 2.1. Let G be a plane graph with four distinguished corner vertices of
degree 2 and vertices of degrees at most 3 otherwise. There is an algorithm that
decides whether G is a skeleton graph and if so computes a rectangular drawing in
linear time.

A survey of algorithms and many references can be found in Chapter 6 of
the book of Nishiseki and Rhaman [43]. In Sect. 2.3, we present an approach to
rectangular drawings and a proof of Theorem 2.1 that is not covered there. This
leads to improvements in the running times of some variants of the problem.

In the graph drawing literature, rectangular drawings have been extended and
generalized in various directions.

• Edges are allowed to bend but remain constrained to the orthogonal drawing
mode, i.e., are composed of horizontal and vertical segments. A highlight of
the theory is the application of min-cost-flow algorithms for bend minimization
pioneered by Tamassia [53].

• To overcome the degree restriction, some authors allow that in the drawing
vertices are represented by boxes. With boxes and bends, every planar graph can
be represented. If bends are forbidden, the problem can be reduced to finding a
rectangular drawing of a derived graph [45].

For more on the topic, we refer to the books on graph drawing [10, 43] and the
survey about orthogonal graph drawing [15].

2.2 Rectangular Dual

Let F(R) be the set of rectangles of a rectangular dissection R. It is convenient
to include the enclosing rectangle in F(R). The dual of R is the graph G∗(R) with
vertex set F(R) and edges joining pairs of rectangles that share a boundary segment;
Fig. 3 shows an example. If a graph G allows a representation as dual of a rectangular
dissection R, i.e., G =G∗(R), then G is called a rectangular dual of R. It is tempting
to think that the graph G∗(R) is the dual graph of Gskel(R). This is almost true, but
there are some issues about the multiplicity of edges incident to the outer face of
Gskel(R), i.e., to the enclosing rectangle.
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Fig. 3 A rectangular dissection R, its dual G∗(R), and the dual of the framed dissection R+

Indeed, graphs admitting a rectangular dual may have unwanted features; e.g.,
a vertex represented by a corner rectangle may have degree 3 and there may
be a double-edge between an inner vertex w and the outer vertex v∞. A clean
characterization is obtained if we assume that the degree of v∞ is 4. In terms of
a rectangular dissection, this can be achieved by adding a frame of four rectangles,
one for each side; see Fig. 3.

Theorem 2.2. A planar triangulation with designated outer vertex v∞ of degree 4
admits a rectangular dual exactly if it has no separating triangle, i.e., if it is 4-
connected.

There are many related characterizations, e.g., Kozḿiński and Kinnen [33] or
the earlier result of Ungar [59] in the dual setting. Buchsbaum et al. [2] have many
pointers to the literature. An elegant approach to proving the theorem is to split the
task into two: In the first step, it is shown that the graph can be enriched with some
combinatorial structure. In the second step, this structure is used to construct the
geometric representation. Such an approach was taken by Bhasker and Sahni [5] and
later refined by He [25], Kant and He [31], and Fusy [22]. The latter two of these
papers use transversal structures (cf., Sect. 5.1) as the intermediate combinatorial
structure. The approach results in the linear-time construction of rectangular duals
with integer coordinates bounded by n.

Problems where some region is to be partitioned into subregions subject to
restrictions on the shapes of the subregions and some adjacency constraints are
denoted as floor-planning problems. They arise in applications in VLSI chip design
and cartography. In view of these applications, specific optimization tasks are of
interest. We mention two directions:

• Find a floor plan of a general planar graph such that the shapes of the modules
representing the vertices are simple (e.g., orthogonal with ≤ 8 corners) and the
total area of the floor plan is small. This problem is studied in [37].

• A rectilinear cartogram is a diagram in which geographic regions have been
replaced by orthogonal polygons. The neighbor relation on polygons and on
their corresponding regions has to be the same; in addition, the areas of
the polygons correspond to some numerical data associated with the regions.
Eppstein et al. [16] have studied cartograms where all polygons are rectangles
and with the flexibility that they can accommodate arbitrary area assignments.
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Fig. 4 A planar graph G and its trimmed angle graph Ǎ(G)

Alam et al. [1] show that a planar triangulation with area assignments can be
represented by a cartogram using polygons with 8 corners, which is the best
possible.

2.3 An Algorithm for Rectangular Drawings

Let G be the input graph. We assume that G is given with a planar embedding and
with four distinguished corner vertices of degree 2; all the other degrees are 3 or 4.
With G = (V,E), we consider its trimmed angle graph Ǎ(G). The vertex set of this
graph consists of the primal vertex set V together with the dual vertex set save the
dual of the unbounded face, i.e., V ∗ \{ f∞}. Edges of Ǎ(G) correspond to incidences
between vertices and bounded faces of G or equivalently to the internal angles of G.
To emphasize the bipartition of Ǎ(G), think of vertices from V as white and of
vertices corresponding to faces of G as black vertices; see Fig. 4.

If G has a rectangular drawing, i.e., G = Gskel(R) for some rectangular dissection
R, then we can classify the angles of G as either being a corner or being flat with
respect to R. We note the following:

• Each inner face is represented as a rectangle and thus has exactly four corner
angles.

• Each inner vertex of degree 3 has exactly one flat angle.

Orient the edges of Ǎ(G) such that {v, f} is oriented as f → v when v is a corner of
the rectangle corresponding to f and as v→ f when the angle is flat. Now consider
the out-degrees of this orientation and note that

• out-deg( f ) = 4 for all black vertices f . For a white vertex v, we have
out-deg(v) = 1 if v is an inner vertex of G with deg(v) = 3 and out-deg(v) = 0
if deg(v) = 4 or if v is a vertex of the outer face of G.

An orientation of Ǎ(G) obeying the above rules for the out-degrees is denoted an
αskel-orientation.
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Fig. 5 Consistent alignment of rectangles sharing a vertex v; the arrows indicate the underlying
αskel orientation of Ǎ(G)

Theorem 2.3. Let G be a plane graph with four distinguished corner vertices of
degree 2 at the outer face and vertices of degrees 3 or 4 otherwise. There is a
rectangular drawing of G if and only if Ǎ(G) has an αskel-orientation.

Proof. From the above we know that if G = Gskel(R) for some R, then there is an
αskel-orientation of Ǎ(G).

For the converse suppose that Ǎ(G) has an αskel-orientation. Identify the four
corners of a rectangular frame F with the degree-2 vertices of G in clockwise order.
From αskel, we can read off which vertices of G are corners of a given face f ; they
are the out-neighbors of f in the orientation. For faces f sharing an edge with the
outer face f∞ of G which is represented by F , we know which corner is top left, top
right, bottom right, and bottom left, i.e., the alignment of the rectangles R f . If we
know the alignment of R f and if faces f and f ′ share an edge in G, then we know
the alignment of R f ′ . Thus, the alignment can be passed through dual paths to all
faces. The claim is that the alignment of R f is independent of the dual path from f∞
to f that has been used. This can be established with a homotopy-type argument.
The key to the argument is to check that if v is a vertex and f , f ′ are faces incident
to v in G, then passing the alignment information from R f to R f ′ on either of the two
paths on the dual cycle around v yields the same result. This amounts to looking at
the pictures of Fig. 5 with all possible choices for f and f ′. ��

The alignment of the rectangles is equivalent to a red–blue coloring and
orientation of edges of G such that red edges are horizontal with orientation from
left to right and blue edges are vertical and oriented downward. The boundary of
each face consists of two directed paths in this orientation. The coloring of one of
the two paths has a sequence of red edges followed by a sequence of blue edges;
this is the upper path. The other path has blue edges followed by red edges and is
called the lower path.

We use the red–blue coloring in the following description of how to construct
the rectangular dissection R for G. Let p0 be the lower path of the outer face f∞.
Match the blue part of p0 to the left side of the frame F and the red part of p0

to the bottom side of F . This requires an arbitrary specification of positions for
the vertices of degree 3 contained in p0. The third edge of each such vertex will
have to be extended into the interior of F . From the coloring we know whether it
is horizontal or vertical, but we do not yet know its length. Such an initial piece of
an edge will be called a stump. Starting from p = p0 we add rectangles one by one,
always keeping the invariant that the boundary of the set of already placed rectangles
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Fig. 6 An αskel-orientation and a corresponding rectangular dissection

is a directed path p from the top left corner to the bottom right corner of F . We now
focus on the placement of a new rectangle. Figure 6 shows an αskel-orientation and
an intermediate stage of the algorithm.

Along the path p we see some stumps: The first is a red stump on the top side
of F , and the last is a blue stump on the right side of F . Therefore, somewhere
along p there is a red stump at a vertex v1 followed by a blue stump at v2. Let p′ be
obtained by restricting p to the part between v1 and v2. We claim that p′ consists of
a sequence of blue edges followed by a sequence of red edges. This can be verified
as follows: The stump at v1 is outgoing and red, and the edge of p′ incident to v1 is
also outgoing and hence must be blue. Similarly, the edge of p′ incident to v2 has
to be red. A vertex of p′ where a red edge is ingoing and a blue is outgoing would
have a stump, which is impossible since the stumps at v1 and v2 are consecutive.
This completes the proof of the claim. It follows that p′ is the lower path of some
rectangle R f . We place R f in the unique consistent way inside F and replace p′ in p
by the upper path of R f . We also have to choose positions for the noncorner vertices
contained in the upper path of R f . Unless the top right corner of R f is the top right
corner of F and the dissection is complete, there is at least one new stump at the
top right corner of R f and possibly some more along the upper path. Now the status
of the directed path p and its stumps is as before, and so the next rectangle can be
placed. ��

Algorithmically, the construction of Ǎ(G) from a given G and the construction of
the rectangle dissection R from a given αskel-orientation of Ǎ(G) are both easy and
can be done in linear time. The computation of an αskel-orientation can be modeled
as a flow problem [18] in Ǎ(G) and with methods from [41] be solved in O(n1.5).
In [58] it is shown that the computation of an αskel-orientation can be reduced to
a shortest-path problem. Using the currently fastest algorithm for planar shortest
paths [42] yields an overall running time of O(n log2 n/ loglogn). If the input graph
has no vertices of degree 4, we can do even better: We construct a suitably modified
dual G∗q of G having four vertices corresponding to the outer face of G, one for
each segment between degree-2 vertices on the outer face. The αskel-orientations of
Ǎ(G) are in bijection with transversal structures (a.k.a. regular edge labelings) of
G∗q as defined by Fusy [22, 23]. In his thesis [22], Fusy showed that if G∗q has no
separating triangle, then a transversal structure exists and can be computed in O(n)
time. This gives anαskel-orientation of Ǎ(G) in linear time. The result is summarized
in the following.
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Theorem 2.4. Let G be a plane graph with four distinguished corner vertices of
degree 2 and vertices of degrees 3 or 4 otherwise. There is an algorithm based on
αskel-orientations that decides whether G is a skeleton graph and if so computes a
rectangular drawing in O(n) time if Δ≤ 3 and in O(n log2 n/ loglogn) time if there
are vertices of degree 4.

Rahman et al. [44] have a linear-time algorithm for rectangular drawings of
graphs with maximum degree Δ ≤ 3 even in the case where no plane embedding
of the graph is prescribed.

Miura et al. [40] have an O(n2.5/ logn) algorithm to recognize whether a plane
graph G with Δ= 4 has a rectangular drawing. Their result is stated in a more general
form: They allow an outer face of more complex shape. Since they prescribe which
outer vertices are convex (resp., concave) corners, the shape of the outer face can be
modeled by adapting the out-degrees of αskel. Therefore, this generalization is also
covered by our approach. This yields a solution with O(n log2 n/ loglogn) running
time.

3 Segment Contact and Visibility Graphs

3.1 Segment Contact Graphs

Think of a rectangular dissection R as a set of segments, some horizontal and some
vertical. If R contains no point where four rectangles meet, intersections between
segments only occur between horizontal and vertical segments and they involve an
endpoint of one of the segments; i.e., they are contacts. Otherwise, we break one
of the two segments of each crossing point into two to get a system of interiorly
disjoint segments. The segment contact graph Gseg(R) of a rectangulation R is
the bipartite planar graph whose vertices are the segments of R and whose edges
correspond to contacts between segments. From Fig. 7 we see that Gseg(R) is indeed
planar and that the faces of Gseg(R) are in bijection with the rectangles of R and are
uniformly of degree 4. Hence, Gseg(R) is a maximal bipartite planar graph, i.e., a
quadrangulation.

If H is some subgraph of Gseg(R), then H can also be represented as segment
contact graph of some set of interiorly disjoint horizontal and vertical segments in
the plane; i.e., H is a segment contact graph. A segment contact representation for
H is obtained from R by removing some segments (vertex deletion) and slightly
pulling back the ends of some segments to get rid of contacts (edge deletion). The
next theorem states that the converse also holds.

Theorem 3.1. Every planar bipartite graph H admits a contact representation with
interiorly disjoint horizontal and vertical segments.
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Fig. 7 A rectangular dissection R and two drawings of its segment contact graph Gseg(R)

This was shown by Hartman et al. [27] and by de Fraysseix et al. [12]. In the
next subsection we sketch a proof of the theorem based on the concept of separating
decompositions of quadrangulations.

A contact representation with interiorly disjoint segments such that the intersec-
tion of any k+1 segments is empty is called a k-contact representation. Thomassen
characterized the class of graphs admitting a 2-contact representation.

Theorem 3.2. A planar graph G = (V,E) has a 2-contact representation if and
only if |E[W ]| ≤ 2|W |−3 for every subset W of the vertices. As usual, E[W ] denotes
the set of edges with both ends in W.

Thomassen presented the result at the Graph Drawing Conference 1993 but never
published his proof. Below we provide a simple proof based on rigidity theory.
The condition stated in the theorem can be efficiently checked; see, e.g., Lee and
Streinu [39]. Hliněný [26] showed that the recognition of general contact graphs of
segments is NP-complete. Actually, he showed that even the recognition of graphs
admitting a 3-contact representation is NP-complete.

A related class of graphs is the intersection graphs of segments. A longstanding
conjecture dating back to Scheinerman’s Ph.D. thesis was that every planar graph
is a segment intersection graph. The conjecture was finally resolved by Chalopin
and Gonçalves [8]. Kratochvı́l and Kuběna [34] asked whether all complements of
planar graphs are segment intersection graphs.

Proof of Theorem 3.2. The necessity of the condition is easily seen: Let SS be the
set of segments of a 2-contact representation of G. For W ⊂V , let XW be the set of
endpoints of segments in SS corresponding to vertices of W . We have |XW |= 2|W |.
There is an injection φ from edges in E[W ] to points in XW . Points belonging to
the convex hull of XW , however, cannot be in the image of φ . Since the convex hull
contains at least three points, we get |E[W ]| ≤ |XW |− 3 = 2|W |− 3. ��

For the converse, we need some prerequisites. A Laman graph is a graph G =
(V,E) with |E|= 2|V |− 3 and |E[W ]| ≤ 2|W |− 3 for all W ⊂V . Laman graphs are
of interest in rigidity theory; see, e.g., [17, 24]. Laman graphs admit a Henneberg
construction, i.e., an ordering v1, . . . ,vn of the vertices such that if Gi is the graph
induced by the vertices v1, . . . ,vi, then it holds that G3 is a triangle and Gi is obtained
from Gi−1 by one of the following two operations:



Rectangle and Square Representations of Planar Graphs 223

Fig. 8 The addition of segment si

(H1) Choose vertices x �= y from Gi−1 and add vi with the two edges (vi,x) and
(vi,y).

(H2) Choose an edge (x,y) and a third vertex z from Gi−1, remove (x,y), and add
vi together with the three edges (vi,x), (vi,y), and (vi,z).

In [28] it is shown that planar Laman graphs admit a planar Henneberg construction
in the sense that the graph is constructed together with a plane straight-line em-
bedding and vertices stay at their position once they have been inserted. Moreover,
the Henneberg construction can start with an outer triangle that remains unchanged
throughout the construction.

Now let G be a planar graph fulfilling the condition of the theorem. We may
assume that G is Laman since we can easily get rid of edges in a segment
contact representation by retracting ends of segments. Consider a planar Henneberg
construction G3, . . . ,Gn = G. Starting from three pairwise touching segments
representing G3, we add segments one by one. For the induction we need the
following invariant:

• After adding the ith segment si, we have a 2-contact representation of Gi and
there is a correspondence between the cells of the segment representation and
the faces of Gi that preserves edges; i.e., if (x,y) is an edge of the face, then one
of the corners of the corresponding cell is a contact between sx and sy.

From the count of edges, it follows that the endpoints of all the segments except the
three outer segments are used in contacts. Therefore, all faces in the segment contact
representation are convex. Figure 8 shows how to add segment si in the cases where
vi is added by H1 (resp., H2). It is evident that the invariant for the induction is
maintained. ��

3.1.1 Separating Decompositions and Segment Contact Representations

Let Q be a quadrangulation. We call the color classes of the bipartition white and
black and name the two black vertices on the outer face s and t. A separating
decomposition of Q is an orientation and coloring of the edges of Q with colors
red and blue such that



224 S. Felsner

Fig. 9 Edge orientations and
colors at white and black
vertices

1. All edges incident to s are ingoing red and all edges incident to t are ingoing
blue.

2. Every vertex v �= s, t is incident to a nonempty interval of red edges and a
nonempty interval of blue edges. If v is white, then, in clockwise order, the first
edge in the interval of a color is outgoing and all the other edges of the interval are
incoming. If v is black, the outgoing edge is the last one in its color in clockwise
order (see Fig. 9).

Separating decompositions have been studied in [11, 19, 20]. To us they are of
interest because of the following lemma.

Lemma 3.3. A segment contact representation of Q with horizontal and vertical
segments induces a separating decomposition of Q.

Proof. We assume w.l.o.g. that the segment contact representation and the plane
embedding of Q are compatible in the sense that for every vertex v, the clockwise
order of the edges around v corresponds to the clockwise order of the contacts
around segment sv of v. We also assume that the segments representing s and t
are horizontal, s is the bottom and t is the top segment, and their endpoints have no
contact with another segment.

An edge of Q is represented by a contact where an endpoint of one segment
is touching the interior of another segment. Orient the edge such that the vertex
contributing the endpoint is the tail of the oriented edge. This yields a 2-orientation
of Q, i.e., an orientation where every vertex except s and t has out-degree 2. Since
s is horizontal, all neighbors of s have to be vertical. Tracing this kind of argument
through the graph, we conclude that all black vertices are represented by horizontal
segments and all white vertices by vertical segments. Color the edge corresponding
to the left contact of a horizontal segment blue and the edge of a right contact
red. Similarly, the edge induced by the top contact of a vertical segment is blue
and the edge of the bottom contact is red. This construction yields a separating
decomposition of Q. For an example, see Fig. 10. ��

In the following, we sketch a construction for the converse. We start with a
separating decomposition of Q and construct a segment contact representation. The
algorithm behind the construction may not be the fastest and the construction itself
not the most flexible tool for further applications. This author has decided to include
it because it nicely and unexpectedly combines some combinatorial structures.
Details can be found in [19]. To begin, we need some facts.
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Fig. 10 A quadrangulation Q, a segment contact representation of Q, and the induced separating
decomposition of Q

Fig. 11 A quadrangulation Q with a separating decomposition S, and the 2-book embedding
induced by the equatorial line of S

• Every quadrangulation admits a separating decomposition.
• The red edges of a separating decomposition form a tree rooted at s that spans all

vertices except for t. Symmetrically, the blue edges form a tree rooted at t that
spans all vertices except for s.

• There exists a simple closed curve that contains all vertices of Q except s and t
and avoids all edges of Q such that all red edges are in the interior of the curve
and all blue edges are in the exterior. Deleting the piece of this curve that runs in
the outer face, we obtain the equatorial line of the separating decomposition.

• By straightening the equatorial line, we obtain a 2-book embedding of Q; see
Fig. 11.

An alternating layout of a plane tree T is a noncrossing drawing of T such that the
vertices are placed on the x-axis and all edges are embedded in the half-plane above
the x-axis (or all below). Moreover, for every vertex v, it holds that all its neighbors
are on one side; either they are all left of v or all right of v.

It can bee shown that the 2-book embedding of Q obtained from S yields
alternating layouts of the two trees of S. The roots of the two trees are the extreme
vertices. In addition, black vertices have all their blue neighbors on the left and all
their red neighbors on the right, while for white vertices the converse holds.
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Fig. 12 A bijection between alternating trees and the binary trees

Fig. 13 The 2-book embedding from Fig. 11 after merging s and t with their respective neighbors
and the associated rectangulation

Figure 12 indicates a bijection between alternating trees and binary trees such
that left/right vertices of the alternating tree correspond to left/right leaves of the
binary tree.

Modify the 2-book embedding by merging s with its successor into a new vertex
s+ and symmetrically t with its predecessor into t+. Then apply the bijection of
Fig. 12 to each of the two trees on its side and tilt the picture by 45◦. The result is a
segment contact representation of Q; see Fig. 13.

3.2 Visibility Graphs

A family of disjoint horizontal segments in the plane defines a visibility graph. The
vertices of the graph are the segments and edges are based on vertical visibility:
A segment s′ is visible from segment s if there is a vertical ray r leaving s such
that s′ is the first segment in the family reached by r. The visibility graph is
undirected since if s′ is visible from s via an up-ray, then there is a down-ray
proving visibility of s from s′. However, if we only care about the up-rays, we get a
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Fig. 14 A dual pair B, B∗ of bipolar orientations and the rectangular dissection returned by the
algorithm when using B and B∗

natural orientation of the visibility graph; this orientation is a bipolar orientation.
Indeed, bipolar orientations and visibility representations of planar graphs are
intimately related. The study of this connection and its use for the construction
of visibility representations has been pioneered by Rosenstiehl-Tarjan [47] and
Tamassia-Tollis [55].

3.2.1 Bipolar Orientations

Let G be a graph with distinguished adjacent vertices s and t. A bipolar orientation
of G is an acyclic orientation of G such that s is the unique source and t is the
unique sink; the oriented edge (s, t) is the root of the orientation. A graph G
admits a bipolar orientation exactly if G is 2-connected. Actually, the root edge
of a 2-connected graph can be chosen arbitrarily. In the literature these facts are
frequently treated in the disguise of st-numberings. Sometimes it is convenient
to omit the root edge. In a slight abuse of notation, we also speak of a bipolar
orientation in this case. This is done, for instance, in the next paragraph and in
Fig. 14.

Bipolar orientations of a plane 2-connected (multi)graph G with designated s and
t on the outer face are characterized by two facts:

Fact F. Every face f of G has exactly two angles where the orientation of the edges
coincide. [The vertices incident to these angles are vsource( f ) and vsink( f ).]

Fact V. Every vertex v �= s, t of G has exactly two angles where the orientation of
the edges differ. [The faces incident to these angles are fsink(v) and fright(v).]

An orientation of a plane graph G induces an orientation on the dual graph G∗:
Define the orientation of a dual edge e∗ as left to right relative to the orientation of
e. That is, when looking in the direction of an oriented edge e, the dual edge e∗ is
oriented from the left face to the right face of e.

The bipolar dual of a plane bipolar orientation is this dual graph endowed with
this dual orientation rooted at (s∗, t∗), where s∗ is be the face on the right and t∗ is the



228 S. Felsner

face on the left of (s, t); i.e, the orientation of (s∗, t∗) is not dual to (s, t). Essentially,
facts V and F are dual and we have set up the orientation of the root edge (s∗, t∗)
such that the bipolar dual of a plane bipolar orientation is again a bipolar orientation.

A more comprehensive treatment, including proofs of the material in this
subsection, can be found in [13], for example.

3.2.2 From a Bipolar Orientation to a Rectangular Dissection

The input of the following algorithm is a 2-connected plane graph G with an oriented
root edge (s, t) on the outer face. The output is a rectangular dissection R such that
the visibility graph of the horizontal segments of R is G.

Algorithm Rectangular Dissection

• Compute a bipolar orientation B of G with root edge (s, t).
• Compute the bipolar dual B∗ with root edge (s∗, t∗) of B.
• For each primal vertex v, let y(v) be the length of the longest directed s→ v path

in B.

For each dual vertex f , let x( f ) be the length of the longest directed s∗ → f path
in B∗.

• With a primal vertex v �= s, t, associate the horizontal segment with left end at the
point (x( fleft(v)),y(v)) and right end at (x( fright(v)),y(v)). With a dual vertex
f �= s∗, t∗, associate the vertical segment with lower end (x( f ),y(vsource( f ))) and
upper end (x( f ),y(vsink( f ))).

The special vertices s, t, s∗, and t∗ need special treatment; as endpoints of
these four segments we can choose the four points (0,0), (0,y(t)), (x(t∗),y(t)),
and (x(t∗),0). If the visibility between s and t is required, the right endpoint of
these two segments can be shifted to the right by one unit.

From the algorithm, we obtain

Theorem 3.4. For a 2-connected planar graph G with n vertices and n∗ faces,
there is a visibility representation with horizontal segments whose endpoints are
on integer points (x,y) with 0 ≤ x ≤ n∗ and 0 ≤ y ≤ n− 1. Such a representation
can be computed in linear time.

A sketch of the proof of correctness for the algorithm can be found in [10].
A sweep-like proof may, however, be simpler. This could be accomplished by an
inductive proof of the statement that the set of segments with y-coordinate ≤ k is a
visibility representation of the graph induced by vertices v with y(v)≤ k.

The bound on the size of the representation accounted for a visibility between s
and t.
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Fig. 15 A quadrangulation Q and its black graph Gb

Quite some research has been put into more compact visibility representations.
The basic idea is that a carefully chosen bipolar orientation may have a longest s→ t
path of length much less than n. Almost optimal bounds are known:

• Zhang and He [60] show that there are planar graphs on n vertices requiring size
at least ( 2n

3 �)× ( 4n
3 �− 3) for a visibility representation.

• He and Zhang [29] show that every planar graph with n vertices has a visibility
representation with height at most 2n

3 + 2

√

n/2�. They use properties of
Schnyder woods to construct an appropriate bipolar orientation.

• Fan et al. [21] show that every planar graph with n vertices has a visibility
representation with width at most  4n

3 �− 2.
• Sadasivam and Zhang [52] show that it is NP-hard to find the bipolar orientation

of G which minimizes the length of the longest s→ t path.

3.3 Bipolar Orientations and Separating Decompositions

Let again Q be a plane quadrangulation with color classes consisting of black and
white vertices. The black graph Gb of Q is the graph on the set Vb of black vertices
of G, where u,v ∈ Vb are connected by an edge for every face f of Q incident to u
and v; i.e., there is a bijection between faces of Q and edges of Gb. The graph Gb

inherits a plane embedding from the plane embedding of Q. Note that in general Gb

may have multiple edges.
Let G be a plane graph; the angle graph of G is the graph Q with vertex

set consisting of vertices and faces of G, and edges corresponding to incidences
between a vertex and a face, and Q inherits a plane embedding from G. If there
are no multiple incidences, i.e., if G is 2-connected, then Q is a quadrangulation.
The angle graph construction G→QG is the inverse of the black graph construction
Q→Gb. More precisely, Q↔Gb is a bijection between plane quadrangulations with
a black-white coloring and plane 2-connected multigraphs. An example is given in
Fig. 15.
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Fig. 16 From a bipolar orientation to a separating decomposition and back

Changing the role of the color classes we can associate the white graph Gw

with Q. By symmetry, Q↔Gw is again a bijection between plane quadrangulations
Q with a black-white coloring and plane 2-connected multigraphs. The induced
bijection Gb ↔ Gw is nothing more than the traditional plane duality.

The study of the oriented counterpart of these classical bijections goes at least
back to [47] and was continued in [11,13,19,46]. Let B be a plane bipolar orientation
on black vertices with the root edge (s, t) on the outer face. Let Q be the angle
graph of the underlying undirected graph of B. Facts V and F of bipolar orientations
yield two special angles for every v �= s, t of B and for every face of B. At vertices,
the special angles are the left and the right angle. At faces, the special angles are
the source and the sink angle. Using the correspondence between angles of B and
edges of Q, we define a separating decomposition on Q: The edge incident to v
in Q that corresponds to the left special angle is outgoing blue, and the edge that
corresponds to the right special angle is outgoing red. The edge incident to f in Q
that corresponds to the source is red outgoing and the edge corresponding to the
sink is blue outgoing. The rules are illustrated in Fig. 16. It is easily verified that
they yield a separating decomposition of Q as defined in Sect. 3.1.1.

Starting from a separating decomposition S on Q, we obtain the unique bipolar
orientation B on Gb inducing S by using the converse rules: At a vertex v, the
two outgoing edges of S split the edges of Gb into two blocks. The block where
Q may have blue edges is the block of incoming edges in the bipolar orientation,
and the edges of the other block are the outgoing edges in the bipolar orientation.
The oriented bijection fits together well with oriented duality; there is only a slight
asymmetry concerning the outer vertices and edges.

The correspondence between bipolar orientations and separating decomposition
allows us to use the construction from Sect. 3.1.1 for visibility representations and
the algorithm from Sect. 3.2.2 for segment contact representations.
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4 Square Dissections

In this section, we are mainly interested in square dissections, which are rectangular
dissections where all the small rectangles are squares. Again, we are going to look
at different graphs associated with such a dissection.

4.1 Squarings and Electricity

The theory of square layouts goes back to a seminal paper, ”The dissection of
rectangles into squares,” by Brooks, Smith, Stone and Tutte from 1940 [7]. The
story of the collaboration of the four students has been told several times. In [57]
Tutte tells his memories. The aim of the four students was to find squarings of a
square such that the sizes of all small squares are different. Such a squaring is called
perfect; see Fig. 17.

They based the search for perfect squarings on the following idea: Start with a
rectangular dissection and try to produce a combinatorially equivalent squaring.

The squaring process could be simplified with some observations: The initial
rectangular dissection R can be described by the visibility graph G of the horizontal
segments. The rectangles of the dissection are in bijection with the edges of G (this
may require multiple edges in G). On G there is the natural upward- pointing bipolar
orientation B [the root edge (s, t) can be omitted].

With an arc a of B, associate the width w(a) of the rectangle corresponding to a
in R. The function w on the arcs of B respects the flow conservation law in every
vertex except s and t; it is an st-flow.

Symmetrically, from the dual graph G∗ with the dual bipolar orientation B∗ and
the height h(a∗) of the rectangle associated with a∗, an s∗t∗-flow is obtained.

If the dissection R were a squaring, then w(a) = h(a∗) for every dual pair a↔ a∗

of arcs.

Fig. 17 The essentially
unique perfect squaring with
the smallest number of
squares. It was discovered in
1978 by A.J.W. Duijvestijn
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Fig. 18 A flow with primal and dual flow conservation and the corresponding squaring

It can be verified that if we find a function f on G such that with f (e∗) = f (e), we
have an st-flow on G and an s∗t∗-flow on the dual G∗, then orienting the edges such
that f (a)≥ 0 yields a bipolar orientation on G. Based on this bipolar orientation, a
squaring of G such that f describes the size of the squares can be constructed with a
weighted variant of the algorithm from Sect. 3.2.2. An example is shown in Fig. 18.

Physicists may recognize a flow with primal–dual flow conservation as an
electrical flow. Primal and dual flow conservation corresponds to the two Kirchhoff
laws. To find an appropriate f , we can thus build G as an electrical network such
that each edge has unit resistance and then attach the poles of a battery to s and t
and measure the electrical current in each edge. The solution can, of course, also
be obtained analytically. In fact, Kirchhoff’s theorem [32] relates the solution to the
enumeration of certain spanning trees.

Theorem 4.1. Let G be a plane graph with special vertices s and t on the outer
face. For an edge e = {u,v} of G, let we = |nuv− nvu|, where nxy is the number of
spanning trees T of G such that T contains a path s, ..,x,y, .., t. If we > 0 for all
e, then there is a square layout R with G as visibility graph such that the square
associated with e has side length we.

Sketch of a proof. We use the duality T ↔ T ∗ between spanning trees of Gb and its
dual G∗b = Gw. If a tree T contributes to nuv, then T ∗ contains the edge {s∗, t∗}. Let
fl and fr be the faces left and right of (u,v) in Gb, and define S = T −{u,v}+{s, t}
and S∗= T ∗−{s∗, t∗}+{ fl , fr}. The pair S,S∗ is again a dual pair of spanning trees.
The mapping (T,T ∗)↔ (S,S∗) yields a bijection between pairs contributing to nuv

and pairs contributing to the dual count n∗fl fr
. From the existence of this bijection, it

can be concluded that w{u,v} = w{ fl , fr}. ��

Our proof is taking advantage of the planarity of G. However, for general graphs,
the same definition of we yields the electrical current in e (up to normalization); see,
e.g., [4].

If we = 0 for some edge e, we still get a square layout R. In R the horizontal
segments corresponding to the two end vertices of e are merged into a single
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Fig. 19 A rectangular dissection R, the bipolar orientation of the visibility graph G obtained from
R and the squaring of G with five invisible zero squares in the center

segment. If all edges with zero flow are isolated, this may be tolerated as consistent
with the notion of visibility representation; however, as shown in Fig. 19, more
complex parts of a graph can disappear because all their edges have zero flow.
A sufficient condition that ensures that edges with zero flow are at least isolated
is that the graph is 3-connected (see Proposition 4.5).

4.2 Squarings and Separating Decompositions

We now come to a different approach to square layouts. Associate a variable with
every inner face of a quadrangulation Q. In these variables we set up a system of
linear equations such that a nonnegative solution of the system yields a squaring.
To define the system of equations, enhance the quadrangulation Q with a separating
decomposition S. We aim for a squaring that induces S with its segment contacts.

For a vertex v of Q, let Fr(v) be the set of faces incident to v in the angle between
the two outgoing edges of v where incoming edges are red, and letFb(v) be the other
incident faces of v, i.e., the faces in the angle with blue incoming edges.

Suppose that such a square representation inducing S exists, and let xa be the
sidelength of the square representing a face a of Q. Every inner vertex v implies an
equation that has to be fulfilled by the side lengths:

∑
a∈Fr(v)

xa = ∑
a∈Fb(v)

xa. (1)

A quadrangulation with n vertices has n− 2 faces; hence, we have a system of n−
4 linear equations (inner vertices) in n− 3 variables (inner faces). To forbid the
trivial solution of the homogenous system, we let Fr(t) be the set of bounded faces
incident to t and add the equation ∑a∈Fr(t) xa = 1. Rewriting the equations (1) as
∑a∈Fr(v) xa−∑a∈Fb(v) xa = 0 and collecting all of them in a matrix AS, we find that
the vector of side lengths is a solution to the system

AS · x = e1. (2)
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Given any separating decomposition S of Q, we can consider the corresponding
system (2). In the following, we show

• The matrix AS is nondegenerate; hence, there is a unique solution x to the system.
• If the solution vector x is nonnegative, then there is a squaring with side lengths

given by the components of x. If the solution vector x is positive, then the
separating decomposition induced by the segment contacts of the squaring is S.

Theorem 4.2. The matrix AS is nondegenerate; i.e., det(AS) �= 0.

Proof. The idea for the proof is to show that |det(AS)| is the number of perfect
matchings of an auxiliary graph HS. Let ÂS be the matrix obtained from AS by
replacing each −1 by 1 and note that ÂS only depends on Q and not on S. It has
a 1 for every incidence between an inner face (variable) and an inner vertex or t
(equation). Regard Â = ÂS as the adjacency matrix of a bipartite graph H. From
what we said before, the graph H is obtained from the angle graph A(Q) of Q by
removing the vertices s, s∗, t∗ and the vertex corresponding to the outer face of Q
together with the incident edges. This implies

• H is planar.
• All inner faces of H are quadrangles.

Consider the Leibniz-expansions of det(AS). The nonvanishing summands∏i ai σ(i)
are in bijection with the perfect matchings Mσ of H. The contribution of a
perfect matching M to det(AS) is either +1 or −1; it will be denoted signS(M) =
sign(πM)∏i j∈M[AS]i j. ��

The proof of the theorem relies on the following two claims:

Claim A. The graph H has a perfect matching.
Claim B. If M and M′ are perfect matchings of H, then signS(M) = signS(M

′).

We first prove Claim A by verifying the Hall condition for H. Let (X ,R) be
the vertex bipartition of H where X corresponds to the set of inner faces of Q and
R =V (Q)\ {s,s∗, t∗}.

The Hall condition for the full angle graph A(Q) is easily verified: Consider a set
F of inner faces of Q and let Z be the set of connected components of IR2 \⋃ f∈F f̄ ,
where f̄ is the closure of face f . The set F ∪Z is the set of faces of a planar bipartite
graph whose vertices and edges are those incident to elements of F in Q. This graph
has at least 1

2(4|F |+ 4|Z|) edges and hence, by Euler’s formula at least |F |+ |Z|+
2 ≥ |F |+ 3 vertices. This implies the Hall condition for H, as H equals A(Q) after
the removal of three vertices.

For the proof of Claim B, we need a slight extension of Claim A, namely,
that every edge of H takes part in some perfect matching. This can be verified
by showing that V (Q) \ {s,s∗, t∗} is the unique nonempty subset of vertices of Q
such that the Hall condition for the set is tight in H. Now we use some facts about
α-orientations of planar graphs from [18]:
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• Perfect matchings of H are in bijection with orientations of H with
out-deg(x) = 1 for all x ∈ X and out-deg(r) = deg(r)− 1 for all r ∈ R. We
refer to these orientations as αM-orientations.

• It is possible to move from any αM-orientation to any other αM-orientation by
flips of the following type: Select an inner face whose boundary is an oriented
cycle and revert the orientation of all edges of this cycle. This is true (see [18])
because αM-orientations have no rigid edges; this follows because every edge
takes part in some perfect matching.

Consider two perfect matchings M and M′ of H such that the corresponding
αM-orientations differ by a single flip. Since all the faces of H are quadrangles,
the permutations πM and πM′ differ by a single transposition, whence
sign(πM) = −sign(πM′). To obtain signS(M) = signS(M

′), we need ∏i j∈M[AS]i j =
−∏i j∈M′ [AS]i j. Since all entries of AS are +1 or −1, it is enough to show that if
we multiply the four entries of AS associated with the four edges of a face of H,
the result will always be −1. A face of H is a cycle of the form (x1,r1,x2,r2) with
xi ∈ X and r j ∈ R. In Q we have the edge r1r2, which is oriented in the separating
decomposition S, say as r1 → r2. From the definition of the equations based on
S, we find that [AS]r1x1 = −[AS]r1x2 and [AS]r2x1 = [AS]r2x2 . From this we obtain
∏i j=1,2[AS]rix j =−1. Since we can move between any two matchings with flips and
since flips leave the sign unaffected, we have proved Claim B. ��

The theorem tells us that the linear system (2) has a unique solution xS. The
solution, however, need not be nonnegative. What we do next is to show that based
on a solution xS containing negative entries, we can modify S to obtain a new
separating decomposition S′ such that the solution xS′ of the system corresponding
to S′ is nonnegative.

Consider a rectangular dissection R representing S and color gray all rectangles
whose value in the solution vector xS is negative. Let Γ be the boundary of the gray
area in R. Here is a simple but useful lemma.

Lemma 4.3. The boundary Γ contains no complete segment.

Proof. Suppose Γ contains the complete segment corresponding to a vertex v of Q.
Then we have xa < 0 for all a ∈ Fr(v) and xa ≥ 0 for all a ∈ Fb(v) or the converse.
In either case, we get a contradiction because the entries of xS satisfy Eq. (1). ��

Let s0 be any segment that contributes to Γ. From the lemma we know that at
some interior point of segment s0 the boundary snaps off and continues on another
segment s1. Again, the boundary has to leave s1 at some interior point to continue
on s2. Because this procedure always follows the boundary of the gray region, it has
to turn back to segment s0. Figure 20 shows an example.

Recall that a 2-orientation of a quadrangulation with white and black vertices is
an orientation of the edges such that the two black vertices s and t on the outer face
have out-degree 0 and all the other vertices have out-degree 2. In [11] it was shown
that separating decompositions and 2-orientations of Q are in bijection. Reverting a
directed cycle in a 2-orientation yields another 2-orientation.
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Fig. 20 The separating decomposition S corresponds to the rectangular layout R. In the solution
xS of AS · x = e1, the gray rectangles are those with a negative value. The boundary Γ consists of a
single cycle whose reversal yields S′. The dissection R′ corresponding to S′ can be squared; small
numbers are multiples of the entries of the solution xS′

Now Γ corresponds to some directed cycles in S reverting the cycles yields
another 2-orientation and via the bijection another separating decomposition S′.

Lemma 4.4. Let S′ be obtained from the separating decomposition S by reverting
the cycles of the boundary Γ between faces with positive and negative xS values.
There are no negative entries in the solution vector xS′ of the system AS′ · x = e1.

Proof. Let O be a 2-orientation of a quadrangulation Q and let C be a directed cycle
in O. Let O′ denote the 2-orientation obtained from O by reverting C. The relation
between the separating decompositions S and S′ corresponding to O and O′ was
investigated in [20]. There it is shown that all edges outside the cycle keep their
color while all edges in the interior of the cycle change their color. ��

Now consider the matrices AS and AS′ . The rows correspond to the outer vertex
t and the inner vertices of Q, and the columns correspond to bounded faces of Q.
An entry av, f is nonzero, more precisely av, f = ±1, if v is a boundary vertex of f .
Only the sign of an entry depends on the separating decomposition; it is positive
if f belongs to Fr(v) (the set of faces incident to v in the angle between the two
outgoing edges of v where incoming edges are red) and it is negative if f belongs to
Fb(v).

From the above it follows that if f is inside C and v is incident to f , then f
belongs to Fb(v) with respect to S if and only if f belongs to Fr(v) with respect to
S′. In other words, if AS = (av, f ) and AS′ = (a′v, f ), then

a′v, f =

{
−av, f f inside of C

av, f otherwise.

The solution xS′ of AS′ · x = e1 can, therefore, be obtained from the solution xS of
AS ·x = e1 by changing the sign of all entries of xS that correspond to faces f inside
C.

Since S′ was obtained by reversing the boundary enclosing all negative faces of
xS, it follows that xS′ is nonnegative. ��
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Given a nonnegative solution, it remains to actually construct the squaring with
the given sizes. We omit the details but note that the squaring can be constructed
using a weighted variant of the algorithm in Sect. 3.2.2.

The electricity approach to squarings implies that to a rectangular dissection there
corresponds a unique squaring. This must be the same as the squaring that we obtain
by following the approach of this subsection.

There is again the issue of squares of size 0. If we color faces of S corresponding
to zero squares gray and consider the boundaryΓ of the gray region, then Lemma 4.3
holds again. Hence, again, a cycle of Γ is a directed cycle in S. Looking at the
square representation, we see that a region of zero squares is incident to at most
four nonzero squares. A cycle in Γ must therefore be of length at most 4. As a
consequence, we get

Proposition 4.5. If Q contains no separating 4-cycle, then the square dissection
contains a segment contact representation of Q [we have to allow that two
horizontal (resp., vertical) segments share an endpoint].

4.3 Trapezoidal Dissections and Markov Chains

The connection between square dissections and electrical networks was used by
Dehn [9] in 1903 to show that if an A×B rectangle admits a squaring using finitely
many squares, then A/B is rational. Tutte used network methods in his investigations
of dissections using equilateral triangles [56]. In [50] dissections into triangles are
constructed using a generalized ”unsymmetrical” electricity. Since there is a well-
known connection between electrical networks and random walks (see e.g. [14]),
it is consequent to base the construction of dissections on random walks. This
approach has been taken by Kenyon [30].

For the description of Kenyon’s ideas, it is convenient to start with a tiling
of a rectangle into trapezoids with horizontal upper and lower sides, known as a
trapezoidal dissection. With a trapezoidal dissection T , associate the t-visibility
graph GT : The vertices of GT are the horizontal segments of the dissection, and
the edges of GT correspond to the trapezoids of T . The lower and upper segments
of the enclosing rectangle are denoted s and t. An example is shown in Fig. 21.

For a trapezoid T whose horizontal sides are on segments i and j, we let
height(T ) be the distance between segments i and j and widthi(T ) be the length
of the side of T contained in segment i; note that widthi(T ) = 0 is possible. Define

an unsymmetrical weighting on edges: m(i, j) = widthi(T )
height(T ) . These weights are used

to define a random walk (Markov chain) on GT by taking the probability p(i, j) of
a transition from i to j proportional to m(i, j); i.e., p(i, j) = 1

∑ j m(i, j)m(i, j).

Consider a stationary distribution π of p, that is, a distribution such that for all i:

π(i) = ∑ j π( j)p( j, i).
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Fig. 21 A trapezoidal dissection T and its t-visibility graph GT

In most cases the Markov chain p induced by T will be aperiodic; in that case p
is ergodic and π is unique. For an edge (i, j), define π(i, j) = π(i)p(i, j) and note
that π(i, j) is the probability of the presence of the edge in the random walk. More
formally, it is the stationary distribution for the induced random walk on the line
graph of GT .

Define a function ω on the faces of GT by

(W0) ω( f∞) = 0, where f∞ is the outer face.
(W1) ω( f )−ω( f ′) = π(i, j)−π( j, i) when (i, j) is an edge with f on the left and

f ′ on the right side.

Lemma 4.6. The function w is well defined.

Proof. First note that if edges (i, j) and (i′, j′) have f on the left and f ′ on the right,
then the removal of the two edges cuts GT into two components H and H ′ each
containing at least one vertex. The random walk has to commute in both directions
between these components equally often; i.e., π(i, j)+π( j′, i′) = π( j, i)+π(i′, j′).
Therefore, ω( f )−ω( f ′) is independent of the edge chosen for the definition. ��

The value of ω( f ) can be determined by taking a dual path from f∞ to f . To
show that the result is independent of the path, it is enough to show that summing
up the differences π(i, j)−π( j, i) on a dual path around vertex i results in zero. This
follows from

∑ j π(i, j) = ∑ j π( j, i).

To prove this, note that π(i) = π(i)∑ j p(i, j) = ∑ j π(i)p(i, j) = ∑ j π(i, j), and
because π is the stationary distribution, also π(i) = ∑ j π( j)p( j, i) = ∑ j π( j, i). ��

The function ω(x) is the expected relative counterclockwise winding number of
the random walk around face x. Clearly, the winding number has to comply with
the two properties (W0) and (W1), but as shown in the lemma, this determines the
function.

For a face f of GT , let s f be the corresponding line segment in T and
define w( f ) = 1/slope(s f ) and w( f ) = 0 if s f is vertical. Recall that m(i, j) =
widthi(T )/height(T ).
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Fig. 22 An example
trapezoid

Proposition 4.7. Up to a scalar factor, the functions w( f ) and m(i, j) defined on T
equal the winding number ω( f ) and the edge-stationary distribution π(i, j) of the
Markov chain.

Proof. Consider a trapezoid from T as shown in Fig. 22. Taking the coordinates
from there, we have

m(i, j)=
x2−x1

y4−y1
, m( j, i)=

x3−x4

y4−y1
, w( f )=

x4−x1

y4−y1
, w( f ′)=

x3−x2

y3−y2
=

x3−x2

y4−y1
.

It follows that w( f )−w( f ′) = m(i, j)−m( j, i). Summing up this equation along
the dual cycle around a vertex, we obtain ∑ j m(i, j) = ∑ j m( j, i). This implies that
m(i, j) is a scalar multiple of an edge-stationary distribution. In turn from (W0) and
(W1), it follows that the values w( f ) are multiples of the winding numbers. ��

Proposition 4.8. For a vertex i of GT , let y(i) be the y-coordinate of the corre-
sponding segment in T and let p(i, j) be as above. For all i �∈ {s, t}, the function y
is harmonic with respect to p; i.e.,

y(i) =∑
j

y( j)p(i, j).

Proof. Let I+ = { j : y( j)> y(i)} and I− = { j : y( j)< y(i)} and note that if Ti j is a
trapezoid connecting segments i and j, then height(Ti j) = y(i)− y( j) if j ∈ I− and
height(Ti j) =−(y(i)− y( j)) if j ∈ I+. We now have

y(i)−∑
j

y( j)p(i, j) =∑
j
(y(i)− y( j))p(i, j)

= ∑
j∈I−

(y(i)− y( j))p(i, j)+ ∑
j∈I+

(y(i)− y( j))p(i, j)

=
1

∑ j m(i, j)

(
∑

j∈I−
widthi(Ti j)− ∑

j∈I+
widthi(Ti j)

)
= 0.

The last equation follows because the trapezoids with segment i on the low side and
those with the segment on the high side can both be used to partition the segment. ��
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From the tiling T , we have obtained a Markov chain p on GT such that m(i, j)∼
π(i, j) and w( f )∼ω( f ) and the y-coordinates of the vertex segments are a function
that is p-harmonic for all vertices i �∈ {s, t} of GT .

To revert the process, let G = (V,E) be a planar graph with s and t on the outer
face and let p be a Markov chain on G. From these data, we obtain the edge-
stationary distribution π : E → IR, the winding numbers ω( f ) on the faces of G,
and the unique p-harmonic function y : V → IR with y(s) = 0 and y(t) = 1.

Note that the probability h(i) that a random walk started at i reaches t before
reaching s has the properties required for y(i). Uniqueness, i.e., the fact that
h(i) = y(i), follows from the maximum principle for discrete harmonic functions;
see, e.g., [3].

From the data, we build a trapezoidal dissection T such that the trapezoid Ti j

corresponding to an edge (i, j) of G with y(i)< y( j) is a horizontal translate of the
trapezoid with corners

(ω(x)(y( j)− y(i)),y( j)), ((π(i, j)+ω(x′))(y( j)− y(i)),y( j)),

(0,y(i)), (π(i, j)(y( j)− y(i)),y(i)).

The proof that these trapezoids fit nicely together to a tiling of a rectangle is done
inductively. For the organization of the inductive argument, the following lemma is
useful.

Lemma 4.9. The orientation B of G with (i, j) ∈ B iff y(i) < y( j) is a bipolar
orientation with source s and sink t.

Proof. This follows from the maximum principle for discrete harmonic functions,
i.e, from the fact that such a function assumes its maximum at boundary vertices.��

As with squarings, it may happen that trapezoids degenerate and have zero area.
We say that a Markov chain p on G is generic if this does not happen. In particular,
this implies that p(i, j)+ p( j, i)> 0 for all edges (i, j) of G and y(i) �= y( j) for every
pair i, j of adjacent vertices.

Theorem 4.10 (Kenyon ’98). Let G be planar with s and t on the outer face. If p
is a generic Markov chain on G and T is the trapezoidal dissection associated with
(G, p) by the above construction, then G = GT and p can be recovered from T .

Some special cases are particularly interesting:

• If p is reversible, i.e., if π(i)p(i, j) = π( j)p( j, i) for all edges, then all trapezoids
in the dissection are rectangles. (This is the case of planar electrical networks
with edges of varying resistance.)

• If p(i, j) = 1
deg(i) , then π(i) = deg(i)

2m and the aspect ratios m(i, j) ∼ π(i)p(i, j) of
all rectangles are equal. Hence, after scaling the dissection, we obtain a squaring.
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Kenyon [30] also considers dissections of more general trapezoidal shapes than
rectangles. Markov chains that yield dissections into nontrapezoidal shapes are
considered in [36].

5 Square Duals

In this section, we review a result of Schramm [49]. He proves the existence of
rectangular duals where all rectangles are squares for a large class of triangulations.
The approach is based on extremal length. To begin, we need some definitions.
Throughout G = (V,E) is a prescribed graph.

• Any function m : V → IR+ is called a discrete metric on G.
• The length of a path γ in G is �m(γ) = ∑x∈γ m(x).
• For A,B⊂V , let Γ(A,B) be the set of A,B paths.

The distance between A and B is defined as �m(A,B) = min
γ∈Γ(A,B)

�m(γ).

• The extremal length of A,B is L(A,B) = sup
m

�m(A,B)2

||m||2 = sup
m

�m(A,B)2

∑v m(v)2 .

• A metric realizing the extremal length is an extremal metric.

Proposition 5.1. For G and A,B ⊂ V, there is a (up to scaling) unique extremal
metric.

Proof. If m is extremal, then so is every positive scalar multiple of m. Therefore, we
only have to look at metrics m with �m(A,B) = 1. ��

These metrics form a polyhedral set P described by the finitely many linear
inequalities of the form ∑x∈γ m(x)≥ 1 with γ ∈ Γ(A,B).

The extremal metric is the unique m ∈ P with minimal norm ||m||=
√
∑v m(v)2.

��

Proposition 5.2. A squaring with A and B representing the top and bottom of
the dissection induces an extremal metric on the rectangular dual graph G of the
squaring.

Proof. Let h = height(R) and w = width(R). We may assume h ·w = 1. Let s :
V → IR be the metric where s(v) is the side length of the square of vertex v. Since
||s||2 = ∑ s(v)2 = h ·w = 1, we have ||s||= 1. ��

Let m be any metric. For t ∈ [0,w], the squaring induces a path γt consisting of
the vertices v whose representing square is intersected by the vertical line x = t. By
definition, �m(A,B)≤ ∑v∈γt m(v).

w · �m(A,B) ≤
∫ w

0
∑
v∈γt

m(v)dt =
∫ w

0
∑
v∈V

m(v)δ[v∈γt ]dt = ∑
v∈V

m(v)
∫ w

0
δ[v∈γt ]dt

= ∑
v∈V

m(v)s(v) = 〈m,s〉 ≤ ||m|| · ||s||= ||m||
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Hence,

�m(A,B)2

||m||2 ≤ 1
w2 = h2 =

h2

||s||2 .

This shows that the metric s is extremal. ��

The proposition, together with the uniqueness of extremal metrics, implies that
for a given G, there can, up to scaling, only be a single square dual.

We next show the converse of the proposition: Extremal lengths can be used
to get squarings. Let G be an inner triangulation of a 4-gon, i.e., a triangulation
with one outer edge removed. Call the four vertices of the outer face s,a, t,b in
counterclockwise order.

Now let m be an extremal metric with respect to a and b such that ||m|| = 1 and
define h = lm(a,b). For an inner vertex v of G, let x(v) be the length of a shortest
s→ v path and y(v) be the length of a shortest a→ v path. The length of a path is,
of course, taken with respect to m.

Proposition 5.3 (Schramm ’93). The squares Zv = [x(v)−m(v),x(v)]× [y(v)−
m(v),y(v)] for inner vertices of G together with four appropriate squares for the
outer vertices yield a square contact representation of G in the rectangle R =
[0,h−1]× [0,h]. Moreover, if G has no separating 3- and 4-cycles, then there are
no degenerate squares; i.e., m(v)> 0 for all v.

Proof. The first claim is that all edges are represented as contacts or intersections.
Let (u,v) be an interior edge of G and u,v �= t. From x(v)≤ x(u)+m(v) and x(u)≤
x(v)+m(u) and the corresponding inequalities for y(u) and y(v), it follows that Zu∩
Zv �= /0. The same property for edges of the form (u, t) is nontrivial. Schramm [49]
has a direct argument, while Lovász [38] argues with blocking polyhedra and shows
that m is an extremal metric with respect to s and t. We skip this part of the proof. ��

The next claim is that the squares cover R; i.e., R ⊆ ⋃v Zv. Suppose that there
is a point p in R that is not contained in a Zv. For each v, choose a representative
point qv ∈ Zv and draw the edges of G such that an edge (u,v) is represented by a
curve connecting qu and qv that stays in Zu ∪Zv. The simplest choice for the edge
may be to represent it as union of straight segments [qu,quv] and [quv,qv] for some
quv ∈ Zu ∩ Zv. With triangle (u,v,w) in G, let T(u,v,w) be the topological triangle
enclosed by the edges connecting qu, qv, and qw in R. By following a generic ray
starting at p and considering situations where the ray crosses a curve representing an
edge, it can be verified that p is contained in an odd number of the triangles T(u,v,w).
Therefore, there is at least one triangle T(u,v,w) covering p. Consider S= Zu∪Zv∪Zw.
The boundary of T(u,v,w) is a closed curve γ contained in S such that p �∈ S is in the
interior of γ . Since this is impossible for a union S of three squares, we have a
contradiction. This proves the claim.

Since area(R) = 1= ||m||2 =∑v m(v)2 =∑v area(Zv), it follows that intersections
of the squares are confined to their boundaries, and we have a tiling of R with
squares. We also know that all edges of G are represented by contacts. With a
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counting argument, it can be shown that these have to be all contacts between the
squares except for

• Additional corner-to-corner contacts at points where four squares meet.
• Contacts where at least one of the two participating squares is a degenerate square

of size 0.

This shows that the extremal length yields a square contact representation of G.
Finally, we show that in the absence of separating 3- and 4-cycles, all squares

have nonzero area. Let W be the set of vertices of a connected component of the
subgraph of G induced by vertices with degenerate squares, i.e., with m(v) = 0. All
the vertices of W are represented by the same point p in R. This point p must also
be contained in all Zv, where v �∈W is a neighbor of some w ∈W . These at most
four vertices v form a cycle separating W from the outer vertices. ��

5.1 Square Duals and Transversal Structures

We now propose an alternative method to approach the problem of finding a square
dual for an inner triangulation of a 4-gon. The approach is similar to what we have
done in Sect. 4.2. First, we encode a rectangular dual as a graph with additional
structure, in this case a transversal structure. From the transversal structure, we
extract a system of linear equations such that a nonnegative solution yields the
metric information needed for the square dual. If the solution has negative variables,
we do not know how to use the solution to get a square dual. In this respect, the
situation is more complicated than in Sect. 4.2. However, the signs in the solution
provide a rule for changing the transversal structure. With the new transversal
structure, we can proceed as before. Unfortunately, we cannot yet prove that the
procedure stops, i.e., that at some iteration the solution is nonnegative and we get
the square dual we are looking for.

Let G be an inner triangulation of a 4-gon with outer vertices s,a, t,b in counter-
clockwise order. A transversal structure for G is an orientation and 2-colorings of
the inner edges of G such that

1. All edges incident to s, a, t, and b are blue outgoing, red outgoing, blue ingoing,
and red ingoing, respectively.

2. The edges incident to an inner vertex v come in clockwise order in four nonempty
blocks consisting solely of red ingoing, blue ingoing, red outgoing, and blue
outgoing edges, respectively.

Transversal structures have been studied in [22,23,31]. The relevance of transversal
structures in our context comes from the following simple proposition. See Fig. 23.

Proposition 5.4. Transversal structures of an inner triangulation G of a 4-gon with
outer vertices s,a, t,b are in bijection with combinatorially different rectangular
dissections R with rectangular dual G\ {s,a, t,b}, where the rectangles of vertices
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Fig. 23 The two local conditions and an example of a transversal structure together with a
corresponding dissection

adjacent to s, a, t, and b touch the left, lower, right, and upper boundary of R,
respectively.

Based on a transversal structure T , we want to write down a system of linear
equations such that a nonnegative solution of the system yields a square dissection
with T as the underlying transversal structure. For an inner vertex v, let xv be a
variable intended to represent the size of the square representing v. For a directed
edge (u,v) in T , let xuv be a variable representing the length of the contact between
the rectangles representing u and v. The edges incident to a vertex v are partitioned
into the four nonempty classes R+(v), B+(v), R−(v), and B−(v), where the letter
indicates the color of the edge and the sign denotes whether the edge is outgoing or
incoming. With vertex v, we associate four equations:

∑
(u,v)∈R+(v)

xuv = xv, ∑
(u,v)∈B+(v)

xuv = xv, ∑
(v,u)∈R−(v)

xvu = xv, ∑
(v,u)∈B−(v)

xvu = xv.

To forbid the trivial solution, we require that the width of the enclosing rectangle
be 1. This is done by adding the equation ∑(u,b)∈R−(b) xub = 1. Collecting the
coefficients of the equations in a matrix AT , we find that the vector x of lengths
of a square dissection is a solution to the system

AT · x = e1. (3)

Fact 1. If the solution vector x is nonnegative, then there is a square dissection with
the lengths given by x. If the solution vector x is positive, the transversal structure
corresponding to the square dissection is T .

Fact 2. The matrix AT is nondegenerate; hence, there is a unique solution x to the
system.
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A proof of Fact 2 can be given along the lines of the proof of Theorem 4.2. The
idea is to interpret AT as the adjacency matrix of a planar bipartite graph H. Terms
in the Leibniz expansion of det(AT ) correspond to perfect matchings in H. It can be
shown that H admits a perfect matching. Moreover, the sign of all perfect matchings
is equal because all inner faces of H have length 10, i.e., have residue 2 modulo 4.

To deal with the case where the solution vector x has negative entries, we need
more insight into transversal structures. Recall from Sect. 2.3 the definition of the
trimmed angle graph Ǎ(G) associated with a plane graph G. The vertex set of this
graph consists of the primal vertex set V together with the dual vertex set save the
dual of the unbounded face, i.e., V ∗ \{ f∞}. Edges of Ǎ(G) correspond to incidences
between vertices and bounded faces of G or equivalently to the internal angles of G.
Inner faces of Ǎ(G) correspond to the inner edges of G.

Given a transversal structure T on G, we define an orientation of Ǎ(G) as follows:
Orient the edge {v, f} as v→ f when the two edges incident to f and v have different
colors; otherwise, the edge is oriented f → v. It can be verified that

• out-deg(v) = 4 for all inner vertices of G, out-deg(v) = 0 for the four vertices of
the outer face, and out-deg( f ) = 1.

An orientation of Ǎ(G) obeying the above rules for the out-degrees is called an α4-
orientation (note that up to changing the role of the color classes, α4-orientations
are identical to the αskel orientations from Sect. 2.3).

Fact 3. Let G be an inner triangulation of a 4-gon with outer vertices s,a, t,b.
Transversal structures of G are in bijection with α4-orientations of Ǎ(G).

Fact 4. Let x be the solution to the system of equations corresponding to the
transversal structure T , and let E−(x) be the set of edges whose value in x is
negative. The boundary ∂−(x) of the union of all faces of Ǎ(G) corresponding to
edges in E−(x) decomposes into directed cycles with respect to the α4-orientation
corresponding to T .

Reverting a directed cycle in an α4-orientation yields another α4-orientation.
Hence, reverting all edges of ∂−(x) yields another α4-orientation, which corre-
sponds to a new transversal structure T ′ of G.
The approach for computing a square dual for G is this:

• Compute a transversal structure T of G and the matrix AT .
• Compute a solution xT of AT · x = e1.

If all entries of xT are nonnegative, we are done; based on xT , we can build the square
dissection for G. If there are negative entries in xT , we can use the α4-orientation
to transform T into another transversal structure T ′ and iterate. We conjecture that
independent of the choice of T , the sequence T → T ′ → T ′′ → has a finite length;
i.e., there is a k such that the solution xT (k) of the system corresponding to T (k) is
nonnegative.

There is strong experimental support for the truth of the conjecture.
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Convex Obstacle Numbers of Outerplanar
Graphs and Bipartite Permutation Graphs

Radoslav Fulek, Noushin Saeedi, and Deniz Sarıöz

Abstract The disjoint convex obstacle number of a graph G is the smallest number
h such that there is a set of h pairwise disjoint convex polygons (obstacles) and a set
of n points in the plane [corresponding to V (G))]so that a vertex pair uv is an edge
if and only if the corresponding segment uv does not meet any obstacle.

We show that the disjoint convex obstacle number of an outerplanar graph is
always at most 5, and of a bipartite permutation graph at most 4. The former answers
a question raised by Alpert, Koch, and Laison. We complement the upper bound for
outerplanar graphs with the lower bound of 4.

1 Introduction and Preliminaries

An obstacle representation of a graph G, as first defined by Alpert et al. [1], is a
straight-line drawing of G, together with a set of polygonal obstacles such that two
vertices of G are connected with an edge if and only if the line segment between the
corresponding points does not meet any of the obstacles. As they did, we assume
the points corresponding to the graph vertices together with the polygon vertices
are in general position (no three on a line). An obstacle representation of G with
h obstacles is called an h-obstacle representation of G. The obstacle number of
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G is the smallest number of obstacles needed in an obstacle representation of G.
If we restrict the polygonal obstacles to be convex, we call such a representation
a convex obstacle representation. Convex obstacle number and h-convex obstacle
representation are defined similarly.

If the convex obstacles are required to be pairwise disjoint, we call such a
representation a disjoint convex obstacle representation, and we define disjoint
convex obstacle number and h-disjoint convex obstacle representation similarly.
Surely, the convex obstacle number of a graph is at most its disjoint convex obstacle
number. We conjecture that there are graphs having convex obstacle number strictly
less than their disjoint convex obstacle number, so we reason about these two
parameters separately.

In [3], it was shown that for any fixed h, the number of graphs on n (labeled)
vertices with obstacle number at most h is at most 2O(hn log2 n). From this, it follows
that every graph class with 2ω(n log2 n) members on n vertices (such as the class of all
bipartite graphs) has an unbounded obstacle number. It was also shown therein that
the number of unlabeled graphs on n vertices with convex obstacle number at most
h is at most 2O(hn logn). Since the number of planar graphs on n vertices is 2Θ(n logn)

(see [2] for exact asymptotics), the bounds given by [3] are inconclusive regarding
the obstacle number or convex obstacle number of the class of planar graphs or a
subclass.

Nonetheless, it was shown by Alpert et al. [1] that every outerplanar graph admits
a 1-obstacle representation in which the obstacle is in the unbounded face. The same
paper raised the question of whether the convex obstacle number of an outerplanar
graph can be arbitrarily large. We answer this question in the negative. In particular,
we prove the following two results regarding outerplanar graphs in Sects. 2 and 3,
respectively.

Theorem 1. The convex (and disjoint convex) obstacle number of every outerpla-
nar graph is at most five.

Theorem 2. There are trees having disjoint convex obstacle number at least four.

In Sect. 4, we prove the following regarding bipartite permutation graphs.

Theorem 3. The convex (and disjoint convex) obstacle number of every bipartite
permutation graph is at most four.

2 Upper Bound on Convex Obstacle Number
of Outerplanar Graphs

Proof of Theorem 1. We shall show that the convex obstacle number of every
outerplanar graph is at most five, by giving a method to generate five convex ob-
stacles that can represent any outerplanar graph. For a given connected outerplanar

graph G, we first construct a digraph
−→
G′ with certain properties, whose underlying
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Input: A connected graph G = G(V,E)

. Output: The digraph
−→
G ′ called the BFS-digraph of G

.

.
V ′ :=V0 := singleton set with an arbitrarily chosen vertex of G (the BFS root)−→
E ′ := /0
i := 0
while V ′ �=V do

Vi+1 := {v | u ∈Vi, (u,v) ∈ E}\V ′

V ′ :=V ′ ∪Vi+1−→
E ′ :=

−→
E ′ ∪ {

−−→
(u,v) | u ∈Vi,v ∈Vi+1, (u,v) ∈ E}

i := i+1
end while
return

−→
G ′(V,

−→
E ′)

Algorithm 1: Algorithm to compute a BFS-digraph of a connected graph

graph is a subgraph of G. We call
−→
G′ the BFS-digraph of G. We show an obstacle

representation using five convex obstacles for the BFS-digraph, and then modify
the representation without changing the number of obstacles to represent the graph
G. We finally discuss how to accommodate the disconnected case, still with five
obstacles.

2.1 Constructing the BFS-Digraph and Its Properties

Let G be a connected outerplanar graph. Perform the breadth-first search based
Algorithm 1 on G that outputs a digraph, which we call the BFS-digraph of G,

and denote by
−→
G′. We say that a vertex of a BFS-digraph has depth i if its distance

from the BFS root is i (Fig. 1).

Lemma 2.1. A BFS-digraph
−→
G′ of a connected outerplanar graph G has a straight-

line drawing such that

1. Each vertex at depth i lies on the line y =−i.
2. Two edges are disjoint except possibly at their endpoints.
3. A vertical downward ray starting at a vertex v meets the graph only at v.

Proof. Let
−→
G′i denote the subgraph of

−→
G′ induced on vertices at depth less than or

equal to i. We show the existence of such a drawing by constructing it. We will

proceed by induction on
−→
G′i.

Consider a planar embedding of the outerplanar graph G in which every vertex
meets the outer face, with all vertices on a circle having the root as its topmost point.
From now on, we do not distinguish between a graph and its embedding. Draw the
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root

a e j

b d f h

c g

Fig. 1 A BFS-digraph of an outerplanar graph G drawn to exhibit the three properties in
Lemma 2.1. The edges without arrows correspond to edges of G that are not in the digraph. For
a given outerplanar graph G, regardless of the choice of the BFS root, there is a drawing of the
resulting BFS-digraph that satisfies the three properties and induces a straight-line outerplanar
drawing of G

root on the line y = 0. Then draw all its neighbors on the line y = −1 and to its
left, preserving their order in G. All arcs corresponding to the edges between the

root and its neighbors are oriented downward. So far we have
−→
G′1, which satisfies

the desired properties. We now show how to extend for i ≥ 1 an embedding of
−→
G′i

with the desired properties to an embedding of
−−→
G′i+1 with the desired properties. Let

vi,1,vi,2, . . . ,vi,� = root denote the vertices of
−→
G′i in left-to-right order. For the sake

of brevity, let vi,0 also denote the root. The depth i+ 1 neighbors of a vertex vi,k in
Vi lie in G either on the clockwise arc from vi,k to vi,k−1 or on the counterclockwise
arc from vi,k to vi,k+1. Otherwise, G is not planar, or its vertices are not in convex
position. We refer to the depth i+ 1 neighbors of vi,k on the clockwise arc from vi,k

to vi,k−1 as the left children of vi,k, and those on the counterclockwise arc from vi,k to
vi,k+1 as the right children of vi,k. Note that for vertices vi, j and vi, j+1, the rightmost
child of vi, j lies before or at the same place as the leftmost child of vi, j+1. We apply
the following steps for each vi,k in Vi:

• Put the left children of vi,k, in order of clockwise proximity in G to vi,k, on the
line y =−(i+ 1) so that they are to the left of vi,k and (unless k = 1) to the right
of vi,k−1.

• Put the right children of vi,k, in order of counterclockwise proximity in G to vi,k,
on the line y =−(i+ 1) so that they are between vi,k and vi,k+1.

• Make sure that for every pair of vertices vi, j and vi, j+1 in Vi, the rightmost child
of vi, j and the leftmost child of vi, j+1 preserve their order in G and are embedded
once if they are one and the same.
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Note that due to the outerplanarity of G, a right descendent and a left descendant of
a vertex have no common descendants, rendering the last step possible. Therefore,

the extended embedding represents
−−→
G′i+1 and satisfies all three conditions. ��

According to this embedding, we say that two vertices are consecutive if they are
on the same horizontal line and there is no vertex between them.

Corollary 1. A vertex has at most two parents. Moreover, if a vertex v has two
parents, the parents are consecutive; and v is the rightmost child of its left parent,
and the leftmost child of its right parent.

Proof. If any of the conditions above does not hold, property 3 of Lemma 2.1 is
violated. ��

By Corollary 1, we also know two vertices at depth i have a common child only if
they are consecutive.

Corollary 2. Two consecutive vertices such that one is a left child and the other is
a right child of the same parent do not have a common child.

Proof. It directly follows from the third property of Lemma 2.1. ��

2.2 5-Convex Obstacle Representation of the BFS-Digraph
of a Connected Outerplanar Graph

We demonstrate a set of five convex obstacles and describe how to place vertices

of
−→
G′ to obtain a 5-convex obstacle representation for

−→
G′. We first describe the

arrangement of the set of obstacles. We have two disjoint convex arcs symmetric
about a horizontal line, such that both arcs curve toward the line of symmetry.
We consider the arcs to be parts of large circles, so that they behave like lines,
except that they block visibilities among vertices put sufficiently near them. In the
region bounded by the two arcs, we put three line obstacles, which form an S-
shape with perpendicular joints, so that the S-shape is equally far from either arc,
and the projection of the S-shape onto either arc covers the whole arc. We then
disconnect the line obstacles by creating a small (and similar) aperture at each joint.
The arrangement of the set of obstacles is shown in Fig. 2.

The key idea is to place all vertices of the graph sufficiently close to either of
the arcs, and control the visibilities through the created apertures. For the sake
of simplicity of exposition, from now on, we say a vertex is placed on an arc
if it is sufficiently close to an arc. For each arc, the nearby and distant apertures
are respectively called the outgoing aperture and the incoming aperture. For each
vertex on an arc, we draw the outgoing edges through the outgoing aperture of its
underlying arc. We parameterize the arcs such that the intersection points of the
extended vertical line segment of the S-shape set at the arcs mark the zeros, and the
positive axes of the lower arc and the upper arc point respectively to the right and to
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1

1

Δ− 1

ΔΔ

0 +∞

+∞ 0

Δ
Δ+1

Δ
Δ+1

Fig. 2 The arrangement of the set of five convex obstacles

the left. Let Δ≥ 2 be at least the maximum outdegree in
−→
G′. We show if the S-shape

is constructed so that

1. For two positive points unit distance apart on one arc, the parts of the opposite
arc they see (through the outgoing aperture) share a single point.

2. Any point on an arc sees (through the outgoing aperture) an interval of length Δ
of the other arc.

Then this obstacle set can represent BFS-digraphs of all connected outerplanar
graphs.

We first investigate the structure of the set of obstacles to fulfill the conditions
above. The distance between two compact subsets of the plane is the shortest
distance between two of their respective points. Denote by w the aperture’s width,
denote by s the vertical segment’s length (in the S-shape), and denote by x the
distance between the S-shape and either arc.

Considering the arcs as lines, the first condition manifests if and only if w
1 = s+x

s+2x ,
and the second condition holds if and only if w

Δ = x
s+2x . These two equations require

that w = Δ
Δ+1 and s = (Δ−1)x, and we choose x = 1 to make things simple. We next

show that the depicted set of obstacles represents any BFS-digraph. (Surely, the

obstacle set depends on Δ, which is conditioned on
−→
G′, and to list vertex coordinates

of the polygonal obstacles we would also need to know the maximum depth in
−→
G′,

as we will discuss, so strictly speaking we have an obstacle set template.)

Proposition 1. The arrangement of five convex obstacles shown in Fig. 2 represents
BFS-digraphs of all connected outerplanar graphs.

Proof. We give an algorithm to place the vertices of a connected BFS-digraph
−→
G′ so

that, together with the set of obstacles, they form an obstacle representation of
−→
G′.

We consider the two arcs in the obstacle set as lines; after all vertices are placed, we
curve them a bit—just so that they block visibilities among vertices on them. This
way, we ignore visibilities among vertices on the same arc (when considered as a

line) and show that the set of obstacles represents
−→
G′.

Consider a drawing of
−→
G′ that satisfies the conditions in Lemma 2.1. From now

on, by
−→
G′ we refer to this embedding. Place the root of

−→
G′ at coordinate 1 of the
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lower arc. We get a representation of
−→
G′0, where

−→
G′i denotes the induced subgraph of

−→
G′ containing all vertices at depth at most i. Suppose

−→
G′i is represented such that

1. All vertices at an even depth are placed on the lower arc, and all vertices at an
odd depth are placed on the upper arc.

2. On each arc, vertices at different depths are well separated; i.e., arc intervals
containing all vertices at the same depth are disjoint.

3. Vertices of each depth preserve their ordering in
−→
G′.

4. Every two consecutive vertices are at least one unit apart.

Note that by preserving the order, we mean if a vertex is to the left of some other

vertex v in
−→
G′, it gets a smaller coordinate than v when put on an arc.

Now, we describe how to add vertices at depth i+1 to obtain a representation of−−→
G′i+1 satisfying the conditions above. Let vi, j denote the jth vertex at depth i and let
[ai, j,bi, j] denote the interval of the opposite arc that is visible from vi, j through the

outgoing aperture. For each vertex vi, j at depth i in the representation of
−→
G′i, we add

its children on the opposite arc as follows:

• If vi, j has a common child with its immediate preceding vertex in Vi, put its
leftmost child at ai, j; otherwise, put the leftmost child at ai, j +

1
2 .

• If vi, j has a common child with its immediate next vertex in Vi, put its rightmost
child at bi, j; otherwise, put the rightmost child at bi, j− 1

2 .
• Put the remaining left children, preserving their ordering, after the leftmost one

so that all left children are one unit apart.
• Put the remaining right children, preserving their ordering, before the rightmost

one so that all right children are one unit apart.

Since every point sees an interval of length Δ, we know bi, j = ai, j +Δ. Thus, as each
vertex has at most Δ children, by performing the above algorithm, the rightmost
left child is placed before the leftmost right child, and are at least one unit apart.
Therefore, all consecutive pairs of vertices are of distance at least 1. Moreover, we
know every two points, which are one unit apart, have a common point-of-sight;
that is, the greatest point-of-sight of the smaller point equals the smallest point-of-
sight of the greater one. By Corollaries 1 and 2, we know that if two vertices have a
common child, then they are consecutive; and they are not right and left children of
the same parent. Therefore, the presented algorithm put vertices so that two vertices
at depths i and i+1 are visible in the representation if and only if they are connected

in
−→
G′. Conditions 1, 3, and 4 are surely satisfied after performing the algorithm.

Since a vertex sees no other vertex except through the apertures, to complete the
proof, what remains to be shown is that a vertex sees only its children through its
outgoing aperture [and only its parent(s) through its incoming aperture]. To that end,
next we prove that Condition 2 is satisfied, namely, that vertices at different depths
are well separated: They lie in pairwise disjoint intervals.

Let I0 denote the “interval” [1,1] wherein the root is placed, and for every i ≥ 0
let Ii+1 denote the interval visible from Ii through the outgoing aperture. Since every
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vertex at depth i is in Ii, and Ii and Ii+1 belong to different arcs, to prove Condition
2, it suffices to show that Ii < Ii+2 (i.e., every point in Ii has a smaller coordinate
than every point in Ii+2) for every i ≥ 0. If Ii = [a,b], the structure of the obstacle
set yields Ii+1 = [Δ×a,Δ×b+Δ]. Since Δ≥ 2, this gives I0 < I2. By induction, we
obtain that Ii = [Δi,2Δi +∑i−1

j=1Δ
j] for every i≥ 1. Since Δ≥ 2, for every i≥ 1, we

have 2Δi +∑i−1
j=1Δ

j < 3Δi < Δi+2; therefore, Ii < Ii+2.
Since we have previously ensured that a vertex v at depth i sees only its children

through the outgoing aperture among all vertices at depth i+ 1, the well ordering
of the intervals implies that v cannot see any other vertices through the outgoing
aperture. By symmetry of sight, this implies that no vertex can see through its
incoming aperture any vertex other than its parent(s).

This concludes the proof that we gave an obstacle representation of
−→
G′. ��

2.3 Adjusting the Representation for General Outerplanar
Graphs

We first show how to modify the representation of a connected BFS-digraph
−→
G′ to

accommodate its corresponding outerplanar graph G. We know that the underlying

graph of
−→
G′ and G are the same, except that

−→
G′ has no edge between two vertices

at the same depth. Since G is an outerplanar graph, the extra edges of G, if any, are
such that they connect two consecutive vertices. Therefore, to allow the existence of
extra edges in the representation, we simply shave off the portion of the arc between
their endpoints.

Now, we adapt this idea for disconnected outerplanar graphs. Let C1,C2, . . . ,Cn

be the components of a given outerplanar graph. Let
−→
C′i be a BFS-digraph of Ci, as

defined in Sect. 2.1. Let Δ ≥ 2 be at least the maximum outdegree among all BFS-
digraphs, and construct the obstacle set template as before. Now, let L denote the

maximum depth among all
−→
C′i . We declare I0 to be the interval [1,1] on one arc,

and for every i > 0, we let Ii be the interval [Δi,2Δi +∑i−1
j=1Δ

j] on the arc opposite
interval Ii−1. The modified algorithm for representing a disconnected outerplanar

graph is as follows. For each
−→
C′i , put its root at an arbitrary place in I(i−1)(L+2). Then

carry out the algorithm described in Sect. 2.2 to place all vertices of
−→
C′i for every i.

This ensures that no vertex in C′i can see a vertex of C′j for any i �= j. We then shave
off the arcs as necessary to provide visibility among vertices at the same depth where
desired.

We obtain a representation for an arbitrary outerplanar graph, concluding the
proof of Theorem 1.
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Fig. 3 For the proof of Lemma 3.2. Since all nonedges among v1,v2, . . .,vs are blocked by a single
convex obstacle O1, these vertices are in convex position, and below r in the manner shown in both
subfigures

3 Lower Bound on Disjoint Convex Obstacle Number
of Outerplanar Graphs

For a rooted tree, we use the standard terminology—the depth of a vertex is its
topological distance to the root, and the height of the tree is the maximum depth
over all its vertices.

Proof of Theorem 2. Denote by Tk,h the full complete k-ary tree with height h rooted
at r. We will show that the disjoint convex obstacle number of Tk,3 is at least four,
for k to be specified later. We say that two edges form a crossing if they meet at an
internal point of both. (Recall that in an obstacle representation, no three vertices
are collinear.) ��

Lemma 3.2. For every m ∈ Z+, there is a value of k such that Tk,2 has no m-convex
obstacle representation without edge crossings.

Proof. Denote by V1 the set of vertices at depth 1, which is an independent set in
Tk,2 of size k. For any given s, we can find a subset V ′ ⊆ V1 of size s [provided
large enough k = k(s)] such that every nonedge with both endpoints in V ′ is blocked
by a common obstacle O1. This is because we can assign every nonedge among V1

to a single obstacle that blocks it to obtain an m-edge-coloring of a Kk induced on
V1, which by Ramsey’s theorem has a monochromatic clique of size s for large
enough k. The set V ′ lies in some half-plane having r on its boundary, without
loss of generality, below a horizontal line; otherwise, r would be inside a triangle
with vertices in V ′, yet no single convex obstacle could block all three sides of
it without meeting an edge of Tk,2. Let us write u < v whenever the triple ruv
is counterclockwise. Let v1 < v2 < · · · < vs denote the vertices in V ′. For each
i : 1 < i < s, let ui denote a certain child of vi. We claim that at least (s− 2)/2
(not necessarily disjoint) convex obstacles are required to block the nonedges
ru2,ru3, . . . ,rus−1.
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Fig. 4 Nonedges shown in each subfigure imply a respective minimal portion (dark gray) of
an obstacle. The third edge of the path could have been incident on v or v′, but this makes no
difference. Only the obstacle that blocks vv′ can be inside the convex angle v′cv

To prove the claim, assume for contradiction that some obstacle O′ blocks three
nonedges of the form rui. Then without loss of generality, for some pair i < j such
that rui and ru j are blocked by O′, both ui < vi and u j < v j hold. It must be that
vi < u j; otherwise, v ju j would cross an edge or meet O1, which blocks both viv j

and v jv j+1. See Fig. 3a. Choose two points pi ∈ rui∩O′ and p j ∈ ru j∩O′. Then the
segment pi p j must intersect the union of the edges rvi and viui. See Fig. 3b. By the
convexity of O′, we have a contradiction.

Thus, for s ≥ 2m+ 4, at least m+ 1 convex obstacles are required if no edges
cross. ��

Assume for contradiction that we have a representation of Tk,3 with three pairwise
disjoint convex obstacles O1, O2, and O3.

If the endpoints of a crossing induced only the two edges (that is, an “X”-type
crossing), at least four convex obstacles would be needed to block the nonedges,
since any convex set that intersects two nonedges must meet an edge. However,
no more than three edges can be induced by four vertices without forcing a cycle.
Therefore, the four endpoints of every crossing induce a path with three edges.

By Lemma 3.2, we know that for large enough k, there are crossings within each
subtree of Tk,3 isomorphic to Tk,2. Pick three crossings c1,c2, and c3 in Tk,3, each
in a subtree rooted at a different neighbor of the root vertex. For each i ∈ {1,2,3},
denote by uivi and wizi the edges of the crossing ci, with the corresponding induced
path on four vertices Pi = uiviwizi.

Let’s first consider the case where the convex hulls of two of these paths, say
P1 and P2, meet. If this is the case, with no vertex of P1 being inside the convex
hull of P2 or vice versa, then some edge of P1 must intersect some edge of P2,
inducing an “X”-type crossing that requires four obstacles. Hence, without loss of
generality, some vertex u of P1 is in the convex hull of P2. See Fig. 4. Let c be the
point of intersection of the two edges of P2. Then u is inside some triangle vcv′,
where v,v′ ∈ P2. If vv′ is an edge, then vcv′ induces a bounded face, so uv would
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O1

Fig. 5 Convex hulls of P1,
P2, and P3 are pairwise
disjoint

require an obstacle in addition to the three required by P2. Now, since u is inside a
triangle vcv′, the obstacle blocking vv′ must also block uv and uv′, but this forces all
neighbors of u to be inside vcv′. Applying this argument to the neighbors of u in P1

(recursively if needed), which satisfy the same conditions as u, we see that P1 must
be completely inside vcv′. But every nonedge of P1 requires a distinct obstacle, at
most one of which may coincide with one blocking vv′ while none among them may
coincide with any other obstacle, so five obstacles are required, a contradiction.

This means that the convex hulls of P1, P2, and P3 are pairwise disjoint. Recall
that for each of these paths Pi, each of the three nonedges of Pi must be blocked by a
unique obstacle among three pairwise disjoint obstacles. Hence by the Jordan curve
theorem, we get a contradiction (see Fig. 5).

4 Convex Obstacle Number of Bipartite Permutation Graphs

A permutation graph is a graph on [n] according to a permutation (σ1,σ2, . . . ,σn)
of [n] such that there is an edge between two elements σi > σ j whenever i < j. We
show that the idea of having a small aperture between two classes of vertices, which
are placed close to two convex obstacles, is readily extended to the class of bipartite
permutation graphs.

Proof of Theorem 3. By a result from [4], a bipartite graph G(V,E) is a permutation
graph if and only if its two independent vertex classes V1 and V2 can be ordered such
that the neighborhood of every vertex ui ∈ V1 forms an interval [ai,bi] in V2, and if
ui < u j for two vertices in V , then ai ≤ a j and bi ≤ b j. ��

We illustrate in Fig. 6 a set C of four disjoint convex obstacles allowing an
obstacle representation of G. C consists of two convex arcs C1 and C2, and two
vertical line segments (labeledA) that form an aperture between C1 and C2.

Similarly to the treatment of the arcs in Sect. 2.2, we regard C1 and C2 as line
segments, except that they block visibilities among graph vertices placed near them.
For convenience, we shall speak of placing vertices of G on these arcs.

We put vertices of V1 and V2 on C1 and C2, respectively. Let u1,u2, . . . ,un

and v1,v2, . . . ,vn be the ordering of the vertices in V1 and V2 guaranteed by the
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Fig. 6 The obstacles
allowing a obstacle
representation of a bipartite
permutation graph

aforementioned result in [4]. We place the vertices, in order, inductively. In the basis
step, we place u1 arbitrarily on the relative interior of C1. Let ai and bi denote the
endpoints of the segment of C2 that ui can see through the aperture (see Fig. 6). We
place neighbors of u1 in the relative interior of segment a1b1 on C2 so that the order
of their y-coordinates corresponds to their order in V2.

At an inductive step i+1, where i≥ 1, we place the (i+1)th vertex of V1 together
with its children, on the corresponding arcs as follows. We first find a consistent
place for ai+1. If the first neighbor w of the (i+1)th vertex (with regards to the order
in V2) is already placed on C2, we pick ai+1 so that it precedes w (with regards to
y-coordinate) and succeeds ai and any other point already placed on C2. Otherwise,
we pick ai+1 so that it succeeds bi. We place ui+1 at the intersection of C1 and
the line through ai+1 and a (see Fig. 6). The line through ui+1 and b intersects C2

at point bi+1, which has a higher y-coordinate than bi. Therefore, we can place
neighbors of ui+1 that are not neighbors of ui on the nonempty line segment bibi+1.
This concludes the proof of Theorem 3.
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Sarıöz’s research was supported by NSA Grant 47180-0001.



Convex Obstacle Numbers of Outerplanar Graphs... 261

References

1. H. Alpert, C. Koch, J. Laison, Obstacle numbers of graphs. Discr. Comput. Geom. 44, 223–244
(2010)
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Hanani–Tutte, Monotone Drawings,
and Level-Planarity∗
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and Daniel Štefankovič

Abstract A drawing of a graph is x-monotone if every edge intersects every vertical
line at most once and every vertical line contains at most one vertex. Pach and Tóth
showed that if a graph has an x-monotone drawing in which every pair of edges
crosses an even number of times, then the graph has an x-monotone embedding in
which the x-coordinates of all vertices are unchanged. We give a new proof of this
result and strengthen it by showing that the conclusion remains true even if adjacent
edges are allowed to cross each other oddly. This answers a question posed by Pach
and Tóth. We show that a further strengthening to a “removing even crossings”
lemma is impossible by separating monotone versions of the crossing and the odd
crossing number.

Our results extend to level-planarity, which is a well-studied generalization of
x-monotonicity. We obtain a new and simple algorithm to test level-planarity in
quadratic time, and we show that x-monotonicity of edges in the definition of level-
planarity can be relaxed.
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1 Introduction

The classic Hanani–Tutte theorem states that if a graph can be drawn in the plane
so every pair of independent edges crosses an even number of times, then it is
planar [3, 31]. (Two edges are independent if they do not share an endpoint.) There
are many ways to look at this result: In algebraic topology it is seen as a special
case of the van Kampen–Flores theorem [21, Chap. 5], which identifies obstructions
to embeddability in topological spaces. This point of view leads to challenging
open questions (see, for example, [22]); even in two dimensions—for surfaces—
the problem is not understood well. (See [30] for a survey of what we do know.)

Here, we study a variant of the problem that was introduced by Pach and
Tóth [24]. A curve is x-monotone if it intersects every vertical line at most once. A
drawing of a graph is x-monotone if every edge is x-monotone and every vertical line
contains at most one vertex. In this context, the natural analogue of the Hanani–Tutte
theorem is that for any x-monotone drawing in which every pair of independent
edges crosses an even number of times, there is an x-monotone embedding (that is,
a crossing-free drawing) with the same vertex locations. The truth of this result was
left as an open problem by Pach and Tóth. We prove this monotone Hanani–Tutte
theorem as Theorem 3.1 in Sect. 3.

The weak version of the classic Hanani–Tutte theorem states that if a graph
can be drawn so that every pair of edges crosses evenly, then it is planar. (For
background and variants of the weak Hanani–Tutte theorem, see [30].) For x-
monotone drawings, this translates to the claim that if there is an x-monotone
drawing in which every pair of edges crosses an even number of times, then there
is an x-monotone embedding with the same vertex locations. This weak monotone
Hanani–Tutte theorem was first proved by Pach and Tóth.1 We give a new proof of
this result as Theorem 2.11 in Sect. 2.

Traditionally, Hanani–Tutte style results are obtained via characterizations by
obstructions. This can lead to very slick proofs, like Kleitman’s proof of the Hanani–
Tutte theorem for the plane (using obstructions K5 and K3,3) [18]. There are two
drawbacks to this approach: Complete obstruction sets are often unknown, e.g.,
for the torus or, in spite of several attempts (as discussed in [8]), for x-monotone
embeddings. Secondly, this approach is of little help algorithmically. Pach and Tóth
proved the weak monotone Hanani–Tutte theorem using an approach of Cairns
and Nikolayevsky [2] with which they proved the weak Hanani–Tutte theorem for
orientable surfaces. Our approach is based on a different line of attack that began
in [27].

In Sect. 4 we establish a connection between x-monotonicity and another well-
known graph drawing notion, level-planarity. Through this connection, the mono-
tone Hanani–Tutte theorem (Theorem 3.1) leads to a simple, quadratic-time algo-
rithm for recognizing level-planar graphs. While the best-known algorithm for this

1There is a gap in the original argument; an updated version is now available [24, 25].
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problem runs in linear time [16], it is quite complicated. There have been previous
claims for simple quadratic-time algorithms for level-planarity testing, which we
discuss in Remark 4.3.

The condition that edges are x-monotone in the monotone Hanani–Tutte theo-
rems can be replaced by a weaker notion we call x-bounded. Let x(v) denote the
x-coordinate of a vertex v located in the plane. An edge uv in a drawing is x-
bounded if every interior point p of uv satisfies x(u) < x(p) < x(v). That is, an
edge is x-bounded if it lies strictly between its endpoints; it need not be x-monotone
within those bounds (see Corollary 2.7 and Remark 3.2). As a consequence, we
obtain a relaxed, yet equivalent, definition of level-planarity (Corollary 4.5). We
also describe an even weaker condition (nearly x-bounded) in Sect. 2.1 and show
that we can get similar results for it as well (see Lemma 2.8 and Remark 3.2).

The classic Hanani–Tutte theorems have extensions that bound crossing number
in terms of odd crossing number and independent odd crossing number, with
equality for very small values [23,27,28]. We will see in Sect. 5 that such extensions
fail for monotone odd and monotone independent odd crossing numbers. Also,
Theorem 2.11 may prompt the reader familiar with Hanani–Tutte style results (in
particular, [23, Theorem 1] and [27, Theorem 2.1]) to ask whether a stronger result
is true: a “removing even crossings” lemma, which would say that all even edges
can be made crossing-free even in the presence of odd edges (while maintaining
x-monotonicity and vertex locations). We will see in Sect. 5 that there cannot be any
such lemma for x-monotone drawings.

We end this section by stating a few definitions. The rotation at a vertex is the
clockwise ordering of edges at that vertex, in a drawing of a graph. The rotation
system of a graph is the collection of rotations at its vertices. In an x-monotone
drawing, the right (left) rotation at a vertex is the order of the edges leaving the
vertex toward the right (left). Usually, we consider graphs, but we will also have
cause to study multigraphs, which allow the possibility of having more than one
edge between each pair of vertices. Our multigraphs will never have loops. For any
graph G and S ⊆ V (G), let G[S] denote the subgraph induced by S, which is the
graph on vertex set S with edge set {uv ∈ E(G) : u ∈ S,v ∈ S}.

2 Weak Hanani–Tutte for Monotone Drawings

An edge is even if it crosses every other edge an even number of times (possibly 0
times). A drawing is even if all its edges are even.

Theorem 2.11 (Weak Monotone Hanani–Tutte; Pach, Tóth [24, 25]). If G has
an x-monotone even drawing, then G has an x-monotone embedding with the same
vertex locations and rotation system.

Our goal in this section is to give a new proof of Theorem 2.11.
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u

v

x

y

Fig. 1 (Left) An x-monotone even drawing. Since x is above uv and y is below uv, any equivalent
x-monotone embedding with the same relative x-ordering of the vertices will have uv below x and
above y. But then xv is above uy, so it is not equivalent. (Right) Essentially the same argument
applies to this 2-connected example

Remark 2.2. By stretching and compressing and x-monotone drawing in the plane
horizontally, we can change the x-coordinates of vertices arbitrarily as long as their
relative x-order remains the same, and all the edges will remain x-monotone. We can
also alter the y-coordinate of any vertex by stretching the plane vertically near that
vertex, so that all edges remain x-monotone and all other vertices are fixed. Thus,
we can modify an x-monotone drawing to relocate vertices arbitrarily, as long as the
relative x-order of vertices is unchanged.

As a result, in any redrawing of an x-monotone drawing in which the relative
x-order of the vertices does not change, we may as well assume that the location of
every vertex has remained unchanged. Alternatively, we may instead assume that the
vertices in an x-monotone drawing are located at the points (1,0), . . ., (|V |,0). The
same argument applies if the edges are x-bounded or nearly x-bounded (defined in
Sect. 2.1) rather than x-monotone. (We briefly consider drawings with straight-line
edges in Remark 2.4, and in that context the argument no longer works.)

The result claimed by Pach and Tóth in [24, Theorem 1.1] is almost the same
as Theorem 2.11, but instead of maintaining rotations, they state that one can find
an equivalent x-monotone embedding. Here, two drawings are equivalent if no edge
changes whether it passes above or below a vertex. However, the example on the
left in Fig. 1 shows that one cannot hope to maintain equivalence in this sense.

The proof in [24] contains a gap: It is not immediately clear how multiple
faces that share a boundary can be embedded simultaneously.2 Eliminating the gap
requires dropping equivalence. Pach and Tóth have prepared an updated version of
the paper that includes a more detailed argument [25].3 As the graph on the right in
Fig. 1 shows, the counterexample can be made 2-connected, so equivalence cannot
be obtained by assuming 2-connectedness. On the other hand, see Corollary 2.5 for
a positive result about equivalent redrawing.

2On page 42 of [24], in the text after Lemma 2.1, Dκ cannot necessarily be glued together without
changing equivalence.
3In this newer version, equivalence is redefined to mean having the same rotation system.
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mf Mf

Fig. 2 Although we can draw the edge m f Mf within the Z-shaped face, any subsequent x-
monotone redrawing that maintains relative vertex x-order and rotation system will not be
equivalent

In our proof of Theorem 2.11, we will repeatedly make use of a simple topolog-
ical observation: Suppose we are given two curves (not necessarily monotone) that
start at the line x = x1 and end at the line x = x2, and that lie entirely between x = x1

and x = x2. The two curves cross an even number of times if and only if they have
the same vertical order at x = x1 and x = x2. (If they start or end in the same point
p, the vertical order at p is determined by the vertical order in which they enter p.)

We will also use the following redrawing tool.

Lemma 2.3. Let f be an inner face of an x-monotone embedding of a multigraph
G, with mf and Mf being the leftmost and the rightmost vertex of f . Add an edge
m f Mf to the embedding so that it lies in f . (Note that m f Mf is not required to be
x-monotone and and that there may be multiple ways of inserting mf Mf into the
rotations at m f and Mf .) Then the resulting graph G∪{m f Mf } has an x-monotone
embedding with the same vertex locations and rotation system.

Note that the redrawing in Lemma 2.3 destroys equivalence in the sense of Pach
and Tóth [24]. This is necessarily the case; see Fig. 2 for an example.

Proof of Lemma 2.3. If G consists of multiple components, it is sufficient to prove
the result for the component containing f and shift its embedding vertically so
that it does not intersect any other component. This allows us to assume that G
is connected. Then every face is bounded by a closed walk.4 The boundary of f
can be broken into two m f ,Mf -walks B1,B2, with B1 starting above m f Mf in the
rotation at m f , and B2 starting below.

Let D f be the drawing of G intersected with Uf := {(x,y) ∈ R2 : x(m f ) < x <
x(Mf )}. (D f is a subset of the plane, not a graph.) We will locally redraw G in
Uf so that m f Mf can be inserted as a straight-line segment. For each (topologically)
connected component Z of D f , either (i) for every x between x(m f ) and x(Mf ), there
is a y-value of B1 at x that is below all y-values of Z at x, or (ii) for any x between
x(m f ) and x(Mf ), there is a y-value of B2 at x that is above all y-values of Z at x.

4Walks are like paths except that vertices and edges can be repeated. In a closed walk, the last
vertex is the same as the first vertex.
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x1 x2 x1, x2

Fig. 3 How to contract edge x2x1 toward x1 and merging rotations

Let Z1 be the union of all components of the first type, and Z2 be the union of
all components of the second type. Let L be the line through m f and Mf . We will
show how to move Z1 to the half-plane above L, without changing the x-value of any
point in Z1 while fixing the points on the boundary of Uf . Let P be an x-monotone
curve with endpoints m f and Mf that lies strictly below Z1 in Uf (note that m f and
Mf do not belong to Uf ). Now move every point v of Z1 up by the vertical distance
between P and L at x = x(v). We proceed similarly to move Z2 strictly below L, after
which we can embed m f Mf as L. The overall embedding is as desired. ��

Proof of Theorem 2.1. We prove the following statement by induction on the
number of vertices and then the number of edges:

If G is a multigraph that has an x-monotone drawing in which all edges are even, then G has
an x-monotone embedding with the same vertex locations and rotation system.

In the base case, G consists of a single vertex, so the result is immediate. If
G consists of multiple components, we can apply induction to each component
and combine the drawings by stacking them vertically, that is, translate each
component vertically so no two components intersect. Thus, we may assume that
G is connected.

We first consider the case that there is more than one edge between the two
leftmost vertices of G, x1 < x2. If there are several edges between x1 and at x2, say
e1, . . . ,ek, these have to be consecutive in the rotations at both x1 and x2: This is
trivial for the rotation at x2, since all edges incident to it on the left have to go to x1.
Now suppose there is an edge f = x1x�, � > 2 so that f falls between two edges ei

and e j in the rotation at x1, 1≤ i, j ≤ k. It is easy to see that f must cross either ei or
e j oddly, which contradicts f being even, so such an edge does not exist. Hence, all
edges between x1 and x2 are consecutive and, moreover, have mirror rotations at x1

and x2 (again a consequence of their being even). We can then replace them with a
single edge e between x1 and x2. By induction, that reduced graph has the required
embedding, and we can replace e with the multiple edges e1, . . . ,ek obtaining the
desired embedding of G.

Now, consider the case that there is only a single edge x1x2 between x1 and x2. We
contract x1x2 by moving x2 along the edge toward x1 and inserting the right rotation
of x2 into the rotation at x1 (see Fig. 3). Note that all edges remain even (since x1x2
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Fig. 4 (Left) Case (i): Px2 is dashed, P′x2
is the thick gray path from x2 to MC ; (right) case (ii): both

subcases are displayed: the top Px2 stays to the left of MC , while the bottom Px2 passes to the right
of MC . P′x2

as thick gray path in both cases

is even), so by induction the new graph has an x-monotone embedding in which
x1 = x2 < x3 < · · ·< xn. We can now split the merged vertex into two vertices again
and insert a crossing-free edge x1x2, obtaining an embedding of the original graph
(since we kept the rotation) with the original rotation.

This leaves us with the case that there is no edge between x1 and x2. If G− x1

consists of a single component, consider all edges e1, . . . ,ek leaving x1. Each of these
edges passes either above or below x2. We claim that it is not possible that there are
edges e and f so that e leaves x1 above f but passes under x2, while f passes above
x2: Assume for a contradiction that this is the case; pick a cycle C that contains both
e and f (this cycle exists, since we assumed G− x1 is a single component). Let MC

be the rightmost vertex of C. Consider the following two curves within C: Ce, which
starts just below x2 on e and leads to MC, and Cf , which starts just above x2 on f
and leads to MC. Note that since e leaves x1 above f and C is a cycle consisting
of even edges lying entirely between x1 and MC, curve Ce enters MC above Cf .
Pick a shortest path Px2 from x2 to C (such a path exists, since G is connected). We
distinguish two cases (illustrated in Fig. 4).

(i) Px2 lies strictly to the left of MC. Without loss of generality, suppose that Px2

ends on Cf . Let P′x2
be the x2,MC-subpath of Px2 ∪Cf . Since Ce and P′x2

share no
edges, and Ce passes below x2, Ce must enter MC below P′x2

(all edges are even).
However, the last part of P′x2

belongs to Cf , so Ce enters MC below Cf , which
we know to be false.

(ii) Px2 contains a vertex at or to the right of x =MC. Let P′x2
be the shortest subpath

of Px2 starting at x2 and ending at or to the right of x = MC. Since Px2 has no
edges in common with either Ce or Cf , P′x2

enters MC above Ce and below Cf

if P′x2
ends in MC. Otherwise, P′x2

passes MC above Ce and below Cf . Since we
know that Ce enters MC above Cf , case (ii) also leads to a contradiction.

This establishes the claim that if e leaves x1 above f , then it is not possible that e
passes below x2 while f passes above x2. In other words, if some edge e starting at x1

passes below x2, then all edges starting below e at x1 also pass below x2. Hence, all
edges passing below x2 are consecutive at x1 and so, perforce, are the edges passing
above x2. We can now add a new edge e from x2 to x1 that attaches in the rotation
between the group of edges passing above x2 and the edges passing below x2.
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This new edge will then be even, so we are in an earlier case that we know how
to solve (by contracting the new edge, which reduces the number of vertices, then
applying induction).

It remains to deal with the case that G− x1 separates into multiple components.
Let H ′

i , i = 1,2 be two of those components, and let Hi, i = 1,2 be H ′
i together with

its edges of attachment to x1; that is, Hi = G[{x1} ∪V (H ′
i )]. Note that the edges

of H1 and H2 attaching to x1 cannot interleave, meaning that at x1 we cannot have
edges e1, e2, f1, f2 in that order so that ei, fi ∈ E(Hi) for i = 1,2. The reason is that
ei and fi can be extended to a cycle Ci ⊂Hi and C1 would cross C2 an odd number of
times if e1, f1 interleaves with e2, f2 at x1. This implies that we can define a partial
ordering ≺ on these components, where H1 ≺ H2 if the edges (or edge) attaching
H1 to x1 are surrounded (in the right rotation at x1) by the edges attaching H2 to
x1. Now let H be a minimal element of ≺; then the edges of H attaching to x1 are
consecutive at x1. If H contains the rightmost vertex of G, then H is also a maximal
element in ≺, so H cannot be the only minimal element of ≺; in this case, reassign
H to another minimal element of ≺ that does not contain the rightmost vertex of G.
Let H ′ = H−{x1}.

Consider G−V (H ′). By induction, there is an embedding of G−V (H ′) that
maintains the vertex locations and the rotation system. Let f be the face incident to
x1 into which H has to be reinserted (so that we recover the original rotation system).
We can assume that f is not the outer face: If it is, we can make it an inner face by
adding an edge from x1 to the rightmost vertex of G. By Lemma 2.3, we can assume
that the embedding has an x-monotone edge from x1, starting where H ′ was attached
in its rotation, to the rightmost vertex incident to f , which we call Mf . We can find
an x-monotone embedding of H by induction. Note that all vertices of H must lie
to the left of Mf , since otherwise an edge of H must have crossed an edge on the
boundary of f oddly before G−V(H ′) was redrawn using Lemma 2.3. But then we
can insert the new embedding of H into the embedding of (G−V (H ′))∪{x1Mf }
near the edge x1Mf , such that there are no crossings, which gives us the desired
embedding of G. ��

Remark 2.4. There is a straight-line variant of Theorem 2.11 if we allow the y-
coordinates of vertices to change. This has nothing to do with the Hanani–Tutte part
of the result; it is entirely due to the fact that any x-monotone embedding can be
turned into a straight-line embedding in which every vertex keeps its x-coordinate [7,
24]. This redrawing can lead to an exponential blow-up in the area required for the
drawing [20].5

All redrawing steps in the proof of Theorem 2.11 maintain equivalence except
for applications of Lemma 2.3. This part of the proof only arises if G−{x1} is
not connected. Hence, if we can make an assumption on G so that this case never
occurs, we can conclude that the resulting embedding is equivalent to the original

5The examples in that paper allow multiple vertices in each layer, but these can be replaced by the
requirement that vertices are not too close to edges to which they are not incident.
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drawing in the sense of Pach and Tóth [24]. We already saw that 2-connectedness is
not sufficient; however, another notion is: A graph in which the vertices are ordered
(from left to right, say) is a hierarchy if every vertex except the rightmost one has
an edge leaving it toward the right [6].

Corollary 2.5. If a hierarchy G has an x-monotone even drawing, then G has
an equivalent x-monotone embedding with the same vertex locations and rotation
system.

Proof. This follows from the proof of Theorem 2.11. The only operation that
changes equivalence of edges and vertices in that proof is the application of
Lemma 2.3. If G is a hierarchy, G− x1 consists of a single component, since any
two vertices in G−x1 are connected by a path (in a hierarchy, any two vertices must
have a common ancestor). Since contracting the leftmost edge of a hierarchy results
in another hierarchy, the result follows by induction. ��

2.1 From x-Monotone to x-Bounded

The x-monotonicity assumption in Theorem 2.11 can be replaced by a weaker
condition. Recall that an edge uv in a drawing is x-bounded if every interior point
p of uv satisfies x(u) < x(p) < x(v). That is, an edge is x-bounded if it lies strictly
between its endpoints; it need not be x-monotone within those bounds.

Lemma 2.6. Suppose we are given a drawing of a graph G with an x-bounded
edge e. Then e can be redrawn, without changing the remainder of the drawing or
the position of e in the rotations of its endpoints, so that e is x-monotone and the
parity of crossing between e and any other edge of G has not changed.

Proof. Suppose that e = ab and let v be an arbitrary vertex between a and b: x(a)<
x(v)< x(b). Since e connects a to b, it has to cross the line x = x(v) an odd number
of times. Consequently, e crosses one of the two parts into which v splits x = x(v)
evenly, and e crosses the other part oddly. In a small neighborhood of x = x(v),
redraw G by pushing all crossings of e with x = x(v) from the even side across v to
the odd side (see top and middle parts of Fig. 5). Note that the odd side of x = x(v)
remains odd and there are no crossing with e left on the even side. Moreover, the
parity of crossing between e and any other edge does not change since e is moved
an even number of times across v. Repeat this for all v between a and b; now e only
passes above or below each such v, never both. We can now deform e into an x-
monotone edge connecting a and b, without having the edge pass over any vertices.
Since the deformation does not pass over any vertex, it does not affect the parity of
crossing between e and any other edge. This means we have found the redrawing
required by the lemma (see middle and bottom parts of Fig. 5).
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a b

a b

a b

Fig. 5 How to redraw an
x-bounded edge. (Top) Before
the redrawing. (Middle) After
pushing e off the odd parts.
(Bottom) After deforming e
into an x-monotone drawing

In hindsight, we see that the redrawing in Lemma 2.6 can be done quite
efficiently: For each vertex v between a and b, we only need to know whether e
passes oddly above or below it, and we can build a polygonal arc from a to b that
passes each vertex on the odd side. ��

Redrawing one edge at a time using Lemma 2.6 gives us the following strength-
ening of Theorem 2.11. Later, we will use that result to strengthen Theorem 3.1 and
to show that x-monotone edges can be replaced by x-bounded edges in the definition
of level-planarity (see Corollary 4.5 in Sect. 4.2).

Corollary 2.7. If G has an even drawing in which every edge is x-bounded, then G
has an x-monotone embedding with the same vertex locations and rotation system.

Next, we give a condition weaker than x-bounded, for which we can prove some
of the same results. Consider an edge e in a given drawing of a graph G with
endpoints u,v such that x(u) < x(v). Let Ce be the concatenation of e with the line
segment from v to u. We say that e is nearly x-bounded if for every vertex z with
x(z)< x(u) or x(z)> x(v), the winding number of Ce with respect to z is even.

Lemma 2.8. Suppose we are given a drawing of a graph G with a nearly x-bounded
edge e. Then e can be redrawn, without changing the remainder of the drawing, so
that e is x-bounded and the parity of crossing does not change between e and any
edge of G that is independent of e.
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Proof. We can gradually deform e to the line segment uv, which causes e to become
x-bounded. Suppose that e passed over the vertex z an odd number of times during
the deformation. Since e is nearly x-bounded, it must be that x(u) ≤ x(z) ≤ x(v).
If x(u) < x(z) < x(v), we can stretch e near the line x = x(z) so that it passes over
z once more, and e remains x-bounded. In the end, since e has passed over every
vertex other than u and v an even number of times, the parity of crossing with e and
any edge e′ of G remains unchanged unless e′ shares an endpoint with e. ��

Although this does not allow us to directly generalize Corollary 2.7 to drawings
with nearly x-bounded edges, we will apply Lemma 2.8 presently, in Remark 3.2.

3 Strong Hanani–Tutte for Monotone Drawings

Pach and Tóth [24] wrote, “It is an interesting open problem to decide whether [the
conclusion of Theorem 2.11] remains true under the weaker assumption that any
two non-adjacent edges cross an an even number of times.” The goal of this section
is to establish this result.

Theorem 3.1 (Monotone Hanani–Tutte). If G has an x-monotone drawing in
which every pair of independent edges crosses evenly, then G has an x-monotone
embedding with the same vertex locations.

Remark 3.2. Similarly to Theorem 2.11 and Corollary 2.7, the statement of Theo-
rem 3.1 remains true if we only require edges to be x-bounded or nearly x-bounded
rather than x-monotone: Simply redraw edges one at a time using Lemma 2.6 and/or
Lemma 2.8, before applying Theorem 3.1.

In a proof of the standard Hanani–Tutte theorem, it is obvious that a minimal
counterexample has to be 2-connected, since embedded subgraphs can be merged at
a cut-vertex. Unfortunately, the merge requires a redrawing that does not maintain
monotonicity, so here we must use structural properties that are more tailored to x-
monotone redrawings. For a subgraph H of G, let N(H) denote the set of neighbors
of vertices of H in G−V (H); that is, N(H) := {u : uv∈E(G),v∈V (H),u∈V (G)−
V (H)}.

Lemma 3.3. Suppose that G is a smallest (fewest vertices) counterexample to
Theorem 3.1. Then

(i) G is connected.
(ii) G has no connected subgraph H and vertices a,b ∈ V (G)−V (H) such that

x(a) < x(v) < x(b) for all v ∈ V (H), N(H) = {a,b}, and V (G)− (V (H)∪
{a,b}) �= /0.

(iii) If G has a cut-vertex a and G−{a} has a component H such that x(a)< x(v)
for all v ∈ V (H), then H has only one vertex b, and G has no edge ac with
x(b) < x(c). Also, in this case G has no connected subgraph H ′ �= /0 so that
x(a)< x(v)< x(b) for all v ∈V (H ′), a ∈ N(H ′) �= {a}, and x(v)> x(b) for all
v ∈ N(H ′)−{a}.
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Proof. If a smallest counterexample G is not connected, none of its components
are counterexamples to Theorem 3.1. But then we could embed each component
separately and stack the drawings vertically so they do not intersect each other,
yielding an embedding of G. This contradiction establishes (i).

Consider (ii). Since G is a smallest counterexample, both G − V (H) and
G[V (H)∪{a,b}] have embeddings (both graphs are smaller than G by assumption).
We can deform the crossing-free drawing of G[V (H)∪ {a,b}] so that it becomes
very flat. If ab∈E(G), we can then insert this drawing into the drawing of G−V(H)
near the edge ab, without adding crossings. This gives us a crossing-free drawing
of G, which is a contradiction. If ab �∈ E(G), then we add ab to the drawing of
G−V(H) so that it has no independent odd crossings (we will presently see how
this can be done); the resulting G−V(H)∪{ab} has fewer vertices than G so it also
has an embedding, and we can proceed as in the case that ab ∈ E(G), removing the
edge ab in the end.

When ab �∈ E(G), here is how we draw the edge ab with no independent odd
crossings: Let P be any a,b-path with interior vertices in H. By suppressing the
interior vertices of P, we can consider it an x-bounded edge (in the sense defined
earlier) between a and b, so Lemma 2.6 tells us that we can draw an x-monotone
edge that has the same parity of crossing with all edges of G−V(H) as does P.

Finally, we consider (iii), where H is a component of G−{a} so that x(a)< x(v)
for all v ∈ V (H). Let b be the vertex with the largest x-value in H. If |V (H)| > 1,
then we have case (ii) using H := H−b. Therefore, |V (H)|= 1 and V (H) = {b}. If
G has an edge ac with x(b)< x(c), we can first embed G−{b} (since it is smaller
than G), and then add ab and b to the embedding alongside of ac without crossings.

It remains to consider a connected subgraph H ′ �= /0 so that x(a) < x(v) < x(b)
for all v∈V (H ′), a∈ N(H ′) �= {a}, and x(v)> x(b) for all v∈ N(H ′)−{a}. If there
is an edge e not in H ′ with endpoints in H ′, we can replace H ′ by H ′ ∪{e} and it still
satisfies all the conditions; thus, we may assume that H ′ contains all such edges, i.e.,
that H ′ is an induced subgraph of G. By minimality, G−{b} has an embedding. Of
all the edges from a to H ′, let au be the one that is lowest in the rotation at a. Let f
be the face in the drawing of G that lies immediately below au. Follow the boundary
of f from a to u until it exits H ′ to a vertex c not in H ′. If c = a, then H ′ could not
have any neighbors v with x(v) > x(b), a contradiction. The only other possibility
is that x(c) > x(b). Then by Lemma 2.3, we can add the edge ac to G−{b} and
obtain an embedding without introducing crossings. Since x(a) < x(b) < x(c), we
can instead add ab to the drawing without crossings, so G has an embedding, which
is a contradiction. ��

The proof of Theorem 3.1 now proceeds by induction on the number of odd
pairs (pairs of edges that cross an odd number of times). Roughly speaking, if we
encounter an odd pair (by necessity its edges are adjacent), we can either make
it cross evenly or we are in a situation that has been excluded by Lemma 3.3. To
realize this goal, we need additional intermediate results. These results are not about
smallest counterexamples, but are true in general.
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Fig. 6 Lemma 3.4

For the lemmas we introduce some new terminology generalizing our usual
notion of lying above or below a curve to curves with self-intersections: Let C be
a curve in the plane with endpoints p and r so that for every point c ∈ C−{p,r},
x(p)< x(c)< x(r). (This is similar to the definition of an x-bounded edge except that
we allow self-intersections.) Suppose that q is a point for which x(p)≤ x(q)≤ x(r).
Extend C via a horizontal ray from p to x = −∞ and a horizontal ray from r to
x = ∞, and consider the plane R2 minus that extended curve. We can 2-color its
faces so that adjacent faces (faces whose boundaries intersect in a nontrivial curve)
have opposite colors. We say that q is above (below) C if q lies in a face with the
same color as the upper (lower) unbounded region.

In the following two lemmas, let G satisfy the assumption of Theorem 3.1; that is,
we assume an even x-monotone drawing in which every pair of independent edges
in G crosses evenly. Both lemmas deal with the following scenario: G contains three
edges ei = v0vi, i ∈ {1,2,3} so that e3 lies between e1 and e2 in the right rotation
of v0, with e1 above e2 at v0, e1 and e2 cross oddly, and e3 crosses each of the other
two edges evenly.

Lemma 3.4. For arbitrary xR > x(v0), define G′ as the graph induced by G on
vertices v with x(v0)< x(v)≤ xR. Let G′i be the component of G′ that contains vi. [If
x(vi)> xR, then G′i = /0.]

Suppose that G′1, G′2, G′3 are pairwise disjoint and that for every i there is a path
Pi (in G) from v0 through ei to some vertex v′i satisfying x(v′i)≥ xR so that all vertices
v of Pi satisfy x(v) ≥ x(v0). [If Gi = /0, then let E(Pi) = {ei}.] Then each G′i has no
neighbors (in G) to the left of x(v0), for i ∈ {1,2,3} (Fig. 6).

Proof. By choosing each Pi to be minimal, we can assume that for every vertex v of
Pi other than its final endpoint v′i, we have x(v0) ≤ x(v) < xR, and also x(v′i) ≥ xR.
Note that for any point in the plane q with x(v0)≤ x(q)≤ xR that does not lie on the
curve Pi, q is either above or below Pi in the sense defined just before Lemma 3.4.

Suppose, for a contradiction, that G′i has a neighbor v′ to the left of x(v0). Then
we may let P′i be a path from vi to v′ such that every vertex of P′i − v′ is in G′i. Fix
j,k so that {i, j,k}= {1,2,3}.
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v0

vR

ei

ek

ej

Fig. 7 ei crosses e j oddly
and ek evenly

The paths P′i and Pj are disjoint, so every edge of P′i crosses Pj evenly [as every
pair (e, f ) ∈ (P′i ,Pj) crosses evenly]. Every vertex of P′i − v′ is between x(v0) and
xR, so if vi is above Pj, then every vertex of P′i − v′ is above Pj, and when the last
edge of P′i reaches the line x = x(v0), it must be above v0. Likewise, if vi is below
Pj, then the last edge of P′i must pass below v0. Similarly, vi is above (below) Pk if
and only if the last edge of P′i passes above (below) v0.

We split the proof into cases. Suppose that (i, j,k) = (1,2,3). Then ei begins in
the rotation at v0 above e j and ek, and ei crosses e j oddly and ek evenly. Since ei

crosses other edges of Pj and Pk evenly, vi must be below Pj and above Pk. Then by
the above/below argument in the previous paragraph, the last edge of P′i must pass
both below and above v0, a contradiction. The case (i, j,k) = (1,3,2) is the same,
and the cases with i = 2 are symmetric.

Suppose that i = 3; without loss of generality, ( j,k) = (1,2). Then ei begins in
the rotation at v0 below e j and above ek, and ei crosses e j and ek evenly. Since ei

crosses other edges of Pj and Pk evenly, vi must be below Pj and above Pk. Then
by the earlier above/below argument, the last edge of P′i must pass both below and
above v0, a contradiction. ��

Lemma 3.5. Suppose that for some distinct j,k ∈ {1,2,3}, there is a cycle C that
contains e j and ek such that every vertex v of C satisfies x(v)≥ x(v0). Let vR be the
vertex on C with the largest x-value. Let i be the unique index such that {i, j,k} =
{1,2,3}. Suppose that vi is not in C.

Let G′i be the component of G−V (C) that contains vi. Then every vertex v of G′i
satisfies x(v0)< x(v)< x(vR).

Proof. Let Pj and Pk be the v0,vR-paths in C that contain e j,ek, respectively.
Suppose that x(vi) > x(vR). First, consider the case (i, j,k) = (1,2,3): Since e j

and ek begin in the rotation at v0 below ei, and ei crosses e j oddly and ek evenly,
it must be that v j is above ei and vk is below ei (see Fig. 7). Every other edge of
Pj crosses ei evenly, so all its other vertices are also above ei; likewise, every other
vertex of Pk is below ei. But then vR lies above and below ei, a contradiction. The
case (i, j,k) = (1,3,2) is the same, and the cases with i = 2 are symmetric. Suppose
that i = 3; without loss of generality, ( j,k) = (1,2). Then in the rotation at v0, e j is
above ei and ek is below ei, and ei crosses e j and ek evenly. Then v j is above ei and
vk is below ei. Then (as seen earlier), every vertex of Pj− v0 is above ei and every
vertex of Pk− v0 is below ei, a contradiction since vR is in both.
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Thus, we may assume that x(v0) < x(vi) < x(vR). As argued in the proof of
Lemma 3.4, vi is below Pj and above Pk, or vi is above Pj and below Pk, depending
on the order of values assigned to i, j,k.

Suppose that there is a path P′i in G−V(C) from vi to a vertex v′ with x(v′) <
x(v0) or x(v′) > x(vR). Let P′i be a minimal such path, so that it exits the region
between lines x = x(v0), x = x(vR) with its last edge e′. P′i is disjoint from Pj, so e′

passes above (below) v0 or vR if and only if every vertex of P′i is above (below) Pj.
Likewise if we replace Pj by Pk. But then the vertices of P′i are either all above Pj

and Pk or they are all below Pj and Pk, including vi, which contradicts what we have
already shown for vi. ��

We are finally in a position to prove Theorem 3.1. We need one more piece of
terminology: Consider two edges e and f that share the same right (or left) endpoint.
The distance between e and f is the number of edge ends between the ends of e, f in
the left (or right) rotation at their shared vertex. (We do not measure distance within
the entire rotation; only within the right or left rotation.)

Proof of Theorem 3.1. Let G be a smallest (fewest vertices) counterexample to
the theorem. By Lemma 3.3(i), G is connected. Fix an x-monotone drawing of G
with the same vertex locations, which minimizes the number of odd pairs (that
is, the number of pairs of edges crossing oddly). If there are no odd pairs, then
Theorem 2.11 completes the proof.

Suppose that there are edges e1 and e2 that cross oddly. Then e1 and e2 have
a shared endpoint v0, and we may assume that v0 is the left endpoint of e1 and e2.
Choose e1 and e2 so that their ends at v0 have minimum distance in the right rotation
at v0, with e1 above e2. Then e1 and e2 are not consecutive in the rotation at v0; if
they were, they could be redrawn so that they cross once more near v0, by switching
their order in the rotation at v0; this contradicts the choice of drawing of G. So there
is at least one edge incident to v0 that lies between e1 and e2 in the rotation at v0,
and by minimality, all such edges cross each other evenly and cross both e1 and
e2 evenly. Pick one such edge, e3. Let v1,v2,v3 be the right endpoints of e1,e2,e3,
respectively, and let G0 be the subgraph of G induced by all vertices v fulfilling
x(v)≥ x(v0).

Case 1. Vertices v1,v2,v3 are in different components of G0− v0.

In case 1, for each i∈{1,2,3}, consider the component of G0−v0 that contains vi

and let v′i be its vertex with largest x-value. Assign i, j,k so that {i, j,k} = {1,2,3},
and x(v′i) is smaller than x(v′j) and x(v′k). Let xR = x(v′i) and apply Lemma 3.4, which
defines G′i, G′j, G′k and shows that G′i has no neighbors to the left of x(v0). Then by
Lemma 3.3(iii) (with a = v0 and H = G′i), G′i has just one vertex vi = v′i (= b) and
x(vi) > x(v j) and x(vi) > x(vk). Then G′j and G′k are nonempty, so they also have
no neighbors to the left of x(v0). This contradicts the second part of Lemma 3.3(iii)
with H ′ equal to G′j (or G′k) restricted to vertices v with x(v)≤ xR.

If we are not in case 1, let xL be smallest such that the subgraph induced by
{v ∈V (G) : x(v0)< x(v) ≤ xL} has a component that contains at least two vertices
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of v1,v2,v3. Then there is a cycle C that contains e j and ek for some distinct k, j ∈
{1,2,3} and a vertex vL such that x(vL) = xL and x(v0) ≤ x(v) ≤ x(vL) for all v ∈
V (C). If vvL ∈ {e1,e2,e3}, then we may assume that C contains vvL.

Let i be the unique index for which {i, j,k} = {1,2,3}. By the previous
assumption, vi �= vL. By Lemma 3.5, x(vi)< x(vL) or vi ∈V (C)− vL.

Suppose that there is a path Q from vi to C so that x(v0) < x(v) < x(vL) for all
v ∈ V (Q). Then Q∪ ei ∪C− vL contains a cycle C′ with ei and either e j or ek. But
every vertex v of C′ satisfies x(v0) ≤ x(v) < x(vL) for all v in C′, contradicting the
choice of vL.

It immediately follows that vi is not in V (C)− vL; also, vi �= vL, so we may let
G′i be the component of G−V (C) that contains vi. By Lemma 3.5, G′i lies between
x = x(v0) and x = x(vL) (since vi �= vL). The previous paragraph also implies that
G′i has no neighbors in V (C)−{v0,vL}. Let v′i be the vertex of G′i with largest x-
value, let xR = x(v′i), and define G′i,G

′
j ,G

′
k according to Lemma 3.4 (and note that

this doesn’t alter G′i).

Case 2. G′i is not adjacent to vL.

(Same as case 1:) By Lemma 3.3(iii), G′i has only the one vertex vi = v′i, and G′j
and G′k are nonempty because x(vi) is greater than x(v j) and x(vk). Then we can
apply Lemma 3.3(iii) with H ′ equal to G′j (or G′k) restricted to the vertices with the
x-coordinate smaller than x(v′i), and we are done.

Case 3. There is an edge from G′i to vL.

Apply Lemma 3.3(ii) with H = G′i. This completes the proof of the theorem. ��

4 Level-Planarity Testing

The strong Hanani–Tutte theorem can be viewed as an algebraic characterization
of planarity: Testing whether a graph is planar can be recast as solving a system of
linear equations.6 Unfortunately, the system has |E| · |V |= O(|V |2) variables, which
leads to an impractical O(|V |6) running time.7

Similarly, Theorem 3.1 can be viewed as an algebraic criterion for testing
whether a graph has an x-monotone embedding, for a given x-coordinate order of the
vertices. However, unlike the system of linear equations for planarity, the equations
for x-monotonicity are so simple that solvability can be checked directly in quadratic

6Tutte presented his theorem as an algebraic characterization of planarity, but he did not
investigate algorithmic implications [31]. Algebraic planarity testing based on the Hanani–Tutte
characterization was probably first described by Wu [33,34] in a sequence of papers first published
in Chinese in the 1970s.
7There are linear-time algorithms for planarity testing based on a Hanani–Tutte-like characteriza-
tion, but they do not take the algebraic route [4, 5].
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time. We present the details of this algorithm in Sect. 4.1. In Sect. 4.2 we will see
how to extend the algorithm to recognizing level-planar graphs, so we obtain a very
simple, quadratic-time algorithm for level-planarity testing. Linear-time algorithms
for this task are known but are quite complex. We discuss the rather confusing
situation of algorithms for level-planarity testing in more detail in Remark 4.3.

4.1 Testing x-Monotonicity

How can we use Theorem 3.1 to test whether a given graph G with x-coordinates
assigned to the vertices has an x-monotone embedding? Let D be an x-monotone
embedding of G and let D′ be an x-monotone drawing of G on the same vertex set.
Pick any edge e in D′ and continuously transform it into its drawing in D; we can
assume that the edge remains x-monotone during the transformation. As the edge
changes, its parity of intersection with any independent edge only changes when
it passes over a vertex v (at which point its parity of intersection with every edge
incident to v changes). The same effect can be achieved by making an (e,v)-move:
Take e, and close to x = x(v) deform it into a spike that passes around v. In other
words, if G has an x-monotone embedding, then there is a set of (e,v)-moves that
turns D′ into a drawing in which every pair of independent edges crosses evenly.
Since the reverse is also true, by Theorem 3.1, we now have an efficient test.

Theorem 4.1. Given a graph G and a placement of the vertices of G in the plane,
we can test in time O(|V |2) whether G has an x-monotone drawing on that vertex set.

Proof. If G has an x-monotone embedding on the given vertex set, then no two
vertices lie on a vertical line. As discussed in Remark 2.2, we can deform the plane
so that the vertices are located at (1,0), . . ., (|V |,0), and the drawing will remain
x-monotone—but it will remain an embedding as well. Thus, we can assume that
the vertices are located at (1,0), . . ., (|V |,0).

Now draw each edge as a monotone arc above y = 0. Note that two edges cross
oddly in this drawing if and only if their endpoints alternate in the order along the x-
axis. By the discussion preceding the theorem, it is sufficient to decide whether there
is a set of (e,v)-moves that turns this drawing into a drawing in which every pair of
independent edges crosses evenly. We can model this using a system of equations:
We introduce variables xe,v for each e ∈ E and v ∈V ; xe,v = 1 means an (e,v)-move
is made, while xe,v = 0 means it is not. For two edges e = (e1,e2) and f = ( f1, f2)
to intersect, their intervals on the x-axis have to overlap. And there are two cases:
The endpoints alternate (and the edges cross oddly in the initial drawing) or they
do not (and the edges cross evenly). Let’s first consider the case e1 < f1 < e2 < f2.
In the initial drawing, e and f cross oddly, so we must have xe, f1 = 1− x f ,e2 for
e and f to cross evenly. If e1 < f1 < f2 < e2, then e and f cross evenly, and we
must have xe, f1 = xe, f2 for e and f to cross evenly. Note that these equalities are
the only conditions that affect whether e and f cross evenly. Hence, it is sufficient
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to set up this system of equations for all such pairs of edges e and f and solve it.
This can be done using a simple depth-first search: Build a graph F on vertex set
E×V . Consider every pair of independent edges e=(e1,e2) and f =( f1, f2) in G, If
e1 < f1 < e2 < f2, then add a red edge ((e, f1),( f ,e2)) to F . If e1 < f1 < f2 < e2, add
a green edge ((e, f1),(e, f2)) to F . Now perform a depth-first traversal of (the not
necessarily connected) graph F . When starting the traversal at a new root, arbitrarily
assign a value of 0 to the root variable. When following a green edge, assign the
parent value to the child vertex, when following a red edge, swap 0 to 1, and vice
versa. Whenever encountering a back edge, verify that the value assignment to the
endpoints of the edge is consistent with its color (green for equal, red for different).
If this test fails, the graph cannot be embedded. Otherwise, the depth-first search
succeeds and the graph has an x-monotone embedding.

Since we can assume that G is planar, we know that |E| ≤ 3|V |, and our algorithm
runs in time O(|V |2) with a small constant factor. ��

Remark 4.2. The O(|V |2) bound in Theorem 4.1 can be far from optimal since only
(e,v)-moves for which v lies between the endpoints of e are possible. If we define
the layout complexity of a graph with assigned x-coordinates as |{(e1e2,v) : x(e1)<
x(v) < x(e2),v ∈ V (G),e1e2 ∈ E(G)}|, then the algorithm in Theorem 4.1 runs in
linear time in the size of the layout. This measure seems fair if we actually want to
draw the graph (since we have to know in what order edges pass a vertex).

4.2 Testing Level-Planarity

The definition of an x-monotone drawing does not allow two vertices to have the
same x-coordinate. If we remove this restriction we enter the realm of leveled
graphs: A leveled graph is a graph G = (V,E) together with a leveling � : V → Z.
A leveled drawing of (G, �) is a drawing in which edges are x-monotone and
x(v) = �(v) for every v ∈ V . (G, �) is level-planar if it has a leveled embedding.
Some papers have considered proper levelings, in which each edge’s endpoints are
on consecutive levels; we typically do not require our leveling to be proper.

Our results can easily be extended to handle level-planarity testing, an important
case of layered graph drawing [6, 13, 14, 16, 19].

Remark 4.3. Level-planar graphs can be recognized and embedded in linear time
using PQ-trees [15, 16, 19]; this work is based on earlier work for the special
case of hierarchies [6]. There had been an earlier attempt at extending this to
general graphs [13, 14], but there were gaps in the algorithm, as pointed out
in [17]. Alternative routes have included identifying Kuratowski-style obstruction
sets for level-planarity [12], characterizations via vertex-exchange graphs [10, 11],
and reductions to 2-satisfiability [29]. It appears that all of these approaches
have subtle problems: Currently known obstruction sets for the general case are
not complete and are known to be infinite (for standard notions of obstruction
containment); only special cases, like trees, are understood [8]. The testing [11] and
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layout [10] algorithms based on vertex-exchange graphs rest on a characterization
of level-planarity that is not fully established at this point, and the case when
the vertex-exchange graph is disconnected remains open (P. Healy, January 2011,
personal communication); this is unfortunate, since both algorithms are relatively
fast, O(|V |2) for both testing and layout, and very simple (the testing algorithm is
somewhat similar to ours, even if the characterization it is based on is different).
Finally, there also seems a gap in the suggested reduction to 2-satisfiability (which,
if correct, would also result in a quadratic-time testing algorithm).

Thus, although the algorithm we are about to describe may not be the first simple,
quadratic-time algorithm for level-planarity testing, it appears to be the first with a
complete correctness proof.

Level-planar graphs do not directly generalize x-monotone graphs since an x-
monotone graph can have vertices at noninteger levels. However, if G has an x-
monotone embedding, then (G, �) is level-planar with �(v) = |{u : x(u)≤ x(v)}|.

Our interest in this section is the reverse direction; how can we reduce testing
level-planarity to testing x-monotonicity? The answer is a simple construction: Take
a leveled drawing of (G, �). Perturb all vertices slightly, so no two vertices are at the
same level. If there is a vertex whose left or right rotation is empty, insert a new
edge and vertex on its empty side so that the edges extends slightly beyond all the
perturbed vertices from the same level. If there is a vertex with both left and right
rotation empty, remove it.

Suppose that the resulting graph G′ has an x-monotone embedding with the same
vertex locations. By the construction of G′, every vertex v that used to have level
�(v) = x∗ is now incident to an edge that passes over the line x = x∗. Since all these
curves may not intersect each other, we can perturb the drawing slightly (while
keeping it x-monotone) to move every vertex of G back to its original level. Also, if
(G, �) is level-planar, then G′ is obviously x-monotone, so we can use the algorithm
from Theorem 4.1 on G′ to test level-planarity of (G, �). Since we only added at
most |V (G)| vertices and edges to G, the resulting algorithm still runs in quadratic
time—with a small constant factor.

Corollary 4.4. Given a leveled graph (G, �), we can test in time O(|V |2) whether
G is level-planar.

Note that this result does not require the leveling of G to be proper and thus
improves on the algorithm by Healy and Kuusik [11] (assuming it is correct),
which requires the leveling to be proper. Turning an improper leveling into a proper
leveling (by subdividing edges) can increase the number of vertices by a quadratic
factor.

There is one final conclusion we want to draw from the reduction of level
planarity to x-monotonicity: When defining a level planar drawing, we required
edges to be x-monotone (in the literature, one also finds the equivalent requirement
that edges are straight-line segments between levels). As with Corollary 2.7, it is
now easy to see that the x-monotonicity requirement is stronger than necessary.
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Corollary 4.5. If (G, �) can be embedded so that x(v) = �(v) for every v ∈ V and
every edge is x-bounded, then G is level-planar.

Proof. Fix an embedding of (G, �) so that x(v) = �(v) for every v∈V and every edge
is x-bounded. Consider the leveled graph G′ constructed before Corollary 4.4. Then
G′ has a leveled embedding in which every edge is x-bounded. By Corollary 2.7, G′

has an x-monotone embedding in which each vertex keeps its x-coordinate (and the
rotation system remains unchanged). As above, from this embedding we can obtain
a level-planar embedding of G. ��

5 Monotone Crossing Numbers

Our Hanani–Tutte results can be recast as results about monotone crossing numbers
of leveled graphs. For a leveled graph (G, �), let mon-cr(G, �) be the smallest
number of crossings in any leveled drawing of (G, �). Similarly, we can define
mon-ocr(G, �) as the smallest number of pairs of edges that cross oddly in any
leveled drawing of (G, �). Finally, mon-iocr(G, �) is the smallest number of pairs
of nonadjacent edges that cross oddly in any leveled drawing of (G, �). We suppress
� and simply write mon-cr(G), mon-ocr(G), and mon-iocr(G). With this notation
we can restate the original result by Pach and Tóth, our Theorem 2.11, as saying
that mon-ocr(G) = 0 implies mon-cr(G) = 0. Similarly, our Theorem 3.1 can be
restated as mon-iocr(G) = 0 implies mon-cr(G) = 0.

From this point of view, we can now ask questions that parallel analogous
problems for the regular (nonmonotone) crossing number variants cr, ocr, and iocr.
For example, we know that ocr(G) = cr(G) for ocr(G)≤ 3 [27] and iocr(G) = cr(G)

for iocr(G)≤ 2 [28]. Pach and Tóth showed that cr(G)≤
(2ocr(G)

2

)
[23,27]. The core

step in this result is a “removing even crossings” lemma, in this particular case: If
G is drawn in the plane and E0 is the set of its even edges, then G can be redrawn so
that all edges in E0 are free of crossings. It immediately implies cr(G) ≤

(2ocr(G)
2

)
,

since only noneven edges can be involved in crossings (and every pair of noneven
edges needs to cross at most once). A similar result for monotone drawings fails
dramatically.

Theorem 5.1. For every n, there is a graph G so that mon-cr(G) ≥ n and
mon-ocr(G) = 1.

In other words, even if there are only two edges crossing each other oddly and
all other edges are even, then any x-monotone drawing of G with the given leveling
may require an arbitrary number of crossings. Thus, we cannot hope to establish a
“removing even crossings” lemma in the context of x-monotone drawings since it
would imply a bound on mon-cr(G) in terms of mon-ocr(G).

Proof. Our example uses 8 vertices, allowing multiple edges, which we bundle into
a single weighted edge. Consider the graph on 8 vertices with edges 36 and 57 of
weight 1 and edges 12, 13, 25, 26, 37, 46, 47, 68, and 78 of weight n > 1. Weighted
edges can be replaced by paths of length 2, turning the example into a simple graph.
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1 2 3 4
5 6 7 8

Fig. 8 The drawing showing mon-ocr(G) ≤ 1. The solid edges have weight n, and the dashed
edges have weight 1

1 2 3 4
5 6 7 8

Fig. 9 The unique way of drawing edges 25, 57, 68, and 27, assuming 46 passes below 5 and
mon-cr(D)< n

1 2 3 4
5 6 7 8

Fig. 10 The unique way of drawing edges 25, 57, 68, and 37, assuming 46 passes above 5 and
mon-cr(D)< n

We next argue that mon-cr(G) ≥ n. Suppose there is a drawing D with
mon-cr(D) < n. Then the only pair of edges that may intersect is 36 and 57.
Without loss of generality, we can assume that 12, 13 and 78 are drawn exactly as
they are in Fig. 8. We distinguish two cases depending on whether 46 passes below
5 (as in Fig. 8) or above 5. Let’s first consider the case that 46 passes below 5.
Adding edges 25, 57, we see that they are forced to be drawn as in Fig. 8. At this
point, edge 68 has to pass below 7 and then 47 is forced. That is, if we assume that
46 passes below 5, then the edges we added have to be drawn as shown in Fig. 9.
By inspection, it is clear that adding edge 36 to this drawing will cause at least n
crossings, either with edge 25 or with edge 47.

On the other hand, if 46 passes above 5, then edge 25 is forced to pass below 3
and 4 and edge 57 is forced below 6. This forces 68 above 7, which in turn forces 37
below 4 and 6 and above 5. However, now it is impossible to add edge 26 without
having it cross either 13 or 37; see Fig. 10. ��

6 Future Directions

The following questions were first included in the conference version of this
chapter. Since that time, there has already been some progress, which we include
as annotations.
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Planarity testing Can the running time of our level-planarity testing algorithms be
improved? There are several obstacles to this, most fundamentally the problem
that to describe the effect of (e,v)-moves, we need a system with a quadratic
number of variables. It is not obvious (to us at least) how to reduce the size
of this system. Other problems in the algorithm, such as the linear overhead
in the “conquering” steps of the algorithm, may be overcome with better data
structures.

Monotone crossing numbers The monotone crossing number of a leveled graph G
is the smallest number of crossings in any x-monotone drawing of the leveled
graph. This problem is known to be NP-hard (even for two levels [9]), and the
monotone crossing number can be arbitrarily large, even for a planar graph.8

We get a more interesting question if we define the monotone crossing number
for unleveled graphs as the smallest crossing number of any x-monotone drawing
for any leveling of the graph. Is this monotone crossing number bounded in
the crossing number? For comparison, rcr2(G) is at most

(cr(G)
2

)
, where rcr2(G)

allows straight-line edges with one bend [1].
Pach and Tóth [26] recently announced that the (unleveled) monotone crossing
number of a graph G can be bounded by 2cr(G)2 and that there are graphs for
which the monotone crossing number is at least 7/6cr(G)− 6. We should also
mention that Valtr [32] showed that the monotone crossing number is bounded
by 4k4/3, where k is the monotone pair crossing number (again for unleveled
graphs).

Bi-monotonicity Let’s define y-monotonicity like x-monotonicity after a 90-degree
rotation; not very exciting by itself, but what happens if we want embeddings
that are bi-monotone, that is, both x- and y-monotone?

• If a graph has both an x-monotone embedding and a y-monotone embedding,
does it always have a bi-monotone embedding?

• If there is a drawing of a graph that is bi-monotone, is there a straight-line
drawing with the same x and y ordering?

• What about bilevel-planarity?

As far as we know, bi-monotonicity and bilevel-planarity are new concepts;
however, they are quite natural: If we specify the relative locations of objects on
a map, we specify them in terms of “west/east of” and “north/south of,” which
is exactly what bi-monotonicity models. Imagine specifying the stations for a
subway map: Actual distances do not matter; what matters is relative location in
terms of x and y.
As it turns out, it is possible that a leveled graph has both an x-monotone
and a y-monotone embedding without having a bi-monotone embedding; see
the leveled graph in Fig. 11. By Theorem 2.11, the graph is x-monotone and

8The leveled graph is such an example.
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Fig. 11 A leveled path that is
not bi-monotone

(applying the theorem at an angle of 90 degrees) y-monotone. However, it can be
shown that the graph is not bi-monotone.
This means that an algebraic bi-monotonicity criterion has to be more sophis-
ticated than just requiring a bi-monotone even drawing. It also opens up the
question of what is the complexity of recognizing bi-monotone or bilevel planar
graphs?
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17. M. Jünger, S. Leipert, P. Mutzel, Pitfalls of using PQ-trees in automatic graph drawing,
in Proceedings of the 5th International Symposium on Graph Drawing, GD’97, Rome,
September 18–20, 1997, ed. by G. DiBattista. LNCS, vol. 1353 (Springer-Verlag, Berlin,
1998), pp. 193–204

18. D.J. Kleitman, A note on the parity of the number of crossings of a graph. J. Comb. Theor. Ser.
B 21(1), 88–89 (1976)

19. S. Leipert, Level planarity testing and embedding in linear time. Ph.D. thesis, Universität zu
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On Disjoint Crossing Families in Geometric
Graphs

Radoslav Fulek and Andrew Suk

Abstract A geometric graph is a graph drawn in the plane with vertices represented
by points and edges as straight-line segments. A geometric graph contains a (k, l)-
crossing family if there is a pair of edge subsets E1,E2 such that |E1|= k and |E2|= l,
the edges in E1 are pairwise crossing, the edges in E2 are pairwise crossing, and
every edge in E1 is disjoint to every edge in E2. We conjecture that for any fixed
k, l, every n-vertex geometric graph with no (k, l)-crossing family has at most ck,ln
edges, where ck,l is a constant that depends only on k and l. In this note, we show that
every n-vertex geometric graph with no (k,k)-crossing family has at most ckn logn
edges, where ck is a constant that depends only on k, by proving a more general
result that relates an extremal function of a geometric graph F with an extremal
function of two completely disjoint copies of F . We also settle the conjecture for
geometric graphs with no (2,1)-crossing family. As a direct application, this implies
that for any circle graph F on three vertices, every n-vertex geometric graph that
does not contain a matching whose intersection graph is F has at most O(n) edges.

1 Introduction

A topological graph is a graph drawn in the plane with points as vertices and edges
as nonself-intersecting arcs connecting its vertices. Two edges of a topological
graph cross if their interiors share a point and are disjoint if they do not have a
point in common (including their endpoints). The edges are allowed to intersect,
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but they may not pass through vertices. Furthermore, the edges are not allowed to
have tangencies; i.e., if two edges share an interior point, then they must properly
cross at that point. We only consider graphs without parallel edges or self-loops. A
topological graph is simple if every pair of its edges intersects at most once. If the
edges are drawn as straight-line segments, then the graph is geometric.

It follows from Euler’s polyhedral formula that every simple topological graph
on n ≥ 3 vertices and no crossing edges has at most 3n− 6 edges. It is also
known that every simple topological graph on n vertices with no pair of disjoint
edges has at most O(n) edges [7, 10]. Finding the maximum number of edges
in a topological (and geometric) graph with a forbidden substructure has been a
classic problem in extremal topological graph theory (see [1, 2, 6, 13, 14, 17–20]).
Many of these problems ask for the maximum number of edges in a topological
(or geometric) graph whose edge set does not contain a matching that defines a
particular intersection graph. Recall that the intersection graph of a set of objects
C in the plane is a graph with vertex set C, and two vertices are adjacent if their
corresponding objects intersect. Much research has been devoted to understanding
the clique and independence number of intersection graphs due to their applications
in VLSI design [8], map labeling [3], and elsewhere.

Recently, Ackerman et al. [4] defined a natural (k, l)-grid to be a set of k pairwise
disjoint edges that all cross another set of l pairwise disjoint edges. They conjectured

Conjecture 1.1. Given fixed constants k, l ≥ 1, there exists another constant ck,l

such that any geometric graph on n vertices with no natural (k, l)-grid has at most
ck,ln edges.

They were able to show

Theorem 1.2 [4]. For fixed k, an n-vertex geometric graph with no natural (k,k)-
grid has at most O(n log2 n) edges.

Theorem 1.3 [4]. An n-vertex geometric graph with no natural (2,1)-grid has at
most O(n) edges.

Theorem 1.4 [4]. An n-vertex simple topological graph with no natural (k,k)-grid
has at most O(n log4k−6 n) edges.

As a dual version of the natural (k, l)-grid, we define a (k, l)-crossing family to be a
pair of edge subsets E1,E2 such that

1. |E1|= k and |E2|= l.
2. The edges in E1 are pairwise crossing.
3. The edges in E2 are pairwise crossing.
4. Every edge in E1 is disjoint to every edge in E2.

We conjecture the following.

Conjecture 1.5. Given fixed constants k, l ≥ 1 there exists another constant ck,l such
that any geometric graph on n vertices with no (k, l)-crossing family has at most ck,ln
edges.
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3 pairwise crossing. 3 pairwise disjoint. (2,1)-grid. (2,1)-crossing family.

a b c d

Fig. 1 Triples of segments corresponding to all graphs on three vertices

It is not even known if all n-vertex geometric graphs with no k pairwise crossing
edges has O(n) edges. The best-known bound is due to Valtr [21], who showed that
this is at most O(n logn) for every fixed k. We extend this result to (k,k)-crossing
families by proving the following theorem.

Theorem 6. An n-vertex geometric graph with no (k,k)-crossing family has at most
ckn logn edges, where ck is a constant that depends only on k.

Let F denote a geometric graph. We say that a geometric graph G contains F as
a geometric subgraph if G contains a subgraph F ′ isomorphic to F such that two
edges in F ′ cross if and only if the two corresponding edges cross in F .

We define ex(F,n) to be the extremal function of F , i.e., the maximum number of
edges a geometric graph on n vertices can have without containing F as a geometric
subgraph. Similarly, we define exL(F,n) to be the extremal function of F if we
restrict ourselves to the geometric graphs all of whose edges can be hit by one line.

Let F2 denote a geometric graph that consists of two completely disjoint copies
of a geometric graph F . We prove Theorem 6 by a straightforward application of
the following result.

Theorem 7. ex(F2,n) = O((exL(F,2n)+ n) logn+ ex(F,n)).

Furthermore, we settle Conjecture 1.5 in the first nontrivial case.

Theorem 8. An n-vertex geometric graph with no (2,1)-crossing family has at most
O(n) edges.

Note that Conjecture 1.5 is not true for topological graphs since Pach and Tóth [15]
showed that the complete graph can be drawn such that every pair of edges intersect
once or twice.

By combining Theorem 8 with results from [2, 4, 19], we have the following.

Corollary 1.9. For any graph F on 3 vertices, every n-vertex geometric graph that
does not contain a matching whose intersection graph is F contains at most O(n)
edges.

See Fig. 1. Recall that F is a circle graph if F can be represented as the intersection
graph of chords on a circle. Corollary 1.9 cannot be generalized to all graphs F ,
because if the vertices of a geometric graph G are in convex position, the intersection
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graph of any subset of edges of G is a circle graph. Hence, we conjecture the
following.

Conjecture 1.10. For any circle graph F on k vertices, there exists a constant ck

such that every n-vertex geometric graph that does not contain a matching whose
intersection graph is F contains at most ckn edges.

As pointed out by Klazar and Marcus [9], it is not hard to modify the proof of the
Marcus–Tardos theorem [12] to show that Conjecture 1.10 is true when the vertices
are in convex position.

For simple topological graphs, we have the following.

Theorem 11. An n-vertex simple topological graph with no (k,1)-crossing family
has at most n(logn)O(logk) edges.

The chapter is organized as follows. Section 2 is devoted to the proof of
Theorem 7. In Sect. 3 we establish Theorem 8. Finally, the result of Theorem 11
about topological graphs is proved in Sect. 4.

2 Relating Extremal Functions

First, we prove a variant of Theorem 7 when all of the edges in our geometric graph
can be hit by a line. As in the Introduction, let F2 denote a geometric graph that
consists of two completely disjoint copies of a geometric graph F . We will now
show that the extremal function exL(F2,n) is not far from exL(F,n).

Theorem 1. exL(F2,n)≤ O((n+ exL(F,2n)) logn).

Proof. Let G denote a geometric graph on n vertices that does not contain F2 as
a geometric subgraph, and all the edges of G can be hit by a line. By a standard
perturbation argument, we can assume that the vertices of G are in general position.
As in [5], a halving edge uv is a pair of the vertices in G such that the number of
vertices on each side of the line through u and v is the same. By a halving line, we
understand a line that bisects the set of vertices of G.

Lemma 2.2. There exists a directed halving line�l such that the number of edges in
G that lies completely to the left or right of�l is at most 2exL(F,n/2)+ 7n.

Proof. If n is odd, we can discard one vertex of G, thereby losing at most n edges.
Therefore, we can assume n is even, and it suffices to show that there exists a
directed halving line �l such that the number of edges in G that lies completely to
the left or right of�l is at most 2exL(F,n/2)+ 4n.

Let uv be a halving edge, and let�l denote the directed line containing vertices u
and v with direction from u to v. Let e(�l,L) and e(�l,R) denote the number of edges
on the left and right side of�l, respectively. Without loss of generality, we can assume
that e(�l,L) ≤ e(�l,R). We will rotate�l such that it remains almost a halving line at
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�l.

a b

Fig. 2 Halving the vertices of G

the end of each step, until it reaches a position where the number of edges on both
sides of�l is roughly the same.

We start by rotating�l counterclockwise around u until it meets the next vertex w
of G. If initially w lies to the right of�l, then in the next step we will rotate�l around
u (again). See Fig. 2a. Otherwise, if w was on the left side of�l, then in the next step
we will rotate�l around vertex w. See Fig. 2b. Clearly, during the rotation there are
always at least n/2− 2 and at most n/2 vertices on each side of�l.

After several rotations, �l will eventually contain points u and v again, with
direction from v to u. Indeed, after rotating �l by 180◦, its slope will be the same
as the slope of its initial position. Hence, if�l in this position does not pass through u
and v, either its right or left side contains at most n/2−3 points (or at least n/2+1).
At this point we have e(�l,L) ≥ e(�l,R). Since the number of edges on the right side
(and left side) changes by at most n after each step in the rotation, at some point in
the rotation we must have

|e(�l,L)− e(�l,R)| ≤ 2n.

Since G does not contain F2 as a geometric subgraph, this implies that

e(�l,L) ≤ exL(F,n/2)+ 2n

and
e(�l,R)≤ exL(F,n/2)+ 2n.

Therefore, for any n, there exists a directed halving line �l such that the
number of edges in G that lies completely to the left or right of �l is at most
2exL(F,n/2)+ 7n. ��

By Lemma 2.2 we obtain a line l, which partitions the vertices of G into two
equal (or almost equal if n is odd) sets V1 and V2. Let E ′ denote the set of edges
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l

l′

V1

V2

V11(l′)

V21(l′)

V12(l′)

V22(l′)

l′

Fig. 3 The final partition of
the vertex set of G

between V1 and V2. By the ham-sandwich cut theorem [11], there exists a line l′ that
simultaneously bisects V1 and V2. Let V11(l′) and V12(l′) denote the resulting parts
of V1, and let V21(l′) and V22(l′) denote the resulting parts of V2.

Observe that we can translate l′ along l into a position where the number of edges
in E ′ that lie completely to the left and completely to the right of l′ is roughly the
same. In particular, we can translate l′ along l such that the number of edges in E ′

that lies completely to its left or right side is at most exL(F,n)+ exL(F,n/2+1)+n
(see Fig. 3). Indeed, assume that the number of edges in E ′ between, say, V12(l′) and
V22(l′) is more than exL(F,n/2+ 1). As we translate l′ to the right, the number of
edges that lie completely to the right of l′ changes by at most n as l′ passes through
a single vertex in G. Therefore, we can translate l′ into the leftmost position, where
the number of edges in E ′ between V12(l′) and V22(l′) drops below exL(F,n/2+
1)+n+1. Moreover, at this position the number of edges in E ′ between V11(l′) and
V21(l′) still cannot be more than exL(F,n) since G does not contain F2 as a geometric
subgraph.

Thus, all but at most 3exL(F,n/2 + 1) + exL(F,n) + 8n edges of G are
the edges between V11(l′) and V22(l′), and between V12(l′) and V21(l′). Since
|V11(l′)|, |V21(l′)| ≥ �(n−1)/4�, there exists k,−1/4≤ k≤ 1/4, such that |V11(l′)|+
|V22(l′)|= n(1/2+k)±O(1), and |V12(l′)|+ |V21(l′)|= n(1/2−k)±O(1). Finally,
we are in the position to state the recurrence, whose closed form gives the statement
of the theorem (n0 and c are universal constants):

exL(F2,n) ≤ c, n≤ n0

exL(F2,n) ≤ exL(F2,n(1/2+ k))+ exL(F2,n(1/2− k))+ 3exL(F,n/2+ 1)+ (1)

exL(F,n)+ 8n+O(1), n > n0.

By plugging into (1) and using the superadditivity of exL, we verify that for
sufficiently large n, we have exL(F2,n)≤ log 4

3
n(4exL(F,2n)+ 9n):

exL(F2,n) ≤ log 4
3

(
n

(
1
2
+ k

))(
9n

(
1
2
+ k

)
+ 4exL

(
F,2n

(
1
2
+ k

)))
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+ log 4
3

(
n

(
1
2
− k

))(
9n

(
1
2
− k

)
+ 4exL

(
F,2n

(
1
2
− k

)))
+4exL(F,n)+ 8n+O(1)

≤ log 4
3

(
3
4

n

)(
9n

(
1
2
+ k

)
+ 4exL

(
F,2n

(
1
2
+ k

)))
+ log 4

3
n

(
9n

(
1
2
− k

)
+ 4exL

(
F,2n

(
1
2
− k

)))
+4exL(F,n)+ 8n+O(1)

≤ log 4
3

n(4exL(F,2n)+ 9n). ��

Finally, we show how Theorem 1 implies Theorem 7.

Proof of Theorem 7. Let G = (V,E) denote the geometric graph not containing F2

as a subgraph. Similarly, as in the proof of Lemma 2.2, we can find a halving line
l that hits all but 2ex(F,n/2)+ 9n edges of G. Now, the claim follows by using
Theorem 1. ��

Theorem 6 follows easily by using Theorem 7 with a result from [21], which
states that every n-vertex geometric graph whose edges can be all hit by a line and
does not contain k pairwise crossing edges has at most O(n) edges and at most
O(n logn) edges if we do not require a single line to hit all the edges.

3 Geometric Graphs with No (2, 1)-Crossing Family

In this section, we will prove Theorem 8. Our main tool is the following theorem by
Tóth and Valtr.

Theorem 1 ([20]). Let G = (V,E) be an n-vertex geometric graph. If G does not
contain a matching consisting of 5 pairwise disjoint edges, then |E(G)| ≤ 64n+64.

Theorem 8 immediately follows from the following theorem.

Theorem 2. Every n-vertex geometric graph with no (2,1)-crossing family has at
most 64n+ 64 edges.

Proof. For the sake of contradiction, let G = (V,E) be a vertex-minimal
counterexample; i.e., G is a geometric graph on n vertices that has more than
64n + 64 edges and G does not contain a (2,1)-crossing family. Hence, every
vertex in G has degree at least 65. Let M denote the maximum matching in G
consisting of pairwise disjoint edges, and let VM denote the vertices in M. Since
|E(G)|> 64n+64, Theorem 1 implies that |M| ≥ 5. We say that two edges intersect
if they cross or share an endpoint. The following simple observation is crucial in
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a b

Fig. 4 (a) Special case in Lemma 3.3; (b) matching M of size 3 with one good vertex v

the subsequent analysis.

(*) An edge e ∈ E that crosses an edge of M must intersect every edge in M.

Indeed, otherwise we would obtain a (2,1)-crossing family. We call an endpoint v
of an edge in M good if every ray starting at v misses at least one edge in M. See
Fig. 4b.

Lemma 3.3. For |M| ≥ 4, at least |M|− 3 of the endpoints in M are good.

Proof. We proceed by induction on |M|. The only matching consisting of three
pairwise disjoint edges with no good vertices is the one in Fig. 4a. Thus, adding
a disjoint edge to this matching creates at least one good vertex. For the inductive
step when |M|> 4, we choose an arbitrary 4-tuple of edges in the matching. By the
above discussion, the 4-tuple has at least one good endpoint. By removing the edge
incident to this good vertex, the statement follows by the induction hypothesis. ��

Thus, by (*), a good endpoint cannot be incident to an edge that crosses any of
the edges in M. Let

1. Vg ⊆VM denote the set of good endpoints in M.
2. V1 ⊂V \VM be the subset of the vertices such that for v ∈V1, every edge incident

to v does not cross any of the edges in M.
3. V2 = V \ (VM ∪V1). Hence, for v ∈ V2, there exists an edge incident to v that

intersects every edge in M.

See Fig. 5a. By Lemma 3.3, |Vg| ≥ |M|− 3 = |VM|/2− 3. By the maximality of M,
there are no edges between V1 and V2 and V1 is an independent set. Now notice the
following observation.

Observation 3.4. There exists a good vertex in Vg that has at least three neighbors
in V2.

Proof. For the sake of contradiction, suppose that each vertex in Vg has at most two
neighbors in V2. Then let G′=(V ′,E ′) denote a subgraph of G such that V ′=VM∪V1

and E ′ consists of the edges that do not cross any of the edges of M and whose
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e′f ′

g

e f

a b

Fig. 5 (a) M, V1, and V2; (b) situation around the vertex v

endpoints are in V1∪VM. Since |M| ≥ 5, G′ must be a planar graph since otherwise
we would have a (2,1)-crossing family. Therefore, |E ′| ≤ 3(|V1|+ |VM|).

On the other hand, by the minimality of G, each vertex in V1 has degree at least
65 in G′, and each vertex in Vg has degree at least 63 in G′. Therefore, by applying
Lemma 3.3, we have

1
2

(
65|V1|+ 63

(
|VM|

2
− 3

))
≤ |E ′| ≤ 3|V1|+ 3|VM|.

This implies
59|V1|+ 25|VM| ≤ 189,

which is a contradiction since |VM| ≥ 10 (|M| ≥ 5). ��

Let v ∈ Vg be a good vertex such that v has at least three neighbors in V2. Let
e = vv1, f = vv2, g = vv3, and m be edges in G such that v1,v2,v3 ∈ V2, m ∈ M,
and v is a good vertex incident to m. Furthermore, we will assume that g,e,m, f
appear in clockwise order around v. By (*) there is an edge e′ incident to v1 having
a nonempty intersection with every edge in M. Similarly, we can find such an edge
f ′ incident to v2 (possibly f ′ = e′). The edges e′ and f ′ must have a nonempty
intersection with f and e, respectively (see Fig. 5b). Otherwise, we would obtain a
(2,1)-crossing family in G consisting of e, f ′ and an edge from M, or e′, f and an
edge from M.

However, a third edge g cannot have a nonempty intersection with both e′ and f ′.
Hence, we obtain a (2,1)-crossing family in G consisting of g,e′ and an edge from
M, or g, f ′ and an edge from M. Thus, there is no minimal counterexample and that
concludes the proof. ��

We note that by a more tedious case analysis, one could improve the upper bound in
Theorem 2 to 15n.
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4 Simple Topological Graphs with No (k,1)-Crossing Family

In this section, we will prove Theorem 11, which will require the following two
lemmas. The first one is due to Fox and Pach.

Lemma 4.1 ([6]). Every n-vertex simple topological graph with no k pairwise
crossing edges has at most n(logn)c1 logk edges, where c1 is an absolute constant.

As defined in [16], the odd-crossing number odd-cr(G) of a graph G is the
minimum possible number of unordered pairs of edges that cross an odd number
of times over all drawings of G. The bisection width of a graph G, denoted by b(G),
is the smallest nonnegative integer such that there is a partition of the vertex set
V =V1 ∪̇V2 with 1

3 · |V | ≤Vi≤ 2
3 · |V | for i= 1,2, and |E(V1,V2)|= b(G). The second

lemma required is due to Pach and Tóth, which relates the odd-crossing number of
a graph to its bisection width.

Lemma 4.2 ([15]). There is an absolute constant c2 such that if G is a graph with
n vertices of degrees d1, . . . ,dn, then

b(G)≤ c2 logn

√
odd-cr(G)+

n

∑
i=1

d2
i .

Since all graphs have a bipartite subgraph with at least half of its edges, Theorem 6
immediately follows from the following theorem.

Theorem 3. Every n vertex simple topological bipartite graph with no (k,1)-
crossing family has at most c3n logc4 logk n edges, where c3,c4 are absolute constants.

Proof. We proceed by induction on n. The base case is trivial. For the inductive
step, the proof falls into two cases.

Case 1. Suppose there are at least |E(G)|2/((2c2)
2 log6 n) disjoint pairs of edges in

G. Then by defining D(e) to be the set of edges disjoint from edge e, we have

2|E(G)|
(2c2)2 log6 n

≤
∑

e∈E(G)
|D(e)|

|E(G)| .

Hence, there exists an edge that is disjoint to at least 2|E(G)|/((2c2)
2 log6 n) other

edges. By Lemma 4.1, we have

2|E(G)|
(2c2)2 log6 n

≤ n(logn)c1 logk,

which implies |E(G)| ≤ c3n logc4 logk n for sufficiently large constants c3,c4.
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y=1

y=0

Fig. 6 Redrawing procedure

Case 2. Suppose there are at most |E(G)|2/((2c2)
2 log6 n) disjoint pairs of edges

in G. In what follows, we will apply a redrawing technique that was used by Pach
and Tóth [15]. Since G is bipartite, let Va and Vb be its vertex class. By applying a
suitable homeomorphism to the plane, we can redraw G such that

1. The vertices in Va are above the line y = 1, the vertices in Vb are below the line
y = 0.

2. Edges in the strip 0≤ y≤ 1 are vertical segments.
3. We have neither created nor removed any crossings.

Now we reflect the part of G that lies above the y = 1 line about the y-axis. Then
erase the edges in the strip 0≤ y≤ 1 and replace them by straight-line segments that
reconnect the corresponding pairs on the line y = 0 and y = 1. See Fig. 6, and note
that our graph is no longer simple.

Notice that if any two edges crossed in the original drawing, then they must
cross an even number of times in the new drawing. Indeed, suppose the edges e1

and e2 crossed in the original drawing. Since G is simple, they share exactly one
point in common. Let ki denote the number of times edge ei crosses the strip for
i ∈ {1,2}, and note that ki must be odd. After we have redrawn our graph, these
k1 + k2 segments inside the strip will now pairwise cross, creating

(k1+k2
2

)
crossing

points. Since edge ei will now cross itself
(ki

2

)
times, this implies that there are now(

k1 + k2

2

)
−
(

k1

2

)
−
(

k2

2

)
(2)

crossing points between edges e1 and e2 inside the strip. One can easily check that
(2) is odd when k1 and k2 are odd. Since e1 and e2 had one point in common outside
the strip, this implies that e1 and e2 cross each other an even number of times. Note
that one can easily get rid of self-intersections by making local modifications around
these crossings.

Hence, the odd-crossing number in our new drawing is at most the number of
noncrossing pair of edges in the original drawing of G. Since there are at most
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∑
v∈V (G)

d2(v)≤ 2|E(G)|n pairs of edges that share a vertex in G, this implies

odd-cr(G)≤ |E(G)|2

(2c2)2 log6 n
+ 2|E(G)|n.

By Lemma 4.2, there is a partition of the vertex set V = V1 ∪̇V2 with 1
3 · |V | ≤ Vi ≤

2
3 · |V | for i = 1,2 and

b(G)≤ c2 logn

√
|E(G)|2

(2c2)2 log6 n
+ 4n|E(G)|.

If
|E(G)|2

(2c2)2 log6 n
≤ 4n|E(G)|,

then we have |E(G)| ≤ c3n logc4 logk n, and we are done. Therefore, we can assume

b(G)≤ c2 logn

√
2|E(G)|2

(2c2)2 log6 n
≤ |E(G)|

log2 n
.

Let |V1|= n1 and |V2|= n2. By the induction hypothesis, we have

|E(G)| ≤ b(G)+ c3n1 logc4 logk n1 + c3n2 logc4 logk n2

≤ |E(G)|
log2 n

+ c3n logc4 logk(2n/3)

≤ |E(G)|
log2 n

+ c3n(logn− log(3/2))c4 logk,

which implies

|E(G)| ≤ c3n logc4 logk n
(1− log(3/2)/ logn)c4 logk

1− 1/ log2 n
≤ c3n logc4 logk n. ��

For small values of k, one can obtain better bounds by replacing Lemma 4.1 with a
theorem of Pach et al. [13] and Ackerman [1] to obtain

Theorem 4. For k > 4, every n vertex simple topological graph with no (k,1)-
crossing family has at most O

(
n log2k+2 n

)
edges. For k = 2,3,4, every n-vertex

simple topological graph with no (k,1)-crossing family has at most O
(
n log6 n

)
edges. �
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Counting Plane Graphs: Flippability
and Its Applications

Michael Hoffmann, André Schulz, Micha Sharir, Adam Sheffer,
Csaba D. Tóth, and Emo Welzl

Abstract We generalize the notions of flippable and simultaneously flippable edges
in a triangulation of a set S of points in the plane to pseudo-simultaneously flippable
edges. Such edges are related to the notion of convex decompositions spanned by S.

We prove a worst-case tight lower bound for the number of pseudo-
simultaneously flippable edges in a triangulation in terms of the number of vertices.
We use this bound for deriving new upper bounds for the maximal number of
crossing-free straight-edge graphs that can be embedded on any fixed set of N points
in the plane. We obtain new upper bounds for the number of spanning trees and
forests as well. Specifically, let tr(N) denote the maximum number of triangulations
on a set of N points in the plane. Then we show [using the known bound
tr(N)< 30N] that any N-element point set admits at most 6.9283N ·tr(N)< 207.85N

crossing-free straight-edge graphs, O(4.7022N) · tr(N) = O(141.07N) spanning
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trees, and O(5.3514N) · tr(N) = O(160.55N) forests. We also obtain upper bounds
for the number of crossing-free straight-edge graphs that have cN, fewer than cN,
or more than cN edges, for any constant parameter c, in terms of c and N.

1 Introduction

A crossing-free straight-edge graph G is an embedding of a planar graph in the
plane such that the vertices are mapped to a set S of points in the plane and the edges
are pairwise noncrossing line segments between pairs of points in S. (Segments are
allowed to share endpoints.) By Fáry’s classical result [10], such an embedding is
always possible. In this chapter, we fix a labeled set S of points in the plane, and we
only consider planar graphs that admit a straight-edge embedding with vertex set S.
By labeled, we mean that each vertex of the graph has to be mapped to a unique
designated point of S. Analysis of the number of plane embeddings of planar graphs
in which the set of vertices is not restricted to a specific embedding, or when the
vertices are not labeled, can be found, for example, in [16, 21, 32].

A triangulation of a set S of N points in the plane is a maximal crossing-free
straight-edge graph on S (that is, no additional straight edges can be inserted without
crossing some of the existing edges). Triangulations are an important geometric
construct that are used in many algorithmic applications and are also an interesting
object of study in discrete and combinatorial geometry (recent comprehensive
surveys can be found in [7, 17]).

Improving the bound on the maximum number of triangulations that any set of
N points in the plane can have has been a major research theme during the past
30 years. The initial upper bound 1013N of [2] has been steadily improved in several
papers (e.g., see [8,25,29]), culminating with the current record of 30N due to Sharir
and Sheffer [26]. Other papers have studied lower bounds on the maximal number
of triangulations (e.g., [1, 9]), and upper or lower bounds on the number of other
kinds of planar graphs (e.g., [5, 6, 23, 24]).

Every triangulation of S contains the edges of the convex hull of S, and the
remaining edges of the triangulation decompose the interior of the convex hull into
triangular faces. Assume that S contains N points, h of which are on the convex hull
boundary and the remaining n = N− h points are interior to the hull (we use this
notation throughout). By Euler’s formula, every triangulation of S has 3n+ 2h− 3
edges (h hull edges, common to all triangulations, and 3n+ h− 3 interior edges,
each adjacent to two triangles), and 2n+ h− 2 bounded triangular faces.

Edge Flips. Edge flips are simple operations that replace one or several edges of
a triangulation with new edges and produce a new triangulation. As we will see in
Sect. 3, edge flips are instrumental for counting various classes of subgraphs in trian-
gulations. In the next few paragraphs, we review previous results on edge flips, and
propose a new type of edge flip. We say that an interior edge in a triangulation of S is
flippable if its two adjacent triangles form a convex quadrilateral. A flippable edge
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Fig. 1 (a) The edge ce can be flipped to the edge ad. (b) The two bold edges are simultaneously
flippable. (c) Interior-disjoint convex quadrilateral and convex pentagon in a triangulation.

can be flipped, that is, removed from the graph of the triangulation and replaced
by the other diagonal of the corresponding quadrilateral, thereby obtaining a new
triangulation of S. An edge-flip operation is depicted in Fig. 1a, where the edge
ce is flipped to the edge ad. Already in 1936, Wagner [34] has shown that any
unlabeled abstract triangulation T (in this case, two triangulations are considered
identical if we can relabel and change the planar embedding of the vertices of the
first triangulation, to obtain the second triangulation) can be transformed into any
other triangulation T ′ (with the same number of vertices) through a series of edge
flips (here one uses a more abstract notion of an edge flip). When we deal with
a pair of triangulations over a specific common (labeled) set S of points in the
plane, there always exists such a sequence of O(|S|2) flips, and this bound is tight in
the worst case (e.g., see [3, 19]). Moreover, there are algorithms that perform such
sequences of flips to obtain some “optimal” triangulation (typically, the Delaunay
triangulation; see [12] for example), which, as a byproduct, provide an edge-flip
sequence between any specified pair of triangulations of S.

How many flippable edges can a single triangulation have? Given a triangulation
T , we denote by flip(T ) the number of flippable edges in T . Hurtado, Noy, and
Urrutia [19] proved the following lower bound.

Lemma 1.3 ([19]). For any triangulation T over a set of N points in the plane,

flip(T )≥ N/2− 2.

Moreover, there are triangulations (of specific point sets of arbitrarily large size)
for which this bound is tight.

To obtain a triangulation with exactly N/2− 2 flippable edges (for an even N),
start with a convex polygon with N/2+ 1 vertices, triangulate it in some arbitrary
manner, insert a new point into each of the N/2− 1 resulting bounded triangles,
and connect each new point p to the three hull vertices that form the triangle
containing p. Such a construction is depicted in Fig. 2. The resulting graph is a
triangulation with N vertices and exactly N/2− 2 flippable edges, namely, the
chords of the initial triangulation.

Next, we say that two flippable edges e and e′ of a triangulation T are
simultaneously flippable if no triangle of T is incident to both edges; equivalently,
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Fig. 2 Constructing a
triangulation with N/2−2
flippable edges

the quadrilaterals corresponding to e and e′ are interior-disjoint. See Fig. 1b for an
illustration. Notice that flipping an edge e cannot affect the flippability of any edge
simultaneously flippable with e. Given a triangulation T , let flips(T ) denote the size
of the largest subset of edges of T such that every pair of edges in the subset is
simultaneously flippable. The following lemma, improving upon an earlier weaker
bound in [13], is taken from Souvaine et al. [30].

Lemma 1.4 ([30]). For any triangulation T over a set of N points in the plane,
flips(T )≥ (N− 4)/5.

Galtier et al. [13] show that this bound is tight in the worst case, by presenting a
specific triangulation in which at most (N−4)/5 edges are simultaneously flippable.

Pseudo-Simultaneously Flippable Edge Sets. A set of simultaneously flippable
edges in a triangulation T can be considered the set of diagonals of a collection
of interior-disjoint convex quadrilaterals. We consider a more liberal definition
of simultaneously flippable edges, by taking, within a fixed triangulation T , the
diagonals of a set of interior-disjoint convex polygons, each with at least four
edges (so that the boundary edges of these polygons belong to T ). Consider
such a collection of convex polygons Q1, . . . ,Qm, where Qi has ki ≥ 4 edges, for
i = 1, . . . ,m. We can then retriangulate each Qi independently, to obtain many
different triangulations. Specifically, each Qi can be triangulated in Cki−2 ways,
where Cj is the jth Catalan number (see, e.g., [31, Sect. 5.3]). Hence, we can
get M = ∏m

i=1 Cki−2 different triangulations in this way. In particular, if a graph
G ⊆ T (namely, all the edges of G are edges of T ) does not contain any diagonal
of any Qi (it may contain boundary edges though) then G is a subgraph of (at least)
M distinct triangulations. An example is depicted in Fig. 1c, where by “flipping”
(or rather, redrawing) the diagonals of the highlighted quadrilateral and pentagon,
we can get C2 ·C3 = 2 · 5 = 10 different triangulations (including the one shown),
and any subgraph of the triangulation that does not contain any of these diagonals
is a subgraph of these 10 triangulations. We say that a set of interior edges in a
triangulation is pseudo-simultaneously flippable (ps-flippable for short) if, after the
deletion of these edges, every bounded face of the remaining graph is convex, and
there are no vertices of degree 0. Notice that all three notions of flippability are
defined within a fixed triangulation T of S (although each of them gives a recipe for
producing many other triangulations).
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Table 1 Bounds for
minimum numbers of the
various types of flippable
edges in a triangulation of N
points

Edge type Lower bound

Flippable N/2−2 [19]

Simultaneously flippable N/5−4/5 [13, 30]
ps-Flippable max{N/2−2,h−3}
All of these bounds are tight in the worst case

Fig. 3 A convex
decomposition of S. When
completing it into a
triangulation, the added
(dashed) diagonals form a set
of ps-flippable edges. This is
one of the C2 ·C2 ·C3 = 20
possible completions

Our Results. In Sect. 2, we derive a lower bound on the size of the largest set of
ps-flippable edges in a triangulation, and show that this bound is tight in the worst
case. Specifically, we have the following result.

Lemma 1.5 (ps-Flippability lemma). Let S be a set of N points in the plane, and
let T be a triangulation of S. Then T contains a set of at least max{N/2− 2,h− 3}
ps-flippable edges. This bound is tight in the worst case.

Table 1 summarizes the bounds for the minimum numbers of the various types
of flippable edges in a triangulation.

We also relate ps-flippable edges to convex decompositions of S. These are
crossing-free straight-edge graphs on S such that (a) they include all the hull edges,
(b) each of their bounded faces is a convex polygon, and (c) no point of S is isolated.
See Fig. 3 for an illustration.

Counting Plane Graphs: New Upper Bounds. In Sect. 3, we use Lemma 1.5
to derive several upper bounds on the numbers of planar graphs of various kinds
embedded as crossing-free straight-edge graphs on a fixed labeled set S. For a set S
of points in the plane, we denote by T (S) the set of all triangulations of S, and put
tr(S) := |T (S)|. Similarly, we denote by P(S) the set of all crossing-free straight-
edge graphs on S, and put pg(S) := |P(S)|. We also let tr(N) and pg(N) denote,
respectively, the maximum values of tr(S) and of pg(S), over all sets S of N points
in the plane.

Since a triangulation of S has fewer than 3|S| edges, the trivial upper bound
pg(S)< 8|S| · tr(S) holds for any point set S. Recently, Razen, Snoeyink, and Welzl
[22] slightly improved the upper bound on the ratio pg(S)/tr(S) from 8|S| down to
O
(
7.9792|S|

)
. We give a more significant improvement on the ratio with an upper

bound of 6.9283|S|. Combining this bound with the recent bound tr(S)< 30|S| [26],
we get pg(N) < 207.85N. We provide similar improved ratios and absolute bounds
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Table 2 Upper and lower bounds for the number of several types of crossing-free straight-edge
graphs on a set of N points in the plane

Previous New upper In the form
Graph type Lower bound upper bound bound aN · tr(N)

Plane graphs Ω(41.18N ) [1] O(239.40N) [22, 26] 207.85N 6.9283N · tr(N)

Spanning trees Ω(11.97N ) [9] O(158.56N) [6, 26] O(141.07N) O(4.7022N) · tr(N)

Forests Ω(12.23N ) [9] O(194.66N ) [6, 26] O(160.55N) O(5.3514N) · tr(N)

By plane graphs, we mean all crossing-free straight-edge graphs embedded on a specific labeled
point set. Our new bounds are in the right two columns.

Fig. 4 The base B(c) of the
exponential factor in the
bound on the number of
crossing-free straight-edge
graphs with c|S| edges, as a
function of c. The maximum
is attained at c = 19/12 (see
below)

for the numbers of crossing-free straight-edge spanning trees and forests (i.e., cycle-
free graphs). Table 2 summarizes these results. 1

We also derive similar ratios for the number of crossing-free straight-edge graphs
with exactly c|S| edges, with at least c|S| edges, and with at most c|S| edges, for
0 < c < 3. For the case of crossing-free straight-edge graphs with exactly c|S|, we
obtain the bound2

O∗

⎛⎝( 55/2

8(c+ t− 1/2)c+t−1/2(3− c− t)3−c−t(2t)t(1/2− t)1/2−t

)N

· tr(S)

⎞⎠,
where t = 1

2

(√
(7/2)2 + 3c+ c2− 5/2− c

)
. Figure 4 contains a plot of the base

B(c) of the exponential factor multiplying tr(N) in this bound, as a function of c.

Notation. Here are some additional notations that we use.

1Up-to-date bounds for these and for other families of graphs can be found in http://www.cs.tau.
ac.il/∼sheffera/counting/PlaneGraphs.html (version of November 2010).
2In the notations O∗(), Θ∗(), and Ω∗(), we neglect polynomial factors.

http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html
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Fig. 5 Separable edges

For a triangulation T and an integer i ≥ 3, let vi(T ) denote the number of interior
vertices of degree i in T .
Given two crossing-free straight-edge graphs G and H over the same point set S, we
write G⊆ H to indicate that every edge in G is also an edge in H.
Similarly to the case of edges, the hull vertices (respectively, interior vertices) of a
set S of points in the plane are those that are part of the boundary of the convex hull
of S (respectively, not part of the convex hull boundary).
We only consider point sets S in general position; that is, no three points in S
are collinear. For upper bounds on the number of graphs, this involves no loss of
generality, because the number of graphs can only increase if collinear points are
slightly perturbed into general position.

Separable Edges. Let p be an interior vertex in a convex decomposition G of S.
Following the notation in [27], we call an edge e incident to p in G separable at
p if it can be separated from the other edges incident to p by a line through p (see
Fig. 5, where the separating lines are not drawn). Equivalently, edge e is separable at
p if the two angles between e and its clockwise and counterclockwise neighboring
edges (around p) sum up to more than π . Following [19], we observe the following
easy properties, both of which materialize in Fig. 5.

(i) If p is an interior vertex of degree 3 in G, its three incident edges are separable
at p, for otherwise p would have been a reflex vertex of some face.

(ii) An interior vertex p of degree 4 or higher can have at most two incident edges
that are separable at p (and if it has two such edges, they must be consecutive
in the circular order around p).

2 The Size of ps-Flippable Edge Sets

In this section, we establish the ps-flippability lemma (Lemma 1.5 from the
introduction). We restate the lemma for the convenience of the reader.

Lemma 1.5 (ps-Flippability lemma). Let S be a set of N points in the plane, and
let T be a triangulation of S. Then T contains a set of at least max{N/2−2,h−3}
ps-flippable edges. This bound is tight in the worst case.

Proof. Starting with the proof of the lower bound, we apply the following iterative
process to T . As long as there exists an interior edge whose removal does not create
a nonconvex face, we pick such an edge and remove it. When we stop, we have a
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e e e

a b c

Fig. 6 (a) An edge not separable at both of its endpoints can be removed from the graph. (b, c) An
edge separable in at least one of its endpoints cannot be removed from the convex decomposition

crossing-free straight-edge graph G, all of whose bounded faces are convex; that is,
we have a locally minimal convex decomposition of S. Note that all h original hull
edges are still in G and that every interior vertex of G has degree at least 3 (recall
the general position assumption).

Note that every edge of G is separable at one or both of its endpoints, for we
can remove any other edge and the graph will continue to have only convex faces
(see Fig. 6). We denote by m the number of edges of G, and by mint the number
of its interior edges. Recalling properties (i) and (ii) of separable edges, we have
m = mint + h and

mint ≤ 3v3 + 2v4,2+ v4,1 =: a, (1)

where v3 is the number of interior vertices of degree 3 in G, and v4,i is the number
of interior vertices u of degree at least 4 in G with exactly i edges separable at u.
Notice that

n = v3 + v4,0 + v4,1 + v4,2.

The estimate in (1) may be pessimistic, because it doubly counts edges that are
separable at both endpoints (such as the one in Fig. 6c). To address this possible
overestimation, denote by mdouble the number of edges that are separable at both
endpoints, which we refer to as doubly separable edges, and rewrite (1) as

mint = 3v3 + 2v4,2 + v4,1−mdouble = a−mdouble. (2)

Denoting by f the number of bounded faces of G, we have, by Euler’s formula,

n+ h+( f + 1) = (mint + h)+ 2

(the expression in the parentheses on the left is the number of faces in G, and the
expression in the parentheses on the right is the number of edges), or

f = mint− n+ 1. (3)
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Fig. 7 A convex decomposition G of S, its corresponding graph G′, and the reduced form of G′

after removing vertices of degree 3. The edges that have been added are dashed

Let fk , for k ≥ 3, denote the number of interior faces of degree k in G. By doubly
counting the number of edges in G, and then applying (3), we get

∑
k≥3

k fk = 2mint + h = 2( f + n− 1)+ h= ∑
k≥3

2 fk + 2n− 2+ h

or

∑
k≥3

(k− 2) fk = 2n+ h− 2. (4)

The number of edges that were removed from T is ∑k≥3(k−3) fk, because a face of
G of degree k must have had k− 3 diagonals that were edges of T . This number is
therefore

∑
k≥3

(k− 3) fk = ∑
k≥3

(k− 2) fk− f = 2n+ h− 2− f =

= 2n+ h− 2− (mint− n+ 1) = 3n+ h− 3− a+mdouble (5)

[by first applying (4), then (3), and finally (2)].
We next derive a lower bound for the right-hand side of (5). For this, we transform

G into another graph G′ as follows. We first subdivide each doubly separable edge
of G at its midpoint, say, and add the subdivision point as a new vertex of G (e.g.,
see the vertex j in Fig. 7). We now modify G as follows. We take each vertex u
of degree 3 in G and surround it by a triangle, by connecting all pairs of its three
neighbors. Notice that some of these neighbors may be new subdivision vertices
and that some of the edges of the surrounding triangle may already belong to G. For
example, see Fig. 7, where the edges ei, f i are added around the vertex h and the
edges a j,b j are added around the vertex g. Next we take each interior vertex u with
two separable edges at u and complete these two edges into a triangle by connecting
their other endpoints, each of which is either an original point or a new subdivision
point; here too the completing edge may already belong to G. For example, see the
edge c j in Fig. 7, induced by the two separable edges of the vertex i. We then take
the resulting graph G′ and remove each vertex of degree 3 and its three incident
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edges; see the reduced version of G′ in Fig. 7. A crucial and easily verified property
of this transformation is that the newly embedded edges do not cross each other, nor
do they cross old edges of G.

The number f ′ of bounded faces of the new graph G′ is at least v3 + v4,2, which
is the number of triangles that we have created, and the number n′ of its interior
vertices is n−v3 +mdouble. Also, G′ still has h hull edges. Using Euler’s formula, as
in (3) and (4) above, we have f ′ ≤ 2n′+ h− 2. Combining the above, we get

v3 + v4,2 ≤ 2(n− v3+mdouble)+ h− 2

or

mdouble ≥
3
2

v3 +
1
2

v4,2− n− 1
2

h+ 1.

Hence, the right-hand side of (5) is at least
3n+ h− 3− a+mdouble

≥ 3n+ h− 3− (3v3 + 2v4,2+ v4,1)+

(
3
2

v3 +
1
2

v4,2− n− 1
2

h+ 1

)

= 2n+
1
2

h− 2− 3
2

v3−
3
2

v4,2− v4,1

≥ 2n+
1
2

h− 2− 3
2
(v3 + v4,2 + v4,1 + v4,0)

=
n+ h

2
− 2 =

N
2
− 2.

In other words, the number of edges that we have removed from T is at least N/2−2.
On the other hand, we always have mdouble ≥ 0 and a≤ 3n. Substituting these trivial
bounds in (5), we get at least h− 3 ps-flippable edges. This completes the proof of
the lower bound.

It is easily noticed that only flippable edges of T could have been removed
in the initial pruning stage. Hurtado, Noy, and Urrutia [19] present two distinct
triangulations that contain exactly N/2−2 flippable edges (one of those is depicted
in Fig. 2). These triangulations cannot have a set of more than N/2− 2 ps-flippable
edges. Therefore, there are triangulations for which our bound is tight in the worst
case. Similarly, for point sets in convex position, all h− 3 interior edges form a set
of ps-flippable edges, showing that the other term in the lower bound is also tight in
the worst case. ��

Remark. The proof of Lemma 1.5 actually yields the slightly better bound

1
2

N +
1
2

v4,1 +
3
2

v4,0− 2.
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That is, for the bound to be tight, every interior vertex u of degree 4 or higher must
have two incident edges separable at u (note that this condition holds vacuously for
the triangulation in Fig. 2).

Convex Decompositions. The preceding analysis is also related to the notion of
convex decompositions, as defined in the Introduction. Urrutia [33] asked what is the
minimum number of faces that can always be achieved in a convex decomposition
of any set of N points in the plane? Hosono [18] proved that every planar set of
N points admits a convex decomposition with at most � 7

5 (N + 2) (bounded) faces.
For every N ≥ 4, Garcı́a-Lopez and Nicolás [15] constructed N-element point sets
that do not admit a convex decomposition with fewer than 12

11 N−2 faces. By Euler’s
formula, if a connected crossing-free straight-edge graph has N vertices and e edges,
then it has e−N + 2 faces (including the exterior face). It follows that for convex
decompositions, minimizing the number of faces is equivalent to minimizing the
number of edges. (For convex decompositions contained in a given triangulation,
this is also equivalent to maximizing the number of removed edges, which form a
set of ps-flippable edges.)

Lemma 1.5 directly implies the following corollary. (The bound that it gives is
weaker than the bound in [18], but it holds for every triangulation.)

Corollary 2.1. Let S be a set of N points in the plane, so that its convex hull has h
vertices, and let T be a triangulation of S. Then T contains a convex decomposition
of S with at most 3

2 N− h ≤ 3
2 N− 3 convex faces and at most 5

2 N− h− 1≤ 5
2 N− 4

edges. Moreover, there exist point sets S of arbitrarily large size, and triangulations
T ∈ T (S) for which these bounds are tight.

3 Applications of ps-Flippable Edges to Graph Counting

In this section/ we apply the ps-flippability lemma (Lemma 1.5) to obtain several
improved bounds on the number of crossing-free straight-edge graphs of various
kinds on a fixed set of points in the plane.

3.1 The Ratio Between the Number of Crossing-Free
Straight-Edge Graphs and the Number of Triangulations

We begin by recalling some observations already made in the Introduction. Let S
be a set of N points in the plane. Every crossing-free straight-edge graph in P(S)
is contained in at least one triangulation in T (S). Additionally, since a triangulation
has fewer than 3N edges, every triangulation T ∈T (S) contains fewer than 23N = 8N

crossing-free straight-edge graphs. This immediately implies

pg(S)< 8N · tr(S).
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However, this inequality seems rather weak since it potentially counts some
crossing-free straight-edge graphs many times. More formally, given a graph G ∈
P(S) contained in x distinct triangulations of S, we say that G has a support of x,
and write supp(G) = x. Thus, every graph G ∈P(S) will be counted supp(G) times
in the preceding inequality.

Recently, Razen et al. [22] managed to break the 8N barrier by overcoming the
above inefficiency. However, they obtained only a slight improvement, with the
bound pg(S) = O

(
7.9792N

)
· tr(S). We now present a more significant improve-

ment, using a much simpler technique that relies on the ps-flippability lemma.

Theorem 1. For every set S of N points in the plane, h of which are on the convex
hull,

pg(S)≤

⎧⎪⎨⎪⎩
(4
√

3)N

2h · tr(S)< 6.9283N

2h · tr(S), for h≤ N/2,

8N (3/8)h · tr(S), for h > N/2.

Proof. The exact value of pg(S) is easily seen to be

pg(S) = ∑
T∈T (S)

∑
G∈P(S)

G⊆T

1
supp(G)

, (6)

because every graph G appears supp(G) times in the sum, and thus contributes a
total of supp(G) · 1

supp(G)
= 1 to the count. We obtain an upper bound on this sum as

follows. Consider a graph G ∈P(S) and a triangulation T ∈ T (S), such that G⊆ T .
By Lemma 1.5, there is a set F of t = max(N/2−2,h−3) ps-flippable edges in T .3

Let FḠ denote the set of edges that are in F but not in G, and put j = |FḠ|. Removing
the edges of FḠ from T yields a convex decomposition of S that still contains G and
whose nontriangular interior faces have a total of j missing diagonals. Suppose that
there are m such faces, with j1, j2, . . . , jm diagonals, respectively, where∑m

k=1 jk = j.
Then these faces can be triangulated in ∏m

k=1 Cjk+1 ways, and each of the resulting
triangulations contains G. We always have Ci+1 ≥ 2i, for any i ≥ 1, as is easily
verified, and so supp(G) ≥ 2 j. (Equality occurs when all the nontriangular faces of
T \FḠ are quadrilaterals.)

Next, we estimate the number of subgraphs G⊆ T for which the set FḠ is of size
j. Denote by E the set of edges of T that are not in F , and assume that the convex
hull of S has h vertices. Since there are 3N− 3− h edges in any triangulation of S,
|E| ≤ 3N−3−h− t. To obtain a graph G for which |FḠ|= j, we choose any subset
of edges from E , and any j edges from F (the j edges of F that will not belong to
G). Therefore, the number of such subgraphs is at most 23N−h−t−3 ·

(t
j

)
.

3Here we implicitly assume that N is even. The case where N is odd is handled in the exact same
manner, since a constant change in the size of F does not affect the asymptotic bounds.



Counting Plane Graphs: Flippability and Its Applications 315

Fig. 8 A double-chain
configuration with 16 vertices

We can thus rewrite (6) to obtain

pg(S) ≤ ∑
T∈T (S)

t

∑
j=0

23N−h−t−3 ·
(

t
j

)
· 1

2 j

= tr(S) ·23N−h−t−3
t

∑
j=0

(
t
j

)
1
2 j

= tr(S) ·23N−h−t−3 · (3/2)t .

If t = N/2− 2, we get pg(S)< tr(S) · (4
√

3)N

2h <
6.9283N

2h · tr(S). If t = h− 3, we

have pg(S)≤ tr(S) ·23N−2h · (3/2)h = tr(S) ·8N · (3/8)h. To complete the proof, we
note that N/2− 2 > h− 3 when h≤ N/2. ��

For a lower bound on pg(S)/tr(S), we consider the double-chain configurations,
presented in [14] (and depicted in Fig. 8). It is shown in [14] that when S is a double-
chain configuration, tr(S) = Θ∗

(
8N
)

and pg(S) = Θ∗
(
39.8N

)
[actually, only the

lower bound on pg(N) is given in [14]; the upper bound appears in [1]]. Thus, we
have pg(S) = Θ∗

(
4.975N

)
· tr(S) (for this set h = 4, so h has no real effect on the

asymptotic bound of Theorem 1).
For another lower bound, consider the case where S is in convex position. In this

case, we have tr(S) =CN−2 = Θ∗(4N) and pg(S) = Θ∗(11.65N) (see [11]). Hence,
pg(S)/tr(S) =Θ∗(2.9125N), whereas the upper bound provided by Theorem 1 is 3N

in this case. Informally, the (rather small) discrepancy between the exact bound in
[11] and our bound in the convex case comes from the fact that when j is large, the
faces of the resulting convex decomposition are likely to have many edges, which
makes supp(G) substantially larger than 2 j. It is an interesting open problem to
exploit this observation to improve our upper bound when h is large.

Finally, recall the notations tr(N) = max|S|=N tr(S) and pg(N) = max|S|=N pg(S).
Combining the bound tr(N) < 30N , obtained in [26], with the first bound of
Theorem 1 implies pg(N) < 207.85N; see Table 2 for comparison with earlier
bounds. The bound improves significantly as h gets larger.
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3.2 The Number of Spanning Trees and Forests

Spanning Trees. For a set S of N points in the plane, we denote by ST (S) the
set of all crossing-free straight-edge spanning trees of S, and put st(S) := |ST (S)|.
Moreover, we let st(N) = max|S|=N st(S).

Buchin and Schulz [6] have recently shown that every crossing-free straight-edge
graph contains O

(
5.2852N

)
spanning trees, improving upon the earlier bound of

5.3̄N due to Ribó Mor and Rote [23,24]. We thus get st(S) = O
(
5.2852N

)
· tr(S) for

every set S of N points in the plane. The bound from [6] cannot be improved much
further, since there are triangulations with at least 5.0295N spanning trees [23, 24].
However, the ratio between st(S) and tr(S) can be improved beyond that bound,
by exploiting and overcoming the same inefficiency as in the case of all crossing-
free straight-edge graphs; that is, the fact that some spanning trees may get multiply
counted in many triangulations.

We now derive such an improved ratio by using ps-flippable edges. The proof
goes along the same lines of the proof of Theorem 1.

Theorem 2. For every set S of N points in the plane,

st(S) = O
(
4.7022N) · tr(S).

Proof. The exact value of st(S) is

st(S) = ∑
T∈T (S)

∑
τ∈ST (S)
τ⊂T

1
supp(τ)

.

Consider a spanning tree τ ∈ ST (S) and a triangulation T ∈ T (S), such that τ ⊂ T .
As in Theorem 1, let F be a set of N/2− 2 ps-flippable edges in T . (Here we do
not exploit the alternative bound of h− 3 on the size of F .) Also, let Fτ̄ denote the
set of edges that are in F but not in τ , and put j = |Fτ̄ |. Thus, as argued earlier,
supp(τ) ≥ 2 j.

Next, we estimate the number of spanning trees τ ⊂ T for which the set Fτ̄ is of
size j. First, there are

(|F|
j

)
<
(N/2

j

)
ways to choose the j edges of F that τ does not

use. We next contract the N/2−2− j edges of F that were chosen to be in τ (which
will result in having some parallel edges, and possibly also loops) and then remove
the remaining edges of F . This produces a nonsimple graph G with N/2+ 2+ j
vertices and fewer than 5N/2 edges (recall that by Euler’s formula, G contains at
most 3N − 6 edges). Let S′ denote the set of vertices of G, and let dv denote the
degree in G of a point v ∈ S. As shown in [6, 23], the number of spanning trees in
a graph G (not necessarily planar or simple) is at most the product of the vertex
degrees in G. Thus, the number of ways to complete the tree is at most

∏
v∈S′

dv ≤
(
∑v∈S′ dv

|S′|

)|S′|
<

(
5N

N/2+ 2+ j

)N/2+2+ j
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(where we have used the inequality of means for the first inequality). Hence, there

are fewer than
(N/2

j

)
·
(

5N
N/2+2+ j

)N/2+2+ j
spanning trees τ ⊂ T with |Fτ̄ | = j.

However, when j is large, it is better to use the bound O
(
5.2852N

)
from [6] instead.4

We thus get, for a threshold parameter a < 0.25 that we will set in a moment,

st(S)< ∑
T∈T (S)

(
aN

∑
j=0

(
N/2

j

)
·
(

5N
N/2+ 2+ j

)N/2+2+ j

· 1
2 j +

N/2

∑
j=aN+1

O
(
5.2852N)· 1

2 j

)
.

The terms in the first sum over j increase when a ≤ 0.25, so the sum is at most
N/2 times its last term. Using Stirling’s formula, we get that for a≈ 0.1687, the last
term in the first sum is Θ∗

(
5.2852N/2aN

)
= O

(
4.7022N

)
. Since this also bounds

the second sum, we get

st(S)< ∑
T∈T (S)

O
(
4.7022N)= O

(
4.7022N) · tr(S),

as asserted. (The optimal parameter a was computed numerically.) ��

Combining the bound just obtained with tr(N)< 30N , [26] implies

Corollary 3.3. st(N) = O
(
141.07N

)
.

This improves all previous upper bounds, the smallest of which is O(158.6N) [6,26].

Remark. It would be interesting to refine the bound in Theorem 2 so that it also
depends on h, as in Theorem 1. An extreme situation is when S is in convex position
(in which case |F |=N−3). In this case, it is known that tr(S)=Θ∗(4N) and st(S)=
Θ∗(6.75N) (see [11]), so the exact ratio is only st(S)/tr(S) = Θ∗(1.6875N). This
might suggest that when h is large, the ratio should be considerably smaller, but we
have not pursued this in this chapter.

Forests. For a set S of N points in the plane, we denote by F(S) the set of all
crossing-free straight-edge forests (i.e., cycle-free graphs) of S, and put f(S) :=
|F(S)|. Moreover, we let f(N) =max|S|=N f(S). Buchin and Schulz [6] have recently
shown that every crossing-free straight-edge graph contains O

(
6.4884N

)
forests

[improving a simple upper bound of O∗(6.75N) observed in [1]]. Following the
approach of [6], we combine the bounds for spanning trees (just established) and for
plane graphs with a bounded number of edges (established in Sect. 3.3), to obtain
the following result.

Theorem 4. For every set S of N points in the plane,

f(S) = O
(
5.3514N) · tr(S).

4This is not quite correct: When j is close to N/2, the former bound is smaller [e.g., it is O∗(5N)
for j = N/2], but we do not know how to exploit this observation to improve the bound.
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Proof. We define a k-forest to be a forest that has k connected components. The
number of k-forests of a set S is denoted by fk(S). Since any spanning tree has N−1
edges, every k-forest has N− k edges. One way to bound fk(S) is by counting the
number of plane graphs with N− k edges. This number is bounded in Theorem 6
(from the following subsection), where the parameter c in that theorem is equal to
1− k/N; let’s denote this bound as g1(N,k). On the other hand, every k-forest is
obtained by deleting k− 1 edges from a spanning tree. This allows us to bound
the number of k-forests in terms of st(S). Using Theorem 2, we get the bound
fk(S) ≤

(N−1
k−1

)
·O
(
4.7022N

)
· tr(S); denote this bound as g2(N,k). To bound f(S),

we evaluate maxk min{g1(N,k),g2(N,k)}. A numerical calculation shows that the
maximum value is obtained for k′ ≈ 0.0285N, and the theorem follows since
min{g1(N,k′),g2(N,k′)}= O

(
5.3514N

)
· tr(S). ��

As in the previous cases, we can combine this with the bound tr(N) < 30N [26] to
obtain

Corollary 3.5. f(N) = O
(
160.55N

)
.

Again, this should be compared with the best previous upper bound O(194.7N)
[6, 26].

Consider once again the case where S consists of N points in convex position.
In this case, we have tr(S) = Θ∗(4N) and f(S) = Θ∗(8.22N) (see [11]), so the exact
ratio is f(S)/tr(S) = Θ∗(2.055N), again suggesting that the ratio should be smaller
when h is large.

3.3 The Number of Crossing-Free Straight-Edge Graphs
with a Bounded Number of Edges

In this subsection, we derive upper bounds for the number of crossing-free straight-
edge graphs on a set S of N points in the plane, with some constraints on the number
of edges. Specifically, we bound the number of crossing-free straight-edge graphs
with exactly cN edges, with at most cN edges, and with at least cN edges. The first
variant has already been used in the preceding subsection for bounding the number
of forests.

Crossing-Free Straight-Edge Graphs with Exactly cN Edges. We denote by
P=

c (S) the set of all crossing-free straight-edge graphs of S with exactly cN edges,
and put pg=c (S) := |P=

c (S)|. The following theorem, whose proof goes along the
same lines of the proof of Theorem 1, gives a bound for pg=c (S).

Theorem 6. For every set S of N points in the plane and 0≤ c < 3,

pg=c (S) = O∗
(
B(c)N) · tr(S),
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where

B(c) :=
55/2

8(c+ t− 1/2)c+t−1/2(3− c− t)3−c−t(2t)t(1/2− t)1/2−t
,

and

t =
1
2

(√
(7/2)2 + 3c+ c2− 5/2− c

)
. (7)

See Fig. 4 for a plot of the base B(c) as a function of c.

Proof. The exact value of pg=c (S) is

pg=c (S) = ∑
T∈T (S)

∑
G∈P=

c (S)
G⊆T

1
supp(G)

,

where supp(G), the support of G, is defined as in the case of general crossing-free
straight-edge graphs treated in Sect. 3.1. We obtain an upper bound on this sum as
follows. Consider a graph G∈P=

c (S) and a triangulation T ∈T (S), such that G⊆ T .
By Lemma 1.5, there is a set F of N/2− 2 ps-flippable edges in T . Let FḠ denote
the set of edges that are in F but not in G, and put j = |FḠ|. As in the preceding
proofs, we have supp(G)≥ 2 j.

Next, we estimate the number of subgraphs G ⊆ T for which the set FḠ is of
size j. Denote by E the set of edges of T that are not in F . As argued above, |E|<
5N/2. To obtain a graph for which |FḠ| = j, we choose any j edges from F (the
j edges of F that will not belong to G), and any subset of cN − (N/2− 2− j) =
(c− 1/2)N + j + 2 edges from E . If (c− 1/2)N + j + 2 < 0, there are no such
graphs and we ignore these values of j. The number of ways to pick the edges from

E is at most O∗
(( 5N/2

(c−1/2)N+ j

))
. This implies that

pg=c (S) < ∑
T∈T (S)

N/2

∑
j=0

O∗
((

5N/2
(c− 1/2)N+ j

)
·
(

N/2
j

))
· 1

2 j

= tr(S) ·
N/2

∑
j=0

O∗
((

5N/2
(c− 1/2)N+ j

)
·
(

N/2
j

))
· 1

2 j . (8)

[As already noted, when c < 1/2, only the terms for which (c− 1/2)N + j ≥ 0 are
taken into account.]

As in the preceding subsection, it suffices to consider only the largest term of the
sum. For this, we consider the quotient of the jth and ( j− 1)st terms [ignoring the
O∗(·) notation, which will not affect the exponential order of growth of the terms],
which is(N/2

j

)( 5N/2
(c−1/2)N+ j

)
2
(N/2

j−1

)( 5N/2
(c−1/2)N+ j−1

) =
(

N/2− j+ 1
)(

5N/2− (c− 1/2)N− j+ 1
)

2 j
(
(c− 1/2)N+ j

) .



320 M. Hoffmann et al.

To simplify matters, we put a = N/2 and b = (c− 1/2)N. Moreover, since we are
only looking for an asymptotic bound, and are willing to incur small multiplicative
errors within the O∗(·) notation, we may ignore the two +1 terms in the numerator
when N is sufficiently large; we omit the routine algebraic justification of this

statement. The above quotient then becomes (approximately)
(a− j)(5a− b− j)

2 j(b+ j)
,

which is larger than 1 whenever

j < 1
2 (
√

56a2 + 8ab+ b2− 6a− b)

= N
2

(√
(7/2)2 + 3c+ c2− 5/2− c

)
= tN,

with t given in (7). A simple calculation shows that 0 ≤ t < 1/2 and 0 ≤ c−
1/2+ t ≤ 5/2 for 0 ≤ c ≤ 3. In other words (and rather unsurprisingly), the index
j= tN attaining the maximum does indeed lie in the range where the two binomial
coefficients in the corresponding terms in (8) are both well defined (nonzero).

Now that we have the largest term of the sum in (8), we obtain

pg=c (S) = tr(S) ·O∗
((

5N/2
(c− 1/2)N+ tN

)
·
(

N/2
tN

)
· 1

2tN

)
.

Using Stirling’s approximation, we have

pg=c (S) = tr(S) ·O∗
⎛⎝( (5/2)5/2

(c+ t−1/2)c+t−1/2(3− c− t)3−c−t
· (1/2)1/2

tt(1/2− t)1/2−t
· 1

2t

)N
⎞⎠

= tr(S) ·O∗
⎛⎝( 55/2

8(c+ t−1/2)c+t−1/2(3− c− t)3−c−t(2t)t(1/2− t)1/2−t

)N
⎞⎠,

as asserted. ��

Crossing-Free Straight-Edge Graphs with at Most cN Edges. For a set S of N
points in the plane and a constant 0 < c < 3, we denote by P≤c (S) the set of all
crossing-free straight-edge graphs of S with at most cN edges, and put pg≤c (S) :=∣∣P≤c (S)

∣∣. The bound for pg=c (S) in Theorem 6 helps us to determine the bound for
pg≤c (S).

Theorem 7. For every set S of N points in the plane and 0 < c < 3,

pg≤c (S) =

{
O∗
(
B(c)N

)
· tr(S) if c≤ 19/12,

O∗
(
(4
√

3)N
)
· tr(S) otherwise,

where B(c) is defined as in Theorem 6.
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Proof. We begin by noticing that

pg≤c (S) = ∑
0< j≤cN

pg=j/N(S) = O∗
(

max
c′≤c

pg=c′ (S)

)
= O∗

(
max
c′≤c

B(c′)N
)
· tr(S). (9)

Let F(c) be the natural logarithm of the nonconstant part of the denominator of B(c)
(the numerator is a constant). That is,

F(c) = (c+t−1/2) ln(c+t−1/2)+(3−c−t) ln(3−c−t)+t ln(2t)+(1/2−t) ln(1/2−t).

Since each of the terms in the logarithms is positive when 0 < c < 3, finding a
maximum for B(c) in this range is equivalent to finding a minimum for F(c). Put
t ′ = t ′(c) (the derivative of t as a function of c). Then

F ′(c) = (1+ t ′) ln(c+ t− 1/2)+ (1+ t ′)− (1+ t ′) ln(3− c− t)− (1+ t ′)

+ t ′ ln(2t)+ t ′ − t ′ ln(1/2− t)− t ′

= (1+ t ′) ln

(
c+ t− 1/2

3− c− t

)
+ t ′ ln

(
2t

1/2− t

)
.

For c = 19/12 we have t = 1/6 and the arguments of both logarithms are 1, so
F ′(c) = 0. Easy calculations show that

t ′ =
1
2

(
3/2+ c√

(7/2)2 + 3c+ c2
− 1

)
=− 0.5+ t√

(7/2)2 + 3c+ c2
.

This is easily seen to imply that t ′ ≤ 0 and 1+ t ′ ≥ 0 for 0 < c < 3. This implies
that c+ t is monotone increasing with c, and that t is decreasing (because 1+ t ′ ≥ 0
and t ′ ≤ 0). It follows that F ′(c) is increasing with c, implying that F(c) attains its
minimum at c = 19/12 [since F ′(19/12) = 0]. Another easy calculation shows that
B(19/12) = 4

√
3. ��

For example, Theorem 7 implies that there are at most O∗
(
5.4830N

)
· tr(S)

crossing-free straight-edge graphs with at most N edges, over any set S of N points in
the plane. In particular, this is also an upper bound on the number of crossing-free
straight-edge forests on S, or of spanning trees, or of spanning cycles. Of course,
better bounds exist for these three special cases, as demonstrated earlier in this
chapter for the first two bounds.

Crossing-Free Straight-Edge Graphs with at Least cN Edges. We next bound
the number of plane graphs with at least cN edges. Following the notations used
above, we denote by P≥c (S) the set of all crossing-free straight-edge graphs of S
with at least cN edges, and put pg≥c (S) :=

∣∣P≥c (S)
∣∣.
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Fig. 9 A quadrangulation of S and a quadrangulation of S′ that contains it

Theorem 8. For every set S of N points in the plane and 0 < c < 3,

pg≥c (S) =

{
O∗
(
B(c)N

)
· tr(S) if c≥ 19/12,

O∗
(
(4
√

3)N
)
· tr(S) otherwise.

Proof. Similar to (9), we can bound pg≥c (S) by

pg≥c (S) = ∑
cN≤ j<3N

pg=j/N(S) = O∗
(

max
c≤c′<3

pg=c′ (S)

)
= O∗

(
max

c≤c′<3
B(c)N

)
· tr(S).

(10)

The analysis of (10) is symmetric to the one presented in the proof of Theorem 7,
and the theorem follows. ��

As an application, consider the problem of bounding the number of quadrangu-
lations of S, namely, crossing-free straight-edge connected graphs on the vertex set
S with no isolated vertices, that include all the hull edges of conv(S), and where
every bounded face is a quadrilateral. When h is odd, no quadrangulations can be
embedded over S (e.g., see [4]). We may thus assume that h is even, and create a
superset S′ ⊃ S as follows. We take a quadrilateral Q that contains S in its interior,
and add the vertices of Q to S. It is easy to see that every quadrangulation of S
is contained in at least one quadrangulation of S′; see Fig. 9 for an illustration.5

Therefore, it suffices to bound the number of quadrangulations of S′.
Using Euler’s formula, we notice that a quadrangulation of S′ has N + 1

quadrilaterals, and 2N + 4 edges (since |S′| = N + 4). Therefore, we can use
Theorem 7 with c= 2, which implies a bound of O∗(6.1406N)·tr(N)=O(184.22N).
[There are actually N + 4 points and c = (2N + 4)/(N + 4). However, since we are

5We need to construct a quadrangulation of the annulus-like region between Q and the convex hull
of S. We start by connecting a vertex of Q to a vertex of the convex hull, and in each step we add
a quadrangle by either marching along two edges of the hull or along one edge of the hull and one
edge of Q. This produces the desired quadrangulation.
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only interested in the exponential part of the bound, the above bound, with the O∗(·)
notation, does hold.] We are not aware of any previous explicit treatment of this
problem.

4 Conclusion

In this chapter, we have introduced the notion of pseudo-simultaneously flippable
edges in triangulations, have shown that many such edges always exist, and have
used them to obtain several refined bounds on the number of crossing-free straight-
edge graphs on a fixed (labeled) set of N points in the plane. The chapter raises
several open problems and directions for future research.

One such question is whether it is possible to further extend the notion of ps-
flippability. For example, one could consider, within a fixed triangulation T , the set
of diagonals of a collection of pairwise interior-disjoint simple, but not necessarily
convex, polygons. The number of such diagonals is likely to be larger than the size
of the maximal set of ps-flippable edges, but it not clear how large the number of
triangulations is that can be obtained by redrawing diagonals.

We are currently working on two extensions to this work. The first extends
our techniques to the cases of crossing-free straight-edge perfect matchings and
spanning (Hamiltonian) cycles. This is done within the linear algebra framework
introduced by Kasteleyn (see [5, 20]) and can be found in [28]. The second work
studies charging schemes in which the charge is moved across certain objects
belonging to different crossing-free straight-edge graphs over the same point set.
This cross-graph charging scheme allows us to obtain bounds that do not depend on
the current upper bound for tr(N) [and bounds that depend on tr(N) in a nonlinear
fashion].
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Plane Geometric Graph Augmentation:
A Generic Perspective

Ferran Hurtado and Csaba D. Tóth

Abstract Graph augmentation problems are motivated by network design and have
been studied extensively in optimization. We consider augmentation problems over
plane geometric graphs, that is, graphs given with a crossing-free straight-line
embedding in the plane. The geometric constraints on the possible new edges render
some of the simplest augmentation problems intractable, and in many cases only
extremal results are known. We survey recent results, highlight common trends, and
gather numerous conjectures and open problems.

1 Introduction

Let G = (V,E) be a graph. We say that a second graph G′ = (V,E ∪E ′) obtained
by adding a set E ′ of edges to G is an (edge) augmentation of G. The goal of
this operation is to ensure that the augmented graph G′ has some desired property.
Usually, one would like to achieve the goal at a minimum cost, which is typically
measured by the number of new edges, although weighted versions are also possible.
In this survey, we consider edge augmentation only, but we note that in general one
could augment a graph with both new vertices and edges, or even subdivide an edge
(by replacing an edge with a path).

A geometric graph G = (V,E) is a graph drawn in the plane such that the
vertex set V is a set of points in the plane, and the set of edges E consists of line
segments with endpoints in V , whose relative interiors are disjoint. Two edges of a
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Barcelona, Spain
e-mail: ferran.hurtado@upc.edu

C.D. Tóth (�)
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Fig. 1 The tree on the left does not contain any perfect matching. Augmenting the tree with the
three dashed edges on the right results in a graph that contains a perfect matching. For example,
the three new edges together with the original edge u2u3 form a perfect matching

geometric graph cross if they have an intersection point lying in the relative interior
of both edges. We consider crossing-free (or noncrossing) geometric graphs, where
no two edges cross. The terms plane geometric graph, (crossing-free) segment
configuration, and planar straight-line graph (for short PSLG) will also be used
here as synonyms for crossing-free geometric graphs. Rather than using only one
of these terms in this panoramic chapter, we use them all interchangeably, as
otherwise a reader who follows the references may be confused by the diversity
of the terminology in the literature.

Compatibility and Visibility. Two crossing-free geometric graphs, G1 = (V1,E1)
and G2 = (V2,E2), are compatible if their union (V1∪V2,E1∪E2) is also a crossing-
free geometric graph. In this survey we focus on augmentation problems in which
a geometric graph G = (V,E) is augmented to a graph compatible with G. For
example, G could be a set of disjoint segments and we may want to add new
segments among the endpoints in order to obtain a crossing-free spanning tree with
certain desirable properties. Alternatively, we may be given an arbitrary noncrossing
geometric graph G and we might want to add the minimum number of edges
to increase its vertex or edge connectivity. In a third example, we may consider
whether from any given plane spanning tree G we can construct an augmentation G′

containing a Hamiltonian cycle or, when V is even, a perfect matching (Fig. 1).
The possible new edges that may be added to a geometric graph G = (V,E) can

be interpreted in the context of visibility problems, which emerged in the late 1980s
and early 1990s. We say that two vertices p,q ∈ V see each other (i.e., they are
mutually visible) if the segment pq does not cross any edge in E and its relative
interior does not contain any vertex in V . The edges in E together with all visibility
edges form a geometric graph, called the segment endpoint visibility graph, for the
segment configuration E . Notice that a segment between two vertices in V belongs
to this graph if and only if it is compatible with E . We refer the readers to the surveys
[11, 47, 80, 107] for properties and related results stated in the visibility framework.

For a set of points S in general position (that is, no three points on a line), we
denote by K(S) the complete geometric graph on vertex set S, that is, where every
pair of points is joined by an edge.
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A Unifying Framework. The concepts of augmentation and compatibility allow
us to describe, under a unifying framework, several problems that have a common
flavor and have attracted substantial research, yet make use of different terminology
or aim at different goals. A unified view helps to identify and understand common
methods and common difficulties.

Our survey is not intended to be exhaustive, since there are many different
variants of the augmentation problems under this framework. Rather, we have
selected a sample of representative problems that provide the reader with a global
comprehension of the field. Along the way, we also present several open problems
and unsettled conjectures.

In the augmentation problems we consider, we are typically given a planar
straight-line graph G and a property P ; and our goal is to find an augmentation
G′ with property P . When the augmentation is not necessarily feasible, one
may seek efficient decision algorithms and combinatorial characterizations. If the
augmentation is feasible, then the goal is to find the minimum number of new edges
required. This includes possible combinatorial characterizations of the minimum
number, efficient algorithms to construct a minimum augmentation, approximation
algorithms, as well as bounds on the extremal number of edges required over certain
classes of graphs.

2 An Introductory Example: Augmenting a Matching

A set of disjoint line segments in the plane is, in effect, a crossing-free straight-line
drawing of a perfect matching, where the segment endpoints are the vertices. This
is a basic scenario for augmentation problems, in which we can neatly see geometry
and graph theory interplay. In this section, we review some fundamental results
about this particular case.

2.1 From Perfect Matchings to Hamiltonian Cycles and Paths

A polygonization of a given point set S is a simple polygon whose vertex set is
exactly S, in other words, a crossing-free spanning cycle in K(S). It is easy to see
that every set of n ≥ 3 points in general position admits a polygonization (e.g.,
every minimum Euclidean TSP is crossing-free). Consider now a set M of n disjoint
line segments, let us denote by SM the set of their endpoints, and assume that SM

is in general position. If the matching M can be augmented with |M| edges to a
noncrossing cycle P (i.e., a simple polygon), then every other edge of P belongs
to M. Such a polygon P is also called an alternating polygonization of M. It
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Fig. 2 A set of five segments (left), which admits an alternating polygonization (middle). This
is not possible for the five segments on the right of the figure because their endpoints are in
convex position, and the only simple polygonization they admit is the boundary of their convex
hull, missing the three central segments

a b

Fig. 3 For this set of n= 7 segments we can easily construct 2n−1 different alternating polygoniza-
tions. Imagine that we travel from a to b, traversing the n−1 vertical segments in our trajectory. At
every departure we can choose whether we arrive at the top or at the bottom endpoint of the next
vertical segment

is easy to see that M does not always admit an alternating polygonization (see
Fig. 2). Rappaport [84] proved that it is NP-complete to decide whether a plane
geometric graph can be augmented to a spanning cycle; and it is also conjectured to
be NP-complete to decide whether a noncrossing matching admits an alternating
polygonization. Studying this problem had been suggested by Toussaint around
1985. Rappaport et al. [85] proved that the decision problem is polynomially
solvable in some special cases, for example, when the segments in M are convexly
independent; that is, each of them has at least one endpoint in the convex hull
CH(SM).

Let us remark that the noncrossing geometric constraint is the core of the diffi-
culty of this problem. If we disregard crossings, we are simply in the combinatorial
scenario, and any perfect matching M in the complete graph K2n can be augmented
in 2n(n− 1)! ways to a Hamiltonian cycle in which every other edge belongs to
M. For embedded geometric graphs, we have seen an example of segments not
admitting any alternating polygonization (Fig. 2). When they exist, it is possible
that there is only one, for example, if M consists of every other edge of a convex
2n-gon. But there can be exponentially many alternating polygonizations, as in the
configuration in Fig. 3. Nevertheless, their number is bounded above by cn for some
constant c (see Sect. 3), in contrast to more than n! different alternating cycles
among abstract graphs.
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Fig. 4 A set M of disjoint line segments, where P is initially the boundary of the convex hull
CH(SM) (left). Polygon P is extended until it contains either both endpoints or neither endpoint
of each segment. Every segment in M \P lies in a convex tile adjacent to a unique edge of P, as
indicated by small arrow heads (middle). In each convex tile containing noncollinear segments,
there is a compatible spanning cycle by induction, which can be fused to P via the corresponding
edge of P (right)

We have seen that a noncrossing matching does not necessarily admit a Hamil-
tonian cycle. Mirzaian [74] conjectured that every noncrossing matching with
noncollinear vertices can be augmented to a Hamiltonian plane geometric graph
(that is, the augmented graph contains a Hamiltonian cycle, but this cycle does not
have to contain M). Several years later, Hoffmann and Tóth [56] confirmed this
conjecture in the affirmative. They constructed a noncrossing cycle P incrementally,
starting from the convex hull CH(SM). The polygon P is then successively extended
to pass through more segment endpoints, while it remains compatible with M.
In a first phase of their algorithm, P is incrementally extended to include the
second endpoint of every segment that already has an endpoint along P (similar
to Mirzaian’s technique to handle convexly independent segments [74]); and
simultaneously they constructed a tiling of CH(SM) such that every nonempty tile
is adjacent to a unique edge of P. At the end of the first phase, all tiles are convex,
and every remaining edge in M \P lies in the interior of some tile. In the second
phase, a Hamiltonian polygon is computed, by induction, in each tile that contains
noncollinear segments of M. The small polygons in the tiles, as well as collinear
segments in some other tiles, are fused to P by modifying the common edge of the
tile with P (see Fig. 4 for an example).

Mirzaian [74] also made a slightly stronger conjecture: that every noncrossing
matching M with noncollinear vertices would admit a circumscribing polygon, that
is, a polygonization of SM in which every segment of M would be either an edge
or an internal diagonal of the polygon (external diagonals are excluded). He proved
this property for convexly independent segments. However, Urabe and Watanabe
found a counterexample to this conjecture [106]. O’Rourke and Rippel found a
new family of segments admitting a circumscribing polygonization, namely, sets
of unit segments such that the line containing each segment misses all the other
segments [81].

Pach and Rivera proved that every set M of n segments has a subset M′ ⊆M of
size roughly 3

√
n, such that M′ admits a circumscribing polygon [82]. Let us note,
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Fig. 5 The set of segments that does not admit a spanning alternating path (left). This idea can be
extended to a tree-like construction (middle) in which the endpoints of the segments are in convex
position, in such a way that every segment “hides” two subtrees having the same structure. Only
a subset of logarithmic size can be included in any alternating simple path. A similar construction
(right) with orthogonal segments arranged in a 4-ary tree

though, that this polygon may not be compatible with M, it may cross some edges
in M \M′. If we instead insist on alternating polygons that are compatible with
all segments in M, then the best result one can prove is that there are always two
segments in M that can be augmented to a simple quadrilateral compatible with M
(M.E. Houle, private communication). The bound of at most 2 is tight, as shown by
the example in Fig. 2, right.

Around 1992, Urrutia asked what is the maximum length of a compatible
alternating path for a perfect matching M? It is a significant relaxation to require
an open polygonal path rather than a closed polygon. For example, the segments
on the right of Fig. 2, in fact, can be augmented to an alternating Hamiltonian
path. However, such a path is not always possible (Fig. 5, left), and it is not
difficult to construct sets of n segments in which any noncrossing alternating path
compatible with M has O(logn) length (Fig. 5, middle). Hoffmann and Tóth [55]
proved that for every set of n disjoint segments, there is an alternating path of length
Ω(logn) compatible with M, hence showing that the upper bound is tight up to a
multiplicative constant. For n disjoint orthogonal line segments, Tóth [103] proved
an asymptotically tight bound of Θ(

√
n) (Fig. 5, right).

2.2 From Perfect Matchings to Encompassing Trees

We saw in the previous section that not every perfect matching M can be augmented
to a Hamiltonian cycle. It is not very difficult to prove, though, that there is always
an encompassing tree, that is, a compatible spanning tree, that contains M as a
subgraph: One can construct an encompassing tree from any triangulation of M
(Fig. 6). Nevertheless, a naı̈ve algorithm might yield some high-degree node in the
tree. Is it always possible to find an encompassing tree of bounded degree?
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Fig. 6 The set of 12 segments (left), which can be encompassed by a tree in which the maximum
degree of a node is 8 (middle), but also by a binary tree (right)

Bose and Toussaint [20] proved in 1992 that every n disjoint segments admit
an encompassing tree with maximum degree at most 7, and gave an O(n logn)
algorithm for its construction. Shortly afterward, they improved on this result,
showing that every set of disjoint segments can be encompassed by a spanning
tree of maximum degree 3 (a binary tree), which can be constructed in optimal
Θ(n logn) time [18]. The bound on the degree is the best possible, because an
encompassing tree with maximum degree 2 would be an alternating Hamiltonian
path, which we know is not always possible. Later Souvaine and Tóth [98] obtained
a generalization: Every (disconnected) PSLG on n vertices can be augmented into a
connected PSLG such that the degree of each vertex increases by at most 2, and the
augmentation can be computed in O(n logn) time.

A colored version of this problem was posed in 2004 in the conference version
of [62]: Given a set of disjoint segments with a proper vertex coloring (two
endpoints of each segments are colored differently), is it always possible to find
a plane-encompassing tree such that the new edges also respect the coloring?
Hurtado et al. [62] gave an affirmative answer. Hoffmann and Tóth [54] later proved
that there is always a binary encompassing tree respecting the initial coloring
of the segment endpoints. This result was also generalized for arbitrary segment
configurations [57]: Every vertex-colored PSLG without singleton components can
be augmented into a connected PSLG such that the degree of each vertex increases
by at most two and the new edges respect the coloring. The exclusion of singleton
components is necessary, since it is possible that a singleton is visible only from
vertices of the same color (Fig. 7, left).

Another variation arose in the context of pseudo-triangulations, a topic that
spurred substantial attention in the first decade of the 21st century (see the survey
[87]), especially after the works [99] and [100] by Streinu. A pseudo-triangle is a
simple polygon having exactly three convex vertices, and a pseudo-triangulation
of a set S of n points is a noncrossing geometric graph, whose bounded faces
decompose the convex hull CH(S) into pseudo-triangle faces. While the number
of triangles and edges in a triangulation of S depends on the number of vertices
on CH(S), it is always possible to decompose CH(S) into exactly n− 2 pseudo-
triangles, using exactly 2n− 3 edges, if S is in general position, no matter how
many points of S lie in the interior of the convex hull. These decompositions
minimize the number of pseudo-triangles (notice that a triangulation is also a
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Fig. 7 A vertex-colored graph where a singleton vertex is only visible from vertices of the same
color (left). Disjoint line segments can be augmented to a pointed binary spanning tree (middle).
A set of 10 segments, where for every pseudo-triangulation there is a vertex of degree at least 7
(right)

pseudo-triangulation) and have the property that every vertex p ∈ S is pointed:
One of the faces incident to p has a reflex angle at p. The pointedness property
is related to the rigidity of graphs [100], which is one of the reasons for the interest
in pseudo-triangulations. Motivated by this framework, Hoffmann et al. [53] proved
that every set of disjoint segments has an encompassing tree in which every vertex
is pointed and has degree at most 3 (Fig. 7, middle). Such a pointed binary tree
can be augmented to a minimal pseudo-triangulation, and building on that they also
proved that every set of disjoint line segments in the plane has an encompassing
minimal pseudo-triangulation whose maximum vertex degree is bounded by 7, and
this bound cannot be improved (Fig. 7, right).

2.3 Looking for a Second Matching

A variant close in spirit to the original problem on alternating polygonizations of
a matching was posed by Aichholzer et al. [2]. Every alternating polygonization
has an even number of edges and is the union of two disjoint perfect matchings,
M and M′. On the other hand, if M and M′ are two disjoint and compatible perfect
matchings of a point set, then their union is a set of simple polygons [cycles in
K(SM)], each of which has an even number of edges. Let us observe that the
matching in the right part of Fig. 2 has an odd number of edges and does not admit
any compatible disjoint perfect matching. Several other constructions were given in
[2] for an odd number of disjoint segments without any compatible disjoint perfect
matchings. The authors conjectured that for every noncrossing perfect matching M
with an even number of edges in general position, there is a disjoint compatible
perfect matching (disjoint compatible matching conjecture).

The positive results in [2] toward a solution were only partial. They confirmed the
conjecture in some special cases (namely, for convexly independent or orthogonal
segments), and they also proved that there is always a set of alternating polygons,
all of them compatible with M, encompassing at least 4/5 of the segments in M.
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Fig. 8 The segments on the left part can be extended to produce a convex subdivision of the plane,
as shown in the middle. The dual multigraph of this subdivision is shown on the right

On the other hand, the techniques used for these results led the authors to pose
stronger conjectures, involving the convex subdivision of the free space around the
line segments. In fact, this geometric tool has been used in solving nearly all the
problems described in this section. One easy way to construct a convex subdivision
for the segments in M is the following (refer to Fig. 8). For each endpoint q of
a segment pq = s ∈ M, extend s along the ray −→pq beyond q until it hits another
segment, a previous extension, or (if it is not blocked) to infinity. Different orders in
which the extensions are drawn may yield different subdivisions, but in all cases the
plane is subdivided into n+ 1 convex cells, where n = |M|. Clearly, not all convex
subdivisions can be obtained in this way; e.g., the minimum number of cells in a
convex subdivision may be far fewer than n+1. In the dual multigraph D associated
with a convex subdivision, the vertex set V (D) is the set of convex cells, and every
segment endpoint p corresponds to an edge in E(D) between two cells incident to p
(double edges are possible if a segment in M lies on the common boundary between
two cells).

The additional conjectures in [2] were stated in the terms of the dual multigraph
D associated with a “suitable” convex subdivision. Orienting an edge of D toward a
node v∈V (D) can be seen as assigning a segment endpoint to the cell corresponding
to v. In an even orientation of an undirected (multi-)graph, edges are oriented in such
a way that every node has an even in-degree. In particular, an even orientation of D
means that an even number of segment endpoints are assigned to each convex cell
of the subdivision. Now, it is not difficult to see that in this case, one can match the
endpoints assigned to each cell using disjoint segments lying in the interior of the
cell (and hence compatible with M), with the only exceptional case that a cell is
assigned to exactly two segment endpoints, which are the two endpoints of the same
segment of M. We can encode this information in the dual graph: Two adjacent edges
of D are said to be in conflict if they correspond to the two endpoints of a segment
in M; and an even orientation of D is conflict-free if no two conflicting edges are
oriented into a node of in-degree 2. Hence, if M admits a convex subdivision where
the dual graph has a conflict-free even orientation, this immediately implies the
existence of a disjoint compatible matching M′.
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A solution to the disjoint compatible matching conjecture has been claimed very
recently by Ishaque et al. [64] and follows the approach described in the preceding
paragraph. For every set of n ≥ 2 disjoint line segments in the plane in general
position, they construct a convex subdivision such that the associated dual graph
D contains two edge-disjoint spanning trees. The subdivision is obtained by an
iterative process, in which the number of cells may drop below n+1, but the number
of edges remains 2n, since they are in bijection with the segment endpoints. They
also show that every multigraph that has an even number of edges and contains two
edge-disjoint spanning trees must have a conflict-free even orientation. Based on
the argument in the previous paragraph, this already implies the disjoint compatible
matching conjecture.

None of the stronger conjectures formulated by Aichholzer et al. [2] has been
confirmed yet, but some of them have been refuted. For example, if we insist that
the convex subdivision must be constructed by extending the segments successively
beyond their endpoints (as in Fig. 8), then the dual graph does not always contain
two edge-disjoint spanning trees [7]. In the proof of Ishaque et al. [64], it was
essential to work with a broader class of convex subdivisions, which may have fewer
than n+ 1 convex cells.

3 An Extreme Case: Augmenting Empty Graphs

A peculiar yet very interesting augmentation problem arises when the input graph
has no edges: we are only given a set S of points in the plane and some graph
property P . The most restrictive graph property requires the augmentation to be
isomorphic with a given planar graph G = (V,E), with |S| = |V | = n vertices. In
other words, the problem is to embed G with straight-line edges on top of S without
crossings.

Notice that this problem is not always feasible, and that the specific configuration
of the points in S makes a world of difference. For example, no graph with at least
2n−2 edges can be embedded on top of a set of n points in convex position, because
this set admits at most 2n− 3 pairwise noncrossing geometric edges, which would
constitute a triangulation of its convex hull. On the other hand, even if we fix a set
of n points with a triangular convex hull (and so any triangulation has 3n−6 edges),
this point set may not accommodate all n-vertex planar graphs. An example is given
in Fig. 9: Many maximal planar graphs with n vertices contain no vertex of degree
3 or less, or no vertex of degree n− 1, and none of them can be realized on top of
the set shown in Fig. 9.
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Q

Fig. 9 A set S of n= 9 points with a triangular convex hull (left). A maximal plane graph on top of
S will be a triangulation T with 3n−6 edges. However, the edges shown on the right must appear
in every triangulation of S, and they only differ in the edges that triangulate the gray region Q.
Therefore, T will have at least two vertices of degree 3, and at least one with degree n−1

3.1 Plane Drawings of Specific Graphs and Classes of Graphs

Given an n-vertex planar graph G and an n-element point set S, it is NP-complete to
decide whether G admits a straight-line embedding on top of S. Cabello [23] proved
that this is an NP-complete problem even if G is restricted to be 2-connected and
2-outerplanar.

However, there are finite point sets, perhaps much larger than n, that accommo-
date all n-vertex planar graphs. A point set S is called n-universal if every planar
graph with n nodes admits a straight-line embedding on top of a subset of S. For
instance, the union of vertex sets of arbitrary straight-line embeddings of all n-
vertex planar graphs is n-universal, although this point set is quite large, with up
to eΘ(n) points. It is a longstanding open problem to find the smallest size of an
n-universal point set for all n ≥ 0 (see Problem 45 in [29]). It is known that an
(n− 1)× (n− 1) section of the integer lattice is n-universal [43, 93]. However, no
n-universal set of points with a subquadratic number of elements is known. Chrobak
and Karloff [27] proved that every n-universal set must have at least 1.098n points,
and Kurowski [72] improved the lower bound to 1.235n.

It is also remarkable that for certain graph classes the configuration of the
points—provided they are in general position—is no obstacle at all. For example,
Gritzmann et al. [52] proved that every outerplanar graph of n vertices admits a
crossing-free plane embedding on top of any set of n points in general position.
There are also efficient algorithms for the construction of the embedding [15,69]. In
the case of a tree T = (V,E), it is even possible to select a node v ∈V and a point p
in the given point set S, and realize T on top of S with the additional constraint that
v is mapped to p. This was proved by Ikebe et al. [63], and an efficient associated
algorithm is described in [19].

There are many variants of similar embeddability problems. Brass et al. [21], for
example, consider the geometric simultaneous embedding of two planar graphs in
which two graphs should admit a plane realization on top of the same vertex set,
possibly with the additional requirement that they are compatible; see [42] for a list
of results on this subject. We do not pursue here this extension or the many variants
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Fig. 10 A set S of five points in the plane, and all eight straight-line embeddings of C5 on top of S

that appear in the rich literature of the Graph Drawing area of problems. We refer the
interested reader to Chap. 9 in [22] for geometric graphs, and to [31,101], Chap. 21
in [91], and Chap. 52 in [49] for the more generic framework.

3.2 The Number of Embeddings

Some graphs admit many straight-line embeddings on top of a point set S in general
position. For instance, the cycle Cn has several embeddings on an n-element point
set, unless the points are in convex position. It was the subject of intense research
to find upper and lower bounds on the maximum possible number of embeddings.
Here we briefly survey two cases and provide references for other graph classes.

Let S be a set of n points in the plane in general position, labeled by integers
from 1 through n. There is an obvious combinatorial upper bound on the number
of polygonizations given by the number of cyclic permutations, (n− 1)!, which is
roughly nn, neglecting exponential and polynomial terms. However, it is clear that
most of the polygons generated in this way would have crossings. Notice that the
solution to the Euclidean traveling salesman problem, that is, the spanning cycle of
minimal total length, is necessarily crossing-free, i.e., a polygonization, because any
two crossing edges can be replaced by two edges of their convex hull, resulting in
a strictly shorter spanning cycle. This motivates why this counting problem, going
back to Newborn and Moser [78], has been intensely investigated (Fig. 10).

A major step in estimating the number straight-line embeddings was achieved
by Ajtai, Chvátal, Newborn, and Szemerédi [6]. They proved that every set of
n points in the plane admits at most cn crossing-free geometric graphs, with a
constant c = 1013. It is worth mentioning that the crossing lemma, a cornerstone
in geometric graph theory, was proved in this paper as a lemma for this result1.
The upper bound for the number of polygonizations on an n-element point set has

1The crossing lemma was independently proved by Leighton [73] as well.
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been improved substantially in a series of papers. One of the latest upper bounds
is O(68.66n) by Dumitrescu et al. [35], which has recently been further improved
to O(54.55n) by Sharir et al. [95]. The best current lower bound comes from
the double-chain configuration (see Fig. 11), which is known to have more than
4.64n different polygonizations [45]. If we denote by p(n) the maximum number
of polygonizations over all sets of n points in general position, the currently best
bounds can be summarized as 4.64n � p(n) � 54.55n, where we omit polynomial
factors and display the dominating exponential term only.

The bound cn given by Ajtai et al. [6] also applies to triangulations. Counting
triangulations is an old problem going back to Euler, who considered the case
of points in convex position, counted by the Catalan numbers (see [94] for a
historical account). Possibly David Avis was the first to ask about the maximal
number of triangulations over generic point sets [110]. Denote by tr(S) the number
of triangulations a point set S admits, and by tr(n) = max|S|=n tr(S) the maximal
value over all n-element point sets. Assume that we have a bound tr(n) ≤ cn

t for
some constant ct . Then, since every crossing-free geometric graph on n vertices
can be augmented to a triangulation and a triangulation has at most 3n− 6 edges,
we infer that 23n−6cn

t ≈ 8ncn
t is an upper bound for the number of plane geometric

graphs on top of any n-element point set.
Similarly, if, for some class of n-vertex graphs G, one can derive an upper

bound of gn on the number of graphs in G that are contained as a subgraph in a
triangulation on n vertices, then gncn

t is an upper bound for the different realizations
of graphs in G on any n-element point set. This explains why improving on the
value of the constant ct has been the subject of a long list of papers; see [97, 110]
for an account and references. Currently, the best upper bound is tr(n) ≤ 30n,
obtained by Sharir and Sheffer [94], refining the method given by Sharir and
Welzl [96], which combines the use of random triangulations with a charging
scheme. On the opposite direction, the double-chain point configuration admits
8n triangulations [45]. This lower-bound construction was widely believed to be
best possible until Aichholzer et al. [5] introduced the double-zigzag chain and
proved that it admits Ω(8.48n) triangulations (Fig. 11). The double-chain consists
essentially of two “flat” convex polygons P and Q facing each other. In the double-
zigzag chain, P and Q are the most basic type of almost-convex polygons, a class
introduced by Hurtado and Noy [59]. Using other almost-convex polygons in a
similar manner, Dumitrescu et al. [35] have recently constructed n-element point
sets that admit Ω(8.65n) triangulations. While the gap between the upper and lower
bounds keeps narrowing and there is no firm conjecture on what the right constant
may be in the exponent, nonetheless one may say that the lower bounds have always
been thought to be closer to the true value.

Other graphs, such as perfect matchings, spanning paths, pseudo-triangulations,
and many more have been studied from this perspective. Details on bounds and
references can be found in [5, 97].
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Fig. 11 The double-chain (left) consists of two convex chains that face each other. The line
connecting any pair of points in the lower (resp., upper) chain passes below (resp., above) all the
points in the other chain. The dashed edges are present in every triangulation, so the three resulting
regions are triangulated independently. The double-zigzag chain (right) is very similar, but reflex
and convex vertices alternate, and the line defined by two consecutive vertices in the lower chain
leaves exactly one point from the lower chain above; the situation is symmetric for the upper chain

3.3 Spanning Graphs with Desirable Properties

In many applications, we do not necessarily want to embed a specific graph on
top of a point set S, but rather we would like to construct a spanning graph on
S with certain properties. The properties may be purely graph-theoretical (e.g.,
connectivity) or specific to the geometric realization (e.g., dependent on Euclidean
lengths or angles). In this section, we consider some representative examples of
each type.

Connectivity. Given a point set S in the plane in general position, and an integer
k ≥ 0, we could like to embed a k-connected (resp., k-edge-connected) graph on
top of S. For k = 1, it is clear that every point set admits a spanning tree, which
is the smallest connected graph on n vertices. As noted above, n ≥ 3 points in
general position also admit a spanning cycle, which is the smallest 2-connected
graph on n vertices. However, n points in convex position do not admit 3-connected
augmentation, since every maximal augmentation is a triangulation in which at least
two vertices have degree 2. It is easy to see, though, that any other point set (i.e., not
in convex position) on n ≥ 4 vertices admits a 3-connected graph: Start with a star
centered at a vertex in the interior of the convex hull, and complete it into a wheel
graph, which is 3-connected. For 4- and 5-connectivity, the analogous question
about feasibility is not so easy anymore.

To determine whether a point set admits a k-connected graph, it is enough
to consider whether it admits a k-connected triangulation, since every planar
straight-line graph can be triangulated and additional edges can only increase the
connectivity. Dey et al. [30] proved that every set whose convex hull consists of 3
vertices admits a 4-connected triangulation, with the only exception of the point set
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Fig. 12 A set of n = 10 points, h = 6 of which lie on the boundary of the convex hull, admits a
3-connected cubic PSLG (left). A minimum convex decomposition for n = 10 points, h = 5, with
� 7

3 n−h� = 18 edges (middle). A straight-line embedding of a 3-connected cubic graph where the
15 edges have only 6 different slopes (right)

in Fig. 9, left. No characterization is known for generic point sets (with arbitrary
convex hull) that admit 4- or 5-connected triangulations. Note that k-connectivity is
infeasible for k ≥ 6, since very planar graph has a vertex of degree at most 5.

If we can decide whether there exists a k-connected graph on top of a given
point set S, the next question is to find one with the fewest possible edges. If we
allow crossings, then every set of n vertices admits a 3-connected graph with �3n/2
edges, which is the best possible since the degree of every vertex must be at least
3. For constructing a crossing-free 3-connected graph on top of a point set S, the
location of the points (or, rather, their order type) already matters. Garcı́a et al. [44]
proved that if we are given a set of n points, h < n of which lie on the boundary
of the convex hull, then it admits a 3-connected planar straight-line graph with
max(�3n/2,n+h−1) edges, and this bound is the best possible for each point set.
This implies, in particular, that a cubic (that is, absolute minimum size) 3-connected
graph is possible if n ≥ 4 is even and at most n/2+ 1 points lie on the convex hull
(Fig. 12, left). The proof in [44] is algorithmic, and 3-connected graphs of the above
size can be computed in polynomial time.

Angle and Slope Conditions. A frequently used generalization of triangulations
is a convex decomposition, which is a plane geometric graph where all bounded
faces are convex, and the bounded faces jointly tile the convex hull of the vertex
set. Every point set admits a convex decomposition (since every triangulation is a
convex decomposition). While a triangulation on top of n points, h of which lie on
the convex hull, has exactly 3n− h− 3 edges, a convex decomposition may have
as few as n edges (if the points are in convex position). Improving upon earlier
results [58, 77], Sakai and Urrutia [92] showed recently that every set of n points, h
of which are on the convex hull, admits a convex decomposition with 7

3 n−h edges,
which is the best possible for infinitely many (n,h) pairs (Fig. 12, middle), but not
known to be optimal in general. The currently best lower bound, 23

11 n− 3, in terms
of n is due to Garcı́a-Lopez and Nicolás [46].

It is well known [12] that among all triangulations of a point set, the Delaunay
triangulation maximizes the minimum angle (intuitively, all triangles are as “fat” as
possible). Aichholzer et al. [4] proved that every point set admits a triangulation in
which each point is incident to a triangle that has an angle of at least 2π/3 at that
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point, and the bound 2π/3 is the best possible. There are similar results [4,14,34,39]
for angle-constrained spanning cycles; however, all known results consider arbitrary
geometric graphs (with possible crossings). It is an open problem to determine
the minimum and maximum possible angles that a crossing-free spanning cycle,
spanning path, or spanning tree can have, over all n-element point sets in general
position.

In a problem closely related to the angle constraints on adjacent edges,
Dujmović et al. [33] studied the crossing-free geometric graphs that can be
embedded in the plane with few different edge slopes. They prove that every
planar graph with n vertices has a straight-line embedding in the plane with at
most 2n− 10 different slopes, based on a canonical decomposition introduced by
de Fraysseix [43]. They also construct triangulations that require at least n + 2
different slopes. It remains an open problem to determine the minimum number
of slopes sufficient for the straight-line embedding of every planar graph with n
vertices. It is clear that a vertex of degree Δ forces at least �Δ/2 slopes in any
straight-line drawing. Dujmović et al. [33] show that �Δ/2 slopes are sufficient for
the embedding of every tree of maximum degree Δ; and six slopes are sufficient for
the embedding of every 3-connected cubic planar graph [67] (Fig. 12, right). But, in
general, it is not known whether the “slope number” of a planar graph is a function
of the maximum degree.

Spanners. The stretch factor of a geometric graph G=(V,E) is the maximum ratio

max
u,v∈V

|path(u,v)|
|uv| ,

where |path(u,v)| is the Euclidean length of the shortest path between u and v, and
|uv| is the Euclidean distance between points u and v. The ratio |path(u,v)|/|uv| is
also called the detour between points p and q. A geometric graph G = (V,E) is a
k-spanner if its stretch factor is at most k. For a set of n points, the only 1-spanner is
the complete geometric graph, which has

(n
2

)
edges and many crossings whenever

n ≥ 5. Chew [26] proved that for every point set, there is a plane geometric graph
with stretch factor at most 2, and it is the dual graph of the Voronoı̈ diagram
induced by equilateral triangles. Chew conjectured that the stretch factor of the
standard Delaunay triangulation (induced by disks) is at most π/2≈ 1.5708. Chew’s
conjecture has recently been refuted by Bose et al. [17]. The best current lower
bound was found by a computer search: Xia and Zhang [113] presented a point set
whose Delaunay triangulation has a stretch factor of 1.5907. The best current upper
bound, 1.998, has recently been announced by Xia [112], improving the previous
best upper bound of 4

√
3π/9≈ 2.418 by Keil and Gutwin [70]. It is not known what

the maximum stretch factor of a Delaunay triangulation is, and, more interestingly,
the minimum stretch factor that a plane geometric graph can have on top of any
finite point set.

Giannopoulos et al. [48] and Gudmundsson and Smid [50] proved independently
that, for a given set of n points and an integer K, it is NP-hard to find the plane
geometric graph of minimum stretch factor and at most K edges. It is still possible,
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however, that one can efficiently compute a plane geometric graph with minimum
stretch factor for a given point set if there is no limitation on the number of edges.

In the last 20 years, researchers have extensively studied crossing-free spanners
that have several desirable properties simultaneously, such as bounded stretch factor,
bounded degree, and small Euclidean length [16]. One recent result in this thread,
by Kanj et al. [66], states that for every integer k ≥ 14 and every n-element point
set, there is a PSLG with maximum degree at most k and stretch factor at most
(1+ 2π

k cos(π/k) ) · 4
√

3π/9, and such a PSLG can be computed in O(n) time. For a
detailed historical account, variants of the problem, and algorithmic results, we refer
to a survey book by Narasimhan and Smid [76].

4 Generic Plane Augmentation Problems

In the previous two sections, we surveyed augmentation problems for perfect
matchings and empty graphs. In the most general version of geometric graph
augmentation, we are given an arbitrary planar straight-line graph G = (V,E) and a
graph property P . Our task is to augment G into a PSLG with property P or report
that no such augmentation is possible. HereP may be an abstract graph property or a
property specific to geometric graphs. At any rate, we can consider only properties
of planar graphs, since the output has to be planar. We consider two illustrative
examples: One is connectivity augmentation, where property P is k-connectivity or
k-edge-connectivity for some integer k, 1 ≤ k ≤ 5. The other property is detour at
most d, for some real d ≥ 1, which is specific to geometric graphs.

4.1 Connectivity Augmentation

The k-connectivity (resp., k-edge-connectivity) augmentation problem asks for the
minimum number of edges that augment a given graph G = (V,E) into a k-
connected (resp., k-edge-connected) graph G′ = (V,E ∪ E ′). For abstract graphs,
both the vertex- [65] and edge-connectivity [41, 75, 109] versions have polynomial-
time solutions for every integer k; and there are linear-time solutions for k =
2 [37, 60, 61, 86]. In general, vertex connectivity is technically more difficult to
handle. When k is part of the input, Végh [108] gave a polynomial-time algorithm
for the k-connectivity augmentation of a (k− 1)-connected graph.

Kant and Bodlaender [68] considered connectivity augmentation problems over
planar graphs, where both the input and output are required to be planar (i.e., no
minor isomorphic to K5 or K3,3). They showed that such a planarity-preserving
edge-connectivity augmentation is NP-hard already for k = 2, and later Rutter and
Wolff [90] showed this for vertex connectivity as well. Fialko and Mutzel [40]
and Gutwenger et al. [51] proposed constant-factor approximations. However, in a
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Fig. 13 A zigzag path on eight vertices in convex position (left). Augmentation to 2connectivity
requires six new edges (middle). Augmentation to 2-edge connectivity requires four new edges
(right)

planarity-preserving augmentation, the output graph may not be compatible with
every straight-line embedding of the input graph, and so these results are not
applicable when the input is a planar straight-line graph.

Connectivity augmentation over planar straight-line graphs is significantly more
restrictive. For instance, a path on n vertices has a planarity-preserving augmenta-
tion to a 2-connected Hamiltonian cycle by adding one edge (between the endpoints
of the path). However, if the path is embedded in the plane as a zigzag chain on n
points in convex position (Fig. 13), then 2-edge-connectivity augmentation requires
�n/2� new edges, 2-connectivity requires n− 2 new edges, and the connectivity
augmentation is not even feasible for k ≥ 3. Rutter and Wolff [90] proved that the
k-connectivity and k-edge-connectivity augmentation problems are NP-hard over
plane geometric graphs for k = 2,3,4, and 5. As noted above, the problem is
infeasible for k ≥ 6 because every planar graph has a vertex of degree at most 5.
Currently, there are no approximation algorithms. Research focused on determining
whether augmentation is feasible and on extremal bounds: What is the minimum
number of new edges that are sufficient for the k-connectivity (resp., k-edge-
connectivity) augmentation of any plane geometric graph on n vertices?

Vertex Connectivity. Abellanas et al. [1] were the first to obtain extremal bounds.
They proved that a connected PSLG with b cut vertices can be augmented to a 2-
connected PSLG with b new edges. The case of the zigzag path, with n− 2 cut
vertices, shows that this bound is the best possible. It follows that every connected
PSLG on n vertices can be augmented to a 2-connected PSLG with at most n−2 new
edges, and this bound is also the best possible. It is not known, however, what is
the minimum number of edges sufficient for the 2-connectivity augmentation of any
(possibly disconnected) PSLG with n vertices.

It is easy to see that every PSLG in general position can be augmented to 2-
connectivity, since every triangulation is 2-connected. This is no longer true for 3-
connectivity. Tóth and Valtr [105] proved that a PSLG G = (V,E) can be augmented
to 3-connectivity if and only if V is not in convex position and no edge in E is a
proper diagonal of the convex hull CH(V ). Similar combinatorial characterizations
are not known for 4- or 5-connectivity.

Edge Connectivity. Every PSLG can be augmented to a 2-edge-connected PSLG.
Tóth and Valtr [105] characterized the PSLGs that can be augmented to 3-edge
connectivity; they are called 3-edge-augmentable. Specifically, a PSLG G = (V,E)
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Table 1 The minimum number of new edges sufficient for raising the edge
connectivity of any PSLG on n vertices in general position to a target k = 1,2,3
if augmentation is possible. Tight bounds and lower bounds

Target edge connectivity 1 2 3

Arbitrary PSLG n−1 ≥ �(4n−4)/3� 2n−2
Connected PSLG 0 �(2n−2)/3� ≥ �(4n−4)/3�
2-edge-connected PSLG 0 0 n−2

is 3-edge-augmentable if and only if V is not in convex position and there is no edge
e ∈ E such that e is a proper diagonal of CH(V ) and all vertices on one side of e lie
on the boundary of CH(V ). Similar combinatorial characterizations are not known
for 4- or 5-connectivity.

Let us point out two easy but important tools that simplify the study of
edge-connectivity augmentation. The first tool is the concept of k-edge-connected
components in a graph G = (V,E): It is a maximal subset Vc ⊂ V such there are at
least k edge-disjoint paths between any two vertices of Vc. By Menger’s theorem,
a graph G is k-edge-connected if and only if it has only one k-edge-connected
component. The second tool is the use of multiedges. Abellanas et al. [1] proved
that if a PSLG G = (V,E) can be augmented to 2-edge connectivity with m new
edges such that some new edges are duplications of existing edges in E , then the
augmentation is also possible with m new edges and no double edges. An analogous
result holds for 3-edge-connectivity augmentation if G is 3-edge-augmentable [8].

Extremal bounds are known for the minimum number of edges sufficient for
increasing the edge connectivity by one for any PSLG with n vertices (see Table 1).
It is easy to see that every disconnected PSLG with c ≥ 2 components can be
augmented to a connected PSLG by adding exactly c− 1 new edges. The maximum
value of c is n, attained for empty graph. Abellanas et al. [1] conjectured that every
connected PSLG on n vertices can be augmented to a 2-edge-connected PSLG with
at most �(2n− 2)/3� new edges, and the this was later confirmed by Tóth [104].
This upper bound is the best possible: The lower-bound construction consists of a
triangulation with m vertices, with a leaf added in each of the 2m−5 bounded faces,
and three pairwise invisible leaves in the outer face (Fig. 14, left). This PSLG has
n = m+(2m−5)+3= 3m−2 vertices, and each of the 2m−2 leaves requires one
new edge for 2-edge connectivity. The proof of the upper bound is constructive:
A polynomial-time augmentation algorithm adds new edges in each face of the
input graph independently. The key tool is the geodesic hull of all 2-edge-connected
components adjacent to a face (Fig. 14, middle). The boundary of the geodesic hull
is a closed polygonal chain P that visits all 2-edge-connected components, and so
one can add some edges of P into the input graph (possibly creating double edges),
and merge them into a single 2-edge-connected component (Fig. 14, middle). At the
end of the algorithm, double edges can be replaced with single edges by [1].

Tóth and Valtr [105] showed that n− 2 edges are always sufficient for raising
the edge connectivity of a 3-edge-augmentable PSLG on n vertices from 2 to 3. The
upper bound is based on the simple observation that a new edge can decrease the
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F

Fig. 14 APSLG on n = 19 vertices, including �(2n−2)/3�= 12 leaves (left). The geodesic hull of
one vertex of each 2-edge-connected component incident to a face F (middle). A 2-edge-connected
graph on n = 9 vertices that requires n−2 = 7 new edges to 3-edge-connectivity (right)

number of 3-edge-connected components by one, and if there are n such components
initially, then the first two new edges can create a K4 minor, which is a 3-connected
component with 4 vertices. This upper bound is the best possible: If G = (V,E) is
a Hamiltonian cycle with exactly one vertex in the interior of CH(V ), then the only
3-edge-connected augmentation is the wheel graph with n− 2 new edges (Fig. 14,
right).

For abstract graphs, one can solve k-connectivity augmentation optimally in
a multiphase algorithm, where each phase increments the edge connectivity by
one [25]. This is not the case for geometric graphs, since edges added in one phase
could become obstacles in subsequent phases. Al-Jubeh et al. [8] showed that any
PSLG on n vertices in general position can be augmented to 3-edge connectivity
with at most 2n−2 new edges, if the augmentation is feasible, and this bound is the
best possible. No tight extremal bounds are known for raising the edge connectivity
from 0 to 2 or from 1 to 3 (see Table 1). Lower-bound constructions, similar to one
in the left part of Fig. 14, show that in the worst case, �(4n− 4)/3� new edges are
needed for both problems.

Augmenting Crossing-Free Straight-Line Trees. Abellanas et al. [1] proved
that every path on n vertices in general position can be augmented to 2-edge
connectivity with �n/2� edges, and this bound is the best possible (Fig. 13). They
conjectured that n

2 +O(1) edges are sufficient for augmenting any tree on n vertices
to 2-edge connectivity. However, Tóth [104] constructed a family of trees that
require 17

33 n−O(1) new edges. Garcı́a and Tejel (private communication) improved
the lower bound to 6

11 n−O(1). Consider the tree in the left part of Fig. 15. It has
eight leaves, five of which lie in the interior of the convex hull and are pairwise
invisible to each other. Identify one of the interior leaves A with an exterior leaf of
a scaled copy of the original construction as in the right part of Fig. 15(right). Then
the number of vertices goes up by 11. The leaf A, which required one new edge, has
been replaced by a subgraph with seven leaves. Two of these leaves see each other,
and the remaining five leaves are isolated. However, even if we join the two new
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AA

Fig. 15 A tree with 13 vertices, including 8 leaves, which requires 7 new edges (left). Replacing
A with a scaled copy of the original construction, the number of vertices increases by 11, and the
number of leaves increases by 7, and it requires 6 more new edges (right)

mutually visible leaves to each other, the original edge A is still not contained in any
circuit, so these seven leaves require seven new edges. By iterating this step k times,
we obtain a tree with 13+ 11k vertices that requires 7+ 6k new edges.

Currently, the best upper bound for trees is the same as for any PSLG: Every
connected PSLG with n vertices can be augmented to a 2-edge-connected PSLG by
adding at most �(2n− 2)/3� new edges. We emphasize again that the difficulty is
posed by requiring straight-line edges. If the new edges are allowed to be Jordan
arcs, then the lower bound of �n/2� is the best possible [104].

4.2 Network Optimization Through Augmentation

Motivated by wireless communication networks, Kranakis et al. [71] studied 2-edge-
connectivity augmentation for noncrossing subgraphs of unit disk graphs. They
prove that if G = (V,E) is a connected PSLG in general position, it has b cut edges,
and all edges have length at most 1, then G can be augmented to a 2-edge-connected
PSLG with at most b new edges, each of which has length at most 3. The bound 3
on the length of the new edges cannot be improved (Fig. 16, left), but the bound on
the number of new edges is not known to be optimal. Similarly, a noncrossing tree
with n vertices in general position and edges of length at most 1 can be augmented
to a 2-edge-connected PSLG with at most �5n/6� new edges, each of length at most
3. It follows from the reduction of Rutter and Wolff [90] that finding the minimum
number of new edges remains NP-complete under the restriction that the new edges
have bounded length.

In typical applications in wireless communication, the edges of a graph or
digraph are given implicitly. The input is a set S of points in the plane. Every
assignment of angular domains with apices at S and radius r (which correspond to
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a

b

Fig. 16 A path with unit length edges, which requires an edge of length 3− ε for 2-edge-
connectivity augmentation (left). A path between a and b, where the stretch factor is large but
cannot be improved with additional edges (right)

directional antennae of uniform range r stationed at points in S) defines a geometric
digraph G = (V,E) such that (u,v) ∈ E if and only if one of the angular domains
with apex at u contains v and the distance |uv| is at most r. A digraph defined in
this way can be augmented by increasing the radius r. Note, however, that some
edge pairs may inevitably cross in this model. Problems in the literature [24,28,32]
ask for the minimum radius and minimum angle (alternatively, sum of angles) that
guarantee strong connectivity.

Giannopoulos et al.[48] showed that it is NP-hard to decide whether a given
PSLG G = (V,E) can be augmented with at most K new edges such that its stretch
factor drops below a given threshold λ > 1. Farshi et al. [38] considered the problem
of finding a single new edge that would maximally decrease the stretch factor of a
geometric graph, where both the input graph and the new edge may have crossings;
they proposed efficient algorithms for both finding and approximating the optimal
“shortcut.” Wulff-Nilsen [111] generalized the problem to arbitrary metric spaces.
Aronov et al. [10] studied the variant of this problem where the input graph contains
a singleton (which must be connected to the remainder of the graph), but they also
allow crossings in the output. No results are known for finding such “bottleneck”
edges over crossing-free geometric graphs in the plane. Note that if crossings are
not allowed, then the stretch factor of the augmentation cannot be decreased below
any constant threshold. The detour between two endpoints of a zigzag path can be
arbitrarily large (Fig. 16, right), but in some cases it cannot be improved by adding
new edges.

In all applications mentioned so far, it was clear that the addition of new edges
can only improve the network (new edges can neither decrease the connectivity nor
increase the detour). We note here that augmentation may deteriorate the quality
of a network. For example, there are simple instances of noncooperative network
congestion games (cf. Braess’s paradox) where the total latency at Nash equilibrium
increases if we add a new edge. Roughgarten [88,89] showed that this deterioration
can be arbitrarily large, even in planar networks. Network design problems, under
various capacity and demand constraints, go beyond the scope of this chapter. We
refer to a comprehensive survey by Tardos and Wexler [102]. Current techniques
in this domain are unable to enforce the crossing-free condition, and it would be
very interesting to study congestion games for embedded networks in a geometric
setting.
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5 Concluding Remarks

The family of augmentation problems is quite large. As mentioned in the
Introduction, we have only discussed some selected representatives problems here.
We conclude with briefly mentioning some problems that have not been included.

• We omitted the weighted versions of problems, in which the weight of an edge
is its Euclidean length, and the weight of a PSLG is its total edge length. The
complexity of only very few weighted optimization problems are known. Given
a set of n points in the plane, the Euclidean minimum spanning tree (EMST) can
be computed in O(n logn) time, as a minimum spanning tree in the Delaunay
triangulation of the points. However, finding a minimum-weight triangulation
is NP-hard [79]. The minimum-weight PSLGs from most graph classes (e.g.,
spanning trees, spanning cycles) are often automatically noncrossing, but the
crossing-free property has to be explicitly enforced for maximum-weight
PSLGs, which is impossible to model with standard optimization techniques.
Approximation algorithms for some variants have been presented in [9, 36].

• We have not reviewed combinatorial games, in which two players construct
disjoint compatible PSLGs on a given point set by incrementally augmenting
the empty graph, following certain rules. Many graph creation games have
been considered (e.g., maker-breaker or avoider-enforcer games) for noncrossing
geometric graphs [3], but many open problems remain.

• We did not mention any problem that involves Steiner points (that is, augmenting
a graph with both vertices and edges, and possibly subdividing existing edges).
Patrignani [83] showed that it is NP-complete to decide whether a partial
embedding of a graph can be completed to a straight-line embedding. This
problem is, in fact, NP-complete already for trees [13].
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Discrete Geometry on Red and Blue Points
in the Plane Lattice

Mikio Kano and Kazuhiro Suzuki

Abstract We consider some problems on red and blue points in the plane lattice.
An L-line segment in the plane lattice consists of a vertical line segment and a
horizontal line segment having a common endpoint. There are some results on
geometric graphs on a set of red and blue points in the plane. We show that some
similar results also hold for a set of red and blue points in the plane lattice using
L-line segments instead of line segments. For example, we show that if n red points
and n blue points are given in the plane lattice in general position, then there exists
a noncrossing geometric perfect matching covering them, each of whose edges is an
L-line segment and connects a red point and a blue point.

1 Introduction

We consider some problems on red points and blue points in the plane lattice Z2

motivated by some results in the plane R2, where Z and R denote the set of integers
and the set of real numbers, respectively. For a point x in the plane, an L-shaped
line consisting of a vertical ray and a horizontal ray emanating from x is called an
L-line with corner x. A vertical line and a horizontal line passing through x are also
considered special L-lines with corner x. So, for every point x, there are exactly six
L-lines with corner x, and two of them are usual lines (see in Fig. 1).
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x xx

x x

x

Fig. 1 L-lines with corner x

We regard L-lines as “lines” in the plane lattice, and consider some problems
from this point of view. For two points in the plane lattice that are not on the same
vertical or horizontal line, there are two L-lines passing through them [see (1) in
Fig. 2]. On the other hand, for any two points in the plane, there exists exactly one
line that passes through them. So there is a difference between lines in the plane and
L-lines in the plane lattice. However, as we shall show, they have some nice common
properties.

Remark. Let S be a set of points in the plane lattice. Usually, S is defined to be in
general position if every vertical line or horizontal line contains at most one point of
S. On the other hand, by using L-lines, we can define S to be in general position if no
three points of S lie on the same L-line [see (2) in Fig. 2]. If S is in general position
by means of the new definition, then the highest point and the lowest point of S
may lie on the same vertical line. However, for any other point x of S, the vertical
line passing through x does not pass through any point of S−{x}. Similarly, the
rightmost and leftmost points of S may lie on the same horizontal line, but for any
other point y of S, the horizontal line passing through y does pass through any point
of S− {y}. Therefore, the above two definitions of general position are slightly
different, but they require the same condition for most points in S, and thus the
difference is small.

Hereafter, to avoid confusion and for simplicity, we say that S is in general
position if every vertical line and horizontal line pass through at most one point
of S. Namely, we use a standard definition of general position.1

2 Geometric Alternating Matchings

A set X of points in the plane is called in general position if no three points of X
lie on the same line. It is well known that if n red points and n blue points are given
in the plane in general position, then there exists a noncrossing geometric perfect

1 In the plane, no three points lie on the same line if and only if every three points make a triangle.
Similarly, in the plane lattice, every vertical line and horizontal line pass through at most one point
if and only if every two points make a digon with two L-line segments.
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(2)(1) (3)

Fig. 2 (1) Two L-lines passing through two given points. (2) A set of points no three of which lie
on the same L-line. (3) A rectangular hull of a set of points in the plane lattice in general position

Fig. 3 A noncrossing perfect
matching with L-line
segments joining red points
and blue points

matching joining the red points and the blue points, where a geometric matching is
a matching consisting of line segments. We start with a result on perfect matchings
with L-line segments in the plane lattice.

Theorem 1. Suppose that n red points and n blue points are given in the plane
lattice in general position, where n≥ 1 is an integer. Then there exists a noncrossing
perfect matching with L-line segments joining the red points and the blue points
(Fig. 3).

We need some new notation. In this chapter, only axis-parallel rectangles will
be used, and so a rectangle always means such a rectangle. Thus, each edge of
an rectangle is a vertical or horizontal line segment. For a set S of points in the
plane lattice, the rectangular hull of S, denoted by rect(S), is the smallest closed
rectangular enclosing S [(3) in Fig. 2)] In particular, every edge of rect(S) contains
at least one point of S. For a set X , the cardinality of X is denoted by |X | or #X .

Proof of Theorem 2.2. We prove Theorem 1 by induction on n. If n = 1, then the
theorem holds. So we assume n≥ 2. Let X be the set of points of S on the boundary
of the rectangular hull rect(S). Then 2 ≤ |X | ≤ 4. Suppose that X contains both a
red point and a blue point. Then there exists an L-line segment L1 that is on the
boundary of rect(S) and joins a red point x to a blue point y of X . By applying the
induction hypothesis to S−{x,y}, we obtain a noncrossing perfect matching with
L-line segments joining the red points and the blue points of S−{x,y}. By adding
L1 to this matching, we can get the desired noncrossing perfect matching.
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blue point
red point 

l2l1 l3

Fig. 4 Moving a vertical line � from �1 to �2 to find �3 such that f (�3) = 0

Fig. 5 An L-line that bisects
both red points and blue
points

Next, assume that all the points of X have the same color. By symmetry, we may
assume that all the points of X are red. For every vertical line � in the plane passing
through no points of S, define a function f (l) by

f (�) = #{the red points of S to the left of �}

−#{the blue points of S to the left of �}.

Then f (�1) = 1 for a vertical line �1 immediately to the right of the left vertical edge
of rect(S), and f (�2) = −1 for a vertical line �2 immediately to the left of the right
vertical edge of rect(S). Moreover, we continuously move a vertical line � from �1

to �2. Then f (�) changes by ±1 when � crosses a point of S. Hence, there exists a
vertical line �3 such that f (�3) = 0 and �3 passes through no point of S. By applying
the induction hypothesis to the points of S to the left of �3 and those of S to the
right of �3, respectively, we can obtain the desired noncrossing perfect matching
(see Fig. 4). �

3 Balanced Subdivisions

We now turn our attention to another well-known theorem, the so-called ham-
sandwich theorem, which says that if 2m red points and 2n blue points are given
in the plane in general position, then there exists a line that bisects both red points
and blue points. A similar result related to this theorem also holds by using L-lines,
as in the following theorem.

Theorem 2 ([4, 7] ). Let m≥ 1 and n≥ 1 be integers. If 2m red points and 2n blue
points are given in the plane lattice in general position, then there exists an L-line
that bisects both red points and blue points (Fig. 5).

The above Theorem 2 was generalized as follows.
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a bFig. 6 (1) Three types of two
L-rays emanating from p,
which subdivide the plane
into two regions. (2) Two
L-rays emanating from p that
bisect both red points and
blue points

Theorem 3 (Bereg [2]). Suppose that km red points and kn blue points are given
in the plane lattice in general position, where m≥ 1, n ≥ 1, and k ≥ 2 are integers.
Then there exists a subdivision of the plane into k regions with at most k− 1
horizontal line segments and at most k− 1 vertical line segments such that every
region contains precisely n red points and m blue points.

Bárány and Matoušek obtained the following theorem about another bisection.

Theorem 4 (Bárány and Matoušek [1]). Suppose that 2m red and 2n blue points
are given in the plane in general position, where m≥ 1 and n≥ 1 are integers. Let p
be a point in the plane such that the red points, the blue points, and p are in general
position. Then there exist two rays emanating from p that bisect both red points and
blue points.

A ray in the plane is a half-line emanating from a point. Similarly, an L-ray in
the plane is defined to be a half L-line emanating from a point, and so an L-ray has a
corner and an endpoint (see Fig. 6). We show that a similar result holds in the plane
lattice using L-rays.

Theorem 5. Suppose that 2m red points and 2n blue points are given in the plane
lattice in general position, where m≥ 1 and n ≥ 1 are integers. Let p be a point in
the plane each of whose coordinates is not an integer. Then there exist two L-rays
emanating from p that bisect both red points and blue points (see Fig. 6).

Proof. First, take a big rectangleR that contains all the red points, the blue points,
and p. We subdivideR into four regions by the horizontal line and the vertical line
passing through p. Then for each given red or blue point x contained in the lower
right region, we assign a new point y with the same color as x on the right edge ofR
such that x and y lie on the same horizontal line (see Fig. 7). For every given point
x′ in other regions, we assign a point y′ with the same color as x′ on the boundary of
R, as shown in Fig. 7.

Since given points are in general position, the assignment defined above is a
bijection. It is easy to see that the boundary ofR can be divided into two continuous
parts so that each part contains precisely m red points and n blue points (see two bold
marks on the boundary of R in Fig. 7). Notice that the reader is referred to [3], for
example, about the proof of this fact. Then we can obtain the desired two L-rays,
which emanate from the point p and pass through the partitioning marks on the
boundary. ��
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Fig. 7 The given red and blue points are assigned to red and blue points, respectively, on the
boundary of R

4 Geometric Spanning Trees

For a set X of points in the plane, we can draw noncrossing geometric spanning
trees on X , each of whose edges is a line segment joining two points of X . In this
chapter, we call such a spanning tree an X-tree. Given a set R of red points and a set
B of blue points in the plane in general position, the minimum number of crossings
of an R-tree and a B-tree is determined in the next theorem, where conv(X) denotes
the convex hull of X .

Theorem 6 (Tokunaga [6] ). Let R and B be two disjoint sets of red points and
blue points such that R∪B is in general position. Let τ(R,B) denote the number
of edges xy of the boundary of conv(R∪B) such that one of {x,y} is red and the
other is blue. Then τ(R,B) is even, and the minimum number of crossings in TR∪TB

among all pairs {R-tree TR, B-tree TB} is equal to

max

{
τ(R,B)− 2

2
, 0

}
.

In particular, we can draw an R-tree and a B-tree without crossings if and only if
τ(R,B)≤ 2.

We consider a similar problem on the plane lattice and prove a similar result
as shown in the following Theorem 7. For a set X of points in the plane lattice in
general position, we can draw noncrossing spanning trees on X each of whose edges
is an L-line segment connecting two points of X , which is called a spanning tree
on X with L-line segments, or simply an X-tree with L-line segments. Hereafter,
we consider only noncrossing spanning trees with L-line segments, and so X-tree
means X-tree with L-line segments (see Fig. 8). For a tree T and a vertex v ∈V (T ),
the degree of v in T is denoted by degT (v). The maximum degree of T is denoted
by Δ(T ).
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(1) X-tree (2) X-tree of degree at most 3

Fig. 8 Examples of X-trees in the plane lattice

(1) (2)τ∗(R,B)=4 τ∗(R,B)=2

Fig. 9 Two spanning trees, R-tree and B-tree, with a minimum number of crossings

Theorem 7. Let R and B be two disjoint sets of red points and blue points in the
plane lattice such that R∪B is in general position. Let τ∗(R,B) denote the number of
L-line segments xy on the boundary of rect(R∪B) such that one of {x,y} is red and
the other is blue. Then τ∗(R,B) is 0, 2, or 4, and the minimum number of crossings
in TR ∪ TB among all pairs {R-tree TR, B-tree TB} is equal to 1 if τ∗(R,B) = 4.
Moreover, if τ∗(R,B) ≤ 2, then we can draw an R-tree TR and a B-tree TB without
crossings such that Δ(TR)≤ 3 and Δ(TB)≤ 3 (see Fig. 9).

Note that if τ∗(R,B) = 4, then any TR and TB cross at least once. In fact, let xr ∈R,
yr ∈ R, xb ∈ B, and yb ∈ B be the left, right, top, and bottom points in rect(R∪B),
respectively. The path in TR starting from xr to yr and the path in TB starting from xb

to yb cross at least once.
In order to prove Theorem 7, we need some definitions and a lemma. An

orthogonal spiral polygon is a polygon whose boundary consists of two chains of
edges, which are called the outer chain and inner chain, respectively. Every internal
angle of the outer chain is π/2, and every internal angle of the inner chain is 3π/2
[see (1) in Fig. 10]. Notice that we allow an edge of the inner chain to be included
in an edge of the outer chain; namely, some part of the polygon may consist of only
edges (no inner points) and be flattened.

Lemma 8. Let P be an orthogonal spiral polygon in the plane lattice, and let S be
a set of points in the plane lattice in general position contained in P . Assume that
every edge of the outer chain of P contains exactly one point of S and that every
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π/2

P

(2)(1)

Fig. 10 (1) An orthogonal spiral polygon P with an outer chain and an inner chain consisting of
bold and broken edges, respectively. (2) An orthogonal spiral polygon P with a point set S and an
S-tree T such that Δ(T )≤ 3

edge of the inner chain contains exactly one point of S or is included in another
edge of the outer chain. Then there exists an S-tree T such that (i) Δ(T )≤ 3 and (ii)
T is included in P [see (2) in Fig. 10].

Proof. An edge of the inner chain of P included in another edge of the outer chain
is called a flattened rectangle. Note that a flattened rectangle may have one point of
S by our assumption for P . In (2) of Fig. 10, we can find two flattened rectangles
such that one of them has one point of S and another one has no points of S. We may
assume that no point of S is at a corner of the inner chain of P if the corner is not
contained in an edge of the outer chain. Otherwise, we may move one of the edges
incident to the corner so that the resulting orthogonal spiral polygon P′ is included
in P . In other words, we consider a minimal orthogonal spiral polygon included in
P on S.

In preparation for our construction of an S-tree, we decompose the orthogonal
spiral polygon P into closed rectangles as shown in Fig. 11. If P has no flattened
rectangles, then we decomposeP as shown (1) in Fig. 11, where X , Y , and Z denote
closed rectangles. The top edge of Y is included in the bottom edge of X , and the left
edges of X and Y form an edge of the outer chain of P . Two consecutive rectangles
Y and Z have the same properties, and so on.

If P has some flattened rectangles, then we decompose P as shown in (2) in
Fig. 11, where each Xi denotes each closed rectangle. Some rectangles (X3, X5, X6,
X8 in Fig. 11) are flattened. Remove these flattened rectangle from P . Then the
remaining parts of P consist of some orthogonal spiral polygons, so we decompose
each of these as shown in (1) in Fig. 11.

We denote these decomposed rectangles by X1, X2, . . ., and Xk in spiral order.

Claim 1. No three flattened rectangles without points of S are consecutive in P .
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X=X1

Y=X2
Z=X3

(2)(1)

X6X2

X1

X4

X3
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X5

X8

Fig. 11 (1) A decomposition
of an orthogonal spiral
polygon without flattened
rectangles. (2) A
decomposition of an
orthogonal spiral polygon
with flattened rectangles,
where X3, X5, X6, and X8 are
flattened rectangles and only
X8 contains one point of S

(1) (2)

Fig. 12 An outline of our construction of an S-tree

Proof. Otherwise, some edge of the outer chain has no points of S, which contradicts
our assumption. ��

Figure 12 shows an outline of our construction of an S-tree. First, construct a path
in each nonflattened rectangle Xi from “outer” point to “inner” point as shown (1).
Then we connect those paths as shown in (2).

We shall show more precisely how to do it. Each nonflattened rectangle Xi

consists of four edges. Exactly one of these edges includes an edge of the inner
chain of P . We regard this edge as the bottom edge of the rectangle. Then, in
accordance with the bottom edge, we can define a top, right, and left edge of the
rectangle. Let pi, qi, ri, and ti be the most top, bottom, right, and left points of
Xi ∩ S, respectively. We construct a path Pi with L-line segments that satisfies the
following three properties: (1) Pi starts at pi and ends at qi; (2) Pi passes through
all the points in Xi∩S from top to bottom; (3) each L-line segment xy such that x is
upper than y starts at x to the right or left and ends at y from above (see Fig. 13).

For each flattened rectangle Xi with one point xi ∈ S, let pi = qi = ri = ti = xi and
Pi = {xi}. For each flattened rectangle Xi without points of S, let ai be the center
point on Xi, pi = qi = ri = ti = ai, and Pi = /0. We will use the points ai as dummy
points of Pi.

Next, we connect each two paths Pi and Pi+1 as follows.
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Fig. 13 A path Pi on Xi
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Fig. 14 How to connect each two paths Pi and Pi+1 if Pi+1 �= /0. The black points are dummy points

Case 1. Pi+1 �= /0.

In this case, we can always connect the bottom point qi and the right point ri+1

with an L-line segment or a line segment without crossings as follows. If Pi = /0 or
|Pi| = 1, then Xi is a flattened rectangle. Thus, by the definition of decomposition
of P , the bottom point qi is on an edge of the inner chain of P . Therefore, we can
connect qi and ri+1 without crossings, as shown in Fig. 14(1)–(3).

If |Pi| ≥ 2, then, similarly, the bottom point qi of Pi is on an edge of the inner
chain of P , since otherwise some edge of the inner chain has no points of S and
is not included in an edge of the outer chain, which contradicts our assumption.
Hence, in Xi, a horizontal line segment from qi to the left can be added to the path Pi

for connecting Pi and Pi+1, and this segment does not overlap with another segment
from Xi−1, namely, from the right. Therefore, we can connect qi and ri+1 without
crossings, as shown in Fig. 14(4). Note that if |Pi+1| ≥ 2 and qi = ri+1, that is, qi

is on a corner of the inner chain, then the degree degT (qi) may be 4. However, we
assumed that no point of S is at a corner of the inner chain of P if the corner is not
contained in an edge of the outer chain.

Case 2. Pi+1 = /0.

In this case, we can always connect the left point ti and the dummy point ai+1

with an L-line segment or a line segment without crossings, as shown in Fig. 15.
Consequently, by ignoring the dummy points ai, we get a tree T on S without

crossings such that (1) Δ(T ) ≤ 3 and (2) T is included in P . We shall show that T
is an S-tree; namely, every edge of T is an L-line segment.
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Fig. 15 How to connect each two paths Pi and Pi+1 if Pi+1 = /0
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Fig. 16 Seven cases of edges of T through dummy points

The edges of T not through dummy points are L-line segments. Thus, we consider
edges of T through dummy points. By Claim 1, there are just seven cases, as shown
in Fig. 16, where the bold edges are edges of T through one or two dummy points.

The cases (1), (4)–(6) in Fig. 16 contradict our assumption that every edge of
the souter chain of P contains exactly one point of S. In the other cases, each bold
edge is an L-line segment. Therefore, the tree T is a desired S-tree. Consequently,
the lemma is proved. ��
Proof of Theorem 4.7. We first prove the theorem in the case where the top point
and the leftmost point in rect(R∪B) are red and the bottom point and the rightmost
point in rect(R∪B) are blue, in particular, τ∗(R,B) = 2.

We take some rectangles containing only red points or blue points and obtain two
disjoint orthogonal spiral polygons that contain all the red points and all the blue
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Fig. 17 (1) Rectangles X1,X2, . . . ,X6 and Y1 ,Y2, . . . ,Y6. (2) An orthogonal spiral polygon
containing all the red points, which is included in X1 ∪ . . .∪X6

points, respectively. First, take the largest rectangle X1 that contains no blue points,
whose top edge is the top edge of rect(R∪B), and whose bottom edge contains a
red point (see Fig. 17). Next, take the largest rectangle Y1 that contains no red points,
whose bottom edge is the bottom edge of rect(R∪B), and whose top edge contains
a blue point. Then remove open region X1∪Y1 together with the red and blue points
in X1∪Y1 from rect(R∪B), and denote the resulting rectangle by Rect2, whose red
point set is R2 and blue point set is B2.

Hereafter we assume that rectangle Xi contains no blue points and rectangle Yi

contains no red points. Take the largest rectangle X2 whose left edge is the left edge
of Rect2 and whose right edge contains a red point if any. Namely, if the leftmost
point of Rect2 is blue [i.e., this case may occur if the leftmost point in rect(R∪B)
lies on the left edge of X1], then X2 consists of only one edge and contains no inner
points and no red points. Similarly, take the largest rectangle Y2 whose right edge
is the right edge of Rect2 and whose left edge contains a blue point, if any. So it
may occur that Y2 consists of one edge and contains no blue points. Then remove
open region X2∪Y2 and the red and blue points in X2 ∪Y2 from Rect2, and denote
the resulting rectangle by Rect3, whose point set is R3∪B3. Note that if X2 contains
no red points, then Rect3 is obtained from Rect2 only by removing Y2. Moreover, if
X2 contains no red points and Y2 contains no red blue points, then Rect3 is equal to
Rect2, but we next take the largest rectangle X3 whose bottom edge is the bottom
edge of Rect3 and whose top edge contains a red point, and X3 contains at least one
red point.

We repeat the same procedure until rect(Rk ∪ Bk) contains neither red points
nor blue points [see (1) of Fig. 17]. Then X1∪X2 ∪ . . .∪Xk is an orthogonal spiral
polygon containing all the red points. If an edge does not contain a red point, we
move the edge to inside until it contains a red point or is included in another edge.
By repeating this procedure, we can obtain the desired orthogonal spiral polygon,
which contains all the points of R and each of whose edges either contains one red
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Fig. 18 The top point, the
leftmost point, and the bottom
point in rect(R∪B) are red
and the rightmost point in
rect(R∪B) is blue
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Fig. 19 An outline of our construction of an R-tree and a B-tree with exactly one crossing. Three
cases on the place of r3

point or is included in another edge. By Lemma 8, we can obtain a spanning tree
with L-line segments on R with maximum degree at most 3. Similarly, we can obtain
a blue spanning tree with maximum degree at most 3, and it is clear that these two
spanning trees do not cross.

We next consider the case where τ∗(R,B) = 2 and the top point, the leftmost
point, and the bottom point in rect(R ∪ B) are red and the rightmost point in
rect(R∪B) is blue (see Fig. 18).

We first take a rectangle X1 as above. Then rect(R ∪ B) − X1 satisfies the
condition of the case discussed above, and so we can apply the procedure to take
X2,Y2,X3,Y3, . . . ,Xk,Yk. Then we can obtain two disjoint orthogonal spiral polygons
from X1 ∪ ·· · ∪Xk and Y2 ∪ ·· · ∪Yk, respectively, and thus we can get the desired
two spanning trees. In the other cases of τ∗(R,B) ≤ 2, we can similarly obtain the
desired two spanning trees.

We finally consider the case where τ∗(R,B) = 4, the rightmost point and the
leftmost point of rect(R∪ B) are red, and the top point and the bottom point of
rect(R∪B) are blue (see Fig. 19).
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(2) (3)(1)

a

b
a

b

Fig. 20 (1) A tree T with
maximum degree 3. (2) A set
P of |T | points in the plane
lattice in general position. (3)
T is drawn on P with L-line
segments without crossing

First take the largest rectangle X1 whose left edge is the left edge of rect(R∪B)
and whose right edge contains a red point. Let r1 and r2 be the leftmost and the
rightmost red points in X1, respectively. We construct a path starting at r1 ending at
r2 from left to right, as shown in (1) of Fig. 19. Then remove X1 and their points from
rect(R∪B), and denote the resulting rectangle by Rect1, whose point set is R1∪B1.

Next take the largest rectangle Y1 whose bottom edge is the bottom edge of Rect1
and whose top edge contains a blue point. Let b1 and b2 be the bottom and top blue
points in Y1, respectively. We construct a path starting at b1 from bottom to top as
shown in (1) of Fig. 19. Then remove Y1 and their points from Rect1, and denote the
resulting rectangle by Rect2 with point set R2∪B2.

We take the largest rectangle X2 whose bottom edge is the bottom edge of
Rect2 and whose top edge contains a red point. Let b3 be the bottom point in B2.
We connect b2 and b3 by an L-line segment such that a horizontal line segment starts
at b2.

Let r3 be the rightmost red point in X2. Remove X2 \ {r3} and their points from
Rect2, and denote the resulting rectangle by Rect3 with point set R3 ∪ B3. Then
τ∗(R3,B3) = 2, and so there exist a red R3-tree T ′R and a blue B3-tree T ′B. When we
construct these two trees, we first take the largest rectangle that contains r3.

By the construction method for an S-tree in the proof of Lemma 8, we can add a
horizontal line segment to the left-hand side of r3. Then, we construct a path starting
at r2 ending at r3 from left to right, as shown in (1) of Fig. 19. Wherever r3 is, exactly
one L-line segment crosses the L-line segment b2b3 (see Fig. 19).

Consequently, we obtain the desired red spanning tree and blue spanning tree
with exactly one crossing, and the proof is complete. �.

The degree of points of our R-tree and B-tree in the proof of Theorem 7 is at most
3 except b3. We now give a problem concerning Theorem 7.

Problem 9. In Theorem 7, even if τ∗(R,B) = 4, then is it possible to require that
Δ(TR) ≤ 3 and Δ(TB) ≤ 3? Moreover, is it possible to replace a spanning tree
with maximum degree 3 by a Hamilton path (i.e., a spanning tree with maximum
degree 2)?

We conclude this chapter with the following conjecture. Let T be a tree and let P
be a set of |T | points in the plane lattice in general position, where |T | denotes the
order of T . If T can be drawn on P without crossing such that each edge of T is an
L-line segment connecting two points of P, then we say that T can be drawn on P
with L-line segments (see Fig. 20).
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Conjecture 10. Let T be a tree with maximum degree 3, and let P be a set of |T |
points in the plane lattice in general position. Then T can be drawn on P with L-line
segments without crossing.

A partial solution to this conjecture is given in [5]; namely, it is proved that if a
tree T with maximum degree 3 has the property that all the vertices of degree 3 are
contained in a path of T , then the conjecture holds.
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Ramsey-Type Problems for Geometric Graphs

Gyula Károlyi

Abstract We survey some results and collect a set of open problems related to
graph Ramsey theory with geometric constraints.

1 Introduction

A geometric graph is a graph drawn in the plane so that every vertex corresponds to
a point, and every edge is a closed straight-line segment connecting two vertices but
not passing through a third. The

(n
2

)
segments determined by n points in the plane,

no three of which are collinear, form a complete geometric graph with n vertices.
A geometric graph is convex if its vertices correspond to those of a convex polygon.
Further, we say that a subgraph of a geometric graph is noncrossing if no two of its
edges have an interior point in common.

A systematic study of Ramsey-type problems for geometric graphs was initiated
in [22, 23]. These questions were further investigated in [4, 9, 17, 20, 21, 24,
25]. The aim of this writing is to give a noncomprehensive survey of these
developments, with an emphasis on open problems. We also prove a new result con-
cerning noncrossing monochromatic matchings in multicolored geometric graphs
and address the problem of Ramsey multiplicity.

A typical problem in Ramsey theory is the following. Given a finite sequence
G1,G2, . . . ,Gt of simple graphs, determine the smallest integer r, denoted by
R(G1,G2, . . . ,Gt ), with the property that whenever the edges of a complete graph
on at least r vertices are partitioned into t color classes, there is an integer 1≤ i≤ t
such that the ith color class contains a subgraph isomorphic to Gi. Such a subgraph
is referred to as a monochromatic subgraph in the ith color. In the special case,
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when each Gi = Kki is a complete graph on ki vertices, we simply write
R(k1,k2, . . . ,kt) for R(G1,G2, . . . ,Gt). In general, if Gi has ki vertices, then the
existence of R(G1,G2, . . . ,Gt) follows directly from that of R(k1,k2, . . . ,kt), first
observed by Ramsey [29]. We may arrive at a somewhat broader concept of
R(G1,G2, . . . ,Gt ) by insisting that, for some i, the ith color class contains a copy of
a graph belonging to a prescribed family Gi.

For a sequence of graphs G1,G2, . . . ,Gt , the geometric Ramsey number
Rg(G1,G2, . . . ,Gt) is defined as the smallest integer r with the property that
whenever the edges of a complete geometric graph on at least r vertices are
partitioned into t color classes, the ith color class contains a noncrossing copy
of Gi, for some 1≤ i≤ t. The number Rc(G1,G2, . . . ,Gt) denotes the corresponding
number if we restrict our attention to convex geometric graphs only. These numbers
exist if and only if each graph Gi is outerplanar, that is, can be obtained as
a subgraph of a triangulated cycle (convex n-gon triangulated by noncrossing
diagonals). The necessity of the condition is obvious, whereas the “if part” is
implied by the following result of Gritzmann et al. [15].

Theorem A. Let P be an arbitrary set of n points in the plane in general position.
For any outerplanar graph H on n vertices, there is a straight-line embedding f of
H into the plane such that the vertex set of f (H) is P and no two edges of f (H)
cross each other.

Corollary B. R(G1, . . . ,Gt) ≤ Rc(G1, . . . ,Gt) ≤ Rg(G1, . . . ,Gt) ≤ R(k1, . . . ,kt)
holds for arbitrary outerplanar graphs G1, . . . ,Gt with k1, . . . ,kt vertices,
respectively.

Most known results concern the diagonal bi-colored case, that is, when t = 2
and G1 = G2. For simplicity, write R(G), Rg(G), and Rc(G) for R(G,G), Rg(G,G),
and Rc(G,G), respectively. Due to the inequality Rc(G)≤ Rg(G) and the cyclically
ordered structure of convex complete geometric graphs, it is generally easier to
obtain/prove upper bounds for Rc than to Rg. On the other hand, the largest number
of crossing edges in a complete geometric graph occurs when the vertices are in
convex position, suggesting that Rg should not be much larger than Rc.

Problem 1. Is it true that Rg(G) = Rc(G) holds for every outerplanar graph G?

Most likely the answer is negative, but it seems difficult to find a counterexample.
It would also be interesting to see a nontrivial upper bound.

2 Spanning Trees

For any finite graph G, either G or its complement G is connected. That is, either
G or G contains a spanning tree. This observation extends to a geometric setting as
follows; see [22]. In our terminology it means that for any integer n ≥ 2, we have
Rg(Tn) = n, where Tn denotes the family of all trees with n vertices.
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Theorem C. If the edges of a finite complete geometric graph are colored by two
colors, there exists a noncrossing spanning tree, whose edges are all the same color.

For convex geometric graphs, this follows by simple induction on the number
of vertices [2]. If all edges along the boundary of the convex hull are of the same
color, then there is a monochromatic noncrossing spanning path. Otherwise, let ab
and bc be two edges of the convex hull having a different color; omit the vertex b,
and apply the induction hypothesis. The second part of the argument works also in
the nonconvex case. The tricky part is when all the boundary edges are of the same
color, say red. In that case, one can use a sweeping line, which either splits the graph
into two parts sharing a vertex such that each part admits a noncrossing spanning
tree of the same color, or splits the graph into two parts without a common vertex
such that both parts admit red noncrossing spanning trees that can be merged along
a boundary edge.

One cannot in general expect a monochromatic noncrossing spanning path
(see below), but probably Theorem C can still be strengthened. A caterpillar is a tree
obtained from a path and a set of isolated vertices, connecting each isolated vertex to
the path with a new edge. It is known that any finite graph or its complement contains
a spanning caterpillar, in fact, even a spanning broom (a path with additional edges
attached to one of its endpoints) [6, 18]. Following up the investigations in [27],
Micha Perles suggested that the following may be true, at least for convex geometric
graphs.

Problem 2. The edges of a finite complete geometric graph are colored by two
colors. Is it always true that there exists a noncrossing monochromatic spanning
caterpillar?

Regarding this problem, Keszegh (personal communication, 2011) proved the
following weaker version: If the edges of a finite complete geometric graph are
colored red and blue, and the red subgraph is not connected, then the blue subgraph
contains a noncrossing spanning caterpillar. He also noticed that there is not always
a noncrossing monochromatic spanning broom.

A related problem concerning 2-colorings of complete bipartite graphs was
suggested by Gyárfás [18]. It is not true that in any 2-coloring of a complete bipartite
graph on n vertices, there would be a monochromatic spanning tree. On the other
hand, a monochromatic tree with at least n/2 vertices always exists [16]. A simple
geometric bipartite graph Kn,n is obtained by placing 2n points along a circle for
vertices, and connecting each of n consecutive vertices with each of the remaining
ones with a straight-line segment.

Problem 3. Is it true that in any 2-coloring of a simple geometric Kn,n, there exists
a noncrossing monochromatic subtree with n vertices?

Note that such a tree would necessarily be a caterpillar. As the dominant color
class contains at least n2/2 edges, from the following unpublished result of Perles,
it is immediate that for any fixed caterpillar tree T with at most n/2 vertices, there
is a noncrossing monochromatic subtree isomorphic to T .



374 G. Károlyi

Theorem D. If a convex geometric graph of n ≥ v vertices has more than
�(v− 2)n/2� edges, then it contains a noncrossing copy of any caterpillar with
v vertices.

This sharp Turán-type result was first mentioned in [28]; a proof is available
in [5]. More problems for noncrossing paths and matchings in a similar spirit are
addressed in [17].

3 Paths, Cycles, and Beyond

Denote by Ck a cycle of k vertices, Dk a cycle of k vertices triangulated from a
vertex, Pk a path of k vertices (that is, of length k− 1), and Sk a star of k vertices.
In addition, M2k = kP2 will stand for any perfect matching on 2k vertices. Regarding
paths, the following results are known [23].

Theorem E. If k ≥ 3, then 2k− 3 = Rc(Pk)≤ Rg(Pk) = O(k3/2).

Thus, the geometric Ramsey number differs from the abstract Ramsey number
R(Pk) = �3k/2�− 1 proved by Gerencsér and Gyárfás [14]. The lower bound is
implied by the following simple construction. Let G be a complete convex geometric
graph on 2k− 4 vertices, and let p,v1,v2, . . . ,vk−3,q,u1, u2, . . . ,uk−3 be its vertices
listed in clockwise order. For all i, j, color all edges viv j, pvi, and qvi blue; uiu j,
pui, and qui red; viu j red if i+ j is odd and blue if i+ j is even. The edge pq can
have any color. It is not difficult to check that this graph contains no noncrossing
monochromatic path of length k−1. The illustration below shows the blue edges in
the case k = 6.

v

v

v1

qp

2

3

u3

u2

u1

The upper bound concerning the convex case is a consequence of the following
particular case of Theorem D.
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Theorem F. If a convex geometric graph of n ≥ k + 1 vertices has more than
�(k− 1)n/2� edges, then it contains a noncrossing path of length k.

If one is satisfied with the weaker bound (k− 1)n, this result can be obtained
using a simple induction on k: Omitting at each vertex the left- and rightmost edge,
thus altogether at most 2n edges, if the resulting graph contains a noncrossing path
of length k− 2, the original must contain a noncrossing path of length k. The tight
bound can be obtained with a more subtle induction argument; see [23].

The estimate Rc(Pk) ≤ 2k− 3 follows immediately from Theorem F when k is
odd: Take a 2-colored complete convex geometric graph on 2k− 3 vertices. As the
number of edges, (2k− 3)(k− 2), is odd, the larger color class has more than
�(2k− 3)(k− 2)/2� edges and thus contains a noncrossing path of length k− 1.
The even case can be resolved by a subtle analysis of the proof of Theorem F given
in [23]. Most likely, the general upper bound is very far from the truth, but it may
be very difficult to find the right order of magnitude.

Problem 4. Improve upon the upper bound Rg(Pk) = O(k3/2).

The weaker, but somewhat more general, bound Rg(Pk+1,Pl+1) ≤ kl + 1 can be
proved by the following argument [22]. Let pi (0 ≤ i ≤ kl) denote the vertices of a
complete geometric graph. Suppose that they are listed in increasing order of their
x-coordinates, which are all distinct. Define a partial ordering on the vertex set P
as follows. Let pi < p j if i < j and there is an x-monotone red path connecting pi

to p j. By Dilworth’s theorem [11], one can find either k + 1 vertices that form a
totally ordered subset Q⊂ P, or l+1 vertices that are pairwise incomparable. In the
first case, there is an x-monotone red path visiting every vertex of Q. In the second
case, there is an x-monotone blue path of length l, because any two incomparable
elements are connected by a blue edge. The bound follows, noting that an x-
monotone path cannot intersect itself.

The situation changes dramatically if instead of paths we consider cycles.
Following up on the work of Chartrand and Schuster [7] and Bondy and Erdős [3],
the Ramsey numbers R(Ck,C�) were determined completely by Faudree and Schelp
[12] and independently by Rosta [30]; see also [24]. For example, R(Ck) = 3k/2−1
for k even and R(Ck) = 2k−1 for odd values of k > 3. In contrast, Rc(Ck)> (k−1)2

was observed in [23], and independently by Harborth and Lefmann [20]. In fact, the
following more general estimate is true [24].

Theorem G. Rc(Ck,P�)≥ (k− 1)(�− 1)+ 1.

Indeed, construct a complete convex geometric graph on (k− 1)(�− 1) vertices
by choosing k−1 pairwise disjoint arcs on a circle and placing �−1 different points
on each arc. Color all the edges connecting two vertices on the same arc blue and
all the remaining edges red. Obviously, there is no noncrossing blue path with �
vertices, and it is easy to check that the graph does not contain a noncrossing red
cycle of length k either. On the other hand, the idea explained in proving a quadratic
upper bound for the geometric Ramsey number of paths can be used to show that
these results are best possible up to a constant multiplicative factor [23, 25].
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Theorem H. Rg(Dk,D�) ≤ (k− 2)(�− 1)+ (k− 1)(�− 2)+ 2 holds for arbitrary
integers k, � ≥ 3.

Since Rc(C4) = 14 [4], this bound is tight for k = �= 4. Given that Rc(C3,C�) =
3�− 3 holds for every � ≥ 3 [25], it is also tight for the case k = 3. Besides
these cases, nothing beyond Theorem G is known. Let X ,Y ∈ {C,D,P} (except
X =Y =P).

Problem 5. Find the exact values of any of the functions Rc(Xk,Y�), Rg(Xk,Y�).

The estimate Rc(Ck,G�) ≥ (k − 1)(� − 1) + 1 extends to any connected
outerplanar graph G� on � vertices [24]. The following old result of Chvatal [8]
can be used to obtain a matching upper bound in certain cases.

Theorem I. R(Kk,T�) = (k− 1)(�− 1)+ 1 holds for any tree T� on � vertices.

This, together with Theorem A, implies Rg(Hk,S�)≤ (k−1)(�−1)+1 for every
outerplanar graph Hk on k vertices. Since Rg(Hk,P�) ≤ (k− 1)(�− 1)+ 1 can also
be proved using the above-explained argument, it is quite plausible that similar
estimates hold for any tree T� on � vertices.

Problem 6. Is it true that Rc(Ck,T�) = Rg(Ck,T�) = (k−1)(�−1)+1 holds for any
tree T� on � vertices?

Probably this is true even if Ck is replaced by any outerplanar graph Hk on k
vertices, which contains a Hamiltonian cycle. Even though the Ramsey function
R(n) is exponentially large, it may well be that all geometric Ramsey numbers are
relatively small.

Problem 7. Is there a polynomial f such that Rg(Gn) < f (n) holds for every
outerplanar graph Gn with n vertices?

It is even possible that Rg(Gn) < cn2 holds with a universal constant c. Some
very recent results pointing this direction are the following. The ‘ladder’ graph L2n

is obtained by connecting vertex disjoint paths p1 . . . pn and q1 . . .qn with the edges
piqi for 1 ≤ i ≤ n. Then Rc(L2n) = O(n3) and Rg(L2n) = O(n10) [9]. Moreover,
Cibulka et al. [9] also obtained the polynomial bound Rc(Gn) = O(n9) for every
triangulated n-gon Gn whose weak dual (obtained from the dual graph by removing
the vertex corresponding to the infinite face) is a path. It would be very interesting
to see if the above conjecture is true for the family of graphs G3·2n obtained from
a single triangle by gluing triangles to the outer edges in n iterations. The figure
shows the graph G12 together with its weak dual, which is a binary tree rooted at the
initial triangle.

4 Matchings

The off-diagonal Ramsey number for paths determined by Gerencsér and Gyárfás
[14] implies that R(M2k,M2�)≤ k+ 2�− 1 holds for k ≤ �; this also follows from a
more general statement due to Cockayne and Lorimer explained below. The result



Ramsey-Type Problems for Geometric Graphs 377

is sharp, as one can readily check by taking Kk+2�−2 and coloring the edges of
a complete subgraph on 2�− 1 vertices blue, and all the remaining edges red.
The following theorem first proved in [22] states that this Ramsey number does
not change by adding the geometric constraint.

Theorem J. Rg(M2k,M2�) = k+ �+max{k, �}− 1.

In particular, Rc(M2k) = Rg(M2k) = 3k− 1. For the convex case, it follows by a
trivial induction. For the general case, there is also a proof [21] that can be turned
into an O(klog logk+2)-time algorithm, which finds k pairwise disjoint edges of the
same color in a bi-colored complete convex geometric graph on 3k− 1 vertices.
A similar statement can be made regarding the proof of Theorem C.

The multicolor Ramsey number of matchings was determined by Cockayne and
Lorimer [10] as

R(M2k1 ,M2k2 , . . . ,M2kt ) =
t

∑
i=1

ki + max
1≤i≤t

ki− t + 1.

When it comes to matchings, the idea of merging color classes yields reasonable
upper bounds for multicolor Ramsey numbers. Thus, for the diagonal Ramsey

number R(t)
g (M2k) = Rg(M2k, . . . ,M2k︸ ︷︷ ︸

t times

), Theorem J implies the general upper bound

R(t)
c (M2k)≤ R(t)

g (M2k)≤

⎧⎨⎩
3t
2 k− 3t

2 + 2 for t even,

3t+1
2 k− 3t+1

2 + 2 for t odd.

This upper bound is sharp also for t = 4, but most likely it is not for larger values

of t. If t ≥ 2 and k ≥ 6t− 10, then R(t)
c (M2k) ≥ (6/5)tk. See [25] for the proof of

these results. It is also true that the upper bound is sharp for t = 6 and k = 2. Consider
10 points arranged at the vertices of a regular 10-gon and color the line segments
connecting them using six colors as follows. For the first color class, take the edges
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shown in the figure below. Four additional classes are obtained by rotating the first
at the angle 2π i/5 around the center for 1≤ i≤ 4. The edges not yet colored form a
pentagram (dashed lines), which does not have two pairwise disjoint edges either.

But for larger even values of t, the bound, at least in the convex case, is not
sharp anymore. However, despite repeated efforts, nothing other than the following
is known, except that one can also obtain a similar improvement for t odd.

Theorem K. Let t = 2s be an even integer, s≥ 4. Then R(t)
c (M4)≤ 3s+ 1.

Proof. Let s > 3. Take a complete convex geometric graph G0 on 3s+ 1 vertices
and color the edges using 2s different colors. Assume, for contradiction, that any
two edges of the same color have a point in common. There must be two boundary
edges of the same color C. By our assumption, these two edges share a vertex; thus,
they must be of the form pq and qr for three consecutive vertices p,q,r. Now, except
the edge pr, any edge of color C must have q as an endpoint. Consider the graph G1

obtained from G0 by removing the edge pr as well as the vertex q and all edges
incident to it. This graph is a complete convex geometric graph on 3s vertices, with
one boundary edge, namely, pr missing. Its edges are colored with 2s− 1 different
colors. Since it has 3s− 1 remaining boundary edges, two of them must have the
same color, and we may repeat the above argument.

After the ith iteration, we obtain a graph Gi, which is a complete convex
geometric graph on 3s+1− i vertices, with i boundary edges missing, whose edges
are colored with 2s− i colors. The next iterative step can be executed if the number
of remaining boundary edges, that is, 3s+1−2i, is larger than the number of colors.
Thus, eventually we obtain Gs+1, a complete convex geometric graph on 2s vertices,
with s + 1 boundary edges missing, whose edges are colored with s− 1 colors.
The number of remaining boundary edges is also s−1. Now we distinguish between
two cases.

If two boundary edges of the same color still remain, we can construct the graph
Gs+2. It has (2s−1)(s−1)− (s+2) edges, colored with s−2 colors. In each color
class, any two edges have a point in common. It is folklore that the size of such a
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class cannot exceed the number of vertices, which is 2s− 1. Thus, the total number
of edges cannot exceed (s−2)(2s−1). Given that s > 3, we have (2s−1)(s−1)−
(s+ 2)> (s− 2)(2s− 1), a contradiction.

Otherwise, we have exactly one boundary edge of each color class, missing at
least two vertices. If there is an edge of Gs+1 connecting two missing vertices, then
we are done, because such an edge is disjoint from all boundary edges and must
fall in the same color class with one of them. This leaves us with the following
possibility: There are only two missing vertices, which must be consecutive vertices.
Let the vertices of Gs+1 be listed in clockwise order around the boundary as
v1,v2, . . . ,v2s, with v3v4, v5v6, . . . ,v2s−1v2s as the remaining boundary edges. Since
s > 3, there is the boundary edge v7v8 among them; thus, both v2v5 and v1v6 are
edges of Gs+1. Because these edges are disjoint from each boundary edge except
for v5v6, they must have the same color as v5v6, but this is impossible, since v2v5

and v1v6 do not have a common point. ��

It may be difficult to determine the exact values of these Ramsey numbers, but
probably with some additional idea this argument can be extended to improve the
upper bound by a multiplicative factor instead of just by the additive constant 1. It is
also plausible that the general upper bound can be improved upon considerably.

Problem 8. Is there a constant α < 3/2 such that R(t)
c (M2k)< αtk holds for t ≥ t0,

k ≥ k0?

An additional motivation for the investigation of this question has been a problem
studied by Araujo et al.[1]. The convex segment disjointness graph Dn is obtained
from the complete convex geometric graph Gn; its vertices are the edges of Gn,
two such vertices being connected if the line segments they represent are disjoint.
Based on Theorem J, the lower bound χ(Dn) ≥ 2� n+1

3 � − 1 was obtained in
[1]. Any progress on Problem 7 would have yielded an improved lower bound.
However, Fabila-Monroy and Wood [13] recently proved the very strong lower

bound χ(Dn)≥ n−
√

2n+ 1
4 +

1
2 , somewhat reducing the interest in Problem 8.

5 Ramsey Multiplicity

Let G denote a simple graph without isolated vertices. The Ramsey multiplicity
RM(G) of G is the minimum number of monochromatic copies of G in any 2-
coloring of the edges of KR(G). The concept was introduced by Harary and Prins
in [19], who made the conjecture that R(G) is usually large and attains the smallest
possible value 1 if and only if G is a star on m vertices, where m = 2 or m > 1 is an
odd integer. That is, when a monochromatic copy of G must occur in any 2-coloring
of the edges of Kn, it should occur many times. For example, for the class of odd
cycles Cn, an exponential lower bound on f (n) = RM(Cn) was obtained by Rosta
and Surányi [31], and in fact it is known to be superexponential [26]:

e(
1
24−o(1))n logn < RM(Cn)< en logn.
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This concept can be introduced to the geometric graph Ramsey theory we investigate
in this chapter, for which we will use the notations RMc(G) and RMg(G). Apart from
trivial cases (like stars, for example), these multiplicities are expected to be much
smaller than RM(G). According to the Gerencsér–Gyárfás theorem and Theorem J,
we have Rg(M2n) = Rc(M2n) = R(M2n) = 3n− 1. It is an easy exercise to prove a
superexponential lower bound of the form ecn logn for RM(M2n), but the situation is
different in the geometric setting.

Observation L. RMg(M2n) ≤ RMc(M2n) ≤
(2n−1

n

)
< 4n holds for every positive

integer n.

Proof. Take a complete convex geometric graph on 3n− 1 vertices, which are
listed in clockwise order as v1,v2, . . . ,v3n−1. Color the edges of a complete
subgraph induced by the vertex set {vn+1, . . . ,v3n−1} blue, and all the remaining
edges red. Obviously, the graph does not contain M2n as a blue monochromatic
subgraph. On the other hand, every edge in a monochromatic red M2n must
have an endpoint in {v1,v2, . . . ,vn}, and all these endpoints must be different.
Consequently, the other endpoints must fall in the set {vn+1,vn+2, . . . ,v3n−1}.
Moreover, if {v1vi1 ,v2vi2 , . . . ,vnvin} is a noncrossing matching, then (i1, i2, . . . , in)
must be a strictly decreasing sequence, hence the bound. ��

We investigated several other natural candidates for a better bound, but we were
not able to come up with a construction that would yield a subexponential bound.
So we think that the following may be true.

Problem 9. Is there a constant α > 1 such that RMc(M2n) =Ω(αn)?

Probably the same is true for RMg(M2n). The family of paths is another nontrivial
example where the exact values of the (convex) geometric Ramsey numbers are
known, although they are essentially larger than the corresponding abstract Ramsey
numbers. Therefore, we feel that the following problem is not hopeless.

Problem 10. Find reasonable estimates for RMc(Pn).

6 Note Added in Proof

Problem 9 was settled by

Acknowledgements Part of this paper was written during the special semester on Discrete and
Computational Geometry held at the EPFL Lausanne, sponsored by the Centre Interfacultaire
Bernoulli and the Swiss National Science Foundation. This work was also partially supported by
the ESF EUROCORES programme EuroGIGA, CRP Graph Drawing, and Hungarian Scientific
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József Borbély, demonstrating that RMc(M2n) = 1.
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94–120 (1973)
31. V. Rosta, L. Surányi, A note on the Ramsey multiplicity of the circuit. Period. Math. Hungar.

7, 223–227 (1976)



Blockers for Noncrossing Spanning Trees
in Complete Geometric Graphs

Chaya Keller, Micha A. Perles, Eduardo Rivera-Campo,
and Virginia Urrutia-Galicia

Abstract In this chapter, we present a complete characterization of the smallest
sets that block all the simple spanning trees (SSTs) in a complete geometric graph.
We also show that if a subgraph is a blocker for all SSTs of diameter at most 4, then
it must block all simple spanning subgraphs and, in particular, all SSTs. For convex
geometric graphs, we obtain an even stronger result: Being a blocker for all SSTs of
diameter at most 3 is already sufficient for blocking all simple spanning subgraphs.

1 Introduction

A geometric graph is a graph whose vertices are points in general position in
the plane1 and whose edges are segments connecting pairs of vertices. Let G =
(V (G),E(G)) be a complete geometric graph and let F be a family of subgraphs
of G. We say that a subgraph B of G blocks F if it has at least one edge in common
with each member of F . We denote by B (F) the collection of all smallest (i.e.,
having the smallest possible number of edges) subgraphs of G that block F , and we
call its elements blockers of F .

1Formally, the assumption is that an edge never contains a vertex in its relative interior. In the case
of a complete geometric graph, which we consider in this chapter, this implies that the vertices are
in general position (i.e., that no three vertices lie on the same line).
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Fig. 1 A comb in a
nonconvex geometric graph
on 12 vertices

Blockers for several families of subgraphs were studied in previous papers.
For example, the set B(SPM) of blockers for the family of all simple (i.e.,
noncrossing) perfect matchings in a complete convex geometric graph of even
order was characterized in [5], and the family of corresponding co-blockers (i.e.,
B(B(SPM))) was characterized in [6]. The characterizations give rise to interesting
structures, such as classes of caterpillars [1, 2].

In this chapter, we study the set B (SST) of blockers for the family of simple
spanning trees (SSTs) of a complete geometric graph, and we give the following
characterization.

Definition 1.1. A simple spanning subgraph B of a complete geometric graph G is
a comb of G if

1. The intersection of B with the boundary of conv(G) is a simple path P. We call
this path the spine of B.

2. Each vertex in V (G)\P is connected by a unique edge to an interior vertex of P.
3. For each edge e of B, the line l(e) spanned by e does not cross any edge of B.2

Note that a comb B, regarded as an abstract tree, is a caterpillar and that the
derived tree is the path P with the first and last edges removed. An example of a
comb is shown in Fig. 1.

Theorem 1.2. A graph B is a blocker for the family of all simple spanning trees of
a complete geometric graph G if and only if B is either a star (i.e., the set of all
edges in G that emanate from a single vertex) or a comb of G.

We note that in the convex case, this characterization can be derived by
combining a result of Hernando [3] that characterizes those SSTs that meet all other
SSTs, with a result of Károlyi et al. [4] that shows that any 2-coloring of a complete
geometric graph contains a monochromatic SST. Theorem 1.2 was recently used
in [7] to show that if G is a complete geometric graph with n vertices in which

2Note that the line l(e) avoids all vertices of G except the endpoints of e, since V (G) is in general
position.
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exactly one vertex does not lie on the boundary of conv(G), and c is a coloring of
the edges of G with n(n−1)/2−n+1 colors, then G has a simple spanning tree all
of whose edges have different colors.
We also present several refinements of Theorem 1.2.

For a complete geometric graph G and for k ∈ N, denote by T≤k (G) the family
of all simple spanning trees of G with diameter at most k.

Theorem 1.3. Let B be a subgraph of a complete geometric graph G. If B ∈
B (T≤4 (G)), then B is either a star or a comb of G.

In the case of complete convex geometric graphs, we can replace diameter 4 by
diameter 3, as follows:

Theorem 1.4. Let B be a subgraph of a complete convex geometric graph G. If
B ∈ B (T≤3 (G)), then B is a comb of G.

The two latter results improve Theorem 1.2 by showing that being a blocker for
SSTs of diameter at most 4 (or even at most 3 in the convex case) is sufficient for
being a blocker for all SSTs. These results are tight in the sense that T≤4 (G) cannot
be replaced by T≤3 (G) in Theorem 1.3, as we show by an example in Sect. 5, and
T≤3 (G) cannot be replaced by T≤2 (G) in Theorem 1.4, since any spanning subgraph
blocks all trees in T≤2 (G) but not all SSTs of G.

Finally, the following result improves Theorem 1.2 in the opposite direction.
We say that H ⊂ G is a simple spanning subgraph (SSS) of G if H is noncrossing
and has no isolated vertices; i.e., every vertex of G is incident to an edge of H.

Theorem 1.5. Let B be a subgraph of a complete geometric graph G. If B is a star
or a comb of G, then B blocks all simple spanning subgraphs of G.

The chapter is organized as follows: In Sect. 2, we give precise definitions and
notations used throughout the chapter. In Sect. 3, we prove properties of blockers
for T≤3 (G) common to the general case and the convex case. In Sects. 4 and 5, we
prove Theorems 1.4 and 1.3, respectively; and in Sect. 6, we complete the proof of
Theorem 1.2 and prove Theorem 1.5 by showing that B ⊂ B (SSS) for any complete
geometric graph G, where B denotes the family of all combs of G.

2 Definitions and Notations

In this section, we present some definitions and notations used in the chapter.

Geometric graphs. Throughout the chapter, G is a complete geometric graph on
n vertices. The sets of vertices and edges of G are denoted by V (G) and E(G),
respectively. The convex hull of V (G) is denoted by conv(G). Vertices in V (G) and
edges in E(G) that lie on the boundary of conv(G) are called boundary vertices and
boundary edges of G, respectively. A geometric graph is simple if it does not contain
a pair of crossing edges. For more information on geometric graphs, the reader is
referred to [8].
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Caterpillars. Throughout the chapter, T is a tree. A tree T is a caterpillar if the
derived graph T ′ (i.e., the graph obtained from T by removing all leaves and their
incident leaf edges) is a path (or is empty). A longest path in a caterpillar T is called
a spine of T . (Note that any edge of T either belongs to every spine or is a leaf edge
of T .) If the diameter of T is 3, then T contains an edge [x,y] such that each vertex
in V (T ) is at distance at most 1 from either x or y. Such an edge [x,y] is called the
central edge of T . (Note that any tree of diameter 3 is a caterpillar.)

General notations in the plane. Throughout the chapter, l denotes a line. Each
line l partitions the plane into open half-planes. We denote them by l+ and l− and
call them the sides of the line. The unique line that contains two points a,b ∈ R2 is
denoted by l(a,b). The complement of a set A in R2, i.e., the set R2 \A, is denoted
by Ac.

3 Some Properties of Blockers for SSTs of Diameter
at Most 3

In this section, we establish several properties of blockers for SSTs of diameter at
most 3. First, we show that the number of edges in these blockers is n−1 (where n is
the number of vertices in G), and then we show that all such blockers are caterpillars.

3.1 The Size of the Blockers

Proposition 3.1. Let G be a complete geometric graph on n vertices. Then the size
(i.e., number of edges) of the blockers for SSTs of diameter at most 3 in G is n− 1.

As any star blocks all SSTs of diameter at most 3 (and actually even all spanning
subgraphs), the size of the blockers is at most n− 1. The other inequality is a
consequence of the following unpublished result of Perles (unpublished, 1987).

Theorem 3.2. Let G1 be a geometric graph on n vertices. If |E(G1)| ≤ n− 2, then
G1 includes an SST of diameter at most 3. (G1 denotes the graph complementary to
G1, on the same set of vertices.)

Theorem 3.2 implies that a set of at most n− 2 edges cannot block all the SSTs
of diameter at most 3, since its complement includes such an SST. Thus, the size of
blockers is at least n−1, which completes the proof of Proposition 3.1. For the sake
of completeness, we present here the proof of Theorem 3.2.

Proof. Since |E(G1)| ≤ n− 2, the following two statements hold:

1. G1 has a vertex of degree 0 or 1.
2. G1 is not connected.
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b

yx

Fig. 2 An SST of diameter 3 that avoids G1

Since the number of edges in G1 is smaller than the number of vertices, at least
one connected component of G1 is a tree. Denote one such component by A. If A
is a single vertex x′, then G1 contains the star centered at x′, which is an SST of
diameter 2 (assuming n≥ 2). Otherwise, A has a leaf x. Denote the (only) neighbor
of x in A by y.

Consider the ray �xy, and turn it around x until it hits a vertex b �∈ A for the first
time. [There must be a vertex b �∈ A, since G1 is not connected, and thus A �=V (G).
Moreover, b is unique, since a ray emanating from x cannot contain two other
vertices of G.] Denote by H the closed convex cone bounded by the rays �xy and �xb.

Let T be the subgraph of G whose edges are

{[x,z] : z ∈V (G)∩Hc}∪{[b,w] : w ∈ (V (G)\ {b})∩H},

as illustrated in Fig. 2. It is clear by the construction that T is an SST of diameter
3 (with central edge [x,b]), or of diameter 2 (if V (G) ⊂ H). We claim that T ⊂ G1.
Indeed, the edges [x,z], where z ∈ Hc ∩V (G) are all in G1, as the only edge in G1

that contains x is [x,y]. The edges [b,w], where w ∈ H ∩ (V (G) \ {b}), are also in
G1, since the vertices {w : w ∈ (V (G) \ {b})∩H} belong to A, whereas b belongs
to another connected component of G1. Therefore, T ⊂ G1, which completes the
proof.

We note that the proof of Theorem 3.2 implies a stronger statement.

Proposition 3.3. Let G be a complete geometric graph on n vertices. Then the
blockers for SSTs of diameter at most 3 in G are spanning trees.

Proof. Let B be a blocker for SSTs of diameter at most 3 in G. By Proposition 3.1,
|E(B)| = n− 1. It is clear that B is a spanning subgraph of G without isolated
vertices, since otherwise it avoids a star, which is an SST of diameter 2. If B is
not a tree, then the two statements at the beginning of the proof of Theorem 3.2
clearly hold (i.e., B has a vertex of degree 0 or 1 and is not connected). Thus, by the
proof of Theorem 3.2, B̄ contains an SST of diameter at most 3, a contradiction. ��
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Fig. 3 An illustration of the proof of Observation 3.4. The edges of B are depicted by heavy lines,
and the edges of T by dotted lines

3.2 The Blockers Are Caterpillars

In order to further characterize the blockers, we use two observations.

Observation 3.4. Let B be a subgraph of G. Assume there exist two vertices a,b ∈
V (G) and a line l such that

1. [a,b] �∈ E(B), and
2. a and all neighbors of b in B lie on one (open) side l+ of l, while b and all

neighbors of a in B lie on the other (open) side l− of l.

Then B �∈ B(T ≤3).

Proof. If conditions (1) and (2) hold, then B avoids the following SST, as illustrated
in Fig. 3: T = (V (G),E(T )), where

E(T ) = {[a,b]}∪{[a,x] : x∈V (G)∩(l+∪ l),x �= a}∪{[b,y] : y∈V (G)∩ l−,y �= b}.

It is clear that diam(T )≤ 3 [as the distance (in T ) of all vertices from the edge [a,b]
is at most 1], that T is crossing-free, and that T avoids B. The assertion follows.

Remark 3.5. It is clear that the observation holds also if a and b have neighbors on
l, as long as they do not have a common neighbor on l.

Corollary 3.6. Assume B ∈ B(T ≤3), and let a,b be two leaves of B. Let the
corresponding leaf edges be [a,c] and [b,d]. If a,b,c,d are mutually distinct, then
the points a,b,d,c (in this order) are the vertices of a convex quadrilateral.

Proof. Recall that a,b,c,d are vertices of G and therefore are in general position.
If they are not in convex position, then the segments [a,d] and [b,c] are disjoint.
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c
d

a

b

Fig. 4 An illustration to the
proof of Observation 3.7

The same holds if they form a convex quadrilateral in a different order, say a,c,b,d
or a,b,c,d. If [a,d]∩ [b,c] = /0, then these two segments can be separated by a line l.
This means that the conditions of Observation 3.4 hold for a,b, and l, and thus
B �∈ B(T ≤3), a contradiction. ��

Observation 3.7. Suppose B ∈ B(T ≤3). Let a be a leaf of B with leaf edge [a,b].
Let c ∈ V (G)∩ l(a,b)+ be the vertex for which the angle ∠abc is maximal [among
all vertices in l(a,b)+]. Then [b,c] ∈ B.

Proof. If [b,c] �∈ B, then B avoids the following SST:

T = {[a,x] : x ∈V (G)\ {a,b}}∪{[b,c]}.

It is clear that T is a spanning tree of diameter at most 3. T avoids B since the only
edge in B that emanates from a is [a,b], and since [b,c] �∈ B. Finally, T is simple,
since if two edges in T cross, then these must be edges of the form [a,d] and [b,c]
for some d ∈ V (G), and in such case, ∠abd > ∠abc (see Fig. 4), contradicting the
choice of c. Thus, B �∈ B(T ≤3), a contradiction. ��

Clearly, the same holds for the vertex c ∈ V (G)∩ l(a,b)− for which the angle
∠abc is maximal among all vertices in l(a,b)−.

If the leaf edge [a,b] lies on the boundary of conv(G), then the line l(a,b)
supports V (G), and thus only one of the sides of l(a,b) [w.l.o.g. l(a,b)+)] contains
vertices of G. The vertex c ∈V (G)∩ l(a,b)+ for which the angle ∠abc is maximal
is the vertex that follows b on the boundary of conv(G), and thus [b,c] is a boundary
edge.

If [a,b] is not a boundary edge, then there exist two vertices c ∈V (G)∩ l(a,b)+

and c′ ∈ V (G)∩ l(a,b)− such that the angles ∠abc,∠abc′ are maximal [each with
respect to its side of l(a,b)], and [b,c], [b,c′] ∈ B. This observation is used in the
proof of the theorem below.

Now we are ready to present the main result of this section.
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Fig. 5 An illustration to the proof of Theorem 3.8

Theorem 3.8. Let G be a complete geometric graph. Then any blocker for SSTs of
diameter at most 3 in G is either a star or a caterpillar with a spine whose terminal
edges lie on the boundary of conv(G).3

Proof. Suppose B ∈ B(T ≤3). By Proposition 3.3, B is a tree. If B is a star, we are
done. Otherwise, the derived graph B′ is a tree with more than one vertex, and thus
it has at least two leaves. Let a,b be distinct leaves of B′. By Corollary 3.6 (with
a,b playing the role of c,d), all the leaf edges of B that emanate from a and b lie
on the same side of the line l(a,b), w.l.o.g., l(a,b)+ (see Fig. 5). We claim that the
extremal leaf edges emanating from a and b, denoted in the figure by [a, f ] and [b,g],
are boundary edges.

Assume on the contrary that [a, f ] is not a boundary edge. As described above,
it follows from Observation 3.7 that if c ∈ l(a, f )+ with ∠ f ac maximal, and
e ∈ l(a, f )− with ∠ f ae maximal, then [a,c], [a,e] ∈ B. [Here l(a, f )+ is the side
of l(a, f ) that contains b.] We have c �∈ l(a,b)+, as otherwise ∠ f ac < ∠ f ab,
contradicting the choice of c. Thus, [a,c] is not a leaf edge [since all the leaf edges
that emanate from a lie in l(a,b)+]. On the other hand, since a is a leaf of B′, all the
edges in B that emanate from a except one are leaf edges, and thus, [a,e] is a leaf
edge. Therefore, e ∈ l(a,b)+ (and not as shown in the figure), which contradicts the
assumption that [a, f ] is the extremal (i.e., the leftmost) leaf edge emanating from a.

So far we have shown that any leaf of B′ is contained in a leaf edge of B that is
a boundary edge. In order to complete the proof, it suffices to show that B′ has only
two leaves, which will imply that B′ is a path, and hence B is a caterpillar. As the
terminal edges of the spine of a caterpillar B emanate from the two leaves of B′, it
will follow that these edges can be chosen to be boundary edges of G, completing
the proof of the theorem.

Assume on the contrary that B′ has at least three leaves, say a,b, and c. By the
previous steps of the proof, B has leaf edges [a,d], [b,e], and [c, f ], which all lie on

3Note that usually the term “terminal edges of the spine” of a caterpillar is not defined uniquely.
Here and in the sequel, we mean that there exists a spine whose terminal edges are boundary edges,
and in all proofs where we consider the spine of B, we refer to a particular spine whose terminal
edges are boundary edges.
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Fig. 6 Three leaf edges on
the boundary of conv(G)

the boundary of conv(G). By Corollary 3.6, these edges must satisfy the following
three conditions:

• d and e lie on the same side of l(a,b).
• d and f lie on the same side of l(a,c).
• e and f lie on the same side of l(b,c).

But if we somehow orient the boundary of conv(G) (say, counterclockwise), then

at least two of the directed edges
−→
ad,
−→
be, and

−→
c f point the same way (both forward

or both backward, as in Fig. 6), and thus fail the condition above. This completes
the proof of the theorem. ��

4 The Convex Case: Proof of Theorem 1.4

In this section, we assume in addition that G is convex, i.e., that the vertices of G
are in convex position in the plane. By Theorem 3.8, a blocker for SSTs of diameter
at most 3 in G is a caterpillar, and the terminal edges of its spine lie on the boundary
of conv(G). We wish to show that the whole spine of B lies on the boundary of
conv(G). This is clear when B is a star. Assume, therefore, that B is not a star.
Denote the terminal edges by [a,a′] and [b′,b], where a and b are the leaves, and
a′ �= b′, as shown in Fig. 7. [Note that by Corollary 3.6, a and b lie on the same side
of the line l(a′,b′).] Let α and β denote the two closed arcs with endpoints a,b on
the boundary of conv(G), as shown in the figure.

Claim 4.1. If c is a leaf of B, then c ∈ β .

Proof. Assume, w.l.o.g., that c �= a and c �= b. Denote the leaf edge of B that
emanates from c by [c,c′]. By Corollary 3.6, the following two conditions hold:

• Either a′ = c′ or a and c lie on the same side of l(a′,c′).
• Either b′ = c′ or b and c lie on the same side of l(b′,c′).

If c ∈ α (as in the figure), then the two conditions clearly contradict each other.
Hence, c ∈ β , as claimed. ��

Now we are ready to prove the main result of this section.
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Fig. 8 An illustration of the
proof of Theorem 4.2

Theorem 4.2. Any blocker for SSTs of diameter at most 3 in a complete convex
geometric graph G is a comb of G.

Proof. Following the notations of Fig. 7, denote the vertices of G on the arc α
by a = a0,a′ = a1,a2,a3, . . . ,ak = b′,ak+1 = b, as shown in Fig. 8. Since any
vertex of a caterpillar that does not belong to its spine is a leaf, it follows from
Claim 4.1 that all the vertices a0,a1, . . . ,ak+1 belong to the spine of B. Let the spine
of B be 〈d0,d1, . . . ,dl ,dl+1〉, where d0 = a0 = a, d1 = a1 = a′, dl = ak = b′, and
dl+1 = ak+1 = b. If the spine of B is not 〈a0,a1, . . . ,ak,ak+1〉, then there is a first
index ν , 1 ≤ ν ≤ l− 1, such that either dν+1 �∈ α , or dν+1 ∈ α , but dν+1 precedes
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dν on α . Assume dν = ai, 0 < i < k. Let l be a line that crosses the segments
[ai−1,ai] and [ak,b] (see Fig. 8). On one side of l (call it l−), we have ai and the
only neighbor of b in B, i.e., ak. On the other side l+ of l, we have b, all the vertices
a0,a1, . . . ,ai−1, and the whole path β . The only neighbors of ai(= dν) in B are
its predecessor dν−1 (which lies in {a0,a1, . . . ,ai−1}), its successor dν+1 (which lies
either in {a0,a1, . . . ,ai−1} or in β ), and possibly some leaves (which all lie in β ).
Thus, all neighbors of ai in B lie in l+. Hence, the conditions of Observation 3.4
hold for dν = ai,b and the line l, and thus, by the observation, B avoids an SST of
diameter at most 3, a contradiction.

Therefore, the spine of B is the boundary path 〈a0,a1, . . . ,ak,b〉. Finally, B is
simple, since the only edges in B that can cross are the leaf edges, and these edges
do not cross, again by Corollary 3.6. This completes the proof. ��

5 The General Case: Proof of Theorem 1.3

In this section, we consider again general geometric graphs. It turns out that in this
case, blocking SSTs of diameter at most 3 is not sufficient even for blocking SSTs
of diameter 4, as we demonstrate by an example at the end of this section. Thus,
we strengthen the assumption and assume now that B is a blocker for all SSTs of
diameter at most 4. This allows us to use the following observation.

Lemma 5.1. Let B be a blocker for SSTs of diameter at most 4 in G. Let b be a
boundary vertex of G, and let [a,b] and [b,c] be the two boundary edges of G that
contain b. If at least one of these edges is not in B, then b is a leaf of B.

Proof. Clearly, the degree of b in B is at least 1, as otherwise, B avoids the star
centered at b. Assume, on the contrary, that the degree of b in B is at least 2 and that
(w.l.o.g.) [a,b] �∈ B. Let G1 be the graph obtained from G by omitting the vertex b
and all edges that contain it, and let B1 = G1∩B. By the assumption, B1 is a graph
on n− 1 vertices [where n = |V (G)|] that has at most n− 3 edges. Therefore, by
Theorem 3.2, B1 avoids an SST T1 of diameter at most 3 in G1. Since [a,b] is a
boundary edge of G, it does not cross any edge of T1, and thus T = T1∪{[a,b]} is
an SST of G of diameter at most 4 that avoids B, a contradiction. ��

Now we are ready to prove the main result of this section.

Theorem 5.2. Let G be a complete geometric graph, and let B be a blocker for
SSTs of diameter at most 4 in G. Then B is either a star or a comb of G.

Proof. Assume B is not a star. By Theorem 3.8, B is a caterpillar, and it has a
spine 〈b0,b1, . . . ,bk+1〉 (k ≥ 2) whose extreme edges [b0,b1] and [bk,bk+1] lie on
the boundary of conv(G). We would like to show that all the edges [bi,bi+1] are
boundary edges of G. Assume on the contrary that this is not true, and let i, 0< i< k,
be the smallest index such that [bi,bi+1] is not a boundary edge. By the assumption,
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a5

a6

a7
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a2Fig. 9 An example of a
subgraph B of a complete
geometric graph G that
blocks all SSTs of diameter at
most 3 but avoids an SST T
of diameter 4. The full lines
represent edges of B, and the
dotted lines represent edges
of T

[bi−1,bi] is a boundary edge of G. Denote the other boundary edge that contains
bi by [bi,c]. We claim that [bi,c] �∈ B. Indeed, as the spine edge [bi,bi+1] is not a
boundary edge, if we had [bi,c] ∈ B, then this edge would be a leaf edge of B.
But this is impossible, since by the proof of Theorem 3.8, B cannot contain three
boundary leaf edges. Therefore, bi satisfies the condition of Lemma 5.1, and thus,
by that lemma, bi is a leaf of B, a contradiction.

So far, we have proved that the spine of B lies on the boundary of conv(G).
Consequently, if two edges of B cross, then both must be leaf edges of B. However,
a leaf edge of G cannot cross another leaf edge, by Corollary 3.6. Thus, B is simple.
Finally, if an edge of G crosses the line spanned by another edge, then there are two
possibilities:

1. Both edges are leaf edges. In this case, the convex hull of the union of these two
leaf edges is a triangle and not a quadrilateral, contrary to Corollary 3.6.

2. One of the edges is a leaf edge [bi,d], and the line l(bi,d) crosses the boundary
edge [b j,b j+1], for some i, j. Assume, w.l.o.g., that k > j > i (and thus, in
particular, i < k− 1). Consider the edges [bi,d] and [bk,bk+1]. Both are leaf
edges of B, and they lie on different sides of the line l(bi,bk). This contradicts
Corollary 3.6, since B ∈ B(T ≤4)⊂ B(T ≤3).

This completes the proof of the theorem. ��

5.1 Blocking SSTs of Diameter at Most 3 Is Insufficient

The example presented in Fig. 9 shows that blocking SSTs of diameter at most 3
is not sufficient even for blocking SSTs of diameter 4. In the example, it is clear
that T (whose edges are represented by dotted lines) is an SST of diameter 4 and
that the path B (whose edges are represented by full lines) avoids it. It is also clear
that B blocks any SST of diameter 2, since such SSTs are stars, and B is a spanning
subgraph of G. In order to prove that B meets all SSTs of diameter 3, we show that
no edge in E(G) can be the central edge of an SST of diameter 3 that avoids B. We
do this using the following observation.
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Lemma 5.3. Suppose [x,y] ∈ E(G)\E(B). If there exist z,w ∈V (G) such that

1. The points x,y,z,w are distinct and in convex position,
2. [x,w], [y,z] ∈ E(B), and
3. The segments [x,y] and [z,w] do not cross, then [x,y] cannot be the central edge

in an SST of diameter 3 that avoids B.

Proof. Assume, on the contrary, that [x,y] is the central edge of such an SST T .
Then z and w must be at distance 1 in T from [x,y]. As [x,w], [y,z] ∈ E(B) and T
avoids B, this can happen only if [x,z], [y,w] ∈ E(T ). However, since x,y,z,w are in
convex position and the pairs of edges {[x,y], [z,w]} and {[x,w], [y,z]} do not cross,
the pair {[x,z], [y,w]} must cross, contradicting the assumption that T is simple. ��

It can be seen, by checking all pairs (i, j) with 1≤ i < j ≤ 7, that in the example,
no edge [ai,a j] can be the central edge of an SST T of diameter 3 that avoids B,
since for any edge [ai,a j], at least one of the following holds:

1. [ai,a j] ∈ E(B). This happens when j = i+ 1.
2. There exists a k such that [ai,ak], [a j,ak] ∈ E(B) (and thus, ak cannot be at

distance 1 in T from [ai,a j]). This happens when j = i+ 2.
3. The vertices x = ai,y = a j,z = a j+1, and w = ai−1 satisfy the conditions of

Lemma 5.3. This happens when 1 < i and i+3≤ j < 7. Note that in this case we
never obtain {3,4,5} ⊂ {i− 1, i, j, j+ 1}.

4. The vertices x = ai,y = a j,z = a j−1, and w = ai+1 satisfy the conditions of
Lemma 5.3. This happens when 1≤ i< i+3≤ j≤ 7, and i= 1 or j = 7 (or both).

Therefore, B blocks all SSTs of diameter 3, as asserted.
We note that the example can be enlarged arbitrarily: The edges [a1,a2] and [a6,a7]
can be replaced by longer convex polygonal arcs.

6 The Converse Direction

In this section, we prove Theorem 1.5, which is an improved variant of the converse
direction of Theorem 1.2.

Theorem 6.1. Let G be a complete geometric graph, and let B ⊂ G be a comb in
G. Then B meets every simple spanning subgraph of G.

Proof. Assume, on the contrary, that H is a simple spanning subgraph of G such
that E(H)∩E(B) = /0. Denote the spine of B by 〈a−1,a0,a1, . . . ,ak,ak+1〉. First, we
show that there is no loss of generality in assuming that H does not contain edges
of the form [ai,a j], where −1≤ i, j ≤ k+ 1 (except, possibly, [a−1,ak+1]).

Assume that H contains such edges, and let [ai0 ,a j0 ] ∈H, where i0 < j0, be such
an edge that minimizes the difference j− i. Consider the subgraph of G defined by

G1 = G∩ conv({ai0 ,ai0+1, . . . ,a j0}).
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proof of Theorem 6.1. The
edges of B are represented by
full lines, and the edges of H
are represented by dotted
lines

Note that H does not contain edges that connect vertices in V (G1)\ {ai0 ,a j0} with
vertices in V (G)\V (G1), as such edges would cross the edge [ai0 ,a j0 ], contradicting
the simplicity of H. Thus, the restriction of H to conv({ai0 ,ai0+1, . . . ,a j0}), i.e.,
H1 = H ∩G1, is a simple spanning subgraph of G1. Similarly, it is clear that B1 =
B∩G1 is a simple spanning caterpillar of G1 such that the line spanned by an edge
e of B1 never crosses another edge of B1. Finally, H1 does not contain edges of
the form [ai,a j] for i0 ≤ i, j ≤ j0 (except for [ai0 ,a j0 ]) by the minimality of the edge
[ai0 ,a j0 ]. Thus, by reduction to G1,B1, and H1, we can assume w.l.o.g. that H does
not contain edges of the form [ai,a j] (except, possibly, for [a−1,ak+1]).

Now, we define a function f : {0,1, . . . ,k} → {0,1, . . . ,k} by the following
procedure, performed for each 0≤ i≤ k.

1. Consider the vertex ai. Since H is a spanning subgraph, there exist edges in E(H)
that emanate from ai. Pick one such edge [ai,y]. Note that y �= al for −1 ≤ l ≤
k+ 1, since by assumption, H does not contain edges of the form [ai,al ].

2. Since y �= al for all −1 ≤ l ≤ k+ 1, y is a leaf of B. Hence, the only edge of B
that emanates from y connects it to an interior vertex of the spine of B, i.e., is of
the form [y,a j] for some 0≤ j ≤ k.

3. Define f (i) = j, where j is determined by the two previous steps.

Note that we indeed have 0 ≤ f (i) ≤ k for all i, since a−1 and ak+1 are leaves of
B, and thus are connected only to a0 and ak, respectively. Also, note that f (i) �= i for
all i, since otherwise B and H would share the edge [ai,y], for some y.

Consequently, we have f (0) > 0 and f (k) < k, and thus, there exists an i, 0 ≤
i≤ k, such that j = f (i) > i and h = f (i+ 1)< i+ 1. Denote the vertices that were
used in the generation of f (i) and of f (i+ 1) by y and x, respectively, as illustrated
in Fig. 10. We claim that the edges [ai,y] and [ai+1,x] cross, which contradicts the
assumption that H is simple.

In order to prove this claim, consider the following polygon:

P = 〈x,ah,ah+1, . . . ,ai−1,ai,ai+1, . . . ,a j−1,a j,y,x〉.
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(Note that the highest possible value of h is i. If h = i, then there are no edges
between ah and ai; similarly for ai+1 and a j.) We claim that the path P0 =
〈x,ah, . . . ,ai,ai+1, . . . ,a j,y〉 lies on the boundary of conv(P). Indeed, all the edges
of P0 except for [x,ah] and [a j,y] lie on the boundary of conv(G), so they clearly
support P. The edge [ah,x] also supports P, since the line l(ah,x) meets the path
〈ah, . . . ,ai,ai+1, . . . ,a j,y〉 only at its endpoint ah. For similar reasons, [a j,y] must
also support P. It follows that the path P0 is part of the boundary of conv(P).

Finally, ai+1 lies on the boundary of conv(P) strictly between ai and y, and ai

lies on the boundary of conv(P) strictly between ai+1 and x. This implies that the
two edges [ai,y] and [ai+1,x] must cross. This contradicts the assumption that H is
simple, and thus completes the proof of the theorem. ��
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4. G. Károlyi, J. Pach, G. Tóth, Ramsey-type results for geometric graphs I. Discrete Comput.
Geom. 18, 247–255 (1997)

5. C. Keller, M.A. Perles, On the smallest sets blocking simple perfect matchings in a convex
geometric graph. Israel J. Math. 187, 465–484 (2012)

6. C. Keller, M.A. Perles, Characterization of co-blockers for simple perfect matchings in a convex
geometric graph, submitted. Available online at: http://arxiv.org/abs/1011.5883.

7. J.J. Montellano-Ballesteros, E. Rivera-Campo, On the heterochromatic number of hypergraphs
associated to geometric graphs and to matroids, to appear in Graphs and Combinatorics.
DOI: 10.1007/s00373-012-1190-y

8. J. Pach, in Geometric Graph Theory, ed. by J.E. Goodman, J. O’Rourke. Handbook of Discrete
and Computational Geometry, 2nd edn. Chapter 10 (CRC Press, Boca Raton, FL, 2004),
pp. 219–238

http://www.tdx.cat/TDX-0402108-120036/
http://www.tdx.cat/TDX-0402108-120036/
http://arxiv.org/abs/1011.5883.


Coloring Clean and K4-Free Circle Graphs

Alexandr V. Kostochka and Kevin G. Milans

Abstract A circle graph is the intersection graph of chords drawn in a circle. The
best-known general upper bound on the chromatic number of circle graphs with
clique number k is 50 · 2k. We prove a stronger bound of 2k− 1 for graphs in a
simpler subclass of circle graphs, called clean graphs. Based on this result, we prove
that the chromatic number of every circle graph with clique number at most 3 is at
most 38.

1 Introduction

Recall that the chromatic number of a graph G, denoted χ(G), is the minimum size
of a partition of V (G) into independent sets. A clique is a set of pairwise adjacent
vertices, and the clique number of G, denotedω(G), is the maximum size of a clique
in G.

Vertices in a clique must receive distinct colors, so χ(G)≥ω(G) for every graph
G. In general, χ(G) cannot be bounded above by any function of ω(G). Indeed,
there are triangle-free graphs with arbitrarily large chromatic number [4, 18].

When graphs have additional structure, it may be possible to bound the chromatic
number in terms of the clique number. A family of graphs G is χ-bounded if
there is a function f such that χ(G) ≤ f (ω(G)) for each G ∈ G. Some families
of intersection graphs of geometric objects have been shown to be χ-bounded
(see e.g. [8,11,12]). Recall that the intersection graph of a family of sets has a vertex

A.V. Kostochka (�)
Department of Mathematics, University of Illinois at Urbana-Champaign and Sobolev
Institute of Mathematics, Novosibirsk, Russia
e-mail: kostochk@math.uiuc.edu

K.G. Milans
Department of Mathematics, University of South Carolina, Columbia, South Carolina, USA
e-mail: milans@math.sc.edu

J. Pach (ed.), Thirty Essays on Geometric Graph Theory,
DOI 10.1007/978-1-4614-0110-0 21,
© Springer Science+Business Media New York 2013

399



400 A.V. Kostochka and K.G. Milans

for each set in the family, with vertices adjacent if and only if the corresponding sets
intersect. Possibly the simplest example is the class I of interval graphs, i.e., the
class of intersection graphs of intervals in a line. Interval graphs are perfect graphs;
i.e., χ(G) = ω(G) for every interval graph G. Another interesting family is the
family C of circle graphs, that is, the intersection graphs of families of chords of a
circle. This family is more complicated than I: Although the problem of recognition
of a circle graph is polynomial (Bouchet [2]) and so are the problems of finding
maximum cliques and maximum independent sets in circle graphs (Gavril [7, 8]),
the problems of finding the chromatic number (Garey et al. [6]) and clique covering
number (Keil and Stewart [14]) are NP-complete. Circle graphs naturally arise in a
number of combinatorial problems: from sorting problems to studying planar graphs
to continuous fractions (see, e.g., [3, 5, 8]).

A graph G is a circle graph if and only if it is an overlap graph: The vertices of
such a graph are closed intervals in the real line, and two intervals are adjacent if
they overlap, that is, intersect and neither of them contains the other. To see this,
observe that given a family of chords on a circle representing a circle graph, cutting
the circle at a point and unrolling gives an overlap representation for the same graph.

The above-mentioned complexity results on circle graphs make interesting
upper bounds on the chromatic number of circle graphs in terms of their clique
number, especially if the proofs yield polynomial-time algorithms for corresponding
colorings. There was a series of results in this direction. Karapetyan [13] showed
that χ(G) ≤ 8 when G is a triangle-free circle graph. Gyárfás [9, 10] proved that
χ(G)≤ k22k(2k−2) when G is a circle graph with clique number k. The bound was
improved in [17] to χ(G)≤ k(k+2)2k, and in [16] to χ(G)≤ 50 ·2k−32k−64. The
best-known lower bound for the maximum chromatic number of circle graphs with
clique number k is only 0.5k(lnk− 2) [15, 17]. The exponential gap has remained
open for 25 years.

Exact results are known only for circle graphs with clique number at most 2.
Kostochka [17] showed that χ(G) ≤ 5 for every such graph G, and Ageev [1]
constructed a triangle-free circle graph with chromatic number 5.

The purpose of this chapter is twofold. First, we consider a simple subclass of
circle graphs, the clean graphs. A family of intervals X is clean if no interval is
contained in the intersection of two overlapping intervals in X . A circle graph is
clean if it is the overlap graph of a clean family of intervals. Since the structure of
clean graphs is much simpler than that of general circle graphs, we are able to prove
a much better bound for clean graphs.

Theorem 1.1. For every clean circle graph G with clique number k, χ(G)≤ 2k−1.

Moreover, the proof yields a polynomial-time algorithm that, for each clean circle
graph G with clique number k, finds a (2k− 1)-coloring of a special type, a good
coloring that will be defined later. On the other hand, we show that for every k,
there exists a clean circle graph G with clique number k that needs 2k−1 colors for
a good coloring.
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We use Theorem 1.1 to derive an upper bound on the chromatic number of K4-
free circle graphs. For such graphs G, the general bound in [17] implies that χ(G)≤
120. Our second main results follows.

Theorem 1.2. For every circle graph G with clique number at most 3, χ(G)≤ 38.

It can be checked that the proof of Theorem 1.2 yields a polynomial-time
algorithm for coloring K4-free circle graphs using at most 38 colors. In the next
section, we introduce notation and basic concepts. In Sect. 3, we prove Theorem 1.1,
and in the last section, we prove Theorem 1.2.

2 Preliminaries

Recall that a circle graph is the intersection graph of a set of chords of a circle.
Before proceeding, we clarify a minor technical point. Suppose a set of chords share
a common endpoint p on the circle but are otherwise internally disjoint. Should
these chords be considered pairwise intersecting or pairwise disjoint? Fortunately,
the answer does not matter: Without affecting other intersection relationships, one
can spread the common endpoints over a small portion of the circle near p so that
the chords either intersect or are disjoint, as desired. Therefore, we may (and will)
assume that the endpoints of all chords are distinct.

By the discussion in the previous section, for every circle graph F , there exists an
overlap representation of F , that is, a family X of intervals in the real line such that
F is the overlap graph of X . In this case, we also will write that F = G(X). Since
the endpoints of chords in a circle representation are distinct, the intervals in X have
distinct endpoints.

Definition 2.1. An interval [a,b] is a left-neighbor of [c,d] if a< c < b < d. We use
LX(u) to denote the set of all left-neighbors of an interval u in a family X , or
simply L(u) when X is clear from the context. Similarly, [a,b] is a right-neighbor
of [c,d] if c < a < d < b, and RX(u) denotes the set of all right-neighbors of u. We
also define the closed left- and right-neighborhoods via LX (u) = LX (u)∪{u} and
RX(u) = RX (u)∪{u}. For each interval u, we use l(u) to denote the left endpoint of
u and r(u) to denote the right endpoint of u.

The inclusion order is defined by containment. The endpoint order is defined
by putting x ≤ y if and only if l(x) ≤ l(y) and r(x) ≤ r(y). Note that x ≤ y in the
endpoint order if and only if x comes before y in both the left-endpoint order and the
right-endpoint order. Note that any two distinct intervals are comparable in exactly
one of the inclusion order and the endpoint order.

Definition 2.2. If S is a set of intervals, then the center of S is the intersection of
the intervals in S. A family of intervals X is clean if no interval is contained in the
intersection of two overlapping intervals. A circle graph is clean if it is the overlap
graph of a clean family of intervals.
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A set S of vertices in a graph G is a cutset if G− S is disconnected. When S is a
cutset in G, the graphs induced by the union of S and the vertices of a component
of G−S are S-lobes. To color G, it suffices to color the S-lobes so that the colorings
agree on S. To ensure that S is colored in the same way in all S-lobes, our inductive
hypothesis prescribes the way in which S is colored.

Definition 2.3. A subset A of a poset P is a downset if y ∈ A whenever y ≤ x for
some x∈ A, and A is an upset if y∈A whenever y≥ x for some x∈ A. For an element
z ∈ P, we use D[z] to denote the downset {y ∈ P : y≤ z} and D(z) to denote the
downset {y ∈ P : y < z}. Similarly, U [z] denotes the upset {y ∈ P : y≥ z} and U(z)
denotes the upset {y ∈ P : y > z}. The height of an element x ∈ X is the size of a
maximum chain in D[x] and the depth of x is the size of a maximum chain in U [x].
When X is a family of intervals, we define hX(x) [or simply h(x) when X is clear
from the context] to be the height of x in the endpoint order on X . The canonical
coloring of a family X of intervals assigns h(x) to each interval x ∈ X . A coloring
f of a family X of intervals is canonical, and we say that f is canonical on X if the
color classes of f form the same partition of X as the color classes of the canonical
coloring.

Note that the canonical coloring is a proper coloring; if x and y overlap, then they
are comparable in the endpoint order, and therefore h(x) �= h(y).

3 Clean Circle Graphs

Definition 3.1. A coloring f of a family of intervals X is good if, for each w ∈ X ,
f is canonical on R(w).

Note that if f is a good coloring of X , then it follows that f is a proper coloring.
While some families of intervals do not admit good colorings with any number of
colors, clean families have good colorings. The goal of this section is to prove the
following refinement of Theorem 1.1.

Theorem 3.2. If X is a clean family of intervals with clique number k ≥ 1, then
there is a good coloring f of G(X) using at most 2k− 1 colors.

Proposition 3.3. In a clean family of intervals, let x be an interval with h(x) ≥ 2.
If y is chosen from D(x) to maximize l(y), then h(x) = h(y)+ 1.

Proof. Let k = h(x); we use induction on k. When k = 2, the statement is trivial.
Suppose k ≥ 3. Since h(y) < h(x), it suffices to show that h(y) ≥ h(x)− 1. Since
h(x) = k, there is a chain z1, . . . ,zk with zk = x. We may assume that y �= zk−1, so
the choice of y yields l(zk−1) < l(y). Therefore, l(zk−2) < l(zk−1) < l(y). Consider
the order of r(y) and r(zk−2). If r(y) < r(zk−2), then y is contained in zk−1 ∩ zk−2,
contradicting that the family is clean. Otherwise, r(y) > r(zk−2); now y > zk−2 and
h(y)≥ k− 1. ��
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Proposition 3.4. Let X be a clean family, and let x be an interval in X that contains
another interval in X. If Y = X−{x}, then hY (u) = hX(u) for all u ∈ Y.

Proof. Let z be an interval in X that is contained in x. Because X is clean, y < x
implies y < z, and y > x implies y > z. Therefore, if C is a chain containing x, then
substituting z for x in C yields another chain of the same size. Hence, hY (u)≥ hX(u)
for all u ∈ Y , and the other inequality holds since Y ⊆ X . ��

Proposition 3.5. If X is a family of intervals that share a common point a and the
overlap graph G(X) has clique number k, then the canonical coloring on X uses
exactly k colors.

Proof. Because the canonical coloring is proper, it uses at least k colors. For the
other direction, if the canonical coloring uses r colors, then there is a chain C of size
r in the endpoint order on X . It follows that C is an independent set in the inclusion
order on X . Hence, no two intervals in C are related by containment. However, C
is pairwise intersecting because every member of X contains a. It follows that the
intervals in C pairwise overlap, and so k ≥ r. ��

Proposition 3.6. If f is canonical on X, and Y is a downset of X in the endpoint
order, then f is canonical on Y .

Proof. Because Y is a downset in X , we have hX(x) = hY (x) for each x ∈ Y . ��

Let X be a family of intervals and let u ∈ X be an interval that is not inclusion-
minimal, where u = [a,b]. We define the subordinate of u to be the interval with
the rightmost right endpoint among all intervals contained in u. Let v be the
subordinate of u, where v = [c,d], and define the modified subordinate to be the
interval v′, where v′ = [c,b]. The right-push operation on u produces the families Y
and Y ′ and a map φ : Y → Y ′, where Y = X − u, Y ′ = Y − v+ v′, and φ(x) = x for
x �= v and φ(v) = v′. When S ⊆ X , we write φ(S) for {φ(w) : w ∈ S}.

Lemma 3.7. Let X be a family of intervals, let u ∈ X be an interval that is not
inclusion-minimal, and let Y , Y ′, and φ : Y → Y ′ be produced by the right-push
operation on u. If X is clean, then the following hold:

(1) The map φ preserves the order of the left and right endpoints. That is, l(x)< l(y)
if and only if l(φ(x)) < l(φ(y)) for each x,y ∈ Y. Similarly, r(x) < r(y) if and
only if r(φ(x)) < r(φ(y)).

(2) Y and Y ′ are clean.
(3) The clique numbers of Y and Y ′ are both at most the clique number of X.
(4) For each w ∈ Y with w �= v, we have φ(RY (w)) = RY ′(φ(w)).
(5) φ(RY (v))⊆ RY ′(φ(v)) and φ(RY (v)) is a downset of RY ′(φ(v)) in the endpoint

order.

Proof. Define a,b,c,d so that u = [a,b] and v = [c,d].

(1) Note that no interval in X has its right endpoint strictly between d and b. Indeed,
if there were such an interval w, then either w is contained in u, in which case
v is not the subordinate of w, or {w,u} is a 2-clique whose center contains v,



404 A.V. Kostochka and K.G. Milans

contradicting that X is clean. In passing from Y to Y ’, the right endpoint of v is
moved from d to b to form a new interval v′. Doing so preserves the order of
the left and right endpoints.

(2) Because Y ⊆ X and X is clean, we have that Y is clean. Note that x is contained
in the center of a 2-clique with {y,z} with y≤ z if and only if l(y)< l(z)< l(x)
and r(x)< r(y)< r(z). Hence, the property of being clean is determined by the
order of the left endpoints and the order of right endpoints. Because φ preserves
these orders, Y ′ is also clean.

(3) Let k be the clique number of X . Because Y ⊆ X , the clique number of Y is
at most k. Let {x1, . . . ,xt} be a clique S in Y ′ with x1 < · · · < xt , and note that
l(x1)< · · ·< l(xt )< r(x1)< · · ·< r(xt). Suppose for a contradiction that t > k.
We have that x j = v′ for some j, or else S is a clique in Y . If j > 1, then x j−1

cannot have its right endpoint between d and b. Because d < b and r(x j) = b, it
follows that r(x j−1) < d < r(x j). But d = r(v), and so S− v′+ v is a clique of
size t in Y , a contradiction. Hence, it must be that j = 1. Recalling that r(x1) =
r(u) = b, we have that l(u) < l(x2) < · · · < l(xt ) < r(u) < r(x2) < · · · < r(xt ),
which implies that S− v′+ u is a clique of size t in X , another contradiction.

(4) If x ∈ RY (w), then passing from x to φ(x) leaves the left endpoint fixed
and possibly increases the right endpoint. Because w �= v and φ(w) = w, it
follows that φ(x) ∈ RY ′(φ(w)) and so φ(RY (w)) ⊆ RY ′(φ(w)). Conversely, if
φ(x) ∈ RY ′(φ(w)), then passing from φ(x) to x leaves the left endpoint fixed and
possibly decreases the right endpoint. However, the right endpoint of φ(x) must
remain greater than the right endpoint of φ(w), and so x∈ RY (w). It follows that
RY ′(φ(w)) ⊆ φ(RY (w)).

(5) Passing from v to v′ increases the right endpoint of v, but in doing so, the
right endpoint never crosses the right endpoint of another interval. Hence,
each right-neighbor of v in Y is a right-neighbor of v′ in Y ′, and therefore
φ(RY (v)) ⊆ RY ′(φ(v)). To see that φ(RY (v)) is a downset of RY ′(v

′), note that
a right-neighbor x of v′ in Y ′ is also a right-neighbor of v in Y if and only if
l(x) < d. ��

Note that because the endpoint order on X only depends on the order of the left
endpoints and that of the right endpoints, a consequence of Lemma 3.7 is that φ is a
poset isomorphism from Y to Y ′ under the endpoint order.

Proposition 3.8. Let X be a clean family of intervals and let u∈X be a nonminimal
element in the inclusion order. If v is chosen from {w ∈ X : w⊆ u} to minimize the
left endpoint, then hX(u) = hX(v).

Proof. We argue that w < u if and only if w < v. If w < u, then also w < v or else
{w,u} is a 2-clique with v in the center, contradicting that X is clean. Conversely, if
w < v, then the extremality of v implies that w < u. ��

Lemma 3.9. If X is a clean family and f is the canonical coloring on X, then f is
good.
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Proof. Let z ∈ X , let S = RX(z), and let hS (resp., hX ) be the height function for
the endpoint order on S (resp., X). We show that hS(u) = hS(v) if and only if
hX(u) = hX(v) for each u,v ∈ S. For each k ≥ 1, let Tk = {w ∈ S : hS(w) = k}.
Fix a positive integer k. Because all elements in Tk have the same height, they are
not comparable in the endpoint order, and therefore Tk is a chain in the inclusion
order. Index the elements of Tk as u1, . . . ,un so that u1 � u2 � · · · � un, and fix
j < n. We claim there are no intervals in X whose left endpoint is between l(u j) and
l(u j+1). Indeed, if there are such intervals, then let v be one that minimizes the left
endpoint. Note that v � u j+1, or else

{
u j+1,v

}
is a 2-clique with u j in the center.

Also, v �∈ S, or else applying Proposition 3.8 to u j+1 and v in the family S would give
that hS(v) = hS(u j+1) = k, and hence v ∈ Tk, a contradiction because no interval in
Tk has a left endpoint between a left endpoints of u j and u j+1. But now v �∈ S implies
that v is in the center of the 2-clique

{
z,u j+1

}
, a contradiction. A final application

of Proposition 3.8 to u j+1 and u j in X gives that hX(u j+1) = hX(u j). It follows that
all intervals in Tk have the same height in X .

For the converse, suppose that Tk and Tk′ with k < k′ have the property that all
elements in Tk ∪Tk′ have the same height in the endpoint order on X . Fix u ∈ Tk′ .
Because hS(u) = k′ and k < k′, there is an interval v ∈ S with v < u and hS(v) = k. It
follows that v ∈ Tk. But now v and u are comparable in the endpoint order, so they
cannot have the same height in X . ��

Lemma 3.10. Let X be a clean family of intervals, let u be a nonminimal element
in the inclusion order on X, and obtain Y,Y ′, and φ from the right-push operation
on u. If g′ is a good coloring of Y ′, then g′ ◦φ is a good coloring of Y .

Proof. Consider w ∈ Y . Because g′ is good on Y ′, we have that g′ is canonical on
RY ′(φ(w)). By Lemma 3.7, we have that φ(RY (w)) is a downset of RY ′(φ(w)) in
the endpoint order (even equality holds when w �= v). By Proposition 3.6, we have
that g′ is canonical on φ(RY (w)). But φ : Y →Y ′ is an isomorphism of the endpoint
orders on Y and Y ′, so g′ ◦φ is canonical on RY (w). ��

If a ∈ R, then Xa denotes the subfamily of X consisting of all intervals that
contain a in their interior, X>a denotes {[c,d] ∈ X : c > a}, and X<a denotes
{[c,d] ∈ X : d < a}.

Proposition 3.11. Let f be a good coloring of X, let α and β be colors, let a be a
point on the real line, and suppose that f (u) �∈ {α,β} for each u ∈ Xa. If f ′ is the
coloring of X obtained from f by interchanging α and β on the intervals in X>a,
then f ′ is also good.

Proof. Let w ∈ X and define c,d so that w = [c,d]. If d > a, then every interval
in RX (w) with a color in {α,β} is in X>a, and so the change in colors does not
alter the partition on RX (w) given by the color classes of f . Similarly, if d < a,
then every interval in RX(w) with a color in {α,β} is in X<a, and so none of these
intervals changes colors. If d = a, then increase a by a small amount and apply the
proposition again. ��

We are now ready to prove Theorem 3.2.
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Proof. By induction on |X |; we may assume |X | ≥ 1 and k≥ 2. Let x be the interval
in X that minimizes l(x). If R(x) = /0, then x has no neighbors. Let Y = X− x, apply
induction to Y to obtain a good coloring g of Y , and extend g to a coloring f of X
by assigning an arbitrarily chosen color to x. Clearly, f is canonical on each right-
neighborhood.

Therefore, we may assume that x has right-neighbors. Choose y ∈ R(x) to
minimize l(y), and define a and b so that y = [a,b]. Let Y1 = {z ∈ X : l(z) ≤ b}
and Y2 = {z ∈ X : r(z)≥ b}. Note that x �∈ Y2 and therefore Y2 � X . If also Y1 � X ,
then we may apply induction to Y1 and Y2 to obtain respective good colorings g1

and g2. Note that Y1 ∩Y2 = {z ∈ X : l(z) ≤ b≤ r(z)}, and because y is inclusion-
maximal, Y1∩Y2 = RX(y). Consequently, all right-neighbors of y survive in Y1 and
Y2, and hence RX (y) = RY1(y) = RY2(y), which implies that g1 and g2 are canonical
on Y1∩Y2. Hence, after relabeling the color names, we obtain a coloring g of X that
is a common extension of g1 and g2. Clearly, g uses at most 2k−1 colors; it remains
to show that g is canonical on each right-neighborhood. Consider u∈ X . If r(u)≤ b,
then RX(u) ⊆ Y1 and so RX (u) = RY1(u), which implies that g is canonical on
RX(u). Otherwise, RX (u) ⊆ Y2, and so RX (u) = RY2(u), which again implies that
g is canonical on RX(u).

Hence, we may assume X =Y1. Next, we consider the case that x is not inclusion-
minimal. Let v be the subordinate of x, let v′ be the modified subordinate of x, and
obtain Y,Y ′, and φ from the right-push operation on x. By Lemma 3.7, we have that
Y and Y ′ are clean with clique number at most k. By induction and Lemma 3.10,
we obtain good colorings g′ of Y ′ and g0 = g′ ◦φ of Y using at most 2k− 1 colors.
Extend g0 to a coloring g of X by defining g(w) = g0(w) for w �= x and g(x) =
g0(v) = g′(v′). Clearly, g uses at most 2k− 1 colors. We claim that g is a good
coloring. First, note that because x minimizes l(x), we have that x ∈ RX(w) implies
that w = x. Therefore, g inherits the canonical coloring of g0 on RX (w) whenever
w �= x. Finally, note that because X is clean, we have that RX(x) = RY ′(v

′) and hence
g inherits the canonical coloring on RX (x) from the canonical coloring of g′ on
RY ′(v

′).
Hence, we may assume that x is inclusion-minimal; it follows that y ∈ RX (w)

implies that w ∈ {x,y}. Next, we consider the case that y is not inclusion-minimal.
Let v be the subordinate of y, let v′ be the modified subordinate, and obtain Y,Y ′ and
φ from the push operation. By Lemma 3.7, we have that Y and Y ′ are clean with
clique number at most k. By induction and Lemma 3.10, obtain good colorings g′

of Y ′ and g0 = g′ ◦φ of Y using at most 2k−1 colors. We use g0 to construct a good
coloring of X . Because Y = X−x, to extend a good coloring of Y to a good coloring
of X , we must assign a color to y so that the coloring remains canonical on each
closed right-neighborhood. Because y is only in the closed right-neighborhood of x
and y, we need only verify that the coloring is canonical on RX(x) and RX(y).

We consider two subcases. First, suppose that y is inclusion-minimal in RX(x).
Because y is chosen from RX(x) to minimize l(y), it follows that x < y < z for every
z∈ RX (x)−{x,y}. With Z1 =RX (x) and Z2 =RY (x) = RX (x)−{y}, this implies that
two elements have the same height in Z2 if and only if they have the same height
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in Z1, and y is the only element of height 1 in Z1. Consequently, an extension of
g0 to X is canonical on RX(x) if and only if it assigns y a color that is not used on
any other interval in RX(x). Similarly, y < z for each z ∈ RX(y)−{y} and hence an
extension of g0 to X is canonical on RX(y) if and only if y is assigned a color that
is not used on any other interval in RX(y). Because g0 is canonical on RY (x) and
the clique number of RY (x) is at most k−1 [indeed, every maximal clique in RX(x)
contains y], it follows that g0 uses at most k− 1 colors on RY (x). Also, g′ uses at
most k colors on RY ′(v

′), and hence g0 uses at most k− 1 colors on RX (y) [indeed,
g′(v′) is used on v′ ∈ RY ′(v

′) but is not used on any interval in RX(y)]. Because
2k− 1 colors are available and at most 2k− 2 provide conflicts, one color remains
available for assignment to y.

The second subcase is that y is not inclusion-minimal in RX (x). Let z be the
interval that minimizes l(z) among all intervals in RX(x) that are contained in y.
Note that z is also the interval that minimizes l(z) among all that are contained in y.
Let α = g0(z). By Proposition 3.8, the height of y and the height of z are the same
in all subsets of X containing z and y. By induction, we have that g0 is canonical on
RX(x)− y. Applying Proposition 3.4 to RX (x), an extension of g0 to X is canonical
on RX (x) if and only if y is assigned color α . Also, an extension of g0 to X is
canonical on RX(y) if and only if y is assigned a color different from every other
interval in RX (y). If α is not used on RX(y), then we may assign α to y. Otherwise,
we first modify g0 before extending to X . Note that z is inclusion-maximal in Y ,
and let a be a point slightly to the right of r(z). Because z is inclusion-maximal in
Y , every interval in Y that contains a is in RY (z). Let A be the set of colors that g0

uses on intervals containing a. Because g0 is canonical on RY (z), at most k colors
are used on these intervals; because g0 uses α on z ∈ RY (z), we have α �∈ A and
hence |A| ≤ k− 1. Let B be the set of colors that g0 uses on intervals in RX (y).
Because g′ is canonical on RY ′(v

′), RX(y) = RY ′(v
′)−{v′}, and v′ overlaps with

every other interval in RY ′(v
′), we have that |B| ≤ k−1. Let β be a color that g0 uses

but is not contained in A∪B. Obtain g1 from g0 by applying Proposition 3.11 with
colors {α,β} at point a. Note that because β �∈ B, we have that g1 does not use α
on any interval in RX(y). Also, g1(z) = α and an extension of g1 to X is canonical
on RX(x) if and only if y is assigned color α . Therefore, we obtain a good coloring
of X from g1 by assigning y the color α .

Hence, we may assume that both x and y are inclusion-minimal. By Lemma 3.9,
the canonical coloring on X is good. Because X − x = RX (y) and Proposition 3.5
implies that the canonical coloring uses at most k colors on RX(y), the canonical
coloring on X uses at most k+ 1 colors in total. ��

Theorem 3.12. For each k≥ 1, there is a clean circle graph G with ω(G) = k such
that every good coloring of G uses at least 2k− 1 colors.

Proof. We construct G in stages. Our construction uses a set of k− 1 intervals
V that induce a clique in the overlap graph and a set of k− 1 intervals V ′ that
form a chain under inclusion. These intervals are represented by solid lines in
Fig. 1, which presents the construction for k = 5. Let V = {v1, . . . ,vk−1} and let



408 A.V. Kostochka and K.G. Milans

v1
v′
1

v2
v′
2

v3
v′
3

v4
v′
4

v0 v′
0

Fig. 1 Construction in Theorem 3.12

V ′ = {v′1, . . . ,v′k−1}, indexed so that v1 < · · · < vk−1 and v′1 ⊇ ·· · ⊇ v′k−1. The left
endpoint of v′j is placed slightly to the left of l(v j), and the right endpoints of
intervals in V ′ satisfy r(v′1)≥ ·· · ≥ r(v′k−1). Next, add v0 so that v0 is a left-neighbor
of all intervals in V ∪V ′, and add v′0 so that v′0 is a right-neighbor of all intervals in
V and is contained in all intervals in V ′.

Because a good coloring must be canonical on R(v0), it follows that a good
coloring assigns the same color to v j and v′j for j ≥ 1, and hence k− 1 distinct
colors are assigned to intervals in V ′. Since v′0 is a right-neighbor of each interval
in V , it follows that k distinct colors are assigned to intervals in V ′ ∪ {v′0}. These
intervals form an independent set in the overlap graph.

In the second stage, we add a set S of k− 1 pairwise overlapping intervals such
that each interval in S overlaps with intervals in V ′ ∪ {v′0} and no others. Intervals
in S are represented by dashed lines in Fig. 1. A good coloring must use k− 1 new
colors on S, and hence at least 2k− 1 colors in total. ��

4 Chromatic Number of K4-Free Circle Graphs

In this section, we study the chromatic number of circle graphs with clique number
at most 3. By Theorem 3.2, it follows that a clean K4-free circle graph has chromatic
number at most 5. We need a lemma that provides 5-colorings of other circle graphs.
Recall that if a is a point in R, then Xa is the set of all intervals in X that contain a.

Lemma 4.1. Let a1, . . . ,ak and b1, . . . ,bk be points with a1 < b1 < a2 < b2 < · · ·<
ak < bk, and let S j = {a j,b j}. Let X be a family of intervals, each of which has
nonempty intersection with exactly one of the sets in {S1, . . . ,Sk}. If ω(G(X)) ≤ 3
and ω(G(Xc)) ≤ 2 for each c ∈ {a1, . . . ,ak}∪ {b1, . . . ,bk}, then there is a proper
5-coloring of G(X) with a distinguished color α such that every interval assigned
color α is disjoint from {a1, . . . ,ak}, and for each c ∈ {a1, . . . ,ak}∪{b1, . . . ,bk}, at
most 4 colors are used on intervals in Xc.
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Proof. Partition X into A1,B1, . . . ,Ak,Bk as follows. If S j is the unique set in
{S1, . . . ,Sk} that has a nonempty intersection with x, then we assign x to the set A j if
a j ∈ x or to the set B j otherwise. Note that for all 1≤ i, j≤ k, we have ω(G(Ai))≤ 2
and ω(G(B j))≤ 2, and hence the endpoint orders on Ai and B j are posets of height
at most 2.

The canonical coloring is defined with respect to height in the endpoint order.
The dual-canonical coloring of a family of intervals colors each interval with its
depth in the endpoint order. When the interval order on Z has height at most t, the
(β1, . . . ,βt)-canonical coloring on Z assigns to an interval z ∈ Z the color β j, where
j is the height of z in the endpoint order. Similarly, the (β1, . . . ,βt)-dual-canonical
coloring on Z assigns to an interval z ∈ Z the color β j, where j is the depth of z
in the endpoint order. We color each A j canonically, and we color each B j with a
dual-canonical coloring.

We use {1,2,3,4,α} as our set of colors. If j is odd, then we use the (2,1)-
canonical coloring on A j and the (α,3)-dual-canonical coloring on B j. If j is
even, then we use the (4,3)-canonical coloring on A j and the (α,1)-dual-canonical
coloring on B j. First, note that if x has color α , then x is in some B j, which implies
that x contains b j but not a j, and therefore x does not contain any of the points in
{a1, . . . ,ak}.

Note that for each j, at most 4 colors are used on intervals in A j ∪B j . It follows
that for each c ∈ {a1, . . . ,ak}∪{b1, . . . ,bk}, at most 4 colors are used on intervals
in Xc. It remains to check that the coloring is proper. Note that the colors used on
A j are disjoint from the colors used on B j. Since the coloring is proper on A j and
on B j, it follows that the coloring is proper on A j ∪B j. Moreover, if x ∈ Ai∪Bi and
y ∈ A j∪B j overlap, it follows that |i− j| ≤ 1 and y overlap, since each interval in X
meets exactly one of the sets in {S1, . . . ,Sk}.

Suppose that x ∈ Ai ∪Bi and y ∈ A j ∪B j overlap. If i = j, then x and y receive
different colors since the coloring is proper on Ai∪Bi. Hence, we may assume that
j = i+1. Note that a j ∈ y, since otherwise a j would separate x and y. It follows that
y ∈ A j. If y has height 0 in A j, then the color assigned to y is not used for intervals
in Ai ∪Bi, and hence x and y receive different colors. If y has height 1 in A j, then
the color β assigned to y is used only for the intervals in Ai ∪Bi that have depth 1
in Bi. Suppose for a contradiction that x also receives color β . Since x has depth 1
in Bi, there exists x′ ∈ Bi with x < x′ in the endpoint order. Similarly, since y has
height 1 in A j, there exists y′ ∈ A j with y′ < y in the endpoint order. Moreover,
l(x′)< bi < l(y) and r(x′)< a3 < r(y′), and, therefore, x′ < y′ in the endpoint order.
But then {x,x′,y′,y} is a 4-clique in G(X) since x < x′ < y′ < y in the endpoint order
and x and y overlap. ��

Example 4.2. The complement of the cycle on 7 vertices, denoted C7, is the overlap
graph of a family of intervals that satisfies the hypotheses of Lemma 4.1 with
carefully chosen points a1 and b1 (see Fig. 2). Consequently, Lemma 4.1 cannot
be improved by more than one color.

Our next task is to explore the structure of segments. A segment of a family X is
an inclusion-maximal interval in the set of all centers of 2-cliques in X .
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a1 b1

Fig. 2 C7 as the overlap graph of a family of intervals

Lemma 4.3. Let X be a family of intervals. If [a,b] and [c,d] are overlapping
segments of X with a < c < b < d, then there exists x ∈ X with l(x) ∈ [a,c) and
r(x) ∈ (b,d].

Proof. Let y1 and y2 be overlapping intervals in X with y1 < y2 and center [a,b].
Let z1 and z2 be overlapping intervals in X with z1 < z2 and center [c,d]. Note that
l(y2) = a and r(z1) = d. We claim that either r(y2) ∈ (b,d] or l(z1) ∈ [a,c). Because
r(y2) > b and l(z1)< c, failure requires r(y2) > d and l(z1) < a. But then we have
l(z1)< l(y2) = a < d = r(z1)< r(y2), which implies that z1 and y2 are overlapping
intervals in X with center [a,d], contradicting that [a,b] and [c,d] are segments.
Hence, either y2 or z1 is as required. ��

Lemma 4.4. Let X be a family of intervals. If u1, . . . ,ut are overlapping segments
of X with u1 < u2 < · · ·< ut , then [l(ut),r(u1)] is the center of a (t +1)-clique in X.

Proof. For 1≤ j < t, apply Lemma 4.3 to the segments u j and u j+1 to obtain z j ∈ X
with l(z j) ∈ [l(u j), l(u j+1)) and r(z j) ∈ (r(u j),r(u j+1)]. Of the overlapping pair
of intervals in X whose center is u1, let z0 be the leftmost in the endpoint order.
Similarly, of the overlapping pair of intervals in X whose center is ut , let zt be
the rightmost in the endpoint order. It follows that l(z0) < l(z1) < · · · < l(zt ) <
r(z0) < r(z1) < · · · < r(zt) and so {z0, . . . ,zt} is a (t + 1)-clique in X with center
[l(ut),r(u1)]. ��
As a consequence of Lemma 4.4, if X has clique number k and U is the family of
segments of X , then U has clique number at most k− 1. Moreover, by definition,
each interval in U is inclusion-maximal. Hence, the endpoint order on U is a chain.
If X has clique number at most 3, then every component of the overlap graph of U
is a chain.

We need the following lemma due to Gyárfás [9].

Lemma 4.5. Let X be a of intervals such that G(X) is connected, let x0 be the
interval in X that minimizes l(x0), and for each k≥ 0, let Xk be the set of all intervals
at distance k from x in G(X). Let k be a positive integer, and let [a,b] be an interval
such that [a,b]⊆⋃x∈Xk

x. If z ∈ Sk−1 and one endpoint of z is in [a,b], then the other
endpoint of z is outside [a,b].
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Our next lemma ties together the two separate coloring strategies given by
Theorem 3.2 and Lemma 4.1 and is at the heart of our proof. The clean part of
a family of intervals X is the set of intervals in X that are not contained in a segment
of X . Note that the clean part of a family of intervals is clean. In the following,
we fix disjoint color sets A and B of sizes 10 and 9, respectively.

Lemma 4.6. Let X be a family of intervals such that no interval is contained in the
center of a 3-clique, G(X) is connected, and ω(G(X))≤ 3. Let x0 be the interval in
X that minimizes l(x0), and for k≥ 0, let Xk be the set of intervals at distance k from
x0. Let Yk be the clean part of Xk, and let Zk be the complement Xk−Yk.

For each nonnegative integer k, there are a set Pk of points and a proper (A∪B)-
coloring of G(X0∪ . . .∪Xk) with the following properties.

(1) If j > k and x ∈ Xj, then x and Pk are disjoint.
(2) Every interval in Zk contains a point in Pk.
(3) The colors used on Yk are contained in a subset A′ of A with |A′| ≤ 5.
(4) The colors used on Zk are contained in B.
(5) Let I be an inclusion-maximal interval in R−Pk. There exists a subset B′ of B

with |B′| ≤ 5 such that every interval in Zk that overlaps I has a color in B′,
and there is a color β ∈ B′ such that z overlaps I on the left whenever z ∈ Zk

overlaps I and has color β .

Proof. For k= 0, we let P0 = /0 and color the single interval x0 in X0 with an arbitrary
color in A. Since Y0 = {x0} and Z0 = /0, conditions (1)–(5) are satisfied.

For k≥ 1, we obtain a set of points Pk−1 and a proper (A∪B)-coloring of G(X0∪
. . .∪ Xk−1) with conditions (1)–(5) by induction. We first extend the coloring to
G(X0∪ . . .∪Xk). Note that an interval in Xk overlaps only with intervals in Xk−1∪Xk.
Since property (3) implies that at most 5 colors are used on intervals in Yk−1 and
|A| = 10, there is a set A′ of 5 colors in A, none of which appears on intervals in
Yk−1. Since Yk is clean, Theorem 3.2 implies that Yk has a proper 5-coloring. We use
the colors in A′ to color Yk.

Every interval in Zk is contained in a segment of Xk. Let u1, . . . ,us be the
segments of Xk, indexed so that u1 < · · · < us in the endpoint order. For each
segment u j, we define a left-pin a j and a right-pin b j. Let ε be a positive real
number that is less than the minimum distance between two endpoints of intervals
in X . When there are intervals in Xk−1 that overlap u j on the left, we define a j

to be max{r(x) : x ∈ Xk−1 and x overlaps u j on the left}. When there are no such
intervals, we define a j to be r(u j−1) + ε when u j−1 exists and overlaps u j and
l(u j)+ε otherwise. Similarly, when there are intervals in Xk−1 that overlap u j on the
right, we define b j to be min{l(x) : x ∈ Xk−1 and x overlaps u j on the right}. When
there are no such intervals, we define b j to be l(u j+1)− ε when u j+1 exists and
overlaps u j and r(u j)− ε otherwise.

Note that no pin is in more than one segment. If some pin c ∈ {a1, . . . ,as,b1,
. . . ,bs}were contained in u j and u j+1, it follows from the definition of c that there is
an interval x ∈ Xk−1 with c as an endpoint. Moreover, Lemma 4.4 implies that there
is a 3-clique {x1,x2,x3} in Xk whose center is the same as the center of {u j,u j+1}.
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Since c is in the center of {x1,x2,x3}, Lemma 4.5 implies that the other endpoint of
x is outside x1 ∪ x2 ∪ x3, and so x overlaps each interval in {x1,x2,x3}. Therefore,
{x1,x2,x3,x} is a 4-clique in X , a contradiction.

Next, we argue that every interval z ∈ Zk contains some pin in its interior. Since
z ∈ Zk, it follows that z is contained in some segment u j. Since z is at distance
k from x0 in G(X), it follows that z overlaps with an interval x at distance k− 1
from x0 in G(X). Suppose that x overlaps z to the left, so that r(x) is in the interior
of z. We claim that z contains the left-pin of u j. Since x ∈ Xk−1, it follows that
a j ≥ r(x)> l(z). Let x′ be the interval in Xk−1 whose right endpoint is a j, and let x1

and x2 be the intervals in Xk whose center is the segment u j. Lemma 4.5 implies that
the left endpoint of x′ is outside x1∪x2, which implies that {x′,x1,x2} is a 3-clique in
X . Since z is contained in the center of x1 and x2 and z is not contained in a 3-clique
of X , it must be that z is not contained in x′, which implies that a j = r(x′) < r(z).
Hence, l(z) < a j < r(z). Similarly, if x overlaps z on the right, then z contains the
right-pin of u j.

For each j with 1≤ j ≤ s, let S j = {a j,b j}. Since an interval z ∈ Zk is contained
in some segment u j and u j contains only the pins a j and b j, it follows that z has
nonempty intersection with exactly one of the sets in {S1, . . . ,Ss}. We claim that if
c is a pin, then ω(G(Zc

k)) ≤ 2. This is immediate if c is an endpoint of an interval
in Xk−1. Otherwise, let c′ be the other pin associated with the segment containing
c, and note that Zc

k ⊆ Zc′
k . If c′ is an endpoint of an interval in Xk−1, then we have

ω(G(Zc
k)) ≤ ω(G(Zc′

k )) ≤ 2. If neither c nor c′ is the endpoint of an interval in
Xk−1, then it must be that Zc

k = Zc′
k = /0. Therefore, every subset of Zk satisfies the

hypotheses of Lemma 4.1 with respect to the points a1, . . . ,as and b1, . . . ,bs.
It remains to color Zk. Let I be an inclusion-maximal interval of R− Pk−1,

and let L be the set of intervals in Zk that are contained in I. Since intervals in
distinct inclusion-maximal intervals of R−Pk−1 do not overlap, we may color L
independently of the rest of Zk.

By property (5), there exists B0 ⊆ B with |B0| ≤ 5 such that every interval in
Zk−1 that overlaps I has a color in B0, and there is a distinguished color α ∈ B0

such that if z ∈ Zk−1 overlaps I and has color α , then z overlaps I on the left. Let
B′ = B−B0∪{α}, and note that |B′|= 5.

Using the colors in B′ and the distinguished color α , apply Lemma 4.1 to color L.
We claim that the coloring remains proper. If not, then there are intervals z ∈ L and
z′ ∈ Xk−1 that overlap and have the same color. Since the color of z is in B′, the
color of z′ is also in B′, which implies that z′ ∈ Zk−1. By property (2), we have that
z′ contains a point in Pk−1, and it follows that z′ overlaps I. Hence, property (5)
implies that the color of z′ is in B0. Since B0∩B′ = {α}, it follows that the common
color of z and z′ is α . It now follows that z′ overlaps I on the left. Since z′ is an
interval in Xk−1 that overlaps z on the left, it follows that z contains the left-pin a j

of the segment u j containing z, contradicting that each interval in L with color α is
disjoint from {a1, . . . ,as}.
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We have obtained a proper (A∪B)-coloring of G(X0 ∪ ·· · ∪Xk). Let Pk be the
union of Pk−1 and the points in {a1, . . . ,as,b1, . . . ,bs} that are endpoints of intervals
in Xk−1. It remains to check that the coloring and Pk satisfy properties (1)–(5). Note
that if x has distance k−1 from x0 and x′ has distance at least k+1, then x′ does not
contain either endpoint of x. Since every point in Pk−Pk−1 is an endpoint of some
interval in Xk−1, it follows that no interval in Xj for j > k contains a point in Pk,
which implies property (1). If z ∈ Zk, then z overlaps some interval x ∈ Xk−1. Let
u be the segment of Xk containing z. If x overlaps z on the left, then z contains the
left-pin of u, which is the endpoint of an interval in Xk−1. Otherwise, if x overlaps z
on the right, then z contains the right-pin of u, which is the endpoint of an interval in
Xk−1. In either case, z contains a point in Pk, and therefore property (2) is satisfied.
It is clear from our coloring that properties (3) and (4) are satisfied.

Let I be an inclusion-maximal interval in R−Pk. Since Pk−1 ⊆ Pk, it follows that
I is contained in an inclusion-maximal interval I′ in R−Pk−1. Let L be the set of
intervals in Zk that are contained in I′, and let B′ be the set of 5 colors in B that
are used to color intervals in L. Clearly, every interval in Zk that overlaps I has a
color in B′. Let c be the right endpoint of I. By Lemma 4.1, at most 4 colors are
used on intervals in Lc. It follows that there is a color β ∈ B′ such that every interval
in L with color β that overlaps I does so on the left. It follows that property (5) is
satisfied. ��

With Lemma 4.6, we are now able to complete our upper bound on the chromatic
number of a circle graph with clique number at most 3.

Proof of Theorem 1.2. We may assume that G(X) is connected. Let x0 be the
interval in X that minimizes l(x0), and for k ≥ 0, let Xk be the set of intervals that
are at distance k from x0 in G(X).

Note that no interval in Xk is contained in the center of a 3-clique of Xk. This is
immediate if k = 0 since X0 = {x0}. For k ≥ 1, if some interval x were contained
in the center of a 3-clique {x1,x2,x3} in Xk, then there is an interval x′ in Xk−1 that
overlaps x, and Lemma 4.5 would imply that {x1,x2,x3,x′} is a 4-clique in G(X), a
contradiction.

Therefore, Lemma 4.6 implies that χ(G(Xk))≤ 19. Using disjoint color sets for
X0∪X2∪·· · and X1∪X3∪·· · , we have that χ(G(X))≤ 38. ��

Addendum. Subsequent to our current work but prior to publication, we learned
that Gleb Nenashev has improved on Theorem 1.2 by showing that χ(G)≤ 30 when
G is a K4-free circle graph.
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10. A. Gyárfás, Corrigendum: “On the chromatic number of multiple interval graphs and overlap

graphs.” Discrete Math. 62(3), 333 (1986)
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Counting Large Distances in Convex Polygons:
A Computational Approach

Filip Morić and David Pritchard

Abstract In a convex n-gon, let d1 > d2 > · · · denote the set of all distances
between pairs of vertices, and let mi be the number of pairs of vertices at distance di

from one another. Erdős, Lovász, and Vesztergombi conjectured that ∑i≤k mi ≤ kn.
Using a new computational approach, we prove their conjecture when k ≤ 4 and
n is large; we also make some progress for arbitrary k by proving that ∑i≤k mi ≤
(2k− 1)n. Our main approach revolves around a few known facts about distances,
together with a computer program that searches all distance configurations of two
disjoint convex hull intervals up to some finite size. We thereby obtain other new
bounds, such as m3 ≤ 3n/2 for large n.

1 Introduction

Given a set S of n points in the plane, let d1 > d2 > · · · be the set of all distances
between pairs of points in S. It was shown by Hopf and Pannwitz in 1934 [5] that
the distance d1 (the diameter of S) can occur at most n times, which is tight (e.g., for
a regular polygon of odd order). In 1987, Vesztergombi [6] showed that the second-
largest distance, d2, can occur at most 3

2 n times; she subsequently [7] considered the
version of the problem when the points are in convex position and showed that in
this case the number of second-largest distances is at most 4

3 n. She also showed that
both results are tight up to additive constants.
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Let mi denote the number of times that di occurs. It is known that mk ≤ 2kn [6],
and moreover that mk ≤ kn for point sets in convex position [7], while the following
open conjecture would imply mk ≤ 2n.

Conjecture 1.1 (Erdős, Moser [2,7]). The number of unit distances generated by n
points in convex position cannot exceed 2n.

A lower bound of 2n− 7 for this conjecture is known due to Edelsbrunner and
Hajnal [3].

For the rest of the chapter, we consider only point sets in convex position. One
natural question is to find how large m≤k := ∑i≤k mi, i.e., the number of top-k
distances, can be in terms of n. The conjectured value is

Conjecture 1.2 (Erdős, Lovász, Vesztergombi [4]). The number of top-k distances
generated by n points in convex position is at most kn; i.e., m≤k ≤ kn.

Odd regular polygons prove m≤k = kn is possible. In [4], the bound m≤k ≤ 3kn is
proven, and m≤2 ≤ 2n was shown in [7], verifying Conjecture 1.2 for k = 2.

In this chapter, we give improved upper bounds on mk and m≤k for convex point
sets, and more generally bounds for sums of the form ∑t∈T mt . Our first result is the
following.

Theorem 3. For any k ≥ 1, the number of top-k distances generated by n points in
convex position is at most (2k− 1)n; i.e., m≤k ≤ (2k− 1)n.

Thus, we close about half of the gap toward Conjecture 1.2.
Next, by combining several known conditions on distances for convex point sets,

and by using a computer program to carry out an exhaustive search on a finite
abstract version of the problem, we prove the following.

Theorem 4. The distances generated by n points in convex position satisfy the
following bounds, for large enough n:

• m≤3 ≤ 3n,m≤4 ≤ 4n;
• m3 ≤ 3

2 n,m4 ≤ 13
8 n;

• m1 +m3 ≤ 2n,m2 +m3 ≤ 9
4 n.

In particular, we verify Conjecture 1.2 for k ≤ 4 and n large. For m3 and m2 +m3,
the bound is as good as can be obtained by our abstract version of the problem, as
witnessed by periodic patterns achieving m3 =

3
2 n and m2 +m3 =

9
4 n, but we do not

know if any convex polygon can realize these distances; we elaborate in Sect. 6.
The proof of Theorem 4 uses a computer program to make certain types of

automatic deductions, as well as the following lemma to eliminate long distances
“near” the boundary.

Lemma 1.5. For any k ≥ 1 and � ≥ 0, there is a constant C(k, �) such that the
following holds: In a convex polygon, if there are � or fewer vertices between some
vertices a and b such that |ab| ≥ dk, then the number of top-k distances satisfies
m≤k ≤ n+C(k, �).
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The detailed bound we obtain is of the form C(k, �) = O(k2(k+ �)2). In an earlier
version of this chapter,1 we proved results like “m≤3≤ 3n+O(1),” which are weaker
for large n but better for small n, using the following alternative lemma.

Lemma 1.6. For any k ≥ 1 and � ≥ 0, there is a constant C′(k, �) such that the
following holds. In a convex polygon, at most C′(k, �) diagonals ab have both (i) �
or fewer vertices between a and b and (ii) |ab| ≥ dk.

In the latter, C′(k, �) = O(k�2). We do not think either lemma is tight.
In Sect. 2, we describe levels, a key element in our approach. In Sect. 3, we collect

geometric facts used by the algorithm. We prove Lemma 1.5 in Sect. 3.1. The proof
of our main result, Theorem 4, consists of the algorithmic approach described in
Sect. 4 together with our computational results stated in Sect. 5. We conclude with
suggestions for future work.

2 Levels

We use the term diagonal to mean any line segment connecting two points of S,
including sides of the convex hull of S. We will partition the diagonals into n levels in
the following way. Let S = {a1,a2, . . . ,an} be the vertex set of our convex polygon,
ordered clockwise. Then level i is the set of diagonals

Li := {a jak | j+ k≡ i mod n},

where the index i can be taken modulo n. Equivalently, consider an auxiliary regular
n-gon b1b2 . . .bn; then two diagonals aia j and akal lie in the same level when the
corresponding segments bib j and bkbl are parallel. We illustrate this in Fig. 1a.

Levels are used in the following way to prove Theorem 3 (i.e., m≤k ≤ (2k−1)n).

Proof of Theorem 1.3. In the next section, we prove Lemma 3.5: In any level, there
are at most 2k− 1 diagonals of length ≥ dk. Since there are at most n levels,
we are done. ��

3 Geometric Facts

To begin this section, we collect four geometric facts from the literature [1, 4, 7],
which will be used in our computer program. For completeness, we include the
proofs. The first two facts were used in [4, 7].

Fact 3.1. If abcd is a convex quadrangle, then |ab|+ |cd|< |ac|+ |bd|.

1http://arxiv.org/abs/1103.0412v1.

http://arxiv.org/abs/1103.0412v1
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a

b

c

d

x

a b

Fig. 1 (a) Three consecutive levels of diagonals in a convex decagon. (b) Proof of Fact 3.2

Proof. Let p be the intersection point of the diagonals ac,bd. Then, by the triangle
inequality,

|ab|+ |cd|< |ap|+ |bp|+ |cp|+ |d p|= |ac|+ |bd| . �

Fact 3.2. If a,b,c,d are vertices of a convex polygon in clockwise order, then at
least one of these four cases must occur:

• |ax|> |ad| for all vertices x of the polygon between c and d, including c;
• |bx|> |bc| for all vertices x of the polygon between c and d, including d;
• |cx|> |bc| for all vertices x of the polygon between a and b, including a;
• |dx|> |ad| for all vertices x of the polygon between a and b, including b.

Proof. Since the sum of the angles of quadrilateral abcd is 2π , at least one angle
is nonacute. Without loss of generality, let ∠cda ≥ π

2 . Then for any vertex x of the
polygon between c and d, we have that ∠xda ≥ ∠cda ≥ π

2 , and, thus, |ax| > |ad|
(see Fig. 1b). ��

The special case i = j of the following fact appears in [4].

Fact 3.3. If a,b,c,d are vertices of a convex polygon listed in clockwise order, such
that |bc| ≥ di and |ad| ≥ d j, where di and d j are the ith- and jth-largest distances
among vertices of the polygon, then either between a and b or between c and d there
are no more than i+ j− 3 other vertices of the polygon.

Proof. Let’s denote without loss of generality a = a1,b = ax,c = ay,d = az. We will
show min{x− 1,z− y} ≤ i+ j− 2, which proves the lemma. We use induction on
i+ j see Fig. 2. The base case i = j = 1 amounts to saying that any two noncrossing
d1’s must share a vertex, which follows by Fact 3.1.

For the inductive step, we apply Fact 3.2. Suppose that the first of the four
cases happens, so d′ := az−1 satisfies |ad′| > |ad|; the other cases are similar.
Consequently, |ad′| ≥ d j−1. By induction, min{x−1,(z−1)− y} ≤ i+( j−1)−3,
from which the desired result follows (Fig. 2). ��
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a

b

p

cd d1

d2

a

≥ di

≥ di−1
b

x

c
d ≥ dj

a b

Fig. 2 (a) Proof of Fact 3.3, base case i = 2, j = 1; (b) proof of Fact 3.3, inductive step

a b

Fig. 3 (a) Proof of Fact 3.4; (b) proof of Lemma 1.5

The following is a strengthening of a result of Altman, obtained by removing all
nonessential conditions from the hypothesis of [1, Lemma 1] but using the same
proof. (He considered only the case where |a1am|= d1.)

Fact 3.4. Let a1 . . .an be a convex polygon. If 1 ≤ i < j ≤ k < � < m and |a1am| ≥
max{|a1ak|, |a jam|}, then |aia�|> min{|aiak|, |a ja�|}.

Proof. Suppose for the sake of contradiction that |aia�| ≤ min{|aiak|, |a ja�|}.
Denote by x and y the points where a1a j and amak intersect aia� (see Fig. 3a).
Repeatedly using the fact that when s,s′ are two sides of a triangle, |s| > |s′| iff
the angle opposite s is larger than the angle opposite s′, we have

∠a jxa�+∠akyai > ∠a jaia�+∠aka�ai ≥ ∠aia ja�+∠a�akai

> ∠a1a jam +∠a1akam ≥ ∠a ja1am +∠akama1 .

However,∠a jxa�+∠akyai =∠a ja1am+∠akama1, which gives a contradiction. ��
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3.1 Counting Lemmas

First, we complete the proof of Theorem 3, using Fact 3.3.

Lemma 3.5. In any level, there are at most 2k− 1 diagonals of length ≥ dk.

Proof. Without loss of generality (by relabeling), we consider the level L0. The
diagonals of this level are a ja− j, with indices modulo n, for 0 < j < n/2. Let m >
0 (resp., M) be the minimal (resp., maximal) j such that |a ja− j| ≥ dk. Then, by
Fact 3.3, we see that M−m−1≤ k+ k−3. So the number of top-k diagonals in L0

is bounded by |{m,m+1, . . . ,M}|= M−m+1≤ 2k−1, which gives the corollary.
��

Next, we give the proof of Lemma 1.5, which is needed in order to argue that our
computational approach is correct.

Proof. We want to show that if |ab| ≥ dk, and a and b are separated by at most �
vertices, then the number of top-k distances satisfies m≤k ≤ n+O(k2(k+ �)2). Let S
be the interval obtained from this [a,b] by extending onto 2k further points in both
directions. By Fact 3.3, all edges of length≥ dk have at least one endpoint in S. Note
|S|= O(k+ �).

We will show an upper bound of n+O(k2(k+ �)2) on the number of edges sx
of length ≥ dk, with s ∈ S,x ∈ V\S. This will complete the proof since the only
other top-k distance edges must lie with both endpoints in S, and there are at most
O(k+ �)2 such edges.

The key observation is that in the bipartite graph between S and V\S consisting of
these edges, all but a constant number of vertices in V\S have degree 1. Specifically,
if sx,s′x are both edges in this graph, then the location of x is uniquely determined
by s,s′, |sx|, and |s′x|; it follows that ∑x

(deg(x)
2

)
is at most O((k + �)2k2), and

consequently ∑x:deg(x)>1 deg(x) = O((k+ �)2k2). We are then done by counting the
endpoints of degree-1 vertices, of which there are at most n. ��

4 The Algorithm

The algorithm we use to prove Theorem 4 examines distances among finite configu-
rations of points in the plane. Informally, we examine all possible configurations of
a bounded size, where a configuration includes all occurrences of top-k distances in
a few consecutive levels, and we try to establish that not too many top-k distances
can occur per level, averaged over a small interval of levels. Thus, ultimately, the
argument in our proof decomposes any global point set into local configurations of
bounded size.
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4.1 The Goal

Our computational goal will be to bound the number of long distances that can occur
in a consecutive sequence of several levels. We begin by reproving (for large n)
Vesztergombi’s result on counting the second-largest distances; it illustrates the type
of computational result we need.

Proposition 4.1. We have m2 ≤ 4
3 n for large enough n.

Proof. We prove the theorem for n ≥ 3 ·C(16,2) with C as in Lemma 1.5. Let a
special diagonal be a diagonal of length d2 or longer, whose endpoints are separated
by at most 16 vertices. If there is any special diagonal, we are done by Lemma 1.5.
So we may assume there are no special diagonals.

Using our computer program, we establish the following lemma.

Lemma 4.2. In every point set S without special diagonals, for every level i, at
least one of the following is true:

• at most 1 = �1 · 4
3	 diagonal in level i has length d2;

• at most 2 = �2 · 4
3	 diagonals in levels i and i+ 1 have length d2;

• at most 4 = �3 · 4
3	 diagonals in levels i, . . . , i+ 2 have length d2;

• at most 5 = �4 · 4
3	 diagonals in levels i, . . . , i+ 3 have length d2.

Now let’s see how this gives the desired result. Taking i = 1, the four cases above
establish that for some 1 ≤ γ1 ≤ 4, the number of d2’s in levels 1, . . . ,γ1 is at most
4
3γ1. Applying the same logic to i = γ1+1, we get that there is some 1≤ γ2 ≤ 4 such
that the number of d2’s in levels γ1 + 1, . . . ,γ1 + γ2 is at most 4

3 γ2.
We continue to further define γi’s in the same way until∑x

i=1 γi≡∑y
i=1 γi (mod n)

for some x < y. Summing a contiguous subset of these bounds, the number of d2’s
in levels from 1+∑x

i=1 γi to ∑y
i=1 γi is at most 4

3 per level on average. But this sum
counts each of the n levels an equal number of times, so the number of d2’s overall
is at most 4

3 n. ��

The computer program’s goal is thus to prove a general version of Lemma 4.2:
Given a target ratio α and target distances (a subset of {d1,d2, . . . ,dk}), find a
constant m so that every level i admits 1≤ m′ ≤ m such that ≤ m′ ·α target lengths
occur in levels i, . . . , i+m′. The program searches for a point set with > α target
diagonals in level 1, > 2α in level 2, etc. If the search terminates, the above proof
shows the number of target distances is ≤ αn. The hypothesis that no special
diagonals exist is used only indirectly by the program, explained below.

Our algorithm works with configurations consisting of two disjoint intervals of
points, and an assignment of a distance from {d1,d2, . . . ,dk,“< dk} to each diagonal
spanning the two intervals. We thereby obtain analogues of Lemma 4.2 by checking
all possible configurations up to some finite size. For this to work, Fact 3.2 is crucial
since it implies that all of the top-k distances in � consecutive levels have all of
their endpoints in two intervals of bounded size. We use an incremental branch-
and-bound search: It exhaustively searches all possibilities, but in an efficient way
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where large sections of the search space can be eliminated at once. Each individual
step of the algorithm corresponds to an application of one of the Facts 3.1–3.4.The
lack of special diagonals allows us to focus on disjoint interval pairs. The Java
implementation is available at

http://sourceforge.net/projects/convexdistances/.

4.2 Configurations

In more detail, our algorithm maintains a set of configurations. Each configuration
has two disjoint intervals of points from S; then for each diagonal generated by
one point from each interval, the configuration stores a set of possible values for
the distance between those two points. Arbitrarily name one interval the top and
denote its points as {ti}i, with ti+1 following ti in clockwise order, and name the
other interval the bottom with points {bi}i, and bi−1 following bi in clockwise order.
Then we denote the set of possible distances between ti and b j as D[i, j]; in each
configuration D[i, j] is a subset of {1,2, . . . ,k,∞}, where x ∈ D[i, j] means that dx

is a possible value for the distance |tib j|, while ∞ ∈ D[i, j] means that it is possible
for |tib j| to be shorter than dk. (So typical steps in our program use special cases
to reason with “d∞” distances correctly.) Reiterating, a configuration consists of a
top interval of indices, a bottom interval of indices, and for each top-bottom pair a
subset of {1,2, . . . ,k,∞}.

We assume that tib j is in level number j− i (modulo n), which is without loss
of generality. To gain some intuition and exhibit the notation, it is helpful to look
at a couple of examples. Our examples will be drawn from actual point sets and
therefore each D[i, j] will be just a singleton, in contrast to the larger sets D[i, j]
typically occurring in the algorithm. The first example, shown in Fig. 4, is a regular
polygon of odd order. The second example, shown in Fig. 5, exhibits the extremal
construction of Vesztergombi for second distances [7].

4.3 Methodology

Here is an example of a typical step in the algorithm, shown in Fig. 6. Suppose
some configuration includes points t1, t2,b2,b1, suppose that D[1,1] =D[2,2] = {2},
D[1,2] = {2,3,∞} and that D[2,1] = {1,2,3,∞}. Then, using Fact 3.1, we know that
|t1b2|+ |t2b1|> |t1b1|+ |t2b2|. As the right-hand side equals 2d2 and the maximum
possible length of t1b2 is d2, we can deduce that |t2b1| > d2 and so we may update
the configuration via D[2,1] := {x ∈ D[2,1] | x < 2}= {1}.

The program uses Facts 3.1–3.4 in ways analogous to the above example.
Whenever one of the facts is applicable, we use it to reduce the size of one set
D in the configuration. We use Fact 3.4 only when a1,ai,a j lie in the top interval
and ak,al ,an lie in the bottom, or vice versa.

http://sourceforge.net/projects/convexdistances/
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Fig. 4 Left: an odd regular polygon, with a top and bottom interval. Right: the corresponding
values of D, where entry x in column i, row j indicates D[i, j] = {x}. One level is illustrated on the
left and circled on the right
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Fig. 5 Left: an illustration of Vesztergombi’s construction with m2 =
4
3 n−O(1). Some diagonals

of lengths d1 and d2 are shown (solid and dotted, respectively). Right: the corresponding
configuration; again, entry x in column i, row j indicates D[i, j] = {x}

Fig. 6 A typical step of the algorithm, using Fact 3.1

Our algorithm also makes use of another easy observation. In any instance S,
it cannot be true that both d1 + d3 > d2 + d2 and d1 + d3 < d2 + d2. Hence, using
Fact 3.1, a quadruple t, t ′,b′,b (in that cyclic order) with |tb| = |t ′b′| = d2, |tb′| =
d1, |t ′b|= d3 cannot co-exist with another quadruple t̂, t̂ ′, b̂′, b̂ with |t̂ b̂|= d1, |t̂ ′b̂′|=
d3, |t̂ b̂′|= |t̂ ′b̂|= d2. More generally, given a configuration, we can deduce from any
i, j, i′, j′ with each D[i, j],D[i, j′],D[i′, j],D[i′, j′] singletons other than {∞} that an
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inequality of the form dw+dx > dy+dz is true; in testing a configuration for validity,
our program will reject any configuration where a contradiction arises from the set of
all such pairwise inequalities. This is done by testing the associated digraph of

(k+1
2

)
pairs for acyclicity. (We also include arcs of the form dx + dy > dx + dz whenever
y < z.)

In some situations none of these facts is applicable; say, for example, if each
D[i, j] is equal to {1,2,∞}, we cannot conclude any further information. In this case,
we use an approach that is similar to recursion or branch-and-bound in this situation,
which works as follows. Find some i, j with |D[i, j]| > 1, and let X denote D[i, j].
We then replace this configuration with two new configurations: Each of the new
ones is almost identical to the original, except that in one we take D[i, j] = minx∈X x
and in the other we take D[i, j] = X\{minx∈X x}. In a little more detail, while we are
examining the levels from 1 to L, we only perform branching on diagonals in levels
1 to L, (i.e., only when 1 ≤ j− i ≤ L) and any other nonsingleton D[i, j] does not
entail branching. This was faster in practice than branching on every D[i, j].

4.4 Initializing and Growing Configurations

Recall that our theorems are all of the following form, for a set T of positive integers
and some real α:

∑
t∈T

mt ≤ αn+O(1). (♠)

We call a target distance any distance dt with t ∈ T . We use k to represent the largest
number in T .

We begin this detailed section by explaining why it suffices to examine config-
urations of bounded size to bound the number of target distances in L consecutive
levels. The key tool is Fact 3.3. Namely, suppose t0b1 is any diagonal in level 1
with length |t0b1| ≥ dk, and consider any top-k distance diagonal e in levels 1, . . . ,L.
If e crosses t0b1, then t0 (resp., b1) is within L steps along the boundary from an
endpoint of e (resp., the other endpoint of e). If e and t0b1 don’t cross, one endpoint
of e is at most 2k steps from t0 or b1 by Fact 3.3, and the other endpoint of e is at
most 2k+L points away from the other of t0 or b1. Summarizing, in either case, e
has one endpoint in the interval It consisting of vertices at most 2k+L steps from
t0, and e’s other endpoint lies in the interval Ib consisting of vertices at most 2k+L
steps from b1; and this holds for all top-k distance diagonals e in levels 1, . . . ,L.

Our program makes valid deductions whenever these intervals are disjoint, which
is false only when t0 and b1 are within 2(2k + L) steps of one another on the
boundary. Set � = 2(2k+ L) and define a special diagonal to be one with length
≥ dk and at most � vertices between its endpoints. Recall that |t0b1| ≥ dk, so the
program’s deductions are valid unless there was a special diagonal. This explains
the choice of 16 = 2(2 ·2+4) in Proposition 4.1 and justifies our general approach.

In the rest of this section, we explain some of the implementation details. The
program begins working with a configuration consisting of a single diagonal t0b1 of
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length ≥ dk, and we assume without loss of generality that there are no diagonals
tibi+1 such that i < 0 and |tibi+1| ≥ dk. Thus, the top and bottom intervals begins as
the singleton sets {t0},{b1}.

We will now enlarge these configurations. Reviewing our proof strategy, the
program must enumerate all possible configurations such that level 1 has more than
α diagonals of a target length, and levels 1 and 2 together have more than 2α , etc.,
with the hope being that once the number of levels is high enough, we find that no
such configurations exist, since this would give a result like Lemma 4.2.

Note that, by our choice of t0 and b1, which normalize our indices, in any convex
point set, all level-1 diagonals of the target distances are of the form tibi+1 for
i > 1, and by Fact 3.3, they also satisfy i ≤ 2k− 2. So crucially, their possible
positions are confined to an interval of bounded size. We now determine which of
these diagonals have target lengths by exhaustive guessing, a term that simply means
trying all possibilities. In detail, first, exhaustively guess the smallest i> 0 for which
tibi+1 is a target distance, then the second-smallest, etc. When the top and bottom
intervals are enlarged, each new D[i, j] is set to {1, . . . ,k,∞} by default, meaning
that no assumptions are made on the distance. When i is guessed as a minimal new
level-1 diagonal for which tibi+1 is a target distance, rather than the defaults, we set
D[i, i+ 1] = T and D[i′, i′+ 1] := {1, . . . ,k,∞}\T for all new i′ < i.

After each new diagonal is added, we reapply Facts 3.1–3.4 in order to make
additional deductions and eliminate any impossible configuration; and we split any
nonsingleton sets D in the first level, as described earlier.

After this exhaustive guessing, we have collected all possible configurations. We
keep only those for which level 1 has more than α diagonals of the target lengths.
If any exist, we grow them in all possible ways to 2-level configurations, using
exhaustive guessing like that explained above, except that we expand “to the left”
before expanding “to the right” (for level 1, only rightward expansion was needed
due to our choice of t0 and b1). Again, we prune those that have no more than 2α
target distance in the first two levels.

We repeat the process described in the previous paragraph over and over,
increasing the number of levels by 1 each time. If the program terminates eventually,
it implies a result of the form like Lemma 4.2 and consequently that (♠) holds for
this choice of T and α . We give a high-level review of the algorithm in Fig. 7.

5 Results: Proof of Theorem 4

Each row in Table 1 corresponds to an execution of our program that terminated.
In other words, each execution establishes that an analogue of Lemma 4.2 holds,
and we consequently deduce Theorem 4 using reasoning as in the proof of
Proposition 4.1. Each line proves

∑
t∈T

mt ≤ αn for n >C(k,2(2k+L))/(α− 1), (♣)
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Fig. 7 Sketch of the algorithm

Table 1 The terminating executions of our program, each one proving
(♣) for that α and T . Tight means convex point sets are known with
∑t∈T mt = αn−O(1), and abstractly tight means some periodic configu-
ration has ∑t∈T mt = αn, but we could not realize it convexly in the plane

T α L Time (s) Tightness of result

{1,2} 2 2 <1 Tight (odd regular)
{2} 4/3 4 <1 Tight [7]
{1,2,3} 3 3 <1 Tight (odd regular)
{3} 3/2 9 5 Abstractly tight, Fig. 8
{2,3} 9/4 6 1 Abstractly tight, Fig. 9
{1,3} 2 4 <1 Tight (odd regular)
{1,2,3,4} 4 3 68 Tight (odd regular)
{4} 13/8 27 50,890 Unknown

where k is the largest element of T , and C is the constant from Lemma 1.5. Note
that the first two lines of Table 1 correspond to results that were already known.
The running times are from a computer with a 2-GHz processor. The program was
written in Java and is available on SourceForge.2 For T = {1,2,3,4,5} or T = {5},
the program ran out of memory before obtaining any reasonable result.

6 Abstract Tightness

Our computer program can also generate tight examples. In Fig. 8, we show
two periodic configurations with m3 = 3

2 n with periods of six and eight levels,
respectively. (No other example has period lower than 14.) We were not able to
embed these examples as convex point sets in the plane, and at the same time we

2http://sourceforge.net/projects/convexdistances/.

http://sourceforge.net/projects/convexdistances/
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did not disprove that they were embeddable. Based on our attempts, it seems like
there is no simple periodic embedding respecting the natural symmetries of the
distance configurations. A disproof of realizability could be used in the program
to get stronger results. For m2 +m3 =

9
4 n, we also have an abstractly tight periodic

example that we could not realize (Fig. 9).

7 Future Directions

Our program is essentially a depth-first search; each configuration examined by the
program has a unique “parent” configuration from which it was grown. Thus, it
would be possible to rewrite the program so as to use a smaller amount of memory
and thereby possibly obtain results with smaller α or larger k; and a distributed
implementation should also be straightforward.

It would be good to come up with constructions exhibiting better lower bounds.
For example, no construction is known where m3/n is asymptotically greater
than 4/3.

Our approach constitutes an abstract generalization of the original problem of
bounding sums of the mi’s in convex point sets. Vesztergombi [7] considered
an abstraction as well, using only a subset of the facts we applied here. Can
Conjecture 1.1 of Erdős and Moser be violated in either of these abstractions?

Finally, can the functions C,C′ in Lemmas 1.5 and 1.6 be improved?
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Coloring Distance Graphs and Graphs
of Diameters

Andrei M. Raigorodskii

Abstract In this chapter, we discuss two classical problems lying on the edge of
graph theory and combinatorial geometry. The first problem is due to E. Nelson.
It consists of coloring metric spaces in such a way that pairs of points at some
prescribed distances receive different colors. The second problem is attributed to
K. Borsuk and involves finding the minimum number of parts of smaller diameter
into which an arbitrary bounded nonsingleton point set in a metric space can be
partitioned. Both problems are easily translated into the language of graph theory,
provided we consider, instead of the whole space, any (finite) distance graph or any
(finite) graph of diameters. During the last decades, a huge number of ideas have
been proposed for solving both problems, and many results in both directions have
been obtained. In the survey below, we try to give an entire picture of this beautiful
area of geometric combinatorics.

1 Basic Definitions and Motivations

The main objects of this chapter are distance graphs and graphs of diameters.
In principle, one may define them for any metric space. However, we start here
by defining them only in the case of the Euclidean space Rn. More general cases
will be discussed a bit later.
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So consider an arbitrary graph G = (V,E) such that V ⊂ Rn, |V |< ∞, and

E ⊆ {{x,y} : |x− y|= 1}, (1)

where by |x−y|we denote the standard Euclidean distance. Any such graph is called
a (finite) distance graph. Here it is important that the set of edges of a distance graph
is not necessarily formed by all pairs of vertices x,y satisfying the distance condition
|x−y|= 1 [cf. (1)]: we assume that some “possible” edges are not drawn. However,
if in expression (1) we substitute the sign “⊆” by the sign “=” (which is somehow
natural), then the corresponding graph G is called the complete distance graph.

There exists a great literature concerning distance graphs (see, e.g., the book
[16]). In this chapter, we are mainly interested in coloring them. More precisely, we
study the chromatic numbers of distance graphs, where by the “chromatic number”
χ(G) of a graph G we mean, as usual, the minimum number of colors needed to
color all the vertices of G so that any two adjacent vertices receive different colors.

A basic motivation for us is given by a famous problem in combinatorial
geometry. This problem consists of finding the chromatic number χ(Rn) of the
Euclidean space, which is the smallest χ such that one can color all the points in Rn

by χ colors and no two points at the distance 1 get the same color:

χ(Rn) = min
{
χ : Rn =V1� . . .�Vχ , ∀ i ∀ x,y ∈Vi |x− y| �= 1

}
.

In other words, χ(Rn) = χ(G), where G= (Rn,E) and

E= {{ x,y} : |x− y|= 1}.

Of course, the quantity χ(G) is bounded from below by the chromatic number of
any finite distance graph. A much more essential thing is that, in fact,

χ(G) = max
G

χ(G), (2)

where the maximum is taken over all finite distance graphs in Rn. This result is an
immediate consequence of a general theorem by Erdős and de Bruijn (see [17]): If
the chromatic number of an infinite graph G is finite, then it is attained on a finite
subgraph of G. In Sect. 2.3, we shall show, in particular, that χ(G) = χ(Rn) < ∞,
and so Eq. (2) will be proved.

Since we prohibit points of the same color from being at the distance 1, we
also call the value 1 the forbidden distance. By the homogeneity of the Euclidean
distance, the quantity χ(Rn) will not change, provided we substitute 1 by any other
forbidden distance a > 0.

The history of the problem of determining χ(Rn) is very intriguing. The problem
was proposed in 1950 by E. Nelson, although H. Hadwiger had worked on similar
questions even earlier (see [48]). Some “colorful” details can be found in the book
[114], and here we do not dwell on this. Many other books and surveys can be cited
as well; see, e.g., [3, 16, 59, 82, 83, 115].
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Now, consider an arbitrary graph G = (V,E) such that V ⊂ Rn, |V |< ∞, and

E = {{x,y} : |x− y|= diamV}, (3)

where by diamV we denote the diameter of V , i.e., the value

diamV = sup
x,y∈V

|x− y|.

In principle, here one may substitute “sup” by “max” since V is finite. Any graph
determined by (3) is called the graph of diameters: We join any two points in V by
an edge, if and only if they are, in some sense, “antipodal,” which means that they
realize the maximum distance in the set V .

In this chapter, we study only the chromatic numbers of distance graphs. This
is well motivated by the famous Borsuk partition problem. Indeed, consider an
arbitrary set Ω of diameter 1 in Rn that is not necessarily finite. By f (Ω), denote
the minimum number of smaller-diameter parts needed to decomposeΩ :

f (Ω) = min
{

f : Ω =Ω1� . . .�Ω f , ∀ i ∀ x,y ∈Ωi |x− y|< 1
}
.

By f (n), denote, in turn, the value max
Ω

f (Ω). In other words, f (n) is the lowest

number of smaller-diameter parts needed to divide an arbitrary set of diameter 1 in
Rn. The Borsuk problem is just in finding f (n). Notice that “diameter 1” can be
replaced by “diameter a” with any a > 0 in all the above definitions.

For finite sets V in the Euclidean space, the chromatic numbers of the corre-
sponding graphs of diameters are exactly equal to f (V ). For infinite sets, this is
not the case. For example, the graph of diameters of the unit sphere Sn−1 ⊂ Rn

is obviously bipartite (it is even a matching); however, f (Sn−1) = n+ 1, which is
essentially equivalent to the Borsuk–Ulam theorem (see [14, 76]).

The origin of the problem is in 1933, when K. Borsuk conjectured in [14] that
f (n) = n + 1. The history of this conjecture is dramatic, since the majority of
specialists believed in it; nevertheless, a counterexample was constructed in 1993
(see Sect. 8.3). What is essential for us right now is that all the known counterexam-
ples to Borsuk’s conjecture are given by finite sets in the Euclidean spaces.

The literature on Borsuk’s problem is huge; see, e.g., [13, 16, 82, 84–87].
The structure of the remaining part of the chapter will be as follows: In Sect. 2, we

shall discuss various questions concerning the value χ(Rn); Sect. 3 will be devoted
to the chromatic numbers of more general metric spaces; in Sect. 4, we shall speak
about distance graphs with a large girth/small clique number and a high chromatic
number; in Sect. 5, we shall introduce a sequence of random distance graphs related
to the coloring problems; in Sect. 6, we shall discuss the independence numbers
of some important distance graphs; Sect. 7 will be devoted to some “conditional”
results on various chromatic numbers; in Sect. 8, we shall eventually proceed to
Borsuk’s problem.
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2 The Chromatic Numbers of Rn

2.1 The Case n = 2

We start by considering n = 2, since of course χ(R1) = 2 and almost nothing of
interest can be found in the one-dimensional case (see, however, Sect. 3.4.2). One
even could assume that finding χ(R2) should be not a big deal. Unexpectedly, such
an assumption is completely wrong. We only know that

4 � χ(R2)� 7.

Moreover, both estimates are very simple. They were obtained just after the problem
had been stated, and to date, no one knows how to improve them.

As for the lower bound, it is attained on a distance graph, which is called Moser’s
spindle (see Fig. 1).

As for the upper bound, it is given by an explicit coloring of the plane, which is
shown in Fig. 2.

Although the quantity χ(R2) has yet to be determined, many facts are known
about coloring distance graphs in the Euclidean plane. For example, P. Erdős, who
liked the problem very much, proposed the following question in 1976 (see [29]):
Does there exist a triangle-free distance graph in the plane whose chromatic number
is at least 4? Erdős’s question is quite natural, since, on the one hand, Moser’s
spindle contains four triangles and, on the other hand, there do exist ordinary graphs
G with any prescribed value of the chromatic number and any prescribed value of
the girth g(G) (which is the length of a shortest cycle in the graph).

Fig. 1 Moser’s spindle
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Fig. 2 Coloring of the plane
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In 1979, N. Wormald succeeded in positively answering Erdős’s question.
He constructed a distance graph G in R2 with χ(G) = 4 and g(G) = 4. His graph
had 6448 vertices (see [118]). In 1996, a similar graph with only 23 vertices was
discovered by O’Donnell and Hochberg (see [25]). Finally, in 2000, O’Donnell
showed the existence, for any fixed k, of a distance graph with χ(G) = 4 and
g(G)> k (see [26, 27]).

Another direction of research is generated by imposing various restrictions on the
colors. One may assume that only measurable sets in the plane must be considered
as possible colors in a coloring. In this case, the chromatic number is also called
measurable and is denoted by χm(R

2). K. Falconer proved in 1981 that χm(R
2)� 5

(see [37]).
Furthermore, one may assume that any color consists of pairwise disjoint sets

whose boundaries are formed by finitely many Jordan arcs. With this restriction,
five colors do not already suffice and one needs at least six colors. This was noticed
by D.R. Woodall in 1973 (see [117]).

On the other hand, by analyzing the coloring from Fig. 2 more carefully, we see
that there is some room to spare. Indeed, not only is the distance 1 avoided there, but
a whole interval of distances can be forbidden with the same effect. Starting from
this point, L.L. Ivanov recently studied the value χ(R2; [1,d]) that is equal to the
minimum number of colors needed to color the plane, so that any two points at a
distance a ∈ [1,d] receive different colors (see [51]). In particular, he proved that

χ

(
R2;

[
1,

√
7

2

])
� 7, χ

(
R2;
[
1,
√

3
])

� 9, χ
(
R2; [1,2]

)
� 12,

χ

(
R2;

[
1,

√
19
2

])
� 13, χ

(
R2;

[
1,

3
√

3
2

])
� 16, χ

(
R2;

[
1,

√
31
2

])
� 19,

χ

(
R2;

[
1,

√
37
2

])
� 21.

Many analogous more or less reasonable problems have been formulated and
more or less solved (see [114]), but the original question is still far from being
answered. We would like to conjecture that χ(R2) = 4. However, it is worth noting
that if our conjecture is true, then to prove it, we must find a 4-coloring of the plane
with nonmeasurable sets as colors. To date, no techniques have been developed to
do that.

2.2 Other “Small” Dimensions

For the space R3, the gap between upper and lower estimates of the chromatic
number is much bigger than the similar gap for the plane. Now, we know that

6 � χ(R3)� 15.
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The lower bound is due to Nechushtan (see [79]) and the upper one was obtained by
Coulson (see [22]) and, independently, by Radoičić and Tóth (see [81]).

For R4, the best-known lower bound is by 7. The first proof of this bound was
given by Cantwell in [18]. The corresponding distance graph is rather complicated.
Substantially simpler graphs were constructed by Ivanov (see [52]) and Kupavskii
(see [61]).

The bound χ(R4) � 49 was announced by Coulson in 2000, but as far as
we know, no corresponding publication has appeared since then. Thus, the best
published upper estimate for which we can give a reference is by Radoičić and
Tóth (see [81]): χ(R4)� 54.

A tremendous volume of publications concerning lower bounds for χ(Rn) with
n � 5 may be cited. Instead of doing that, we shall give a table with the current
“records” for n � 12.

dim 1 2 3 4 5 6

χ� 2 4 6, [79] 7, [18, 52, 61] 9, [18] 11, [20]
dim 7 8 9 10 11 12
χ� 15, [82] 16, [68] 21, [65] 23, [65] 25, [62] 27, [61]

The measurable chromatic number can be defined not only for the plane (see
Sect. 2.1), but for any space Rn. The value χm(R

n) has been studied by many
authors, including Falconer (see [37]) and Székely (see [115] and [116]). The best
lower bounds for this value are as follows:

χm(R
3) � 7, χm(R

4)� 9, χm(R
5)� 14, χm(R

6)� 20, χm(R
7)� 28, χm(R

8)� 39,

χm(R
9) � 54, χm(R

10)� 73, χm(R
11)� 97, χm(R

12)� 129, . . .

All these bounds were obtained by de Oliveira Filho and Vallentin in their recent
joint paper [38].

Also, the value χ(R3; [1,d]) (cf. Sect. 2.1) was studied in [51]

χ
(
R3; [1,1.115]

)
� 18, χ

(
R3; [1,1.133]

)
� 21, χ

(
R3; [1,1.137]

)
� 23,

χ
(
R3; [1,1.303]

)
� 24, χ

(
R3; [1,1.549]

)
� 27, . . .

2.3 Higher Dimensions

It is very easy to show that χ(Rn)< ∞. Indeed, one can partition all the space into
very big equal “parallel” cubes (say, of side length 2) and then divide every such
cube into very small cubes (say, of side length < 1

2
√

n
). In any big cube, we get as

many colors as we have small cubes in it. So the distance between monochromatic



Coloring Distance Graphs and Graphs of Diameters 435

points in a given small cube is less than 1, and the distance between points in any two
distinct small monochromatic cubes is greater than 1. Careful calculations provide
here a bound χ(Rn)� (


√
n�+ 1)n.

Much tighter bounds were obtained by Larman and Rogers in 1972 in [68]:
χ(Rn) � (3+ o(1))n. This result is still the best known. Even for n � 5, no other
more specific estimates have been established.

As for the lower estimates, one can readily generalize Moser’s spindle in order
to get χ(Rn) � n+ 2, n � 2. The first improvement to this almost trivial bound

was given in [68]: χ(Rn) � (n
3)
n ∼ n2

6 . In 1978, Larman obtained a slightly further
refinement (see [67]): χ(Rn) � cn3, c > 0. A breakthrough was done in a seminal
paper by Frankl and Wilson (see [43]), who succeeded in showing in 1981 that

χ(Rn)�
(

1+
√

2
2

+ o(1)

)n

= (1.207 . . .+ o(1))n.

The current “record” here is due to this author (see [82, 88]), so that

(1.239 . . .+ o(1))n � χ(Rn)� (3+ o(1))n. (4)

In Sect. 2.2, we could see a big difference between lower bounds for the ordinary
chromatic number of space and for the measurable one. It seems natural to guess
that there should be a large gap between similar bounds in growing dimension
as well. Unexpectedly, only the same estimates (4) are known for χm(R

n). Of
course, infinitesimals o(1) are not the same, but the main exponent does not change.
Moreover, there are no examples when χm(R

n) �= χ(Rn).

2.4 Ideas of Lower Estimates in Small Dimensions

Of course, the first step in getting lower estimates for χ(Rn) is always the same: One
should find a distance graph in Rn with as high a chromatic number as possible.
In the plane, such a graph is just Moser’s spindle, but in greater dimensions,
constructions are sometimes quite nontrivial. Many of them are described in [115],
and we do not want to dwell on them here.

A more interesting type of argument is suggested by a careful analysis of Moser’s
spindle. How do we construct it? We take two points x,y at distance 1. Then we find
two other points z,z′ such that each of them is at distance 1 from both x and y.
Finally, we rotate the construction in order to get the spindle. The distance graph
on the vertices x,y has chromatic number 2. Both distance graphs on the vertices
x,y,z and x,y,z′ (triangles) have chromatic number 3. And the whole spindle has
chromatic number 4. Starting from a graph H with chromatic number 2, we come
to another graph G, whose chromatic number is already 4.
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An important extension of the above-described construction is as follows.
Assume that we have a graph H whose vertices lie on a sphere Sn−1

r ⊂ Rn of
some radius r (in Moser’s spindle, H lies on S0

1 ⊂ R1). Moreover, let χ(H) = m.
Suppose that there is a point z in Rn+1 that is at distance 1 from every point of Sn−1

r
(the existence of such a point depends only on the value of r). Then we immediately
get a graph G in Rn+1 with χ(G)=m+1. Now, take the point z′, which is symmetric
to z and also has distance 1 from Sn−1

r . Rotate this construction, and the resulting
spindle has chromatic number m+ 2.

The above procedure gives us a possibility to lift a lower bound from a
dimension n to the next dimension. Kupavskii thoroughly investigated more subtle
constructions, obtaining a series of similar but stronger results (see [61, 62]).
We quote here only one of such results: Let G be a distance graph whose vertices
lie on a sphere Sn−1

r ⊂ Rn with n � 2 and

1
2
� r �

√
1+

√
3

2+
√

3
, r �=

√
2
3
.

Assume that χ(G)� m. Then χ(Rn+2) � m+ 4. In other words, we can add 4 to a
bound of the chromatic number by increasing the space dimension by 2.

For example, in the table from Sect. 2.2, we see the estimates

χ(R9)� 21, χ(R10)� 23, χ(R11)� 25, χ(R12)� 27.

The first estimate is attained on a graph whose vertices just lie on a sphere (see [65]).
The second one is due to the “spindle idea.” The third one is obtained by using
the quoted result of Kupavskii. The fourth bound is based on another result from
Kupavskii’s work [61].

2.5 Ideas of Lower Estimates in Higher Dimensions

As we know from Sect. 2.3, the first nontrivial estimate is χ(Rn) � (n
3)
n ∼ n2

6 .
It is published in the paper [68], but it was suggested by Erdős and Sós. The
corresponding graph G = (V,E) is as follows:

V = {x = (x1, . . . ,xn) : xi ∈ {0,1}, x1+ · · ·+xn = 3}, E = {{x,y} : |x−y|= 2}.
(5)

So here the forbidden distance is 2, but for the chromatic number, this does not
matter (see Sect. 1). A more important thing is that the consideration of such a
graph G leads us away from pure geometry and gives us the possibility of using
some instruments from combinatorics and coding theory.
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By the pigeon-hole principle, χ(G)� |V |
α(G) , where

α(G) = max{|W | : W ⊆V, ∀ x,y ∈V {x,y} �∈ E}

is the independence number of a graph G. In the case of the graph G defined in (5),
|V |=

(n
3

)
. As for α(G), it can be calculated explicitly:

α(G) =

⎧⎨⎩
n, n≡ 0 (mod 4),
n− 1, n≡ 1 (mod 4),
n− 2, n≡ 2 or 3 (mod 4).

The lower estimate for α(G) is given by a simple construction, and the upper
estimate can be proved by induction.

Now, an idea of further improving the quadratic lower bound for the chromatic
number of space is evident: Replace the numbers 3 (the quantity of units in each
vector) and 2 (the forbidden distance) by some a∈ {1, . . . ,n} and b with b2 ∈N and
try to find the chromatic number of the corresponding graph Ga,b.

Unfortunately, this is not so simple. For instance, Larman’s cubic bound (see [67]
and Sect. 2.3) is obtained by taking a = 5, b =

√
6. The constant c > 0 in it is very

small due to technical reasons. And until the appearance of the paper [43] of Frankl
and Wilson, no one knew how to act when a > 5: Elementary tools became too
cumbersome in that cases.

The paper [43] was a real breakthrough. The so-called linear algebra method was
proposed there. Today we may cite many books and papers concerning this method;
see, e.g., [7, 9, 82, 89]. Below we shall present a few starting ideas of the approach.

Consider the graph G from (5). Note that the forbidden distance 2 is the same
as the forbidden scalar product 1. Let’s denote the scalar product by (x,y). Let
W = {x1, . . . ,xs} be an independent set of vertices in V (by an “independent set,”
we mean any set whose elements are pairwise nonadjacent in the graph, so that the
independence number is just the maximum cardinality of an independent set). In
other words, (xi,x j) �= 1 for any i �= j, and our purpose is to give an upper estimate
for the cardinality |W |= s.

To each vector x ∈ V we assign a polynomial Fx ∈ Z/2Z[y1, . . . ,yn] defined by
the expression

Fx(y) = Fx(y1, . . . ,yn) = (x,y) = x1y1 + · · ·+ xnyn.

Consider the polynomials Fx1 , . . . ,Fxs . Consecutively substituting, in any linear
combination of these polynomials, the variable y by xi, i = 1, . . . ,s, we see that
Fxi(y) = 3 �≡ 0 (mod 2) and Fx j (y) ∈ {0,2} ≡ 0 (mod 2) ( j �= i). Therefore, the
polynomials are linearly independent over Z/2Z. But all such polynomials are
generated by y1, . . . ,yn, so that the quantity s = |W | of them does not exceed n
and we get the bound α(G)� n. It is only a bit different from the exact value of the
independence number.
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By using this powerful idea, one can prove the estimate α(G) �
(n

2

)
+
(n

1

)
+ 1

for Larman’s graph with a = 5, b =
√

6. One should only use other polynomials.
Indeed, let Fx ∈ Z/3Z[y1, . . . ,yn] be defined by the formula

Fx(y) = Fx(y1, . . . ,yn) = ( x, y)(( x, y)− 1).

Open the brackets in the last expression and replace any y2
i by yi. We get a

polynomial F̃x ∈ Z/3Z[y1, . . . , yn], which is multilinear of degree 2. Now, take an
arbitrary independent set W = { x1, . . . , xs}, i.e., | xi− x j| �=

√
6 (or, equivalently,

( xi, x j) �= 2) for any i �= j. As before, we see that F̃xi( xi) = 20 �≡ 0 (mod 3)
and F̃x j( xi) ∈ {0,6,12} ≡ 0 (mod 3) ( j �= i). Consequently, the polynomials are
again linearly independent over Z/3Z. But all such polynomials are generated by
yiy j,yi,1, and we are done.

Note that the just-proved estimate is much better than the original estimate by
Larman. Note also that the important ingredients in the proof were as follows: (1)
For any (0,1)-vector y = (y1, . . . ,yn) and for any k ∈ N, yk

i = yi; (2) the forbidden
scalar product is congruent modulo some p to the maximum scalar product [which is
equal to ( x, x), since the number a of units in every x is fixed]; (3) among possible
scalar products between vectors from V , there are no other values congruent modulo
p to the forbidden scalar product and to the maximum one; (4) p is prime.

Eventually, we are led to the statement of the Frankl–Wilson theorem, which now
looks quite natural: Let a be an arbitrary natural number not exceeding n. Let p be
the minimum prime such that a−2p < 0. Let the forbidden scalar product be equal

to a− p. Then α(Ga,b)�
p−1
∑

i=0

(n
i

)
.

From this theorem, we immediately get the estimate

χ(Rn)� max
a

(n
a

)
p−1
∑

i=0

(n
i

) .
Some simple but tedious optimization shows that the best a is asymptotically

equal to
(

2−
√

2
2

)
n, entailing the bound by (1.207 . . .+ o(1))n (see Sect. 2.3). For

more details, the reader can study [89].
Note that, instead of primes, it is possible to take prime powers. However,

replacing prime powers by anything else is a great problem (see, e.g., [42, 82, 89]).
The best-known estimate (4) is obtained by replacing (0,1)-vectors by (−1,0,1)-

vectors. No other types of vectors give any improvement. We shall discuss this
problem in Sect. 6.

2.6 Ideas of Upper Estimates

First, let’s review some terminology from the geometry of numbers and theory of
packings (see [21] and [46]).
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By a lattice in the space Rn, we mean the integer span of any n linearly
independent vectors. Any subsetΓ of a latticeΛ , which also forms a lattice, is called
its sublattice. Lattices are abelian groups in Rn. The fundamental cell of a lattice
Λ ⊂Rn is defined as Rn/Λ . The determinant detΛ of a latticeΛ is the volume of its
fundamental cell. IfΛ is a lattice and Γ is its sublattice, then |Λ/Γ |= det Γ /detΛ .
The Voronoi region V a for a point a ∈Λ is defined as follows:

V a = { x ∈ Rn : | x− a|� | x− b| ∀ b ∈Λ}.

The set of all Voronoi regions assigned to a lattice forms a packing of the space
by congruent polytopes, which means that those polytopes completely fill the space
and intersect only by boundaries.

In these terms, the hexagonal tiling of the plane from Fig. 2 is the packing by

Voronoi regions for the lattice spanned by the vectors (1,0) and
(

1
2 ,
√

3
2

)
.

A general method is as follows. Take some lattice Λ and its sublattice Γ .
Consider the Voronoi partition of the space corresponding to Λ . Denote by k the
quantity |Λ/Γ |. Thus, we have k classes of points in Λ and, therefore, k classes of
Voronoi regions. Color any region from the ith class into the ith color. If the diameter
of a region is smaller than 1 and the distance between any two monochromatic
regions is greater than 1, then we can say that χ(Rn)� k.

All the known upper estimates for the chromatic number of space [including those
for χ(Rn; [1,d])] were obtained using this method. Nothing better is known!

Coming back to a discussion in Sect. 2.1, one can show that the “lattice–
sublattice” techniques will never give a bound for χ(R2) better than χ(R2) � 7.
For R3, the idea is also exhausted: It is not possible to make estimate by 14 when
coloring Voronoi regions. In arbitrary dimensions, the similar limitation is 2n+1− 1
(see [22]). So for n � 4, we have only such estimates that could be improved with
the help of the existing approach.

3 The Chromatic Numbers of Some Other Spaces

3.1 A General Definition

Let (X ,ρ) be an arbitrary metric space. LetA⊆R+ be any set of positive reals. We
emphasize thatAmay be infinite. By the chromatic number of the space (X ,ρ) with
the set A of forbidden distances, we mean the minimum quantity χ((X ,ρ);A) of
colors needed to color all the points in X so that any two points at a distance from
A have different colors:

χ((X ,ρ);A) = min
{
χ : X =V1� . . .�Vχ , ∀ i ∀ x,y ∈Vi ρ(x,y) �∈ A

}
.
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Denote by lp, p � 1, the following metric on vectors x = (x1, . . . ,xn), y =
(y1, . . . ,yn) in any space X , which can be considered as the product of some spaces
X1, . . . ,Xn:

lp( x, y) =
{

p
√
|x1− y1|p + · · ·+ |xn− yn|p, p < ∞,

maxi |xi− yi|, p = ∞.

In this notation,

χ(Rn) = χ((Rn, l2);{1}), χ(Rn; [1,d]) = χ((Rn, l2); [1,d]).

So when we omit a metric, we assume that it is the Euclidean one, and when we
omit a set of forbidden distances, we assume that it consists only of the unit. It is
worth noting here that, in an arbitrary metric space, avoiding the unit distance is not
necessarily the same as avoiding another single distance.

The notion of a distance graph does not change essentially. When A is finite,
there is still no need to consider infinite graphs, provided the chromatic number of
a space under consideration is finite (cf. [17] and Sect. 1). However, in the case of
|A|= ∞, infinite graphs might be useful.

In Sect. 3.2, we shall discuss the chromatic numbers of rational spaces Qn with
the Euclidean metric and one forbidden distance; in Sect. 3.3, we shall proceed to
the spaces (Rn, lq), (Qn, lq) with arbitrary q and one forbidden distance; Sect. 3.4
will be devoted to multiple forbidden distances in various cases; in Sect. 3.5, we
shall consider spheres in the Euclidean spaces.

3.2 The Chromatic Numbers of the Spaces (Qn, l2)

The quantity χ(Qn) = χ((Qn; l2);{1}) was introduced in 1976 by M. Benda and M.
Perles. Their joint paper remained unpublished until 2000, when it finally appeared
in Geombinatorics (see [11]).

Clearly, the forbidden distance 1 can be substituted here with any other rational
number, but irrational forbidden distances (which must, of course, be quadratic
irrationalities) may change the value of the chromatic number. Below we shall
discuss only the unit distance case, referring the reader to [11].

The most interesting thing is that the value of χ(Qn) is calculated for n � 4:

χ(Q1) = χ(Q2) = χ(Q3) = 2, χ(Q4) = 4.

As usual, the lower estimates are given by some explicit constructions (finite
distance graphs). However, the upper bounds apparently do not use any lattice–
sublattice technology. They are based on purely arithmetic arguments. For example,
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the main idea of proving the inequality χ(Q2) � 2 is in the fact that if
(

p1
q1

)2
+(

p2
q2

)2
= 1 and both fractions are irreducible, then q1 and q2 must be odd and,

among p1 and p2, exactly one number is even (see [11, 53, 117]).
Chilakamarri conjectured in [19] that χ(Q5) = 8. In 2008, Cibulka proved the

bound χ(Q5) � 8 (see [20]). It only remains to show that this bound is tight.
However, no good estimates are known.

An up-to-date table of lower bounds is given below:

dim 1 2 3 4 5 6 7 8

χ � 2 2, [117] 2, [53] 4, [11] 8, [20] 10, [75] 15, [20] 16, [75]

In growing dimension, no other idea for getting an upper estimate is known
than the one described in Sect. 2.6. Since Qn ⊂ Rn, we certainly have χ(Qn) �
(3+ o(1))n. This result is still the best known.

As for lower estimates, one uses (0,1)-graphs and (−1,0,1)-graphs introduced
in Sect. 2.5. However, there is an additional problem. It is in the fact that any
forbidden distance generating the edge set of a graph must be rational. In the Frankl–
Wilson theorem, the forbidden scalar product equals a− p (see Sect. 2.5), which is
equivalent to the forbidden distance

√
2p. Since p is allowed to be a prime power,

we may take p = 22k+1 in order to get
√

2p ∈Q, but this is the only possibility for
getting that. So the corresponding optimization procedure is more complicated and
more restricted, which leads to the best-known estimate χ(Qn)� (1.173 . . .+o(1))n

(see [82]).
Notice that the chromatic numbers of algebraic extensions of Qn have been

deeply studied as well. An almost exhaustive list of such results can be found in [54]
(see also [114]).

To complete the section, we would like to emphasize the following facts. In
small dimensions, the situation with the rational spaces is much better than the
situation with the real ones. However, in asymptotics, the picture is opposite: The
gap between the upper and lower estimates of the quantity χ(Qn) is even larger than
the same gap in the case of Rn.

3.3 The Chromatic Numbers of the Spaces (Rn, lq), (Qn, lq)

In this section, we consider colorings of the spaces (Rn, lq), (Qn, lq) with 1 as the
only forbidden distance. We also do not dwell on small dimensions, since too many
almost trivial facts can be proved here, but there is no interest in listing them, and
no deeper results are known.

When n → ∞, studying lq-metrics is much more interesting. Nevertheless, here
there are some very simple results as well. The first one of them tells us that
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χ((Qn, l∞);{1}) = χ((Rn, l∞);{1}) = 2n.

The lower estimate is given by the set of vertices of the cube, and the upper estimate
is obtained by factorizing Rn modulo Zn (see [117]).

The second simple result follows immediately from the Frankl–Wilson con-
struction (see Sect. 2.5). Indeed, taking the forbidden scalar product a− p [which,
for (0,1)-vectors with a units each, is just the cardinality of intersection of their
sets of units], we uniquely determine the corresponding forbidden distance q

√
2p.

So just the same estimate by (1.207 . . .+ o(1))n applies for all q � 1. In view
of this, it is very strange to see, in the paper [57], a long proof of the bound
χ((Rn, l1);{1}) � (1.067 . . .+ o(1))n, which is apparently much worse than the
trivial one.

Especially for the case of a l1-metric, it is possible to use (−1,0,1)-constructions,
and the best lower bound here is χ((Rn, l1);{1}) � (1.365 . . .+ o(1))n (see [90]).
The two cases of l1 and l2 are the only ones where (−1,0,1)-graphs are better than
(0,1)-configurations. So now we have the following table of lower estimates:

q 1 2 ∞ Others

χ� (1.365+o(1))n , [90] (1.239 . . .+o(1))n , [88] 2n (1.207 . . .+o(1))n , [43]

The first upper estimates for χ((Rn, lq);{1}) were obtained in [57], but all of
them are now surpassed. In [63], Kupavskii proved a series of results that we present
below:

1. For any q, χ((Rn, lq);{1}) � (lnn+ln lnn+ln4+1+o(1))
ln
√

2
· 4n. Actually, the same in-

equality holds true for an arbitrary norm in Rn induced by a centrally symmetric
convex body.

2. For all q > 2, there exist cq, cq < 1, cq → 0 as q→ ∞, and δn, δn → 0 as n→ ∞,
such that χ((Rn, lq);{1})� 2(1+cq+δn)n.

So the estimate by (4 + o(1))n applies for any norm, and the estimate by
(2+ γn,q)

n, γn,q → 0 as n,q → ∞, is relevant for large indices q. Note that
this estimate is very natural and somewhat close to an optimal one, since
χ((Rn, l∞);{1}) = 2n.

Now we proceed to the rational spaces. We already know that χ((Qn, l∞);{1}) =
2n and χ((Qn, l2);{1}) � (1.173..+ o(1))n. It is also clear that χ((Qn, l1);{1})�
(1.365 . . .+ o(1))n. Indeed, in a l1-metric, the distances between rational vectors
are rational and (−1,0,1)-vectors do certainly belong to Qn. For other metrics, the
situation is quite bad. Nothing is known about q �∈N. As for q∈N, there was a result
by this author (see [90]): If q � 3, then for u = 2−q−1,

χ((Qn, lq);{1})�
((

u
2

) u
2
(
1− u

2

)1− u
2

uu(1− u)1−u + o(1)

)n

.
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Unfortunately, the right-hand side of the last inequality tends to (1+ o(1))n as q
tends to infinity.

The only upper estimate for χ((Qn, lq);{1}) is by χ((Rn, lq);{1}).

3.4 Multiple Forbidden Distances

3.4.1 Finite Sets of Forbidden Distances

Erdős knew (see [115]) that

c1k
√

lnk � max
A: |A|=k

χ((R2, l2);A)� c2k2, c1,c2 > 0.

During the last decade, many papers have appeared around similar subjects. Now,
there are, essentially, four types of values under study:

χR((R
n, l2);k) = max

A⊂R+: |A|=k
χ((Rn, l2);A), χQ((R

n, l2);k) = max
A⊂Q+: |A|=k

χ((Rn, l2);A),

χR((Q
n, l2);k) = max

A⊂R+: |A|=k
χ((Qn, l2);A), χQ((Q

n, l2);k) = max
A⊂Q+: |A|=k

χ((Qn, l2);A).

For the quantities with “rational” indices, almost nothing is known. Of course,

χQ((R
n, l2);k) � χQ((R

n, l2);1) = χ(Rn)� (1.239 . . .+ o(1))n,

χQ((Q
n, l2);k) � χQ((Q

n, l2);1) = χ(Qn)� (1.173 . . .+ o(1))n,

χQ((Q
n, l2);k) � χQ((R

n, l2);k)� (3+ o(1))kn,

and that’s all. In Sect. 7, we shall speak about very subtle “conditional” improve-
ments to these bounds.

As for the two other quantities, they are subject to a general estimate (see [82]):

(c1k)c2n � χR((Q
n, l2);k)� χR((R

n, l2);k) � (3+ o(1))kn.

Moreover, for fixed values of k, there was a series of consecutive publications
(by this author, by I.M. Shitova (Mitricheva), by V.Y. Protassov, and so forth)
with nontrivial lower bounds (see, e.g., [45, 105]). All such bounds have the form
(c+ o(1))n and we know that the corresponding upper bounds have the same form
(with another constant). So it is natural to introduce the values χ̃R((Rn, l2);k),
χ̃R((Qn, l2);k), which are defined as the suprema of constants c in any lower bound.
The current “records” are found in [45]. They are based on the consideration of
distance graphs whose vertices are vectors from Zn with prescribed numbers of
coordinates of a given value:

V = { x : xi ∈ {0,1,2,3, . . . ,d}, |{i : xi = j}|= l j, l0 + . . .+ ld = n}.
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Below we list some of them:

k 1 2 3 4 5 6 7 8 9 10 11 12

χ̃ � 1.239 1.465 1.667 1.848 2.013 2.165 2.308 2.442 2.570 2.691 2.807 2.919

The same type of work was also done for the l1-metric (see [99, 105]).
Finally, the measurable chromatic numbers with many forbidden distances were

studied. In [38], the best results concerning this subject are given.

3.4.2 Infinite Sequences of Forbidden Distances

Let’s consider only the Euclidean spaces Rn. However, let’s take an infinite
monotone increasing sequence of forbidden distancesA= {a1,a2, . . .} and assume
that ai+1

ai
� 1+ 1

d ; i.e., the growth of the sequence is at least exponential. Such a
sequence is called lacunary, and d is called the lacunarity coefficient. Denote by
χ(n,d) the value

χ(n,d) = max
A

χ((Rn, l2);A),

where the maximum is taken over all possible lacunary sequences with lacunarity
coefficient d.

Let n = 1. Even in this case, everything is quite nontrivial. The problem of
finding χ(1,d) was posed in 1987 by Erdős (see [58]). Moreover, Erdős was just
wondering whether χ(1,d) is finite. A positive answer to the question was given by
Y. Katznelson in the early 1990s, but his paper appeared only in 2001 (see [58]).
In fact, Katznelson proved the bound χ(1,d)� cd2 lnd with some c > 0.

During the last 10 years, several consecutive improvements of Katznelson’s
estimate were published. There was a paper by I.Z. Rusza, Z. Tuza, and M. Voigt; a
paper by R. Akhunzhanv and N.G. Moshchevitin; and papers by A. Dubickas. But
the current “record” is due to Y. Peres and W. Schlag (see [80]): χ(1,d) = O(d lnd).

Surprisingly, no nontrivial lower estimates for χ(1,d) are known. Of course,
χ(1,d)� d + 2, since we can consider the complete distance graph on the vertices
0,1, . . . ,d + 1 with any lacunary sequence of forbidden distances starting from
1,2, . . . ,d + 1. Using some elementary tools, one can replace d + 2 by something
like 1.5d, and that’s all what we know.

The problem of finding the value χ(1,d) is very close to some deep problems in
Diophantine approximation (see [80]).

As for n > 1, nothing is known. The measurable variant χm(n,d) is infinite,
but what about the initial one? If χ(2,d) is finite, then the difference between
χm(2,d) and χ(2,d) is even more spectacular than the difference between χ(R2)
and χm(R

2).
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3.4.3 Intervals of Forbidden Distances

We have already considered the problem of finding χ(Rn; [1,d]) in Sects. 2.1 and
2.2. The same problem was thoroughly studied by Kupavskii in [63] and [64] for
n→ ∞. His results are as follows. Let K be an arbitrary convex centrally symmetric
body in Rn. Let ρ be the corresponding norm.

1. χ((Rn,ρ); [1,d])� (2(d+ 1)+ o(1))n.
2. If q > 2, then χ((Rn, lq); [1,d])� (2cq(d+ 1)+ o(1))n. Here cq is the same as in

item 2 from Sect. 3.3.
3. If d � 2, then χ((Rn,ρ); [1,d])�

(
d
2

)n
.

4. If d � 2, then χ((Rn, lq); [1,d])� (b ·d)n, where b =
p√2
2 and p = max

{
q, q

q−1

}
.

5. If d � 2, then χ((Rn, l2); [1,d])� (b ·d)n, where b≈ 0.755 ·
√

2.

Note that item 2 entails item 2 from Sect. 3.3 when d = 1 and the interval [1,d]
degenerates into one point {1}. Also, item 1 is a rough form of item 1 from Sect. 3.3.

3.5 The Chromatic Numbers of Spheres

Another important and deeply studied metric space is (Sn−1
r , l2), where Sn−1

r is an
(n− 1)-dimensional sphere in Rn having radius r. Here we consider the chromatic
number

χ(Sn−1
r ) = χ((Sn−1

r , l2);{1}).

Obviously, r is assumed to be greater than or equal to 1/2, since otherwise
χ(Sn−1

r ) = 1. Moreover, χ(Sn−1
1/2 ) = 2 (see Sect. 1 for a similar comment).

In 1981, Erdős conjectured that for any r > 1/2, χ(Sn−1
r ) → ∞ as n → ∞

(see [31]). This conjecture was quickly proved by Lovász (see [72]), who used
some topological methods (cf. [76]) and showed that for any n ∈ N and r > 1/2,
χ(Sn−1

r ) � n. In the same paper, Lovász also makes the following assertion: If

r <
√

n
2n+2 ∼

1√
2
, i.e., the length of any side of a regular n-simplex inscribed into

Sn−1
r is smaller than 1, then χ(Sn−1

r ) � n+ 1. This assertion is widely quoted (see,
e.g., [115]). However, it is completely wrong. Lovász’s idea (and his mistake) is, in
some sense, natural. The way of reasoning could be as follows. Take the sphere Sn−1

r

with r <
√

n
2n+2 . Inscribe a regular n-simplex into this sphere. Let x1, . . . , xn+1 be

its vertices. Let O be the center of Sn−1
r . Consider n+ 1 equal multidimensional

angles generated by O and some n points from the set { x1, . . . , xn+1}. Color the
intersection of the sphere with the ith angle in the ith color. Since the side length
of the simplex, which is the diameter of any monochromatic part of the sphere,
is less than 1, we have a coloring avoiding distance 1. The mistake is just in italic
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text. Of course, the diameters of monochromatic parts are not attained on the sides
of the simplex. For example, if n = 2k, then the maximum distance is between
appropriately normed x1 + · · ·+ xk and xk+1 + · · ·+ x2k.

Recently, this author used the linear algebra method and succeeded in proving
the following result (see [91] and [92]): For any r > 1

2 , there exist a constant γ =
γ(r)> 1 and a function ϕ(n) = ϕ(n,r) = o(1) as n→ ∞, such that for every n ∈N,
the inequality

χ(Sn−1
r )� (γ+ϕ(n))n

holds. This result means, in particular, that for any r > 1/2, there exists an n0 such
that for n� n0, χ(Sn−1

r )> n+1. Moreover, the real growth of the chromatic number
is always exponential, not linear.

Fixed values of r may even be replaced by sequences rn of radii. Since
the primality is naturally included in the linear algebra method (see Sect. 2.5),
the corresponding results also depend on some facts/conjectures concerning the
distribution of primes among naturals. For example, it is known that there exists
a function f (x) = O

(
x0.525

)
such that for every x > 0, there is a prime number

between x and x + f (x) (see [10]). And it is conjectured that one can also take
f (x) = O

(
ln2 x
)
. If we do not believe in this conjecture, then we certainly can

show that (see [92]) there exist constants c,n0 such that for any sequence of radii
satisfying the inequality

rn �
1
2
+

c
n0.475

and for any n � n0, χ(Sn−1
rn

) > n+ 1. If the conjecture is true, we can write
√

lnn
n

instead of 1
n0.475 (see [92]).

Only for rn = 1
2 +O

(
1
n

)
does the estimate χ(Sn−1

rn
) � n+ 1 hold. This is done

just by inscribing a regular simplex into the sphere and carefully calculating the
diameters of the corresponding monochromatic parts.

Some other upper estimates apply to χ(Sn
r ). First of all, it is clear that for any rn,

χ(Sn
rn
)� χ(Rn)� (3+ o(1))n. (6)

Further, Rogers proved in [108] that any sphere of radius r in Rn can be covered by(
r
ρ + o(1)

)n
spheres of radius ρ < r. In our case, this means that

χ(Sn−1
rn

)� (2rn + o(1))n.

If rn < 3/2, then this bound is better than that in (6).
More precisely, Rogers’ estimate is as follows: There is an absolute constant

c > 0 such that, if r > 1
2 and n � 9, any n-dimensional spheres of radius r can be

covered by less than cn5/2(2r)n spheres of radius 1
2 . Such a precise formulation is

not useful when r is a constant, but returning to rn → 1
2 , we may carefully apply this

statement in order to obtain upper bounds like
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χ(Sn−1
rn

)� 2cn5/2(2rn)
n =Θ

(
n5/2(2rn)

n
)
. (7)

Here the factor 2 is due to the fact that χ(Sn−1
1/2 ) = 2. One should not forget that if,

for example, rn =
1
2 +Θ

( 1
n

)
, then (2rn)

n =Θ(1), so that estimate (7) is very good.
It is possible to evaluate even more sophisticated bounds for χ(Sn−1

rn
), but this is

not so interesting.
In small dimensions, the quantity χ(Sn

r ) is discussed in [61, 112, 113], and here
we do not dwell on this subject.

4 High Girth/Small Clique Number and High Chromatic
Number

In Sect. 2.1, we already discussed a question on the existence of distance graphs with
a high girth and chromatic number. Analogous questions in three dimensions were
studied by O.I. Rubanov in [110], but much more interesting are the corresponding
statements when n→ ∞.

Let’s denote by ω(G) the clique number of a graph G, i.e., the maximum number
of pairwise adjacent vertices in G (the maximum cardinality of a clique in G).

The results from Sect. 3.5 show implicitly that there exist distance graphs with
a high chromatic number (growing exponentially in n) and not containing, say,
triangles. Indeed, if a graph contains a triangle, then the minimum radius of a sphere,
on which this graph could lie, is 1√

3
(which is the radius of the circumference around

a regular triangle with side length 1). But we know that χ(Sn−1
r ) > cn even for

r < 1√
3
, and this is equivalent to the existence of a distance graph G ⊂ Sn−1

r with

χ(G)> cn and ω(G)< 3.
Thus, one can see that for any k > 2, there exist a constant ck > 1 and a function

δ (n) = o(1), n → ∞, such that for every n ∈ N, there is a distance graph G ⊂ Rn

with ω(G) < k and χ(G) � (ck + δ (n))n. It is natural to try to optimize over the
values of ck for given k’s. One could expect that the optimal constants would tend
to 1.239 . . . as k→ ∞. So define

ζclique(k)= sup{ζ : ∃ δ (n)= o(1), ∀ n, ∃G in Rn, ω(G)< k, χ(G)� (ζ+δ (n))n}.

The quantity ζclique(k) was introduced in [93], and since then it has been inten-
sively studied (see [24,103,104]). Below we present some best-known estimates for
ζclique(k).

k �5 6 7 8 9 10 11 12

ζclique(k)� 1.058 1.074 1.085 1.093 1.099 1.103 1.107 1.109
k 13 14 15 16 17 100 1000 106

ζclique(k)� 1.112 1.115 1.122 1.128 1.133 1.219 1.237 1.239
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The tabular shows that, indeed, ζclique(k)→ 1.239 . . . as k → ∞. The ideas of
proving such estimates are in a combination of the linear algebra, some coding
theory (see [74]), and probability (see [8]).

A quantity ζclique(k,m) was also studied in [24], where m means the number of
forbidden distances. We do not dwell on this here.

Now, what about high girth, not clique number? It is not difficult to prove that
any of the graphs, to which we can apply the linear algebra, does contain cycles of
arbitrary even length. So it remains to consider the values

ζodd girth(k) = sup{ζ : ∃ δ (n) = o(1), ∀ n, ∃ G in Rn, godd(G)> k, χ(G)� (ζ +δ (n))n},

where godd(G) is the length of the shortest odd cycle in G. The estimate is proved?
in [24]:

ζodd girth(2k+ 1)� 2 ·
(

k
2k+ 1

) k
2k+1

·
(

k+ 1
2k+ 1

) k+1
2k+1

.

Recently, this author and Kupavskii found many important improvements to
results from this section, but our paper [1, 2].

5 Random Distance Graphs Related to the Chromatic
Number

The classical Erdős–Rényi theory of random graphs consists of studying the
probability spaces G(n, p)= (Ωn,Fn,Pn,p), whereΩn is the set of all possible graphs

on the set Vn = {1, . . . ,n} of vertices (|Ωn|= 2(
n
2)), Fn = 2Ωn , and for G = (Vn,E),

Pn,p(G) = p|E|(1− p)(
n
2)−|E|.

In other words, we take the complete graph Kn and delete its edges independently,
each with probability 1− p. The theory started in the 1950s, and now it has been
deeply elaborated (see [8, 12, 33–35]).

In the previous section, we wrote that one should combine some linear algebra
and probability in order to obtain some estimates for the chromatic numbers of
distance graphs. A general idea is as follows. Take a complete distance graph with
some good coloring properties (say, having a large chromatic number) and then
start deleting its edges randomly. Prove eventually that with high probability, the
chromatic number is still large, but cliques (cycles) have disappeared.

A natural example of a complete distance graph with “good coloring properties”
is suggested by the Frankl–Wilson theorem. Let n = 4k and G = (V,E), where

V = { x=(x1, . . . ,xn) : xi ∈{0,1}, x1+ . . .+xn = 2k}, E = {{ x, y} : ( x, y)= k}.
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Denote the quantity |V | by N. Define a probability space Gdist(N, p) just in the same
way as the space G(n, p) was defined. In other words, take any spanning subgraph
H = (V,F) of the complete distance graph with probability p|F|(1− p)|E|−|F|.

During the last several years, some asymptotic properties of the random graph
Gdist(N, p) have been studied. On the one hand, connected components of this graph
were investigated. A.R. Yarmukhametov found a series of such results in [119]. In
particular, he found threshold functions for connectivity of random distance graphs
and for the property of containing a “giant” component.

On the other hand, some (0,1)-laws for the random distance graph were
established. It is known that for the Erdős–Rényi model, the following is true:
If p = p(n) is such that for every α > 0, min{p,1− p} · nα → ∞ as n → ∞,
and A is any graph property that can be expressed in the first-order language,
then lim

n→∞
Pn,p(A) ∈ {0,1}. This result was proved in [36] and [44] (see also [8]).

Recently, M.E. Zhukovskii showed that the random distance graph is not subject to
a (0,1)-law. At the same time, he found some “weak” (0,1)-laws, which are true for
the distance graphs, and he proved the classical law for a subsequence of random
distance graphs (see [120–122]).

6 The Independence Numbers of Some Distance Graphs

6.1 A Possible Way to Improve Lower Bounds
for the Chromatic Numbers

As we know, all the best lower estimates for the chromatic numbers of various
spaces were obtained with the help of distance graphs whose sets of vertices
belonged to Zn. Moreover, in the case of one forbidden distance, only (0,1)- and
(-1,0,1)-vectors gave strong results (cf. Sect. 2.5). In this section, we shall discuss
this problem in depth.

In order to get lower bounds for the chromatic numbers, we always use the
inequality χ(G)� |V |

α(G) . This is quite natural and, in some sense, optimal. The point

is that “almost all” graphs have the property χ(G)∼ |V |
α(G)

(see [8,12]). So the main

problem is in finding tight upper estimates for the independence numbers α(G).
If considering (0,1)-graphs like in (5), then one can easily see that the linear

algebra upper bounds are asymptotically sharp in order. Explicit constructions
providing almost the same lower bounds are quite simple. For example, if a = 3,
b = 2 (see Sect. 2.5), then one can take all the vectors with x1 = x2 = 1. The number
of such vectors is n−2, which is very close to the upper estimate α(G3,2)� n proved
in Sect. 2.5. For a= 5, b=

√
6, one should fix the three first coordinates. Then

(n−2
2

)
is really not far from

(n
2

)
+
(n

1

)
+ 1. In the general case, one may apply the famous

Erdős–Ko–Rado theorem (see [32]) and its extensions by Frankl, Wilson, Ahlswede,
and Khachatrian (see [4–6]). In any case, upper and lower estimates do not differ
substantially.
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However, in the case of (−1,0,1)-graphs, everything is much worse. Let’s just
consider an example. Set n = 4k and G = (V,E), with

V = { x = (x1, . . . ,xn) : xi ∈ {−1,0,1}, |{i : xi = 1}|= |{i : xi =−1}|= k},

E = {{ x, y} : ( x, y) = 0}.

Here linear algebra gives the bound α(G) � (2.462 . . .+ o(1))n. Nevertheless,
nontrivial constructions [generalizing, in some sense, the Erdős–Ko–Rado theorems
to (−1,0,1)-vectors] only provide the estimate α(G) � (2.264 . . .+ o(1))n. In the
papers [47, 73, 78], many such constructions are proposed. It is also conjectured
there that the lower estimates are tight and the upper ones are not. In other words,
the linear algebra method probably begins to fail when, from the (0,1)-situation,
we proceed to the (-1,0,1)-case. Some computer-based arguments also support this
conjecture.

If the just-mentioned conjecture is true, then one can again optimize over dif-
ferent choices of parameters (numbers of 0s, 1s, -1s, etc.), substantially improving
all the lower estimates for various chromatic numbers from the previous sections.
Unfortunately, no techniques have been developed that are better than the linear
algebraic one.

6.2 Independent Sets and Measurable Chromatic Numbers

Another well-studied subject linking independent sets and colorings concerns the
measurable chromatic numbers. Consider a Lebesgue-measurable set A ⊂ Rn.
Define its upper density as follows:

δ (A) = lim
r→∞

μ (A∩Bn(r))
μ(Bn(r))

,

where μ is the Lebesgue measure and Bn(r) is the n-dimensional ball of radius r
centered at the origin. Denote by m1(n) the quantity

m1(n) = sup
{
δ (A) : A⊂ Rn, A avoids unit distance

}
.

This quantity is a natural analogue of the independence number, and, of course,
χm(R

n)� 1
m1(n)

.

The following table shows the best-known upper and lower bounds for m1(n),
2 � n � 8. Note that for n � 3, all the lower estimates for χm(R

n) cited in Sect. 2.2
are obtained using the results from this table.
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n Upper bound for m1(n) Lower bound for m1(n)

2 0.26841 0.2293
3 0.16560 0.09877
4 0.11293 0.04413
5 0.07528 0.01833
6 0.05157 0.00806
7 0.03612 0.00352
8 0.02579 0.00165

All the upper bounds are obtained in [38]. The lower bound for n = 2 is due to
Croft (see [23]), and the other lower bounds were recently found by this author,
Kupavskii, and Titova (see [102]).

7 Conditional Results on the Chromatic Numbers

From Sect. 23.6.1, we know that probably the linear algebra method is not the
best possible method. Inspired by this knowledge, this author proposed in 2003 an
idea that he called the “alteration principle” (see [94]). Roughly speaking, the idea
is as follows. Take a distance graph Ga1,a2 = (V,Ea1,a2) (say, with two forbidden
distances a1, a2), whose independence number can be bounded from above by some
s with the help of linear algebra. Forget about a2. For the new graph Ga1 = (V,Ea1)
(with one forbidden distance a1), linear algebra does not work. However, one may
assume that α(Ga1) < t with some t. If the assumption is true, then χ(Ga1) >

|V |
t .

Otherwise, take an independent set W ⊂ V such that |W | � t. Consider the graph
Ga2 = (W,Ea2) with one forbidden distance a2. Then χ(Ga2)� t

s . Clearly, χ(Rn)�
max{χ(Ga1),χ(Ga2)}. Thus, for any t, either χ(Rn)� |V |

t or χ(Rn) � t
s (here we

consider two alternatives). Thus, anyway,

χ(Rn)� max
t

min

{
|V |
t
,

t
s

}
.

This idea does not work exactly for χ(Rn), but in some other situations, it helps
obtain “conditional” results. In Sect. 3.4.1, we discussed the values

χ̃R((Rn, l2);k), χ̃Q((Rn, l2);k), χ̃R((Qn, l2);k), χ̃Q((Qn, l2);k).

In [105], the following three estimates were proved:

limsup
n→∞

χ̃R((Rn, l2);2)+ limsup
n→∞

χ̃Q((Qn, l2);2)� 1.465 . . .+ 1.173 . . .+ 0.043 . . . ,

limsup
n→∞

χ̃R((Rn, l2);1)+ limsup
n→∞

χ̃Q((Qn, l2);1)� 1.239 . . .+ 1.173 . . .+ 0.005 . . . ,

limsup
n→∞

χ̃R((Rn, l2);2)+ limsup
n→∞

χ̃Q((Rn, l2);2)� 1.465 . . .+ 1.239 . . .+ 0.008 . . . .
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The results are very funny and subtle. Without “alterations,” we can only
show that

χ̃R((Rn, l2);2)+ χ̃Q((Qn, l2);2)� 1.465 . . .+ 1.173 . . . ,

χ̃R((Rn, l2);1)+ χ̃Q((Qn, l2);1)� 1.239 . . .+ 1.173 . . . ,

χ̃R((Rn, l2);2)+ χ̃Q((Rn, l2);2)� 1.465 . . .+ 1.239 . . . .

The additional constants look strange and unexpected. Either one chromatic
number or the other admits a much better lower bound. One should only take a
subsequence of the dimensions.

There are other applications of alterations. Some of them can be found in [94].
Some of them concern lacunary sequences of forbidden distances (see [77]). And
some of them will be discussed in Sect. 8.5.

8 Borsuk’s Problem

8.1 “Small” Dimensions

For n = 1, Borsuk’s conjecture is trivially true. Of course, f (1) � 2, and f (1) � 2,
since every set of diameter 1 on the real line can be covered by a segment of length 1,
which can be divided into two parts each having diameter 1/2.

For n= 2, Borsuk himself proved in [14] that f (2)� 3 (the opposite inequality is
just given by a regular triangle). This is done by covering an arbitrary set of diameter
1 in the plane by a regular hexagon with distance 1 between parallel sides. On the
other hand, in 1946, Erdős found a purely combinatorial proof of the fact that any
(finite) graph of diameters in the plane has a chromatic number not exceeding 3
(see [30]).

The first proof of Borsuk’s conjecture in R3 belongs to Eggleston (see [28]).
Other proofs, which improve Eggleston’s result in some sense, continue to appear
(see [85] for the details). The bound χ(G) � 4, which is true for any finite three-
dimensional graph of diameters, was also proved by Heppes and Révész in [50].

In dimension 4, only the bound f (4) � 9 due to Lassak (see [69]) is known.
However, no counterexamples in this dimension have also been found.

8.2 Some General Results

First of all, there are some partial solutions to Borsuk’s problem. We list them here.

1. If Ω ⊂ Rn has C1-boundary, then f (Ω) � n+ 1 (see [49]).
2. If Ω ⊂ Rn is centrally-symmetric, then f (Ω)� n+ 1 (see [60]).
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3. If Ω ⊂ Rn is invariant under the action of the group of symmetries of a regular
n-simplex, then f (Ω)� n+ 1 (see [109]).

4. If Ω ⊂ {0,1}n, n � 9, then f (Ω) � n+ 1 (see [123]).

Also, some upper bounds for f (n) are known. The best ones of them are due to
Lassak (see [69]), Schramm (see [111]), and Bourgain and Lindenstrauss (see [15]).
Lassak’s bound is by 2n−1+1. Schramm’s and Bourgain–Lindenstrauss’ bounds are

by

(√
3
2 + o(1)

)n

. So the first bound is better in fixed dimensions [for example,

f (4)� 9, cf. Sect. 8.1], but the second one beats it when n→ ∞.

8.3 Counterexamples to Borsuk’s Conjecture

The first counterexample was constructed by Kahn and Kalai in [56]. Surprisingly,
it is based on a complete distance graph, which is almost the same as the graph from
Sect. 5. Roughly speaking, the idea is as follows. Let n = 4p, where p is prime. Take
the set

V = { x = (x1, . . . ,xn) : xi ∈ {−1,1}, |{i : xi = 1}|= |{i : xi =−1}|= 2p}.

To each vector x from V , assign the vector x∗ whose coordinates are products
xix j (i, j = 1, . . . ,n) of the coordinates of x. It is easy to see that the diameter of the

set V ∗ ⊂Rn2
, which consists of all the vectors x∗, is attained on some x∗, y∗ if and

only if ( x,y) = 0. So by the Frankl–Wilson theorem, f (n2) � (c+ o(1))n, which
means that f (n)� (c′+ o(1))

√
n.

In the work of Kahn and Kalai, c′ = 1.203 . . . and the first dimension, where
Borsuk’s conjecture fails, is n = 2015. Now we know that (see [95])

f (n)�
((

2√
3

)√2

+ o(1)

)√n

= (1.2255 . . .+ o(1))
√

n

and that f (n)> n+ 1 for n � 298 (see [107]).
Thus, the gap between upper and lower estimates for f (n) is still huge, and

nothing is known about n ∈ {4, . . . ,297}. Item 4 from Sect. 8.2 shows that one
should not expect (0,1)-counterexamples for n � 9, but that’s all. We conjecture that
f (4) = 5 and f (n) > n+ 1 for n � 5. However, this conjecture is very far from
its proof.

8.4 Counterexamples on Spheres of Small Radii

The diameter of the set V ∗ from Sect. 8.3 equals
√

2n2. At the same time, one can
easily see that the radius of the smallest sphere S such that V ∗ ⊂ S is equal to n.
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So if we normalize the construction to get a graph of diameters with diameter 1,
then the radius becomes equal to 1√

2
.

We know (see [55] and cf. Sect. 3.5) that any set of diameter 1 can be covered
by a sphere of radius 1√

2
. So the counterexample from Sect. 8.3 is the “fattest”

possible. In fact, all the counterexamples, which were obtained until 2010, had the
same “girth.” This is quite natural, since, as usual, it is much easier to get a graph
with a high chromatic number by including large cliques in the graph. In our case,
cliques are regular simplices (preferably, of maximum dimension), so that to cover
our graphs of diameters by spheres means to cover at least one simplex by a sphere,

which can be done only when the radius is not less than
√

n
2n+2 ∼

1√
2
.

However, Sect. 3.5 showed us that sometimes any intuition can be broken.
Thus, one can probably find counterexamples to Borsuk’s conjecture, which are
finite graphs of diameters lying on spheres whose radii are smaller than 1√

2
? Of

course, such results would be even more surprising and complicated than the ones
concerning distance graphs, but why not?

In the paper [96], this author introduced the value fr(n) = max f (Ω), where the
maximum is taken over all possible sets Ω ⊂ Sn−1

r such that diamΩ = 1. Here,
of course, r � 1

2 . By the Borsuk–Ulam theorem (cf. Sect. 1), f1/2(n) = n+ 1. By

the above-mentioned results, f1/
√

2(n) � (1.2255 . . .+ o(1))
√

n. Now, the question

is whether or not fr(n) > n+ 1, provided r < 1√
2
. And in [96], this author proved

the following theorem: For any r >
√

3
8 = 0.612 . . ., there exists an n0 such that for

every n � n0, fr(n)> n+ 1.
The method in [96] was very close to the one described in Sect. 8.3. However,

it was exhausted completely, since for r ≈
√

3
8 , it gave estimates only by some

“epsilon” greater than n+ 1. For r =
√

3
8 , it failed.

Recently, this author, together with Kupavskii, made another attempt to solve
the problem of bounding fr(n) from below, and the joint efforts were much more
successful. Here are some of the obtained results (see [66]).

1. For any r > 1
2 , there exist numbers k = k(r) ∈ N, c = c(r) > 1 and a function

δ (n) = o(1) such that

fr(n)� (c+ δ (n)) 2k√n.

2. Let rn =
1
2 +ϕ(n), where ϕ = o(1) and ϕ(n)� c ln lnn

lnn for all n and a large enough
c > 0. Then there exists an n0 such that for n � n0, frn(n)> n+ 1.

3. Let rn =
1
2 +ϕ(n), where ϕ = O(1/n). Then frn(n)� n+ 1.

Item 1 means that counterexamples to Borsuk’s conjecture can lie on spheres of
any radius r > 1

2 . Moreover, the type of a lower bound for fr(n) is similar to the
one for f (n). Only, instead of

√
n, we have 2k

√
n with a constant k depending on the

proximity of r to 1/2.
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Item 2 says that a constant r may even be replaced by a sequence rn whose
elements differ from 1/2 by an o(1). Notice that in Sect. 3.5, we had almost the
same situation for distance graphs on spheres. However, in that case the value of
o(1) was something like 1

nα , and here we have o(1) = ln lnn
lnn . This is due to many

difficulties coming from the more complicated structure of graphs of diameters.
Item 3 can be proved by inscribing a regular simplex into Sn−1

rn
(see Sect. 3.5).

8.5 Alterations

In Sect. 7, we discussed an alteration principle introduced by this author in [94], and
we talked about its applications to various chromatic numbers. In [97] this author
noticed that the same principle can be applied in an even more unusual way. Let
f̃ = f̃ (n) be the greatest function in a bound f (n) � ( f̃ + o(1))

√
n. We certainly

know that f̃ � 1.2255 . . ., but, in principle, f̃ may grow (cf. Sect. 8.2). Let χ̃ =
χ̃R((Rn, l2);1) (see Sects. 3.4.1 and 7). Then, of course, χ̃ � 1.239 . . .. This author
proved in [98] that

limsup
n→∞

f̃ + limsup
n→∞

χ̃ � 1.2255 . . .+ 1.239 . . .+ 0.004 . . . .

This result was improved in [106]:

limsup
n→∞

f̃ + limsup
n→∞

χ̃ � 1.2255 . . .+ 1.239 . . .+ 0.017 . . . .

So either the known lower estimate for χ(Rn) can be substantially improved or
the same can be done for f (n).

8.6 Coming Back to Small Dimensions

Let Φ be an arbitrary bounded set in Rm. Take an n ∈ N. Denote by dm
n (Φ) the

quantity

dm
n (Φ) = inf{x ∈ R+ : Φ ⊆Φ1∪ . . .∪Φn, ∀ i diamΦi � x} .

In other words, we want to decompose Φ into a fixed number of subsets having
diameters that are as small as possible.

Let dm
n = sup

Φ
dm

n (Φ), where the supremum is taken over all sets Φ of diameter 1.

The problem of finding the values dm
n was initiated by Lenz in 1956 (see [70], [71])

and is apparently very close to Borsuk’s problem.
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The two-dimensional case is the most studied. Many results (old and new) can
be found in a recent paper by V.P. Filimonov (see [39]). We’ll just mention some of
them:

n 1 2 3 4 5 6 7 8 9 10 11 12

d2
n� 1 1

√
3

2
1√
2

0.5877 0.5051 0.5 0.4338 0.3826 0.342 1
3

1
3

d2
n� 1 1

√
3

2
1√
2

0.602 0.5577 0.5 0.4456 0.4047 0.4012 0.397 0.366

The three-dimensional case has also been investigated (see, e.g., [85, 101]). We
do not dwell on this here.

For higher dimensions, the best results can be found in [100].
Finally, Filimonov succeeded in proving recently that for any Jordan measurable

set Φ , there exists a limit of the sequence m
√

n ·dm
n (Φ) (see [40, 41]).
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Realizability of Graphs and Linkages

Marcus Schaefer

Abstract We show that deciding whether a graph with given edge lengths can
be realized by a straight-line drawing has the same complexity as deciding the
truth of sentences in the existential theory of the real numbers, ETR; we introduce
the class ∃∃∃R that captures the computational complexity of ETR and many other
problems. The graph realizability problem remains ∃∃∃R-complete if all edges have
unit length, which implies that recognizing unit distance graphs is ∃∃∃R-complete.
We also consider the problem for linkages: In a realization of a linkage, vertices
are allowed to overlap and lie on the interior of edges. Linkage realizability is ∃∃∃R-
complete and remains so if all edges have unit length. A linkage is called rigid if
any slight perturbation of its vertices that does not break the linkage (i.e., keeps
edge lengths the same) is the result of a rigid motion of the plane. Testing whether
a configuration is not rigid is ∃∃∃R-complete.

1 Introduction

Many computational problems in geometry, graph drawing, and other areas can
be shown to be decidable using the (existential) theory of the real numbers;
this includes the rectilinear crossing number, the Steinitz problem, and finding a
Nash equilibrium. What is less often realized—with some exceptions—is that the
existential theory of the reals captures the computational complexity of many of
these problems precisely: Deciding the truth of a sentence in the existential theory
of the reals is polynomial-time equivalent to finding the rectilinear crossing number
problem [3], solving the Steinitz problem [4, 34], finding a Nash equilibrium [42],
recognizing intersection graphs of convex sets and ellipses [41], recognizing
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unit-disk graphs [32], and many other problems.1 In this chapter, we try to further
substantiate this claim by showing that some well-known Euclidean realizability
problems have the same complexity. One consequence of these results is that
efficient algorithmic solutions to any of these problems are unlikely, since they
would lead to efficient decision procedures for the existential theory of the real
numbers, a problem that is NP-hard but not known (or expected) to be in NP.

1.1 The Existential Theory of the Real Numbers

The existential theory of the real numbers, ETR, is the set of true sentences of the
form

(∃x1, . . . ,xn) ϕ(x1, . . . ,xn),

where ϕ is a quantifier-free (∨,∧,¬)-Boolean formula over the signature
(0,1,+,∗,<,≤,=) interpreted over the universe of real numbers.2

Tarski showed that ETR is decidable, but the running time of his decision
procedure is not elementary (that is, bounded above by a tower of exponentials
of fixed height).3 The existential theory of the reals is expressive enough to phrase
many interesting problems in robotics and geometry, so research into more practical
algorithms for deciding ETR has continued steadily since the 1970s, when Collins
discovered cylindrical algebraic decompositions that gave a double exponential
time algorithm for deciding ETR. Canny, motivated by problems in robot motion
planning, showed that the problem is solvable in PSPACE [8]. This is still the best
upper bound on ETR in terms of complexity theory, though Renegar sharpened
Canny’s result in terms of algebraic complexity [36–38]. For a detailed survey,
see [33]; for experimental comparisons of running times, see [22].

As it turns out, ETR cannot only be used to solve algorithmic problems, it also
captures the complexity of many such problems precisely. To make this statement
precise, we use the notion of reducibility from computational complexity: We say a
problem A reduces to B (A≤m B) if there is a polynomial-time computable function
f so that x ∈ A if and only if f (x) ∈ B for all x; the function f is known as the
reduction.4 This notion of reducibility is transitive, so we can use it to (partially)

1A manuscript collecting many of these problems is in preparation (Schaefer, The real logic of
drawing graphs, personal communication).
2When writing formulas in the existential theory of the reals, we will freely use integers and
rationals, since these can easily be eliminated without affecting the length of the formula
substantially. We will also drop the symbol ∗.
3Tarski showed that the full theory of the reals is decidable by quantifier elimination.
4This reducibility is known as polynomial-time many–one reducibility; since we have no need
for other reducibilities in this chapter, we simplify to “reduces.” We consider decision problems
(requiring a “yes” or “no” answer) encoded as sets of binary strings; that is, A,B ⊆ {0,1}∗, and
f : {0,1}∗ →{0,1}∗. For more background on encodings and basic definitions from computational
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order problems by their complexity. Intuitively, A reduces to B if A is at most as hard
as B, since a solution to B can be combined with the polynomial-time algorithm for
f to answer membership in A.5 We can now define ∃∃∃R to be the complexity class
associated with ETR: A decision problem belongs to ∃∃∃R if it reduces to ETR; a
decision problem is ∃∃∃R-hard if every problem in ∃∃∃R reduces to it in polynomial
time; it is ∃∃∃R-complete if it belongs to ∃∃∃R and is ∃∃∃R-hard. Analogously, we define
notions based on ∀∀∀R, the problems whose complement (in {0,1}∗) is in ∃∃∃R. Note
that NP⊆ ∃∃∃R, since we can express satisfiability of a Boolean formula in ∃∃∃R. For
example, (x∨ y∨ z)∧ (x∨ y∨ z)∧ (x∨ y∨ z) is equivalent to

(∃x,y,z)[x(x− 1) = 1∧ y(y− 1) = 1∧ z(z− 1) = 1

∧ (x(1− y)z)+ ((1− x)yz)+ ((1− x)(1− y)(1− z)) = 0].

We do not know whether coNP⊆ ∃∃∃R. By Canny’s result, ∃∃∃R⊆ PSPACE, and this
is still the known best upper bound on ∃∃∃R [8].

1.2 Stretchability and ∃R-Completeness

To show that a geometric problem is ∃∃∃R-complete, we could try reducing from
ETR, but that is typically hard. Moreover, it is unnecessary, since there is a proto-
typical geometric ∃∃∃R-complete problem due to Mnëv: stretchability of pseudolines.
A pseudoline is a simple curve that is x-monotone; that is, the curve crosses every
vertical line exactly once. An arrangement of pseudolines is a finite collection of
pseudolines so that any two pseudolines cross exactly once. (We allow multiple
pseudolines to cross at the same point.) Two arrangements are equivalent if there
is a homeomorphism of the plane turning one into the other. An arrangement of
pseudolines is stretchable if it is equivalent to an arrangement of straight lines. We
call the corresponding computational decision problem STRETCHABILITY.

Mnëv showed that ETR reduces to STRETCHABILITY. Shor [43] gives a much
simpler proof of this result (also see [39]). In our terminology, we can express
Mnëv’s result as follows.

Theorem 1.1 (Mnëv [34]). STRETCHABILITY is ∃∃∃R-complete.

Remark 1.2. Mnëv showed a much stronger result, his universality theorem, about
the realizability of semialgebraic sets through point-set configurations, of which

complexity including complexity classes NP (nondeterministic polynomial time) and PSPACE
(polynomial space), see any of the standard references, e.g., [35, 44]. We could have replaced
polynomial time with logarithmic space in the definition of≤m but decided to use the more familiar
notion.
5So “A reduces to B” does not mean that B is easier than A, as the word “reduces” may incorrectly
suggest.
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Theorem 1.1 is a consequence. We will return to universality briefly in Sect. 2.3
when dealing with issues of precision.

Just because an arrangement is stretchable, it need not be easy to realize; indeed,
Mnëv’s universality theorem implies that there are stretchable arrangements of
pseudolines so that every straight-line realization contains a nonrational line (that
is, a line not containing a rational point; an earlier example of this is due to Perles
according to Richter-Gebert and Ziegler [18, p.144]). It is known, however, that
realizations cannot be arbitrarily complex. This is based on a result by Grigor’ev and
Vorobjov [20] on semialgebraic sets. The total degree of a (multivariate) polynomial
f : Rn → R is the maximum over the sum of variable exponents in each monomial
term.

Theorem 1.3 (Grigor’ev, Vorobjov [20, Lemma 9]). If f1, . . ., fk : Rn → R are
polynomials each of total degree at most d and coefficients of bit length at most L,
then every connected component of {x ∈ Rn : f1(x) ≥ 0, . . . , fk(x) ≥ 0} contains a
point of distance less than 2Ldcn

from the origin, for some absolute constant c > 0.

The theorem (with proof) can also be found in [2, Theorem 13.15].6 Based on
this theorem, Goodman et al. [19] proved the following result. (They phrase the
result for point configurations, which are dual to arrangements.)

Lemma 1.4 (Goodman et al. [19]). A stretchable arrangement of n pseudolines
can be realized by n straight lines so that all intersection points lie in the unit disk
and so that the distance between any two intersection points and the distance of any
intersection point and a line not containing that point is at least 1/22cn

for some
fixed c > 0.

Goodman et al. also showed the complementary result that some arrangements
do require a precision of order 1/22cn

.

Lemma 1.5 (Goodman et al. [19]). There are stretchable arrangements of n
pseudolines so that any straight-line realization of the arrangement for which all
intersection points lie in the unit disk contains two intersections points within a
distance less than 1/22cn

of each other for some fixed c > 0.

2 Realizability of Graphs

Given a graph G = (V,E) and a length �(e)∈R>0 for each e∈ E , is there a straight-
line drawing of the graph in the plane (not necessarily crossing-free) where each
edge has its prescribed length? If so, we say that the graph is realizable in R2.
Realizability depends on the notion of drawing we use; in the standard definition
of a drawing, different vertices cannot coincide in the drawing and a vertex cannot

6The statement in [2] contains a typo in the radius of the ball.
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lie on an edge unless it is an endpoint of that edge.7 If we do allow vertices to
coincide and lie on edges, we enter the realm of linkages. For example, K2,3 cannot
be realized by a standard straight-line drawing in the plane if all edges have unit
length, but it can be realized as a linkage with vertices overlapping.8 This section
will center on graph realizability, while Sect. 3 will discuss linkage realizability.

2.1 Graph Realizability

Theorem 2.1. Deciding whether a graph with given lengths is realizable is
∃∃∃R-complete even if all edges have unit length.

Remark 2.2. We are not aware of any hardness results on the graph (as opposed
to the linkage) realizability problem, though David Eppstein writes that he expects
that “the Eades–Whitesides logic engine technique can be used to show that it’s
NP-hard to test whether a graph is a unit distance graph” [14]. There are results on
plane realizations, which we survey in Sect. 2.4. The special case of the complete
graph turns out to be efficiently solvable: Lemke, Skiena, and Smith sketch an
algorithm that shows how to determine realizability of the complete graph and
compute the coordinates of the points [29]. The history of complexity results on
linkage realizability is discussed in Remark 3.2.

In the proof of Theorem 2.1, we make use of the Peaucellier linkage, a beautiful
device transforming circular motion into linear motion.9 Figure 1 shows the linkage;

a b
c

d

e

f
Fig. 1 A Peaucellier linkage

7For a discussion of graph drawing assumptions, see [47].
8Our distinction between the realizability of graphs and linkages is not universal, but not unusual;
for linkages, [10] is a good reference; for graph realizability, definitions and terminology vary. For
instance, realizable graphs are sometimes called Euclidean graphs. Often the definitions allow that
vertices lie on edges of which they are not endpoints, though that may in some cases be due to
oversight; as we will see, from a computational point of view, this distinction does not matter.
9There are many applets implementing Peaucellier’s linkage available on the web to play with [30].
James Joseph Sylvester writes about Lord Kelvin that he “nursed it as if it had been his own child,
and when a motion was made to relieve him of it, replied ‘No! I have not had nearly enough of
it—it is the most beautiful thing I have ever seen in my life’.” [46]. There have been other devices,
both earlier and later, achieving the same effect, see [26] for an early history.
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a b

c

d

e

f

Fig. 2 A Peaucellier linkage
with edges of unit length

we require |ab|= |bc|, |ad|= |a f | and |cd|= |de|= |e f |= | f c|. If we keep points a
and b fixed, and move c (on a circular arc with center b), then e moves on a straight
line. In other words, the locus of e is a straight-line segment [21].

Figure 2 shows how to construct this Peaucellier linkage as a realizable graph
with edges of unit length; we call this gadget Pa,b(e) (edges ad and a f have been
replaced by two rigid parts with unnamed vertices).

Note that in the drawing all vertices have distinct positions, and no vertex lies
on an edge without being an endpoint of that edge. By continuity, this remains true
if we move e slightly from its initial position. In general, we will need to place the
Peaucellier gadget into partially completed drawings, and at that point we need to
keep ensuring the basic graph drawing conventions. We call a drawing nice if (1) no
vertex lies on a line of which it is not the endpoint, (2) no more than two edges cross
in a point, (3) two vertices that are not adjacent have a distance different from 1.

With the Peaucellier gadget, we can build a “colinearity” gadget that ensures that
three points lie on a line.

Lemma 2.3. There is a gadget C(u1,u2,u3) with edges of unit length so that in any
realization of C(u1,u2,u3) the points u1, u2, and u3 lie on a line. On the other hand,
if three distinct points u1, u2, and u3 lie on a line segment of length at most δ > 0, for
some fixed δ , then C(u1,u2,u3) is realizable. Moreover, C(u1,u2,u3) can be added
to an existing nice drawing with three such vertices u1, u2, u3 so that the resulting
drawing remains nice.

Proof. We will use Peaucellier’s linkage to guarantee colinearity: Given three
vertices (ui)i∈[3], create three copies (Pi)i∈[3] of P, identify a := a1 = a2 = a3 and
b := b1 = b2 = b3, and ui with ei, i ∈ [3] to obtain Ca,b(u1,u2,u3). The realizability
of Ca,b(u1,u2,u3) guarantees that u1, u2, and u3 are colinear by the properties of the
Peaucellier gadget.

For the reverse direction, assume we start with a nice drawing containing three
vertices u1, u2, u3 lying on a sufficiently short line segment. Pick a and b so
that Ca,b(u1,u2,u3) is realizable and nice (by itself) and remains so for small
perturbations of ab. The resulting drawing may not be nice, since two nonadjacent
vertices may have a distance of 1, two distinct vertices overlap, or a vertex lies on
an edge. Perturbing ab slightly can destroy all three of these events, since it will
perturb the locations of all the vertices in Ca,b(u1,u2,u3); the only pairs of vertices
whose distance remains constant have an edge between them. ��
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u

u1

u2

u3

Fig. 3 B(u1,u2,u3)

To encode STRETCHABILITY we need to express that a point u2 lies between
u1 and u3. For this we need another gadget, B(u1,u2,u3).

Lemma 2.4. There is a gadget B(u1,u2,u3) with edges of unit length so that in any
realization of B(u1,u2,u3) in which u1, u2, and u3 lie on a line, u2 lies between u1

and u3. On the other hand, if u2 lies on the line segment u1u3 and u1u3 has length
at most δ > 0, then B(u1,u2,u3) is realizable.

Proof. Consider the graph B(u1,u2,u3) shown in Fig. 3. In any realization of that
graph, uu1 and uu3 have distance 3, while uu2 has distance at most 3; hence, if all
three points lie on the same line, then u2 must lie between u1 and u2. ��

We can now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. It is easy to see that the problem lies in ∃∃∃R (note that we do
not have to calculate any square roots). We reduce from STRETCHABILITY: Sup-
pose we are given a pseudoline arrangementA. Create a vertex for every intersection
point. For any three consecutive points u1,u2,u3 along a pseudoline, add the devices
C(u1,u2,u3) and B(u1,u2,u3). Call the resulting graph GA (all edges having unit
length). If GA is realizable, then a realization contains a set of line segments whose
order of intersection corresponds to A. Since every two of these lines intersect
(we included every intersection point in GA), we can extend these line segments
to infinite straight lines without changing the order type; hence,A is stretchable.

In the reverse direction, we have to show that if A is stretchable, then GA is
realizable. This would be entirely straightforward if we did not have to ensure that
the drawing is nice. Let’s assume thatA is stretchable. Then there is a realization by
straight lines in which all intersections lie within the unit disk centered at the origin
(using dilation). Let Dδ be the drawing containing all intersection points dilated by a
factor of δ > 0, where δ is chosen sufficiently small for the B and C gadgets to work
properly. Note that Dδ is a nice drawing, trivially so, since all points have distance
less than 1 and there are no edges yet. To this drawing add the two rigid legs of
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each B gadget, obtaining a drawing D′δ . The resulting drawing may not necessarily
be nice, since there could be two nonadjacent vertices that have a distance of 1, two
vertices that overlap, or a vertex lying on an edge.

Let p be a point on one of the gadgets B (p does not have to be a vertex); we
write p(δ ), thinking of p as depending on δ . The coordinates of p(δ ) are nearly
polynomials in δ , except that they may contain a term of the form

√
1− sδ for some

fixed s ∈R only depending on the placement of the B gadget that p belongs to in the
initial drawing D. The square of the distance between two points (not necessarily
belonging to the same B), or the square of the distance between a point and a line
containing an edge (not necessarily belonging to the same gadget as the point) can
similarly be expressed as a near-polynomial term in δ with at most three terms√

1− siδ , i = 1,2,3. Hence, the condition that such a distance is 0 or 1 can be
expressed using an equation that is nearly polynomial, except for at most three terms
of the form

√
1− siδ . However, three such terms can be removed (using symmetric

polynomials), replacing the distance conditions with purely polynomial equations,
which either have a finite number of solutions or are true for all δ . As we let δ go to
zero, the different B gadgets converge to different locations (since the lines they are
based on cannot be parallel: Every pair of lines crosses), so it is not possible that two
points belonging to different B gadgets always have distance 0 or 1, and similarly a
point in one B gadget cannot always have distance 0 from a line in another B gadget.
Finally, if two points within the same B gadget always have distance 1, they have
an edge between them, and the distance between a point and a line in the same B
gadget changes with δ , unless the point is an end vertex of an edge of B. These
observations imply that there are only a finite number of values of δ for which D′δ
is not nice. Hence, we can pick an arbitrarily small δ > 0 for which the drawing D′δ
is nice. Fix such a δ .

We can now add the flexible middle leg of each B gadget, so that the additional
vertices maintain niceness (this is why the middle leg has two interior vertices: to
be flexible enough to maintain niceness).

Finally, Lemma 2.3 allows us to add all the C gadgets one by one, maintaining
niceness of the drawing. This shows that GA is realizable, even fulfilling the stronger
condition that every pair of nonadjacent vertices has a distance different from 1. ��
Corollary 2.5. The problem of graph realizability remains ∃∃∃R-complete even if
(i) we do not require that vertices not lie on edges they are not endpoints of and
(ii) nonadjacent vertices must have a distance different from 1.

Proof. This follows from the proof of Theorem 2.1: The proof never used
assumption (i), and when constructing the realization of GA, we ensured that
nonadjacent vertices have distance different from 1. ��
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2.2 Euclidean Dimension and Unit Distance Graphs

Let En be the infinite graph on vertex set Rn so that xy is an edge of En if and only
if |x− y| = 1. Then Corollary 2.5 implies that recognizing subgraphs or induced
subgraphs of E2 is ∃∃∃R-complete (independent of how we arbitrate the issue of
vertices lying on edges). The Euclidean dimension of a graph G is the smallest n
so that G is an (induced) subgraph of En, a notion introduced by Erdős et al. [16].10

Corollary 2.6. Deciding whether a graph has Euclidean dimension 2 is ∃∃∃R-
complete (in both the induced and noninduced version). Hence, computing the
Euclidean dimension of a graph is ∃∃∃R-complete.

Subgraphs of E2 are also known as unit distance graphs [9], while strict unit
distance graphs are induced subgraphs of E2. The following is just a restatement of
the preceding corollary, answering a question suggested by Eppstein [14].

Corollary 2.7. Recognizing (strict) unit distance graphs is ∃∃∃R-complete.

Consequently, it is very unlikely that we will be able to recognize unit distance
graphs efficiently [24].

Remark 2.8. We can think of unit distance graphs as graphs whose edges are labeled
“= 1”; this suggests looking at alternative label sets. For example, if edges can have
labels “< 1” and “> 1” instead of “= 1,” we get unit-disk graphs; McDiarmid and
Müller [32] recently showed that SIMPLE STRETCHABILITY (in which no more
than two pseudolines are allowed to intersect in a point) reduces to the recognition
problem for unit-disk graphs, so the unit-disk graph problem is also ∃∃∃R-complete,
since SIMPLE STRETCHABILITY and STRETCHABILITY are polynomial-time
equivalent [42].

2.3 Issues of Precision

The reduction from STRETCHABILITY to graph realizability in the proof of
Theorem 2.1 is geometric in the following sense: Each realization of the graph with
length constraints constructed from the pseudo-line arrangement encodes a straight-
line realization of the arrangement. More precisely, the position of certain vertices of
the graph encodes the locations of intersection points of the straight-line realization.
In other words, the intersection points of a realization can be obtained by projecting

10Erdős et al. [16] defined the dimension of a graph using (noninduced) subgraphs of En. Later,
Erdős and Simonovits [15] introduced Euclidean dimension under the name faithful dimension.
The two notions differ: Take a wheel W6 with six spokes and remove one of the spokes. The
resulting graph is realizable as a subgraph, but not as an induced subgraph of E2. The name
“Euclidean dimension” seems to be due to Maehara [31]. For details and more terminology and
history, see [45, Sect. 13.2].
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onto certain points of the graph. Lemma 1.5 now immediately implies that some
graph realizations have exponentially low vertex resolution: The ratio between the
maximum distance of any two vertices divided by the minimum distance between
any two (distinct) vertices can be of order 22cn

. Similarly, the reductions to Euclidean
dimension and unit distance graphs are geometric. We state the result for unit
distance graphs only.

Corollary 2.9. There are unit distance graphs on n vertices, so that any realization
of the graph contains two distinct vertices at distance at most 1/22cn

for some fixed
constant c > 0.

Some of the traditional ETR results are actually universality theorem; for
example, Mnëv [34] showed that any semialgebraic set is stably equivalent to the
realization space of a pseudoline arrangement. We do not want to define stable
equivalence explicitly (see [39] for a detailed discussion), but roughly speaking
it means that the two sets look very similar algebraically. Stable equivalence is
not immediately useful to our purposes, since it does not imply any complexity
bounds, but many of the universality theorems in the literature could be recast as
polynomial-time many–one reductions. We also think it likely that many of our
geometric reductions can be turned into universality theorems with some additional
effort. We discuss universality theorems for linkages in Remark 3.3.

2.4 Plane Realizations and Matchstick Graphs

It is natural to ask what happens if we require the realizations of the graphs to be
plane, that is, free of crossings. Strengthening earlier results by Whitesides [48]
and Eades and Wormald [13], Cabello et al. [7] showed that the plane realizability
problem is (strongly) NP-hard even when restricted to 3-connected, infinitesimally
rigid planar graphs with unit edge lengths. Plane realizable graphs with unit edge
lengths—plane unit distance graphs—are known as matchstick graphs.

It remains open whether recognizing matchstick graphs, or solving the general
plane realizability problem, is ∃∃∃R-complete. If the graph is a triangulation, then
Cabello, Demaine, and Rote [7] show that plane realizability can be decided in
polynomial time in the real RAM model, and in P if the graph has bounded degree.
Their proof can be modified to show that the problem lies in coRP without assuming
bounded degree; a problem lies in coRP if there is a probabilistic algorithm that
is correct if it says “no” and is correct with probability at least 1/2 if it says
“yes” [35, 44]. Running the algorithm repeatedly yields an algorithm with an
arbitrarily small error bound.

Lemma 2.10. If G is a triangulation with prescribed lengths, then plane realizabil-
ity can be tested in coRP, even if the edge lengths include square roots of rationals.

Our proof adapts an argument from Cabello et al. [7].
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Proof. By a result of Di Battista and Vismara [12], it is sufficient to verify the
triangle inequality in each triangle, and ensure that the sum of angles at each
interior vertex is 2π . Since the graph is a triangulation, we can easily determine
its topological embedding (if there is a nontriangle face, it has to be the outer
face; if all faces are triangles, we can try each of them as the outer face in
polynomial time). Now pick an interior vertex v and consider one of its incident
triangles; the angle α formed by the triangle at v fulfills the law of cosines:
cosα = (b2 + c2− a2)/2ab, with standard notation for the triangle. Consequently,
sinα =

√
1− ((b2+ c2− a2)/2ab)2. Suppose the angles at v are αi, i ∈ [n], and let

Ak := ∑k
i=1αi. We can then write recursive expressions for sinAk and cosAk using

identities sin(α + β ) = sinα cosβ + cosα sinβ and cos(α + β ) = cosα cosβ +
sinα sinβ . This expression can be viewed as a directed acyclic graph whose leaf
nodes are the only nodes containing the square root operation (note that this remains
true even if the input lengths are square roots of rationals). Blömer [5, Theorem
2.2] showed that deciding whether such an expression equals 0 lies in coRP. In
particular, testing whether sinAn = 0 and cosAn = 1 is in coRP. We also need to
ensure that all Ak < 2π , but it is sufficient to do this approximately, since the test of
sinAn = 0 and cosAn = 1 guarantees that An is a multiple of 2π , and the approximate
test can be done in polynomial time. ��

If recognizing matchstick graphs were ∃∃∃R-complete and the reduction were
geometric, then, similar to Corollary 2.9, we would need to be able to construct
matchstick graphs in which vertices are forced to be exponentially close. This would
be a first indication of potential ∃∃∃R-hardness.

Question 2.11. Can one construct a matchstick graph on n vertices so that in every
plane realization of the graph, there are two vertices of distance at most 1/22cn

for
some fixed constant c?

3 Realizability of Linkages

A linkage is a graph G = (V,E) with a length �(e) assigned to each edge e ∈ E;
edges of a linkage are also called rods or bars; a configuration, or realization, of G
in R2 is a mapping of V to R2 so that the distance between the endpoints of each
edge e equals �(e). If there is a configuration of the linkage, we call the linkage
realizable; our terminology is based on the exposition in [10]; a more detailed
treatment can be found in [11]. We discuss two computational problems related
to linkages: realizability, in Sect. 3.1; and rigidity, in Sect. 3.2.

3.1 Linkage Realizability

Theorem 3.1. Deciding whether a linkage is realizable is ∃∃∃R-complete even if all
edges have unit length.
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The ∃∃∃R-hardness of linkage realizability can also be obtained from universality
results on linkages; see the discussion in Remark 3.3. The main new contribution in
Theorem 3.1 is the restriction to unit lengths(and a simpler proof).

Remark 3.2. The NP-hardness of linkage realizability was shown by Yemini [49]
and Saxe [40]. Saxe showed that linkage realizability in R is NP-complete even if
distances are restricted to values 1,2: Let w := {w1, . . . ,wn} be an instance of the
partition problem, and create the graph Cn on edges e1, . . . ,en with �(ei) = wi. Then
Cn can be realized in R if and only if w is a positive instance of partition. Using
gadgets with edges ab, bc, and ac, where w(ab) = w(bc) = 1 and w(ac) = 2, we
can replace edges of arbitrary integer length with edges of lengths 1 and 2. Saxe
extended this construction to show that linkage realizability in Rk for linkages with
distances 1,2 is NP-hard for all k ≥ 1. He also discusses approximation results and
results on how hard it is to decide whether there is a unique solution. Abbott [1]
showed that deciding whether a linkage is rigid is hard; we discuss his result later in
this section.

In the algebraic community, the linkage realizability problem is known as
the Euclidean distance matrix completion problem (EDMCP). Research in that
community seems to concentrate on algebraic characterizations and using tools such
as semidefinite programming to solve instances of the problem; see [28] for a survey.

Remark 3.3. Kempe claimed his universality theorem for linkages in 1876.
Roughly speaking, it shows how to trace any (compact) algebraic curve with a
linkage, so linkages are universal for (compact) algebraic curves.11 This suggests a
proof of ∃∃∃R-hardness for linkage realizability: to test whether a polynomial f can
take on the value 0 and extend the linkage tracing f so that the vertex tracing f is
forced to lie on the line corresponding to f = 0. Then f = 0 has a solution if and
only if the extended linkage is realizable. This approach can be made to work, but
there are some obstacles to overcome. First, Kempe’s proof is incomplete (some of
his gadgets have degenerate configurations). Jordan and Steiner [23] and Kapovich
and Millson [25] gave the first correct and complete proofs of Kempe’s universality
theorem (and in Kapovich and Millson’s case, even stronger results). The next
obstacle is that these papers did not analyze the effectiveness of the constructions;
Gao and Zhu [17] analyzed Kempe’s proof and showed that in the plane, O(n4)
links are sufficient (also see Abbott [1, Sect. 1.5]), this still does not show that
the lengths of the links can be calculated effectively (or can be assumed to be
algebraic or rational numbers). The first detailed analysis of this aspect seems to be
in Abbott’s thesis [1], which we will discuss again below with respect to rigidity.
Abbott’s version of Kempe’s universality theorem can be extended to a proof of
∃∃∃R-hardness of linkage realizability as sketched above. However, the approach is
quite intricate (after all, a much stronger result is obtained: universality); our proof

11See [25] or [11, Sect. 3.2.1] for detailed expositions.
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Fig. 4 The Moser graph

below is more direct, and, moreover, it shows that unit lengths are sufficient to get
∃∃∃R-hardness, while, as far as I know, there are no universality theorems for unit
linkages.

The proof of Theorem 3.1 requires some modifications to the proof of The-
orem 2.1; in some respects, the proof becomes easier, since we no longer have
to ensure that vertices do not accidentally overlap with other vertices or edges in
realizations. On the other hand, we need a new device that guarantees that vertices
of linkages are mapped to distinct points of the plane.

In the construction, we will use a small set of radii (the particular set of radii is
rather arbitrary), so we first show that if we are given a linkage with multiple integer
lengths, we can replace it with a unit-length linkage without affecting realizability.

Lemma 3.4. Given a linkage G with integer lengths, we can construct a linkage G′

with unit lengths only, so that G is realizable if and only if G′ is realizable. The size
of G′ is polynomial in the size of G and the integer lengths (in unary).

Proof. Let M be the Moser spindle shown in Fig. 4.
The seven vertices of M are distinct in any realization of M in the plane:

Obviously, the three vertices in each of the four triangles are distinct. Now the
distance between a and c is either 0 or

√
3, and the same is true for a and f . So

it is not possible that one of c or f or both of them coincide with a, since c and f
have a distance of 1. Hence, both c and f are distinct from a, and this already forces
all vertices of M to be pairwise distinct. In particular, the diamond on {a,b,c,d}
does not collapse. We can thus chain several Moser graphs together by identifying
them along triangles to create pairs of vertices at arbitrary integer distances. This
allows us to replace an edge of length n in G using a gadget with less than 7(2n−1)
vertices. ��

Lemma 3.4 helps us resolve the problem of keeping vertices distinct: We cannot
simply paste two triangles together along an edge, since the resulting diamond
linkage can be realized by a single triangle, with two of the vertices (and two pairs
of edges) coinciding. With the Moser graph, we can avoid collapses of this type. For
the proof of Theorem 3.1, we need devices that keep arbitrary pairs of vertices apart
in a realization. This problem comes in two types: vertices like the two vertices in
the diamond that are either identical or far apart, and vertices that could potentially
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be very close in a realization, but are not allowed to coincide. The second problem is
more difficult, and we will show how to resolve it presently. The first problem only
occurs in the construction of the Peaucellier linkage, where we resolve it ad hoc.

Lemma 3.5. We can create a linkage P′ with V (P′) including a, b, and e so that if a
and b are fixed in the plane, then the locus of e is a line segment of length at least 1.

Proof. We start with the Peaucellier linkage P shown in Fig. 2 assigning each edge
a length of 2. In a linkage realization of P several pairs of points that need to be
distinct for the gadget to work can collapse; this includes the diamonds connecting
a to d and a to f as well as the pairs d, f and c, e. Suppose x and y is one of these
pairs; then we add a rather crude device to the linkage: Add edges xx′, x′y′, and y′y of
lengths w(xx′) = 1, w(x′y′) = 3, and w(y′y) = 1. In any realization, this forces xy to
have distance at least 1 (and x and y can have distance up to 5, which is sufficient for
all realizations of P). The resulting linkage P′ fulfills the statement of the lemma.��

With the Peaucellier linkage, we can now construct a linkage L(u1,u2,u3)
that combines the functionality of the earlier colinearity and betweenness gadgets
B(u1,u2,u3) and C(u1,u2,u3); as opposed to these earlier gadgets, the new device
does not guarantee that u2 is strictly between u1 and u3: u2 could coincide with
either. This is a problem we fix later.

Lemma 3.6. There is a linkage L(u1,u2,u3) with lengths in [4] so that the
realizability of L(u1,u2,u3) implies that u2 lies on the line segment u1u3 (including
endpoints), while, in the reverse direction, if u2 does lie on the line segment u1u3

and u1u3 has length at most 1, then L(u1,u2,u3) is realizable.

Proof. Given three vertices (ui)i∈[3], create three copies (P′i )i∈[3] of P′ as constructed
in Lemma 3.5, identify a := a1 = a2 = a3 and b := b1 = b2 = b3, and ui with ei, i ∈
[3]. Realizability of this part guarantees that u1,u2,u3 are colinear. To ensure that u2

lies between u1 and u3, we add two new vertices g,h and edges gh,hu2,gu1,gu3 with
w(gh) = w(hu2) = 2 and w(gu1) =w(gu3) = 4. The resulting device is L(u1,u2,u3).
If L(u1,u2,u3) is realizable, then u2 lies on u1u3 (including endpoints), and if u1u3

has length at most 1 and u2 lies on that segment, then L(u1,u2,u3) is realizable. ��

Finally, we need a gadget D(u1,u2) that guarantees that u1 and u2 are distinct,
where u1 and u2 are two intersection points. In general, such a gadget does not exist:
If the loci of u1 and u2 can come arbitrarily close, then they must intersect, since
both are compact sets. However, for realizations of stretchable arrangements, we
have Lemma 1.4, which gives us a lower bound on how close intersection points
need to get, and we can use that to build a device that simulates true “distinctness”
well enough to work for our construction.

Lemma 3.7. There is a linkage T (a,b) with lengths in [2] and {a,b,c} ⊂ T (a,b)
so that if we assign a and b to any two points of distance less than 1 in the plane,
then a and c have distance |a− b|2 in any realization of T (a,b).

The gadget is based on the von Staudt constructions also used by Mnëv [34].
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Proof. We first build a gadget that ensures that two lines are parallel.12 Take a C6

on vertices p1, . . . , p6 and add edge p2 p5. Let all these edges have unit length, and
add two edges p1 p3 and p4 p6 of length 2. In any realization of this graph, the lines
through p1 p2 and p4 p5 are parallel, and p1/p5 and p2/p4 can get arbitrarily close
together (even coincide). Now add Peaucellier linkages L(p1,a, p2), L(p1,b, p2),
L(p4,c, p5), L(p4,d, p5). The resulting gadget is P(a,b,c,d); note that ab and cd
are parallel in any realization of P(a,b,c,d), and if we are given points {a,b,c,d}
so that ab and cd are parallel, and all points in {a,b,c,d} lie within a unit disk, then
P(a,b,c,d) is realizable.

To build T (a,b), start with vertices a,b, add vertices c,u,v,w and edges au, av,
uv of unit length, add two Peaucellier linkages L(a,b,u) and L(a,c,v), and add
P(u,v,b,w) and P(u,w,b,c). Then |a− c| fulfills |a− c|/|a−w|= |a−b|/|a−u|=
|a−b|, so |a−c|= |a−w| · |a−b|= |a−b|2, since |a−w|= |a−b|, as uv and bw are
parallel. Furthermore, if a and b have distance at most 1, then T (a,b) is realizable.��
Corollary 3.8. We can build a linkage D(u1,u2) so that u1,u2 are distinct in any

realization of D(u1,u2); moreover, for any u1, u2 that have distance at least 1/22n2

(and distance at most 1), there is a realization of D(u1,u2). The linkage D(u1,u2)
has size at most polynomial in n.

Proof. We take n2 copies of T (a,b) from Lemma 3.7 and chain them together by
identifying a,c with a,b of the next device. Finally, we identify the vertices a,b of
the first T (a,b) with the vertices d,e of the Moser spindle (Fig. 4) so that a and
b have distance less than 1/2 (indeed, closer to 0.47).13 Then, by the properties
of T (a,b), the vertices a,c of the last copy of T (a,b) have distance |a− c| = |d−
e|2n2

< 1/22n2

.
Given vertices u1,u2, take two copies of L as constructed in Lemma 3.6 on

vertices L(u1,a,b) and L(a,b,u2). The resulting device D(u1,u2) forces u1 and u2

to have distance at least |d− e|2n2

> 0 and are thus distinct. Also, for any u1,u2 that

have at least distance 1/22n2

, gadget D(u1,u2) is realizable. ��

We are finally in a position to prove Theorem 3.1.

Proof (Proof of Theorem 3.1). It is easy to see that the problem lies in ∃∃∃R. We
reduce from STRETCHABILITY.

12Kempe used a parallelism gadget like this in his proof of the universality theorem that every
bounded part of an algebraic curve can be traced by a suitable linkage. His parallelism gadget was
flawed, however; there are many ways to repair the construction. We follow a construction due to
Kapovich and Millson [25], also described in [11, Sect. 3.2.2].
13The realization of the Moser graph is not unique; both of the diamonds can flip; to force d and e
to be realized at distance < 1/2 as shown in Fig. 4, we brace the construction by adding edges gx,
xy, and yb of lengths w(gx) = 1, w(xy) = 3, w(yb) = 1; this forces g and b to have distance at least
1, thereby forcing the intended realization of the Moser graph.
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Suppose we are given a pseudoline arrangement A. Create a vertex for every
intersection point. For any three consecutive points u1,u2,u3 along a pseudoline,
add the device L(u1,u2,u3). For any two intersection points u1,u2, add the device
D(u1,u2). By Lemma 3.4, we can assume that the resulting graph GA has edges of
unit length only. If A is stretchable, then there is a realization ofA by straight lines
in which all intersections lie within the unit disk and any two intersection points
have distance at least 1/22cn

for some fixed c > 0 by Lemma 1.4. But then GA is

realizable as long as n ≥ c, because then 1/22n2

< 1/22cn
. On the other hand, if we

assume that GA is realizable, then a realization contains a set of line segments whose
order types correspond to A. Since every two of these lines intersect (we included
every intersection point in GA), we can extend these line segments to infinite straight
lines without changing the order type, and hence A is stretchable. ��

3.2 Rigidity

Two configurations p, p′ : V →R2 of the same linkage G = (V,E,w) are congruent
if |p(u)− p(v)|= |p′(u)− p′(v)| for all pairs u,v ∈ V . A configuration p : V → R2

of G = (V,E,w) is rigid if there is a ε > 0 so that any configuration p′ : V →R2 that
is close to p in the sense that |p(v)− p′(v)| < ε for all v ∈ V is congruent to p.
Informally speaking, the configuration cannot be changed by perturbing points
slightly.

Abbott [1] showed that rigidity is coNP-hard using the following argument: Let
ISO be the problem of deciding whether a family fi, i ∈ [s], of polynomials in n
variables has an isolated zero. Let H2N be the following computational problem:
Given a family fi, i ∈ [s], of s homogeneous polynomials in n variables, is there
a nontrivial zero, i.e., (x1, . . . ,xn) �= 0, so that fi(x1, . . . ,xn) = 0 for all i ∈ [s]?14

Then H2N reduces to ISO based on the observation that a family of homogeneous
polynomials has a nontrivial zero if and only if 0 is not an isolated zero of this
family [1, Corollary 5.6]. Moreover, ISO reduces to rigidity, a nontrivial reduction
due to Abbott [1, Theorem 5.7], and part of his thesis on Kempe’s universality
theorem; the reduction is in polynomial time, as long as the total degree of the
polynomials is bounded by a constant. Together with Koiran’s result that H2N is
NP-hard even for polynomials of total degree 2, this implies Abbott’s result that
rigidity is coNP-hard. However, as we are about to show, H2N is not only NP-hard,
but ∃∃∃R-complete, so that rigidity is ∀∀∀R-hard using the same chain of reductions that
Abbott uses. The following lemma is a stepping stone to the ∃∃∃R-hardness of H2N.

Lemma 3.9. Deciding whether a family of polynomials fi : Rn → R, i ∈ [s] has a
common root in Bn(0,1) (the unit ball) is ∃∃∃R-complete. We can assume that all fi

have total degree at most 2.

14The name H2N seems to be short for Hilbert’s homogeneous Nullstellensatz [27].
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Proof. It is well known that deciding whether a family of polynomials gi : Rm →R,
i ∈ [s], has a common root is ∃∃∃R-complete [42], even if all gi have total degree at
most 2.15 We want to reduce this problem to the problem of deciding whether a
family of polynomials fi has a common root in Bn(0,1).

Suppose we are given a family of polynomials gi : Rm →R, i ∈ [s] of total degree
at most 2. By Theorem 1.3, we know that if the gi, i ∈ [s], have a common root, then
such a root has distance less than R = 2L2cn

from the origin, where L is an upper
bound on the bit lengths of the coefficients of the gi and c > 0 is some fixed constant
(we use that the gi have total degree 2). Let t = 
n logc+ logL�+ 1 (so 22t

> R2)
and define

fi(x1, . . . ,xm,y0,y1, . . . ,yt) := y2
0gi(x1/y0, . . . ,xm/y0)

for i ∈ [s] and

fs+1(x1, . . . ,xm,y0,y1, . . . ,yt) := yt − 1/2

and

fs+1+i(x1, . . . ,xm,y0,y1, . . . ,yt) := yi−1− y2
i

for i ∈ [t]. Note that all the fi have total degree at most 2.
If the fi, i ∈ [s + 1 + t] have a common root (x1, . . . ,xm,y0,y1, . . . ,yt), then

yt = 1/2, since fs+1 = 0, and yt−i = 2−2i
for i ∈ [t] since fs+i+1 = 0 for i ∈ [t].

In particular, y0 > 0, so fi = 0 implies that gi(x1/y0, . . . ,xm/y0) = 0, for all i ∈ [s],
so (x1/y0, . . . ,xm/y0) is a common root of the gi, i ∈ [s].

On the other hand, assume that the gi have a common root (x′1, . . . ,x
′
m). We can

assume that (x′1, . . . ,x
′
m) has distance less than R from the origin. Let yi := 2−2t−i

for i ∈ {0} ∪ [t] and xi := x′iy0. By definition, all fi = 0, i ∈ [s + 1 + t]. We
only need to verify that (x1, . . . ,xm,y0,y1, . . . ,yt) ∈ Bm+1+t(0,1). Now ∑t

i=0 y2
i ≤

∑∞i=0 4−2i
= 1/4 + 1/16 + 1/256 + 1/65536 + · · · ≤ 1/4 + 1/8 = 5/8. Also,

∑m
i=1 x2

i = y2
0∑

m
i=1 x′i

2 ≤ y2
0R2 ≤ (1/R2)2R2 = 1/R2. So (x1, . . . ,xm,y0,y1, . . . ,yt)

has distance at most
√

5/8+ 1/R2 < 1 from the origin (assuming that R ≥ 2), and
we have found a common root of the fi in Bm+1+t(0,1). ��

Corollary 3.10. H2N is ∃∃∃R-complete.

Proof. It is easy to see that H2N belongs to ∃∃∃R, so we only have to show that it is
∃∃∃R-hard. By Lemma 3.9, deciding whether a family of polynomials fi : Rn → R,
i ∈ [s], has a common root x ∈ Bn(0,1) is ∃∃∃R-complete, even if all fi have total
degree at most 2.

Using a standard transformation, we can turn each fi into a homogeneous
polynomial, just adding one additional variable y0: Define

gi(x1, . . . ,xn,y0) := y4
0 fi(x1/y0, . . . ,xn/y0),

15This is a folklore result; for example, it is easy to see that STRETCHABILITY can be rephrased
like this. The version in the Blum–Shub–Smale model can be found in [6].
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i ∈ [s]. Then (gi)i∈[s] is a family of homogeneous polynomials of total degree 4 and
(x1, . . . ,xn,y0) is a common root of all gi, i∈ [s], if and only if either y0 = 0 or y0 �= 0
and (x1/y0, . . . ,xn/y0) is a common root of the fi, i ∈ [s]. This does not yet meet our
goal, since we can have nontrivial common roots of the gi that do not correspond
to any common roots of the fi: Just let y0 = 0 and (x1, . . . ,xn) �= 0. This can be
remedied by making y0 an upper bound of the xi; let

gs+1(x0,x1, . . . ,xn,y0) = y4
0− x4

0−
(

n

∑
i=1

x2
i

)2

,

adding a new variable x0.
Let (x0,x1, . . . ,xn,y0) be a nontrivial common root of the gi, i ∈ [s+ 1] (adding

x0 to the list of variables of the gi with i ∈ [s]). If y0 = 0, then x0 = x1 = · · ·= xn = 0
(because gs+1 = 0), so (x0,x1, . . . ,xn,y0) = 0 and the root is trivial. Hence, we must
have y0 �= 0. But then gi(x1, . . . ,xn,y0) = 0 implies that fi(x1/y0, . . . ,xn/y0) = 0, so
(x1/y0, . . . ,xn/y0) is a common root of the fi. Moreover, since gs+1 = 0, we have
that y4

0 > (∑n
i=1 x2

i )
2, so ∑n

i=1(xi/y0)
2 < 1, which implies that (x1/y0, . . . ,xn/y0) ∈

Bn(0,1).
For the reverse direction, assume that we are given a root (x1, . . . ,xn) ∈ Bn(0,1)

of the fi, i ∈ [s]. Let y0 := 1 and x0 := (y4
0− (∑n

i=1 x2
i )

2)1/4 (which is defined, since
∑n

i=1 x2
i < 1). By definition, gs+1(x0,x1, . . . ,xn,y0) = 0 and gi(x0,x1, . . . ,xn,y0) = 0.

So (x0,x1, . . . ,xn,y0) is a nontrivial common root of the gi, which is what we had to
prove. ��

Thus following Abbott’s construction [1, Theorem 5.7],16 we get ∀∀∀R-hardness
of rigidity.

Theorem 3.11. Rigidity in R2 is ∀∀∀R-complete.

To complete the proof of Theorem 3.11, it remains to show that rigidity lies in
∀∀∀R. The formal definition of rigidity given at the beginning of this section gives us
an ∃∀ formula for rigidity. We use a lemma that allows us to convert the leading
existential quantifier into a group of universal quantifiers in this case.

Lemma 3.12. Suppose

Φ(ε,y1, . . . ,y�) = (∀x1, . . . ,xk) ϕ(ε,x1, . . . ,xk,y1, . . . ,y�),

is such that Φ(ε,y1, . . . ,y�) implies Φ(ε ′,y1, . . . ,y�) for all ε > ε ′ > 0. Then we can
find a quantifier-free formula ψ(ε,x1, . . . ,xk,y1, . . . ,y�,z1, . . . ,zm) of length at most
|ϕ |+ dm in time |ϕ |+ dm, where m = cn3 log |ϕ |, so that

(∃ε > 0)(∀x1, . . . ,xk) ϕ(ε,x1, . . . ,xk,y1, . . . ,y�)

16The reduction is polynomial time, since our polynomials have total degree 2.
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is equivalent to

(∀z1, . . . ,zm)(∀ε)(∀x1, . . . ,xk) ψ(ε,x1, . . . ,xk,y1, . . . ,y�,z1, . . . ,zm)

for some fixed constants c,d > 0.

Remark 3.13. Lemma 3.12 is a consequence of the lemma by Grigor’ev and
Vorobjov stated here as Theorem 1.3.

Proof of Theorem 3.11. We already showed ∀∀∀R-hardness, based on the reduction
by Abbott [1, Theorem 5.7]. We still have to show that the problem belongs to
∀∀∀R. The input is a particular configuration of some linkage G given as a position
p(v) assigned to each vertex V (G) = {v1, . . . ,vn}. As a computational problem, the
input needs to be finite, so we assume that the coordinates of p(v) are algebraic real
numbers. The configuration is rigid if there is an ε > 0 so that for all p′(v), v∈V (G)
with

(i) |p′(v)− p(v)| ≤ ε for all v ∈V and
(ii) |p′(u)− p′(v)|= |p(u)− p(v)| for all uv ∈ E(G),

we have that the configurations p′ and p are congruent. This characterization is not
∀∀∀R because of the leading existential quantifier. However, it is monotone in ε in
the sense of Lemma 3.12, so we can convert the existential quantifier into a block
of universal quantifiers of length polynomial in n and the original formula. This if
sufficient to show that the problem lies in ∀∀∀R. ��
Remark 3.14. The proof of Theorem 3.11 can probably be strengthened to show
that recognizing the rigidity of unit distance graphs is ∀∀∀R-complete. However, the
construction will be a rather lengthy, technical recreation of Kempe’s proof with
unit distance graphs, so the author decided to leave this for a different occasion.

4 Open Questions

Approximation

Saxe introduced an approximate version of realizability for linkages, but we can
apply it to both graph and linkage realizability: Call a graph or linkage ε-
approximately realizable if the vertices can be placed so that for every edge,
1− ε < len(e)/�(e) < 1 + ε , where len(e) is the actual length of edge e in the
straight-line drawing and �(e) is the intended length. For unit distance graphs, this
leads to the notion of a ε-unit distance graph.

Question 4.1. Is recognizing ε-approximately realizable graphs or linkages still
∃∃∃R-hard? Is recognizing ε-unit distance graphs ∃∃∃R-hard?
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The case ε = 1/22O(nc)
would be a good starting point in view of Lemma 1.4.

Saxe [40] showed that 1/9-approximate realizability of linkages in R is NP-
complete (this proof requires a different encoding from the one outlined in
Remark 3.2, since the partition problem can be approximated well).

Higher Dimensions

All of our results were proved for R2; since R is well understood, this leaves the
question of how hard it is to decide problems on linkages and graphs in higher-
dimensional spaces.

Acknowledgements I would like to thank the anonymous referee for pointing out the universality
papers by Jordan and Steiner [23] and Kapovich and Millson [25].
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Abstract If X is a Minkowski space, i.e., a finite-dimensional real normed space,
then S⊂ X is an equilateral set if all pairs of points of S determine the same distance
with respect to the norm. Kusner conjectured that e(�d

p) = d + 1 for 1 < p < ∞
and e(�d

1) = 2d [6]. Using a technique combining linear algebra and approximation
theory, we prove that for all 1 < p < ∞, there exists a constant Cp > 0 such that
e(�d

p)≤Cpd1+2/(p−1).
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1 Introduction

Let (X ,‖ · ‖) be a finite-dimensional real normed space, also called a Minkowski
space. Let Δ(S) := {‖s− t‖ : s, t ∈ S,s �= t}. For k ≥ 1, we say S is a k-distance set
if |Δ(S)| ≤ k. Let ek(X) be the maximum possible cardinality of a k-distance set
in X . This maximum exists: ek(X) ≤ (k+ 1)dim(X) [11]. We call a 1-distance set an
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Petty showed that e(X)≤ 2dim(X) and that equality is obtained if and only if X is
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We will consider the case where X = �d
p, i.e., Rd in the Lp-norm. Kusner

conjectured that e(�d
p) = d + 1 for 1 < p < ∞ and e(�d

1) = 2d [6]. It is well known
that e(�d

2) = d+1. We have e(�d
p)≥ d+1 as the standard basis vectors together with

an appropriate scalar multiple of (1,1, . . . ,1) form an equilateral set in �d
p. Using a

technique combining linear algebra and approximation theory, we show that

Theorem 1. For all 1 < p < ∞, there is a constant Cp > 0 such that

e(�d
p)≤Cpd1+2/(p−1).

This was later improved by Alon and Pudlák to e(�d
p)≤C′pd1+3/(2p−1) for 1≤ p<∞

and e(�d
p) ≤ C′′pd logd for p ≥ 1, an odd integer [1]. Here C′p and C′′p are positive

constants. Galvin noted that e(�d
p) ≤ 1+(p− 1)d for p an even integer (personal

communication, 1999). Swanepoel proved e(�d
p)≤ (2
p/4�−1)d+1 for p an even

integer [12]. In particular, e(ld
4 ) = d + 1. Swanepoel also proved (in particular) that

for every 1≤ p < 2, e(�d
p)> d+ 1 for d large enough [12].

We will prove Theorem 1 and then make some conjectures concerning ek(X).

2 Proof of Theorem 1

Before proving Theorem 1, we require the following three easy or well-known
results. Let Matm be the set of m×m real matrices. For M ∈ Matm, let ‖M‖∞ :=
max1≤i, j≤m |Mi j|. Let Im denote the m×m identity matrix.

Lemma 2.1 ([2]). Let V be the vector space of real-valued functions on a set X.
Let { f1, . . . , fm} ⊂V. Let {a1, . . . ,am} ⊂ X. Let M ∈Matm be the matrix with Mi j =
fi(a j). If M is invertible, then the fi are linearly independent.

Lemma 2.2 ([14]). If M ∈Matm and ‖M− Im‖∞ < 1/m, then M is invertible.

Lemma 2.3. Let 1 < p < ∞. There is a sequence of polynomials {ql(x)}l≥
p� with
deg(ql) ≤ l, such that ||x|p − ql(x)| ≤ Bp/l p, for all |x| ≤ 1 where Bp > 0 is a
constant.

This last lemma is an application of the following result of Jackson [7]. For the
statement given here, see p. 57 of [9].

Theorem 2. Let k ≥ 1. Suppose f ∈ Ck([−1,1]) and f (k) ∈ LipM α . For every
l > k, there is a polynomial ql of degree at most l such that ‖ f − ql‖∞ ≤
D(k,α, l)ck+1M/lk+α , where D(k,α, l) = lk+α/((l)k(l− k)α) and c = 1+π2/2.

Here LipM α is the class of functions f (x) on [−1,1] such that | f (x)− f (y)| ≤M|x−
y|α for all x,y ∈ [−1,1] and ‖ f (x)‖∞ = maxx∈[−1,1] f (x). As is common notation,
(l)k is the falling factorial, (l)k := l(l− 1) · · ·(l− k+ 1).
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To obtain Lemma 2.3, we first note that each factor of D(k,α, l) = ∏k−1
i=1

(1+ i/(l− i))(1+ k/(l− k))α is decreasing with l. We thus obtain an upper bound
for this quantity by setting l = k + 1, namely, D(k,α, l) ≤ (k + 1)k+α/(k+ 1)! If
f (x) = |x|p, set k = 
p� − 1 and α = p− k ∈ (0,1]. Then f ∈ Ck([−1,1]) and
f (k)(x) = sgnk(x)(p)k|x|α ∈ LipM α , where M = (p)k. Thus, we obtain Lemma 2.3
with Bp = (
p�p(1+ π2/2)
p�(p)
p�−1)/
p�!. It is straightforward to verify that
Bp ≥ 
p�p, a fact that we require in the proof of Theorem 1.

Proof (Theorem 1.). Fix p ∈ (1,∞). Let S = {a1,a2, . . . ,am} ⊂ �d
p be an equilateral

set of maximum size, scaled so that ‖ai− a j‖p = 1 for all i �= j. We define the
following functions from Rn to R, fi(x) = 1−‖x− ai‖p

p = 1−∑d
t=1 |xt − ai

t |p, i =
1, . . . ,m and gi(x) = 1−∑d

t=1 ql(xt − ai
t), i = 1, . . . ,m, where ql is the polynomial

from Lemma 2.3 approximating |x|p to within Bp/l p on [−1,1] and where l is

smallest integer such that dBp/l p < 1/m. Note that l > (dBpm)1/p ≥ B1/p
p ≥ 
p�,

as required by Lemma 2.3. Since Bp ≥ 1, (dBpm)1/p ≥ 1 and l ≤ (dBpm)1/p + 1≤
2(dBpm)1/p.

Let M = [gi(a j)] ∈ Matm. By the assumption on S, we have [ fi(a j)] = Im. Let
A=M− Im = [gi(a j)− fi(a j)]. We have

∣∣Ai j
∣∣≤∑d

t=1 |ζi jt |, where ζi jt := |a j
t −ai

t |p−
ql(a

j
t −ai

t). Since |a j
t −ai

t | ≤ ‖a j−ai‖p ≤ 1, we have
∣∣ζi jt
∣∣≤ Bp/l p by Lemma 2.3.

Thus, ‖M− Im‖∞ ≤ dBp/l p < 1/m. This implies that M is invertible by Lemma 2.2,
and thus the gi are linearly independent by Lemma 2.1.

The gi are elements of W , the subspace of R[x1, . . . ,xd ] spanned by
{1,∑d

t=1 xl
t}∪

⋃d
t=1{xt ,x2

t , . . . ,x
l−1
t }. Thus, we have m ≤ dim(W ) = 2+ d(l− 1)≤

dl, if d ≥ 2. Since l ≤ 2(dBpm)1/p, m ≤ 2d(dBpm)1/p, or e(�d
p) = m <

2p/(p−1)B1/(p−1)
p d(p+1)/(p−1). ��

Notes: (1) The constant 2p/(p−1)B1/(p−1)
p grows without bound as p approaches 1

and is O(p) as p goes to infinity. (2) As Galvin noted (personal communication,
1999), if p is an even integer, the functions fi(x) are polynomials of degree p and,
together with the identity function, 1, form a linearly independent set in W . Thus,
e(�d

p)≤ 1+ d(p− 1).

3 k-Distance Sets

For d ≥ 1, e(X) is upper semicontinuous on the Banach–Mazur compactum of
normed spaces of dimension d. For a proof, suppose Nn is a sequence of norms
converging to the norm N in the Banach–Mazur distance and Sn = {an,1, . . . ,an,e}
is an equilateral set of size e in Nn with Δ(Sn) = {1}. Then there is an equilateral
set S of size e in N. Indeed, we may assume by translating each Sn that ∪Sn lies
in a compact set. By passing to convergent subsequences, we get an,i → ai for all
1≤ i≤ e. S = {a1, . . . ,an} is equilateral in N. A particular instance is e(X)≤ d+1
for X sufficiently close to �d

2.
It seems plausible that
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Conjecture 1. For all d,k ≥ 1, ek(X) is upper semicontinuous.

Trying the same approach used for e(X) leads to a problem. Setting Δ(Sn) = {1 =
dn,1 > dn,2 > · · · > dn,k}, we can pass to subsequences to ensure ‖an,i− an, j‖n =
d f (i, j), where f is a fixed function, dn,i → di, and ‖ai− a j‖ = d f (i, j), but we may
have dk = 0 and |S| < e. This state of affairs would be rectified by proving the
following conjecture.

Conjecture 2. For all d,k ≥ 1, there is a universal constant cd,k > 0 so that for any
normed space X of dimension d, there is a maximum size k-distance set S⊂ X with
maximum distance 1 and minimum distance greater than or equal to cd,k.

We’d like to prove a k-distance analogue of Theorem 1. It is known that(d+1
k

)
≤ ek(�

d
2)≤

(d+k
k

)
[3]. Mimicking the proof of the lower bound in the previous

statement, it is trivial to show that the
(d

k

)
0–1 vectors of length d with exactly k 1’s

form a k-distance set in �d
p, so that ek(�

d
p)≥

(d
k

)
.

Conjecture 3. For all k ≥ 1, there exists p(k) so that for all p > p(k), there exists a
constant Cp,k > 0 so that ek(�

d
p)≤Cp,kdk.

The natural attempt at a proof of this conjecture would be to define for S =
{a1, . . . ,am} ⊂ �d

p the functions fi(x) = ∏k
s=1

(
d p

s −∑d
t=1 |xt − ai

t |p
)

and the poly-

nomial approximations gi(x) = ∏k
s=1

(
d p

s −∑d
t=1 ql(xt − ai

t)
)
, where Δ(S) = {1 =

d1 > d2 > · · · > dk}. However, when trying to prove M = [gi(a j)] is invertible, the
sufficient condition ‖M− [ fi(a j)]‖∞ = ‖M− d p

1 . . .d
p
k Im‖∞ < d p

1 . . .d
p
k /m involves

an estimate that could require an arbitrarily high degree of approximation l, as dk

could be arbitrarily small. One needs lower bounds on dk in order to make this
approach work.

The following is a seemingly reasonable conjecture.

Conjecture 4. For all p ≥ 1 and all k ≥ 1, there exists a constant cp,k > 0
independent of d so that there exists a k-distance set S ⊂ �d

p with |S| = ek(�
d
p) and

with Δ(S) = {1 = d1 > d2 > · · ·> dk ≥ cp,k}.

Assuming this conjecture, we can prove

Conjecture 5. For all k≥ 1 and for all p > k, there exists a constant Cp,k > 0 so that

ek(ld
p)≤Cp,kdk+((k2+k)/(p−k)).
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A Note on Geometric 3-Hypergraphs

Andrew Suk

Abstract In this note, we prove several Turán-type results on geometric
hypergraphs. The two main theorems are (1) every n-vertex geometric 3-hypergraph
in the plane with no three strongly crossing edges has at most O(n2) edges, and
(2) every n-vertex geometric 3-hypergraph in 3-space with no two disjoint edges
has at most O(n2) edges. These results support two conjectures that were raised by
Dey and Pach, and by Akiyama and Alon.

1 Introduction

A geometric r-hypergraph H in d-space is a pair (V,E), where V is a set of points in
general position in Euclidean d-space, and E is a set of closed (r− 1)-dimensional
simplices (edges) induced by some r-tuple of V . The sets V and E are called the
vertex set and edge set of H, respectively. Two edges in H are crossing if they are
vertex disjoint and have a point in common. Notice that if k edges are pairwise
crossing, it does not imply that they all have a point in common. Hence, we say that
H contains k strongly crossing edges if H contains k vertex disjoint edges that all
share a point in common. See Fig. 1.

A direct application of the colored Tverberg theorem (see [3, 19]) gives

Theorem 1. Let exd(SCd+1
k ,n) denote the maximum number of edges an n-vertex

geometric (d + 1)-hypergraph in d-space has with no k strongly crossing edges.
Then
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a b c

Fig. 1 Three edges of a geometric 3-hypergraph in the plane

exd(SCd+1
k ,n) = O

(
n

d+1− 1
(2k−1)d

)
.

Dey and Pach [5] showed that exd(SCd+1
2 ,n) = Θ(nd), and conjectured

exd(SCd+1
k ,n) = Θ(nd) for every fixed d and k. The lower bound can easily be

seen by taking all edges with a vertex in common. The main motivation for their
conjecture is in deriving upper bounds on the maximum number of k-sets of an
n-point set in Rd . See [11] for more details. In this note, we settle the Dey–Pach
conjecture for geometric 3-hypergraphs in the plane with no three strongly crossing
edges, and improve the upper bound of ex2(SC3

k ,n).

Theorem 2. ex2(SC3
3 ,n) = Θ(n2).

Theorem 3. For fixed k ≥ 4, ex2(SC3
k ,n)≤ O(n3− 1

k ).

As a related result, Akiyama and Alon [2] used the Borsuk–Ullam theorem [4]
to show the following.

Theorem 4. Let exd(Dd
k ,n) denote the maximum edges that an n-vertex geometric

d-hypergraph in d-space has with no k pairwise disjoint edges. Then

exd(D
d
k ,n)≤ nd−(1/k)d−1

.

They conjecture that for every fixed d and k, exd(Dd
k ,n) = Θ(nd−1). Again, the

lower bound can easily be seen by taking all edges with a vertex in common. Pach
and Törőcsik [14] showed that ex2(D2

k ,n) = O(k4n), which was later improved to
O(k2n) by Tóth [16]. Here we settle the Akiyama–Alon conjecture for geometric
3-hypergraphs in 3-space with no two disjoint edges.

Theorem 5. ex3(D3
2,n) = Θ(n2).

For clarity of the proofs, we do not make any attempts to optimize the constants.
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2 Strongly Crossing Edges in the Plane

In this section, we will prove Theorems 2 and 3. Recall that a geometric graph is a
graph drawn in the plane with vertices represented by points and edges by straight-
line segments connecting the corresponding pairs. Recently, Ackerman [1] showed
the following.

Lemma 2.1. Let G = (V,E) be an n-vertex geometric graph in the plane with no
four pairwise crossing edges. Then |E(G)| ≤ O(n). �
We note that Lemma 2.1 holds for topological graphs. Before we give the proofs,
we will introduce some terminology. Consider a family S = {s1, . . . ,sk} of pairwise
crossing segments in the plane, and let L = {l1, . . . , lk} be a family of lines such
that li is the line supported by segment si. Recall that the level of a point x ∈ ∪L is
defined as the number of lines of L lying strictly below x. We define the top level
of L as the closure of the set of points in ∪L with level k− 1. We define the top
level of S to be the top level of L. See Fig. 2. Notice that L is a (not strictly) convex
function.

For each edge t in a geometric 3-hypergraph in the plane, we define its base as
the side with the longest x-projection. We define the other two sides of t as its left
and right sides. See Fig. 3. Notice that every edge in a geometric 3-hypergraph is
incident to a vertex that lies strictly above or below its base. We are now ready to
prove Theorem 2.

Proof of Theorem 1.2. Let H = (V,E) be an n-vertex geometric 3-hypergraph in
the plane with no three strongly crossing edges. We can assume that |E(H)| ≥ 20n2

(since otherwise we would be done) and at most |E(H)|/2 edges in H are incident
to a vertex that lies strictly below its base. We will discard all such edges, leaving us
with at least |E(H)|/2 edges left. Let Euv be the set of edges in H with base uv.

Fig. 2 The top level of four pairwise crossing segments is drawn thick

right side

left side

base
Fig. 3 The base, left side,
and right side



492 A. Suk

Fig. 4 Three cases

We discard all sets Euv for which |Euv| ≤ |E(H)|/(2n2). Since we have thrown
away at most |E(H)|/4 edges in this process, we have at least |E(H)|/4 edges left.
Therefore, |Euv|= 0 or |Euv| ≥ |E(H)|/(2n2)≥ 10.

Now let Gv = (V,E) denote the geometric graph with V (Gv) = V (H) and xy ∈
E(Gv) if conv(x∪ y∪ v) ∈ E(H) with base xy.

Observation 2.2. Gv does not contain four pairwise crossing edges (bases).

Proof. For sake of contradiction, suppose Gv contains four pairwise crossing edges
b1,b2,b3,b4 ∈ E(Gv). Then v lies above bi for all i. Let L denote the top level of the
arrangement S = {b1,b2,b3,b4}. Now the proof falls into three cases.

Case 1. Suppose L intersects exactly two members of S, say, bases b1 and b2 (in
order from left to right along L). Let p be the intersection point of b1 and b2. Then
the vertical line through p must intersect b3 below p. Moreover, since segments
b1 and b3 cross, v and the right endpoint of b3 must lie on the same half-plane
generated by the line supported by b1. Likewise, v and the left endpoint of b3 must
lie on the same half-plane generated by the line supported by b2. Therefore, p ∈
conv(v∪ b3). See Fig. 4a. Since |Eb1 |, |Eb2 | ≥ 10, there exist vertices x,y ∈ V (H)
such that conv(v∪b3),conv(x∪b1),conv(y∪b2) are three (vertex disjoint) strongly
crossing edges in H, and we have a contradiction.

Case 2. Suppose L intersects exactly three members of S, say, bases b1,b2,b3

(in order from left to right along L). Now b4 must intersect b2 to either the left
or right of b2 ∩L. Without loss of generality, we can assume that b4 intersects b2

to the right of b2∩L. Let p be the intersection point of segments b2 and b3. By the
same argument as above, p ∈ conv(v∪ b4). See Fig. 4b. Since |Eb1 |, |Eb2 | ≥ 10,
there exist vertices x,y ∈V (H) such that conv(v∪b4),conv(x∪b1),conv(y∪b2) are
three strongly crossing edges in H, and we have a contradiction.

Case 3. Suppose L intersects b1,b2,b3,b4 in order from left to right along L. Let p
be the intersection point of segments b2 and b3, and let l be the vertical line through
v. Since the right endpoint of b4 lies to the right of l, and the left endpoint of b1 lies to
the left of l, we have p ∈ conv(v∪b1)∪conv(v∪b4). Therefore, either conv(v∪b1)
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L
1

2

3

4

b

b

b

b

Fig. 5 Arrangement of
b1,b2,b3,b4

or conv(v∪ b4) (say conv(v∪ b1)) contains p. See Fig. 4c. Since |Eb2 |, |Eb3 | ≥ 10,
there exist vertices x,y ∈V (H) such that conv(v∪b1),conv(x∪b2),conv(y∪b3) are
three strongly crossing edges in H, and we have a contradiction. �
Therefore, by Lemma 2.1, |E(Gv)| ≤ O(n) for every vertex v ∈V (H). Hence,

|E(H)|
4

≤ ∑
v∈V (H)

|E(Gv)|= O(n2),

which implies |E(H)|= O(n2). �
Before we prove Theorem 3, we will need the following lemma due to Valtr [17].

Lemma 2.3. Let G = (V,E) be an n-vertex geometric graph in the plane such that
all of the edges in G intersect the y-axis. If G does not contain k pairwise crossing
edges, then |E(G)| ≤ ckn, where ck depends only on k. �
Proof of Theorem 1.3. Let H be an n-vertex geometric 3-hypergraph in the plane
with no k strongly crossing edges for k ≥ 4. Just as before, we can assume at most
|E(H)|/2 of the edges in H are incident to a vertex that lies strictly below its base.
We discard all such edges, leaving us with at least |E(H)|/2 edges left in H. Now
we make the following observation.

Observation 2.4. Suppose b1, . . . ,bk are k pairwise crossing bases and v1, . . . ,vk ∈
V (H) such that conv(vi ∪ b j) ∈ E(H) with base b j for all i, j. Then H contains k
strongly crossing edges.

Proof. Let L denote the top level of the segment arrangement S = {b1, . . . ,bk}, and
assume that b1, . . . ,bk are ordered by increasing slopes. See Fig. 5.

Now we define edges t1, t2, . . . , tk ∈ E(H) as follows. Among the k edges
conv(b1 ∪ v1),conv(b1 ∪ v2), . . . ,conv(b1 ∪ vk) ∈ E(H) (with slight abuse of
notation), let t1 = conv(b1 ∪ v1) be the edge whose right side has the rightmost
intersection with L. Then among the k − 1 edges conv(b2 ∪ v2),conv(b2 ∪
v3), . . . ,conv(b2 ∪ vk) (again with slight abuse of notation), let t2 = conv(b2 ∪ v2)
be the edge whose right side has the rightmost intersection with L. We continue
this procedure until we have k edges t1, t2, . . . , tk. Clearly, these k edges are vertex
disjoint.
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Fig. 6 Assume (ti ∩L)∩ (t j ∩L) = /0

Now notice that (ti ∩ L) ∩ (t j ∩ L) �= /0 for all pairs i, j. Indeed, for sake of
contradiction, suppose there exist two edges ti and t j for i < j such that either ti∩L
lies completely to the left of t j ∩L, or vice versa. See Fig. 6.

Case 1. Suppose ti ∩ L lies completely to the left of t j ∩L. Then the vertical line
through v j intersects the right side of ti below v j. Therefore, the right side of
conv(bi ∪ v j) intersects L more to the right than the right side of ti = conv(bi ∪ vi)
does. This contradicts the definition of ti and t j.

Case 2. Suppose ti∩L lies completely to the right of t j∩L. Then there exists a base
bs that has a point p on L between ti∩L and t j ∩L. Base bs must

1. lie below vi and v j,
2. cross bi and b j, and
3. contain point p.

However, this is impossible by the following argument. Let l be the vertical line
through p. Clearly, l intersects bi and b j. Since bs lies below vi and v j, bs must
intersect b j to the left of l and intersect bi to the right of l. Since bs intersects b j to
the left of l, the slope of bs must be greater than the slope of b j. However, since the
slope of bi is less than the slope of b j, this implies that bs cannot intersect bi to the
right of l. Hence, we have a contradiction (Fig. 7).
Since (ti ∩ L)∩ (t j ∩ L) �= /0 for every i, j,∈ {1,2, . . . ,k}, by Helly’s theorem [6],
t1, . . . , tk has a nonempty intersection on L. �

Notice that no k points in V (H) have ckn bases in common. Indeed, otherwise
the vertical line through any of these k points would intersect all ckn bases, and by
Lemma 2.3 there would be k pairwise crossing bases. By Observation 2.4, we would
have k strongly crossing edges.

Now let G = (A∪B,E) be a bipartite graph where A = V (H) and B = V 2(H),
such that (v,xy) ∈ E(G) if conv(x∪ y∪ v) ∈ E(H) with base xy. Since G does not
contain Kk,ckn as a subgraph, we can use the following well-known result of Kővári
et al. [10].
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vj
vi

L

bi

bj

p

lFig. 7 Case 2

Theorem 5. If G = (A ∪ B,E) is a bipartite graph with |A| = n and |B| = m
containing no subgraph Kr,s with the r vertices in A and the s vertices in B, then

|E(G)| ≤ (s− 1)1/rnm1−1/r +(r− 1)m.

By plugging the values m = n2,r = k,s = ckn into Theorem 5, we obtain

|E(H)|
2

≤ |E(G)| ≤ O
(

n3− 1
k

)
.

Hence,

|E(H)| ≤ O
(

n3− 1
k

)
. �

2.1 Convex Geometric 3-Hypergraphs

In the case when the vertices are in convex position in the plane, extremal problems
on geometric 3-hypergraphs become easier due to the linear ordering of its vertices.
The proof of Observation 2.4 can be copied almost verbatim to conclude the
following.

Observation 2.6. Let H = (V,E) be a geometric 3-hypergraph in the plane with
vertices in convex position. Suppose H contains k edges of the form ti = conv(xi ∪
yi ∪ zi), such that the vertices (x1, . . . ,xk,y1, . . . ,yk,z1, . . . ,zk) appear in clockwise
order along the boundary of their convex hull. Then t1, . . . , tk are k strongly crossing
edges. �

Marcus and Klazar [9] extended the Marcus–Tardos theorem [12] by showing
that the number of 1 entries in an r-dimensional (0,1)-matrix with side length n that
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avoids an r-dimensional permutation matrix is O(nr−1). As pointed out by Marcus
and Klazar, it is not difficult to modify their proof to obtain an O(nr−1) bound on the
number of edges in an ordered n-vertex r-uniform hypergraph that does not contain a
fixed ordered matching. Hence, by Observation 2.6, we can conclude the following.

Theorem 7. Let H = (V,E) be a geometric 3-hypergraph in the plane with vertices
in convex position. If H does not contain k strongly crossing edges, then |E(H)| ≤
ckn2, where ck is a constant that depends only on k. �

3 Disjoint Edges in 3-Space

In this section, we will prove Theorem 5. Recall that two edges in a geometric graph
are parallel if they are the opposite edges of a convex quadrilateral. Katchalski and
Last [7] and Pinchasi [15] showed that all n-vertex geometric graphs with more than
2n− 2 edges contain two parallel edges. By following Pinchasi’s argument almost
verbatim, one can prove the following.

Lemma 3.1. Let G be a graph drawn on the unit sphere S with vertices represented
as points such that no three lie on a great circle, and edges uv ∈ E(G) are drawn
as arcs along the great circle containing points u and v of length less than π
(the shorter arc). We say that edges e1,e2 ∈ E(G) are avoiding if the great circle
supported by e1 is disjoint to e2, and the great circle supported by e2 is disjoint from
e1. If |E(G)|> 2n− 2, then G contains two avoiding edges. �
Proof of Theorem 1.5. Let H = (V,E) be an n-vertex geometric 3-hypergraph in
3-space with no two disjoint edges. Fix a pair of vertices u,v ∈ V (H), and just
consider the edges Euv = {t ∈ E(H) : u,v are vertices of t}. We color t ∈ Euv red
if all of the members of Euv lie in one of the closed half-spaces generated by the
plane supported by t. Notice that there are at most two red edges in Euv. Repeat this
procedure for each pair of vertices, which will leave us with at most n2 red edges
in the end. Color the remaining edges blue, and let db(v) denote the number of blue
edges incident to v. Then we have

∑
v∈V (H)

db(v)≥ 3E(H)− 3n2.

Therefore, there exists a vertex v incident to at least (3|E(H)|− 3n2)/n blue edges.
Now consider a small two-dimensional sphere S2 centered at v. Then the intersection
of S2 and the blue edges incident to v forms a graph G with at most n vertices and
at least (3E(H)− 3n2)/n edges.

If (3|E(H)|−3n2)/n > 2n−2, then by Lemma 3.1 we know that G contains two
avoiding edges xy and wz. Let h be the plane supported by the blue edge conv(w∪
z∪ v) ∈ E(H). Then the blue edge conv(x∪ y∪ v) must lie in one of the closed
half-spaces generated by the plane h. Since conv(w∪ z∪ v) is blue, there must be
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v

w

z

x

y

pFig. 8 Disjoint edges
conv(w∪ z∪ p) and
conv(x∪ y∪ v)

a red edge conv(w ∪ z∪ p) such that h separates it from conv(x∪ y∪ v). Hence,
conv(x∪ y∪ v) and conv(w∪ z∪ p) are disjoint, and we have a contradiction. See
Fig. 8. Therefore, (3|E(H)|− 3n2)/n≤ 2n− 2, which implies |E(H)| ≤ O(n2). ��

4 Remarks

By applying the abstract crossing lemma (see [18]) to Theorem 2, every n-vertex
geometric 3-hypergraph H in the plane has either O(n2) edges or Ω(|E(H)|7/n12)
triples that have a point in common. In the latter case, by the fractional Helly
theorem [8], this implies one can always find a point inside at least Ω(|E(H)|5/n12)
edges of H. However, this is not as strong as the

Ω
(
|E(H)|3

n6 log2 n

)
bound obtained by Nivasch and Sharir [13].

Acknowledgements The author gratefully acknowledges the support from the Swiss National
Science Foundation, Grant no. 200021-125287/1.

References

1. E. Ackerman, On the maximum number of edges in topological graphs with no four pairwise
crossing edges, in Proceedings of the Twenty-Second Annual Symposium on Computational
Geometry, Sedona, AZ, USA, 05–07 June 2006. SCG ’06 (ACM, New York, 2006),
pp. 259–263

2. J. Akiyama, N. Alon, Disjoint simplices and geometric hypergraphs, in Proceedings of
the Third international Conference on Combinatorial Mathematics, ed. by G.S. Bloom,
R.L. Graham, J. Malkevitch. New York City (New York Academy of Sciences, New York,
1989), pp. 1–3

3. N. Alon, I. Bárány, Z. Füredi, D.J. Kleitman, Point selections and weak ε-nets for convex hulls.
Combin. Probab. Comput. 1, 189–200 (1992)



498 A. Suk

4. K. Borsuk, Drei Sätze ber die n-dimensionale euklidische Sphäre. Fund. Math. 20, 177–190
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Favorite Distances in High Dimensions

Konrad J. Swanepoel

Abstract Let S be a set of n points in Rd . Assign to each xxx ∈ S an arbitrary distance
r(xxx)> 0. Let er(xxx,S) denote the number of points in S at distance r(xxx) from xxx. Avis,
Erdős, and Pach (1988) introduced the extremal quantity fd(n) = max∑xxx∈S er(xxx,S),
where the maximum is taken over all n-point subsets S of Rd and all assignments
r : S→ (0,∞) of distances.

We give a quick derivation of the asymptotics of the error term of fd(n) using
only the analogous asymptotics of the maximum number of unit distance pairs in a
set of n points:

fd(n) =

(
1− 1

�d/2�

)
n2 +

{
Θ(n) if d is even,

Θ((n/d))4/3) if d is odd.

The implied constants are absolute. This improves on previous results of Avis,
Erdős, and Pach (1988) and Erdős and Pach (1990).

Then we prove a stability result for d ≥ 4, asserting that if (S,r) with |S| = n
satisfies er(S) = fd(n)− o(n2), then, up to o(n) points, S is a Lenz construction
with r constant. Finally, we use stability to show that for n sufficiently large
(depending on d), the pairs (S,r) that attain fd(n) are up to scaling exactly the Lenz
constructions that maximize the number of unit distance pairs with r≡ 1, with some
exceptions in dimension 4.

Analogous results hold for the furthest-neighbor digraph, where r is fixed to be
r(xxx) = maxyyy∈S|xxxyyy| for xxx ∈ S.
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1 Introduction

Denote the d-dimensional Euclidean space by Rd , and the Euclidean distance
between points xxx and yyy by |xxxyyy|. Let S be a set of n points in Rd . Let r : S→ (0,∞)
be a choice of a positive number for each point in S. Define the favorite distance
digraph on S determined by r to be the directed graph �Gr(S) = (S,�Er(S)) on the
set S, where

�Er(S) := {(xxx,yyy) : xxx,yyy ∈ S and |xxxyyy|= r(xxx)} .

Write er(S) :=
∣∣∣�Er(S)

∣∣∣. Define

fd(n) := max
{

er(S) : S ⊂ Rd , |S|= n and r : S→ (0,∞)
}

.

Define D = DS : S→ (0,∞) by

D(xxx) := max{|xxxsss| : sss ∈ S} .

Then �GD(S) is called the furthest-neighbor digraph of S. Define

gd(n) := max
{

eD(S) : S ⊂ Rd , |S|= n
}

.

Clearly, gd(n) ≤ fd(n). In fact, gd(n) ∼ fd(n) ∼ (1− 1/�d/2�)n2 for any fixed
d ≥ 4 as n → ∞ [3, 11]. A set S of n points and a function r : S → (0,∞) define
an extremal favorite distance digraph if er(S) = fd(|S|). Likewise, S defines an
extremal furthest-neighbor digraph if eD(S) = gd(|S|).

1.1 Overview

In this chapter, we prove a structure theorem for extremal favorite distance digraphs
and furthest-neighbor digraphs (Theorem B) for dimension d ≥ 4. This structure
theorem follows from a stability result describing the pairs (S,r) for which er(S) is
close to fd(n) (Theorem C). In Sect. 2, we start off with an easy derivation of the
optimal asymptotics of the error term of fd(n) (Theorem A). This simple proof
introduces the basic approach used in this chapter. Section 3 gives a description of
the Lenz configurations and formally states Theorem B. Then we state Theorem C
in Sect. 4. Section 5 contains the proof of Theorem C and Sect. 6 the proof of
Theorem B.

Note that we only consider dimensions d ≥ 4 in this chapter. For lower
dimensions, we only make the following remarks. The current best estimates
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n2

4
+

5n
2
− 6≤ f3(n)≤

n2

4
+

5n
2

+ 6

for large n can be found in another paper [13]. Csizmadia [7] determined g3(n)
exactly for large n. In dimension 2, a construction gives f2(n) =Ω(n4/3) [5, p. 187],
while the best-known upper bound f2(n) = O(n15/11+ε) is due to Aronov and Sharir
[1]. Avis [2] and Edelsbrunner and Skiena [8] determined g2(n) exactly.

Throughout this chapter, [k] denotes the set {1,2, . . . ,k},
(S

2

)
the set of unordered

pairs of elements of S, Kp the complete graph on p vertices, and Kp(t) the complete
p-partite graph with t elements in each class.

2 Asymptotics

The problem of determining fd(n) and gd(n) was originally introduced by Avis,
Erdős, and Pach [3]. They determined fd(n) asymptotically for even d ≥ 4. Erdős
and Pach [11] finished off the case of odd d ≥ 5.

Theorem 1 (Avis–Erdős–Pach [3], Erdős–Pach [11]). For any d ≥ 4,

fd(n) =

(
1− 1

�d/2� + o(1)

)
n2.

We note that for even dimensions d ≥ 4, the error term in [3] is O(n2−ε) for some
ε > 0 independent of d. The lower bound is obtained from the corresponding lower
bound for the maximum number ud(n) of unit distance pairs in a set of n points in
Rd (the Lenz construction [9]; see Sect. 3). For any set S⊂ Rd of n points, let

u(S) := |{{xxx,yyy} : xxx,yyy ∈ S and |xxxyyy|= 1}|

and set

ud(n) := max
{

u(S) : S ⊂ Rd and |S|= n
}

.

Clearly, fd(n) ≥ 2ud(n). Similarly, gd(n)≥ 2Md(n), where Md(n) is the maximum
number of diameter pairs in a set of n points in Rd , defined by setting

M(S) := |{{xxx,yyy} : xxx,yyy ∈ S and |xxxyyy|= diam(S)}|

and

Md(n) := max
{

M(S) : S⊂ Rd , |S|= n
}

.

We show that the determination of fd(n) and gd(n) in effect reduces to the unit
distance problem when d ≥ 4. A first indication of this is a simple derivation of
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an asymptotic upper bound for fd(n) (Theorem A below) using only the analogous
upper bounds for ud(n) stated in the following theorem.

Theorem 2 (Erdős [10], Erdős–Pach [11]). There exist constants c1,c2 > 0 such
that for each d ≥ 4 and all n ∈ N,

ud(n)≤
1
2

(
1− 1

�d/2�

)
n2 +

⎧⎨⎩c1n if d is even,

c2

(n
d

)4/3
if d is odd.

The above bounds are tight up to the values of c1 and c2 [11]. In fact, Erdős proved
that for even d ≥ 4 and sufficiently large n,

1
2

(
1− 2

d

)
n2 + n− d

2
≤ ud(n)≤

1
2

(
1− 2

d

)
n2 + n.

However, in the proof of the next theorem, we need a bound that holds for all n∈N.
Since fd(n)≥ 2ud(n), the bounds in the next theorem are also tight up to the values
of the constants.

Theorem A. With the same constants c1,c2 > 0 as in Theorem 2, for each d ≥ 4
and all n ∈ N,

fd(n)≤
(

1− 1
�d/2�

)
n2 +

⎧⎨⎩2c1n if d is even,

2c2

(n
d

)4/3
if d is odd.

Proof. Let S ⊂ Rd be an arbitrary set of n points and r : S → (0,∞) any function
that assigns a positive real number to each point in S. We next introduce notation
and terminology that will also be used in later proofs. We first decompose �Gr(S)
into two ordinary graphs. Let G1

r (S) = (S,E1
r ) be the graph of single edges, where

E1
r :=

{
{xxx,yyy} : (xxx,yyy) ∈ �Er(S),(yyy,xxx) /∈ �Er(S)

}
.

Let G2
r (S) = (S,E2

r ) be the graph of double edges, where

E2
r :=

{
{xxx,yyy} : (xxx,yyy),(yyy,xxx) ∈ �Er(S)

}
.

Write the connected components of G2
r (S) as G2

r [Si] for i ∈ [k], where {S1, . . . ,Sk}
partitions S. For subsets A,B⊆ S, let

�Er(A,B) :=
{
(xxx,yyy) ∈ �Er(S) : xxx ∈ A,yyy ∈ B

}
and er(A,B) :=

∣∣∣�Er(A,B)
∣∣∣. Write ni := |Si| for each i ∈ [k].
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The proof is based on the following two simple facts.

1. Each G2
r [Si] is a scaling of a unit distance graph. Therefore, er(Si)≤ ud(ni).

2. There can only be single edges between different Si. Consequently,

er(Si,S j)+ er(S j,Si)≤ nin j for any distinct i, j.

The proof is finished by a calculation. Note that

er(S) =
k

∑
i=1

er(Si)+ ∑
{i, j}∈([k]2 )

(er(Si,S j)+ er(S j,Si))

≤
k

∑
i=1

2ud(ni)+ ∑
{i, j}∈([k]2 )

nin j.

Now fix S and r so that fd(n) = er(S), and apply Theorem 2 to obtain for odd
dimensions d ≥ 5 that

fd(n)≤
k

∑
i=1

(
2ud(ni)−

1
2

n2
i

)
+

k

∑
i=1

1
2

n2
i + ∑

{i, j}∈([k]2 )

nin j

=
k

∑
i=1

(
2ud(ni)−

1
2

n2
i

)
+

1
2

n2

≤
k

∑
i=1

((
1− 1

�d/2�

)
n2

i + 2c2

(ni

d

)4/3
− 1

2
n2

i

)
+

1
2

n2

=
k

∑
i=1

((
1
2
− 1
�d/2�

)
n2

i + 2c2

(ni

d

)4/3
)
+

1
2

n2

≤
(

1
2
− 1
�d/2�

)( k

∑
i=1

ni

)2

+ 2c2

(
∑k

i=1 ni

d

)4/3

+
1
2

n2

=

(
1− 1

�d/2�

)
n2 + 2c2

(n
d

)4/3
,

where the last inequality follows from the inequality

k

∑
i=1

nαi ≤
(

k

∑
i=1

ni

)α
for all ni ≥ 0 and α ≥ 1, (1)

which is easily seen to be true (for example, from Minkowski’s inequality). The
calculation for even values of d ≥ 4 is similar. ��
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3 Extremal Configurations

By a Lenz configuration for distance λ > 0, we mean a finite set of the following
type [4, 9].

If d ≥ 4 is even, let p = d/2 and consider any orthogonal decomposition
Rd = V1⊕·· ·⊕Vp with all Vi two-dimensional. In each Vi, let Ci be the circle with
center at the origin ooo and radius ri, such that r2

i + r2
j = λ 2 for all distinct i and j.

When d ≥ 6, this implies that each ri = λ/
√

2. We call the p circles (C1, . . . ,Cp) an
even-dimensional Lenz system. Define an even-dimensional Lenz configuration for
the distance λ to be any finite subset S of some translate vvv+

⋃p
i=1 Ci of the circles.

The partition associated with the Lenz configuration S is the partition induced by
the circles, i.e., the p subsets S1, . . . ,Sp, where Si = S∩ (vvv+Ci).

If d ≥ 5 is odd, let p = �d/2�, and consider any orthogonal decomposition
Rd = V1⊕ ·· · ⊕Vp with V1 three-dimensional and all other Vi (i = 2, . . . , p) two-
dimensional. Let Σ1 be the 2-sphere in V1 with center ooo and radius r1, and for each
i = 2, . . . , p, let Ci be the circle with center ooo and radius ri, such that r2

i + r2
j = λ 2 for

all distinct i, j. When d ≥ 7, necessarily each ri = λ/
√

2. We call the 2-sphere and
p− 1 circles (Σ1,C2, . . . ,Cp) an odd-dimensional Lenz system. We define an odd-
dimensional Lenz configuration for the distance λ to be any finite subset of some
translate vvv+

(
Σ1∪

⋃p
i=2 Ci

)
of the 2-sphere and circles. The partition associated

with the Lenz configuration S is the partition induced by the 2-sphere and circles,
i.e., the p subsets S1, . . . ,Sp, where S1 = S∩Σ1 and for i≥ 2, Si = S∩ (vvv+Ci). The
following theorem states that the extremal sets for unit distances and for diameters
are Lenz configurations, at least for a sufficiently large number of points.

Theorem 3 ([4,12]). For any d≥ 4, there exists n0 ∈N such that any set S for which
|S|= n≥ n0 and such that u(S) = ud(n) is a Lenz configuration for the distance 1.

For any d ≥ 4, there exists n0 ∈N such that any set S for which |S|= n≥ n0 and
such that M(S) = Md(n) is a Lenz configuration for the distance diam(S).

As a corollary of the main result of this chapter (Theorem C, in Sect. 4) we show that
when d ≥ 4, the extremal favorite distance digraphs (furthest-neighbor digraphs)
are exactly the same as the sets for which ud(n) [Md(n) respectively] is maximized,
for all sufficiently large n, depending on d, except when d = 4, where there is an
exceptional construction for all sufficiently large n≡ 1 (mod 8).

Theorem B. For any d ≥ 4, there exists n0 ∈ N such that the following holds.

1. Let S ⊂ Rd and a function r : S → (0,∞) be given for which |S| = n ≥ n0

and er(S) = fd(n). Then r ≡ c for some c > 0 and S is a Lenz configuration
for the distance c, except when d = 4 and n− 1 is divisible by 8, where the
following situation is also possible: For some a ∈ S and c > 0, S \ {a} is a Lenz
configuration for the distance c on two circles C1 and C2 of equal radius c/

√
2, a

is the common center of the two circles, Ci∩S consists of the vertices of (n−1)/8
squares inscribed in Ci (i = 1,2), and r|S\{a} ≡ c, r(a) = c/

√
2.
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2. Let S⊂Rd be given for which |S|= n≥ n0 and eD(S) = gd(n). Then r≡ diam(S)
and S is a Lenz configuration for the distance diam(S).

In particular, fd(n) = 2ud(n) and gd(n) = 2Md(n) for all d ≥ 4 and n≥ n0(d).

Note that the exact values of ud(n) for even d ≥ 4 and of Md(n) for all d ≥ 4 are
known, at least for sufficiently large n [4, 12]; see Lemmas 6.5 and 6.6 for some of
these values.

4 Stability

The following theorem states that if the number of unit distance pairs of points
from S⊂Rd , where n := |S| is sufficiently large, is within o(n2) within o(n2) of the
maximum ud(n), then S is a Lenz configuration up to o(n) points.

Theorem 4 ([12]). For any d ≥ 4 and ε > 0, there exist δ > 0 and n0 ∈N such that
for any set S with |S|= n≥ n0 that satisfies

u(S)>
1
2

(
1− 1

p
− δ
)

n2 (where p = �d/2�),

there exists a subset T ⊆ S such that |T | < εn and S \ T is a Lenz configuration.
Furthermore, the partition S1, . . . ,Sp of S\T associated with the Lenz configuration
satisfies

n
p
− εn < |Si|<

n
p
+ εn for all i ∈ [p].

The next theorem is an analogue of the above theorem for favorite distance digraphs.

Theorem C. For any d ≥ 4 and any ε > 0, there exist δ > 0 and n0 ∈ N such that
for any S ⊂ Rd with |S|= n≥ n0 and any r : S→ (0,∞) that satisfy

er(S)>

(
1− 1

p
− δ
)

n2 (where p = �d/2�),

there exist T ⊆ S and c > 0 such that |T | < εn, S \T is a Lenz configuration with
distance c, and r|S\T ≡ c. Furthermore, the partition S1, . . . ,Sp of S \T associated
with the Lenz configuration satisfies

n
p
− εn < |Si|<

n
p
+ εn for all i ∈ [p].

By applying Theorem 4, the above theorem is relatively easy to prove for d ≥ 6 but,
surprisingly, takes some work in the cases d ∈ {4,5}. This is not so much because
the Lenz construction is slightly more complicated in dimensions 4 and 5, but rather
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due to certain complications in the extremal theory of digraphs not shared by the
extremal theory of ordinary graphs [6].

5 Proof of Theorem C

Let d ≥ 4 and ε > 0 be given. Without loss of generality, ε < 1
20 . Let p = �d/2�.

We take δ > 0 to be sufficiently small depending only on ε and d. In particular,
we need

• δ < ε2/144 and,
• after an application of stability for unit distances (Theorem 4), we may also

assume that δ has been chosen so that for some N ∈ N (which we now fix),

for any S ⊂ Rd with |S| = n ≥ N, if u(S) > 1
2

(
1− 1

p − 32δ
)

n2, then for

some T ⊆ S of size |T | < εn/3, S \ T is a Lenz configuration such that the
number of elements in each part of the associated partition is in the interval
((1/p− ε/3)n,(1/p+ ε/3)n).

We also take n0 ∈ N sufficiently large depending only on ε , d, and δ , as follows.
We need

• n0 > 9/δ and n0 ≥ 4N,
• n0 to be sufficiently large such that for all n ≥ n0, f3(n− 2)+ 4n <

(
1
2 − δ

)
n2

(by Avis–Erdős–Pach [3] f3(n) = n2

4 +O(n2−c); in [13], we show f3(n)≤ n2

4 +
5n
2 + 6 for sufficiently large n),

• n0 > (2c2/δ )3/2d−2, where c2 is the constant from Theorems 2 and A,
• n0 to be sufficiently large such that for all n ≥ εn0/4, f5(n) <

(
1
2 + δ

)
n2

(Theorem 1), and
• n0 to be sufficiently large such that the Erdős–Stone theorem guarantees that any

graph on n ≥ n0 vertices and at least
(

1
3 + δ

)
n2 edges contains a K4(p0), where

p0 is a constant such that no orientation of K4(p0) can be a subgraph of a favorite
distance digraph in R5 (Lemmas 4 and 5 in [3]).

Choose S ⊂ Rd with |S| = n ≥ n0 and r : S → (0,∞) such that er(S) >(
1− 1

p − δ
)

n2. We continue with the notation established in the proof of

Theorem A. Thus, let G1
r (S) be the graph of single edges and G2

r (S) the graph
of double edges of �Gr(S) with connected components G2

r [Si] (i ∈ [k]). As before,
ni = |Si|. Also, write

di, j :=
er(Si,S j)

nin j

for distinct i, j ∈ [k] and αi := ni/n. Similar to the calculation in the proof of
Theorem A,
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er(S) =
k

∑
i=1

er(Si)+ ∑
{i, j}∈([k]2 )

(er(Si,S j)+ er(S j,Si))

≤
k

∑
i=1

2ud(ni)+ ∑
{i, j}∈([k]2 )

(di, j + d j,i)αiα jn
2

≤
k

∑
i=1

((
1− 1

p

)
(αin)

2 + 2c2

(αin
d

)4/3
)
+ ∑
{i, j}∈([k]2 )

(di, j + d j,i)αiα jn
2.

It is given that er(S)>
(

1− 1
p − δ

)
n2. Therefore,

1− 1
p
− δ <

k

∑
i=1

(
1− 1

p

)
α2

i + 2c2d−4/3n−2/3
k

∑
i=1

α4/3
i + ∑

{i, j}∈([k]2 )

(di, j + d j,i)αiα j

≤
(

1− 1
p

) k

∑
i=1

α2
i + δ

(
k

∑
i=1
αi

)4/3

+ ∑
{i, j}∈([k]2 )

(di, j + d j,i)αiα j

(since n is sufficiently large and using (1))

= 1− 1
p
+ δ − ∑

{i, j}∈([k]2 )

(
2

(
1− 1

p

)
− di, j− d j,i

)
αiα j . (2)

Therefore,

∑
{i, j}∈([k]2 )

(
2

(
1− 1

p

)
− di, j− d j,i

)
αiα j < 2δ . (3)

As noted in the proof of Theorem A, there are no double edges between Si and S j

when i �= j. Consequently, di, j + d j,i ≤ 1, and therefore,

∑
{i, j}∈([k]2 )

(
1− 2

p

)
αiα j < 2δ .

Assume for the moment that d ≥ 6. Then p ≥ 3, and hence ∑{i, j}αiα j < 6δ .
Substituting back into (2), we obtain

1− 1
p
− δ <

(
1− 1

p

) k

∑
i=1

α2
i + δ + 6δ ,

which gives

k

∑
i=1

α2
i >

1− 1
p − 8δ

1− 1
p

≥ 1− 12δ .
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Since ∑k
i=1αi = 1, it follows that αi > 1− 12δ for some i ∈ [k]. Without loss of

generality, α1 > 1− 12δ . Calculating again,(
1− 1

p
− δ
)

n2 < er(S) = er(S1)+
k

∑
i=2

er(Si)+ ∑
{i, j}∈([k]2 )

αiα jn
2

< er(S1)+
n

∑
i=2

(αin)
2 + 6δn2

≤ er(S1)+

(
n

∑
i=2

αi

)2

n2 + 6δn2 (by (1))

< er(S1)+ (12δ )2n2 + 6δn2, (4)

and assuming after scaling that r|S1
≡ 1, we obtain

2u(S)≥ er(S1)>

(
1− 1

p
− 7δ − (12δ )2

)
n2 >

(
1− 1

p
− 32δ

)
n2.

By the choice of δ and n0, the proof is concluded by an application of Theorem 4.
This establishes the theorem for all dimensions d ≥ 6.

The remaining cases are d = 4 and d = 5. The four-dimensional case of the
theorem is implied by the five-dimensional case. In fact, the theorem for d = 5
implies that when S⊂R5 is contained in an affine hyperplane H, then for some T ⊆
S with |T |< ε |S|, S \T is the intersection of a five-dimensional Lenz configuration
with H. Such an intersection is clearly either a four-dimensional Lenz configuration
or becomes three-dimensional after removing at most two points. In the latter case,

er(S)≤ f3(n− 2)+ 2(n− 2)+2(n−1)<

(
1
2
− δ
)

n2

by the choice of n0. Thus, the former case necessarily occurs.
For the remainder of the proof, assume that d = 5. Then p = 2 and (3) can now

be written as

∑
{i, j}∈([k]2 )

αiα j < ∑
{i, j}∈([k]2 )

(di, j + d j,i)αiα j + 2δ .

Thus, the graph of single edges G1
r (S) is almost the complete k-partite graph with

classes S1, . . . ,Sk. We next apply the Erdős–Stone theorem to show that one of the
Si is large in the sense that |Si| = Ω(n). [We have no control over k yet, and have
to eliminate the possibility that k is large with each Si small, which would imply
that �Gr(S) is close to a tournament—a case which would be difficult to handle
geometrically.] Since n0 and p0 were chosen so that G1

r (S) does not contain a copy
of K4(p0), the Erdős–Stone theorem gives for sufficiently large n that
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(
1
3
+ δ
)

n2 >
∣∣E(G1

r )
∣∣= ∑

{i, j}∈([k]2 )

(di, j + d j,i)αiα jn
2.

Therefore, ∑{i, j}αiα j <
1
3 + 3δ , and

k

∑
i=1

α2
i =

(
k

∑
i=1

αi

)2

− 2 ∑
{i, j}∈([k]2 )

αiα j > 1− 2

(
1
3
+ 3δ

)
=

1
3
− 6δ .

It follows that for some i ∈ [k], αi >
1
3 − 6δ . Without loss of generality, α1 > 1

3 −
6δ > 1

4 . Thus, |S1| > n/4. This enables us to show next that S1 is almost a Lenz
configuration. Suppose to the contrary that er(S1)≤

(
1
2 − 32δ

)
(α1n)2. Starting off

as in (4), an application of Theorem 2 now gives the following:(
1
2
− δ
)

n2 < er(S) = er(S1)+
k

∑
i=2

er(Si)+ ∑
{i, j}∈([k]2 )

αiα jn
2

<

(
1
2
− 32δ

)
(α1n)2 +

k

∑
i=2

(
1
2
(αin)

2 + 2c2

(αin
5

)4/3
)

+ ∑
{i, j}∈([k]2 )

αiα jn
2.

It follows that

1
2
− δ <

1
2

k

∑
i=1

α2
i − 32δα2

1 +
k

∑
i=2

2c2

54/3n2/3
α4/3

i + ∑
{i, j}∈([k]2 )

αiα j

<
1
2

k

∑
i=1

α2
i − 32δα2

1 + δ
k

∑
i=2

α4/3
i + ∑

{i, j}∈([k]2 )

αiα j for n sufficiently large

=
1
2
− 32δα2

1 + δ
k

∑
i=2

α4/3
i <

1
2
− 32δα2

1 + δ

(
k

∑
i=2

αi

)4/3

by (1)

<
1
2
− 32δα2

1 + δ <
1
2
− δ

since α1 > 1/4. This contradiction gives (after scaling so that r|S1
≡ 1) that

2u(S1) = er(S1)>

(
1
2
− 32δ

)
(α1n)2.
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Since |S1| = α1n > n0/4 ≥ N and by the choice of δ and n0, Theorem 4 gives a
T ⊂ S1 with |T | < ε |S1|/3 ≤ εn/3 such that S1 \ T is a Lenz configuration for
the distance 1. Thus, we may write R5 = V1⊕V2 with dimV1 = 3 and dimV2 = 2
such that S1 \ T ⊂ Σ1 ∪C2, where Σ1 is a 2-sphere in V1 with center ooo and radius
r1, and C2 is a circle in V2 with center ooo and radius r2, where r2

1 + r2
2 = 1. After

possibly replacing T by a subset, we may assume without loss of generality that
T ∩ (Σ1 ∪C2) = ∅. Also, then |S1∩Σ1| , |S1∩C2| < ( 1

2 +
2ε
3 ) |S1|. Since S1 \T is a

Lenz configuration and |T |< εn/3, the proof would be finished if we can show that
|S \ S1|< 2εn/3.

To this end, we will partition S\S1 into two parts X ∪Y , and estimate er(S) from
above by breaking it up as follows:

er(S) = er(S1)+ er(X)+ er(S1,X)+ er(X ,S1)

+ er(Y )+ er(S1∪X ,Y )+ er(Y,S1∪X). (5)

Write n1 := |S1|. To define Y , we introduce the following notion. A circle C on Σ1 is
said to be rich if |S1∩C| ≥ n1/8. If there are at least 5 rich circles on Σ1, inclusion–
exclusion gives (since two circles intersect in at most two points) that(

1
2
+

2ε
3

)
n1 > |S1∩Σ1| ≥ 5

n1

8
− 2

(
5
2

)
,

which leads to a contradiction for sufficiently large n1 > n/4.
Therefore, there are at most 4 rich circles on Σ1. Let Y be the set of all points

in (S \ S1)∩V1 that are equidistant to some rich circle. Let X := S \ (S1∪Y ). Write
x := |X | and y := |Y |. Note that Y can be covered by 4 lines, since the points in the
three-dimensional V1 that are equidistant to some circle all lie on a line. Since any
point is equidistant to at most 2 points on a line, we have er(xxx,Y )≤ 8 for all xxx ∈ S;
hence,

er(Y )+ er(S1∪X ,Y )+ er(Y,S1∪X)≤ 8y+ 8(n1+ x)+ y(n1+ x)

= 8n+ yn1+ yx. (6)

To bound er(S1,X)+ er(X ,S1) from above, we estimate er(S1,xxx)+ er(xxx,S1) for xxx ∈
X . If r(xxx) = 1, then er(S1,xxx)+er(xxx,S1) = 0 since S1 is the vertex set of a connected
component of the graph G2

r (S) of double edges and xxx /∈ S1. Thus, we may assume
without loss of generality that r(xxx) �= 1.

If er(S1∩C2,xxx)+ er(xxx,S1∩C2)≤ 4, then

er(S1,xxx)+ er(xxx,S1)

= er(S1∩C2,xxx)+ er(S1 \C2,xxx)+ er(xxx,S1∩C2)+ er(xxx,S1 \C2)

≤ 4+ er(S1 \C2,xxx)+ er(xxx,S1 \C2)
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≤ 4+ |S1 \C2|= 4+ |S1∩Σ2|+ |T |

< 4+

(
1
2
+

2ε
3

)
n1 +

ε
3

n1 = 4+

(
1
2
+ ε
)

n1

<

(
3
4
+ ε
)

n1 for n1 > n/4 sufficiently large.

Otherwise, er(S1∩C2,xxx)+ er(xxx,S1∩C2) ≥ 5, and then either er(S1∩C2,xxx) ≥ 3 or
er(xxx,S1 ∩C2) ≥ 3. In both cases, xxx is equidistant to C2, which implies that xxx ∈ V1.
Also,

er(S1∩C2,xxx)+ er(xxx,S1∩C2) = |S1∩C2|<
(

1
2
+

2ε
3

)
n1.

If xxx �= ooo, then the points on Σ1 at distance 1 to xxx lie on a circle. Since xxx /∈Y , this circle
is not rich, giving er(S1 ∩Σ1,xxx) < n1/8. Similarly, er(xxx,S1 ∩Σ1) < n1/8. Putting
everything together, we obtain

er(S1,xxx)+ er(xxx,S1)

= er(S1∩C2,xxx)+ er(xxx,S1∩C2)+ er(S1∩Σ1,xxx)+ er(xxx,S1∩Σ1)

+ er(T,xxx)+ er(xxx,T )

<

(
1
2
+

2ε
3

)
n1 +

n1

8
+

n1

8
+
ε
3

n1

=

(
3
4
+ ε
)

n1.

We have shown that for all xxx ∈ X \ {ooo},

er(S1,xxx)+ er(xxx,S1)<

(
3
4
+ ε
)

n1.

Also, if ooo ∈ X , then er(S1,ooo)+ er(ooo,S1)≤ |S1|= n1. Sum over all xxx ∈ X to obtain

er(S1,X)+ er(X ,S1)<

(
3
4
+ ε
)

n1x+
1
4

n1. (7)

Since n1 > n/4 is sufficiently large,

er(S1)<

(
1
2
+ δ
)

n2
1. (8)

Recall that we want to show that |S \ S1|= |X ∪Y |< 2εn/3. Suppose that x≥ εn/4.
Since n is sufficiently large,

er(X)<

(
1
2
+ δ
)

x2. (9)
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Substitute (6)–(9) into (5) to obtain(
1
2
− δ
)

n2 < er(S)<

(
1
2
+ δ
)

n2
1 +

(
1
2
+ δ
)

x2 +

(
3
4
+ ε
)

n1x+
1
4

n1

+ 8n+ yn1+ yx

=

(
1
2
+ δ
)
(n1 + x+ y)2−

(
1
2
+ δ
)

y2− 2δyn1− 2δyx

−
(

1
4
+ 2δ − ε

)
n1x+ 8n+

1
4

n1

<

(
1
2
+ δ
)

n2−
(

1
2
+ δ
)

y2−
(

1
4
− 1

20

)
n
4
· εn

4
+ 9n,

It follows that

ε
80

n2 < 2δn2 + 9n < 3δn2

for n sufficiently large; hence, δ > ε/240, a contradiction. Therefore, x < εn/4.
Now substitute (6)–(8) and the trivial er(X)< x2 into (5) to obtain(

1
2
− δ
)

n2 < er(S)<

(
1
2
+ δ
)

n2
1 + x2 +

(
3
4
+ ε
)

n1x+
1
4

n1

+ 8n+ yn1+ yx

=

(
1
2
+ δ
)
(n1 + x+ y)2+

(
1
2
− δ
)

x2−
(

1
2
+ δ
)

y2

− 2δyn1− 2δyx−
(

1
4
+ 2δ − ε

)
n1x+ 8n+

1
4

n1

<

(
1
2
+ δ
)

n2 +

(
1
2
− δ
)

x2−
(

1
2
+ δ
)

y2 + 9n,

from which it follows that

(
1
2
+ δ
)

y2 < 2δn2 +

(
1
2
− δ
)

x2 + δn2 < 3δn2 +
1
2

(εn
4

)2

for n sufficiently large, and

y2 <

((ε
4

)2
+ 6δ

)
n2 <

(ε
3

)2
n2.
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Thus, y < εn/3, and it follows that |X ∪Y | = x+ y < εn/4+ εn/3, which finishes
the proof of Theorem C. ��

6 Proof of Theorem B

By Theorem C, extremal favorite distance digraphs are unit distance graphs after
scaling and up to an exceptional set S0 of o(n) points. Similarly, by removing a set
S0 of o(n) points from an extremal furthest-neighbor digraph, we obtain a maximum
distance graph. (Note that none of the furthest distances changes when restricted to
the Lenz configuration S \ S0.)

Our goal is to show that there are, in fact, no exceptional points in an extremal
configuration, that is, that r|S0

≡ 1. We do this by some careful counting. In
particular, we need to understand how quickly the functions ud(n) and Md(n) grow;
that is, we need lower bounds for ud(n)− ud(n− k) and Md(n)−Md(n− k), where
k is small. The exact values of ud(n) and Md(n) are known for all sufficiently
large n depending on d, except in the case of ud(n) for odd d ≥ 5. Thus, in these
cases we may simply calculate. Where we don’t know the exact values, we have to
use our knowledge of the structure of extremal unit distance and diameter graphs
(Theorem 3).

In the next two lemmas, we state the values for Md(n) as well as u4(n). [The exact
values of ud(n) for even d ≥ 6 can be found in [12].] Here tp(n) denotes the number
of edges of a Turán p-partite graph on n vertices, that is, of a complete p-partite
graph with the n vertices divided into p parts as equally as possible.

Lemma 6.5 (Brass [4], Van Wamelen [14]). For all n≥ 5,

u4(n) =

{
t2(n)+ n if n is divisible by 8 or 10,

t2(n)+ n− 1 otherwise.

Lemma 6.6 ([12]). For all sufficiently large n (depending on d),

M4(n) =

{
t2(n)+ 
n/2�+ 1 if n �≡ 3 (mod 4),

t2(n)+ 
n/2� if n≡ 3 (mod 4);

M5(n) = t2(n)+ n;

Md(n) = tp(n)+ p for even d ≥ 6, where p = d/2;

Md(n) = tp(n)+ 
n/p�+ p− 1 for odd d ≥ 7, where p = �d/2�.
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Lemma 6.7. For any d ≥ 4, there exists N = Nd ≥ 1 such that for any n and k such
that n > k≥ 1 and n− k≥ N,

ud(n)− ud(n− k)≥
(

1− 1
p

)
k(n− k), (10)

Md(n)−Md(n− k)≥
(

1− 1
p

)
k(n− k), (11)

u5(n)− u5(n− k)≥ 1
2

k(n− k)+
k2 + 2k− 1

4
, (12)

and for n− k≥ N5,

M5(n)−M5(n− k)≥ 1
2

k(n− k)+
k2 + 4k− 1

4
. (13)

Also, for n sufficiently large,

u4(n)− u4(n− 1) =
n− 1

2
only if 8 | n− 1 or 10 | n− 1. (14)

Proof. Since Lemmas 6.5 and 6.6 provide the exact values of u4(n) and Md(n),
d ≥ 4, the inequalities (11), (13) and (14) can be obtained by simple calculations.
We omit the details, except to note that tp(n)− tp(n− k) ≥ (1− 1/p)k(n− k), as
can be seen by taking a Turán p-partite graph on n− k vertices and adding k new
vertices to the smallest class.

We next prove the remaining inequalities (10) and (12). Since these all involve
ud(n), for which we do not have exact values when d ≥ 5 is odd, we give a structural
argument. Consider a set S of n−k points in Rd that is extremal with respect to unit
distances; that is, u(S) = ud(n−k). By Theorem 3, S is a Lenz configuration if n−k
is sufficiently large. In particular, S can be partitioned into p= �d/2� parts S1, . . . ,Sp

with each part lying on a circle (except if d is odd when S1 lies on a sphere) such that
the distance between any two points on different circles (on a circle and the sphere,
respectively) equals 1. Let i ∈ [p] be such that |Si| = min

{
|S1| , . . . ,

∣∣Sp
∣∣}. Thus,

|Si| ≤ (n− k)/p. Choose a set T of any k points on the circle (or sphere) containing
Si disjoint from Si. Then S∪T contains n points and has at least k |S \ Si| ≥ k(1−
1/p)(n− k) additional unit distance pairs. This establishes (10).

Next consider (12). Here S ⊂ Σ1 ∪C2, where Σ1 is a 2-sphere and C2 a circle,
with any point on Σ1 and any point on C2 at unit distance. Now add k new points to
S in the following more careful way. If k is even, add k/2 points to each of Σ1 and
C2. This creates

k
2
|S∩Σ1|+

k
2
|S∩C2|= k(n− k)/2

unit distance pairs from the new points to S and k2/4 unit distance pairs between
the new points. Since r1 > 1/2 [otherwise, ud(n− k) = u(S) ≤ t2(n− k)+O(n), a
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contradiction], it is possible to choose each new point on Σ1 at unit distance to some
point of S∩Σ1. We obtain a set S′ of n points with at least

u5(n− k)+
1
2

k(n− k)+
k2

4
+

k
2

unit distance pairs. Therefore,

u5(n)≥ u(S′)≥ u5(n− k)+
1
2

k(n− k)+
k2

4
+

k
2

,

which proves (12) when k is even. Now let k be odd. If we place (k−1)/2 points on
Σ1 and (k+ 1)/2 points on C2, this creates as before

k− 1
2
|S∩C2|+

k+ 1
2
|S∩Σ1|+

k2− 1
4

+
k− 1

2

=
1
2

k(n− k)+
1
2
(|S∩Σ1|− |S∩C2|)+

k2− 1
4

+
k− 1

2
(15)

additional unit distance pairs. If instead we place (k + 1)/2 points on Σ1 and
(k− 1)/2 points on C2, the number of additional unit distance pairs created is

k+ 1
2
|S∩C2|+

k− 1
2
|S∩Σ1|+

k2− 1
4

+
k+ 1

2

=
1
2

k(n− k)+
1
2
(|S∩C2|− |S∩Σ1|)+

k2− 1
4

+
k+ 1

2
. (16)

It is always possible to attain at least the average of (15) and (16), which equals
the right-hand side of (12). ��

In the above lemma it is tempting to try to prove the inequalities (11) and (13)
also with the use of Theorem 3. However, we should then be careful in how we
choose the k points to be added to the extremal Lenz configuration on n− k points,
so as not to change the furthest distances among the original n− k points. Although
this is possible, the case d = 5 requires a very detailed consideration of the extremal
five-dimensional diameter graphs as determined in [12]. It is much simpler to instead
use the estimates from Lemma 6.6 and calculate.

We can now start with the proof of Theorem B. Let d ≥ 4, p = �d/2�, and let
S ⊂ Rd with |S| = n and r : S → (0,∞) determine an extremal favorite distance
digraph [or let S determine an extremal furthest neighbor digraph respectively, and
then continue to write r(xxx) = DS(xxx) for xxx ∈ S].

Apply Theorem C. Thus, if n is sufficiently large depending on d, Rd has
an orthogonal decomposition V1⊕ . . .Vp with dimVi = 2 (except when d is odd,
dimV1 = 3) such that after scaling and translation of S, there is a Lenz system
(C1, . . . ,Cp) for d even, (Σ1,C2, . . . ,Cp) for d odd, and a partition S0,S1, . . . ,Sp of S
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with |S0|= o(n), |Si|= n
p +o(n), and Si ⊂Ci, where Ci is a circle with center o and

radius ri in Vi for i ∈ [p] (except if d is odd and i = 1, where S1 ⊂ Σ1 ⊂V1) such that
r2

i + r2
j = 1 for all distinct i, j. Also, r|S\S0

≡ 1.
Let T := {xxx ∈ S0 : r(xxx) �= 1}. If we can show that T = ∅, then r ≡ 1 and S

would consequently determine an extremal unit distance graph (extremal diameter
graph, respectively), since 2u(S) = er(S) ≥ 2ud(n) [respectively, 2M(S) = er(S)≥
2Md(n)]. It would then follow from Theorem 3 that S is a Lenz configuration for
sufficiently large n. In the exceptional case of favorite distances in dimension 4,
we show instead that if T �= ∅, then T = {ooo}. As in the proof of Theorem C, the
dimensions d ≥ 6 are disposed of very quickly, and the case d = 5 takes the most
work.

Write k := |T |. Suppose that k �= 0. We aim to find a contradiction except in the
four-dimensional case, where we’ll prove that k = 1 and T = {ooo}, r(ooo) = r1 = r2 =
1/
√

2.
We estimate as follows:

2ud(n)≤ er(S) = er(S \T)+ er(S \T,T )+ er(T,S \T)+ er(T )

≤ 2ud(n− k)+ er(S \T,T)+ er(T,S \T)+ er(T ). (17)

This, together with (10) of Lemma 6.7, gives

2

(
1− 1

p

)
k(n− k)≤ 2ud(n)− 2ud(n− k)

≤ er(S \T,T)+ er(T,S \T )+ er(T ).

Using instead (11) (for the case of furthest neighbors) gives the same bounds, so in
all cases we have

2

(
1− 1

p

)
k(n− k)≤ er(S \T,T)+ er(T,S \T )+ er(T ). (18)

Since r(xxx) �= 1 for all xxx ∈ T , xxx is not adjacent to any point from S \T in the graph
G2

r (S) of double edges, so

er(S \T,T )+ er(T,S \T)≤ k(n− k). (19)

Substituting this and the trivial bound er(T )≤ k(k− 1) into (18), we obtain

2

(
1− 1

p

)
k(n− k)≤ k(n− 1).

Since k = o(n), we obtain a contradiction for sufficiently large n if p ≥ 3. This
finishes the proof for the cases d ≥ 6.
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Now assume that d ∈ {4,5}. Suppose that for some x ∈ T , er(S2,xxx)+
er(xxx,S2)≤ 4. Then we may improve (19) to

er(S \T,T)+ er(T,S \T )≤ k(n− k)−|S2|+ 4.

Substituting this and er(T ) ≤ k(k − 1) into (18), we obtain k(n − k) ≤
k(n− 1)−|S2|+ 4; hence, |S2| ≤ 4+ k(k− 1). This contradicts |S2| = n/2+ o(n)
for n sufficiently large.

Therefore, for all xxx ∈ T , we have er(S2,xxx)+ er(xxx,S2) ≥ 5, which implies either
er(S2,xxx)≥ 3 or er(xxx,S2)≥ 3. Either case gives that xxx is equidistant to the circle C2.
Therefore, x ∈V1.

We have shown that T ⊂V1.
We can now finish the case d = 4. Symmetry gives that T ⊂ V2 as well; hence,

T = {ooo}. Therefore, ooo must have the same distance r(ooo) to C1 and C2, and it follows
that r(ooo) = r1 = r2 = 1/

√
2 and er(S\{ooo} ,ooo)+er(ooo,S\{ooo}) = n−1. In the favorite

distance case, we obtain from (17) that u4(n)− u4(n− 1) ≤ (n− 1)/2. Combined
with (10) of Lemma 6.7, we obtain that equality holds; hence, 8 | n−1 or 10 | n−1
by (14), and S \ {ooo} is an extremal unit distance configuration. Inspection of the
extremal configurations [4, 14] shows that when 8 � n− 1 and 10 | n− 1, the two
circles are necessarily of different radii. In our case, we must therefore have 8 | n−1.
Then the extremal unit distance configurations on n− 1 points are formed by the
vertices of (n− 1)/8 unit squares inscribed in each Ci [4].

In the furthest-neighbor case, we obtain similarly as above that M4(n)−
M4(n− 1)≤ (n− 1)/2. Again, by (11), equality holds and S \ {ooo} is an extremal
diameter configuration. However, it is easily seen that when r1 = r2 = 1/

√
2, the

maximum number of diameter pairs in a set of n points in C1∪C2 is t2(n)+2, which
contradicts Lemma 6.6 for sufficiently large n. This finishes the proof for the case
d = 4.

Now consider the case d = 5. Suppose that er(S1,xxx)+ er(xxx,S1) < n/3 for some
xxx ∈ T . Then we may improve (19) to

er(S \T,T)+ er(T,S \T )< k(n− k)−|S1|+
n
3

,

which, when substituted together with er(T )≤ k(k− 1) into (18), gives k(n− k) <
k(n− 1)− |S1|+ n/3 and subsequently, |S1| < n/3+ k(k− 1), which contradicts
|S1|= n/2+ o(n) for n sufficiently large.

Therefore, for all xxx ∈ T , we have er(S1,xxx)+ er(xxx,S1)≥ n/3. This will enable us
to show that T lies on a straight line through the origin. Suppose then that for some
two xxx,xxx′ ∈ T \ {ooo}, the lines oooxxx and oooxxx′ are not parallel. Then at least n/3 points of
S1 lie on two circles that are both normal to oooxxx, and similarly, at least n/3 points
of S1 lie on two circles normal to oooxxx′. Since the intersection of these two unions of
circles contains at most 8 points, we obtain

n/2+ o(n) = |S1| ≥ 2 · n
3
− 8,

a contradiction for sufficiently large n.
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It follows that T lies on a line �, say, through the origin. Since there are at most
2 points on � at distance r(xxx) to xxx, it follows that er(xxx,T ) ≤ 2 for all xxx ∈ T , and
when xxx is the first or last point of T on �, er(xxx,T )≤ 1. It follows that er(T )≤ 2k−2
(keeping in mind that T �=∅ by assumption).

In the case of extremal favorite distance digraphs, bounds (17), (19) and er(T )≤
2k− 2, together with (12) of Lemma 6.7, give

k(n− k)+
k2 + 2k− 1

2
≤ 2u5(n)− 2u5(n− k)≤ k(n− k)+ 2k− 2,

which simplifies to (k− 1)2 + 2≤ 0, a contradiction.
For extremal furthest-neighbor digraphs, a similar calculation (now using (13)

instead of (12)) gives that

k(n− k)+
k2 + 4k− 1

2
≤ 2M5(n)− 2M5(n− k)≤ k(n− k)+ 2k− 2,

which simplifies to k2 + 3≤ 0, another contradiction.
We have shown that k = 0 in all cases when d = 5, and it follows that S is a Lenz

construction. ��
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Intersection Patterns of Convex Sets via
Simplicial Complexes: A Survey

Martin Tancer

Abstract The task of this survey is to present various results on intersection
patterns of convex sets. One of the main tools for studying intersection patterns
is a point of view via simplicial complexes. We recall the definitions of so-called
d-representable, d-collapsible, and d-Leray simplicial complexes, which are very
useful for this study. We study the differences among these notions and also focus
on computational complexity for recognizing them. A list of Helly-type theorems
is presented in the survey. We also discuss the important role played by the above-
mentioned notions for the theorems. We also consider intersection patterns of good
covers, which generalize collections of convex sets (the sets may be “curvy”;
however, their intersections cannot be too complicated). We mainly focus on new
results.

Mathematics Subject Classification (2010): primary 52A35, secondary 05E45,
52A20

1 Introduction

An important branch of combinatorial geometry regards studying intersection
patterns of convex sets. Research in this area was initiated by a theorem of
Helly [15], which can be formulated as follows: If C1, . . . ,Cn are convex sets in
Rd , n ≥ d + 1, and any collection of d + 1 sets among C1, . . . ,Cn has a nonempty
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intersection, then all the sets have a common point. We will focus on results of a
similar spirit; however, we have to set up some notations first.

1.1 Simplicial Complexes

First, we recall simplicial complexes, which provide a convenient language for
studying intersection patterns of convex sets. We assume that the reader is familiar
with simplicial complexes, and thus we only briefly mention the basics. For further
details, the reader is referred to books such as [14, 30, 32].

We deal with finite abstract simplicial complexes, i.e., collections K of subsets
of a finite set X such that if α ∈ K and β ⊂ α , then β ∈ K. Elements of K are
faces of K. The dimension of a face α ∈ K is defined as |α|−1; i-dimensional faces
for i ∈ {0,1,2} are vertices, edges, and triangles, respectively. The dimension of a
simplicial complex is the maximum dimension of its faces. Graphs coincide with
one-dimensional simplicial complexes. If V ′ is a subset of vertices of K, then the
induced subcomplex K[V ′] is a complex of faces α ∈ K such that α ⊆V ′. We use the
notation L≤K to point out that L is an induced subcomplex of K. An m-skeleton of K
is a simplicial complex consisting of faces of K of dimension at most m. We denote it
by K(m). The m-dimensional full simplex, Δm, is a simplicial complex with the vertex
set {1, . . . ,m+1} and all possible faces. Let Y be a set of affinely independent points
in R|X |−1 such that there is a bijection f : X → Y . The geometric realization of K,
denoted by |K|, is the topological space

⋃{conv f (α) : α ∈ K}, where conv denotes
the convex hull.

1.2 d-Representable Complexes

Let C be a collection of some subsets of a given set X . The nerve of C, denoted by
N(C), is a simplicial complex whose vertices are the sets in C and whose faces are
subcollections {C1, . . . ,Ck} ⊆ C such that the intersection C1∩·· ·∩Ck is nonempty.
The notion of a nerve is designed to record the “intersection pattern” of the sets in C.

A simplicial complex K is d-representable if it is isomorphic to the nerve of a
finite collection of convex sets in Rd . Such a collection of convex sets is called a
d-representation for K. d-representable simplicial complexes are the central objects
of our study in this survey. As mentioned above, they precisely record all possible
intersection patterns of finite collections of convex sets in Rd .

Using the notion of d-representability, the Helly theorem can be reformulated as
follows: If a d-representable complex on at least d+1 vertices contains all possible
d-faces, then it is already a full simplex. This statement is, via induction, equivalent
with the following: A d-representable simplicial complex does not contain an

induced k-dimensional simplicial hole for k≥ d, i.e., a complex isomorphic to Δ(k)k+1.
(Note that “hole” refers here to a hole in a certain topological space, and in particular
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Fig. 1 A 2-representable complex and its nerve

this notion is different from a k-hole in the context of Horton sets. The dimension
of the hole refers to the dimension of the boundary rather than to the dimension of
the missing part. We also remark that a geometric representation of a k-dimensional
simplicial hole is homeomorphic to the k-sphere Sk; and it is the simplest way to
obtain the k-sphere as a simplicial complex.) The Helly number of a simplicial
complex K is the total number of vertices of the largest simplicial hole in K (i.e.,
the dimension of the hole plus 2). Another reformulation of the Helly theorem thus
states that the Helly number of a d-representable complex is at most d+ 1.

Example 1.1. Figure 1 shows a collection C = {C1,C2,C3,C4,C5} of convex sets
(on the left) and their nerve (on the right). In other words, the simplicial complex
on the right is 2-representable and C is a 2-representation of it. The Helly number
of this collection equals 3.

1.3 What Is in the Survey?

The task of the survey is to give an overview of recent developments in the study of
intersection patterns of finite collections of convex sets. We are mainly focusing
on the description of intersection patterns via simplicial complexes. Apart from
geometrical “ad hoc” arguments, there are two other important approaches we are
going to discuss. The first is combinatorial and regards d-collapsibility. The second
one is topological and regards the Leray number of a simplicial complex. These two
approaches are mainly discussed in the following two sections. Algorithmic aspects
of the recognition of intersection patterns are briefly discussed in Sect. 4. In Sect. 5,
we mention some properties of good covers as a natural generalization of collections
of convex sets. Finally, Sect. 6 contains a list of theorems on intersection patterns.
This list appears at the end of the chapter so that all the necessary terminology is
already built up. However, many of the results in Sect. 6 can be understood without
a detailed study of the previous sections.

Since our task is to cover only a very selected part of convex geometry, we
refer the reader to other sources regarding the related areas. In particular, we
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refer to [29] and the references therein for an extended basic overview on discrete
convex geometry, including Radon-, Carathéodory-, and Tverberg-type theorems;
we also refer to [9] for another point of view on the area; and to [12] for results on
transversals to convex sets. We do not focus on the theory of f -vectors. For readers
interested in f -vectors, we refer to [6] or to [18] for a useful method for investigating
f -vectors (and related also to other branches mentioned here).

2 d-Collapsible and d-Leray Complexes

There are two other important classes of simplicial complexes related to the d-
representable ones. Informally, a simplicial complex is d-collapsible if it can be
vanished by removing faces of dimension at most d−1 that are contained in a single
maximal face; a simplicial complex is d-Leray if its induced subcomplexes do not
contain, homologically, holes of dimension d or more.

Wegner [41] proved that d-representable simplicial complexes are d-collapsible
and also that d-collapsible complexes are d-Leray.

Now, we will precisely define d-collapsible complexes and then d-Leray com-
plexes.

Let K be a simplicial complex. Let T be the collection of inclusion-wise maximal
faces of K. A face σ is d-collapsible if there is only one face τ ∈ T containing σ
(possibly σ = τ), and moreover dimσ ≤ d− 1. The simplicial complex

K′ := K\ {η ∈ K : η ⊇ σ}

is an elementary d-collapse of K. For such a situation, we use the notation K→ K′.
A simplicial complex is d-collapsible if there is a sequence,

K→ K1 → K2 → ··· → /0,

of elementary d-collapses ending with an empty complex.

Example 2.1. A simplicial complex K consisting of a full tetrahedron, two full
triangles, and one hollow triangle in Fig. 2 is 2-collapsible. For a proof, there is a
2-collapsing of K drawn on the picture. In every step, the faces σ and τ are indicated.

A simplicial K complex is d-Leray if the ith reduced homology group H̃i(L)
(over Q) vanishes for every induced subcomplex L≤ K and every i≥ d.

We mention several remarks regarding d-collapsible and d-Leray complexes.
Deeper properties of these complexes are studied in the following sections.

• The fact that d-collapsible complexes are d-Leray is simple (for a reader familiar
with homology) since d-collapsing does not affect the homology of dimension d
or more.

It is a bit less trivial to show that a d-representable complex K is d-collapsible.
The idea is to slide a generic hyperplane (from infinity to minus infinity) over a
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Fig. 2 A 2-collapsing of a simplicial complex

d-representation for K and gradually cut off whatever is on the positive side of the
hyperplane. See Fig. 3 and the text bellow the picture for a more detailed sketch.
The reader is referred to [41] for full details.

The inclusion of d-representable complexes in d-Leray complexes can be
also deduced, without using Wegner’s results, from the nerve theorem (see
Theorem 5.1).

• A d-dimensional simplicial complex is (d + 1)-collapsible and hence also (d +
1)-Leray. For a complex K, the smallest possible � such that K is d-Leray is
traditionally called the Leray number of K.

• Neither d-representability, d-collapsibility nor the Leray number is an invariant
under a homeomorphism: The full simplex Δm is 0-representable; however, its
barycentric subdivision is not even (m− 1)-Leray, since it contains an (m− 1)-
sphere as an induced subcomplex.

• It is not very difficult to see that every induced subcomplex of a d-collapsible
complex is again d-collapsible. If K[V ′] ≤ K and K → K1 → ··· → /0 is a d-
collapsing of K, then K[V ′]→ K1[V ′]→ ··· → /0 = /0[V ′] is a d-collapsing for
K[V ′], where some steps are possibly trivial; i.e., Ki[V ′] = Ki+1[V ′].

• The Helly theorem easily follows from the fact that d-representable com-
plexes are contained in d-collapsible ones (or d-Leray ones): We have that a
d-dimensional simplicial hole is neither d-collapsible (nor d-Leray).
On the other hand, these two notions provide (much) stronger limitations to
intersection patterns than the Helly theorem. For instance, they also exclude (in
dimension 2) the boundary of the octahedron (i.e., the simplicial complex with
vertices {−3,−2,−1,1,2,3} and faces α such that there is no i ∈ {1,2,3} with
−i, i ∈ α) or a triangulation of a torus.
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Fig. 3 A schematic sketch of the proof of Wegner’s theorem. A generic hyperplane h is slid from
infinity to minus infinity until there is a nontrivial intersection of the convex sets on its positive
side. In this case, it slides to h′ and cuts off A∩B∩C (it also cuts off A∩C, but for the moment, we
consider a maximal collection). From genericity, there is a single point p ∈ A∩B∩C∩h′ . It can be
shown (using Helly’s theorem) that there are only at most d sets of the starting collection necessary
to obtain p. In this case, {p} = A∩C ∩ h′. Thus, we obtain a d-collapse with σ = {A,C} and
τ = {A,B,C}. Finally, A∩ (h′)−, . . . ,D∩ (h′)− form a d-representation for the resulting collapsed
complex; thus, the procedure can be repeated

The gaps among these notions are discussed in more detail in the following
section.

3 Gaps Among the Notions

In this section, we provide an overview of how the notions of d-representable, d-
collapsible, and d-Leray complexes differ. We also relate these differences with the
dimension of the complex.

3.1 Every Finite Simplicial Complex Is d-Representable
for d Big Enough

Let K be a simplicial complex on vertex set {1, . . . ,n}. Let x1, . . . ,xn be affinely
independent points in Rn−1 (i.e., they form a simplex). For a nonempty face α =
{a1, . . . ,at} ∈ K, let bα be the barycenter of the points xa1 , . . . ,xat . Then for i ∈
{1, . . . ,n}, we set Ci := conv{bα : i∈α,α ∈K}. The reader is welcome to check that
sets Ci1 , . . . ,Cik intersect if and only if {i1, . . . , ik} ∈ K. Thus, the nerve of C1, . . . ,Cn
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Fig. 4 Representing a complex

is isomorphic to K. See Fig. 4 for an illustration. (If we really did not care about the
dimension, it would be even easier to check the situation where the points bα are set
to be the vertices of a simplex of dimension |K|− 1.)

There is, however, another way to obtain a representation of a complex depending
on the dimension of the complex.

Theorem 3.1 (Wegner [40], Perel’man [34]). Let K be a d-dimensional simplicial
complex. Then K is (2d+ 1)-representable.

The value 2d + 1 in Theorem 3.1 is the lowest possible. For example, the
barycentric subdivisions of the d-skeleton of a (2d+ 2)-dimensional simplex is not
2d-representable. Case d = 1 was established by Wegner [40]; the general case is
proved in [38].

The references for Theorem 3.1 are due to Eckhoff [9]. (Perel’man rediscovered
Wegner’s result.) Unfortunately, I have not been able to check these sources in detail
(the first one is in German, the second one is in Russian). Thus, I instead supply an
idea of a proof (communicated by Jiřı́ Matoušek).

Sketch of a proof of Theorem 3.1. Let K be a d-representable complex with n
vertices.

A k-neighborly polytope is a convex polytope such that every k vertices form a
face of the polytope. It is well known that there are 2k-dimensional k-neighborly
polytopes with an arbitrary number of vertices for every k ≥ 1. For instance, cyclic
polytopes satisfy this property. (See, e.g., [29] for a background on convex polytopes
including cyclic polytopes.)

Let Q be a (2d + 2)-dimensional (d + 1)-neighborly polytope with n vertices.
Let Q∗ be a polytope dual to Q. It has n facets, and any d + 1 of its facets share a
face of the polytope. Finally, we consider the Schlegel diagram of Q∗. The Schlegel
diagram of an m-dimensional convex polytope is a projection of the polytope to
(m−1)-space through a point beyond one of its facets (the point is very close to the
facet). In particular, the facets of Q∗ project to convex sets C1, . . . ,Cn in R2d+1 such
that each d + 1 of them share the projection of a face of Q∗ (on their boundary).
Thus, if we look at the nerve N of C1, . . . ,Cn, then it contains a full d-skeleton of a
simplex with n vertices. Therefore, without loss of generality, we can assume that K
is a subcomplex of N. Let ϑ = {Ci1 , . . . ,Cij} be a face of N that does not belong to K.



528 M. Tancer

The sets Ci1 , . . . ,Cij intersect on their boundaries, and it is possible to remove their
intersection by removing a small neighborhood of Ci1 ∩·· · ∩Cij in each of the sets
while keeping the sets convex. Hence, only ϑ and the superfaces of ϑ disappear
from the nerve during this procedure. After repeating the procedure, we obtain a
collection of convex sets with the nerve K. ��

3.2 The Gap Between Representability and Collapsibility

For d = 0, all three notions, 0-representable, 0-collapsible, and 0-Leray, coincide
and they can be replaced with “being a simplex.”

For d = 1, 1-representable complexes are clique complexes over interval graphs;
1-collapsible and 1-Leray complexes are clique complexes over chordal graphs (we
remark that results in [26, 41] easily imply these statements).

For d ≥ 2, there is perhaps no simple characterization of d-representable, d-
collapsible, and d-Leray complexes. Wegner [41] gave an example of a complex
that is 2-collapsible but not 2-representable. Matoušek and this author [31] found
d-collapsible complexes that are not (2d− 2)-representable. Later, the author [36]
improved this result by finding 2-collapsible complexes that are not d-representable
(for any fixed d). We present some steps of both constructions, since even the weaker
construction contains some steps of their own interest.

Let E be a (d − 1)-dimensional simplicial complex that is not embeddable in
R2d−2. Such a complex already exists, for example, the van Kampen complex

Δ(d−1)
2d ; see [39], or the Flores complex [11], which is the join of d copies of a set

of three independent points. The first example is the nerve N(E). It is d-collapsible
but not (2d− 2)-representable due to the following two propositions [31].

Proposition 3.2. Let K be a simplicial complex such that the nerve N(K) is
n-representable. Then K embeds in Rn, even linearly.

Proposition 3.3. Let F be a family of sets, each of size at most n. Then the nerve
N(F) is n-collapsible.

The second (stronger) example regards finite projective planes seen as simplicial
complexes. Let (P,L) be a finite projective plane, where P is the set of its points and
L is the set of its lines. There is a natural simplicial complex P associated with the
projective plane. Its ground set is P and faces are the collections of points lying on
a common line.

It is not hard to show that P is 2-collapsible. The nonrepresentability of P is
summarized in the following theorem [36].

Theorem 3.4. For every d ∈ N, there is a q0 = q0(d) such that if a complex P
corresponds to a projective plane of order q≥ q0, then P is not d-representable.

We also sketch a proof of Theorem 3.4. The reader is referred to the original
paper for full details. In contrast to the original paper, we present it in an “inequality
form.” For this, we need a few preliminaries.
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One important ingredient is a selection theorem by Pach [33].

Theorem 3.5. For every positive integer d, there is a constant c = c(d) > 0 with
the following property. Let X ⊂Rd be a finite set of points in general position. Then
there are a point a∈Rd and disjoint subsets Z1, . . . ,Zd+1 of X, with |Zi| ≥ c|X | such
that the convex hull of every transversal of (Z1, . . . ,Zd+1) contains a.

We recall that a transversal of a group of sets (Z1, . . . ,Zd+1) is a set {z1, . . . ,zd+1}
such that zi ∈ Zi.

Now we let S to be a subset of a simplicial complex K with a vertex set V where
V = {1, . . . ,n} and |S|= s. For S′ ⊂ S, we define the deficiency of S′ as the number
of vertices of K that are not contained in any element of S′, i.e., the value n−|⋃S′|.
A value ρ(k) of a function ρ : {1, . . . ,n}→N is defined as the maximum number of
deficiencies of sets S′ ⊆ S with k elements. Then we have the following inequality.

Proposition 3.6. If K is d-representable, then

n− (d+ 1)ρ(c(d)s)≤ dimK+ 1,

where c(d) is Pach’s constant.

Sketch of a proof. Let C1, . . . ,Cn be the sets forming the d-representation of K,
where set Ci corresponds to a vertex i. It can be assumed that these sets are open.
For every σ ∈ S, there is a point xσ in the intersection of all Ci such that i is a
vertex of σ . Let X = {xσ : σ ∈ S}. It can be assumed that X is in general position
due to the openness of the sets Ci. So we have Z1, . . . ,Zd+1 ⊆ X and a ∈ Rd from
Theorem 3.5. For a fixed j ∈ {1, . . . ,d + 1}, the definition of ρ implies that only
ρ(c(d)s) sets among C1, . . . ,Cn can avoid the points of the set Zj . Thus, there is at
least n− (d + 1)ρ(c(d)s) of the Ci that meet all Zj , and therefore they contain a.
Hence, the vertices of K corresponding to these Ci form a face of K of dimension
n− (d+ 1)ρ(c(d)s)− 1. ��

Theorem 3.4 follows from Proposition 3.6 when S is a set of all maximal
simplices of a projective plane P. Then n = s = q2 + q+ 1, dimP = q + 1, and
ρ(k)≤ (q2 + q+ 1)3/2/k by a theorem of Alon [3, 4].

3.3 The Gap Between Collapsibility and Leray Number

Wegner showed an example of complex that is 2-Leray but not 2-collapsible,
namely, a triangulationD of the dunce hat. If we consider the multiple join D� · · ·�D
of d copies of D, we obtain a complex that is 2d-Leray but not (3d−1)-collapsible.
See [31] for more details.
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4 Algorithmic Perspective

As we consider different criteria for d-representability, it is also natural to ask
whether there is an algorithm for recognition of d-representable complexes. We
denote this algorithmic question as d-REPRESENTABILITY. More precisely, the
input of this question is a simplicial complex. The size of the input is the number
of faces of the complex. The value d is considered a fixed integer. The output of the
algorithm is the answer whether the complex is d-representable or not.

We can also ask similar questions for d-collapsible and d-Leray complexes
as relaxations of the previous problem. Thus, we have algorithmic problems
d-COLLAPSIBILITY and d-LERAYNUMBER.

4.1 Representability

The first mentioned problem d-REPRESENTABILITY is perhaps the most difficult
among the three algorithmic questions. It is NP-hard for d ≥ 2. Reduction can
be done in a very similar fashion as performing a reduction for hardness of
recognition intersection graphs of segments [24, 25]. Full details can be found
in [35]. On the other hand, it is not hard to see that there is a PSPACE algorithm for
d-REPRESENTABILITY. It is based on solving systems of polynomial inequalities.
See [25, Theorem 1.1(i)(a)] for a very similar reduction.

4.2 Collapsibility

It is shown in [35] that d-COLLAPSIBILITY is NP-complete for d ≥ 4 and it is
polynomial-time solvable for d ≤ 2. For d = 3, the problem remains open.

4.3 Leray Number

The last question, d-LERAYNUMBER, is polynomial-time solvable. An equivalent
characterization of d-Leray complexes is when induced subcomplexes are replaced
with links of faces (including an empty face). See [20, Proposition 3.1] for a proof.
The tests on links can be done in polynomial time since it is sufficient to test the
homology up to the dimension of the complex.
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4.4 Greedy Collapsibility

The algorithmic results above suggest that it is easier to test/compute the Leray
number than collapsibility. However, if we are interested in them because of a hint
for representability, computing collapsibility still can be more convenient, since
d-collapsibility is closer to d-representability than the Leray number. An example
from Sect. 3 is perhaps not so convincing; however, there is a more important
example. As shown in Sect. 5, d-collapsibility can distinguish collections of convex
sets and good covers.

An useful tool for computation could be greedy d-collapsibility. We say that
a simplicial complex K is greedily d-collapsible if it is d-collapsible and any
sequence of d-collapses of K ends up in a complex that is still d-collapsible. In
other words, greedy collapsibility allows us to collapse the faces of K in whatever
order without risk of a bad choice. Thus, if a complex is greedily d-collapsible,
then there is a simple (greedy) algorithm for showing that it is d-collapsible. Not all
d-collapsible complexes are greedily d-collapsible. Complexes that are not greedily
d-collapsible for d ≥ 3 are constructed in [35]. However, none of these complexes
is d-representable. In summary, there is a hope for obtaining a simple algorithm for
showing that a complex is either d-collapsible or not d-representable if the answer
to the following question is true.

Problem 10. Is it true that every d-representable simplicial complex is greedily
d-collapsible?

5 Good Covers

A good cover in Rd is a collection of open sets in Rd such that the intersection of any
subcollection is either empty or contractible (in particular, the sets in the collection
are contractible).1 We consider only finite good covers. A simplicial complex is
topologically d-representable if it is isomorphic to the nerve of a (finite) good cover
in Rd . We should emphasize that (for our purposes) a good cover need not cover
whole Rd .

Topologically d-representable complexes generalize d-representable complexes
since every collection of convex sets is a good cover.

1The definition of a good cover is not fully standard in the literature. For example, it may
be assumed that sets in the collection are closed instead of open, or that the intersections are
homeomorphic to (open) balls instead of contractible. These differences are not essential for most
of the purposes mentioned here, because all these options satisfy the assumptions of a nerve
theorem (see upcoming text).
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5.1 Nerve Theorems

Suppose we are given a collection F of subsets of Rd . If the sets are “sufficiently
nice” and also all their intersections are sufficiently nice, then the nerve of the
collection, N(F), is homotopy equivalent to the union of the sets in the collection,⋃F . For a weaker assumption on “sufficiently nice,” it is possible to derive not
necessarily homotopy equivalence, but at least equivalence on homology (up to
some level). Such results are known as homotopic/homological nerve theorems.

We mention here one possible version (suitable for our purposes); see [14,
Corollary 4G.3].

Theorem 5.1 (A homotopy nerve theorem). Let F be a collection of open
contractible sets in a paracompact space X such that

⋃F = X and every nonempty
intersection of finitely many sets in F is contractible (or empty). Then the nerve
N(F) and X are homotopy equivalent.

Corollary 5.2. The nerve of every good cover is d-Leray.

5.2 Good Covers Versus Collections of Convex Sets

Good covers have many similar properties as collections of convex sets. Many
results on intersection patterns of convex sets can be generalized for good covers.
We will discuss these generalizations in the following section. An exceptional case
is Theorem 3.4, which cannot be generalized for good covers.

On the other hand, it is not hard to see that topologically d-representable
complexes are strictly more general than d-representable complexes for d≥ 2. There
is a less trivial example in Fig. 5 showing that there is a complex that is topologically
d-representable but not d-collapsible. Originally, Wegner conjectured that there is
no such example. See [37] for more details.

In addition, this example also distinguishes good covers in R2 and arrangements
of convex sets in a topological plane:2 An arrangement of pseudolines is a set of
curves (called pseudolines) in the plane such that every two pseudolines intersect
in exactly one point. The most convenient way is perhaps to think of the plane as a
subset of the real projective plane; then we can allow even “parallel” pseudolines.
Such an arrangement can be extended to a topological plane, where there is a
pseudoline through every pair of points. See, e.g., [13] for more precise definitions
and another background. A convex set in a topological plane is such a subset that
every two points are connected with a “segment” of a pseudoline. The nerve of a
bounded collection of convex sets in a topological plane is 2-collapsible. This can

2This observation is by Xavier Goaoc.
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Fig. 5 A good cover F such
that the nerve of F is even
not d-collapsible

be shown in a very similar way as we did for Wegner’s theorem on the inclusion
of d-representable complexes in d-collapsible ones. Thus, the example from Fig. 5
cannot be a collection of convex sets in a topological plane.

6 Helly-Type Theorems

In this section, we give an overview of some Helly-type results on intersection
patterns of convex sets. We always start with a geometrical formulation. Then we
reformulate such a result via d-representable simplicial complexes. We also discuss
possible extensions to d-collapsible or d-Leray complexes. (The former ones then
have geometric consequences for good covers.)

6.1 The Helly Theorem

For completeness of this section, we also recall the Helly theorem mentioned in the
Introduction.

We have the following geometric formulation.

Theorem 6.1 (Helly, [15]). If C1, . . . ,Cn are convex sets in Rd, n ≥ d + 1, and any
collection of d + 1 sets among C1, . . . ,Cn has a nonempty intersection, then all the
sets have a common point.

A topological extension of the Helly theorem was proved a few years later by
Helly himself [16]. His setting was for good covers. We present here a setting for
d-Leray complexes. Note that the theorem stated here is trivial; however, the fact
that it is meaningful relies on Corollary 5.2.
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Theorem 6.2. The Helly number of a d-Leray simplicial complex is at most d + 1.

Theorem 6.1 is a consequence of Theorem 6.2 if it is used for d-representable
complexes.

6.2 The Colorful Helly Theorem

The colorful Helly theorem regards the situation where convex sets are colored.
If there are enough color classes and every rainbow collection of the colored sets
contains a point in common, then the sets of a certain color class contain a point in
common.

Theorem 6.3 (Colorful Helly, Lovász [27]). Let F1, . . . ,Fd+1 be families of
convex sets in Rd. Suppose that for every choice F1 ∈ F1, . . . ,Fd+1 ∈ Fd+1, the
intersection F1 ∩ ·· · ∩ Fd+1 is nonempty. Then there is i ∈ [d + 1] such that the
intersection of the sets in Fi is nonempty.

The Helly theorem is the consequence of the colorful Helly theorem if we set
F1 = F2 = · · ·= Fd+1.

The reformulation via simplicial complexes is the following.
Let V be a finite set partitioned into disjoint color classes V1, . . . ,Vk. A subset

W ⊆V is rainbow if |Vi∩W | ≤ 1 for i ∈ [k].

Theorem 6.4. Let K be a d-representable simplicial complex with vertices parti-
tioned into d + 1 color classes. Assume that every rainbow subset of vertices is a
simplex of K. Then there is a color class such that its vertices form a simplex of K.

Let M′ be a simplicial complex with the vertex set V from above whose faces
are the rainbow subsets of V . It is not hard to see that M′ is a matroidal complex of
rank k.

Kalai and Meshulam [19] obtained the following matroidal extension of the
colorful Helly theorem.

Theorem 6.5. Let K be a d-collapsible simplicial complex on V , and let M be a
matroidal complex on V with rank function ρ such that M ⊆ K. Then there is a
simplex α ∈ K such that ρ(α) = ρ(M) and ρ(V \α)≤ d.

Theorem 6.5 indeed generalizes Theorem 6.4. If we set M=M′, then α contains
all vertices of a certain color class (since ρ(V \α) ≤ d), and moreover α even
contains a vertex of every color class [since ρ(α) = ρ(M)].

More importantly, Kalai and Meshulam [19] obtained a topological generaliza-
tion (with a weaker conclusion, but still more general than that of Theorem 6.4).

Theorem 6.6. Let K be a d-Leray simplicial complex on V , and let M be a
matroidal complex on V with rank function ρ such that M ⊆ K. Then there is a
simplex α ∈ K such that ρ(V \α)≤ d.
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6.3 The Fractional Helly Theorem

Let C be again a collection of convex sets in Rd (containing at least d+1 sets). The
Helly theorem assumes that if every d + 1-tuple has a nonempty intersection, then
all the sets have a point in common. The fractional Helly theorem is designed for
a situation when many d + 1-tuples have a nonempty intersection, concluding that
many sets of the collection have a point in common.

Theorem 6.7 (Fractional Helly, Katchalski and Liu [22]). For every a ∈ (0,1]
and d ∈ N, there is b = b(d,a) ∈ (0,1] with the following property. Let C be a
collection of n convex sets in Rd (n ≥ d + 1). Assume that the number of (d + 1)-
tuples with a nonempty intersection is at least a

( n
d+1

)
. Then there is a point common

to at least bn sets in C.

The largest possible value for b(d,a) is 1− (1− a)1/(d+1) due to Kalai [17] and
Eckhoff [8] (i.e., it is even known that b cannot be larger). We remark that the Helly
theorem is a special case when setting a = 1.

There is also a topological extension of the fractional Helly theorem by Alon,
Kalai, Matoušek, and Meshulam [2] (with the same bound for b). They actually
prove a bit stronger result [in order to obtain a topological (p,q)-theorem]; however,
we prefer to avoid the technical details, and so we present the result only in this
simpler form.

Theorem 6.8. For every a ∈ (0,1] and d ∈ N, there is b = b(d,a) ∈ (0,1] with the
following property. Let K be a d-Leray complex with n vertices (n≥ d+1). Assume
that there are at least a

( n
d+1

)
d-faces in K. Then there is a face of size at least bn−1

in K.

The largest possible value for b(d,a) is again 1− (1− a)1/(d+1).

6.4 The (p,q) Theorem

Let p, q be integers such that p≥ q≥ d+1. A familyF of convex sets in Rd has the
(p,q) property if among every p sets of F , some q have a nonempty intersection.
The pinning number, π(F), of a family F is the smallest number of points in Rd

that intersect all members of F .

Theorem 6.9 ((p,q)-theorem, Alon and Kleitman [1]). For every p ≥ q ≥ d + 1,
there is a number C =C(p,q,d) such that π(F)≤C for every family of convex sets
in Rd with the (p,q) property.

The (p,q) theorem was originally conjectured by Hadwiger and Debrunner.
In order not to introduce a new symbol, we let C denote the smallest constant

for which the assertion of the (p,q) theorem is valid. The Helly theorem simply
says that C(d + 1,d + 1,d) = 1. In general, there are, however, big gaps between



536 M. Tancer

Fig. 6 Six convex sets with
(4,3) property and pinning
number 3

the lower and upper bounds for C. In the first nontrivial case, it is relatively easy
to come up with an example showing C(4,3,2)≥ 3; see Fig. 6. Kleitman, Gyárfás,
and Tóth [23] proved that C(4,3,2)≤ 13. The author of this survey believes that the
actual value of C(4,3,2) is much closer to 3 than 13; however, it seems difficult to
obtain the precise value. The question of what the value of C(p,q,d) is for larger p,
q, and d is wide open.

Now we reformulate the setting for simplicial complexes. A simplicial complex
K has the (p,q) property for p ≥ q if, among every p vertices of K, there are q
of them forming a face (of dimension q− 1). The pinning number, π(K), of K is
the smallest number of faces of K such that every vertex of K is in at least one of
these faces. Then the statement of the (p,q) theorem remains valid even for d-Leray
complexes and consequently for good covers due to Alon et al. [2].3

Theorem 6.10. For every p ≥ q ≥ d + 1, there is a number C′ = C′(p,q,d) such
that π(K)≤C′ for every d-Leray complex K with the (p,q) property.

6.5 The Amenta Theorem

In all previous cases, we were considering properties of collections of convex sets.
Now we replace convex sets with a finite disjoint union of convex sets. It turns out
that there is also a Helly-type theorem for this case (if we keep this property for
intersections also).

Let F be a finite family of subsets of some ground set. A family G is an (F ,k)-
family if, for every nonemptyG′ ⊆G, the intersection of elements of G′ is the disjoint
union of at most k members of F . We have defined the Helly number only for
simplicial complexes. For purposes of this subsection, we say that a family F has
Helly number h = h(F) equal to the Helly number of the nerve of F . (Here we
allow F to be possibly infinite.)

3Precisely speaking, Alon et al. state the theorem for good covers only; however, the same
reasoning can be used for d-Leray complexes.
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1 2

3
4; 5; 6; 7; 8; 9

4 5

6

7 8

9

1; 2; 3; 4; 5; 61; 2; 3; 7; 8; 9

Fig. 7 The lower bound for Amenta’s theorem. The convex hulls are a bit enlarged in order to
make the figure more lucid. Moreover, the notation of the sets is simplified

Theorem 6.11 (Amenta [5]). Let F be a finite family of compact convex sets in
Rd. Let G be an (F ,k)-family. Then h(G)≤ k(d+ 1).

The bound k(d + 1) in Amenta’s theorem is optimal, as can be shown with the
following example. Let C = {C1, . . . ,Cd+1} be a collection of convex sets in Rd such
that every d of them has a nonempty intersection; however, the intersection of the
whole collection is empty (for example, C might be the collection of facets of a d-
simplex). Let C∗ = C ∪ {C}, where C is the convex hull of the union of sets in C.
Let’s consider k disjoint copies C i

∗ = {Ci
1, . . . ,C

i
d+1,C

i} of C∗ for i ∈ {1, . . . ,k} such
that the sets Ci are pairwise disjoint. Now we construct sets Di

j for i ∈ {1, . . . ,k},
j ∈ {1, . . . ,d+ 1} by setting

Di
j =

( ⋃
m�=i

Cm
)
∪Ci

j.

Then G = {Di
j} is an (F ,k)-family and h(G) = k(d + 1). See Fig. 7.

Now we focus on a topological version. Due to the fact that we consider the union
of sets, there is no simple statement for a topological generalization of Amenta’s
theorem using d-Leray complexes. Thus, we prefer to set up the statement for good
covers in this case.

Theorem 6.12 (Kalai, Meshulam [21]). Let F be a finite good cover in Rd. Let G
be an (F ,k)-family. Then h(G)≤ k(d + 1).

Eckhoff and Nischke [10] recently proved Amenta’s theorem in a very abstract
setting via Morris’s pigeonhole principle. A (possibly infinite) family F is inter-
sectional if, for any finite subfamily F′, the intersection ∩F′ either is empty or
belongs to F . We call F nonadditive if, for any finite subfamily F′ of disjoint sets
(at least two nonempty), ∪F′ �∈ F . The following theorem generalizes the previous
two theorems by setting F to be either a family of convex compact sets, or a family
of all intersections of a good cover.

Theorem 6.13. Let F be an intersectional and nonadditive set family. If G is an
(F ,k) family, then h(G)≤ kh(F).
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From another point of view, a generalization of Theorem 6.12 for collections of
sets in more general topological spaces (thanRd) was obtained by Colin de Verdière,
Ginot, and Goaoc [7]. More importantly, their generalization applies to collections
of sets that need not come from good covers. For instance, it applies to a collection
of two sets homeomorphic to a ball which intersect in two balls.

By Γ, we denote a locally arc-wise connected topological space. Then dΓ is
the smallest integer such that every open subset of Γ has a trivial Q-homology in
dimension dΓ and higher. An open subset of Γwith singular Q-homology equivalent
to a point is a Q-homology cell. A family of open subsets of Γ is acyclic if, for every
nonempty subfamily G ⊂F , the intersection of G is a disjoint union of Q-homology
cells. Colin de Verdière et al. proved the following result.

Theorem 6.14. Let F be a finite acyclic family of open subsets of locally arc-
wise connected topological space Γ. If any subfamily of F intersects in at most
k connected components, then the Helly number of F is at most k(dΓ+ 1).

In particular, dRd = d and every good cover is acyclic; therefore, Theorem 6.14
indeed generalizes Theorem 6.12. Let’s also remark that dΓ = d for a d-dimensional
manifold that is either noncompact or nonorientable, and dΓ = d + 1 for a compact
orientable manifold.

Theorem 6.14 can be further generalized when the homology is zero only from
a certain dimension. For this case, we already refer the reader to [7]. On the other
hand, the case when the homology vanishes for small dimensions has already been
considered in [28]. The bound to the Helly number is, however, much weaker.

Acknowledgements The author thanks Xavier Goaoc for discussions on new generalizations
of Amenta’s theorem and additional remarks, Jiřı́ Matoušek for many valuable comments to
the preliminary version of the survey, and also Janos Pach for discussions about d-dimensional
complexes that are not 2d-representable.
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Construction of Locally Plane Graphs
with Many Edges

Gábor Tardos

Abstract A graph drawn in the plane with straight-line edges is called a geometric
graph. If no path of length at most k in a geometric graph G is self-intersecting,
we call G k-locally plane. The main result of this chapter is a construction of
k-locally plane graphs with a superlinear number of edges. For the proof, we develop
randomized thinning procedures for edge-colored bipartite (abstract) graphs that can
be applied to other problems as well.

1 Introduction

A geometric graph G is a straight-line drawing of a simple, finite (abstract) graph
(V,E); i.e., we identify the vertices x∈V with distinct points in the Euclidean plane,
and we identify any edge {x,y} ∈ E with the straight-line segments xy in the plane.
We assume that the edge xy does not pass through any vertex of G besides x and
y. We call (V,E) the abstract graph underlying G. We say that the edges e1,e2 ∈ E
cross if the corresponding line segments cross each other, i.e., if they have a common
interior point. We say that a subgraph of G is self-intersecting if it contains a pair of
crossing edges.

Geometric graphs without crossing edges are plane drawings of planar graphs:
They have at most 3n− 6 edges if n≥ 3 is the number of vertices.

Avital and Hanani [3], Erdős, and Perles initiated in the mid-1960s the systematic
study of similar questions for more complicated forbidden configurations: Let H
be a set of forbidden configurations (geometric subgraphs). What is the maximal
number of edges of an n vertex geometric graph not containing any configuration
belonging to H? This problem can be regarded as a geometric version of the
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fundamental problem of extremal graph theory: What is the maximum number of
edges that an abstract graph on n vertices can have without containing subgraphs of
a certain kind?

Many questions of the above type on geometric graphs have been addressed in
recent years. In a number of papers, linear upper bounds have been established
for the number of edges of a graph, under various forbidden configurations. They
include the configurations of three pairwise crossing edges [2], four pairwise
crossing edges [1], the configurations of an edge crossed by many edges [9], or
even two large stars with all edges of one of them crossing all edges of the other
[13].

For a constant number of 5 or more pairwise crossing edges, Pavel Valtr has the
best result [11]: A geometric graph on n vertices avoiding this configuration has
O(n logn) edges, but no construction is known with a superlinear number of edges.
Adam Marcus and the present author [4] building on an earlier result of Pinchasi and
Radoičić [10] prove an O(n3/2 logn) bound on the number of edges of an n vertex
geometric graph not containing self-intersecting cycles of length 4. No construction
is known better than the O(n3/2) edges an abstract graph having no cycles of length
4 can have.

For surveys on geometric graph theory, consult [5, 6].
In this chapter, we consider forbidding self-intersecting paths. For k≥ 3, we call

a geometric graph k-locally plane if it has no self-intersecting subgraph (whose
underlying abstract graph is) isomorphic to a path of length at most k.

Pach et al. [7] consider 3-locally plane graphs, i.e., the case of geometric graphs
with no self-intersecting paths of length 3. They prove matching lower and upper
bounds of Θ(n logn) on the maximal number of edges of a 3-locally plane graph on
n vertices.

We extend the lower-bound result of [7] by considering self-intersecting draw-
ings of longer paths as forbidden configurations. Technically, k-locally plane
graphs are defined by forbidding self-intersecting paths of length k or shorter, but
forbidding only self-intersecting paths of length exactly k would lead to almost the
same extremal function. Indeed, one can delete at most nk edges from any graph
on n vertices, such that all the nonzero degrees in the remaining graph are larger
than k. This ensures that all shorter paths can be extended to a path of length k. It is
possible, but not likely, that if one only forbids paths of length k with the first and
last edges crossing, a significantly higher number of edges is achievable.

For even k, a geometric graph is k-locally plane if and only if the k/2-
neighborhood of any vertex x is intersection-free. Note that this requirement is
much stronger than the similar condition on abstract graphs, namely, that the k/2
neighborhood of any point is planar. One can construct graphs with girth larger than

k and Ω(n
k

k−1 ) edges. In such a graph, the k/2-neighborhood of any vertex is a tree,
but by [7], the graph does not even have 3-locally plane drawing.

Extending the lower bound result in [7], we prove in Theorem 3 that for arbitrary
fixed k ≥ 3, there exist k-locally plane graphs on n vertices with Ω(n log(�k/2�) n)
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edges. Here log(t) denotes a t-times iterated logarithm, and the hidden constant in Ω
depends on k. Given two arbitrarily small disks in the plane, we can even ensure that
all edges of the constructed graph connect a vertex from the first disk with another
vertex from the second. This ensures that all the edges of the constructed geometric
graph are arbitrarily close to each other in length and direction. In the view of the
author, this makes the existence of a high average degree (or, for that matter, a high
minimum degree) 100-locally plane graphs even more surprising.

As a simple corollary, we can characterize the abstract graphs H such that
any geometric graph having no self-intersecting subgraph isomorphic to H has a
linear number of edges. These graphs H are the forests with at least two nontrivial
components. To see the linear bound for the number of edges of a geometric graph
avoiding a self-intersecting copy of such a forest H, first delete a linear number of
edges from an arbitrary geometric graph G until all nonzero degrees of the remaining
geometric graph G′ are at least |V (H)|. If G′ is crossing-free, the linear bound of the
number of edges follows. If you find a pair of crossing edges in G′, they can be
extended to a subgraph of G′ isomorphic to H. On the other hand, if H contains
a cycle, then even an abstract graph avoiding it can have a superlinear number of
edges. If H is a tree of diameter k, then a k-locally plane geometric graph has no
self-intersecting copy of H. Notice that the extremal number of edges in this case
(assuming k > 2) is O(n logn) by [7], thus much smaller than the Ω(nα) edges
(α > 1) for forbidden cycles.

The main tool used in the proof of the above result is a randomized thinning
procedure that takes a d-edge-colored bipartite graph of average degree Θ(d) and
returns a subgraph on the same vertex set with average degreeΘ(logd) that does not
have a special type of colored path (walk) of length 4. The procedure can be applied
recursively to obtain a subgraph avoiding longer paths of certain types. We believe
this thinning procedure to be of independent interest. In particular, it can be used
to obtain optimal 0–1 matrix constructions for certain avoided submatrix problems;
see the exact statement in Sect. 4 and the details in [12].

In Sect. 2, we define two thinning procedures for edge-colored bipartite graphs
and prove their main properties. This is the most technical part of the chapter.
While these procedures proved useful in other settings too (and the author finds
the involved combinatorics appealing), this entire section can be skipped if one
reads the definition of k-flat graphs (the two paragraphs before Lemma 2.14) and
is willing to accept Corollary 2.1 at the end of the section (we also use the simple
observation in Lemma 2.15). In fact, in order to understand the main ideas behind
the main result of this chapter, it is recommended to skip Sect. 2 on the first reading
and to go straight to Sect. 3, where we use Corollary 2.1 to construct locally plane
graphs with many edges. In Sect. 4, we comment on the optimality of the thinning
procedures and have some concluding remarks.
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2 Thinning

In this section, we state and prove combinatorial statements about edge-colored
abstract graphs; i.e., we do not consider geometric graphs here at all. The connection
to locally plane geometric graphs will be made clear in Sect. 3.

A bipartite graph is a triple G= (A,B,E) with disjoint vertex sets A and B (called
sides) and edge set E ⊆ A×B. In particular, all graphs considered in this chapter
are simple; i.e., they do not have multiple edges or loops. The edge connecting
the vertices x and y of G is denoted by xy or (x,y). The latter notation is only
used if x ∈ A and y ∈ B. By a d-edge coloring of a graph, we mean a mapping
χ : E →{1,2, . . . ,d} such that adjacent edges receive different colors. When we do
not specify d, we call such coloring a proper edge coloring, but we always assume
that the “set of colors” is linearly ordered. The degree of any vertex in G is at most
the number d of colors, and our results are interesting if the average degree is close
to d. Unless stated otherwise, the subgraphs of an edge-colored graph are considered
with the inherited edge coloring. Our goal is to obtain a subgraph of G with as many
edges as possible without containing a certain type of colored path or walk.

2.1 Heavy Paths

A simple example of the above concept is the following. We call a path P= v0v1v2v3

of length 3 heavy if v0 ∈ B and the colors c1 = χ(v0v1), c2 = χ(v1v2), c3 = χ(v2v3)
satisfy c2 < c1 ≤ c3. The next lemma describes a thinning procedure that gets rid of
heavy paths. Although we do not need this lemma in our construction, we present it
as a simple analogue of our results for more complicated forbidden walks.

Lemma 2.6. Let G = (A,B,E) be a bipartite graph with a proper edge coloring
χ : E → {1,2, . . . ,d}. Then there exists a subgraph G′ = (A,B,E ′) of G with |E ′| ≥
|E|/(3�

√
d �) that does not contain heavy paths.

The constant 3 in the lemma could be replaced by the base of the natural
logarithm. Notice that if G had average degree Θ(d), then the average degree of
G′ is Ω(

√
d).

Proof. Let t = �
√

d � and select a uniform random value iy ∈ {1,2, . . . , t} indepen-
dently for each vertex y ∈ B. We say that an edge e ∈ E is of class �χ(e)/t�. We
call an edge e = (x,y) ∈ E eligible if its class is iy. Let the subgraph G′ = (A,B,E ′)
consist of those eligible edges e = (x,y) ∈ E for which there exists no other eligible
edge (x,y′) ∈ E of the same class. Note that the words “class” and “eligible” will be
used in a different meaning when defining the two thinning procedures in the next
subsection.

By the construction, all edges incident to a vertex x ∈ A have different classes,
and all edges incident to a vertex y ∈ B have the same class. Let e1, e2, and e3 form
a path in G′ starting in B. Then e2 and e3 are of the same class, while the class
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of e1 is different. For the colors ci = χ(ei), this rules out the order c2 < c1 ≤ c3.
Thus, G′ does not contain a heavy path. Note that another order, c3 ≤ c1 < c2, is
also impossible.

The number of edges in G′ depends on the random choices we made. Any edge
(x,y) ∈ E is eligible with probability 1/t, and this is independent for all the edges
incident to a vertex x ∈ A. As edges of a fixed color form a matching, there are at
most t edges of any given class incident to x. Thus, we have

Pr[(x,y) ∈ E ′]≥ (1− 1/t)t−1

t
>

1
3t
.

The expected number of edges in G′ is

Exp[|E ′|]≥ |E|
3t

.

It is possible to choose the random variables iy so that the size of E ′ is at least as
large as its expected value. This proves the lemma. ��

2.2 Fast and Slow Walks

Next, we turn to more complicated forbidden subgraphs. For motivation, we
mention that self-crossing paths of length 4 in the 3-locally plane graphs of [7]
(considered with their natural edge coloring) are exactly the fast walks (to be defined
below). For technical reasons, it will be more convenient to consider walks, i.e., to
permit that a vertex is visited more than once, but we will not allow backtracking,
i.e., turning back on the same edge immediately after it was traversed. Thus, for us, a
walk of length k is a sequence v0,v1, . . . ,vk of vertices in the graph such that vi−1vi is
an edge for 1≤ i≤ k and vi−2 �= vi for 2≤ i≤ k. The χ-coloring (or simply coloring)
of this walk is the sequence (χ(v0v1),χ(v1v2), . . . ,χ(vk−1vk)) of the colors of the
edges of the walk. If χ is a proper edge coloring, then any two consecutive elements
of the coloring sequence are different.

We use log to denote the binary logarithm. We introduce the notation P(a,b) for
two nonequal strings a,b∈ {0,1}t to denote the first position i∈ {1,2, . . . , t}, where
a and b differ. We consider the set {0,1}t to be ordered lexicographically; i.e., for
a,b ∈ {0,1}t , we have a < b if a has 0 in position P(a,b) (and thus b has 1 there).

The following trivial observation is used often in this chapter. We state it here
without a proof.

Lemma 2.7. Let t ≥ 1 and let a, b, and c be distinct binary strings of length t with
P(a,b)< P(a,c). We have P(b,c) = P(a,b). Furthermore, a > b implies c > b, and
a < b implies c < b.



546 G. Tardos

A walk of length 4 with coloring (c1,c2,c3,c4) is called a fast walk if c2 < c3 <
c4 ≤ c1. Note that a fast walk may start in either class A or B. We call a walk of
length 4 a slow walk if it starts in the class B and its coloring (c1,c2,c3,c4) satisfies
c2 < c3 < c4 and c2 < c1 ≤ c4. Note that either the color c1 or c3 can be larger in a
slow walk, or they can be equal.

The two thinning procedures below find a random subgraph of an edge-colored
bipartite graph. One is designed to avoid slow walks, while the other is designed to
avoid fast walks.

Lexicographic thinning. Let G = (A,B,E) be a bipartite graph and let χ :
E → {1, . . . ,d} be a proper edge coloring with d ≥ 2. Lexicographic thinning
is a randomized procedure that produces a subset E ′ ⊆ E of the edges and the
corresponding subgraph G′ = (A,B,E ′) of G as follows:

Let t =
⌈

logd
2

⌉
+ 1. Let H be the set of triplets (a, i,z), where a ∈ {0,1}t ,

i ∈ {2,3, . . . , t}, z ∈ {1,2,3, . . . ,2i}, and a has 0 in position i. Straightforward
calculation gives that |H|= 22t − 2t+1 ≥ 2d.

We order H lexicographically; i.e., (a, i,z)< (b, j,s) if a < b, or a = b and i < j,
or (a, i) = (b, j) and z < s.

Consider the following random function F : {1, . . . ,d}→H. We select uniformly
at random the value F(1) = (a, i,z) ∈ H with the property that the first bit of a is 0.
We make F(2) to be the next element of H larger than F(1), and in general F(k) is
the next element of H larger than F(k− 1) for 2 ≤ k ≤ d. As |H| ≥ 2d and F(1) is
chosen from the first half of H, this defines F . In what follows, we simply identify
the color k with the element F(k) ∈ H without any reference to the function F .

We say that (a, i,z) ∈ H and any edge with this color is of class a and type i,
while z will play no role except in counting how many values it can take.

We choose an independent uniform random value ax ∈ {0,1}t for each vertex
x ∈ A∪B. Let e = (x,y) ∈ E be an edge of class a and type i. We say that e is
eligible if a = ay < ax and P(a,ax) = i. Let the subgraph G′ = (A,B,E ′) contain
those edges e ∈ E that are eligible but not adjacent to another eligible edge e′ of the
same type as e.

Reversed thinning. Let G = (A,B,E) be a bipartite graph and let χ : E →
{1, . . . ,d} be a proper edge coloring with d ≥ 2. Reversed thinning is a randomized
procedure that produces a subset E ′ ⊆ E of the edges and the corresponding
subgraph G′ = (A,B,E ′) of G.

Reversed thinning is almost identical to lexicographic thinning; the only dif-
ference is in the ordering of the set H. We define t and H as in the case of
lexicographic thinning. Recall that H is the set of triplets (a, i,z), where a ∈ {0,1}t ,
i ∈ {2,3, . . . , t}, z ∈ {1,2, . . .2i}, and a has 0 in position i. We still order {0,1}t

lexicographically, but now we reverse the lexicographic order of H in the middle
term i. That is, we have (a, i,z)< (b, j,s) if a< b, or a= b and i > j or (a, i) = (b, j)
and z < s.
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We define the function F : {1, . . . ,d} → H, the types and classes of colors and
edges, eligible edges, and the subset E ′ of edges the same way as for lexicographic
thinning, but using this modified ordering of H.

Note that we associated a type in {2, . . . , t} and a class in {0,1}t to each edge in
either procedure and they satisfy the following:

• An edge with smaller class has smaller color.
• Among edges of equal class, an edge with smaller type has smaller color in the

case of lexicographic thinning, and it has larger color in the case of reversed
thinning.

• Among the edges incident to a vertex, at most 2i have the same class a and the
same type i.

Proving most of the properties of the thinning procedures, this is all we need to
know about how classes and types are associated with the edges, and we could
use a deterministic scheme for F . But for Lemma 2.11, we need that all types
are well represented; the randomization in the identification function F (as well
as the dummy first bit of the class) is introduced to ensure this on the average. This
randomization is not needed if one assumes all color classes have roughly the same
size.

The next lemmas state the basic properties of the thinning procedure. Lemma 2.8
lists common properties of the two procedures, while Lemmas 2.9 and 2.10 state
the result of the thinning satisfies its “design criteria,” avoiding slow or fast walks.
Finally, Lemma 2.11 shows that enough edges remain in the constructed subgraphs
on average. Note that Lemmas 2.9 and 2.10 are special cases of the more complex
Lemmas 2.12 and 2.13 proved independently. We state and prove the simple cases
separately for clarity, but these proofs could be skipped.

Lemma 2.8. Let G = (A,B,E) be a bipartite graph with a proper edge coloring
χ : E → {1, . . . ,d}. If G′ = (A,B,E ′) is the result of either the lexicographic or the
reversed thinning, then we have

a) Adjacent edges in G′ have distinct types.
b) If two edges of G′ meet in B, they have the same class.
c) Suppose two distinct edges e and e′ of G′ meet in A. Let their classes and types

be a, a′ and i, i′, respectively. If i < i′, then a < a′ and P(a,a′) = i.
d) G′ has no heavy path.

Proof. The definition of E ′ immediately gives (a).
For (b), note that all eligible edges incident to y ∈ B have ay for class.
For (c), let x ∈ A be the common vertex of the two edges and apply Lemma 2.7

for ax, a, and a′.
Finally, (d) follows since if a walk of G′ starts in B, then its coloring (c1,c2,c3)

must satisfy that c1 and c2 have different class by (c), but c2 and c3 have the same
class by (b), so c2 < c1 ≤ c3 is impossible. ��
Lemma 2.9. Let G = (A,B,E) be a bipartite graph with a proper edge coloring.
Lexicographic thinning produces a subgraph G′ with no slow walk.
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Proof. Suppose v0v1v2v3v4 is a walk in G′ starting at v0 ∈ B and let its coloring be
(c1,c2,c3,c4). Assume c1 > c2 < c3 < c4. We show that c1 > c4, so this walk is not
slow. By Lemma 2.8(a, b), as c2 and c3 are colors of edges incident to v2 ∈ B, they
have the same class, but they have different types: c2 = (a, i,z), c3 = (a, j,s) with
i �= j. We use lexicographic ordering, so c2 < c3 implies i < j. Both c1 and c2 are
colors of edges incident to v1 ∈ A, so by Lemma 2.8(c), their classes are different.
Since c1 > c2, we have b> a for the class b of c1. Still by Lemma 2.8(c), P(a,b) = i.
Similarly, c3 and c4 are colors of distinct edges in E ′ incident to v3 ∈ A, so they have
different classes. As c3 < c4, we have c> a for the class c of c4. We have P(a,c) = j.
By Lemma 2.7, we have b > c. This proves c1 > c4, as claimed. ��
Lemma 2.10. Let G = (A,B,E) be a bipartite graph with a proper edge coloring.
Reversed thinning produces a subgraph G′ with no fast walk.

Proof. Suppose v0v1v2v3v4 is a walk in G′ with coloring (c1,c2,c3,c4). Assume
c1 > c2 < c3 < c4. We show that c1 < c4, so this walk is not fast. First assume the
walk starts at v0 ∈ A. As G′ does not contain a heavy path, v3v2v1v0 is not heavy, so
c1 < c3. This implies c1 < c4, as claimed.

Now assume v0 ∈ B. Just as in the proof of the previous lemma, c2 and c3 are
colors of edges incident to v2 ∈B, so they have the same class, but they have different
types: c2 = (a, i,z), c3 = (a, j,s) with i �= j. We use the reversed ordering, so c2 < c3

implies i > j. Both c1 and c2 are colors of edges incident to v1 ∈ A, so their classes
are different. Since c1 > c2, we have b > a for the class b of c1 and P(a,b) = i.
Similarly, c3 and c4 are colors of distinct edges in E ′ incident to v3 ∈ A, so they have
different classes. As c3 < c4, we have c > a for the class c of c4 and P(a,c) = j. By
Lemma 2.7, we have c > b. This proves c1 < c4, as claimed. ��

Below we estimate the number of edges in E ′. Recall that both thinning
procedures are randomized. We can show that the subgraphs they produce have a
large expected number of edges. We did not make any effort to optimize for the
constant in this lemma.

Lemma 2.11. Let G = (A,B,E) be a bipartite graph with a d-edge coloring. Let
G′ = (A,B,E ′) be the result of either the lexicographic or the reversed thinning. We
have

Exp[|E ′|]≥ t− 1
240d

|E| ≥ logd
480d

|E|.

Proof. We compute the probability for a fixed edge e = (x,y) ∈ E to end up in E ′.
For this we break down the random process producing E ′ into three phases. In the
first phase, we select F . With F , the color χ(e) is identified with an element of H;
most importantly, the type of e is fixed. In the second phase, we select ax and ay

uniformly at random. These choices determine if e is eligible. If e is not eligible,
then e /∈ E ′. So in the third phase, we consider F , ax, and ay fixed and assume e is
eligible. We select the random values az for vertices z �= x,y. This affects if other
edges are eligible and if e ∈ E ′. Here is the detailed calculation:
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Let e ∈ E have the color χ(e) = k ∈ {1,2, . . . ,d}. The choice of F in the first
phase determines F(k) = (a, i,z) ∈H. By the construction of F , if we call a′ the last
t−1 bits of a, then (a′, i,z) is uniformly distributed among all its possible values. In
particular, the probability that e becomes a type-i edge is exactly

Pr[e is of type i] =
2t+i−2

22t−1− 2t =
2i

2t+1− 4
.

For the second phase, we consider the function F identifying colors with
elements of H fixed. Consider an edge e = (x,y) of color (a, i,z) ∈ H. This edge
is eligible if ay = a < ax and P(a,ax) = i. This determines ay and the first i bits
of ax. Recall that by the definition of H, the string a has 0 in position i. Thus, the
probability that the edge e of type i is eligible is exactly 2−t−i.

Assume for the third phase that e is eligible. Consider another edge e′ = (x,y′) ∈
E with color χ(e′) = (a′, i,z′) of type i. If a and a′ do not agree in the first i positions,
then e′ is not eligible. If they agree in the first i positions, then e′ is eligible if and
only if ay′ = a′, so with probability 2−t . Let k′e be the number of edges (x,y′) of type
i with the first i digits of their class agreeing with a, but not counting e itself. We
have k′e < 2t .

Consider now an edge e′′ = (x′′,y) ∈ E with color (a′′, i,z′′) such that e′′ �= e. As
e is eligible, e′′ can only be eligible if a′′ = a. If a′′ = a, then e′′ is eligible if and
only if ax and ax′′ agree in the first i digits. This happens with probability 2−i. For
the number k′′e of the edges (x′′,y) �= e of type i and class a, we have k′′e < 2i.

In phase three, the eligibilities of all the edges e′ and e′′ adjacent to e are
independent events.

Still consider the function F fixed. The total probability for an edge e of type i to
be in E ′ is

Pr[e ∈ E ′|F ] = 2−t−i(1− 2−t)k′e(1− 2−i)k′′e

≥ 2−t−i(1− 2−t)2t−1(1− 2−i)2i−1

> 2−t−i/7.5.

The total probability of e ∈ E ′ can be calculated from the distribution of its type
and the above conditional probability depending on its type:

Pr[e ∈ E ′]>
t

∑
i=2

2i

2t+1− 4
· 2−t−i

7.5
>

t− 1
15 ·22t >

t− 1
240d

.

The expected number of edges in E ′ is then

Exp[|E ′|]> t− 1
240d

|E| ≥ logd
480d

|E|. ��

Theorem 1. Let G = (A,B,E) be a bipartite graph with a proper edge coloring.
There exists a subgraph G′ = (A,B,E ′) of G without a slow walk and with |E ′| >
logd
480d · |E|. Similarly, there exists a subgraph G′′ = (A,B,E ′′) of G without a fast walk

and with |E ′′|> logd
480d · |E|.
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Proof. By Lemmas 2.9 and 2.10, the results of the lexicographic and reversed
thinnings avoid the slow and fast walks, respectively. There exists an instance
of the random choices with the size of E ′ being at least its expectation given in
Lemma 2.11. This proves the theorem. ��

2.3 Longer Forbidden Walks

Here we generalize the concept of fast and slow walks to longer walks. Consider a
bipartite graph G = (A,B,E) with a proper edge coloring. For k≥ 2, we call a walk
of length 2k in G a k-fast walk if its coloring (c1, . . . ,c2k) satisfies c1 > c2 > · · · >
ck < ck+1 < ck+2 < · · ·< c2k and c1 ≥ c2k. For k≥ 2, we call a walk of length 2k in
G a k-slow walk if its coloring (c1, . . . ,c2k) satisfies the following: c2 j−1 > c2 j for
1≤ j ≤ k/2; c2 j < c2 j+1 for 1≤ j < k/2; c2 j−1 < c2 j for k/2 < j ≤ k; c2 j > c2 j+1

for k/2≤ j < k; and finally, c1 ≥ c2k. If a k-slow walk starts in the vertex set B, we
call it a (k,B)-slow walk; otherwise, it is a (k,A)-slow walk.

Notice that 2-fast walks are the fast walks, and (2,B)-slow walks are the slow
walks with their orientation reversed. For the coloring (c1, . . . ,c2k) of a k-fast walk,
c j is in between c j−1 and c j+1 for all 1 < j < 2k, j �= k, while ck is the smallest color
on this list. For the coloring (c1, . . . ,c2k) of a k-slow walk, the situation is reversed:
The only index 1< j < 2k with c j being in between c j−1 and c j+1 is the index j = k.

In order to apply the lexicographic and reversed thinning recursively, we have to
change the coloring of the subgraph. Let G = (A,B,E) be a bipartite graph with a
proper edge coloring given by χ : E → {1, . . . ,d}. Let G′ = (A,B,E ′) be the result
of the lexicographic or the reversed thinning of G. Recall that the edges in E ′ have
a type 2 ≤ i ≤ t with t = �(logd)/2�+ 1. The type edge coloring of G′ is the map
χ ′ : E ′ → {1, . . . , t−1} defined by χ ′(e) = t +1− i for an edge e ∈ E ′ of type i. By
Lemma 2.8(a), χ ′ is a proper edge coloring of G′.

Lemma 2.12. Let G = (A,B,E) be a bipartite graph with proper edge coloring
given by χ : E → {1, . . . ,d}. Let G′ = (A,B,E ′) be the result of the lexicographic
thinning of G. Let χ ′ be the type edge coloring of G′ and let k ≥ 2. If a subgraph
G′′ = (A,B,E ′′) of G′, with its edge coloring given by χ ′, has no (k′,A)-slow walk
for 2≤ k′ < k, then G′′, with its edge coloring given by χ , has no (k,B)-slow walk.

Notice that the k = 2 case of this lemma gives a second proof of Lemma 2.9.

Proof. Let W = v0v1 . . .v2k be a walk in G′′ starting at v0 ∈ B, and let its χ-coloring
be (c1,c2, . . . ,c2k). Assume that ci > ci+1 or ci < ci+1 for 1 ≤ i < 2k as required in
the definition of a (k,B)-slow walk. We need to show c1 < c2k.

We identify the colors of χ with the triplets (a, i,z) ∈ H as in the definition of
lexicographic thinning. We let c j = (a j, i j ,z j). The χ ′-coloring of W is (t + 1−
i1, . . . , t + 1− i2k). We have i j �= i j+1 for 1≤ j < 2k.

For 1 ≤ j < k, the colors c2 j and c2 j+1 are colors of distinct edges incident to
v2 j ∈ B, and so by Lemma 2.8(b), their class is the same: a2 j = a2 j+1. We consider
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lexicographic thinning, and so the order between c2 j and c2 j+1 is the same as the
order between their types: i2 j and i2 j+1. For 1 ≤ j < k/2, we have i2 j < i2 j+1, but
for k/2≤ j < k, we have i2 j > i2 j+1.

For 1 ≤ j ≤ k, the colors c2 j−1 and c2 j are colors of edges incident to v2 j−1 ∈
A. By Lemma 2.8(c), the classes of these colors do not agree, and the orderings
between the classes, between the types, and between the colors themselves are the
same. Thus, for 1≤ j ≤ k/2, we have a2 j−1 > a2 j and i2 j−1 > i2 j. For k/2 < j ≤ k,
we have a2 j−1 < a2 j and i2 j−1 < i2 j. Also, by Lemma 2.8(c) for all 1 ≤ j ≤ k, we
have P(a2 j−1,a2 j) = min(i2 j−1, i2 j).

The sequence a1,a2, . . . ,ak is monotone decreasing and it changes only in every
other step. The first positions of change between distinct consecutive elements
are i2, i4, . . . , i2�k/2�. So we have a1 > ak and P(a1,ak) = min(S1) for the set
S1 = {i2, i4, . . . , i2�k/2�}.

Similarly, ak,ak+1, . . . ,a2k is monotone increasing and it changes only in every
other step. The first positions of change between distinct consecutive elements are
i2�k/2�+1, . . . , i2k−3, i2k−1. So we have ak < a2k and P(ak,a2k) = min(S2) for the set
S2 = {i2�k/2�+1, . . . , i2k−3, i2k−1}.

Let’s consider an arbitrary value 1≤ j < k/2 and let 2≤ k′= k−2 j+1< k. Con-
sider the 2k′ long middle portion W ′ of the walk W : Let W ′ = v2 j−1v2 j . . .v2k−2 j+1.
This is a walk of length 2k′ in G′′ starting at v2 j−1 ∈ A. By our assumption on G′′,
this is not a (k′,A)-slow walk if considered with the coloring χ ′. But the χ ′-coloring
of W ′ is (t + 1− i2 j, t + 1− i2 j+1, . . . , t + 1− i2k−2 j+1), and the consecutive values
in this list compare as required for a (k′,A)-slow walk. Therefore, we must have
t + 1− i2 j < t + 1− i2k−2 j+1.

We have just proved i2 j > i2k−2 j+1 for 1 ≤ j < k/2. For even k and j = k/2,
the same formula compares the types of two consecutive edges of W , and we have
already seen its validity in that case too. For every element of the set S1, we have
just found a smaller element of the set S2. Therefore, min(S1) > min(S2). Using
that a2k > ak and P(a1,ak) = min(S1) > min(S2) = P(ak,a2k), Lemma 2.7 gives
a1 < a2k. This implies c1 < c2k and finishes the proof of the lemma. ��

Lemma 2.13. Let G = (A,B,E) be a bipartite graph with proper edge coloring
given by χ : E→{1, . . . ,d}. Let G′ = (A,B,E ′) be the result of the reversed thinning
of G. Let χ ′ be the type edge coloring of G′, and let k ≥ 2. If a subgraph G′′ =
(A,B,E ′′) of G′, with its edge coloring given by χ ′, has no (k′,A)-slow walk for
2≤ k′ < k, then G′′, with its edge coloring given by χ , has no k-fast walk.

Notice that the k = 2 case of this lemma gives a second proof of Lemma 2.10.

Proof. The proof of this lemma is very similar to that of Lemma 2.12.
Let W = v0v1 . . .v2k be a walk in G′′, and let its χ-coloring be (c1,c2, . . . ,c2k).

Assume that c1 > c2 > · · · > ck < ck+1 < ck+2 < · · · < c2k, as required in the
definition of a k-fast walk. We need to show c1 < c2k. Instead, we prove the slightly
stronger statement that the class of c1 is smaller than the class of c2k. We first do
that for walks starting in B: Assume that v0 ∈ B.
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We identify the colors of χ with the triplets (a, i,z) ∈ H as in the definition of
reverse thinning. We let c j = (a j, i j,z j). Note that the χ ′-coloring of W is (t + 1−
i1, . . . , t + 1− i2k). We have i j �= i j+1 for 1≤ j < 2k.

For 1 ≤ j < k, the colors c2 j and c2 j+1 are colors of distinct edges incident to
v2 j ∈ B, so by Lemma 2.8(b) their classes are the same: a2 j = a2 j+1. Thus, the
order between c2 j and c2 j+1 is determined by the order between i2 j and i2 j+1, but
as we use the reversed ordering in H, the order between c2 j and c2 j+1 is reversed
compared to the order between i2 j and i2 j+1. Specifically, for 1≤ j < k/2, we have
i2 j < i2 j+1, and for k/2≤ j < k, we have i2 j > i2 j+1. For 1≤ j ≤ k, the colors c2 j−1

and c2 j are colors of edges incident to v2 j−1 ∈ A. By Lemma 2.8(c), the classes of
these colors do not agree, and the orderings between the classes, between the types,
and between the colors themselves are the same. Thus, for 1 ≤ j ≤ k/2, we have
a2 j−1 > a2 j and i2 j−1 > i2 j. For k/2 < j ≤ k, we have a2 j−1 < a2 j and i2 j−1 < i2 j.
Also, by Lemma 2.8(c), for 1≤ j ≤ k, we have P(a2 j−1,a2 j) = min(i2 j−1, i2 j).

At this point we have the same ordering of the classes and types of the coloring
of W as in the proof of Lemma 2.12. We also have the same assumption that G′′,
with the edge coloring χ ′, has no (k′,A)-slow walk for 2 ≤ k′ < k. So we arrive at
the same conclusion, a1 < a2k, with an identical proof.

We finish the proof of the lemma by considering the alternative case when W
starts in A. Now c1 and c2 are colors of edges sharing a vertex v1 ∈ B, and so
by Lemma 2.8(b) their classes are equal. Similarly, the classes of c2k−1 and c2k

are equal, so it is enough to prove that the class of c2 is smaller than the class of
c2k−1. For k = 2, this follows directly from Lemma 2.8(c). For k > 2, the walk
W ′ = v1v2 . . .v2k−1 is exactly the type of walk we considered for k0 = k− 1. As it
starts in B, we have already proved that the class of its first edge is smaller than the
class of its last edge. This finishes the proof of the case of a walk starting in A and
also the proof of Lemma 2.13. ��

Lemmas 2.12 and 2.13 set the stage to use the thinning procedures recursively to
get subgraphs avoiding (k,B)-slow or k-fast walks. In a single application of either
thinning procedure, the number d of colors in the original coloring is replaced by
t − 1 = �logd/2� colors in the type coloring. Here 4(t − 1) > log(4d), so after k
recursive calls, we still have more than log(k)(4d)/4 colors, where log(k) stands
for the k-times iterated log functions. [In the degenerate case where the number of
colors is decreased to 1, the graph is a matching and no further thinning is required.]
Making optimal random choices, we may assume that each thinning procedure
yields at least the expected number of edges. Thus, the ratio of the number of edges
and the number of colors decreases by at most a factor of 240 in each iteration.
Clearly, the only interesting case is when the original average degree was Θ(d), in
which case the average degree after k iterations remains Θ(log(k) d). The constant
of proportionality depends on k.

Theorem 2. Let G = (A,B,E) be a bipartite graph with a d-edge coloring and let
k ≥ 2. There exists a subgraph G′ = (A,B,E ′) of G without a (k′,B)-slow walk for
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any 2≤ k′ ≤ k and with |E ′|> log(k−1) d
4·240k−1d

|E|. Similarly, there exists a subgraph G′′ =

(A,B,E ′′) of G without a k′-fast walk for any 2≤ k′ ≤ k and with |E ′′|> log(k−1) d
4·240k−1d

|E|.

Proof. We apply the thinning procedures recursively. First, we use lexicographic
and reversed thinning to obtain subgraphs G1 and G2 of G, respectively. We make
sure these graphs have at least as many edges as the expected number given in
Lemma 2.11. If k = 2, we are done; G′ = G1 and G′′ = G2 satisfy the conditions
of the theorem. Otherwise, we consider G1 and G2 with the type edge coloring. We
find recursively their subgraphs G′ and G′′, respectively, avoiding (k′,A)-slow walks
for 2 ≤ k′ ≤ k− 1. This can be done because the sides A and B play symmetric
roles. Finally, we apply Lemmas 2.12 and 2.13 to see that the subgraphs G′ and
G′′, if considered with the original edge coloring of G, avoid all walks required in
the theorem. The number of edges guaranteed in the subgraphs is calculated in the
paragraph preceding the theorem and is at least the stated bound. ��

2.4 k-Flat Graphs

In this subsection, we establish that by removing a linear number of edges from a
k-fast walk free graph, the resulting graph has special structural properties. We note
here that the recursive thinning construction that we used to arrive at k-fast walk-free
graphs results in a graph that itself is k-flat as defined below. We chose, however, to
keep the inductive part of the proof simple and concentrated only on (k,B)-slow and
k-fast walks. We derive the more complicated properties from these simpler ones.
Note that in this subsection we do not use that our graphs are bipartite.

Let G be a graph and χ a proper edge coloring of G. We define the shaving
of the graph G to be the subgraph obtained from G by deleting the edge with the
largest color incident to every (nonisolated) vertex. Clearly, we delete at most n
edges, where n is the number of vertices in G. We define the k-shaving of G to be
the subgraph obtained from G by repeating the shaving operation k times. Clearly,
we delete at most kn edges for a k-shaving.

Let W be a walk of length m in a properly edge-colored graph G, and assume
its coloring is (c1, . . . ,cm). We define the height function hW from {1, . . . ,m} to the
integers recursively, letting hW (1) = 0 and

hW (i+ 1) =

{
hW (i)+ 1 if ci+1 > ci

hW (i)− 1 if ci+1 < ci

for 1 ≤ i < m. Note that hW (i)+ i is always odd. This function considers how the
colors of the edges in the walk change, in particular, how many times the next color
is larger and how many times it is smaller than the previous color.

We call a graph G with proper edge coloring k-flat if the following is true for
every walk W in G. Let m ≥ 2 be the length of W , let (c1, . . . ,cm) be the coloring
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of W , and assume that the height function satisfies hW (i) < 0 for 2 ≤ i ≤ m. If
m≤ 2k+ 1 or hW (i)≥−k for all i, then c1 > cm.

Lemma 2.14. Let G be a properly edge-colored graph. Let k ≥ 1 and assume G
has no k′-fast walk for 2≤ k′ ≤ k. Then the (k− 1)-shaving G′ of G is k-flat.

Proof. We prove the following slightly stronger statement by induction on m. Let
W = v0 . . .vm be a walk of length m in G with coloring (c1, . . . ,cm). Let 1 ≤ j ≤ m
be the largest index such that hW ( j) = 1− j. Assume the walk v jv j+1 . . .vm is in the
(k− 1)-shaving G′ of G. Also, assume that hW (i) < 0 for 2 ≤ i ≤ m. If m ≤ 2k+ 1
or hW (i) ≥ −k for all i, then we claim c1 > cm. This statement is stronger than
Lemma 2.14 since it allows for the initial decreasing segment of W to be outside G′.

If j = m, the statement of the claim is obvious from the definition of the height
function. This covers the m = 2 and m = 3 base cases. Let m ≥ 4, and assume the
statement is true for walks of length m− 1 and m− 2.

If j > k + 1, we have hW ( j) = 1− j < −k, and so we must have m ≤ 2k+ 1.
Consider the walk W ′ = v1 . . .vm of length m− 1. We have hW ′(i) = 1− i < 0 for
2≤ i < j and hW ′(i)≤ hW ′( j−1)+(i− ( j−1))= 3+ i−2 j < 0 for j ≤ i≤m−1.
Thus, the inductive hypothesis is applicable, and we get c1 > c2 > cm.

Finally, consider the j ≤ k + 1 case. As the trivial j = m case was already
dealt with, we also assume j < m. Clearly, hW (2) < 0 implies j ≥ 2. We chose a
w0 . . .wj−2 walk in G ending at wj−2 = v j and with coloring (c′1, . . . ,c

′
j−2) satisfying

c′1 > c′2 > · · ·> c′j−2 > c j+1. This is possible since the edge v jv j+1 is in the (k−1)-
shaving G′ of G, so we can find the edge wj−3wj−2 in the (k− 2)-shaving of G,
wj−4wj−3 in the (k− 3)-shaving, and so on. We must have c1 > c′1, as otherwise
w0w1 . . .wj−3v jv j−1 . . .v0 is a ( j− 1)-fast walk, and no such walk exists in G. Now
consider the walk W ′=w0w1 . . .wj−3v jv j+1 . . .vm. This is a walk of length m−2 and
satisfies hW ′(i) = 1− i for 1≤ i≤ j−1 and hW ′(i) = hW (i+2) for j−1≤ i≤m−2.
All requirements of the inductive hypothesis are satisfied, so we have c′1 > cm. Thus,
c1 > c′1 > cm, as claimed. ��

Corollary 2.1. Let G = (A,B,E) be a bipartite graph with a d-edge coloring
and let k ≥ 2. There exists a k-flat subgraph G′ = (A,B,E ′) of G with |E ′| >
log(k−1) d
4·240k−1d

|E|− (k− 1)(|A|+ |B|).

Proof. Combine Theorem 2 with Lemma 2.14 and the fact that (k− 1)-shaving
keeps all but at most (k− 1)(|A|+ |B|) edges of G. ��

The final lemma in this section is a simple but useful observation on k-flat graphs.
It can also be stated for longer walks with height function bounded from below, but
for simplicity we restrict attention to short walks.

Lemma 2.15. Let k ≥ 1 and let G be a properly edge-colored k-flat graph. Let
W = v0 . . .vm be a walk in G of length m ≤ 2k + 1 with coloring (c1, . . . ,cm). If
c1 ≥ ci for all 1≤ i≤ m, then hW (i)≤ 0 for all 1≤ i≤ m.
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Proof. We prove the contrapositive statement. Assume hW (i)> 0 for some 1≤ i≤
m, and let i0 be the smallest such index. Clearly, i0 ≥ 2, hW (i0) = 1, and for the walk
W ′ = vi0vi0−1 . . .v0, we have hW ′(i) = hW (i0− i+ 1)− 1 < 0 for 1 < i ≤ i0. So by
the definition of k-flatness, we have ci0 > c1. ��

3 Locally Plane Graphs

Locally plane graphs were introduced in the paper [7] (though the name appears first
in this chapter). That paper gives a simple construction for 3-locally plane graphs.
We recall (a simplified version of) the construction, as it is our starting point.

3.1 Construction of 3-Locally Plane Graphs in [7]

Let d ≥ 1 and consider the orthogonal projection of (the edge graph of) the d-
dimensional hypercube into the plane. A suitable projection of the “middle layer” of
the hypercube provides the 3-locally plane graph. Here is the construction in detail:

Let d ≥ 1 be fixed and set b = �d/2�. The bit at position i in x ∈ {0,1}d (the ith
coordinate) is denoted by xi for 1 ≤ i ≤ d. We let A = {x ∈ {0,1}d | ∑d

i=1 xi = b}
and B = {x∈ {0,1}d |∑d

i=1 xi = b+1}. The abstract graph underlying the geometric
graph to be constructed is Gd = (A,B,E) with (x,y) ∈ E if x∈ A, y∈ B, and x differs
from y in a single position. This is the middle layer of the d-dimensional hypercube.
We define the edge coloring χ : E →{1, . . . ,d} that colors an edge e = (x,y) ∈ E by
the unique position χ(e) = i with xi �= yi. Notice that this is a proper edge coloring.
The number of vertices is n= |A|+ |B|=

(d
b

)
+
( d

b+1

)
≤ 2d , and the number of edges

is |E|=
(d

b

)
(d− b)> nd/4. The average degree is greater than d/2≥ logn/2.

To make the abstract graph Gd into a geometric graph, we project the hypercube
into the plane. We give two possible projections here. The first is more intuitive and
is closer to the actual construction in [7]. We let ai = (10i, i ·10i) for 1 ≤ i≤ d and
use this vector as the projection of the edges of color i. We will use that among the
vectors ai, a higher index means a higher slope and much greater length. We identify
the vertex x ∈ A∪B with the point Px = ∑d

i=1 xiai. The edges are represented by the
straight-line segment connecting their endpoints.

We give the second construction to obtain a graph where all edges are very close
in length and direction. Let 0 < ε < 10−d be arbitrary, consider the vectors bi =
(1+ 10iε,εd+1−i(1+ 10iε)), and identify a point x ∈ A∪B with Qx = ∑d

i=1 xibi.
It is easy to verify that we get a geometric graph in both cases (i.e., the vertices

are mapped to distinct points and no edge passes through a vertex that is not its
endpoint). Note that edges of color i are all translates of the same vector ai or bi. We
do not introduce separate notations for the two geometric graphs constructed this
way, as they will only be treated separately in the proof of Lemma 3.1, where we
refer to them as the first and second realizations of Gd .
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3.2 Self-Intersecting Paths in Gd

In [7], a graph very similar to Gd was shown to be 3-locally plane. Here we do more;
we analyze all self-intersecting paths of Gd as follows.

Lemma 3.1. Let W be a walk in Gd with coloring (c1, . . . ,cm) satisfying c1 ≥ cm.
Assume that W and all its nonempty subwalks have a unique edge of maximal color.
The first and last edges of W cross in either geometric realization if and only if m
is even and there is an odd index 1 < j < m satisfying c1 > cm > c j ≥ ci for all
1 < i < m.

Proof. Let W = v0 . . .vm. Note that the first and last edges cross if and only if v0 and
v1 are on different sides of the line � through vm−1 and vm and, similarly, vm−1 and
vm are on different sides of the line �′ through v0 and v1. To analyze such separations,
consider the projection πi to the y-axis parallel to edges of color i.

Let’s consider the first realization of Gd with the vectors ai. We have πi(x,y) =
y− ix, and the projection of the vector a j is of length |i− j|10 j. Thus, higher-colored
edges map to longer intervals (except color i itself). Under the projection πc1 , the
direction of the highest colored edge in the walks v1 . . .vm−1 (respectively, v1 . . .vm)
determines which side of the line �′ the point vm−1 (respectively, vm) lies. Indeed,
this highest color cannot be c1, so the projections of the other edges will be much
shorter, and by the unique maximal color property, we see that the walk contains at
most 2k−1 edges having the kth largest color, so these shorter projections cannot add
up to be more than the projection of the largest edge.

We can only have vm−1 and vm lying on different sides of �′ if these edges of
maximal color are distinct; thus, we must have cm > ci for all 1 < i < m. From
c1 ≥ cm and the unique maximal color property, we have c1 > cm. Taking c j to
maximize ci for 1 < i < m (this is unique again), we have c1 > cm > c j ≥ ci for all
1 < i < m.

It is left to prove that the first and last edges of W cross if and only if m is even
and j is odd.

To prove this claim, one has to use that Gd is bipartite with vertex sets A and B,
and every edge of color c is a translate of the vector ac with its head in B and tail in
A. Thus, the vector vi−1vi is either aci or −aci depending on the parity of i. Which
sides of �′, vm−1, and vm lie is determined by the projections of the jth and last edge,
so they are on opposite sides if j and m have different parities. Similarly, the sides
of � on which v0 and v1 lies are determined by the πcm projection of the first and
jth edges, but as we have c1 > cm > c j, they are on different sides if 1 and j have
the same parity. See Fig. 1 for a rough depiction of all four cases. This finishes the
proof of the claim and the part of the lemma regarding the first realization of Gd .

The proof for the second realization of Gd as a geometric graph (involving the
vectors bi) is slightly more complicated. We have πi(x,y)= y−εd+1−ix and πi(b j)=
εd+1− j(1+ 10 jε)− 10 jεd+2−i− εd+1−i. The εd+1−i-terms alternate in sign in the
projection on the edges and cancel completely for a walk of even length. For a
walk of odd length, a single such term remains, but it is dominated by the other
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Fig. 1 Rough picture of W in the first realization of Gd in the four cases according to the parities
of m and j. The scale is set to match the edge v j−1v j of color c j , shorter edges are approximated
by zero, and only initial segments of the two longer edges are depicted

terms if the walk has an edge with color above i. If, however, no such edge exists,
the remaining uncanceled εd+1−i-term dominates the other terms in the projection.
Thus, if the projection of the unique edge with the largest color of a walk has color
c > i or if c < i but the walk has even length, then the sign of the πi projection of the
edge with the largest color determines the sign of the projection of the entire walk.
But in case c < i and the walk has odd length, then the noncancelling εd+1−i-term
determines the sign.

Let the edge v j−1v j be the one with the unique largest color in the walk
v1 . . .vm−1. A case analysis of the parities of j, m and whether c j > c1 or c j > cm

hold shows that the first and last edges of W cross if and only if cm > c j, j is odd,
and m is even—as claimed in the lemma. ��

We call vm . . .v0 the reverse of the walk W = v0 . . .vm.

Lemma 3.2. Let k≥ 1 and let G′ be a k-flat subgraph of Gd. If the length of a walk
W in G′ does not exceed 2k+ 1, then W has unique edge of largest color.

Proof. Let W be a walk of length 3≤m≤ 2k+1 in G′ with coloring (c1, . . . ,cm) and
assume the largest color is not unique. We may assume c1 = cm > ci holds for all 1<
i < m; otherwise, one can take a suitable subwalk of W . By Lemma 2.15, we have
hW (m)≤ 0. Consider W ′ the reverse of the walk W . Clearly, hW ′(m) =−hW (m), but
also by Lemma 2.15, we have hW ′(m)≤ 0. So we must have hW (m) = 0 and m must
be odd.

The contradiction that proves the statement of the lemma comes from the simple
observation that between two consecutive appearances of a color in any walk of Gd ,
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there always are an even number of edges, so m must be even. To see this, recall that
Gd is bipartite with sides A and B, where A consists of the 0–1 sequences of length
d with �d/2� ones, while the 0–1 sequences in B contain one more ones. The A end
of an edge of color c has 0 at position c, while the B end of this edge has 1 there.
Along edges of other colors, bit c does not change. Thus, if a walk traverses an edge
of color c from A to B say, then along the walk, bit c remains 1 until the next time
the walk traverses an edge of color c, and this has to be from B to A. ��

We note that Lemma 3.2 immediately implies that the girth of a k-flat subgraph
of Gd is at least 2k+ 2. This estimate can be improved by observing that any cycle
in Gd has an even number of edges of any color (one has to flip a bit even times to
get beck to the original state). In particular, any cycle has at least two occurrences
of the largest color. These edges break the cycle into two paths sharing two edges.
Both paths have to be of length at least 2k+ 2; the length of the cycle is at least
4k+ 2.

As every properly edge-colored graph is 1-flat, the k = 1 case of the next lemma
establishes that Gd is 3-locally plane.

Lemma 3.3. For any k ≥ 1, any k-flat subgraph of Gd is (2k+ 1)-locally plane in
either realization.

Proof. Let G′ be a k-flat subgraph of Gd . We need to show that no walk (or path) W
of length m ≤ 2k+ 1 is self-intersecting. It is clearly enough to show that the first
and last edges of W do not cross, and we may assume that the color of the first edge
is not smaller than that of the last edge (otherwise, simply consider the same walk
reversed). By Lemma 3.2, W and all its subwalks have a unique edge of maximal
color, so Lemma 3.1 applies. It is enough to show that the coloring (c1, . . . ,cm) of
W does not satisfy the conditions of Lemma 3.1. Assume the contrary. So m is even,
and there is an odd index j such that c1 > cm > c j ≥ ci for all 1 < i < m.

Consider the walk W1 = vmvm−1 . . .v j−1 of length m− j + 1. Its coloring is
(cm, . . . ,c j) and cm is its largest color. By Lemma 2.15, hW1(m− j + 1) ≤ 0. In
fact, as m− j+ 1 is even, hW1(m− j+ 1) is odd, so we have hW1(m− j+ 1)≤−1.

Consider the walk W2 = v jv j−1 . . .v1 of length j−1 and its coloring (c j, . . . ,c2).
The largest color in W2 is c j, so we have hW2( j−1)≤ 0 by Lemma 2.15. And again,
by parity considerations, hW2( j− 1)≤−1.

It is easy to see that hW (m) = −1− hW2( j− 1)− hW1(m− j + 1). So we have
hW (m) ≥ −1 + 1 + 1 = 1, contradicting Lemma 2.15. The contradiction proves
Lemma 3.3. ��

Theorem 3. For any fixed k > 0 and large enough n, there exists a (2k+1)-locally

plane graph on n vertices having at least ( log(k) n
240k − k)n edges. Given two arbitrary

disks in the plane, one can further assume that all edges of these graph connect a
vertex inside one disk to one inside the other disk.

Proof. Simply combine the results of Corollary 2.1 and Lemma 3.3. If n is not the
size of the vertex set of Gd for any d, add isolated vertices to the largest Gd with
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fewer than n vertices. Use the second realization of Gd with a small enough ε > 0
to obtain a geometric graph with all edges connecting two small disks and apply a
homothety and a rotation to get to the desired disks. ��

4 Discussion on Optimality of Thinning

The maximum number of edges of a 3-locally plane graph on n vertices isΘ(n logn),
as proved in [7]. The lower bound is reproduced here by the k = 1 case of Theorem 3,
which is therefore tight. The upper bound of [7] extends to x-monotone topological
graphs, i.e., when the edges are represented by curves with the property that every
line parallel to the y-axis intersects an edge at most once. Without this artificial
assumption on x-monotonicity, only much weaker upper bounds are known. For
higher values of k, we do not have tight results even if the edges are straight-line
segments as considered in this chapter. While the number of edges in a k-locally
plane graph constructed here deteriorates very rapidly with the increase of k, the
upper bound hardly changes. In fact, the only known upper bound better than
O(n logn) is for 5-locally plane graphs: They have O(n logn/ loglogn) edges, as
shown in [7]. Slightly better bounds are known for geometric (or x-monotone
topological) graphs with the additional condition that a vertical line intersects every
edge. If such a graph is (2k)-locally plane for k≥ 2, then it has O(n log1/k n) edges.
The first realization of Gd does not satisfy this condition, but the second one does.
Still, the lower and upper bounds for this restricted problem are far apart: For 4-
locally plane graphs with a cutting line, the upper bound on the number of edges is
O(n

√
logn), while the construction gives Ω(n loglogn).

Although we cannot establish that the locally plane graphs constructed are
optimal, we can prove that the thinning procedure we use is optimal within a
constant factor. It follows that any 4-locally plane subgraph of either realization
of Gd has O(n loglogn) edges. This optimality result below refers to a single step of
the thinning procedure. It would be interesting to establish a strong upper bound on
the number of edges of a k-flat graph for k ≥ 3.

Let us mention here that the thinning procedures described in this chapter found
application in the extremal theory of 0-1 matrices; see [12], where the result is
shown to be optimal within a constant factor. Consider an n by n 0-1 matrix that
has no 2 by 3 submatrix of either of the following two forms:(

1 1 ∗
1 ∗ 1

)
,

(
1 ∗ 1
∗ 1 1

)
,

where the ∗ can represent any entry. The maximal number of 1 entries in such a
matrix isΘ(n loglogn), as proved in [12]. The construction proving the lower bound
is based on lexicographic thinning.
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The following lemma shows that the number of edges in the subgraphs claimed
in Lemma 2.6 and Theorem 1 is optimal in a very strong sense: No properly edge-
colored graph with significantly more edges than the ones guaranteed by the above
results can avoid heavy paths (slow or fast walks, respectively).

Lemma 4.1. Let G=(A,B,E) be a bipartite graph with proper edge coloring given
by χ : E →{1, . . . ,d}.

a) If G does not have a heavy path, then |E| ≤ 2
√

d|A| |B| ≤ (|A|+ |B|)
√

d.
b) If G does not have a slow walk, then |E| ≤ (|A|+ |B|)(logd + 2).
c) If G does not have a fast walk, then |E| ≤ 2(|A|+ |B|)(logd+ 2).

Proof. For any vertex z ∈ A∪B, denote by m(z) = max(χ(e)), where the maximum
is for edges e incident to z. For an edge e = (x,y) ∈ E , we define its weight to be
w(e) = m(x)− χ(e), while its B-weight is wB(e) = m(y)− χ(e). Clearly, both w(e)
and wB(e) are integers in [0,d− 1].

To prove part (a) of the lemma, assume G does not contain a heavy path. We
set a threshold parameter t = �

√
d|A|/|B|� and call an edge e B-light if wB(e) < t;

otherwise, e is B-heavy.
All the edges incident to a vertex y∈ B have different colors; thus, they also have

different B-weights, so at most t of them can be B-light. The total number of B-light
edges is at most |B|t ≤

√
d|A| |B|.

Now consider two edges e1 = (x,y1) and e2 = (x,y2) incident to vertex x ∈ A.
Assume χ(e2) ≤ χ(e1). If wB(e2) > 0, we can extend the path formed by these
two edges with the edge e3 incident to y2 having maximum color χ(e3) = m(y2).
Clearly, χ(e3) = χ(e2) +wB(e2), and the resulting path is heavy unless χ(e2) >
χ(e1) +w(e2). Therefore, the number of B-heavy edges incident to x is at most
d/(t + 1). The total number of B-heavy edges is at most |A|d/(t + 1)≤

√
d|A| |B|.

For the total number of edges, we have |E| ≤ 2
√

d|A| |B| ≤ (|A|+ |B|)
√

d.
For parts (b) and (c) of the lemma, consider an edge e = (x,y) ∈ E . If w(e) = 0,

we call the edge e maximal. Clearly, there are at most |A| maximal edges. If e is not
maximal, we define n(e) to be the “next-larger colored edge at x;” i.e., n(e) is the
edge in E having minimal color χ(n(e)) among edges incident to x and satisfying
χ(n(e)) > χ(e). We define the gap of e to be g(e) = χ(n(e))− χ(e). Clearly, 0 <
g(e)≤ w(e). We call the edge e heavy if w(e) > 2g(e); otherwise, e is light. Recall
that for maximal edges, n(e) and g(e) are not defined and maximal edges are neither
light nor heavy.

Let e1 and e2 be distinct edges in E incident to a vertex x ∈ A. If χ(e1)< χ(e2),
then w(e1) ≥ w(e2) + g(e1). If e1 is light, w(e1) ≥ 2w(e2) follows. Therefore, at
most �logd� light edges are incident to x ∈ A. Thus, the total number of light edges
in E is at most �logd�|A|.

For part (b) of the lemma, assume G does not contain a slow walk. Let e2 =(x2,y)
and e3 = (x3,y) be distinct nonmaximal edges in E and assume χ(e2) < χ(e3). Let
e1 = n(e2), and let e4 be the maximal edge incident to x3 in G. We have χ(e1) =
χ(e2)+ g(e2) and χ(e4) = χ(e3)+w(e3). The edges e1, e2, e3, and e4 cannot form
a slow walk. As χ(e1) > χ(e2) < χ(e3) < χ(e4), we must have χ(e4) < χ(e1).
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This implies g(e2) > w(e3), and if e2 is heavy, w(e2) > 2w(e3). Therefore, at most
�logd� heavy edges can be incident to y ∈ B. The total number of heavy edges in G
is at most (�logd�|B|.

For the total number of edges, we add the bound obtained for light, heavy, and
maximal edges and get |E| ≤ (|A|+ |B|)�logd�+ |A|.

Finally, for part (c) of the lemma, we assume G does not contain a fast walk. Let
E1 consist of the edges (x,y) ∈ E for which m(x) ≥ m(y). Assume without loss of
generality that |E1| ≥ |E|/2. If this is not the case, consider the same graph with its
sides switched. We use here that the definition of a fast walk and the claimed bound
on the number of edges are both symmetric in the color classes.

As in the previous case, consider two nonmaximal edges e2 = (x2,y) and e3 =
(x3,y) in E1 with χ(e2)< χ(e3). Let e1 be the maximal edge incident to x2 and let
e4 = n(e3). As χ(e2)< χ(e3) < χ(e4) but G does not contain a fast walk, we must
have χ(e1)< χ(e4). As e2 ∈ E1, we must also have χ(e1) = m(x2)≥m(y)≥ χ(e3).
If e3 is heavy, we also have

χ(e3)+w(e3)−m(y) > χ(e3)+ 2g(e3)−m(y)
≥ 2(χ(e3)+ g(e3)−m(y))
= 2(χ(e4)−m(y))
> 2(χ(e1)−m(y))
= 2(χ(e2)+w(e2)−m(y)).

For all the heavy edges e ∈ E1 incident to y ∈ B, the values χ(e) +w(e)−m(y)
increase strictly more than by a factor of 2. As these values are integers from [0,d−
1], there are at most �logd� heavy edges in E1 incident to y. The total number of
heavy edges in E1 is at most �logd�|B|.

For the total number of edges in E1, we sum our bound on heavy edges in E1

and the bounds on the light and maximal edges in E . We obtain |E1| ≤ (|A|+
|B|)�logd�+ |A|. Finally, we get |E| ≤ 2(|A|+ |B|)�logd�+ 2|A|. ��
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A Better Bound for the Pair-Crossing Number

Géza Tóth

Abstract The crossing number CR(G) of a graph G is the minimum possible
number of edge crossings in a drawing of G, and the pair-crossing number
PAIR-CR(G) is the minimum possible number of crossing pairs of edges in a
drawing of G. Clearly, pair-cr(G)≤ cr(G). We show that for any graph G, cr(G) =
O(pair-cr(G)7/4 log3/2(pair-cr(G))).

1 Introduction

In a drawing of a graph G, vertices are represented by points and edges are
represented by Jordan curves, in a plane, connecting the corresponding points. We
assume that the edges do not pass through vertices, any two edges have finitely many
common points, and each of them is either a common endpoint, or a proper crossing.
We also assume that no three edges cross at the same point.

The crossing number CR(G) is the minimum number of edge crossings (i.e.,
crossing points) over all drawings of G. The pair-crossing number PAIR-CR(G) is
the minimum number of crossing pairs of edges over all drawings of G. Clearly, for
any graph G, we have

PAIR-CR(G)≤ CR(G).

It is still an exciting open question whether CR(G) = PAIR-CR(G) holds for all
graphs G.

Pach and Tóth [5] proved that CR(G) cannot be arbitrarily large if PAIR-CR(G)
is bounded; namely, for any G, if PAIR-CR(G) = k, then CR(G) ≤ 2k2. Valtr [9]
managed to improve this bound to CR(G) ≤ 2k2/ logk. Based on the ideas of Valtr,
the present author [8] improved it to CR(G)≤ 9k2/ log2 k.

G. Tóth (�)
Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
e-mail: geza@renyi.hu

J. Pach (ed.), Thirty Essays on Geometric Graph Theory,
DOI 10.1007/978-1-4614-0110-0 30,
© Springer Science+Business Media New York 2013

563



564 G. Tóth

In this note, using a different approach, we obtain a further improvement.

Theorem. For any graph G, if PAIR-CR(G) = k, then CR(G) = O(k7/4 log3/2 k).

For the proof, we need some results about string graphs. These are introduced
in Sect. 2. In Sect. 3, we give the short proof of the theorem. There are many other
versions of the crossing number; for a survey, see [1, 6, 7].

2 String Graphs

A string graph is the intersection graph of continuous arcs in the plane. More
precisely, vertices of the graph correspond to continuous curves (strings) in the plane
such that two vertices are connected by an edge if and only if the corresponding
strings intersect each other.

Suppose that G(V,E) is a graph of n vertices. A separator in a graph G is a
subset S ⊂V for which there is a partition V = S∪A∪B, |A|, |B| ≤ 2n/3, and there
is no edge between A and B. According to the Lipton–Tarjan separator theorem, [4],
every planar graph has a separator of size O(

√
n). This result has been generalized

in several directions, for graphs drawn on a surface of bounded genus, graphs
with a forbidden minor, intersection graphs of balls in the d-dimensional space,
intersection graphs of Jordan regions, intersection graphs of convex sets in the plane,
and, finally, for string graphs [2, 3].

Theorem A ([3]). There is a constant c such that for any string graph G with m
edges, there is a separator of size at most cm3/4√logm.

3 Proof of Theorem

Let c be the constant in Theorem A. In a drawing D of a graph G in the plane,
call those edges that participate in a crossing crossing edges, and those that do not
participate in a crossing empty edges.

Lemma. Suppose thatD is a drawing of a graph G in the plane with l > 0 crossing
edges and k > 0 crossing pairs of edges. Then G can be redrawn such that (i)
empty edges are drawn the same way as before, (ii) crossing edges are drawn
in the neighborhood of the original crossing edges, and (iii) there are at most
6ck7/4 log3/2 l edge crossings.

Proof of Lemma. The proof is by induction on l. For l = 1, the statement is trivial.
Suppose that the statement has been proved for all pairs (l′,k′), where l′ < l, and
consider a drawing of G with k crossing pairs of edges, such that l edges participate
in a crossing. Obviously,

(l
2

)
≥ k, and 2k ≥ l; therefore, 2k≥ l >

√
k.
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Let V denote the vertex set of G and let E (resp., F) denote the set of empty (resp.,
crossing) edges of G. We define a string graph H as follows. The vertex set F of H
corresponds to the crossing edges of G. Two vertices are connected by an edge if the
corresponding edges cross each other. Note that the endpoints do not count; if two
edges do not cross, the corresponding vertices are not connected even if the edges
have a common endpoint. The graph H is a string graph; it can be represented by the
crossing edges of G, as strings, with their endpoints removed. It has l vertices and
k edges. By Theorem A, H has a separator of size ck3/4√logk. That is, the vertices
can be decomposed into three sets, F0, F1, and F2, such that (1) |F0| ≤ ck3/4√logk,
(2) |F1|, |F2| ≤ 2l/3, (3) there is no edge of H between F1 and F2.

This corresponds to a decomposition of the set of crossing edges F into three
sets, F0, F1, and F2, such that (1) |F0| ≤ ck3/4√logk, (2) |F1|, |F2| ≤ 2l/3, (3) in
drawingD, edges in F1 and in F2 do not cross each other.

For i = 0,1,2, let |Fi| = li. Let G1 = G(V,E ∪F1) and G2 = G(V,E ∪F2). Then
in the drawing D of the graph, Gi has li crossing edges. Denote by ki the number of
crossing pairs of edges of Gi in drawingD. Then we have k1 + k2 ≤ k, l1, l2 ≤ 2l/3,
and l1 + l2 + l0 = l.

For i = 1,2, apply the induction hypothesis for Gi and drawing D. We obtain a
drawingDi satisfying the conditions of the lemma: (1) Empty edges drawn the same
way as before; (2) crossing edges are drawn in the neighborhood of the original

crossing edges; and (3) there are at most 6ck7/4
i log3/2 li edge crossings.

Consider the following drawing D3 of G. (1) Empty edges are drawn the same
way as inD, D1, andD2; (2) for i = 1,2, edges in Fi are drawn as inDi; (3) edges in
F0 are drawn as in D. Now count the number of edge crossings (crossing points) in
the drawingD3. Edges in E are empty, edges in F1 and in F2 do not cross each other,

and there are at most 2ck7/4
i log3/2 li crossings among edges in Fi. The only problem

is that edges in F0 might cross edges in F1∪F2 and each other several times, so we
cannot give a reasonable upper bound for the number of crossings of this type. Color
edges in F1 and F2 blue, and edges in F0 red. For any piece p of an edge of G, let
BLUE(p) [resp., RED(p)] denote the number of crossings on p with blue (resp., red)
edges of G. We will apply the following transformations.

REDUCECROSSINGS(e, f ) Suppose that two crossing edges, e and f , cross twice,
say, in X and Y . Let e′ (resp., f ′) be the piece of e (resp., f ) between X and Y .
If BLUE(e′) < BLUE( f ′), or BLUE(e′) = BLUE( f ′) and RED(e′) ≤ RED( f ′), then
redraw f ′ along e′ from X to Y . Otherwise, redraw e′ along f ′ from X to Y . See
Fig. 1.

Observe that REDUCECROSSINGS might create self-crossing edges, so we need
another transformation.

REMOVESELFCROSSINGS(e) Suppose that an edge e crosses itself in X . Then
X appears twice on e. Remove the part of e between the first and last appearances
of X .

Start with drawing D3 of G, and apply REDUCECROSSINGS and REMOVE-
SELFCROSSINGS recursively, as long as there are two crossing edges that cross
at least twice, or there is a self-crossing edge.
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Fig. 1 REDUCECROSSINGS(e, f )

Let BB, (resp., BR, RR) denote the number of blue–blue (resp., blue–red, red–
red) crossings in the current drawing of G. Observe that the triple (BB,BR,RR)
lexicographically decreases with each of the transformations. Indeed,

• if e and f are both blue edges, then REDUCECROSSINGS(e, f ) decreases BB,
• if e is blue and f is red, then either BB decreases, or if it stays the same, then BR

decreases,
• if e and f are both red edges, then BB stays the same, and either BR decreases,

or if it also stays the same, then RR decreases,
• if e is blue, then REMOVESELFCROSSINGS(e) decreases BB,
• and finally, if e is red, then BB does not change, BR does not increase, and RR

decreases.

Therefore, after finitely many steps, we arrive at a drawing D4 of G, where any
two edges cross at most once, and (BB,BR,RR) is lexicographically not larger than

originally. That is, in the drawing D4, BB ≤ 2ck7/4
1 log l1 + 2ck7/4

2 log l2, and any
two edges cross at most once; therefore, BR+RR≤ l0l. So, for the total number of
crossings, we have

6ck7/4
1 log3/2 l1 + 6ck7/4

2 log3/2 l2 + l0l

≤ 6ck7/4
1

√
log l log(2l/3)+ 6ck7/4

2

√
log l log(2l/3)+ l0l

≤ 6c(k7/4
1 + k7/4

2 )
√

log l(log l + log(2/3))+ l0l

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + l0l

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + clk3/4
√

logk

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + 2ck7/4
√

logk

≤ 6ck7/4 log3/2 l− 3ck7/4
√

log l + 3ck7/4
√

log l

= 6ck7/4 log3/2 l.
�
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Now consider a graph G and let PAIR-CR(G) = k. Take a drawing of G with
exactly k crossing pairs of edges. Let l be the total number of crossing edges. By
the lemma, G can be redrawn with at most 6ck7/4 log3/2 l crossings. Since 2k ≥ l,
CR(G)≤ 6ck7/4 log3/2 l < 18ck7/4 log3/2 k. This concludes the proof of the theorem.

��
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Minors, Embeddability, and Extremal Problems
for Hypergraphs

Uli Wagner

Abstract This is an expository chapter based on two talks given during the Special
Semester on Discrete and Computational Geometry, organized by János Pach and
Emo Welzl, at the École Polytechnique Fédérale in Lausanne, Switzerland, in the
fall of 2010.

Our first purpose is to describe a circle of ideas regarding topological extremal
problems for simplicial complexes (hypergraphs), and the corresponding phase-
transition questions for random complexes (as introduced by Linial and Meshulam).
In particular, we discuss some notions of minors pertaining to such questions. Our
focus is on k-dimensional complexes that are sparse, i.e., such that the number of
k-dimensional simplices is linear in the number of (k− 1)-dimensional simplices.

Second, we discuss a notion of higher-dimensional expansion for simplicial
complexes, due to Gromov, which is very useful in this context (the same notion
of expansion has also arisen independently in the work of Linial, Meshulam, and
Wallach on random complexes, and in the work of Newman and Rabinovich on
higher-dimensional analogues of finite metrics).

1 Introduction

For graphs, there is a rich interplay between their combinatorial properties on the
one hand and their topological properties on the other hand. A prime example is
planarity. For instance, for (connected, finite) graphs embedded into the plane R2

(or the sphere S2), we have Euler’s relation f0− f1 + f2 = 2 between the number
f0 of vertices, the number f1 of edges, and the number f2 of regions determined by
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570 U. Wagner

the embedding. This implies the tight upper bound f1 ≤ 3 f0− 6 for the number of
edges of a simple planar graph with f0 ≥ 3 vertices.

Another fundamental result is the classical characterizations of planar graphs
in terms of forbidden minors. Kuratowski [33] proved that a graph is planar iff it
contains neither the complete graph K5 nor the complete bipartite graph K3,3 as
a topological minor (i.e., if it does not contain a subdivision of either of these).
Wagner [68] observed that as a rather immediate consequence, the same holds in
terms of deletion-and-contraction minors; i.e., G is planar iff neither K5 nor K3,3

can be obtained from G by a finite sequence of edge or vertex deletions and edge
contractions.

These theorems form the starting point of the general theory of graph minors,
which by now comprises some of the deepest results and open problems in
combinatorics, e.g., the Robertson–Seymour graph minor theorem [56] (see, e.g.,
[36] or [16, Chap. 12] for surveys) and Hadwiger’s conjecture [23] (see also [5,19]).

A related result of a very similar flavor that deserves to be mentioned here is the
forbidden minor characterization of graphs that are linklessly embeddable into R3.
Here, an embedding f of a graph G into R3 is called linkless if, for any two vertex-
disjoint cycles in G, there exists a topological ball in R3 that contains the image
of one cycle and is disjoint from the other one. Robertson et al. [55, 57] proved
(confirming a conjecture of Sachs [58]) that a graph has such a linkless embedding
iff it does not contain any minor that belongs to the Petersen family.1

Apart from structure theory, minors are also a valuable tool when dealing with
extremal problems for sparse graphs, due to the following:

Theorem 1.4 (Mader [38]). For every integer t, there are constants C(t) and
CTOP(t) such that every (simple) graph on n vertices with at least C(t) · n edges
[respectively, at least CTOP(t) · n edges] contains the complete graph Kt as a
[topological] minor.

Consequently, ifP is a graph property for which there is a fixed forbidden minor2

K, then graphs with that property have only a linear number of edges. This is the
case, for instance, if P is nontrivial (i.e., if not all graphs have the property) and
closed under taking minors. We stress, however, that we do not have to appeal to
the graph minor theorem here: We do not need a full characterization in terms
of forbidden minors but only the existence of some forbidden minor, a necessary
condition that is usually much easier to prove.

For example, if one wishes to prove a linear upper bound for the number of edges
in planar graphs without appealing to Euler’s relation (we will see below why this
is of interest with regard to higher-dimensional generalizations), then it is enough to

1By definition, the graphs in the Petersen family are the seven graphs that can be obtained from
the complete graph K6 by YΔ- or ΔY -exchanges. Here, a YΔ-exchange is the operation of deleting
a vertex v of degree 3 and adding an edge between any two of the former neighbors, and a ΔY -
exchange is the inverse operation.
2That is, no graph with property P contains K as a minor.
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show two things: first, that K5 (or some other fixed complete graph, if one is willing
to accept a worse constant) is not planar, and, second, that planarity is preserved
under taking minors (which is easy). The same type of argument also immediately
implies a linear upper bound for the number of edges for graphs that are embeddable
into a fixed surface, or linklessly embeddable into R3.

We remark that even the dependence on t of the constants in Mader’s theorem
is known very precisely: C(t) ≈ 0.319 · t

√
log t and CTOP(t) = Θ(t2); see [65] and

[6, 29], respectively. In the special case t = 5, Mader [39] also proved the sharp
result that 3n− 5 edges are already enough to ensure K5 as a (topological) minor.

Higher Dimensions: Simplicial Complexes. It is rather natural to wonder if there
are higher-dimensional analogues of graph minors. The first choice one faces in this
context is what kind of objects to consider as higher-dimensional generalizations
of graphs. Here, we focus on simplicial complexes. On the one hand, these can be
defined and described completely combinatorially.3 On the other hand, a simplicial
complex also defines an underlying topological space for which it makes sense
to consider embeddability into Euclidean spaces (generalizing planarity) and other
topological properties.

We recall that a (finite, abstract) simplicial complex X is a finite set system
that is closed under taking subsets; i.e., F ⊆ G ∈ X implies F ∈ X . The sets in a
simplicial complex X are called faces or simplices and are classified according to
their dimension dimF := |F |− 1. The dimension of X is defined as the maximum
dimension of any face. The set of i-dimensional faces of X will be denoted by Xi,
and the number of i-dimensional faces of X is denoted by fi(X) := |Xi|, or simply
by fi. If G⊆ F ∈ X , then we say that G is a face of F . The elements of a face F are
called the vertices of F . Identifying singleton sets with their elements, we also call
X0 the set of vertices of X .

Thus, for example, a one-dimensional simplicial complex is just a simple graph,
and f0 and f1 are the numbers of its vertices and edges, respectively.

Further basic notions regarding simplicial complexes, including embeddings, will
be reviewed in Sect. 2.1.

In extremal and probabilistic combinatorics, it is somewhat more common to
consider hypergraphs, i.e., arbitrary finite set systems, without the requirement
of being closed under taking subsets. For our purposes, the two notions can be
treated almost interchangeably, and the difference is rather one of viewpoint and
terminology than an essential one.4

3As opposed to general CW complexes, say, for which one would also need to record the degrees
of the attaching maps.
4Essentially, a pure k-dimensional simplicial complex (all maximal faces of dimension k) is the
same thing as a (k+ 1)-uniform hypergraph (all sets in the set system, called hyperedges, are of
cardinality k+ 1). Given an arbitrary hypergraph H, one can turn it into a simplicial complex by
adding all subsets of the hyperedges in H to the hypergraph. Conversely, a simplicial complex is
entirely determined by its maximal faces. One could say that, in a sense, the hypergraph viewpoint
tends to focus on the interaction between the inclusion-maximal hyperedges and the vertices,
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Minors. The second question is how to define a notion of minors for simplicial
complexes. There are a number of possible definitions that are rather straightforward
(and arguably too naive). Other, more refined, definitions have been proposed,
notably by Nevo [49] and by Melikhov [46]. Which definition (if any) is “the right
one” may depend on the context and on the aspects of the theory of graph minors
that one wishes to generalize.

One very natural goal is to look for a higher-dimensional generalization of
Kuratowski’s planarity criterion, i.e., for a characterization of embeddability in
terms of finitely many forbidden minors. The aforementioned papers by Nevo
and in particular by Melikhov are steps in this direction. We remark, however,
that recent computational hardness results regarding embeddability [42] give some
indication that in full generality, the quest for a higher-dimensional generalization
of Kuratowski’s theorem may be too ambitious, at least for certain dimensions (e.g.,
for embeddings of two-dimensional complexes into R4).

Here, our main motivation is a related but somewhat different circle of problems,
namely, topological extremal problems for sparse simplicial complexes and the
corresponding phase-transition questions for random complexes (we will give more
details shortly). In this context, we think of a simplicial complex as sparse if
the number fk of top-dimensional faces is linear in the number fk−1 of faces of
codimension 1. In particular, this implies that fk ≤ O(nk), where n = f0 is the
number of vertices.5

In Sect. 5, we will discuss some of the difficulties one encounters when trying to
use the existing notions of minors with regard to extremal questions, and we discuss
a new notion of homological minors that was specifically designed as a tool for such
applications.

Remark 2. The preprint by Melikhov [46] appeared after the original version of
this chapter had been prepared and submitted, and it offers a notion of minors
(for simplicial complexes as well as more general complexes) that subsumes, and
is strictly more general than, that of Nevo. At present, we do not know whether
the same difficulties that arise when trying to apply Nevo’s notion of minors to
extremal and phase-transition questions also arise for Melikhov’s more general
notion, although we suspect they do.

Extremal Questions. A prime example of the kind of topological extremal prob-
lem we have in mind is the following:

whereas the simplicial complex viewpoint stresses how hyperedges/faces “fit together” along faces
of intermediate size.
5At the opposite end of the spectrum, one has dense simplicial complexes, for which fk ≥Ω(nk+1).
We remark that one could also consider more drastic definitions of sparsity, the most extreme of
which would be to require that the complex be locally bounded, i.e., that the number of faces
containing any given vertex should be bounded by an absolute constant, in which case one would
have fi = O(n) for all i.
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Conjecture 3. If a k-dimensional simplicial complex X embeds topologically into
R2k, denoted X ↪→ R2k, then fk(X) ≤ Ck · fk−1(X), where Ck is a constant that
depends only on k.

This is a natural generalization of the fact that the number f1 of edges of a
(simple) planar graph is at most linear in the number f0 of vertices. The conjecture
seems to be folklore and has appeared various times in the literature; see, e.g.,
[11, 27, 59]. Sometimes, the conclusion is weakened to fk = O(nk), where n := f0

is the number of vertices [we trivially have fk−1 ≤
(n

k

)
since a (k−1)-simplex has k

vertices]. The best upper bound known to date for any fixed k ≥ 2 is O(nk+1−1/3k
);

see Sect. 4.
As in the special case of graphs (k = 1), it is known that the general form of

Conjecture 3 would have a number of interesting consequences in discrete geometry,
including higher-dimensional analogues [11,14] of the well-known crossing lemma
[1, 34] and upper bounds for the number of triangulations of an n-point set in Rd

[11, 15].
The problem is also closely related to the upper bound theorem and the g-

conjecture for simplicial spheres, via a deep conjecture of Kalai and Sarkaria
[27, 28, 59] that connects embeddability and algebraic shifting and would, in
particular, imply Conjecture 3 in a very precise form. We discuss these implications
and connections in Sect. 3.

We also remark that the case of k-dimensional complexes embeddable into R2k is
the critical one: On the one hand, every k-dimensional complex embeds into R2k+1.
On the other hand, it is known that there are k-dimensional complexes that do not
embed into R2k (see Sect. 2.5).

Moreover, Conjecture 3 would imply asymptotically tight upper bounds for
the face numbers of simplicial complexes embeddable into Rd , for any ambient
dimension d; see Sect. 3.

Random Complexes. Linial and Meshulam [35] introduced a higher-dimensional
analogue of the Erdős–Rényi random graph model G(n, p). By definition, the
random k-dimensional complex Xk(n, p) has n vertices, a full (k− 1)-skeleton (i.e.,
every subset of the vertices that has size k or less forms a face of the complex),
and every (k + 1)-element set of vertices is taken as a k-face independently with
probability p, which may be constant or, more generally, a function p(n) depending
on n.

This model has recently received a lot of attention, and the threshold probabilities
for a number of topological properties of Xk(n, p) have been determined [2, 3, 10,
31, 35, 47]; see Sect. 2.6.

It is known [37] that the sharp threshold probability for planarity of G(n, p) is at
p = 1/n. For the higher-dimensional embeddability problem, we have the following
result.

Theorem 1.4 ([69]). The (coarse) threshold for embeddability of Xk(n, p) into R2k

is at p = Θ(1/n). More precisely, for every k ≥ 1, there are constants Ck > ck > 0
depending only on k such that
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lim
n→∞

Pr[Xk(n, p) ↪→ R2k] =

{
1, p ≤ ck/n,

0, p≥Ck/n.

In particular, this shows that Conjecture 3 holds for almost all complexes.6

It seems very likely that, like planarity, the higher-dimensional embeddability
property has a sharp threshold.

Conjecture 5. For every k, there exists a constant7 C∗k such that for any ε > 0,

lim
n→∞

Pr[Xk(n, p) ↪→R2k] =

{
1, p≤ (1− ε)C∗k/n,

0, p≥ (1+ ε)C∗k/n.

Our current proof does not yield such a sharp threshold (even though many of the
estimates could be improved, at the expense of making the proof more complicated).

On the other hand, our proof only uses a certain quasi-randomness or expansion
property of Xk(n, p), which will be discussed in Sect. 6, and thus applies to a
broader class of complexes, which do not necessarily have a complete (k− 1)-
skeleton, including certain other models of random complexes. The relevant notion
of expansion is due to Gromov [20]; the same notion arose independently in the
work of Linial et al. [35,47] on random complexes and in the work of Newman and
Rabinovich [51] on higher-dimensional analogues of low-distortion embeddings of
metric spaces.

The fact that Xk(n, p) ↪→ R2k asymptotically almost surely for p ≤ ck/n follows
fairly easily from a recent result of Aronshtam et al. [2] regarding the collapsibility
of random complexes; see Sect. 2.6, Theorem 2.10. Thus, the main point is the proof
of the nonembeddability part, which uses the notion of homological minors.

The Structure of This Chapter. The remainder of this chapter is structured as
follows. In Sect. 2, we review some background concerning simplicial complexes,
(co)homology, embeddings, obstructions, and random complexes.

In Sect. 3, we discuss some of the consequences that Conjecture 3, if true,
would entail, such as a higher-dimensional analogue of the crossing lemma, and
connections to other problems, such as the upper bound theorem and the g-
conjecture for simplicial spheres.

In Sect. 4, we describe the general approach to extremal and threshold problems
via forbidden minors. At its heart lies a conjectural higher-dimensional analogue of
Mader’s theorem. While we do not have a proof of this conjecture at the moment,
as supporting evidence we have the corresponding threshold result for random

6For the complex Xk(n, p), we have that fk−1 =
(n

k

)
, and fk is strongly concentrated around p ·( n

k+1

)
, so in order to obtain complexes with fk = C · fk−1, the parametrization p = (k+ 1)C/n is

the right one.
7Computer experiments conducted by G. Pundak (personal communication) suggest that C∗(2) is
around 4.37.
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complexes (Theorem 4.17). In Sect. 5, we survey several notions of minors for
simplicial complexes, we give the precise definition of homological minors, and
we show that, in a suitable technical sense, complexes with a nonembeddable
homological minor are nonembeddable (Theorem 4.15). In Sect. 6, we discuss
a higher-dimensional face expansion of simplicial complexes in the sense of
Gromov and note that Xk(n,C/n) has (a coarse version of) this property. Finally,
in Sect. 7, we show that expanding complexes contain large complete minors
(Proposition 7.32), which proves Theorems 1.4 and 4.17.

2 Preliminaries

We review some basic definitions and facts concerning simplicial complexes,
homology, and obstructions in order to fix terminology and notation and to provide
the necessary background for the definition of homological minors. For further
background, see, e.g., [30, 40, 48].

2.1 Simplicial Complexes

Formally, there are two different ways of viewing a simplicial complex, either as
an abstract simplicial complex, as defined in the introduction, or as a geometric
simplicial complex. The latter means a finite collection X of closed geometric
simplices in some Euclidean space Rm such that if σ ∈ X and τ is a face of σ ,
then also τ ∈ X , and such that any two simplices in X intersect in a common face
(which may be empty). [Here, by definition, a geometric simplex σ is the convex
hull of some affinely independent set of points, called the vertices of the simplex,
and a face of σ is the convex hull of some subset (possibly empty) of its vertices.]
Every geometric simplicial complex X defines an underlying topological space or
polyhedron |X | := ⋃σ∈X σ ⊂ Rm, namely, the union of all the geometric simplices
in X , with the topology inherited as a subspace of the ambient Euclidean space Rm.

Two simplicial complexes are isomorphic if there is a face-preserving bijection
between their vertex sets. For any two isomorphic geometric simplicial complexes,
there is an obvious homeomorphism between their underlying spaces that is linear
on each face. There is a standard way of going back and forth between the abstract
and geometric viewpoints (see, e.g., [40]), and an abstract simplicial complex can be
viewed as a purely combinatorial description of a geometric simplicial complex up
to isomorphism, by specifying which subsets of vertices form vertex sets of faces.

A subcomplex of X is a subset Y ⊂ X that is itself a simplicial complex. The
i-skeleton of X is the simplicial complex X≤i = X−1∪X0 ∪ . . .∪Xi that consists of
all faces of X of dimension at most i. A geometric simplicial complex X ′ is called a
subdivision of a geometric simplicial complex X if |X |= |X ′| and every simplex of
X ′ is contained in some simplex of X .
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2.2 Maps and Embeddings

There are three natural notions of embeddings of a simplicial complex X into
Euclidean space. In order of increasing generality, these are linear embeddings,
piecewise linear embeddings, and arbitrary topological embeddings. We review the
definitions below. For further background on embeddings of simplicial complexes,
we refer the reader to the surveys [54,61]. For a discussion especially geared toward
combinatorialists and computer scientists and with an emphasis on the algorithmic
aspects of embeddability, see also [41].

Linear and PL Mappings of Simplicial Complexes. A linear mapping of a
(geometric) simplicial complex X into Rd is a mapping f |X | → Rd that is linear
on each simplex. More explicitly, each point x ∈ |X | is a convex combination
t0v0 + t1v1 + · · ·+ tsvs, where {v0,v1, . . . ,vs} is the vertex set of some simplex
σ ∈ X and t0, . . . , ts are nonnegative reals adding up to 1. Then we have f (x) =
t0 f (v0)+ t1 f (v1)+ · · ·+ ts f (vs).

A mapping from X to Rd is piecewise linear (PL) if it is simplex-wise linear on
some subdivision X ′ of X .

Embeddings. A (topological) embedding of a simplicial complex X into Rd is
a map f : |X | → Rd that is a homeomorphism of |X | with f (|X |). Since we
only consider finite simplicial complexes, this is equivalent to requiring that f be
injective. If such an embedding exists, we say that X embeds into Rd , denoted
X ↪→Rd .

For a PL embedding, we require additionally that f be PL, and for a linear
embedding, we are even more restrictive and insist that f be (simplex-wise) linear.

To illustrate the differences, consider the familiar example of embeddings of
graphs in the plane. For a topological embedding, the image of each edge can be
an arbitrary (curved) Jordan arc; for a PL embedding, it has to be a polygonal arc
(made of finitely many straight segments); and for a linear embedding, it must be a
single straight segment.

In the special case dimX = 1 and d = 2 of graphs in the plane, all three notions
happen to give the same class of embeddable complexes, namely, all planar graphs
(by Fáry’s theorem).

In higher dimensions, however, there are significant differences. For instance,
Brehm and Sarkaria [7] showed that for every k ≥ 2, and every d, k+ 1 ≤ d ≤ 2k,
there is a k-dimensional simplicial complex X that PL embeds into Rd but does not
admit a linear embedding.

It is also known that PL embeddability and topological embeddability do not
always coincide. For example, there exists a four-dimensional simplicial complex
(namely, the suspension of the Poincaré homology 3-sphere) that embeds topologi-
cally, but not PL, into R5 (Colin Rourke, private communication).

However, it is known that topological and PL embeddability do coincide for
embeddings of k-complexes into Rd whenever the codimension d− k is at least
3 [9], and also for (k,d) = (2,3). The latter follows from results of Bing [4] and
Papakyriakopoulos [52].
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Here, we are mainly interested in embeddability in the topological sense (as
opposed to linear embeddability, which is a much more geometric problem and
has a very different “flavor”), and ”embeddability” will mean topological embed-
dability throughout, unless explicitly stated otherwise. For the most part, the subtle
differences between PL and topological embeddability will play no role in our
considerations. The sole exception is Proposition 3.13 below, where we need to
assume PL embeddability in some cases.

Computational Aspects. One can also study the embeddability problem from a
computational viewpoint. Specifically, in [41], the following computational decision
problem EMBEDk→d is considered for any fixed d ≥ k≥ 1: Given a finite simplicial
complex X of dimension at most k, does there exist a PL embedding of X into Rd?

Known results imply that this problem is polynomial for d ≥ 2 and in the case
d = 2k,k ≥ 3. However, the problem turns out to be algorithmically undecidable
in certain cases, specifically, if d ≥ 5 and k ∈ {d− 1,d}, and to be at least NP-
hard whenever k and d lie outside the metastable range, i.e., whenever d ≥ 4 and
d ≥ k ≥ (2d− 2)/3. In particular, this is the case for EMBED2→4, the problem of
embedding 2-complexes into R4. (It seems likely that the hardness proof carries
over to topological embeddings, but the details have not been worked out.)

General Position and Perturbations. First, let’s consider a simplex-wise linear
mapping f of a simplicial complex X into Rd . We say that f is in general position
if the images of any two vertices are distinct and the images of any d + 1 or fewer
vertices are affinely independent.

If f is a simplex-wise linear mapping in general position and if σ ,τ ∈ X are
disjoint simplices, then the intersection f (σ)∩ f (τ) is empty for dimσ +dimτ < d
and has at most one point for dimσ + dimτ = d.

A PL mapping of X into Rd is in general position if it corresponds to a linear
mapping in general position on some subdivision of X . A PL embedding can
always be brought into general position (by an arbitrarily small perturbation). A
perturbation argument also immediately shows that any k-dimensional complex
embeds into R2k+ 1, even linearly. More explicitly, we can simply place the vertices
in general position, for instance, on the moment curve, and interpolate linearly on
the simplices; see, e.g., [40, Sect. 1.6]).

Moreover, the following observation will be important for what follows: If
f : X → Rd is a topological embedding, we can approximate f by a PL almost-
embedding, i.e., a PL map f̃ such that the f̃ -images of any two vertex-disjoint faces
of X are disjoint. To see this, note that, by compactness, there exists some ε > 0
such that the f -images of any two vertex-disjoint faces have distance at least ε from
each other. Take a sufficiently fine subdivision X ′ of X . For each vertex v of X ′, take
f̃ (v) to be a point at distance at most ε/2 from f (v) such that the resulting perturbed
points f̃ (v) are in general position.8 This defines a linear map on X ′ by interpolating

8For instance, choosing f̃ (v) uniformly at random from an ε2-ball around f (v) works with
probability 1.
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linearly on every simplex, and thus a PL map on X, and it is easy to see that it is a
quasi-embedding.

2.3 Homology and Cohomology

We quickly review the definition of (reduced, simplicial) homology and cohomol-
ogy of a finite simplicial complex X (see, e.g., [48] for a thorough introduction).
For simplicity, we restrict ourselves to the case of coefficients in the field F2 with
two elements (among other things, this allows us to ignore orientations and signs).
For a thorough introduction to simplicial homology, we refer to any of the textbooks
[30, 48, 53].

Let X be a finite simplicial complex. For integer i, denote by Ci(X) =Ci(X ;F2)

the vector space FXi
2 of functions from the set of i-faces of X to the field F2 [thus,

Ci(X) = 0 unless −1 ≤ i ≤ dimX]. The elements of this vector space are called i-
dimensional cochains of X . Since we are working over F2, we can also think of an
i-cochain as (the characteristic vector of) a subset of Xi.

Moreover, let Ci(X) =Ci(X ;F2) be the vector space over F2 generated by Xi. In
other words, the elements of Ci(X), called i-chains, are formal linear combinations
of i-faces of X . Since the sets Xi are finite, Ci(X) is again (noncanonically) isomor-
phic to FXi

2 , so it might seem like an exaggerated formalism to distinguish between
Ci(X) and Ci(X), but it is sometimes convenient to maintain this distinction.

In fact, the space Ci(X) is the dual vector space of Ci(X), and we have a natural
bilinear map 〈,〉 : Ci(X)×Ci(X)→ F2. If we identify both spaces with FXi

2 , this map
corresponds to the standard inner product on FXi

2 .
We have a linear map ∂ = ∂i : Ci(X)→Ci−1(X), called the boundary map, given

on basis elements F ∈ Xi by ∂F =∑G⊆F,dimG=i−1 G. In other words, with respect to
the standard bases of Ci(X) and Ci−1(X), the boundary map is given by the incidence
(or inclusion) matrix between i-faces and (i− 1)-faces.

Its dual map ∂ ∗i : Ci−1(X)→ Ci(X) is called the coboundary map. Again, with
respect to the standard bases, this map is given by (the transpose of) the inclusion
matrix. We often drop the indices and just write ∂ or ∂ ∗. Thus, if S⊆Xi is a subset of
i-faces and we view it as an i-chain, then the boundary ∂S corresponds to the set of
all (i− 1)-faces contained in an odd number of i-faces in S. Conversely, if we think
of S as an i-dimensional cochain, then its coboundary consists of all (i+ 1)-faces
that contain an odd number of faces in S.

The crucial property of the boundary map is that ∂i−1 ◦∂i = 0 (and consequently
also ∂ ∗i ◦ ∂ ∗i−1 = 0), which is easily verified. Equivalently, we have the following
relations between the kernels and images of these maps:

Bi = Bi(X ;F2) := im∂i+1 ⊆ Zi = Zi(X ;F2) := ker∂i,

Bi = Bi(X ;F2) := im∂ ∗i ⊆ Zi = Zi(X ;F2) := ker∂ ∗i+1.
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The elements of Zi, Bi, Zi, and Bi are called i-cycles, i-boundaries, i-cocycles, and
i-coboundaries, respectively. By the above inclusion relations, we can form the

quotient vector spaces Hi(X) := Zi(X)
Bi(X) and Hi(X) := Zi(X)

Bi(X)
, which are called the i-th

homology and the i-th cohomology group of X , respectively.9 Thus, every i-cycle
ζ ∈ Zi determines a homology class [ζ ] = ζ +Bi ∈ Hi, and likewise every cocycle
α ∈ Zi determines a cohomology class [α] ∈Hi.

We also write C∗(X) :=
⊕

i Ci(X) and C∗(X) :=
⊕

iC
i(X) for the direct sums of

the chain spaces and cochain spaces, respectively.

Example 6. A graph G is connected (for any two vertices, there is a path of edges
from one to the other) iff H0(G) = 0, which in turn is equivalent to H0(G) = 0 [recall
that we work with reduced (co)homology].

The first criterion H0(G) = 0 is more or less directly equivalent to the definition
of connectivity. Recall that over F2, an i-chain can be identified with a set of i-
dimensional faces. For any pair of vertices {u,v}, if there is a path of edges between
u and v, then the edges of this path form a 1-chain over F2 with boundary {u,v}.
Conversely, any 1-chain with boundary {u,v} is easily seen to contain a path.

The 0-cycles of G are exactly the even sets of vertices. Any such set can be
obtained as a symmetric difference (sum over F2) of pairs. Thus, by the linearity of
the boundary map, the above argument shows that any 0-cycle is the boundary of
some 1-dimensional chain, i.e., Z0 = B0, and hence H0 = Z0/B0 = 0.

On the other hand, the second criterion H0(G) = 0 says that any function from the
vertices of G to F2 that is locally constant along each edge (these are precisely the 0-
cocycles) must be globally constant, i.e., a 0-coboundary, which is again equivalent
to G being connected.

Simplicial (Co)Chain Maps and Induced Maps in (Co)Homology. If X and Y
are simplicial complexes, then a chain map between them is a sequence of linear
maps ϕi : Ci(X)→Ci(Y ) with the additional property that these commute with the
respective boundary maps in X and Y ; i.e., ϕi ◦ ∂X

i = ∂Y
i ◦ϕi−1. As before, we will

often drop indices and write ϕ(F) instead of ϕi(F). Thus, the chain map represents
every i-face F of X by a formal linear combination ϕ(F) of i-faces in Y such that
∂ϕ(F) equals the sum of the collections ϕ(G), where G ranges over all (i−1)-faces
in ∂ (F).

A chain map ϕ induces linear mappings ϕ∗ : Hi(X)→ Hi(Y ) and ϕ∗ : Hi(Y )→
Hi(X) in (co)homology by defining ϕ∗([ζ ]) := [ϕi(ζ )] and f ∗([α]) := [ϕ i(α)],
where ϕ i : Ci(Y )→Ci(X) is the transpose of ϕi.

A simplicial map f between complexes X and Y defines a chain map f� that
maps an i-face F ∈ Xi to f (F) if the latter is also of dimension i, and to zero
otherwise. However, not all chain maps are of this form. One necessary condition
is that a chain map induced by a simplicial map necessarily maps every vertex

9Thus, for the case i = 0, we work with what is sometimes called reduced (co)homology.
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of X to a unique vertex of Y . Consequently, it maps the unique basis element
/0 of C−1(X) to the corresponding basis element /0 of C−1(Y ) (and not to zero).
More generally, by a technique called simplicial approximation, one can show that
an arbitrary continuous map f : |X | → |Y | between simplicial complexes induces
homomorphisms (linear maps) f∗ : Hi(X) → Hi(Y ) and f ∗ : Hi(Y ) → Hi(X) in
(co)homology (note that the direction of the map is reversed in cohomology).
Furthermore, homotopic maps induce identical homomorphisms in (co)homology.

On the level of chain maps, a chain homotopy P between two chain maps ϕ ,ψ
from X to Y is a family of linear maps (not chain maps) Pi : Ci(X) → Ci+1(Y )
such that ψi−ϕi = ∂Y

i+1Pi +Pi−1∂X
i for all i. Chain-homotopic chain maps induce

identical maps in (co)homology.
One fact we will need below as a black box is that the direct sum H∗(X) =⊕

i Hi(X) can be turned into a graded ring, called the cohomology ring. That is, one
can define an associative, bilinear multiplication Hi(X)×H j(X)→Hi+ j(X) called
the cup product, and the homomorphisms induced by continuous maps also respect
this product.

Moreover, in the discussion of deleted products below, we will need that
everything said so far also applies to complexes more general than simplicial
complexes. Specifically, we will need polytopal complexes, whose i-faces are i-
dimensional convex polytopes that meet in common faces. The boundary matrix
is still given by the incidences between i-faces and (i− 1)-faces, and all other
definitions carry over verbatim.

2.4 Deleted Products and Obstructions

Let X be a simplicial complex and |X | its underlying topological space. The
(twofold) topological deleted product of X is the space |X |2del :=(|X |×|X |)\{(x,x) :
x ∈ |X |}, i.e., the twofold cartesian product with the “diagonal” removed.

The (twofold) combinatorial deleted product of X is the polytopal cell complex
X2

del := {σ × τ : σ ,τ ∈ K,σ ∩ τ = /0}. Thus, the cells of the deleted product are
Cartesian products of vertex-disjoint simplices of X . The combinatorial deleted
product is a subspace of the topological one. The latter deformation retracts onto the
former; i.e., there is a map F : |X |2del× [0,1]→ |X2

del| such that F(·,0) is the identity,
the image of F(·,1) is contained in |X2

del|, and every F(·, t) fixes |X2
del| pointwise.

Consequently, the two spaces are homotopy equivalent.
The topological deleted product comes with an obvious action of the group Z2

that simply exchanges the order of coordinates, (x,y) �→ (y,x). This is inherited
by the combinatorial deleted product. For the latter, the action maps cells to cells,
namely, σ×τ �→ τ×σ (some care has to be taken regarding orientations, which we
ignore here). The action is free; i.e., it does not have any fixed points. The homotopy
equivalence between the topological and combinatorial deleted products can also
be chosen to be equivariant. Henceforth, we will not distinguish between the two
deleted products and simply write X2

del.
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An embedding f : X ↪→ Rd induces a continuous map f̃ : X2
del → Sd−1 by setting

f̃ (x,y) := f (x)− f (y)
‖ f (x)− f (y)‖ . Moreover, this map is Z2-equivariant; i.e., f̃ (y,x) =− f̃ (x,y)

for all (x,y) ∈ X2
Δ . Thus, the existence of an equivariant map from X2

del to Sd−1 is a
necessary condition for embeddability of X into Rd .

In fact, one can conclude a bit more, using the fact that the topological and the
combinatorial deleted product are equivariantly homotopy equivalent. Namely, if
there exists no equivariant map from X2

del to Sd−1, then for any map f : |X | → Rd ,
there must be two vertex-disjoint faces of X whose images intersect.

A celebrated theorem by Haefliger and Weber [24, 70] asserts that for dimX ≤
(2d− 3)/3 (called the metastable range), the existence of an equivariant map from
X2

del to Sd−1 is also a sufficient condition for X ↪→ Rd (outside the metastable range,
this fails). We refer to [61] for a modern overview, proof sketch, and extensions.

Cohomological Obstructions. One can also formulate algebraic necessary condi-
tions for the existence of equivariant maps. This yields the van Kampen obstruction.
We first give a very quick (and rather abstract) definition (a special case of the
general theory of bundles and classifying spaces) that allows us to derive the
necessary facts quickly (for more details, see, e.g.[30, 45]).

It is a basic fact that there is a (cellular) Z2-equivariant map from X2
del into the

infinite-dimensional sphere S∞. Moreover, this map is unique up to Z2-equivariant
homotopy. In fact, both the map and the homotopy are easy to construct inductively
on successively higher skeleta of X2

del, using that S∞ is contractible, i.e., that all
its homotopy groups vanish. This Z2-map induces a unique map (up to homotopy)
between the quotient spaces X2

del/Z2 → RP∞, and hence a unique homomorphism
in cohomology H∗(RP∞;F2)→ H∗(X2

del/Z2;F2).
The Z2-cohomology ring of RP∞ is known to be isomorphic to the polynomial

ring F2[x]. In particular, in each dimension d, the element xd is the unique nonzero
element of Hd(RP∞;F2). The image of this element under the above homomor-
phism Hd(RP∞;F2) → Hd(X2

del/Z2;F2) is called the van Kampen obstruction
(modulo 2) for embeddability of X into Rd and denoted by od

F2
(X).

If X embeds into Rd , then, as noted above, we get an equivariant map from X2
del

to Sd−1. Composing this with the inclusion Sd−1 ↪→ S∞, we get a particular repre-
sentative of the unique (up to homotopy) equivariant map from X2

del into S∞. Thus,
on the level of cohomology, the induced map H∗(RP∞;F2)→ H∗(X2

del/Z2;F2) can
be written as a composition

H∗(RP∞;F2)→ H∗(RPd−1;F2)→ H∗(X2
del/Z2;F2).

It is known that H∗(RPd−1;F2) is isomorphic to the quotient F2[x]/(xd) and that
the map on the left is just the quotient map F2[x]→ F2[x]/(xd), so the image of
xd is zero. But then the image of xd under the composed map is also zero; i.e.,
od

F2
(X) = 0 ∈ H∗(X2

del/Z2;F2).
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A very simple but crucial observation that will be important later is that the
existence and uniqueness up to homotopy of a cellular Z2-map can be mimicked
on the level of chain maps, by using that all homology groups of S∞ vanish.

Lemma 2.7. Fix a scalar a ∈ F2 and a cellular decomposition of S∞ that is
compatible with the Z2-action. Then there is an Z2-equivariant chain map from
X2

del to S∞ that maps /0∈C−1(X2
del) to a · /0 ∈C−1(S∞), and any two such chain maps

are Z2-equivariantly chain homotopic.

The proof is a very simple inductive argument, which we include below for the
sake of completeness.

Since the van Kampen obstruction is the pullback of a cohomology class, it only
depends on the chain homotopy class of the map used for the pullback. Thus, we
obtain

Corollary 2.8. Suppose there exists an equivariant chain map ψ from K2
del to X2

del
such that ψ( /0) = 1 · /0. Under this assumption, if od

F2
(K) �= 0 for some d, then also

od
F2
(X) �= 0.

Proof of Lemma 2.7. Note that, for each dimension i ≥ 0, the Z2-action on X2
del

groups the i-faces into antipodal pairs. First, construct the chain map ϕ by induction
on the dimension: Suppose it has been defined for all faces of dimension less than
i. Pick an arbitrary representative i-face F×G from each antipodal pair of i-faces.
By induction, the image ϕ(∂ (F×G)) of the boundary is already defined, and since
∂ (F ×G) is a boundary, it is hence an (i− 1)-cycle. Since the part of ϕ already
defined is a chain map, it follows that ϕ(∂ (F ×G)) is an (i− 1)-cycle as well. But
Hi−1(S∞) = 0, so there is an i-chain α ∈ Ci(S∞) such that ∂α = ϕ(∂ (F ×G)).
Moreover, the part of ϕ defined already is equivariant; hence, ϕ(∂ (G× F)) =
ν(ϕ(∂ (F ×G))) = ν(α), where ν is the chain map induced by the antipodal Z2-
action on S∞. Thus, we can define ϕ(F ×G) = α and ϕ(G× F) = ν(α). Thus,
inductively, we get the desired equivariant chain map.

Given two such chain maps ϕ and ψ that agree on the empty face, the desired
equivariant chain homotopy between them is defined analogously by induction on
the dimension. Here, we use the fact that when we need to define the image Pi(F×
G) of an i-face F ×G, the summands of the chain ζ := ψi(F ×G)−ϕi(F ×G)−
Pi−1(∂ (F ×G)) are already defined, and this chain is a cycle since its boundary
equals

∂ζ = ψi−1(∂ (F×G))−ϕi−1(∂ (F×G))− ∂Pi−1(∂ (F×G))︸ ︷︷ ︸
=ψi−1(∂ (F×G))−ϕi(∂ (F×G))−Pi−2(∂∂ (F×G))

= 0,

where the last step follows by applying the chain homotopy condition to the chain
∂ (F ×G). Therefore, there exists an (i+ 1)-chain α ∈ Ci+1(S∞ with ζ = ∂α , and
we can define Pi(F×G) := α . ��
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A Concrete Description. The above definition of the van Kampen obstruction may
seem rather abstract and unintuitive at first sight.

Here is a more concrete description (adapted from [41]) in the case d = 2k, which
will be our main interest. Let X be a k-dimensional simplicial complex. Let

P := {{σ ,τ} : σ ,τ ∈ X ,dimσ = dimτ = k,σ ∩ τ = /0}

be the set of unordered pairs of vertex-disjoint k-simplices in X . Likewise, let

Q := {{σ ,ρ} : σ ,ρ ∈ X ,dimσ = k,dimρ = k− 1,σ ∩ρ = /0}

be the set of pairs consisting of one k-simplex and a vertex-disjoint (k−1)-simplex.
We can identify P and Q with the sets of 2k-faces and (2k− 1)-faces of X2

del/Z2.
Now, we first define a particular vector oX ∈ FP

2
∼=C2k(X2

del/Z2). Fix an ordering
of the vertices of X . We’ll call a pair {σ ,τ} of k-simplices intertwined if their
vertices alternate according to the ordering of the vertices, i.e., σ = [v0,v1, . . . ,vk],
τ = [w0,w1, . . . ,wk], and v0 < w0 < v1 <w1 < · · ·< vk <wk or w0 < v0 < w1 < v1 <
· · · < wk < vk. Then the vector oX is defined componentwise by setting (oX){σ ,τ}
to be 1 if σ and τ are intertwined, and zero otherwise.

Next, for each pair {ω ,ν} ∈Q, we define a vector ϕω,ν ∈ FP
2 componentwise by

setting ϕω,νσ ,τ = 1 if σ = ω and ν ⊂ τ or τ = ω and ν ⊂ σ , and ϕω,νσ ,τ = 0 otherwise.
These vectors are called finger move vectors.

We can now give an alternative definition of o2k
F2
(X) (although it is not supposed

to be obvious that the two definitions agree). Namely, o2k
F2
(X) is the set of all

vectors that can be obtained from oX by adding a linear combination of finger
move vectors. In other words, if we take the quotient of the vector space FP

2 by
the subspace spanned by the finger move vectors, then o2k

F2
(X) is the coset of oX

in that quotient space. In particular, we say that o2k
F2
(X) vanishes or is zero if oX

is a linear combination of finger move vectors, which amounts to saying that an
explicitly given system of linear equations over F2 is solvable.

Remark 9. Both the abstract and the concrete definition of the van Kampen
obstruction treat the case of F2-coefficients. These definitions can be extended to
integer coefficients, and it is known that for embeddings of k-complexes into R2k,
k ≥ 2, the integer-coefficient obstruction is strictly more powerful than the modulo
2 version; i.e., there are cases where the former can detect nonembeddability but
the latter cannot (for the special case k = 1 of graphs, this does not happen, by the
Hanani–Tutte theorem). In fact, for k �= 2, vanishing of the integer-coefficient van
Kampen obstruction actually yields a complete characterization of embeddability
of a k-complex into R2k. We refer to [45] for more details about the van Kampen
obstruction.
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2.5 Small Nonembeddable Complexes

Every k-dimensional complex embeds into R2k+1. On the other hand, there are k-
dimensional complexes that do not embed into R2k.

The basic examples are suitable complete and complete multipartite complexes,
respectively. By definition, Kk

t , the complete k-dimensional simplicial complex on
t vertices, has t vertices, and every subset of vertices of size at most k+ 1 forms a
face. (In other words, Kk

t is the k-dimensional skeleton of the simplex on t vertices.)
The complete multipartite complex Kk

t,...,t has t(k+1) vertices partitioned into k+1
classes V0, . . . ,Vk of t vertices each, and the faces of Kk

t,...,t are precisely the rainbow
sets F ⊆V0∪ . . .∪Vk, where F is rainbow if |F ∩Vi| ≤ 1 for all i.

It is a classical result of van Kampen [67] and Flores [18] that the complexes
Kk

2k+3 and Kk
3,...,3 do not embed into R2k. This is proved by showing that the van

Kampen obstructions of these complexes are nonzero.
These complexes are the direct generalizations of the nonplanar graphs K5

and K3,3. It is also known that the complexes Kk
2k+3 and Kk

3,...,3 are minimally
nonembeddable; i.e., if we remove from their underlying topological space an
arbitrarily small open neighborhood of any point, then the resulting space becomes
embeddable.

However, contrary to the situation of Kuratowski’s theorem, these are not the
only minimal nonembeddable complexes. For instance, any join Kk1

2k1+3 ∗Kk2
2k2+3 ∗

· · · ∗Kks
2ks+3 that is of dimension k (this happens iff k1 + k2 + · · ·+ ks + s− 1 = k)

is minimally nonembeddable into R2k [21]. Furthermore, it is in fact known that
for every k ≥ 2, there is an infinite list of k-dimensional complexes that are not
embeddable into R2k and pairwise nonembeddable into each other [66, 71].

2.6 Random Complexes and Collapsibility

The Linial–Meshulam model Xk(n, p) of k-dimensional random complexes de-
scribed in the Introduction has been studied extensively, and the threshold proba-
bilities for a number of topological properties have been determined quite precisely.

In particular, it is known that the sharp threshold for the vanishing of the (k−1)-
cohomology Hk−1(Xk(n, p);F2) with F2-coefficients is at p = k logn

n ; see [35, 47].
(The result extends to any fixed finite ring R of coefficients.)

Moreover, in the special case k = 2, the threshold for the vanishing of the
fundamental group π1(X2(n, p) is roughly at p = 1/

√
n; see [3].

In the top dimension, the coarse threshold for Hk(Xk(n, p)) = 0 (here, it actually
does not matter which coefficients are used) is at p =Θ(1/n). That is, the following
statements hold asymptotically almost surely (with probability tending to 1 as n→
∞) (see [2, 10, 31]):
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If p = o(1), then Hk(Xk(n, p)) = 0, and if p≥ c/n, then Hk(Xk(n, p)) �= 0, where
c = c(k) is a constant that depends only on k.

In fact, it is known that for p = o(1/n), the complex Xk(n, p) asymptotically
almost surely simplicially collapses onto its (k− 1)-skeleton [2, 10].

To define simplicial collapses, consider a k-dimensional complex X . A (k− 1)-
simplexσ ∈X is called free if there is a unique k-simplex τ containing it. We say that
the subcomplex X ′ := X \ {σ ,τ} arises from X by an elementary collapse10 of the
k-simplex τ through the (k−1)-simplex σ , and we say that X simplicially collapses
onto a subcomplex Y if Y can be obtained from X by a sequence of elementary
collapses.

One issue that arises in the case of the top-dimensional homology or collapsi-
bility is that for any constant c > 0 and p = c/n, there is a constant probability
that Xk(n, p) will contain copies of Kk

k+1 [the boundary of the (k+ 1)-simplex]. In
fact, the number of such copies will be Poisson-distributed). If this happens, these
simplex boundaries immediately create top-dimensional homology and prevent
collapsibility. This poses a (minor) technical difficulty when trying to determine
more precise thresholds.

To circumvent this, Aronshtam et al. [2] consider a slightly modified setting,
where one conditions on the (constant probability) event that Xk(n, p) does not
contain any copies of Kk

k+1. Their results can also be rephrased as nonconditional
statements. In particular, their proof yields the following result (although it is not
explicitly stated in their paper).

Theorem 2.10 ([2]). For every k ≥ 1, there is a constant ck such that Xk(n,ck)
almost surely simplicially collapses to a subcomplex Y that consists of the (k− 1)-
skeleton together with some k-faces that form finitely many vertex-disjoint copies of
Kk

k+1.

Complexes as in the conclusion of this theorem are easily seen to PL embed
into R2k. First, we linearly embed the disjoint simplex boundaries together with the
(k−1)-skeleton (by general position). Then, by Lemma 2.11 below, we can greedily
reverse the collapsing process one simplex at a time, until we get a PL embedding
of the original complex.

Thus, the embeddability part of Theorem 1.4, i.e., the fact that Xk(n, p) is almost
surely embeddable for p≤ ck/n, follows easily from Theorem 2.10.

Lemma 2.11. Suppose X is a k-dimensional complex and that Y is a subcomplex
that arises from X by an elementary collapse of a k-face τ through a free (k− 1)-
face σ . Then any PL embedding f of Y into R2k can be extended to a PL embedding
f̃ of X into R2k.

The proof is not hard but a bit tedious and is omitted here. We just remark that
the lemma is false, for instance, for embeddings of 2-complexes in R3. For instance,

10One can define free faces and elementary collapses more generally, but we will only need the
special case discussed here.
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the cone over K1
5 collapses to a graph (the five edges connecting the five vertices

of K1
5 to the apex of the cone) but does not embed into R3 since, otherwise, the

restriction of such an embedding to a small 2-sphere around (the image of) the apex
would yield a planar embedding of K1

5 . Under the dimensional assumptions of the
lemma, however, this kind of obstruction does not occur: If ρ is a proper face of τ
present in Y and of dimension dimρ = i, say, then the given PL embedding of Y into
R2k restricts to an embedding of the (k− i− 1)-dimensional complex lk(ρ ,Y ) into
a small sphere S2k−i−1 linked with f (ρ); by general position, this can be extended
to an embedding of lk(ρ ,X) into S2k−i−1. These embeddings can then be further
extended to an embedding of X into R2k. We omit the details.

3 Some Consequences of Conjecture 3

In this section, we discuss some consequences of Conjecture 3 and some connec-
tions to related problems.

3.1 Higher-Dimensional Crossing Lemmas

The fact that the number of edges of a planar graph is at most linear has a number of
important consequences, in particular the well-known crossing lemma [1,34], which
asserts that for a simple graph with n vertices and m≥ 4n edges, any plane drawing
of the graph contains at least Ω(m3/n2) crossings.

One of the first applications of the crossing lemma was a singly exponential upper
bound of Bn on the number of crossing-free geometric graphs on a given set P of n
points in the plane [1], where B is some universal constant.11

Since then the Crossing Lemma has become a fundamental tool in discrete
and computational geometry and many further applications have been found, most
notably to Erdős distance problems [64] and to planar k-sets [12]. It also yields a
very elegant proof of the Szemerédi–Trotter theorem on point-line incidences.

Conjecture 3 would have some analogous higher-dimensional consequences.

Theorem 3.12. If Conjecture 3 is true, then the following statements hold as
well:

1. High-dimensional crossing lemma. Let X be a k-dimensional simplicial com-
plex with fk(X)>C ·nk. Then for any continuous map f : X → R2k, there are at
least Ω( f k+2

k / f k+1
k−1 ) pairs of vertex-disjoint k-faces of X whose images under f

intersect.

11The original proof gave a very large base of the exponential (B = 1013). Since then, this has been
improved significantly, and it is known that B≤ 344 [60].
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2. Triangulations of point sets (Dey [11], Dey and Shah [15]). Let P be a set of
n points in Rd. Then the number of different triangulations of the point set P is

at most Bn�d/2�
, where B = B(d) is a universal constant depending only on d. The

same is true for the number of simplicial complexes geometrically embedded in
the vertex set P.

The proof of the first part is a straightforward application of the (by now) standard
random sampling technique and is omitted here. Proving Conjecture 1 using the
van Kampen obstruction modulo 2 would actually imply the same lower bound
for the number of pairs of k-faces whose images cross an odd number of times.
Using the weaker form fk = O(nk) of Conjecture 1, a slightly weaker bound of
Ω( f k+2

k /nk(k+1)) for the number of crossing pairs was derived in [11]. See also [14]
for further results of this kind.

It would be interesting to investigate whether some of the other applications of
the crossing lemma can also be generalized to higher dimensions.

3.2 The Upper Bound Theorem and Beyond

Conjecture 3 would also imply tight bounds for the face number of complexes
embeddable into other ambient dimensions.

Proposition 3.13. Assume that Conjecture 3 holds for k ≤ d/2. Then, for every
simplicial complex X that embeds12 into Sd, the face numbers of X satisfy f j(X)≤
Cj,d · f�d/2�−1(X) for 0 ≤ j ≤ dimX, where Cj,d is a constant that depends only on

j and d. In particular, the number of faces of X is at most O(n�d/2�), where n = f0

is the number of vertices.

This proposition is closely related to the upper bound theorem. McMullen’s
original theorem [43, 44] guarantees the conclusion of the Proposition 3.13 (with
exact constants) for the special case that X not only embeds into Sd but forms
the boundary complex of a convex (d + 1)-polytope on n vertices. Stanley’s
generalization [62, 63] guarantees the same conclusion if X is a triangulation of
Sd , and Kalai’s strong upper bound theorem [27] treats the case that X forms a
subcomplex of the boundary of a (d + 1)-polytope (but the polytope can contain
more vertices than X).

Thus, Proposition 3.13 could be viewed as an asymptotic topological generaliza-
tion of these results to complexes that are embeddable into the sphere (rather than
triangulations of the sphere or simplicially embeddable into polytope boundaries).

The connections reach even farther, by a deep conjecture of Kalai and Sarkaria
[27, 28, 59] that connects embeddability and algebraic shifting and would, in

12For technical reasons, in the cases dimX = d−1,d, and d > 3, the proof only works if, instead
of arbitrary topological embeddings, we consider piecewise linear embeddings.



588 U. Wagner

particular, imply Conjecture 3 in a very precise form. See, e.g., [50, Sect. 6] for
a more detailed discussion of this connection and further references to the literature.

The proof of Proposition 3.13 is a fairly simple induction over links of faces.
Since we are not aware of a proof in the literature, we provide the details below. We
remark that the conclusion of the proposition is known to be true unconditionally
for d-dimensional complexes that embed linearly into Rd ; see [14].

Proof of Proposition 3.13. The proof is a fairly straightforward inductive argument
based on considering links of faces (the basic idea, in the case d = 3, was already
noted by Dey and Edelsbrunner [13]). The key observation is the following.

Observation 3.14. If X embeds piecewise linearly into Sd and if F is an i-
dimensional face of X,−1≤ i≤ dimX, then the link of F in X, denoted by lk(F,X),
embeds piecewise linearly into Sd−i−1.

Suppose now that X embeds into Sd . If dimX ≤ d−2 or d ≤ 3n then it is known
that there is also a piecewise linear (PL) embedding. If dimX = d−1,dn and d > 3,
we need to explicitly assume PL embeddability. In either case, choose and fix such
a PL embedding.

To prove Proposition 3.13, we first note that if dimX < k, then the assertion
of the proposition is trivial, and if dimX = k, then it follows immediately from
Conjecture 3. Thus, we may assume that dimX > k.

Suppose first that dimX is odd. Note that if k = �d/2�, then �(d−1)/2�= k−1.
Consider a vertex v ∈ X0. By the observation, we know that lk(v,X) embeds into
Sd−1. Thus, by induction on d, f j−1(lk(v,X)) ≤ Cj−1,d−1 · fk−1(lk(v,X)) for j =
k+ 1, . . . ,dimX− 1. Thus,

( j+1) f j(X) = ∑
v∈X0

f j−1(lk(v,X))≤Cj−1,d−1∑
v

fk−1(lk(v,X) =Cj−1,d−1(k+1) fk(X);

i.e., f j(X)≤Cj,d fk(X), where Cj,d = k+1
j+1Cj−1,d−1.

Next, assume that d = 2k is even. Consider an edge e of X . Again, by
the observation, lk(e,X) embeds into Rd−2 = R2k−2. Thus, f j−2(lk(e,X)) ≤
Cj−2,d−2 fk−2(lk(e,X)), since � d−2

2 � − 1 = k − 2. Summing up over all edges,
we obtain( j+1

2

)
f j(X) = ∑

e∈X1

f j−2(lk(e,X))≤Cj−2,d−2 ∑
e∈X1

fk−2(lk(e,X)) =Cj−2,d−2
(k+1

2

)
fk(X).

Moreover, Conjecture 3 implies fk(X) ≤ Ck fk−1(X). Consequently, f j(X) ≤
Cj,d fk−1(X), where Cj,d =Ck ·Cj−2,d−2

(k+1
2

)
/
( j+1

2

)
. ��
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4 The Forbidden Minor Approach

The fact that the complete multipartite complex Kk
3,...,3 does not embed into R2k

immediately leads to a nontrivial upper bound fk = O(nk+1−1/3k
) for embeddable

complexes, by the following Turán-type result.
THEOREM (ERDŐS [17]). If a simplicial complex X on n vertices does not contain

Kk
t,...,t as a subcomplex, then fk(X) = O(nk+1−1/tk

).

We remark that in higher dimensions, this extremal result is not known to be
tight (see, e.g., the discussion in [22]). For k ≥ 2, a probabilistic construction
with alterations yields a slightly smaller exponent of k+ 1− (k+1)t−k

tk+1−1
for the lower

bound. Even so, forbidden subhypergraph arguments work well only for fairly dense
complexes and are too weak to obtain tight bounds in our context. [To illustrate this,
note that forbidding K3,3 as a subgraph only gives an upper bound of O(n5/3) for
the number of edges of a planar graph, and an upper bound of p ≤ n−2/3 for the
threshold of planarity of G(n, p).]

A natural approach is to use forbidden minors instead. The challenge is to find
a suitable notion of minors that, on the one hand, preserves sufficient topological
information and, on the other hand, is sufficiently flexible so as to deal with very
sparse complexes.

In Sect. 5, we briefly discuss some other notions of minors and the difficulties
that arise when trying to carry out the above approach. The notion of homological
minors, denoted by �H , is designed so as to circumvent these difficulties. As a first
step, we show that homological minors satisfy the following version of the first
requirement.

Theorem 4.15. If K�H X and o2k
F2
(K) �=0, then o2k

F2
(X) �=0.

In other words: If there is a good reason for the nonembeddability of the minor K
(nonvanishing of its van Kampen obstruction modulo 2), then X is nonembeddable
for the same reason.13

Next, we propose the following generalization of Mader’s theorem.14

Conjecture 16. For every k, t ≥ 1, there is a constant C =C(k, t) with the following
property: If X is a simplicial complex with fk(X)≥C · fk−1(X), then Kk

t �H X .

We have not yet been able to verify Conjecture 2 in full generality, but we can
show that it holds for almost all complexes.

13There is an analogous result for the integer van Kampen obstruction, which, as remarked above,
characterizes embeddability if k �= 2.
14The case t = 2k+3 would be sufficient for the embeddability problem, but this special case seems
to pose the same difficulties as the general one, so the restriction appears distracting rather than
helpful. Moreover, there are other applications of homological minors that require larger complete
minors. We also remark that up to a change in the constant, it does not matter whether one excludes
complete or complete multipartite minors.
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Theorem 4.17 ([69]). For every k, t, there exists a constant C = C(k, t) such that
Pr[Kk

t �H Xk(n, p)]→ 1 as n→ ∞ for p≥C/n.

The proof actually shows that with high probability, X = Xk(n,C/n) contains
a Kk

t -minor even after moderate alterations, i.e., if we remove εnk many k-faces
from X . This is of interest since random complexes X2(n, p) with small alterations
show that an analogue of Conjecture 16 fails for topological minors of simplicial
complexes (even if we allow a much larger probability, p ≈ 1/

√
n); see Sect. 5.

Moreover, as remarked above, the proof only uses certain quasi-randomness or
expansion properties of X and hence applies to a much broader class of complexes,
which do not necessarily have a complete (k− 1)-skeleton. We consider this as
positive evidence that Conjecture 16, the notion of homological minors, and the
overall approach proposed here are reasonable and promising.

Remark 18. In sparse (constant average degree) expanding graphs on n vertices,
one can find not just constant-size complete minors, but much larger ones of size√

n/ logn; see, e.g., [32]. The crucial fact that makes this possible is that such a
graph has a very small diameter O(logn) and that this remains the case even if a
moderate number of vertices are deleted. In higher dimensions, the picture is more
complicated, and the higher-dimensional analogue of the diameter in an expanding
complex need not be logarithmic; see [51]: There are examples of expanding 2-
complexes X on n vertices that contain 1-chains that are triangle boundaries in the
complete complex K2

n but are not the boundary of any 2-chain in X supported on
fewer than Ω(n1/5) triangles.

5 Minors of Simplicial Complexes

We begin by discussing some possible ways of generalizing the notion of minors to
simplicial complexes.

5.1 Subdivision and Topological Minors

From a topological point of view, maybe the most natural and straightforward thing
to do is to generalize topological minors.

To do this, there are already several possibilities in higher dimensions. The
most restrictive definition is the following. We say that a simplicial complex K is
a subdivision minor of X , denoted K �SD X , if X contains a subcomplex that is
isomorphic to a subdivision of K.

We can weaken this in various ways. In a first step, we can require that for every
face F ∈ K, X contain a subcomplex YF such that each YF is homeomorphic to F ,
i.e., to a ball of the appropriate dimension, and that the complexes YF fit together as
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required; i.e., YF ∩YG = YF∩G. This is more general than the notion of subdivision
minors, since for dim(F) = k≥ 5, a complex YF may be a topological k-ball without
being a PL-ball, i.e., without being isomorphic to a subdivision of F .

Next, we can further relax this and simply require that X contain a subcomplex Y
that is homeomorphic to K, but without requiring that the homeomorphism |K| ∼= |Y |
restrict to homeomorphisms on the faces of K.

Finally, we can simply require |X | to contain a subspace (not necessarily a
subcomplex) homeomorphic to |K|. All of these notions of minors obviously
preserve embeddability: If K topologically embeds into X and X into Rd , then K
embeds into Rd .

However, even the most permissive notion of topological minors fails when it
comes to the existence of large complete minors in 2-complexes. Note that a two-
dimensional complex X contains a subspace homeomorphic to S2 iff it contains a
subcomplex homeomorphic to S2 (and since we are in dimension 2, that subcomplex
will actually automatically be a PL 2-sphere, i.e., a subdivision of the boundary of
a tetrahedron). Brown et al. [8] showed that there are two-dimensional complexes
on n vertices with as many as Ω(n5/2) triangles that do not contain a subcomplex
homeomorphic to the 2-sphere S2, i.e., that do not contain K2

4 as a topological minor.
Thus, the analogue of Conjecture 2 fails for these notions of minors.

A very simple alternative proof of this is due to Linial (personal communication)
by a random construction with alterations: Consider the complex X2(n,c · n−1/2);
i.e., choose every possible triangle independently at random with probability c ·
n−1/2 (for some suitable constant c > 0). One can show that with high probability,
the resulting complex contains few subcomplexes homeomorphic to S2, and these
can be deleted by removing a triangle from each of them. The same construction
can be used to exclude any surface of bounded genus.

As discussed above, for every k ≥ 2, there are infinitely many k-dimensional
complexes that are minimally nonembeddable into R2k and do not embed into one
another. This also shows that there is no hope for a higher-dimensional analogue of
Kuratowski’s theorem for topological minors.

As mentioned above, the embeddability problem EMBEDk→d is also computa-
tionally hard in many cases, in particular in the case EMBED2→4 of embeddability
of 2-complexes into R4. We consider this as some discouraging evidence: If there
is a higher-dimensional analogue of Kuratowski’s theorem for 2-complexes embed-
dable into R4, then the corresponding notion of minors must be computationally
hard (or maybe even undecidable). Of course, this does not rule out that such
a notion of minors exists, but we expect that it might be hard to work with, in
particular with regard to extremal questions.
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u
v

u = v

Fig. 1 A subdivided triangle with a hole contracts to a subdivided triangle

5.2 Deletions and Arbitrary Contractions

Another very natural attempt is to extend the commbinatorial definition of deletion-
and-contraction minors and to allow arbitrary deletions and arbitrary contractions
of faces of a simplicial complex.

Here, the most naive notion of a contraction would be to identify two vertices
along a common edge. In the course of such a contraction of u with v, for every
face F = G∪{v} in X with u �∈ G, we remove F and replace it with the face F′ =
G∪{u}. If F ′ is already present in X , we just retain one copy (that is, we do not
keep “multiple faces,” as in edge contractions in simple graphs).

Let’s say that K is a deletion-and-contraction minor of X , denoted by K �DC X ,
if K can be obtained from X by a finite sequence of face deletions and edge
contractions. One can show that this general notion of deletion-and-contraction
minors satisfies an analogue of Conjecture 2 (essentially, the original proof of
Mader [38] can be generalized to higher dimensions; we omit the details).

However, this contraction operation completely ignores the topology of the
complex, and indeed, the first desired property for minors fails badly: We can have
K �DC X and X embeds into Rd even though od

F2
(K) �= 0. For instance, consider the

complex Y on the left-hand side of Fig. 1, which is homeomorphic to a triangle with
a small open hole punched in its center. By contracting the edge uv, we obtain the
complex Y ′ on the right, which is a subdivided triangle. Now consider the complete
2-complex K2

7 on seven vertices. If we replace one of the triangles of K2
7 with the

complex Y , we obtain a complex X that is homeomorphic to K2
7 with a small hole

punched in one of the triangles. It is known (and easy to see) that X embeds into
R4. However, if we contract the edge uv in X , we obtain a complex X ′ that is
homeomorphic to K2

7 ; hence, o4
F2
(X ′) �= 0 and X ′ does not embed into R4. Thus,

a notion of minors based on arbitrary contractions is unsuitable for embeddability
questions.

One way around this problem is to leave the realm of simplicial complexes and
to consider more general cell complexes in which cells are no longer uniquely
determined by their boundary (higher-dimensional analogues of multigraphs). In
this case, contracting the edge uv in the above example might look like Fig. 2.
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u
v u = v

Fig. 2 Contractions in cell complexes may lead to parallel faces

So we would still retain information about nonembeddability. However, such cell
complexes seem to be difficult to work with from the viewpoint of face numbers
and extremal statements. For example, we cannot prove a linear upper bound for the
number of edges in a planar multigraph in terms of the number of vertices. In order
to prove any such statement, either we have to delete parallel edges, or we have to
keep careful track of all multiplicities. We would need to do something similar for
general cell complexes in higher dimensions, and it turns out to be quite tricky to
define notions of “parallel faces” or “multiplicity” and to do the bookkeeping.

Moreover, this kind of contraction is still a special case of the more general
homological minors defined below, which is why we prefer to work with the latter.

5.3 Admissible Contractions According to Nevo

Another way around the problem exemplified by Fig. 1 is to stay in the realm
of simplicial complexes but to restrict the contractions that we allow. Nevo [49]
recently introduced a notion of admissible contractions and a corresponding notion
of minors. The idea is that a contraction as in the example above closes a “higher-
dimensional hole” in the complex. In a certain sense, on the level of graphs this
would correspond to identifying two vertices that are not joined by an edge, thus
closing a zero-dimensional hole. To avoid this, Nevo considers missing faces: A
k-face F of a complex X is missing if F �∈ X , but all proper faces G � F belong
to X . Identifying two vertices u ad v constitutes an admissible contraction in the
sense of Nevo if u and v are not contained in a common missing face F .15 Thus,
in particular, if dimX ≥ 1, then u and v must form an edge (otherwise, the edge
uv would be missing). If dimX ≥ 2, then for every common neighbor w of u and

15Nevo’s original definition rules out only missing faces of dimension dimF ≤ dimX , thus still
allowing the possibility of u and v being contained in a common missing face of dimension dimX +
1. As noted in the final version of [49], however, ruling out such missing faces as well leads to the
same notion of minors.



594 U. Wagner

v (i.e., a vertex such that both uw and vw are edges in X , also the triangle uvw
must belong to the complex X), and so forth. A complex K is called a deletion-and-
admissible-contraction-minor, denoted by K �DAC X , if K can be obtained from X
by a sequence of face deletions and admissible contractions. Nevo also showed that
this notion of minors is well adapted to embeddability problems.

Theorem 5.19 (Nevo). If K �Nevo X and if od
F2
(K) �= 0, then od

F2
(X) �= 0.

However, it seems difficult to prove a variant of Conjecture 2 for this notion
of minors. We do not have a proof that this is impossible, but the following
considerations provide some evidence: Consider the random complex X2(n, p)
on n vertices with a complete 1-skeleton, where each possible triangle is chosen
independently with probability p = C/n for some constant C. Then the probability
that a given edge uv is incident to a certain number t of triangles equals

(n−2
t

)
pt(1−

p)n−2−t ≈ Cte−C/t! for small t and n → ∞. Thus, the triangle degree of a given
edge is roughly Poisson-distributed. It follows that typically every edge is incident
to many missing triangles, and it is not clear how to delete edges (and their incident
triangles) in a controlled manner so as to obtain edges that are admissible to contract.

Remark 20. As mentioned in the Introduction, Melikhov [46] independently re-
discovered the notion of admissible contractions and the corresponding notion of
minors, which he calls edge minors. Moreover, he considers a more general notion
of minors, which he calls h-minors (presumably, the “h” stands for “homotopy”).

By definition, a simplicial complex K is an h-minor of a simplicial complex X if
there exists a simplicial complex Y with |Y | ⊆ |X | and a piecewise linear surjective
map f : |Y | → |K| such that the preimage of every point in |K| is contractible.
Melikhov also considers a more restrictive version of minors, where every preimage
is required to be collapsible. Let’s call the latter, more restrictive version sh-minors
(for “simple homotopy”). The following implications hold among these notions of
minors: Every minor in the sense of Nevo is an sh-minor, and every sh-minor is an
h-minor.

Due to time constraints in the preparation of the final version of the present
chapter, we cannot give an adequate discussion of Melikhov’s paper here. We
just remark that Melikhov shows that for k-dimensional complexes, embeddability
into Rd is preserved under taking h-minors if the codimension d− k is at least 3,
and embeddability is preserved unconditionally, for arbitrary codimensions, under
taking sh-minors.

At present, we do not know whether an analogue of 4.17 might hold for h-minors.
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5.4 Homological Minors

In order to circumvent the difficulties pointed out above, we propose the notion of
homological minors.16

To motivate the definition, let’s rephrase the definition of subdivision minors
slightly differently. We have K �sd X iff, for every face F ∈K, there is a subcomplex
YF ⊆ X that is isomorphic to a subdivision of F and such that YF ∩YG =YF∩G for all
F,G ∈ K.

To define homological minors K �H X , we relax this in two ways: First, we drop
the requirement that an i-face F ∈ K be represented by a subcomplex YF ⊆ X that is
a combinatorial i-dimensional ball (isomorphic to a subdivided i-simplex). Instead,
we allow more general i-dimensional chains. Second, we relax the conditions on
how the YF may intersect.

Definition 5.21. Let K and X be simplicial complexes. K is a homological minor
of X, denoted K �H X, if

0. there is a chain map ϕ from K to X such that
1. ϕ( /0) = 1 · /0; equivalently, for every vertex v on K, its image ϕ(v) is a set of

vertices of odd cardinality.
2. ϕ preserves disjoint vertex supports: If F and G are vertex-disjoint simplices,

then every simplex in ϕ(F) is vertex-disjoint from all simplices occurring in
ϕ(G).

We remark that apart from the disjointness Condition 2, the definition boils down
to linear algebra (which is the reason why chains are easier to handle than disks or
other homotopy-theoretic notions): Condition 0 (being a chain map) amounts to a
homogeneous system of linear equations, and Condition 1 to one inhomogeneous
linear equation.

As an immediate consequence of the definition, we obtain the following.

Observation 5.22. If ϕ is a chain map witnessing K �H X, then by Property 2,
ϕ induces an equivariant chain map ϕ̃ between the deleted products K2

del and
X2

del, defined by “tensoring,” i.e., ϕ̃(F×G) = ∑A,B A×B, where A ranges over the
simplices in ϕ(F) and B ranges over the simplices in ϕ(G). Moreover, by Property
1, ϕ̃( /0) = 1 · /0; i.e., ϕ̃ maps the empty face of K2

del to that of X2
del.

16We mention that there is a line of research that studies generalizations of minors to matroids and
related structures. For instance, we refer the reader to [19] for a survey of recent efforts to extend
the graph minor theorem to matroids. Kaiser [26] further generalizes matroid minors to simplicial
complexes, in the sense that independent complexes of matroids form a special class of simplicial
complexes. These notions are somewhat related to the notion of homological minors, since the
starting point for both is the linear algebra setting of cycles and cocycles (for a graph, simplicial
complex, or matroid). However, matroid minors seem to focus only on top-dimensional cycles and
to ignore the interactions between boundary maps of various dimensions, and they seem to have
no direct bearing on embeddability and related questions.
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Theorem 4.15 is a direct consequence of the preceding observation and
Lemma 2.8.

Remark 23. In this chapter, we restrict ourselves to coefficients in the field F2, but
the definitions carry over verbatim to arbitrary coefficient rings, with finite fields
being most convenient to work with. In particular, the methods extend to Tverberg-
type questions (where we are interested in p-fold covered image points instead of
twofold ones), for which Fp is the appropriate choice of coefficients. One can also
define a notion of minors based directly on the existence of chain maps between
deleted products as in Lemma 2.8. However, in several ways, the original simplicial
complex is technically easier to work with than the deleted product.

Remark 24. One can show that a minor in Nevo’s sense is also a homological minor
(the argument is implicit in [49]). However, homological minors are strictly more
general. For instance, it is easy to show by induction on k that an arbitrary homology
k-cycle X (considered a simplicial complex) contains Kk

k+2 as a homological minor,
but Kk

k+2 �Nevo X if and only if X is a piecewise linear k-sphere. A particularly
simple example that shows that the two notions differ already for graphs (for which
Nevo’s minors are just usual graph minors) was pointed out by Nevo (personal
communication): The “claw” K1

1,3 contains K1
3 (the boundary of a triangle) as a

homological minor but not as a graph minor.

6 Higher-Dimensional Expansion

For graphs of arbitrary density, edge expansion can be defined as follows.

Definition 6.25. Let G = (V,E) be a graph, and let ε > 0. We say that G is ε-edge-
expanding if, for every S⊆V,

|E(S,V \ S)|
|E| ≥ ε · min{|S|, |V \ S|}

|V | , (1)

where E(S,V \S) is the set of edges across the cut (S,V \S), i.e., with one endpoint
in S and the other one in V \ S.

[For graphs with bounded degrees, (1) is easily seen to be equivalent, up to
a change in the constant ε , to the more usual condition that |E(S,V \ S)| ≥ ε|S|
whenever |S| ≤ |V |/2.] In order to generalize this to higher dimensions, we rephrase
everything in terms of cochains.

Since we are working over F2, there is a one-to-one correspondence between
subsets S ⊆ V and 0-cochains (i.e., functions α : V → F2), by identifying S with
its characteristic function 1S, and the set E(S,V \ S) of edges corresponds to the
1-cochain ∂ ∗α . The constant 0-cochains 0 and 1 are precisely the coboundaries of
the two possible (−1)-dimensional cochains, and they correspond to the trivial cuts
with S = /0 and S = V , respectively. Adding the constant zero-dimensional cochain
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1 to a 0-cochain α = 1S is the same as exchanging the two sides S and V \ S of the
corresponding cut.

In general, let X be a simplicial complex. We equip the vector space Ci(X)∼= FXi
2

with the Hamming norm; i.e., we define |α| to be the number of 1s that appear in
the vector α , or equivalently, the number of i-faces in that are mapped to 1 by α .
Then we normalize by the number of all i-faces and define ‖α‖ := |α |

fi(X)
.

In the case of 0-cochains, we defined expansion by bounding the norm ‖∂ ∗α‖
of the coboundary from below in terms of min{‖α‖,‖1+α‖}. In general, the right
measure is the normalized distance of α from the space Bi of coboundaries (the
trivial kernel of ∂ ∗). That is, we define

‖[α]‖ := min{‖α+ ∂ ∗β‖ : β ∈Ci−1}.

In other words, this is the quotient norm on the quotient space Ci/Bi induced by the
normalized Hamming norm.

We remark that the definitions of ‖α‖ and ‖[α]‖ depend on the ambient complex
[if also α ∈Ci(Y ) for some Y ⊆ X , then the norms may be different with respect to
Y ].

Now we are ready to define higher-dimensional expansion, which we refer to
as face expansion or cohomological expansion. For our proof, we will also need a
coarse version of it that only applies to large cochains.

Definition 6.26. Let ε > 0. We say that a finite simplicial complex X has i-
dimensional face expansion ε or that it is ε-expanding in dimension i if

‖∂ ∗α‖ ≥ ε · ‖[α]‖ (2)

holds for all α ∈Ci−1(X). If we only require (2) for all α ∈Ci−1(X) with ‖α‖ ≥ δ
for some δ , then we say that X is coarsely (ε,δ )-expanding in dimension i. We also
call ε the expansion factor and δ the coarseness.

Note that in the definition, we shifted the notation from i-chains to (i−1)-chains
compared to the preceding discussion so that expansion in dimension i captures
properties of the i-dimensional faces of X . For example, an ε-edge expanding graph
is a simplicial complex that has one-dimensional face expansion ε .

The basic observation in this context (see [20, 35, 47]) is that the complete
complex Kk

n is a face expander in all dimensions.

Proposition 6.27. The complete complex Kk
n has i-dimensional face expansion 1

for all i ∈ {0,1, . . . ,k}.

Well-known Chernoff-type concentration bounds (see, e.g., [25]) easily imply
the following.

Lemma 6.28 ([25]). Let Z = ∑m
i=1 Zi be a random variable that is the sum of m

independently and identically distributed random indicator variables with Pr[Zi =
1] = p = 1− Pr[Zi = 0]. That is, Z has a binomial distribution with parameters n
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and p. Let λ = np = EZ be the expectation of Z. Then, for any t ≥ 0,

Pr[Z ≤ EZ− t]≤ e−t2/2λ .

Lemma 6.29. Let X = Xk(n,C/n), where C > 0 is a sufficiently large constant.
Then X is 1-expanding in every dimension i ≤ k− 1, and asymptotically almost
surely X is coarsely expanding in dimension k with expansion factor 1/2 and
coarseness Ω(1/C).

This is as an analogue of the fact that the random graph G(n,C/n) has a giant
component of size Ω(n) and that this component is edge-expanding.

Proof. The first assertion follows from Proposition 6.27.
For the second part, consider a (k− 1)-chain α in Ck−1(X) with ‖[α]‖ = a ≥ δ ,

where δ is a parameter to be specified. We can also consider α a (k− 1)-chain
in the complete complex Kk

n containing X . In this bigger complete complex, the
coboundary of α has size at least a

( n
k+1

)
.

Since every k-simplex is chosen independently at random with probability p =
C/n, the expected size of the coboundary of α in X equals pa

( n
k+1

)
∼ Ca

k+1

(n
k

)
. By

Chernoff, the probability that the actual coboundary is less than half this large is at

most e
− Ca

8(k+1) (
n
k). On the other hand, the total number of cochains α is at most 2(

n
k).

Thus, if δ is at least 8(k + 1) ln(2)/C, a union bound shows that asymptotically
almost surely, every α with ‖[α]‖ ≥ δ satisfies |∂ ∗α| ≥ 1

2 ap
( n

k+1

)
.

Moreover, the total number of k-simplices in X is tightly concentrated around
p
( n

k+1

)
; i.e., asymptotically almost surely fk(X) = (1 + o(1))p

( n
k+1

)
, and hence

‖∂ ∗α‖ ≥ 1/2(1+ o(1))‖[α]‖ holds whenever ‖[α]‖ ≥ δ . ��

We remark that the expansion factor of 1/2 is chosen completely arbitrary. We
could choose any other fixed constant ε < 1, at the expense of making the constant of
proportionality between the coarseness δ and 1/C worse. The same argument also
shows that Xk(n, C logn

n ) is expanding in dimension k if C = C(k) is a sufficiently
large constant.

7 Partitions and Colorful Homological Minors
and Cominors

Let K and X be simplicial complexes of dimension k. Consider a graded linear map
ϕ : C∗(K)→C∗(X), i.e., a family of linear maps ϕi : Ci(K)→Ci(X). We can identify
each ϕi with a matrix of dimension fi(X)× fi(K) over F2, and by writing the entries
of the matrices in a row (in some specified order), we can view ϕ as a vector over
F2 of length ∑i fi(X) fi(K). The entries of this vector are indexed by pairs of faces
(A,F) ∈ K×X of equal dimension dimA = dimF , and the entry of ϕ in position
(A,F) equals the coefficient with which F appears in the chain ϕ(A).
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Condition 0 in the definition of homological minors, the property of being a chain
map, simply amounts to a number of homogeneous linear conditions on the entries
of ϕ , with the coefficients of the linear equations given by the boundary matrices of
K and X .

Condition 1, ϕ( /0) = /0, is also a linear condition, albeit an inhomogeneous one: It
simply says that a fixed entry of ϕ (w.l.o.g. the first entry) equals 1. Only Condition
2, disjointness of vertex supports, is not linear. However, we can enforce it as
follows.

7.1 Partitions and Colorful Chain Maps

Suppose that K has t vertices, w.l.o.g. K0 = {1, . . . , t} =: [t]. Fix a partition of the
vertices of X into t parts or color classes, in other words, a map P : X0 → [t]. We
restrict our attention to colorful simplices of X , i.e., faces F ∈ X that contain at most
one vertex of each color.

For a given A ∈ K, let’s say that a simplex F ∈ X is A-colored if F contains
precisely one vertex of each color i ∈ A (such a simplex is necessarily of the same
dimension as A), and let X [A] denote the set of A-colored simplices in X (strictly
speaking, X [A] depends on the partition P , but we suppress this from the notation).
Let’s say that a graded map ϕ : C∗(K)→C∗(X) is color-faithful if, for every A ∈ K,
the chain ϕ(A) is supported on the A-colored simplices X [A]; i.e., every simplex
F ∈ X that appears with a nonzero coefficient in the chain ϕ(A) is A-colored. Such
a ϕ trivially preserves vertex disjointness, since for vertex-disjoint A,B ∈ K, any
F ∈ X [A] and G ∈ X [B] are vertex-disjoint as well.

From now on, we only consider color-faithful graded linear maps ϕ : C∗(K)→
C∗(X). As before, we can identify such a map with a vector over F2, whose entries
are indexed by pairs (A,F), where A ∈ K and F is now required to be A-colored.
Thus, the length of ϕ equals ∑A∈K |X [A]|. Condition 0 of being a chain map means
that ϕ is a solution to a homogeneous system of linear equations,

Mϕ = 0. (3)

Here, M is called the enhanced boundary matrix of X and defined as follows. The
columns of M are indexed by pairs (A,F) ∈ K×X with F ∈ X [A] as above, and the
rows of M are indexed by pairs (G, i), where G is a colorful face of X of dimension
at most (k− 1), G is B-colored for some B ∈ K, and i ∈ [t] \B is a color that does
not appear in G. The entry of M in row (G, i) and column (A,F) equals 1 if either
A= B∪{i} and G⊆ F (i.e., if G is a facet of F and i is the color of the unique vertex
of F missing from G) or if G = F . Otherwise, the entry of M at that position is zero.
See Fig. 3, for a schematic illustration of M in block form.

Remark 30. For a fixed K and a random partition of the vertices of X , the existence
of a nonzero solution to (3) is almost trivial if fk(X)≥C · fk−1(X) for a sufficiently
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Fig. 3 The (upper left corner) of the enhanced boundary matrix for the case K = Kk
t . Here, we

have grouped the row indices (G, i) according to which X [B] the face G belongs to, and the column
indices (A,F) according to A. Moreover, each I stands for the appropriate identity matrix on X [A],
and each ∂ stands for the appropriate portion of the boundary matrix of X (restricted to the entries
indexed by X [B]×X [A])

large constant C, by counting variables and constraints: For the rows of M, we
only consider faces of X of dimension i < k, and each such face appears only
t − i− 1 times. Thus, the total number of rows (linear equations) of M is at
most ∑k

i=−1−1(t − i− 1) fi(X) ≤ t2k fk−1(X). On the other hand, the number of
columns (variables) of M is at least the number of colorful k-simplices of X . If
we pick a random partition, then the expected number of colorful k-simplices is

1
(t−1)(t−2)···(t−k) fk(X)≥ t−kC fk−1(X), and for sufficiently large C, this is larger than
the number of rows, so M has a nontrivial kernel.

However, we are looking for a solution ϕ of (3) that also satisfies one additional
inhomogeneous condition ϕ( /0) = /0, i.e., for a vector ϕ ∈ kerM whose entry in
the first position equals 1. Because of this inhomogeneity, the simple dimension-
counting argument breaks down (two affine subspaces need not intersect, even when
the sum of their dimensions exceeds the dimension of the ambient space).
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7.2 Cominors

When does a solution ϕ ∈ kerM with first coordinate equal to 1 exist? It does not
exist if and only if the row vector (1,0, . . . ,0) lies in the row space of M i.e., if there
is a row vector α such that αM = (1,0, . . . ,0). We call any such row vector α a
cominor.

Let’s take a closer look at what it means. The entries of α are indexed by the same
pairs (G, i) as the rows of M; i.e., G is a colorful face of X of dimension dim(G)< k,
and i ∈ [t] is a color that does not appear in G. The conditions for α to be a cominor
are as follows: First of all, ∑t

i=1α( /0, i) = 1 (all calculations are modulo 2). Second,
for every nonempty colorful face F of X ,

∑
i∈[t]\P

α(F, i) + ∑
G⊂F,|G|=|F|−1

α(G,P(F \G)) = 0

if dimF < k and

∑
G⊂F,|G|=|F|−1

α(G,P(F \G) = 0

if dimF = k.
Equivalently, we can view α as a collection {αA} of dim(A)-dimensional

cochains on the subcomplexes17 X [A], one for each simplex A ∈ K, by setting
αA(F) := α(F, i), where F is face of X that is B-colored for the unique facet B⊂ A
with {i}= A\B; i.e., i is the unique color of A that does not appear in F .

Thus, in the case K = Kk
t , for each i ∈ [t], we have a (−1)-dimensional cochain

αi on the zero-dimensional complexes X [i]. For each pair {i, j} ∈
([t]

2

)
, we have

a 0-cochain on X [{i, j}], etc. The condition of being a cominor translates to the
requirement that ∑t

i=1α{i}( /0) = 1, and for A ∈ Kk
t and F ∈ X [A],

∂ ∗αA(F) = ∑
i∈[t]\A

αA∪i(F) (4)

if 0≤ dimA < k and
∂ ∗αA = 0 (5)

if dimA = k. Thus, in the latter case, αA is a cocycle on X [A] (note that αA need not
be a cocycle when considered a chain in X).

In order to show the existence of a Kk
t minor, we will assume there is a cominor

and derive a contradiction. For this, we use face expansion.

17Here, we abuse notation and think of X [A] as the subcomplex consisting of all A-colored
simplices and their faces.
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7.3 Minors in Expanding Complexes

We are now ready to prove Theorem 4.17. The first step is the following lemma.

Lemma 7.31. Let X be a k-dimensional simplicial complex with a given t-partition
of the vertices, and assume that α is a Kk

t -cominor with respect to that partition.
Then we may modify α , while preserving the cominor conditions, and achieve that
for every A ∈ Kk

t , the cochain αA is cohomologically minimal, i.e. ‖αA‖ = ‖[αA]‖,
in the subcomplex X [A].

Proof. We prove this top-down. Let i≤ k and C ∈
( [t]

i+1

)
. Then the componentαC of

the cominor is an (i−1)-dimensional cochain on X [C]. Let β be an arbitrary (i−1)-
dimensional coboundary on X [C]. It suffices to show that we can modify α to obtain
a new cominor α ′ such that α ′C =αC +β and α ′A = αA for all A⊆ [t] with |A| ≥ i+1
and A �=C. (If we can prove this, then we can make all αA cohomologically minimal
in a top-down fashion, since our next modification never interferes with any of the
previous ones in the same or higher dimensions.)

Let γ be an (i− 2)-dimensional cochain on X [C] with ∂ ∗γC = βC. For every
“facet” B ∈

(C
i

)
of C, define α ′B := αB + γ|X [B] (each X [B] is a subcomplex of X [C],

so the restriction of γ is defined). Moreover, define α ′C := αC +β , and set α ′A := αA

for every A⊆ [t] that is not equal to C or a facet of C. We claim that the resulting α ′
is still a cominor.

Consider a subset A⊆ [t]. If A =C, then ∂ ∗α ′C = ∂ ∗(αC +β ) = ∂ ∗αC, and α ′S =
αS for all proper supersets S⊃C. Therefore, whichever of the two cominor relations
(4) and (5) applies, it is preserved.

Next, suppose that A is a facet of C and let F ∈ X [A]. We have ∂ ∗α ′A(F) =
∂ ∗αA(F)+β (F). On the other hand, there is a unique i ∈ [t]\A such that A∪ i =C.
For this i, we have α ′A∪i(F) = α ′C(F) = αC(F)+β (F). For all other j ∈ [t]\A, A∪ j
is neither equal to C nor to a facet of C; hence,α ′A∪ j(F) =αA∪ j(F) for all these other
j. Summing up, we see that relation (4) is preserved since we simply add β (F) once
on either side of the equation.

If A ⊆ C and |A| = i− 1, then there are precisely two superfaces B ⊂ A of size
|B| = i that are facets of C. On each of these two facets, αB is modified by adding
γ . On all other B, αB is unchanged. Thus, in the cominor relation (4) for A, we add
β (F) exactly twice to the right-hand side and make no changes on the left-hand
side, so the relation is preserved.

For all other A, neither αA nor the cochains αA∪i are affected. This shows that the
modified α ′ is a cominor, which completes the proof of the lemma. ��

Proposition 7.32. Suppose that X is a simplicial complex on n vertices, and
suppose that we have a partition X0 = V1∪ . . .Vt of the vertices of X into t classes
(colors) such that the following properties hold:

1. The partition is an equipartition of the complex (of the vertices as well as of the
higher-dimensional faces). That is, we assume that all |Vi| are equal to 1+o(1)

t n,
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and that for each dimension i < t and each A ∈
( [t]

i+1

)
, we have fi(X [A]) = (1+

o(1))
(

i+1
t

)i+1 · fi(X).
(This is the behavior we get with high probability when we t-color the vertices

uniformly at random.)
2. For 1 ≤ i ≤ k and A ∈

( [t]
i+1

)
, the complex X [A] is coarsely face-expanding in

dimension i with face expansion at least εi > 0 and coarseness δi <
i!ε1ε2···εi−1
(i+1)iti .

Then there is no Kk
t -cominor for this partition; i.e., X has a colorful homological

minor.

Proof. Assume that α is a cominor for the partition. By the preceding lemma, we
may assume that every component αA is cohomologically minimal.

Since ∑iαi( /0) = 1, we must have αi( /0) = 1 for some i, say α1( /0) = 1. For each
v ∈ V1, we have ∂ ∗α1(v) = 1 = ∑i∈[t]\{1}α{1,i}(v). It follows that there is some i
such that for at least 1/t of the vertices in V1, we have α1i(v) = 1, say i = 2. It
follows that |α12| ≥ |V1|/t = |V1 ∪V2|/2t; hence, ‖α12‖ = ‖[α12]‖ ≥ 1

2t in X [12].
Here, we use that α12 is cohomologically minimal and that |V1|= |V2|.

We assume that δ0 < 1/2t and that X [12] is coarsely expanding. Thus, ‖∂ ∗α12‖≥
ε0/2t in X [12]. Thus, ∂ ∗α12 is supported by a fraction of at least ε1/2t of the
edges of X [12]. By the cominor relation, there must be an index j such that α12 j

is supported by a fraction of at least ε1
2t2 of the edges in X [12], say j = 3.

By the equipartition property and since α123 is minimal, we get ‖[α123]‖ ≥ ε1
2t2 ·

4
9(1+ o(1)) in X [123]. If δ2 < 2ε1

9t2 , then coarse expansion of X [123] implies that

‖∂ ∗α123‖ ≥ 2ε1ε2
9t2 in X [123].

Inductively, we get, for every i≤ k, a set A ∈
( t

i+1

)
such that

‖[αA]‖ ≥
i!ε1ε2 · · ·εi−1

(i+ 1)it i > δi

and

‖∂ ∗αA‖ ≥
i!ε1ε2 · · ·εi

(i+ 1)it i

in X [A]. For i= k, this is a contradiction, since in this case, we should have ∂ ∗αA = 0.
��

Proof of Theorem 4.17. Let X = Xk[n,C/n], where C is a constant to be determined.
Fix any partition (coloring) of the vertices of X into t parts of equal size, say [n] =

V1∪ . . .∪Vt with Vi = { (i−1)n
t + 1, . . . , in

t }, 1≤ i≤ t.
Observe that for this coloring and each face A ∈ Kk

t , the complex X [A] is
isomorphic to Xk(n′,C′/n′), where n′ = k+1

t n and C′ = k+1
t C. It follows easily that

asymptotically almost surely the coloring yields an equipartition of X in the sense
of Proposition 7.32.
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Moreover, by Lemma 6.29, the necessary expansion properties hold asymptoti-
cally almost surely provided

k+ 1
t

C =C′ >
8(k+ 1) ln(2)(k+ 1)ktk

k!
.

This proves the theorem. ��

Remark 33. There is a strong formal similarity between the pigeonholing argument
in the proof of Proposition 7.32 and the combinatorial part of Gromov’s proof
of the filling-contraction inequality in [20, Sect. 2.4]. On the other hand, the
underlying topological arguments that lead to these combinatorial problems seem
to be different, at least at first sight. It would be interesting to understand this
connection better.

Moreover, we hope that the approach presented here will also be useful for the
corresponding extremal problems. This is work in progress.
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